

Professional
SQL Server™ 2005
Reporting Services

Paul Turley
Todd Bryant

James Counihan
Dave DuVarney

01_584979 ffirs.qxp 1/27/06 7:43 PM Page i

01_584979 ffirs.qxp 1/27/06 7:43 PM Page iv

Professional
SQL Server™ 2005
Reporting Services

Paul Turley
Todd Bryant

James Counihan
Dave DuVarney

01_584979 ffirs.qxp 1/27/06 7:43 PM Page i

Professional SQL Server™ 2005 Reporting Services
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-8497-8
ISBN-10: 0-7645-8497-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RV/QS/QW/IN

Library of Congress Cataloging-in-Publication Data:

Professional SQL Server 2005 reporting services / Paul Turley ... [et al.].
p. cm.

“Wiley Technology Publishing.”
Includes index.
ISBN-13: 978-0-7645-8497-8 (paper/website)
ISBN-10: 0-7645-8497-9 (paper/website)
1. SQL server. 2. Client/server computing. I. Turley, Paul, 1962-
QA76.9.C55P79 2006
005.75’85—dc22

2005036108

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355,
or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESEN-
TATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WAR-
RANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFES-
SIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM.
THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY
HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. SQL Server is a trademark of Microsoft Corporation in the United States
and/or other countries. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

01_584979 ffirs.qxp 1/27/06 7:43 PM Page ii

www.wiley.com

Acquisitions Editor
Katie Mohr

Development Editor
Tom Dinse

Technical Editor
Todd Meister

Production Editors
Angela Smith
William A. Barton

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Graphics and Production Specialists
Lauren Goddard
Denny Hager
Jennifer Heleine
Alicia B. South

Quality Control Technicians
Leeann Harney
Joseph Niesen
Charles Spencer
Robert Springer

Media Development Specialists
Angela Denny
Kit Malone
Travis Silvers

Proofreading and Indexing
TECHBOOKS Production Services

Credits

01_584979 ffirs.qxp 1/27/06 7:43 PM Page iii

01_584979 ffirs.qxp 1/27/06 7:43 PM Page iv

About the Authors

Paul Turley
Paul Turley is a senior consultant for Hitachi Consulting. He architects database, reporting and business
intelligence solutions for many prominent consulting clients. In addition to Reporting Services, he has
created reporting solutions using Crystal Reports, Active Reports, and Access. Since 1988, he has man-
aged IT projects, designed and programmed applications using Visual Basic 3, 4, 5, 6, ASP.NET,
ADO.NET, and SQL Server. He obtained his MCSD certification in 1996 and other certifications include
MCDBA, IT Project+, and Microsoft Solutions Framework (MSF) Practitioner.

He designed and maintains www.Scout-Master.com, a web-based service that enables Boy Scout
units to manage their membership and advancement records online using ASP.NET, SQL Server, and
Reporting Services.

Paul authored Beginning Transact SQL for SQL Server 2000 and 2005. He has been a contributing author
on books and articles including Professional Access 2000 Programming, Beginning Access 2002 VBA, and
SQL Server Data Warehousing with Analysis Services, all from WROX Press.

My deepest appreciation goes to my wife, Sherri, and our children: Josh, Rachael, Sara, and Krista for
their support and understanding. Writing two books over the past year and a half has been a challenge
for all of us. Rachael: You did a great job managing my screen shots. Sara, you are a champion and a
fighter, and I appreciate your strength and example to everyone around you. Thanks to my folks and
extended family who make me proud to be who and where I am.

My appreciation to everyone at Hitachi Consulting for their support and contributions. Hitachi is a
stellar organization with top-notch people who know how to get business done. Your support over the
past year is appreciated.

Paul contributed Chapters 1, 2, 4, 5, 6, 7 and Appendixes C and D to this book.

Paul may be contacted at pault@scout-master.com.

Todd Bryant
Todd Bryant has been creating custom data-focused applications and reporting solutions since the early
eighties. He began using Microsoft technologies in 1998, and the love affair began. Todd has been con-
tract programming, teaching, and developing custom courseware ever since. He is currently working
half-time as a software architect for SoftWyre, a Little Rock, Arkansas, based software development com-
pany as well as training half-time at Netdesk Corporation in Seattle, where he concentrates on enterprise
solutions, Com+ services, and object-oriented programming using both VB.NET and C#. His certifica-
tions include the MCSD, MCSE, MCDBA, and MCT certifications from Microsoft; the CNA certification
from Novell; and both CompTIA’s A+ and CTT+.

I would like to thank my family and friends for putting up with me during many months of late night
work. I want to thankTodd Meister, our technical Editor. He was a joy to work with and made the pro-
cess much more enjoyable.

Todd contributed Chapter 13 and Appendix B to this book.

01_584979 ffirs.qxp 1/27/06 7:43 PM Page v

James Counihan
James Counihan started teaching himself binary in the early 1970s. He is now a Seattle-area consultant
specializing in development on the .NET platform.

I wouldn’t be where I am today if it weren’t for the love and support of the people who care about me.
Especially to my parents and sister, thank you!

James contributed Chapters 10, 11, 12, and Appendix A to this book.

Dave DuVarney
Dave DuVarney is a principal for Statera’s Seattle office. He has broad technical knowledge stemming
from his experiences as a software developer, a certified public accountant, and a technology trainer.
Dave has been involved in multiple software development projects ranging from contract management
systems to human rights auditing. He is proficient in numerous development languages as well as
Microsoft business intelligence technologies. Most recently he has been consulting and delivering on
SQL Server 2005 Analysis Services, Reporting Services, and Integration Services. Dave is the coauthor
of Professional SQL Server Reporting Services.

I want to thank my wife Stephanie for putting up with another summer of weekends behind the com-
puter. I’d also like to thank the other authors for giving so much of their time to make this second book a
reality.

Dave contributed Chapters 2, 3, 8, and 9 to this book.

01_584979 ffirs.qxp 1/27/06 7:43 PM Page vi

Acknowledgments

Our sincere thanks go to the members of the Reporting Services product team at Microsoft, who have been
very supportive and accessible. A large portion of this book’s content is a direct result of the numerous
meetings and phone calls and hundreds of e-mails exchanged with our friends in the Reporting Services
group at Microsoft. We’ve had the privilege of working with many folks at Microsoft on these two books
over the past three years and greatly appreciate their many contributions. In particular, we’d like to thank
Jason Carlson, Brian Welcker, Chris Hays, Carolyn Chau, Tudor Trufinescu, Lukasz Pawlowski, Fang
Wang, and Rajeev Karunakaran.

A big thank you goes to Andrew Bryan at Dundas Software for his help with the charting features. The
integration in the product is awesome, and your assistance and support have been invaluable.

Our editors at Wiley, Katie Mohr and Tom Dinse, have been terrific to work with, and Todd Meister did
an awesome job on the technical review.

The Business Intelligence team at Hitachi Consulting has been a tremendous source of support and
learning. Thanks for giving us the space to push the envelope. Special thanks to Hilary Feier, Mike
Luckevich, Carr Krueger, Reed Jacobson, Tory Tolton, Ted Corbett, Martin Powdrill, Patrick Husting,
Steve Muise, Stacia Misner, Jeanne Barnham, Scott Cameron, and too many others to mention by name.

Our consulting clients deserve a lot of the credit for affording us the opportunity to put this product in
front of real businesses and corporate decision makers. The rules prevent us from acknowledging all of
those we’d like to here. For the many with whom we’ve had the pleasure of sharing your work spaces,
attending your meetings, and bringing your servers to a grinding halt while developing reporting solu-
tions, you deserve our gratitude in a large measure.

01_584979 ffirs.qxp 1/27/06 7:43 PM Page vii

01_584979 ffirs.qxp 1/27/06 7:43 PM Page viii

Contents

Acknowledgments ix
Foreword I xxi
Foreword II xxiii
Introduction xxv

Part One: Getting Started 1

Chapter 1: What Can You Do with Reporting Services? 3

What We’ve Learned 3
Who Uses Reporting Services? 4

Application and Reporting Technology 5
Information, Now! 6

Solution Types 7
Out-of-the-Box Reports 8
Server-Based Reports 8
User-Designed Reports 9

Designing Reports 9
Simple Application Integration 11

Launching Reports from an Application 12
User Interaction and Dynamic Reporting 12
Intranet and Internet Report Access 14

Seamless Application Integration 14
Web Application Integration 14
Portal Integration 15
Windows Application Integration 15

Managing and Customizing the Report Server 16
Summary 17

Chapter 2: Introduction to Microsoft SQL Server Reporting Services 2005 19

Traditional Application Reporting 20
Today’s Reporting Requirements 21
Business Intelligence Defined 21
Automation to the Rescue — a Scenario 22
Challenges of Existing Reporting Solutions 23
How Does SQL Server Reporting Services Meet This Challenge? 24

02_584979 ftoc.qxp 1/27/06 7:33 PM Page ix

x

Contents

Business Intelligence Solutions 25
Who Uses Reports and Why? 25

Executive Leadership 26
Managers 26
Information Workers 26
Customers 26
Vendors and Partners 27

Reporting Solution Alternatives 27
Reporting with Relational Data (OLTP) 27
Relational Data Warehouses 27
Reporting with Multidimensional Data (OLAP) 28

The Reporting Lifecycle 29
Report Delivery Application Types 29

Web Browser 29
Office Applications 30
Programmability 30
Subscriptions 30
Report Formats 30
Importing Data/Exchanging Data 31
Ad Hoc Reporting 31

System Requirements 31
Reporting Services Components 33

Server Components 33
Client Components 33
Getting Help with Books Online 33
Adventure Works Sample Databases 33

Administrative Tools 34
Command-Line and Unattended Installation 34
Log Files 34

Designing Reports 34
Form Reports 34
Tabular Reports 34
Groupings and Drill-Down 35
Drill-Through Reports 35
Multicolumn Reports 35
Matrix 35
Charts 35
Data Sources 35
Queries 35
OLAP Reporting 36

Using Business Intelligence Development Studio 36
Report Wizard 36
The .NET Framework 37

02_584979 ftoc.qxp 1/27/06 7:33 PM Page x

xi

Contents

Extending Reporting Services 37
Data Processing Extensions 37
Delivery Extensions 37
Security Extensions 37
Rendering Extensions 38
Scripting 38

Subscriptions 38
Securing Reports 38
The Report Manager 39

Designing Reports 39
URL Access to Reports 40
Rendering Reports in Program Code 40

Report Definition Language 41
Deploying Reports 41
Designing and Architecting Report Solutions 41
Third-Party Product Integration 41

Summary 42

Chapter 3: Reporting Services Architecture 45

Reporting Lifecycle 46
Authoring 46
Management 46
Delivery 47

Reporting Services 2005 47
Platform Overview 47
Reporting Services XML Web Service 49
Report Server 50
Reporting Services Catalog 61
Report Design 64
Report User Interface 66

Summary 67

Part Two: Report Design 69

Chapter 4: Basic Report Design 71

Report Design 101 72
Using the Report Wizard 72

The Report Wizard 75
Establishing a Data Source 75
Building a Query 78

02_584979 ftoc.qxp 1/27/06 7:33 PM Page xi

xii

Contents

Defining the Report Structure 82
Specifying the Deployment Location 84
The Report Designer 85
Scale Units 86

Report Definition Language 92
Report Migration and Integration 93
Importing Access Reports 93

Plan for Extensibility 94
Browser Compatibility 94
Offline Viewing 94
Mobile Device Support 95

Report Items and Data Regions 95
Textbox Report Item 96
Line Report Item 98
Rectangle Report Item 98
Image Report Item 98
Subreport Item 102
Chart Report Item 102
Drill-Down and Drill-Through Reports 106
Tabular Reports 108
Grouping Data 108

Subtotals 111
Formatting 112

Standard Formatting 114
Explicit Formatting 115
Conditional Formatting 116
Multiple Columns 118

Pagination Control 119
Page Breaks for a Rectangle 119
Page Breaks for a List 120
Page Breaks for a Table 120
Page Breaks for a Group 120
Page Breaks for a Matrix 121
Page Breaks for a Chart 121

Printing Considerations 121
Summary 122

Chapter 5: Designing Data Access 125

Reporting for Relational Data 127
Query Basics 127

Data Sources 128
Data Sources and Query Languages 130

02_584979 ftoc.qxp 1/27/06 7:33 PM Page xii

xiii

Contents

Filtering Techniques 131
Parameter Concepts 132
Filtering Data with Query Parameters 134
Report Parameters 135
Basing a Parameter on a Query 137
Cascading Parameters 138
Using Stored Procedures 148
Filtering Data with Report Parameters 151

Reporting for Analytical Data 155
SQL Server Analysis Services 155

Using Other Data Sources 173
Microsoft Access 174
Microsoft Excel 178
Oracle P/L SQL 178
Sybase Adaptive Server 179

Best Practices 180
Summary 180

Chapter 6: Advanced Report Design 183

Anatomy of a Text Box 184
Grouping Data 186
Data Regions 187

Using the List Item 187
Creating a Tabular Report Using a Table 192
Column Placement and Indentation 199
Headers and Footers 203

Aggregate Functions and Totals 205
Using the Expression Builder 206
Drill-Down Reports 208
Creating a Document Map 210
Links and Drill-Through Reports 212

Bookmarks and Links 212
Drill-Through Reports 212

Recursive Relationships 214
Subreports 218
Designing Matrix Reports 221

Subtotals and Summaries 224
Drill-Down in a Matrix 225

Chart Reports 228
Chart Types 228
Column Charts 230
Area and Line Charts 233

02_584979 ftoc.qxp 1/27/06 7:33 PM Page xiii

xiv

Contents

Pie Charts 233
Bubble Charts 235
The Anatomy of a Chart 237
Chart Report Exercise 239

Custom Fields 245
Conditional Expressions 246

IIF() Is Your Friend 246
Using Custom Code 249

Why Visual Basic? 249
Using Custom Code in a Report 250
Using a Custom Assembly 251
Custom Assembly Security 253
Errors, Warnings, and Debugging Code 254

Designing for Mobility 254
Best Practices and Tips 259
Summary 260

Chapter 7: Report Solution Patterns and Recipes 261

Reporting Project Requirement Guidelines 262
Key Success Factors 262
Reporting on Existing Data Sources 263
Building an End-to-End Reporting Solution 264
Report Specifications 265
Development Phases 266
Migrating and Converting Reports 268
Working with the Strengths and Limitations of the Architecture 269

Report Recipes 272
Greenbar Reports 272
Multiple Criterion Report Filtering 277
Multi-field Data Point Charts 279
TOP X and “Other” Chart 285
Dynamic Images: Scales and Gauges 286
Creating a Business Scorecard 289
Creating Sparklines 297
Using Field Values in Page Headers and Footers 303
Group Continued in Page Header or Footer 304
Dynamic Grouping 305
Sorting on Column Headers 308
Dynamic Fields and Columns 315
Modifying Data from a Report 316
Selected and Deselected Item List 320

02_584979 ftoc.qxp 1/27/06 7:33 PM Page xiv

xv

Contents

Using Advanced and Third-Party Report Items 324
Dynamic Image Content 328
Using Advanced and Third-Party Controls for Parameter Selection 335

Summary 337

Part Three: Enabling End User Reporting with Report Builder 339

Chapter 8: Reporting Services Report Models 341

Getting Started 341
Creating the Report Model Data Source 342
Building a Data Source View 345

Building the Report Model 353
Report Model Wizard 353
Working with Reporting Services Report Models 357
Deploying the Report Model 362

Building Report Models from Analysis Services Databases 363
Summary 366

Chapter 9: Report Builder 369

Building Report Models 369
Working with the Report Builder 370

Accessing the Report Builder 370
Building a Report 371
Formatting a Report 385
Filtering and Sorting Reports 389
Adding Calculations with Expressions 394

Administration 397
Summary 397

Part Four: Administering Reporting Services 399

Chapter 10: Report Management 401

Report Server Content 401
Managing Content Items 402

Report Manager 402
SQL Server Management Studio 404
Other Utilities 405
Programmatic Interfaces 405

Securing Report Server Content 406
Role-Based Security 406
Tasks 407

02_584979 ftoc.qxp 1/27/06 7:33 PM Page xv

xvi

Contents

Roles 407
Role Assignments 410
Security Inheritance 413
Item-Level Security 413
System-Level Security 413

Site Settings 414
Properties 414
My Reports 415
Securing My Reports 416

Managing Reports 417
Working in Folders 417
Report Properties 418
Linked Reports 420
Publishing Reports 421
Updating Reports 423

Working with Data Sources 423
Private Data Sources 424
Shared Data Sources 424
Creating Data Sources 424
Data Source Credentials 426
Updating Data Sources 426

Managing Report Execution 427
Report Execution Process 427
On-demand Report Generation 428
Working with Cached Instances 428

Snapshots and History 429
Report History 431

Scheduling Reports 432
Delivering Reports 433

E-Mail Delivery 433
File Share Delivery 434

Report Subscriptions 435
Snapshot-Triggered Subscriptions 436
Schedule-Triggered Subscriptions 436

Data-Driven Subscriptions 437
Automating Content Management 437

Automating Subscription Management 437
Automating Report Deployment 447

Creating Scripts 448
Using the RS WMI Provider 448
Creating a Script Using Code 449

Summary 455

02_584979 ftoc.qxp 1/27/06 7:33 PM Page xvi

xvii

Contents

Chapter 11: Report Server Administration 457

Deploying Reporting Services 458
Reporting Services Components 459
The Report Server 463
Server Configurations 467

Configuration Tools 470
Configuration Utilities 471
Configuration Files 474

Backup and Restore Procedures 474
Backing Up the Report Server Catalog 474
Backing Up the Encryption Key 475

Monitoring and Performance 476
Report Execution 477
Caching 477
Exploring the Execution Log 478
Performance Counters 480
Summary 484

Part Five: Reporting Services Integration
and the Reporting Services Web Services 485

Chapter 12: Integrating Reporting Services into Custom Applications 487

URL Access 488
URL Syntax 488
Accessing Reporting Services Objects 489
Reporting Services URL Parameters 493
Passing Report Information through the URL 498

Programmatic Rendering 500
Common Scenarios 501
Rendering through Windows 502
Rendering to the Web 518

Using the ReportViewer Control 526
Embedding a Server-Side Report in a Windows Application 527

SharePoint Web Parts 534
Report Explorer Control 534
ReportViewer Control 535

Summary 535

02_584979 ftoc.qxp 1/27/06 7:33 PM Page xvii

xviii

Contents

Chapter 13: Extending Reporting Services 537

Extension through Interfaces 538
What Is an Interface? 539
Interface Language Differences 539
Data Processing Extensions — a Detailed Look 541

Creating a Custom Data Processing Extension 544
The Scenario 544
Creating and Setting Up the Project 544
Creating the DataSetConnection Object 546
Creating the DataSetParameter Class 555
Implementing IDataParameter 555
Creating the DataSetParameterCollection Class 557
Creating the DataSetCommand Class 559
Creating the DataReader Object 571
Installing the DataSetDataProcessing Extension 575
Testing the DataSetDataExtension 577
Summary 580

Appendix A: 583

Migrating Access Reports

Appendix B: Reporting Services Object Model 589

Public Properties 617

Appendix C: Transact SQL Command Syntax Reference 619

Transact-SQL Commands, Clauses, and Predicates 620
WITH 620
SELECT 620
TOP 621
SELECT INTO 622
FROM 622
WHERE 622
GROUP BY 623
HAVING 623
UNION 623
EXCEPT and INTERSECT 624
ORDER BY 624
CREATE DATABASE 627
Script Comment Conventions 629
Reserved Words 630

02_584979 ftoc.qxp 1/27/06 7:33 PM Page xviii

xix

Contents

Appendix D: Transact SQL System Variables and Functions 637

System Global variables 637
System Functions 641

Index 653

02_584979 ftoc.qxp 1/27/06 7:33 PM Page xix

02_584979 ftoc.qxp 1/27/06 7:33 PM Page xx

Foreword I

Many people have asked me, “How can you be so passionate about reporting when it is so mundane?”
To me, the most exciting thing about reporting is that it is so very common. Like basic transportation,
everybody uses it in some way or another. A report is a piece of art meant to covey a message, but unlike
traditional art, that message changes based on the data driving it. The potential to help, and be used by,
millions of people and companies is one of the reasons I started writing software and eventually joined
Microsoft. No other company can reach out to so many people by making great products accessible.

Reporting is a very broad topic covering areas ranging from packing lists and telephone bills to ad hoc
analysis and Excel spreadsheets. When designing Microsoft SQL Server Reporting Services, I started
with a simple definition for it: an information delivery platform. While this definition is also very broad,
it did allow us to focus on our design, while leaving us significant room to expand in later versions. This
book will help you understand the power of Reporting Services and to fully utilize its capabilities.

Information is not just data; it is data that has been transformed into something meaningful. This trans-
formation is important. Any tool can read and display data; what people really need for doing their jobs
is well-thought-out, correct, and pertinent information. There are many tools that let anyone with access
to data build “views” or “reports.” However, often these users are unfamiliar with all of the nuances of
the data storage and can produce inaccurate results or inadvertently affect the performance of the data
engine. Reporting Services acts as the official source so that there is only one version of the truth that
everyone uses.

In the future, Microsoft plans to take this even further by integrating with Information Rights Management
so that not only does the information come from a single source, but it is also certified, can expire, and is
access-controlled even after it is delivered to the end user. The data does not always exist in one database
or even come from a database. For those of us who have spent careers working with corporate data, this
is a painful truth. Very few reports (or sets of reports that give you sufficient insight) come from a single
source. Building some type of data mart or data warehouse is the best solution, but it is not always possible
due to timing, policy, or budgetary constraints. Reports must be able to retrieve data from any source and
combine them in a single report.

What good is information if you do not have it when you need it? Delivering information is more than
just processing it and making it available; it is providing information when you need it, in any format,
and on any device you have. The common case today is the ubiquitous online access via HTML in a
browser. This is perfect when you have a computer and connectivity to the server. However, as we all
know, nothing is perfect. We need the reports when we are on a plane, in a car, with the customer, at the
game, on the production floor, and so on. This may include your pager, telephone, fax machine, laptop,
paper, and other devices. We also need different capabilities: interactivity, pixel perfect printing, integra-
tion into applications like MS Excel for “what-if” scenarios and additional analysis, universal access via
PDF, and so on. A single format and a single delivery channel is not enough, but how do you know
which ones you will need? Reporting Services insulates you from these choices. All reports may be dis-
tributed in any channel or rendered in any format. Report design is independent of how it will be con-
sumed. It is the responsibility of the system to provide the report as accurately as possible, given the
constraints of the specific format or channel requested.

03_584979 flast.qxp 1/27/06 7:33 PM Page xxi

xxii

Chapter #

Building a platform is very different from building a solution. In fact, the goals are in many cases com-
pletely opposed. A platform is successful if the developers and administrators have complete access to all
aspects of the product. They need to be able to optimize, extend, restrict, embed, and replace parts of the
product to meet their needs. This means that all of the APIs are available and documented, all formats are
open and described, and every component is configurable or replaceable. While there are always restric-
tions due to the many tradeoffs in software design, this was the goal when building Reporting Services.
Very much like Windows, SQL Server, or Visual Studio, Reporting Services is designed to enable develop-
ers to build on a solid foundation and mold it to meet the business needs in significantly less time and with
more functionality, but without losing the flexibility and power of building it themselves.

Looking into the future, there’s an endless list of features and scenarios that Microsoft will add to make
the platform more powerful with little or no additional in-house development required. I have men-
tioned some, and there are many that haven’t even been considered yet.

We look forward to hearing from all of our customers about what is important to them, and how we can
make designing, building, and operating their information delivery systems easier, faster, and (I hope)
more fun.

Jason Carlson
SQL Server Reporting Services Product, Unit Manager, Microsoft

Jason Carlson is the Product Unit Manager for SQL Server Reporting Services. He joined Microsoft in
1996 as a program manager for Visual Source Safe and Repository. In 1997, the Repository team joined
SQL Server and Jason became the development manager for SQL Server Meta Data Services. In 2001,
he built a team and started work on v1 of Reporting Services. Before joining Microsoft, Jason owned
and operated an independent software development company. This company provided consulting and
vertical software solutions for healthcare and telecommunications.

Foreword

03_584979 flast.qxp 1/27/06 7:33 PM Page xxii

Foreword II

Agility. In business today, key decisions must be made daily or weekly rather than monthly or quarterly.
Leading companies realize that to increase the speed of competitive response—their corporate agility—
they need to delegate as much decision-making authority as possible to employees on the front lines.
Real-time bidding systems, reverse auctions, accurate costing on spot production, build-to-order manu-
facturing, a worldwide labor force, and globalization are just a handful of the trends in today’s business
climate that demand better decisions faster.

To be successful in this new model, employees need the best quality information they can possibly get.
Information must be accurate, timely, and reliable, and it must be the information they need. Whether
your employees are trying to maximize revenues by intelligently attacking new markets or minimizing
expenses through astute purchasing, they absolutely must have the right information at their fingertips.

Microsoft’s release of SQL Server Reporting Services marks an important milestone in the world of busi-
ness intelligence: information truly accessible to the masses. By building reporting functionality directly
into Microsoft’s Enterprise Data Platform, SQL Server, software developers and information architects
can now count on the availability of a high-quality, scalable, and robust architecture on which to build
their reporting systems.

For the past 20 years, business intelligence (BI) has been working its way deeper and deeper into the
enterprise. Previously the domain of a handful of highly skilled analysts high in the corporate ivory
tower, BI is now in the hands of line managers, department heads, and knowledge workers at the very
edge of today’s organizations.

In the past, dependable reporting systems could be horrendously expensive, with organizations forced
to deploy robust reporting services only where the greatest gains could be realized. Microsoft’s long-
standing objective of reducing information technology cost to spur adoption is again evident in the SQL
Server Reporting Services licensing model. This technology is licensed to anyone currently licensed for
SQL Server and so essentially represents no additional cost. This is a fantastic development for software
developers and users alike; it will dramatically increase the adoption and distribution of detailed, accu-
rate, and timely reporting and will push quality BI even further down into the enterprise.

In this excellent book, the authors walk us through SQL Server Reporting Services from the basics of
practical reporting through deployment and management of reporting solutions written for BI Solution
architects, designers, and developers; it is certainly a most valuable resource.

David Cunningham
President & CEO, Dundas Software

Dundas Software has provided charting and graphing technology under license to Microsoft for
inclusion in SQL Server and 2000 and 2005 Reporting Services. Dundas also offers aadditional data
visualization charting and gauge extensions for Reporting Services as add-on products.

03_584979 flast.qxp 1/27/06 7:33 PM Page xxiii

03_584979 flast.qxp 1/27/06 7:33 PM Page xxiv

Introduction

Over the past three years, we’ve been using SQL Server Reporting Services to build reporting, business
intelligence, and decision-support solutions for large and small companies. As consultants and instruc-
tors, we spend our time in front of many people who need serious solutions to meet business problems.

In 2003 and 2004, we wrote the first edition of Professional SQL Server Reporting Services. At that time,
I knew that Reporting Services was going to be a big deal and I also knew that writing a book about
something as substantial as this product, wasn’t going to be a walk in the park—so I wanted to work
with a capable, well-rounded team. Fortunately, I have had the pleasure of working with some very
smart, hard-working individuals who love technology and solving problems. Reporting Services was a
new product two years ago so we did a lot of research and learned some lessons along the way. Since
then, we’ve learned even more by putting reporting solutions in front of many business users and con-
sulting customers.

This book was written to cover the features of SQL Server 2005 Reporting Services. Although it doesn’t
address the differences, most of the material may be applied to SQL Server 2000 Reporting Services.

What We’ve Learned
I’m not saying that we know absolutely everything there is about this product—we’re learning more
about it on every project, but we’ve certainly made it our mission to be as versed as possible. Please bear
with me as I toot my horn about those with whom I’ve had the pleasure to work alongside. For the first
edition of this book, we worked primarily with the beta product. We have had many conversations with
members of the Reporting Services product team at Microsoft as we put the product through its paces
to learn what Reporting Services could and couldn’t do. We did our homework, and we wrote about its
wonderful capabilities. But as with most Microsoft products, we found that there are about 18 different
ways to perform each task. Since then, we have deployed Reporting Services in dozens of corporate
environments. We’ve helped business users understand their reporting needs and then designed report-
ing solutions for many types of organizations. We’ve integrated reports into web sites and portals, intranet
sites, and desktop applications. We’ve trained hundreds of users, developers, and administrators and
have presented at conferences. We’ve designed reports for savings and investment banks, support cen-
ters, software companies, sales and customer management system vendors, sportswear companies, and
theme park and entertainment companies. We’ve learned a lot about how not to design reports and how
to build reporting solutions more efficiently. This book is based on this foundation of experience.

Who Is This Book For?
There are a number of other books written about Reporting Services. Some are for beginners and others for
serious developers and advanced report designers. Leonard Nimoy’s character Mr. Spock once said that
“the needs of the many outweigh the needs of the few.” While this generally may be a true statement,

03_584979 flast.qxp 1/27/06 7:33 PM Page xxv

xxvi

Chapter #Introduction

we’ve made it a point to address the needs of the many without sacrificing the needs of the few. We wanted
to write a book that would meet the needs of the broad audience of report designers, developers, adminis-
trators, and business professionals, without sacrificing any content. To meet this objective, we’ve divided
this book into five sections: “mini-books,” if you will. Depending upon your needs, you may spend more
of your time focusing on the material in one of these sections and using the others for reference. This book
is written for the novice report designer and the expert interested in learning to use advanced functionality.
For the application developer, we will cover programming in reports and custom applications that inte-
grate reports. You will also learn about report server administration and security issues.

A common practice among development groups at Microsoft is to profile their target users and to even
give these personas names and profiles. As we’ve come to know more about the types of folks who use
Reporting Services in various ways, we thought it might be interesting to do something similar. The fol-
lowing are descriptions of three fictitious people who are characteristic of the more common Reporting
Services users we have worked with. See if you can identify with any of these descriptions:

Report Designer
Mary works in the financial group for a company that provides consumer services. She is a computer-
savvy worker who possesses a wide range of office skills. She has worked in this group for several years
and could easily do her boss’s job. She understands her company’s business processes, financial report-
ing practices, invoicing, and billing systems. She’s not a computer genius but she knows her way around
word processing, spreadsheets, e-mail, and simple database reporting. Mary started using Microsoft
Access a few years ago and used the wizards to create some simple reports from data exported from
the HR and customer billing systems. After a while, she learned how to write queries and build Access
reports without the wizards, with custom formatting, groups, and summaries. Two years ago, she learned
to use Crystal Reports to report on the data in the company’s data warehouse. She has designed several
reports with charts and pivots to analyze sales trends and profitability.

Mary’s focus is out-of-the-box reporting, getting reports designed and deployed as easily as possible,
using the tools readily available within the product. She may design standard server-based reports that
users will access from a central report server via the corporate intranet. She may also want to create her
own ad hoc, client-side reports from data models created by an administrator or more advance designer.

The following sections of the book will be of most interest to Mary:

Part I: Getting Started

Part II: Report Design

Part III: Enabling End User Reporting with Report Builder

Application Developer
Joe has been writing database applications for several years, starting with small projects in Access and
Visual Basic 5.0. In 2001, he began using Microsoft .NET programming tools and landed a programming
position in the company’s Information Technology group. Joe has designed many of the company’s web
sites and portals using the Visual Basic .NET and C# programming languages. Most of the reports Joe
has created were written from scratch as custom web pages. He has worked a little with a few special-
ized reporting applications. He wants to add reporting capabilities to some of the company’s custom
business applications.

03_584979 flast.qxp 1/27/06 7:33 PM Page xxvi

xxvii

Chapter TitleIntroduction

As far as Joe is concerned, writing simple reports is for others to do. His focus will likely be to add filter-
ing, custom formatting, and conditional logic using program code and query script. He will also design
his reports so that they fit right into applications as an integrated part of a solution. He may also want to
create customized management utilities to automate report server maintenance routines.

Joe understands that Reporting Services offers many flexible options for integrating reports into differ-
ent application interfaces. He may want to build reports into a custom Windows desktop application,
web application, SharePoint Portal or mobile device application.

Joe will be most interested in these sections:

Part II: Report Design

Part V: Reporting Services Integration and the Reporting Services Web Services

Systems Engineer
Bob is our Network Engineer and Database Administrator. He is more concerned with the security and
stability of the corporate servers than with the aesthetics and features of each report. He will want to
make sure our report managers, designers, developers, and users, are organized into roles and that the
report server is appropriately secured. Bob will install and configure options on the report server. He
will schedule maintenance tasks, optimize the database and queries, and provide ongoing maintenance
and disaster recovery.

Bob will find these sections most useful:

Part III: Enabling End User Reporting with Report Builder

Part IV: Report Server Administration

Business Leader
As a business owner, corporate executive or project manager; you may be the consumer of a reporting
solution or the director of the development effort. Perhaps you have enlisted the services of a business
intelligence consulting firm to architect a decision-support system to help you run your business. You
need to be informed about your options and understand the capabilities of the products and technolo-
gies used to create your solution. This book will help you to understand these features and the choices
necessary to put them into practice. The implementers of this solution will look to you for business
requirements and feature choices. Chapters 1, 2, and 3 are a good place to start. The first section of
Chapter 7 discusses how to define and manage reporting business requirements and specifications.
This will serve as a communication forum between you and your report designers.

What Does This Book Cover?
This book is divided into five sections. These include “Introduction,” “Authoring Reports,” “Managing
Reports,” “Report Delivery,” and “Advanced Topics,” containing the following chapters.

03_584979 flast.qxp 1/27/06 7:33 PM Page xxvii

xxviii

Chapter #

Part I: Getting Started
Chapters 1, 2, and 3 provide an introduction to the capabilities and features of Reporting Services. You’ll
learn about its extensible architecture, which makes it a very powerful and flexible addition to nearly all
existing business systems. This section will build a foundation of understanding upon which you will
learn to design, deploy, manage, and, perhaps, customize business intelligence and reporting solutions.

Chapter 1, “What Can You Do with Reporting Services?,” provides a high-level overview of the capabili-
ties and opportunities to incorporate Reporting Services into your business environment. You’ll learn
about general application and reporting technology. You’ll earn how to deliver important information on
demand using subscriptions. You’ll explore various solution types ranging from out-of-the-box reports
to simple and advanced application integration.

Reports can be server-based or client-side reports embedded into an application. Report Builder reports
also allow nontechnical users to create their own ad hoc reports without installing or learning to use spe-
cial software.

Chapter 2, “Introduction to Microsoft SQL Reporting Services 2005,” briefly discusses the history of
Reporting Services and the architecture upon which it is built. You’ll see that this is not just another
reporting application but a new approach for accessing data and delivering results in a variety of for-
mats, using different delivery methods. Each report definition is stored as an RDL file; a simple and
portable standard XML file, making it easy to deploy a report to any server. Reporting Services can be
completely secured. Reports may be managed and viewed using the Report Manager web interface or
may be built into custom applications, using the provided ReportViewer controls or through custom
rendering. Delivery options include scheduled subscriptions. Content may be cached to improve perfor-
mance and conserve server resources.

Chapter 3, “Reporting Services Architecture,” details the mechanics of the Reporting Services architec-
ture. Reporting Services is implemented as an ASP.NET Web service, which provides a wealth of capabil-
ities for enterprise-wide reporting. You will explore the different functional areas of Reporting Services
and how they relate to user and business needs. You’ll learn about the platform’s features and the
reporting lifecycle—from report design to delivery.

Part II: Report Design
Designing reports can be as simple as running a wizard or may be a highly complex development pro-
cess to define advanced features. In Chapters 4, 5, 6, and 7, you’ll learn about how reports actually pro-
cess and render data and then how to use parameters and expressions to define creative report solutions.

Chapter 4, “Basic Report Design,” starts with the fundamentals and teaches you to create basic reports
using simple design tools. You’ll learn the essentials about what you need to get started building basic
reports using the Report Wizard and common report designer features. You’ll be introduced to the fun-
damental building blocks of report design: report items and report layout properties.

After you explore the basics, you’ll learn about grouping data, lists and data regions, using tables and
the matrix reports, defining drill-through reports, and using charts. You’ll also learn to write expressions
and custom code to extend formatting and apply business logic, and to design reports for mobile
devices.

Introduction

03_584979 flast.qxp 1/27/06 7:33 PM Page xxviii

xxix

Chapter Title

Chapter 5, “Designing Data Access,” reveals that reports are based on a data source and Reporting
Services may be used to present data from many different data sources. You’ll learn to define stand-
alone and shared data sources, queries and data sets, and use parameters to filter data at the database
and to filter data at the Report Server. You’ll learn to use new parameter features introduced in the latest
version of the product.

This chapter is a primer on Transact-SQL queries and stored procedures. You’ll also learn to build
reports using Analysis Services and the MDX Query Builder. Query examples are provided for Oracle
PL/SQL, Sybase, and Access SQL dialects.

Chapter 6, “Advanced Report Design,” helps you take design elements to the next level and learn to cre-
atively use data groups and combinations of report items. Calculations and conditional formatting may
be added by using simple programming code. Whether you are an application developer or a report
designer, this chapter contains important information to help you design reports to meet your user’s
requirements and to raise the bar with compelling report features.

Chapter 7, “Report Solution Patterns and Recipes,” takes you into the real world of business problems
and reporting solutions. You’ll start by learning how to document business requirements and to manage
successful report projects.

This chapter presents report design from a different view: not the nuts and bolts but the overall pattern
of design. We have assembled an extensive list of models and instructions to show you how to build sev-
eral detailed report solutions to address a variety of specific business problems. This chapter serves as a
practical guide to designing reports and building reporting solutions in the real world. It contains sev-
eral examples of advanced report designs as recipes to solve specific business problems. You will apply
the techniques you’ve learned in the previous three chapters to implement specific functionality.

Part III: Enabling End User Reporting with Report Builder
Report Builder technology puts simple report design into the hands of everyday users without requiring
complex design tools. These two chapters introduce the Report Builder platform and the tools used to
define data sources and semantic metadata models. Using the elements you deploy, your users can cre-
ate simple reports without installing software or learning the intricacies of report design.

Chapter 8, “Reporting Services Report Models,” shows you that a Report Model is the key component
behind performing ad hoc end user queries. A model provides the means to navigate through either a
SQL Server database or an Analysis Services database. This chapter will teach you to build a Reporting
Services Report Model using sample data.

Chapter 9, “Report Builder,” covers Report Builder, a platform for defining ad hoc reports using pre-
pared data structures. You’ll learn to use the Report Builder application with a familiar Microsoft Office
interface for building reports. Using predefined report layouts, users can fulfill various reporting needs
with ease. You’ll learn to easily format, to sort and filter data, and to perform calculations. Finally, you’ll
learn how to manage and administer Report Builder models and reports.

Introduction

03_584979 flast.qxp 1/27/06 7:33 PM Page xxix

xxx

Chapter #

Part IV: Administering Reporting Services
Report server administration has an important job: to keep data secure and available to the right users.
Server-side reports can be configured and secured to optimize performance and to provide the right
information to the appropriate user communities. Chapters 10 and 11 teach you to use all of the tools
necessary to configure and manage your report server.

Chapter 10, “Report Management,” teaches you how to use management tools and Reporting Services
features to publish reports and manage execution and delivery. You’ll learn to create automated scripts
and custom solutions to manage all of the Report Server content. You’ll revisit the stages of report execu-
tion from an administrator’s point of view and learn how to optimize them. You’ll also learn how to
automate report delivery and server management.

Chapter 11, “Report Server Administration,” is a comprehensive administrator’s guide. You’ll explore
the related considerations for reporting requirements and deployment scenarios for Reporting Services.
You’ll learn about the configuration tools and utilities, backup and restore procedures, and monitoring a
Reporting Services instance for issues and optimal performance.

Part V: Reporting Services Integration and the Reporting
Services Web Services

Practically all of the built-in functionality in Reporting Services can be automated and preformed
through custom program code. This includes report rendering and the core services of the reporting
environment: data access, rendering formats, security, and delivery. Chapter 12 covers how reports may
be integrated into applications, and Chapter 13 will teach you how to write custom extensions to the
standard features of Reporting Services.

Chapter 12, “Integrating Reporting Services into Custom Applications,” shows you that Reporting
Services is a flexible reporting tool that can be easily incorporated in different applications. In this chap-
ter, you’ll learn to use URLs to access reports from document and web page links, use the Reporting
Services Web service to programmatically render reports and use the ReportViewer controls to embed
reports into custom Windows forms and ASP.NET web form applications. You’ll learn to display reports
in web portals using SharePoint Web Parts and other techniques. You can use programmatic rendering,
URL or the ReportViewer controls to create custom report viewers and parameter interfaces. Examples
are provided in C# and VB.NET.

Chapter 13, “Extending Reporting Services,” shows you that Reporting Services is a robust and scalable
product for enterprise report processing. In this advanced programming tutorial, you will learn to use
this modular and extensible architecture. Programming classes, interfaces, and APIs give programmers
the ability to customize, extend, and expand the product to support their enterprise business intelligence
(BI) reporting needs. This chapter introduces you to most of the areas within Reporting Services that
allow customization and some of the reasons that you may wish to extend the product. Developers can
extend practically every feature by implementing their own security architecture and add custom data
access, rendering formats, and report delivery mechanisms.

Chapter 13 is written for serious application developers using object-oriented programming techniques,
with examples in C# and VB.NET.

Introduction

03_584979 flast.qxp 1/27/06 7:33 PM Page xxx

xxxi

Chapter Title

Appendixes
The appendices at the end of this book include information for migrating Access Reports, a comprehen-
sive Reporting Services object programming reference, Transact-SQL syntax, commands, and functions.

What You Need to Use This Book
To use SQL Server Reporting Services and to run the samples presented in this book, you will need:

❑ SQL Server 2005, any edition. An evaluation version of SQL Server and Reporting Services may
be downloaded from Microsoft at www.microsoft.com/sql.

❑ Windows 2000, Windows Server 2003, or Windows XP Professional.

❑ Internet Information Services is required to install the Report Server.

❑ Pentium II class PC with a 500-MHz processor or better and at least 256 MB of RAM.

The complete source code for the samples is available for download from our web site at www.wrox
.com. For programming examples, there are versions available in both Visual Basic .Net and C#.

Source Code
As you work through the examples in this book, you may choose either to type all the code manually or
use the source code files that accompany the book. All the source code used in this book is available for
download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the Search
box or by using one of the title lists) and click the Download Code link on the book’s detail page to
obtain all the source code for the book.

After you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration; at the same time, you will be helping us provide even higher-quality infor-
mation.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

Introduction

03_584979 flast.qxp 1/27/06 7:33 PM Page xxxi

xxxii

Chapter #

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com, and click the Register link.

2. Read the terms of use, and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

Introduction

03_584979 flast.qxp 1/27/06 7:33 PM Page xxxii

Part I

Getting Started

Chapter 1: What Can You Do with Reporting Services?

Chapter 2: Introduction to Microsoft SQL Server Reporting Services
2005

Chapter 3: Reporting Services Architecture

04_584979 pt1.qxp 1/27/06 7:32 PM Page 1

04_584979 pt1.qxp 1/27/06 7:32 PM Page 2

What Can You Do with
Reporting Services?

In 2003 and 2004, we wrote the first edition of Professional SQL Server Reporting Services. At that time,
I knew that Reporting Services was going to be a big deal, and I also knew that writing a book on
something as substantial as this product wasn’t going to be a walk in the park — so I wanted to work
with a capable, well-rounded team. Fortunately, I have had the pleasure of working with some very
smart, hard-working individuals who love technology and solving problems. Reporting Services was
a new product two years ago, so we did a lot of research and learned some lessons along the way.
Since then, we’ve learned even more by putting reporting solutions in front of many business users
and consulting customers.

What We’ve Learned
I’m not saying that we know absolutely everything there is about this product — we’re learning
more about it on every project, but we’ve certainly made it our mission to be as well versed as pos-
sible. Please bear with me as I toot my horn about those whom I’ve had the pleasure to work
alongside. For the first edition of this book, we worked primarily with the beta product. We have
had many conversations with members of the Reporting Services product team at Microsoft as we
put the product through its paces to learn what Reporting Services could and couldn’t do. We did
our homework, and we wrote about its wonderful capabilities. But as with most Microsoft prod-
ucts, we found that there are about 18 different ways to perform each task. Since then, we have
deployed Reporting Services in dozens of corporate environments. We’ve talked to business users
to understand their reporting needs and then designed reporting solutions for many types of orga-
nizations. We’ve integrated reports into web sites and portals, intranet sites, and desktop applica-
tions. We’ve trained hundreds of users, developers, and administrators and have presented at
conferences. We’ve designed reports for savings and investment banks, support centers, software

05_584979 ch01.qxp 1/27/06 7:41 PM Page 3

companies, sales and customer management system vendors, sportswear companies, and theme park
and entertainment companies. We’ve learned a lot about how not to design reports and how to build
reporting solutions more efficiently. This book is based on this foundation of experience.

Who Uses Reporting Services?
Probably one of the most significant lessons of the past two years spent teaching training courses on
Reporting Services is how diverse the demographics of the audiences are. I’m not talking about age and
gender but the roles and backgrounds of those who design and implement reporting solutions. As an
application developer, I was accustomed to teaching programmers and other technology professionals
whose life quest is to make the world a better place by writing software. However, I quickly learned that
there wasn’t a stereotypical report designer. Some are very business-focused and aren’t necessarily in
love with technology and program code. Many are simply charged with managing or facilitating a line
of business. They need tools to get information quickly and don’t want to reinvent the wheel or work
with cumbersome tools. The figures in the following table aren’t substantiated by any kind of survey or
study but are merely my objective observation of those who attend Reporting Services training classes.

Approximate Percentage Role

15% Business Managers

15% System Administrators

30% Software Developers

40% Business Information Workers

Wait a minute! This is a book about creating reports to display information in meaningful and interest-
ing ways. I can’t just display this information in a boring list, so I’ve created a simple report and put it
into a chart (an exploded, semitransparent doughnut chart to be specific) shown in Figure 1-1.

Of those who are working seriously with Reporting Services, have attended classes, or have engaged
consulting services, about one-sixth are nontechnical business managers. Members of this role are
mainly interested in the bigger picture: how reports can address their analytical needs and help them
make informed decisions. These folks have little interest in the implementation details or the technology
used to make it work. They direct people who can do the detail work.

System administrators consist of server system builders, hardware professionals, and database adminis-
trators. In smaller organizations, this role is often shared with the software developer. Administrators
are typically concerned with the setup and ongoing maintenance of servers and the infrastructure to
keep reporting solutions available and working. They typically spend their time and energy managing
security and optimizing the system for efficiency.

The software developer represents slightly less than one-third of the audience. To achieve advanced report-
ing features, software developers will write complex queries and custom programming code to process
business rules and give reports conditional formatting and behavior. Developers typically feel right at
home with the report design environment because it’s very similar to familiar programming tools.

4

Chapter 1

05_584979 ch01.qxp 1/27/06 7:41 PM Page 4

Figure 1-1

The largest group of reporting professionals is not the software developers or other technical experts.
They have strong computer user skills, but they don’t spend their time writing code and using tools like
Visual Studio, Enterprise Manager, or SQL Server Management Studio. They are regular business users
who need to design reports to run their businesses. As a software developer, coming to this realization
was a wake-up call. As I taught Reporting Services 2000 classes for Microsoft, I often spent a large por-
tion of the classroom time just teaching students to use the Visual Studio user interface. It was new to
them and unlike any other application they were accustomed to. Report designers who have been using
other tools such as Crystal Reports, for example, will typically be a little intimidated by the Reporting
Services design tools because they may be unfamiliar and may seem to be more “raw” and developer-
centric than what they’re used to using. In order to take advantage of advanced report capabilities, these
individuals must either acquire some simple programming skills or work with software developers to
add custom code and expressions to their reports.

Application and Reporting Technology
The definition of reporting is changing. Like so many components of the computer/information industry,
the lines between one thing and another have become very fuzzy. This applies to so many concepts in our
industry. For example, many traditional desktop applications now run in a web browser. Are these client
or server applications? These days it’s hard to draw a line and categorize a business solution. Not long
ago, if an application opened in a web browser it was considered to be a server-side application — all of
the processing occurred on a web server. Likewise, if an application ran from an icon on your computer, it
was a client-side application, where all of the files and processing occurred on your own computer. Have
you attended an Internet hosted meeting or seminar? If so, you probably navigated to a site in your web
browser, entered a meeting number, and, magically, you were looking at PowerPoint slides and a demon-
stration running on the presenter’s desktop computer. Although you may have started from a web page

5

What Can You Do with Reporting Services?

05_584979 ch01.qxp 1/27/06 7:41 PM Page 5

and the conferencing application may have been started from your web browser, it was actually running
in a client-side application, which you allowed to be installed on your computer, using advanced content-
streaming technologies, allowing you to interact with the server-hosted conference.

What does this have to do with reporting? Quite a lot, actually. With Reporting Services, you will have
the ability to integrate reports into applications in such a way that users may not be able to tell the dif-
ference between the two. With a little bit of programming code, reporting features can be extended to
look and act a whole lot like applications. Where do applications stop and reports begin? When do reports
start replacing application functionality? As I said, the lines are becoming blurred. Your task is to decide
which tool best meets a need.

The exciting news is that you now have a tool that can do some incredible things. As my favorite super-
hero’s uncle said, “With great power comes great responsibility.” If you are a simple report designer
with simple needs, the good news for you is that using Reporting Services to design simple reports is . . .
well, simple. If you are a software developer and you intend to use this powerful framework to explore
the vast reaches of this impressive technology, I welcome you to the wonderful world of creative report-
ing. In this chapter, I will introduce the common reporting scenarios, beginning with the most basic and
then moving to the more advanced. In subsequent chapters, you will explore these capabilities in depth
and learn to use them in your own reporting solutions.

Information, Now!
Imagine that you are sitting in a presentation meeting at the corporate office of a key customer. You are a
senior sales representative for a company that sells high-volume data backup systems, and the solution
they decide on will be implemented in several regional data centers around the world. Your team has
been preparing for this meeting for months. Your success depends on your ability to demonstrate your
competence to the customer and a clear understanding of their needs. Your team has done their home-
work, and you know the customer has a history of scanning printed medical records and storing them as
image files. Based on this information, you are certain that a particular product will adequately provide
the file backup facilities for their moderate volume of image files. You have made it a point to familiarize
yourself with the capabilities of the system that appears to be the best fit.

During your customer’s opening presentation, they tell you that they have recently made a huge invest-
ment into full-motion video-imaging equipment. Now they need a backup system that can handle large
file capacities. They are prepared to make an investment that is substantially larger than what you had
anticipated for a capable backup solution. Your company began to offer a large-scale solution just a cou-
ple of weeks ago, but you aren’t very familiar with its capabilities. You’ve spent so much time preparing
to sell the smaller system that you haven’t had time to learn more about this new product. Your associate
is doing introductions, and it will be your turn in about 15 minutes.

Discretely, you open your Pocket PC Phone and access the World Wide Web. You log in to your com-
pany’s secure report server, select the product catalog report, choose the product category, and then drill
down to the new product. The report has a drill-through option that lets you quickly view a detailed speci-
fication report for the new, high-volume backup system. After noting the pertinent specifications, you
save this report to a PDF file and then choose the customer sales inquiry history report. Looking up this
customer, you learn that someone named Julie made an inquiry about two months ago regarding video
media backups from this very company.

6

Chapter 1

05_584979 ch01.qxp 1/27/06 7:41 PM Page 6

Looking around the room, you find a name card with her name on it. You explore the details of this call,
and you find that Julie had asked if you offer a solution comparable to a very expensive product from a
competitor. Checking the competition’s web site, you discover that the competing product Julie had men-
tioned uses older technology, has a smaller capacity than the new system, and costs considerably more. You
save a report with all of the pertinent specifications to your memory card, hand the card to the administra-
tive assistant sitting next to you, and ask that he make printed copies of the PDF file it contains.

Your colleague finishes her presentation and then introduces you. Taking another quick glance at the
new product specs, you begin your introduction (see Figure 1-2).

Figure 1-2

You explain that one of your team’s greatest strengths is your real experience and understanding of how
business can change from day to day. In order to be responsive and competitive, it’s necessary to adapt to
these changes. You show the brochure for the midscale product and explain that this product would be an
excellent solution for a company that just scans documents. But for digital video, a more capable solution
is required. You share the product specification and qualify the product to meet your customer’s needs.
During your presentation, the administrative assistant returns with the printed specification report. Not
missing a beat, you distribute copies to everyone and conclude your presentation. You make brief eye
contact with your colleague, who raises an eyebrow just before your customer’s chief decision maker,
Julie, aggressively shakes your hand and thanks you profusely for your time and extra effort.

Solution Types
Reporting solutions come in a variety of sizes and shapes. These range from the standard Report
Manager web interface to a completely customized application with integrated reporting features. The
types of software solutions that might incorporate reporting include:

ACME
DATA
STORAGE

7

What Can You Do with Reporting Services?

05_584979 ch01.qxp 1/27/06 7:41 PM Page 7

❑ Out-of-the-box, server-based reporting features, using reports created by report designers and
deployed to a central web server.

❑ Client-side ad hoc reports created by users, on demand with the Report Builder tool using pre-
defined data models.

❑ Reports integrated into web applications using URL links to open in a web browser window.

❑ Reports integrated into SharePoint Portal server applications using SharePoint Web Parts.

❑ Custom-built application features that render reports using programming code. Reports may be
displayed within a desktop or web application interface or saved to a file.

Out-of-the-Box Reports
What does Reporting Services provide if you just want to use its simplest features right out of the box?
Quite a lot, actually. Reporting Services uses the Microsoft Development Environment to design and
deploy reports to a central web server. Prior to the release of SQL Server 2005, the development environ-
ment was exclusively part of Microsoft Visual Studio, a tool for serious application developers to create
custom software. It still is, but now the development environment has been tailored to manage SQL
Server databases, write queries, and design reports. Using this powerful tool is likely the most signifi-
cant challenge for the new report designer.

Once you learn the basics of the development environment, designing reports and managing projects
is actually quite easy. The report designer includes a simple Report Wizard that can lead you through
designing common reports. Tabular, grouped, cross-tab, and chart reports are relatively easy to build just
by following the wizard prompts and perhaps setting a few properties.

After a new report has been designed and tested, it can be deployed to a central report server where it
will be available to all users through a simple web browser application called the Report Manager.

Beyond wizard-built reports, many aspects of more complex reports may be managed by creating simple
programming expressions. An expression builder guides the designer through the simple use of func-
tions and logical expressions that may be used to modify colors, visibility, and formatting aspects and to
perform calculations. Because the expressions in Reporting Services are based on Visual Basic .NET, the
power of conditional expressions is virtually limitless.

Server-Based Reports
It’s important to understand the difference between SQL Server Reporting Services and a desktop
reporting tool like Microsoft Access. Reporting Services isn’t an application that you would typically
install on any desktop computer. It requires Microsoft SQL Server, a serious business-class relational
database management tool. For this and other reasons, Reporting Services is designed to run on a file
server instead of a desktop computer. It also requires Microsoft Internet Information Services, a compo-
nent of Microsoft Windows Server products.

Reporting Services is designed for business use. Therefore, it is a powerful tool that can literally scale to
be used by thousands of users and can report on very large sets of data stored in a variety of database

8

Chapter 1

05_584979 ch01.qxp 1/27/06 7:41 PM Page 8

platforms. But just because Reporting Services is a business-sized product, this doesn’t mean that reports
have to be complicated or difficult to design.

Report users need to be connected to a network, or perhaps the Internet, with connectivity to the report
server. When a report is selected for viewing from a folder in the Report Manager, it is displayed as a
web page in the user’s web browser. Optionally, the same report can be displayed in a number of differ-
ent formats including Adobe PDF or Excel, or as a TIFF image. Reports may be saved to files in these
and other formats for offline viewing. Reports may also be scheduled for automatic delivery by the
report server by e-mail or may be saved to files. These features are standard and require only simple
configuration settings and minor user interaction.

User-Designed Reports
Reporting Services in SQL Server 2005 introduces an alternative to predesigned, server-side reports.
Standard reports are designed for users by a report designer or developer ahead of time and deployed to
the server for users to select and display, print. or save to a file. This may be useful for standard reporting
needs shared by most report users. However, savvy users cannot modify the design or these standard
reports without access to the design and development tools. The Report Builder allows users to build their
own reports on the fly, using prepared queries and data models. Using this option, the report designer or
system administrator can prepare a variety of common data models to simplify and expose the underlying
data sources in a concise form. This allows users to construct ad hoc reports using simple drag-and-drop
techniques. These reports may be saved for others to use or to be built upon in later sessions.

The actual design work is performed using a client-side builder tool delivered on demand in the user’s
web browser. The user experience is quite simple. As far as the user is concerned, a new report is created
using a simple web page selection and the Report Builder opens in a browser window without specifi-
cally installing a software package ahead of time. These reports are stored on the server in the same
folder space as other reports. The Report Manager web interface is used to access and maintain standard
Reporting Services reports as well as Report Builder reports and their associated data models.

The advantages of Report Builder reports are that they give users the ability to design and customize
their own reports without involving a report designer or developer. Report styles and features include
standard report layouts like columnar, hierarchal, pivot/matrix, and charts.

Report Builder reports cannot contain custom expressions or custom code. Data-formatting options are lim-
ited and the data models must be prepared ahead of time. Models may be created to mirror the details of
source data tables or may be simplified. This allows the data model designer to hide sensitive data and to
simplify complex data sources with alias columns aggregations and calculated data members.

Designing Reports
The report designer is integrated into the Microsoft Development Environment, which also is the plat-
form used for the SQL Server 2005 design and administration tools. In Reporting Services for SQL Server
2000, report design was performed exclusively using Visual Studio. Now reports may be designed and
created using either Visual Studio 2005 or the Business Intelligent Studio, both of which are implementa-
tions of the development environment.

9

What Can You Do with Reporting Services?

05_584979 ch01.qxp 1/27/06 7:41 PM Page 9

Building standard, server-side reports in the designer can be as simple as 1, 2, 3: First, you create a data
connection to the data source and dataset (query) for the report. The second step is to design the report
layout using simple drag-and-drop tools. Formatting attributes are set by changing properties in the
properties sheet or dialogs. The report may be previewed and debugged within the designer. The third
and final step is to deploy the report to the report server. This may be done using a right-click menu
action. The report designer, shown in Figure 1-3, supports this three-step paradigm with corresponding
designer windows (located on the tabs) and features.

Figure 1-3

Report design is covered in Part II. You’ll learn about the basics in Chapter 4 and about advanced tech-
niques in Chapter 5. Chapter 6 will take you beyond the features and discuss several common business
scenarios. In that chapter, you will learn techniques for designing the best reporting solutions to meet
some common and unique challenges.

Client-side reports are a little different from Reporting Services’ standard server-side reports. Because
this feature is intended to give users the power to create and modify their own reports, it does not
require Visual Studio or Business Intelligence Studio to be installed on their computers. First, a data
model is prepared to support the reports users may build. These data models are stored on the report
server with shared data sources and reports. The data model serves two important purposes: It provides
a simplified view to hide the complexity of relational or hierarchal data. Second, it allows the data model
designer to control access to sensitive or irrelevant data stored in the database. When a user wants to

10

Chapter 1

05_584979 ch01.qxp 1/27/06 7:41 PM Page 10

build a report from the Report Manager, the Report Builder design components are downloaded and
activated in the user’s web browser. This design environment shares common features and characteris-
tics with the report designer but is simpler to use and specifically designed for creating these client-side
reports (see Figure 1-4). Report Builder reports are automatically laid-out and formatted for ease of use.
Finished reports may be stored on the server for reuse.

Figure 1-4

Part III, including Chapters 8 and 9, thoroughly covers client-side reporting concepts, data model prepa-
ration, and the Report Builder design environment.

Simple Application Integration
There are a few options available for integrating reports into business solutions. Using reports from an
external application isn’t hard to do, but choosing the right technique depends upon the type of applica-
tion and the desired behavior of the report interface. Even with all of these options, you may still have a
few different implementation choices. There are two recommended methods for rendering reports in a
custom implementation which include:

11

What Can You Do with Reporting Services?

05_584979 ch01.qxp 1/27/06 7:41 PM Page 11

❑ A standard web request using a Uniform Resource Locator (URL).

❑ A report embedded into a Windows or web application using an IFrame, Browser control, or
ReportViewer control.

❑ A programmatic web request using the Simple Object Application Protocol (SOAP).

The first option is much easier but may be used in a variety of different ways. In its simplest form, a
hyperlink is used to open the report in the web browser. The user uses a standard toolbar to provide
parameters for filtering and other report options.

Launching Reports from an Application
Hyperlinks and application shortcuts can easily be added to documents and custom applications. Using
this simple technique, report links can be added to Windows forms, documents, and web pages.

Much of the standard report viewing environment may be controlled using parameters passed to the
report server in the URL. By incorporating these commands into a hyperlink, reports may be displayed
with or without toolbar options and features. You can change the zoom factor and modify the rendering
format. For example, clicking a link for one report may open it as a web page in HTML, and another link
for a different report may open it in Excel or the Adobe Reader.

Reports may be designed to prompt users for parameter values used to filter data and to modify the
report format and output. These parameters may also be incorporated into a URL string. This way one
hyperlink will display a report with one set of data, and another hyperlink will display the same report
with different data. Parameters can even be used to change display attributes such as font sizes and col-
ors, and to hide and show content.

User Interaction and Dynamic Reporting
There are many opportunities to use report features to provide a rich user experience. In the past, many
reports were nothing more than a list of values with totals. Now reports can be a starting point that can
guide users to the information they need to make decisions. Report elements, such as text labels, column
headers, and chart points can be used to navigate to different report sections and to new reports. Since
navigation links may be data-driven and dynamically created based on program logic, report links (see
Figure 1-5) may also be used to navigate into business applications. Imagine using your reports to
launch programs and to navigate to document libraries and online content!

Dynamic reporting means that the content and layout of a report can change as the user selects parame-
ter values or clicks on different items. Summary headers, shown in Figure 1-6, may be used to expand
and collapse detail sections, giving users the ability to drill down to more specific information.

12

Chapter 1

05_584979 ch01.qxp 1/27/06 7:41 PM Page 12

Figure 1-5

Figure 1-6

13

What Can You Do with Reporting Services?

05_584979 ch01.qxp 1/27/06 7:41 PM Page 13

Intranet and Internet Report Access
One of the marvelous things about the SQL Server Reporting Services architecture is that it is based on
modern Internet technologies, namely XML Web services and the .NET Framework. The Report Server,
running under Windows Server Internet Information Services, is essentially a complete web portal. At its
core the Reporting Services exposes all of its features and capabilities as a Web service. This means that
there are virtually no practical limits to how the features of reports and the report server may be
expanded to meet specific needs.

At the simplest level, this simply means that reports may be accessed by privileged users who are con-
nected through a corporate Internet (network) or through the World Wide Web. Reports may be made
available through the out-of-the-box Report Manager web page interface or may be built into custom
applications, as you will see in subsequent chapters.

Seamless Application Integration
How and why you would build reporting into a custom business application is a big question. Although
there are some common (and rather simple) techniques, there isn’t just one way to incorporate reports
into a business environment. Whether you want your users to simply link to a report in a standard
browser-based report viewer or to have report content seamlessly melded into a custom application
user interface, there are a handful of methods to get there. Whatever the chosen technique, users need
not even realize that they are using Reporting Services to view their content. In fact, they may not even
realize that they are viewing a report. From the users’ perspective, their experience is simply a conve-
nient and smooth flow of information as they navigate from one simple interface to another, without
ever leaving your business solution.

Part V will help you explore opportunities for integrating Reporting Services reports into applications
and business solutions. Chapter 12 will show you different techniques for including reporting features
into Windows and web applications. You will learn how to program the Reporting Services Web service
to gain control over the report rendering process and to manage reports through custom applications.

Web Application Integration
It’s impossible to know for sure but by some estimates, as many as 60 to 80 percent of all desktop busi-
ness applications have been replaced by browser-based applications, most in the past five years. The
power of the web and Internet technologies has drastically changed the way we use our computers. For
this reason, web applications have come a long way in just the past few years. Once stodgy, static web
pages, many “web sites” have been replaced with interactive information portals and dynamic applica-
tion interfaces that provide feedback and tactile response to user interaction.

The page paradigm has turned once standard gray window dialogs into artistic-yet-efficient, fashionably
color-coordinated, data input and management screens. One of the reasons that Reporting Services inte-
grates so easily with modern web applications is that it natively supports HyperText Markup Language
(HTML), the standard markup language used to create web pages. Techniques may be used to incorpo-
rate reports into a web application in a variety of ways:

14

Chapter 1

05_584979 ch01.qxp 1/27/06 7:41 PM Page 14

❑ Hyperlinks to navigate the web browser window to a report.

❑ Hyperlinks to open reports in a separate web browser window, with control over report display
and browser features.

❑ Embedding reports into a page using a frame, IFrame, or ReportViewer web control.

❑ Programmatically feeding report content to an Active Server Page (ASP or ASPX) using server-
side custom code.

❑ Programmatically writing reports to files available for downloading from a web site.

❑ Using a web part to embed reports into a SharePoint Web Portal.

The fact is that there are a lot of creative ways to integrate reports into a web application. These tech-
niques range from very simple, requiring little more than a little HTML script, to very complex, custom
methods. And if it’s not enough to be able to embed reports into custom web pages, it’s also possible to
use custom program code to embed additional content into reports. Imagine the possibilities . . . actually,
you don’t have to imagine anything. Just keep reading!

Portal Integration
As web technologies and products have matured, a new breed of web applications has evolved. Most
web sites consist of several HTML page files, which contain mainly text content. Portal frameworks, like
Microsoft SharePoint Portal Server, Plumbtree, E-Portal, K-Station, and DotNetNuke have replaced
many large, complex web sites. A portal server takes much of the programming out of web site construc-
tion by providing a framework and the building blocks to assemble an intricate web site from modules.
Most of the content is managed in a database rather than in physical pages.

A Reporting Services report can integrate with portal sites in some of the same ways that it integrates
standard web pages: by using IFrames and hyperlinks. SharePoint integration is particularly easy for
nondevelopers because it involves the use of simple menu options rather than writing script or program
code. Adding the report viewer web part to a portal site page is as easy as dragging and dropping it into
a page zone and then setting some simple properties. Microsoft offers a simple portal framework with
limited features with Windows Server, called Windows SharePoint Services (WSS.) The full-featured,
corporate-scale edition, SharePoint Portal Server, is a separate product that adds features and advanced
scalability to the WSS foundation.

Windows Application Integration
Reports may be viewed in custom Windows desktop applications using one of two techniques. The
ReportViewer control or embedded web browser may be used to view server-based reports in a form.
These reports are still managed on the Report Server and maintain all of the security settings and config-
uration options defined by an administrator. Queries and data access are still performed on the server.
The other option is to embed these reports directly into the client-side application. The Windows forms
ReportViewer controls can act as a lightweight report-rendering engine. This means that reports built
into a custom application can run independently from the report server. Figure 1-7 show a report ren-
dered on a Windows form using the ReportViewer control.

15

What Can You Do with Reporting Services?

05_584979 ch01.qxp 1/27/06 7:41 PM Page 15

Figure 1-7

Managing and Customizing
the Report Server

Reports may be delivered in a variety of ways (not just when a user navigates to a report in real time).
Reports may be automatically rendered to server cache, so they open very quickly and don’t burden
data sources. They may be delivered via e-mail and to file shares on a regular schedule. Using data-
driven subscriptions, reports may be “broadcast” to a large audience during off-hours. Each user may
receive a copy of the report rendered in a different format or with data filtered differently. You will learn
to plan for, manage, and configure these features.

Chapter 11 (in Part IV) will guide you through report server administration. You will learn how to opti-
mize, back up, and recover the ReportServer database, Web service, and Windows service. You will learn
to use the management utilities, configuration files, and logs to customize the server environment and to
prevent and diagnose problems.

16

Chapter 1

05_584979 ch01.qxp 1/27/06 7:41 PM Page 16

Chapter 13 covers programmatic extensions to the Report Server. You will learn to write custom data
source, rendering, delivery, and security extensions. That chapter will show you how to build new fea-
tures on top of the Reporting Services architecture. As a report designer or business manager, you will
learn of these powerful capabilities, enabling you to address specialized requirements and to direct
application developers to develop custom extensions. As a system administrator, you will learn to
enable custom extensions and define appropriate security allowances to enable custom extensions to
run on your report server. As a custom extension developer, you will learn how to use the Reporting
Services object model to extend the features of reports and your server, to solve business problems and
enable advanced capabilities.

Summary
Different people will use Reporting Services in different ways. Our goal is to address the needs of the broad
community of power users, report designers, solution architects, system administrators, and business man-
agers. For some, the material contained in sections of this book will help them build and deploy reporting
solutions to meet their needs. For others, it may open their eyes to powerful capabilities beyond their skill-
set and to work alongside other professionals as educated members of a project team.

As a nonprogrammer report designer using Reporting Services, you are likely to learn to write some cus-
tom expressions and program functions to meet specific reporting needs. Perhaps this is as far as you
will need to take Reporting Services. For the vast majority, this is enough to design, build, and deploy
reports with capabilities far greater than any other reporting tools you may have used in the past. If you
are a serious programmer, then your needs are probably a little different from those of the casual report
designer. For the custom business solution developer, there are very few boundaries set by limitations of
this product. With some creativity and the techniques you will learn in the chapters ahead, you will take
reporting further than you have before and provide your users with real business intelligence rather
than just the ability to print out data.

Reporting Services takes data accessibility to the next level. Microsoft is making good on its promise of
making information available “any time, any place, and on any device.” Reports may be designed using
specific rendering formats and page sizes to support mobile devices, the browser window, Office docu-
ments, and — oh yes — the printed page.

17

What Can You Do with Reporting Services?

05_584979 ch01.qxp 1/27/06 7:41 PM Page 17

05_584979 ch01.qxp 1/27/06 7:41 PM Page 18

Introduction to Microsoft
SQL Server Reporting

Services 2005

SQL Server Reporting Services (SSRS) 2005 expands on Microsoft’s first release of its reporting plat-
form. In 2003, Microsoft released Reporting Services as an addition to the suite of SQL Server 2000
products. Reporting Services was originally intended to be a part of the overall SQL 2005 release.
However, the Reporting Services team found an opportunity to launch the product early. To their
credit, the release was extremely successful. Reporting Services has been one of the most adopted
version 1 products from Microsoft. That being said, it was still a version 1 product and had some
room for polishing and fine-tuning. Features are selected from a long “wish list” in order of prior-
ity. It’s a long list containing essentials and nonessentials, and some items that may never make it
into the final product. Additional items from this list are added with each version and service
release.

In this chapter, you learn:

❑ A new approach for accessing data and report delivery is part of the extensible architec-
ture of the Reporting Services platform.

❑ How each report is stored in a simple and portable report definition Extensible Markup
Language (XML) document file using a standard called RDL.

❑ That Reporting Services can be completely secured and highly customized. Reports may
be managed and viewed using the Report Manager web interface or may be built into cus-
tom applications using provided report viewer controls or custom rendering.

❑ A range of delivery options, including scheduled subscriptions, allowing users to receive
reports as files or e-mail items. Report content may be cached in a variety of ways to
improve performance and conserve server resources.

06_584979 ch02.qxp 1/27/06 7:53 PM Page 19

In the 2000 release, Microsoft spent a significant amount of time making sure that the underlying plat-
form was extensible, scalable, and generally well architected. I believe this was the right decision when
looking at the long-term use of this product. Focusing heavily on the platform did require that some end
user features be held until further releases. What we are seeing in the SSRS 2005 is a major addition of
some of the most commonly requested features. Some of these include multi-select parameters, sortable
headers, and a number of user enhancements. The major improvement comes with the new Report
Builder application. Report Builder allows users to easily create their own reports with a friendly
Microsoft Office–like interface.

If you are impressed by the capabilities of the .NET Framework, Web services, SQL Server, and ASP.NET,
you should know that by using these technologies Reporting Services takes data accessibility to the next
level. Microsoft is making good on its promise of making information available “any time, any place,
and on any device.” Reports may be designed using specific rendering formats and page sizes to sup-
port mobile devices. There are many other reporting tools with impressive capabilities, but none of
them is quite like this one.

This chapter will introduce several topics that will be covered in greater detail later in the book. This will
be a high-level view of the need for and purpose, capabilities, and mechanics of SQL Server Reporting
Services.

Traditional Application Reporting
In many business applications, reporting is an afterthought. When designing systems, there is a great
deal of time spent on workflow, data elements, and the user interface. Systems take significant amounts
of time to design, build, test, and deploy. In the end, many organizations end up with a tool well suited
for collecting information and improving productivity. However, reporting is usually lacking. It seems
that people usually see reporting as a simple add-on that can be completed with relative ease.

The reality is that good reporting takes the same type of solid planning and design done in the original
application. You need to clearly define what it is the user is looking for, how he or she is going to use it,
and how often it needs to be available. Without proper planning, queries became complicated and diffi-
cult to support. Reports run slowly and are prone to errors.

To avoid these difficulties, you need a plan. In a perfect world, you would architect the database and
application around your reporting needs and would completely understand your users’ requirements
before designing the system. In the real world, you may understand some of the users’ needs ahead of
time, but chances are that new reports will be requested long after the other features are in place.

According to Frederick P. Brooks’s The Mythical Man-Month, it’s usually a good idea to learn from and
throw away your first few attempts at almost any design. I typically try to develop reports in stages,
realizing that the first attempt will be a prototype. My experience has been that when you gather the ini-
tial requirements, users will ask for a handful of different reports based on some specific criteria. After
the solution is deployed and people begin to use it, others will almost inevitably realize that they, too,
would like reports to help make their jobs as easy as their associates’. As users realize what kinds of
information they can get, they will find new and exciting ways to sort, filter, group, pivot, and slice and
dice their data — in ways they never thought possible. That is, until you show them the possibilities.

20

Chapter 2

06_584979 ch02.qxp 1/27/06 7:53 PM Page 20

Today’s Reporting Requirements
Static, printed reports may be an acceptable format for a list of products and prices or for a company but
not for the majority of the information people use to make important decisions today. Business decision
makers need pertinent information, and they need to view it in a manner that applies to that person’s role
or responsibility. Since most users deal with information in a slightly different manner, you can create
hundreds of reports, each designed for a specific need. Alternatively, you can create flexible reports that
serve a broader range of user needs. For example, a sales summary report could be grouped or filtered by
the salesperson’s region, or by customer type, and include information for the week, month, quarter, or
year or for a specific product category. To produce individual reports for each of these needs would be
time-consuming and cost-prohibitive. Besides, computer users are savvier than they were a few years ago
and need to have tools that help them make informed decisions, not just look at the numbers.

I recall working at Hewlett-Packard several years ago in a manufacturing site IS group. Every Thursday a
report card would come around. There were several regularly scheduled reports that the mainframe sys-
tem produced on a weekly and monthly basis. Users, typically department managers, would subscribe to
these reports that were then printed in another building and delivered by hand to each subscriber. Many of
these reports were little more than a huge list of numbers and text printed on continuous, fan-fed paper —
some as large as 500 pages. I watched inquisitively as managers would meticulously scan through the
pages, highlighting and circling figures of interest. Some would bind them into large books and give them
to their administrative assistants to go through with a 10-key calculator and add up all of the figures they
had highlighted.

At the end of the month dumpsters full of these reports were hauled off to landfills and recycling centers
as their usefulness quickly came to an end. I spent nearly two years developing a reporting application
for this group using Microsoft Access. We originally planned for 8 to 10 reports in this application. But as
time went on, and users began to rely on the reports to perform their jobs, they would ask for the same
reports with different sorting, grouping, and selection criteria. In the end, we deployed some 25 to 30
reports, most of which were variations on the few original reports.

Business Intelligence Defined
The previous section discussed the importance of adding reporting to your applications. Reporting can
answer a number of business questions, but it only represents a portion of what we call business intelli-
gence (BI).

BI seems to be a very popular industry term right now. Like many popular industry terms, there is gen-
erally a lot of confusion about its actual meaning. So, we need to add a little clarity about what BI actu-
ally means. To us, BI is the ability to gather information, make a decision on the information, implement
a change in your business, and then measure the effects of the change. Figure 2-1 shows the circular
nature of BI.

Business executives understand that it’s important to have good data. They reason that good data should
lead to good decisions, and good decisions mean good business. This makes sense, right? A very common
scenario today is that businesses trying to get that edge will invest in expensive Enterprise Resource
Planning (ERP) systems that effectively gather and store mountains of customer, product, and sales infor-
mation. Mission accomplished? Wrong! These days, the time between data entry and consumption is very
short, almost instant. More effective data-gathering mechanisms result in data silos and data warehouses
populated to the gills with all kinds of facts.

21

Introduction to Microsoft SQL Server Reporting Services 2005

06_584979 ch02.qxp 1/27/06 7:53 PM Page 21

Figure 2-1

The new generation of business workers is informed and empowered to make decisions. They need tools
to get useful information and respond to changes. Having data available is useless unless it has business
value and can be used to effectively make informed decisions.

A fundamental fact in business is that the people who gather and collect data are often not the people
who use that data or need access to the information that the data represents. Business executives, man-
agers, and analysts make strategic decisions every day that may affect many people, the direction of
their organizations, and ultimately, the way people and organizations will go about conducting business
in the industry. These decisions are largely driven by the relative height of a bar displayed in a chart or a
few numbers printed on a piece of paper. Having capable reporting tools doesn’t necessarily solve this
problem. Most businesses don’t know how to effectively use the products they own. A reporting tool is
of little value if it’s complicated and difficult to use.

This presents some fundamental challenges, such as collecting comprehensive, accurate, and meaningful
information; storing it in a form so it continues to represent the facts; and presenting the information in a
concise and unbiased form. On the surface, it seems like a simple task.

Automation to the Rescue — a Scenario
I’ll share an example of this kind of challenge. Several years ago, I spent a few months developing a report-
ing system for the operations group at a paper mill in the Pacific Northwest. The old mill is located in a
small, remote town, and many of the people operating the mill have been working there all of their lives.
As is common in the pulp and paper industry, the mill has changed ownership a few times and is currently
operated by a very large paper and office supply company.

As time went by and technology changed, several different computer systems were incorporated into
the operation of this mill; an IBM 360 and an AS/400 system were used to manage customer orders and
production history records. The original inventory management system is still in place. It’s a very old,
special-purpose computer that stores most of its data in a single, flat text file. All of its components are
redundant, and it hardly ever needs significant maintenance. Shortly before I arrived, a Windows server

Generate Business
Reports

Identify Opportunity
For Change

Update Success
Metrics

Implement
New Solution

22

Chapter 2

06_584979 ch02.qxp 1/27/06 7:53 PM Page 22

box was installed with a SQL Server database and an application that would replicate production and
inventory data from the existing database systems. Management within the parent company believed
that they didn’t have a handle on the rates of material consumption and product quality. They wanted a
reporting system that would give them the figures they needed to make adjustments to their ordering
and pulp production processes.

Over time, orders would be placed for certain grades of pulp. The system would calculate quantities of
ingredients needed to produce a batch — typically to fill an order for a customer. The order would be
sent to the production floor, where workers had newly installed controls used to ensure the accurate
delivery of pulp ingredients. Different batches of product continued to be produced with varying degrees
of quality, and management’s ability to track the consumption of these materials didn’t significantly
improve. Management continued to invest in reporting solutions. They bought and developed software
to look for trends and perform statistical analysis but to no avail.

After several months and hundreds of thousands of dollars invested, the product quality didn’t really
improve much. Finally, one of the IT managers put on a hard hat and walked down to the production
floor to observe the process. What he learned was a simple lesson: When the orders arrived on their
computer workstations, workers were printing the orders and then putting them aside. They had over-
ridden the automated controls and were using the same manual techniques to make paper that earlier
generations had been using for decades. It was a matter of tradition and pride, and they weren’t about to
let some computer do their job for them.

The initial reporting solution was elegant and technically capable. The calculations were accurate and
the report presentation was appropriate. However, the solution didn’t fully support the process. This
cultural hurdle was eventually overcome (workers were instructed to use the automated systems if they
wanted to keep their jobs), and the product and process improved. A report is only as good as the data it
presents, and the data is only as good as the information used for collection. The information is only as
good as the process that it represents.

Challenges of Existing Reporting Solutions
For over 10 years, Microsoft offered only one product with substantial reporting capabilities. Designed to
run as a single-user or a small workgroup desktop application, Microsoft Access is a capable database and
reporting solution. In Access 2000, Access Data Projects were added. This extension of the product works
well against a SQL Server back end in a LAN environment. In Visual Studio 6, an integrated reporting tool
was offered for Visual Basic 6, but its capabilities were meager at best. Developers at that time thought this
was a glimpse of things to come in subsequent versions of Visual Studio.

Due to the lack of a unified, consistent approach for reporting, many developers have had to revert to
creating their own custom solutions. One case in point is the reports starter kit project available on the
ASP.NET development support site (www.asp.net). The developers did a bang-up job creating a web-
based reporting solution using ASP.NET datagrids and datalist controls. They even made their own pie
charts using line-drawing objects. This effectively proves that .NET is a powerful arsenal of program-
ming tools. However, it also makes the point that we have lacked a strong reporting platform to round
out Microsoft’s front-line development and database suite.

When Visual Studio .NET was released in 2002, I was a little disappointed because the only integrated
reporting component was a limited-use version of Crystal Reports. Now, before I get myself into too

23

Introduction to Microsoft SQL Server Reporting Services 2005

06_584979 ch02.qxp 1/27/06 7:53 PM Page 23

much trouble with folks who may be loyal to this product, I’ll say that Crystal Reports is a capable report-
ing tool. However, it’s neither a part of Microsoft’s strategic direction nor does it behave like, or inte-
grate tightly with, other Microsoft products. The version of Crystal Reports that is installed with Visual
Studio is limited to five concurrent users (and the term concurrent is subject to some serious interpreta-
tion). Now that Crystal Reports has changed hands once again (acquired by Business Objects), it will be
interesting to see how this affects the direction of this well-known product.

Notably, the most remarkable change in the industry over the past few years has been the opportunity
and need to exchange information over the Internet. Previous technologies simply don’t provide the means
to access application components across the Internet. Component architectures such as COM, DCOM, and
CORBA were designed to communicate across secure local area network (LAN) and wide area network
(WAN) systems, which required a substantial infrastructure investment. Connecting business trading
partners and even regional sites was often cost prohibitive and logistically infeasible. Few options existed for
reporting over the web. At best, a list or table filled with data could be viewed in custom-built, server-side
web page solutions using Active Server Pages (ASP) or Common Gateway Interface (CGI). Each page had
to be carefully designed and scripted at the cost of dozens, or sometimes hundreds, of programming hours.

With the recent maturity of the web, a new generation of mobile devices is evolving that can connect
users to company resources, e-mail, documents, and databases. These laptop, hand-held, palm-top, and
wrist-worn devices open new doors of opportunity and present new challenges for data presentation.

To gain access to useful and readable information, data must be accessible over available communication
channels (such as corporate networks and the Internet), easy to access, secure, and available in a variety
or formats so that it may be viewed using available document readers or browsers — all compatible with
different devices. Did I mention the need to support different operating systems (OSs), applications, and
perhaps, without the installation of any custom software on the client device? This is the challenge.

How Does SQL Server Reporting Services
Meet This Challenge?

SQL Server Reporting Services is a server-side reporting platform that meets all of these requirements and
more. It can obtain its data from a variety of data sources that you can access using modern programming
tools. That data may be grouped, sorted, aggregated, and presented in dynamic and meaningful ways.
The structure of the data and the presentation elements may be transmitted across practically any com-
munication medium, using an industry-standard format, to just about any type of client or server com-
puter or device. The resulting content may then be displayed in many standard formats using browsers
and document readers. Further, the data itself may be consumed by standard and custom applications to
be further parsed, imported, manipulated, and consumed. It’s a truly remarkable innovation with incredi-
ble possibilities.

Since Reporting Services is based on .NET, it offers the advantage of integrating tightly with the
Windows platform and benefits from the performance, scalability, and security inherent to the .NET
Framework. When used in concert with BackOffice products like SharePoint Portal, it can provide a
comprehensive enterprise solution with little programming effort. Reporting Services can be used with
ASP.NET and other .NET programming tools to produce highly customized, special-purpose solutions.

24

Chapter 2

06_584979 ch02.qxp 1/27/06 7:53 PM Page 24

Chapter 3 discusses the specific Reporting Services architecture that is used to perform all of this magic.
In brief, functionality is exposed through an XML Web service that may be accessed across a LAN or
across the web. Reports may be rendered in program code or they may be accessed through a simple
web address — like any other web page. Reports may be rendered in several formats. These include dif-
ferent flavors of HyperText Markup Language (HTML) to provide compatibility with different browsers
and devices, the Adobe Acrobat Portable Document Format (PDF) for uniform presentation and printing,
as a graphic file, and in Microsoft Excel so users can slice, dice, pivot, and reanalyze the data. Content
may also be rendered in XML and CSV (Comma-Separated Values) formats to import and exchange data
with a variety of applications.

Business Intelligence Solutions
Traditionally, BI solutions have been very costly and only accessible to large businesses that could afford
them. Customer Relationship Management (CRM) systems, Online Analytical Processing (OLAP) systems (or
data warehouses), and analysis solutions have been available for many years from specialized vendors.
However, they require costly deployment, training, and maintenance. By contrast (this is the part I like
the best), Reporting Services is available at no additional cost if you install it on a computer with a
licensed instance of SQL Server. In a single-server installation, you don’t need an additional license and
you can use it royalty-free — so long as your database and server products are appropriately licensed.

Comparatively speaking, collecting data is the easy part. Most companies have been doing this for decades,
but how they utilize all of this data is often another story. There is no doubt that effectively collecting data
may not be so easy, but it’s something businesses have been doing for quite some time. Most companies
have untold mega-, giga-, or even terabytes of “important” archived data residing in documents, spread-
sheets, and various databases on backup tapes, disks, and folders throughout their enterprise — with no
hope of fully utilizing and gaining significant value from it all.

According to Tommy Joseph of Disney Interactive Group, “BI is about more than just tracking product
sales. It’s about measuring performance, discovering patterns and trends, and measurable forecasting
through statistical analysis.”

An effective BI solution provides visibility to important facts at all levels of an organization and gives
people access to uniform data from different sources using familiar and easy-to-use applications. It ties
together applications, documents, and data sources in a manner that lets people collaborate and commu-
nicate effectively.

BI systems are no longer a luxury but a necessity in many business environments. Today, having access
to timely information can make the difference between having a competitive edge and being left in the
dust behind competitors.

Who Uses Reports and Why?
In almost any organization, there is a universal condition that people in different roles and at different
levels have different perspectives on information. This is typically most apparent in large corporations,
where executive leaders who make financial and market-direction decisions have less exposure to the
daily processes of the company than the line-level workers. Ask any executive, and he or she will tell you

25

Introduction to Microsoft SQL Server Reporting Services 2005

06_584979 ch02.qxp 1/27/06 7:53 PM Page 25

that the line-level worker doesn’t have a broad perspective regarding the challenges and direction of the
organization at a high level. Conversely, ask most of the line-level workers in the organization, and they
will tell you that the upper management and executives don’t share their perspective of “real problems”
and the daily pulse of the company. To a point, this is the natural condition of a healthy organization.

Bill Gates has spoken extensively about the information worker of the twentieth century. At all levels
within an organization, people who have convenient access to accurate and appropriate information are
empowered to make informed decisions that benefit the organization and the individual. This is rapidly
becoming the case throughout many industries today and continues to change the way people work and
are managed. Although this paradigm shift may be occurring for many people, organizations often
struggle to provide the resources necessary to support workers who are eager to use information to
make a difference in their environments.

Executive Leadership
Leaders simply must make informed decisions. They must fully understand their business environment
and the competitive climate in which they operate. Access to market conditions, customer needs, and
financial information can often make the difference between decisions that produce success or jeopar-
dize the organization.

Decision support systems provide interfaces for executive leadership through dashboards called Executive
Information Services (EIS). Reporting Services installs with a simple web interface and enhances integration
with executive consoles through SharePoint Portal services and third-party solution integration.

Managers
Inefficient business processes can no longer remain the status quo. Customers demand results and sim-
ply will not tolerate services or products that don’t meet their expectations. Customers have choices and
will quickly switch to a competitor if their needs are not met. Managers need the information necessary
to drive customer satisfaction and make corrections, directing business processes and the effective use of
people and other important resources.

Information Workers
In businesses today, workers are educated and given more freedom to solve problems and effect change.
This category could be applied to workers at various levels within an organization, including the man-
agers and higher-level workers. Often, the customer service representative or service provider will be
the only human interface a customer has with an organization. That person must be empowered to col-
lect and retrieve information quickly and accurately. They must also be empowered to make corrections
to — and to work with, not against — unyielding business processes. In the past, workers simply had to
accept the way information was presented to them, as well as the inefficiencies of most automated sys-
tems. With greater demands on businesses, workers simply must have the means to acquire accurate
and concise information that meets their needs — in order to work efficiently.

Customers
Many businesses can’t afford to put people in front of their customers on a routine basis. Customers who
can get the information, services, and assistance they need may not demand that someone help them
when it’s not warranted. By making regular services available through customer-friendly automation

26

Chapter 2

06_584979 ch02.qxp 1/27/06 7:53 PM Page 26

and information portals, you can afford to offer assistance to customers who really need special atten-
tion. Customers often need to look up account and transaction histories, order status, and shipping
information. Making these services available through a web browser, e-mail, or a mobile device can
provide a greater degree of customer satisfaction.

Vendors and Partners
Like customers, business vendors may need to interface with an organization to place orders, schedule
service calls, and obtain status information. Making this information available in the most appropriate
form will improve efficiency and ultimately business-vendor partnerships. Business vendors are often
more accepting of special procedures and automated systems. Vendors can be trained to use more
sophisticated systems to obtain product information, service orders, invoices, and other business-related
information. Systems may be designed to interface and automate the download or exchange of informa-
tion that enable a partnering business to work cooperatively.

Reporting Solution Alternatives
The following section discusses some common reporting solution alternatives. The alternatives usually
represent an evolution in a company’s reporting sophistication. Generally, organizations start with some
main reports from an OLTP (Online Transaction Processing) system. Once they meet the limitations of
the OLTP system, they evolve their reporting into data warehouses. Eventually, even more complex
reports and interactivity are required. This usually leads to the implementation of an OLAP system. We
will take a look at each of these alternatives and their relative advantages.

Reporting with Relational Data (OLTP)
Transactional databases are designed to capture and manage real data as it is generated, for example,
as products are purchased and as services are rendered. Relational databases are designed according to
the rules of normal form and typically have many tables, each containing fragments of data rather than
comprehensive information or business facts. This helps preserve the integrity and accuracy of data at
the detail level, but it presents challenges for deriving useful information from a large volume of trans-
actional data. In order to obtain information with meaningful context, tables must be joined and values
must be aggregated.

For simple report requests, this usually is not an issue. Take the example of an invoice. An invoice is a sim-
ple report. It displays custom information along with detail for a small number of transactions. For this
type of report, querying an OLTP system is not very costly and the query should be relatively straightfor-
ward. However, users will eventually move past these simple reports as they start to look for information
for an entire year or product line. Developing these types of reports will eventually consume considerable
resources on an OLTP system as well as require increasingly difficult queries. Although relational database
systems may support complex queries, reporting against these queries routinely could prove to be slow
and inefficient.

Relational Data Warehouses
I have seen many organizations evolve away from reporting on their OLTP data. Usually their first step
is to create a carbon copy of the OLTP system on another server. This alleviates the resource constraints

27

Introduction to Microsoft SQL Server Reporting Services 2005

06_584979 ch02.qxp 1/27/06 7:53 PM Page 27

on the original system, but it does not solve the issues around increasingly difficult queries. OLTP sys-
tems simply are not organized in a logical reporting structure.

To deal with increasing reporting needs, an entire industry has evolved to simply handle reporting.
From this industry, individuals such as Ralph Kimball have refined standard patterns and methodolo-
gies for developing data warehouses. A common misconception is that a data warehouse is simply a
denormalized transactional system. In reality, a data warehouse is another form of relational database
that is organized into a reporting-friendly schema. Data is centered around what is known as a “fact”
table. A fact table relates to business processes such as orders or enrollments. Radiating out from the fact
table are dimensional tables. Dimensional tables contain attributes that further define the facts. These
attributes could contain product names, geographic sales locations, or time and date information.

Relational data warehouses can significantly improve query performance on large data sets. However,
they too have related drawbacks. These drawbacks generally relate to the fact that data is still stored in a
relational format. Relational databases require joins to combine information. They also require aggregate
functions to calculate summary-level detail. Both joins and aggregate functions can slow queries on very
large sets of data. Relational databases also do not understand inherit associations in the data. Take the
example of a product table. Each product table has a related subcategory and each subcategory has a
related category. If you need to create a report that is product sales with its percentage makeup of each
related subcategory, you have to understand the relationship and write it in your query. The same holds
true for time relationships. If you need to create a report that contains year-to-date information, you need
to understand what the current date is as well as all the related periods in the same year. These things
are possible in SQL queries but take additional effort and require more maintenance. That moves us into
our next type of reporting alternative: OLAP.

Reporting with Multidimensional Data (OLAP)
Multidimensional databases take a much different approach to data retrieval and storage than relational
databases. Multidimensional databases are organized into objects called cubes. Cubes act as a semantic
layer above your underlying database. These databases can contain numerous different relationships
and very large sets of aggregate data.

As a multidimensional database, information can be aggregated across many dimensions. This data is
preprocessed into the multidimensional structure. Because it is preprocessed, query times are signifi-
cantly reduced for large additive data sets. Multidimensional databases also have the advantage of
understanding relationships between and across dimensions. This opens the door to creating calcula-
tions and reports that would be extremely difficult in a relational database.

Imagine that a user asks you to create a report that displays the top five customers with their top three
products by this year’s sales amount and compared to last year’s sales amount. Writing a SQL query to
return the top five customers is fairly straightforward. However, returning each one’s top three products
would require additional subqueries because the relational database does not understand the association
between products and customers. The final part of the request can prove even more burdensome. Return-
ing a single year’s data is easy, but nesting that data next to last year’s data can prove almost impossible.
The SQL query for the above scenario would most likely contain a number of nested queries as well as
some creative use of temporary tables. Besides being a terribly complex query, it probably would not per-
form that well. On the other hand, Multidimensional Expressions (MDX), the language used to query
multidimensional databases, can handle this in a few simple calls — not because MDX is a more advanced
language, but simply because the underlying database understands the associations in the data and has
stored this information for quick retrieval.

28

Chapter 2

06_584979 ch02.qxp 1/27/06 7:53 PM Page 28

Microsoft has made major enhancements to its multidimensional database product called Analysis
Services. Reporting Services 2005 adds improvements for working with Analysis Services databases.
There is a new query designer that assists you in writing the underlying MDX. There is also support for
creating Reporting Models that allow ad hoc access to OLAP data. Creating Reporting Models for
Analysis Services 2005 is covered in more detail in Chapter 8.

The Reporting Lifecycle
Chapter 3 discusses the reporting lifecycle in greater detail with the architecture that supports this process.
Creating a functional reporting solution requires an understanding of user and business requirements.
Existing data sources must be considered and new data stores must be designed to meet reporting needs.
From this perspective, the process of creating useful reports consists of three activities:

❑ Authoring: With the available tools, reports are authored using the Report Designer in Visual
Studio .NET. This interface is used to create data sources, queries and data sets, and the report
definition.

❑ Management: Report management is performed using the Report Manager, a web browser inter-
face used to manage and deploy report definition files, shared data sources, and configuration
settings; it can also be used to view and export report data.

❑ Delivery: Reports may be delivered to a user on demand through the Report Manager or a cus-
tom application; it can also be scheduled for delivery through subscriptions. Reports can be
delivered in the form of a web page, document, file, or even via e-mail.

Report Delivery Application Types
In the past, reporting solutions were typically delivered through a desktop application of some kind.
Data was queried in real time, and of course the application had to be connected to the data source.
Users also had limited opportunity to save reports for later viewing and usually printed them on paper.

Now we have many opportunities to view and interact with reports in environments where it may not
be possible (or feasible) to connect to data stores. Reports may also be presented in different forms that
offer multiple capabilities and compatibility with various devices and software.

Web Browser
Web browser–based solutions have become popular for a number of reasons. User accessibility takes on
a whole new definition when special software isn’t required on the client computer. Of course, a web
browser makes information available for viewing over the World Wide Web, but browser-based solu-
tions are also a compelling means to deliver information in a controlled business enterprise environ-
ment. Whether users access resources within their corporate intranet environment or over the web, the
browser paradigm has significantly changed the approach to application delivery.

Some of the traditional challenges with browser solutions are the lack of consistent support for client-
side script and components. These issues have largely been resolved with server-side rendering mecha-
nisms that output product-independent HTML content. For viewing offline content, HTML documents

29

Introduction to Microsoft SQL Server Reporting Services 2005

06_584979 ch02.qxp 1/27/06 7:53 PM Page 29

require links to external files, such as images, sounds, and video. These issues have also been resolved
by using a Multipurpose Internet Mail Extensions (MIME)–encoded format called MHTML or Web
Archive to encapsulate binary content within the page definition. Although not supported in all browsers,
this format is a viable means to deliver extensible report content for live and offline viewing. HTML 4.0
works on different types of computers across the Internet and within a LAN on newer web browsers,
and HTML 3.2 works with older browsers and on portable or hand-held devices.

Office Applications
Microsoft Office brings together a tremendous assortment of capabilities to assist report users at all
levels. Microsoft Excel has been the mainstay tool for data collection and analysis. By rendering a report
into Excel, the data may easily be reformatted, modified, or analyzed using formulas and calculations.
This capability has been around for several years, but it required writing custom code to use the Excel
object model from Access or Visual Basic to produce report data in Excel — this process was tedious at
best. Now, pushing complex report data into a useful and well-formatted Excel document is simple.

Microsoft Access continues to be the office worker’s database of choice. Data tracking and management
solutions can be created with minimal cost and effort. Report Services may be used to exchange and
import data into an Access database using XML or CSV formats. Access and Excel both provide the
Office Web Components that may be used to view pivot tables and charts. These components duplicate
the functionality of the Matrix and Report Services chart items but might give users a more convenient
option for analyzing data.

Programmability
The possibilities for incorporating report features in your own applications are impressive. All of the
features of the Report Manager can be duplicated in many cases and can be extended through program
code. Reports may be viewed in place within an application by using an external web browser window,
integrated browser control, or a custom report viewer component. Report content may be rendered to a
file for persistent storage to directly into a viewer or browser.

Subscriptions
Subscriptions allow users to receive or gain access to reports on a regular schedule. Reports are deliv-
ered by e-mail or saved to files where they may be viewed offline at the users’ convenience. Report sub-
scriptions may be set up for an individual user or large groups of users using data-driven subscriptions.
To put this into perspective, effectively, reports may be delivered to any individual or size group of users
in practically any readable format at any place and any time.

Report Formats
In addition to the three HTML rendering formats, you can use document types to control formatting
elements, printing layout, and adding other capabilities. The PDF document format remains the most
popular means for ensuring that documents are formatted exactly as they were intended. Rendering a
report to a Microsoft Excel workbook gives users the ability to continue to massage data and perform
calculations.

30

Chapter 2

06_584979 ch02.qxp 1/27/06 7:53 PM Page 30

Importing Data/Exchanging Data
Not all “reports” may be intended to be read or printed. Reporting Services provides two report render-
ing formats that can be used for export/import and data exchange. Using either the Comma-Separated
Values (CSV) or XML formats, Reporting Services provides a very convenient mechanism for intersystem
data exchange or pushing data out to a trading partner. Imagine that your system automatically sends
invoices and shipping manifests to your order-fulfillment vendor at the end of the day via XML file
attachments to e-mail.

Ad Hoc Reporting
Another important component of a reporting platform is the ability for users to easily create their own
reports. The major new feature of Reporting Services 2005 is the introduction of Report Builder. Report
Builder is comprised of two major components: Report Models and the Report Builder client. Report
Models allow you to create a semantic layer on top of SQL Server or Analysis Services data. The seman-
tic layer provides an easy-to-understand model for the user to navigate. Users will not have to under-
stand how to query the underlying database to create reports. The Report Builder gives users an
easy-to-use interface for building reports. The Report Builder client leverages information from the
Report Model to easily build structured reports. Chapters 8 and 9 will discuss how to create Report
Models and how to access this data using Report Builder.

System Requirements
The hardware system requirements for Reporting Services are very similar to those for SQL Server. The
default installation will place the Report Manager, Reporting Services, and the Report Server database
on the same physical server, but this configuration is not a requirement. These components may be
installed on three separate servers.

The Report Server and the Report Manager servers must be running Internet Information Services (IIS) 5.0
or higher with ASP.NET, and the .NET Framework 1.1 or higher. The Report Server Database requires
any edition of SQL Server 2005.

Editions of Reporting Services correspond to editions of SQL Server 2005 and include Enterprise,
Standard, Workgroup, Developer, and Express editions. Like SQL Server 2005, Standard Edition is a
good solution for a single-server environment with a moderate number of users.

The following table shows the features for each edition of SQL Server Reporting Services 2005 (from
www.microsoft.com/sql/2005/productinfo/rsfeatures.mspx).

Report Server

Feature Express Workgroup Standard Enterprise Comments

Data Express Workgroup SE and EE support all
Source(s) 1, 2 1, 2 data sources (OLAP and

Relational)

Table continued on following page

31

Introduction to Microsoft SQL Server Reporting Services 2005

06_584979 ch02.qxp 1/27/06 7:53 PM Page 31

Feature Express Workgroup Standard Enterprise Comments

Rendering Excel, PDF, Excel, PDF, Standard Edition and
Image Image Enterprise Edition
(RGDI, (RGDI, support all output formats
Print), Print),
DHTML DHTML

Management Report Workgroup, Standard,
Manager and Enterprise editions

support SQL Server Man-
agement Studio and
Report Manager

Caching

History

Delivery

Scheduling

Extensibility Can add/remove
renderers, data sources,
and delivery

Custom
Authentication

SharePoint
Integration

Scale-Out
Report Servers

Subscription

Data Driven
Subscription

Role Based Fixed Fixed Standard Edition and
Security Roles Roles Enterprise Edition can

add roles

Report Builder

Report Builder Workgroup
Data Sources 1, 2

Model Level
Security

Infinite
Clickthrough

32

Chapter 2

06_584979 ch02.qxp 1/27/06 7:53 PM Page 32

Reporting Services Components
The following section will take a broad look at the different Reporting Services components. We will dis-
cuss some of the main server components, then move on to client tools, and finally look at options for
help and building samples.

Server Components
Server components include the Report Server and the Report Manager. Components consist of a Windows
service that runs continually on the server computer, a .NET Web service hosted in IIS, and two SQL Server
databases. The Report Server databases can be installed on only one instance of SQL Server per physical
database server computer. The databases need not reside on the local Report Server computer, but the
server must be a member of the Windows domain or a server trusted by the domain.

Report Manager is an ASP.NET application that exposes reports, configuration, and administrative fea-
tures through a web-browser interface.

The Report Manager requires IIS 5.0 or greater to be running on the Report Server computer. The .NET
Framework version 1.1 also must be installed on the server. This is an included feature of Windows
Server 2003. On a Windows XP Professional system, Service Pack 1 (SP1) is required. Windows 2000
Professional, Server, and Advanced Server require SP4. Windows XP Home Edition is not supported.

Client Components
Client components include the SQL Server Management Studio and the Business Intelligence Development
Studio. SQL Server Management Studio is the common administration interface for all SQL Server prod-
ucts. Business Intelligence Development Studio uses the Visual Studio shell to allow creation of reports and
report models. The client components can reside on a different server than the Report Server.

Getting Help with Books Online
The documentation for Reporting Services is contained within SQL Server Books Online. All Reporting
Services–related documentation is contained in only one source. If you plan to install the server and
client tools on different computers, you should consider including the Books Online with both installations.

Adventure Works Sample Databases
There are three sample databases that you can use to work with SQL Server Reporting Services. They
include:

❑ AdventureWorks: SQL Server OLTP database for fictitious Adventure Works company.

❑ AdventureWorksDW (relational): SQL Server data warehouse based on the AdventureWorks
OLTP database.

❑ AdventureWorksDW (OLAP): Analysis Services OLAP database based on the
AdventureWorkDW data warehouse.

33

Introduction to Microsoft SQL Server Reporting Services 2005

06_584979 ch02.qxp 1/27/06 7:53 PM Page 33

You can use all three of these databases to create sample reports. Throughout this book, we will primar-
ily use the AdventureWorksDW database. It will be helpful to install the sample from the SQL Server
2005 installation media.

Administrative Tools
Command-line utilities provide scripting and command-level access to server management, deployment,
and configuration features. These capabilities are thoroughly discussed in Chapter 11.

Command-Line and Unattended Installation
The setup may be run using command-line switch to automate the installation process. This capability is
provided by the standard Windows Installer 2.0. Although there is no command-line interface, the setup
process may be scripted and settings can be specified.

Log Files
Reporting Services records event information in the standard Windows Application Log and in specific
log files. Report execution logging is enabled by default and may be configured in the Report Manager.
Specific settings for the Report Server are stored in the RSReportServer.config file. More granular
tracing information may be captured in log files for a variety of application and server events and sys-
tem errors. These logs may be helpful in analyzing usage and debugging specific problems. The log files
are auto-generated using time-stamped names. Further configuration and logging information can be
found in Chapter 11.

Designing Reports
Starting in Chapter 4, we will deal with the essentials of report design and will take more specific design
elements to the next level. Reports fall into a few design categories, which will be covered next.

Form Reports
A report can display a single record on a page with data from a table, calculations, and just static text.
Form reports can be used to print or display a letter, invoice, contract, or informational sheet.

Tabular Reports
This is a fundamental style for reports that have repeated rows of data called data regions. Tabular data
is repeated in free-form bands or table rows with rows and columns. Either the list or table items may be
used to produce a tabular report in various layouts. Column headers can be displayed for each column
in a table, and subtotals and summary information may be displayed in table or group section footers.

34

Chapter 2

06_584979 ch02.qxp 1/27/06 7:53 PM Page 34

Groupings and Drill-Down
Records in a report may be sorted and grouped. Each group can be collapsed and expanded to drill
down into more detail. This capability gives users the ability to explore large sets of data without the
need to scroll though long, multipage reports. The report may also be printed in its expanded form.

Drill-Through Reports
A drill-through report can be any standard form, tabular, or pivot table report that contains links to a
separate report. Any textbox item may used as a link to provide drill-through capability. Key values are
hidden with the link and passed as a parameter to the target report for filtering.

Multicolumn Reports
A report may contain multiple columns. List or tabular rows are repeated vertically within a column and
then snake from one column to the next, filling the page. This type of format is ideal for optimizing page
space for labels and contact information.

Matrix
A matrix is like a cross-tab or a pivot table in which the rows and columns roll up summary values and
may be expanded or collapsed to expose more or less detail. It is a simple and easy-to-use control, much
like the datagrid control in ASP.NET.

Charts
Charts are used to display a graphical representation of data, typically aggregated along at least two
axes. Common types of charts are bar and column, pie and donut, line, area, and scatter charts. More
specific types of charts like stock and bubble charts are more specialized.

Data Sources
Reports can obtain data from standard data providers supported by the .NET Framework. In addition to
SQL Server, this list includes Oracle, Access, Excel, Informix, DB2, and any other databases and data
sources accessible via an OLE DB provider or Open Database Connectivity (ODBC) driver. Nonrelational
sources such as Active Directory Services, Exchange Server, and OLAP sources such as Analysis Services
can be queried. Developers can create custom data provider extensions — when an OLE DB provider or
ODBC driver does not exist — to make practically any type of data accessible to a report.

Queries
Each report contains a query expression within its definition. A standard Transact-SQL query builder
tool is incorporated into the report designer, capable of producing complex query expressions to be
stored in the report. Although this is the de facto behavior of the designer, keeping queries in the report
may not always be the best practice. Using a view or stored procedure from a SQL Server database can
be a far more efficient method to query enterprise data. Parameters passed to a stored procedure cause
the precompiled query to be processed on the database server before data is transferred across network
connections.

35

Introduction to Microsoft SQL Server Reporting Services 2005

06_584979 ch02.qxp 1/27/06 7:53 PM Page 35

OLAP Reporting
Decision-support databases come in many sizes and shapes. In its simplest form, a reporting data source
can be a relational database with a few tables that can be queried more easily with some joins to other
tables. Unlike transactional databases (often called Online Transaction Processing, or OLTP, systems),
OLAP databases are designed for efficient read-only access and reporting.

Large-scale OLAP databases require special storage and retrieval engines. Data may be managed in a
cube structure, which enables values to be summarized and aggregated into slices and pivots. Microsoft
provides SQL Server Analysis Services as its OLAP database product. Integration with Analysis Services
has been significantly improved in Reporting Services 2005. When querying an Analysis Services 2005
database, you can use the Analysis Services provider to invoke the new MDX query editor. The MDX
query editor allows you to visually create queries, add parameters, and display Key Performance
Indicators (KPIs).

You can also use the OLE DB provider for OLAP to query both Analysis Services 2000 and 2005. Using
the OLE DB provider requires coding of MDX in Reporting Services generic query designer. It is a bit
more complicated than the MDX query designer, but it does allow much more control over the query
sent to the Analysis Services database.

Using Business Intelligence Development
Studio

The Business Intelligence Development Studio (BIDS) leverages Visual Studio 2005. When you launch
BIDS, you might notice that the application title bar actually displays Visual Studio 2005. BIDS is freely
available with the installation of SQL Server 2005. It contains project templates for creating Reporting
Services Reports and Reporting Services Report Models as well as other BI-related projects. Unlike the
full Visual Studio 2005 product, it does not include templates for creating Windows- or Web-based appli-
cations using languages such as C# and VB.NET. It replaces several different development tools in previ-
ous versions. BIDS is the main developer tool available to design and build reports for SQL Server
Reporting Services. Because of the extensibility of Reporting Services and the RDL XML grammar, other
design tools are available from third parties.

Report Wizard
The Report Wizard is a simple way to get started creating reports. It leads a designer though all of the
steps necessary to build a simple report interface. New designers will find it an easy, uncomplicated tool
for creating or choosing a data source, creating a query, selecting fields for the header and grouping and
displaying values, and choosing report styles and format options. After completing the wizard, the
report design may be extended and tuned to provide more functionality.

Experienced designers will likely not find the wizard helpful as they become more
familiar with the design process and may prefer to have more control of these
options.

36

Chapter 2

06_584979 ch02.qxp 1/27/06 7:53 PM Page 36

The .NET Framework
The Microsoft .NET Framework is a completely new direction for Microsoft and replaces the application
programming interfaces (APIs) and object technology of the past. It’s far more than a marketing strategy or
a product. It gives application developers the objects and building blocks to create powerful applications
of all kinds. Design and debugging features are also available in it to help developers through the tedious
application development process. Utilities and compilers enable applications to be configured, compiled,
and deployed. A runtime environment manages execution, resource allocation, security, and interoper-
ability with other services, servers, and operating systems.

The main thing to understand about .NET is that it is a core component of Windows, and it supports appli-
cations at many levels. The runtime and the development support tools are free. Visual Studio 2005 is a
development tool that gives developers convenient access to these design and development capabilities.

Reporting Services is built on the .NET platform. The Report Server runs as a Windows service and is a
.NET-managed assembly. Rendering and management features are exposed as an ASP.NET Web service.
The Report Manager is an ASP.NET web forms application. Finally, the report metadata, subscriptions,
and configuration information is managed in a SQL Server 2005 database accessed through the SQL
Server ADO.NET data provider. As you can see, Reporting Services is purely a .NET solution.

Extending Reporting Services
On the advanced end of the opportunity scale, reports can be extended and enhanced in a variety of
ways. At the core of the Reporting Services architecture is a set of extendable programming interfaces
that enable the use of custom components written with .NET programming tools. Custom extensions are
discussed in Chapter 13.

Data Processing Extensions
The .NET Framework includes native support for connecting to standard data sources using the SQL
Server, OLE DB, ODBC, and Oracle .NET data providers. However, to report on nontraditional types of
data, developers can create custom data processing extensions to expose practically any type of data as a
data provider. For instance, a cache of in-memory data could be used as a data source rather than data
written to disk. Another example would be data stored in files using a proprietary format.

Delivery Extensions
Reporting Services supports subscription delivery via e-mail or file output with no additional program-
ming work. Additional delivery options can be added by creating a custom delivery extension. Using a
custom solution, reports could be sent to a message queue, File Transfer Protocol (FTP) site, or practi-
cally any other destination.

Security Extensions
Out of the box, Reporting Services uses Windows integrated security through IIS. This allows you to secure
Report Server objects using standard Windows users and groups. There are times when this configuration
isn’t the best or even a possible solution. One client we’ve worked with had their own Internet-based
solution. The solution used custom authentication and authorization code that was not compatible with

37

Introduction to Microsoft SQL Server Reporting Services 2005

06_584979 ch02.qxp 1/27/06 7:53 PM Page 37

Windows. The client needed a way to ensure secure access to reports. We created a custom security exten-
sion that used their existing code to allow user access. By extending the security infrastructure, we were
able to leverage all of Reporting Services’ features.

Rendering Extensions
The final extension type is the rendering extension. Say that you had a requirement to deliver reports in
a Rich Text Formatting (RTF) format. You could use the standard rendering interfaces to create the next
extension. Once the extension was created, it would be available for every report, even those reports that
have been archived as snapshots. Creating rendering extensions is not a trivial task. You must account
for all of the different report elements and how they will be displayed. However, it does open the door
for third-party companies to extend the Reporting Services infrastructure.

Scripting
Most report management and delivery features may be automated through a simple scripting interface.
A single utility executable, rs.exe, is used to obtain access to the vast capabilities of the Report Services
Web service. You can create scripts to manage batch processing of reports or programmatically manipu-
late any exposed functionality of reporting service. Capabilities are similar to that of the Web service
proxy used in .NET programming code, but a scripting solution is a simpler approach that doesn’t
require complex programming or a compiled project. Scripting is an ideal approach for system adminis-
trators to create simple maintenance, deployment, and ad hoc delivery solutions.

Subscriptions
Subscriptions enable users to request reports to be delivered to them automatically. Based on a schedule
(single-instance or recurring) reports may be delivered using any available deliver extension (e-mail, file,
or custom) in any available rendering format. Subscriptions can be either standard, where a user requests
the scheduled delivery of a specific report, or data-driven, where a group of users can request the sched-
uled delivery of one or more reports. This is an extremely powerful tool that can be used to provide
report content in an efficient manner to users in practically any location or work schedule. Chapter 10
will lead you through this compelling feature.

Securing Reports
Reporting Services uses a role-based security model that is installed and configured by default. This model
is highly extensible and may be changed after installation to use a custom authentication component.

In order for sensitive data to be protected from intrusion, it should be encrypted both at the Report Server
and in the web browser or client application. The preferred method to do this is to use Reporting Services’
built-in support for certification-based encryption over the Secure Sockets Layer (SSL). Implementing SSL
will automatically redirect web requests to an address at the same location using the https:// prefix. This
enables bidirectional encrypted streaming of all data over port 443 (by default) rather than the standard
HTTP port 80. Reporting Services supports levels of automatic encryption, which are detailed in the section

38

Chapter 2

06_584979 ch02.qxp 1/27/06 7:53 PM Page 38

that follows. There is currently no maintenance interface for this setting through the Report Manager or
any other provided utility.

You will need to obtain a digital certificate from a certificate authority such as Verisign, AuthentiCode,
or Thawte. These companies will sell or lease the certificate for a specified period of time for a few hun-
dred dollars per year. The authority will do a background check on your business to verify you are legit-
imate. Configuring the certificate is actually quite easy. This is performed using the IIS management
console and setting the properties for the ReportServer web folder.

To enable encryption in Report Services, edit the RSReportServer.Config file using Visual Studio or a
text editor and set the SecureConnectionLevel element to a value from 0 to 3.

The Report Manager
The Report Manager (shown in Figure 2-2) is a web-based interface that provides both user-level access to
reports and administrative features to configure security, subscriptions, report caching, and data access.

Figure 2-2

This web application is used to perform report and server administration as well as report delivery.
Users may use it to simply navigate to reports, provide parameter values, and view them. The Report
Manager will be discussed in detail in Chapter 10.

Designing Reports
In this release of Reporting Services, reports are designed and created in the Business Intelligence
Development Studio using a special type of project especially for report design. Simple reports can be built
with little effort using the report wizard. The wizard leads the user through all of the steps necessary to
produce a variety of useful but simple report designs. Chapter 4 will lead you through a series of exercises

39

Introduction to Microsoft SQL Server Reporting Services 2005

06_584979 ch02.qxp 1/27/06 7:53 PM Page 39

to get you started with simple report design and lay the foundation of the report design elements. Chap-
ter 5 covers the spectrum of report design items, data ranges, and formatting tools. By using groupings,
you can design multilevel, hierarchical reports. Drill-down reports let users interactively expand groupings
and discover more detail without having to navigate through many pages of content. Drill-though reports
let users navigate from one report to another, passing filtering parameters to obtain detailed information
about items in the report. Navigational links may also be used to drill through to external resources like
web pages, documents, and e-mail links. Chapters 6 and 7 look at data access as well as some best practices
and tips.

Charts are useful for aggregating values and presenting a series of data for comparison. A number of
standard charts are available including bar, column, line, area, pie, and doughnut charts. Specialized
charts types such as scatter, bubble, and stock charts are used with multidimensional data and values in
distinct ranges.

Report formatting and content may be enhanced by using program code in a few ways. Custom func-
tions may be written in a block of code that is embedded into the report. These functions may then be
called in various property expressions providing conditional formatting and business rules. More com-
plex code routines may be built into a class library and exposed to reports as custom assemblies. An
assembly is deployed to the Report Server and may be shared by many reports. Finally, custom exten-
sions may be written to replace or extend inherent data source and rendering capabilities, providing cus-
tom capabilities beyond those built into the product.

URL Access to Reports
The Report Manager environment is the default entry point and a convenient, comprehensive interface
to view reports. However, one easy method to view a report is to simply navigate to the report’s web
address provided by the Report Server. URL query string parameters are used to specify a variety of
options, including rendering formats, filtering parameter values, and display options. This is a simple
method for managing and using reports right out of the box — without additional programming or
configuration.

Rendering Reports in Program Code
Possibly the most unique characteristic of Reporting Services is the way it renders report content. Unlike
traditional report solutions that use a proprietary, custom viewer to render the report content, at its core,
Reporting Services is built on a programmatic interface (an XML Web service) that outputs the entire
contents of reports in several different file or rendering formats. This capability gives programmers an
incredible range of options for creating custom solutions:

❑ On a simple web page, users could click a link to display a custom report in their web browser
using simple URL rendering.

❑ In a custom ASP.NET web application, users provide filtering criteria on a web page, click a but-
ton, and view the resulting report in a secondary browser window without navigating off the
application’s web site.

❑ In a desktop application, users provide filtering criteria and view the report within the desktop
application form.

❑ Custom reports are saved to an Adobe Acrobat (PDF) file that may be viewed offline on a lap-
top, Pocket PC, or other mobile device.

40

Chapter 2

06_584979 ch02.qxp 1/27/06 7:53 PM Page 40

An in-depth discussion of programmatic rendering may be found in Chapter 12. Even for the novice
programmer, creating these kinds of solutions is relatively simple and may be accomplished with just a
few lines of program code.

Report Definition Language
Rather than defining a proprietary specification for individual report definitions, our friends at Microsoft
took a very different approach. They chose to publish an extensible and well-documented standard. The
entire set of instructions that define a report are stored in a single XML document using an RDL XML
grammar. If necessary, property values for elements of a report’s design could be modified with a text edi-
tor. If someone wanted to build a report design tool, he or she would simply need to output the appropri-
ate XML tags to an RDL file. This also makes it easy and convenient to send the report definition to
someone or to deploy a report to another server.

Deploying Reports
Reports are defined in an RDL file, but the report’s definition is stored in the Report Server database
once it has been deployed to the server. Report deployment may be performed in at least three different
ways. In Visual Studio 2005, the project defines a corresponding web folder on the target Report Server.
Building a report project will deploy reports to a designated target Report Server. The Report Manager
web interface may be used to deploy individual reports manually by simply browsing for and selecting
the RDL file. The Reporting Services Web service may be used to deploy reports programmatically using
methods of this multipurpose object. Chapter 10 will explore each of these options and detail deploy-
ment techniques and related considerations.

Designing and Architecting Report Solutions
Reporting Services does offer an out-of-the-box solution. Reports can be designed in Visual Studio 2005,
deployed to a server, and viewed using the Report Manager web interface quite easily. However, for cus-
tom applications or to meet specific business needs, this may not be the ideal solution. Reporting Services
is an extensible service with several options for designing, managing, deploying, rendering, and deliver-
ing reports to users.

Chapter 12 discusses these options and consider how understanding your business requirements should
lead to the most ideal solution. You will look at different business cases and how a reporting solution fits
into the overall picture to meet business and users’ needs now and in the future.

Third-Party Product Integration
Probably one of the most compelling aspects of the Reporting Services extensible architecture is its abil-
ity to integrate seamlessly with business solutions. This means that it can not only become part of a cus-
tom-built business solution but also folds very neatly into commercial product offerings. The SQL Server
database product has become a core component of third-party CRM, financial, ERP, and business analyt-
ics solutions. Now Reporting Services is working its way into many shrink-wrapped products as well.
Reporting Services can be incorporated into a custom application without the user ever knowing that
they are using a different product. It integrates with many development environments so much more

41

Introduction to Microsoft SQL Server Reporting Services 2005

06_584979 ch02.qxp 1/27/06 7:53 PM Page 41

easily than other reporting products. I’d like to briefly showcase two of the industry’s leading business
intelligence and reporting solutions that have integrated Reporting Solutions into their product suites.

Panorama Enterprise Reporter
Panorama Software has incorporated SQL Server Reporting Services into their Enterprise Reporter
solution to not only utilize the report delivery features but also allow for browser-based report design.
Full-featured server-side reports may be designed using familiar drag-and-drop techniques without
installing development software on the client. They have also implemented a template paradigm for
queries, filters, parameters, and report styles to encourage design reuse. This puts report creation capa-
bilities into the hands of anyone in the organization without complicated software.

Their reporting solution tightly integrates with Panorama NovaView(tm), Panorama’s enterprise analyt-
ics tool which provides comprehensive and robust analytic functions that enable users to identify and
understand the catalysts driving business results. Panorama Enterprise Reporter and Panorama NovaView
include navigation paths which allow reports and application components to integrate without the per-
ception of multiple products or technologies.

For details on Panorama Software, visit www.panorama.com.

ProClarity for Reporting Services
ProClarity for Reporting Services integrates the structured world of production reporting with ad hoc
analytics, providing what they call “insight beyond the report.” ProClarity integrates with Reporting
Services with a sophisticated Report Wizard that provides a rich, graphical add-in for Report Designer
that automates the process of creating and editing OLAP datasets and provides “one-click” analysis of
OLAP reports.

The ProClarity Professional OLAP reporting tool contains an “Export to RDL” feature to generate
reports directly from their application. Formatted “Drill-to-detail” — leveraging SQL Server Analysis
Services cell-level actions — provides highly formatted details behind OLAP aggregations. The ProClarity
Dashboard Server incorporates Reporting Services reports and ProClarity Analytics in comprehensive
BI Performance Dashboards. Reports and analytics may be deployed with common filters and selection
controls so that all dashboard content is delivered in-context to the business user.

Visit www.proclarity.com for more information about ProClarity.

Summary
At this point, you should understand that Reporting Services isn’t just another reporting application.
The key points in this chapter are:

❑ Reporting Services uses a new approach for report delivery. Each report has a data source that
may be shared with other reports. A data source can obtain data from practically any database
product or data provider.

❑ Report definitions are stored in an XML document format called RDL. Out-of-the-box reports
may be designed in the Business Intelligence Development Studio, but third-party and custom
solutions may be used to create and design reports as well.

42

Chapter 2

06_584979 ch02.qxp 1/27/06 7:53 PM Page 42

❑ Reporting Services can be completely secured and highly customized. The Report Manager is
provided to simplify server, user, and report management. Solutions may be simple and easy
to implement, or they may be completely customized and integrated into your custom-built
software.

❑ Reports may be delivered using snapshots and subscriptions that are either pulled by the user
in real time, or pushed by the server on a schedule. Using these capabilities, valuable system
resources are conserved since reports are rendered less often and can be cached in the Report
Server database.

The next chapter will help you understand the architecture that makes Reporting Services work. You
learn about the nuts and bolts that give this impressive product the ability to provide scalable and exten-
sible reporting solutions. Throughout the book, you build on this foundation as you learn to design,
manage, and deploy your own reporting solutions.

43

Introduction to Microsoft SQL Server Reporting Services 2005

06_584979 ch02.qxp 1/27/06 7:53 PM Page 43

06_584979 ch02.qxp 1/27/06 7:53 PM Page 44

Reporting Services
Architecture

This chapter looks at how SQL Server Reporting Services (SSRS) operates. You will explore the dif-
ferent functional areas of Reporting Services and how they map to general report platform require-
ments. The first part of the chapter discusses general reporting platform concepts including
platform features, report design, and report delivery. Once you have a general understanding of
reporting platforms, you’ll see how platform features are implemented in Reporting Services.

In any reporting platform, there are four main components: report design, report delivery, admin-
istration, and programmability. In this chapter, I discuss the overall Reporting Services architecture
and how it implements each of these four functional components. This chapter focuses primarily
on how Reporting Services implements its features. Later chapters discuss why those features are
important and how they should be used.

This chapter covers:

❑ Reporting lifecycle

❑ SSRS platform overview

❑ SSRS XML Web service

❑ SSRS Report Server

❑ Report delivery

❑ Report design

07_584979 ch03.qxp 1/27/06 7:31 PM Page 45

Reporting Lifecycle
To understand the needs of a reporting platform, you need to first understand the reporting lifecycle.
Reporting platforms can be evaluated by their support for the following areas: authoring, management,
and delivery. You look at each of these phases later to see how Reporting Services implements them.
Figure 3-1 shows the basic reporting lifecycle.

Figure 3-1

Authoring
Authoring is the process of creating and publishing reports. There are two primary methods of report
development: end user developed reports and report analyst developed reports. There are some distinct
differences between these two methods. End user developed reports generally require a much simpler
interface. This interface needs to make report layout and formatting quite simple as well as give end
users a way to understand the underlying data. Report analyst developed reports generally consist of a
more robust report authoring environment and usually require a better understanding of how to query
the underlying data source. Both methods of report development are usually necessary to support an
enterprise reporting solution. Below are the common features to expect from a report authoring environment:

❑ Connects to multiple data sources.

❑ Query editors for previewing and returning source data.

❑ Report layout designers.

❑ Report parameters editors.

❑ Expression editor for creating formulas and building dynamic formats.

❑ Ability to set report properties such as height and width.

These capabilities are key to the initial report development. They must be flexible enough to handle
complex report requirements as well as easy enough for end users to use effectively. Later, this chapter
discusses report authoring in Visual Studio 2005 and the Report Builder.

Management
After developing a report, it must be deployed to some location where users can access it. After publish-
ing, the reporting lifecycle moves into the management phase. This phase includes setting properties
that allow end user access and take into consideration different environments. Some of those properties
include:

❑ Data source connection information.

❑ Default parameter values.

Authoring Management Delivery
Report

Publishing

Pull
Delivery

Push
Delivery

46

Chapter 3

07_584979 ch03.qxp 1/27/06 7:31 PM Page 46

❑ Report security settings.

❑ Report caching options.

❑ Report execution schedules.

❑ Report delivery schedules (subscriptions).

The management phase is generally performed by system administrators. Most of the user access to
reports is defined in this phase.

Delivery
The delivery phase consists of end users accessing reports. There are two common delivery concepts for
accessing reports: push delivery and pull delivery. Push delivery consists of reports being sent to the end
user. This might include e-mails, files moved to a file share, or reports sent directly to a printer. The basic
ideas is that a report is executed on a given schedule and when completed, it is sent to the user. Push
delivery on the other hand consists of the end user accessing some sort of application containing reports.
This could be a web portal such as SharePoint or simple links in a custom-built application. Below are
some common features of the delivery phase:

❑ End user interface for report browsing.

❑ Scheduled report distribution.

❑ Parameter selection.

❑ Multiple output formats.

A good reporting platform will support both push and pull delivery and the ability to embed delivery
functions into custom applications.

Now let’s take a deeper look at the physical architecture of Reporting Services 2005.

Reporting Services 2005
This section covers the core components of Reporting Services 2005. This discussion will provide you
with a better understanding of the pieces that must come together to create an overall reporting solution.

Platform Overview
As you saw in the previous section, the reporting platform can be broken into three main phases: author-
ing, management, and delivery. Now you’ll take a look specifically at Reporting Services 2005 and see
how the platform encompasses these three phases.

The first thing we need to identify is that Reporting Services really is a platform. Microsoft has created a
tool that provides the infrastructure for building robust reporting solutions. This platform consists of a few
major components: Reporting Services XML Web service, Report Server, and Reporting Services Catalog. In
this section, you will be primarily concerned with functionality that enables the managements and delivery
phases of the reporting lifecycle. The next section discusses the features that support authoring.

47

Reporting Services Architecture

07_584979 ch03.qxp 1/27/06 7:31 PM Page 47

Figure 3-2 shows an overview of the Reporting Services platform. It illustrates the three main compo-
nents. Understanding the three main components will better assist you in designing and implementing
Reporting Services solutions.

Figure 3-2

SQL
Management

Studio

Report
Manager

Reporting Services Web Service

Report Processor

Report Server

Custom
Applications

Reporting Services Catalog

Scheduling and Delivery
Processor

Security
Extension

Data Processing
Extension

ReportServer ReportServerTempDB

Delivery
Extension

Rendering
Extension

48

Chapter 3

07_584979 ch03.qxp 1/27/06 7:31 PM Page 48

Now that you have seen the overall picture of the Reporting Services platform, let’s dive into each of the
three main components.

Reporting Services XML Web Service
Microsoft chose to use a Web services interfaces to expose the functionality in Reporting Services. This is
important for a couple of reasons. First, it opens the platform to other programming languages. Because
Web services are built on open standards and use XML to transfer information, Reporting Services can
be implemented in almost any platform that supports HyperText Transfer Protocol (HTTP) and XML.
Second, Web services allow for communication across networks. Using HTTP, messages can be sent
across firewalls and help developers easily implement distributed systems.

So, what does the Reporting Services XML Web service do? As you navigate through the report manager
or SQL Management Studio, you can perform a number of publishing, rendering, and management
functions. All of these functions work against the Reporting Services Web services. Microsoft does not
use any APIs not exposed to the developer. So, you can do anything in code that Microsoft does in
Report Manager or SQL Management Studio.

Here are a few quick examples of where the authors have leveraged the Reporting Services Web services:

❑ Report Deployment: We have used RSS scripts (discussed in Chapter 10) to build automated
setup routines. These routines use the Reporting Services Web services to enumerate a folder
and deploy all report files contained within that folder.

❑ Report Management: We have also used the Reporting Services XML Web service to set up
subscriptions through a custom interface. Often applications require leveraging features of the
Reporting Services platform such as subscriptions without using the Report Manager interface.
Through the Web services, we have embedded a subset of the subscription functionality into
applications.

❑ Report Rendering: The most common use of the Reporting Services XML Web service is adding
report rendering functionality into custom applications. There are three main items that most
report viewers require: report list, parameters selection, and report rendering. All three func-
tions can be performed through Web services to easily build your own look and feel around the
Reporting Services platform. Chapter 12 will go into greater detail on rendering reports within
your own application.

Reporting Services takes advantage of standard Microsoft technologies to implement its Web services
interface. The Web service is hosted within Internet Information Services (IIS) and uses the .NET
Framework. Both components provide the backbone infrastructure. IIS performs web request handling
and routing along with some security features. The .NET Framework provides classes for consuming
and publishing the web services interface.

A full breakdown of the Reporting Services XML Web service is located in Appendix B.

49

Reporting Services Architecture

07_584979 ch03.qxp 1/27/06 7:31 PM Page 49

Report Server
The Report Server is the main engine behind reporting services. Its primary function is to process and
deliver report information. You could think of it as the true core of Reporting Services. This core is made
up of five main components: report processor, data source extensions, security extensions, rendering
extensions, and delivery extensions. Each of the four extensions implements interfaces that allow users
to extend the engine to fit their needs. Through this section, you explore each of the components and
develop a basic understanding of their functionality.

Report Processing
Report processing is the main driver in the Report Server. This process is responsible for handling user
requests for reports and report models and returning the appropriate data. Along with this task it also
performs caching of reports to improve performance.

The main job of the Report Processor is to combine the report definition and report data to return a for-
matted output to the user.

Figure 3-3 is an illustration of a basic report request and how the Report Processor handles it.

Figure 3-3

Application RS Web Service

Report Request

Report Request

Report

Report

Retrieve Report Definition

Report Definition

Report Server DB
Check Security

Access Granted

Retrieve Report Data

Report Data

Render Report

Rendered Report

Report Processor Security Extension Data Processing Rendering

50

Chapter 3

07_584979 ch03.qxp 1/27/06 7:31 PM Page 50

Let’s take a look at some of the major tasks handled by the Report Processor.

Report Request Handling
When a report request is received, the report processor takes the following steps:

1. It determines which report is being asked for and retrieves the report definition from the Report
Server database.

2. The user’s credentials are validated against the report being requested.

3. The report processor asks for the report data. This call is made into the data processing
extension.

4. Once the data is retrieved, the report processor combines the data and definition into an inter-
mediate report format. This intermediate report is output format neutral so that it can be ren-
dered using any of the available rendering extensions.

5. Once the intermediate report is created, it is cached for later use based on the execution setting
of the specific report.

6. Finally, the intermediate report is sent to the rendering extension and the formatted output is
returned.

Next, you take a look at some of the items involved in this process.

Report Definition
The report definition is an output-format neutral representation of the report. Reporting Services was
designed to support numerous output formats, so the report definition is not aware of how the report
will actually be rendered. The report definition defines the data source and layout of the report as well
as parameters and default settings. Some of the layout items include tables contained within the report,
their position in the report, and the number of columns. Data source information includes the connection
string information for the database, the query to process, and any timeout and credential information.

Microsoft has published their report definitions as part of the Report Definition Language (RDL). RDL is
an open specification that developers can use to either create their own report authoring tools, design
their own output formats (rendering extensions), or manipulate the definition programmatically. Several
companies have already take advantage of this open specification. Cizer Inc, has used RDL to create
their own web-based report authoring tool. Hitachi Consulting has used RDL to automatically convert
legacy reports into Reporting Services as well as manipulate report text for localization.

For the full RDL specification, check out:
www.microsoft.com/sql/reporting/techinfo/rdlspec.mspx.

Once the report definition and data are combined, they form what is called the intermediate format.

Intermediate Format
The intermediate format is an internal format of the report used by Reporting Services. This format is used
for both rendering and caching. It is a combination of both data and structure, which means that if there

51

Reporting Services Architecture

07_584979 ch03.qxp 1/27/06 7:31 PM Page 51

is a table defined in a report and linked to a specific data set, the intermediate format will contain all the
rows and columns that identify that table. However, it does not contain specific rendering information
such as a <td> tag for an HTML output. The size of the intermediate format will depend on how much
data is returned.

Caching
The report processor also handles the caching of reports. One of the key resources in a reporting solution
is the reporting data source. To reduce the load on the data source, caching is implemented to store
query results for future use.

Caching is beneficial in a number of scenarios. In many reporting solutions, the reporting database is
processed on a given schedule. This is especially true when dealing with data warehouses. Say that a
reporting database is only processed once per day. In this case, it is a waste of resources to continuously
query a database when the information will not change. In this scenario, caching report data can be very
beneficial.

Another common scenario is simply a single user moving through the same report data. If a user views a
report in a web browser and then decides to export those results to Excel, rerunning the query would be
wasteful. The data has already been retrieved, it simply needs to be presented in a different format.

There are three main types of caching in Reporting Services: session cache, cached instance, and snap-
shots. The next three sections explore the different caching options.

Session Cache

Since Reporting Services works over HTTP, it must maintain some information about each user request.
This information is referred to as a session. If the same user asks for the same report within a short
period, it does not make sense to query the information again. So, when a user makes an initial request,
the report definition and data are stored in the session cached. The session cache is persisted in the
ReportServerTempDB — more on this later — for each user. The duration of the session information is
determined by settings on the Report Server. The default length is 10 minutes. Any report that does not
have specific execution options set, cached instance or snapshot, will take advantage of session caching.

Cached Instances

Cached instances also store the report definition and data, but they have one specific identifier. They will
expire at a given time. This time frame could be a matter of minutes, hours or days. It can also be a spe-
cific time period, say every night at midnight.

With a cached instance, the specific start time is not defined. Reports with this execution setting are
cached when the first user asks for the report. That user will have to wait while the query is executed
and the intermediate format is built. Subsequent requests for the report will take advantage of the
cached intermediate format.

Once the report reaches its expiration time, it will be removed from the cache. The next request to the
report will rerun the query, recreate the intermediate format, and repopulate the cache.

52

Chapter 3

07_584979 ch03.qxp 1/27/06 7:31 PM Page 52

This caching strategy is perfect if you have slowly changing data or if frequent data changes are not criti-
cal to business decision making.

Snapshots

The final type of caching strategy is referred to as snapshots. Like the name implies, it is a copy of the
data at a given point in time. Unlike cached instances, snapshots have a defined start time and no defi-
nite end time. Let’s say you have a group of users that needs summary reports every Monday at 7:00 am
for a weekly status meeting. You are in the data warehousing group and have jobs that process data late
Sunday night in preparation for the meeting. Once the data is processed, it does not change. This data is
also very large and takes a significant time to query. In this case, it makes sense to store the reports after
the information is available. This way, people can come in on Monday, run their reports and get quick
response times.

Working from the example above, a week goes by and you are again ready to run your reports. In this
case, you would probably not want to get rid of last week’s reports. Instead, you would want to archive
them for historical purposes. With snapshot caching, you can specify which reports to store in history
and how many to store. In this setup, as soon as a snapshot is created, an identical copy is stored in his-
tory. Then when your data updates and a new snapshot is created, a historical view will be available for
the users.

Now that you have seen the main report processing engine, you next take a look at each of the compo-
nents it leverages.

Data Processing Extensions
All data is returned to the report processor through data processing extensions. Data processing exten-
sions can be created for just about any type of data. There are also a number of data processing exten-
sions supported by Reporting Services.

Some of the common tasks performed by a data processing extension include:

❑ Connecting to the data source.

❑ Passing and retrieving parameter collections.

❑ Executing commands against a data source.

❑ Returning data readers from a data source.

❑ Providing methods to read information from the data source.

❑ Implementing transactions on a given data source.

Figure 3-4 shows a basic breakdown of data processing extensions.

53

Reporting Services Architecture

07_584979 ch03.qxp 1/27/06 7:31 PM Page 53

Figure 3-4

Let’s take a look at some of the support providers in SQL Reporting Services 2005.

Supported Providers
Reporting Services supports the .NET managed providers as well as custom extensions for returning
data. The .NET managed providers include SQL Server, OLE DB, and Oracle. Managed providers take
full advantage of the .NET Framework. Using these providers, users should be able to connect to just
about any data source. Let’s take a look at some of the common Reporting Services data extensions.

SQL Server Provider

Using the SQL Server provider, users can retrieve data from SQL Server tables, stored procedures, views,
and user-defined functions. The SQL Server managed provider is optimized to connect to SQL Server.
Extra layers such as OLE DB and ODBC have been removed to improve performance.

When using the SQL Server provider, users can also take advantage of the SQL Query Designer. This
designer allows users to visually build SQL queries taking away some of the complexities of the lan-
guage. The SQL Server provider will work with both SQL Server 2000 and 2005.

Oracle Provider

Although Reporting Services uses SQL Server to store its metadata, you can use Oracle as a source for
your reports. Like the SQL Server managed provider, the Oracle provider is optimized for Oracle and
removes extra layers such as OLE DB and ODBC.

Data Processing Extension

Connect to Data Source

Create Data Source Command

Data Source Command

Create Data Reader
Create Data Reader

Data Reader

Create Data Source Command

Execute Reader

Read Data

Read Data

Data Source
Report Data

Execute Reader

Report Data

Data Source Connection

CommandConnection Data Reader

54

Chapter 3

07_584979 ch03.qxp 1/27/06 7:32 PM Page 54

Analysis Services 2005 Provider

A welcome addition to Reporting Services 2005 is the Analysis Services 2005 provider. This provider
allows users to connect to the Analysis Services Unified Dimensional Model (UDM) and retrieve multi-
dimensional data. The UDM gives users a semantic model that understands data relationships and
aggregation. Access to the UDM is implemented using Multidimensional Expressions (MDX).

From a reporting perspective, MDX is an extremely powerful query language. MDX understands and
can work with data relationships. It can also perform coordinate-based calculations to build Excel-like
formulas.

Along with the power of MDX comes a bit of complexity. Most people have the perception that MDX is a
challenging language. It is my opinion that MDX is no more challenging than SQL; it just takes some
practice. Once you have a fundamental understanding of the language, common report tasks can
become trivial. In the meantime, you can use the MDX Query Builder provided by the Analysis Services
data extension. This query builder allows users to drag and drop measures and dimensions to form a
result set. It also allows users to specify parameterized dimensions that will then appear in the reports.

OLE DB Provider

The OLE DB provider gives report writers a great deal of flexibility. Using this provider, you can query a
number of different data sources. The following is a list of just a few:

❑ Microsoft Analysis Services 2000

❑ Microsoft Access

❑ Microsoft Excel

❑ Microsoft Directory Services

❑ OLEDB for ODBC

Data source extensions are the first key to the Reporting Services platform. They allow report writes to
access a large array of data sources, and if there is no provider present, a new data source extension can
be developed. In the next section, you will look at rendering extensions.

Rendering Extensions
Reporting Services supports a number of different rendering extensions. When creating a report in
Reporting Services, you are creating it in a neutral output format. In the report, you define the query, the
fields, and how they should be laid out on the page. It is the job of the rendering extension to take this
information and combine it with report data to create a formatted output. In this section, you look at
some of the supported extensions.

Excel
The Excel rendering extension takes report data and outputs it to a spreadsheet. This is an extremely
common format for many users. Excel is especially useful for those users wanting to perform further
analysis on the information.

Excel rendering in some reporting platforms can tend to cause formatting problems. This is due to the
report design methods used in other tools. Microsoft Access is an example of a banded report designer.
In this type of designer, users have detailed header and footer bands to deal with data set information.

55

Reporting Services Architecture

07_584979 ch03.qxp 1/27/06 7:32 PM Page 55

This allows for a great deal of flexibility but doesn’t translate well into rows and columns. If a heading
and its associated data item are misaligned by a couple of pixels, it is difficult for the rendering exten-
sion to determine that those two items should be aligned in a single column. Some banded tools will
take these separated items and create two different columns. This type of output generally results in a
spreadsheet that requires a large amount of manipulation to format correctly.

Reporting Services does not use a simple banded report design. Instead, it uses objects that are laid out
within a page. Two of the main objects used to display repeating data are the table and matrix controls.
Both controls understand rows and columns. So, when you use these types of display items, exports to
Excel more closely resemble the original report.

PDF
Microsoft also provides a rendering extension for the PDF format. This format is one of the most popular
formats for sharing documents. It is clean and easy to read with exceptional printing capabilities. You
would most likely choose this format for reports that are widely distributed but not analyzed by the end
user. Reports that are in PDF format cannot be altered. Examples of where PDF would be appropriate
are invoices, inventory pick tickets, weekly sales summaries, and public financial documents.

PDF also supports document maps. Document maps are a feature in Reporting Services that allow you
to define bookmarks within a report. Once the report is rendered, users can click on links to easily navi-
gate to different areas of a report. This functionality can be leveraged to create a table of contents for
larger reports.

End users can download Adobe Acrobat Reader for free and do not need a license to distribute PDF doc-
uments generated by Reporting Services.

HTML
The most common output format for reporting in Reporting Services is HTML. Reports can be rendered
in HTML 4.0 or HTML 3.2. The .NET Framework identifies the browser support of the user and renders
the report in the appropriate format.

HTML rendering is good for interactive reports. By navigating to a web site, a user can easily manipu-
late report parameters to find specific information. HTML rendering also supports dynamic visibility,
which gives users the ability to drill down to more detailed information. Document maps can also be
used to help navigate large reports.

The downside to HTML rendering is its lack of ability to print. Web pages have never been good for
printing and that does not change with Reporting Services. Users can export reports to formats such as
PDF or TIFF for printing but generally do not like to take that extra export step to create a printed report.
To solve this problem, Reporting Services now supports client-side printing. Client-side printing is
implemented by running an ActiveX control in the user’s browser that builds a print-ready format. This
method of printing from the web is not new. The Crystal Reports web control uses a similar process.

Web Archive (MHTML)
Web Archive or MHTML is commonly found in e-mail messages. MHTML stands for MIME Encapsulation
of Aggregate HTML Documents. That is an extremely long name that basically means images, style sheets,
and other referenced-type information in an HTML document is embedded into the MHTML document.
This allows a single document to be sent to a user without having dependencies on external resources.

56

Chapter 3

07_584979 ch03.qxp 1/27/06 7:32 PM Page 56

MHTML documents are useful when creating reporting subscriptions delivered by e-mail. MHTML will
allow you to send a formatted report directly to a report user without an associated attachment. Not all
e-mail products support MHTML, so check with your user community before choosing this output format.

CSV
The Comma-Separated Values (CSV) format takes the report definition and data and transforms it into a
flat file. This output is appropriate for exchanging data. You might have customers with legacy systems
that are very good at parsing and consuming flat files. In this case, you might electronically send reports
in CSV format to these users. However, Reporting Services is not meant to be a data exchange tool. For
true system integration, look to products like Microsoft Biztalk Server and Microsoft Integration Services.

TIFF
Tagged Image File Format (TIFF) is a widely used format for storing document images. Many facsimile
programs use this standard for transferring data. Many organizations also store archived documents in
this format. Reports rendered in TIFF would be excellent candidates for document management systems
such as Windows SharePoint Services. Historical snapshots of reports could be transferred to document
management systems and then removed from the Report Server. This would allow users to take advan-
tage of common document management features such as indexing and searching.

XML
Extensible Markup Language (XML) is another format commonly used for extracting report information
into a data exchange format, similar to CSV. CSV and XML can serve a similar purpose; however, XML is
a much more powerful format. XML is a structured markup language that lets you define data schemas.
Reporting Services uses this markup in a number of areas. When reports are rendered as XML, they
include both the report definition and data. XML files are ideal for exchanging information. You could
send XML rendered reports to customers or other applications for additional processing.

Delivery Extensions
Delivery extensions can be used to render reports on a given schedule and to a given output. Delivery
extensions take advantage of existing rendering and data source extensions. Report Services supports
delivery of reports to e-mail and file shares. Developers can create their own delivery extensions. Some
delivery extension examples the authors have dealt with include:

❑ Delivery directly to a printer for high volume billing reports.

❑ Delivery of reports to a SharePoint portal site.

Delivery extensions use a series of classes to handle notifications and process report stream outputs.
These classes are called from the Scheduling and Delivery Processor. The next section explores the
Scheduling and Delivery Processor.

Scheduling and Delivery Processor
The Scheduling and Delivery Processor has two major functions: working with report execution sched-
ules and delivering reports through delivery extensions. These functions hinge on the use of Microsoft’s
SQL Server Agent and the Reporting Services Windows service. When scheduling a report, a new SQL
Server Agent job is created. That job contains a call to a single stored procedure on the Report Server

57

Reporting Services Architecture

07_584979 ch03.qxp 1/27/06 7:32 PM Page 57

database. When the agent runs the scheduled job, the stored procedure places a single record in the
Event table of the Report Server database. The Reporting Services Windows service queries this table on
a regular basis. As soon as the record is present, the Reporting Services Windows service starts the
Scheduling and Delivery Processor. Figures 3-5 and 3-6 illustrate creating a subscription and processing
subscription events with the Scheduling and Delivery Processor.

Figure 3-5

Figure 3-6

SQL Server Agent RS Windows Service

Report Server DB

Enter Subscription Event

Event Information

Retrieve Event Information

Process Delivery Event

Process Report

Report

Delivery Report

Report Processor Delivery Extension
Scheduling and Delivery

Processor

RS Web Service

Subscription Request

Subscription Created

SQL Agent Job Created

Create SQL Agent Job

Store Subscription Information

Subscription Stored

Report Server DB

Scheduling and Delivery
Processor SQL Server Agent

58

Chapter 3

07_584979 ch03.qxp 1/27/06 7:32 PM Page 58

Now that you have seen the Scheduling and Delivery Processor, you’ll next explore some of the features
that make it work.

Scheduling
Reporting Services 2005 has the ability to create sophisticated execution schedules for reports. When creating
a delivery schedule, Reporting Services stores the schedule information in the Report Server database. It also
creates an SQL Server Agent job referencing the schedule. Both users and administrators can define
schedules for report execution and delivery.

Subscriptions
Subscriptions deal with the mode in which reports are delivered to the end user on a given schedule.
Users can have reports delivered via e-mail, a file share, or a customized delivery extension. There are
three different types of subscriptions available in Reporting Services: standard subscriptions, data-
driven subscriptions, and event-based subscriptions. In this section, you look at the three different types
of subscriptions.

Standard Subscriptions

Individual user subscriptions can be created through SQL Management Studio, Report Manager, or a
custom application via the Reporting Services Web service. When setting up a standard subscription,
information such as parameter values and rendering format can be set along with a schedule for report
delivery.

With standard subscriptions, users can define their own schedule for receiving a report. This is important
for small-scale reports and gives users a great deal of freedom in how they receive certain information.

Data-Driven Subscriptions

Data-driven subscriptions allow for scaling out a report subscription. Subscriptions can be created for a
large number of users and include different rendering parameters, report parameters, and delivery
options for each individual. This allows you to create a very customized report experience for users with
a minimal amount of work.

Think of a large retail organization where each store in the organization has a store manager. Each week the
store manager receives the sales numbers from the previous week. The report is identical for each manager
except for the reference to the actual store. So, using data-driven subscriptions, you could dynamically set
the store report parameter for each report and then e-mail individual reports to each manager. In the end,
you have created only one report but quickly tailored it for a number of different users.

Setting up data-driven subscriptions is very straightforward. Similar to a standard subscription, you
have two main sets of data to configure for the subscriptions: report information including parameters
and delivery information such as an e-mail address. Data-driven subscriptions use a relational table to
store the report and delivery information. Because it is stored in a relational table, you can customize it
for each record that is created.

In both standard and data-driven subscriptions, the delivery of these reports is event-driven. In the next
section, you look at the two types of delivery events.

59

Reporting Services Architecture

07_584979 ch03.qxp 1/27/06 7:32 PM Page 59

Schedule-Based Events

One of the common methods of determining when reports are to be delivered is doing so through some
sort of schedule. The report could be delivered every month, week, or day, or at any such predetermined
interval of time. Reporting Services gives users a number of different options when setting schedules.
These schedules can be either specific to a given subscription or shared through Reporting Services.

Let’s imagine that your organization has a set of reports that have their underlying data updated every
Sunday evening. Executives can use this information for a Monday morning meeting. You could define a
shared schedule that contains information such as “Weekly, Monday, 6 am.” This shared schedule could
then be used for any number of reports. If later you decide that sending the report at 6 am does not meet
new requirements, you could simply edit the shared schedule and thereby change the schedule for each
report using it.

Snapshot Update Events

Delivery of reports can also be triggered by the update of snapshot reports. Many reports in an organiza-
tion have set intervals after which they are updated. For example, data for a monthly sales report is
always updated on the last day of the month. Once this has happened, the data is frozen and does not
change for an entire month. If you want to create a report from this information, does it make sense to
query the database each time the report runs? No, the information at this point is static. So, you create a
snapshot of the data at the end of each month and store the entire report. At this point, when users dis-
play the report you no longer have the overhead of a database call.

If you were going to update your reports according to a given schedule, it would only make sense to
deliver them to the appropriate users when they are ready. Reporting Services allows users to set their
subscriptions based on updates to snapshots. With this method, you do not have to worry about setting
a defined time when you think the report will be done processing; instead, it will send off the delivery
when report processing is finished.

Supported Delivery Extensions
Delivery extensions are tied heavily to the Scheduling and Delivery Processor. They are used when
sending subscriptions to users. Microsoft has provided two delivery extensions and given users the abil-
ity to develop their own. Reporting Services comes with two delivery extensions: e-mail and file share.
In this section, you look at the two base extensions.

E-mail

The e-mail delivery extension allows users to receive reports directly in their inbox. You can specify the
rendering format that you would like the report to be delivered in and whether or not to include a web
link to the report. Depending on the rendering extension used in the report, users either will see the
report directly in their mailbox or receive it as an attachment. As mentioned earlier, you could use the
Web Archive (MHTML format) to embed reports and their images in an e-mail message.

To send e-mail deliveries, Reporting Services must be able to communicate with a valid Simple Mail
Transfer Protocol (SMTP) server. This setting is initially set when installing and configuring
Reporting Services.

60

Chapter 3

07_584979 ch03.qxp 1/27/06 7:32 PM Page 60

File Share

Reports can also be delivered directly to a file share. For this, Reporting Services must have write per-
missions to the share. You can specify credentials to use when sending reports to a file share.

Custom Delivery Extensions
Along with the supported extensions, Reporting Services allows for the creation of custom delivery
extensions. Some of the common delivery extensions we have come across include printer delivery
extensions. One client had to print a large number of reports every month, approximately 200,000. We
created an extension that interfaced directly with the printer delivery and was able to effectively process
all reports each month.

Security
The final component you will look at is the Reporting Services security extensions. Reporting Services
relies on security extensions to handle both authentication and authorization. The default security exten-
sion in Reporting Services supports Windows authentication. In a number of scenarios, this is an accept-
able method. However, there are those solutions that cannot rely on users’ having a trusted Windows
account.

In one client scenario, we were working with a solution provider that sold a hosted web application. The
client was interested in providing reporting through Reporting Services over the Internet. The client’s
solution implemented its own authentication and authorization logic. To implement Reporting Services,
we needed to hook into this authentication and authorization logic. Our final solution included a custom
security extension that called the client’s application logic to authenticate a user. Once we had the user’s
authentication information, we could easily implement different types of security within our solution.

Often, developers are hesitant to create their own security extension. We have seen that many people try
to implement their own type of security logic on top of reporting services instead of working with the
security extensions. It has been our experience that working around the security model instead of within
it usually represents more work and less functionality. By implementing a Reporting Services security
extension, you take advantage of the platform architecture and can implement all of the Reporting
Services features that hook into it.

Reporting Services Windows Service
Another major component of Reporting Services is the Reporting Services Windows service. One of the
major functions of this service is the execution of scheduled tasks. Entries are written to the Event table
in the ReportServer database using SQL Server Agent. By default, the Reporting Services Windows
service queries this table every 10 seconds. Once it finds an entry, it performs any processing required by
the event.

Reporting Services Catalog
Reporting Services relies on SQL Server for storing its metadata. This allows for greater scalability in
large reporting applications. This also allows you to take advantage of features inherent to SQL Server
such as backup and transaction logging.

Reporting Services uses two SQL Server databases to store data: ReportServer and ReportServerTempDB.
In the next section, you look at each database and learn how they are used.

61

Reporting Services Architecture

07_584979 ch03.qxp 1/27/06 7:32 PM Page 61

ReportServer Database
The ReportServer database is the main store for data in Reporting Services. It contains all report defini-
tions, report models, data sources, schedules, security information, and snapshots. There are a series of
tables for each functional area. The database schema is open and generally easy to follow.

Updating or querying these database tables is not recommended, but an understanding of how they are
arranged should give you a better understanding of how Reporting Services works.

The following table lists some of the tables in the ReportServer database and their related functions.

Table Name Function

Resources

Catalog Contains report definitions, folder locations, and data source
information.

DataSource Contains individual data source information. Data source informa-
tion is maintained separate from report definitions to ensure it is not
overwritten when reports are republished.

Security

Users User name and security ID (SID) information for authorized users.

Policies Listing of references to different security policies.

PolicyUserRole Association of users/groups, roles, and policies.

Roles List of defined roles and the tasks that the role can perform.

Snapshots and Snapshot History

SnapshotData Information used to run an individual snapshot, including query
parameters and snapshot description.

ChunkData Stores the report snapshots. Snapshots contain both report definition
and data. There are also certain records containing rendered snapshot
output for quicker rendering.

History Stores a reference between stored snapshots and the date they were
captured.

Scheduling and Report History

Schedule Contains information for different report execution and subscription
delivery schedules.

ReportSchedule Association between a given report, its execution schedule, and the
action to take.

Subscriptions Listing of individual subscriptions, including owner, parameters, and
delivery extension.

Notification Subscription notification information such as date processed, last
runtime, and delivery extension.

62

Chapter 3

07_584979 ch03.qxp 1/27/06 7:32 PM Page 62

Table Name Function

Event Temporary storage location for event notification. Populated by SQL
Server Agent and then executed by the Reporting Services Windows
service.

ActiveSubscriptions Subscription success/failure information.

RunningJobs Currently executing scheduled processes.

Administrative

Configuration Reporting Services configuration settings. These should only be
administered using the Reporting Services configuration utilities.

Keys Listing of public and private keys for data encryption.

ExecutionLog List of reports that have been executed, when they started execution,
when they finished execution, the user making the request, and the
parameters used.

Report Models

ModelDrill Contains information used when implementing Report Builder infi-
nite drill-down feature. Lists reports and their associated report
model.

ModelItemPolicy Association among a given report item, model, and policy.

ModelPerspective Association between a given report model and its perspectives.

ReportServerTempDB
As the name implies, the ReportServerTempDB database stores temporary Reporting Services informa-
tion. User session information is stored in the ReportServerTempDB. Because Reporting Services com-
municates using HTTP, no state is maintained between the client application and server. Session state
about the reports that the user is running must be stored between each server call. The
ReportServerTempDB stores this information in a SessionData table.

ReportServerTempDB also stores report cache information. When a report is set as a cached instance,
there is no definite time when that report is executed. It depends on which process requests the report
first. Once the report is executed, the intermediate format and data are stored in the ReportServer
TempDB database. If this database were to fail, the cached information would be lost. But, since it is
executed when a user views the report, there is no real loss of information. Snapshots, on the other hand,
are not stored here. Their execution time is usually at a set moment to ensure that the data on the report
is correct. Therefore, this information is stored in the more permanent ReportServer database.

When working with Reporting Services, it is important to pay close attention to the
ReportServer database. It contains all critical information related to Reporting
Services and should be backed up on a regular schedule.

63

Reporting Services Architecture

07_584979 ch03.qxp 1/27/06 7:32 PM Page 63

The following table lists some of the tables in the ReportServer database and their related functions.

Table Name Function

ChunkData Stores report definition and data for session cached reports and cached
instances.

ExecutionCache Stores execution information including timeout for cached instances.

PersistedStream Stores session level rendered output for an individual user.

SessionData Persists individual user session level information, including report
paths and timeouts for given session information.

SessionLock Temporary storage to handle locking of session data.

SnapshotData Stores temporary snapshots.

Execution Information
As mentioned earlier, it is not recommended that you view or modify the underlying SQL Server tables.
It is also very difficult to analyze execution information in the ReportServer database.

However, there is a good deal of information about report execution stored in the ReportServer
database. To make access to this information easier, there is a sample Integration Services package that
will extract report execution data and expose it for reporting.

Along with the Integration Services packages, there are sample reports that demonstrate how to expose
execution information. To access these samples, you must install the Server Management Samples
included in the setup CD.

Report Design
Good report design is core to any reporting platform. If reports are not easy to create and edit, adoption
of the product will suffer. When Reporting Services 2005 was released, Microsoft took an interesting
approach to report design. Essentially, it decided to create a standard that could be extended by third
parties and Microsoft. This standard, know as Report Definition Language (RDL), has opened the door
to a number of outside tool vendors, allowing them to create their own report design utilities. This sec-
tion looks at the different report design options and how they can be leveraged.

It is not necessary to back up the data in the ReportServerTempDB.

Reporting Services will not be able to function without the ReportServerTempDB
database.

64

Chapter 3

07_584979 ch03.qxp 1/27/06 7:32 PM Page 64

Visual Studio 2005 Report Designer
Visual Studio 2005 has become the standard development environment for a number of Microsoft prod-
ucts including Office, Integration Services, and Analysis Services. Reporting Services 2000 leveraged
Visual Studio as its development interface. In SQL Server 2005, Microsoft has created a new tool called
the Business Intelligence Development Studio.

The Business Intelligence Development Studio is based on the Visual Studio 2005 shell. When installing
any of the Business Intelligence products (Analysis Services, Integration Services, and Reporting
Services) the Visual Studio 2005 shell is also installed. Along with the shell, project templates are
installed for each of the Business Intelligence products. Reporting Services includes wizards for creating
reporting projects and individual reports. It also contains templates for creating new shared data sources
and blank reports. Chapter 4 discusses report design in greater detail.

Once Visual Studio 2005 is installed, users can create a new report project. Within the report project,
users can define the data sources and queries used to drive reports, layout, and parameter inputs. Visual
Studio is a robust development tool and is primarily targeted toward developers and analysts who are
comfortable in a richer environment. However, there is a large need for users to create their own basic
reports. The next section covers how Report Builder has opened up report creation to a larger audience.

Report Builder and Report Models
Report Builder is arguably the biggest enhancement to Reporting Services 2005. It is a major component
in creating a true reporting solution. Report Builder is intended to give end users the ability to create
their own reports. One of the keys to this functionality is giving users an understandable data model
that they can easily leverage.

In 2004 Microsoft purchased the company ActiveViews. ActiveViews had technology that allowed devel-
opers to create a user-friendly data model on top of an existing database. This model enabled end users
to create reports without knowing the underlying database query syntax or schema. The Reporting
Services team has taken this technology and incorporated it into Reporting Services 2005. Now, develop-
ers can build new Report Model projects and end users can work with them from the Report Manager.
Chapters 8 and 9 will detail Report Models and the Report Builder.

Third-Party Designers
Because RDL is an open standard, there are a number of third parties that have also created tools for
developing reports. The three most recognizable names are Proclarity, Panorama, and Cizer. Proclarity
and Panorama are both developers of OLAP front-end tools. With the introduction of Reporting
Services, they have used their own engines to help developers query multidimensional data and build
Reporting Services reports on top of it. Cizer took advantage of RDL and created a suite of products
around Reporting Services. Cizer’s products include browser-based report design interfaces and a
Microsoft MapPoint integration component that allows users to include map data within their views.

Now that you have seen the different engine components as well as report design tools, you are going to
look at how reports are exposed to end users.

65

Reporting Services Architecture

07_584979 ch03.qxp 1/27/06 7:32 PM Page 65

Report User Interface
As was described earlier, Reporting Services is a platform for building reporting solutions. Outside of a
flexible report processing engine and variety of development tools, a platform must provide mecha-
nisms for displaying reports to end users. In Reporting Services 2005, there are a number of ways to
expose your reports to others. In this section, you look at how you can expose reports through the
Report Manager, SharePoint Web Parts, Visual Studio controls, and custom user interfaces.

Report Manager
Report Manager is the default mechanism for exposing reports to the end user. When you install
Reporting Services 2005, two virtual directories are created. One of these is the Report Manager direc-
tory. Report Manager is a web-based application that communicates with the Reporting Services Web
service. It can display a list of folders and reports to end users for browsing. It also provides mechanisms
for users to create and modify their own subscriptions.

This interface is easy to deploy since it is included with the product. However, it does not offer a great
deal of flexibility in the user interface. There are techniques that you can use to customize the styles used
by the interface, but you cannot rearrange or modify how different parts of the application are organized
or look. The next few sections talk about other methods for exposing reports. Each one requires an
increased level of custom development to implement.

SharePoint Web Parts
One of the easiest ways to incorporate Reporting Services into another application is through the use of
SharePoint Web Parts. The SharePoint Web Parts include a Report Explorer and Report Viewer. These
controls can be used to embed Reporting Services reports into an existing site. Implementation of these
web parts takes a general understanding of both Reporting Services and SharePoint.

If you are not using SharePoint as part of your user interface, you can consider a few Visual Studio
Controls to accomplish this integration.

Visual Studio Controls
Reporting Services 2005 includes two Report Viewer controls for embedding reports into custom appli-
cations. These controls include an ASP.NET control as well as a Windows control. Both controls can
communicate with the Reporting Services XML Web service to render reports. The Windows control is
a major improvement in Reporting Services 2005. It includes a local processing mode that allows devel-
opers to supply report definitions and data sets within their own applications. This functionality enables
the creation of offline applications that still take advantage of the Reporting Services Report Processing.

For the greatest flexibility, users can create their own user interfaces through the Reporting Services
XML Web service.

Custom User Interface
The Reporting Services XML Web service contains a new Execution endpoint that allows developers to
more easily create their own user interfaces. This endpoint exposes methods for rendering reports into
various formats. Once the report is rendered, developers can take the output and send it to their own
web processing code or some other custom interface.

66

Chapter 3

07_584979 ch03.qxp 1/27/06 7:32 PM Page 66

This method provides the most flexibility in creating a user interface but also requires the greatest
degree of skill. Many implementations of Reporting Services will incorporate some combination of the
User Interface choices identified above. In Chapter 12, you take a close look at implementing each of the
User Interface options, and we discuss what you need to consider when designing your own solutions.

Summary
This chapter covered the basics of Reporting Services. It started with a look at the different reporting
phases: authoring, management, and delivery. The authoring phase dealt with developing the reports. In
the management phase, you set individual properties of the reports such as data sources and security
rules. In the delivery phase, you looked at the different methods to giving access to end users.

After the discussion of these phases, you saw the features of Reporting Services that support them. Visual
Studio 2005, Report Builder, and third-party tools can be used to create report definitions. Once reports are
created, they can be published to the Report Server. Using Report Manager or SQL Management Studio,
you can update and maintain report information. If users need to view reports, they can use the Report
Manager, SharePoint Web Parts, Visual Studio controls, or custom code.

Finally, you looked at the specific components of Reporting Services. You started by looking at the
Reporting Services XML Web service and seeing how the Reporting Services interface is exposed. Next,
you looked at the Report Server and learned about report processing and scheduled delivery. The last
component dealt with the storage of metadata in the ReportServer and ReportServerTempDB databases.

After reading this chapter, you should understand the following:

❑ Authoring, management, and delivery in the reporting lifecycle.

❑ The major components of Reporting Services.

❑ Tools available to create Reporting Services reports.

❑ Methods for delivering reports to end users.

In the next chapter, you see techniques and concepts that can be used to build your first reports.

67

Reporting Services Architecture

07_584979 ch03.qxp 1/27/06 7:32 PM Page 67

07_584979 ch03.qxp 1/27/06 7:32 PM Page 68

Part II

Report Design

Chapter 4: Basic Report Design

Chapter 5: Designing Data Access

Chapter 6: Advanced Report Design

Chapter 7: Report Solution Patterns and Recipes

08_584979 pt2.qxp 1/27/06 7:43 PM Page 69

08_584979 pt2.qxp 1/27/06 7:43 PM Page 70

Basic Report Design

One of my pet peeves is someone giving me too much information in response to a simple question.
At times the easiest way to get from point A (in this case, not knowing how to create a report) to
point B (having a working report) is a simple matter of learning what to do, not necessarily how to
do it all. Don’t get me wrong; how is an important question that deserves a thorough explanation —
at the right time. Unlike many college courses that are filled to the brim with information about the
history and concepts related to a topic with no direction regarding what a person should actually do
with this information, my goal is to give you some practical guidance right upfront. I’ll deal with
the details later on.

The next three chapters will teach you all about report design. I will start with a high-level view of
the mechanics of report design (what to do). After you understand the fundamentals of common
report construction, you’ll learn more about how reports actually process and render data. With
this knowledge under your belt, you will be better prepared to exercise your creativity and will
know how to put all the pieces together to create effective reports.

❑ Chapter 4 teaches you the essentials: What you need to do to get started building basic
reports using the report wizard and common report designer features. The second half of
that chapter introduces the fundamental building blocks of report design: report items
and report layout properties.

❑ In Chapter 5 you learn about the design elements that may be used to create more
advanced reports. I’ll show you how to use different tools and techniques to implement
different features. Many of the topics in the chapter you are now reading will be revisited
in Chapter 5 in a more advanced context.

❑ Chapter 6 is once again about what to do. We have assembled step-by-step instructions to
show you how to build specific report solutions to address a variety of business problems.

09_584979 ch04.qxp 1/27/06 7:39 PM Page 71

Report Design 101
You’re going to learn how to design reports using the Report Wizard — the simplest of all methods. If
you are new to report design and Visual Studio, I think you will find the Report Wizard to be a conve-
nient way to design simple reports. If you are an experienced report designer or application developer,
or if you need to learn to design complex, custom reports, you’re likely to use the Report Wizard a few
times and then leave it behind.

Let’s take a look at the big picture of designing reports in SQL Server Reporting Services. We will exam-
ine most of the important features of Reporting Services just to get an idea of what you can do with the
product. We’ll also point you to later chapters to get more information and to learn about the details. We
will be using Visual Studio 2005 to design and create reports. Although there have been some enhance-
ments, the report designer in Visual Studio .NET 2003 and Visual Studio 2005 are very similar. In case
you have used the earlier version, I’ll point out some of the differences. To duplicate all of the report
examples in the book, you may use any edition of Visual Studio 2005.

Before you read on, you need to get your bearings and get a sense of this chapter’s direction. In any
technical book, it’s necessary to get every reader at a basic level of understanding before moving on to
advanced material. Different readers may have varying levels of expertise or experience with Visual
Studio, so let’s start with the basics. Don’t worry — whether you’ve never seen Visual Studio before or
you are a tenured Visual Studio developer, we’re going to cover the right material at the right depth at
the right time. If you have used Visual Studio for application development, please be patient as you read
through the next section. If you have never written a line of code in your life or if you are new to Visual
Studio, you’re in luck.

This chapter covers the following topics:

❑ Using the Report Wizard.

❑ Importing reports.

❑ Planning for extensibility.

❑ Report items and data regions.

❑ Formatting considerations.

❑ Pagination and printing considerations.

We’re covering all the essentials in the chapters in Part II of this book. This chapter contains a series of
walk-through exercises that are intended to lead you step by step through some basic report design.

Using the Report Wizard
To get acquainted with the basic mechanics of reports, let’s start with a quick tour of the Report Wizard
used to create a simple, tabular report. The Report Wizard will take you through all of the steps neces-
sary to design a basic report. From that point, you can make adjustments and add more features to your
report.

To get started, open SQL Server Business Intelligence Studio, as shown in Figure 4-1.

72

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 72

Figure 4-1

Later in this chapter, you’ll learn more about the features of the design environment. Click the leftmost
button on the toolbar to create a new project (see Figure 4-2).

Figure 4-2

The Reporting Services installation adds a project type category to the Microsoft Development
Environment called Business Intelligence Projects. Choose this group, select the Report Server Project
template, and enter a name for the project. This creates a new report project, as shown in Figure 4-3.

73

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 73

Figure 4-3

Incidentally, the Report Server Project Wizard and the Report Server Project items have similar behaviors.
The Report Server Project Wizard option simply saves a step and takes you straight to the Report Wizard.

Figure 4-4 shows the Solution Explorer window, which is displayed in the upper-right pane of the
design surface. This is a tree view showing components of the new report project. As you see, the project
name is displayed above folder icons used to group Shared Data Sources and Reports. Right-click the
Reports icon, and choose Add New report from the menu. This action opens the Report Wizard.

Figure 4-4

74

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 74

The Report Wizard
The Report Wizard will lead you through the basic steps for creating a new report. The first page of the
wizard dialog is a splash screen, shown in Figure 4-5, containing instructions and introductory information.
Click the Next button to move to the next page.

Figure 4-5

Establishing a Data Source
Since you have no data sources created yet, let’s add one. It usually makes sense to use a name that indi-
cates the name and location of the database. In this example, you will use the AdventureWorks sample
database that installs with Reporting Services. Make sure the New data source radio button is selected
and type the database name into the Name text box as you see in Figure 4-6.

Leave the Type set to Microsoft SQL Server, and then click the Edit button. This opens the Data Link
Properties dialog to set up a connection string shown in Figure 4-7. If you have used other Microsoft
products that use SQL Server, this interface should be familiar to you.

75

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 75

Figure 4-6

Figure 4-7

76

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 76

There are three steps to complete this dialog:

1. Select the database server from the drop-down list. Since you’re using the database server
installed on the local computer, enter LocalHost. If this were a production application, you
could select the name of any server on your network from the list and then type the server name
or enter an IP address to connect to a server over the Internet.

2. To use integrated Windows security, select the first radio button reading Use Windows
Authentication. You would use the second option if you were using the SQL Server security
model. If that were the case, your database administrator would provide this information.

3. Finally, select the AdventureWorks database from the drop-down list. You may use the Test
Connection button to validate the settings. When you click the OK button, a connection string is
generated and returned to the Report Wizard dialog, as shown in Figure 4-8.

Figure 4-8

Selecting the check box labeled Make this a shared data source will cause this data source to be available
to other reports. This simple but important feature is quite powerful and will save you a tremendous
amount of time and effort. By creating a central data source for all reports on the server, connection and
database information may be changed in only one place to affect all your reports. This is preferable to
the traditional approach, where each report must be updated separately. That can be very inconvenient
when the system administrator moves your database to another server or when you migrate your
reporting solution from the development environment to your production server.

So far, the Report Wizard has created a report project and has led you through creating a shared data
source. There isn’t much to see yet. You need to continue to work through the pages of the wizard before
you see any results. In an established report project, you would create a new report using the shared
data source you created earlier.

77

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 77

Building a Query
The next wizard page prompts you for a query string, as shown in Figure 4-9. If you are using a SQL
Server database as the data source, this is a Transact-SQL SELECT statement used to retrieve the data for
the report. For simple queries, you can simply type a Transact-SQL expression into this box. For most
queries, you’ll probably want to use the Query Builder option.

Figure 4-9

More complex reports may be based on more than one query. In fact, data can even be obtained from
multiple data sources in a single report. Click the Query Builder button to open the Transact-SQL Query
Builder dialog. The Query Builder has two different modes. Figure 4-10 shows the Generic Query
Designer. This window is little more than a simple text editor with no error checking, validation, or
code-generation features. Use it to write queries for data sources other than SQL Server or complex
queries the Graphical Query Designer isn’t equipped to handle.

Click the leftmost toolbar button to switch to the Graphical Query Designer. The tooltip label on this but-
ton is the opposite of what I would normally expect. It displays the current state of the query designer
rather than the state after clicking the button.

This dialog box is common to several Microsoft products. In Reporting Services for SQL Server 2000, there
were no toolbar controls available in this dialog screen and all functionality was available from a pop-up
menu. The toolbar, shown in Figure 4-11, has been added in Reporting Services for SQL Server 2005.

If you’ve never created a query before, the following steps will take you through the process, and, with a
little practice, you’ll see that it’s pretty easy.

78

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 78

Figure 4-10

Figure 4-11 79

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 79

You’ll take a closer look at the features of the query designer in Chapter 5. For more information about
writing Transact-SQL queries, refer to Beginning Transact-SQL by Paul Turley, also from Wrox (ISBN
076457955X).

Click the Add Table toolbar button on the right side of the toolbar to display the Add Table dialog, as
shown in Figure 4-12:

Figure 4-12

Select the Product table from the list and then click the Add button. Repeat this action for the
ProductSubCategory table. This adds these tables to the top pane of the Query Builder as in Figure 4-13.
Click the Close button on the Add Table dialog. You need to include four columns in the report so let’s
add them to the query.

In the ProductSubCategory table window, check the Name column. You should see it added to the col-
umn list and to the SQL statement, which is in the third pane of the Query Builder window. In the
Product table window, check the Name, ProductNumber, and ListPrice columns. Note that they are
added to the columns pane grid in the order they are checked. When two or more columns are added
with the same name (as is the case for the two Name columns,) an alias is created with a default name.
You will define explicitly named aliases for both of these columns: type SubCategory in the first row and
ProductName in the second row for the ProductSubCategory and Product Name columns, respectively.
You will also need to sort the results by these columns. This may be done by setting the Sort Type for the
columns to Ascending. Note that the Sort Order values are set in the order you selected the Sort Type.
You can also set up sorting within the report definition; however, having the data presorted from the
database, as you have done here, is far more efficient.

To test the query results, right-click in the top pane again, and select Run from the pop-up menu. The
query results are displayed in the lower pane in this window. You should see that the product records
are ordered by the SubCategory and then the ProductName columns.

When you click the OK button in the Query Builder window, the query string is returned to the Report
Wizard dialog, as in Figure 4-14. Click the Next button to continue.

80

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 80

Figure 4-13

Figure 4-14

81

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 81

The Query Builder does one very simple thing: It creates the Transact-SQL expression that you see in the
Query string box in this page of the Report Wizard. If you know your way around Transact-SQL, you
can simply type the expression into this box or into the SQL pane of the Query Builder Window. You can
also go back and make changes if necessary either directly to the query string or using the Query Builder
dialog. In a later example, a stored procedure will be used in place of the query string.

Defining the Report Structure
The following pages will guide you through specifying report design elements such as the style, layout,
data sorting, and grouping. In an effort to keep things simple, specify a Tabular style with all data fields
in a single detail section, as in Figure 4-15.

Figure 4-15

This report will simply be a list of records and is known as a Tabular report. Click the Next button to go
to the next page (shown in Figure 4-16), which is used to design a table control that will display rows
and columns of data. In this simple report, you will not be using any groupings so all four fields will be
added to the Details section.

On the Choose the Table Layout page (not shown,) simply accept the default setting and click the Next
button. This report will be grouped on the SubCategory column. Select this field from the Available
fields list, and then click the Group button. Select the ProductName, ProductNumber, and ListPrice
fields from the Available fields list and click the Details button in that, and then click the Next button, as
shown in Figure 4-17.

The Report Wizard will create controls with coordinated fonts and colors using one of five different themes.
These properties may be modified in the designer later. Retain the default Corporate setting, and click Next.

82

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 82

Figure 4-16

Figure 4-17

83

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 83

As you create other reports, you will have the opportunity to define your own look and feel by using
fonts, colors, borders, and graphics. The Report Wizard sets many of these properties for you using the
style templates you see on this page. If you like, all of these properties can be changed in the Report
Designer.

Specifying the Deployment Location
The first time the Report Wizard is used in a report, the dialog box shown in Figure 4-18 is displayed,
prompting for the Report server path and Deployment folder name.

Figure 4-18

The default URL is used for the Report server. Unless you intend to use a different server, leave this
value as it is. Enter a folder name for the Deployment folder. This folder will be created and displayed in
the Report Manager and will contain all of the reports defined within this project. It’s important to note
that these folders do not correspond with folders in the file system. The hierarchy of folders is actually
stored in the Report Server catalog database and can be based upon functional or operational classifica-
tion. This method simplifies making related reports available to various user roles. Folders may be use-
ful for grouping reports categorically and searching and securing reports as a group.

When Reporting Services is installed, a web folder is created on the server and is managed by Internet
Information Services (IIS), which exposes this path as a URL or web folder. The URL you see in Figure 4-19 is
the default location, if you are developing reports on the Report Server. If you are developing on another
computer, you should enter a URL that points to that Report Server’s installation path, most likely http://
yourservername/ReportServer. If you’re not sure, talk to your server administrator. The Deployment
folder isn’t really a physical folder. It’s a virtual path that is managed and exposed by Reporting Services
through the web server. You’ll see this folder when you use the Report Manager later on.

84

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 84

Finally, enter a Report name, call this report Products by Subcategory as in Figure 4-19, and click the
Finish button. The report name is used to name the report definition file in the report project and will be
the title of the report displayed for users in the Report Manager.

Figure 4-19

The Report Designer
Completing the Report Wizard causes the report to be built and the Report Designer to be displayed in
either Layout or Preview mode. The Report Designer has three tabs along the top:

❑ Data: This displays the query designer used in the Report Wizard.

❑ Layout: This is used to create or alter the report design.

❑ Preview: This is used to view the report with data.

Visual Studio 2005 contains several useful designer windows that are automatically hidden by default.
These windows are accessible when you hover the mouse pointer over icons positioned along the left
and right edge of the designer window. As you can see, some of these icons are labeled and some are
not. (You take a closer look at the Toolbox, the Fields, the Solution Explorer, and the Properties designer
windows after this tour.)

The next thing you should see is the actual report in Layout view. The Report Designer is now a compo-
nent of the Microsoft Integrated Development Environment (that is, Business Intelligence Studio or
Visual Studio) and uses many of the windows and tools that are built into the Visual Studio product.

85

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 85

You’ll be taking a look at a number of these tools as you continue. The Report Wizard can also decipher
intelligent column labels from the column names. Note that each column header has a space between the
words that were delineated using capital letters, as in Figure 4-20.

Figure 4-20

Scale Units
Let’s take a short break from the wizard and discuss some important information you need to understand
before you move on. Notice that these examples were created on a computer configured with US/English
regional settings. As a result, all of the scaling units are set to inches. If your computer is configured for
another culture or regional setting, your environment may use metric units.

It’s also important to understand how a report fits onto a page. The report content fits onto a design
element called the Body. The report defines the page for printing and displaying purposes with associ-
ated margins. The relationship between these two design elements will be discussed shortly.

American SAE, pixels, and metric scale units may be used for the report, body, margins, and control size
measurements. The designer will automatically use either inches (in) or centimeters (cm) depending on
the current locale setting in Windows. This example uses inches with the default US letter 8.5in x 11in
page size. If you are using metric units or a different page size, please make the appropriate adjust-
ments. For example, if you are designing reports for A4 paper, the report width and height should be set
to 21.0cm and 29.7cm, respectively.

86

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 86

Note that the Report Designer is currently only 5 inches wide and that the grid containing the fields
partially fills this space. You need to make some adjustments to use the available space.

You should be able to use all of the available space to fill your target page size. Apply the following
formula to calculate the report page width:

Report Width = Body Width + Left Margin + Right Margin

You can set the report size by either resizing the report body in the designer with the mouse or by setting
the Height and Width values in the Properties window. Although it usually makes sense to match the
report size to the paper size for printed reports, the report width may be set as wide as 160 inches.

Click on the report background and view the Properties window (either right-click and choose
Properties or just click the Properties tab on the right side of the designer). Verify that Body is displayed
in the drop-down list at the top of the Properties window. Now, click the small plus sign next to Size to
expand this item and set the properties, as shown in Figure 4-21.

Figure 4-21

87

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 87

To set the report margins, select Report from the drop-down list and expand the Margins item. Change
the Left, Right, Top, and Bottom margins, as shown in Figure 4-22.

Figure 4-22

Here’s a quick review: The report body contains the actual report content. This area must fit within the
area defined for a page of the report. Using the Properties window, set the report dimensions to 8.5
inches wide by 11.0 inches tall with the left and right margins set to 0.25 inches each. This leaves 8.0
inches of available width for the report body. To use all of this horizontal space for report data, set the
body to be 8.0 inches wide.

With the report and margins set correctly, you can reformat the report (see Figure 4-23). For the list of
repeated data, the wizard added a table with columns bound to the four fields you exposed in the query.
Sizing these columns for optimum space is a simple matter of trial and error. The first order of business
is to select the table and resize it to fill the report body.

88

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 88

Figure 4-23

To select the entire table (rather than a specific cell) click anywhere in the table and then click on the gray
box at the top-left intersection between the column and row headers. This is shown in Figure 4-24.

Figure 4-24

This will display a selection box around the table with resizing handles as shown in Figure 4-25. Grab
the table on the right side and drag it to fill the report body.

Figure 4-25

89

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 89

The text box immediately above the grid may also be resized. Grab the right handle as shown in Figure
4-26 and drag to resize the text box to the same width as the grid.

Figure 4-26

Using the column headers at the top of the grid, resize each column. You can switch between Layout and
Preview to see how the data looks in the report. With a little adjustment to column sizes and text align-
ment, the table may easily be formatted so text in each cell doesn’t wrap and the report appears bal-
anced. Let’s fix the report heading. You can edit the heading text right in the text box.

Select the Preview tab to view the completed report, as shown in Figure 4-27.

Figure 4-27

90

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 90

Currency Format
Just one more little tweak and this report will be done. The wizard doesn’t take care of any specific data
formatting. This means that numbers and dates may need some adjustments to look presentable. I’ll
discuss this in detail toward the end of this chapter. For now, here are some simple instructions to display
the list price value as currency. For each of the two text boxes in the ListPrice column, click on the text box
and then hover the mouse pointer over the Properties tab on the right side of the designer. This displays
the properties sheet for the selected text box. Select the Format property, and then type C2 (see Figure
4-28). This is the standard regular expression to format a currency value with two decimal positions.

Figure 4-28

That’s it! You’ve created your first report using the Report Wizard. You can go back and make changes to
the report design by opening it from the Visual Studio Solution Explorer. In the future, you may find it
more effective to create reports without the wizard, where you have more control and don’t have the tool
making so many decisions for you. To get more practice, you may want to design additional reports using
different data sources, queries, or other options. At the very least, you’ll end up with a few attempts that
didn’t go so well and some reports that worked. On one of my kids’ favorite Saturday TV programs, the
teacher character would always say, “Get dirty, make messes, and don’t be afraid to try things.” That
concept applies here. Figure 4-29 shows the report in Preview.

91

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 91

Figure 4-29

The remainder of this chapter focuses on individual design elements and concepts rather than the over-
all process. You will apply this information in another walk-through exercise in the chapter where
designing more advanced reports is discussed.

Report Definition Language
One very compelling aspect of this product is that the definition of each report is managed in a standard,
text-based file format called Report Definition Language (RDL). An RDL file is an XML document with a
standard definition for markup tags that define all of the properties for a report. All objects added to a
report in the Report Designer and the related property settings result in entries being made to the RDL
content for that report. This simple approach makes it easy for independent software vendors and cus-
tom solution developers to generate a report definition from a variety of sources and tools. It also makes
it easy for report designers and developers to open the report definition in a text editor to make changes
outside of the report designer. Contrast this with the proprietary binary formats used in other popular
reporting products.

As an example, the following is a small snippet of an RDL file content describing a Textbox report item:

<Textbox Name=”textbox1”>
<Style>
<PaddingLeft>2pt</PaddingLeft>
<PaddingBottom>2pt</PaddingBottom>
<PaddingTop>2pt</PaddingTop>
<PaddingRight>2pt</PaddingRight>

</Style>

92

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 92

<Top>0.25in</Top>
<rd:DefaultName>textbox1</rd:DefaultName>
<Height>0.25in</Height>
<Width>1in</Width>
<CanGrow>true</CanGrow>
<Value />
<Left>0.375in</Left>

</Textbox>

Report Migration and Integration
We are beginning to see applications and products that have the ability to create report definitions for
Reporting Services. The Extensible Report Definition Language allows reports to be created, converted,
or modified by custom tools. For example, we’ve worked with products from Panorama and Cizer that
provide custom report designer front ends within their own web browser–based business intelligence
reporting applications. These products put report design capabilities in front of corporate business users
without installing complex desktop report-authoring software.

Because RDL is simply an XML grammar, building reports can be performed programmatically with rel-
ative ease. Because of the complexities of parsing and deciphering proprietary report formats, convert-
ing existing reports from other products is more complicated. To date, there are no universal report
conversion utilities on the market. The capability to perform report conversion is a common request
from businesses that have already invested in older, expensive reporting products and want to migrate
to Reporting Services. Hitachi Consulting offers report migration as service rather than a product for this
reason. If this is an option that you or your company is considering, report migration may be more cost-
effective than starting from scratch.

A point to consider is that the fundamental approach for designing reports most effectively may be quite
different using different products. A “converted” report (one you designed in another tool) may not run
efficiently and may deny you the flexibility to use Reporting Services to its full capability.

Importing Access Reports
Using the Report Designer, you have the ability to import reports from Microsoft Access. Access has an
excellent report writer and has long been the only real substantial reporting tool in the Microsoft armada
of products. Since the early 1990s, Access was the product of choice for creating reporting solutions and
still is for many desktop solutions. Its greatest limitation, however, is that Access must be installed on
the user’s desktop and can effectively be used only in a single-user or small-network environment.

If you are already familiar with creating reports in Access, this may be a good starting point to learn
report design in Reporting Services. Most basic Access reports can be imported very nicely. There are
some functions and expressions used in Access that are not supported, and Access reports that run pro-
gram code behind them will likely not work without some adjustments. These details are explained in
Appendix A, but the short version is that most basic report functionality will work. Grouping and sort-
ing features are preserved, as are most expressions and formatting. The use of domain functions and any
custom code is not supported.

93

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 93

Plan for Extensibility
If your goal is to create a reporting solution that will work for users with different needs, there are a
number of things to be considered. The users may need to:

❑ Access reports from a web-enabled hand-held device or cell phone.

❑ Download reports for offline viewing.

❑ View reports in different web browsers.

Reporting Services can meet all of these needs if you understand the requirements and plan ahead. Let’s
briefly discuss some of these design considerations.

Browser Compatibility
A solution should be designed to meet the needs of the least-capable user or platform. The optimal
design for the web has always been a moving target. If, when designing reports, you view them only in
the latest version of Internet Explorer, you may not be aware of incompatibilities or design issues for
other browsers. Creating solutions independent of the client platform for a diverse audience will always
be challenging, with a certain degree of unpredictability.

Reports with interactive design elements such as drill-down and auto-hide sections, for example, generate
client-side JavaScript. This script runs in the user’s browser to produce effects and interactive functionality.
Theoretically, pages containing many JavaScript functions should run in newer versions of Internet Explorer,
Netscape Navigator, and other browsers. In a report, scripted features include documentation maps, book-
marks, and show/hide features (used for drill-down reports). On the standard report toolbar, scripted fea-
tures provide the ability to zoom, search, refresh, export, and request help.

Another variable to consider when using HTML is the font typeface and size. If you make a point to use
common fonts, this is not typically an issue. However, the user’s configuration isn’t always predictable.
Font files on the user’s computer can be uninstalled or deleted and default font sizes can be changed in
the browser. A popular solution for unpredictable HTML results is to use a proprietary document format
typically read in a downloadable viewer. Rendering reports to an Adobe Portable Document Format (PDF)
document will ensure that reports are displayed and printed consistently.

Offline Viewing
Reporting Services can render reports in three different forms of HTML, including MHTML (or Web
Archive). As mentioned in earlier chapters, MHTML is a fairly recent standard that encapsulates content
that would normally be linked to separate files, typically graphics, into a single document. Using this format
simplifies web content rendering for portability, but it isn’t supported in all browsers (including Pocket
Internet Explorer). Even when using standard HTML format, most report files will be self-contained with
the exception of any graphics. If all of the content is contained in one file, it will be easier to download and
view offline. If your users are consistently using Internet Explorer or a browser you have tested thoroughly,
consider rendering reports in MHTML to preserve embedded graphics content. If you don’t have that kind
of control over the user’s environment, PDF document rendering may be the best choice.

94

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 94

Another possibility is to allow the user to download report content into a storage file and then render
the content using your own client-side solution. Reports rendered as Comma-Separated Values (CSV) can
be opened in Microsoft Excel, where the user can format or further manipulate the data. Data saved to
an XML file may be imported or read using Excel, Word, or a custom application. The Excel rendering
format currently supports Microsoft Excel versions 2002 and 2003 only.

Mobile Device Support
Portable electronic devices are available in different sizes and shapes. This medium could prove to be a
very convenient reporting solution for users who need to get information on the go. Web-enabled cellular
phones generally fit into three categories:

❑ The Pocket PC and Palm OS devices with integrated cellular phones have the advantage of a
relatively larger display (240 by 320 pixels) and a more traditional-style web browser.

❑ The new generation of Smart Phones runs a slightly scaled-down version of the Windows CE
operating system with a smaller display (176 by 220 pixels) and fewer features but in a more
convenient size.

❑ The standard web-enabled cell phone. It’s hard to find a new cell phone that doesn’t offer the
capability to surf the web. Most of these phones have very small displays, and many will only
display text.

The simple fact is that you can develop reporting solutions using Reporting Services for all of these
devices, making it possible and convenient for users to access information wherever they are.

Of course, screen size is one of the most significant limitations, so reports may simply be scaled down to
a smaller page size to fit a smaller screen size. The Pocket PC and Smart Phone browsers will run client-
side JavaScript to support drill-down and other such effects. To support less capable devices, you can
design simple text reports rendered in HTML.

Report Items and Data Regions
Reports consist of items and regions that define the placement and format of data from a data source.
What’s interesting is that the Reporting Services architectural specification calls these things “controls.”
Application developers familiar with text boxes and tables are also likely to refer to them by the same
name. However, the official term is Report Item — and that’s what we call them in this book.

In the Report Designer, you can place items or draw them onto the report body. If you have worked with
Visual Basic or Access forms, you are familiar with the practice of placing controls on forms. This is
pretty much the same environment. When you add a new report to a report project in Visual Studio
2005, the designer is displayed in the Layout view. Much of the Visual Studio functionality is exposed
using various utility windows. On the left side of the designer, you will find the Toolbox, which contains
all of the available report items, as shown in Figure 4-30. The Toolbox may be set to auto-hide by using
the pushpin icon in its toolbar.

95

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 95

Figure 4-30

Textbox Report Item
The Textbox item can be used to display data from a data source, calculations or expressions, or static
data, much like a label control in a Windows forms project. When you drag fields from the Fields list
onto the Report Designer, bound Textbox items are created. Common expressions can refer to a field in
the report.

The example shown in Figure 4-31 shows a Textbox used as a label and another Textbox bound to the
LastName field of the report data source.

Figure 4-31

Right-click the Textbox and select Properties from the pop-up menu to display the Textbox Properties
dialog, as shown in Figure 4-32.

Properties may also be viewed and set by using the standard properties sheet located to the right of the
designer. This window may be pinned out or will auto-hide by default. As shown in Figure 4-33, this
window contains quite a bit more detail than the custom properties window. However, the property
information is not as conveniently organized. Right-click to get to the most-common properties, and use
the properties sheet when you need to set other properties.

96

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 96

Figure 4-32

Figure 4-33

97

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 97

Line Report Item
Lines may be drawn in any direction and may be set to a variety of styles and colors, as displayed in Figure
4-34. The properties for a line are simple and mostly set using the Properties window or designer toolbar.

Figure 4-34

Some clever techniques are used to render lines in HTML. Reporting Services will typically try to render
content using the most effective way possible. For example, when outputting standard HTML, lines may
be rendered as table borders, as a DIV tag filled using a JavaScript function, or even using Virtual Reality
Modeling Language (VRML) commands. Like all reports, it’s the job of each format rendering extension
on the report server to use the appropriate technique to build each report element output.

Rectangle Report Item
A rectangle item can have many different uses. A rectangle is simply used to visually separate a region of the
report. It may be used to visually contain other items. If items such as text boxes, grids, and so on are placed
into a rectangle, all these items can be moved together by simply moving the rectangle. A rectangle may also
be used as a data container for data items and can be related to and repeated with a parent container (see
Figure 4-35).

Image Report Item
Images can be embedded into the report, linked to an external file, or obtained from a data source.
Images can be of the BMP, GIF, JPG, JPE, PNG, or X-PNG type. Adding an image in the designer is pretty
straightforward. A critical factor is that images are sized and cropped prior to being added to a report.
You can resize the image in the Report Designer, but this will not result in a smaller file size. Use a
graphics editing tool like the Office Picture Library, Adobe PhotoShop, or Macromedia Fireworks to
resize or crop the image and then save it to a new file. You can scale and fit an image to fit the image
item container, but it’s advisable to use image files that are already the correct size. This conserves disk
space, improves performance, and prevents image distortion.

Drag and drop an image item from the Toolbox onto the report. This will launch the Image Wizard dialog
(see Figure 4-36). Select the method you want to use; the image can be from a table in the database or a file
and may be linked or embedded into the report. Getting external image files to render correctly can be a
bit tricky at times due to file access permissions on the server. If in doubt, it may be easiest to either store
the image in the database or embed it into the report definition.

98

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 98

Figure 4-35

Figure 4-36

Embedded images are encoded as text and stored in the report definition file. Although this increases the
size of the RDL, it can simplify the deployment and configuration. Selecting the Project option will result
in a linked image using a file found in the project folder. Selecting the Database option will allow you to
extract an image stored in an Image or Binary type column within a database, exposed through your
data set. The Web option allows you to use a URL to reference an existing file either on the report server
or elsewhere.

99

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 99

Keep the default selection Embedded and click Next to show the image selection page shown in Figure
4-37. Click New Image and find your image file.

Figure 4-37

When you click Next, a summary is displayed with information about the image (see Figure 4-38).

Figure 4-38

100

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 100

If your picture data is stored in the database and the Database option is selected, the database field page is
displayed in the wizard. This gives you the option to derive an image file type from the image, as in
Figure 4-39.

Figure 4-39

Generally, the JPEG format is most conservative and PNG graphics are higher quality and more flexible.
The GIF and JPEG formats are most widely used on the Internet and are supported by all web browsers.
The GIF and PNG formats support transparency, but I have not had good results with transparent
images in Reporting Services. As a rule, if you need an image to appear nonrectangular (such as an icon
and indicator graphic), set backgrounds to white over a white report area, as shown in Figure 4-40.

Figure 4-40

101

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 101

Images, Background Color, and Transparency
The image item doesn’t have a BackgroundColor property. If an image is placed on the report body or a
container item with a background color, transparency effects will work as you would expect. If you place
an image in the cell of a table, the image replaces the text box that would normally occupy the cell,
which prevents that cell from having a background color. To work around this, place a rectangle in the
table cell and then place the image in the rectangle. This will give you the ability to set a background
color and then allows a transparent graphic to share the same space as the colored cell area.

Subreport Item
A subreport is a container for another report embedded into a parent report. The subreport can contain
practically any other report with its own, independent data source. It can optionally have its data linked
to a key or value in the main report, often referred to as a master/detail report. Subreports are an impor-
tant element in complex report designs. Figure 4-41 shows a simple report containing a master record
and related detail records in the subreport.

Figure 4-41

The design details of the subreport are not visible in the designer. This report is designed separately and
then inserted into the main report as a subreport item.

Be cautious about using subreports with large results. This report item is appropriate for embedding
unrelated content within a report that is bound to a different data source or for detail rows related to few
master records. Although this may be a useful technique for consolidating reusable report content, it can
be very inefficient when compared with some other techniques. For example, if you create a complex
query to return all related data in a single result set; a single table item may be used in place of the sub-
report and may prove to be more efficient.

Chart Report Item
The chart functionality in Reporting Services is really a simplified version of charting components that
Microsoft has licensed from Dundas Software. It’s a very capable and easy-to-use charting solution with
a variety of available chart types.

Probably the most common and most recognizable chart type is the column chart. The example in Figure
4-42 shows sales data for a given year, grouped by quarter and the sales territory. The total sales amount
is plotted on the Y-axis (columns) of the chart.

102

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 102

Figure 4-42

Bar charts and column charts are pretty much the same. You can tilt your head to the side to get the same
view as the other. Figure 4-43 shows the same data in a bar chart with values plotted on the X-axis (rows).

Figure 4-43

103

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 103

In addition to the standard, single-bar view, the stacked view provides a consolidated look at a series of
values by using fewer bars or columns. Each bar is like a mini-pie chart where each value in the bar’s
range is in proportion to the others. Figure 4-44 shows a standard stacked column chart. A series of
related values is stacked in the column to show the aggregate sum of values and their proportional val-
ues. A variation, the 100% stacked bar or chart, displays each bar with the same height or length as oth-
ers, regardless of the total values. This type of chart is useful for comparing values within the bars’ range
but not for comparing the aggregates represented by each bar.

Figure 4-44

One of the most powerful features of the chart item is the ability to group data within each axis. Figure
4-45 shows a simple column chart with two field groups defined on the X-axis, representing related cate-
gories. Columns are grouped by quarter and then by the sales territory country.

Figure 4-45

104

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 104

Pie charts put proportional values into perspective. This type of chart comes in two pastry types: pie and
doughnut. Values are presented visually as a percentage of the total for all values in a series. Pie and
doughnut chart views may be either Simple or Exploded. The exploded presentation may help to visually
separate values, especially the smaller slices. These types of charts can be useful for placing values into
comparative perspective (see Figure 4-46).

Figure 4-46

The example in Figure 4-47 shows a bubble chart. The size of the bubble represents values on a third
dimension, in addition to X- and Y-coordinates. Imagine that the bubbles are the same size and that
those “closer” to you appear larger.

Figure 4-47

105

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 105

A stock or candlestick chart plots three or four values in a range. The stock chart shown in Figure 4-48
plots prices, including the lowest purchase, last purchase, and the sales price. This may be useful for dis-
playing relative profit margins and cost variance.

Figure 4-48

In addition to the standard report items that ship with the product, application developers and third-
party companies can create custom report items (CRI) that may be installed and used in the designer. In
Chapter 7, I’ll show you how to use the Dundas Chart for Reporting Services custom report items. These
are advanced charts that exceed the capabilities of the built-in charts you just looked at. You are likely to
see more CRI suites for Reporting Services that will add even more capabilities to your reports.

Drill-Down and Drill-Through Reports
Although related, these are two different features. A drill-down report, shown in Figure 4-49, contains
related groups or sections of information. Each section can be expanded or collapsed to show or hide
pertinent information. In the following report, product categories only are displayed when the report
opens. Using the expand icon next to a category, the category group (in this case, Clothing) is expanded
to reveal a group of related subcategories. Expanding a subcategory (such as Bib-Short) reveals individ-
ual products within the subcategory.

A drill-through report may or may not include some drill-down functionality. Items shown in the report
may represent sections or more detailed information that may be viewed in a separate report. These key
items are displayed as hyperlinks and when a user clicks a link, a separate detailed report is displayed
for the item selected, as shown in Figure 4-50.

106

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 106

Figure 4-49

Figure 4-50

107

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 107

Tabular Reports
One of the most fundamental reports is a simple list of record values arranged in rows and columns.
Typical tabular reports display column headers above repeated row values. Rows may also be grouped
categorically and may be followed by totals, subtotals, or other aggregate values pertaining to a
grouping or the entire report.

The two common techniques used to obtain this design are by using either the grid control or the list
control. The grid control makes it easy to format rows and columns with column headers and supports
groupings, headers, footers, and multiple-row sections.

Grouping Data
Tabular or matrix data may be sorted and grouped on one or multiple levels. The table, list, and matrix
controls support this functionality. Groupings may be based on field values or expressions that may
include conditional qualifiers, functions, and combined values from multiple fields.

When values are grouped, they may need to be aggregated. This means that a row in the report layout
represents a rollup of multiple rows from the data source (such as the sum or average of a range of val-
ues). After introducing the data region items used to perform grouped operations, let’s take a closer look
at the aggregate functions that are used as rollup values within the group.

Table Report Data Region
The example in Figure 4-51, using a table, contains three groupings for product records on the Category,
Sub Category, and Product fields.

Figure 4-51

List Report Data Region
Using embedded list items allows greater flexibility over the formatting and placement of individual
report items. The list control may also be used as the basis for a more complex report with embedded
subreports, lists, matrices, or grids. Figure 4-52 shows a preview of a report with groupings created
using nested list items. The list item is useful for creating groups of repeated data that aren’t constrained
to a tabular format.

108

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 108

Figure 4-52

In the design for this report, there are four list controls placed inside one another. Data groups have been
created for each of the lists to organize them into a hierarchy. For the sake of clarity in this demonstra-
tion, each list control is drawn well inside its parent list, and the borders are made easier to see, as in
Figure 4-53. It is common for the list borders to share the same line space if you don’t need to create
additional white space around data elements typically on the right side and bottom borders.

Figure 4-53

Matrix Report Data Region
The matrix item produces a pivot table with automated drill-down functionality on both axes. This
matrix report contains the same groupings for row data as the previous report and also contains column
groupings for Product Category and Sub Category fields. The aggregate value in the center cells is the

109

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 109

sum of product sales for the intersection of each of the groupings. By default, values are aggregated and
rolled up within groupings. To view detail values, use the plus sign (+) icon to drill down in one axis
(rows or columns) and then do the same for the other axis. Figure 4-54 shows a matrix report that has
been expanded to show details on both the axes.

Figure 4-54

The matrix control takes care of the grouping functionality in this report. As you can see in Figure 4-55,
the design is fairly simple.

Figure 4-55

110

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 110

Subtotals
Although Reporting Services generically refers to these types of expressions as subtotals, they may be
used to perform any aggregation of grouped data. Subtotals may be added to a table’s footer row, to the
list control, or in the detail or grouping cells of a matrix. The following table is a list of aggregate func-
tions supported by Reporting Services.

Avg Average for all values in a range.

Count Count of all non-null values in a range.

CountDistinct Count of unique values in a range.

CountRows Count of all rows in a range, regardless of null values or
uniqueness.

First First value in a range based on current sort order.

Last Last value in a range based on current sort order.

Max Highest value in a range.

Min Lowest value in range.

StDev Standard deviation of non-null values.

StDevP Population standard deviation of non-null values.

Sum Sum of all values in a range.

Var Variation of non-null values.

VarP Population variance of non-null values.

Using the table item in Figure 4-56, let’s take a closer look at the summary rows and their aggregated
values. In this example, a table that has groupings on the Category and SubCategory fields is created.
Note that the grouping numbers in the row markers next to each row indicate the grouping level. The
detail row is selected and sandwiched between grouping levels 1 and 2. In the grouping footers and the
report footer, the aggregate functions Count, Sum, and Avg are used for the Color, StandardCost, and
ListPrice columns. In this report, an additional row is added for each of the grouping footers for the
columns (see Figure 4-56).

Figure 4-56

111

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 111

Aggregate expressions may be entered in different ways. The expression may be typed directly into the
text box or into the value property using the property sheet window or customer property page window.
Next to each applicable property, a button can be used to open the Expression Builder dialog box, which
can be used to assemble the expression. This is discussed in detail in Chapter 6.

Here is a condensed view of the same report shown in the print preview. Since you are using the Count
function on the Color field value, rows that don’t have a value in this column (the value is Null) have a
count of 0. First you see four sections with subtotals for the Sub Category field, and then, further down
the page, you see rollups for the Category and then for the entire report, as shown in Figure 4-57.

Formatting
Many data values need to be formatted appropriately because the default formats are usually not accept-
able. The following table shows common SQL Server data types and their unformatted defaults.

Data Type Default Display Example

Float Large number of decimal 123456789.123456
positions with no rounding 1.23456789012346E+19
r truncation. Large numbers
with no thousand separators
or scientific notation.

Decimal Large numbers with no thousand 123456789.1234
separators. The number of decimal
positions is defined by column’s
scale attribute.

Int, Large numbers with no thousand 123456789
SmallInt, separators.
BigInt

Money Up to four decimal positions. Large 123456789.1234
numbers with no thousand
separators.

Date Always displays date and time. 11/1/2003 3:34:26 PM
Seconds included.

Bit Displays the words True or False. True
False

If these values are not what you want to see in your reports, you will need to use the Format property of
each control to change them. The formatting capabilities of Reporting Services controls are based on the
formatting mechanics in the .NET Framework and use a form of regular expressions. Regular expressions
are very powerful and can be used to format values in just about any way imaginable. Expression strings
can range from simple to extremely complex. If you need to learn more about the advanced use of regu-
lar expressions, search the Visual Studio online help or the MSDN library for Regular Expression Language
Elements. For most of your needs, however, we’ll show you how to use the basics.

112

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 112

Figure 4-57

113

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 113

Standard Formatting
Standard, one-character strings may be used to specify formatting options for numbers and dates. One
advantage of using standard format strings is that culture-specific formats are automatically applied.
Depending on the application of the report, this could also be undesirable. For example, if a user whose
local computer was configured for a European regional locale were to view an invoice, he or she might
think they were buying a bike for a thousand Euros instead of a thousand U.S. dollars. In such as case, it
might be best to explicitly format the currency as U.S. dollars and then use a general format for dates, so
they appear to the European user in their native format. The best way to do this is to use standard format-
ting strings for both the currency and date text boxes and then set the Locale property for the currency to
the EN-US locale. Leaving this property blank for the date will cause it to be resolved when the report is
rendered based on the client settings.

There is plenty of information on this subject in Reporting Services Books Online. Unfortunately, there is
also a lot of extra information that just doesn’t apply to most reporting needs. The objective is to keep
this simple and show you only what you really need to know for the majority of reports. The following
table lists the common format strings that apply to numeric data types.

Format Description Example

C Currency $123,456,78.9.12

D Decimal 123456789
followed by optional precision specifier 000123456789 using D12

E Scientific notation 1.234568e+008
followed by optional precision specifier 1.234567891234+008 using E12

F Fixed-point 123456789.12
followed by optional precision specifier 123456789.123400000000 using F12

P Percent 12.35%
followed by optional precision specifier

The next table lists the common format strings that apply to date and time data types.

Format Description Example

d Short date 11/1/03

D Long date Saturday, November 01, 2003

t Short time 3:34 PM

T Long time 3:23:26 PM

f Full date and time Saturday, November 01, 2003 3:34 PM

F Full date and time Saturday, November 01, 2003 3:34:26 PM

g General date and time 11/1/03 3:34 PM

114

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 114

Format Description Example

G General date and time 11/1/03 3:34:26 PM

M or m Month November 01

Y or y Year month November, 2003

Explicit Formatting
In addition to the standard formatting techniques, you may also use an explicit format string to get more
control and deal with specific format needs. Keep in mind that the formatted output will be the same for
dates and currency even if the locale setting is changed for the server.

Again, the Reporting Services Books Online contains detailed information about specific formats for
string elements, so we won’t rehash that information here. What we will do, however, is show a few
common examples of explicit formatting. You can find the details about this topic under the topics
“Custom Numeric Format Strings” and “Custom DateTime Format Strings” in Books Online. The fol-
lowing table is a summary of some common format expression elements.

Format Element Type Description Example

Yyyy DateTime Four-character year 2004

Yy DateTime Two-character year 03

MMMM DateTime Month, full name August

MMM DateTime Month, three characters Aug

MM DateTime Month, two numerals 09 or 11

M DateTime Month, one or two 9 or 11
numerals

Dddd DateTime Weekday, full name Saturday

Ddd DateTime Weekday, three characters Sat

Dd DateTime Day, two numerals 04 or 15

D DateTime Day, one or two numerals 4 or 15

Hh DateTime Hour in 12-hour time, two 08 or 10
numerals

H DateTime Hour in 12-hour time, one 8 or 10
or two numerals

HH DateTime Hour in 24-hour time, one 08 or 23
or two numerals

H DateTime Hour in 24-hour time, one 8 or 23
or two numerals

115

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 115

Format Element Type Description Example

Mm DateTime Minutes, two numerals 35

Ss DateTime Seconds, two numerals 45

Tt DateTime 12-hour time using AM
or PM AM or PM

T DateTime 12-hour time using A or P A or P

0 Number Required numeral 09
placeholder

Number Optional numeral
placeholder

% Number Percentage .95 = 95%

. , : - / Any Literals 123.45
1,234
12:34 PM

Let’s use a common scenario as an example. Say that your company has offices around the world and
follows a corporate standard to use European-style dates, regardless of where users are located. Instead
of letting the system decide how to format dates, you want them to be explicitly formatted using your
corporate standard.

If you set the Format property of the date type controls to the string MMMM d, yyyy, the resulting date
will be displayed in this format: November 1, 2003.

Conditional Formatting
Under certain conditions, you may need to alter the format of a value based on an expression related to
other fields or conditions in the report. The use of different functions and expressions will be discussed
in Chapter 6. For now, let’s take a look at a couple of examples to explore the concept and some tech-
niques. The following is simply an example to demonstrate how regional formatting can vary and is not
a common business solution.

Let’s say that your company has locations in England, Germany, and the United States, and, for what-
ever reason (remember, we’re making this up), you want different rows to display information format-
ted for the corresponding locales. Each row in the underlying table includes a column named MyLocale
that holds your own two-character code for the locale. The industry has a five-character standard known

116

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 116

as the RFC1766. Your codes are loosely translatable to this standard. Based on the anticipated values in
this column (UK, DE, or US), you will display currency and date information in the corresponding for-
mat. The objective will be to format the date and currency values as shown in the following tables.

Value Locale Formatted Value

November 1, 2003 US 11/1/03

" UK 1/11/03

" DE 1.11.03

12345.1234 US $1,234.12

" UK £1,234.12

" DE 1.234,12€

A control’s property may be set to an expression that will actually parse and set the property value for
the row as it is rendered. There are a few techniques to do this; one is to use the Immediate If or IIf
function. This works if you have one condition to test and two possible outcomes. A more powerful tech-
nique is the Switch function. It works like the Switch statement in C# and like the Select Case state-
ment in VB rolled into one. This technique will be used to set the Format property of the date. For the
text box that will display this value, use the following expression:

=Switch(Fields!MyLocale.Value=”DE”, “d.MM.yy”, Fields!MyLocale.Value=”UK”,
“d/MM/yy”, Fields!MyLocale.Value=”US”, “M/d/yy”)

The currency value could be set the same way, except that the German form would be difficult to contend
with, since periods are used to designate the thousand separator and a comma is used for decimals. In the
German language, these characters have the opposite meaning. Fortunately, each control has a Language
property that is equipped to handle this and many other language- and culture-specific idiosyncrasies. By
dynamically manipulating this property in the same manner, you can reach your objective. Using the
Switch function, you can translate your two-character codes to the industry standard that uses five-character
codes. The following expression can be used to change the Language property of the currency text box:

=Switch(Fields!MyLocale.Value=”DE”, “de-DE”, Fields!MyLocale.Value=”UK”, “en-GB”,
Fields!MyLocale.Value=”US”, “en-US”)

Again, this is an example of one possible business problem and one possible solution. If this were a real situ-
ation, it might make more sense to store the actual culture information string in the table and simply set the
Language property of the control to that value pulled directly from the table. By the way, all of the sup-
ported culture information strings can be found in the MSDN library under the search key CultureInfo. The
sample report in Figure 4-58 shows the final result using the formatting examples just discussed.

117

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 117

Figure 4-58

Multiple Columns
A report can display list values in multiple columns. Values in a column snake from top to bottom and
then left to right. It’s important to note that Reporting Services can only do so much in HTML and that
some multicolumn reports can’t be rendered in some (or possibly any) versions of HTML, so your only
option may be to render these reports in PDF format.

Columns are defined for the body of a report. When the Columns property for the body is set to a value
greater than 1, the report page width should be set according to the following equation:

Report Page Width >= (Body Width x number of columns) + (ColumnSpacing x (number of
columns – 1))

For example, a report, that has a body width of 2.5 inches with three columns and the column spacing
set to 0.25 inches will yield a report width of 8 inches. If the report’s left and right margins were set to
0.25 inches each, this should fit neatly into an 8.5-inch page width.

The layout window shown in Figure 4-59 shows a report designed with these dimensions and property
settings.

Figure 4-59

This report is very simple and contains no headers or footers. You can add them to this report, but the
options are limited. You are limited to the width of the report body and the header will only show above
the first column. In order to use a report header wider than 2.5 inches in this example, you have to create
another report and use the multicolumn report as an embedded subreport. You learn more about creat-
ing subreports in Chapter 6. Keep in mind that some rendering formats (such as HTML) have difficulty

118

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 118

with multicolumn reports. Use this feature carefully and make sure that you test your report design
using all the rendering formats you plan to support. I have made a point to redesign multicolumn
reports to avoid this limitation whenever possible.

Pagination Control
Unlike traditional reporting tools such as Microsoft Access, Reporting Services doesn’t have one specific
report viewer. Since reports may be rendered in different formats and viewed in different browsers or
document viewers, page handling may be different for various rendering formats. For PDF and TIFF for-
mats, reports will naturally be paginated as the content exceeds the usable page height. In cases where
you need content to paginate uniformly, you can force page breaks using a number of different data con-
tainers or data ranges. For each of the following report items, right-click on the item and select
Properties from the pop-up menu to view the related properties dialog.

Page Breaks for a Rectangle
You can set a page break to occur before or after a rectangle. Using the properties dialog or properties sheet
for a rectangle, set one or both of the page break properties, as seen in Figure 4-60. If all you want to do is
set a page break at a specific location in a static report, you can use a rectangle with no border to do this.

Figure 4-60

These options are similar for each report item and may be set using either the properties dialog or the
designer’s properties sheet.

119

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 119

Page Breaks for a List
Since the list item is designed to repeat a group of bound report items, it is a natural place to force a page
break. Set these properties using the List Properties dialog. In addition to breaking before or after the
entire range of listed items, you can cause a list to fit onto one page if the rendered content permits this
to happen. If this property is checked, the rendering engine will test the length of the listed data and
move the entire list to the next page so that it fits.

Page Breaks for a Table
The table can have page breaks defined in much the same way that they are for a list item. A page break
may be set to occur immediately before or after the table. You can also try to fit all of the table data on
one page, in which case a page break will occur before the table. Breaks may be specified within the table
at data groupings. Grouping and sorting will be covered in greater detail in the next chapter. Once a
grouping has been defined for a table, the grouping and sorting properties dialog is accessible by select-
ing the grouping row in the table. Either right-click on the row selector and select Edit Group from the
pop-up menu or choose Grouping/Sorting from the standard Properties window.

Page Breaks for a Group
In the Grouping and Sorting Properties dialog, shown here in Figure 4-61, page breaks may also be
forced before or after the grouping.

Figure 4-61

120

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 120

Page Breaks for a Matrix
The matrix page break options are the same as for the table report item. As the matrix rows are
expanded, data will automatically span pages. If the content fits on one page and the Fit this matrix on
one page if possible option is checked, a page break will be placed before the content. You can also force
a page break immediately before or after the matrix content.

Page Breaks for a Chart
Page break properties for charts are available only in the standard Visual Studio properties window and
not in the custom properties dialog for the chart. You may set a page break immediately before or after a
chart by setting the Page Break At Start and Page Break At End properties, respectively.

Printing Considerations
An important issue to keep in mind is that unlike many other reporting tools, Reporting Services may be
displayed using a variety of report viewers or browsers. In the first generation of Reporting Services,
this posed a significant limitation for users printing reports. Today, there are two different options for
report printing: It can be managed by the application used to view the report, or users may print reports
from the Report Manager Web interface using the client-side print management control. Each rendering
format has its limitations and idiosyncrasies that can affect printed output. Rather than relying on the
printing features of Internet Explorer, Microsoft Excel, or the Adobe Acrobat Reader to print from these
different rendering formats; reports may be printed directly from the Report Manager using a simple
print dialog with pagination, margin, and page selection options. This ActiveX control runs as a client-
side component and will be installed on the user’s computer the first time it is used.

In cases where international users might need to access and print your reports, you may need to specify
a page size that will accommodate different paper sizes. For example, if you anticipate that a report will
be read and printed in the United States and Great Britain, the report content should fit on both U.S. let-
ter and A4 paper sizes (see Figure 4-62).

121

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 121

Figure 4-62

Summary
The purpose of this chapter was to introduce the Report Designer and get you started on designing a
report. Several features and design considerations were mentioned but not discussed in depth. In brief,
you learned:

❑ How to use Report Wizard to create a simple, tabular report.

❑ The fundamental building blocks, which include defining a data source and data set query,
grouping, and basic table layout.

❑ Reports are deployed to the report server using the settings defined in a report project.

❑ The basic use and function of each report item and how they are defined in the Layout tab of the
Report Designer.

This has given you an overview of a Report project in the SQL Server Business Intelligence Studio or
Visual Studio 2005 and the basic features of the Report Designer. Furthermore, importing reports from
Access will allow you to leverage existing report solutions. You can also use the features of Access you

122

Chapter 4

09_584979 ch04.qxp 1/27/06 7:39 PM Page 122

already understand as a learning tool. Designing reports for extensibility with different user environ-
ments, including different browsers, computers, and mobile devices, was also covered.

Different reporting formats can ensure formatting control and compatibility. Report items can be used to
display static values as well as data from a data source. Simple items such as text boxes may be repeated
and grouped in data ranges and list-type containers. More sophisticated report items such as the list,
table, and matrix may be used to create tabular and pivot reports that perform functions like aggregate,
subtotal, and group and provide drill-down and drill-through functionality.

Data formatting can be achieved using simple, standard format strings, explicit format expressions, and
conditional logic that uses programming functions and expressions. Several report items can be used to
paginate a report statically or based on the size and content of data regions.

By now, you should be comfortable using Visual Studio to create and extend a simple report project. The
next two chapters will expand on what you learned. Chapter 5 will address queries and accessing data
and then Chapter 6 will show you how to take report design to the next level.

123

Basic Report Design

09_584979 ch04.qxp 1/27/06 7:39 PM Page 123

09_584979 ch04.qxp 1/27/06 7:39 PM Page 124

Designing Data Access

In nearly all cases, reports are based on a data source of some kind. Therefore, the first order of busi-
ness when designing a report is to create a connection and define the queries necessary to retrieve
the report data. This chapter will discuss the essential first steps of report design — how to consume
data. Although this is typically simple and straightforward, there are a number of options to be con-
sidered when designing data sources and queries. Although SQL Server Reporting Services is pack-
aged with the SQL Server database product, it may be used with other database products as data
sources. This chapter discusses the following topics:

❑ Creating stand-alone and shared data sources.

❑ Designing queries and data sets.

❑ Using parameters to filter data at the database.

❑ Using parameters to filter data at the Report Server.

❑ Using Analysis Services and the MDX Query Builder.

❑ Obtaining data from other data sources.

Every report will have at least one data source (with the rare exception of a special-purpose report
that doesn’t use any data). The simplest of reports will have a single data source to provide data
for a single data set. The data source defines a connection as a string of text stored either in the
report definition file or in a separate shared data source file that can be shared among several
reports. This connection information may include security credentials. The data set defines a query
expression or a reference to query objects stored in the database. The data set is also contained
within the report definition. Figure 5-1 depicts how data flows to the report. The data source pro-
vides the ability to connect to the database, and the data set contains a query expression that pop-
ulates the report with data.

10_584979 ch05.qxp 1/27/06 7:34 PM Page 125

Figure 5-1

More complex reports may require multiple data sets to provide data for different data ranges or items
in the report or to feed values to parameter value selection lists. Data sets can be based on query expres-
sions from the same data source, as shown in Figure 5-2.

Figure 5-2

Multiple data sets can get their data from multiple data sources. This model would enable a report to
have parameter selection values be obtained from a local database and report data to be obtained from a
central data store. In some cases, data regions, subreports, and various report items might obtain data
from multiple sources through associated data sets, as shown in Figure 5-3.

Figure 5-3

Data Sources Datasets Report

Data Source Datasets Report

Data Source

Data Source=MyServer;
UserID=fred;pwd=xyz;
Initial Catalog=
MyDataBase

Dataset

SELECT WidgetID,
Name, StockValue
FROM WidgetSales

Report

126

Chapter 5

10_584979 ch05.qxp 1/27/06 7:34 PM Page 126

As you can see, almost anything is possible in terms of combining data sources and data sets. Data sources
can be practically any database product or any data source you can query by means of standard connec-
tion libraries or drivers. Reporting Services consumes data using the .NET data providers, which include
support for SQL Server, Oracle, and all OLE DB providers. These include almost any database product
that supports ODBC access or a capable ISAM driver. Data sets in Reporting Services are always read-
only, so there is no need to specify cursor types or locking options.

Reporting for Relational Data
In the previous chapter, you briefly looked at using the Query Builder. Now you’ll take a closer look at how
queries are created and how data is provided for a report. At this point, it’s important to understand the
basic building blocks for reports. The discussion will begin with some of these fundamentals. You will go
through several short walk-through exercises, so you can see and experience how it works. I am assuming
that you have used Visual Studio 2005 and you have created a report using the Report Wizard.

If you are a .NET programmer, as I am, you may have seen the term “data set” and thought, “I know
what a data set is, and I use them all the time in .NET data access program code, so I should have a leg
up on doing data access in Reporting Services.” If you are not a .NET programmer, you’re already a step
ahead of those programmers who have to relearn the application of this term. By the way, if you are not
a .NET application developer, you don’t need to concern yourself with this at all.

Why does the term “data set” mean two completely different things? We ran out of new words in the
English language a long time ago. Everyone knows that to be environmentally responsible we need to
recycle, so this is what we’re doing — recycling words and phrases. This one is a classic example. In
Reporting Services, you have the concept of a query in the report definition that provides data values for
the report output; our good friends at Microsoft decided to call this a Dataset. If you have worked at all
with programmatic data access in the .NET Framework, you should know that a Dataset is also an object
that stores a cache of data (perhaps from a query) as an XML structure in memory. Although these two
items may both handle data and deal with queries, result sets, and binding values displayed in a report,
they are two very different concepts. Now, since we have that straightened out, try this: If you were to
create a custom data source extension in program code, you might use an ADO.NET Dataset that would
serve as the Dataset for a report!

Query Basics
Reporting Services has the ability to obtain data from a variety of data sources. Nearly all relational
database products are queried using a form of Structured Query Language (SQL), which means that a
query created for one database product (say, Microsoft Access) may be portable to a different data source
(perhaps Oracle or SQL Server). Most database products implement a form of SQL conforming to the
ANSI SQL standard. SQL Server, for example, conforms to the ANSI 92 SQL standard, and other prod-
ucts may conform to other revisions (like ANSI 89 SQL or ANSI 99 SQL). Beyond the most fundamental
SQL statements, most dialects of SQL are not completely interchangeable and will require some under-
standing of their individual idiosyncrasies.

Other specialized database products may use a different query language. Microsoft SQL Server Analysis
Services is a data storage and retrieval product that uses multidimensional cube structures to organize
complex data for decision-support systems.

127

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:34 PM Page 127

The main point here is that you can use whatever query language your database product understands.
Reporting Services provides a query editor designed especially for Transact-SQL and a generic editor
that will accommodate other query languages and SQL dialects.

Data Sources
A data source contains the connection information for a data set. Data sources either can be created only
for a specific report data set or may be shared among different reports. Since most reports will get data
from a common data source, it often makes sense to create a shared data source. There are a number of
advantages in using shared data sources. Even if you don’t have several reports that need to share a
central data source, it takes no additional effort to create a shared data source. This may still be advanta-
geous in this case as the data source is managed separately from each report and can be easily updated
if necessary. Then, as you add new reports, the shared data source will already be established and
deployed to the Report Server.

In a Visual Studio report project there are three different ways to create a data source:

❑ Creating a data source in the Report Wizard.

❑ Creating a data source from the Project Add Item template.

❑ Creating a data source when defining a data set.

Let’s look at each of these in detail.

Creating a Data Source in the Report Wizard
For this exercise, you may create a new report project or open an existing report project. From the
Solution Explorer, right-click the Reports folder and choose Add New Report to launch the Report
Wizard. The first page in the wizard will give you the opportunity to select an existing shared data
source or create a new data source, as shown in Figure 5-4.

Creating a Data Source from the Project Add Item Template
In the Solution Explorer, point to Reports. Right-click, and choose Add➪Add New Item. The options in
this dialog include Report Wizard, Report, and Data Source. Selecting the Data Source option creates a
shared data source.

The following is an example of the standard Data Link Properties dialog used to define a data source.
If your database server was named DWServer, this name would be selected or entered in the first box,
under step 1 in this dialog, as shown in Figure 5-5.

If you are working with a local development database server installed on the same computer, you can
enter . (a period) or localhost. Otherwise, enter the name of the database server. In step 2, you choose
the security authentication method to be used by the database server to check security credentials.
SQL Server may be configured to use Integrated Windows Security or both SQL Server Security and
Integrated Windows Security. In a development environment, integrated security is a simple choice.

Finally, you select or type the database name.

128

Chapter 5

10_584979 ch05.qxp 1/27/06 7:34 PM Page 128

Figure 5-4

Figure 5-5

129

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:34 PM Page 129

Creating a Data Source When Defining a Dataset
If you create a new report without using the Report Wizard, data sources are selected or created from the
report designer. With the report open in the designer, make sure you’re on the Data tab. From the Data
set drop-down list, select New Data set to get the dialog shown in Figure 5-6.

Figure 5-6

Select a New Data Source from the data source drop-down list, and this will open the Data Link
Properties dialog with the same options as selecting the Data Source new item template.

Regardless of the method used, a data source is simply a connection string saved into the report defini-
tion or shared data source file.

Data Sources and Query Languages
The examples in this chapter will all use SQL Server 2005 sample databases. When creating a data
source, if you choose any data provider other than SQL Server, queries must be written in the query lan-
guage appropriate for that product. For most relational database products, this will be a dialect of SQL.
For example, Oracle uses a version of SQL called PL/SQL, and Microsoft Access understands Access
SQL. Some providers require unique types of query expressions or scripting code specifically designed
for that data source environment.

When defining a data set’s query expression, the designer will display one of the two similar query win-
dows. If you are using the SQL Server data provider, the Transact-SQL Query Builder will be displayed.
In the case of another data provider that uses another query language or dialect of SQL, a generic query
window is displayed.

To query cube structures in Analysis Services, a specialized expression language called Multidimensional
Expressions (MDX) is used. The current implementation of Reporting Services supports MDX with some
limitations. Unlike the Cube Browser in Analysis Services and other specialized multidimensional data

130

Chapter 5

10_584979 ch05.qxp 1/27/06 7:34 PM Page 130

query tools, reports are based on data that is flattened to two-dimensional structures and represented as
rows and columns like a SQL query.

In this sample MDX query expression for the AdventureWorks DW OLAP database (included in SQL
Server 2005 Analysis Services):

“ SELECT { [Measures].[Sales Amount] } ON COLUMNS,
{ ([Reseller].[Reseller Type].[Reseller Name].ALLMEMBERS * [Ship
Date].[Calendar].[Month].ALLMEMBERS) }
ON ROWS FROM [Adventure Works] “

I will cover the use of Microsoft Analysis Services and other data sources later in this chapter in the sec-
tion “Reporting for Analytical Data.”

Filtering Techniques
When retrieving report data from a data source, it’s important to consider the most efficient means for
filtering report data based on the user’s selection criteria. Many databases contain large amounts of
data. Therefore, it is always important to retrieve just the right amount of data required for reporting.
At times, a report will only be used to view data for a narrow range of values, and at other times the
user may specify different criteria, causing the report to render a varied range of related values. In the
case of a narrow range of possible values, it makes more sense to retrieve only the associated data.
However, if users will specify different criteria during a session — causing the data source to be requeried
multiple times — it could prove to be slow and an inefficient use of resources.

In Figure 5-7, parameters presented to the data source cause data to be filtered and return only the data
for a single rendering of the report. The data set represents the database server’s result set on the client
side (the Report Server). As you see in the diagram, this is small volume of data since it has already been
filtered at the database.

Figure 5-7

Database

Stored
Procedure
or Query

Database Server
(data provider)

Report Server
(data consumer)

Report
Dataset

Filtered
Data

Parameters

Network
Traffic

Result Set

131

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:34 PM Page 131

By passing selection criteria parameters at the database object level, network traffic can be greatly
reduced and the report is rendered more efficiently. However, if the user will be providing different
parameter values to render several views of the same report within a session, the database will be
queried repeatedly, perhaps resulting in longer overall wait times and much of the same data will be
moving across the network multiple times. In Figure 5-8, a larger volume of data is returned from the
database server since it is unfiltered. Filtering then occurs by using report parameters on the Report
Server.

Figure 5-8

If all of the data necessary for each query to be executed in a user’s session is obtained in one result set,
it will result in a greater volume of network traffic for a single execution. However, it may reduce subse-
quent report rendering times.

Selection parameters may be applied to data at the report level rather than at the data source. Since all of
the data is cached (held in memory), reports will be rendered much faster. This technique can reduce the
overall network traffic and rendering time.

You certainly don’t want to retrieve unnecessary data from the data source, so a combination of these
two techniques may be the appropriate solution, depending upon specific reporting needs. For example,
if you are a regional sales manager and you wish to get sales summaries for each of the territories within
your region, you may begin your session by retrieving all of the regional sales data for a range of dates.
For each territory report, this data is simply filtered down to the territory level.

Parameter Concepts
Although I don’t believe this to be overly complicated, at first I found the whole parameter puzzle to be
a little confusing until I had a chance to do some creative things with parameters in both queries and
report expressions. To lessen your agony (and hopefully shorten your learning experience,) I’ll explain
how parameters are defined in simple queries and reports, and I’ll also explain how you may need to
use (and define) parameters in more complex reports.

Database

Stored
Procedure
or Query

Database Server
(data provider)

Report Server
(data consumer)

Report
Dataset

Unfiltered Data

Parameters

Network
Traffic

Result Set

132

Chapter 5

10_584979 ch05.qxp 1/27/06 7:34 PM Page 132

There are two (and possibly three, depending on your query technique) different types of parameters
with which you may contend in report design: data set parameters and report parameters. Data set
parameters may be derived from database objects such as stored procedures and user-defined functions.
Figure 5-9 shows you that there may be three different layers in the design process where you may
encounter parameters.

Figure 5-9

When using SQL Server as the data source, parameters are defined in the SQL syntax by prefixing the
names with a single @ symbol. In a stored procedure, these parameters are defined first and then used in
the procedure body much as you would use an ad hoc query. The report designer generates correspond-
ing report parameters. The third section of Figure 5-9 shows the Report Parameters dialog open with the
two derived parameters. If you use the Graphical Query Builder or Generic Query Designer to write a
typical Transact-SQL statement, the report designer will resolve data set parameters and database object
parameters and create corresponding report parameters automatically. Data set parameters are mapped
to report parameters in the Data set Properties dialog, shown in Figure 5-10. This dialog is accessible
from the ellipsis (...) button next to the data set drop-down list in the Data tab of the report designer.

For basic queries, the report designer will populate this dialog and match the parameters for you.
However, if you have created a complex or unusual data set query, you may need to match the data set
and report parameters manually. Parameter resolution is performed on a number of events, which
include when the refresh button is pressed, when another data set is selected, or when moving off of the
Data tab in the report designer.

When working with unusual queries that may require manual intervention, I recom-
mend that you keep a backup copy of the last working version of the report and
copy the query text to Notepad just in case you need to revert to it.

133

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:34 PM Page 133

Figure 5-10

Filtering Data with Query Parameters
Parameters are often used to filter data at the data source. Whether the data is to be filtered within the
report or not, filtering at least some of the data within the database is an essential technique for most
report solutions. If you have created parameterized stored procedures in SQL Server, you are already
familiar with this pattern. The technique applies to stored procedures and query expressions that use
very similar syntax. Let’s start with a simple ad hoc query expression and then we’ll move on to creating
a stored procedure.

Query parameters begin with the @ symbol and must conform to the naming convention standards for
Transact-SQL identifiers. The name should not contain spaces or certain punctuation characters and
can’t begin with a numeral; for simplicity, just use letters. In stored procedures, parameters must be
declared before they are used. In an ad hoc query, simply make up parameter names when you need
them. In the WHERE part of a SQL statement, use a parameter to represent a variable valuable as follows:

SELECT * FROM Products WHERE ProductID = @ProductID

In this case, the parameter has the same name as the corresponding field name, but this isn’t necessary. If
you want to use the Query Builder to create a more complex query, parameters may be specified in the
Criteria column of the builder grid. This is shown in Figure 5-11.

In this example, rows will be returned for records where the ListPrice column value is less than or equal
to the value specified using the @ListPriceMax parameter.

134

Chapter 5

10_584979 ch05.qxp 1/27/06 7:34 PM Page 134

Figure 5-11

Report Parameters
In addition to report parameters derived from data set parameters, you may add report parameters of
your own. These report parameters (that do not have corresponding query parameters) can be added to
support additional report functionality, such as hiding and showing report sections, page numbers, and
dynamic formatting.

The following example demonstrates some simple report parameters used to dynamically set values on
the report. Later we’ll apply this technique to some practical report features. This example is intended to
demonstrate two very simple report parameters for academic purposes.

Create a new report without using the wizard. You can do this by selecting Add and then Add New Item
from the Solution Explorer’s right-click menu; select Report from the report item templates in the Add
New Item dialog. Do not specify a data set for the new report, and then switch to the Layout view in the
report designer.

Report parameters are added using the Report Parameters dialog. Select the Report item in the Properties
window and click the ellipsis (...) button next to the ReportParameters property.

135

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:34 PM Page 135

As you see in Figure 5-12, the ReportTitle parameter is a string value with the default set to Report Title.
The TextColor parameter is similar and has a default value set to Blue.

Figure 5-12

Drag two text box items from the Toolbox window onto the body of the report in the report designer.
Normally it’s a good idea to give items an appropriate name (especially if they are to be referenced in
an expression), but this isn’t necessary in this simple example.

Set two properties for these text boxes: the Value property for each text box and the Color property of
the second text box, according to the following instructions. The designer displays the value property
in the text boxes, but it’s a good idea to change these property values in the standard properties window
or the custom text box Properties dialog (right-click the text box and choose Properties).

The first text box will get its value from the ReportTitle parameter. Set its Value property to
=Parameters!ReportTitle.Value and set the Value property of the second text box to =”This Text
is “ & Parameters!TextColor.Value. Select the second text box and set its Color property to
=Parameters!TextColor.Value (see Figure 5-13).

Figure 5-13

136

Chapter 5

10_584979 ch05.qxp 1/27/06 7:34 PM Page 136

You can also change the FontSize and FontWeight properties if you prefer to dress things up a bit
more. I’ve also added a line to the report.

Now, click the Preview tab and notice what happens. The ReportTitle and TextColor parameters are
displayed in the header of the preview window with the default values, and these values are displayed
in the report.

Try changing the ReportTitle and Color using the parameter fields in the header, and click the View
Report button to refresh the report preview. The first text box should display the text entered into the
ReportTitle parameter, and the second text box should not only display the specific color name but
the text should also be displayed in that color, as in Figure 5-14.

Figure 5-14

As you can see, this is an effective way to feed values to the report to be used in expressions. We will
expand this technique to provide filtering and dynamic formatting.

Basing a Parameter on a Query
Whether report parameters are derived from query parameters or created within the report explicitly,
they may be used for a variety of things in the report. Often, it will make sense to let your user select
from a list of items to supply a parameter value. Parameter items may be populated from a static list or
from a data-driven query.

Parameter values can be selected from a data source through a data set that is set up within the report
designer like any data set you would use for the report itself. A report may contain any number of data
sets, some to supply parameter values and others to supply data for items within the report.

Using the sample Northwind database for a simple example, your report may be driven by a data set
that selects records from the Products table where the CategoryID matches a user-specified parameter
value. The CategoryID parameter values would be based on another data set that selects the CategoryID
and CategoryName columns from the Categories table. In Report Manager, the user simply selects a cat-
egory name from a drop-down list, and then the report is viewed showing only products that match the
selected category.

In the upcoming walk-through exercise, you will create different parameters that will not only drive the
report but will filter the values for multiple related parameters.

137

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:34 PM Page 137

Cascading Parameters
The behavior I just described is what we call cascading parameters. This is a feature in the Report Manager
that allows one parameter value selection to cause another parameter list to be populated with related
values. There will be times when you may want to filter a list of parameter values based on another
parameter selection. In the earlier example for product categories and products, let’s say that the selec-
tion from the Products table is to provide another parameter value that will be used to generate a report
of sales records for the selected product. In this case, you may want to select the category first. This
would give you a filtered list of products that would be used to select a specific product. The product
selection would then be used to render the sales report.

I’ll use another example from the AdventureWorks2000 database. I’ll raise the bar just a little more and
create three different parameters to drive a fairly simple walk-through example. The outcome of this
exercise will be a report showing stores in a given location. You will be prompted to select a country.
When the country is selected, related states or provinces will be listed. Making a selection from this list
will make cities available. Selecting an item from this list will drive the report data — a list of stores in
the selected city.

This walk-through requires that you either complete the steps in the preceding chapter or that you
already know how to create a report project and a shared data source.

To begin with, add a new report to a Visual Studio report project. From the Solution Explorer, right-click
on Reports and choose Add and then Add New Item. Select Report from the templates list and give it
any name you like. I’m calling mine Cascading_Parameters. I know that it’s not very imaginative, but it
makes the point.

In the report designer, you should be looking at the Data tab at this point. Drop down the list labeled
Dataset and select New Dataset. The dialog shown in Figure 5-15 will appear.

Figure 5-15

138

Chapter 5

10_584979 ch05.qxp 1/27/06 7:34 PM Page 138

Enter the name Country_List for the new data set. Select or create a shared data source for the
AdventureWorks database (the one you created in the previous chapter), and then click the OK button
to move to the Query Builder window.

Rather than going through the whole Query Builder procedure, here is the SQL statement to type into
the SQL pane. Place the cursor in the third pane down in this window (between the two grids) and type
the following code:

SELECT CountryRegionCode, Name
FROM CountryRegion
ORDER BY Name

Note that the carriage returns and most of the spacing are optional. The only critical spaces are between
the words ORDER and BY. Everything else should have one or more spaces. This query doesn’t use any
parameters since it won’t be filtered.

Drop down the Dataset list, choose New Dataset, and repeat the preceding steps to create a new data set
called StateProvince_List. The SQL expression for this data set can also be typed into the Query Builder
window:

SELECT StateProvinceID, StateProvinceCode, CountryRegionCode
FROM Person.StateProvince
WHERE CountryRegionCode = @CountryRegionCode
ORDER BY StateProvinceCode

If you used the Query Builder to create this expression, there may be some additional parentheses. These
are unnecessary and, again, the spacing and returns are not particularly important.

This expression does include a parameter, @CountryRegionCode, which will get its value from a row
selected from the previous data set. A corresponding parameter will be created for the report called
CountryRegionCode.

Drop down the data set list and create a third data set called City_List. Like the last data set, this one
also includes a parameter that will get its value from the selected state or province. Type the following
SQL statement for this data set:

SELECT StateProvinceID, City
FROM Person.Address
GROUP BY StateProvinceID, City
HAVING StateProvinceID = @StateProvinceID
ORDER BY City

There is no table exclusively for cities, so you can use the Address table and grouping on the City col-
umn to eliminate duplicates. This query will return a list of cities for the selected state or province by
using the StateProvinceID parameter.

Finally, you will need to create the data set for the report itself. The SQL for this is going to be a little
more complicated. Due to the normalized design of the AdventureWorks2000 database, it takes several
tables to take you from a city to a store with the necessary report values. Let’s use the Query Builder for
this one.

139

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:34 PM Page 139

If you prefer, you may skip the following Query Builder steps and type the SQL statement directly into
the SQL pane.

Add one more data set and call it Stores_By_City. Use the toolbar to switch to the Graphic Query
Designer and click the Add Table toolbar button (or right-click the top pane and choose Add Table) and
add the tables illustrated in Figure 5-16 in the following order: Address, CustomerAddress, Customer,
Store, StateProvince, and CountryRegion.

Figure 5-16

The joins will be added automatically by the Query Builder. An additional join will be added between
the StateProvince and CountryRegion tables. To remove the join, click once on the line and then press
the delete key.

In the second pane, select the table columns in the order you see here. You can either use the drop-down
lists in the grid for the column and table or check them in the table diagram in the first pane. Since the
Store and CountryRegion tables both contain columns called Name, you can use aliases to make these
column names more descriptive. Enter the alias names as you see in the grid in Figure 5-17.

Figure 5-17

Finally, enter the query parameters @StateProvinceID and @City as you see here. This data set should
be complete. To check it, compare this SQL statement with the one in the Query Builder:

SELECT Sales.Customer.CustomerID, Sales.Store.Name,
Person.CountryRegion.Name AS CountryName,
Person.StateProvince.StateProvinceCode, Person.Address.City,
Person.StateProvince.StateProvinceID

FROM Sales.Customer INNER JOIN Sales.CustomerAddress
ON Sales.Customer.CustomerID = Sales.CustomerAddress.CustomerID
INNER JOIN Sales.Store

140

Chapter 5

10_584979 ch05.qxp 1/27/06 7:34 PM Page 140

ON Sales.Customer.CustomerID = Sales.Store.CustomerID
INNER JOIN Person.Address
ON Sales.CustomerAddress.AddressID = Person.Address.AddressID
INNER JOIN Person.StateProvince
ON Person.Address.StateProvinceID = Person.StateProvince.StateProvinceID
INNER JOIN Person.CountryRegion
ON Person.StateProvince.CountryRegionCode
= Person.CountryRegion.CountryRegionCode

WHERE (Person.Address.City = @City)
AND (Person.StateProvince.StateProvinceID = @StateProvinceID)

Let’s now look into configuring parameters.

Switch to the Layout tab and select the Report item from the Properties window drop-down list. Click
the ellipsis button next to the ReportParameters property. This opens the Report Parameters dialog, as
seen in Figure 5-18.

Figure 5-18

The CountryCode parameter will get its values from the Country_List data set. Like most typical lookup
tables, the key value is not intended to be a user-readable value but is used to indicate the selected coun-
try for related tables through a foreign key relationship.

Select this parameter in the Parameters list box and then enter Country for the prompt. This is the cap-
tion the user will see next to the parameter drop-down list when they view the report. Ensure that all of
the check boxes are unchecked to indicate that the user must select a value from the drop-down list.

The parameter drop-down list will display values in the Name column and return the corresponding
value in the CountryRegionCode column. Set the Label field and Value field properties accord-
ingly. Finally, indicate that there is no default value by selecting the last radio button, and click OK when
you’re done.

141

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:34 PM Page 141

We will repeat this process for the other two parameters. Use the following Report Parameters screen
diagram to set these properties.

The StateProvinceID parameter is configured as shown in Figure 5-19.

Figure 5-19

The properties for this parameter are set much like they were before. This time use the StateProvince_List
data set as the drop-down list data source. You should remember that this data set contains a query param-
eter called CountryRegionCode. The reporting engine is smart enough to make the connection between
the Value field of the previous parameter’s data set and this data set’s corresponding parameter. One
parameter selection will filter the list for the next parameter as long as the parameters are listed in their
order of dependency.

The final parameter, City, is configured, as shown in Figure 5-20.

Much like the previous parameter, the City parameter gets its value list from the City_List data set, which
contains a query parameter related to the value field selection for the StateProvinceID parameter.

Designing the report is easy. I’ve made it a point to size the text box items so that you can read their
value properties in this view of the report designer (see Figure 5-21).

The wide rectangle at the bottom of the report body is a list item. Drag this from the Toolbox to the
report body first and set its DataSetName property to Stores_By_City. The Toolbox is located on the
left side of the Designer window and has a little wrench-and-hammer icon.

The easiest way to create data-bound text boxes is to drag fields from the fields list (located on the left
side near the Toolbox). With the fields list open, drop down the list at the top and select the Stores_By_
City data set. Now, drag the CustomerID and Name fields onto the list item you created earlier.

142

Chapter 5

10_584979 ch05.qxp 1/27/06 7:34 PM Page 142

Figure 5-20

Figure 5-21

From the Toolbox, drag two text boxes above the list and change the Value properties to Customer ID
and Store, as shown in Figure 5-22. The Stores By Location, Country, State/Province, and City
text boxes are also unbound and serve only as static labels.

Drag and drop the CountryName, StateProvinceCode, and City fields to the right of the corresponding
text boxes near the top of the report body.

Note the value of these three items contains some additional information. An aggregate function (like
the First function used here) is necessary when an item isn’t contained in a list, grid, or other container
item that repeats rows of data. Since this report defines more than one data set, the data set name is
required in the second argument of the First function.

With these settings in place, you should be able to preview the report and see the results. Switch to the
Preview tab and select a country from the drop-down list.

143

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:34 PM Page 143

As shown in Figure 5-22, select United States from the list and the State/Province parameter list is
enabled.

Figure 5-22

Drop this list down and you will see that it contains only states in the United States. Select AZ for Arizona
and the City parameter list becomes available.

Drop down the City list, select Phoenix, and click the View Report button, as shown in Figure 5-23.

Figure 5-23

As you can see, the report manager offers a great deal of built-in functionality for using parameters with
very little effort. Even in Microsoft Access, getting this kind of behavior would have required writing
some code.

Multi-select Parameters
This new feature in SQL Server Reporting Services 2005 takes parameterized reports to the next level.
Any parameter based on a select list, either static or data-driven, can be a multi-select parameter. Setting
up multi-select parameters is quite easy. Working with them in queries can take just a little more effort,
but in all, it’s not hard to build a report using this feature. If you are using Analysis Services, the MDX
query builder creates multi-select parameters and all of the supporting query script from start to finish.
If you are using SQL, it does not. The following example takes you through the steps to create a SQL
report with a multi-select parameter.

I’m going to work backwards to show you the mechanics of the process. This simple report will display a
list of products for selected product subcategories. Before I create the SQL query for the main data set, I’d
like to show you how the parameter is configured. Figure 5-24 shows the Report Parameters dialog for my
ProductSubCategory parameter. To enable this feature, I simply check the Multi-value property box.

144

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 144

Figure 5-24

This does two things. First, it changes the value returned to the @ProductSubCategories query param-
eter. Now, I’ll show you the query that provides the values for this parameter. This is the SQL query for a
data set called Product_SubCategory_List:

SELECT ProductSubcategoryID, Name
FROM Production.ProductSubcategory
ORDER BY Name

As you see, the parameter value is provided by the ProductSubCategoryID column, an Int type identity
key value. But when multiple values are selected and this parameter is passed back to the main data set,
the parameter value is converted to a string containing a comma-delimited list of keys. This is just the
right thing for use with the Transact-SQL IN() function. In a single-select query, the WHERE clause would
look something like this:

WHERE ProductSubCategoryID = @ProductSubCategoryID

But, in a multi-select enabled query, the parameter is passed to the IN() function like this:

WHERE ProductSubCategoryID IN(@ProductSubCategories)

Here’s the entire query:

SELECT *
FROM Production.Product
WHERE ProductSubcategoryID IN (@ProductSubCategories)

When the deployed report is run in the Report Manager, the parameter drop-down list is replaced with a
drop-down check box list. You see this in Figure 5-25.

145

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 145

Figure 5-25

An interesting fact is that there is no such thing as a drop-down check box list in HTML. So, how is this
possible? This feature is implemented using some very creative JavaScript programming. Finally, the
rendered report is displayed in Figure 5-26.

Figure 5-26

Notice that the collapsed parameter list shows a comma-delimited list of subcategory name values
rather than the key values that were passed into the query. This is because the list displays the selected
members using the Label property rather than the Value property of the parameter.

Here’s an interesting challenge: I told you that the query parameter returned a comma-delimited
list of selected values to use with the IN() SQL function. I would like to display a similar list,
perhaps of the user-friendly Label values in the report header to document the selected items
from the parameter list. However, when I reference the parameter in an expression (using either
Parameters!ProductSubCategories.Value or Parameters!ProductSubCategories.Label),

146

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 146

this returns an error. I can check the query parameter mapping in the data set, and it’s set to
Parameters!ProductSubCategories.Value as you would expect. How is this possible?

When you check the box in the Report Parameters dialog to enable the Multi-value feature, the parameter
value (and Label) properties are managed as an array instead of single value. If you use the expression
builder to reference the parameter, you’ll see that it references only the first element in the multi-select list,
using index zero:

=Parameters!ProductSubCategories.Label(0)

Why zero and not one for the first element? It’s a programming thing. In Visual Basic, when arrays and
collections are enumerated, the first index value is zero. This means that if there were four elements, the
indexes would be 0 through 3.

Now, back to the query for the main data set. Behind the scenes, the array is parsed and selected values
are converted to a comma-delimited list for use in the query. To use these values in a similar manner
within the report requires some programming. The following Visual Basic function may be used to con-
vert the parameter Label property array into a string value for use in the report header (see Figure 5-27):

‘ **
‘
‘ Accepts parameter array of any data type
‘ and returns a comma-delimited string of
‘ parameter values.
‘
‘ Paul Turley, 11/17/06
‘
‘ **
Function ParameterList(ByVal Parameter As Object) As String

Dim sParamItem As Object
Dim sParamVal As String = “”

For Each sParamItem In Parameter
If sParamItem Is Nothing Then Exit For
sParamVal &= sParamItem & “, “

Next
‘-- Remove last comma & space:
Return sParamVal.SubString(0, sParamVal.Length - 2)

End Function

Figure 5-27

147

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 147

Using Stored Procedures
What the best way to go about querying a data source is will depend highly on your requirements. Refer
back to the earlier discussion about filtering techniques where processing parameters (on the database
server, the client, or both) affects performance, efficiency, and the flexibility of your reporting solution.
Handling parameters on the database server will almost always be more efficient, while processing
parameters on the client will give you the flexibility of handling a wider range of records and query
options without needing to go back to the database every time you need to render the report.

Using a parameterized stored procedure is typically the most efficient means for filtering data since it
returns only the data matching your criteria. Stored procedures are compiled to native processor instruc-
tions on the database server. When any kind of query is processed, SQL Server creates an execution plan,
which defines the specific instructions that the server uses to retrieve data. In the case of a stored proce-
dure, the execution plan is prepared the first time it is executed and then it is cached on the database
server. In subsequent executions, results will be returned faster since some of the work has already been
done. Stored procedures for SQL Server can be created in three different places: the SQL Enterprise
Manager, the SQL Query Analyzer, or Visual Studio’s integrated Query Builder.

In the next exercise, you create a stored procedure that will be used to create a columnar report. This is
performed using the Server Explorer to obtain a connection to the database server and then manage
objects on the server.

In Visual Studio open, you can see the Server Explorer (located on the left side of the designer by default).
If it’s not there, you can enable this window using the View menu. To manage the objects in a database, you
must first define a connection to your database server. To do this, right-click the Data Connections item and
choose Add Connection from the menu. The Add Connection dialog is very similar to the one you used to
define a report data source. After saving the connection, expand it using the plus sign and then right-click
on Stored Procedures. From the pop-up menu, select Add New Stored Procedure, as shown in Figure 5-28.

Figure 5-28

This action will open a new Designer window to create a new stored procedure. The text in Figure 5-29
demonstrates the basic structure of a simple stored procedure.

148

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 148

Figure 5-29

You will replace the procedure name and parameters and add a Transact-SQL statement to complete the
procedure.

Note that the line numbers shown in the left side of the code window are an optional feature of the Visual
Studio editor and are not part of the stored procedure text. If you don’t see them, don’t worry about it.

Highlight the procedure name (dbo.StoredProcedure1) and replace it with spGetStoresByLocation.
Highlight all of the green-colored text in the block including the /* and */, delete it, and replace it with:

@StateProvinceCode Char(2),
@City nVarChar(30)

The spacing and indentation isn’t important. Highlight and delete the text /* SET NOCOUNT ON */
and then right-click in this location. From the pop-up menu, select Insert SQL. In the Query Builder, type
the following into the third pane down (between the grids in the second and fourth panes):

SELECT Sales.Store.Name AS StoreName, Person.StateProvince.StateProvinceCode,
Person.StateProvince.Name AS StateProvinceName, Person.Address.City

FROM Sales.Customer
INNER JOIN Sales.Store
ON Sales.Customer.CustomerID = Sales.Store.CustomerID
INNER JOIN Sales.CustomerAddress
ON Sales.Customer.CustomerID = Sales.CustomerAddress.CustomerID
INNER JOIN Person.Address
ON Sales.CustomerAddress.AddressID = Person.Address.AddressID
INNER JOIN Person.StateProvince
ON Person.Address.StateProvinceID = Person.StateProvince.StateProvinceID

WHERE (Person.StateProvince.StateProvinceCode = @StateProvinceCode)
AND (Person.Address.City = @City)

ORDER BY Person.Address.City, StoreName

Again, using spaces and indentation (as well as carriage returns) is not mandatory, but is a good practice
for increasing the clarity of code and reducing errors. If you are familiar with the Query Builder, you can
build this query in the table diagram and column grid panes rather than typing all of this into the SQL
pane. Close this window and confirm that you want to save changes and update the stored procedure
with this expression. The finished stored procedure should appear as shown in Figure 5-30.

Go ahead and close this window and save any changes if prompted. The stored procedure should show
up in the Server Explorer tree under the stored procedures branch.

149

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 149

Figure 5-30

Next, create a new report and use this stored procedure as the data set. In the Solution Explorer, right-
click on Reports and select Add➪New Item. In the Add New Item dialog, select Report and enter the
report name Stores By Location. Click Open to create the new report. On the Data tab of the report
designer, drop down the Dataset list and select New Dataset. In this dialog, enter StoresByLocation for
the data set name and then select or create a data source for the AdventureWorks database.

You created a shared data source for this database earlier. You can refer to that exercise to create it if the
shared data source isn’t available in this project.

Change the Command type from Text to StoredProcedure and then type the stored procedure name,
spGetStoresByLocation, into the Query string box. Click OK when you’re done. See Figure 5-31.

Figure 5-31

150

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 150

The designer’s appearance will change to a grid with the stored procedure name in a drop-down list at
the top right.

Click the Execute button (dark-red exclamation mark icon) to test the data set and run the stored proce-
dure. You will be prompted for the two parameter values, @StateProvinceCode and @City. Enter two
valid values, and click OK to view the results. Figure 5-32 shows an example.

Figure 5-32

The data set is used exactly as before. The stored procedure parameters become report parameters.

Filtering Data with Report Parameters
So far you’ve only filtered data at the database level. In cases where users may be using the same report
in one sitting to view data for different criteria, it may be more effective to retrieve a larger result set
from the data source and then filter the report data on the report server.

As you’ve already seen, parameters defined in a query or stored procedure that serves as report data set
are pulled into the report as report parameters. You can also define your own parameters and use
expressions to filter data at the report level.

We’re going to use both product categories and subcategories for report parameters. The category will
be filtered in the data set (at the SQL Server), and the subcategory will be filtered in the report (on the
report server).

Add a new report to a project. Use the AdventureWorks shared data source. Created a new data set
named ProductsByCategory and apply the following SQL expression in this data set:

SELECT Production.Product.ProductID,
Production.Product.Name AS ProductName,
Production.ProductSubCategory.Name AS SubCategoryName,
Production.ProductCategory.Name AS CategoryName,

151

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 151

Production.ProductSubCategory.ProductCategoryID,
Production.Product.ProductSubCategoryID

FROM Production.Product INNER JOIN Production.ProductSubCategory
ON Production.Product.ProductSubCategoryID
= Production.ProductSubCategory.ProductSubCategoryID
INNER JOIN ProductCategory
ON Production.ProductSubCategory.ProductCategoryID
= Production.ProductCategory.ProductCategoryID

WHERE Production.ProductSubCategory.ProductCategoryID = @CategoryID
ORDER BY Production.Product.Name

Note that SQL Server 2005 queries now include a schema prefix for each object reference (Production in
this query) similar to the owner prefix for SQL Server 2000. If you use the Graphical Query Designer and
type or paste SQL without the schema prefixes, the query designer will try to add the schema prefix to
every table reference.

You’re going to create two more data sets to populate parameter drop-down lists and set up a cascading
relationship between the two parameters.

Using the same data source, add another data set and name it CategoryList. Type this text into the third
pane of the Query Builder:

SELECT ProductCategoryID, Name
FROM Production.ProductCategory
ORDER BY Name

And add one more data set, named SubCategoryList, using this text:

SELECT ProductSubCategoryID, Name, ProductCategoryID
FROM Production.ProductSubCategory
WHERE ProductCategoryID = @CategoryID
ORDER BY Name

With the report designer Layout tab selected, select the Report item from the properties window drop-
down list and find the ReportParameters property. Click the ellipsis button next to this property. This
will open the Report Parameters dialog. Note that the CategoryID parameter has been added to the
report parameters, as expected. Click the Add button to add a new parameter and name it SubCategoryID.
Leave all of the other settings at default values to keep things simple. Click OK to close the Report
Parameters dialog.

Now switch back to the Data tab, select the first of these three data sets from the Dataset drop-down list
and click the ellipsis next to the data set name. On the Dataset dialog, switch to the Filters tab. There are
three required elements for a filter expression — the Expression (what you want to filter), Operator (how
you’re going to compare a value), and Value (the source of the filter value). For the expression, drop
down the list and select =Fields!SubCategoryName.Value.

Leave the equality operator set to = and then drop down the Value list and select Expression. This opens
the expression builder. Use the controls to select the SubCategoryID parameter and use the Insert button
to move it into the expression box on the right side of this dialog. The resulting expression should be
=Parameters!SubCategoryName.Value.

152

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 152

Modify the first expression using the CInt() function, and place parentheses around the field expression.
Some value comparisons don’t resolve data types correctly. If such a comparison results in a data type
conversion or casting error, it can be corrected by explicitly converting the expression to the correct data
type, as you’ve done here with the field expression to explicitly convert it to an integer. To be on the safe
side, you can use Visual Basic–type conversion functions with any expression or value. See Figure 5-33.

Figure 5-33

The Filters expression builder has an interesting feature. The And/Or column doesn’t allow an explicit
selection to be made. It will automatically set the logic to Or only when a redundant expression is used
with a different value. If you want to use a more complex expression (for example, if you wanted to
bring back all products for a category if no subcategory was selected), you can enhance the expression
manually as a single expression. However, it would be very difficult to do this line by line using this
tool. For more information about advanced filtering techniques, take a look at Chapter 6.

Finally, switch to the Layout tab, and open the Report Parameters dialog from the Report menu.
Associate the SubcategoryID and CategoryID parameters with their corresponding data sets as we’ve
done in previous exercises. Make sure that these parameters are listed in this order.

Now that you have the data sets and parameters set up, you can actually create a report. We’ll keep it
simple. In the Layout tab, drag a text box to the report body, click on it to set focus, and type the report
title Products by Category/Subcategory. Add a table to the report just below the text box and stretch it
to fill the width of the report.

You have the opportunity to filter data in several different places, so plan carefully
when you intend to use report filtering. For example, if you created a report with a
grouped table and a chart, you would be able to define filters for the data set, the
table, the table group, and the chart. As a rule, I recommend defining report filters
in the data set unless you have a compelling reason to do it elsewhere.

153

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 153

Click once in the table and then select the table by clicking the top-left corner selector to select the
table. Select the DatasetName property in the properties window for the table, and select the data set
ProductsByCategory. From the fields list on the left of the designer, drag the ProductName, CategoryName,
and SubCategoryName fields into the detail row’s first, second, and third columns, respectively.

Dress up the grid by selecting the header row (click once on the grid and use the row selector on the left
to select the header row) and using the report formatting toolbar to make the text bold. Use the property
window to set the Border Style|Bottom property to Solid and the Border Width|Bottom to 2pt.

Switch to the Preview tab. You should be prompted to select a category using a drop-down list. The cate-
gory selection will populate the CategoryID query parameter and retrieve records from the database
into memory. Select any category value, and you should be prompted to select a subcategory. This is the
report parameter SubCategoryID. Selecting a value will cause the filter to be applied, and the resulting
data will be fed to the report. Click the View Report button to render the report, as shown in Figure 5-34.

Figure 5-34

The category parameter filters data at the database, as shown in Figure 5-35.

The resulting data is cached in memory on the Report Server, where the subcategory filter further limits
results.

You could easily extend the design of this report using more complex items, sorting, and grouping. The
data set query could also be replaced with a stored procedure. With these building blocks, you now have
the capability to create efficient reports that move the appropriate volume of data across network con-
nections and allow users to use filtering criteria without needing to requery the entire data set.

154

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 154

Figure 5-35

Reporting for Analytical Data
In recent years, advanced reporting and data analysis systems have spurred the popularity of an entirely
different category of database systems. With businesses storing more data than ever before in complex
transactional databases, it has become increasingly difficult to aggregate large volumes of data effec-
tively for reporting. Decision-support databases store preaggregated data in multidimensional cubes
rather than relational tables. The fact is that many data warehouse systems may utilize some combina-
tion of relational and multidimensional storage. Decision-support database engineering is quickly
becoming a highly specialized field.

One of the most significant differentiators is the language used to query these special databases. One of
the most popular query languages is MDX, or Multidimensional Expressions language. A cousin of SQL,
it shares some common clauses and statements, but MDX is tuned to work with structures like tupples,
cubes, measures, and slices, rather than relationships, tables and fields.

SQL Server Analysis Services
By design, Analysis Services data is hierarchal and multidimensional. Rather than storing individual
transactions and aggregating values (or “crunching numbers”) each time a query is executed, aggre-
gated values are stored at predefined grouping levels. The multidimensional data views are called
cubes, which contain dimensional members (dimensions) and fact members (measures and calculations).
Dimensions typically define a hierarchy of grouped values. Analysis Services is optimized for reporting.
In the course of the evolution of business data systems, relational database systems often reach a point
of critical mass, where the data becomes so voluminous and complex that queries run too slow. A large
number of users and systems sharing and modifying data can create contention for server resources, and
this slows query performance. Data warehouses and data marts implemented using Analysis Services
allow many concurrent connections with much faster query performance.

Database

query

Database Server
(data provider)

Report Server
(data consumer)

Report
Dataset

Unfiltered Data

Filter/Parameter
(SubCategoryID)

Network
Traffic

Result Set

Parameter
(CategoryID)

155

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 155

In the following example, I will step you through the process of defining a data source and data set for a
report based on the Analysis Services AdventureWorksDW database. This sample database is installed
with SQL Server 2005 Analysis Services. If you have installed the sample database with SQL Server to
the default installation path, you will find the Setup package at C:\Program Files\Microsoft SQL
Server\90\Tools\Samples. Once installed and connected, you will be able to use this database to
build sample reports following the steps in this section. I assume that Analysis Services is installed and
configured, and that you have sufficient permissions to browse cubes and retrieve data. If not, you may
need to have a chat with your resident database administrator. Start by bringing their favorite beverage.
I find this to be an effective means for getting things done.

In this example, I will give basic steps to design an entire MDX-based report, but I will not provide
detailed instructions for every single step. By now, you should have the necessary survival skills to work
with these tools and controls. I will offer the basic instructions to complete a simple matrix report so you
can see the results of the data source and query. You will learn more about the matrix and other report
items in subsequent chapters.

If you don’t have the AdventureWorksDW database available, make sure that you have installed SQL
Server with all of the sample databases. This database is generated using Visual Studio. Find the
AdventureWorks.sln file in the AdventureWorks Analysis Services Project folder under your SQL
Server 2005 installation path. Open this solution in Visual Studio, and simply run the project. This con-
nects to the relational AdventureWorksDW database, generates the Analysis Services database, pro-
cesses and populates all of the cubes and associated objects, making this data available to Analysis
Services.

Going beyond the very basics with Analysis Services would take us pretty far off topic and beyond the
scope of this book. For more information about SQL Server Analysis Services and MDX query program-
ming, please refer to the Wrox Press book Professional SQL Server Analysis Services 2005 with MDX by
Sivakumar Harinath and Stephen R. Quinn.

Creating a Data Source
The first step, of course, is to create a data source to the SQL Server Analysis Server. I will be using my
local computer. I add a new shared data source to my report project and the Shared Data Source appears
as in Figure 5-36. By default, the connection type will be set to use the SQL Server relational database
engine. This will actually be changed in the next dialog. Give the data source a name, and then click the
Edit button. In case you have the connection string information, you can select the provider from the
Type list, type the Connection string, and then skip ahead to Figure 5-37.

This opens the Connection Properties dialog that you see in Figure 5-37. Use the Change button on this
dialog (shown in Figure 5-38) if it is not set to connect using the Analysis Services provider.

In order to complete the following exercise, you will need to have SQL Server
2005 Analysis Services installed and running. You will also need to have the
AdventureWorksDW Analysis Services database generated and loaded on your
server.

156

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 156

Figure 5-36

Figure 5-37

157

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 157

If you need to change the data provider, you will use the Change Data Source dialog, shown in Figure 5-38.
Select the Data source for Microsoft SQL Server Analysis Services and verify the Data provider selection
is the .NET Framework Data Provider for Microsoft Analysis Services. Click the OK button to return to
the previous dialog.

Figure 5-38

My Analysis Server is my local machine, so I have entered localhost for the Server name (see Figure 5-39).
You will need to enter your server name here if the Analysis Server isn’t local. Select the Analysis
Services database using the lower drop-down list, and then click the OK button.

Figure 5-39

As you see in Figure 5-40, this generates a connection string. If you have this information, you can skip
the previous steps and type this text directly into the Connection string text box. In either case, after the
provider type and connection string have been entered, select the Credentials tab.

158

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 158

Figure 5-40

Just like the SQL Server relational database engine, there are a few different ways to authenticate when
making a connection. On the Credentials tab, shown in Figure 5-41, select the first option, Use Windows
Authentication. When completed, click the OK button.

Figure 5-41

159

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 159

Creating a Report
Now add a new report. I want to define this report manually, so I will right-click the project in the
Solution Explorer and then choose to add a new item. This opens the Add New Item dialog shown in
Figure 5-42. Choose the Report template and then give the report a descriptive name as I’ve done here.
Click the Add button to create the RDL file, and add the new report to the project.

Figure 5-42

On the Data tab in the report designer, create a new data set and assign it the shared data source you just
created. Assign the name ResellerSales_AS, and click the OK button to move on. Figure 5-43 shows the
familiar Dataset dialog.

Figure 5-43

160

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 160

When you click the OK button without entering text into the Query String text box, this will open the
query designer. Because the data source is configured to use the Analysis Services data provider, this
will open the MDX graphical Query Builder shown in Figure 5-44.

Figure 5-44

If the database has multiple cubes defined, a cube may be selected from the selection box in the top of
the left pane. The cube structure is displayed in the Metadata window. For this cube, you can see tree
view node icons representing measures, KPIs, and dimensions.

For each dimension, you may expand the node to view its hierarchy and you may drag all or part of the
dimension levels onto the query design surface. Dragging a dimension level to the designer will include
the selected level and all dependent levels. For example, if a Time dimension includes Year, Quarter,
Month, and Day and you were to expand and then drag the Month level, this would include the Month
and Day as columns. The columns for any level may then be removed if they are not required. You will
include all levels for two dimensions in the following example.

Flattened Hierarchies
Reporting Services is designed to use two-dimensional queries and does not fully take advantage of
some of the capabilities of MDX. For this reason, all MDX queries define only columns rather than rows.
Using capable report items such as the matrix and charts, these two-dimensional results may be trans-
formed back into multidimensional data presentations.

To define the first set of columns, drag the Sales Territory dimension onto the query design surface. You
will see the mouse pointer change to indicate the drag-and-drop action and a red bar will appear on the
left side of the designer (see Figure 5-45).

161

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 161

Figure 5-45

When the mouse is released and the dimension is dropped, three columns are added for the correspond-
ing levels of this dimension, in order of their hierarchal rank. Repeat this process using the Delivery
Date dimension. Be careful to drop this item to the right of the existing columns (see Figure 5-46).

Figure 5-46

162

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 162

When this dimension is dropped, five new columns are added for the levels defined for specific time
periods (see Figure 5-47).

Figure 5-47

Expand the Measures node and then the Sales Summary folder. Several measures are defined for different
calculations and values. Drag and drop the Sales Amount measure to the rightmost position in the column
list. As soon as you do this, the query design will immediately return dimension and preaggregated mea-
sure values. This is the default behavior of the MDX query builder. For very large databases, it may take
time to return results, especially if dimension members are added in an unusual order. To improve perfor-
mance, you can toggle the Auto Execute mode using the toolbar option indicated in Figure 5-48.

Figure 5-48

163

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 163

The underlying query is a Multidimensional Expression (MDX.) Figure 5-49 shows the query after
switching to the MDX mode using the rightmost toolbar button. Unlike the Transact-SQL graphical
query designer, the MDX Query Builder does not translate MDX into graphical form. If you enter a
query manually or make any changes to an existing MDX expression, you cannot switch back to design
graphical mode without losing your work.

Figure 5-49

For the first phase of this example, the data set is complete. Before you continue, save the work you’ve
done so far by clicking the Save All button on the toolbar.

Designing the Report
This section is about designing data access for Analysis Services, but to see the results of the MDX query
I just built, I’d like to finish this report. You’ll learn more about the features of the matrix report item in
the next chapter. For this demonstration, I’m simply going to give you basic instructions without a lot of
detailed explanation.

Figure 5-50 shows the report designer’s Layout tab. The first thing I’ve done is added a text box with
a title for the report. Add a matrix item and drag the first field, Sales_Territory_Group, to the row cell.
When you drag a field into a Rows or Columns cell, this creates a group and generates the appropriate
field expression in the Value property for the corresponding cell’s text box.

Next, drag the Sales_Territory_Country field to the same cell. Before you drop it, note the heavy vertical
bar that will indicate a position to the left or right of this cell. Move the mouse pointer so that this marker is
on the right side, as it appears in Figure 5-51, and then release the mouse to drop the field.

This creates related field groups in a specified order to match the hierarchy of the dimension levels.
Repeat this action with the Sales_Territory_Region field to create a third group. You can see the second
row group added in Figure 5-52 while I’m dropping this field to created the third row group.

164

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 164

Figure 5-50

Figure 5-51

Figure 5-52

165

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 165

To create the column groups, drag the Calendar_Year field to the Columns cell. Add the Calendar_Quarter
and Month columns in turn to the bottom of each parent cell, as shown in Figure 5-53. Note that there are
fields (levels) in this hierarchy I have chosen not to use in the report.

Figure 5-53

Finally, drag the Sales_Amount measure value from the fields list to the Data cell, as shown in Figure 5-54.

Figure 5-54

166

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 166

I’d like to implement drill-down functionality, so the matrix only displays aggregate values at the high-
est level until you expand these groups to see more detail. I will hide all subordinate row and column
groups and set the visibility to be toggled using their parent group. I’ll work through the groups from
the inside out. Begin by right-clicking the cell for the Sales_Territory_Region field. From the menu, select
Edit Group, as shown in Figure 5-55.

Figure 5-55

Switch to the Visibility tab on the Grouping and Sorting Properties dialog, as shown in Figure 5-56.
When using the drag-and-drop technique to define groups, each cell’s text box is given the same name
as the field. Set the Initial visibility property to be Hidden, and then type the name of the parent level for
the toggle item into the Report item box.

You’ll recall that the row groups are defined as Sales_Territory_Group, Sales_Territory_Country, and
Sales_Territory_Region, in order. Since I’m working with the Sales_Territory_Region group, the toggle
item will be the Sales_Territory_Country field (actually, this is the text box for this group, but it has the
same name).

Repeat these steps for the Sales_Territory_Country group, setting the toggle item to be Sales_Territory_
Group. For the column groups, start at the bottom and work up. Right-click the Month column cell and
set its toggle item to be Calendar_Quarter. For the Calendar_Quarter group, set the toggle item to be
Calendar_Year. Make sure that the Initial visibility property for these groups is Hidden. Don’t make any
changes to the Sales_Territory_Group and Calendar_Year groups.

The Sales_Amount value cell should be set to display currency. This may be done using the Format
property, as shown in Figure 5-57. Set this property to C0 to use a currency format with no decimal.

167

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 167

Figure 5-56

Figure 5-57

168

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 168

Select the rightmost column using the column header and use the Report Formatting toolbar to right-
align the text. This screen is shown in Figure 5-58.

Figure 5-58

To make my report more readable, I’ll set the Value cell with a WhiteSmoke BackColor and set the
BorderColor and BorderStyle properties as shown in Figure 5-59.

Figure 5-59

The report is ready for preview. Figure 5-60 shows the Reseller Sales Territory & Time report with some
rows and columns expanded. You should be able to expand and collapse groups to display detail at dif-
ferent levels.

169

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 169

Figure 5-60

Adding MDX Filters and Parameters
Filtering MDX queries is quite different than it is with SQL queries and in many ways is easier. One of
the unique characteristics of MDX and cube data is that there is not a clear separation of the data from
the data structure. In Figure 5-61, I have expanded the Organization dimension to expose its members. I
would like this report to be limited to only North America Operations. Adding this filter is simple: Drag
the North America Operations member to the filters and parameters pane in the MDX Query Designer.

Figure 5-61

This creates an expression to filter the report data from the cube. The results are refreshed to reflect this
change to the query. Filter selections are not exposed to users by default. I’d like to add another filter
that may be controlled with user-selectable values, so in addition to a filter expression, I’d like to create
two parameter lists to enable the user’s selection of a range of years for the delivery date.

170

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 170

First, drag and drop the Delivery Date dimension onto the filters and parameters pane in the MDX
Query Designer. The second drop-down list, shown in Figure 5-62, contains the members of the dimen-
sion hierarchy. Use this to select the Calendar Year.

Figure 5-62

The Operator is set to Equal by default. Change this selection to Range (Inclusive) as I’ve done in Fig-
ure 5-63. This will change the Filter Expression options.

Figure 5-63

Now two drop-down lists are displayed in the Filter Expression column. Use the first drop-down lists to
expand and select the first year on the list. Figure 5-64 shows that this is the year 2001. Use the second
drop-down list to select the year 2004.

Figure 5-64

171

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 171

Since I want the user to be able to change this range and modify the filtered report data, parameters
must be created in the report user interface. This is done by checking the boxes in the Parameters col-
umn (see Figure 5-65). Two check boxes are displayed so that either or both of the filter criteria may be
either parameter-based or hard-wired in the query.

Figure 5-65

On the Layout tab of the report designer, the Report Parameters dialog may be displayed from the
Report menu. Figure 5-66 shows the two parameters automatically created from the MDX Query
Designer filter selections.

Figure 5-66

Using the Preview tab to view the report, you can see the two parameter value lists displayed in the
parameters report toolbar. Figure 5-67 shows the first year of the range changed from 2001 to 2002.

After making this selection, click the View Report button to apply the filter and execute the report. The
report is displayed in Figure 5-68. I’ve expanded some of the row and column groups to show more
detail.

172

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 172

Figure 5-67

Figure 5-68

Using Other Data Sources
After using Reporting Services with SQL Server databases and then later with others, I realized that I
had become a bit spoiled. It’s true that you can use practically any standard database product as a data

173

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 173

source for reports; you’re not going to have the assistance of the graphical query builder and other auto-
mated features of the report designer. Nevertheless, Reporting Services can work with the language syn-
tax and features of most databases; you’ll just need to do some of the easy stuff yourself. This section
showcases a few different products we’ve used as data sources. One point to keep in mind is that the
compatibilities and behaviors will be influenced by a number of factors.

The technique demonstrated a little later in the chapter with an Access query (see “Building a Query in
a String Expression”) is a universal pattern that applies to all database products. I strongly recommend
that you take a look at this technique because it will be useful to you at some point, regardless of the
data source you will use for reporting.

Microsoft Access
Microsoft Access is built on top of the JET Database Engine with data stored in a single MDB file. This
is simple and convenient for small, portable databases. However, Microsoft continues to take steps to
replace JET databases with SQL Server and the desktop implementations of SQL. These include the SQL
Server 2000 Desktop Database Engine (MSDE) and SQL Server 2005 Express Edition. As a desktop appli-
cation, Access may also be used as a front end to SQL databases. If you have the luxury of building a
new database solution, it may be best to use one of these newer products in place of older Access data-
bases. But if you have existing solutions based on older Access databases, it will likely be easier to con-
tinue to work with them in their present form.

There are two standard data providers that may be used to connect to Access databases. The JET 4.0
.NET OLE DB provider is newer and should be a little more efficient than using the older Access ODBC
driver. The fact is that the data provider is rarely going to be a performance bottleneck, so this is proba-
bly a moot point. The OLE DB provider is typically easier to use and more efficient. One of the nice fea-
tures of the new data provider is that it will accept Transact-SQL and translate it into Access-specific
syntax. Although Access SQL and Transact-SQL are very close, there are some subtle differences. This
feature enables the report designer to utilize the Transact-SQL graphical query builder when a data set
uses a JET data source.

Figure 5-69 shows the Connection Properties dialog used when defining an Access database connection
using the JET OLE DB provider:

Note that the default security credentials used with an unsecured Access database are the Admin user
with a blank password. Even if you were to explicitly provide this information and check the Blank
password box, the dialog doesn’t show these values. This is so because the data provider knows to use
default credentials when the database hasn’t been secured.

The connection string and credentials are shown in Figures 5-70 and 5-71.

Select the Credentials tab to view or modify the user authentication information.

Access has some minor quirks that you should be aware of. Any file-based data source can present a
challenge for Reporting Services because the service must have the necessary security access to open
the database file. If the MDB file is on the report server, this shouldn’t be a concern, but if the file is on
another network share, it may be. If you get file-sharing errors, make sure that Reporting Services ser-
vice runs using a network account that has privileges to open the Access database file and its containing
folder.

174

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 174

Figure 5-69

Figure 5-70

175

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 175

Figure 5-71

Parameterized Access queries have always presented a challenge in custom code, outside of simple
Access forms applications. The JET database engine has difficulty resolving parameter values passed
into queries and may report errors even if the values are passed using the correct data type and format.
For example, the following Access query defines and then uses two parameters to filter order records in
the Northwind sample database:

PARAMETERS [ShipDateFrom] DateTime, [ShipDateTo] DateTime;
SELECT Orders.ShippedDate, Orders.OrderID, [Order Subtotals].Subtotal,
Format([ShippedDate],”yyyy”) AS [Year]
FROM Orders INNER JOIN [Order Subtotals]

ON Orders.OrderID = [Order Subtotals].OrderID
WHERE (((Orders.ShippedDate) Is Not Null And (Orders.ShippedDate) Between
[ShipDateFrom] And [ShipDateTo]));

Even when the ShipDateFrom and ShipDateTo query parameters are correctly mapped to correspond-
ing report parameters, the report runs with an error. If you are connecting via the JET OLE DB provider,
it reports this error:

No value given for one or more required parameters.

If the Access ODBC driver is used, the native JET error is reported:

Too few parameters. Expected 2.

The easiest way I’ve found to work around the Access query parameterization issue is to build the query
string using an expression rather than to rely on this feature. It’s not hard to do. The first step is to define
the parameters in your report. Figure 5-72 shows one of these two parameters in the Report Parameters

176

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 176

dialog. On the report designer’s Layout tab, use the Report menu to select Report Parameters... to open
this dialog.

Figure 5-72

With the report parameters in place, they can be referenced in the data set query expression. There is no
need to change the parameters or any other properties of the data set because this will be handled in the
expression.

Building a Query in a String Expression
This technique can be used typically when other options, such as using the graphical query builder and
defining query parameters, won’t work in the designer. Any expression may be used to build a text
string and can include Visual Basic functions and custom code. The resulting string is simply presented
to the database engine through the connection’s data provider. No other parsing or processing is per-
formed. The query expression must be entered using the Generic Query Designer window for the data
set, as shown in Figure 5-73.

Because this is a Visual Basic expression, double quotation marks are used to encapsulate literal text.
Line breaks cannot be used without terminating and concatenating the string using the + or & character.
Parameters values are concatenated into the query string with appropriate delimiters. The two parame-
ter expressions refer to the parameters I defined in Figure 5-72.

Note that this is an Access SQL query rather than Transact-SQL. Pound-sign characters are used to delimit
dates rather than single quotation marks.

Some variations of this technique can be useful to meet specific needs. Rather than building the entire
query string in the dataset designer, you can call a custom Visual Basic function to do the work in pro-
gramming code. Parameters could be passed to this function that returns the entire query.

177

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 177

Figure 5-73

I recommend that you paste the expression into Notepad or SQL Server Management Studio, modify the
expression in the dataset designer to update the fields list, and then paste the expression back into the
designer. This will save effort and give you an “undo” option if things don’t go well.

Microsoft Excel
As a quick-and-easy data source, Excel is a great tool. I am continually amazed by the proliferation of
Excel spreadsheets as production enterprise databases used in large business. Even at Microsoft, this
practice is commonplace. I think this is largely due to the fact that business data comes from business
people, and business people use Excel. I’ll leave the data management and consolidation discussion for
another time. The fact remains that a lot of important data exists in Excel files, and you can create reports
to view this data as you would with any database system.

Oracle P/L SQL
Connecting reports to an Oracle database is quite easy to do. Depending on the version of Oracle and the
Oracle client software, you can use the ODBC, Simple OLE DB, or native Oracle Client data providers.

An unfortunate side effect of using this expression query technique is that the
dataset designer will not allow you to execute the query. If you need to make any
changes to the query expression that will update the fields available to the report,
you must convert the query back to a SQL expression (by removing the = and “
characters), execute the query, and update the fields list using the Refresh button.
Another option is to manually edit the fields list.

178

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 178

The native Oracle Client provider is preferred and is simple to use. When creating a data source, choose
Microsoft OLEDB Provider for Oracle; enter the server name and the user name and password required
to log in to the Oracle database server.

Oracle PL/SQL is an ANSI-compliant dialect that is very similar to Transact-SQL in most regards. Newer
implementations use the ANSI join syntax rather than the ‘=’, ‘*=’, and ‘=*’ syntax in the WHERE
clause to denote joins. This style was popular until just a few years ago and its use is still habitual for
many Oracle SQL query designers.

Oracle has a handful of data types that are equivalent to T-SQL types. Since reporting services uses .NET
data types used in Visual Basic .NET expressions, it’s advisable to explicitly convert field values when
used in expressions. Use the Visual Basic conversion functions (that is, CStr(), CDbl(), CInt(), CDate(),
CBool(), and so on) liberally.

The syntax for PL/SQL variables and parameters is quite different from Transact-SQL. Rather than pre-
fixing them with a @, these items are prefixed with a colon (:). Variables used in PL/SQL script may be
assigned a value when they are declared. T-SQL doesn’t allow this. Here is a brief example of a parame-
terized PL/SQL expression:

SELECT
SL.STORE_CODE
,SL.LOCATION_NAME
,SL.TELEPHONE_NUMBER AS LOCATION_PHONE

FROM STORE_LOCATION SL
INNER JOIN REGION R ON R.LOCATION_ID = SL.LOCATION_ID

WHERE SL.STORE_CODE = :STORE_CD

Testing for equality with a numeric type works as you would expect. However, character type compar-
isons may be performed using the LIKE operator. String concatenation is performed using double pipe-
symbol characters rather than the plus sign used in T-SQL.

SELECT
SL.STORE_CODE
,SL.LOCATION_NAME
,SL.TELEPHONE_NUMBER AS LOCATION_PHONE

FROM STORE_LOCATION SL
INNER JOIN REGION R ON R.LOCATION_ID = SL.LOCATION_ID

WHERE SL. LOCATION_NAME LIKE ‘%’ || UPPER(:STORE_NM) || ‘%’

Sybase Adaptive Server
Adaptive Server’s query language is most similar to SQL Server because these products share some
history. Like SQL Server, Sybase databases can implement stored procedures for modularized, more
efficient query processing. Overall, I’ve found Adaptive Server to be fairly easy to use with Reporting
Services, but it may require a little extra effort to prepare SQL queries. Simple queries can be written
using the Generic Query Designer. Stored procedures are executed using a string expression similar to
the following example:

=”spMonthEndSalesByCust ‘“ + Parameters!MonthEndDateMonth.Value,
Parameters!monthEndDateYear.Value + “‘“

179

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 179

There are some known minor data type incompatibilities with report parameters. In particular, you may
find it easier to use String-type parameters for dates rather than the native Date type. If you use date
or numeric parameters, you may need to convert them in the query expression. Since SQL queries and
stored procedure calls are assembled as a string expression, parameters need not be converted to explicit
types. Type conversion will be performed by the database engine.

The report server and development computer will need to have the Sybase ASE OLEDB Provider installed
and configured correctly. This will enable you to create connections using the Microsoft Simple OLEDB
Provider with the installed Sybase client components.

Best Practices
Use shared data sources to reuse the connection information. Data sources are not redeployed by default.
Remove the report and data source file from the report server and redeploy the data source to update
connection information and certain report metadata.

When using complex query expressions, keep a copy of the last working query script in a separate query
tool window or in NotePad.

When using an expression for a data set (i.e., =”SELECT...”), if changes are made to the query expression,
you may need to remove the string encapsulation characters from the text to run the query. Make a point
to execute the query and click the Refresh toolbar button to update the report fields definition.

Filter in the data set or stored procedure to reduce network traffic and reduce report server processing
overhead. Filter data in the report to reuse the same result set and improve response time for longer,
interactive report sessions.

Plan ahead and filter data consistently in the data set, report item, or group.

In MDX queries, add and configure parameters before making any manual changes to MDX script. You
cannot modify or view the query using the graphical MDX Query Designer after making manual changes.

Summary
This chapter covered the following:

❑ Each report typically has at least one data set, which defines a data query. Each data set will
have a data source that may be stored in the report or the report project as a shared data source.
Additional data sets may be used for different report items or to populate parameter lists.

❑ A data set may be designed using either the Generic Query Designer or the Graphical Query
Designer. Most queries built on SQL Server databases are most easily designed using the
Graphical Designer.

❑ Data may be filtered in the data set query, which is typically processed on the database server,
or within the report. Report filters may be defined at the data set, at the report item, or within

180

Chapter 5

10_584979 ch05.qxp 1/27/06 7:35 PM Page 180

a group. These options cause more data to be sent to the report server but may help prevent
multiple, long-running queries if users spend time interacting with a single report.

❑ Parameters may be used to drive advanced report features such as cascading parameter selection.

❑ SQL Server Analysis Services may be used to simplify complex report queries by storing preag-
gregated values in multidimensional cubes.

❑ The MDX Query Designer may be used to define data sets for Analysis Service queries and
related parameters with little or no understanding of the MDX query language.

❑ Reports may use many different data sources that use different SQL dialects and query languages.
Any data source may be used as long as it supports an ODBC driver, OLE DB provider, or .NET
data provider that returns rows and columns or data.

Defining data sources and data sets to manage data source queries is the starting point for almost any
data-driven report. It’s essential to understand basic data storage and query architecture to achieve the
best design. Data can be filtered within the database server or in the report. Making the correct choice
and finding the best combination of these options will improve performance and provide flexibility with
the least degree of overhead.

Defining shared data sources in your projects makes it much easier to maintain data connections for all
of your reports as a group. Changing the database location or security credentials becomes a much sim-
pler proposition. The data sets for your reports define queries for retrieving data and may be used as the
source for the report and repeatable data regions or to provide data value for report parameters.

An ad hoc query expression is stored in the report within the report definition, and a stored procedure
is stored in the database. Using stored procedures is an effective means for processing parameters and
filtering data before sending it to the report, while using a report filter lets you reuse the data you’ve
already retrieved. A combination of these parameterized filtering techniques may be an optimal solution
for more complex reporting needs.

181

Designing Data Access

10_584979 ch05.qxp 1/27/06 7:35 PM Page 181

10_584979 ch05.qxp 1/27/06 7:35 PM Page 182

Advanced Report Design

In Chapter 4, you learned about the basic components of report design, but now you take each
of these elements to the next level. The real power behind Reporting Services is its ability to cre-
atively use data groups and combinations of report items. Calculations and conditional formatting
may be added by using simple programming code. Whether you are an application developer or
a report designer, this chapter contains important information to help you design reports to meet
your user’s requirements, and to raise the bar with compelling report features.

This chapter covers:

❑ Grouping data.

❑ Lists and data regions.

❑ Creating a tabular report using tables.

❑ Matrix report.

❑ Links and drill-through reports.

❑ Using charts in reports.

❑ Using custom code to extend formatting and apply business logic.

❑ Designing reports for mobile devices.

At this point, you should be comfortable using Visual Studio 2005 to create and add reports to a
project, and you should be familiar with the basic mechanics of the designer. If you are new to this
environment, please work through the exercises in Chapter 4 before you read on.

11_584979 ch06.qxp 1/27/06 7:26 PM Page 183

We will no longer be using the Report Wizard throughout the remainder of the book. You should be able
to add a new report to a project, create or select a shared data source, create a data set, and add items to
the Report Designer by now. This chapter will provide directions for using nearly all of the design ele-
ments mentioned here.

Although you will be exploring more advanced report design techniques, I’ve made it a point to keep
the data sets very simple. In a few cases in subsequent chapters where I do use complex queries, you
may download these examples from the book’s companion site at P2P.com and paste the script into a
new report. For most of the examples, you’ll simply use a list of products with categories and subcate-
gories. This will help to keep things simple while focusing on report design features rather than the
intricacies of the data.

Chapter 4 covered using items and data regions in a report. In particular, you used the wizard to gener-
ate a tabular report with a table data region. In this chapter, you will start by repeating this exercise, only
with a greater level of detail to create a report to your own specifications.

Anatomy of a Text Box
The text box is one of the most fundamental and most common report items. Generally, all text and data
values are displayed using text boxes. The cells of a table and matrix contain individual text boxes. In
addition to the text displayed, there are several useful properties used to manage the placement, style,
and presentation of data. Font properties, Color, BackGroundColor, and BackGroundImage proper-
ties make it possible to dress up your report data with tremendous flexibility.

The BorderStyle properties of a text box are similar to those of other report items (such as a rectangle,
list, table, and matrix.) Once you have mastered the text box properties, you should be able to use these
other items in much the same way. When using a table, group separation lines are created by setting the
border properties for text boxes in header and footer rows (typically by selecting the entire row and set-
ting the text box properties as a group).

Three property groups are used for borders. In the Properties window, these groups are expanded using
the plus sign (+) icon to reveal individual properties. The group summary text can actually be manipu-
lated without expanding the properties, but it’s usually easier to work with specific property values. The
BorderColor, BorderStyle, and BorderWidth properties each contain a Default value that will apply
to individual properties (that is, Left, Right, Top, and Bottom) that have not otherwise been set. This pro-
vides a means to set general properties and then override the exceptions. By default, a text box has a black
BorderColor and a 1-point BorderWidth with the BorderStyle set to None. To add a border to all four
sides, simply set the Default BorderStyle to Solid. Beyond this, individual properties may be used to
add more creative border effects. Figure 6-1 shows two text boxes with a variety of border styles. The sec-
ond text box corresponds to the property settings shown in the selection of the Properties window.

184

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 184

Figure 6-1

Here’s a shortcut that may save you some work: You can set groups of properties by either expanding
the properties group and setting the individual members or you may use the group summary line. For
example, if you wanted to set the BorderWidth properties for multiple text boxes to be the same as the
one shown in Figure 6-1, you could copy all of the values from the BorderWidth property group sum-
mary (1pt, 3pt, 4pt, 2pt, 2pt) and paste this text into the same line for the target text boxes. Report items
that support the same properties may be selected as a group and set at one time, using the properties
window for the common group selection.

Most report items support Padding properties, which are used to offset the placement of text and other
related content within the item. Padding is specified in points. A unit of measure from the printing indus-
try, a PostScript point equates to 1/72 of an inch or approximately 1/28 of a centimeter. In Figure 6-2, I’ve
diagrammed a text box with padding margins. These are shown with the corresponding Padding section of
the properties window.

You may simply type or paste all of the property values, separated by commas, on
the properties group summary. This makes it easy to copy and paste a group of prop-
erties to multiple report items.

185

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 185

Figure 6-2

Grouping Data
This is one of the fundamental constructs of nearly all reports. Data groups provide a mechanism for orga-
nizing data into hierarchies and may be used to create section breaks and subtotals. Groups are used in
different report items to implement specific features. Once you have defined a group in any report item,
you should be able to do the same in any other item, although the design user interface may vary slightly
for different types of items. There is no limit to the number of groups that may be added for any item.

Figure 6-3 shows the Grouping and Sorting Properties for a group defined in a table.

Figure 6-3
186

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 186

A group is defined in the Group on section of this dialog and is typically based on a field expression.
This means that as rows are read from the data set, each time the field’s value changes, a new group sec-
tion or header is rendered. The group expression can include multiple fields, conditional expression, or
Visual Basic function. It can be practically anything that returns a value. In the following sections, you
will see how groups are applied within different report items.

Data Regions
A data region is a report item that repeats rows of data. For every row returned by the data set, a row,
cell, or some other visual element will be created within the report body. The simplest and most com-
mon data regions are list items and tables, which extend the vertical space by adding a row in the report
for every row of data. More sophisticated data regions, such as the matrix and chart items, add cells to
extend the report either horizontally or vertically, or generate charting elements such as columns, bars,
points, slices, and bubbles.

The report itself actually does little work to represent data. The report items placed in the body of the
report are largely responsible for performing this task. When compared with most common reporting
products, this is a different approach and adds a great deal of flexibility to the report design. Since report
items may be placed practically anywhere in the body of the report, and many items can be used as con-
tainers for other items, this enables a great deal of creativity. Multiple report items can present indepen-
dent sections of data side by side, on the same report. Essentially this creates multiple reports within a
report. Report items placed within containing report items may present multiple nested reports or
repeating sections of detail. Unique report designs are possible using this technique.

Using the List Item
The List item is the simplest of all data regions. One list visually represents one group, and the body of
the list is simply repeated for each underlying data row. Using the properties for the list, it is associated
with a data set. After placing a List item on the report, fields dragged from the Datasets window (previ-
ously called the Fields window in SSRS 2000) will bind the list to the data set and create data-bound text
boxes. The example in Figure 6-4 shows formatted text boxes used for labels and values and a line used
a row separator. The text box on the right contains an expression to calculate a product’s profit margin
by subtracting the StandardCost from the ListPrice field values.

Figure 6-4

187

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 187

Like most report items, properties for the list may be set using the standard properties window or the
custom properties dialog. Figure 6-5 shows the standard properties window. To select the list item, click
on the border line to display the selection handles. The selected item appears in the topmost drop-down
list in the properties window.

Figure 6-5

I’ve already defined a data set for this report called Product. Note that the DataSetName property was
set when I dragged a field from this data set into the list item in the report designer. I’ll set the Grouping
in the next step.

Properties may also be set using the list item custom properties dialog. With the list selected, right-click
and select Properties from the pop-up menu. The List properties are displayed as a modal dialog that
must be closed before working with any other features of the report designer. Figure 6-6 shows this dia-
log with the same property settings as the previous property window.

188

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 188

Figure 6-6

In order to define the details group for this list, either select the Grouping property in the properties
window and then click the ellipsis button (...) or use the List Properties dialog and click the Edit Details
Group... button. Either of these options will open the standard Grouping and Sorting Properties dialog
that was shown earlier in Figure 6-3.

Figure 6-7 shows what the report looks like in Preview.

To demonstrate how the list can be used as a container for other data range items, I’ve added a chart
item to the list that is selected in Figure 6-8. Since the list contains a detail group that returns only one
record at a time and the chart is configured to recognize this parent group, the chart has visibility to this
level of detail. In other words, each instance of the chart sees only one product record. You’ll learn more
about configuring the chart later in this chapter.

189

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 189

Figure 6-7

Figure 6-8

Figure 6-9 shows this report in preview. Each row of the report displays a pie chart with the calculated
profit as a percentage of the ListPrice field value.

Figure 6-10 shows another example with a table placed within the list. The table must be bound to the
same data set and must be grouped at the same level as the list.

190

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 190

Figure 6-9

Figure 6-10

In Figure 6-11, you can see that the table displays only sales order rows for the product name displayed
by the list.

191

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 191

Figure 6-11

The list item works well when repeating graphical items such as images and charts. Although the list
offers a great deal of flexibility, it can require quite a lot of detail work if used for complex columnar
reports and those with multiple levels of grouping. Consider using a table instead of a list when all data
fits into rows and columns.

Creating a Tabular Report Using a Table
The Table data region is the most commonly used report item for columnar-style business reports.
One of the most significant lessons I’ve learned while designing reports with the earlier versions of this
product is to use tables to design most of my reports. A table may be used in place of a List item in many
cases and offers more structure and built-in functionality. A table may be used to create reports with
multiple levels of groupings and drill-down functionality. As you’ve already seen, groups give you the
ability to organize repeated data within hierarchies and related groups. The table naturally supports this
design paradigm.

I’d like to start with a simple example using a simple query, similar to the one used in Chapter 4. If you’d
like to follow along, create a new report and add a new data set called Products_by_Subcategory_and_
Category. Follow the instructions I gave when you stepped through the Report Wizard. Using this query,
we will create a simple report that demonstrates the use of groupings within a table. After demonstrating
groupings in a multilevel grouped table, drill-down and drill-through capabilities will be added.

192

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 192

Type the following SQL expression into the third pane of the Query Builder or use the techniques illus-
trated in Figure 6-10 to design the query using the Graphical Query Design tools:

SELECT
Production.Product.ProductID

, Production.ProductCategory.Name AS CategoryName
, Production.ProductSubcategory.Name AS SubCategoryName
, Production.Product.Name AS ProductName

FROM
Production.Product
INNER JOIN Production.ProductSubcategory
ON Production.Product.ProductSubcategoryID =
Production.ProductSubcategory.ProductSubcategoryID
INNER JOIN Production.ProductCategory
ON Production.ProductSubcategory.ProductCategoryID =
Production.ProductCategory.ProductCategoryID

ORDER BY
Production.ProductCategory.Name

, Production.ProductSubcategory.Name
, Production.Product.Name

Figure 6-12 shows this query in the Graphical Query Designer.

Figure 6-12

Switch to the Layout tab and drag a Table item from the Toolbox to the report designer. Click on the
table, and then click the gray table selector handle on the top left to select the entire table.

193

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 193

Figure 6-13

This should display a border with selection handles around the table as in Figure 6-14.

Figure 6-14

Selecting a table is simple but may not be obvious: First, click anywhere in the table
to view the row and column selector handles, and then click the table selector han-
dle in the corner to select the table (see Figure 6-13).

194

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 194

In the properties window, select the DataSetName property and, in the drop-down list, select the new
data set name. If you drag and drop a field from the Dataset window to any cell of the table, this prop-
erty will be set automatically. In case you need to change the data source for a table or if the name of the
data set were to change, it’s important to know how to change this value.

Groups are added directly to the table item using the right-click menu and a custom properties dialog
window. Table groupings can have an associated header and footer row. Cells in these rows contain text
boxes (by default) that can be used to display column values for the grouping level. Different columns
can be used to indent grouped values, or you can use the padding property of a text box to achieve more
precise control.

By default, a table contains a detail row and a header and footer row. You can add and remove rows for
each of these areas and to any group using the right-click menu from the row handles. Figure 6-15 shows
the Detail tooltip. Tooltips are visible as you hover over each row selector handle.

Figure 6-15

You will add two groups. One each for the CategoryName and SubCategoryName fields. Groups are
added in top-down order (not from the inside out), so you will add the CategoryName group first. Right-
click the detail row handle and select Insert Group from the pop-up menu, as shown in Figure 6-16.

Figure 6-16

195

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 195

The Grouping and Sorting Properties dialog is displayed with a default name for the new grouping. For
a complex report, you may want to devise a more intuitive naming convention than the one offered by
the Designer. Note this dialog includes the following features:

❑ Name is used for identifying and referring to this group in expressions.

❑ Group on may contain one or more expressions, typically fields, to group on.

❑ Document map label is a field value, an expression, or text that will be used in the document
map for the report.

❑ Parent group may be used to create a hierarchy of nested groupings. This property is not neces-
sary for multiple groups in the same table.

❑ Page break options may be used to force a page break.

❑ Header and footer options enable group header and footer rows.

For simplicity, just add the group field name to the end as you see in Figure 6-17. In the Expression box,
drop down the list from the first row of the grid and select =Fields!CategoryName.Value.

Figure 6-17

Switch to the Sorting tab and choose the same field to ensure that records are sorted correctly prior to
grouping on this field value, as shown in Figure 6-18. It’s typically a good idea to sort records in the data
set query in the same order they will be presented in the report. However, since grouping and sorting
can be dynamically changed using expressions, make sure that records are sorted in the same order that
they are grouped. Doing otherwise will cause some strange results. If you plan to sort rows differently

196

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 196

from the way they are returned by the data set, choose the appropriate field expression from the drop-
down list in the first row of the Sort on grid. You may subsort on different field values by choosing sub-
sequent field expressions in multiple rows in this grid.

Figure 6-18

Click OK to close the Grouping and Sorting Properties dialog. Right-click on the detail row handle again
and repeat the same process for the ProductSubCategory field.

Adding the fields to the table is a snap. Just drag and drop them from the Dataset window on the left.
Place the CategoryName in the first cell in the group 1 row. Drag the SubCatgoryName field to the sec-
ond column on the group 2 row, and drag the ProductName field to the third column on the detail row,
as shown in Figure 6-19.

Note that the table headers have text added and that the mixed-case field names are parsed appropri-
ately. The report should be functional at this point, although it needs a little cosmetic work. Select the
header row by clicking in the table and then on the header row selector handle. This selects all of the text
boxes in this row. Using the properties window, set the BorderStyle_Bottom property to Solid and
the BorderWidth_Bottom property to 2pt. Text fonts and styles can be set using the properties window
or the layout toolbar. Using either method, set the FontWeight for the text in this row to Bold. The
properties window is shown in Figure 6-20.

Finally, remove the unused footer rows. Select the group and table footer rows and then press the Delete
key. What the report looks like in preview is shown in Figure 6-21.

197

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 197

Figure 6-19

Figure 6-20

198

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 198

Figure 6-21

Column Placement and Indentation
One of the typical challenges associated with a table is that horizontal space is limited. There are two
common techniques for dealing with these limitations. The first technique you’ll use in this example is
to merge columns together, which will give values more space, even with the column spacing reduced.
This effectively extends the first cell in the range and hides other cell values. You may find it necessary
to abbreviate column headings, so you can resize the columns and get the desired effect.

The column space used in our report by the CategoryName and SubCategoryName group fields would
be unacceptable if I needed this space for other fields. I’m going to resize these columns to make room
for some additional fields. I’ve added four more fields to my data set query: ProductNumber, Color,
StandardCost, and ListPrice. To add additional columns to the table, I right-click on a column
header and select an option to insert a new column from the pop-up menu, as shown in Figure 6-22.

I’ll repeat this step to create the four columns and then drag and drop the fields from the Dataset
window to the new cells in the detail row. In Figure 6-23, you can see that the CategoryName and
SubCategoryName fields and the table header text for the new columns no longer fit.

To fix the column headers, I’ll change the text using abbreviations. Since I have room for the
CategoryName and SubCategoryName field values in adjacent cells, I can merge these cells. Simply drag
across all of the cells, right-click, and select Merge Cells from the pop-up menu, shown in Figure 6-24.

199

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 199

Figure 6-22

Figure 6-23

Figure 6-24

Once cells have been merged, column changes are not allowed. It’s generally not a good idea to merge
cells until you have completed the rest of the table design work that may involve adding or removing
columns.

200

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 200

Two of these columns contain currency values that need to be formatted. I’ll change the Format property
to standard currency. The custom properties dialog for a text box contains a format selection list. You can
also use this dialog or the properties window to type a format string. In this case, the format string for
standard currency is a capital letter C. The formatting options for a text box are shown in Figure 6-25.

Figure 6-25

Figure 6-26 shows the report in preview after making these changes.

Indent with Padding
If you want values to be indented or staggered, you can work around the restrictions of column place-
ment and widths by using the Padding properties of a text box. Padding may be applied to the left,
right, top, or bottom of a text box and simply provides a margin of space between the border and con-
tained text.

To demonstrate, I will save a copy of the report we have been using in the previous example. In the
new report, I will remove the two leftmost columns and place the CategoryName, SubCategoryName,
and ProductName fields in the same column. For the reason I mentioned above, I cannot remove these
columns without first splitting the merged cells back apart. Figure 6-27 shows the new report in design
and preview. As you can see, with all three group fields in the same column, it looks very confusing.

To correct this, I change the left padding property for each of the data-bound text boxes in the first col-
umn. The group 1 header padding is left at 2 points, the group 2 header is set to 12 points, and the detail
row text box is set to 24 points. For reference, there are 72 points to an inch and about 28 points to a
centimeter.

201

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 201

Figure 6-26

Figure 6-27

I’ve also added two additional rows to the table header, used the same padding for the corresponding
heading text and changed the background color to dress things up a little. The result is shown in Fig-
ure 6-28.

202

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 202

Figure 6-28

Headers and Footers
Page headers and footers can be configured so that they are displayed and printed on all pages or omit-
ted from the first and/or last pages. Unlike many other reporting tools, there is no designated report
header or footer. This is so because the report body will act as a header or footer, depending on where
you place data region items. If you were to place a table an inch below the top of the report body, this
would give you a report header 1 inch tall. And since there is no set limit to the number of data regions
or other items you can add to a report (and you can force page breaks at any location), all of the space
above, below, and in between these items is essentially header and footer space.

You have a lot of flexibility for displaying header and footer content. In additional to the standard report
and page headers and footers, data range sections can be repeated on each page, creating additional page
header and footer content. Figure 6-29 shows a table report with each of the header and footer areas labeled.

Figure 6-29

203

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 203

I’ve shortened the page height on this report to 5 inches in order to conserve space. Figures 6-30 and 6-31
show two rendered pages for this report.

Figure 6-30

Figure 6-31

204

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 204

Note the page header containing the date at the top of this page, the repeated table header, and the table
footer showing the continuation of the CategoryName group, and then the page footer with the page
number and page count.

There are some restrictions regarding the content you can include in page header and footer sections that
can be easily worked around. Field references are not allowed in these areas because the page header
and footer are added to the final report output after the data is processed. Pagination is a feature of each
report format–rendering extension so the report engine has no knowledge of page placement at the time
of the initial report content rendering. You do have access to several resources such as global variables,
parameters, and report items. A simple technique for including data in the page header and footer is to
place a text box in the report body with the desired field reference and then refer to this report item from
the header or footer.

Add a page header and footer by selecting Page Header and Page Footer from the Report menu while
the report is open in Layout view. Select Report Properties from the Report menu. This is where you can
optionally leave a page header or footer off the first or last page of the report.

Now that the page header and footer are visible in the report designer, drag the report title text box into
the header area. You’ll also replace the header row of the table with text boxes in the page header. Add
text boxes, and label them with the same text as the columns in the table header row. To separate the
headings from column values, add a line, and place it immediately below the row of text boxes. Resize
the page header area as needed.

In the report body, click on the table and then right-click the row selector to the left of the table header.
Choose Delete Rows to get rid of the header row. Resize the report body as needed. Finally, in the report
footer section, place a horizontal line and a text box item below it.

Aggregate Functions and Totals
Reporting Services supports several aggregate functions, similar to those supported by the Transact-SQL
query language. Each aggregate function accepts one or two arguments. The first is the field reference or
expression to aggregate. The second, optional argument is the name of a data set, report item, or group
name to indicate the scope of the aggregation. If not provided, the current item scope is assumed. The
following table lists the aggregate functions available in Reporting Services.

Function Description

AVG() The average of all non-null values.

COUNT() The count of values.

COUNTDISTINCT() The count of distinct values.

COUNTROWS() The count of all rows.

FIRST() Returns the first value for a range of values.

LAST() Returns the last value for a range of values.

MAX() Returns the greatest value for a range of values.

Table continued on following page

205

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 205

Function Description

MIN() Returns the least value for a range of values.

STDEV() Returns the standard deviation.

STDEVP() Returns the population standard deviation.

SUM() Returns a sum of all values.

VAR() Returns the variance of all values.

VARP() Returns the population variance of all values.

In addition to the aggregate functions in the previous table, the functions listed in the following table
behave in a similar way to aggregates but have special features for reports.

Function Description

LEVEL() Returns an integer value for the group level within a recursive
hierarchy. The group name is required.

ROWNUMBER() Returns the row number for a group or range.

RUNNINGVALUE() Returns an accumulative aggregation up to this row.

Examples of aggregate function expressions and recursive levels are found in the following sections for
table and matrix report items.

Using the Expression Builder
You’ve already used a few expressions in the basic report design work you’ve done so far. Any field
reference is an expression. In the Grouping and Sorting Properties dialog, you used a field expression.
In the report shown in the previous example, I used an expression to show the page number and total
pages so that it reads “Page X of Y.” Expressions are used to create a dynamic value based on a variety of
global variables, fields, and programming functions. Expressions may be used to set most property val-
ues based on a variety of global variables, field values, and calculations. Let’s take a quick look at com-
mon methods to build simple expressions.

To display the page number and page count, add a text box to the page header or footer. Right-click
the text box and in the drop-down list select Expression. Use the Edit Expression window to create the
expression. There are two different ways to enter an expression. The first method is to select and paste
items from the object tree and member lists (shown in Figure 6-32). You can either double-click an item
or click the Paste button to add items to the expression. The other method is simply to type text into the
expression text area. As you type, you may use the IntelliSense Auto List Members feature to provide
drop-down lists for known items and properties. When you type a known object (for example, Globals
or Fields) followed by a period or exclamation mark, a list of members will appear at this location. You
may continue to type or select a list item using the mouse or keyboard arrow keys. When the appropri-
ate list item is highlighted, use the Tab key to select it from the list.

206

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 206

Figure 6-32

Begin by typing =”Page “ & in the Expression box, and then click the Globals item on the object tree
view. All related members are listed in the adjacent list box. Double-click the PageNumber item in the
list. Place the cursor at the end of the text and type the text & “ of “ &. and then select and insert the
TotalPages field. The finished expression should read as follows:

=”Page “ & Globals!PageNumber & “ of “ & Globals!TotalPages

The Edit Expression window (also called the Expression Builder) should appear as shown in Figure 6-32.

The term Globals applies to a set of variables built in to Reporting Services that provide useful informa-
tion such as page numbers. A list of available global variables, fields, and parameters may be found in
the Expression Builder.

As I said, you’ll see this dialog again. In fact, it’s something that you will likely use quite a bit. In the
properties window, many property values can be set by using the drop-down list to select the item
labeled <Expression...>. In the custom properties dialog for each report item, the Expression Builder
dialog is invoked using the buttons labeled fx adjacent to each property value. In the previous chapter,
you learned how parameter values are passed into a query to limit or alter the result set. Parameters
may also be used within the report to modify display characteristics by dynamically changing item
properties.

In the next chapter, you learn techniques for using expressions with parameters, global variables, and
simple programming code to extend report functionality.

207

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 207

Drill-Down Reports
A drill-down report is an interactive report that allows the user to expand and collapse grouped sections
to discover more detail as needed. In recent years, users have become accustomed to this type of tree
view navigation in common software, so it has become an intuitive user interface metaphor. Interactive
reports give users more options and reduce unnecessary screen space used by data that users need not
view. They can drill down further as suits their need to view more specific details. Drill-down reports
are designed to be interactive, but they usually work well on the page. Different report-rendering for-
mats treat drill-down reports a little differently. In HTML and Excel, reports will behave as they do in
the report designer. However, PDF and image-rendered reports don’t support the dynamic drill-down
functionality. When exported from the Report Manager, these reports will have sections expanded and
collapsed as they were at the time they were exported.

The magic of drill-down reports is that rows and sections are simply hidden and displayed based on a
toggle item. This means that a value item (like a text box) is used to toggle the hidden property of rows
and other report items. A plus sign (+) is displayed to the left of the toggle item. Each time the user clicks
the icon, the hidden property for the associated row items is toggled between the value True and False,
and the icon toggles between a plus (+) and minus (–) sign. The rows must also be set up to collapse
when they are hidden.

Using the Products and Categories report from the previous example, the detail row and SubCategory
header row must be hidden and set up to toggle. As drill-down visibility is managed at the group level,
you need to define a group for the detail row. Select the detail row using the row selector, right-click, and
choose Edit Group to show the Grouping and Sorting Properties dialog. Select =Fields!ProductName
.Value from the drop-down list in the first row of the Expression list box, as shown in Figure 6-33.

Figure 6-33

208

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 208

The toggle items (in this case, the CategoryName and SubCategoryName text boxes) should be named
appropriately because they will be referenced in expressions. Since I defined these items using the drag-
and-drop technique, the text boxes have the same names as the fields to which they are bound. If they
had not been created this way, they may have arbitrary names (like TextBox17 and TextBox43). Make
it a point to rename any report items that may be used in expressions.

I like to prefix report item names with the abbreviated form of the item (such as txt for text box, tbl for
table, and img for image). This is a matter of preference and isn’t necessary in simple reports.

On the Visibility tab, change the initial visibility to Hidden and then the check box labeled Visibility can be
toggled by another report item. This enables the report item drop-down list. Select the SubCategoryName
item in the Report item drop-down list. The SubCategoryName text box is in the second column of the
SubCategory group row. It will be used to toggle the visibility of the row (see Figure 6-34). I have found
this item selection to be a little unpredictable, and some items may not be listed as they should. In any case,
if you don’t see the report item you expect, just type it into the list text area.

Figure 6-34

The same process should be repeated for the SubCategoryName row group. Select this row using the
row selector, and repeat these steps. On the dialog, choose the Visibility tab and set the initial visibility to
Hidden and use the CategoryName report item to toggle the visibility of this grouping. Click OK to save
the settings. Figure 6-35 shows the preview for this report with all detail hidden in its initial state.

Figure 6-36 shows the same report with both groups drilled open. Note the standard “finger” mouse
pointer used to toggle the group rows.

Use the (+) icons to drill down into a CategoryName or SubCategoryName rows. As you see, the report
now becomes interactive, and users can customize the display of the report by viewing only the infor-
mation that they need.

209

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 209

Figure 6-35

Figure 6-36

Creating a Document Map
This is a simple navigation feature that allows the user to find a group label or item value in the report
by using a tree displayed along the left side of the report. It’s sort of like a table of contents for report
items, which can be used to quickly navigate to a specific area of a large report. You typically will want
to include only group-level fields in the document map rather than including the detail rows.

The document map is limited to the HTML, Excel, and PDF rendering formats. In Excel and HTML
formats, the document map may not survive when saving report files to an older document format, such
as Pocket Excel on a Pocket PC device.

This example will use a version of the drill-down report, only with the visibility properties set back to
defaults. You will add the CategoryName and SubCategoryName groupings to the document map. In
the Grouping and Sorting Properties dialog for the Category row (group 1), drop down the Document
map label list, and choose the =Fields!CategoryName.Value item (see Figure 6-37).

210

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 210

Figure 6-37

Click OK to close the dialog, and then do the same for the SubCategoryName row group.

Be careful and specify the document map label property only for items that you want to include in the
document map. For example, if you specify this property for a grouping (as has been done here), don’t
do the same for a text box containing the same value. Otherwise, you will see the same value appear
twice in the document map. A report with a document map is illustrated in Figure 6-38. The report name
is the top-level item in the document map, followed by the product Category and Subcategory names.

Figure 6-38

211

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 211

The document map may be shown or hidden using the leftmost icon in the report designer’s Preview or
the Report Manager Report View toolbar.

Links and Drill-Through Reports
Any text box or image item can be used for intrareport or interreport navigation, for navigation to exter-
nal resources like web pages and documents, and also to send e-mail. All of these features are enabled
by using navigation properties that can be specified in the Textbox Properties or Image Properties dia-
log. First, open the Textbox Properties dialog by right-clicking the text box and selecting Properties from
the pop-out menu. In the Textbox Properties dialog, click the Advanced button to show the Advanced
Textbox Properties dialog, and then switch to the Navigation tab. In the Image Properties dialog, select
the Navigation tab.

Bookmarks and Links
A bookmark is a text box or image in a report that can be used as a navigational link. If you want to allow
the user to click an item and navigate to another item, assign a bookmark value to each of the target items.
To enable navigation to a bookmark, set the Jump to bookmark property to the target bookmark.

Using bookmarks to navigate within a report is very easy to do. Each report item has a BookMark prop-
erty that may be assigned a unique value. After adding bookmarks to any target items, use the Jump to
Bookmark Selection list to select the target bookmark in the Properties for the Source item. This allows
the user to navigate to items within the same report.

The Jump to URL option can be used to navigate to practically any report or document content on your
report server, and files, folders, and applications in your intranet environment or on the World Wide
Web. With some creativity, this may be used as a powerful, interactive navigation feature. It can also
be set to an expression that uses links stored in a database, custom code, or any other values. It’s more
accurate to say that any URI (Uniform Resource Identifier) can be used since a web request is not limited
only to a web page or document. With some creative programming, queries, and expressions, your reports
could be designed to navigate to a web page, document, e-mail address, Web service request, or a cus-
tom web application, directed by data or custom expressions.

Just a word of caution: Reporting Services does not make any attempt to validate a URL passed in an
expression. If a malformed URL is used, the Report Server will return an error, and there is no easy way
to trap or prevent this from occurring. The most effective way to handle this issue is to validate the URL
string before passing it to the Jump to URL property.

Drill-Through Reports
This powerful feature enables a text box or image to be used as a link to another report by passing parame-
ter values to the target report. The target report can consist of a specific record or multiple records, depend-
ing on the parameters passed to the target report. The following example uses a Products by Category
report, similar to the one used in the last example, to demonstrate the use of grouped tables. The Product
Name text box is used to link to a report that will display the details of a single product record. The
Product Details report is very simple. It contains only text boxes and an image bound to fields of a data set
based on the Products table. This report accepts a ProductID parameter to filter the records and narrow
down to the record requested.

212

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 212

In the Advanced Textbox Properties dialog box, select the Jump to report radio button, and select the tar-
get report from the drop-down list (see Figure 6-39).

Figure 6-39

Any parameters you need to pass to the target report can be configured using the Parameters button.
In the Parameters dialog, parameters for the target report are selected in the Parameter Name column.
Values supplied from the current report are provided in the Parameter Value column, as you can see in
Figure 6-40.

Figure 6-40

If you need to give a cue to the user that the item is a link, you may want to display text with an under-
line. The resulting reports provide drill-through functionality. When a product name is clicked on the

213

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 213

main report, the viewer redirects to the detailed report for the specific product by passing the ProductID
parameter value. This is shown in Figure 6-41.

Figure 6-41

Recursive Relationships
Representing recursive hierarchies has always been a pain for reporting and often a challenge to effec-
tively model in relational database systems. Examples of this type of relationship (usually facilitated
through a self-join) may be found in the Employee table of the AdventureWorks sample database. Most
reporting tools were designed to work with data organized in traditional multi-table relationships.
Fortunately, our friends at Microsoft built recursive support into the reporting engine to deal with this
common challenge. A classic example of a recursive relationship (where child records are related to a
parent record contained in the same table) is the employee-manager relationship. The Employee table
contains a primary key, EmployeeID, that uniquely identifies each employee record. The ManagerID is a
foreign key that depends on the EmployeeID attribute of the same table, and it contains the EmployeeID
value for the employee’s manager. The only record that won’t have a ManagerID would be the president
of the company or any such employee who doesn’t have a boss.

Representing the hierarchy through a query would be quite difficult. However, defining the data set for
such a report is very simple. You simply expose the primary key, foreign key, employee name, and any
other values that you want to include on the report.

214

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 214

To see how this works, create a new report and define a data set using the AdventureWorks shared data
source. The name of the new data set will be EmployeesAndManagers. Enter this SQL expression into
the third pane of the Query Builder:

SELECT
Person.Contact.FirstName

, Person.Contact.LastName
, HumanResources.Employee.EmployeeID
, HumanResources.Employee.ManagerID

FROM
HumanResources.Employee
INNER JOIN Person.Contact
ON HumanResources.Employee.ContactID = Person.Contact.ContactID

ORDER BY
Person.Contact.LastName

, Person.Contact.FirstName

Add a table to the report in the Layout tab, and drag the FirstName field from the Dataset window to the
first cell in the detail row. This will set the DataSetName property for you. A single group will provide all
of the recursive functionality for the table. Click on the table to show the selection handles, and then click
the selector to the left of the detail row. You’re not adding a new group but simply using the detail group
that already exists for this row. Right-click the detail row selector, and choose Edit Group from the
menu. In the Details Grouping dialog, enter the Name as table1_Details_Group_Employees. In the
first row of the Group on list box, select the expression =Fields!EmployeeID.Value. Drop down the
Parent group list, and select the expression =Fields!ManagerID.Value and verify that your selections
match Figure 6-42. The reporting engine recognizes this as a recursive grouping because both of these
fields are in the same table. Click OK to close the dialog.

Figure 6-42

215

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 215

Now the fun begins; Reporting Services recognizes that recursive groupings have special characteristics.
I use the Level() function to return the group level number within the recursive hierarchy. Each row is
assigned an integer value that represents its relative position to parent and child rows in the hierarchy. You
will also use a Count() function, indicating that you want the count of the recursive group’s children.

Figure 6-43 shows the final solution. Note that for the first of the two function calls, detailed in the call-
outs, you’ll build this in two stages. I’ll give you instructions to add and test only the Level() function
and then you’ll go back and add the Choose() function in a second pass.

Figure 6-43

You want to see the employee’s full name, so modify the expression as it appears in Figure 6-43 to show
the FirstName, a space, and the LastName. Modify this column header and enter column headers for
the second and third columns as Level and Reports, respectively. The Level column will show the
employee’s level within the organization and the Reports column will show the number reports they
have (the number of employees who report to this employee.) All aggregate functions accept an optional
group name for the scope argument which causes it to calculate the aggregation only within the scope of
that group. For the Level() function this is the only argument.

In the second detail cell (labeled Level), set the Value property to:

=Level(“table1_Details_Group_Employees”) + 1

This returns an integer that I would like translated to a more meaningful value. Now, I’ll embellish this
expression so that it returns the employee level from the top of the food chain down (the number 1 rep-
resents an executive, 2 is a director, 3 is a manager, and so on). Passing the level number to the Choose()
function, I can provide this translation:

=Choose(Level(“table1_Details_Group_Employees”) + 1, “Exec”, “Director”, “Manager”,
“Supervisor”, “Peon”)

1 is added to this value because the Level() function returns 0 for the first level, 1 for the second, and
so on. The expression for the third column will use the group name for the Count() function’s scope
argument and the Recursive keyword in the third argument. This indicates that the aggregate function
should be applied to child rows of this group. Set the value to the expression:

216

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 216

=Count(Fields!EmployeeID.Value, “table1_Details_Group_Employees”, Recursive)

Finally, you want each row’s padding to be progressively greater based on the group level. Using the
Level() function you can apply some simple math to the padding property value to get the desired
result. Since padding values are expressed as a string value, you will concatenate the value pt to the end
of a calculated numeric value.

Click on the first cell in the detail row to select the EmployeeName text box and in the properties win-
dow set the Padding_Left property to:

=Level(“table1_Details_Group_Employees “) * 20 & “pt”

This will set the padding for the first level (level 0) to 0 points, the second to 20 points, and the third to
40 points, and so on. I’ve dressed up the header row using bold text, a border, and text alignment and
added a title text box. Save the report and then select the Preview tab to view the results. The generated
report should appear as shown in Figure 6-44.

Figure 6-44

217

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 217

Subreports
This feature is largely borrowed from Microsoft Access. Essentially, a subreport is a stand-alone report
that is embedded into another report. Using parameters, you can link the contents of a subreport to the
main report.

There are some limitations to the content and formatting that can be rendered within a subreport. For
example, a multicolumn report may not be possible within a subreport (depending upon the rendering
format used). If you plan to use multiple columns in a subreport, test your report with the rendering
formats you plan to use.

There are generally two uses for subreports, which include embedding one instance of a separate report
into the body of another report with an unassociated data source. The other scenario involves using the
subreport as a custom data region to display repeated master and detail records in the body of the main
report. From a design standpoint, this makes perfect sense. Using a subreport allows you to separate
two related data sets and perhaps even data sources, linked in the same way that you would join tables
in a SQL query. It allows you to reuse an existing report so that you don’t have to redesign functionality
you’ve already created. However, there may be a significant downside. If the master report will consume
more than just a few records, this means that the subreport must execute its query and render the con-
tent many times. For large volumes of data, this can prove to be a very inefficient solution. Carefully
reconsider the use of subreports with large result sets. It may be more efficient to construct one larger
report with a more complex query and multiple levels of grouping rather than assume the cost of execut-
ing a query many times. I rarely use subreports in standard reporting scenarios. If I do, the main report
is limited to one or a few records.

A subreport can be linked to the main report using a correlated parameter and field reference, so that it
can be used like a data region, but this is not essential. A subreport could be used to show aggregated
values unrelated to groupings or content in the rest of the report.

Creating a subreport is like creating any other report. You simply create a report and then add it to
another report as a subreport. If you intend to use the main report and subreport as a Master/Detail view
of related data, the subreport should expose a parameter that can be linked to a field in the main report.
In the following walk-through, you’ll build a simple report that lists products and exposes a subcategory
parameter. The main report will list categories and subcategories and the product list report will then be
used as a data region, like a table or list as in previous examples.

The first report, which will be used as a subreport, will include a list of products. The second report will
consist of the product categories and subcategories and will contain the subreport, which renders a list
of products for each subcategory.

1. Add a new report to your project called Product List Subreport.

2. On the Data tab, create a new data set called Product_List using the AdventureWorks database.
Add the Product table to the data set and select the Name, StandardPrice, and
ProductSubCategoryID columns to be output by the query. Sort the records by the Name col-
umn in ascending order.

3. Create a parameter for the ProductSubCategoryID column called @SubCategoryID. The easiest
way to do this is to move the cursor to the grid column labeled Criteria on the row for the
ProductSubCategoryID table column and type = @SubCategoryID. The SQL for the data set
should look like this:

218

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 218

SELECT Name
, ListPrice
, ProductSubcategoryID

FROM Production.Product
WHERE ProductSubcategoryID = @SubCategoryID
ORDER BY Name

4. On the Layout tab, add a List item to the report.

5. From the Datasets window, drag the Name and ListPrice fields into the List item and arrange
them horizontally to form a row with sufficient room for these values. Resize the list so that it is
the height of one text box and about 4 inches wide. Place two text boxes to be column headings
above the list and set their values to read Product and Price, as shown in Figure 6-45. Arrange
the text boxes and the items in the list to line up, right justify the Price heading text box, and
then resize the report body background to fit closely around the list.

Figure 6-45

6. To dress up the report a bit, set the top border style for the list to be solid (in the Properties win-
dow, select BorderStyle|Top|Solid). Also set the Format property for the ListPrice text box
to C2.

7. Add a new report called Product List Categories and create a new data set Product_List_
Categories using the ProductCategory and ProductSubCategory tables. Leave the join in place,
alias the name columns from both the tables, and sort by first the category name and then the
subcategory name. The resulting SQL expression should look like the following:

SELECT Production.ProductCategory.Name AS ProductCategory
, Production.ProductSubcategory.Name AS SubCategory
, Production.ProductSubcategory.ProductSubcategoryID

FROM Production.ProductCategory
INNER JOIN Production.ProductSubcategory
ON Production.ProductCategory.ProductCategoryID

= Production.ProductSubcategory.ProductCategoryID
ORDER BY Production.ProductCategory.Name

, Production.ProductSubcategory.Name

8. On the Layout tab, add a text box to be used for the report heading and a List item. Drag and
drop the ProductCategory and SubCategory fields from the Dataset window into the list
data region, with the Product_List_Categories data set selected. Size the list item to be about
6.5 inches wide by 1.5 inches tall (about 13 cm by 4 cm). Arrange the two new text boxes in two
rows and staggered in the top area of the list. I’m going for roughly the same look as the previ-
ous report examples using two group headings.

9. Select the ProductCategory text box, and then find the HideDuplicates property in the
Properties window. Change this property value to be True.

219

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 219

10. From the Solution Explorer, drag and drop the Product List Subreport report into the list data
region below the text boxes. Resize the new subreport to be about the same size as the subreport
in the designer. Mine is about 4.5 inches wide and 0.75 inches tall (7 cm by 2 cm) and place
it under the second text box. Resize the list around the contained items. The report should be
similar to Figure 6-46.

Figure 6-46

You need to use the subcategory parameter to associate the product list subreport with the outer
list data region. Right-click the subreport and select Properties. In the Subreport Properties dialog,
switch to the Parameters tab and select the SubCategoryID parameter in the first row of the
parameters box. In the Parameter Value column, select =Fields!ProductSubCategoryID.Value
in the drop-down list. See Figure 6-47.

Figure 6-47

This completes the report design. The size and placement of the items in your subreport and the main
report will likely be a little different from mine. Using lists and subreports typically makes the design
process more ad hoc and artful than when using more rigid tables. Go back and check the size and
placement of items so that they fit neatly within the subreport space. This often takes a few iterations
of preview and layout to make the appropriate adjustments.

220

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 220

At this point, you should be able to preview the report and see the Category and Subcategory names fol-
lowed by a list of related products, as shown in Figure 6-48.

Figure 6-48

Designing Matrix Reports
As you saw in Chapter 4, a matrix is a cross-tab or pivot table. Just as the rows of a table are generated
for the rows of the underlying result set, a matrix does the same thing for columns. Matrix data should
have at least two groups with intersecting aggregate values. One group drives rows, while the other
group creates columns. In the following example, my query returns sales order summaries for customers
in different geographies, across different periods of time, and for customers who have different occupa-
tions. The geographical and time information (in multiple, related groups) will be displayed as rows,
and the occupations will be columns. To make things even more interesting, I’ll include two data points
at each intersection: the order quantity and the average sales amount.

Pivot table queries can be quite complex and should use data sources optimized to handle large volumes
of source data. SQL Server Analysis Services is ideal for these types of reporting solutions. My intention
is to demonstrate the mechanics of the matrix report design rather than the complexity of the query. To
follow along with this demonstration, the following T-SQL expression may be used:

221

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 221

SELECT DimSalesTerritory.SalesTerritoryCountry AS Country
, DimTime.CalendarYear AS Calendar_Year
, DimTime.CalendarQuarter AS Calendar_Quarter
, DimTime.EnglishMonthName AS Month
, DimCustomer.EnglishOccupation AS Occupation
, SUM(FactInternetSales.OrderQuantity) AS Order_Quantity
, AVG(FactInternetSales.SalesAmount) AS Avg_Sales_Amount
, SUM((FactInternetSales.SalesAmount - FactInternetSales.TotalProductCost)

* FactInternetSales.OrderQuantity) AS Gross_Profit_Margin
FROM DimSalesTerritory INNER JOIN FactInternetSales

ON DimSalesTerritory.SalesTerritoryKey =
FactInternetSales.SalesTerritoryKey

INNER JOIN DimTime ON FactInternetSales.ShipDateKey = DimTime.TimeKey
INNER JOIN DimCustomer

ON FactInternetSales.CustomerKey = DimCustomer.CustomerKey
GROUP BY DimSalesTerritory.SalesTerritoryCountry

, DimTime.CalendarYear, DimTime.CalendarQuarter
, DimTime.EnglishMonthName, DimCustomer.EnglishOccupation
, DimTime.MonthNumberOfYear

ORDER BY Country, Calendar_Year, Calendar_Quarter
, DimTime.MonthNumberOfYear, Occupation

For simplicity, I’ve left the filter parameters out of the query. You’ll see references to the data range
parameter to show you what a finished report might look like. This query returns sorted values on three
separate axes: Country, Time (Year, Quarter, and Month), and Occupation. These are used to define row
and column groups. Figure 6-49 shows the basic report in the designer with the available fields in the
Dataset window. When the matrix is placed in the report body, it has three drop zones.

Figure 6-49

222

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 222

From the Dataset window, I drop my column axis field into the Columns drop zone. You can see in
Figure 6-50 that the field reference doesn’t use an aggregate function like First() or Sum(). This is
because a group was automatically generated to support this column. You’ll see the groups after all of
the fields are placed into cells. Figures 6-50 through 6-54 show each of the fields added to a cell.

Figure 6-50

Now for the first row field: the Country.

Figure 6-51

For each country, a group will display repeated date-related information. I drop the Calendar_Year field
to the right of the Country. Note that a light-colored bar on the right edge of the existing text box indi-
cates that a new group will be added.

Figure 6-52

This pattern is repeated for the remaining fields. The row hierarchy now contains the Country,
Calendar_Year, Calendar_Quarter, and Month fields. The Order_Quantity field is dropped into the
center (or pivot) cell. Note that this field will be aggregated using the Sum() function by default. The
expression can be changed to use any appropriate aggregation (such as Avg() or Count()),

Figure 6-53

223

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 223

If another field is dropped into the pivot cell, it may be placed to either side of the existing text box. This
adds an additional set of column headers to manage the two levels of column groups.

Figure 6-54

Figure 6-55 shows an unattractive report, but it contains data at the right intersect points. This is easily
remedied by setting properties to adjust the text alignment (right-justify column headers over numeric
and date values) and set borders and background colors. Different shades of gray borders and back-
grounds will accent the data and provide just enough visual separation without being distracting.

Figure 6-55

Subtotals and Summaries
Each row group may have a subtotal or summary added when the group value changes. To evoke a
subtotal on any group (rows or columns), right-click the group header cell and select Subtotal from the
pop-up menu (see Figure 6-56). This adds a header cell for the subtotal row or column. These cells are
indicated with a small green triangle in the upper-right corner.

A subtotal will render header and data cells, but the data cells are not displayed in the designer. By
default, the style of the corresponding data cells is the same as the main intercept cell(s) but may be
modified using the Properties window. Selecting the cell (using a standard left-click in the cell) selects

224

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 224

the text box in the header cell, and properties may be modified as in any other text box. To select the
subtotal properties, click the green triangle in the corner. Figure 6-57 shows the right-click menu for the
subtotal selection, which has fewer menu choices than the text box.

Figure 6-56

Figure 6-57

Verify that the subtotal has been selected by checking the object name drop-down list on the Properties
window. Figure 6-58 shows the subtotal properties for the selected group. These properties affect only
the data cells for this subtotal row.

Drill-Down in a Matrix
Setting up drill-down functionality for a matrix is similar to a table. Each group may be hidden and then
expanded or collapsed (shown or hidden) based on a designated toggle item. Start at the deepest group
level in the hierarchy. In Figure 6-59, I right-click the Month group header text box and select Edit Group
to modify the group properties.

225

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 225

Figure 6-58

Figure 6-59

226

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 226

In the Grouping and Sorting Properties dialog (shown in Figure 6-60), I use the Visibility tab to set the
group’s Hidden property and the toggle item for the parent group. In my experience, this drop-down list
may not show all available items as it should, assuming that the groups are set up correctly. Select or
type the name of the preceding group header text box.

Figure 6-60

Figure 6-61 shows the finished matrix report with customer occupations across the top and the country
and time period hierarchy along the left side. The drill-down features enable users to view aggregated
totals for each country and then the year, quarter, and month. Under each occupation, a column displays
the total number of orders and the average amount for all orders.

Figure 6-61

227

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 227

Chart Reports
The charting capabilities in Reporting Services are quite impressive and as easy to use as those in Excel
or Access, and, in many ways, they are more powerful. The charting components are based on Dundas
Charts, developed by Dundas Software. Dundas provides a suite of ASP.NET charting components that
have been available for .NET developers for several years. A chart item is based on a data set just like
any data range and can use groups, query parameters, and filters in much the same way as a table, list,
or matrix.

So, why use a chart to present data? After all, isn’t a chart simply a graphical representation of a group
of numbers? Wouldn’t rows and columns of values be just as effective? To fully understand the impact
and perhaps the importance of presenting information graphically, it’s important to understand the
needs and objective of the report reader and how the information will be used. In Chapter 7, I discuss
lessons learned about data presentation. For now, just consider some basic observations about report
usage and the people who read these reports.

Analyzing information is usually a process rather than a single event. Regardless of the type of business or
industry, users typically approach business information in stages. First it’s important to consider the differ-
ent roles of users in order to understand their respective stages of information discovery. Some may have a
specific task they perform and the information they use will be focused on that task. Other users may be
leaders and decision makers in various capacities, whose objectives are more broad and complex.

Consider the CEO whose first objective is often to find out whether there are any disasters to address. This
executive isn’t concerned with specific details or even short-term trends but in getting a meter reading on
the business. After the CEO learns that there are no fires to put out, the next objective is to get a broad view
of sales and productivity trends for different areas of the business. Typically, one of the most important
questions addressed by effective business reporting solutions is How are we doing? Depending on the size
and type of business, a high-level leader may also be interested in understanding some of the lower-level
details regarding operations, production, sales, and other business specifics. Executives typically benefit
from dashboard-type reports that provide high-level status information they use to take periodic business
meter readings. Executives also need access to more detailed information to be used for occasional follow-
up but will usually get their information from others.

Contrast the perspective of the CEO with the operational business leaders: the sales manager, marketing
director, or production manager. These people need to have their finger on the pulse of specific business
areas. They will be concerned with short- and long-term trends in their respective areas of responsibility.
Questions to be answered for operational leaders might be What products or campaigns are successful
and which are not? and Who are my top (and bottom) producers? Unlike the CEO, these individuals
must be connected with every aspect of their microorganization and must be armed with detailed, accu-
rate information so that they can make proactive decisions.

Consider that some users may need to have information spoon-fed to them in a specific format, while
others may want to explore data, pivoting, sorting, and grouping it themselves.

Chart Types
Some of the more common chart types (like Column, Bar, Line, and Area) can be used for different views
of the same data. Pie and doughnut charts present a more simplified view and work well with fewer
dimensions. Other charts are more specialized and may be appropriate for multi-value data points,
range values, and variances.

228

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 228

When a report is viewed, the chart output is rendered to a bitmap and streamed to a PNG-type image.
This image is then linked or embedded in the report. There are nine general chart types available, and
these are described in the following table.

Chart Type Description

Column This is a classic vertical bar chart with columns representing values along the
Y-axis. Like-valued items along the X-axis are grouped together, and bars repre-
senting the same X-axis values in each group have the same colors or patterns.
Series values may also be grouped and subgrouped. Columns can have point
labels and the colored bars may be labeled using a legend. Columns may be
arranged side by side (along the X-axis) or in front of one another (along the
Z-axis.) Columns may appear to be extruded from their base using a rectangular
or circular (cylindrical) shape.

Bar This functionality is the same as a column chart turned 90 degrees. It has the
advantage of more accurately depicting value comparisons for layouts where you
have more available horizontal space.

Area Like a column chart with a trend line drawn from one point to the next in the
series. This type of chart is appropriate for a series of values that tend to progress
over a relatively even plane that describes a “level,” “up,” or “down” trend. It is
not at all appropriate for series values that tend to jump around. The solid shading
of the charted area depicts a volume of data values.

Line Like the area chart, but the area of the charted area isn’t filled. This type of chart is
useful for comparing multiple series (along the Z-axis) without obscuring trend
lines behind a series.

Pie The classic pie chart is an excellent tool for comparing relative values. Unlike
bar, column, line, and area charts, the aggregate value isn’t quantified. Users
understand pie charts because they put comparative values into a proportional
context and can drive quick decision support at a glance. Pie chart views can be
exploded to visually separate each slide.

Doughnut A doughnut is a pie with a hole in the middle. A three-dimensional doughnut ren-
dering may expose smaller slices more clearly than a pie chart since each slice has
four sides rather than three.

Scatter Plots several points in a range (both X and Y) to show trends and variations
in value. The result is more like a cloudy band of points rather than a specific
aggregated point or line.

Bubble This chart is a technique for charting points on three dimensions. Values are plotted
using different-sized points, or bubbles, on a two-dimensional grid. The size of the
bubble indicates the related value along the Z-axis.

Stock This chart plots values vertically like a column chart. For each item along the Y-axis
series, a vertical line indicates a start and end value for the range. A tick mark in
the line can indicate a significant value in that range or an aggregation of the range.
This type of chart is useful for showing trading stocks with opening, closing, and
purchase values; wholesale, retail, and discount prices; and the like.

229

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 229

Column Charts
The following chart in Figure 6-62 is an example of a simple column chart. The X-axis series values are
product categories, and the Y-axis values represent annual sales revenue. In this view, the legend at the
bottom indicates the X-axis series values. Several visual elements can be modified to alter the color,
shading, borders, text, formatting, labeling, and value placement. This figure shows generally default
property settings.

Figure 6-62

Figure 6-63 shows the same chart with 3-D modeling.

3-D modeling may be used to show data in a more interesting presentation, but this can also be distract-
ing and less effective for analysis. Figure 6-64 shows a more extreme 3-D view of the same data with per-
spective. I’ve made a point to set this chart up with a fairly extreme 3-D and perspective view, just to
show you what can be done. This type of view tends to distort the values, and the clustering (stacking
the columns along the Z-axis) can hide some columns from view.

You have control over several 3-D properties to generate more realistic representation of the chart data.
Be careful to maintain the appropriate balance between artistry and accuracy. Notice that it’s difficult to
quantify and distinguish the difference in height between the front-right column and the rightmost col-
umn in the back. The degree to which it makes sense to use these features will depend largely on the
purpose of the chart. Is it sufficient to demonstrate that one data point is less than or greater than
another, or do these points need to be strictly measurable? This type of view can be effective for making
an impact, but a flatter view is usually more appropriate to maintain accuracy.

230

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 230

Figure 6-63

Figure 6-64

Figure 6-65 is a 3-D view with cylindrical columns arranged in a clustered formation. When used cor-
rectly and in appropriate moderation, this 3-D chart adds a sense of realism while remaining readable.

231

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 231

Figure 6-65

Stacked Charts
Column and bar charts may have their bars stacked. This appends the different-colored bars (for a like
series value) into one bar with multiple colored bands. This may be an appropriate method for showing
the accumulation of all values within the series point. The individual values are displayed in a different
color as a percentage of the bar. In essence, each bar becomes like a linear pie chart (see Figure 6-66).

Figure 6-66

To emphasize the proportion of like values rather than the comparative accumulation, the 100% stacked
view (not pictured) will make all of the bars in the chart the same length rather than depicting the sum
of all the values in the bar.

232

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 232

Area and Line Charts
An area chart plots the values of each point and then draws a line from point to point to show the pro-
gression of values along the series. This is an effective method for analyzing trends and works well
when values tend to climb, decline, or remain level in the series. This type of chart is accurate when data
exists for all category values on the X-axis. It typically doesn’t work well to express a series of values
that are not in a relatively uniform plane. Figure 6-67 is an example of an area chart.

Figure 6-67

The line chart is a variation of an area chart using a line or ribbon rather than a solid area. The line chart
works better than the area chart for comparing multiple categories for a series of values because one
layer may obscure another in the area view. In the preceding example, the area chart works because val-
ues are sorted in a way that larger values are in the background and other points in the foreground are
smaller; the trend increases back to front.

Pie Charts
A pie chart is an excellent tool for comparing proportional values. Display options for a pie chart include
exploded and 3-D views. The 3-D pie chart in Figure 6-68 clearly shows that Touring Bike sales are a
small percentage, around 10% of total Bike Sales, and that Road Bike sales account for about half of the
total sales. I call this piece “PacMan Gets a Root Canal.”

A doughnut chart is a pie chart with a hole in it. This is a rather profound concept, isn’t it? Actually, in
cases where there may be several smaller slices, the donut chart can be a little easier to read and pro-
vides a little variation on an age-old chart theme. The chart shown in Figure 6-69 is the same as the pre-
vious chart without the exploded view and a legend showing the series labels.

233

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 233

Figure 6-68

Figure 6-69

Pie charts are traditionally used to show multiple slices representing their data point percentage of the
whole. In the usual form, data values grouped on another axis will result in slices automatically gener-
ated with the same style settings and contrasting colors from a standard color pallet. There are eight
color pallets provided in the designer. Sometimes data may need to be presented as a percentage value
or you may simply have two values and need to express one as a percentage of the other. This is possible
by adding multiple Value groups to the chart with each representing a specific slice. In Figure 6-70 , only
two values are presented. In this example, values in the data set exist for Bike Sales and Total Sales. Using
an expression or a calculation in the query, subtracting Bike Sales from the total provides a value for
Other Sales.

As you can see in Figure 6-71, I created a specific group for these two values. Another advantage of
using this approach is that I can set the color and styles for each slice independently. You’ll take a closer
look at this and similar techniques in Chapter 7.

234

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 234

Figure 6-70

Figure 6-71

Bubble Charts
Bubble charts are essentially a point plotted in a grid representing three dimensions. The value of the Z-
axis is expressed by the size of the bubble. Imagine that the bubble exists in a 3-D plane and will appear
large if it is closer to you. Actually the “bubble” can be a circle, square, triangle, diamond, or cross shape.

235

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 235

This also means that a combination of shapes may be used to represent different data elements in the
same chart space.

In Figure 6-72, employees’ vacation and sick hours are plotted above their names. The number of vaca-
tion hours is represented by the bubble’s vertical distance from the 0 baseline, and the number of sick
hours is represented by the size of the bubble.

Figure 6-72

The chart shown in Figure 6-73 is a stock chart. As you see, for each product, a line is plotted to span a
range of values and has a large tick mark to indicate the position of a value within the high–low range.
In this example, the beginning (lowest point of the line) of the range is the standard cost of the product.
The tick mark represents the last receipt cost, and the high range of the line is the list price.

Figure 6-73

236

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 236

The Anatomy of a Chart
There is typically a lot of detail work involved in chart design and many properties to manage. Fig-
ure 6-74 shows the major property groups for charts. Although some charts have a few unique proper-
ties and some may not support all, generally these are shared across all chart types.

Figure 6-74

After the chart is placed in the report body, fields may be dragged from the Dataset window directly
onto the chart design surface. At minimum, a chart should have one aggregated field for the value and
one grouped field for the category. The category and series groups represent the X- and Y-axis in bar,
column, line, area, and point charts.

Figure 6-75 shows four fields dropped onto this line chart in the designer. The ExtendedAmountSum
field will provide the data point values. Distinct ProductCategory values will group data along the
series. Two fields were dropped onto the chart category area. This creates two related groups on
this axis.

Figure 6-76 shows the same chart configuration on the Data tab of the Chart Properties dialog. The
chart groups created using the previous method may be modified here. Specific properties related to
the category group(s) are accessible from the Grouping and Sorting dialog after you click the Edit
button in this section.

237

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 237

Figure 6-75

Figure 6-76

238

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 238

Chart Report Exercise
To get you started creating charts, we will create a column chart using sales information from
AdventureWorks. This chart will include an added feature with a category group that shows sales asso-
ciates grouped by their regions.

I will provide the data set SQL expression and the steps to set up the chart. You will need to take care of
the standard report design details, which we covered in the earlier sections of this chapter.

To demonstrate a column or bar chart, we need a simple query with values to plot on two axes. We will
also add a third value to categorize or group another set of values. To get started, add this SQL expres-
sion in a new data set using the AdventureWorks database:

SELECT Person.Contact.LastName AS EmployeeName
, Sales.SalesPerson.SalesYTD, Sales.SalesTerritory.Name AS TerritoryName
, Sales.SalesPerson.SalesLastYear

FROM HumanResources.Employee INNER JOIN Sales.SalesPerson
ON Sales.SalesPerson.SalesPersonID = HumanResources.Employee.EmployeeID

INNER JOIN Sales.SalesTerritory
ON Sales.SalesPerson.TerritoryID = Sales.SalesTerritory.TerritoryID

INNER JOIN Person.Contact
ON HumanResources.Employee.ContactID = Person.Contact.ContactID

WHERE (Sales.SalesPerson.SalesYTD > 0)
AND (Sales.SalesPerson.SalesLastYear > 0)
AND (Sales.SalesPerson.TerritoryID < 5)

ORDER BY Sales.SalesPerson.TerritoryID

Add a new Chart item to the report and resize it to fill an area about 7 inches (18 cm) wide by 5 inches
(12 cm) tall.

Right-click the chart item in the report designer and select Column➪Simple Column for the Chart Type.

When you drag fields onto the report item, drop zones are displayed in areas above, to the right, and
below the report. These areas will change depending on the report type. Show the Fields window and
drag these fields to these drop locations:

Field Drop Zone Label

Sales YTD Drop data fields here
Sales Last Year (above the chart)

TerritoryName Drop category fields here
EmployeeName (below the chart)

Verify your results using this example. It’s important that the fields are dropped in the order you see
them in Figure 6-77. However, you can switch them later in the properties dialog.

Right-click the chart again, and select Properties to display the Chart Properties dialog.

On the General tab, give the chart the name SalesPerformanceChart and for the title, enter North American
Sales Associate Performance (see Figure 6-78).

239

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 239

Figure 6-77

Figure 6-78

240

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 240

Note that the preview chart image on this dialog is the result of all completed property settings. I’ve
made it a point to include it so that you get an idea about what we’re trying to do. Yours should look
similar to this when we’ve completed all of the settings.

On the Data tab, you should see your data set name and the fields you specified in the Values: list. The
two items in the Category groups: list were auto-generated when you dropped the two fields into the
category area.

Switch to the X Axis tab and check your settings against those in Figure 6-79.

Figure 6-79

You’re going to make several changes on the Y Axis tab. The title will be displayed along the left side of
the chart as you see in the preview image. Set the title to Total Sales ($ M). For the Scale, set Minimum to
0 and Maximum to 3000000 and set the Format code to ,,0 to indicate that this is to be a numerical value
using comma thousand separators. By providing a range of values, the tallest column will be shorter that
the top of the chart (unless it exceeds the maximum value.)

For the Gridlines, you want to show major and minor ticks using these specified values (see Figure 6-80).

241

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 241

Figure 6-80

On the Legend tab, use properties to place the legend at the bottom, in the lower-right corner of the
chart with labels arranged in a row (short and wide), as in Figure 6-81 Use Display Legend Inside
Plot Area to maximize the size of the chart that works well on pie and doughnut charts that have
free corner space. This, however, will often cause the legend to overlap the chart area for some types
of charts.

Use the 3-D property settings at your discretion (see Figure 6-82). You often have to play with these
settings to achieve the right balance between an effective 3-D rendering and an accurate display
of data.

242

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 242

Figure 6-81

Realistic shading makes the 3-D chart appear to have a light source that casts shadows on the borders.
The Orthographic property causes the 3-D effect to be slightly exaggerated. Clustered causes rows or
columns at the same series point to be arranged in front of one another rather than side by side. Cylinder
bars or columns are less traditional than block-style bars.

Click OK on the Properties dialog, save the report, and select the Preview tab to see the completed chart.

As you see in the example in Figure 6-83, having two related groups on the X-axis causes set lines to
show the groupings, and two different values are plotted at each X-axis point using different-colored,
cylindrical columns.

243

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 243

Figure 6-82

Figure 6-83

244

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 244

Custom Fields
Custom fields can be added to any report and can include expressions, calculations, and text manipula-
tion. This might be similar in functionality to alias columns in a query or view, but the calculation or
expression is performed on the report server after data has been retrieved from the database. Custom
field expressions can also use Reporting Services global variables and functions that may not be avail-
able in a SQL expression.

Use the Dataset window in the Report Designer to select the data set you want to use. Right-click in the
Dataset window, and select Add (see Figure 6-84).

Figure 6-84

In the Add New Field dialog, enter the name you would like to use for the custom field. If you want to
use an expression, select the Calculated field property, as shown in Figure 6-85, and then use the
builder button to create the expression.

Figure 6-85

245

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 245

You may use the expression button to invoke the Expression Builder to use any functionality available
within the design environment in addition to the database fields exposed by the data set query. These
calculations will be performed on the report server rather than the database server.

Conditional Expressions
You’ve seen some simple examples of using expressions to set item values and properties in simple
ways.

Let’s take a look at one more example of a conditional expression, and then I’ll discuss using program
code to handle more complex situations. This will be a simple list of products with current inventory
values. The Product table in the AdventureWorks database contains a ReorderPoint value that informs
stock managers when they need to reorder products. If the inventory count falls below this value, you
can set the inventory quantity to appear in red next to the name. Using a conditional expression in this
manner is similar to using conditional formatting in Excel.

The following example will use a data set with the SQL expression:

SELECT Product.Name, Product.ReorderPoint, ProductInventory.Quantity
FROM ProductInventory INNER JOIN Product

ON ProductInventory.ProductID = Product.ProductID
ORDER BY Product.Name

A table bound to this data set has three columns: Name, ReorderPoint, and Quantity. On the Quantity
text box in the detail row of the table, the Color property is set to an expression containing conditional
logic instead of to a set value. You can use the Expression Builder or just type this expression into the
properties window under the Color property:

=IIF(Fields!Quantity.Value < Fields!ReorderPoint.Value, “Red”, “Black”)

I’ve also done the same thing with the Font|FontWeight property so that if the inventory quantity for a
product is below the reorder point value, the quantity is displayed in both red and bold text.

Switch to the Preview tab to check the results; these should be as shown in Figure 6-86.

IIF() Is Your Friend
Even if you’re not a programmer, learning a few, simple Visual Basic commands and functions will
prove to be very valuable and will likely meet the vast majority of your needs. The most common and
most useful function you’re likely to use in simple expressions is the Immediate If function (IIF). As you
saw in the previous example, the IIF() function takes three arguments. The first is an expression that
returns either True or False. If the expression is True, the value passed into the second argument is
returned. Otherwise (if the first expression is False), the third argument value is returned. Take another
look at the expression used in the previous example:

=IIF(Fields!Quantity.Value < Fields!ReorderPoint.Value, “Red”, “Black”)

246

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 246

Figure 6-86

If the expression Fields!Quantity.Value < Fields!ReorderPoint.Value yields a True result
(where the Quantity is less than the ReorderPoint), the value “Red” is returned. Otherwise, the value
returned is “Black”. You’ll see more examples using this function in Chapter 7.

In cases where an expression may return more than two states, IIF() functions may be nested to form
multiple branches of logic. In this example, three different conditions are tested:

=IIF(Fields!Quantity.Value < Fields!ReorderPoint.Value, “Red”,
IIF(Fields!ListPrice.Value > 100, “Blue”, “Black”))

Let’s analyze the logic: If Quantity is not less than the ReorderPoint, the third IIF() function argu-
ment is invoked. This contains a second IIF() function, which tests the ListPrice field value. If the value
is greater than 100, the value “Blue” is returned. Otherwise, the return value is “Black”.

Beyond the simplest of nested functions, expressions can be difficult to write and to maintain. In addi-
tion to decisions structures, common functions may be used to format the output, parse strings, and con-
vert data types. Count the opening and closing parentheses to make sure that they match. This is yet
another example of where writing this code in a Visual Basic class library or forms project is helpful
because of the built-in code-completion and integrated debugging tools. Consider using these other
functions in place of nested IIF() functions.

247

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 247

The SWITCH() function accepts an unlimited number of expression and value pairs. The last argument
accepts a value that is returned if none of the expressions resolve to True. I can use this in place of the
previous nested IIF() example:

=SWITCH(Fields!Quantity.Value < Fields!ReorderPoint.Value, “Red”,
Fields!ListPrice.Value > 100, “Blue”, 1=1, “Black”)

Unlike the IIF() function, there is no “FalsePart” value. Each expression and return value is passed
as a pair. The first expression in the list that evaluates to True causes the function to stop processing and
return a value. This is why I included the expression “1=1”. Since this expression will always evaluate
to True, this becomes the catch-all expression that returns “Black” if no other expressions are True.

Visual Basic .NET supports many of the old-style VBScript and VB 6.0 functions as well as newer over-
load method calls. In short, this means that there may be more than one way to perform the same action.
The following table contains a few other Visual Basic functions that may prove to be useful in basic
report expressions.

Function Description Example

FORMAT() Returns a string value =FORMAT(Fields!TheDate.Value, “d”)
formatted using a regular =FORMAT(Fields!TheDate.Value, “mm/d/yy”)
expression format code or
pattern. Similar to the Format
property but can be
concatenated with other
string values.

MID(), Returns a specified number =MID(Fields!TheString.Value, 3, 5)
LEFT() and of characters from a specified =LEFT(Fields!TheString.Value, 5)
RIGHT() position (if using MID()) and =Fields!TheString.Value.SUBSTRING(2, 5)
.SUBSTRING() for a specific length. You can

also use the .SUBSTRING()
method.

INSRT() Returns an integer for the first =INSRT(Fields!TheString.Value, “,”)
character position of one
string within another string.
Often used with MID() or
SUBSTRING() to parse strings.

CSTR() Converts any value to a string =CSTR(Fields!TheNumber.Value)
type. Consider using the =Fields!TheNumber.Value.TOSTRING()
newer TOSTRING() method.

CDATE() Type conversion function =CDATE(Fields!TheString.Value)
CINT() similar to CSTR(0) used to =CTYPE(Fields!TheString.Value, Date)
CDEC() convert any compatible value
... to an explicit data type.

Consider using the newer
CTYPE() function to convert
to an explicit type.

248

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 248

Function Description Example

ISNOTHING() Tests an expression for a null =ISNOTHING(Fields!TheDate.Value)
value. May be nested within =IIF(ISNOTHING(Fields!TheDate.Value),
an IIF() to convert nulls to “n/a”, Fields!TheDate.Value)
another value.

CHOOSE() Returns one of a list of values =CHOOSE(Parameters!FontSize.Value,
based on a provided integer “8pt”, “10pt”, “12pt”, “14pt”)
index value (1,2,3, etc.)

There are hundreds of Visual Basic functions that could be used in some form, so this list is just a start-
ing point. For additional assistance, view the online help index in Visual Studio, under Functions
[Visual Basic]. This information is also available on the public MSDN library at http://www.msdn
.Microsoft.com.

Using Custom Code
When you need to process more complex expressions, it may be difficult to build all of the logic into one
expression. In such cases, you can write your own function to handle different conditions and call it
from a property expression.

There are two different approaches for managing custom code. One is to write a block of code to define
functions that are embedded into the report definition. This technique is simple, but the code will be
available only to that report. The second technique is to write a custom class library compiled to an
external .NET assembly and reference this from any report on your report server. This approach has the
advantage of sharing a central repository of code, which makes updates to the code easier to manage.
The downside of this approach is that the configuration and initial deployment is a bit tedious.

Why Visual Basic?
Before the .NET (“Dot Net”) Framework was released in 2002, Microsoft offered two significant program-
ming languages with very different capabilities. The C++ language was for very serious programming
but required serious programming skills. The Visual Basic (VB) language has long been the flagship
extension to practically all Microsoft desktop products. VB programming emphasizes simplicity and
ease of use. Along with the framework, a new language, called C# (“C-sharp”) was created to use all of
the new .NET capabilities. The Visual Basic language underwent a major overhaul to bring it up to speed
with the framework. One of the goals of the .NET platform was to separate the capabilities of the frame-
work from the syntax of the languages. Since the inception of .NET, there has been a long-standing
debate over the relative strengths and weaknesses of these two languages. Although there have been
numerous articles and white papers comparing VB and C#, even industry experts have been reluctant to
make broad statements about one language being superior to another. An unspoken belief among sea-
soned professionals is that C# is the “more serious” programming language.

At the prelaunch event for SQL Server 7.0 in 1998, Steve Ballmer offered career advice to the many database
administrators in attendance. His advice was to learn Visual Basic programming. This seemed like a bold
statement to make to the system admin (rather than the developer) community. Years later, this advice

249

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 249

seems apropos given that Windows services — including the file and directory systems, web server, and
database transformation services — may all be scripted and automated using Visual Basic code.

When Reporting Services was still in beta test phase, I was asked to make a presentation for the .NET
Programmers’ User Group at the Microsoft campus. When I announced that Reporting Services supports
only Visual Basic embedded code, half the group was nearly transformed into a lynch mob — and I was
looking for an exit. Why was VB chosen over C#? Was this an effort to “dumb down” or simplify report
programming? Perhaps VB is the “lowest-common denominator” of the languages. At a lunch meeting
with members of the Reporting Services product development team, I posed this question. Jason Carlson
told me that they chose VB because it’s a natural expression language. In most cases, conditional report
logic must be processed in one line of code. The C# language, although powerful, tends to require multi-
ple lines, whereas multiple functions can be nested in one line using a VB expression. I have used both
languages, but as a longtime VB programmer, I was delighted to learn that VB was clearly a better choice
for this job.

Using Custom Code in a Report
A report may contain embedded Visual Basic .NET code that defines a function you can call from property
expressions. The code editor window is very simple and doesn’t include any editing or formatting capabili-
ties. For this reason, you may want to write the code in a separate Visual Studio project to test and debug
before you place it into the report. When you are ready to add code, open the Report Properties dialog. You
can do this from the Report menu. The other method is from the Report Designer right-click menu. Right-
click the report designer outside of the report body and select Properties. On the Properties window, switch
to the Code tab and write or paste your code in the Custom Code box.

The following example starts with a new report. Here is the code along with the expressions that you
will need to create a simple example report on your own. The following Visual Basic function accepts a
phone number or social security number in a variety of formats and outputs a standard U.S. phone num-
ber and properly formatted social security number (SSN). The Value argument accepts the value, and
the Format argument accepts the value Phone or SSN. You’re only going to use it with phone numbers,
so you can leave the SSN branch out if you wish.

‘***
‘ Returns properly formatted Phone Number or SSN
‘ based on Format arg & length of Value argument.
‘ PT – 12/12/06
‘***
Public Function CustomFormat(Value as String, Format as String) as String

Select Case Format
Case “Phone”

Select Case Value.Length
Case 7

Return Value.SubString(0, 3) & “-” & Value.SubString(3, 4)
Case 10

Return “(“ & Value.SubString(0, 3) & “) “ _
& Value.SubString(3, 3) _
& “-” & Value.SubString(6, 4)

Case 12
Return “(“ & Value.SubString(0, 3) & “) “ _

& Value.SubString(4, 3) & “-” & Value.SubString(8, 4)
Case Else

Return Value

250

Chapter 6

11_584979 ch06.qxp 1/27/06 7:26 PM Page 250

End Select
Case “SSN”

If Value.Length = 9 Then
Return Value.SubString(0, 3) & “-” _

& Value.SubString(3, 2) & “-” & Value.SubString(5, 4)
Else

Return Value
End If

Case Else
Return Value

End Select
End Function

The data set in this report gets its data from the Vendor and related tables in AdventureWorks and
returns three columns: FirstName, LastName, and Phone. The SQL expression used to retrieve this
information is as follows:

SELECT Contact.FirstName, Contact.LastName, Contact.Phone
FROM Vendor

INNER JOIN VendorContact ON Vendor.VendorID = VendorContact.VendorID
INNER JOIN Contact ON VendorContact.ContactID = Contact.ContactID

These three columns are used in a table bound to the data set. The Value property of the Phone column
uses an expression that calls the custom function preceded by a reference to the Code object:

=Code.CustomFormat(Fields!Phone.Value, “Phone”)

Figure 6-87 shows the report in design layout view. I didn’t think you needed to see a preview of the
report. It’s a list of contacts with a properly formatted phone number. Trust me.

Figure 6-87

Using a Custom Assembly
Rather than embedding code directly into each report, using a custom assembly can be a central repository
of reusable code to extend the functionality of multiple reports. In Reporting Services, custom assembly
support is enabled by default. However, the code in the assembly will have restricted access to system
resources. If you intend for the assembly to interact with the file system or perform data access, you will
need to modify some configuration settings in order to grant the appropriate level of access to your code.
We’ll discuss these conditions after a simple walk-through to create an assembly that won’t require any
special settings.

To begin, create a class module project. You can write this code in any .NET language since it’s going to
be built into an assembly. The methods you create can be either static or instanced. It’s a little easier to
use static methods so that you don’t have to manage the instancing and life of each object. This simply

251

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:26 PM Page 251

means is that you will declare public functions in your class using the Static keyword in C# or the
Shared keyword in Visual Basic. Using the same code logic as in the previous example, the Visual Basic
class code would look like this:

Public Class Report_Formats
‘***
‘ Returns properly formatted Phone Number or SSN
‘ based on Format arg & length of Value argument.
‘ PT – 12/12/06
‘***
Public Shared Function CustomFormat(Value as String, Format as String) as String

Select Case Format
Case “Phone”

Select Case Value.Length
Case 7

Return Value.SubString(0, 3) & “-” & Value.SubString(3, 4)
Case 10

Return “(“ & Value.SubString(0, 3) & “) “ _
& Value.SubString(3, 3) _
& “-” & Value.SubString(6, 4)

Case 12
Return “(“ & Value.SubString(0, 3) & “) “ _

& Value.SubString(4, 3) & “-” & Value.SubString(8, 4)
Case Else

Return Value
End Select

Case “SSN”
If Value.Length = 9 Then

Return Value.SubString(0, 3) & “-” _
& Value.SubString(3, 2) & “-” & Value.SubString(5, 4)

Else
Return Value

End If
Case Else

Return Value
End Select

End Function
End Class

Save and build the class library project in Release configuration, and then copy the assembly (DLL) file
to the ReportServer\bin folder. The default path to this folder is C:\Program-Files\Microsoft
SQLServer\MSSQL\Reporting Services\ReportServer\bin.

In the Report Properties dialog (this is where you entered the code in the previous topic example), select
the References tab and add the reference by browsing to the assembly file. The reference line shows
metadata from the assembly, including the version number, as you can see in Figure 6-88.

To use a custom method in an expression, reference the namespace, class, and method using standard
code syntax. The expression for the CustomFormat method should look like:

=Reporting_Component.Report_Formats.CustomFormat(Fields!Phone.Value, “Phone”)

The report should look exactly as it did in the previous example.

252

Chapter 6

11_584979 ch06.qxp 1/27/06 7:27 PM Page 252

Figure 6-88

Custom Assembly Security
When using a custom assembly deployed to your report server, the assembly must run with the appro-
priate level of security access. This is a common challenge for all server-side .NET applications. A thor-
ough discussion of this topic is beyond the scope of this book. If you are a seasoned developer, these
should be familiar topics and if you are not, you should consult a .NET application developer to assist
with the configuration of your custom assemblies.

In short, the steps to deploy and configure an assembly to run on your report server are not much differ-
ent from any other remotely deployed component, and the permissions will depend on the resources
used by the assembly. For example, a component that interacts with the local file system and consumes
features of another component or database connections will require privileges to do so. The following
are some of the more common steps to make custom assemblies more accessible:

❑ Build the assembly with a strong name. Use the SN.exe command-line utility to create a
strongly named key pair, and then reference the generated key file within the AssemblyInfo
class file in the class library project.

❑ Register the assembly in the Global Assembly Cache (GAC) on the report server. Not only does
this elevate the trustworthiness for the assembly, it also provides downward version compatibility
control.

❑ You may apply the AllowPartiallyTrustedCallers assembly attribute to allow the
Reporting Services engine to call into this code.

❑ You can explicitly enable nondefault security permissions for the assembly using policy configura-
tion files. Two files are used to manage these permissions. The rssrvpolicy.config file controls
assembly permissions for the development and preview environment. The rspreviewpolicy
.config file controls permissions on the Report Server.

253

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:27 PM Page 253

For additional assistance with specific security considerations and configuration details, use SQL Server
2005 Books Online to look up the topic “Using Reporting Services Security Policy Files.”

Errors, Warnings, and Debugging Code
When you preview or try to deploy a report, all of the expressions and embedded code in the report are
cranked through the .NET Common Language Runtime debugger and native code compiler. If no errors
are found, an assembly is built on the report server. This means that when reports execute, all of the
expression and program code actually run from compiled binaries rather than from the Visual Basic
source code.

Errors are listed in the task list if this process fails. The report designer has a quirk that can be a bit confus-
ing until you get use to it. Along with errors that prevent the code compiling and report deployment, there
is another set of information that shows up in this list. Some conditions may cause Reporting Services to be
less than ecstatic with your code but not unhappy enough to prevent it from compiling. These are called
warnings, and they appear on the task list below any errors. The confusing thing is that Visual Studio only
displays this list when errors occur. This means that I can build a big, elaborate report that runs perfectly
until I make one, small mistake in my code. When I try to preview this report, I may suddenly see 30 issues
displayed on the task list. These may include “can’t deploy shared datasource . . .” and “textbox42 has a
BackgroundColor set to . . . which is invalid.” If this happens to you, don’t lose it . . . this is just the way
the designer works. Those warnings were there all along. Visual Basic just didn’t put the list in front of
you until you committed a serious infraction. Start at the top of the list and work down until you see an
error description that makes sense. Double-click this line. In most cases, this will go to the properties for
the offending report item, allowing you to make the correction and move on.

When testing reports in the Visual Studio Report Designer, your custom assembly is loaded into memory
when it is first invoked and may not be unloaded until you exit Visual Studio. This means that if you
make code changes and redeploy the assembly, these changes may not be available to the report unless
you cycle the Visual Studio application. There are two ways to work around this. The first is to make a
point to deploy your report to your local report/web server and test it using the Report Manager. The
other method is to use the stand-alone report preview utility and test it using the Report Manager.

I have found that under some conditions the report designer may display errors from other reports in
the project or errors that may have been recently corrected. If you see behavior like this, close and
reopen Visual Studio.

Designing for Mobility
The idea of making reports available in custom applications that run over the Internet or letting users
access reports from desktop computers outside of the office opens many doors of opportunity that were
not before possible. These capabilities are now very easy to achieve, but the promise of this technology
doesn’t stop there. This brings to mind the unforgettable words of Ron Popeil, “. . . but wait. There’s
more. . . .” Another very quotable figure, Bill Gates, announced in 2000 that the next generation of
services from Microsoft would enable people to access information “any time, any place and on any
device.” This product fulfills that promise, making reports available to the next generation of mobile
computing devices.

254

Chapter 6

11_584979 ch06.qxp 1/27/06 7:27 PM Page 254

There are many different devices on the market that could be categorized as “mobile Internet devices”
or “mobile network devices” capable of being used to view reports. These may include personal digital
assistant (PDA) palm-sized or hand-held computers, enhanced pagers, or cell phones. The lines separat-
ing these devices are becoming quite blurred as the newest generation of cell phones can be used to surf
the web and some PDAs now include integrated cell phones. There are even camcorders with built-in
networking and web browsers! For this discussion we will limit the scope of these devices to the Windows-
based units. However, some Palm OS devices may be used to view online content via a wireless corpo-
rate network or the World Wide Web and can be used to view offline documents in standard formats
(such as PDF); we acknowledge that many of the capabilities we will discuss may also be supported on
the Palm platform.

The challenges and opportunities for delivering mobile device–enabled reports are varied but fall into
the following areas:

❑ Screen size

❑ Device, browser, and viewer capabilities

❑ Files portability

❑ File size restrictions

Current Windows-powered devices run a version of Windows CE called Pocket PC or Windows Mobile
Smart Phone. The Pocket PC form factor has a screen resolution of 240 pixels wide by 320 pixels tall
and features a number of scaled-down desktop applications (such as Pocket Word, Excel, Outlook, and
Internet Explorer.) The Smart Phone screen is considerably smaller at 176 by 220 pixels and is designed
to function primarily as a phone with some additional PDA features. An edition of the Pocket PC called
the Pocket PC Phone Edition has integrated features to support units with a built-in cell phone. All
Pocket PC devices have a touch screen interface and many of the Smart Phone units are controlled only
by the phone’s keypad. These devices, and many non-Windows cell phone devices, may be used to view
online web content.

Screen Size
The most significant restriction for most mobile devices is the smaller screen size. The Pocket PC and
Smart Phone will view web content with some client-side scripting support and will also cache recently
viewed content for offline viewing. Most web pages designed for desktop computer users can be viewed
on the tiny screen, but it requires the user to scroll extensively just to navigate a single page. Web-based
reports created with Reporting Services are no exception. Most stock reports will likely work on a Pocket
PC running Pocket Internet Explorer if they can be viewed in Internet Explorer on a desktop PC. The
user experience, however, is often like watching a large-screen movie through a keyhole.

To design reports optimized for the mobile user, reports must be simplified and designed for smaller
page size. Some dynamic reporting features (like drill-down and drill-through) may not be supported in
all rendering formats. The comparable page size of the Pocket PC screen is about 3.25 inches (8.25 cm)
wide. Simply scaling your mobile reports down to this width will resolve most screen resolution issues
for mobile web users. Keep the font sizes small and avoid clutter, large graphics, and extra space.

Figure 6-89 is an example of a simple employee e-mail directory, created using a table data region on a
narrow page:

255

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:27 PM Page 255

Figure 6-89

The sample report shown above only has two columns, but it could easily have several. There is no need to
restrict the functionality of your reports simply because users can’t see all of the information at one time.
Just keep in mind that when users navigate to the report, they will only see the information beginning in
the top-left corner of the content. Design your reports with this in mind, placing the most important con-
tent near this entry point. Users can always scroll to find other information if the report is intuitive and
easy to navigate. This is yet another reason to use interactive reporting features like drill-down.

Keep the report content size to a minimum as well. Regardless of the device or computer used to view
reports, dial-up users will always suffer a significant performance penalty from large reports. Avoid
unnecessary use of graphics and filter the data whenever possible. The Pocket PC phone device pictured
here can connect to the Internet using either cell phone dial-up or a wireless network connection, but
broadband wireless is typically only available in close proximity to a secure wireless access point. At
best, cellular dial-up connection speeds are typically 14400 to 19200 bits per second. Figure 6-90 shows a
product report with drill-down capabilities.

256

Chapter 6

11_584979 ch06.qxp 1/27/06 7:27 PM Page 256

Figure 6-90

Offline Solutions
One of the challenges that mobile workers face on a number of levels is they typically don’t have the
opportunity to remain connected to a network or the Internet. Mobile devices are intended to give us the
ability to cut ties with the corporate network and work without wires. At times, report users will need to
render reports on their desktops or have them pushed out to files or e-mail via subscriptions — and then
view the offline reports on the mobile device.

Typically, the best solution for offline reporting is to save the report to a document. Pocket Internet
Explorer will store a cached copy of an HTML report if it has been viewed online. In the case of a drill-
down report, the entire report content may not be stored in cache. When a cached drill-down report is
viewed, exploring sections that have not been previously viewed may cause the device to try to connect
and retrieve the newly requested content. Overall, caching HTML is not a comprehensive solution.

257

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:27 PM Page 257

The PDF format is by far the most reliable method for transporting a report document and keeping con-
tent consistently formatted. After the report has been exported to a PDF document, it is a simple matter
to drop the file into the synchronization folder on the partnering desktop and let ActiveSync copy it to
the device. A pie chart, rendered to a PDF file, is illustrated in Figure 6-91. Unfortunately, Adobe Acrobat
doesn’t support the drill-down functionality in Reporting Services, so the report will need to be designed
without dynamic drill-down and drill-through. The image format will also guarantee that the report will
look and print consistently as the file is sent from place to place; however, files may be larger when ren-
dered in PDF format.

Using the Excel rendering format is also an excellent medium for offline reports, but Pocket Excel also
doesn’t support drill-down. One advantage to using the Excel format is that users can make modifica-
tions to their local copy of the report content, sorting and formatting the data. A user can also add calcu-
lations and other content to extend the report for their own needs.

Figure 6-91

258

Chapter 6

11_584979 ch06.qxp 1/27/06 7:27 PM Page 258

Best Practices and Tips
Report projects have the ability to stress the Visual Studio environment more than most any other types
of application. Especially when using custom program code, errors can cause Visual Studio to — how do
I say this? — become unhappy. Recovering from an error is usually the easy part. The tough part is when
you have worked all day on a complex report and haven’t saved your work for hours. You make one
small change before clicking the Preview tab — and nothing happens. Visual Studio locks up and then
you mutter some choice words before opening Windows Task Manager to kill the Visual Studio process
and lose all of that work. Here’s a simple solution: Click the Save All toolbar button (see Figure 6-92).

Figure 6-92

Click it often and especially click it after you make changes and before you preview your report.

As I mentioned earlier, if you have difficulty debugging complex expressions or custom Visual Basic
code, take this code into a Visual Basic class library or forms application project in order to take advan-
tage of the rich code completion and debugging tools offered in these Visual Studio projects.

❑ Auto-Generated Aggregates: Fix auto-generated aggregate expressions. If you are grouping
data at the detail level and then you drag a field into the group header or footer, the report
designer will apply aggregate functions unnecessarily. You can remove the function and paren-
theses in this case. Also, pay attention to the scope argument, passed in the second position to
aggregate functions. If you build a report with one data set and then add another data set later
on, you may need to add the scope information for report items not contained in a data range
item.

❑ Use Top Values in Charts: Limiting the number of series values in charts will prevent crowding
of the data points, bars, columns, or slices. Keep in mind that the test data you use when you
design reports may not accurately reflect the data used in production. By restricting the number
of rows or grouped values fed to chart reports, you can ensure that they will remain readable
for your users when they are viewing real-world data.

❑ Document Report Logic: To document complex logic, properties, and expressions you can add
text boxes to a report and hide them using the Visibility|Hidden property. This is also true
with table columns used only for report design and testing. As a convention, I set the back-
ground color for comment items to yellow. This makes them easy to spot in the designer. I fig-
ure that any item with a bright yellow background ought to be hidden because no one in their
right mind would put yellow text boxes on a report.

❑ Search the RDL to Find or Fix Settings: Large reports can often be difficult to debug because
properties and expressions can get buried in the interface. Remember that all of these settings
exist in one XML file. If you need to find an elusive property setting or replace all similar
expressions with another, this can easily be done by using find-and-replace features in the RDL
file. After making a backup copy of the report, right-click the report name in the Solution
Explorer and select View Code from the pop-up menu. You can also use this technique to make
modifications that would be difficult in the designer (like rearranging the order of groups). Just
make sure you have a recovery plan if things don’t work as expected.

259

Advanced Report Design

11_584979 ch06.qxp 1/27/06 7:27 PM Page 259

Summary
We have covered a lot of ground in this chapter, building on the report design fundamentals you learned
in the previous two chapters. You’ve learned to design several styles of reports using data sources and
filtering techniques that exposed different design strategies.

❑ Data regions let you repeat and group data in a section of the report. The table organizes
repeated data into specific rows and columns and provides inherent grouping capabilities with
headers and footers. Using a list, you can achieve similar results with a little more formatting
flexibility. With a subreport, you can essentially use a separately defined report as a data region
and filter the data it contains with parameters and filters.

❑ Drill-down and drill-through reports use techniques that optimize screen space and allow the
user to interact with the report. This is accomplished by expanding the groupings of a table or
list or by using links to jump to an item, a bookmark, or another report. The document map pro-
vides a mini-drill-down report in a separate frame that may be used to easily find headings and
category labels and navigate to them in the report. Recursive relationships are easy to manage
and will produce multilevel groups using a single source or data.

❑ Charts are a powerful tool used to express aggregated values in a series and in multiple dimen-
sions. Several chart types are available for different types of data and presentation formats.

❑ Reports utilize the power of the Visual Basic .NET programming language. Advanced format-
ting and calculations may be performed by adding programming code to your reports. This
may be done by simply adding code in the report designer or by creating a compiled .NET
assembly and adding a reference to the assembly in the report. Report properties may be set
using expressions and program code to achieve conditional formatting.

❑ Developing reports for mobile users is a relatively simple task, keeping in mind the limits and
capabilities of devices. Reports must be designed to fit smaller screen sizes and may be opti-
mized for online or disconnected scenarios. Mobile reporting opens vast opportunities for trav-
eling information workers using convenient wireless and synchronized devices.

260

Chapter 6

11_584979 ch06.qxp 1/27/06 7:27 PM Page 260

Report Solution Patterns
and Recipes

This chapter serves as a practical guide to designing reports and building reporting solutions in
the real world. It contains several examples of advanced report designs as recipes to solve specific
business problems. This is a high-level guide and not step-by-step instructions. You will use the
techniques you’ve learned in the previous three chapters to implement specific functionality. I
cover the following topics:

❑ Reporting project guidelines, key success factors, and the solution scope.

❑ Defining and managing report specifications and the development process phases.

❑ Migrating and converting reports from other reporting tools.

❑ Working with the strengths and limitations of the Reporting Services architecture.

❑ Recipes and models for several advanced reporting features and techniques.

In the previous chapters, you’ve learned what you can do and have been given a number of options
to implement certain report functionality. After writing the first edition of this book over a year
ago, I wanted to add a chapter that would be a practical guide to designing reports in the real
world. I wanted this to be a sort of “street smart” guide about not what you can do but what you
should do, based on the experience of those who have been doing this kind of work full-time, since
this product became available. Over the past two years, I have spent the majority of my profes-
sional time building reporting solutions for consulting clients. Collectively, we’ve developed
reporting solutions for a very large software producer, one of the world’s largest media and enter-
tainment companies, a global aerospace manufacturer, an international investment bank, utility
companies, retail services, food services, telecommunications providers, and government agencies.
I’ve made it a point to build the content for this chapter over time while working on different pro-
jects. These and other projects have afforded us challenging opportunities to discover effective pat-
terns for designing a variety of report styles.

12_584979 ch07.qxp 1/27/06 7:42 PM Page 261

We have also had the opportunity to work closely with members of the Reporting Services product team
at Microsoft to better understand the long-term goals for Reporting Services’ features and capabilities.
This has provided insight into the mechanics of the product’s components and why they behave as they
do. Without fully understanding the design goals in architecting this product, it’s easy for a report designer
to ask questions like Why does it work that way? . . . Why did that do that? Reporting Services has some
limitations that may not make sense to the casual user. I’ve found that most advanced capabilities I would
like to include in reports can be implemented but not necessarily using my chosen technique. As I’ve run
up against limitations and have discussed these with the product architects and product managers, the
answers are often in the vein of “that feature wasn’t designed to work that way. You can accomplish the
same thing by using this other feature or technique.” My goal is to share these techniques and capabili-
ties with you.

Unlike the previous chapters on report design, I’m not going to do much hand-holding in this chapter.
By now, you should know how to use the features of the report designer and how to change properties,
create queries, and use all of the report items. For each of the report design techniques that follow, I’ll
give you enough information to explain the concept and demonstrate the technique, but I won’t walk
you through the entire process from start to finish. This will save time and avoid redundancy with mate-
rial covered in the previous chapters.

Reporting Project Requirement Guidelines
Reporting projects are a special breed of software solutions. In the software world, successful projects
don’t just happen without deliberate efforts to manage evolving requirements and to steer the creative
effort. Whether you are a corporate application developer, an independent consultant, or the person who
wears all the hats in the department, your project should have a sponsor who defines the requirements
and takes delivery of the finished product. We could spend volumes discussing lessons learned about
failed and successful projects. In short, the secrets of success nearly all come down to effective communi-
cation and the involvement of a customer stakeholder. We’ve discussed some of these principles and
ideas in previous chapters. This section is a concise set of guidelines that you may consider using to help
you and your project sponsor to cover the essentials.

Key Success Factors
Reporting projects have a much better chance of being successful when the business requirements are
well defined and clearly communicated. In particular:

❑ Report specifications should be documented using a standard format for all reports.

❑ Report designers must understand the source data. In cases where the designer isn’t familiar
with the database design and business data, specific queries or stored procedures should be
defined and prepared before report design.

❑ The database schema should be frozen before work begins.

❑ Accurate sample or real data should be available to support the design and testing of all reports.

These may seem like lofty goals. The fact is that oftentimes you may not be able to control all of these
factors. Experience will help you to know where to draw the line between the situations where you
should work with less-than-ideal conditions and situations in which you should put your foot down and

262

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 262

insist that these conditions be met before you begin work. In any case, be sure to clearly communicate
your concerns and the associated risks.

Solution Scope
Reports often have many dependencies on other parts of a solution and if these pieces aren’t in place
before reports are designed, this can hold up the report work and waste considerable time and money.
Reporting solutions require that the right type of database is in place, that it has been populated with all
of the data necessary to build the reports, and that the user and business report requirements are well
defined and documented.

The scope of the solution should be understood before report work begins. Without a clear understand-
ing of all the related components of the solution, the project can easily spin out of control, with more
work being started than finished.

Common examples of solution scope challenges include:

❑ Report performance problems prompt database schema changes or the constructing denormal-
ized fact tables containing duplicate data.

❑ Realizing that changing transactional data doesn’t support reporting scenarios, the database is
redesigned while in production.

❑ Database and report features are added as you go and not according to a predefined plan, caus-
ing each report to take on different behavior and features.

The process of periodic data extraction to populate the reporting database system is known as ETL
(Extract, Transform, and Load). A separate data mart or data warehouse is created to store preaggre-
gated decision-support data. A complex ETL process is created to periodically copy new data into the
decision-support database.

Needless to say, if these kinds of issues aren’t mitigated and managed, even simple projects may be
doomed before they start. Ideally, a report designer should be on the receiving side of business require-
ments and should participate in helping to clarify the details rather than making up new requirements
as the project moves along.

Reporting on Existing Data Sources
If you are walking into an environment where the databases already exist, you should carefully review
and discuss the long-term viability of the solution with your project sponsor. If this is a small, simple
database that isn’t likely to grow significantly over its useful life, then you may be in good shape.
However, small-database reporting solutions that perform well in test and design scenarios may not fare
so well when loaded up with truckloads of data and accessed by many concurrent users.

The system should have a defined capacity and a plan to scale up when you need to support large vol-
umes of data and high workloads.

Reporting on Transactional Sources
In even moderately sized systems, reporting on live data can often be challenging. If user applications
are locking data rows and inserting new records while reports run, this creates resource contention and

263

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 263

performance issues. Reporting on changing data can also be risky because the report can only capture a
single moment in time, while this data continues to change.

Decision-support database systems are typically designed to be exclusively read-only and use data struc-
tures much simpler than those used by equivalent transactional databases. This optimizes report perfor-
mance and keeps the data consistent for a set period of time. Users understand that they aren’t looking at
the most current data, but they know it should be accurate as of the end of business on the previous day.

One of the challenges when reporting on data in an existing database is that the database may not have
been designed with your reporting requirements in mind. Even the simplest reporting requirements can
often be difficult to meet without writing very complex queries. This can slow performance and only
support a certain amount of data. For small and simple database systems, reporting on the same tables
in a transactional database as the rest of the applications may be the easiest choice.

Building an End-to-End Reporting Solution
Using Reporting Services you can create an entire user experience by prompting for input parameters,
customizing query operations, filtering, sorting, and using report item actions and navigation features.
However, this all assumes that the data sources contain the necessary data in a form that is both accessi-
ble and scalable to meet future demands. If this isn’t the case, what might have looked like a simple
reporting project can take on a whole new dimension. Decision-support systems often involve a separate
database that is populated at regular intervals from one or more transactional sources. Typically, scripts
run during off hours to copy new data from the main database into a set of simplified tables designed
especially for reporting. A data mart is a decision-support database used within a department or business
unit to serve up report data to meet a set of specific business requirements. It could be as simple as a
small set of denormalized tables in a relational database, or it could be a set of OLAP cubes in a hierar-
chal database system like Microsoft Analysis Services. Queries for OLAP reporting will be written in a
hierarchal expression language, like MDX, rather than T-SQL.

Data warehouses and data marts are similar in principle but different in scale. A data warehouse is typi-
cally a large-scale, enterprise-wide system that meets the reporting needs of many business groups, and
will nearly always be deployed as a specialized OLAP system.

An effective ETL process involves not only copying new data from one system to another but also trans-
forming many rows from many source tables into preaggregated rows that describe specific facts. In the
end, the decision-support data, populated by the ETL process, helps meet reporting business require-
ments as effectively as possible. Tools such as SQL Server Data Integration Services (formerly Data
Transformation Services, or DTS) are often used to implement ETL.

Sample and Test Data
During report design, it is very important to work with data similar to that of report users. Sample or
“mocked-up” data is often meaningless in a business context and doesn’t exhibit the same characteristics
as the real thing. This data should represent variety and should adhere to the same business rules as
real data so that data grouping, sorting, and filtering features can be designed with predictable results.
Where possible, production data (or at the very least, production-like data) should be used for report
design and testing. Sensitive information can be scrubbed by using search-and-replace iterations and cal-
culations to modify numeric and currency values. Report designers shouldn’t be expected to enter their
own data because they’re too focused on the process to create effective test data. This is like expecting
application developers to test their own code.

264

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 264

In addition to using real data, it’s important to work with a manageable set of data so reports run quickly.
Large data volumes can slow report design significantly. To design a bug-free report typically takes sev-
eral iterations of testing after adding each feature. If it takes several minutes to render a report, this can
slow the process by hours and days. When it takes a long time to test a report, I often find myself trying
to use this downtime more effectively by working on other tasks. In the end, I find myself starting (more
than finishing) multiple things on a slow-running machine. It’s tough to keep track of all the loose ends,
especially when queries are timing out and reports are crashing with errors.

Report Specifications
Work with your users and project sponsor to design a report specification template that addresses your
unique business needs. Some reports may query data from multiple tables and users may not be familiar
enough with the data structures to specify column names and keys for joins. In this case, you may need to
involve a database expert to help with these requirements. Other reports may get their data from existing
views or stored procedures, making this part of the process a whole lot easier.

I find that in some cases, where the project sponsor and users aren’t familiar with the data structures, I am
left to make assumptions about how the tables should be joined and queried. In these cases, the report
specification becomes more of a checklist and a forum to validate assumptions and to answer questions.
Ultimately, the burden must be left to the project sponsor to provide and approve the specific requirements
for each report. This, of course, should be performed with the assistance and cooperation of the report
designer as you discuss each feature. Remember that the key to success is effective communication. On
larger projects or when reporting on more complex databases, you may need to separate the business
requirements of the report from the technical specification, perhaps by using two separate documents to
gather these requirements. In any case, the key is to involve users and business stakeholders in obtaining
buy-off and validating the results.

The following sample report specification should work for most report projects and can be embellished
for special needs. Replace the italicized text with appropriate responses and complete one complete copy
for each report.

Report Specification for Description (Full Report Name)

Report Category or Group (Reports are often grouped by business function, features, or user
audience.)

Priority (1 = High, 2 = Medium, 3 = Low)

Business Problems/Questions
Answered

Data Source [Database, table(s), stored proc., cube, etc.]

Fields Schema Field Name Column Title Format
(Table columns and cube dimension (Actual table column (Report column (Currency, percent,
members and measures are collectively or member name) heading title) date — short/long,
called fields in Reporting Services. List decimal places, etc.)
all fields by name with the related
report column title and data format.)

Table continued on following page

265

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 265

Row Heading(s) (If report format and data are not self-described, some sections of
table row headings may require labels.)

Filtering (How is data filtered — that is, static filters, parameter-based fil-
ters, at database server, at report server?) List filtered fields and
criteria.

Grouping (How is data grouped? Static; dynamic, based on parameter field
selection; subgroups; are groups indented, formatted differently,
and so on? If there are pivot/matrix reports, then there may be
groups on rows and columns.) List the groups and the field(s) for
each group.

Sorting (How is data sorted — static, parameter-based, subsorting within
groups, clickable column headers, and so on?) List the sort field(s).

Parameters Parameter Source Default
(Parameters used for user input or (Parameter name) (Source of (Default value)
selection may be presented in text boxes, value — that is,
check boxes, radio buttons, or drop- single value,
down lists. May be used to filter, group, static list, data
sort, show and hide fields, items, rows, set query)
or columns)

Calculations (Calculations may be performed in the data set query, on custom
(What calculations are performed in the report fields, or in report items.)
report. Indicate operational order of
precedence and conditions — i.e., if one
or more values are 0 or null, what to do
if divided by 0, negative results, etc.)

Notes

Development Phases
As with any software development project, each component or report should progress through a series
of design and development phases. These may include prototyping or proof-of-concept, design, testing,
and deployment. To keep reports organized, I find it helpful to create separate projects and folders and
then graduate reports from one project to another as they are verified and pass testing criteria.

For each of these Visual Studio projects, within a master solution, create duplicate shared data sources.
You can drag and drop reports from one project to another and then remove the previous report using
the Solution Explorer. When you right-click the old report and choose the Remove option, the second
Remove option will leave the file in the project folder and simply remove the entry from the project file.
Since a new copy is created in the destination project, I advise choosing the Delete option so that you
maintain only one copy of the report definition file.

For each report project, set the TargetFolder property to a deployment folder to a name that corre-
sponds to the project name (that is, Prototype Phase, Design Phase, Test Phase, and Completed Reports). As
you complete each report and move the RDL files between project folders, update a simple report
progress summary list similar to the following sample.

266

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 266

Fi
lt

er
in

g/
R

ep
or

t
R

eq
u

ir
em

en
ts

P

ro
to

ty
p

e
Q

u
er

ie
s

P
ar

am
et

er
s

S
or

ti
n

g
G

ro
u

p
in

g
C

al
cu

la
ti

on
s

Fo
rm

at
ti

n
g

N
am

e
C

om
p

le
te

C
om

p
le

te
C

om
p

le
te

C
om

p
le

te
C

om
p

le
te

C
om

p
le

te
C

om
p

le
te

C
om

p
le

te
Te

st
ed

D
ep

lo
ye

d

Pr
od

uc
t

√
√

√
√

√
√

√
√

√
√

D
ow

nl
oa

d
s

by
 F

is
ca

l
M

on
th

Sa
le

s
√

√
√

√
√

√
√

C
ha

nn
el

Pi

pe
lin

e

Sa
le

s
√

√
√

√
A

na
ly

si
s

by
 V

en
d

or

In
ve

st
m

en
t

√
√

√
√

√
√

Su
m

m
ar

y

12_584979 ch07.qxp 1/27/06 7:42 PM Page 267

Finally, there is one last thing to remember about what will happen on practically every report project.
In the beginning, your sponsor will tell you what reports and features they want and you’ll work with
them to capture all of the requirements in detail. Things will generally go pretty smoothly until they
commence testing and you come up on a deadline. In the 11th hour, users will start asking for things and
your sponsor will request changes. You’ll learn of some minor misunderstandings you may have had
about the early requirements and this will prompt even more changes. Some last-minute changes are
inevitable in any project but when a change is requested, it must be in writing. Whether in hand-written
form, in a document, or an e-mail message, keep and save these requests. You should be able to trace
every new request back to an earlier requirement or obtain a clear understanding that it is a new require-
ment. If users request changes, you should have the project sponsor approve them. In the end, managing
these changes will go a long way toward ensuring the success of your report project.

Migrating and Converting Reports
One of the most common scenarios in large businesses moving to Reporting Services is the desire to
migrate or convert reports created using another reporting tool. Many large businesses that have exist-
ing applications will have reporting solutions in Crystal Reports, Business Objects, or Access reports.
There has been a significant interest in “converting” Crystal Reports to Reporting Services reports. There
are several challenges making this difficult to easily achieve.

Recognizing this need, some third-party report migration tools have been developed by companies that
offer report migration services. In many cases, these do an effective job of moving Crystal Reports into
SSRS Report Definition Language files. There is no single method for fully automating report conversion
from Crystal Reports without some manual intervention. One of Reporting Services’ greatest strengths is
the ability to consolidate similar reports into one, to achieve a more flexible, single report. In many cases,
several Crystal Reports or Access reports may be distilled into a handful of SSRS reports to address the
same business challenges. There are several features that other reporting applications don’t offer and by
simply copying a report design from another tool, you will not take advantage of what Reporting Services
has to offer. The best practice for report migration is to start, not just with existing reports, but with the
user and business requirements, and meet them by effectively using the unique features in Reporting
Services. With a large number of existing reports, report conversion can move this process along in large
strides.

If you can use existing reports to model design elements, layout and formatting, calculation expressions,
query strings, and connection information, this will likely save time and money when compared with start-
ing over from scratch. However, you are almost guaranteed to find better ways to meet your requirements
by considering a different approach, consolidating similar reports, and using updated features. The struc-
ture of these reports will often be different. Crystal Reports uses a banding approach for grouped data
where the report itself defines grouped sections. By contrast, a Reporting Services report is simply a blank
surface upon which report items are used to define data ranges for one or more data sets or query result
sets. Since grouped data ranges may be implemented using a list, table, or matrix report item, depending
on the need, there isn’t a one-to-one correspondence between these report architectures. Crystal Reports
also relies heavily on formulas and functions for mathematical calculations and conditional formatting,
whereas Reporting Services allows designers and developers to use one of three techniques including
Visual Basic in-line expressions, code-behind VB functions, or external .NET assemblies. This provides a
great deal of flexibility to implement custom functionality. Converting all but the simplest expressions
from Crystal Reports formulas to Visual Basic expressions would be nearly impossible. One of the most
significant challenges for developers who might want to create and distribute a conversion application is a
legal constraint imposed by Crystal/Business Objects. In order to programmatically query the structure of

268

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 268

a Crystal Reports report this requires components licensed by Crystal Reports, and it prohibits their use for
report conversion and distribution with third-party software.

Working with the Strengths and Limitations
of the Architecture

Never assume that anything works the way you want it to. The late British comedic actor Benny Hill made
the best presentation of this common joke and eternal truth by breaking the word assume into syllables to
complete the phrase: When you assume, you make an ___ out of _ and __. Keep in mind that some of the chief
goals of this product are to render reports in a variety of presentation formats utilizing server-side com-
ponents. In doing so, a report rendered to a specific format may not take advantage of all the capabilities
offered by that format, a client tool, or markup language. For example, reports rendered to HTML don’t
offer all of the advanced behavior you might implement in a custom-built web page with cascading style
sheets and JavaScript. If you were to design a report in Microsoft Excel, you might design the workbook
with formulas used to recalculate the spreadsheet rather than using literal values for summaries and
totals. The general approach is that Reporting Services renders using methods to address the commonal-
ity of all these formats. There’s always room for more features and advanced functionality. Some of these
may be added to the product in later versions because this makes sense for mass consumption. Because
of the modular architecture of Reporting Services, features can be added through custom programming
extensions.

I think it’s important to define boundaries, not to be critical but to better understand the possibilities and
limitations. In software, we’re always trying to do something new — something that has never been done
before (at least not within a particular environment). To this end, there are some fundamental questions
that can help you understand just how you might approach a problem, and whether a goal can be achieved
within the constraints of your capabilities and resources. When I go into a new consulting opportunity,
the first thing that I try to do is to take inventory of the skills necessary to get the job done and then let
my client know where we stand: “I can do this . . . I’ve done that . . . I know someone who can help me
with this . . . but I don’t know much about that thing, and I don’t know if I’m the right person to tackle
it. I’ll give it a shot, but we may need to consider bringing in another resource.” After all, if I’m not hon-
est with my clients, this could just turn out to be a bad experience for everyone, damaging my credibility
and the business relationship with the client.

This is the approach I’d like to take in this section. Reporting Services can do some wonderful things, but
it’s important to understand the boundaries and limitations of certain features. Perhaps the same capa-
bility may be possible using another feature or perhaps you may be barking up the wrong tree entirely.
You are not likely to build every conceivable type of report, and over time you will probably create a
handful of reports using techniques that you will duplicate repeatedly as you build more reports of the
same style. Therefore, not all of these reports may apply to you, but they may give you some ideas about
new ways to solve old problems.

It’s not easy to find the limits of most products. For some reason, that information isn’t listed in the
product specifications and documentation — at least not in bold type. I’ve had very little success going
to a large software vendor asking: “Hey, tell me what your product can’t do.” Wouldn’t it be nice when
shopping for a car or a house, if the salespeople would just list the comparative shortcomings of their
product? I think it would make the process so much easier. For this discussion, that is where I’d like to
start. Some of the more recognizable limitations of the Reporting Service architecture are detailed below.
This is by no means intended to be a complete list, nor is it a list of bugs or issues. It’s simply a guideline
of design constraints to be aware of when taking reports to the next level. I’ve also provided some com-
mon alternatives to implement desired functionality.

269

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 269

Area Limitation Alternatives

Data In the report body or a group Use an aggregate function even if your query
Presentation section, all fields must be returns one row or all rows for the field return

aggregated, even if the data the same value. Typically, you should use the
set only returns one row. FIRST() function for character and date data and

the SUM() function for numeric data.

Page header and footer Place hidden text boxes in the report body and
cannot reference field values. then reference these in the ReportItems collection.

Instead of a page header or footer, use a table
header and footer or group header and footer. Set
the footer to force a page break, and these rows
effectively become page headers and footers.

Subreports, used to relate Subreports work well for unrelated data or for a
Master/Detail records, cause small set of master rows. The subreport’s data set
performance and rendering must be processed for every instance of a master
problems. row, resulting in performance and resource

challenges. It is typically more efficient to build a
single query, using joins and repeated values, and
to use groups and nested report items rather than
a subreport. If you do need to use a subreport,
consider using report instance caching to improve
performance if the underlying data doesn’t
change very often.

Printing from the web A client-side print control was introduced in
browser isn’t very reliable. It Reporting Services 2000 SP2. This feature appears
provides no control of the as a small printer icon in the upper right of the
page orientation and margins Report Manager toolbar. Clicking this icon will
cut off some information. cause a client-side control to download and install

to the user’s computer. Once installed, this offers
much greater control than printing directly from
the browser. Rendering to other formats allows
users to control print features from client
applications (such as the Adobe Reader for PDF
reports or Microsoft Excel).

Formatting Conditional formatting Write a Visual Basic function in the Report
expressions can be Properties➪Code window and call the function as
complicated and difficult to an expression for each report item [for example,
maintain, especially when =Code.MyFunction(Fields!MyField.Value)].
repeated for multiple report
items and fields.

270

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 270

Area Limitation Alternatives

Aggregate functions don’t Use a Visual Basic function to return a zero
return zero for summaries on in place of an empty value [for example,
nonexisting values. Our users =IIF(IsNothing(SUM(Fields!MyField
want to see zeros. .Value)), 0, SUM(Fields!MyField.Value))]

Pass values to a Visual Basic function to convert
null, empty string, or no value to a zero or another
value. [for example, =Code.NullToZero
(Fields!MyField.Value)]

Standard formatting strings Format properties use the language of regular
don’t return values formatted expressions, which are very capable but can be
the way I want to see them. complicated. Conditional regular expressions can

be obtained from a number of online resources
or specialized technical books. Rather than
modifying the format, create a Visual Basic
function or expression called in the Value
property. This can limit your ability to refer to the
value of this report item in another expression
(this is easy to work around). In related report
items, refer to the Fields expression rather than
this report item, or convert this report item value
back to its native data type.

Rendering Can’t embed charts and Create a group on a detail-level field. This
subreports into the detail row effectively makes the group header or footer a
of a table. detail row — which will support more embedded

items. Remove unneeded rows from the table.

PDF rendering doesn’t Use a table with a group footer set to repeat on
support some bound items in each page. Place bound items in the group footer
page footers. rather than the page footer.

HTML rendering doesn’t This is a characteristic of HTML rendering and is
support some table design not considered a bug. If reports require more exact
formatting. For example, tolerances, users should be instructed to use
narrow columns used for printer-friendly rendering formats like PDF and
spacing and borders are TIFF.
padded with extra space.

Using images in place of Most rendering formats were not designed to use
borders causes extra vertical images in place of borders. Images placed in table
and horizontal padding and cells will typically be padded. Report design is a
column misalignment. little different from web design, and some of the

techniques may not work. Reports should be
tested in all common rendering formats when
using images borders.

Table continued on following page

271

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 271

Area Limitation Alternatives

Actions Reports don’t support events Reporting Services doesn’t support an event
like Access does. I want to model at the design level. However, calling a
count pages, rows, groups, function in a property of a report item can have a
and report item values, and similar effect. Code is called in the order that items
call custom code when these are rendered: left to right and top to bottom. You
“events” are fired. can use class module–level variables to manage

values within the confines of one report rendering.

Code variables aren’t tracked Parameters may be used like QueryString values
across multiple “postings” of in a web page. When a user clicks on an item, the
an interactive report. I need to Action target can use an expression, which calls a
keep track of values that are custom Visual Basic function. This function can
modified by code as my user receive one or more parameter values or variables
interacts with a report. to process. The resulting value may be passed as a

parameter to the same report, effectively posting
back to itself with meaningful parameter values.
The parameters may be used in expressions,
modifying report and item properties to change
properties or sort, group, hide, or show items.

Report Recipes
As we have endeavored to solve various business problems, we’ve learned to do some interesting things
with Reporting Services. On consulting engagements, I often find myself in front of a client who is ask-
ing questions like “can you do this or that?” Almost inevitably, the answer is “yes,” but the question
becomes what the best method would be to meet the requirement. With a little outside-the-box thinking,
a lot of interesting things are possible. This may involve some custom programming, embedding report
items, or using customer application components in concert with Reporting Services.

In the following section, I’ve compiled a description of reporting challenges and solutions we’ve encoun-
tered, developing reports for our clients. For each “solution recipe,” I provide a brief list of skills, tech-
niques, and resources needed to apply the report feature. This should give you a good idea of how
prepared you may be to use the techniques based on your skill set and the level of complexity. Some of
these are easy to duplicate, whereas others require more advanced skills, which may include Transact-SQL
and Visual Basic programming. These are not intended to be exercises or step-by-step instructions. I have
made a point to provide enough information to demonstrate the concepts and techniques. However, to
implement these solutions you will need to apply the skills you learned in the previous chapters.

Greenbar Reports
Once upon a time, most reports were printed on special continuous-feed paper. This paper is fan folded,
with a perforation between each page, making it stackable in the input and output printer bins. The long
scroll of pages has pin-feed holes on each side to feed it through and align each row with the mechanical
print head. One of the common characteristics of this paper is that it has preprinted green bars for every
other row of data. In more modern reports, this format remains popular to help readers visually separate
each row of printed information. This typically involves using a light pastel background color for alter-
nating table rows.

272

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 272

The Challenge:

❑ Reporting Services does not have a built-in alternating row color feature.

What you’ll need:

❑ A Visual Basic function.

❑ Expressions used to call the function on the BackgroundColor property of row items.

I’ve seen a few different techniques used to implement this feature and they all require complex expres-
sions or some use of Visual Basic programming. Fortunately, this isn’t hard to do, even if you’re new to
VB programming. This technique involves using a VB function to return a different color for odd and
even rows. Report items are rendered from top to bottom and then from left to right — as the carriage of
a typewriter does (for the younger generation, a typewriter is sort of like a computer with moving parts).
This means that custom code procedures and expressions associated with report item properties will
always be executed in this order. In our solution, the start of a new row is indicated by passing a toggle
flag when the function is called in the leftmost column’s text box. The following Visual Basic code begins
with a class module–level variable used to hold the odd-or-even row indicator between calls. As you can
see, the bOddRow variable value is toggled between True and False on each call.

Private bOddRow As Boolean

‘***
‘ -- Display green-bar type color banding in detail rows
‘ -- Call from BackGroundColor property of all detail row textboxes
‘ -- Set Toggle True for first item, False for others.
‘***
Function AlternateColor(ByVal OddColor As String, _

ByVal EvenColor As String, ByVal Toggle As Boolean) As String
If Toggle Then bOddRow = Not bOddRow
If bOddRow Then

Return OddColor
Else

Return EvenColor
End If

End Function

The program code is entered on the Code tab of the Report Properties dialog. To access this window,
choose Report Properties from the Report menu while using the report designer’s Layout tab. This is
shown in Figure 7-1. After entering or making modifications to code, click the OK button to update the
report definition.

For the BackgroundColor property of the first text box (in the leftmost column of the row), enter the
following expression to call the custom code function:

=Code.AlternateColor(“AliceBlue”, “White”, True)

The first parameter is the name of the background color for odd-numbered rows. The second is the back-
ground color for even-numbered rows. These two values may be the name of any standard web color
(available from the color drop-down list in the designer). These may also be any one of about 16 million
Pantone colors expressed in web-style hexadecimal format (for example, #FF8000 for orange and
#9932CD for dark orchid).

273

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 273

Figure 7-1

Creating a Greenbar Table
The first example I’ll demonstrate uses a table with a single detail row. Every text box in the row con-
tains an expression on the BackgroundColor property. This expression calls the AlternateColor cus-
tom function that returns the name of the color for this property. As you see in Figure 7-2 , the expression
for the leftmost column passes the value True to toggle the odd/even row. For all other columns, the
third argument value is False.

Figure 7-2

Figure 7-3 shows the report in preview. The AliceBlue color I chose for odd rows is subtle. Any combina-
tion of standard color names or hexadecimal values can be used. For example, the hex value #FF0000 is
equivalent to the color Red.

274

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 274

Figure 7-3

Creating a Greenbar Matrix
The pattern used for a matrix is very similar to a table. Since the matrix generates column cells dynami-
cally, there is no way to specify a different expression for each column. If I wanted the row header to
have an alternating background color, I could use the same technique as the table: toggling the odd/
even flag explicitly on the row header text box. But, if the pivot cell is to be the leftmost item with an
alternate background color on each row, this becomes more challenging. To work around this limitation,
I define an extra row group on the same field expression as the previous group in the row hierarchy.
Figure 7-4 shows the group definitions. The two row groups both use the same expression. This will
cause the second group header text box to be repeated with each row. I’m going to hide this cell when
I’m done.

Next, I set the BackgroundColor property using the same expression that I used in the table example.
The second row header text box sets the AlternateColor function to toggle the odd and even rows.
Since the pivot cell (the text box at the intersection of the row groups and column group) is repeated
with the same background color for every column in a row, the second function argument is set to False
(see Figure 7-5).

275

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 275

Figure 7-4

Figure 7-5

In Figure 7-6, I’ve reduced the width of this cell and I’ve also hidden it by setting the Visibility/
Hidden property to True. You actually can’t completely eliminate all evidence of a cell but you can
make it very narrow. I’ve set the GridSpacing property to .03125 (1/32 of an inch), so I could make this
column as narrow as possible.

Figure 7-6

276

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 276

Figure 7-7 shows the end result. The utility cell causes a small gap between the row header and the
remaining columns; alternate row colors are applied to the aggregate data cells.

Figure 7-7

Multiple Criterion Report Filtering
Report design requirements may call for complex combinations of parameter values used to filter report
data. Using Transact-SQL, you should be able to handle practically any advanced filtering criteria and
filter the data before it reaches the report server. However, if you need to use report filtering to provide
the same kinds of filtering support against data already cached by the data set query, the report designer
has some significant limitations in this area. For example, let’s say that my report has two parameters for
filtering product records: ProductCategory and PriceRange. In this simplified example, the parame-
ter values for both of my parameter lists are the same as the parameter label values.

The ProductCategory parameter list values are shown in the following table.

Parameter Value Product Category Field Match

Bikes Bikes

Components Components

Clothing Clothing

Accessories Accessories

All Bike Related Bikes and Components

All All Categories

The PriceRange parameter list values are shown in the next table.

Parameter Value Price Range Field Match

Less than 50 < 50

50 to 99 >= 50 AND < 100

Table continued on following page

277

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 277

Parameter Value Price Range Field Match

100 to 499 >= 100 AND < 500

500 and Higher >= 500

All All Prices

Contending with the various combinations of these and other parameter values in the confines of the
report designer’s filtering user interface would be very difficult to do. The most flexible method is to
write a separate Visual Basic function to handle the matching logic for each parameter and field combi-
nation. This code is called for each row. The function returns a value to be matched with a field in the
row. If the values match, the row is returned. The following custom code is added to the report on the
Code tab of the Report Properties dialog:

Function MatchProductCategory(ParamValue As String, FieldValue As String) As
String

Select Case ParamValue
Case “Bikes”, “Components”, “Clothing”, “Accessories”

Return ParamValue
Case “All Bike Related”

If FieldValue = “Bikes” Or FieldValue = “Components” Then
Return FieldValue

End If
Case “All”

Return FieldValue
End Select

End Function

Function MatchPriceRange(ParamValue As String, FieldValue As String) As
Decimal

Select Case ParamValue
Case “Less than 50”

If FieldValue < 50 Then Return FieldValue
Case “50 to 100”

If FieldValue >= 50 And FieldValue < 100 Then Return FieldValue
Case “100 to 500”

If FieldValue >= 100 And FieldValue < 500 Then Return FieldValue
Case “500 and Higher”

If FieldValue >= 500 Then Return FieldValue
Case “All”

Return FieldValue
End Select

End Function

Using the Filters tab on the Dataset properties dialog, execute each of the functions, matching its return
value to the corresponding field. Figure 7-8 shows this dialog.

This technique takes all of the complexity out of this simple dialog and puts it where it belongs: in pro-
gram code. That environment gives you the control needed to contend with practically any set of busi-
ness rules.

278

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 278

Figure 7-8

Multi-field Data Point Charts
The most common charting scenarios involve the use of one field value grouped across another field value,
with data from multiple rows. The chart contains one data point for each group value and automatically
generates colors or shades for each point. Most of the examples you’ll find demonstrate various forms of
single-field data point charting. However, there may be times when you need to chart multiple values from
the same row. These may be different fields or calculated values based on one or more fields. One of the
advantages to explicitly providing data for each point is the additional formatting control you have. You
can specify the color, font characteristics, and labeling for each point individually.

What you’ll need:

❑ A data set containing multiple, related fields with numeric values.

❑ A chart item with multiple data point expressions.

In this example, the report is filtered using a parameter to return only one row. Slices of the pie chart will
represent the product cost and calculated profit from a single product record. Figure 7-9 shows the stan-
dard design-time preview of a pie chart. Don’t pay any attention to the standard chart design view since
ours isn’t going to have five data point slices.

If no series or category groups are created, a field added to the value groups will result in only one data
point. Depending upon the chart type, a data point is plotted as a slice, point, column, or bar. I’ll create
two value groups named Cost and Profit. These are visible on the Data tab of the Chart Properties dialog
in Figure 7-10.

Since the entire pie circumference will represent the price of a product, the size of the cost and profit
slices must be expressed as proportional values. The point labels (the value displayed on or near the
plotted point) may be managed separately. For example, the point label could display the profit as a
percentage rather than the actual currency value. Figure 7-11 shows the Value expression for the Cost
group.

279

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 279

Figure 7-9

Figure 7-10

280

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 280

Figure 7-11

Rather than using a standard color palette, I can use a specific color for each data point. Figure 7-12
shows the Style Properties dialog, accessible form the Edit Chart Value window. Here, I set the color of
this slice to SteelBlue.

Figure 7-12

On the Point Labels tab, shown in Figure 7-13, I can set the display value and format. The regular
expression C2 means that a localized currency value will be displayed with two decimal positions. The
nine position buttons may be used to place the data point text labels on or near the pie slice using call-
outs and connector lines.

281

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 281

Figure 7-13

Figure 7-14 shows that the Profit data point value is calculated by subtracting the product cost from the
price.

Figure 7-14

Figure 7-15 shows that the borders for both data points are set to black.

The Profit data point will be yellow. In Figure 7-16, this is set using the Style Properties dialog when
editing this data point.

282

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 282

Figure 7-15

Figure 7-16

For the Profit data point label, I’d like to display both the profit value and the formatted percentage in
parentheses. This will require a fairly complex expression. In Figure 7-17, you see the elements of this
string concatenated together. When piecing multiple values together like this, numeric values need to be
formatted separately. In this example, the Visual Basic Format() function is used to display the profit
formatted as currency with two decimals and the percentage with no decimals.

283

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 283

Figure 7-17

Incidentally, I like to see the line numbers in my code, so I’ve configured Visual Studio to show these.
This option is available on the toolbar, under Tools➪Options➪Text Editor➪All Languages.

Figure 7-18 shows the report in preview. Rather than using the chart legend, I’ve created a custom key
using colored rectangles.

Figure 7-18

284

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 284

TOP X and “Other” Chart
Many standard chart formats have a limited capacity to effectively display more than a few series val-
ues. This can be remedied by capping the number of grouped values to a specific number of top values.
However, a top 10 report may not accurately represent the entire data population. In addition to the top
10 slices, an additional slice represents everything else. This can be effective when the top 10 represent a
significant portion of all values. Since each of the standard color palettes includes 16 colors, it at most
makes sense to present the top 15 + 1 “other” slice aggregating the remaining rows.

Here’s what you’ll need:

❑ A custom query expression that combines two related result sets:

❑ A specified number of top-rated values.

❑ An aggregate row consisting of all remaining rows.

❑ A chart item used to present the combined result set.

Figure 7-19 shows the finished report, so you can see the concept before taking a look at the design tech-
nique. Note that there are 11 slices, 10 for the top 10–selling products and one for the sum of all remain-
ing products.

Figure 7-19

This technique doesn’t require any special settings in the chart itself. The magic is all in the data set. This
requires a little advanced SQL work. The following Transact-SQL query defines two different result sets,
one for the top 10 rows and the other for everything else. To return the non–top 10 values, the top 10
query uses a subquery to exclude this selection for the entire result. The two results are combined using
the SQL UNION statement:

285

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 285

-- Top 10 and Others:
SELECT Top10.ProductKey, Top10.ProductName

, Top10.AmountSum
FROM (

-- Top 10:
SELECT TOP 10

DimProduct.ProductKey
, DimProduct.EnglishProductName AS ProductName
, SUM(FactResellerSales.ExtendedAmount) AS AmountSum

FROM DimProduct INNER JOIN FactResellerSales
ON DimProduct.ProductKey = FactResellerSales.ProductKey
INNER JOIN DimTime
ON FactResellerSales.OrderDateKey = DimTime.TimeKey

GROUP BY DimProduct.ProductKey, DimProduct.EnglishProductName
ORDER BY SUM(FactResellerSales.ExtendedAmount) DESC

) AS Top10
UNION
SELECT Other.ProductKey, Other.ProductName, Other.AmountSum
FROM (

-- Others excluding the top 10:
SELECT TOP 100 PERCENT

-1 AS ProductKey, ‘Other’ AS ProductName
, SUM(FactResellerSales.ExtendedAmount) AS AmountSum

FROM DimProduct INNER JOIN FactResellerSales
ON DimProduct.ProductKey = FactResellerSales.ProductKey
INNER JOIN DimTime
ON FactResellerSales.OrderDateKey = DimTime.TimeKey

WHERE DimProduct.ProductKey NOT IN
(
SELECT TOP 10 DimProduct.ProductKey
FROM DimProduct INNER JOIN FactResellerSales

ON DimProduct.ProductKey =
FactResellerSales.ProductKey

INNER JOIN DimTime ON
FactResellerSales.OrderDateKey = DimTime.TimeKey

GROUP BY DimProduct.ProductKey
ORDER BY SUM(FactResellerSales.ExtendedAmount) DESC

)
ORDER BY SUM(FactResellerSales.ExtendedAmount) DESC
) AS Other

You should be mindful that this query must reselect data in the same tables multiple times and may
not perform well with large tables. This solution can also be achieved using an upgraded version of the
chart item available from Dundas Software. Dundas Chart for Reporting Services includes a similar fea-
ture that doesn’t require complex query expressions.

Dynamic Images: Scales and Gauges
Images can be made to display different content under different conditions. Using expressions, the image
report item may be used with a series of images to show progress gauges or indicators.

286

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 286

What you’ll need:

❑ A series of gauge or scale images representing progressive values.

❑ An image item used to display one of the images.

❑ An expression used to translate integer values to the name of a corresponding image.

The Chart item outputs a static image that is embedded in the rendered report. In cases where you would
like to use graphical output that a chart doesn’t provide, you may use predefined graphics. The technique
I’ll demonstrate uses 11 image files, which represent a gauge with different values. Based on a data value,
the image is replaced with a corresponding graphic. Images may be obtained from a database, from exter-
nal files, or may be embedded within the report definition. Embedded images are convenient because they
don’t require special security or addressing deployment considerations. However, embedded images
should be used with small image files to keep the report definition file size manageable.

The sales quota data in the AdventureWorksDW database didn’t match up very well to the reseller sales
totals, so I had to modify the quota values to get this demonstration to work. If you want to duplicate
this query, I suggest that you back up the database and then modify some of the SalesAmountQuota
values in the FactSalesQuota table so the results are more realistic.

Figure 7-20 shows 11 gauge graphic files I’ve created using Dundas Gauges. Each is saved in a folder as
a PNG file. The file names also contain their value. This makes it easier to use an expression to derive the
correct file name.

Figure 7-20

My data set query, shown in Figure 7-21, returns comparative quota and actual sales values grouped by
year, quarter, and employee.

287

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 287

Figure 7-21

For simplicity, and because the image files are small, I’m adding them to the report definition. By
default, each image is assigned the same name as the source file. These can by modified if necessary.
Figure 7-22 shows the Embedded Images dialog, opened from the Report menu.

Figure 7-22

The report contains a table item with an image in one of the detail cells (see Figure 7-23). When the
image item is dropped onto the report design surface, the Image Wizard is launched. The wizard selec-
tions aren’t important and will be replaced with properties I’ll set manually.

288

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 288

Figure 7-23

The Image items properties are set to use embedded images. I’ve set the image to FitProportional but
this may be changed depending on the image size and characteristics. I typically use the Padding prop-
erties to provide margin space around the image cell. The image item’s Value property will tie each
row’s sales quota value to a corresponding gauge.

A calculated column called PercentOfQuota returns a float value as a percentage (0.0 to 1.0). By multi-
plying this value and converting it to an integer, using the Visual Basic CInt() function, these values
now correspond to my image file names (0 to 10). This expression concatenates this integer with the rest
of the file name. To prevent an overflow condition, if the percentage value is greater than 1 (100%), the
expression always returns the highest value, 10.

=”t_guage” & IIF(Fields!PercentOfQuota.Value>1, “10”,
CStr(CInt(Fields!PercentOfQuota.Value * 10)))

Here’s the final result, shown in Figure 7-24.

I’ll use the same basic principle in the next example to produce a business scorecard.

Creating a Business Scorecard
This type of reporting scenario has quickly become a mainstay in enterprise business applications. Also
known as executive dashboards, business scorecards provide summary level progress and success status
information for business leaders.

What you’ll need:

❑ A query expression with data-based or calculated target, budget, variance, and actual values.

❑ A multi-group table with drill-down features.

❑ Small images for use as progress indicators.

❑ An expression used to translate KPI and target values to indicator images.

289

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 289

Figure 7-24

Executive Dashboards
To understand and appreciate the value of this type of reporting interface, you need to walk in the shoes
of corporate business leaders. A typical corporate officer deals with a lot of people and a variety of infor-
mation in a day and often needs to make immediate decisions based on this information. When moving
from meeting to meeting, transaction-level details are too granular for most decisions. Business leaders
need to know how the business is performing overall and whether there are areas of concern or notable
success. I’ve sat in a lot of meetings with a general manager or director sitting on one side of the table
and subject experts on another. The officer begins by saying “So, how are we doing?” The subject expert
gives a lengthy presentation, stepping through PowerPoint slides, charts, graphs, and diagrams that
depict trends and variances based on mountains of data. After the presentation, the officer concludes
with the question: “So, how are we doing?” Scorecards and dashboards answer this all-important ques-
tion using succinct summary values and simple graphical, symbolic progress indicators.

Although simplification is a key concept, scorecards go beyond just keeping reports simple. Trends and
success indicators should be clear and easy to understand but should provide an avenue to discover
more detail and to view related trends and summaries. These objectives are easily achieved using drill-
down and drill-through report features.

Targets and KPIs
These are the fundamental concepts behind business scorecards. For any given measurement, a target is
simply an objective value. Targets are often data-driven values such as a Budget, Quota, Baseline, or
Goal. A KPI, or Key Performance Indicator, is a set of thresholds used to measure actual values with the
target. KPIs may define banding indicators to signify a range of variances like poor, acceptable, and

290

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 290

exceptional performance. KPI thresholds may be a single point, corresponding to the target, percentage,
or fixed increment offsets with any number of indicator bands.

When considering longer-term trends, you may want to recognize the difference between a positive
trend using a KPI and whether or not a value represents a successful outcome, as a KSI (Key Success
Indicator). For example, sales for a particular product may have been unprofitable since it went on the
market. If sales are rising, a KPI would show positive sales growth, whereas a KSI would indicate that
the company is still in the red. We might simply define two targets, one to measure short-term progress
and the other to measure overall profitability.

Indicators
Indicators are graphical icons, representing the state of an actual value with respect to a KPI band. On
the scorecard, corresponding indicator icons might be red, yellow, and green symbols. Indicators are
typically common symbolic metaphors such as traffic lights, colored shapes, progress bars, gauges, and
directional arrows. Figure 7-25 shows some common indicator graphics embedded in a sample report.

Figure 7-25

291

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 291

Calculating Variance
Variance is the difference between an actual and target value. If time variances will be used extensively,
the queries used to make these calculations can be very intensive. Aggregating and calculating sales
totals, for example, for a given month over last month, quarter, or year can require some heavy-duty
query processing (even with a modest number of detail rows). Ideally, this type of data should be
stored in a data mart or data warehouse with precalculated variance values stored in the database. The
AdventureWorksDW database contains some preaggregated summary values, but as you can see, even
for this simple report with only year-over-year variances, the query is fairly complex.

SELECT
ThisYearSales.SalesTerritoryRegion

, ThisYearSales.SalesTerritoryKey
, ThisYearSales.CalendarYear
, ThisYearSales.LastName
, ThisYearSales.FirstName
, ThisYearSales.EmployeeName
, SUM(ThisYearSales.ExtendedAmount) AS ExtendedAmountSum
, SUM(ThisYearSales.SalesAmountQuota) AS SalesAmountQuotaSum
, SUM(LastYearSales.ExtendedAmountSum) AS ExtendedAmountSumLastYear
FROM (

SELECT
DimSalesTerritory.SalesTerritoryRegion

, DimSalesTerritory.SalesTerritoryKey
, DimTime.CalendarYear
, DimEmployee.LastName
, DimEmployee.FirstName
, DimEmployee.EmployeeKey
, DimEmployee.FirstName + ‘ ‘ + DimEmployee.LastName AS EmployeeName
, FactResellerSales.ExtendedAmount
, FactSalesQuota.SalesAmountQuota

FROM DimEmployee INNER JOIN FactSalesQuota
ON DimEmployee.EmployeeKey = FactSalesQuota.EmployeeKey
INNER JOIN DimTime ON FactSalesQuota.TimeKey = DimTime.TimeKey
INNER JOIN FactResellerSales
ON DimEmployee.EmployeeKey = FactResellerSales.EmployeeKey

AND DimTime.TimeKey = FactResellerSales.OrderDateKey
INNER JOIN DimSalesTerritory
ON DimSalesTerritory.SalesTerritoryKey =

FactResellerSales.SalesTerritoryKey) AS ThisYearSales
INNER JOIN
(SELECT

FactResellerSales.EmployeeKey
, DimTime.CalendarYear
, DimSalesTerritory.SalesTerritoryKey
, DimSalesTerritory.SalesTerritoryRegion
, FactResellerSales.ExtendedAmount AS ExtendedAmountSum

FROM FactResellerSales
INNER JOIN DimTime
ON FactResellerSales.OrderDateKey = DimTime.TimeKey
INNER JOIN DimSalesTerritory
ON DimSalesTerritory.SalesTerritoryKey =

FactResellerSales.SalesTerritoryKey
) AS LastYearSales

ON LastYearSales.CalendarYear = ThisYearSales.CalendarYear - 1

292

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 292

AND ThisYearSales.EmployeeKey = LastYearSales.EmployeeKey
AND ThisYearSales.SalesTerritoryKey = LastYearSales.SalesTerritoryKey

GROUP BY ThisYearSales.SalesTerritoryRegion, ThisYearSales.SalesTerritoryKey
, ThisYearSales.CalendarYear, ThisYearSales.LastName, ThisYearSales.FirstName
, ThisYearSales.EmployeeName

ORDER BY ThisYearSales.SalesTerritoryRegion, ThisYearSales.CalendarYear
, ThisYearSales.LastName, ThisYearSales.FirstName

When running complex queries like this one, you may need to increase the default connection timeout
setting on the data source. The default setting is 15 seconds, which may not be sufficient for this query
on all hardware. In a production application with data volumes greater than the sample database, I
would recommend testing query performance and possibly using an Analysis Services database with
cubes and precalculated aggregates. To populate the data warehouse, you will use queries similar to this
one and store the results for later retrieval.

Figure 7-26 shows a simple table with two groups, on the SalesTerritory and CalendarYear fields.
This table is much like several previous examples. The detail row is hidden by default, allowing for drill-
down using the SalesTerritoryRegion text box. Two more images will serve as indicators. These are
based on expressions used to change the indicator image.

Figure 7-26

You will notice that the images have a white background even though I’ve used background colors to
separate the rows. I’ve only done this to simplify this example. I have simply added the images to the
cells in the table header. If you want to use transparent images over a colored or shaded background,
you will need to add rectangles to the header cells and then place images in the rectangles. This way,
you can set the BackgroundColor property for each rectangle and take advantage of the image trans-
parency. The final example, shown in Figure 7-30, uses this technique to fill the background color behind
the scorecard indicator images.

Looking at the columns with text headers, the first column contains the SalesTerritoryRegion field
in the first group header and the CalendarYear field in the detail row.

The second column contains the EmployeeName in the detail row.

The third text column is for the SalesAmountQuota field. The header uses the SUM() function to aggre-
gate the details for the sales territory.

The forth text column contains total sales values, using the ExtendedAmount field.

The last column of text boxes, labeled Yr. Variance, calculates the total sales amount annual variance. In
the header row, the expression uses the SUM() function. In the detail row, the SUM() function is omitted.

=1-(Sum(Fields!ExtendedAmountSumLastYear.Value)/
Sum(Fields!ExtendedAmountSum.Value))

293

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 293

The expression for the sales first set of indicators (the images column after total sales column) calls a
Visual Basic function to apply the KPI threshold banding. Figure 7-27 shows this custom code.

Figure 7-27

Since the image names for the green, yellow, and red indicators are Green, Yellow, and Red, these values
are simply returned in the Value property of the image item using the following expression:

=Code.SalesQuotaVarianceIndicator(Sum(Fields!ExtendedAmountSum.Value),
Sum(Fields!SalesAmountQuotaSum.Value))

For variety, I’ve resolved the second indicator column images using only an in-line expression rather than
using a custom function. This is the expression for the header row. The detail row expression is the same
but without the SUM() function. As a rule, once I’ve decided to use custom code, I’ll typically continue to
use custom functions for all but the simplest expressions so that I can keep business logic in one place.

=IIF(Sum(Fields!ExtendedAmountSum.Value) /
Sum(Fields!ExtendedAmountSumLastYear.Value) < .8, “exclamation_small”, “nothing”)

This expression returns the name of an exclamation mark icon image when this year’s sales amount is
less than 80% of last year’s. I created an image file called “nothing,” which is a blank icon with a white
background. Using this image effectively displays nothing in the image cell.

Synchronizing Charts and Related Report Items
One of the great advantages to the scorecard approach is that all the information is presented in a con-
cise page. In order to make the best use of screen space, I can use a separate report item to show content
related to the item selected in the scorecard.

Figure 7-28 shows the table and chart items. When I select a sales territory, by clicking on the small pie
chart icon in the first column, I want to see sales trend information in a column chart. I’ve placed a chart

294

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 294

to the right of the scorecard and have configured it as a column chart. I’ve also simplified the chart by
removing the legend.

Figure 7-28

The chart content is synchronized using a report parameter. The SalesTerritoryKey parameter is used
to filter the data set providing data to the chart. The SalesTerritoryRegion parameter is used to pro-
vide a title value for the text box above the chart. Figure 7-29 shows the Navigation properties for the pie
icon used to synchronize the chart. Note that the Jump to report property is set to navigate back to this
report, rerendering the same report with the new parameter values.

Figure 7-29

295

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 295

Figure 7-30 shows the rendered report with some region sections drilled open. I’ve clicked the pie icon
next to the Southwest region to synchronize the chart and view sales trend details for the Southwest
region. Again, note the background color fill behind the scorecard indicator images using the technique I
mentioned earlier.

Figure 7-30

Using Charts and Data Ranges in Detail Rows
Reporting Services doesn’t support the placement of charts and some other embedded report items in
table detail rows. Working around this limitation is very easy and simply requires that a group be defined
at the detail row level. You can either delete the detail row or resize it. Detail-level items are placed in
the header row rather than the detail row. The following two sparkline chart examples will demonstrate
this technique.

What you’ll need:

❑ A table presenting a columnar set of values.

❑ A chart item embedded into a table group header cell.

296

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 296

Creating Sparklines
Edward Tufte, one of the most recognized experts on the subject of data visualization, presents the idea
of sparklines. These are simple, word-sized graphics that are an alternative to large, busy charts used to
communicate a simple trend or series of measurements. In order to be meaningful, sometimes charts
need to have annotated gridlines, point labels, and legends. However, some charts can effectively serve
their purpose without the use of supporting text labels. To illustrate observations like “sales are improv-
ing,” “a product is profitable,” or that a trend is cyclical, a simple trend chart needs little or no labeling.
Sparklines are best used when embedded in text or other report formats.

What you’ll need:

❑ A query expression used to return trend data.

❑ A small, simplified chart item.

❑ A table item to display master rows.

Column and line charts are best suited for this type of presentation. In the first of two examples, I’ll use a
column chart to show sports games scores for a team throughout the season. The first example uses data I
had on hand from a project. The second example will use sample data from the AdventureWorks database.

Team Standings
The purpose of the chart, shown in Figure 7-31, is to quantify the team’s relative position and win/loss
trend rather than to show specific scores. For this I use a no-frills column chart. The data set returns a
team name, game number, and score for each team. The column value will represent the number of
points that won or lost the game. For example, a team that wins with a score of 5 to 3 would have a win-
ning score of 2. If the team loses 3 to 4, their score would be -1.

Figure 7-31

Figure 7-32 shows the category group. This plots columns along the X-axis, one for each game.

297

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 297

Figure 7-32

The value group uses the calculated score to plot the column above or below the line to indicate a win or
loss. Figure 7-33 shows this calculation in the Edit Chart Value dialog.

Figure 7-33

298

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 298

Figures 7-34 and 7-35 show the X-axis and Y-axis configuration. The X-axis grid lines, tick marks, and
labels are removed to keep the chart simple.

Figure 7-34

On the Y-axis, lines are displayed at the zero crosspoint, dividing wins and losses at 10 and -10 to render
all chart instances at the same scale.

299

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 299

Figure 7-35

Since the chart will be quite small, border lines should be thin and subtle. Click the corresponding Style
button to show the Style Properties dialog, shown in Figure 7-36. I’m using the Silver color (50% gray)
and .5 point lines. These lines may not be displayed in the designer but should render correctly when the
report is previewed or deployed.

Figure 7-36

300

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 300

The chart is placed in a group header row within a table grouped on the team field. This will serve as the
detail row, since a chart can’t reside in a detail row. Figure 7-37 shows the finished report in design view.

Figure 7-37

The finished report is shown in Figure 7-38. Each team’s calculated league standing, average score vari-
ance, and win/loss trend sparkline chart are displayed in table rows.

Figure 7-38

Sales Trends
This example shows product category sales on each row and sales by year in an associated line chart,
plotting sales totals by month. This report’s data set is based on a simple query that returns aggregated
sales by year and month, and then by product category.

In Figure 7-39, I’ve added and set up the table and chart in separate areas of the report body. They’re
both bound to the same data set. After the table is configured, I’ll add it to the table. As in the previous
example, a group header row is used in place of the detail row.

301

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 301

Figure 7-39

I’ve configured the chart with no gridlines or labels at all. Its purpose is to show relative sales trends, not
specific values. In a production reporting solution, I might create a separate chart report, similar to the
sparkline chart but with more detail. Figure 7-40 shows this report in design view.

Figure 7-40

Finally, Figure 7-41 shows the finished report. The trend line shows sales total over the course of the
year. Whether data points represented days, weeks, or months, the effect would be the same.

302

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 302

Figure 7-41

Using Field Values in Page Headers and Footers
Another limitation of the Reporting Services architecture is its inability to add data-bound items to page
headers and footers. The reason for this is that the pagination of a report occurs after the data has been
rendered. During the page formatting pass, items in the page header and footer areas have access to
already rendered report items but not to data fields.

What you’ll need:

❑ One or more hidden text boxes in the body of the report body.

❑ Text boxes in the page header or footer used to present field values.

❑ Expressions used to repeat values from the hidden item(s).

303

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 303

Displaying a single data-bound field value in a page header or footer is a fairly simple matter. Since
report items in the page header can’t refer to fields but can access report items, a hidden text box in the
report body may be used as a surrogate field reference. You’ll recall that a field-bound text box placed in
the report body must use an aggregate function such as FIRST() or SUM(). Figure 7-42 shows a bound
text box (with a gray background) in the report body above the table. This text box has been hidden as
its purpose is only to be used by the corresponding text box in the page header.

Figure 7-42

Group Continued in Page Header or Footer
Report items in a data range, such as a table or list, may also be referenced from items in the page header
or footer. There are at least a couple of different techniques for repeating group values in a report header.

What you’ll need:

❑ A table or other grouped data range item containing text box group headings.

❑ A text box in the page header or footer used to display the last group value.

❑ An expression used to refer to the previous group header text box.

In the following examples, I’ll demonstrate two techniques. Figure 7-43 shows a report with a table item
with groups, headers, and footers containing subtotals.

After the table header (shown with a light-gray background color), the first group has two header rows.
The first row (with italicized text) is a hidden row used only to allow the text box in the report header to
reference its value. The hidden row contains a text box named txtSalesTerritoryName, which is ref-
erenced from the page header text box within the First() aggregate function. This is necessary because
the table header row may be repeated. I want the page header to show the value from the first instance
on the page.

304

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 304

Figure 7-43

Dynamic Grouping
I get called in to consulting client sites often to rebuild a set of existing Crystal or Access reports in
Reporting Services. They will typically have several reports for each data entity or table that are
grouped, sorted, and filtered a little differently. This solution allows you to consolidate data groups for
the same table into one report. The following example consolidates the reports Product Sales by
Territory, Product Sales by Category, and Product Sales by Subcategory into one report with user-
selectable field grouping.

What you’ll need:

❑ A table presenting a columnar set of grouped values.

❑ A report parameter with a list of fields in the data set for sorting.

❑ A group expression using the report parameter to resolve the grouping field name.

❑ Heading and summary expressions referring to the dynamic group expression.

This works best with simple columnar reports that have one group. The dynamic grouping is based on a
single parameter selection that returns the name of a field from the report’s main data set. Figure 7-44
shows the settings for the GroupBy parameter. Note that the Value column for the parameter list con-
tains the actual field names for selected fields in the data set.

305

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 305

Figure 7-44

A group is defined in the table based on an expression that uses this parameter to resolve the field value.
In the report header, I want to show the field name, and in the group header, I want to show the actual
field value. To return the friendly field name that was displayed in the parameter drop-down list, I refer
to the Label property of the parameter. You can see in Figure 7-45 that the field value is displayed using
the compound expression: =Fields(Parameters!GroupBy.Value).Value. The inner reference
(Parameters!GroupBy.Value) is resolved first to return the field name, which is passed to the outer
expression (Fields(<field name>).Value) to resolve the field value from the field name. I have
found this technique useful in many different reports.

Figure 7-45

Figure 7-46 shows the properties for the table group. The same expression you saw in the previous fig-
ure is used to define the group. On the Sorting tab of the Grouping and Sorting Properties dialog, shown
in Figure 7-47, the sorting expression is set to match the group expression.

306

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 306

Figure 7-46

Since grouping should always be performed on values in the same sort order, the same expression is
used on the Sorting tab.

Figure 7-47

307

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 307

Sorting on Column Headers
Reporting Services for SQL Server 2000 doesn’t include a specific feature for dynamic column sorting.
Using parameters and report items navigation actions, text boxes and images can be made to act like
hyperlinks that change parameter values, which may be used to change the sort order for a report or
report item. A built-in feature was added to Reporting Services for SQL Server 2005 that effectively uses
the same technique but manages everything internally. This feature does have its limits, though. I will
demonstrate both techniques so you can decide whether you can do it the easy way or venture outside
the box and be more creative.

Using the Interactive Sort Feature
This new feature in Reporting Services 2005 makes column sorting a snap. As you can see in Figure 7-48,
the text boxes in a table header may be used to create an interactive sort for the table. The settings are
fairly self-explanatory. Sorting may be set to the current group-level scope or a specific level can be spec-
ified. Using the Interactive Sort tab on the Textbox Properties dialog for each column header text box,
check the box to enable sorting and specify a field expression.

Figure 7-48

This is a very powerful feature with little design effort required. Figure 7-49 shows the report in preview
with interactive sort enabled for the first three column headers. Small up/down icons are displayed next
to each text box caption. This feature is simple but is limited to this view.

308

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 308

Figure 7-49

Creating a Custom Column Sort Report
Building your own interactive sort feature has the advantage of using custom images and other sorting
hotspots. The report user could click the text in the column header, an icon, or any other image of your
choice and/or use parameter selections to change the report or item sort order. In the following example,
I will use the column header text to sort by the chosen column and then show a custom image to indi-
cate ascending or descending sort order.

What you’ll need:

❑ A table item presenting a columnar set of values.

❑ Table heading or group heading items used as column sort toggle items.

❑ Thumbnail images used to indicate a column’s sort direction.

❑ A set of report parameters used to manage the sort column name and direction.

❑ Action expressions used to modify report parameter values.

❑ Expressions used in the table or group Sort property, using report properties.

Figure 7-50 shows a simple table with text headings, a detail row, and totals in the report footer. You can
see that I’ve placed images in separate columns and then merged the field text boxes. I do this so the
up/down arrow images appear near the column header text. These columns are merged on the detail
row so the fields have enough room. Each of the three sortable columns has text with underscores to
indicate that these are links. This is just a visual effect until the navigation actions are set for these text
boxes.

309

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 309

Figure 7-50

There are three small images embedded into the report. Figure 7-51 shows these embedded images. The
no_arrow image (simply white space in the same dimensions as the arrow images) is used in place of an
empty space. This is easier than changing the visibility property of the image item.

Figure 7-51

310

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 310

Just a quick aside: As in the Business Scorecard example, I have simply added the images to the cells in
the table header. If you want to use transparent images over a colored or shaded background, you will
need to add rectangles to the header cells and then place images in the rectangles.

Figure 7-52 shows the Report Parameters dialog with two parameters defined: SortField and
SortDirection. For the report to render when it is first viewed, all parameters must have a default
value. Since the parameters will be set when the user clicks the column header text, no other values need
to be provided here.

Figure 7-52

Next, I set the navigation properties for each column header text box separately. When the text box is
clicked, the report navigates back to itself. I click the Parameters button on the Textbox Properties dialog
Navigation tab to open the Parameters dialog shown in Figure 7-53. For each column header, the
SortField parameter will be set to the name of the appropriate field and the SortDirection is set
using an expression that toggles its value between “Ascending” and “Descending.”

311

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 311

Figure 7-53

Next to each text box, I have placed an image item. Its value will correspond to the SortDirection
parameter if the SortField value matches that table column. Figure 7-54 shows the Image item
Value property expression. According to this logic, if the SortField parameter value matches this
table column (SalesTerritoryName), then the appropriate arrow icon will be displayed based on the
SortDirection parameter value. If the SortField parameter is for another column, the “no_arrow”
white-space image is used.

In the Sorting properties for the table, shown in Figure 7-55, two expressions are used to test the
SortDirection parameter. If the parameter value is “Ascending,” then the first expression (on the
Ascending line) returns the field value for the field name contained in the SortField parameter.
Returning an empty string (“”) causes that sort expression to be ignored and enables the other
(Ascending or Descending) expression.

312

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 312

Figure 7-54

Figure 7-55

Figure 7-56 shows the report in preview mode after clicking the first column. Note the down arrow next
to the Territory column header, which indicates that this column is sorted in Ascending order.

313

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 313

Figure 7-56

Clicking another column causes the sort field and the sort order to change. Click the same column again
to toggle the sort order for that column (see Figure 7-57).

Figure 7-57314

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 314

Dynamic Fields and Columns
Under some conditions, you may need to display different field values in table columns. There are sev-
eral ways this can be accomplished. One of the simplest methods to change column sources and values
is to parameterize the query expression. This will work if you are using ad hoc SQL expressions but not
if you are using preexisting stored procedures. Both of the techniques used in this example are more effi-
cient, resolving fields and columns in the report without passing parameters back to the database server.

What you’ll need:

❑ Data set query, including any source fields you need to consolidate into a dynamic column.

❑ A parameter with list values used for field selection.

❑ An expression defined on a custom field, referencing the parameter list values.

The first step is to include all of the source fields in the data set query. I want to define a custom field
called Price that will dynamically be mapped to either of two existing data fields. The Product table con-
tains two price fields, StandardCost and ListPrice, that represent the wholesale and retail product prices.

A report parameter named PriceSource is configured with the list values, Wholesale and Retail. These
values are used to switch the custom field mapping between these two data fields. Figure 7-58 shows the
custom field expression in the Add New Field dialog for the custom Price field.

Figure 7-58

315

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 315

This custom field is simply used in the report, bound to a column in the table, as you can see in
Figure 7-59.

Figure 7-59

Hiding and Showing a Row or Column
This technique is very simple. Using a parameter, a row or column may be dynamically shown or hid-
den using the Visibility > Hidden property. Instead of the custom field used in the previous exam-
ple, both of the data fields could have been included in the report. The table columns then could be
shown and hidden based on the parameter selection.

My example will hide or show a column based on a parameter selection. I’ve added a report parameter
named ShowProductNumber. Figure 7-60 shows the expression used to manipulate the Hidden property
for the selected column.

Figure 7-60

Modifying Data from a Report
In a meeting of the four authors of this book, we had a lengthy discussion about the appropriateness of
this topic. I’ll admit that the idea of modifying data from a report is a bit unusual. Dave said, “If you’re
going to show our readers how to manipulate data from a report, you ought to change the title of that
section to ‘How to Shoot Yourself in the Foot.’” He makes a good point, but under the right (and care-
fully restricted) circumstances, this can prove to be a very powerful and useful capability. Let me just say
that if your report requirements have expanded to the point where you want to modify data from an

316

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 316

interactive report, you should probably be meeting with the architects and developers of your entire
database solution and carefully consider the best method to implement these features. It might be best to
use an application front end better suited for that type of functionality. Yet, since the topic at hand is to
demonstrate cool stuff you can do in reports, I’m going to show you what you can do. I’ll leave it to you
to decide what you should do.

“Data write-back” is a highly touted feature of data mining and data warehouse systems. There are a
variety of situations where it may be beneficial to write back data to source tables. These may include
inventory control, prices changes, or testing “what if” scenarios. Where possible, it’s usually a good idea
to write data to a staging or temporary table to preserve the state of important source data. You may
then use join statements to correlate the original records with the modifications before (or instead of)
committing changes to the source.

What you’ll need:

❑ Permissions granted for the Report Server service user to modify data.

❑ A SQL stored procedure using a conditional query expression used to perform an update and
return records.

❑ Report parameters used to pass data values into a data set using a stored procedure.

❑ Report item(s) with an action expression used to pass parameter values back to the report.

There are a few different methods to execute SQL script used to modify data. In the first of two exam-
ples, I’ll use a stored procedure to perform both the data updates and to return results. After that, I’ll
separate these two query operations and use two separate reports to do the same thing.

Stored procedures are an excellent place to manage multiple operations and conditional business logic.
The following script defines a stored procedure that accepts two input parameters used to modify price
values for products matching a specified subcategory. If the @PriceIncrease parameter is zero or the
@ProductSubCategoryID parameter value doesn’t match values in the Product table, no modifications
will be performed.

The second section of the procedure script returns a result set for all products and related categories and
subcategories.

CREATE PROCEDURE spProductUpdatePrice
@PriceIncrease Float,
@ProductSubCategoryID Int
AS
-- Update price:
IF @PriceIncrease <> 0
BEGIN

UPDATE Production.Product SET ListPrice =
ListPrice + (ListPrice * @PriceIncrease/100)

WHERE ProductSubCategoryID = @ProductSubCategoryID
END

-- Return products
SELECT Production.ProductSubcategory.Name AS ProductSubCategoryName,

317

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 317

Production.Product.Name, Production.Product.ProductNumber,
Production.Product.StandardCost, Production.Product.ListPrice,
Production.Product.ProductSubcategoryID

FROM Production.Product INNER JOIN
Production.ProductSubcategory ON
Production.Product.ProductSubcategoryID =
Production.ProductSubcategory.ProductSubcategoryID
AND
Production.Product.ProductSubcategoryID =
Production.ProductSubcategory.ProductSubcategoryID

WHERE (Production.Product.ProductSubcategoryID = @ProductSubCategoryID)
ORDER BY Production.ProductSubcategory.Name, Production.Product.Name

In this example, a text box is used to set these parameters and perform the update. The sample report is
shown in design view in Figure 7-61.

Figure 7-61

Figure 7-62 shows the Report Parameters dialog with two parameters matching those in the stored pro-
cedure. The SubCategoryID parameter is based on a list supplied by the ProductSubCategory table. In
the example, I’ve predefined a list of price increase percentage values, shown in Figure 7-63. Note that
the default value is zero, which allows the procedure to execute without modifying any product records.

Figure 7-62318

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 318

Figure 7-63

The final result is shown in Figure 7-64. In the Navigation properties for the text box, set the Jump to
report action to the same report and then set the two parameters that were previously defined. This
method is simple but offers limited control and user feedback.

Figure 7-64

319

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 319

The second method is a simple variation on the first. Add another report to the project and change the
Jump to report action for the text box in the first report to the second report. The target report also con-
tains the same parameters that were defined for the first report. The only difference is that there is no
need to define parameter lists for either parameter. Figure 7-65 shows a simple report used to display the
results of a simple update query.

Figure 7-65

The data set for this report is simply the update script from the first section of the stored procedure:

IF @PriceIncrease <> 0
BEGIN

UPDATE Production.Product SET ListPrice =
ListPrice + (ListPrice * @PriceIncrease/100)

WHERE ProductSubCategoryID = @ProductSubCategoryID
END

The data set for the first report is only the SELECT statement (everything under the --Return
Products label). The target report now performs the update when it renders and displays a simple mes-
sage using the parameter values passed from the first report.

Consider using the next example with this method as a means to select a list of products and then
update the prices only for the selected products.

Selected and Deselected Item List
A check box list is a universal metaphor for managing a list of selected and unselected items. Images
may be used to create checked and unchecked boxes that are used to toggle the state of each item on
the list.

What you’ll need:

❑ A report parameter used to pass data values into a query expression.

❑ A query expression used to match selected key values with existing keys in the report data set.

❑ Report item(s) with an action expression used to pass parameter values back to the report.

❑ Expressions used to modify images or text to indicate selected and deselected rows.

320

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 320

Figure 7-66 shows the finished report; a list of products in a single row table, with a check box displayed
in the first column.

Figure 7-66

When the user clicks an unchecked box, a check appears and when a checked item is clicked, it is
unchecked. This is a simple concept, but there is no check box item in the Report Designer Toolbox. As
you can see in Figure 7-67, each check box (actually an image) is a navigation item. Clicking a checked or
unchecked image cause the report to post back to itself, passing the selected ProductID to be added to or
removed from a list of selected IDs stored in a report parameter.

Figure 7-67

321

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 321

Two separate queries are necessary to keep track of selected and unselected values. These two queries
are combined into one result set using the Transact-SQL UNION operator. The first of the two results
returns the value 1 for the selected column for all of the selected products. The second result returns the
value 0 for all remaining, unselected products. When these results are combined, the selected column is
used as an indicator flag to produce the checked boxes.

The data set query is processed as a Visual Basic string expression so the list of selected ProductIDs may
be concatenated into the expression. In the following script, note the reference to the ProductIDs report
parameter. This parameter is defined in the Report Parameters dialog as a simple string-type parameter.
The default value is set to =””. This allows the report to render without an explicit parameter value.

=”SELECT ProductID, 1 AS Selected,” &
“ Production.ProductSubcategory.Name AS ProductSubCategoryName,” &
“ Production.Product.Name AS ProductName, Production.Product.ProductNumber,” &
“ Production.Product.StandardCost, Production.Product.ListPrice,” &
“ Production.Product.ProductSubcategoryID” &
“ FROM Production.Product INNER JOIN Production.ProductSubcategory” &
“ ON Production.Product.ProductSubcategoryID =” &
“ Production.ProductSubcategory.ProductSubcategoryID AND” &
“ Production.Product.ProductSubcategoryID =” &
“ Production.ProductSubcategory.ProductSubcategoryID AND” &
“ Product.ProductID IN (“ & Parameters!ProductIDs.Value & “)” &
“ WHERE Production.Product.ProductSubcategoryID =” &

Parameters!ProductSubCategoryID.Value.ToString() & “ “ &
“UNION “ &
“ SELECT ProductID, 0 AS Selected,” &
“ Production.ProductSubcategory.Name AS ProductSubCategoryName,” &
“ Production.Product.Name AS ProductName, Production.Product.ProductNumber,” &
“ Production.Product.StandardCost, Production.Product.ListPrice,” &
“ Production.Product.ProductSubcategoryID “ &
“ FROM Production.Product INNER JOIN Production.ProductSubcategory” &
“ ON Production.Product.ProductSubcategoryID =” &
“ Production.ProductSubcategory.ProductSubcategoryID AND” &
“ Production.Product.ProductSubcategoryID =” &
“ Production.ProductSubcategory.ProductSubcategoryID AND” &
“ Product.ProductID NOT IN (“ & Parameters!ProductIDs.Value & “)” &
“ WHERE Production.Product.ProductSubcategoryID =” &
Parameters!ProductSubCategoryID.Value.ToString() &
“ ORDER BY ProductName”

The report contains two embedded images, named checked and unchecked. These are simply screen
captures of the two check box states that could be taken from any Windows application. Figure 7-68
shows the table with an image in the first column of the detail row. The Value property expression
for the image item simply toggles between these two images based on the selected column Value on
each row.

322

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 322

Figure 7-68

On the Navigation properties for the image, the report is posted back to itself using the Jump to report
action. Figure 7-69 shows the Parameters dialog. The ProductIDs parameter is populated from a cus-
tom VB function that adds and removes the ID values to a comma-delimited list.

Figure 7-69

323

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 323

The custom code for this report is shown in Figure 7-70 . The AddOrRemoveID() function called on the
navigation action of the image takes the current row’s Selected value (1 or 0), the ProductID, and the
current list of selected values. Depending on whether the current row’s ID is selected, the item is either
added or removed from the list.

Figure 7-70

Using Advanced and Third-Party Report Items
In SQL Server Reporting Services 2005 the new Report Designer and product specification includes the
ability for third-party vendors to integrate their own custom report items. Advanced charting compo-
nents and other custom report items will allow you to take reports further using advanced and sophisti-
cated features.

What you’ll need:

❑ Dundas Chart for SQL Server Reporting Services.

The evaluation edition of Dundas Chart for Reporting Services may be downloaded from Dundas
Software’s web site at www.dundasreporting.com. This working edition enables all of the product fea-
tures and displays a watermark message over each chart.

324

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 324

As I mentioned earlier, Dundas Chart, developed by Dundas Software Ltd., was used to create the inte-
grated charting components in the out-of-the-box reporting capabilities of Reporting Services. This prod-
uct was developed for the Microsoft .NET Framework and has been one of the leading charting
components for Windows and Web application development. When the Microsoft Reporting Services
product team decided to incorporate Dundas Chart into the Reporting Services product package, they
simplified many reporting features. To keep things simple, some advanced features and capabilities
were omitted for the standard charting features offered for reporting. Dundas Chart for Reporting
Services contains the advanced features of the Dundas Chart stand-alone product. In this brief demon-
stration, I’ll highlight just a few of many capabilities.

Figure 7-71 shows the Visual Studio Toolbox after the installation has been completed. The setup process
adds a new Toolbox icon in addition to the Chart and other standard report items.

Figure 7-71

A chart is added to a report in the same manner as the standard chart item. The Dundas Chart designer
has pretty much the same behavior. Fields may be dropped into target zones to create category, series,
and data groups. The property dialog interface is also familiar and generally has the same tabs and fea-
tures as the built-in chart item. In addition to basic features, you will find many enhancements on the
property pages as well. Figure 7-72 shows the Advanced tab with object list dropped open. This enables
you to view all of the chart objects with their properties and settings in one dialog.

One of the most useful features is the ability to combine multiple charts and chart types in the same
space. Figure 7-73 shows a chart with two data point series: one for Internet sales and the other for
reseller sales. Each of these series uses a different chart type: The reseller sales values are represented by
columns and the Internet sales by lines.

Chart areas act as separate charts in the chart item space that may be coordinated and bound to the same
or different data sets. In Figure 7-74, one donut chart displays the top values with one slice for “other”
values. A second donut chart displays the details for the “other” slice. You can also see that more control
is provided for the display characteristics of data point labels.

325

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 325

Figure 7-72

Figure 7-73

326

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 326

Figure 7-74

There are several unique and special-purpose charts. These may be combined and used in a variety of
different ways to present data in graphical form. Thumbnail samples, in Figure 7-75, demonstrate a few
of the advanced chart types and design concepts.

Figure 7-75

Figure 7-76 shows a sales pipeline funnel chart. This is a common metaphor, used in sales and Customer
Relation Management systems, to track contacts and customers at all stages of the sales cycle.

327

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 327

Figure 7-76

Dynamic Image Content
In Chapter 12, you learn how to integrate reporting into custom applications using a variety of rendering
techniques. The following technique uses programmatic rendering to insert image content from another
source. Many applications and components can render output in the form of an image. This content may
be incorporated into reports using a variety of creative techniques. As with the previous examples, the
purpose of this illustration is just to demonstrate the concept using one simple technique.

What you’ll need:

❑ .NET programming skills.

❑ Visual Studio .NET

❑ A Visual Studio web application.

❑ Visual Basic .NET or C# code used to render reports and manage images and other binary
report content.

The following example uses the Dundas Gauge ASP.NET web form control to render its content to an
image file. Dundas Gauge can render a variety of attractive measurement dials, progress indicators,
meters, scopes, clocks, and, of course, gauges, with tremendous control over the look and feel of specific
visual and functional elements. This product would allow you to display data using familiar gauge and
meter metaphors.

328

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 328

In this simple example, I use a simple thermometer gauge to display sales totals relative to a goal. Figure
7-77 shows a report containing an image item with the size and position of the gauge. It can contain any
image content since it’s only used as a placeholder. In this example, the image is separate from any other
report content.

Figure 7-77

The actual ASP.NET web forms application includes two web forms, or pages. The first is used to render
the gauge image to a file and the second is used to render the report. This page has no controls or con-
tent at design time. Program code running as it loads will fill the empty page with the report content and
the gauge image as it is processed on the web server, before this content is sent to the web browser.

The first page contains the Dundas Gauge web form control. Figure 7-78 shows this control, configured
as a thermometer, with the Gauge Wizard property page.

A standard button control is used to render the gauge to a file and then redirect the web application to
the second page. The following Visual Basic .NET code runs on the Click event for this button. The first
two lines, following the two comments, assign the gauge pointer (in this case, the thermometer bar) a
value and then render the gauge to a PNG graphic file. In production, the value would most likely be
obtained from a database query. Note that the file location maps to a web folder (report_images) under
the default root web folder on the local web server.

329

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 329

Figure 7-78

The last line of code redirects the web application to the second web form called
GaugeReport_Viewer.aspx:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As _
System.EventArgs) _Handles Button1.Click

‘-- The gauge value is hard-coded in the example
‘-- In production, this would come from data or user-input
Me.GaugeContainer1.LinearGauges(0).Pointers(0).Value = 65
Me.GaugeContainer1.SaveAsImage(“C:\inetpub\wwwroot\report_images\Gauge1.png”, _

Dundas.Gauges.WebControl.GaugeImageFormat.Png)
Response.Redirect(“GaugeReport_Viewer.aspx”)

End Sub

There is no need to show you the second page because it’s completely blank. The only program code
runs on the page Load event, which runs as the page object is loaded into memory on the web server
and before the page content is sent to the client’s web browser. First, take a look at the entire block of
code. After this, I’ll step you through each section of code separately and explain what’s going on:

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles MyBase.Load

‘***
‘ Replace report image with any custom image content.
‘ Paul Turley, 2005
‘***
‘-- Instantiate ReportingService object from web service reference:

330

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 330

Dim rs As New localhost_RS.ReportingService
rs.Credentials = System.Net.CredentialCache.DefaultCredentials

‘-- Resolve stream file location:
Dim sDevInfo As String = _

“<DeviceInfo><StreamRoot>/report_images/</StreamRoot></DeviceInfo>”

‘-- Declare variables to handle Stream ID value(s), report and image content:
Dim sStreamIDs() As String
Dim sStreamID As String
Dim ReportBytes As Byte()
Dim ImageBytes As Byte()

‘-- Render the report:
ReportBytes = rs.Render(“/RS_Play_Project/Report_With_Gauge”, “HTML4.0”, _

Nothing, sDevInfo, Nothing, Nothing, Nothing, _
Nothing, Nothing, Nothing, Nothing, sStreamIDs)

‘-- Get the image stream ID & rename the gauge image file using the stream ID:
‘-- This replaces the report image with the existing graphic file.
sStreamID = sStreamIDs(0)
Rename(“C:\inetpub\wwwroot\report_images\Gauge1.png”, _

“C:\inetpub\wwwroot\report_images\” & sStreamID)

‘-- Replace this web page’s content with the rendered report content:
With HttpContext.Current.Response

.Clear()

.BinaryWrite(ReportBytes)

.End()
End With

End Sub

The first two lines of executable code invoke the Reporting Services web service and set up a security
context. This is a standard practice for any web service request.

‘-- Instantiate ReportingService object from web service reference:
Dim rs As New localhost_RS.ReportingService
rs.Credentials = System.Net.CredentialCache.DefaultCredentials

The next line sets up the StreamRoot location. This tells the report where to obtain binary image content.
Since I’ve already saved the gauge to a file location, this directs the report rendering engine to the same
location as a relative URL path. When a report is rendered to HTML, each image is encoded with a
unique identifier and a stream root or target. An HTML tag is created, which enables the web browser to
request the image content from the server.

‘-- Resolve stream file location:
Dim sDevInfo As String = _

“<DeviceInfo><StreamRoot>/report_images/</StreamRoot></DeviceInfo>”

After declaring variables used to receive and manage the report and image content, the Render method
actually processes the report. When a web page is sent to the web browser, it does so using the concept
of streams. This may sound like a convoluted idea, but it’s actually quite simple. A stream is simply a

331

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 331

bunch of characters or bytes that flow from one location to another. To handle streams in program code,
we send their contents to a byte or character array. This is really just a big bucket to stuff all of the con-
tent into so we can pull it back out and do something useful with it. Since the Byte data type can handle
both character and binary content, I’m using two variables of this type to handle the report HTML con-
tent as well as the image binary content.

‘-- Declare variables to handle Stream ID value(s), report and image content:
Dim sStreamIDs() As String
Dim sStreamID As String
Dim ReportBytes As Byte()
Dim ImageBytes As Byte()

‘-- Render the report:
ReportBytes = rs.Render(“/RS_Play_Project/Report_With_Gauge”, “HTML4.0”, _

Nothing, sDevInfo, Nothing, Nothing, Nothing, _
Nothing, Nothing, Nothing, Nothing, sStreamIDs)

The report content (all of the characters that compose the HTML report itself) reside in the byte array
variable called ReportBytes. The Render method requires several arguments, most of which are
unused, so I pass the value Nothing as a placeholder for each of these optional arguments. The last argu-
ment accepts a string array variable used to return the IDs for all of the images in the report.

Since I know that this report contains only one image, I’m simply using the first element in this array,
sStreamIDs(0), to obtain the ID assigned to the image content stream. Reporting Services assigns each
stream a unique identifier. My code renames the gauge image file to this stream ID so that the report
HTML’s image tag points to the name and location of my image file.

‘-- Get the image stream ID & rename the gauge image file using the stream ID:
‘-- This replaces the report image with the existing graphic file.
sStreamID = sStreamIDs(0)
Rename(“C:\inetpub\wwwroot\report_images\Gauge1.png”, _

“C:\inetpub\wwwroot\report_images\” & sStreamID)

The last step is to send the report content to the web browser. This is achieved by calling the
BinaryWrite method of the Current.Response object. This is ASP.NET speak for “this web page.” In
short, I’m simply stuffing the report content (all of the HTML) into the current web page and sending it
down to the web browser.

‘-- Replace this web page’s content with the rendered report content:
With HttpContext.Current.Response

.Clear()

.BinaryWrite(ReportBytes)

.End()
End With

The first round of content to hit the browser doesn’t actually contain the image content. The StreamID
and the stream URL are embedded into the HTML so that the browser can make a second request. This
is why images always load after the text when you view a new web page.

Figure 7-79 shows the rendered report containing the gauge image.

332

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 332

Figure 7-79

Figure 7-80 shows what my gauge image file looks like after this code runs and renames the file from its
original name. This StreamID is what I call a BUN, or a Big Ugly Number.

Figure 7-80

So what can you accomplish using this technique? Well, think about all of the useful things you can do
with image content. Applications like Visio and MapPoint can easily output complex data to image files
or file streams for use in reports.

Here are a couple of brief examples from a solution using the Microsoft MapPoint Server subscription
service. Using Web Service calls, address and location information for some of the Hitachi Consulting
offices are sent to the MapPoint Server Web Service. This returns a single image byte stream in much the
same way as the Dundas Gauge control did in the previous example. The resulting map image, shown in
Figure 7-81, is rendered to a report in a similar manner.

333

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 333

Figure 7-81

The next example uses a similar pattern but involves multiple image streams. These locations come from
Employee records in the Northwind sample database. Using a query matched to the report data set,
address information is sent to the MapPoint service in separate requests, resulting in separate map
images. By iterating through each StreamID in the rendered report, placeholder images are replaced
with these map images that appear in a table, alongside corresponding employee names. Figure 7-82
shows the rendered report with a map image displayed on each row.

334

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 334

Figure 7-82

Using Advanced and Third-Party Controls for
Parameter Selection

From a custom Windows or web application, you can replace the parameter selection interface with your
own controls and interface.

What you’ll need:

❑ Visual Studio 2005.

❑ A Windows form or Web form application project.

❑ Visual Basic .NET or C# programming skills.

❑ Any parameterized report.

335

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 335

Depending on the application type and the programming tools available, there are a few different ways
to incorporate reporting into applications. Reporting Services now includes a ReportViewer control for
.NET Windows forms and ASP.NET web forms projects. You can also use a Frame or an IFrame HTML
tag to encapsulate a report in an ASP.NET project or in practically any other type of web application.
Chapter 12 will explore a number of different scenarios and show you examples of custom program
code used to implement them.

Using the ReportViewer control, the de facto parameter bar can be hidden and then standard or third-
party controls may be used to prompt the user for parameter values. There are many advanced controls
available for Windows and Web application development. Figure 7-83 shows a Windows form applica-
tion that uses controls from the Infragistics NetAdvantage suite. Two MonthView controls are used for
the date range selection. A pair of UltraTree controls allows countries to be selected by dragging and
dropping flag icons from one list to another.

Figure 7-83

The nice thing about using ready-made, custom controls is that you can get a lot of bang for the buck
and save yourself programming time. There are several good third-party control offerings from different
companies. I’ve been using the Infragistics suite (available at www.infragistics.com) for several
years. It’s one of the most evolved and comprehensive, containing several dozen very capable and
attractive controls that require little programming effort to implement impressive functionality.

The ReportViewer control rounds out the Reporting Services features by allowing reports to be tightly
integrated into business applications with ease and tremendous flexibility. I encourage you to be creative
and use your imagination to develop interesting report wrappers and parameter selection interfaces. Use
advanced controls like these to enhance the user’s experience and take reporting beyond out-of-the-box
features.

336

Chapter 7

12_584979 ch07.qxp 1/27/06 7:42 PM Page 336

Summary
With Reporting Services, you can create just about any type of report design that is required. Advanced
solutions often take a bit of creative thought, and you may need to step outside the standard feature set
to get there. Given the flexible architecture of this product, many compelling results can be achieved. In
summary, this chapter covered the following topics:

❑ We began with a set of simple guidelines for gathering report requirements and managing your
user and sponsor’s expectations by creating a detailed specification for each report.

❑ The key success factors for reporting projects include a clear understanding of the entire solu-
tion scope and where reports fits into the picture. Requirements should be specified before you
begin, and requirement changes must be documented and approved.

❑ When you understand the limitations and capabilities of the Reporting Services platform, you
will find interesting ways to achieve your reporting goals. You saw several examples of how
requirements can be addressed by applying some of the techniques discussed in earlier chap-
ters. You also saw several advanced techniques involving the creative use of the flexible archi-
tecture of this very capable product. Most advanced capabilities require the use of some Visual
Basic programming and extending most features requires only simple expressions.

❑ The reporting interface can be enhanced using Custom Report Items, such as Dundas Chart for
Reporting Services. Using ASP.NET web form controls, user input and parameter selection can
be enhanced to provide a richer user experience. Through programmatic rendering and image
manipulation, reports may be enhanced to include dynamic graphical content, extending capa-
bilities beyond standard reporting features.

By now, you should have a few tricks up your sleeve to answer reporting requirements with some nifty
features. With your imagination and a little experimentation, you’re likely to find the right techniques
for your solutions by building on what you’ve learned here.

337

Report Solution Patterns and Recipes

12_584979 ch07.qxp 1/27/06 7:42 PM Page 337

12_584979 ch07.qxp 1/27/06 7:42 PM Page 338

Part III

Enabling End
User Reporting

with Report Builder

Chapter 8: Reporting Services Report Models

Chapter 9: Report Builder

13_584979 pt3.qxp 1/27/06 7:33 PM Page 339

13_584979 pt3.qxp 1/27/06 7:33 PM Page 340

Reporting Services
Report Models

This chapter looks at building a Reporting Services Report Model. A Report Model is the key com-
ponent behind performing ad hoc end user queries. Using a Report Model, users can easily navi-
gate through either a SQL Server database or an Analysis Services database. To better understand
how Report Models are built and what features they include, you will do a simple walk-through
using the AdventureWorksDW database.

This chapter covers:

❑ Creating Reporting Services Report Models.

❑ Working with Report Model data sources.

❑ Creating Report Model Data Source Views.

❑ Setting Report Model properties.

❑ Deploying Report Models.

❑ Creating Report Models for Analysis Services.

Getting Star ted
To begin, open up the SQL Server Business Intelligence Development Studio (Development Studio
for short). In the Development Studio, you can create a number of business intelligence projects.
Go to File➪New➪Project, and select the Report Model project template as shown in Figure 8-1.

14_584979 ch08.qxp 1/27/06 7:22 PM Page 341

Figure 8-1

Once you have opened a new Report Model project, there are three folders within the Solution Explorer:

❑ Data Sources contains connection information to one or more SQL Server databases.

❑ Data Source Views contains logical representations of SQL Server databases.

❑ Report Models contains models that translate SQL Server structure into user-friendly entities
and attributes.

The next sections walk you through each of these three major components: data sources, Data Source
Views, and Report Models.

Creating the Report Model Data Source
Data sources contain information for connecting to a SQL Server database. Reporting Services reports
created with Visual Studio can use any of the .NET managed data providers. However, Report Models
can only be created against SQL Server and Analysis Services. This is understandable considering each
different connection type (SQL, Oracle, and so on) requires its own semantic query processor to translate
Report Models into the underlying query syntax. In the 2005 release, Microsoft has no plans to support
other data sources.

To create a new data source, navigate to the Solution Explorer, right-click on the Data Sources folder, and
select Add New Data Source, as illustrated in Figure 8-2.

342

Chapter 8

14_584979 ch08.qxp 1/27/06 7:22 PM Page 342

Figure 8-2

When adding a new data source, the Data Source Wizard is initiated. This wizard will step you through
the creation of a SQL Server connection. After moving past the welcome screen, select the New... button
to open the Connection Manager window. Figures 8-3 and 8-4 walk you through creating a new connec-
tion to the AdventureWorksDW database.

Figure 8-3

Once you have set up the new connection, continue through the Data Source Wizard by clicking Next.
The final screen of the wizard will let you assign a name to your data source. In this scenario, you can
leave the default name “Adventure Works DW” and click Finish, as shown in Figure 8-5.

The Connection Manager and Data Source Wizard are now common components used throughout pro-
jects in the Business Intelligence Studio. Once you have created a Connection Manager, it will be avail-
able for use in Analysis Services and Integration Services projects.

Now that the data source has been created, you can move on to creating the Data Source View.

343

Reporting Services Report Models

14_584979 ch08.qxp 1/27/06 7:22 PM Page 343

Figure 8-4

Figure 8-5

344

Chapter 8

14_584979 ch08.qxp 1/27/06 7:22 PM Page 344

Building a Data Source View
Data Source Views represent a logical layer above the database schema. Within a Data Source View,
you can create primary keys and foreign key relationships as well as calculated values. Building a well-
defined Data Source View is one of the key steps to creating a Report Model. All Report Models must be
based on information retrieved from the Data Source View. In this section, you look at building the Data
Source View, working with productivity features and the code behind a Data Source Views.

To create a data source view, navigate to the Solution Explorer, right-click on the Data Source Views
folder, and select Add New Data Source View. Figure 8-6 illustrates adding a new Data Source View.

Figure 8-6

The first step to creating a Data Source View is specifying the data source. Only one data source can be
defined per Data Source View. Figure 8-7 illustrates selecting the AdventureWorksDW connection cre-
ated earlier in the chapter.

Figure 8-7

345

Reporting Services Report Models

14_584979 ch08.qxp 1/27/06 7:22 PM Page 345

After selecting the data source, the Data Source View Wizard allows you to select tables and views defined
in the data source. In this example, you select a limited number of tables from the AdventureWorksDW
database, but there is no limitation that prevents you from selecting all available tables and views. Select
the following tables as illustrated in Figure 8-8.

❑ DimProduct

❑ DimProductCategory

❑ DimProductSubcategory

❑ DimGeography

❑ DimTime

❑ FactResellerSales

❑ DimReseller

❑ DimSalesTerritory

Figure 8-8

Later in this section, you look at creating new diagrams within the Data Source View to help group logi-
cal subject areas within a large set of tables.

The final step in the Data Source View Wizard allows you to name the view. In this example, give the
view the name “Adventure Works DW DSV,” as illustrated in Figure 8-9, and click Finish to complete
the wizard.

346

Chapter 8

14_584979 ch08.qxp 1/27/06 7:22 PM Page 346

Figure 8-9

In the next sections, you look at working with Data Source Views after completing the Data Source View
Wizard.

Manipulate the Data Source View
The Data Source View Wizard is a nice starting point for getting your main tables established, but in
most situations, the Data Source View will need to be massaged a little. This section describes how to
create additional diagrams to organize your views, adding new relationships, and working with named
queries.

Data Source View Diagrams
The example Data Source View in this chapter uses only a small number of tables. In a relatively small
database application, the number of tables can often be substantial. When dealing with a large number
of tables, it often becomes difficult to organize them in a single relational diagram. To help alleviate some
of this confusion, Microsoft has included the ability to create multiple relational diagrams within a sin-
gle Data Source View. Start by opening the AdventureWorksDW DSV.dsv Data Source View created ear-
lier in the chapter by double-clicking on it in the Solution Explorer. In the upper-left corner of the Data
Source View designer, you should notice a pane called Diagram Organizer. You will use the Diagram
Organizer to create new diagrams. Figure 8-10 illustrates adding a new diagram to the Data Source View
created earlier in this chapter.

After clicking New Diagram, you can rename the diagram to “Products.” Now that you have added
a new diagram to the project, you can simply drag tables from the Tables window to include them in
the diagram. All the tables listed in the Tables window represent the objects contained within the Data
Source View. Diagrams are simply a logical representation to ease editing of the objects. If you make a
change to a table in one diagram, it will be reflected on all other diagrams the table is associated with.

347

Reporting Services Report Models

14_584979 ch08.qxp 1/27/06 7:22 PM Page 347

Figure 8-10

Figure 8-11 illustrates the Products diagram using the DimProduct, DimProductSubCategory, and
DimProductCategory tables. This diagram will now simplify the management of the related product tables.

Figure 8-11

Building Data Source View Relationships
In a Data Source View, you can also work with primary key–foreign key relationships within a data
source. Creating new primary key–foreign key relationships is often necessary if the underlying data-
base does not already contain the relationships. Relationships created in the Data Source View are only
logical relationships, so this will not impact the underlying database.

The FactResellerSales table in the AdventureWorksDW database contains three time-related columns:
OrderDateKey, ShipDateKey, and DueDateKey. These columns relate to the DimTime table based on the
TimeKey column. Open the “<All Tables>” diagram by clicking on it in the Diagram Organizer pane, as
illustrated in Figure 8-12.

In this diagram, you should notice the three relationships from FactResellerSales to DimTime. To examine
how the relationship is defined, double-click on the arrows connecting the two tables. In this example, you
can click on the leftmost arrow connecting to DimTime to view the FactResellerSales.ShipDateKey to
DimTime.TimeKey relationship, as illustrated in Figure 8-13.

348

Chapter 8

14_584979 ch08.qxp 1/27/06 7:22 PM Page 348

Figure 8-12

Figure 8-13

Within the Edit Relationship window, you can specify table and columns used as both the primary and
foreign key. You can also reverse relationships if they were created incorrectly and add a meaningful
description.

349

Reporting Services Report Models

14_584979 ch08.qxp 1/27/06 7:22 PM Page 349

Relationships in the Data Source View are extremely important in a Report Model. These relationships
will later be used to create roles within the Report Model. A role allows a user to navigate from one sec-
tion of the Report Model to another and tells the semantic query processor how to retrieve data. Roles
are also used to implement a feature of Report Builder called Infinite Drill Through. This feature allows
the report developer to create a single report, and then Reporting Services will create reports at runtime
when users click on related items. For example, a user could build a report that contains Sales Amount
for each of the product categories. Once the report is deployed, a user can click on a product category
and see sales information for each of the related subcategories.

Using Named Queries in Data Source Views
Another major feature of the Data Source View is its ability to use named queries. When a table or view
is added to a Data Source View, a reference to that table or view is created. If the table or view schema
changes, items bound to the schema can break. It is not uncommon in applications to have column names
or table names change during the life of the application. So, to alleviate this issue, queries instead of
direct references can be created within the Data Source View.

Queries offer flexibility on top of the Data Source View. If a column name changes in the underlying
database schema, the query can be updated to reflect this change. Column names can be aliased and
breaking changes can be avoided. It can be considered best practice to change your Data Source View
tables to Named Queries. There is no negative performance impact, so the flexibility you gain is well
worth it. Figures 8-14 and 8-15 illustrate replacing the FactResellerSales table with a new named query
by right-clicking on the table in the Data Source View.

Figure 8-14

350

Chapter 8

14_584979 ch08.qxp 1/27/06 7:22 PM Page 350

Figure 8-15

Now that you have seen some of the core features around creating a Data Source View, you will look at
the XML code generated by the designer.

Data Source View Code Behind
All of the source files created in a Report Model project are stored as XML files. This is important for a
couple of reasons. First, the use of XML allows developers to easily manipulate files through program-
matic interfaces such as the .NET System.Xml assembly. Second, Report Model developers can now use
standard source control systems such as Visual Source Safe to store their projects. This offers the advan-
tage of versioning to Business Intelligence projects. If a mistake is made while updating a file, users of
a source control system can simply revert their changes and avoid costly and sometimes error-prone
rework.

In this section, you will take a look at the XML behind a Data Source View. If you have worked with
Typed data sets in ADO.NET, the XML schema should look very familiar. To view the XML behind a
Data Source View, right-click on the AdventureWorksDW DSV.dsv file in the Solution Explorer and click
View Code. Figure 8-16 illustrates viewing the XML behind the AdventureWorksDW DSV created earlier
in this chapter.

351

Reporting Services Report Models

14_584979 ch08.qxp 1/27/06 7:22 PM Page 351

Figure 8-16

The Data Source View XML starts with both an ID tag and a Name tag. The ID tag is the object name
given to the Data Source View. When new objects, such as a Report Model, are associated with the Data
Source View, they will reference the value in the ID tag. If the ID values is changed after objects are asso-
ciated with the Data Source View, those items will be unable to read from it. The Name tag is the friendly
name displayed in the Business Intelligence Development Studio interface. This value can be updated as
needed without breaking other items. By default, the ID and Name tag will have the same value.

The next major section of the Data Source View is contained within the Annotation tag. Each Annotation
tag contains information about how the Data Source View should be displayed within the designer.
Annotation tags also contain information related to how initial relationships were established within
the Data Source View. Once the Data Source View is created, the Annotations section does not include
any information crucial to the function of the view; it is solely for display purposes. So, if you delete the
entire section, the Report Model will continue to function. However, you will not have a very pretty
designer to work in.

Following the Annotations tag is the DataSourceID tag. This tag represents a reference to the ID tag in
one of the project’s data sources. Modifying this tag can break the relationship between the two objects.

The next tag in the document is the Schema tag. This tag contains the core definition of the Data Source
View. It breaks down into two major areas: elements and relationships.

The document starts with one main element tag. This tag represents the entire Data Source View as a
single complex type. Within the main element tag are element tags for each of the individual tables. The
table element tags contain the name of the object as well as a query or reference to the underlying table.
Within each element tag for a table are element tags for the table’s different columns. The column ele-
ment tags contain the columns name, data type, and other defining properties.

After moving through all of the table element tags, you will find a variable list of tags for each unique
constraint within the Data Source View. These tags contain information about primary keys defined
within the view. Each constraint will have an indication of its type as well as an xpath reference to its
related table and column.

352

Chapter 8

14_584979 ch08.qxp 1/27/06 7:22 PM Page 352

The final section of the Data Source View XML contains information about the references defined between
the tables in the view. This section is enclosed in an xs:annotation tag. Unlike the Annotation tags
discussed earlier, this tag cannot be removed without affecting the view’s behavior. Each primary key–
foreign key relationship is identified with a Relationship tag. The Relationship tag contains a name
for the relationship as well as references to columns within the Data Source View.

Now that you have seen how to create a relational data source connection and Data Source View, let’s
take a look at generating the Report Model.

Building the Report Model
In this section you look at the Report Model Wizard and build a simple model based off of the
AdventureWorksDW database. Once the model is created, you will look at different ways to improve
your Report Model. Finally, you will look at deploying the model for end users to work with.

Report Model Wizard
All Report Models start by using the Report Model Wizard. This wizard will step through selecting the
relational data source as well as the Data Source View. However, the final step of the wizard runs the
Model Generation Rules. These rules are key to creating a layer that is easily understood by the end user.

Let’s first take a look at adding a new Report Model to our project. To add a new Report Model, right-
click on the Report Models folder in the Solution Explorer and select Add New Report Model. Figure 8-17
illustrates adding a new model.

Figure 8-17

Adding a new Report Model invokes the Report Model Wizard. The first step in the wizard has you
select your Data Source View. Figure 8-18 illustrates selecting the AdventureWorksDW DSV.dsv Data
Source View created earlier in this chapter.

The Data Source View dialog will display a list of all Data Source Views associated with a SQL Server
connection. It is possible to add other Data Source Views to your Report Model project. However,
only SQL Server can be used to generate a model. Later in this chapter, creating Report Models using
Analysis Services is discussed.

353

Reporting Services Report Models

14_584979 ch08.qxp 1/27/06 7:22 PM Page 353

Figure 8-18

After selecting a Data Source View, you will see the Report Model Rules Generation dialog. This dialog
is key to creating the Report Model. It allows you to select all of the rules that will be applied to the
underlying Data Source View. Figure 8-19 shows the Report Model Rules Generation dialog.

Figure 8-19

354

Chapter 8

14_584979 ch08.qxp 1/27/06 7:22 PM Page 354

The Report Model is generated by going through two passes of rules defined on the Report Server. The
implementation of the rules can be found at the following location:

<install drive>\Program Files\Microsoft SQL Server\MSSQL.<instance>\Reporting
Services\Report Server\ModelGenerationRules.smgl

The following table shows each of the rules and describes how they are implemented against the Data
Source View.

Pass 1

Name Description

Create entities for all tables. Builds Report Model entities for any tables contained in the Data
Source View. System tables and the dtproperties table are
excluded from the Model Generation Wizard.

Create entities for Build report model entities only for tables that have a row count
nonempty tables. greater than 0.

Create count aggregates. For each entity in the Report Model, a count aggregate is added.
If the Data Source View contains a table named Product, an entity
called Product will be created along with an attribute #Product
that represents the count of rows within the Product table.

Create attributes. Creates attributes for each column in a table that is not a foreign
key and not an auto-increment column.

Create attributes for Creates only attributes for columns that contain data. A query
nonempty columns. against the data source is required to identify the number of

unique values stored in a given column. If that number is greater
than 0, the column is included.

Create attributes for If this option is selected, auto-increment columns are also
auto-increment columns. included as attributes of an entity.

Create date variations. For columns that have a data type of DateTime, additional
attributes are added for the day, month, quarter, and year of
each date.

Create numeric aggregates. For columns of type Integer, Float, and Decimal, attributes
for Sum, Average, Min, and Max aggregates of the column are
added.

Create date aggregates. For columns of type DateTime, Min, and Max, aggregates of the
column are added.

Create roles. Creates a role for each primary key–foreign key relationship
defined in the Data Source View.

Table continued on following page

355

Reporting Services Report Models

14_584979 ch08.qxp 1/27/06 7:22 PM Page 355

Pass 2

Name Description

Lookup entities. Once the attributes are created through Pass 1, Pass 2 looks at each
attribute to identify if it is eligible to become a lookup. By default,
lookups are added to columns that are not aggregated (DateTime,
Integer, Float, Decimal) and are not auto-increment columns.

Small lists. Drop-down lists are created for entities with less than 100 rows.

Large lists. Filter lists are created for entities with greater than 500 rows.

Very large lists. Requires that large entities (greater than 5,000 rows) have mandatory
filters.

Set identifying Identifying attributes are columns that can uniquely identify items in
attributes. the entity. Identifying attributes are determined based on a combination

of non-null requirements, data types, and use as a foreign key.

Set default detail Default detail attributes are identified as those attributes most likely to
attributes. further define an entity. Default detail attributes are also defined based

on a combination of non-null requirements, data types, and use as a
foreign key.

Role name only. Looks at identifying attributes and determines the role name to be
used in role definitions.

Numeric/date Sets the default sort direction to Descending for numeric and date
formatting. attributes.

Integer/decimal Sets the default formatting for Integer and Decimal type attributes
formatting. to general number format.

Float formatting. Sets the default formatting for Float type attributes to 2 decimal places.

Date formatting. Sets the default formatting for DateTime type attributes to the general
date format.

Discourage grouping. Discourages grouping of items that have a unique occurrence of
greater than 80%.

Dropdown value Creates drop-down selections for attributes that have greater than 0
selection. and less than 200 unique values.

After selecting the generation rules, the wizard moves to the Update Statistics dialog. This dialog pre-
sents two options: Update statistics before generating and Use current statistics in the data source view.
The statistics this dialog is referring to are not statistics from the underlying database. They are statistics
from the Data Source View. These statistics include properties such as the max length of a column. The
Report Model designer uses this information to help create the new Report Model.

Statistics on a Report Model only need to be updated when the database changes. So, for the first run
of the wizard, it is suggested that you select the Update statistics before generating option. Any further
passes through the wizard can simply use the information then stored in the Data Source View.

356

Chapter 8

14_584979 ch08.qxp 1/27/06 7:22 PM Page 356

Completing the Report Model Wizard requires two steps. The first step is to name the model. In this
example, give your Report Model the name “Adventure Works DW Model.” The second step is to run
the Rules Generation Wizard. Figure 8-20 illustrates the first step in the completion screen.

Figure 8-20

To start the Model Wizard, click on the Run button. Running the wizard can take a few moments. As it is
generated you will see an output of all the rules that are applied. You should see all of the tables identi-
fied in the Data Source View as well as their corresponding columns. Figure 8-21 show the wizard after
running against our Data Source View created earlier.

In Figure 8-21 you should notice the wizard running through PASS 1 of the modeling rules. The table
DimProduct is listed first and has been created as an entity. From there a count aggregate for the table is
created, as well as attributes for each of the columns.

After clicking Finish in the Report Model Wizard, you will see a new file in the Solution Explorer with
the extension smdl. smdl stands for Semantic Model Definition Language. “smdl” is the XML schema
used to represent a Reporting Services Report Model. The next section will explore the makeup and edit-
ing of the Report Model.

Working with Reporting Services Report Models
To understand the Report Model, you will explore the model created in the previous section. In this section,
you will add the DimEmployee table to your Report Model. The first step to adding the DimEmployee
table is to edit the AdventureWorksDW DSV.dsv Data Source View. Open the Data Source View by double-
clicking on it in the Solution Explorer. Right-click on the design surface and select Add/Remove Tables, as
illustrated in Figure 8-22.

357

Reporting Services Report Models

14_584979 ch08.qxp 1/27/06 7:22 PM Page 357

Figure 8-21

Figure 8-22

358

Chapter 8

14_584979 ch08.qxp 1/27/06 7:22 PM Page 358

In the Add/Remove Tables dialog, select the table DimEmployee and move it to the Included objects, as
illustrated in Figure 8-23.

Figure 8-23

Click OK to close the Add/Remove Tables dialog, save and close the Data Source View, and return to the
Adventure Works DW Model.smdl designer.

To add DimEmployee attributes to your Report Model, right-click on the Model node and select New/
Entity, as illustrated in Figure 8-24.

Figure 8-24

Right-click on the new entity, select Rename and rename it “Dim Employee.” Before you can generate
the new Dim Employee entity, you must set its Binding property. The Binding property tells the Report
Model which table or view in the Data Source View contains the attributes for the entity. Using the
Properties window, modify the Dim Employee entity’s Binding property to use the DimEmployee table
as illustrated in Figure 8-25.

359

Reporting Services Report Models

14_584979 ch08.qxp 1/27/06 7:22 PM Page 359

Figure 8-25

Now that you have bound the new entity, you are ready to generate its model. Right-click on the Dim
Employee entity and select Autogenerate, as illustrated in Figure 8-26.

Figure 8-26

You will be prompted with a warning that says “Regenerating an existing model item cannot be
reversed.” In this case, that is perfectly acceptable because you have not done any modifications to the
Dim Employee entity. If this were an existing entity that you had made modifications to, you would not
want to auto-generate the model. For this example, select “Yes” from the warning dialog. Click through
the Report Model Wizard dialog using the defaults and notice that it is the same dialog as illustrated
above when you first created the Report Model. When you are finished running the wizard, you should
have a completed entity like Figure 8-27.

360

Chapter 8

14_584979 ch08.qxp 1/27/06 7:22 PM Page 360

Figure 8-27

The final step in adding the Dim Employee entity is to define its Identifying Attributes. In this case,
EmployeeKey will uniquely identify the entity. To set the Identifying Attributes, navigate to the
Properties window and click on the builder button for the IdentifyingAttributes property. This
will launch the AttributeReference Collection Editor, as shown in Figure 8-28.

Figure 8-28

361

Reporting Services Report Models

14_584979 ch08.qxp 1/27/06 7:22 PM Page 361

To add the EmployeeKey, click the Add button and select “# Employee Key” from the list Fields. Click
OK to close the dialog and the resulting AttributeReference Collection Editor should appear as shown in
Figure 8-29.

Figure 8-29

Click OK to apply the property setting and save the Report Model.

Now that you have seen how to create and manipulate a Report Model, you will look at deploying the
model to the Report Server.

Deploying the Report Model
Report Models are deployed to a central Report Server in much the same way as Reports. The smdl file,
along with the data source, is published via the Reporting Services Web service. Once the Report Model
is published, it can be used by end users.

One slight difference between the deployment of models and reports is the number of folders that are
created. In reports, you deploy to a single target folder. With report models, you can deploy to both a
target Data Source folder and target Model folder. By default, these are simply set to Data Sources and
Models, respectively. To change the target folders, right-click on the Report Model project in the Solution
Explorer and select Properties. From there, you will see properties for the different folder locations as
well as the Overwrite Data Source property and Deployment Server URL.

Once you are ready to deploy the Report Model to the server, click the Build menu and select Deploy
<project name>. Deployment of the model consists of two steps: building the model and sending the
deploy command.

362

Chapter 8

14_584979 ch08.qxp 1/27/06 7:22 PM Page 362

Building the model consists of checking expression syntax, validating the availability of files, verifying
IDs of related objects, and performing other types of validation activities. If the project is verified, the
process will continue with the deployment of the package.

To deploy the package, SQL Server Business Intelligence Development Studio invokes the Reporting
Services Web service. The Reporting Services Web service contains methods for publishing to the server.
When you are deploying a project, you are really deploying the smdl file. This file will be stored in the
ReportServer database in the Catalog table. Whenever users make a request for the model, Reporting
Services will simply read it back from the database. No file is actually stored on the server’s file system.

To check that the project has deployed successfully, open SQL Management Studio and connect to your
Report Server. Under the home folder, you should see a Data Source and Models folder now created. If
you expand the Models folder, you will see your project listed.

Now that the Report Model has been created and deployed, you can move on to creating reports using
the Report Builder. Chapter 9 will walk you through using the Report Builder to allow end user devel-
opment of reports.

Building Report Models from Analysis
Services Databases

The bulk of this chapter discussed building Reporting Services Report Models using SQL Server. It
is also possible, and in my opinion much simpler, to create Report Models using Analysis Services.
Creating a Report Model from Analysis Services requires the initial creation of an Analysis Services
database. Creating Analysis Services databases is outside the scope of this text, so you will use the
Adventure Works DW Analysis Services sample provided with SQL Server 2005.

To create a Report Model from an Analysis Services database, you do not need to use the Business
Intelligence Development Studio. Most of the work that was done to create a Report Model from SQL
Server is the same type of work that is done to create an Analysis Services database. So, all you need to
do is create a connection to the Analysis Services database in Report Manager and then generate the
model from it. The first step is to open the Report Manager in the web browser. The default location is
http://localhost/reports.

From Report Manager, click on the New Data Source button to launch the New Data Source entry page.
In the New Data Source page, simply give the data source a name as connection string to the Analysis
Services database as illustrated in Figure 8-30. Make sure that you set the appropriate connection string
for your database and specify “Windows integrated security” for the Connect using setting. Once you
have entered the correct settings, click OK to create the data source.

Once your data source is created, edit it by clicking on it in the Report Manager page. If you used the
settings from Figure 8-30, the data source should be labeled “Adventure Works DW AS.” In the Data
Source edit page, you should be able to scroll to the bottom and see a Generate Model button, as illus-
trated in Figure 8-31.

363

Reporting Services Report Models

14_584979 ch08.qxp 1/27/06 7:22 PM Page 363

Figure 8-30

Clicking on the Generate Model button will take you to a new page that allows you to name the Report
Model and specify its location. For this example, name the model “Adventure Works DW AS Report
Model” and click OK, as illustrated in Figure 8-32.

364

Chapter 8

14_584979 ch08.qxp 1/27/06 7:22 PM Page 364

Figure 8-31

Reporting Services uses the Analysis Services definition to generate the Report Model. Analysis Services
Database already contains relationship information as well as formatting and aggregates. For this rea-
son, you do not have to go through all of the steps necessary to create a Report Model from SQL Server.
Once the model is created you can use it just like a SQL Server base Report Model. Chapter 9 discusses
using the Report Builder to create reports from Report Models.

365

Reporting Services Report Models

14_584979 ch08.qxp 1/27/06 7:22 PM Page 365

Figure 8-32

Summary
In this chapter, you took a look at creating Reporting Services Report Models. You started by creating a
data source within your Report Model project. A data source in a Report Model project can connect to a
SQL database. Other databases are not currently supported.

After you created a data source, you looked at adding a Data Source View. The Data Source View is a
logical representation of the underlying database. It allows you to add a level of abstraction from our
source. You then created named queries to help shield your model from database changes as well as
create diagrams to more easily view certain objects.

Once the Data Source View was in place, you could run the Report Model Wizard. The Report Model
Wizard runs through a number of steps, but the key process is the Model Rules Generation. You saw
what rules are implemented and how they use the underlying Data Source View to create objects.

366

Chapter 8

14_584979 ch08.qxp 1/27/06 7:22 PM Page 366

After running the Report Model Wizard, you looked at editing the Report Model. The Report Model is
an XML-based file known as the Semantic Model Definition Language (SMDL). This file is made up of
three major components: entities, attributes, and roles. Entities generally represent tables in the Data
Source View. Attributes generally represent columns, and roles represent relationships between entities.

When the model is completed, you can deploy it to the Report Server. Deployment consists of two
steps: build and deployment. Building the project checks to make sure the model is syntactically valid.
Deploying the project invokes the Reporting Services Web service and publishes the smdl file to the
server.

Once the Report Model is deployed, users can start building reports. After reading this chapter, you
should now have an understanding of:

❑ The types of data sources that can be used for Report Models. Analysis Services, and SQL
Server.

❑ How Data Source Views are created and some best practices around using named queries.

❑ How Report Models are generated and where you can find information about generation rules.

❑ How Report Models are deployed to the report server.

❑ How Report Model are created for Analysis Services databases.

In the next chapter, you look at the Report Builder client and see how it can be used against an existing
model.

367

Reporting Services Report Models

14_584979 ch08.qxp 1/27/06 7:22 PM Page 367

14_584979 ch08.qxp 1/27/06 7:22 PM Page 368

Report Builder

This chapter looks at performing ad hoc reporting. In March 2004, Microsoft purchased a company
by the name of ActiveViews. ActiveViews had a technology that allowed users to build a user-
friendly model on top of their data. This model has become the backbone of ad hoc reporting in
Reporting Services.

As you move through this chapter, you will be introduced to the Report Builder application. The
Report Builder application has a familiar Microsoft Office interface for building reports. You will
also see how to use different report layouts to fulfill various reporting needs. Once you under-
stand the report layouts, you will move on to formatting and filtering data. The chapter ends with
a few administrative items you need to be aware of when deploying this tool to your users.

In this chapter, you learn:

❑ What Report Builder is and how it can be used.

❑ How to create reports with Report Builder.

❑ How to format Report Builder reports.

❑ How to add filtering and sorting to your reports.

❑ How to create calculations in a report.

❑ Administration tasks with Report Builder.

Building Report Models
Report Models are the key to creating ad hoc reports. They represent the semantic layer on top of
your SQL Server of Analysis Services data. Report models help users easily identify data elements
as well as navigate their relationships.

15_584979 ch09.qxp 1/27/06 7:44 PM Page 369

In the previous chapter, you built a Report Model using the AdventureWorksDW database. In this chap-
ter, you will leverage that model to create your own ad hoc reports.

If you have not built a Report Model up to this point, I suggest reviewing the material in the previous
chapter and familiarizing yourself with the process. Above and beyond creating reports, building the
model is the single most important aspect of doing ad hoc analysis. Without a solid model, users will
most likely find creating reports confusing and time-consuming.

Working with the Report Builder
In this section you look at accessing the Report Builder tool. Once you are familiar with the application,
you will move on to building your own reports.

Accessing the Report Builder
Ad hoc reporting in Reporting Services uses a Windows smart client application. Smart client applica-
tions combine the rich user interface of a Windows application with the ease of deployment found in
web applications. To run a smart client application, users navigate to a web server. From the web server,
the executable and any dependencies are loaded onto the client machine. The smart client then runs on
the user’s local machine and can access all of the local resources. When an update to the application is
available, the smart client application downloads the new bits and is ready to go.

Microsoft decided that to effectively develop ad hoc reports, users would need more functionality than
a traditional web application can provide. For this reason, Report Builder was introduced using smart
client technology.

There are two methods available for accessing the Report Builder. First, you can access the Report
Builder through the following URL:

http://servername/reportserver/ReportBuilder/ReportBuilder.application

You will need to replace servername with the name of your report server and reportserver with the name
of the Report Server virtual directory. Using this URL, you could create your own buttons to launch the
Report Builder application.

The second method for accessing the Report Builder is through the Report Manager web interface. When
you navigate to Report Manager (http://servername/reports), you will see a Report Builder button
as illustrated in Figure 9-1. Click on the Report Builder button to launch the smart client application.

When you click the Report Builder button, the smart client application verifies that you have the required
prerequisites to run the application. To run the Report Builder, your users will need version 2.0 of the
Microsoft .NET Framework.

After the Report Builder application is downloaded, you should see a new application in your Start menu.
You can now use the resulting shortcut to launch Report Builder. Opening and saving reports will
require a connection to the Report Server.

370

Chapter 9

15_584979 ch09.qxp 1/27/06 7:44 PM Page 370

Figure 9-1

In the next section, you look at building Reporting Services reports using the Report Builder.

Building a Report
Once you launch the Report Builder, you will be presented with a dialog to select a Report Model. As
was discussed in the previous chapter, Report Models are the key component for creating ad hoc reports.
They represent an easy-to-use representation of your data.

The list of Report Models presented represents all Report Models that you have access to on the given
Report Server. You might also notice a + next to some of the Report Models. You can expand the Report
Model node to view any perspectives associated with the model. Perspectives are views of the Report
Model that present a subset of information to the user.

To start designing reports, select the Adventure Works DW Report Model. In the previous chapter, you
created a small Report Model from the AdventureWorksDW database. You will use this model through-
out the rest of this chapter. If you have not deployed the Report Model, please walk through the Report
Model chapter.

After selecting a Report Model, the Report Builder will present four main windows:

❑ Explorer

❑ Fields

❑ Report Layout

❑ Designer

The Explorer window displays a list of Entity collections from the Report Model. As you select items
in the Explorer window, you will notice that the Fields window updates to display all of the available
Attributes for the selected Entity. You will use the Explorer and Fields windows to construct your first
report.

371

Report Builder

15_584979 ch09.qxp 1/27/06 7:44 PM Page 371

Before you build your report, you need to decide what type of layout is appropriate. In the Report
Layout window, you are presented with three options:

❑ Table

❑ Matrix

❑ Chart

Let’s take a look at creating reports with three different layout types.

Table Layout
To understand the table report layout, you will create a simple report that shows Products in the hierar-
chy (Product Category, Product Subcategory, Product Name) with their associated Sales Amount and
Order Quantity. This will build a base around working with related data as well as aggregated values.

To start, select the Adventure Works DW Model and Table layout from the Getting Started window (see
Figure 9-2).

Figure 9-2

372

Chapter 9

15_584979 ch09.qxp 1/27/06 7:44 PM Page 372

Once you have selected the Table layout, you will notice that the design window displays a base
report with one column. You want to start building your report based on the Product Category, Product
Subcategory, and Product Name hierarchy. Start at the lowest level of the hierarchy and work your way
up. English Product Name is the lowest level of detail required, so you start with that field. Select the
Dim Product node from the Explorer window. This will refresh the fields list with all the attributes of
Product. Select English Product Name from the list and drag it onto the table in the design window.
Figure 9-3 illustrates adding the Product Name field.

Now that English Product Name has been added to the report, you should notice a change in the
Explorer window as shown in Figure 9-4. Selecting the Product Name field told the Report Builder that
you were going to use the Product entity for this report. The change in the Explorer window shows all
of the related entities to Product. In this model, Product Subcategory and Reseller Sales have a direct
relationship to product.

The next step in building the report is the addition of Product Subcategory and Product Category. You
are moving from the lowest level of detail to the highest, so your next field will be English Product
Subcategory. To add the field, select the English Product Subcategory node from the Explorer window.
This should change the field list to display Product Subcategory attributes. Select English Product
Subcategory Name and drag it to the left of Product Name, as illustrated in Figure 9-5.

Figure 9-3

373

Report Builder

15_584979 ch09.qxp 1/27/06 7:44 PM Page 373

Figure 9-4

Figure 9-5

374

Chapter 9

15_584979 ch09.qxp 1/27/06 7:44 PM Page 374

To finish the Product hierarchy, click on the Product Category node in the Explorer and add the English
Product Category Name field to the left of Product Subcategory Name. You can also repeat these steps to
add Total Sales Amount and Total Order Quantity from the Fact Reseller Sales as Product node. Figure
9-6 illustrates the finished layout.

Notice that Report Builder recognized the hierarchy between Product Name, Product Subcategory, and
Product Category. Based on the hierarchy, it created subtotals for each of the levels. You might have
noticed that the English Product Name total is unnecessary since it is the lowest level of detail. There are
a number of formatting improvements that you can make. After discussing the different types of layouts,
you will come back to formatting your reports. For now, save this report as “Table Layout Product Sales.”

Click on the Save button in the application toolbar to save the report. Clicking the Save button will pre-
sent a list of folders located on the Report Server. Reports from the Report Builder are always saved on
the Report Server. Saving reports to the Report Server requires publish permissions. Required permis-
sions are covered later in this chapter.

Now that you have created a basic Table report, you will look at the next layout option, Matrix.

Figure 9-6

375

Report Builder

15_584979 ch09.qxp 1/27/06 7:44 PM Page 375

Matrix Layout
The Matrix layout is very similar to the Table layout. Both deal with a report as rows and columns.
However, the Matrix report allows you to dynamically change the number of columns based on the data
returned. This differs from the static column layout of a table.

The ability to expand a report across columns is sometimes referred to as a cross-tab or pivot table. I
tend not to use the term pivot table as it can be confused with the flexibility available from pivot tables
in Microsoft Excel. A matrix changes its columns based on the data returned. It does not give users the
ability to change layout on the fly like Microsoft Excel.

That being said, it is a very powerful layout. It will allow you to build very dynamic reports. Some of the
most common examples I see are reports based on time. These examples could include displaying products
along the rows with the weeks for a month across the columns. Weeks in a month are a prime candidate for
the matrix. Depending on how the calendar for a particular year works out, months can potentially have
four or five weeks. Dynamically expanding your columns in a regular table to accommodate this type of
variation can be extremely difficult. With a matrix report, you simply and automatically bring back the
appropriate data and the report layouts.

The downside of a matrix report is printing. Anytime you want something to print well, you need to be
able to control the page width. Length is less of an issue because data can simply continue on to the next
page without losing continuity. However, if the columns fall off to the right of the page, it is often diffi-
cult to line items back up again. You can increase a report’s width, but when you deal with a matrix
report, you will never know with certainty how wide the report will be. For that reason, I always set the
expectation of my users that if the columns can dynamically grow, there is no guarantee of a beautiful
print layout.

Now that you’ve walked through some of the benefits and trade-offs of the matrix report, let’s take a
look at creating one. You will again use the Adventure Works DW Report Model. In this section, you
create a report that displays Total Sales Amount with Product Categories along your rows and Year
(based on Order Date) across your columns.

To start, on the Report Builder menu, select File and New. In the Getting Started window, select the
Adventure Works DW Model and the Matrix (cross-tab) Report Layout, as illustrated in Figure 9-7.

After selecting the Matrix layout, the design window will load with the Matrix template. The Matrix
template is similar to that of the table. However, it is broken down into three distinct areas: Rows,
Columns, and Totals.

In this scenario, you want to display Product Categories along your rows. To access the Product Categories,
you need to select Dim Product Category from the Explorer Window. Once Product Categories is selected,
the Field List will include the English Product Category Name attribute. To add it to your report, click on
English Product Category Name and drag it to the report layout section that says “Drag and drop row
groups.” Figure 9-8 illustrates adding the Product Category Name to the rows.

376

Chapter 9

15_584979 ch09.qxp 1/27/06 7:44 PM Page 376

Figure 9-7

The second piece of information you want to display in this report is the Year (based on order date)
across your columns. The Order Date field you need is located in the Reseller Sales entity. As the report
is now, you cannot see the Reseller Sales entity. This is because Product Category has no direct relation-
ship with Reseller Sales. Product Category is related to Reseller sales through the Product and Product
Subcategory entity. So, to navigate to Order Date, you will need to select Dim Product Subcategories
from the Explorer window, then Dim Products, next Fact Reseller Sales, and finally Order Date. Figure
9-9 illustrates the movement through this hierarchy.

377

Report Builder

15_584979 ch09.qxp 1/27/06 7:44 PM Page 377

Figure 9-8

Figure 9-9

378

Chapter 9

15_584979 ch09.qxp 1/27/06 7:44 PM Page 378

Now that you have accessed the Order Date field from the Report Model, you can add Year to the
columns of your report. In the field list you will see a number of different attributes that define Order
Date. One of those attributes is the Calendar Year. This breakdown was defined when the Report Model
was created and allows the user to easily use different date variations in their reports. To add Calendar
Year to the report, click on the Calendar Year field and drag it to the report designer area labeled “Drag
and drop column groups,” as illustrated in Figure 9-10.

The final item you need to add to the report is a data element to total. In this scenario, you are using
Total Sales Amount from the Reseller Sales entity. After adding the Calendar Year field to the report, the
Explorer displays all of the other attributes related to Fact Reseller Sale in the field list. Select Total Sales
Amount and drag and drop it on the report area labeled “Drag and drop totals.” Once you have added
the final field, you should see a report layout similar to the one in Figure 9-11.

Figure 9-10

379

Report Builder

15_584979 ch09.qxp 1/27/06 7:44 PM Page 379

Figure 9-11

To view the results of the report, click the Run Report button from the toolbar. As shown in Figure 9-12,
you can see that the calendar years are repeated across the columns based on the data returned.

Figure 9-12

You can save the Matrix report as “Matrix Layout Product Sales” using the Save button.

Now that you have seen the Table and Matrix layout, you will move on to the Chart layout.

Chart Layout
The chart layout allows you to graphically display information in your report. There are a number of dif-
ferent chart types that you can choose from including bar charts, line charts, and pie charts. The charting
component in Reporting Services is supplied by Dundas. Dundas specializes in data visualization and
has a number of graphical components that can be embedded in applications.

380

Chapter 9

15_584979 ch09.qxp 1/27/06 7:44 PM Page 380

To start the chart report, select File and New from the Report Builder menu. In the Getting Started win-
dow, select the Adventure Works DW Model and the Chart Report Layout. Figure 9-13 illustrates creat-
ing a new chart report.

Figure 9-13

For the chart report, you want to display a pie chart with Total Order Quantity broken down by Sales
Territory Region. By default, the chart type is set to a bar chart. To change the chart type, right-click on
the chart in the designer and select Chart Type, Pie, Simple Pie. Figure 9-14 illustrates changing the
chart type.

381

Report Builder

15_584979 ch09.qxp 1/27/06 7:44 PM Page 381

Figure 9-14

Once you have selected the chart type, the chart in the designer surface exposes the drop areas for data
fields. Charts have three different drop areas: data value fields, series fields, and category fields. Data
value fields represent the information that will determine how the chart area is drawn. For bar charts, it
will represent the length of the bars. For your pie charts, it will represent the size of the pie pieces. Series
fields are used to display multiple values side by side in the chart. Category fields will define the overall
grouping of the chart.

In this scenario, you want to display Total Order Quantity by Sales Territory Regions. Start by selecting
Fact Reseller Sale in the Explorer window. From the field list, select Total Order Quantity and drag it to
the “Drag and drop data value fields” section in the chart. Figure 9-15 illustrates adding Order Quantity
to the chart.

382

Chapter 9

15_584979 ch09.qxp 1/27/06 7:44 PM Page 382

Figure 9-15

Now that you have added Total Order Quantity, you can add your Sales Territory Regions. From the
Explorer, select Sales Territory. Drag the Sales Territory Region field from the field list, and drop it on
the “Drag and drop category fields” area of the chart. Figure 9-16 illustrates adding the Sales Territory
Region.

Once you have added both fields to the chart, select Run Report from the toolbar. You should now see
Order Quantity broken down by Sales Territory Region. Figure 9-17 shows the rendered chart report.

I won’t say that this is the ugliest report I have ever created, but it is darn close. You can save this report
as “Chart Order Quantity by Sales Territory Region.” The next section covers sprucing up the reports
through different formatting options. This should allow you to create something you wouldn’t be
embarrassed to distribute to users.

383

Report Builder

15_584979 ch09.qxp 1/27/06 7:44 PM Page 383

Figure 9-16

Figure 9-17

384

Chapter 9

15_584979 ch09.qxp 1/27/06 7:44 PM Page 384

Formatting a Report
Now that you have seen the different types of report layouts, you will look at formatting your reports.
You will start by looking at adding text elements to the reports, move on to editing field names and
widths, and, finally, work with fonts, borders, and alignment.

Adjusting Text
Let’s start by adding a title to the table report created in the previous section. To open the existing report,
click the Open button in the Report Builder toolbar and open the Table Layout Product Sales report.

In the report designer, you should notice a text box at the top of the designer. This text box is available
for adding titles to your report. To edit the title, simply click on the text box to get a cursor. Once you
have the cursor, simply type the title for the report. In this example, you use the title “Product Sales.”
Figure 9-18 shows the table report with the new title.

Figure 9-18

Now that your report has a title, you want to go ahead and clean up the formatting for the rest of the
table. Start by cleaning up the column headers. To modify the column headers, simply click on the
header to display the cursor. Once you have the cursor, type in the new header text. Change your
columns to the following:

❑ Category

❑ Subcategory

❑ Product Name

❑ Sales Amount

❑ Order Quantity

385

Report Builder

15_584979 ch09.qxp 1/27/06 7:44 PM Page 385

Figure 9-19 illustrates the new column headings.

Figure 9-19

Column Width, Alignment, and Number Formatting
Now that your text is displayed correctly, you need to work on the layout of the fields. If you preview
the report, you will notice that the Category and Subcategory column widths are larger than necessary
to accommodate the text returned from the query. You’ll want to reduce those columns to give a little
better presentation. To decrease the column width, simply select the table by clicking on it and then
hover your cursor between the columns. When you move your cursor between the columns, it will
change to indicate that you can modify the width. Click between the columns and move the mouse
right or left to increase or decrease the width of the columns.

Once you have adjusted the column widths, you might also notice that the alignment of the Sales Amount
and Order Quantity column headers is incorrect. Number fields are right aligned, and it is good practice
to do the same with their respective column headers. In our report, they are left aligned. To clean this
up, highlight the Sales Amount and Order Quantity cell. To highlight both cells at once, click on Sales
Amount, hold down the shift key, and click on Order Quantity. Once you have selected both cells, click
the Right Justify button in the toolbar, as illustrated in Figure 9-20.

Now that you have your numbers formatted correctly and the alignment set, you’ll take a look at work-
ing with the font and background color.

386

Chapter 9

15_584979 ch09.qxp 1/27/06 7:44 PM Page 386

Figure 9-20

Font and Background Color
In your report, there are three levels to the Product hierarchy. To improve the report, you will modify the
font for the top level elements as well as alter the background color for the individual products.

To set the font in our reports, you can simply use the Report Builder toolbar. In the sample report, click
the Category field text box directly beneath the “Category” column header, and set the font to 12 pt, as
shown in Figure 9-21.

387

Report Builder

15_584979 ch09.qxp 1/27/06 7:44 PM Page 387

Figure 9-21

You can repeat the same process to set the Subcategory font to 10 pt. This should allow you to more eas-
ily distinguish the different levels.

The second formatting feature you’ll explore is how to set the background color for a set of items. In
this scenario, you want to format the Product Name items. You will set the background color to Light
Turquoise. To set the background color, select the Product Name, Sales Amount, and Order Quantity
detail lines by clicking on the text boxes directly under the column headers and holding down the Shift
key. Once you have highlighted the desired cells, use the Fill Color button in the toolbar to select Light
Turquoise. Figure 9-22 illustrates setting the background color.

There are a number of formatting features that you can add to your reports. Now that you have given
your report a nice look, you need to clean up the data a little. One thing you might have noticed in your
report is that a number of rows come back with no data. There is also no distinct sort order defined in
the report. In the next section, you look at how to filter out those empty rows and how to update the sort
order.

388

Chapter 9

15_584979 ch09.qxp 1/27/06 7:44 PM Page 388

Figure 9-22

Filtering and Sorting Reports
Another key set of features for any reporting tool is the ability to filter and sort the data. In this section,
you look at removing empty rows from your report, giving users the option to filter the report based on
a given time period and sorting the report alphabetically based on Product Name.

Filtering
First thing to do is simply remove all of the empty data rows. In the Report Builder toolbar, you will see
a button labeled “Filter.” Clicking on this button will bring up the Filter Data dialog. Figure 9-23 shows
this window.

There are three main windows within the Filter data window: Entities, Fields, and the filter list. The
Entities and Fields windows should be familiar from previous sections in this chapter. They contain the
data Elements and related Attributes in our Report Model. You should notice that your Entities window
is already limited to items related to Dim Product, since this is the information contained within your
report.

389

Report Builder

15_584979 ch09.qxp 1/27/06 7:44 PM Page 389

Figure 9-23

The majority of the filtering functionality will be handled in the filter list on the right side of the Filter
Data dialog. The first item that should be pointed out is the title over the filter list. In this scenario, it dis-
plays the text “Dim Products with.” If you click on the text, you will be presented with a drop-down list
like that shown in Figure 9-24.

The drop-down in Figure 9-24 presents four options: All of, Any of, None of, and Not all of. “All of” rep-
resents a logical AND condition. All of the expressions in the filter list must be true to return a result set.
“Any of” represents a logical OR condition. If any one of the conditions in the filter list is true, the data
row is returned. “None of” represents a logical Exclusive AND condition. If all of the conditions are false,
the data row is returned. The final item, “Not all of,” represents a logical Exclusive OR condition. If any
one of the conditions is true, but not all of them, then the data is returned. Let’s put these into some real
terms.

For this scenario, you will use the “All of” option. You will create conditions to test if Sales Amount is
not empty and Order Quantity is not empty. If both of those statements are true, you want to return the
data row. You will add this filter after examining the other filter types.

An “Any of” report might be something like “Show me all of the sales for people in the United States
and Canada.” You could add filters to specify Country equal to Canada or Country equal to United
States. “Any of” these two values would be acceptable.

“None of” could be used in a reverse scenario from the previous example. You might want to see sales
for people not in the United States or Canada. In that example, you would set filters for Country equals
Canada or Country equals United States. If either of those conditions is true, you would want to remove
them from the report.

390

Chapter 9

15_584979 ch09.qxp 1/27/06 7:44 PM Page 390

Figure 9-24

The last condition, “Not all of,” is a little more difficult. Let’s say that you want to find customers who
purchase only one of a list of products that normally are purchased together. For example, you want to
see people who purchase Bikes but not Helmets, or purchase Helmets but not Bikes. In this scenario, you
would set filters for Product equals Bikes or Product equals Helmets and set the overall condition to
“Not all of.” Your result set would contain only those people who have purchased one of the products
but not both.

Now that you have seen the different conditional statements, you will add the filter for removing empty
data rows. There are two elements that you need to test: Sales Amount and Order Quantity. If they are
both empty, then you will remove them from the report.

Start by selecting “Fact Reseller Sales” in the Entities window. The field list now contains the Reseller
Sales attributes. Click and drag “Sales Amount” over to the filter list (large gray area on the right side
of the dialog). You can click on the word “equals” and select “Not.” In the text box to the right of “not
equal to,” set the value to 0. You can do the same with Order Quantity by dragging it from the Field list
to the filter list.

You should notice that Order Quantity does not have a text box to enter criteria in. When the report model was
generated, it found a small number of unique values for Order Quantity. Because there were a limited number of
items, it decided to make it a lookup field. This is probably more appropriate for items like Product, but it does
illustrate the point.

To filter out empty Order Quantities, select “equals” and change it to “Is Empty.” Finally, click again on
“Is Empty” and select “Not.” The resulting filter should look like Figure 9-25.

391

Report Builder

15_584979 ch09.qxp 1/27/06 7:44 PM Page 391

Figure 9-25

If you run the report, you should notice that the empty data rows have been removed.

Along with adding individual filters, you can also add groupings. Grouping helps nest logical condi-
tions together. If you click on the New Group button in the Filter Data window, you will notice the same
four filters outlined earlier in this section. Within the group, you can then add multiple conditions that
are evaluated together.

The second filter you want to add is the ability for the user to select a date range. You will use Order
Date in this example. Go back to the report design view and click the “Filter” button. To add the order
date, select Order Date in the Entities window. You should see a list of attributes related to Order Date.
Drag “Full Date Alternate Key” onto the filter list and change the condition from “equals” to “On or
After.” Since you want a range of dates, you will take “Full Date Alternate Key” again and drag it into
the filter list, this time changing “equals” to “On or Before.” The final step is to allow the user to select a
value. Click on either one of the Date filters, and select “Prompt” from the drop-down. Repeat the same
step on the other date. When you have it all set, your filter list should look like Figure 9-26. Note that
you will need to fill in default dates in order for the query to run properly.

For this example, I simply entered in a large date range. If you click on the date drop-down list, you will
see an item at the bottom of the calendar labeled “Relative Date.” Hovering over “Relative Date”
exposes a large list of possible time periods. Using the relative dates, you can modify the report to dis-
play Product Sales for the last 60 days. You can click the OK button and run the report to see the
updated results.

392

Chapter 9

15_584979 ch09.qxp 1/27/06 7:44 PM Page 392

Figure 9-26

Sorting
The final item to look at in your report is the sort order. It is important in many cases that the user is pre-
sented with information that is easily navigable. Right now your report simply shows a list of products
in alphabetical order. It might be more useful to show those products with the largest sales amount first.

To add a sort to your report, you first need to click the “Sort and Group” button in the Report Builder
toolbar. When you open the Sort dialog, you should see a listing of all the groups available in a report.
In this scenario, you have Product Category, Product Subcategory, and Product.

Within your report the item that you will be sorting is Product. To sort Products, select Product in the
“Select Group” list. For the “Sort by” criteria, you will specify Sales Amount in descending order. Fig-
ure 9-27 shows the finished sorting.

You can add multiple sorts for a single item by adding additional values in the sort dialog. When you
run the report, you should notice that within each Product Subcategory the Products are sorted by Sales
Amount in descending order.

You have now seen all of the core features required to create a report. You’ve covered the different
types of report layouts, adding fields to your reports, formatting numbers, fonts, and backgrounds, and,
finally, setting filters and sorting the reports. In the next section, you will look at working with expres-
sions inside reports.

393

Report Builder

15_584979 ch09.qxp 1/27/06 7:44 PM Page 393

Figure 9-27

Adding Calculations with Expressions
A major advanced feature of Report Builder is the ability to add expressions to your reports. Expressions
allow you to add custom fields, modify filters, and modify report results. In this section, you look at
adding a new custom field to your report. In the process, you will learn about the main areas of the
expression editor and how they are used.

For this section, you will continue to use the Table Layout Product Sales report. Make sure that the
report is open in design view with the Explorer window and Fields list on the left-hand side. Above the
field list is an icon to add new fields. You want to add a field to your report that calculates the Average
Price based on Sales Amount divided by Order Quantity. Click on the new field button, shown in Fig-
ure 9-28, to bring up the formula editor, shown in Figure 9-29. Be sure that Reseller Sales is selected in
the Explorer window.

Figure 9-28

394

Chapter 9

15_584979 ch09.qxp 1/27/06 7:44 PM Page 394

Figure 9-29

The Formula window has three main sections: Fields, Functions, and the expression editor. Fields is the
same dialog you have seen throughout Report Builder. It is broken down into Entities and Fields. The
Functions tab presents a list of all available functions within Report Builder. The functions are grouped
by types. So, you will find AND, OR, and NOT under the logical folder. As well, you will find AVG,
SUM, and COUNT under the aggregates folder. The expression editor contains a Field name text box to
define the name of your calculation and the Formula text box for setting the calculation logic.

To define your expression for Average Price, take the Total Sales Amount (expand the Sales Amount field
to see this) divided by the Total Order Quantity (under Order Quantity). It is important that you use the
Total and not simply Sales Amount or Order Quantity. The Total allows you to define your average cal-
culation at different levels without having to rework the formula. Figure 9-30 shows the completed
Average Price calculation.

Once you have added the formula, you can add it to your report like any other field. Simply click on the
field in the Field list, and drag it onto the report table. The final layout, including Average Price, should
look similar to Figure 9-31.

Now that you have seen how to create reports with Report Builder as well as working with formatting,
filters and expressions, you will take a look at a few administrative requirements.

395

Report Builder

15_584979 ch09.qxp 1/27/06 7:44 PM Page 395

Figure 9-30

Figure 9-31

396

Chapter 9

15_584979 ch09.qxp 1/27/06 7:44 PM Page 396

Administration
This section covers a few topics on administration and Report Builder. First, it looks at the client machine
requirements, then it discusses permissions required to save reports, and finally it outlines strategies for
organizing user reports.

The first thing pointed out in this chapter is that the Report Builder is not just a simple web application.
Report Builder is a Windows client delivered over the Internet. To support this functionality, users will
have to have the Microsoft .NET 2.0 Framework. Microsoft has no plans to ship Report Builder to sup-
port earlier versions of the .NET Framework.

When using the Report Builder, users save reports to the Report Server. In order to save rdl files (the
structured file created by the Report Builder), a user must have publish permissions. Using Report
Manager, you can grant permissions on different folders and set the user role to Publisher. Publisher is
a default item-level role created when Reporting Services is installed. This role will have sufficient item-
level permissions to add and remove reports. However, it also has permissions to create folders, remove
models, and handle a few other tasks that you might not want your users to perform.

If you are concerned about giving users too high a level of permissions, there are two approaches you
can use either independently or together. The first approach is to create your own item-level role. Within
the role, you can limit the users’ actions to simply managing reports. This will eliminate their ability to
move or delete folders, data sources, and other items. If you still want more granular control, you can
take advantage of the My Reports feature. This feature can be enabled from either Management Studio
or Report Manager. By enabling My Reports, you give the users their own personal folder. They can
publish content, add folders, and generally have control over their own small area in the Report Server.
This feature has been available since Reporting Services 2000; however, there was never a real need for
it. With the Report Builder, I believe it will become a much more popular option.

For more information on setting permissions, take a look at the administration chapters later in this
book.

Summary
In this chapter, you looked at creating ad hoc reports. Ad hoc reports require two major components.
First, you need a semantic model that puts your data into a user-friendly form. You saw that Reporting
Services 2005 has a Report Model project that will help you create a user-friendly model. Second, users
will need an easy-to-use tool with familiar interfaces. You saw that the Report Builder provides both a
rich user experience and a familiar Microsoft Office–like look and feel.

After reading this chapter, you should have an understanding of :

❑ How to create new reports with Report Builder.

❑ How the different layouts can be used to create interesting reports.

❑ How to format report items.

397

Report Builder

15_584979 ch09.qxp 1/27/06 7:44 PM Page 397

❑ How to add filtering and sorting capabilities to your reports.

❑ How to add calculations to your reports.

Ad hoc reports have been a feature sadly lacking from Reporting Services. It is our most common reason
for implementing competing products. With the introduction of the Report Builder, Microsoft shows that
it is committed to building an enterprise-level reporting tool.

398

Chapter 9

15_584979 ch09.qxp 1/27/06 7:44 PM Page 398

Part IV

Administering
Reporting Services

Chapter 10: Report Management

Chapter 11: Report Server Administration

16_584979 pt4.qxp 1/27/06 7:33 PM Page 399

16_584979 pt4.qxp 1/27/06 7:33 PM Page 400

Report Management

Once a report has been created, it must be published to the Report Server so that it can be viewed
by report users. Publishing reports to the server doesn’t have to be done from Visual Studio,
although that will typically be the developer’s choice. Report Server managers have other tools
available to perform that task. Once a collection of reports and other content is out on the server, it
will need to be managed. Basic tasks like creating content folders and publishing reports and other
resources to those folders will need to be performed by users. Administrators and content man-
agers need ways to control user access, automate report generation, and create historical archives.
In this chapter, you read about:

❑ The four types of Report Server content and how to work with them.

❑ The stages of report execution and how to optimize them.

❑ How to automate report delivery and server management.

As you’ll see, you can also create your own custom interfaces for your users. In this chapter, you’ll
also read about how to secure your reports and other content. First, though, you look at where
everything goes and how to get to it.

Report Server Content
Content is stored in the Report Server using a hierarchal metaphor. The content itself is managed
in a SQL Server database.

Folders represent the structure and relationship of content in the Report Server database. Folders
are containers for items and other folders. Items are stored as content in the Report Server database.
Reports and data sources are examples of different items that are stored there. Report content can
reference data source content, for example, to perform work as part of a process. Images, docu-
ments, and other resources are also accessed this way. The folder structure you build is typically
based on how your user groups are defined.

17_584979 ch10.qxp 1/27/06 7:19 PM Page 401

The root of the folder hierarchy is the Home folder. Each item in the database automatically inherits the
user permissions of the parent folder it’s contained in.

There are four types of content items stored in the database:

❑ Report

❑ Folder

❑ Data Source

❑ Resource

You’ll read details about all these items throughout the rest of this chapter.

Managing Content Items
Generally, content in the Report Server database isn’t worked directly. In other words, you typically don’t
work with content by manipulating records in the Report Server database tables using Transact-SQL or
SQL Server Enterprise Manager. The functionality to work with the database content is abstracted and pro-
vided through other interfaces. Graphical user, command-line, and programmatic interfaces are all avail-
able. Depending on the requirements, several approaches can be taken to performing management tasks.

Two primary tools are provided for performing content management tasks. The Report Manager web
application is both a management tool and report viewer. Integration with SQL Server Management Studio
also provides a Windows forms environment for managing the Report Server, and custom applications can
expose their own interfaces to those same functions. These tools enable you to configure common manage-
ment properties such as report execution, subscriptions, and security. Let’s explore each.

Report Manager
Report Manager is a web-based management application included with Reporting Services. It’s built
using ASP.NET and interfaces with the Report Server using the Web Service API.

The Report Manager application resides on a web server and is accessed using a web browser. It pro-
vides a management interface for the contents in the Report Server database. The Report Manager web
application works against another ASP.NET web application, which is the Report Server Web Service
interface. Figure 10-1 shows the stack between the Report Server and the client browser when using the
Report Manager application.

You could even build your own version of the Report Manager by creating an application that works
against the same Reporting Services Web Service API. You can use the Report Manager to:

❑ Create folders and folder structures to act as containers for report collections.

❑ Create and modify data sources, and add additional resources to the Report Server database.

❑ Implement an identity-based security model, controlling access to Reporting Services resources.

❑ Configure automated report generation and delivery.

402

Chapter 10

17_584979 ch10.qxp 1/27/06 7:19 PM Page 402

Figure 10-1

Access to all reports and resources can be flexibly managed. For example, a user can be provided access
to reports that run on demand based on values supplied by that user, or they may be restricted to view-
ing static reports delivered by subscription. The task of managing content can also be broken up among
multiple roles, each responsible for managing the functions of different reports or other resources. Using
the Report Manager, you can perform create, read, update, and delete operations on the most frequently
accessed content in the Report Server database.

There’s a link to the Report Manager on your Start➪Programs menu, or you can point your browser to
the Report Server URL. The default address for that is

http://<ServerName>/reports

Be sure to replace <ServerName> with the server hosting the Report Manager application. If that’s your
local machine, then localhost works. In a production installation, the name of the virtual directory

Client Browser

Report Manager ASP.NET
Web Application

Reporting Services Web
Service API

Report Server
Database

403

Report Management

17_584979 ch10.qxp 1/27/06 7:19 PM Page 403

containing the Report Manager may be different from the default /reports. If that’s the case in your
environment, you’ll also need to specify that virtual directory rather than /reports. Figure 10-2 shows
a screen shot of the URL and the Report Manager’s home page.

Figure 10-2

This particular screen shot shows the Report Manager in Details view, similar to the Details view in
Windows Explorer. This view provides quick access to the properties of items contained in a folder. You
can switch to Details view by clicking the Details button on the right side of the Report Manager toolbar.
Also, you may have noticed that the URL in the screen shot uses FormalCasing. URLs are not case sensi-
tive, so don’t feel like you have to capitalize the address when typing. For example, appending the server
name with /reports provides the same results as using /Reports. When Reporting Services performs the
browser redirect, it replaces your typed URL with its own. The Report Manager application is covered in
more detail throughout this chapter.

SQL Server Management Studio
SQL Server Management Studio is a new management interface that’s included with SQL Server 2005. Its
interface contains modules for different types of SQL Server components, providing a single point of man-
agement for them. Reporting Services is one that’s been integrated into the Management Studio. It pro-
vides access to a superset of Report Manager functions. You can perform the most common management
tasks using this application just as you would in Report Manager. The Management Studio (shown in
Figure 10-3) will be a familiar interface for database managers, who are as likely to be involved in manag-
ing Report Server content as anyone else.

404

Chapter 10

17_584979 ch10.qxp 1/27/06 7:19 PM Page 404

Figure 10-3

This particular image shows the dialog box for editing the properties of the Report Builder role. You
can see the specific tasks that are enabled for this particular role. Right-click context menus are avail-
able throughout the Management Studio interface and make accessing common tasks quick and
straightforward.

Other Utilities
A number of other useful utilities are also provided with Reporting Services. Most of these are accessed
at the command prompt or programmatically. These include:

❑ Script Host utility

❑ Server Configuration utilities

❑ Encryption Key Management

Working with the key utilities is covered later in this chapter.

Programmatic Interfaces
Web services are encapsulations of programming logic that can be called using standard Internet proto-
cols. Because Reporting Services is a Web service, its functionality can be invoked by any client that can
send it a properly formatted request and work with the returned response. Developers can easily build

405

Report Management

17_584979 ch10.qxp 1/27/06 7:19 PM Page 405

applications that incorporate Reporting Services functionality. There are many custom interfaces being
used in production today. Products developed by independent software vendors (ISVs) work against the
same Web Service interface.

You can also use that same capability to automate common management tasks such as migrating reports
from testing to production environments. The “Automating Content Management” section later in this
chapter provides an example.

Securing Report Server Content
A core function of Report Server management is ensuring that only authorized users have access to sen-
sitive information. In Reporting Services, security is based on two essential elements:

❑ Identifying who or what is attempting to perform an action, then

❑ Determining whether that user has permission to perform that action on the resource

For example, to view the Report Manager you must first log in to the system where Report Manager is
running, and then you must have the correct permissions to view the Report Manager application. By
default, anyone belonging to the Everyone group can view Report Manager, so the application is avail-
able to a wide group of users. Regardless of this, you still have to log in and be authenticated as belong-
ing to that group.

Reporting Services uses a role-based security model, which can be implemented and managed through the
Report Manager interface, SQL Server Management Studio, and the provided programmatic interfaces.

In Report Manager, security is addressed at two levels:

❑ System-level: This type of security addresses the tasks required to administrate the Report
Server globally.

❑ Item-level: This type of security addresses the tasks that can be performed on an individual
item in the Report Server database.

If you’ve worked with configuring users and groups in SQL Server, you’re already familiar with adding
users and groups to role definitions. Let’s take a closer look at how to use it in Report Manager.

Role-Based Security
Reporting Services does not authenticate users. It relies on the outside network for that function. Although
it natively integrates with Windows authentication, you can extend the application to incorporate your
own custom or other third-party security appliances. The Report Server takes the authenticated users and
categorizes them into groups and then grants permissions to the users based on those groups, or roles.

Reporting Services installs with a default set of permissions in place. These permissions provide the ini-
tial settings, so you can go in and start defining the implementation of your own security policy. Called
Default security, it’s configured so that users who belong to the local Administrator group are given
System Administrator role permissions, and Windows users belonging to the Everyone group are added
to the Browser role. You’ll need to edit the default security settings to support other Windows users and
groups, depending on the permissions needed for users to accomplish their tasks.

406

Chapter 10

17_584979 ch10.qxp 1/27/06 7:19 PM Page 406

Tasks
Tasks are the specific actions that can be performed by a user. The permission to perform a task is either
granted or revoked. Roles are defined by the combination of tasks granted to users who belong to it. In
Reporting Services, tasks fall into two general categories: system tasks and item tasks.

System-level tasks are actions on the Reporting Services system as a whole, whereas item-level tasks
are actions on items such as folders and reports that are contained in the Report Server database. The
two groups essentially form separate security zones, each containing different task items. For example,
Manage Report Server Security is a system task, while View Reports is an item task. These two groups of
tasks define the item roles and system roles.

In Reporting Services, tasks are predefined. They cannot be changed, nor can you add custom tasks.
Different combinations of tasks are called roles.

Roles
Users are granted permission based on their role. A number of roles are predefined in Reporting Services.
You can add a user or Windows group to a role in Report Manager. For example, you can add a user to the
Content Manager role, which grants them sufficient permission to manage the content in the Report Server
database. A role definition is the unique set of task permissions it holds.

Like tasks, there are system-level and item-level roles. Different forms are used to configure each type,
which are each accessed from the Site Settings page. There are two system-level roles:

❑ System Administrator: This role has task permissions to enable them to manage Report
Manager site security and Report Server jobs.

❑ Site User: This role can view basic information on the site, including report properties and
shared schedules.

Local Administrators on a machine belong to the System Administrator role and so always have access
to the system. If you want to secure reports and other content from specific users with high-level permis-
sion sets like this, then you’ll have to set security at the item level.

There are four predefined item-level roles:

❑ Browser: This role can navigate to reports and run them. Specific permissions include:

❑ View Folders

❑ View Reports

❑ Manage individual subscriptions

❑ My Reports: This role allows users to create, view, and manage reports in their My Reports
folder. Examples of tasks this user can perform include:

❑ Create linked reports

❑ Manage folders

❑ Manage report history

407

Report Management

17_584979 ch10.qxp 1/27/06 7:19 PM Page 407

❑ Publisher: Users can publish content to the Report Server database. This role includes these
tasks:

❑ Manage folders

❑ Manage reports

❑ Manage data sources

❑ Content Manager: This role has permission to all item-level tasks, including:

❑ Set security for individual items

❑ Manage individual subscriptions

❑ Manage all subscriptions

If the predefined roles provide the particular combination of tasks you need for a user, you can create
your own roles. Report Manager is used to create a new role definition. A good way to do that is by
copying an existing role definition. Go to a current role definition and click the Copy button, and then
modify your new role.

New roles can be added in Report Manager or SQL Server Management Studio. Figure 10-4 shows the
creation of a new role in the Management Studio.

Figure 10-4

Generally, you shouldn’t need to create many new roles. Having too many roles can quickly become a
management headache, especially if you start modifying role definitions that are already in use. When
you’ve got a lot of content stored on the server, it can become difficult to tell what effects your changes
will have.

408

Chapter 10

17_584979 ch10.qxp 1/27/06 7:19 PM Page 408

To create a new role definition, you’ll need to have permission to manage system security policy. An
example of the steps required to create a new role definition follows:

1. In Report Manager, click the Site Settings link. It’s a global link in the upper-right corner of
the page.

2. Click the Configure item-level role definitions link. Note that you also have the ability to con-
figure system-level roles.

3. Click the New Role button on the options toolbar. You’ll be brought to the New Role form.

4. Give your new role the name Demo User. It’s a good practice to use a name that matches the
job function or title for the group you’re creating. The name can include spaces and special
characters, though it can’t be more than 256 characters long.

5. Type Role to demonstrate item-level security for the description. The description should make
it easy for administrators who create role assignments to understand what purpose the role is
intended for. Ideally, the description should describe the role responsibilities. Providing a com-
plete description keeps an administrator from having to open a role definition just to figure out
what task permissions it has.

6. Check the View folders, View reports, and View resources check boxes. Figure 10-5 shows the
completed New Role form.

Figure 10-5

409

Report Management

17_584979 ch10.qxp 1/27/06 7:19 PM Page 409

7. Click OK to save the new role into the Report Server database. You’ll see the new role and its
description listed on the Item-Level Roles page.

The Demo User role is now ready for user or group accounts to be added. You can go back in and mod-
ify the task permissions, if needed, but have your changes ironed out before adding users. Remember
that many management headaches have started with modifying a role after users have already begun
using it. If desired, you can also delete the role by clicking the Delete button on the Edit Role form. The
Copy button will open a new Edit Role form with the same task permissions already selected. This way,
you can easily extend an existing role to create a new one.

Creating a new role definition is straightforward, but it’s important to be careful and not go overboard.
Note how changing task permissions affects users. When you remove tasks or delete a role entirely, the
change applies to every item in every folder in the Report Server database. A role can be associated with
a single item as well as an upper-level folder and all its children. There isn’t any way to easily view how
the web of user roles and permissions affect their access to different reports and folders, so use care
when modifying existing role definitions. Whenever possible, start with an existing definition, and
extend permissions only as required.

You then add users to the role to create what’s called a role assignment, described in the next section.

Role Assignments
Ultimately, access to the Report Server content is controlled by role assignments. Role assignments are
created when you add a Windows domain account to a role definition. Remember that Report Server
doesn’t perform its own authentication; it relies on Windows to perform that function. Report Manager
is used to map Windows users and groups to Reporting Services role definitions. As you’ve seen, each
role is a unique collection of permissions. When a user attempts to perform an action, Report Server
checks the roles that the user belongs to, to determine whether or not to allow the action.

Reporting Services creates its own role assignments when it implements the default security policy upon
installation. Default security allows members of the local Administrators group to perform administra-
tive actions on the Report Server database, while restricting users in the Everyone group to viewing
items only.

You add users and groups to roles at the item level. The user or group that you want to grant permis-
sions to must be a Windows User or belong to a Windows Group. Remember that Reporting Services
doesn’t perform its own authentication of users — it relies on the Windows operating system for that
function.

Creating role assignments is how you bring life to your role definitions. Role assignments are created in
place, meaning that you must be looking at the properties for a specific item before you can make a role
assignment for it. The following steps show how to create a new role assignment:

1. Open Report Manager and navigate to a folder containing sample reports.

2. Be sure you’re viewing the Contents tab of the folder. On the Options toolbar, click the Show
Details button.

410

Chapter 10

17_584979 ch10.qxp 1/27/06 7:19 PM Page 410

3. Click the Properties icon for your report. The icon is in the Edit column on the left side of the
page. Click it to go to the Properties pages of the report.

4. In the left navigation area, click the Security link to view the security properties page for the
report.

5. On the Options toolbar, click the Edit Item Security button. You’ll see a message box displaying
a security message, as seen in Figure 10-6.

6. Click OK on the message box. The page view will change, adding new buttons on the options
toolbar, as shown in Figure 10-7.

7. Click the New Role Assignment button to view the New Role Assignment form.

8. In the Group or user name field, type the user name you log in with.

9. Locate the Demo User role, and click the check box next to it. This will add you as a user to the
Demo User role, and you now have the permissions of that role on that report item. This role
permission set is in addition to the one you are currently using as you perform this exercise.
Note that you can click a role to view its task permissions. Figure 10-8 shows a completed form.

10. Click OK to apply the new assignment.

Figure 10-6

411

Report Management

17_584979 ch10.qxp 1/27/06 7:19 PM Page 411

Figure 10-7

Figure 10-8

Note that you can easily revert back to the security settings of the parent folder by clicking the Revert to
Parent Security button. That will cause the security settings for the report to be set back to mirror those
of the parent folder. Subfolders inherit the security characteristics of their parent, so the security settings
of the Home folder effectively establish the default settings for the rest of the tree unless overridden by
a child in the structure. For example, the My Reports folder has different permission settings than the
Home folder. It’s a good practice to grant limited permissions on the Home folder because of the inheri-
tance of security settings down the folder hierarchy. It’s also a good idea to bear in mind that when mod-
ifying the role assignments for a folder, your new settings can affect items much further down in the
folder hierarchy.

412

Chapter 10

17_584979 ch10.qxp 1/27/06 7:19 PM Page 412

You can add multiple users and groups to a role assignment, though you can add a specific named
group or user to a role only once. A user can belong to multiple groups or roles. The permissions then
combine for that user. For example, let’s say that Mary belongs to the domain Department Managers
and that both Mary’s and Department Managers’ rights have been assigned to a folder, then she’ll have
the combined permissions of both Mary and Department Managers for that folder (and its contents).

Role definitions are applied across the system. Modifying them can have unforeseen consequences
unless careful consideration is given to the effects of that change. If a user needs certain permissions on
an item in the Report Server database, it may be better to address the issue at the item level rather than
the role level. Modifying the role definition affects all assignments to that role and in every location that
the role has access.

Creating roles and role assignments aren’t an everyday task, but it’s important to know what happens
when you do make or modify one. Let’s look at a couple of other important security topics.

Security Inheritance
When security is set on a folder, those settings also apply to all the items in that folder — including sub-
folders. By default, Report Manager opens to the Home folder — which represents the root of the folder
hierarchy. The security settings on that folder set the baseline for every other folder, report, data source,
and other resource in the Report Server database.

Item-Level Security
Role assignments apply to what are called securable objects. These are items that can have role assign-
ments applied to them, specifically reports, data sources, and other resources.

❑ Reports: Permission to view the report and perform other actions, such as changing report
properties. Stored versions of a report, including history and snapshots, have the same permis-
sion sets as their parent reports and cannot be changed.

❑ Data Sources: Permission to modify property settings.

❑ Other Resources: Only individual resources like shared images can be secured. Items embedded
within a report have the same permission sets as their parent reports and cannot be changed.

Folders are container items that can also have permission applied. The permissions apply to the folder
and all the items within it, unless overridden by an individual item.

System-Level Security
In Report Manager, a distinction is made between two groups of actions that can be performed: actions
performed on the system and actions performed on items. They are referred to as system-level and item-
level actions, or tasks. System-level tasks are actions that apply to the Reporting Services system as a
whole, whereas item-level tasks are actions that can be performed on items such as folders and reports
that are contained in the Report Server database. The two groups essentially form separate security
zones, each containing different permission sets. Typically, system tasks are performed by administra-
tors, and item tasks are performed by users.

The next section covers sitewide security settings in more detail.

413

Report Management

17_584979 ch10.qxp 1/27/06 7:19 PM Page 413

Site Settings
The Site Settings form is accessed by clicking the Site Settings link in the top-right corner of the Report
Manager interface. Site Settings is where you can configure default settings for the site and enable differ-
ent features of the Report Manager. Usually, you won’t have access to this form unless you’re a member
of the System Administrator role.

Here, you can change the name that’s displayed in the top-left corner of every page in the Report
Manager. My Reports can be enabled here, as you’ll read about shortly. First, let’s briefly cover the other
site property settings on this form.

Properties
Sitewide settings are accessed using the site settings link at the top right of the Report Manager window.
Figure 10-9 shows the Site Settings page:

Report History
This property defines the number of previously run reports to keep archived. Although this sets the
default report history value for all reports, this value can be overridden by individual reports. You’ll
read more about configuring report histories in the “Snapshots and History” section later in this chapter.

Figure 10-9

414

Chapter 10

17_584979 ch10.qxp 1/27/06 7:19 PM Page 414

Execution Timeout
Execution timeout is the length of time the Report Server will continue attempting to execute a report.
When the timeout value elapses, execution will stop and rendering or delivery of the report will not
occur. This value can be overridden in individual reports.

Report Logging
By default, Report Server logs information about report execution. The Report Log contains values such
as delivery format, the parameters used, and server processing time. The Report Log is not viewable in
the Report Manager; a SQL Server DTS package is used to obtain values from the log. For more informa-
tion on viewing report logs, see Chapter 11.

My Reports
My Reports is a folder that allows users to manage their own content. It provides a central location for
the management of user-specific content and subscriptions rather than having to navigate through the
public folders for regularly generated and referenced reports. My Reports is disabled by default.

Enabling My Reports lets users create and delete their own folders and reports and create personal
reports. A personal report is one that’s meant for an individual user and not intended for widespread
use. The report may not conform to corporate guidelines for published reports, for example. My Reports
provides flexibility by allowing users to create and use reports without worrying about the potential
impact on other users. Figure 10-10 shows the broad scope of permissions a user has (by default) on
content in their My Reports folder.

Figure 10-10

415

Report Management

17_584979 ch10.qxp 1/27/06 7:19 PM Page 415

This view is from SQL Server Management Studio. To view it yourself in the Management Studio, first
ensure that SQL Server Management Studio is connected to your Report Server instance. Once you’re
viewing the Reporting Services component, right-click the My Reports role in the Object Explorer win-
dow and select Properties. This option may not be available if My Reports has not been enabled on your
server, or if your permission set does not allow access to that folder.

One My Reports folder is created for each user. Users don’t have access to the My Reports folders of
other users; only Report Server administrators can do that. Using My Reports, you can upload reports
and other resources as well as publish reports you’ve created using the report designer or other tool.
Anonymous users do not have access to a My Reports folder.

To access My Reports, the user simply clicks the My Reports folder or link in Report Manager. Alternately,
they can navigate their browser to http(s)://<server_name>/My Reports. The users identity is
checked, and the browser is then redirected to /users/<username>/My Reports.

/My Reports is redirected to http://localhost/Reports/Pages/Folder.aspx?ItemPath=
%2fMy+Reports&ViewMode=List.

It’s important to keep in mind that there’s a My Reports folder and a My Reports role. The My Reports
role defines permissions the user has in their My Reports folder. System administrators can change the
permission set for all roles including My Reports. Because of that, your capabilities may be different
from those just described. It’s a good practice to reserve a specific role for accessing My Reports to help
ensure a consistent user experience when using it. It’s easy to create a shortcut to your My Reports
folder, creating a portal to the reports you frequently need to work with. Functionally, the My Reports
folder provides a secure area for users who need to manage and view reports as part of their regular
work responsibilities.

If you’re not careful, creating folders and modifying their security settings can degrade into an ad hoc
combination of configuration settings for different folders and users. That type of unplanned structure
can be difficult to manage and maintain. Making the My Reports folder available to users allows them to
manage settings in the context of their own My Reports folder rather than modifying individual folder
properties to grant the required permissions for different users.

Securing My Reports
Let’s say that access rights have been granted to a user for My Reports. The user creates folders to orga-
nize their content and places their commonly accessed reports within them. If rights to the My Reports
folder is then revoked, you might think that the user no longer has access to the folders and their con-
tent. In fact, that may or may not be the case.

Consider the possible ways to prevent users from accessing their My Reports folder. First, you can clear
the Enable My Reports check box under Site Settings. That removes the My Reports folder from the
Home folder contents.

It’s important to note that although clearing the check box removes the My Reports folder from the dis-
play, it doesn’t actually prevent access to the My Reports folder content. If a user knows the content
structure and the path to a folder, he or she can still navigate to the location directly.

416

Chapter 10

17_584979 ch10.qxp 1/27/06 7:19 PM Page 416

Another way to prevent access to the contents of My Reports is to modify the role definition used for
accessing My Reports. Clearing all the task permissions will effectively lock it down and prevent a user
from accessing its contents. Unfortunately, it also denies access to anyone else in that role (who doesn’t
already have permissions granted through other role memberships).

Finally, My Reports can be secured by removing the user’s Windows account from My Reports role
membership. This is the most effective way of locking out individual users, without creating potentially
far-reaching side effects.

Managing Reports
Once you’ve laid the foundation for the Report Server content by configuring the system settings, you’re
ready to begin working with items that are stored on the server. Folders represent the hierarchical struc-
ture of the database content, and items are contained within them. In this section, you’ll read about set-
ting the properties for items in the database and how to publish content. First, though, let’s take a closer
look at working with the folders themselves.

Working in Folders
When you deploy reports from Visual Studio using the report designer, you can publish content to any
folder in the hierarchy. You can also specify that a new folder be created for your content, which will be
created when your content is deployed. You control the report destination by setting the target folder
property in the project properties dialog box. Project properties can be accessed by right-clicking on the
project in the Solution Explorer window and selecting Properties.

Once the report is deployed, you can use Report Manager to create additional folders and move the con-
tent from folder to folder. Create new folders in Report Manager by navigating to the location where you
would like the new folder. Once there, click the New Folder button on the toolbar. The Report Manager
then displays a page where you can name the folder and add a description.

Security Inheritance
When you create a new folder, it automatically has the same security settings as its parent folder. By
changing folder permissions, you can override the parent folder settings and define your own values.
The changed values will, in turn, be applied to the contents of that folder. This application of parent
settings continues to the deepest level of the folder structure. The use of configuration settings that are
inherited by child nodes is used extensively in .NET.

Moving Content between Folders
There are times when it’s necessary to move content after it’s been deployed. This is particularly true
early in the life of a Report Server deployment. You can minimize this by planning an effective directory
structure for your organization before deploying reports.

To move a report, go to the property pages for the report. Clicking the Move button on the toolbar will
take you to a page where you can specify the target location for the report item.

417

Report Management

17_584979 ch10.qxp 1/27/06 7:19 PM Page 417

Report Properties
Each report has basic properties for values such as which data source to use during processing. These
properties can be set by developers at design time or by users when the content is in production. Report
Manager provides an easy-to-use interface for working with report property settings. This section pro-
vides an overview of the report property pages.

The easiest way to access the properties of a report in Report Manager is to view the contents of a folder
in Details view. Begin by accessing the folder where your report is located. There’s a Show Details but-
ton on the right end of the Report Manager toolbar. This button reads Show Details or Hide Details,
depending on the current view state (see Figure 10-2 earlier in the chapter). In Details view, you can
access report properties without causing the report to begin processing. Click the properties icon for
your report, and you’ll be taken directly to the property pages for that item.

Execution
Depending on the scenario, you can control how often reports are executed. For example, you might
base execution on how often the source data changes or how long a report takes to run. If a report takes
longer than users are willing to wait, you can save the report and the data for delivery to the users later.
You’ll be able to take a “snapshot” of the data at a point in time, and improve the performance of your
server as a result. Figure 10-11 shows a sample Execution property page for a report.

Figure 10-11

418

Chapter 10

17_584979 ch10.qxp 1/27/06 7:19 PM Page 418

For Figure 10-11, I selected the option to have copies of the report added to the cache in
ReportServerTempDB. This means that a copy of the report will be kept in cache for the number of min-
utes specified. Thirty minutes is the default. Once the report has run, the cached copy will be rendered
for users instead of going through the entire report generation process. This can save resources on the
server and processing time for your users. This is covered in more detail in the “Managing Report
Execution” section later in this chapter.

Parameters
If your report takes input parameters, this property page will also be available to users who have
“Update Parameters” permission on the report. In Report Manager, this page is used to indicate if a
user should be prompted for a value, whether the parameter has a default value, and what text is used
to prompt the user. Figure 10-12 shows a sample Parameters page.

Figure 10-12

The following table provides descriptions of the parameter properties.

Property Description

Has Default When the check box is selected, the parameter has a default value — even if the
user doesn’t enter one.

Default Value What’s displayed here will vary depending on the parameter. For example, in
Figure 10-12 the four parameters are string data types. Two provide text boxes
for default values; if the Has Default check box is cleared, these controls will be
disabled. Two of the parameters display “Query Based.” This means the default
value used for the report comes from a T-SQL query, which is also used to
populate the control with possible options for the user when the report runs.

Null Used to indicate whether a null value is allowed for this parameter. This will be
disabled if Has Default is cleared.

Table continued on following page

419

Report Management

17_584979 ch10.qxp 1/27/06 7:19 PM Page 419

Property Description

Prompt User You can hide parameters from users by selecting this check box. This is a great
way to provide data-specific reports for different users.

Display Text Allows you to change the prompt for improved readability and user
comprehension when running the report.

Subscriptions
Using the subscription properties of a report, you can configure how users view a report. Subscriptions
can be set up for an individual user or broadcast to many users. For example, Report Server administra-
tors can create subscriptions that automate report execution and deliver rendered reports to user e-mail
inboxes or posted to file shares on the company network. The types of subscriptions and working with
them are covered later in this chapter.

Data Sources
Data sources are used to specify the sources of data to be used in the report. For example, you can indi-
cate that the queries in a report connect to a SQL Server or Oracle database. Data sources are wrappers
for connection strings. A connection string tells the server what server the source database is on, and what
database on that server to reference.

Credentials are an important data source property. Depending on your execution requirements, you
can specify whether or not the login credentials should be stored in the Report Server database. Finally,
reports can use a shared data source or a data source that is specific to an individual report. Figure 10-13
shows the Data Sources property page for a report.

Data sources are covered in more detail in “Working with Data Sources” later in this chapter.

Security
As you learned earlier in this chapter, you enable end user access to specific reports or folders using the
security properties for a folder or content item. When working with reports, you can also control which
data an end user can view within that report. For more information on working with security settings in
Report Manager, refer to “Securing Report Server Content” earlier in this chapter.

Linked Reports
Linked reports are extensions of standard, published reports. They’re a reliable, flexible way to cus-
tomize report output for different users. For example, you can use linked reports to create regional sales
reports based on the national report. Simply create a linked report for each region, and then specify
unique parameter values for each linked report.

A linked report is a configuration profile for a report that can store a separate set of configuration settings.
Because they’re based on already published reports, you can leverage that report design to create different
views of the same source data. They use the parent report data source and rdl file, but you can modify the
execution, parameter, subscription, and security properties without affecting the parent report. Creating a
linked report is done from the General property page of the report you want to use as the base report.
Provide a new name for your report, and modify the report parameters as needed for the target users.

420

Chapter 10

17_584979 ch10.qxp 1/27/06 7:19 PM Page 420

Figure 10-13

Publishing Reports
Report publishing is done by different users, and different tools are available to suit the needs of each.
For example, graphical user interfaces (GUIs) are provided for administrators, and programmatic
API’s are provided for developers. This section covers the most common tools and techniques for report
publishing.

Publishing with Report Manager
Publishing with Report Manager, because it’s an ASPX web application, allows users the flexibility of
publishing content using their browser. You can also manage existing content using this interface.

To upload a completed report to Report Manager, simply navigate to the location where you want the
report deployed. Once there, click the Upload File button on the toolbar.

Publishing from Visual Studio
You can publish content to the Report Server database from the development environment. Use the
standard Visual Studio deployment options, easily accessed by right-clicking an item in the Solution
Explorer window. First, I’ll cover deployment from Windows Explorer.

421

Report Management

17_584979 ch10.qxp 1/27/06 7:19 PM Page 421

Manual Deployment
In this scenario, you simply copy the rdl and other resource files from one location to another using the
file system and Windows Explorer. Select the solution items to deploy, and copy them to the target loca-
tion. To copy reports, select the report rdl file.

Add the resource files to a third-party source control application. This is also typically done using some
sort of tool that provides a combination of security and versioning capabilities.

Solution Explorer Deployment
Visual Source Safe integration with Visual Studio allows source control access directly from the develop-
ment environment. To work on a file, first check the item out from source control. Edit the item, and then
check it back in for inclusion in the next build.

A couple of project properties are important when using the Solution Explorer to deploy your project
items. You can access these properties by right-clicking the project name in the Solution Explorer win-
dow. Figure 10-14 shows an example.

Figure 10-14

422

Chapter 10

17_584979 ch10.qxp 1/27/06 7:19 PM Page 422

The Deployment properties available here include:

❑ Target Report and Data Sources Folders: Here, you can indicate the destination folders for your
reports and data sources. Leaving the TargetDataSourceFolder property blank will cause the
data Sources to be deployed to the same folder as the reports.

❑ Overwrite Data Sources: Indicates whether to replace any existing data sources with the data
sources in your project that have the same name. In Figure 10-14, the OverwriteDataSources
property still has the default value of False. You can tell that because the value is not in bold
font — when a value is changed from the default, the font is changed to bold. Be careful about
changing this from the default value, particularly when deploying to a production server.

The level in the project you select to begin a deployment from has an effect on what items are deployed.
For example, you can publish every project in a solution by deploying at the solution level. Selecting the
project and deploying from there will deploy all the data sources, reports, and any other content in that
project. You can deploy an individual item by right-clicking the item in the Solution Explorer window
and selecting Deploy from the context menu.

Programmatic Deployment
This involves making calls against the Reporting Services Web service using program code. As long as
the messages exchanged with the Report Server are understood by both endpoints, it doesn’t matter
what language or platform the client uses.

You can write scripts, for example, that automate the repetitive task of deploying reports. Many of the
common management tasks can be scripted. Once scripted, a process can then be automated to run on a
schedule. You can easily deploy multiple reports, data sources, or other resources using this technique.
To do that, you use the RS.exe utility.

You can also create a custom application to act as the user interface for deploying content. By using the
Reporting Services Web Services API, your application can perform the same functions. You’ll read more
about creating scripts and working against the Web Services API at the end of this chapter.

Updating Reports
To update a report, the rdl file is changed and then republished. Doing that replaces the report defini-
tion previously stored in the ReportServer database. Replacing an existing rdl file does not overwrite
any parameter changes that were made in Report Manager though, even if they were changed in the
newly deployed report. It also does not change any security, subscription, or other report execution set-
tings. In Report Manager, updating a report is done exactly the same as uploading a new one — using
the Upload File button on the Report Manager toolbar. Uploading files using Report Manager must be
done in the destination folder for that item.

Working with Data Sources
Data sources are wrappers for connection strings. Connection strings contain information about what
server the source database is on, what database to look for, what credentials to use when authenticating
to the database server, and so on. Data sources are generally created by the report author and added to

423

Report Management

17_584979 ch10.qxp 1/27/06 7:19 PM Page 423

the database content along with the report definition. At times, it may be necessary to adjust data source
properties for existing reports. When a database gets moved to a new machine, for example, you may
need to update data sources referencing that database to point them at the new machine.

Data sources are used by reports and by data-driven subscriptions. They are managed using Report
Manager, SQL Server Management Studio, and program code. If you are not versed in the practice of
creating a connection string or Transact-SQL expressions, it is recommended that you use the report
designer to create these expressions. The connection string and query expressions may be copied from
the respective designer tool and pasted into these text boxes. File paths must also be typed into these
pages, as no browsing feature is offered.

There are two types of data sources: private and shared, which are covered in the following sections.

Private Data Sources
This type of data source is for use by a single report and is embedded within the report definition. Since
private data sources are part of the report definition file (.rdl), modifications to the Data Source proper-
ties must be made using the report designer, or some other tool that can generate the correct XML. When
making changes in the report designer, the author can choose to overwrite the existing Data Source proper-
ties in the Report Server database.

Shared Data Sources
These items are separate from report definitions. Shared data sources are intended for use by reports and
subscriptions that retrieve similar data sets, giving you the ability to configure and manage a single data
source for use by multiple reports. For example, if the connection string for a data source changes, that
property only needs to be changed in one place. In that case, there’s no need to worry about whether
each dependent report is updated and retested. Updating and management is all performed at a single
location, rather than within multiple reports.

When working with shared data sources in Report Manager, you can view the items using that data
source. Those are called Dependent Items and are listed under the Dependent Items tab for the data
source, as shown in Figure 10-15.

Subscriptions dependent upon that shared data source are also listed, under the Subscriptions tab for the
data source.

Creating Data Sources
Both types of data sources can be created in Report Manager. Data sources are created in place, meaning
you must navigate to the location in Report Manager where you want the data source to be located. To
create a private data source, go to the Data Source property page of the report. To create a shared data
source, go to the folder where you want it to live and click the New Data Source button on the toolbar.
That will bring you to the New Data Source page, as shown in Figure 10-16.

424

Chapter 10

17_584979 ch10.qxp 1/27/06 7:19 PM Page 424

Figure 10-15

Figure 10-16

425

Report Management

17_584979 ch10.qxp 1/27/06 7:19 PM Page 425

Data Source Credentials
When the Report Server connects to a source database to retrieve data, authorization is performed on the
credentials it provides. Those credentials can be obtained from the user when the report is run, or they
can be values previously stored in the Report Server database. On-demand reports can run using creden-
tials supplied by the user at runtime or just use their current Windows account to authenticate. Scheduled
reports, however, must use credentials stored in the database. When a report run is not triggered by a
user — such as reports run on a schedule — credentials can’t be supplied by a user. When reports are run
on the server, Reporting Services must still authenticate itself to a database to retrieve source data. Setting
up a Windows user account specifically for this can help to resolve issues by providing trails in places
like server logs.

Credentials Supplied by the User
Here, the user will be prompted for a user name and password each time he or she runs a report. The
credentials can be used to identify the user as a Windows account holder or passed directly to SQL
Server so that it can perform its own authentication and authorization. Users can provide Windows or
SQL credentials, depending on whether your SQL Server is configured for Integrated Windows or SQL
Server security.

Credentials Stored Securely
Data sources used by cached reports (either cached instances or report snapshots) must use stored cre-
dentials. This information is stored in encrypted form with the shared data source or the report defini-
tion in the Report Server database.

Updating Data Sources
Updating data sources is a common task. For example, if the report solution is moved from a develop-
ment environment to a production environment, you’ll usually also need to point the data source at the
production database server and database.

Updating in Report Manager
You can change these Data Source properties from Report Manager or SQL Server Management Studio:

❑ Data Source Name: Use a unique name that makes it easy to tell what database the data source
points to.

❑ Connection Type: SQL Server, Oracle, OLEDB, and so on.

❑ Connection String: This includes the name of the server the source database is on and the name
of that database.

❑ Credentials: The user name and password that this data source uses to authenticate to the
source database server. This is an important one, because any time you change a Data Source
property you’re required to reenter the user password. Be prepared.

Changing Data Source properties in Report Manager will overwrite the properties stored in the
ReportServer database. The report rdl file isn’t modified in this process.

426

Chapter 10

17_584979 ch10.qxp 1/27/06 7:19 PM Page 426

Note that the changes you make to a shared data source using Report Manager overwrite the data
source properties previously held in the ReportServer database. If the report is redeployed, the Report
Manager settings remain. This can cause confusion if testing reveals a bug in a report, which is sent back
to the developer for rework. If the developer changes the report data source and redeploys the report,
the previous settings in Report Manager take precedence. To get around this, first delete the report from
the ReportServer database, and then redeploy the report.

Managing Report Execution
When a user requests a report, the Report Server begins a process. The process, like other processes, is
made up of a series of discreet operations or tasks. Understanding how reports are executed will help
you make effective decisions to optimize your server capabilities and user experience. This section cov-
ers techniques you can use to improve the performance of your report server.

Report Execution Process
For this topic, I’ll divide the execution process into three major pieces (shown in Figure 10-17): data
retrieval, intermediate report generation, and rendered report.

Figure 10-17

To process a report request, the Report Server pulls up the report definition from the ReportServer
database and the data set from the source database. When those two are brought together, the report and
the data exist in a format that can be persisted. From that intermediate state, reports can be rendered for
viewing by the user.

You can allow the process to execute each time or arrange to have portions of the process executed ahead
of time. For example, you can cache an intermediate version of a sales report in anticipation of a higher
user load every Monday morning. Before I cover that, though, let’s take a closer look at the process
when a user initiates the process.

Data Retrieval Intermediate Generation Report Rendering

Source
DB

Report
Server DB

Report UserWeb Service Host

427

Report Management

17_584979 ch10.qxp 1/27/06 7:19 PM Page 427

On-demand Report Generation
After a report is deployed to the Report Server, its definition is stored in the ReportServer Database.
Before the final rendered report is created, an image of the report and its data is produced on the server
in an intermediate report format. The intermediate report describes the placement of the report elements
before it is rendered to a specific output format. Figure 10-18 provides an example of the result of when
a user has initiated the report generation process.

Figure 10-18

The Report Server connects to the databases to retrieve the source data and report definition and
then creates the intermediate version of the report. A copy of the intermediate report is written to the
ReportServerTempDB database for that user, defined as a browser session. If that same user goes back
to the folder in Report Manager and clicks the report link again, he or she will get the cached version
of the report, saving database connections and processing time. Each user gets his or her own cached
version. For reports that take parameters, a different intermediate report is cached for different
parameter combinations.

The intermediate rendering format is the foundation of report caching. When a report is cached, the
intermediate format image is written to disk in the ReportServerTempDB database (one of the two
databases that compose the Report Server). This enables the report data and definition to be retrieved
with one connection and then output in different formats (or multiple times in the same format). A sin-
gle cached instance can produce different outputs based on report parameters that filter data on the
cached data. The final rendering is performed against the intermediate format using a designated ren-
dering extension.

Working with Cached Instances
Data sources used by cached reports (either cached instances or report snapshots) must use stored cre-
dentials. This information is stored in encrypted form with the shared data source or the report defini-
tion in the ReportServer database.

Data Retrieval Intermediate Generation Report Rendering

Source
DB

Report
Server DB

Report UserWeb Service Host

Report
Server

TempDB

428

Chapter 10

17_584979 ch10.qxp 1/27/06 7:19 PM Page 428

If the report is rendered from a cached instance, this means that data presented in the report could
potentially be out of date without the user’s realizing it. For this reason it may be a good idea to update
cached instances frequently, especially for a transactional database, where data may change often. In
the case of a data warehouse, it might make sense to synchronize cached report updates with batch
data updates to the warehouse database.

Cached reports are configured to expire after a specific period or on a schedule, after which the report
cache is flushed and the report is cached again on the next request. The cache will also be flushed auto-
matically when a report definition is modified and redeployed, caching options are changed, or the
report is deleted. Configure cache with Report Manager or Management Studio.

Using Parameters
If a report is configured to cache report instances when a user first requests the report with a unique
combination of parameter values (assuming that the report takes parameters), the intermediate form of
the report and its data are stored in the ReportServer database. Each unique combination of parameters
may produce a separate cached instance. A significant difference between a cached instance and a snap-
shot is that a cached instance is created the first time a user requests the report with unique parameters.
A different cached instance is created for different report input parameters.

Be careful when using this technique. You can easily wind up with many versions of a report being held
in the report server cache, quickly consuming resources. A better approach you might consider is keep-
ing a single cached instance on hand and creating views of the data using the technique described in the
following section.

Using Filters
Reports can apply a number of query and filtering techniques to the data. Typically, these include using
parameterized queries in the database (by using either ad hoc SQL statements or stored procedures) and
filtering data in the report, or a combination of the two.

Report filters are applied when the report is rendered for the user. Different users can have different
views of the same data, by filtering the data based on user identity. Applying different filters does not
cause a new cached instance to be created. Because of that, the report server can handle a greater num-
ber of report requests and respond to them more quickly.

Data Source Credentials
In order to set up any implementation of caching, security credentials must be provided for the data
source of a report. This is called storing credential securely on the report server. If you are using shared
data sources, this only needs to be set up once on the shared data source.

Snapshots and History
A snapshot is a static, cached copy of a rendered report. Snapshots are created before users want to view
a report and are usually created and refreshed on a defined schedule. Because snapshots are created
beforehand, users cannot interactively supply parameter values. Reports that require parameters must
be configured with these values ahead of time. This can be done in the Visual Studio report designer,
though you’ll typically use Report Manager or SQL Server Management Studio.

429

Report Management

17_584979 ch10.qxp 1/27/06 7:19 PM Page 429

Report snapshots may be placed into history. This means that when another snapshot is created for
a report, it doesn’t overwrite the previous snapshot. Any of these individual snapshots for the same
report may be retrieved from history until the history is cleared or reaches its maximum size. Reports
may manually or automatically be placed into history based on a schedule when a snapshot is created.

The following table compares the features of various types of cached reports.

Cached Instance Snapshot History

Creation Created with the first Created on a schedule Like a standard snapshot;
user request using a before the first user history entries can be created
unique combination of requests the report. on a schedule or snapshots
parameters. may be added to history

manually by users.

Lifespan Cache automatically A report snapshot is History entries don’t
expires after a overwritten when the next typically expire but may be
designated time has scheduled snapshot is overwritten when a
elapsed or based on a created. designated number of history
designated schedule. entries have been reached.

Typical To optimize For static reports that do Preserves snapshots for
Scenarios performance and not require user interaction, archival and future reference.

conserve resources a snapshot can be created Appropriate for keeping a
when the report runs with preselected parameter static view of data that
using different values. It’s not optimal if changes.
parameter values. reports have several

parameter options.

Often, a particular report needs to be generated at a predetermined interval. For example, let’s say a
sales report must be generated monthly. If the report were created at the end of January, users would
want to see the January report throughout February. They do not expect the February data to be seen in
the January report. These types of reports are best created upfront, without waiting for the first user to
request it, because the report is expected to be available at the end of January. Therefore, you can now
instruct Reporting Services to create the report proactively and keep it ready for users.

Snapshots for a report are set up on the Execution property page for a report. Figure 10-19 shows an
example of a snapshot configuration.

In this example, the report is being configured to create snapshots on a report-specific schedule. Users
will view reports that have been rendered from the most recent snapshot.

Using Parameters and Filters
Report parameters that are derived from query parameters cause data to be filtered at the data source.
Additional report parameters may be added to filter data on the report server using filter expressions.
Unlike query parameters that will cause multiple report instances to be cached (each instance for a dif-
ferent combination of parameters), filter parameters in a cached instance simply filter the data stored
with the cached report. Filter expressions are applied to the cached data and will not cause additional
instances to be cached.

430

Chapter 10

17_584979 ch10.qxp 1/27/06 7:19 PM Page 430

Figure 10-19

Since report snapshots (and subscriptions) are executed without the user’s interaction, all parameter val-
ues must be supplied beforehand. This is set up in the report configuration, so they’re readily available
to the processing engine at runtime. Reports configured to execute as a cached instance, on the other
hand, can be interactive and so do not require parameter values to be stored.

Like cached instances, filters can be applied to snapshots. The snapshot has already been created, and a
filter then reduces the result set that the report viewer actually sees rendered in the report. When used
with query parameters, filters provide a great deal of flexibility during report rendering. A snapshot can
freeze data at a particular point and then filter on the fly for different users.

Report History
Report snapshots may be placed into history. This means that when another snapshot is created for a
report, it doesn’t overwrite the previous snapshot. Any of these individual snapshots for the same report
may be retrieved from history until the history is cleared or reaches its maximum size. Reports may
manually or automatically be placed into history based on a schedule when a snapshot is created.

To help manage disk space, you can specify the number of reports kept in the archive. This can be done
either globally across all reports or for individual reports. When the number of reports in an archive has

431

Report Management

17_584979 ch10.qxp 1/27/06 7:19 PM Page 431

reached its limit, it will no longer add new snapshots. If you desire, you can also choose to keep an
unlimited number of snapshots in the report history.

To configure report histories globally, use the Site Settings page in Report Manager, as shown in
Figure 10-20.

Configuring the history for an individual report is done using the History property page of the report.

Figure 10-20

Scheduling Reports
Scheduling is used in a number of areas in Reporting Services. For example, scheduling is used to exe-
cute a report and create a snapshot. Like a regular report, the snapshot can then be placed in the report
History or delivered to users by e-mail or other method.

There are two kinds of schedules to work with: shared schedules and private schedules.

Shared schedules can be used across multiple reports. Private schedules are scoped to an individual report
and are not shared. Shared schedules are managed centrally by a user with sufficient permissions.

432

Chapter 10

17_584979 ch10.qxp 1/27/06 7:20 PM Page 432

Private schedules, on the other hand, are not handled centrally and require the user to manage each
schedule individually. Schedules can also be managed programmatically. In that case, shared and private
schedules are handled the same.

The scheduling mechanism is based on the SQL Server Agent, which fires and executes events at specific
times. When the subscription is triggered, SQL Server Agent adds an entry to the database queue, where
it’s polled by the Reporting Services Windows service. There are advantages to using both types of
scheduling options. Let’s take a closer look at working with shared schedules.

Creating a shared schedule makes it easier to schedule multiple events to run at the same time, and indi-
vidual schedules don’t have to be set up for each event. This may be an appropriate solution when you
need to run several reports during off-peak hours when the server isn’t busy with live user requests.
Although this may be more convenient, a significant penalty is realized when the server tries to run
demanding jobs at the same time. For reports that are long, perform complex calculations, or consume a
lot of data, you may want to stagger the schedules to prevent this condition.

Delivering Reports
Reports can be delivered to users in multiple ways and rendered in multiple formats. Rendering in
multiple formats occurs quickly, because the intermediate report format shortcuts most of the original
report processing as discussed earlier. Out of the box, reports can be rendered in these formats:

❑ HTML: For static snapshots.

❑ DHTML (the default): Allows dynamic behavior such as expanding report sections.

❑ PDF: Adobe Acrobat is needed on the client to view the file.

❑ DOC: Microsoft Word.

❑ XLS: Microsoft Excel; test well, especially if your report has dynamic behavior.

❑ CSV: Standard comma-delimited format.

The rendering format is specified by the user at runtime or when a subscription is configured. Reports
can be rendered in Web or Windows applications, or delivered to an end point for easy user access.

Two delivery options are provided: e-mail delivery and file share delivery.

E-Mail Delivery
Delivering reports by e-mail requires that a configured SMTP server is available. When Reporting
Services is first installed, the Setup Wizard prompts for the mail server name and address information.
If you launch the setup wizard again, it will not prompt for this information.

To modify or set the e-mail server information, you can edit the RSReportServer.config file or use
SQL Server Management Studio. When working directly with the configuration file, e-mail options are
set under the RSEMailDPConfiguration element in the Delivery section of this file. For more informa-
tion on modifying configuration settings, see Chapter 11.

433

Report Management

17_584979 ch10.qxp 1/27/06 7:20 PM Page 433

File Share Delivery
Specifying a file share subscription is very simple. On the Subscriptions link for a report, click Add
Subscription. On the Report Delivery Options page, under Delivered By, select Report Server File Share
from the drop-down list (see Figure 10-21).

Enter a valid Universal Naming Convention (UNC) file path into the Path text box. A local file system
path is not acceptable input. If you are entering a local path, follow these steps:

1. Using Windows Explorer, create a file share for the local path. This is easily done by right click-
ing on the folder and selecting Sharing. Create the share using the Sharing tab.

2. Using the Permissions options on the Sharing tab, grant a user read and write access to this
shared folder.

3. Click OK on the Sharing Permissions dialog to accept the file share settings.

4. In Windows Explorer, navigate to My Network Places (or Network Neighborhood in Windows
NT). Continue to drill down to the network share on the server. Typically, this will be under
Entire Network\ Microsoft Windows Network\ (your domain or workgroup name)\
(server name)\ (file share name).

5. Copy the path from the address box in Windows Explorer and paste it into the Path text box.

Figure 10-21

434

Chapter 10

17_584979 ch10.qxp 1/27/06 7:20 PM Page 434

The UNC path should be in the form \\server name\share name. Although it is not usually recom-
mended, you can use an administrative user’s credentials to write the subscription output file. In this
case, you could use an administrative share (such as c$) rather than create a new share. In any case, the
system administrator should be involved in this decision.

Pocket PC Report File Updates
If you would like to have a subscription that updates file-based reports for a Pocket PC device, you can
output report files across the network to the synchronization folder for a device. When a mobile device
partnership is created using Microsoft ActiveSync on a user’s personal computer, a folder is designated for
automatic file synchronization. Any files that are modified or written to this folder will be automatically
synchronized with the Pocket PC device. This folder is found under the user’s My Documents folder and
is typically named (mobile device name) My Documents. For example, if your device name were Freds
Pocket PC, the synchronization folder would be named Freds Pocket PC My Documents. Any subfolders
are also synchronized, so you could create a subfolder called Reports and write report files to this location.

When creating file shares for machines across the network, the My Documents folder location can be
remapped by the user and is profile-specific. The default location for My Documents is C:\Documents
and Settings\(user profile name)\My Documents. Make sure that the user writing to the remote
computer from the Report Server has been granted write access to the output folder.

Report Subscriptions
As a manager, you may need to do a biweekly status report for your people. When you travel, you might
like to have a current, up-to-date employee directory on your PDA at all times. As new items are added to
your product line or pricing changes, you’d like the updated product catalog in front of your people, so
they’re never working with outdated information. Using subscriptions makes all of this possible, simply
and easily.

Using a combination of the Reporting Services Windows service and SQL Server Agent, the subscription
engine renders a report anytime you want it. It renders it in the format you need and delivers it using
the method you choose — either by e-mail or to a file in any folder. When delivering reports via e-mail,
you can specify that a link to the report be embedded in the e-mail or the entire rendered report.

A common subscription management task is to verify that subscriptions are running as scheduled. The
outcome of subscription events is recorded in the server’s Application Log, and more specific details are
written to individual log files with the date/time stamp in each file name. Over time, hundreds of these
files may be produced and should be moved off to a backup machine and/or deleted.

Events in the Application Log are recorded with the Source property value of Report Server and SQL
Server Reporting Service. There is no method to directly read or consolidate the individual log files.
However, Reporting Services ships with SQL script files, which will enable you to import this data into
tables for analysis using SQL Server Integration Services. These files are contained on the product CD in
the Extras folder.

Simplified subscription log information is easy to obtain in the Report Manager. To get information for a
specific report, select the Subscription tab for that report. The status for the last execution is displayed
for each subscription and snapshot. A summary view of all reports accessible to the current user is also
available on the My Subscriptions tab. These execution summaries can be used to diagnose subscription
errors including service- and permission-related problems.

435

Report Management

17_584979 ch10.qxp 1/27/06 7:20 PM Page 435

Snapshot-Triggered Subscriptions
Subscriptions can be triggered when a snapshot gets updated rather than being directly tied to a schedule.
If the snapshot is refreshed on a schedule, this effectively will cause the subscription to deliver a report on
the schedule for the snapshot. Since snapshots can also be updated manually, using this technique can
guarantee that users receive updated reports regardless of the method used to refresh the snapshot. For
example, at the end of each month, after you bulk-load new data into your decision-support database,
you update the related snapshots. Triggering subscriptions on the snapshot updates brings the process
into balance without concern for the coordination of scheduled events.

The option to create a snapshot-triggered subscription is available only when the report execution is based
on a subscription. After setting up a snapshot for your report, add a subscription. Under the Subscription
Processing Options, select the radio button to run the subscription when the report content is refreshed.

Schedule-Triggered Subscriptions
The most common type of subscriptions are based on a shared or individual schedule. Schedule options
vary, depending on how frequently you want the schedule to trigger a report run. Figure 10-22 shows an
example of a daily schedule.

Figure 10-22

436

Chapter 10

17_584979 ch10.qxp 1/27/06 7:20 PM Page 436

In this case, the report is scheduled to run at 8:00 am every Monday, based on the date/time settings of
the server.

Data-Driven Subscriptions
A data-driven subscription is a subscription where the report recipient information is provided by a
query. In addition to the list of recipients, several subscription-specific properties can be based on values
returned by a query as well. For example, you can deliver reports to multiple users in multiple rendered
formats. The list of users can be dynamic, and each can receive customized content. This makes some
very interesting and creative solutions possible.

Reporting Services doesn’t provide a database by default, so you do have to do a little work to prepare a
data-driven subscription, but it’s actually quite simple. The data can be stored in practically any form as
long as the necessary values are available in columns returned by the query. At the very least, the only
requirement is a list of names or e-mail addresses.

Delivery settings and parameters may use either static values (assigned when the subscription is created)
or values returned from a query. The query could also return information that can be used to customize
a report; this implies that for every subscription recipient, a report may be rendered in a different format,
sent to a different file share, or sent using a different subject line, priority flag, and so on.

These subscriptions can be set to run on a predefined schedule, or they can be triggered by the execution
of a snapshot. You can also “deliver” data-driven subscriptions to cache by simply specifying the Null
Delivery Provider in the subscription properties.

Automating Content Management
Because Reporting Services is a Web service, the functionality it exposes can be accessed and consumed
using code. Code can be set to run on a schedule, enabling tasks to be performed unattended. Examples
of common tasks that can be done using code include:

❑ Duplicating settings between servers.

❑ Migrating content from test to production environments.

❑ Changing shared data sources.

❑ Canceling running jobs.

The next sections in this chapter look at automating two tasks that you’ve already read about in this
chapter: subscription management and report deployment.

Automating Subscription Management
The Reporting Service Web service object exposes methods for managing subscriptions. Remember that
web methods (programmatic methods for a webservice class) don’t support overloaded calls or optional
arguments. For arguments that don’t require a value, you can pass a Null (C#) or Nothing (VB).

437

Report Management

17_584979 ch10.qxp 1/27/06 7:20 PM Page 437

Let’s look at a few examples of some subscription management routines. To obtain a list of subscriptions
with associated properties for a report, you can use the ListSubscriptions method and use it by pass-
ing in a report name. This returns a collection of Subscription objects.

You’ll build a sample application to view and create subscriptions. I’m not going to take you through
this example step by step, but I will give you enough information to reproduce the subscription-related
code. As you can see in Figure 10-23, I’ve added two ComboBoxes, two Buttons, and a ListView con-
trol to a form in a Windows application project.

The Panel and the other controls at the bottom will be used later to create new subscriptions. The Panel
is invisible, and the New Subscription button is disabled. The click event of the Get Subscription button
enables the other button because you create the ReportService object in this event.

The ListSubscriptions event takes two optional arguments. Now, if you were paying attention, you
would have caught that web methods don’t support optional arguments! In this sense, arguments that
don’t have required values can accept the value Nothing (VB) or null (C#), making these methods
somewhat polymorphic (behaving differently under different conditions); this method behaves like this.
If you pass the path and report name for the Report argument, all subscriptions are returned. If you
pass the user name for the Owner, subscriptions owned by this user are returned, and if you pass noth-
ing, all subscriptions on the server are returned. I’ve written some conditional statements that check the
two combo boxes and pass the appropriate values.

Figure 10-23

438

Chapter 10

17_584979 ch10.qxp 1/27/06 7:20 PM Page 438

In the declaration section of the form class module, you declare an object variable for the Web service
proxy class. The code to implement this in VB is as follows:

Private rs As New localhost_RS.ReportingService

The code in C# is as follows:

private localhost_RS.ReportingService rs = new localhost_RS.ReportingService();

The Get Subscription button uses two object variables to hold the report path name and/or owner name
supplied by the user. You use object type variables so you can pass the value Nothing (VB) or null (C#)
in case no values are provided.

After attaching the current user’s security credentials to the Web service proxy object, you use the
ListSubscriptions method to iterate through each subscription object and write associated properties
to list and view subitems. The ListView control will show each of these values in separate columns if
displayed in Detail mode. The last step is to enable the New Subscription button. This button will be
used in the next example. The code to implement this in VB and C# follows:

VB
Private Sub btnGetSubscriptions_Click(_

ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles btnGetSubscriptions.Click

Dim subscr As localhost_RS.Subscription
Dim strReport As String = IIf(Me.cboReport.Text <> “”, Me.cboReport.Text, _

Nothing)
Dim strOwner As String = IIf(Me.cboOwner.Text <> “”, Me.cboOwner.Text, Nothing)

rs.Credentials = System.Net.CredentialCache.DefaultCredentials
‘-- Loop through subscriptions collection, add to listview
For Each subscr In rs.ListSubscriptions(strReport, strOwner)

Dim ListItem As New ListViewItem
With ListItem

.Text = subscr.Description

.SubItems.Add(subscr.Owner)

.SubItems.Add(subscr.EventType)

.SubItems.Add(subscr.LastExecuted)

.SubItems.Add(subscr.Status)
End With
Me.lstvwSubscriptions.Items.Add(ListItem)

Next
‘-- Enable new subscription button
Me.btnNewSubscription.Enabled = True

End Sub

C#
private void btnGetSubscriptions_Click(object sender, System.EventArgs e)
{

string strReport = null;
string strOwner = null;
if(this.cboReport.Text!= “”)
{

439

Report Management

17_584979 ch10.qxp 1/27/06 7:20 PM Page 439

strReport = this.cboReport.Text;
}
if(this.cboOwner.Text!= “”)
{

strOwner = this.cboOwner.Text;
}
rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

foreach (localhost_RS.Subscription subscr in rs.ListSubscriptions(strReport,
strOwner))

{
ListViewItem ListItem = new ListViewItem();
ListItem.Text = subscr.Description;
ListItem.SubItems.Add(subscr.Owner.ToString());
ListItem.SubItems.Add(subscr.EventType.ToString());
ListItem.SubItems.Add(subscr.LastExecuted.ToShortDateString());
ListItem.SubItems.Add(subscr.Status.ToString());
this.lstvwSubscriptions.Items.Add(ListItem);

}
this.btnNewSubscription.Enabled = true;

}

You can add a new subscription using the CreateSubscription method. Arguments passed to this
method are as follows:

❑ ExtensionSettings: This argument is required and can be a little tricky. The
ExtensionSettings object contains two properties. The Extension property is a string indi-
cating the type of delivery extension. The ParameterValues property is an object of type
ParameterValueOrFieldReference that contains an array of ParameterValue objects. Each
element is a name/value pair. Depending on the subscription type, a different list of parameter
name/value pairs is passed using this array. These parameters correspond to the items pre-
sented on the Report Delivery Options section of the Snapshot page in Report Manager.

❑ EventType: This argument takes a string to set either TimedSubscription or SnapshotUpdate.

❑ MatchData: This argument accepts multiple types and values depending on the EventType
argument; these include the ScheduleID for a shared schedule or a string containing the XML
element content for the schedule. Shared schedule information may be obtained using the
ListSchedules method to enumerate the server’s schedules.

❑ Parameters: This argument is an array of ParameterValue objects. It is used to supply report
parameters as name/value pairs.

Now, let’s put it all together in a sample application. Using the same form as the previous example, I’ve
placed two text boxes, two combo boxes, and a button on the Panel control at the bottom of the form, as
shown in Figure 10-24.

At the top of this form, the New Subscription button was enabled at the end of the Get Subscriptions
button-click event code. In the click event of this button, you set the Visible property of the panel to True
and get a list of shared subscriptions that have been created on the Report Server, adding the Description
for each schedule to the Schedule combo box. For the following code, you’ll look at VB and C# language
examples side by side:

440

Chapter 10

17_584979 ch10.qxp 1/27/06 7:20 PM Page 440

Figure 10-24

VB
Private Sub btnNewSubscription_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _
Handles btnNewSubscription.Click

Me.Panel1.Visible = True

Dim sched As localhost_RS.Schedule
For Each sched In rs.ListSchedules

Me.cboSchedules.Items.Add(sched.Description)
Next

End Sub

C#
private void btnNewSubscription_Click(object sender, System.EventArgs e)
{

this.Panel1.Visible = true;
foreach (localhost_RS.Schedule sched in rs.ListSchedules())
{

441

Report Management

17_584979 ch10.qxp 1/27/06 7:20 PM Page 441

this.cboSchedules.Items.Add(sched.Description);
}

}

After a schedule is selected from the schedule combo box, the SelectedIndex value will correspond to
the index of the corresponding schedule. Let’s use this to obtain the ScheduleID value and pass it to the
CreateSubscription method.

After entering a description, recipient e-mail address, and selecting a rendering format, the user clicks
the Add Subscription button. In this click event, you set up the values and objects passed as arguments
to the CreateSubscription method. Let’s see how to do this in the following sections.

The selected item in the Schedule combo box corresponds to a member of the Schedules collection
returned by the ListSchedules method. There is only one method to obtain these items, so you use a
loop to resolve the selection and exit when the counter variable matches the SelectedIndex property
of the combo box.

VB
‘-- Get selected schedule
Dim sched As localhost_RS.Schedule
Dim iSchedCounter As Int16
For Each sched In rs.ListSchedules

iSchedCounter += 1
If iSchedCounter = Me.cboSchedules.SelectedIndex() Then Exit For

Next

C#
//-- Get selected schedule
localhost_RS.Schedule scheduleItem = null;
Int16 iSchedCounter = 0;
foreach (localhost_RS.Schedule sched in rs.ListSchedules())
{

iSchedCounter += 1;
if (iSchedCounter == this.cboSchedules.SelectedIndex)
{

scheduleItem = sched;
break;

}
}

You can now obtain the ScheduleID property of the Schedule object using the sched variable.

Next, you create an ExtensionSettings object and set its Extension property to indicate that this
subscription will use the e-mail delivery extension as follows.

VB
Dim extset As New localhost_RS.ExtensionSettings
extset.Extension = “Report Server Email”

442

Chapter 10

17_584979 ch10.qxp 1/27/06 7:20 PM Page 442

C#
localhost_RS.ExtensionSettings extset = new localhost_RS.ExtensionSettings();
extset.Extension = “Report Server Email”;

Now we move on to the extension-specific properties of the ExtensionSettings object. The
ParameterValues property is set to an object of type ParameterValueOrFieldReference and is
a five-element array. You also create five corresponding ParameterValue objects. For each of these
objects, you set the Name and Value properties and then add them to the array.

VB
‘-- Create Parameter Values array
Dim ParamVals(5) As localhost_RS.ParameterValueOrFieldReference
extset.ParameterValues = ParamVals

‘-- Populate the Extension Parameters
Dim pvTo As New localhost_RS.ParameterValue
pvTo.Name = “TO”
pvTo.Value = Me.txtEMailTo.Text
extset.ParameterValues(0) = pvTo
Dim pvIncludeRpt As New localhost_RS.ParameterValue
pvIncludeRpt.Name = “IncludeReport”
pvIncludeRpt.Value = “True”
extset.ParameterValues(1) = pvIncludeRpt

Dim pvRenderFormat As New localhost_RS.ParameterValue
pvRenderFormat.Name = “RenderFormat”
pvRenderFormat.Value = Me.cboRenderFormat.Text
extset.ParameterValues(2) = pvRenderFormat
Dim pvPriority As New localhost_RS.ParameterValue
pvPriority.Name = “Priority”
pvPriority.Value = “NORMAL”
extset.ParameterValues(3) = pvPriority

Dim pvSubject As New localhost_RS.ParameterValue
pvSubject.Name = “Subject”
pvSubject.Value = “@ReportName was executed at @ExtensionTime”
extset.ParameterValues(4) = pvSubject

C#
//-- Create Parameter Values array
localhost_RS.ParameterValueOrFieldReference[] ParamVals = new

Subscriptions_CS.localhost_RS.ParameterValueOrFieldReference[5];
extset.ParameterValues = ParamVals;

//-- Populate the Extension Parameters
localhost_RS.ParameterValue pvTo = new localhost_RS.ParameterValue();
pvTo.Name = “TO”;
pvTo.Value = this.txtEMailTo.Text;
extset.ParameterValues[0] = pvTo;

localhost_RS.ParameterValue pvIncludeRpt = new localhost_RS.ParameterValue();
pvIncludeRpt.Name = “IncludeReport”;

443

Report Management

17_584979 ch10.qxp 1/27/06 7:20 PM Page 443

pvIncludeRpt.Value = “true”;
extset.ParameterValues[1] = pvIncludeRpt;

localhost_RS.ParameterValue pvRenderFormat = new
localhost_RS.ParameterValue();

pvRenderFormat.Name = “RenderFormat”;
pvRenderFormat.Value = this.cboRenderFormat.Text;
extset.ParameterValues[2] = pvRenderFormat;

localhost_RS.ParameterValue pvPriority = new localhost_RS.ParameterValue();
pvPriority.Name = “Priority”;
pvPriority.Value = “NORMAL”;
extset.ParameterValues[3] = pvPriority;

localhost_RS.ParameterValue pvSubject = new localhost_RS.ParameterValue();
pvSubject.Name = “Subject”;
pvSubject.Value = “@ReportName was executed at @ExtensionTime”;
extset.ParameterValues[4] = pvSubject;

The report you are using doesn’t require any parameters, so you have everything necessary to actually
create the subscription. Call this method by passing Nothing in place of a Parameters array.

VB
‘-- Create the Subscription (no report parameters in last arg)
rs.CreateSubscription(Me.cboReport.Text, _

extset, _
Me.txtDescription.Text, _
“TimedSubscription”, _
sched.ScheduleID, _
Nothing)

C#
//-- Create the Subscription (no report parameters in last arg)
rs.CreateSubscription(this.cboReport.Text,

extset,
this.txtDescription.Text,
“TimedSubscription”,
scheduleItem.ScheduleID,
null);

Now let’s look at the entire routine put together. Here’s all of the Add Subscription button-click event
code in both VB and C#:

VB
Private Sub btnAddSubscription_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs)
Handles btnAddSubscription.Click

‘-- Get selected schedule
Dim sched As localhost_RS.Schedule
Dim iSchedCounter As Int16
For Each sched In rs.ListSchedules

444

Chapter 10

17_584979 ch10.qxp 1/27/06 7:20 PM Page 444

iSchedCounter += 1
If iSchedCounter = Me.cboSchedules.SelectedIndex() _

Then Exit For
Next

Dim extset As New localhost_RS.ExtensionSettings
extset.Extension = “Report Server Email”

‘-- Create Parameter Values array
Dim ParamVals(5) As localhost_RS.ParameterValueOrFieldReference
extset.ParameterValues = ParamVals

‘-- Populate the Extension Parameters
Dim pvTo As New localhost_RS.ParameterValue
pvTo.Name = “TO”
pvTo.Value = Me.txtEMailTo.Text
extset.ParameterValues(0) = pvTo
Dim pvIncludeRpt As New localhost_RS.ParameterValue
pvIncludeRpt.Name = “IncludeReport”
pvIncludeRpt.Value = “True”
extset.ParameterValues(1) = pvIncludeRpt

Dim pvRenderFormat As New localhost_RS.ParameterValue
pvRenderFormat.Name = “RenderFormat”
pvRenderFormat.Value = Me.cboRenderFormat.Text
extset.ParameterValues(2) = pvRenderFormat
Dim pvPriority As New localhost_RS.ParameterValue
pvPriority.Name = “Priority”
pvPriority.Value = “NORMAL”
extset.ParameterValues(3) = pvPriority
Dim pvSubject As New localhost_RS.ParameterValue
pvSubject.Name = “Subject”
pvSubject.Value = “@ReportName was executed at @ExtensionTime”
extset.ParameterValues(4) = pvSubject

‘-- Create the Subscription (no report parameters in last arg)
rs.CreateSubscription(Me.cboReport.Text, _

extset, _
Me.txtDescription.Text, _
“TimedSubscription”, _
sched.ScheduleID, _
Nothing)

End Sub

C#
private void btnAddSubscription_Click(object sender, System.EventArgs e)
{

//-- Get selected schedule
localhost_RS.Schedule scheduleItem = null;
Int16 iSchedCounter = 0;
foreach (localhost_RS.Schedule sched in rs.ListSchedules())
{

iSchedCounter += 1;
if (iSchedCounter == this.cboSchedules.SelectedIndex)

445

Report Management

17_584979 ch10.qxp 1/27/06 7:20 PM Page 445

{
scheduleItem = sched;
break;
}

}
localhost_RS.ExtensionSettings extset = new localhost_RS.ExtensionSettings();
extset.Extension = “Report Server Email”;

//-- Create Parameter Values array
localhost_RS.ParameterValueOrFieldReference[] ParamVals = new
Subscriptions_CS.localhost_RS.ParameterValueOrFieldReference[5];
extset.ParameterValues = ParamVals;

//-- Populate the Extension Parameters
localhost_RS.ParameterValue pvTo = new localhost_RS.ParameterValue();
pvTo.Name = “TO”;
pvTo.Value = this.txtEMailTo.Text;
extset.ParameterValues[0] = pvTo;

localhost_RS.ParameterValue pvIncludeRpt = new localhost_RS.ParameterValue();
pvIncludeRpt.Name = “IncludeReport”;
pvIncludeRpt.Value = “true”;
extset.ParameterValues[1] = pvIncludeRpt;
localhost_RS.ParameterValue pvRenderFormat = new

localhost_RS.ParameterValue();
pvRenderFormat.Name = “RenderFormat”;
pvRenderFormat.Value = this.cboRenderFormat.Text;
extset.ParameterValues[2] = pvRenderFormat;

localhost_RS.ParameterValue pvPriority = new localhost_RS.ParameterValue();
pvPriority.Name = “Priority”;
pvPriority.Value = “NORMAL”;
extset.ParameterValues[3] = pvPriority;

localhost_RS.ParameterValue pvSubject = new localhost_RS.ParameterValue();
pvSubject.Name = “Subject”;
pvSubject.Value = “@ReportName was executed at @ExtensionTime”;
extset.ParameterValues[4] = pvSubject;

//-- Create the Subscription (no report parameters in last arg)
rs.CreateSubscription(this.cboReport.Text,

extset,
this.txtDescription.Text,
“TimedSubscription”,
scheduleItem.ScheduleID,
null);

}

Using Script
Using script, you can perform almost any task in a .NET application, but scripts are run at the command
line in text mode. A Reporting Services script file is written using VB code and has nearly all the capabil-
ities of a console application.

446

Chapter 10

17_584979 ch10.qxp 1/27/06 7:20 PM Page 446

You will use the GetSubscriptions button code from the Subscription Manager application above.
However, there are some modifications for this to work in console mode rather than as a Windows form.
The VBScript code is saved in a file called List_Subscriptions.rss.

Sub Main()
Dim subscr as Subscription
Console.WriteLine()
Console.Write(“Report: “)
Dim strReport as String = Console.ReadLine()
Console.Write(“Owner: “)
Dim strOwner as String = Console.ReadLine()
rs.Credentials = System.Net.CredentialCache.DefaultCredentials
If sReport = “” Then strReport = Nothing
If sOwner = “” Then strOwner = Nothing

Console.WriteLine()
Console.WriteLine(“***”)
Console.WriteLine(“Subscriptions for:”)
Console.WriteLine(“Report: “ & sReport)
Console.WriteLine(“Owner: “ & sOwner)
Console.WriteLine(“---”)
For Each subscr In rs.ListSubscriptions(strReport, strOwner)

Console.WriteLine(subscr.Description)
Next
Console.WriteLine(“---”)

End Sub

In a Reporting Services script, the Reporting Service Web service is invoked automatically, and all
related classes are accessible without additional references. As you can see in this code, you declare a
Subscription object using the variable subscr.

Using the Console object, you use the ReadLine method to obtain a value from the user and the Write
and WriteLine methods to send text to the console (command line).

You can use two string variables, sReport and sOwner, to capture input from the user and then convert
these values to object types using the variables oReport and oOwner. This is necessary so you can pass
the Nothing value to the ListSubscriptions method in case the user doesn’t provide a value. Next,
you iterate through the Subscriptions collection and write out the list to the console.

Scripting can ease the content and server management process. The “Creating Scripts” section of this
chapter covers scripting in more detail.

Automating Report Deployment
A great time to automate a process is when deploying reports or migrating content from one environ-
ment to another. For example, moving reports from development to test, and then again from test to pro-
duction environments. Once in production, you may need to deploy content across multiple servers in a
farm. Scripting is a “write it once, cash it as many times as you like” kind of tool that’s good to have in
your toolbox. We take a detailed look at a script that deploys reports in the next section.

447

Report Management

17_584979 ch10.qxp 1/27/06 7:20 PM Page 447

Creating Scripts
Many repetitive tasks on Report Server administration and management can be automated using script
files. An example that was covered in the last topic is managing subscriptions. You can also copy reports
from one server to another and then schedule the script to run when network traffic is low. By using
scripts, the security configuration can be updated on a remote machine, or the settings of a single report
can be copied to multiple reports on a server — or across a server farm.

Reporting Services provides a WMI interface to the configuration files for the Report Server instance and
the Report Manager application. Much like the command-line utilities, these classes provide a way to
programmatically perform application management. For example, you can change the credential values
and authentication mechanisms that the Report Server uses to connect to the database. The same classes
can be used to perform actions on remote machines.

As you may know, the configuration files are XML files. The next time the application runs, the .NET
Common Language Runtime (CLR) will apply the new values in the configuration file. The Report Server
configuration file is programmatically accessed through the MSReportServer_ConfigurationSetting
class, and the Report Manager Interface web application configuration file is available through the
MSReportServerReportManager_ConfigurationSetting class. Both classes are accessed through the
WMI interface.

Script files can be created using a text editor, Visual Studio, or SQL Server Management Studio. The file
that contains the automation code is a Unicode or UTF-8 text file with a .rss file extension. The code
itself is written in VB. We’ll cover automatically generated scripts at the end of this chapter; in the mean-
time, let’s look at how to build your own.

Using the RS WMI Provider
Invoking the RS utility is as simple as typing rs or rs.exe at the command prompt and supplying the
required values. The two required values are the script to run (/i argument) and the server to run the
script against (/s argument).

The syntax for using the RS utility is:

rs /i <inputFile> /s <serverURL> [/u <username>] [/p <password>] [/l <timeout>]
[/b] [/v <var=value>] [/t]

The arguments (parameters) can be indicated by using the / or – symbols. For example, the input file
value can be provided using –i or /i and the filename. It’s a matter of personal preference and, in some
cases, the company style guide. The arguments themselves are case insensitive except for the password
value. You can have as many spaces as you want between the argument indicator and the value you’re
providing.

The script file must be a fully qualified path to the rss file. For example, let’s say that your scripts are
located in the C:\ReportServer\Scripts directory. If you navigate to that location in the command
window, the path value that you’ll provide to the RS utility will be as simple as the filename itself.

The serverURL value is made up of the protocol, server, and virtual directory to execute the script. By
default, the RS utility will attempt to connect to the resource using https. If you specify http, the RS

448

Chapter 10

17_584979 ch10.qxp 1/27/06 7:20 PM Page 448

utility will only use http. If you specify https and it’s not supported on the server, the RS utility will
return an error.

By default, the RS utility will authenticate against the target Report Server instance using the credentials
provided by the user running the script. Both the user name and password arguments are optional argu-
ments and can be used to provide different credentials. The script itself can provide credential values
through the rs object, but hardcoded credentials are a security threat. It’s better to have the script
authenticate credentials passed by the user at runtime; the user name must include the domain name
and user account.

The timeout value is an optional argument and is used to specify the number of seconds before the con-
nection to the server times out. The default value is eight seconds. Providing a value of zero means the
connection never times out.

If you want your script to run as a batch, you can indicate that by using the optional /b argument.
Batches are particularly useful when you need to be sure that the same action is performed on multiple
machines; for example, when running a script against multiple machines in a server farm. A batch runs
as a type of minitransaction where failure of commands within the script causes the batch to roll back.
This argument doesn’t take any values. The RS utility default behavior is to run scripts without creating
a batch.

Your VB script can also contain variables with user-provided values. These variables are not declared in
the script and are available globally to any member within the script. The values are supplied using /v
arguments for each variable, which are provided as name=value pairs. The following code shows an
example:

rs /i DeployReports.rss /s http://localhost/reportserver/reportservice.asmx /v
targetURL= http://localhost/reportserver/reportservice.asmx

The quotation marks around the value are optional unless the value contains spaces. The /v argument is
optional unless your script uses a variable value that’s not declared in the script. If the script takes an
argument that the user doesn’t supply, the script will not compile.

The /t argument is also optional; it turns on tracing to view request processing and capture information
about returned errors.

When your script runs, the RS utility creates an instance of the scripting engine to run it. The VB script-
ing engine uses the same code base as VB, so you have access to standard VB functionality from within
your script. You’ll take a closer look at the hosting environment capabilities and limitations throughout
the rest of this chapter.

Creating a Script Using Code
Although Visual Studio is not required for script execution or development, it’s ideal for development
because the developer has the support of syntax highlighting, code completion, and IntelliSense. The
development environment provides sophisticated debugging capabilities, and the file can be managed
as part of a Visual Studio 2005 project.

Visual Studio is a robust development tool that’s familiar to most .NET developers. Its IntelliSense, code
completion, and debugging capabilities help ease the development of rss scripts as well. If you plan on

449

Report Management

17_584979 ch10.qxp 1/27/06 7:20 PM Page 449

creating multiple scripts for the RS utility, it can be helpful to group the individual script projects under
a single solution. To do that, simply start with a blank solution and add script projects as needed.

In Visual Studio, select File➪New➪Blank Solution from the menu bar. This will open the New Project
dialog box.

Name the blank solution rsUtilities, and click OK to create the solution. You now have a container for all
your RS utility script projects. To add the first project, right-click the solution in the Solution Explorer
and select Add➪New Project to open another New Project dialog box. This time select Visual Basic
Projects in the Project Types pane. You’ll see the various prebuilt project templates in the right pane.
Choose the Console Application template and give the project an appropriate name, in this case,
DeployReports.

Click OK to close the dialog box and add the project to the solution. The Module1.vb file will open in
the code window. Notice that the file already includes the Main method contained in a module called
Module1. Rename the Module1.vb file to DeployReports.vb in the Solution Explorer.

Now that the rough framework is in place, let’s further define the environment you’ll be working in.

Adding Imports Statements
Remember, you only have access to certain namespaces from within the rss script. The RS hosting util-
ity provides the namespace access. The script file itself does not contain any Imports statements. The
console application template includes several Imports statements already, and you’ll need to modify
those to suit the project.

To do this, right-click the DeployReports project in the Solution Explorer and select Properties. That will
bring up the DeployReports Property Pages box. In the Common Properties folder in the left pane, click
the Imports group. Notice that in the Project imports box, five namespaces are already listed:

❑ Microsoft.VisualBasic

❑ System

❑ System.Collections

❑ System.Data

❑ System.Diagnostics

Select and remove all but the System and System.Diagnostics namespaces. The System.Diagnostics
namespace is included for debugging purposes. Then, add System.IO, System.Web.Services, and
System.Xml. Your new imports list will include:

❑ System

❑ System.Diagnostics

❑ System.IO

❑ System.Web.Services

❑ System.Xml

450

Chapter 10

17_584979 ch10.qxp 1/27/06 7:20 PM Page 450

Adding the Web Reference
Now you’ll need to modify the assembly references for the project. First, remove the references that are
not needed. In the Solution Explorer, open the References folder to view the current assembly references.
Remove the System.Data reference by right clicking it and selecting Remove from the context menu.
Then right-click the References folder, and select Add Reference.

In the Add Reference dialog box, ensure that you’re viewing the .NET tab. Select the System.Web
.Services.dll assembly by clicking the component name, and then click the Select button. That will add
the component to the list of Selected Components in the bottom list box. Click OK to add the reference to
your project.

For development, you’ll also need to reference the Reporting Services Web service. To do that, right-click
the References folder in the Solution Explorer and select Add Web Reference to bring up the Add Web
Reference dialog box. This form contains a browser pane, an address bar, and a couple of other items.
In the address bar, type the URL of the Report Server you want to code against. The default URL is
http<s>://<servername>/reportserver/reportservice.asmx.

If you’ve pointed at a valid Web service, the Add Reference button will be enabled. Before you click it,
however, give the web reference a name; in this case, the reference is called ReportServer.

Clicking the Add Reference button invokes the wsdl.exe utility. The wsdl.exe checks the WSDL docu-
ment for the Web service and creates a proxy class that acts as your local interface to the remote Web ser-
vice. You’re creating a Web service proxy in the same way that the RS utility creates it for your hosted
script. Now you can code against that Web service as if it were a local object because in proxy form, it is
a local object.

A Sample Deployment Script
Here’s an example of a script used to migrate content from one environment to another. It works against
the RS utility described earlier, and is structured to work in that environment. You’ll need to wrap this
code in a console application for it to run in Visual Studio 2005.

The Main method is the entry point into the application, and is where the bulk of the work is done.
Three helper subs are called from Main(). The credentials for the current user are passed to the utility to
provide a security context. Variables are also set up to hold destination values for the source data and
target. The target folder is then created.

Sub Main()
rs.Credentials = System.Net.CredentialCache.DefaultCredentials

Dim dataSourceName As String = “reportsdb”
Dim folderName As String = “Company Reports”
Dim folderPath As String = “/” & folderName

‘create the folder “Company Reports”
Try

rs.CreateFolder(folderName, “/”, Nothing)
Console.WriteLine(“Company Reports folder created.”)

451

Report Management

17_584979 ch10.qxp 1/27/06 7:20 PM Page 451

Both the reports and the data source are being deployed in this script. Here, the data source is created in
the new folder.

‘add the datasource “reportsdb” to the “Company Reports” folder
Dim csrdb As New DataSourceDefinition
csrdb.ConnectString = “Initial Catalog=reportsdb;Data Source=localhost”
csrdb.Extension = “SQL”
csrdb.CredentialRetrieval = CredentialRetrievalEnum.Integrated

rs.CreateDataSource(dataSourceName, folderPath, True, csrdb, Nothing)

Console.WriteLine(“reportsdb data source created.”)
Catch ex As System.Exception
End Try

Now the code goes to the source folder and loops through each rdl file and deploys it.

‘upload the rdl files
Dim files() As String
files = Directory.GetFiles _

(Directory.GetCurrentDirectory() & “\Catalog Items”)
Dim len As Integer = files.Length - 1
Dim i As Integer

‘loop through each file.
For i = 0 To len

‘load the file into a byte array
Dim fs As FileStream = File.Open(files(i), FileMode.Open)

Dim data(fs.Length - 1) As Byte
fs.Read(data, 0, fs.Length)

‘retrieve the report name
Dim itemName As String = GetShortFileName(files(i))
Dim extension As String = GetExtension(files(i))

If extension = “rdl” Then
‘create the report
rs.CreateReport(itemName, folderPath, True, data, Nothing)

Else
Dim mimeType = GetMimetype(files(i))
rs.CreateResource _

(itemName, folderPath, True, data, mimeType, Nothing)
End If
Console.WriteLine(itemName & “ was created in: “ & folderPath)

fs.Close()
Next

Changing the Data Source property for multiple deployed reports can be a hassle. Here that task has
been added to the script, automating that part of the process as well.

452

Chapter 10

17_584979 ch10.qxp 1/27/06 7:20 PM Page 452

‘set the datasources to “reportsdb”
Dim reference As New DataSourceReference
reference.Reference = folderPath & “/” & dataSourceName

Dim items As CatalogItem() = rs.ListChildren(folderPath, False)
For Each item As CatalogItem In items

If item.Type = ItemTypeEnum.Report Then
Dim dataSources As DataSource() = _

rs.GetReportDataSources(item.Path)
For Each dataSource As DataSource In dataSources

dataSource.Item = reference
Next
rs.SetReportDataSources(item.Path, dataSources)
Console.WriteLine(item.Name & “ datasource was updated”)

End If
Next

End Sub

These are the helper functions that provide string parsing and mime type checking:

Private Function GetShortFileName(ByVal fullFileName As String) As String
‘get the report name
Dim slashPos As Integer = fullFileName.LastIndexOf(“\”)
Dim dotPos As Integer = fullFileName.LastIndexOf(“.”)
Dim retVal As String = fullFileName.Substring _

(slashPos + 1, dotPos - slashPos - 1)
Return retVal

End Function

Private Function GetExtension(ByVal fullFileName As String) As String
Dim retVal As String = fullFileName.Substring _

(fullFileName.LastIndexOf(“.”) + 1)
Return retVal

End Function

Private Function GetMimetype(ByVal fullFileName As String) As String
Dim extension As String = GetExtension(fullFileName)
Dim retVal As String

Select Case extension
Case “htm”

retVal = “text/html”
Case “html”

retVal = “text/html”
Case “xml”

retVal = “text/xml”
Case “csv”

retVal = “text/plain”
Case “tif”

retVal = “image/tif”
Case “tiff”

retVal = “image/tif”

453

Report Management

17_584979 ch10.qxp 1/27/06 7:20 PM Page 453

Case “gif”
retVal = “image/gif”

Case “bmp”
retVal = “image/bmp”

Case “jpg”
retVal = “image/jpeg”

Case “jpeg”
retVal = “image/jpeg”

End Select

Return retVal
End Function

Generating Scripts
SQL Server Management Studio is a handy source for procedures and snippets of code to use in your
own scripts. Many actions can be saved as script. The scripts are complete enough to run on their
own, and run against the same RS utility. To capture a script, simply perform an action in SQL Server
Management Studio and then find the Script button. Figure 10-25 shows an example of changing a
schedule.

Figure 10-25

454

Chapter 10

17_584979 ch10.qxp 1/27/06 7:20 PM Page 454

The output for the script, chosen from the Script drop-down menu in that screen shot, was sent to the
Clipboard. This is the script that was created:

Public Overridable Sub Main()
CreateSchedule

End Sub

Private Sub CreateSchedule()

Dim Name As String = “NewSharedSchedule”
Dim ScheduleDefinition As _

Microsoft.SqlServer.ReportingServices2005.ScheduleDefinition = New _
Microsoft.SqlServer.ReportingServices2005.ScheduleDefinition

ScheduleDefinition.StartDateTime = New Date
ScheduleDefinition.EndDate = New Date
ScheduleDefinition.EndDateSpecified = true
Dim Item As Microsoft.SqlServer.ReportingServices2005.MinuteRecurrence = New _

Microsoft.SqlServer.ReportingServices2005.MinuteRecurrence
Item.MinutesInterval = 10
ScheduleDefinition.Item = Item

RS.CreateSchedule(Name, ScheduleDefinition)
End Sub

It seems like nearly anything can be picked up as a script. If you’re inclined, play around in the
Management Studio to see what handy snippets you can come across. It’s definitely worth stopping
there to jump-start your own script for that next repetitive task.

Summary
Content managers can have a significant effect on the report end user experience. Whether it’s perform-
ing tasks such as configuring users and implementing security policies or configuring global settings,
managing reports and other Report Server content can involve many more skills than simply uploading
new reports to the server.

In this chapter, you read about the four types of Report Server content: reports, folders, data sources,
and other resources. Those items are secured using item-level security. Global system settings are con-
sidered system-level security.

The two types of data sources are private and shared. Private data sources are embedded within a report
RDL file, whereas shared data sources are external to a report. Schedules can also be private or shared
and are run by the SQL Server Agent. Shared schedules and data sources provide single points of man-
agement for all reports that use them. Use private schedules and data sources on an as-needed basis.

It’s important to understand the report execution process to get the most from your servers and provide
the best user experience. Caching, snapshots, linked reports, and subscriptions are tools you can use to
manage the report execution process.

455

Report Management

17_584979 ch10.qxp 1/27/06 7:20 PM Page 455

Some key points to take away include:

❑ Consider your security policy when deciding on the structure of your Report Server content.
Keep in mind that nested folders inherit their parent security settings.

❑ Exercise care when creating new user roles. Keep things simple, and provide users with the
least permissions they need to perform their tasks.

❑ Work with caching to reduce server loads and improve the user experience. Whenever possible,
render reports from cached instances. Linked reports can provide narrowed views of the data
contained in a base report.

❑ Use scripting to automate repetitive tasks such as migrating content and configuring server
farms.

You should now have a good understanding of how to work with the content in the Report Server. But
what about the bigger picture, like deployment scenarios? The next chapter takes a closer look at the
tools and techniques used to administer a Reporting Services installation.

456

Chapter 10

17_584979 ch10.qxp 1/27/06 7:20 PM Page 456

Report Server
Administration

This chapter is for people who need to install Reporting Services and manage the instances that
are in production. This frequently includes staff from different IT departments such as the web,
database, and operations sides of the house. One reason for that is the nature of reporting services
applications themselves — part web application, part database application, and part Windows
application.

For example, let’s say you’re the IT manager for your company. Your responsibilities include
administrating the reporting system. A group of reports has been developed for the management
meetings that take place at the beginning of each month. As historical data and the number of
users increases, the early-in-the-month load has begun to slow the server down noticeably. Some
managers have asked if there’s anything that can be done to speed up report processing during
that period. In this case, you might take advantage of the report server’s ability to create and store
snapshots of reports to decrease server load and the time it takes to render reports.

Another typical requirement in this scenario is for the new reports to be accessible only by the
department managers. In this case, you might take advantage of the role-based security model
used by Reporting Services. First, create a Windows group called Department Managers and add
the department managers to it. Then, back in Report Manager, grant that group read access to the
report folder while preventing access by all others.

A common Reporting Services scenario is the use of SharePoint as a reporting portal. Less com-
mon is exposing Reporting Services reports to external users through a custom web application.
You’ll take a look at considerations for outward-facing reporting requirements later in this chapter.
In addition, this chapter covers:

❑ Deployment scenarios for Reporting Services.

❑ The configuration tools and utilities provided.

18_584979 ch11.qxp 1/27/06 7:32 PM Page 457

❑ Backup and restore procedures.

❑ Monitoring a Reporting Services instance for best performance.

Your exploration of report server administration begins with a look at the server components and require-
ments. Then I’ll address different deployment environments and configuration. Once the environment is
in place, you’ll read about backup and restore procedures. The chapter rounds out with approaches to
server monitoring and strategies to increase server performance.

Deploying Reporting Services
There are a number of different types of Reporting Services deployments. The two most common scenar-
ios are single box installation and multiple box deployments.

❑ Installing pretty much everything on a single machine. For smaller organizations and some
development environments, this configuration works great. The machine has IIS and a SQL
Server instance both running locally. For production use, Reporting Services Standard Edition
provides support for most users in this category. One exception to note, however, is that data-
driven subscriptions are not supported in the Standard Edition. Data-driven subscriptions allow
you to broadcast reports to users listed in a database table. For developers, Reporting Services
Developer Edition provides all the capabilities of the Enterprise Edition but isn’t suitable for
production machines.

❑ Installing the Report Server on one machine and the Report Server database on another. This
type of installation is common. For example, let’s say you already have an existing reporting
infrastructure and want to begin using Reporting Services. In that case, you would run the
Reporting Services setup as usual — but point the installation to your existing SQL Server data
store. Later on, you may need to point the Report Server instance to another database. This type
of installation can also have significant impact on Report Server performance. You’ll read much
more about that later in this chapter.

Other common types of installations include adding another Reporting Services instance to a web farm
cluster and performing installations using the command line or script. You’ll read more about all of these
in this chapter as well.

When installing Reporting Services, setup allows you to:

❑ Create a new server instance. During a new install, you provide input values that are written
into the Report Server configuration files for retrieval later. Registry keys are added, virtual
directories are created in IIS, new databases are created, and data is encrypted and stored.

❑ Change an existing installation. This will allow you to remove individual components from or
add them to an existing report server instance. If any or all of the components you specify are
already installed, they’ll be uninstalled and then reinstalled.

❑ Remove the server components. This will remove all the report server components and machine
changes from the computer, except for files that contain user data. It’s important to remember
that the Report Server database and log files remain after running uninstall.

Before I talk about what those deployment configurations look like, let’s look at what kinds of bits are
getting deployed.

458

Chapter 11

18_584979 ch11.qxp 1/27/06 7:32 PM Page 458

Reporting Services Components
Reporting Services is a Web service application that exposes functionality through a number of programmatic
interfaces. Because it’s a Web service, it runs as an ASP.NET web application hosted by IIS. Reporting
Services also includes Windows services components to help with report scheduling and delivery.

Installed components include tools you can use to manage a Report Server instance right out of the box.
However, because of the programming interfaces provided, you can replace the stock tools with custom
applications that work better for you. You can create applications to view, design, and manage reports
by working against the provided APIs. Create new data-bound controls to add impact and functionality
to reports. Build a new processing extension to render reports in Rich text. There are many ways to take
advantage of the open architecture Microsoft has provided in the product, and several are demonstrated
in this book.

At a high level, Reporting Services can be viewed as three main components: the Report Server, the
Report Server database, and the client tools. Figure 11-1 shows the relationship between these major
components.

Figure 11-1

To get a better handle on the tools that are provided, let’s look at the main server components that they
work against.

Server Components
In addition to these, Books Online for Reporting Services is installed. Those are your local help files.
Remember that help is also available on the Microsoft Developer Network (MSDN) site; you’ll just need
to dig a bit more for the information you’re looking for. A helpful site for keeping track of Knowledge
Base articles and other Microsoft support info on a particular technology is KBAlertz.com. The automated
e-mail notifications of new content posted on Microsoft’s web site can be helpful even if you have an
MSDN subscription.

Databases Report Server Client Tools

Report
Server DB

Source DB

Report Designer

Report Manager

Report Manager Browser

459

Report Server Administration

18_584979 ch11.qxp 1/27/06 7:32 PM Page 459

The three main components of Reporting Services are distributed across a server layer, client layer, and
data layer. The Report Server core elements make up the server, the database catalog is contained in the
database layer, and various developer and management applications compose the client layer.

Report Server
This is the primary component of Reporting Services and makes up the server layer. The Report Server is
a process Web service that oversees the objects and subprocesses it takes to respond to the incoming calls
to its exposed web method interfaces.

Those incoming calls are typically in the form of Simple Object Access Protocol (SOAP) or URL (http://)
requests. Processing a report can include security checks, query execution, expression evaluation, and final
report generation. The interface exposed by the Web service includes methods used to implement security
policies, as well as manage database and cache content.

The Report Server itself is made up of discreet components. The processing of a report can make use of
data processing, security, rendering, and other extensions to the core processing engine.

The Report Server is composed of two services, which are used to handle different aspects of report
processing. These are the Web service and the Windows service.

The ASP.NET Web service is responsible for report processing. It handles incoming requests to its Web
Service API and manages those sessions. The processing of a request can include executing, processing,
and rendering a report.

The Windows service handles the scheduling and delivery of reports. It triggers scheduled report runs,
including subscriptions and snapshots. The delivery of reports using e-mail or file share is also handled
here. You can extend the delivery options by creating your own components that work with the exposed
interfaces and plug them into the existing architecture.

Extending Reporting Services components is covered in Chapter 13. For now, take a look at the Report
Server Catalog.

Reporting Services Catalog
The catalog serves as the data layer in Reporting Services. Two SQL Server databases form the catalog:
ReportServer and ReportServerTempDB.

❑ ReportServer: The ReportServer database is where information about the reports is stored. That
includes report definitions, report metadata, data source definitions, snapshots, and history.
This is also where security settings like users, policies, and roles are kept. Account information,
scheduling, and delivery settings are also kept here. Some of these values are encrypted before
being written to the database. This database is vital to the operation of your report server and
should be included in your regular database backup procedures. Always back up this database.

The data here is not directly accessible. You get access to the database content through the various
Reporting Services programmatic interfaces, to enforce rules on the data. A number of utilities are
included with Reporting Services to help with the management of the ReportServer content, and
we’ll cover those throughout the rest of this chapter.

460

Chapter 11

18_584979 ch11.qxp 1/27/06 7:32 PM Page 460

❑ ReportServerTempDB: As its name implies, the ReportServerTempDB database is where more
temporary information is stored. Short-life-span data includes information to manage user ses-
sions and cached report data.

This database differs from the ReportServer database. If the ReportServerTempDB database is
lost, the Report Server will automatically rebuild it. The data in the previous instance is lost, but
it was only temporary anyway. Depending on how heavily you rely on caching, for example,
you may see slower response times from the server until the cache is rebuilt.

Client Applications
Client applications access the server via the SOAP and URL requests. The Report Manager application
that comes standard with Reporting Services is one example. Many third-party software vendors also
offer their own client applications for creating and working with reports. These apps work against the
same Report Server API as the intrinsic tools do. Let’s take a look at the client tools included with
Reporting Services.

Client Components
A variety of client applications are included with Reporting Services. Third-party applications are also
available to suit specific uses. These client apps include the Report Designer, Report Builder, SQL Server
Management Studio, and the Reporting Services Configuration Manager.

❑ Report designer: Report designer is the authoring tool that’s integrated with Visual Studio 2005.
Visual Studio must already be installed on the machine for the report designer to install. The report
project file extension (.rptproj) is also registered with the operating system to open the report
designer in Visual Studio by default. From Visual Studio, reporting projects can be managed in
Visual Source Safe to provide version and access control.

❑ Web browser: On the client, a web browser is commonly used to view and manage reports.
When running reports, DHTML is the default rendering format, so viewing them in a web
browser like Internet Explorer 6 or better is a natural. Since Report Manager is an ASP.NET web
application, managing report server content and viewing rendered reports can both be done
using the same web browser. Report Manager, if you’ll recall, is the tool included with
Reporting Services to help manage content in the report server database. It’s discussed in detail
in Chapter 10.

❑ Report Builder: This tool allows a developer to create report models, from which users can cre-
ate their own reports. The Report Builder is covered in Part III.

❑ SQL Server Management Studio: SQL Server Management Studio is a new “one-stop” shop for
a variety of SQL Server management tasks. Opening the application brings up the Connect to
Server dialog box, where you can select the Reporting Services server to work with.

Once the Management Studio is open, you have access to all the normal tasks needed to manage the
Report Server content, just as in the Report Manager web application. From this interface, you can create
and modify schedules and perform other typical Report Server management tasks. Figure 11-2 shows an
example of modifying the Data Source properties of a report in SQL Server Management Studio.

461

Report Server Administration

18_584979 ch11.qxp 1/27/06 7:32 PM Page 461

Figure 11-2

You can also modify security settings and role permissions, as shown in Figure 11-3.

The client tools included with Reporting Services provide all the functionality you need to manage a
basic Reporting Services installation. However, they aren’t your only options. These tools work against
open application programming interfaces that you can use yourself. If needed, you can create a client
component that’s a better fit for your particular requirements. Extending the capabilities of Reporting
Services isn’t limited to the server components.

The Report Server Configuration Manager is a client tool specifically for working with the many config-
uration settings available. The Configuration Manager is covered in the “Configuration Tools” section of
this chapter.

462

Chapter 11

18_584979 ch11.qxp 1/27/06 7:32 PM Page 462

Figure 11-3

The Report Server
The purpose of this chapter isn’t to recite the requirements info readily available from Microsoft but to
give you an understanding of what’s going on before you get there. In general, most managers of busi-
ness and enterprise environments are already pretty well set for hardware or are aware of holes in their
existing infrastructure. If in doubt about your particular needs, contact a Microsoft rep or regional office
to help sort things out. To install, the Reporting Services installation process needs to be pointed to a
licensed instance of SQL Server.

❑ Computer processor: PC with an Intel or compatible Pentium II 500 MHz or higher processor.
At the time of this writing, our development boxes run 1.8-GHz Pentiums. For production
boxes, dual processors will give you a big bang for the performance buck. Reporting Services
supports quad processor boxes for intensive applications. If you’re running quad-proc boxes, be
sure to ask Microsoft about Reporting Services tweaks you may want to make in order to get the
most from your server. Running Reporting Services on a multiple-processor machine will mean
that SQL Server is also running on that box. Depending on your licensing agreement, additional
processors may also require additional SQL Server licenses.

❑ RAM: Forget what it says on the box; you’ll want 512 MB minimum. Personally, I’ve got 1.5 gig
running on my development machines and 2 gigs on single-processor production boxes. It’s
hard to go wrong by adding more RAM.

463

Report Server Administration

18_584979 ch11.qxp 1/27/06 7:32 PM Page 463

❑ Hard disk space (by component):

❑ Report Server and Report Manager applications: 50 MB

❑ Microsoft .NET Framework: 100 MB

❑ Samples, AdventureWorks database, and Books Online: 145 MB

Requirements numbers can vary quite a bit from installation to installation, depending on how you
intend to use the service. If you’re doing a web farm installation for a heavily used portal, for example,
expect your hardware requirements to go up quickly. If you’re unfamiliar with enterprise reporting
installations, it may be helpful to enlist some help from Microsoft or other knowledgeable resource to be
sure you’re getting the most out of your investment.

Another useful tool is Microsoft’s Baseline Security Analyzer. It can check the security level of your net-
work servers and client machines and is especially handy if you wear multiple hats such as both devel-
oper and server administrator.

Installation Directory
The default installation directory for Reporting Services components is one level below the default loca-
tion of SQL Server:

C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services

By default, the Report Server is installed one level below that, in the \ReportServer directory. That
folder contains a subdirectory, \bin, where the executables and assemblies are located. You can change
the installation path of the Report Server during setup. Best practice is to use a Secure Socket Layer (SSL)
certificate to create a secure SSL connection across the gap between the reporting service server and
client application.

Service Credentials
At one point during setup, you’ll need to provide the credentials used by the Report Server. The user
name and password are used as credentials for the service as it performs tasks and connects to the
Report Server database. You can choose to have the Report Server use a systems account as well. If val-
ues are not provided, then Reporting Services defaults to these settings in the following table.

Operating System Service Account

Windows XP and 2000 Local System

Windows Server 2003 Network Service

IIS Virtual Directory
A virtual directory is created in Internet Information Services (IIS 5 or greater) to receive incoming HTTP
requests. IIS routes the incoming request to the Report Server, which then processes the data contained
in the body of the request. Once the request has been processed, a response can be sent back to the client
application. The outgoing response is also handled by IIS. The default virtual directory for the Report
Server Web service is:

http://<server_name>/reportserver

464

Chapter 11

18_584979 ch11.qxp 1/27/06 7:32 PM Page 464

Navigating to the asmx file in that directory brings you to the Web service itself:
http://<server_name>/reportserver/reportservice.asmx.

Chapter 12 covers working with the Web service in depth.

Remember that Report Manager, the report management and viewing tool, is a separate application
from the Report Server. It also has its own virtual directory in IIS, located at:

http://<server_name>/reports

Navigating to that address will bring up the Home page in Report Manager. Anytime you want easy
access to information about virtual directories and IIS in general, trip over to IIS help by pointing your
browser to:

http://<server_name>/iishelp

There’s a lot more you can do with URLs and URL addressing. We’ll discuss those in depth in the next
chapter. In the meantime, let’s cover a critical area for Reporting Services and IIS: securing client com-
munication with the report server.

During installation of Reporting Services, setup provides an option to Use SSL connections when retrieving
data on these virtual directories. For most installations, this option should be selected. While most every
component of the Reporting Services process has layers of security protecting it, the communication
between the client application and the Report Server Web service remains open and vulnerable to attack.
An effective strategy to use against this type of threat is to use SSL.

SSL secures the data during transmission by encrypting it. Although there’s a small performance hit, the
benefit is peace of mind. Even if the transmission is snagged and read, the contents remain secure. To
enable SSL on your IIS instance, you install an SSL Certificate.

There are two types of SSL Certificates: Those that are obtained from another authority, and those that
you declare for yourself. Subordinate Certificates are signed by a “trusted’ certificate authority. You
purchase the certificate and install it on your web server. Client browsers will recognize the named
certificate authority and display the lock symbol in the status bar.

Declaring yourself as a Root Certificate Authority gives you the ability to create SSL connections without
conferring with a higher authority. It’s a simple process to install a certificate this way. The drawback is
that client browsers won’t trust your certificate and will display a warning to the user each time they
visit the site — unless extra security settings are made in each client browser. For more on setting up SSL
Certificates, see msdn.microsoft.com.

IIS virtual directories can be created and managed in the Reporting Services Configuration Manager,
which is discussed later in this chapter. In the meantime, let’s briefly look at log files and delivery settings.

Log files
During the setup process, the Report Server creates a folder for log files. It’s located one level below the
Reporting Services install directory, in the following:

C:\Program Files\Microsoft SQL Server\MSSQL.3\Reporting Services\LogFiles

465

Report Server Administration

18_584979 ch11.qxp 1/27/06 7:32 PM Page 465

Like a typical log file, each contains information about Report Server events, warnings, and errors.
There’s a separate trace log file that’s created for each day. The log file contains all the entries for that
day, beginning at midnight. The local time of the computer is used to determine when midnight is and is
also used to name the file. It’s good to know that Reporting Services doesn’t remove any previously gen-
erated log files, but that can also be a problem as disk space gets used up. Figure 11-4 shows a typical
Report Server log file.

Figure 11-4

From the developer perspective, you can get a lot of troubleshooting information from a combination of
the log files and the stack trace. If you’re a local administrator and are running Internet Explorer on the
server, stack trace info is available by right-clicking the error page in the browser window and selecting
View Source.

You can also tweak how log entries are made and kept. Changing those settings can have an effect on
how your server behaves. You’ll read about what settings to change and how to set them later in this
chapter, in the section “Exploring the Execution Log.”

Delivery Settings
Reporting Services includes a delivery extension so reports can be distributed by e-mail. The delivery
settings include a Simple Mail Transfer Protocol (SMTP) server address and an e-mail address for the
From: field. This typically occurs when a subscription has been created and the user requests e-mail
delivery. The e-mail itself can contain the actual report in static HTML or can contain a link to the report
in Report Manager.

The delivery setting must be the valid hostname of an SMTP server. If you’re using Microsoft Exchange,
use the name of the SMTP gateway; don’t use the name of the Exchange server here or you’ll get errors
during subscription processing. Use an IP address like 192.168.0.1 or other DNS-resolvable name.
Remember to include the domain name if necessary.

466

Chapter 11

18_584979 ch11.qxp 1/27/06 7:32 PM Page 466

Server Configurations
There are two basic types of Reporting Services server configurations: Local Catalog and Remote
Catalog. The difference between them is where the Report Server database is located. A variation of the
remote catalog is distributed deployment. Since these are by far the most common types of Reporting
Services environments, let’s take a closer look at them.

Local Catalog
This is the simplest configuration for a Reporting Services deployment. In this environment, the Reporting
Services databases are installed on the same server as Reporting Services. That is to say, SQL Server and IIS
are both running on the same box. Figure 11-5 shows a diagram of this type of deployment.

Figure 11-5

In this example, the source data — that is, the data displayed in the report — is on a separate machine
from the report server. The source data can be on SQL Server 2005 or any other data source that you can
connect with and get a result set returned to then work with in Reporting Services. The Report Server
instance and the Report Server Catalog live on the same server, which has both IIS and SQL Server
running on it. The client machines connect to the single report server to upload, view, and manage
reports. This type of deployment works best for light server loads.

Remote Catalog
In this configuration, the Report Server Catalog has been broken out onto its own machine. The Catalog,
you may recall, is comprised of both the ReportServer and ReportServerTempDB databases. Moving the
Report Server Catalog off of the machine hosting the report server instance greatly improves report
server performance. It can handle more client requests more quickly this way. Figure 11-6 shows an
example environment.

Report Server
Report Server Catalog
Report Manager

Internet Explorer
Report Builder Client

Visual Studio 2005
Report Designer

SQL Server
Analysis Services
Other Source Databases

Developers

User Clients
IIS & SQL Server

Source
Database

467

Report Server Administration

18_584979 ch11.qxp 1/27/06 7:32 PM Page 467

Figure 11-6

Just moving the Report Server Catalog off the machine that has Reporting Services installed will net you
a noticeable increase in performance. The Report Server Catalog and the source database can be on the
same database server, separate from the machine that IIS is running on.

Web Farm Deployment
Reporting Services is an ASP.NET web-based application. For a long time, customers have been scaling
such web-based applications using scale-out. A few reasons scale-out has proven to be popular is that it:

❑ Enables customers to incrementally add (or remove) capacity as needed.

❑ Offers a very affordable, manageable, and flexible way to add/remove that capacity.

❑ Allows heavy workloads to be balanced across multiple commodity servers.

❑ Inherently offers a certain degree of fault tolerance.

Customer input drives the features and capabilities that Microsoft designs into products and Reporting
Services is no exception. Reporting Services was built with the knowledge that most people would
decide to deploy it across a multiple servers. As a result, Reporting Services scales very well in a web
farm configuration. Deploying Reporting Services to an environment that includes clustered IIS and SQL
Servers allows your report servers to handle all but the most extreme request load. Figure 11-7 shows an
example configuration.

Report Server
Report Manager

Internet Explorer
Report Builder Client

Visual Studio 2005
Report Designer

SQL Server
Analysis Services
Other Source Databases

Developers

User Clients
IIS & SQL Server

Source
Database

SQL Server
ReportServerDB
ReportServerTempDB

Report
Server
Catalog

468

Chapter 11

18_584979 ch11.qxp 1/27/06 7:32 PM Page 468

Figure 11-7

Once each of the report server instances has been created, they’ll each have to be initialized in order to
participate in the web farm. Initialization is done using the RSConfigTool. Figure 11-8 shows the
Initialization page and that one server is currently initialized.

In a Reporting Services web farm, coordination between each of the Report Server instances is done by
having them access a single Reporting Services catalog. A great way to scale out your Reporting Services
implementation is to use a dedicated SQL Server instance to host the report server databases. Taking it a
step further, implementing a web farm with Network Load Balancing in an IIS server cluster can handle
very high-response loads. ASP.NET applications in that kind of environment can be tweaked to handle
high capacity reliably and securely. If the reports are mission critical, deploy the report server database
in a server cluster configured for failover, to reduce the risk of server downtime on the data side.

If you’re anticipating a high load on your report server, as is covered in the “Monitoring and Performance”
section later in this chapter, the report server delivers good performance returns on two- and four-processor
machines. Because of that, consider using fast dual- or quad-processor machines to host the report server
components. If you still need more capacity, increase the amount of RAM on the report server. High
server loads will also increase the use of the Report Server databases, so keep an eye on your database
server hard drive capacities as well.

SQL Server

ReportServer

ReportServerTempDB

Internet Explorer

Report Builder Client

SQL Server

Analysis Services

Other Source Databases

Report Server

Report Manager

Application Center

Visual Studio 2005

Report Designer

Report Server Catalog

Source Database Cluster

Developer Workstations

Web Server Farm

Report Users & Managers

Network Load Balanced
IIS
Report Server

Staging Server

469

Report Server Administration

18_584979 ch11.qxp 1/27/06 7:32 PM Page 469

Figure 11-8

Command-Line Installation
Installing Reporting Services can also be done from the command line. This technique is especially useful
when performing multiple installs, as in a web farm deployment. Using scripts, the deployment process
can be automated. This allows the installations to run unattended and with identical settings used for
each report server instance.

To run setup.exe from the command line, first navigate to the location of the executable file on the file
system. Then, use the switches to indicate which components to install. To get a summary of the switches
available, invoke help by adding the /? switch at the command prompt. Use switches to supply the
required installation parameters as well. Be sure to provide values for all required properties or the install
will fail. If the components you specify are already installed, they’ll be uninstalled and then reinstalled.
Note that in order to perform an unattended installation, /qn must be specified, or else the regular
installation GUI will be displayed.

Configuration Tools
To configure settings in Reporting Services means working in a variety of environments, such as XML and
database files. Like many of the applications that run on the .NET Framework, Reporting Services makes
extensive use of XML. Other settings are kept encrypted in the ReportServer database. To help make
configuring the server an easier task, Microsoft has provided utilities that abstract the details of making
configuration changes. Let’s take a closer look at working with those configuration files and utilities.

470

Chapter 11

18_584979 ch11.qxp 1/27/06 7:32 PM Page 470

Configuration Utilities
There are basically two ways to tweak configuration file settings using the tools provided by Microsoft.
You can use the utilities from the command line or use the Report Server Configuration Manager GUI.

The utilities are console applications that use switches to specify arguments and parameters that you
need to pass in. To run them directly, open a command prompt and navigate to where the executable is
located. Most of these utilities are located in:

C:\Program Files\Microsoft SQL Server\90\Tools\Binn

The utilities are:

❑ Rsconfigtool.exe

❑ Rsconfig.exe

❑ Rskeymgmt.exe

❑ Rs.exe

Each has a specific purpose, which is covered in the next sections.

Reporting Services Configuration Tool
The Reporting Services Configuration Tool is the one to use when configuring Reporting Services instal-
lations. It touches most of the components of a Reporting Services instance, including SQL Server and
the file system. Many of the operations are performed using the underlying WMI interfaces. You can use
the graphical user interface (GUI) version or invoke it using code. Code can be run using the command-line
interface or a code file. This tool is the army knife that can handle most of the tasks needed to configure
and maintain your report server.

You can launch the tool from the Start menu by running rsconfigtool.exe from the command line or
from the SQL Server Management Studio. When you first open the tool, a dialog box opens so you can
select which report server instance to connect with, as shown in Figure 11-9.

Figure 11-9

471

Report Server Administration

18_584979 ch11.qxp 1/27/06 7:32 PM Page 471

The Management Studio is an excellent single point of management for a report server. It provides an
easy-to-use interface, as shown in Figure 11-10.

Figure 11-10

It even helps guide you to a level of configuration through the use of icons for each configuration section.
The legend for them is:

❑ Configured: The settings on this page have values. Does not necessarily mean that the report
server works as intended.

❑ Not Configured: Values must be provided for settings contained here or you’ll have reduced
functionality.

❑ Optional Configuration: Optional configuration settings, except in the case of backing up the
encryption key. That one should be a recommended configuration.

❑ Recommended Configuration: Set these up to get the most from your server.

Rsconfig.exe
Credential information that Report Server uses when logging into the catalog database is kept encrypted
in the Report Server RSReportServer.config file. Because the values are encrypted, you need to use a
utility to work with them. For example, let’s say you need to go in and reset the credentials used by the
report server to connect to the report server database. You can perform that task using the GUI tools or
from the command line, using the console application reconfig.exe.

472

Chapter 11

18_584979 ch11.qxp 1/27/06 7:32 PM Page 472

The syntax for using the utility is:

Rsconfig.exe (-e | -c) [-m machinename][-i instancename][-s servername][-d
databasename][-a authmethod][-u username][-p password][-t]

Either the parameter e or c must be supplied; the others are optional. The following table describes each
property.

Switch Parameter Description

-c connection Sets the connection information to the report server
database.

-e executionaccount Sets the unattended execution account used by the
report server when executing reports.

-m machinename The UNC path to the machine being configured;
localhost is the default.

-i Instancename Name of the Reporting Services instance;
MSSQLSERVER is the default.

-s Servername The name of the SQL Server that the Report Server
catalog is on.

-d databasename The name of the SQL Server catalog database.

-a authmethod Use SQL or Windows authentication.

-u username The credential user name; usually either a SQL or
Windows user.

-p password The credential password; usually either a SQL or
Windows password.

-t The trace switch to include trace information in
error messages; for development use only.

Rskeymgmt.exe
Similar to the rsconfig.exe utility, this one also handles encryption duties for data in the report server
catalog. Rskeymgmt.exe is used to encrypt and decrypt the encryption key. That key is used, in turn, to
encrypt and decrypt the other data in the catalog. By encrypting the encryption key, you’re essentially
locking the key to the safe in a vault instead of leaving it lying around for someone to potentially pick
up and use. The utility help file provides a list of the parameters that can be supplied, along with the
syntax to use when performing action such as creating a backup copy of the Report Server encryption
key. You can access the help file by typing this at a command prompt:

Rskeymgmt.exe /?

Rs.exe
This is the host application used to run scripts for managing your report server. Scripts can be used to
automate many tasks. The utility is covered in depth in Chapter 10.

473

Report Server Administration

18_584979 ch11.qxp 1/27/06 7:32 PM Page 473

Configuration Files
The .NET platform makes extensive use of XML. One of those uses is to hold application configuration
settings. These are well-formed XML files, made up of elements and attributes to contain the properties
and property values each application uses. If the file is not well formed, the file is considered invalid and
the server component won’t run. The root element for these files is Configuration. The following table
shows the main configuration files for the primary server components.

Server Component Configuration File Default Location

Report Server RSReportServer.config Files\Microsoft SQL
Server\MSSQL\Reporting
Services\ReportServer

Report Manager RSWebApplication.config Program Files\Microsoft SQL
Server\MSSQL\Reporting
Services\ReportManager

Report Designer RSReportDesigner.config Program Files\Microsoft SQL
Server\90\Tools\Report
Designer

Although the XML files are just text files and can be modified, it’s safer to use the Reporting Services
Configuration Tool. That way, you’re sure of keeping the file well formed and don’t inadvertently risk
losing important settings.

Backup and Restore Procedures
The importance of backing up can’t be over emphasized. Even for relatively small installations, think of
how many hours have been spent configuring the server and building reports. Losing that wouldn’t be
good, so be safe — back up your data. Disaster recovery is something you want to be ready for, because
when the disaster happens (however large or small) it’s too late to prepare.

For Reporting Services, you’ll need to plan on backing up two items in particular: the catalog and the
encryption key. First, you’ll read about backing up the Report Server databases. Then, you’ll take a look
at the role of encryption keys and the process to use when backing them up.

Backing Up the Report Server Catalog
Earlier in this chapter the structure of the Report Server catalog data was covered. It consists of two SQL
Server databases, ReportServer and ReportServerTempDB. Typically, you’ll use the backup utilities in
SQL Server to actually perform the backup. However, only one of the catalog databases needs to be
backed up.

You may remember that the ReportServer database is the key data store. Permanent data is persisted
there. Report definitions are kept there, along with report snapshots and security information. The
ReportServer database is the one database that you don’t want to lose.

474

Chapter 11

18_584979 ch11.qxp 1/27/06 7:32 PM Page 474

The ReportServerTempDB database, however, holds short-term data. Browser-specific session data and
cached instances are examples of the data it contains. In fact, the Report Server anticipates that it may go
down at some point. Once operations are up, the Report Server automatically restores the temporary
database.

The thing to know about losing ReportServerTempDB this is that you’ll also lose snapshots that were
cached. They won’t be added to cache again until a user requests the report or the schedule runs again.
Users may end up triggering report runs that would normally be rendered from cached snapshots. If
that happens, you may see higher server loads until the cache is restored.

If you’re not the database administrator for the catalog data, be sure to communicate with whoever that
person is. Depending on the backup procedures used by your organization, it may not be wise to
assume that the ReportServer database is being backed up each night along with everything else. The
DBA may have to manually add the database to the backup routine.

Restoring the ReportServer database is done using the utilities provided with SQL Server. The process is
straightforward, using SQL Server Management Studio to restore the database with the backup file.

Backing Up the Encryption Key
There are two types of encryption: symmetric and asymmetric. Reporting Services uses symmetric
encryption to protect sensitive data, including credentials. The symmetric encryption process uses a sin-
gle key value to encrypt and decrypt the data. Several processes in Reporting Services use the key to
access and store critical information.

Though the data is secure, it’s only as secure as the key. If the key is compromised, the data may also be
compromised. To secure the encryption key, it’s encrypted using its own utility and kept in the
ReportServer database. That utility is rskeymgmt.exe.

It’s important to understand why backing up the encryption key is crucial. Connection information, cre-
dentials, and server accounts are all stored as encrypted values. Because the key that’s used to unlock all
that data is itself encrypted, you can’t just pull it from the database and use it. If you lose the key, every-
thing that was encrypted using it is also lost. Back up the key and keep it in a safe place.

Back up your encryption key right after installing Reporting Services, and if you haven’t done it yet,
now’s a good time. The rskeymgmt.exe utility is executed from the command line and uses switches to
specify input parameters:

❑ -e: The “extract” command, to get the encryption key.

❑ -f: The path and file to write the encryption key to.

❑ -p: The password associated with the key file.

The easiest way to do the backup is with the Reporting Services Configuration Tool, described earlier in
this chapter. Remember to back up the key on all report servers.

Many common server management tasks are made easier using the graphical Report Server
Configuration Manager interface. Clicking the Encryption Keys button in the application provides quick
access to the standard encryption key tasks, as shown in Figure 11-11.

475

Report Server Administration

18_584979 ch11.qxp 1/27/06 7:32 PM Page 475

Figure 11-11

Clicking the Backup button allows you to enter the password and file location for the backup, as shown
in Figure 11-12.

Figure 11-12

Restoring the key is just as easy — just click the Restore button, enter your password, and point it to the
backup file. Keep the key file in a safe place. Keep the password safe as well because you need it to
restore the key.

Monitoring and Performance
As reports are deployed to the report server and users begin accessing reports more frequently, the load
on the report server can cause report processing to slow. This can happen from multiple users requesting

476

Chapter 11

18_584979 ch11.qxp 1/27/06 7:32 PM Page 476

reports at a peak load time, such as Monday mornings, or from the resources consumed by large, com-
plex reports. Because Reporting Services is essentially an ASP.NET web application, there are a number
of ways to increase server performance. For example, choosing the best deployment scenario can go a
long way in helping your server handle higher loads. Additionally, there are a number of techniques
particular to Reporting Services that you can employ to get the most from your server. This section looks
at ways to leverage those techniques, beginning with a brief review of the report execution process. Then
you’ll read about the unique capabilities of caching in Reporting Services and look at ways to quantify
the performance of your server.

Report Execution
We include a brief overview of the report generation process here to set the stage for the rest of the chap-
ter. Much of what can be done by way of server monitoring and performance management is based on
leveraging points in the execution process. For example, there are attributes specific to SQL databases
and ASP.NET applications that you can address. To begin this discussion, we’ll revisit the topic of report
execution. Generally speaking, there are two types of report execution.

User-triggered
The first type of report execution is user-triggered. It’s also called on-demand execution and is the report
execution process running in response to some user action. Typical user actions include viewing a page
in Report Manager or on a SharePoint site or clicking a link in an e-mail. Frequently, the entire report
generation process is initiated — from connecting to the database for the rdl file to connecting to the
source database for query data and generation of the intermediate report format to finally rendering the
report to the user. With this type of on-demand report, report execution is typically performed using the
credentials of the person who triggered the report. There’s a way to improve performance of user-triggered
reports, which you’ll explore after looking at timer-triggered reports.

Timer-triggered
The other type of report execution is timer-triggered. With this type of report processing, SQL Server
Agent triggers the call to the report server. Report execution is performed using credentials that were
previously entered when the schedule was set up. Report subscriptions can be delivered to users in a
variety of rendering formats. Database-driven subscriptions take that one step further by delivering the
report to multiple users using potentially different rendering formats for each.

What timer-triggered and user-triggered processes have in common is the ability to take advantage of
caching.

Caching
Caching is a mechanism that’s used to improve the effective performance of a machine. The results of
processing can be temporarily stored in cache (pronounced “cash”) for later retrieval and possibly fur-
ther processing. Later, typically on a schedule or when the underlying data changes, the cache is
refreshed.

Typically, data is read from a slower, persistent data source and cached in a faster, temporary storage
space. When the same data is needed later, it’s retrieved from the faster-to-access cache. Bypassing the
trip to the data stores allows the server to respond to more requests more quickly, increasing both perfor-
mance and scalability.

477

Report Server Administration

18_584979 ch11.qxp 1/27/06 7:32 PM Page 477

Remember that two database accesses occur with each report process: once to the Report Server catalog
for the rdl file content and then to the specified data source to retrieve a result set for use in the report.
Once those two are brought together, generation of the report can begin.

Both user-triggered and timer-triggered report execution share a common stage in their processing. This
stage occurs after the Report Server has gone to the report catalog to retrieve the rdl file and then gone
to the source database to retrieve a result set for the report query. When the data and the report file are
combined, ready to generate a rendered report, that’s the moment when the report exists in prerender
limbo. The Report Server has the ability to cache this prerendered report snapshot. The snapshot itself is
static, in that any reports rendered from it will all be based on the same data result set. Rendering the
report to the user no longer requires round trips to the databases. That has potentially large implications
for increasing server scalability and performance.

Many performance counters are included with Reporting Services, including ones to monitor cache use.
For example, the “cache read miss” counter shows the number of times the server went to access data in
cache, but it wasn’t there. One example of that is when the cached version has expired. Missing cache
data would cause the server to run the report process again, from initial catalog query to report render-
ing. You’ll read more about using performance counters later in this chapter.

Reporting Services also performs session caching. User sessions are maintained between the client and
the server when exchanging HTTP messages. These are user-specific, and data is not shared across ses-
sions. When a report is viewed, the report is added to the session cache for that user. The
ReportServerTempDB database is used to hold this type of short-lived data. The user must refresh the
report in order to see changes in the data that might have occurred since the report was first requested
by that user. Refreshing the report is done using the Refresh button on the report toolbar in Report
Manager. Refreshing the browser does not force a report refresh — it only causes a reload of the cached
report.

It’s important to know that cached instances are temporary and must expire. They expire:

❑ According to a predefined interval, like every 10 minutes.

❑ According to a report-specific or shared schedule.

❑ By forced expiration, such as when the ReportServerTempDB is restarted.

Reporting Services doesn’t force a limit to the number of cached instances you can have, but your hard-
ware will certainly have its limits. SQL Server Agent handles scheduling duties for the report server and
also takes care of timing out items in cache. When planning your security policy, remember that cached
instances must use credentials that are stored on the server.

Exploring the Execution Log
One of the first ways to troubleshoot and monitor report execution is by going through the Report
Server Execution Log. When a report is executed, log information is written to the ReportServer
database. This info is helpful, for example, when you want to see how often a report is run or who is
requesting the report.

A number of attributes are recorded for each report execution. These include:

478

Chapter 11

18_584979 ch11.qxp 1/27/06 7:32 PM Page 478

❑ Data retrieval time, which is the time (in milliseconds) spent executing the query.

❑ Processing time, which is the time (again in milliseconds) spent processing the report — includ-
ing calculating subtotals, applying grouping and sorting, and so on.

❑ Rendering time, regardless of the rendered format.

❑ Source, which is the source of the rendered report. This may include processing reports using
live data, cached, snapshot, or history report sources.

Reporting Services stores this data in the ExecutionLog table in the ReportServer database. Because the
data in the table isn’t easy to understand in raw form, an Integration Services package is provided to
export the log data to another location for viewing. You can also use SQL Server Agent to schedule the
Integration package to run according to a predefined schedule.

Three other main log files are maintained by Reporting Services. The default folder location for these
files is:

C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ LogFiles

The log files contain information about errors, warnings, and events for different Reporting Services
components. The name and description of these files are listed in the following table:

Log File Description

ReportServerService_<timestamp>.log Contains logged information about the
Reporting Services Web service.

ReportServerWebApp_<timestamp>.log Contains logged information about the
Report Manager web application.

ReportServer_<timestamp>.log Contains logged information about the
Report Server processing engine.

Adjusting Execution Log Settings
The ReportingServicesService.exe.config file contains settings that configure how tracing is per-
formed. By default, the file is located in:

C:\Program Files\Microsoft SQL Server\MSSQL.3\Reporting Services\ReportServer\bin

Here’s a sample of the XML content you’ll find in this file:

<configuration>
<configSections>

<section name=”RStrace”
type=”Microsoft.ReportingServices.Diagnostics.RSTraceSectionHandler,Microsoft.Repor
tingServices.Diagnostics” />
</configSections>
<system.diagnostics>

<switches>

479

Report Server Administration

18_584979 ch11.qxp 1/27/06 7:32 PM Page 479

<add name=”DefaultTraceSwitch” value=”3” />
</switches>

</system.diagnostics>
<RStrace>

<add name=”FileName” value=”ReportServerService_” />
<add name=”FileSizeLimitMb” value=”32” />
<add name=”KeepFilesForDays” value=”14” />
<add name=”Prefix” value=”tid, time” />
<add name=”TraceListeners” value=”debugwindow, file” />
<add name=”TraceFileMode” value=”unique” />
<add name=”Components” value=”all” />

</RStrace>
<runtime>

<legacyImpersonationPolicy enabled=”true”/>
</runtime>

</configuration>

Notice the child element of the switches tag. Right now, the DefaultTraceSwitch has a value of 3.
This means quite a bit of detail is going to be written to the log. Possible values for this setting are in the
next table:

Element Description Values

DefaultTraceSwitch This sets how much detail is 0 = Disables tracing
written to the trace log files. 1 = Logs exceptions and restarts
Unless you have a good reason 2 = Logs exceptions, restarts,
to turn it off, it’s best to leave warnings
tracing enabled. 3 = Logs exceptions, restarts,

warnings, status messages
(default)
4 = Verbose mode

FileSizeLimitMb This is the max size for trace logs, 0 to max integer (a way big
in megabytes. number); the default is 32.

KeepFilesForDays The life span in days for the trace 0 to max integer again; the default
log files. After that, it’s deleted. for this one is 14.

Status messages are generated through normal processing. The log files can get quite large, if not kept
under control. Changing the DefaultTraceSwitch value to 2 will slow the rate at which the files grow,
while still giving you a good degree of information when things start behaving badly.

Performance Counters
Reporting Services includes performance counters for the two core Report Server functions: the Report
Server Web service and the Windows service. Remember that the Report Server handles report process-
ing, and the Windows service is responsible for report scheduling and delivery.

While you can modify the config file to rename the log file or increase or decrease
trace levels, don’t modify any of the other settings.

480

Chapter 11

18_584979 ch11.qxp 1/27/06 7:32 PM Page 480

The best way to access these counters is through Administrative Tools, as shown in Figure 11-13.

Figure 11-13

You can get to Administrative Tools through the Start menu or the Control Panel. Select Administrative
Tools➪Performance to open the performance monitor, or perfmon for short. When System Monitor is
selected in the tree view pane on the left, you can view the performance trace for selected counters in the
display on the right. Figure 11-14 shows perfmon in action.

Figure 11-14

481

Report Server Administration

18_584979 ch11.qxp 1/27/06 7:32 PM Page 481

There are 18 different performance monitors provided for the Report Server Web service and 27 counters
for the RS Windows service. To access the counters, right-click the display window in perfmon and
select “Add Counters...” from the context menu. That brings up the Add Counters dialog box, where
you can choose which counters to view. When Reporting Services is installed on a machine, two of the
Performance Objects available are RS Windows service and RS Web Service, as shown in Figure 11-15.

Figure 11-15

Once one of the two Performance Objects is selected, you’ll have access to the individual counters
exposed by each of them. The following table lists commonly used counters for the Web and Windows
services, but is just a selection of the counters available.

Performance Counter Counter Description

RS Web Service

Active Sessions Number of active sessions being managed.

Report Requests Number of active requests being handled by the
Report Server.

Reports Executed/Sec Number of reports being executed per second.

Cache Hits/Sec Number of times per second data is being pulled
from Report Server catalog.

Cache Misses/Sec Number of times per second that requests couldn’t be
returned from the Report Server catalog.

Memory Cache Hits (and Misses) / Sec How many times per second that reports are being
retrieved from in-memory cache (or not being
retrieved). When data is pulled from in-memory
cache, the Report Server avoids a round trip to the
database.

482

Chapter 11

18_584979 ch11.qxp 1/27/06 7:32 PM Page 482

Performance Counter Counter Description

Total Cache Misses The total number of times that requests could not be
returned from the Report Server catalog. Like other
“Total” counts, this one is reset when the service
restarts. This one can help determine if you’ve got
enough memory and hard drive capacity.

RS Windows Service

Delivers/Sec Number of report deliveries per second, regardless of
the delivery method.

Cache Hits/Sec (Semantic Model) Number of times per second for cached models.

Total App Domain Recycles Total number of times the application domain has
been recycled.

Total Deliveries Total number of deliveries that have been made.

Total Reports Executed The total number of reports that have been processed.

Total Requests Total number of incoming requests that have been
processed; there are typically more requests than
processed reports.

Another component of Reporting Services, the Report Manager, does not have its own performance
counters. The Report Manager is an ASP.NET web application that works with the report server by send-
ing requests to the Report Server Web Service. Microsoft provides two key performance objects:
ASP.NET and ASP.NET Applications. These two objects expose performance counters like Request Wait
Time and Requests Queued, which can help narrow down where a bottleneck might be.

Note that the Reporting Services Web service is also an ASP.NET application, so those monitors can help
keep an eye on it as well. Other system monitors that can provide valuable insight into how your server
environment is handling its workload include:

❑ .NET CLR Data

❑ .NET CLR Memory

❑ Memory

❑ System

The .NET CLR counters read the Common Language Runtime (CLR) of the .NET Framework. The CLR
is essentially the runtime engine that manages the applications running on the .NET Framework. This
includes providing services such as garbage collection, security checking, and application isolation.

For insight into how SQL Server is handling its side of things, use a combination of perfmon and SQL
Server Profiler to monitor the Reporting Services catalog and the data source databases. You’ll want to
include both the Report Server catalog and the data source databases, which could easily be on different
machines.

483

Report Server Administration

18_584979 ch11.qxp 1/27/06 7:32 PM Page 483

Summary
Microsoft has improved the management tools in this edition of Reporting Services, making server
administration mostly straightforward. How you configure your Reporting Services environment will
affect the number of incoming requests your servers can handle.

To increase the capacity of your report server, one of the first things to look at is deploying the
ReportServer and ReportServerTempDB databases to a remote instance of SQL Server.

Some other things to keep in mind when considering a Reporting Services deployment include:

❑ As much as possible, render reports from cached data rather than live data.

❑ Be reasonable when defining report requirements. Large, complex reports consume server
resources and may not be the best way to meet user needs.

❑ Use scheduling to process reports during off-peak times to reduce anticipated server loads.

❑ Use tools such as Query Analyzer and SQL Profiler to improve query performance.

❑ Consider linked reports to reduce database round trips. Linked reports can provide users with a
subset of data by leveraging the filtering, grouping, and aggregate function capabilities of the
report server.

Lastly, consider scaling out in addition to scaling up. If you’ll remember, scaling up is the addition of more
capacity within a server. For example, by adding processors to create dual- or quad-processor machines.
Scaling out is adding more machines to spread the load and has been popular for Reporting Services
installations. Scaling out can be a flexible, cost-effective way of incrementally adding and removing
additional capacity. When anticipating a seasonal spike in reporting loads, for example, adding relatively
inexpensive commodity servers will not only help balance the load but will also provide an additional
degree of fault tolerance.

The next chapter takes a closer look at working programmatically with the report server, to enable viewing
reports in custom client applications.

484

Chapter 11

18_584979 ch11.qxp 1/27/06 7:32 PM Page 484

Part V

Reporting Services
Integration and the
Reporting Services

Web Services

Chapter 12: Integrating Reporting Services into Custom Applications

Chapter 13: Extending Reporting Services

19_584979 pt5.qxp 1/27/06 7:34 PM Page 485

19_584979 pt5.qxp 1/27/06 7:34 PM Page 486

Integrating Reporting
Services into Custom

Applications

The main focus of Reporting Services is to be a flexible reporting tool that can be easily incorpo-
rated in different applications. There are a number of scenarios where the report viewer provided
by Reporting Services will not meet report delivery needs. For example, many organizations main-
tain corporate reporting portals. In these situations, developers might need a way to display
numerous reports in a web environment. Reporting Services can also be embedded into any line of
business applications. Developers might want to use Reporting Services to create invoices or pur-
chase orders directly from their applications. For other organizations, the default Report Manager
might not provide a secure enough method of accessing reports.

All of these issues can be solved with the features available in Reporting Services. In this chapter,
you will take a look at four methods of rendering reports from Reporting Services. They are:

❑ Using URLs to access reports.

❑ Using the Reporting Services Web service to programmatically render reports.

❑ Using the ReportViewer controls to embed reports.

❑ Using SharePoint to display reports.

URL access allows you to quickly incorporate Reporting Services reports in applications such as
web portals. Programmatic rendering allows for creating custom interfaces. Developers can do
anything from implementing their own security architecture around Reporting Services to creating
their own parameter interface.

20_584979 ch12.qxp 1/27/06 7:40 PM Page 487

In this chapter you learn about:

❑ The syntax and structure for accessing Reporting Services through the URL.

❑ The reporting items that can be accessed through the URL.

❑ The parameter options that can be passed to the URL to control report output.

❑ Creating a Windows application that renders reports to the file system.

❑ Creating a web application that returns rendered reports to the browser.

❑ Easily embedding reports in a Windows application using controls.

❑ Adding report browsing and rendering to your SharePoint sites.

URL Access
Reporting Service’s main means for accessing reports is through HTTP requests. These requests can be
made through URLs in a web browser or a custom application. By passing parameters in the URL, you
can specify the report item, set the output format, and perform a number of other tasks. In the next few
sections, you will look at the features available through URL requests, URL syntax, passing parameters,
and setting the output format.

URL Syntax
The basic URL syntax is as follows:

http://server/virtualroot?[/pathinfo]&[prefix:]param=value[&[prefix:]param=value]
...n]

The parameters in the syntax are as follows:

❑ server: Specifies the instance of Report Server you would like to access. To access your local
machine, you can either type the machine name or use the localhost alias.

❑ virtualroot: Specifies the IIS virtual directory you specified during the setup. When installing
Reporting Services, you must enter two virtual directories: one for the Report Manager and one
for the Reporting Services Web service. By default, the virtual directory you would access is
reportserver.

❑ pathinfo: After specifying the server and virtual directory to the Reporting Services Web service,
you can pass a number of parameters to access report objects. The first parameter you pass is
pathinfo, which specifies the path to the resource you want to access. To access the root of the
Report Server, you can simply place a single forward slash (/).

Once you have listed the path, you can pass various parameters. These parameters will depend on the
type of object you are referencing. Reports will have a number of parameters to specify properties such
as the rendering format. Each parameter is separated by an ampersand (&) and contains a name=value
pair for the parameter.

488

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 488

Here is a quick look at retrieving the list of items under the Professional SQL Reporting Services folder.

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services&rs:Command=
ListChildren

Now that you’ve taken a look at the basic URL syntax, let’s see how it is implemented in each of the
Reporting Services objects.

Accessing Reporting Services Objects
URL requests are not limited to just reports. You can access a number of Reporting Services items. These
include:

❑ Folders

❑ Data Sources

❑ Resources

❑ Reports

In this section, you will look at accessing each of the items listed above. You will go through sample
URLs and look at items provided in the Professional SQL Reporting Services project.

Folders
Accessing folders will be your starting point for looking at URL requests. Let’s take a look at the simplest
URL request you can make:

http://localhost/reportserver

That URL is redirected to the default Home page in Report Manager. With this request, you can see a
listing of all reports, data sources, resources, and folders in the root directory of the Reporting Server, as
shown in Figure 12-1. To access another server, simply replace localhost with the name of the server.

To see how other folder URL requests work, simply click on any of the <dir> links. Clicking the
Professional SQL Reporting Services link will give you the following URL:

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services&rs:Command=
ListChildren

This URL contains the following items:

❑ Path to the report: %2fProfessional+SQL+Reporting+Services

❑ Command to list the contents of the directory: rs:Command=ListChildren

You’ll take a closer look at the URL parameters in the “Reporting Services URL Parameters” section later
in the chapter.

489

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 489

Figure 12-1

Data Sources
Through URL requests, you can also view the contents of data sources. Let’s again take a look at the
Professional SQL Reporting Services folder. Enter the following URL to view the contents of this folder:

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services&rs:Command=
ListChildren

You’ll see the listing of items, as shown in Figure 12-2.

You will notice that one of the items listed is AdventureWorks. You can tell that this item is a data source
by the <ds> tag next to the item name. If you follow the AdventureWorks link, you will be able to view
the contents of that data source. Figure 12-3 shows the AdventureWorks data source contents.

Let’s take a look at the URL used to view the AdventureWorks data source: http://localhost/
reportserver?%2fProfessional+SQL+Reporting+Services%2fAdventureWorks2000&rs:Command=
GetDataSourceContents

490

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 490

Figure 12-2

Figure 12-3

491

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 491

This URL contains the following items:

❑ Path to the data source:
%2fProfessional+SQL+Reporting+Services%2fAdventureWorks2000&

❑ Command to view the data source content: rs:Command=GetDataSourceContents

Viewing the data source enables you to quickly see how your data source is configured. Notice that this
information is returned in XML format. This allows you to easily work with the data source information.
If you have your own reporting application that shares a single connection, you could use this URL to
dynamically load this data source information. This information could then be used to make other
database connections in your application.

Resources
Resources are items that you use in your reports, such as images or additional resources that have been
added to your Report Server folder, such as Word and Excel documents. You can use URLs to access
resources stored in the Report Server. Depending on the type of resources you reference, either you will
be prompted to open or save a file, such as a Word or Excel document, or the resource will be rendered
directly in the browser. In the Professional SQL Reporting Services folder, a resource for the Adventure
Works logo is added. This image can be directly rendered in your browser. Let’s take a look at the fol-
lowing URL:

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services%2fAdventure+
Works+Logo&rs:Command=GetResourceContents

The URL contains the following contents:

❑ Path to the resource:
%2fProfessional+SQL+Reporting+Services%2fAdventure+Works+Logo

❑ Command to retrieve the resource content: rs:Command=GetResourceContents

You can use this information in other applications. If you want to reference the Adventure Works logo from
a web page, you could simply set the src attribute of an image tag () to reference the earlier URL.

Resources can also be incredibly handy for storing documents. In your reporting solution, you might
want to store readme files to accompany your reports. You can store these documents as resources on the
Report Server and then apply different properties to them, such as security. Your application could then
point to the resource URL to allow downloading of the document.

Reports
The most important objects you can access through the URL are your reports. This section provides a
quick look at the syntax for accessing reports. Later we’ll discuss the various parameters you can pass to
change things such as report parameters, output formats, and other items.

The basic syntax for accessing a report is very similar to accessing all of your other resources. You should
first specify a path to the report and then provide the commands for its output. Let’s look at the basic
URL for accessing your Customer Product Sales Pivot report:

http://localhost/ReportServer/Pages/ReportViewer.aspx?%2fProfessional+
SQL+Reporting+Services%2fProduct+List+Categories&rs:Command=Render

492

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 492

View the Customer Product List by Category report, as shown in Figure 12-4.

Figure 12-4

The URL contains the following contents:

❑ Path to the resource:
%2fProfessional+SQL+Reporting+Services%2fProduct+List+Categories

❑ Command to retrieve the resource content: rs:Command=Render

Using URLs is the easiest and most convenient way to embed Reporting Services reports in your applica-
tions. You can simply create your own links that point to the various report URLs. You are probably
saying to yourself, “That’s nice! I can access a report, but how do I pass parameters and change the output
format?’’ In the next section, you’ll take a look at all the possible parameters you can pass through the
URL, including setting report parameters and output format.

Reporting Services URL Parameters
Now that you have seen the basics of obtaining items from your Report Server using URLs, let’s take a
look at passing some parameters. The next few sections will move through how parameters are passed
to Reporting Services and what values for these parameters are available. The majority of the parameter

493

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 493

functionality will be focused on report rendering, but some items will also apply to your data source,
resources, and folder.

Parameter Prefixes
The first thing you need to take a look at is the different parameter prefixes in Reporting Services. There
are four main parameter prefixes in Reporting Services: rs, rc, dsp, and dsu. The following sections will
take a look at these prefixes in detail.

rs Prefix
In the earlier examples, you saw the parameter rs:Command. This parameter contains the prefix rs. The
rs prefix is used to send commands to the Report Server. The following URL shows an example of the
rs prefix being used to call the Command parameter and pass the ListChildren argument to it:

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services&rs:Command=
ListChildren

rc Prefix
The second main parameter prefix in Reporting Services is the rc prefix. This prefix is used to interact
with the given report output format. For example, if you are outputting your report as HTML, you can
control the HTML viewer. You can use this prefix to pass parameters that do things such as hide toolbars
or control the initial state of toggle items. The following URL calls the Product Sales Pivot report and
turns off the parameter inputs:

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services%2fProduct+
List+Categories&rs:Command=Render&rc:Parameters=False

dsu and dsp Prefixes
Parameter prefixes can also be used to send database credentials. Use the dsu prefix to pass the data
source user name and dsp to pass the data source password. In any Reporting Services report, you could
incorporate multiple data sources. So, you need a way to specify which data source the credentials
should be passed to. That’s where the prefixes come in. The full syntax to use these prefixes is as follows:

[dsu | dsp]:datasourcename=value

If you want to pass the user name guest with a password guestPass to your AdventureWorks data
source, you will use the following URL parameters:

&dsu:AdventureWorks=guest&dsp:AdventureWorks=guestPass

Be aware that these credentials will be passed unencrypted over the Internet and will be visible to the end
user. You can encrypt the URL using the Secure Sockets Layer (SSL) on your web server. This will prevent
the information from being sent unencrypted but will not prevent the end user from viewing the credentials
that you pass. Make sure that you consider these factors in your reporting solution architecture.

Now that you have seen the different parameter prefixes in Reporting Services, we’ll move on to the
available parameters that can be used with the rs and rc prefixes.

494

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 494

Parameters
First, let’s take a look at the parameters that can be used with the rs prefix. The following table lists the
three available values and their uses:

Parameter Use

Command The Command parameter is used to send instructions to the
Report Server about the item being retrieved. Available val-
ues return the report item and set session timeout values.

Format The Format parameter is used when rendering reports. Any
rendering formats available on the report server can be
passed using this parameter.

Snapshot The Snapshot parameter is used to retrieve historical report
snapshots. Once a report has been stored in snapshot his-
tory, it is assigned a time/date stamp to uniquely identify
that report. Passing this time/date stamp will return the
appropriate report.

Now that you have seen the different rs parameters, let’s take a look at some of their available values.

Command Parameter
The Command parameter is your main parameter for setting the output of a given report item. It can also
be used for resetting a user’s session information, which guarantees that a report is not rendered from the
session cache. Here is a listing of the possible values that can be passed to the Command parameter:

Value Use

GetDataSourceCredentials The GetDataSourceCredentials command can be
used to return data source information in an XML format.
You can use this parameter on shared data sources.

GetResourceCredentials This command returns the binary of your Reporting
Services resources, such as images, via the URL.

ListChildren Used in combination with a Reporting Services folder.
This lets you view all the items in a given folder.

Render Allows you to render the report using the URL. Probably
the most frequently used command.

ResetSessionTimeout Can be used to refresh a user’s session cache. Because
Reporting Services works typically via HTTP, it is crucial
for the server to maintain state information about the user.
However, if you want to ensure that a report is executed
each time the user views a report, this state information
needs to be refreshed. Use this parameter to reset the
user’s session and remove any session cache information.

495

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 495

Format Parameter
The Format parameter is the main parameter for controlling the report output. The available values for
this parameter are determined by the different rendering extensions available on your report server. The
following table shows the output formats available with the default installation of Reporting Services:

Value Output

Web Formats

HTML3.2 HTML version 3.2 output. Used for older browsers.

HTML4.0 HTML version 4.0. This format is supported by newer browsers, such
as Internet Explorer 4.0 and above.

MHTML MHTML standard output. This output format is used for sending
HTML documents in e-mail. Using this format will embed all
resources, such as images, into the MHTML document instead of ref-
erencing external URLs.

Print Formats

IMAGE The IMAGE format allows you to render your reports to a number of
different graphical device interfaces (GDI) such as BMP, PNG, GIF, or
TIFF.

PDF The Portable Document Format (PDF) can be used for viewing and
printing documents.

Data Formats

EXCEL Excel output. Users can use this format to further manipulate report
data.

CSV Comma Separated Value (CSV) format. CSV is a standard data format
and can be read by a wide variety of applications.

XML Extensible Markup Language (XML) format. XML has become a stan-
dard data format, used by many different applications.

Control Format

NULL The NULL provider allows you to execute reports without rendering.
This can be very useful when working with reports that have cached
instances. You can use the NULL format to execute the report for the
first time and then store the cached instance.

When you set the rendering formats via the URL, the report will either be rendered directly in the browser,
or you will be prompted to save the output file. Let’s take a look at rendering the Customer Product Sales
Pivot report in PDF format. Enter the following URL using the rs:Format=PDF parameter:

496

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 496

http://localhost/ReportServer/Pages/ReportViewer.aspx?%2fProfessional+SQL+
Reporting+Services%2fProduct+List+Categories&rs:Command=Render&rs:Format=PDF

Figure 12-5 shows the output.

Figure 12-5

Notice that the browser will now prompt you to save the rendered report. This can be easily incorporated
into your own custom applications or portals. You can simply give your users a link containing the
rs:Format parameter and automatically output the correct format.

Setting Device Information
Now that you have seen the various output formats available in Reporting Services, you need to take a
look at the different device information settings for the various formats. The Format parameter allows
you to specify the type of format you want, but each format has specific settings that can be useful to
you. For example, if you specify the IMAGE format, you get an output in TIFF. What if you wanted a
bitmap or JPEG image? Well, to output in a different image format, all you need to do is to just specify
device information when passing the URL. Take a look at outputting your Customer Product Sales Pivot
report in JPEG format using the following URL (Figure 12-6 shows the output).

497

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 497

Figure 12-6

Notice that the file type sent back to you is a JPEG image. There are numerous device information settings
you can use for each of the rendering extensions. Each device information setting is prefixed using the
rc prefix. The following syntax can be used for passing device information:

http://server/virtualroot?/pathinfo&rs:Format=format&rc:param=value[&rc:param=
value...n]

Now that you have seen the different output formats and commands you can pass to Reporting Services,
let’s take a look at passing information to your individual reports.

Passing Report Information through the URL
The previous sections illustrated how a URL can be used to control report rendering. In the next section,
you look at how a URL can be used to control report execution. This section starts with an explanation of
passing report parameters. These are the parameters that you define while authoring your report.
Finally, you’ll see how historical snapshots can be rendered using the URL.

498

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 498

Report Parameters
Many of your reports have parameters to control all kinds of behavior. You can use parameters to alter
your query, filter datasets and tables, and even change the appearance of your reports. Reporting
Services allows you to pass this information directly via a URL request. In the earlier section, you saw a
lot about the parameter prefixes and the available values that can be sent to the Reporting Services. With
report parameters, you simply need to remove the prefix and directly call the parameter name.

In this example, the Product List Subreport accepts one parameter: SubCategoryID. You might want to
allow your users to update these parameters through a custom interface you define. When you call the
report, you will need to provide the parameter value in the URL as shown here:

http://localhost/ReportServer/Pages/ReportViewer.aspx?%2fProfessional+SQL+Reporting+
Services%2fProduct+List+Subreport&rs%3aCommand=Render&SubCategoryID=1

Let’s take a look at calling the report with a SubCategoryID of 1 (see Figure 12-7).

Figure 12-7

Notice that by passing the parameters in your URL, the HTML viewer updates to reflect the values. The
parameter name that you use in the URL is defined in the report definition. Since your Report Parameter
is called SubCategoryID, that name is used in your URL.

499

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 499

Now that you have seen how to pass report parameters to the URL, let’s look at passing snapshot IDs to
render historical execution snapshots.

Rendering Snapshot History
One of the major features of Reporting Services is the ability to create execution snapshots of reports. Say
you have a report where the data updates on a monthly basis. Once the data is updated, it does not
change for another month. A perfect example of this would be monthly financial statements. If your data
changes only once a month, there is no reason to query your database every time you need a report. So,
you can use execution snapshots to store this information after the query has been executed. Going
along the same lines as a monthly report, what should happen when your data updates from, say,
January to February? You don’t want to lose the January snapshot once the February information is
available. That is where historical snapshots come into play. When you create the February snapshot,
you go and add January to the snapshot history and so on for each subsequent month.

Now that you have execution snapshots stored in history, you need some way to access them. Reporting
Services gives you a very easy way to do this. As you have already seen, each report has a report path that
can be used to render the report. To render a historical snapshot, you simply need to add a parameter for
the historical snapshot ID.

The syntax to pass your snapshot ID is as follows:

http://server/virtualroot?[/pathinfo]&rs:Snapshot=snapshotid

The snapshot ID for your historical snapshot will be the time and date stamp of when the report was
added to the history. The time is adjusted to GMT based on the time zone where the historical snapshot
was added.

URL Rendering Summary
Through URL rendering, you have seen the various commands that can be passed to Reporting Services
that can be used to control the report item display, the format to use, and snapshot information using the
rs prefix. Once you have created your commands for the Report Server, you can pass parameters specific
to the output format. Using the rc prefix and the device information parameters, you can specify things
such as encoding and what items to display in the HTML viewer. After you have specified the report item,
you need to know how to output it. You can pass parameters to your report by simply passing the
parameter name and value combination.

In the next section, let’s take a look at the second part of rendering Reporting Service reports. You can use
URLs for simple web applications and web portals, but sometimes you need finer control over report
access and rendering. To achieve this, we’ll use the Reporting Service Web service to programmatically
render your reports.

Programmatic Rendering
There are several ways that reports may be integrated into custom Windows forms and web applications.
These include:

500

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 500

❑ Link to a report in web browser window using a URL rendering request.

❑ Replace web page content with a report by using SOAP rendering to write binary content to the
web Response object.

❑ Use SOAP rendering to write report content to a file.

❑ Embed a report in an area of a web page by setting the source of a frame or IFrame tag.

❑ Use the ReportViewer control in a Windows form or Web form application.

Rendering using a URL is very handy and easy to implement in many situations, but it does have its limi-
tations. When rendering from the URL, you have to make sure that you use the security infrastructure
provided with Reporting Services. For some applications, such as public web sites, you might want to
implement your own security. In that case, rendering from the URL will not provide the functionality you
need. In this section, you will take a look at rendering reports using the Reporting Services Web service.

You’ll connect to the Reporting Services Web service, return a list of available reports, retrieve their
parameters, and finally render the report. Let’s take a look at three implementations of programmatic
rendering. The first implementation is using a Windows form to render reports to a file. This will help
you to understand the basic principles without a lot of interface work. The second implementation will
take you through rendering through an ASP.NET page. You’ll see some of the items that need to be con-
sidered when working through a web application. Last, you’ll read about the ReportViewer controls
embed reports in a Windows application using one.

Common Scenarios
Before you look at the actual programming code for rendering reports, it is important to understand a
couple of scenarios where it is reasonable to do so. There are two scenarios that are commonly experi-
enced while working with clients. They do not represent the only scenarios where you would write your
own rendering code but do illustrate how and when custom code can be used. Let’s look at each of these
scenarios.

Custom Security
Probably the biggest question I get when working with clients is How do I use Reporting Services if I
don’t want to implement their security infrastructure? Reporting Services requires you to connect to
reports using a Windows identity. In many organizations, this is just not possible. They have mixed envi-
ronments or nontrusted domains that do not allow for identification to the Report Server. Some clients
also have large-scale authentication and authorization infrastructures already implemented.

You can still use Reporting Services in these situations. Using your own security infrastructure involves
creating both authentication and authorization code in your environment. After you have determined
that a user can access a report, a Windows identity that you define can be used to connect to reports. To
hide this security implementation, the Reporting Services Web service can be employed. You can render
reports directly to a browser or file without passing the original user identity to the Report Server.

501

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 501

Server-Side Parameters
Although URL rendering is by far the easiest way to incorporate Reporting Services in your applications,
it does have some limitations. When you send information via a URL, it is very easy for a user to change
that URL or see what it is that you pass.

By using the Reporting Services Web service, you can easily hide the details of how you retrieve report
information. Parameters are passed through your code instead of the URL. This gives you complete con-
trol over how that information is retrieved without exposing it to the users. Let’s take a look at your first
rendering application.

Rendering through Windows
In this section, we’ll take a look at the mechanics of rendering using the Reporting Service Web service.
We are going to build a simple Windows application that returns a list of reports from the report server.
Once we have the list of reports, we’ll use the Web service to return a list of report parameters. After
entering any report parameters, we’ll render the report to a file. These steps will illustrate the main com-
ponents of rendering through program code.

Building the Application Interface
To start, you need to build your application interface. Let’s start by building a simple Windows form; for
this example, I’ve added labels, text boxes, and buttons for basic functionality. Figure 12-8 shows the
design view of your form.

Figure 12-8

502

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 502

This form will allow you to query a given Report Server to return a list of reports. Once it has returned
the reports, you can use it to access a list of parameters for the reports. Finally, you’ll need to render the
report to a given folder location.

Setting Up the Reporting Service Web Service
Before you can get into rendering reports, you need to set up a reference to the Reporting Service Web ser-
vice. Once you have created your web reference, you can start to develop the application. The next few fig-
ures show you how to create a reference to the Web service. Start by adding a web reference to your project.

Open the Solution Explorer and right-click on the References folder. Click the Add Web Reference menu
item, as in Figure 12-9. That will open the Add Web Reference dialog.

Figure 12-9

In the Add Web Reference dialog, enter the location of Web service in the URL dialog. This URL will
depend on the Report Server name and the installed location of the Report Server virtual directory. By
default, the Report Server virtual directory is located under the root as /reportserver. For the default
virtual directory on a local machine, enter the following URL:

http://localhost/reportserver/reportservice.asmx?wsdl.

Once you have entered the URL, hit Enter to view a description of the Web service. Enter a name for the
new web reference and click Add Reference. I’ve named mine RSService. The dialog should look like
Figure 12-10 when filled in.

Now that you have referenced the Web service, you are ready to start writing your code. The first thing
you can do is add a using (C#) or Imports VB.(VB) statements to your code. The first part of the using
statement will be the application name followed by the web reference name. I have called my C# project
Rendering and my VB project RenderingVB.

503

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 503

Figure 12-10

C#
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using Rendering.RSService;

VB
Imports System
Imports System.Drawing
Imports System.Collections
Imports System.ComponentModel
Imports System.Windows.Forms
Imports RenderingVB.RSService

After you have added the using or Imports statement, you need to create an instance of the
ReportingService object. This is the main object that will be used to retrieve a list of reports and their
associated parameters and then render the report. At the top of the Windows form class code, create the
declarations shown in the following sections. The class declaration is included for clarity.

C#
public class frmMain : System.Windows.Forms.Form
{

private ReportingService _rs = new ReportingService();

504

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 504

VB
Public Class frmMain

Inherits System.Windows.Forms.Form
Private _rs As New ReportingService

Next, you need to set the security credentials that will be used by Reporting Services. In your code, pass
the credentials of the currently logged-on user. If you already have your own custom authentication and
authorization method in place, you could pass a system identification you define instead of the current user.

Open the Form Load event in the windows form; this is a suitable place for setting the credentials.
Inside this event, set the ReportingService object’s Credentials property to
System.Net.CredentialCache.DefaultCredentials. This will give the Web service the credentials
of the currently logged-on user.

C#
_rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

VB
_rs.Credentials = System.Net.CredentialCache.DefaultCredentials

The final piece you need to add to the Form Load event is the code to populate your drop-down list.
This code will add all the format names to the list along with appropriate extensions for each. Let’s
begin by creating a small class that helps you populate the drop-down:

C#
/* Helper class for format extensions. */
private class Format
{

private string _name;
private string _extension;

public Format(string name, string extension)
{

_name = name;
_extension = extension;

}

public string Name
{

get{return _name;}
}

public string Extension
{

get{return _extension;}
}

}

505

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 505

VB
‘ Helper class for format extensions.
Private Class Format

Private _name As String
Private _extension As String

Public Sub New(ByVal name As String, ByVal extension As String)
_name = name
extension = extension

End Sub

Public ReadOnly Property Name() As String
Get

Return _name
End Get

End Property

Public ReadOnly Property Extension() As String
Get

Return _extension
End Get

End Property
End Class

With these classes you can finish off your FormLoad event code. Add the few last lines of code to popu-
late your format combo box:

C#
private void frmMain_Load(object sender, System.EventArgs e)
{

rs.Credentials = System.Net.CredentialCache.DefaultCredentials;
//load the format values
Format[] formats = new Format[7];
formats[0] = new Format(“Excel”, “.xls”);
formats[1] = new Format(“HTML3.2”, “.html”);
formats[2] = new Format(“HTML4.0”, “.html”);
formats[3] = new Format(“XML”, “.xml”);
formats[4] = new Format(“CSV”, “.csv”);
formats[5] = new Format(“PDF”, “.pdf”);
formats[6] = new Format(“IMAGE”, “.tif”);

cboFormat.DataSource = formats;
cboFormat.DisplayMember = “Name”;
cboFormat.ValueMember = “Name”;

}

VB
Private Sub frmMain_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

_rs.Credentials = System.Net.CredentialCache.DefaultCredentials

506

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 506

‘load the format values
Dim formats(6) As Format
formats(0) = New Format(“Excel”, “.xls”)
formats(1) = New Format(“HTML3.2”, “.html”)
formats(2) = New Format(“HTML4.0”, “.html”)
formats(3) = New Format(“XML”, “.xml”)
formats(4) = New Format(“CSV”, “.csv”)
formats(5) = New Format(“PDF”, “.pdf”)
formats(6) = New Format(“IMAGE”, “.tif”)

cboFormat.DataSource = formats
cboFormat.DisplayMember = “Name”
cboFormat.ValueMember = “Name”

End Sub

You have now created an instance of the ReportingService object, passed the logged-on user’s creden-
tials to it, and populated the format drop-down list. In the next section, we’ll take a look at connecting to
the Report Server and retrieving a list of available reports.

Retrieving Report Information
Now that you have set up the Reporting Service Web service, you need to retrieve your list of reports. To
do this, specify the Report Server you want to query and then call the ListChildren method of the
ReportingService object. ListChildren returns a list of all items, including data sources, resources,
and reports. Once you have retrieved the list, you will need to pull out only report items. Finally, you
will add the report items to the drop-down.

Let’s start by setting the URL to your Report Server. Open the click event of the Get Items button to start
your code. Remember that _rs is your reference to the Web service.

C#
_rs.Url = txtServer.Text + “/ReportService.asmx”;

VB
_rs.Url = txtServer.Text & “/ReportService.asmx”

The preceding code uses the server location specified in the Server Address text box concatenated with
the reference to the Reporting Service Web service.

Once the URL for the Web service is set, you can get the list of reports. Create an array of CatalogItem
objects and then call the ListChildren method. This method takes two parameters: the folder path on
the Report Server and a Boolean value indicating whether or not to recur the directory.

C#
CatalogItem[] items;
items = _rs.ListChildren(“/”, true);

507

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 507

VB
Dim items() As CatalogItem
items = _rs.ListChildren(“/”, True)

The last step is to loop through the returned list of items and add them to a drop-down list. Similar to
how the formats were loaded, create a class to help data-bind the report items. Let’s take a look at the
code for this class.

C#
private class ReportItem
{

private string _name;
private string _path;

public ReportItem(string name, string path)
{

_name = name;
_path = path;

}

public string Name
{

get{return _name;}
}

public string Path
{

get{return _path;}
}

}

VB
Private Class ReportItem

Private _name As String
Private _path As String

Public Sub New(ByVal name As String, ByVal path As String)
_name = name
_path = path

End Sub

Public ReadOnly Property Name() As String
Get

Return _name
End Get

End Property

Public ReadOnly Property Path() As String
Get

Return _path
End Get

End Property
End Class

508

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 508

Using the ReportItem class just created, you can now add the report catalog items to the combo box.
The following code is for the GetItems button click event, including populating the report drop-down.

C#
private void btnGetItems_Click(object sender, System.EventArgs e)
{

//set the path to the report server
_rs.Url = txtServer.Text + “/ReportService.asmx”;

//return a list of items from the report server
CatalogItem[] items;
items = _rs.ListChildren(“/”, true);

//populate your report combo box
cboReports.Items.Clear();
foreach(CatalogItem item in items)
{

if(item.Type == ItemTypeEnum.Report)
{

cboReports.Items.Add(new ReportItem(item.Name, item.Path));
}

}

cboReports.DisplayMember = “Name”;
cboReports.ValueMember = “Path”;

}

VB
Private Sub btnGetItems_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnGetItems.Click

‘set the path to the report server
_rs.Url = txtServer.Text & “/ReportService.asmx”
‘return a list of items from the report server
Dim items() As CatalogItem
items = _rs.ListChildren(“/”, True)
‘populate your report combo box
cboReports.Items.Clear()
Dim item As CatalogItem
For Each item In items

If item.Type = ItemTypeEnum.Report Then
cboReports.Items.Add(New ReportItem(item.Name, item.Path))

End If
Next item
cboReports.DisplayMember = “Name”
cboReports.ValueMember = “Path”

End Sub

You will now be able to open your form and return a list of report items. In the next section, you will
look at retrieving the parameters for a report.

509

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 509

Retrieving Report Parameters
The next area of programmatic rendering consists of retrieving a list of parameters for your report. This
bit of code can be used in a number of scenarios. The parameter interface that is provided by Reporting
Services works well for simple parameters. However, it does not handle many things, like multiselect
parameters or more advanced interfaces such as calendar controls. Being able to return a list of parame-
ters allows you to create your own dynamic interface.

In the following example, we will create a simple list of parameters. For each parameter, we will dynam-
ically add a label control and text box to your form. This example will also include the GetParameters
click event to run your code. First thing you need to do is identify the report that is selected in your
report drop-down list.

C#
ReportItem reportItem = (ReportItem)cboReports.SelectedItem;

VB
Dim reportItem As ReportItem = CType(cboReports.SelectedItem, ReportItem)

This creates a new ReportItem variable using the selected item of your combo box. The ReportItem
class created in the previous section contains a Name and Path property. You can use this Path property
to retrieve your list of parameters.

To return your list of parameters, call the GetReportParameters method or the ReportingService
object. This method has two functions. It returns a list of parameters and can validate parameters against
the available values defined when creating the report. Let’s take a look at the arguments of the
GetReportParameters method:

❑ Report: This is the path to the report you want to retrieve.

❑ HistoryID: The ID used to identify any historical snapshots of your report.

❑ ForRendering: This Boolean argument can be used to retrieve the parameters that were set when
the report was executed. For example, you might create a snapshot of your report or receive it in
an e-mail subscription. In both cases, the report is executed before the user views it. By setting the
ForRendering property to true, you can retrieve these values and use them in your own custom
interface.

❑ ParameterValues: The ParameterValues argument can be used to validate the values
assigned to a parameter. This can be useful in guaranteeing that the parameter values you pass
to your report match the parameter values accepted by the report.

❑ Credentials: The database credentials to use when validating your query-based parameters.

Since you are not working with historical reports or validating values, a number of the properties will
not be set. The following code can be used for calling the GetReportParameters method.

C#
ReportParameter[] parameters;
parameters = _rs.GetReportParameters(reportItem.Path, null, false, null, null);

510

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 510

VB
Dim parameters() As ReportParameter

parameters = _rs.GetReportParameters(reportItem.Path, Nothing, False, _
Nothing, Nothing)

The last piece of work to do is to create a user interface for your parameters. The ReportParameter
objects returned by Reporting Services contain information useful for creating a custom interface. Some
of the key properties include the parameter data type, prompt, and valid values. All of these can be used
to define your own interface. Finish your code by simply adding a label and text box to your form for
each ReportParameter. Following is the completed GetParameter click event code.

C#
private void btnParameters_Click(object sender, System.EventArgs e)
{

//return the list of parameters for the report item
ReportItem reportItem = (ReportItem)cboReports.SelectedItem;
ReportParameter[] parameters;
parameters = _rs.GetReportParameters(reportItem.Path, null, false, null,

null);
//add the parameters to the parameter list UI
int left = 10;
int top = 20;
foreach(ReportParameter parameter in parameters)
{

Label label = new Label();
TextBox textBox = new TextBox();

label.Text = parameter.Prompt;
label.Left = left;
label.Top = top;

textBox.Name = parameter.Name;
textBox.Text = parameter.DefaultValues[0];
textBox.Left = left + 150;
textBox.Top = top;
top +=25;

grpParamInfo.Controls.Add(label);
grpParamInfo.Controls.Add(textBox);

}
}

VB
Private Sub btnParameters_Click(ByVal sender As Object, ByVal e As _

System.EventArgs) Handles btnParameters.Click

‘return the list of parameters for the report item
Dim reportItem As ReportItem = CType(cboReports.SelectedItem, ReportItem)

Dim parameters() As ReportParameter
parameters = _rs.GetReportParameters(reportItem.Path, Nothing, _

511

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 511

False, _Nothing, Nothing)
‘add the parameters to the parameter list UI
Dim left As Integer = 10
Dim top As Integer = 20
Dim parameter As ReportParameter
For Each parameter In parameters

Dim label As New Label
Dim textBox As New TextBox
label.Text = parameter.Prompt
label.Left = left
label.Top = top

textBox.Name = parameter.Name
textBox.Text = parameter.DefaultValues(0)
textBox.Left = left + 150
textBox.Top = top
top += 25

grpParamInfo.Controls.Add(label)
grpParamInfo.Controls.Add(textBox)

Next parameter
End Sub

Now that you have retrieved your list of reports and built a parameter list, let’s take a look at outputting
the report to a file.

Rendering a Report to a File System
In this section, you’ll take a look at rendering your report to a file. Using the ReportingService
object’s Render method, you can retrieve a byte array that contains the final report. This byte array can
be used in a number of different ways. In this example, you will write the byte array to a file by using
the file system object. Later you will take a look at another example that writes the byte array to the
HTTP Response object.

Before you get into the rendering code, look at the different parameters of the Render method shown in
the following table.

Parameter Data Type Description

Report String Path to the report in Reporting Services.

Format String Output format of the report.

HistoryID String History ID used to render the report from a
(optional) historical snapshot.

DeviceInfo String Information used by a specified rendering format.
For example, specifying the image type (gif,
.jpeg) with the IMAGE format.

Parameters ParameterValue Input parameter value array used to process the
Array report.

512

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 512

Parameter Data Type Description

Credentials DataSource Array of data source credentials used to connect to
Credentials the data sources for a report.
Array These credentials contain the username, login

password, and the data source name.

ShowHideToggle String Changes initial toggle state of the report.

Encoding (out) String Output returned from Reporting Services containing
the encoding of the report. The encoding parameter
is used to correctly decode the returned byte array.

MimeType (out) String Output returned from Reporting Services containing
the MIME type of the underlying report. Useful
when rendering a report to the web. The MIME type
can be passed to the Response object to ensure that
the browser correctly handles the document
returned.

ParametersUsed ParameterValue Output of parameter values used to execute the
(out) Array report. Can include query parameters used for the

creation of an execution snapshot. Important when
developing the application user interface.

Warnings (out) Warning Array Output of any warning returned from Reporting
Services during report processing.

StreamIDs (out) String Array Output of the stream IDs that can be used with the
RenderStream method.

The parameters of the Render method are similar to the values that can be passed using URL rendering.
In your Windows application, you will be mostly interested in the Report, Format, and Encoding
parameters. These parameters allow you to correctly return your report and stream it to the file system.

Now that you have seen the basics around the Render method, let’s take a look at the code you need to
write for your Render button click event. The first thing you need to do in your code is retrieve the
selected report and output format. Use the Format and ReportItem classes created earlier to retrieve
the selected items in your drop-downs.

C#
Format format = (Format)cboFormat.SelectedItem;
ReportItem reportItem = (ReportItem)cboReports.SelectedItem;

VB
Dim format As Format = CType(cboFormat.SelectedItem, Format)
Dim reportItem As ReportItem = CType(cboReports.SelectedItem, ReportItem)

You need to retrieve the input parameters specified by the user. Then, you need to create a new function
that loops through the text boxes you’ve created earlier to retrieve their values and return an array of
ParameterValue objects.

513

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 513

C#
private ParameterValue[] GetParameters()
{

ArrayList controls = new ArrayList();

//get the values from the parameter controls
int len = grpParamInfo.Controls.Count;
for(int i=0;i<len;i++)
{

if(grpParamInfo.Controls[i] is TextBox)
{

controls.Add(grpParamInfo.Controls[i]);
}

}

//add the control information to parameter info objects
len = controls.Count;
ParameterValue[] returnValues = new ParameterValue[len];
for(int i=0;i<len;i++)
{

returnValues[i] = new ParameterValue();
returnValues[i].Name = ((TextBox)controls[i]).Name;
returnValues[i].Value = ((TextBox)controls[i]).Text;

}

return returnValues;
}

VB
Private Function GetParameters() As ParameterValue()

Dim controls As New ArrayList

‘get the values from the parameter controls
Dim len As Integer = grpParamInfo.Controls.Count
Dim i As Integer
For i = 0 To len - 1

If TypeOf grpParamInfo.Controls(i) Is TextBox Then
controls.Add(grpParamInfo.Controls(i))

End If
Next i

‘add the control information to parameter info objects
len = controls.Count - 1
Dim returnValues(len) As ParameterValue

For i = 0 To len
returnValues(i) = New ParameterValue
returnValues(i).Name = CType(controls(i), TextBox).Name
returnValues(i).Value = CType(controls(i), TextBox).Text

Next i

Return returnValues
End Function

514

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 514

You can now use the GetParameter function to build an array of input parameters. You can add the fol-
lowing code to your Render click event to retrieve the input parameters.

C#
ParameterValue[] parameters = GetParameters();

VB
Dim parameters As ParameterValue() = GetParameters()

Now that you have your list of input parameters, you are almost ready to call the Render method. For
this, you need to declare variables that will be used for the MIME type, encoding, output parameters,
warnings, and stream IDs. These are all output parameters of the Render method. This step is necessary
when working in C# but can be avoided in VB by passing Nothing into the unused parameters. The final
variable you will need for the Render method is an array of bytes. This byte array can then be written to
the file system.

C#
string encoding;
string mimeType;
ParameterValue[] parametersUsed;
Warning[] warnings;
string[] streamIds;

//render the report
byte[] data;
data = _rs.Render(reportItem.Path, format.Name,

null, null, parameters, null, null, out encoding, out mimeType,
out parametersUsed, out warnings, out streamIds);

VB
Dim encoding As String
Dim mimeType As String
Dim parametersUsed() As ParameterValue
Dim warnings() As Warning
Dim streamIds() As String

‘render the report
Dim data() As Byte
data = _rs.Render(reportItem.Path, format.Name, Nothing, Nothing, _

parameters, Nothing, Nothing, encoding, mimeType, _
parametersUsed, warnings, streamIds)

Finally, you need to take the byte array returned from the Render method and write it to the file system.
Use the output path specified in the output text box along with the report name and format file exten-
sion to open a file stream. Following is the entire Render button click event along with the final piece of
code for writing the file to the file system.

515

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 515

C#
private void btnRender_Click(object sender, System.EventArgs e)
{

//get the format and report item from the comboboxes
Format format = (Format)cboFormat.SelectedItem;
ReportItem reportItem = (ReportItem)cboReports.SelectedItem;

//set up variables needed to call render method
ParameterValue[] parameters = GetParameters();

string encoding;
string mimeType;
ParameterValue[] parametersUsed;
Warning[] warnings;
string[] streamIds;

//render the report
byte[] data;
data = _rs.Render(reportItem.Path, format.Name,

null, null, parameters, null, null, out encoding, out mimeType,
out parametersUsed, out warnings, out streamIds);

//create a file stream to write the output
string fileName = txtOutputLocation.Text + “\\” +
reportItem.Name + format.Extension;

System.IO.FileStream fs = new System.IO.FileStream(fileName, System.IO.FileMode
.OpenOrCreate);

System.IO.BinaryWriter writer = new System.IO.BinaryWriter(fs);
writer.Write(data, 0, data.Length);
writer.Close();
fs.Close();
MessageBox.Show(“File written to: “ + fileName);

}

VB
Private Sub btnRender_Click(ByVal sender As Object, ByVal e As System.EventArgs) _

Handles btnRender.Click

‘get the format and report item from the comboboxes
Dim format As Format = CType(cboFormat.SelectedItem, Format)
Dim reportItem As ReportItem = CType(cboReports.SelectedItem, ReportItem)
‘set up variables needed to call render method
Dim parameters As ParameterValue() = GetParameters()
Dim encoding As String
Dim mimeType As String
Dim parametersUsed() As ParameterValue
Dim warnings() As Warning
Dim streamIds() As String

‘render the report
Dim data() As Byte
data = _rs.Render(reportItem.Path, format.Name, Nothing, Nothing, _

516

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 516

parameters, Nothing, Nothing, encoding, mimeType, _
parametersUsed, warnings, streamIds)

‘create a file stream to write the output
Dim fileName As String = txtOutputLocation.Text & “\” & reportItem.Name & _

format.Extension

Dim fs As New System.IO.FileStream(fileName, System.IO.FileMode.OpenOrCreate)

Dim writer As New System.IO.BinaryWriter(fs)
writer.Write(data, 0, data.Length)
writer.Close()
fs.Close()
MessageBox.Show((“File written to: “ + fileName))

End Sub

Now that you have completed the code for rendering the application, let’s try it out. You need to build
and run the project. When the form opens, enter your server information in the Server Address text box
and click the Get Items button that you can see in Figure 12-11.

Figure 12-11

Select a report that takes parameters, and click the Get Parameters button. Finally, enter the Output
Folder (C:) and the rendering Format as PDF. Once these items have been specified, you can click the
Render button to render your report. When the rendering is complete, you will receive a message box
letting you know that the file has been written to the specified location, as shown in Figure 12-5, earlier
in this chapter.

You can now search for and open your saved file in Adobe Acrobat.

517

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 517

Rendering a Report to the File System Summary
In this section, you learned the basic steps of rendering a report to the file system:

❑ Using the ReportingService object’s ListChildren method to return a list of reports.

❑ Using the ReportingService object’s GetReportParameters method to return a list of report
parameters.

❑ Using the Render method of the ReportingService object to output your report in a given
format.

These basic steps can be used in numerous applications to render a report. Using these methods, users
can create their own custom list of reports, customer report parameter pages, and output the report
using the returned byte array. In the next section, you will use some of these same steps to render a
report to the web via the Response object.

Rendering to the Web
In the preceding section, you saw the mechanics of rendering to a file system. However, most of today’s
applications are written for the web. Along with URL requests, you can also use the Reporting Services
Web Service to render reports programmatically to the web.

While doing this, most of your steps will be identical to rendering to the file system; you simply change
the interface. Using the ListChildren method, developers can easily bind reports to an ASP.NET data
grid or create a tree view of available reports. Likewise, developers could also use the GetParameters
method to create their own parameter interface.

Since you have seen both the ListChilden and GetParameters methods, in this section, you will work
more with the specifics around developing ASP.NET applications. You’ll look at changes that can be
made to the web.config file to pass credential information to Reporting Services. Then you will look at
the mechanics of rendering to the ASP.NET Response object.

Using Integrated Authentication
There are two main components to every security model: authentication and authorization. In Reporting
Services, you can use Windows Integrated Security within an ASP.NET application to authenticate users.
Before you start your example, you need to ensure that your application is configured to use Integrated
Security.

After creating a new ASP.NET web application, you need to open IIS and change some settings of the
virtual directory. Make sure that the Anonymous Access has been turned off and Integrated Windows
authentication has been turned on in IIS.

In the sample created for this chapter, the virtual directory created in IIS is called WebRenderingCS and
WebRenderingVB for the C# and Visual Basic projects, respectively. To set the virtual directories to use
integrated authentication, you need to check their settings in IIS. Using Integrated Authentication in an
ASP.NET web application is the easiest way to take advantage of the security features in Reporting
Services. Using this method allows developers to concentrate on other areas of an application without
having to build their own authentication mechanism. It also allows for taking full advantage of the
Reporting Services role-based security model.

518

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 518

After updating the IIS settings to use Integrated Authentication, you will have to make some modifica-
tions to your ASP.NET web application.

Modifying the web.config File
In the web application created for this demonstration, you want to pass the user’s security credentials to
the Reporting Services Web service. To accomplish this, you have to allow your ASP.NET application to
impersonate the currently logged-on user. Setting up impersonation requires adding the following line of
code to the web.config file; place this line after the authorization tag in the file:

<identity impersonate=”true” />

Setting Up the Reporting Service Web Service
Just as in any Windows application, you need to set a reference to the Reporting Services Web service.
The details for creating the reference are identical to those found in the “Rendering through Windows”
section, so we will not go into the details here.

For this example, I’ve added a web reference to http://localhost/reportserver/
reportservice.asmx?wsdl and named it RSService.

Rendering to the Response Object
Now that you have set up Integrated Authentication and modified the web.config file, you’re ready to
write some code. In this application, you will have one page that takes in a report path and format from
the URL. You’ll use this information to call the Render method of the Reporting Services object and
write that information back to the response stream.

This sample will use one ASP.NET page called Render.aspx. Place your code sample in the Page_Load
event of the page. This would be a logical approach when developing an application around Reporting
Services. It allows you to have one point of entry to the Report Server. The page could then be referenced
from other areas of an application.

Let’s add some code to the page’s Page_Load event to retrieve the report path and format from the
HTTP Request:

C#
string path = Request.Params[“Path”];
string format = Request.Params[“Format”];

VB
Dim path As String = Request.Params(“Path”)
Dim format As String = Request.Params(“Format”)

Now that you have the report path and format, you can start setting up the ReportingService object.
This is an instance of the Web service reference, similar to what you did in the Windows application.
Like you did with the Windows application, you will create an instance of the ReportingService
object and then set the credentials to the credentials of the currently logged-on user.

519

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 519

C#
//create the ReportingService object
ReportingService rs = new ReportingService();

//set the credentials to be passed to Reporting Services
rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

VB
‘create the ReportingService object
Dim rs As New ReportingService

‘set the credentials to be passed to Reporting Services
rs.Credentials = System.Net.CredentialCache.DefaultCredentials

Once the ReportingService object has been created and your credentials set, you can go ahead and
render the report. You will create variables to pass any report parameters (none in this example) and
capture the reports encoding, MIME type, parameters used, warnings, and stream IDs. The key output
parameter, which you’ll render your report through, is the MIME type. This parameter will tell the
HTTP Response what type of document is being passed back. The following code renders your report to
the web application. You should notice that it is identical to the code used in the Windows application.

C#
ParameterValue[] parameters = new ParameterValue[0];
string encoding;
string mimeType;
ParameterValue[] parametersUsed;
Warning[] warnings;
string[] streamIds;

//render the report
byte[] data;
data = rs.Render(path, format, null, null, parameters, null, null,

out encoding, out mimeType, out parametersUsed,
out warnings, out streamIds);

VB
Dim parameters As ParameterValue()
Dim encoding As String
Dim mimeType As String
Dim parametersUsed As ParameterValue()
Dim warnings As Warning()
Dim streamIds As String()

‘render the report
Dim data As Byte()
data = rs.Render(path, format, Nothing, Nothing, parameters, _

Nothing, Nothing, encoding, mimeType, parametersUsed, _
warnings, streamIds)

520

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 520

The Render method of the ReportingService object passes back a byte array that can be used in a number
of ways. For the web, you will write this information directly back to the HTTP Response object. Before you
write back the data though, you need to set some information about the report, namely, the report MIME
type and a filename. You will start by assembling a filename for the report. To do this, you use the name of
the report followed by an extension that you determine using the value returned in the MIME type
parameter. Following is a sample function for determining a file extension based on the MIME type. There
are a number of MIME types that can be passed back from Reporting Services that are not shown here, so
you might want to add more code to this function for your application needs.

C#
string GetExtension(string mimeType)
{

string retVal=””;

switch(mimeType)
{

case “text/html”: //HTML3.2, HTML4.0
retVal = “html”;
break;

case “multipart/related”: //MHTML
retVal = “html”;
break;

case “text/xml”: //XML
retVal = “xml”;
break;

case “text/plain”: //CSV
retVal = “csv”;
break;

case “image/tiff”: //IMAGE
retVal = “tif”;
break;

case “application/pdf”: //PDF
retVal = “pdf”;
break;

case “application/vnd.ms-excel”: //EXCEL
retVal = “xls”;
break;

}

VB
Public Function GetExtension(ByVal mimeType As String) As String

Dim retVal As String

Select Case mimeType
Case “text/html” ‘HTML3.2, HTML4.0

retVal = “html”
Case “multipart/related” ‘MHTML

retVal = “html”
Case “text/xml” ‘XML

retVal = “xml”

521

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 521

Case “text/plain” ‘CSV
retVal = “csv”

Case “image/tiff” ‘IMAGE
retVal = “tif”

Case “application/pdf” ‘PDF
retVal = “pdf”

Case “application/vnd.ms-excel” ‘EXCEL
retVal = “xls”

End Select

Return retVal
End Function

Now that you have a function to return the appropriate file extension, you can construct a complete file-
name. Following is the code to use the report path information along with the MIME type to create the
filename.

C#
string extension = GetExtension(mimeType);
string reportName = path.Substring(path.LastIndexOf(“/”) + 1);
string fileName = reportName + “.” + extension;

VB
Dim extension As String = GetExtension(mimeType)
Dim reportName As String = path.Substring(path.LastIndexOf(“/”) + 1)
Dim fileName As String = reportName & “.” & extension

Finally, you need to put it all together by writing the data and file information back to the Response
object. For this, you:

1. Start by clearing out any information that is already in the response buffer.

2. Set the content type of the response equal to the MIME type of your rendered report.

3. If your report is in a format other than HTML, be sure to attach your filename information to
the response.

4. Finally, use the BinaryWrite method to write the rendered report byte array directly to the
Response object.

Following is the completed code for the Page_Load event:

C#
private void Page_Load(object sender, System.EventArgs e)
{

//get the path and output format from the query string
string path = Request.Params[“Path”];
string format = Request.Params[“Format”];

//create the ReportingService object

522

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 522

ReportingService rs = new ReportingService();

//set the credentials to be passed to Reporting Services
rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

ParameterValue[] parameters = new ParameterValue[0];
string encoding;
string mimeType;
ParameterValue[] parametersUsed;
Warning[] warnings;
string[] streamIds;

//render the report
byte[] data;
data = rs.Render(path, format, null, null, parameters, null, null,

out encoding, out mimeType, out parametersUsed,
out warnings, out streamIds);

//determine if format is rendered to the web or a file.
string extension = GetExtension(mimeType);
string reportName = path.Substring(path.LastIndexOf(“/”) + 1);
string fileName = reportName + “.” + extension;
//write the report back to the Response object
Response.Clear();
Response.ContentType = mimeType;
//add the file name to the response if it is not a web browser format.
if(mimeType!=”text/html”)

Response.AddHeader(“Content-Disposition”, “attachment; filename=” +
fileName);

Response.BinaryWrite(data);
}

VB
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)_

Handles MyBase.Load

‘get the path and output format from the query string
Dim path As String = Request.Params(“Path”)
Dim format As String = Request.Params(“Format”)

‘create the ReportingService object
Dim rs As New ReportingService

‘set the credentials to be passed to Reporting Services
rs.Credentials = System.Net.CredentialCache.DefaultCredentials

Dim parameters As ParameterValue()
Dim encoding As String
Dim mimeType As String
Dim parametersUsed As ParameterValue()
Dim warnings As Warning()
Dim streamIds As String()

‘render the report

523

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 523

Dim data As Byte()
data = rs.Render(path, format, Nothing, Nothing, parameters, _

Nothing, Nothing, encoding, mimeType, parametersUsed, _
warnings, streamIds)

‘determine if format is rendered to the web or a file.
Dim extension As String = GetExtension(mimeType)
Dim reportName As String = path.Substring(path.LastIndexOf(“/”) + 1)
Dim fileName As String = reportName & “.” & extension

‘write the report back to the Response object
Response.Clear()
Response.ContentType = mimeType
‘add the file name to the response if it is not a web browser format.
If mimeType <> “text/html” Then

Response.AddHeader(“Content-Disposition”, “attachment; filename=” &
fileName)

End If
Response.BinaryWrite(data)

End Sub

This example quickly demonstrates some of the key pieces of code that can be used to render reports to
the web. You first need to set the security context for the application by configuring Windows Integrated
authentication and allowing impersonation from your application. Next, you retrieve a report from
Reporting Services by specifying the report path and format. Finally, you use the rendered report data
along with its associated MIME type to render the report using the HTTP Response object.

Now that the code for your web application is complete, let’s take a look at using your Render.aspx page.
You can use a simple query string to render your report. A sample query string that renders the Employee
List report from the Professional Reporting Services sample reports in HTML 4.0 format is as follows:

http://localhost/WebRenderingCS/Render.aspx?Path=%2fProfessional+SQL+Reporting+Serv
ices%2fEmployee_List&Format=HTML4.0

This URL does the following:

❑ It calls the Render.aspx page from your C# project.

❑ It passes in the required parameters: the path (Professional SQL Reporting
Services/Employee List) and the Format (HTML 4.0).

If you place this URL into Internet Explorer, you’ll get the HTML output shown in Figure 12-12.

Notice that when you enter HTML 4.0 as the output format, the report data is rendered directly in the
browser. In your code, set the MIME type of your HTTP Response to text/html in this scenario. When
the browser receives the response, it recognizes the MIME type and renders it directly to the browser.

Let’s take a quick look at rendering in a format that does not go directly to the browser. Use the following
URL to render the same Employee List report but in the EXCEL format:

524

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 524

http://localhost/WebRenderingCS/Render.aspx?Path=%2fProfessional+SQL+Reportin
g+Services%2fEmployee_List&Format=EXCEL

Figure 12-12

Figure 12-13 shows the result.

Notice this time that when you set the format to EXCEL, you are prompted to save to the file system. In this
case, the MIME type needs to be set to application/vnd.ms-excel. You also need to add header infor-
mation to the Response object that contains the filename Employee_List.xls. The MIME type notifies
Internet Explorer that you are sending a file, and the added header gives it the appropriate filename.

In this section, you saw some of the base mechanics around rendering a report using an ASP.NET
application. To start with, you need to pass the currently logged-on user’s credentials. This is accomplished
by setting the application virtual directory to use Integrated Windows authentication and then modifying
the web.config file for the application to use impersonation. In the code, you need to call the Reporting
Services Web service to retrieve the report along with content information such as MIME type. Once you
have the binary report data, you can write that information directly back to the Response object.

525

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 525

Figure 12-13

Using the ReportViewer Control
The ReportViewer control is by far the most flexible and, in most cases, the easiest technique for adding
a report to your .NET application user interface. Two separate but very similar controls are available for
.NET Windows forms and ASP.NET Web forms applications. All of the user interface attributes you have
seen in the Report Manager and Designer Preview tab may be managed using properties of the control
and may be set at design time in the properties window, or at runtime using program code.

The ReportViewer controls are client-side control that does not need a SQL Server instance to be used.
The only dependency of the control is the .NET Framework 2.0. To install the Report Server does require
a SQL Server license, however. The controls are redistributable, packaged as an msi.

The source data used by the control can come from any data source, not just SQL Server. The ReportViewer
controls themselves have no knowledge of where the data comes from. Your application brings in the
data from whatever source you choose and makes it available to the ReportViewer controls in the form
of ADO.NET DataTables or custom business objects. The ReportViewer controls don’t even know how
to connect to databases or execute queries. By requiring the host application to supply the data, the

526

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 526

ReportViewer controls can be used with any data source. That includes relational, nonrelational, and non-
database data sources.

Two different report execution scenarios are supported in both types of the ReportViewer control. The
first is where standard, Report Server reports are deployed and executed on the report server and then
viewed in the control as you would expect. The other is using the ReportViewer control as a mini-
report-hosting engine that allows reports to execute in your application without needing a connection to
the report server. This requires a version of the report definition file that’s been retrofitted for client-side
execution. The file is an RDLC file, with C standing for client-side processing.

Both RDL and RDLC formats have the same XML schema, but RDLC files allow some elements to contain
empty values. RDLC files also contain information that the ReportViewer control uses to generate data-
binding code. Once you’ve constructed an RDLC file in the Visual Studio Report Designer, you can then
use the SQL Server Report Designer to add values for the empty elements. Simply change the file exten-
sion from rdlc to rdl, and add the missing values. Typically, the query text will need to be supplied.

Embedding a Server-Side Report in a Windows
Application

In the following exercise, I’ll take you through the steps to view a server-side report in a Windows forms
application using the ReportViewer control. The properties and methods of the Web form version of
the control are nearly identical, making your code transportable between Windows and Web application
projects. In the first pass through the example project, I’ll be demonstrating Visual Basic .NET code. At
the end of the section, I’ll show you code in C# that works the same way but sets the property values
programmatically.

As you know, the report rendering interface can generate a number of toolbar options and parameter
prompts. You may either use these default UI elements or replace them with your own. In the latter case,
it would make sense to hide the default prompts. In the example, I will hide the parameter bar and feed
parameters to the ReportViewer using controls on my form.

I’ve created a report called Product Sales Detail drill-down that contains two Date type parameters used
to define a range of sales order dates for filtering. These parameters are named OrderDateFrom and
OrderDateTo. The details of the report definition are unimportant for this demonstration.

First, I’ll add a form to my Visual Studio 2005 Windows Application project. Although the Report Server
is a component of SQL Server 2005, the ReportViewer control is not. The ReportViewer control is only
included in Visual Studio 2005. Because of that, the ReportViewer must be added to the Control
Toolbox in Visual Studio 2005. With the form in design view, right-click the Toolbox and select Choose
Items... from the context menu. The Choose Toolbox Items dialog is shown in Figure 12-14. Check the
ReportViewer control with the namespace Microsoft.Reporting.WinForms. Note that the ReportViewer
web forms control is also displayed in this dialog.

Depending on your needs, it may be necessary to instantiate classes in your code from the ReportViewer
namespace. To add a reference for this namespace to your project, right-click the project name in the
Solution Explorer and select Add Reference.... The Add Reference dialog is shown in Figure 12-15. The
items listed are similar to those shown previously in Figure 12-14. Highlight the component named
Microsoft.ReportViewer.WinForms, and then click the OK button.

527

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 527

Figure 12-14

Figure 12-15

Figure 12-16 shows part of the form Designer Toolbox. The ReportViewer control icon now appears
along with the rest of the form controls.

528

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 528

Figure 12-16

Drag and drop the ReportViewer onto the form. Resize and anchor it to meet your needs. In the form
shown in Figure 12-17, I have added two labels and DateTimePicker controls for my two parameters.
I’ve also added a button to run the code that will set these parameters and display the report.

Figure 12-17

529

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 529

First, I’ll set all of the ReportViewer properties at design time using the properties window. After that,
I’ll demonstrate the code that will set the same properties at runtime.

The report you want to display is the value entered for the ReportPath property, as shown in Figure 12-18.

Figure 12-18

The ReportPath property is the report location in the Report Server hierarchy. In this case, I’ve selected a
report on my local machine to display in the ReportViewer control. The location of the Report Server is set
using the ReportServerUrl property. The default Report Server URL is also displayed in Figure 12-18.

Since you’re going to use the Report Server for processing, set the ProcessingMode property to Remote.
That will use the Report Server to retrieve source data that will be used in the report. In Remote mode,
the ReportViewer controls display reports that are hosted on a SQL Server 2005 Report Server. The
source data for those reports can come from any appropriate data source, not just SQL Server. This
behavior is normal report processing behavior. Setting the processing mode is shown in Figure 12-19.

With everything except the parameters set using the properties window, the only necessary code sets the
parameters and executes the report.

Parameters are managed as an array of ReportParameter objects. Note that the reference to the
Microsoft.Reporting.WinForms namespace is used to instantiate this object. Since the report has two
required parameters, the array is declared with a maximum element index of 1 to provide two elements.
Each of the elements is populated by passing the parameter name and value to each of the two the
ReportParameter constructors.

530

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 530

Figure 12-19

The report parameters are populated by passing the array to the SetParameters method of the
ServerReport object.

531

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 531

Finally, the ReportViewer’s RefreshReport method causes report execution to begin.

Private Sub btnViewReport_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnViewReport.Click

Dim Param(1) As Microsoft.Reporting.WinForms.ReportParameter
Param(0) = New Microsoft.Reporting.WinForms.ReportParameter(“OrderDateFrom”, _

Me.dtOrderDateFrom.Value)
Param(1) = New Microsoft.Reporting.WinForms.ReportParameter(“OrderDateTo”, _

Me.dtOrderDateTo.Value)

Me.ReportViewer1.ServerReport.SetParameters(Param)
Me.ReportViewer1.RefreshReport()

End Sub

In Figure 12-20 you can see the result. The report is displayed in the ReportViewer control embedded
on the form. The standard report parameter bar and prompts are not displayed in the top of the viewer
since they were suppressed using the related ReportViewer properties.

Figure 12-20

532

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 532

Setting Properties at Runtime
All of the ReportViewer parameters may be set at runtime using programming code rather than the
properties window. The following is the only code required for this demonstration. The report server
URL and path for the report are set using string type variables. In this sample code, I’ve encapsulated
the code in a method that can be called from a button click event.

Private Sub ViewReport()

Dim sReportServerURL As String = “http://LocalHost/ReportServer”
Dim sReportPath As String = _

“/Professional SQL Reporting Services/Product Sales Detail Drill-down”

Dim Param(1) As Microsoft.Reporting.WinForms.ReportParameter
Param(0) = New Microsoft.Reporting.WinForms.ReportParameter(“OrderDateFrom”, _

Me.dtOrderDateFrom.Value)
Param(1) = New Microsoft.Reporting.WinForms.ReportParameter(“OrderDateTo”, _

Me.dtOrderDateTo.Value)

With Me.ReportViewer1
.ProcessingMode = Microsoft.Reporting.WinForms.ProcessingMode.Remote
With .ServerReport

.ReportServerUrl = New Uri(sReportServerURL)

.ReportPath = sReportPath

.SetParameters(Param)
End With

.ShowParameterPrompts = False

.ShowPromptAreaButton = False

.RefreshReport()
End With

End Sub

Here’s the same functionality in C#:

private void ViewReport()
{
string sReportServerURL = “http://LocalHost/ReportServer”;
string sReportPath =

“/Professional SQL Reporting Services/Product Sales Detail Drill-down”;

Microsoft.Reporting.WinForms.ReportParameter[] Param;
Param[0] = new Microsoft.Reporting.WinForms.ReportParameter(“OrderDateFrom”,

this.dtOrderDateFrom.Value.ToString());
Param[1] = new Microsoft.Reporting.WinForms.ReportParameter(“OrderDateTo”,

this.dtOrderDateTo.Value.ToString());

reportViewer1.ProcessingMode = Microsoft.Reporting.WinForms.ProcessingMode.Remote;
reportViewer1.ServerReport.ReportServerUrl = new Uri(sReportServerURL);

533

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 533

reportViewer1.ServerReport.ReportPath = sReportPath;
reportViewer1.ServerReport.SetParameters(Param);
reportViewer1.ShowParameterPrompts = false;
reportViewer1.ShowPromptAreaButton = false;
reportViewer1.RefreshReport();
}

The ReportViewer controls provide an easy-to-implement way of embedding reports in your custom
Web and Windows applications. Unfortunately, you still have to code the rest of the application in order
to provide users with an all-around solution. There’s an in-between option, where reports can be made
available to users without going through the Report Manager application. That in-between option is
SharePoint.

SharePoint Web Parts
SharePoint sites are Web-based applications that provide a single point of entry for information across an
enterprise. Better yet, sites can be created without any programming. Windows SharePoint sites can be
created by anyone with sufficient permissions. The functionality is made available through Windows
SharePoint Services. Multiple SharePoint sites can be aggregated into portals through the use of SharePoint
Portal Server. A fundamental SharePoint concept is the Web Part. Web Parts can be thought of as modular
elements containing functionality that is added to the user interface. Web Parts typically display specific
information and can be moved around the Web page. For example, SharePoint comes with Web Parts
that can display images and list files. They have a consistent format, with a customizable title bar and a
Web Part menu available on the right side of it. SharePoint is a natural for corporate reporting portals.

Reporting Services Web Parts includes two Web Parts: the Explorer for navigating through the report
server content and the Viewer for viewing rendered reports. They work by way of an IFrame that’s been
embedded into the Web Parts. The Report Manager application uses an IFrame to display reports as
well. The Reporting Services Web Parts expose a slightly smaller set of functionality than the full Report
Manager interface. Like regular Web Parts, the Reporting Services Web Parts provide a standard context
menu from the title bar.

Report Explorer Control
The Report Explorer Web Part provides a way to navigate around the content in the Report Server
database. Clicking a report link in the Report Explorer displays the report. There are two ways the report
can be displayed: in linked or stand-alone mode. When linked to a ReportViewer control, the report
renders in that control. When in stand-alone mode, the report is rendered in a new browser window.
Which mode you choose typically depends on how much screen real estate you have available. If the
Report Explorer is not linked to a Report Viewer Web Part, it opens a new browser window to display
reports. Connected mode simply means that data is passed between the two Web Parts.

Like Report Manager, the Report Explorer Web Part has a Details view. When in this view, you can create
or edit a subscription to a report. It also provides bread-crumb-trail navigation and sortable columns. In
the Report Explorer, however, only folders, reports, and resources are displayed. You don’t have access
to Data Sources from the Report Explorer.

534

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 534

ReportViewer Control
The ReportViewer control is used to display rendered reports. You can interact with reports as you would
in Report Manager, using links within the report and DHTML functionality for collapsing report sections.
For drill-down reports, the target report displays in the same Report Viewer Web Part. Drill-through
reports, however, are rendered in a new browser window. Depending on the layout of the report and the
size of the Web Part on the page, only a portion of the report may be visible. You’ll need to use the scroll
bars to view the rest of the report. As with standard Web Parts, you can change the size of the Report
Viewer on the page in the Tool Pane. The Tool Pane is a configuration window that lets you set property
values for Web Parts displayed on the SharePoint page.

Like the Report Explorer Web Part, the Viewer can be used in connected or stand-alone mode. In connected
mode, clicking a link in the Report Explorer renders the report in the Viewer. With the Report Viewer in
stand-alone mode, it doesn’t have the Explorer pointing it to a report for rendering. You’ll have to provide
the path to the report manually. The report path is set using the Tool Pane. Though this might not seem
very user-friendly, it has a purpose. Once the report path has been set, the Viewer can then display the
report without user-initiated input or action.

Report parameters are displayed at the top of the Viewer content area. This parameters section expands
to display the report parameters, with the standard Report Manager toolbar below it. Using the toolbar,
reports can be exported in either Excel or PDF format.

Summary
In this chapter, we saw three ways to render reports from Reporting Services. The first part of the chapter
focused on rendering reports via URL requests. The second part looked at rendering reports programmat-
ically through the Reporting Services Web service. In the last part, you used the ReportViewer control to
easily embed reports in a Windows application.

URL rendering gives you a quick way to add Reporting Services reports to your own applications. You
can add Reporting Services reports to custom portals or create your own custom report links in other
applications.

Rendering reports directly through an ASP.NET application can be very helpful. It allows developers to
create their own interface for items such as parameters. A key point to remember is that Report Manager
uses the same Reporting Services Web Service that we used in the examples in this chapter. So, anything
that you can do from the Report Manager can also be done through your own code. This adds an incred-
ible amount of flexibility for developers of custom applications.

This chapter has shown you how to:

❑ Use simple URL query strings to access reports.

❑ Programmatically work with the Reporting Services Web Service API.

❑ Embed reports into custom Windows and Web applications.

❑ Work with the ReportViewer control in Visual Studio 2005.

535

Integrating Reporting Services into Custom Applications

20_584979 ch12.qxp 1/27/06 7:40 PM Page 535

Since the Reporting Services API is implemented as a Web service, you can call it from a number of different
types of applications, including .NET Windows applications, ASP.NET web applications, and .NET console
applications. You can even use this Web service from Visual Basic 6.0, VBA applications using Microsoft’s
SOAP library, or essentially any application that can send a properly formatted request to the report server.
This flexibility allows for the creation of a number of applications, including those that use custom security
or pass parameter information stored in other application databases.

With Reporting Services Web service and the varied ways to access its functionality, developers can
quickly and easily incorporate Reporting Services into their own custom-built applications.

536

Chapter 12

20_584979 ch12.qxp 1/27/06 7:40 PM Page 536

Extending Reporting
Services

As you learned in Chapter 3, Reporting Services is a robust and scalable product for enterprise
report processing. In addition, Microsoft has created Reporting Services using a modular extensible
architecture that gives users the ability to customize, extend, and expand the product to support
their enterprise business intelligence (BI) reporting needs. This chapter introduces you to most of
the areas within Reporting Services that allow customization and some of the reasons that you
may wish to extend the product. The basic requirements for implementing each type of extension
are discussed followed by a detailed example of creating and deploying a data processing extension.

In this chapter, you will learn about the extensibility of Reporting Services and the areas that cur-
rently support customization. These include:

❑ Extensibility options.

❑ Reasons for extending SQL Server Reporting Services.

❑ How to create custom extensions.

❑ How to install custom extensions.

Reporting Services currently supports extending its behavior in the following areas:

❑ Data processing extensions: Custom processing extensions allow you to access any type of
data using a consistent programming model. This option is for you if you cannot access your
data using one of the currently supported providers (ODBC, OLE DB, Oracle, and SQL).

❑ Delivery Extensions: Earlier in the managing reports chapter, we discussed “subscribing
to a report.” During this process, one of the required options is the method of delivery. Do
you want the report sent to your cell phone in image format, or perhaps delivered to a file
share for your perusal at a later date? The ability to extend SSRS with delivery extensions
allows you to choose.

21_584979 ch13.qxp 1/27/06 7:45 PM Page 537

Delivery extensions allow you to deliver reports to users or groups of users according to a
schedule. E-mail and network file shares are the delivery mechanisms currently built into the
product.

Creating a delivery extension is really a two-part process. You must create the extension itself,
as well as a UI tool to manage the extension if you want it to be usable from the SSRS Report
Manager. The difficulty in creating a delivery extension is primarily a function of the delivery
mechanism.

❑ Rendering Extensions: Rendering extensions control the type of document/media that gets
created when a report is processed. Theoretically, you could have Report Services create any
type of media given the ability to extend the product in this area. Microsoft provides the following
rendering extensions out of the box:

❑ HTML: The HTML extension will generate HTML 3.2 for use with older browsers and
HTML 4.0 for browsers that support the dynamic HTML standard.

❑ MHTML: MHTML is another HTML standard that was created to allow disconnected
viewing of HTML documents. All the images in the page are encoded into the document,
which increases its size but allows it to be viewed both online and offline.

❑ Excel: The Excel extension creates Excel-specific MHTML.

❑ CSV: The Comma Separated Values emit the data fields separated by a comma. The
first row of the CSV results contains the field names for the data.

❑ Image: The image extension allows you to export reports as images in the EMF, GIF,
JPEG, PNG, TIFF, and WMF formats.

❑ PDF: This extension allows the generation of reports in the PDF format.

❑ Security Extensions: In its first release, Reporting Services only supported Integrated Windows
Security for report access. This was a pretty big problem for some enterprise players. Most
companies have heterogeneous networks with multiple operating systems and products. In a
perfect world, all of our networks, applications, and resources would support some form of
“single sign-on,” or at least would allow us to build this ourselves. If Microsoft wanted SQL
Server to be a key part of an Enterprise Business Intelligence platform, it had to play nice with
others.

Microsoft fixed this problem in service release one. The release contained full documented security
extension interfaces and an example using forms-based security. You may now implement your
security model using SSRS.

Extension through Interfaces
Reporting Services uses common interfaces or “extension points” to allow expanding the product in a
standard way. Enforcing the requirement that RS extension objects must implement certain interfaces
allows Reporting Services to interact with different object types without knowledge of their specific
implementation. This is a common object-oriented programming technique used to abstract the design
from the implementation.

For an in-depth study of this topic, look at the “Creational Patterns” section of Design Patterns
(Addison Wesley).

538

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 538

What Is an Interface?
Most C/C++ developers are intimately familiar with interfaces. The entire COM programming model is
based upon them. Visual Basic developers have used them as well, but the VB6 programming environment
hides this. Seasoned .NET developers are also familiar with the use of Interfaces, as we use them to
interact with the FCL (Framework Class Libraries). In fact, Reporting Services itself is exposed to developers
through a web service interface. In order to provide complete coverage of extending Reporting Services,
a definition and explanation of interfaces is required.

So what is an interface? An interface is a predefined code construct that forms a contract between software
components and defines how they communicate.

That sounds great, but what does it mean? It simply means that in order to adhere to the contract
defined by an interface, all extension components must contain certain methods, properties, and so on.

In Reporting Services specifically, it means that every single extension component must contain certain
methods defined by the IExtension interface. Other interface implementations may be required as
well, depending on the type of extension you are trying to create.

Interface Language Differences
There are differences in the way that VB.NET and C# require interface methods to be declared. C# sup-
ports “implicit” interface definitions. If the method names and signatures match those of an interface
implemented by the class, then the class methods are automatically mapped to their associated interface
definitions. I chose IDisposable for this example because many of the classes you will create are
required to implement it.

C#
public class TestClass : IDisposable
{
public void Dispose() //this method is automatically mapped to IDisposable.Dispose
{

//write some code to dispose of non-memory resources
}
}

VB.NET requires explicit interface implementation. In order to be mapped correctly, VB.NET requires
that you specify that the method is implementing a certain interface. This is done with the Implements
keyword as follows:

VB.NET
Public Class TestClass

implements IDisposable

Public Sub Dispose() Implements IDisposable.Dispose
‘write some code to dispose of non-memory resources

End Sub
End Class

539

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 539

There are new features in Visual Studio 2005 that make this distinction almost unnecessary. Microsoft
has a new feature I call Interface AutoComplete. When you indicate that a class should implement a cer-
tain interface, Visual Studio can jump in and create wrapper methods for all of the properties, methods,
and so on that are required for that interface (see Figure 13-1). This saves a huge amount of typing and is
a great productivity enhancement when creating objects designed to “plug in” to an existing framework.

Figure 13-1

Microsoft is also attempting to build “best practices” into Visual Studio. While the two examples shown
above are technically correct in that they implement IDisposable, they do not implement the
IDisposable design pattern shown in the .NET Framework SDK. When I allow Visual Studio 2005 to
do the heavy lifting, it creates a more feature-complete implementation that includes consideration for
cascading object chains and explicit release of memory and nonmemory resources. Visual Studio would
create code similar to the following for IDisposable. I did take liberties with the comments to make it
easier to read.

VB.NET
Public Class TestDispose

Implements System.IDisposable

Private disposed As Boolean = False

‘IDisposable
Private Overloads Sub Dispose(ByVal disposing As Boolean)

If Not Me.disposed Then
If disposing Then

‘ TODO: put code to dispose managed resources
End If
‘ TODO: put code to free unmanaged resources here

End If
Me.disposed = True

End Sub

‘IDisposable Support
‘Don’t change
Public Overloads Sub Dispose() Implements IDisposable.Dispose

540

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 540

‘ Don’t change. Put cleanup code
‘in Dispose(ByVal disposing As Boolean) above.
Dispose(True)
GC.SuppressFinalize(Me)

End Sub

‘Don’t change
Protected Overrides Sub Finalize()

Dispose(False)
MyBase.Finalize()

End Sub

End Class

You will be using this Interface AutoComplete feature for the remainder of this chapter. If you are using
Visual Studio 2003, you will have to create these methods manually, or download the source and revert
to the old “cut and paste.” The generated code for IDisposable is suitable for demonstration purposes,
so I won’t repeat this code for each object but simply indicate that it is required.

Data Processing Extensions — a Detailed Look
Reporting Services allows you to access data from traditional data sources such as relational databases
using the existing .NET data providers. The following providers are supplied as part of the .NET
Framework supplied by Microsoft:

❑ ODBC

❑ OLE DB

❑ Oracle

❑ SQLClient

Data processing extensions are components that allow you to access data for use within Reporting
Services. If that implies a “.NET data provider” to you, then congratulations are in order. These two types
of data access objects are very similar and are based on a common set of interface definitions. If you have
already built a custom .NET data provider, you may use that provider with Reporting Services with no
modification. However, you also can extend your existing provider to provide additional functionality.

To begin, we need to discuss the similarities and differences between a standard .NET data provider and a
Reporting Services data processing extension. Let’s start with some architectural information about data
providers in general, and then dive into the details of creating a custom data processing extension. The
.NET Framework has a data access object model that is very similar to that used in traditional COM-based
ADO. The ADO.NET object model is displayed below in Figure 13-2.

Prior to Service Pack 1 of SSRS on SQL2000, Reporting Service data providers were essentially the same
as the ADO data providers, except for the fact that Microsoft had implemented wrapper classes around
the .NET providers in order for them to meet the Reporting Service extension interface requirements.
The Reporting Services requirements were a subset of the data provider requirements. The program-
ming paradigm was the same as well.

541

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 541

Figure 13-2

With Service Pack 1 came the ability to customize and extend the security model of Reporting Services.
This required adding a few things to the object model.

The basic steps for working with a data source are:

❑ Make a connection to a data source.

❑ Issue a command to manipulate data.

❑ Retrieve the results of your query.

These actions map directly to the objects above, although a DataAdapter implementation is not needed
because Reporting Services only reads the data.

The following table summarizes the objects that are normally created in a data processing extension and
provides a description of the object responsibilities.

Object Description

Connection Establishes a connection to a specific data source.

Command Executes a command against a data source. Exposes a Parameters
collection and can execute within the scope of a transaction.

DataReader Provides access to data using a forward-only, read-only stream.

DataAdapter (not required) Responsible for retrieving data and for resolving updates with
the data source. This object is not required for a Reporting Ser-
vices data processing extension because Reporting Services only
needs to read the data to create reports.

Each of these objects contains implementation-specific code needed to create a connection, issue com-
mands, or read and update data. Microsoft has enforced a consistent data access mechanism by basing
these objects on a set of standard interfaces. Figure 13-3 shows the interfaces that may be implemented
when creating a data processing extension, although not all of them are required.

Connection
Transaction

DataAdapter

Data Store
SelectCommand

(Write)

(Read)

(Read Only)

InsertCommand

UpdateCommand

DeleteCommand

Command
Parameters

DataReader

542

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 542

Figure 13-3

You may build a minimalist DataExtension by implementing the required interfaces shown in the
following table and add additional behavior by implementing the optional interfaces.

Required Interfaces Description

IDbConnection Unique session with a data source.

IDbCommand Represents query command methods to be executed against
a data source.

IDataParameter Methods to support passing parameters to a Command
object.

IDataParameterCollection Collection of parameters.

IDataReader Methods used to read a forward-only read-only data stream.

IExtension Reporting Services specific Interface that supports localization
and is implemented by all SSRS extensions.

Optional Interfaces Description

IDataReaderExtension Used to provide Resultset-specific aggregation information.

IDbCommandAnalysis Analysis Services–specific extension.

IDbConnectionExtension Unique session with a data source.

IDbTransaction Local transaction (nondistributed).

IDbTransactionExtension Reporting Services–specific interface that supports localization
and is implemented by all SRS extensions.

543

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 543

Creating a Custom Data Processing
Extension

Creating a full-blown data provider is no trivial task. The goal of this walk-through is to familiarize you
with the .NET data access mechanism, as well as help you create and install a custom Reporting Services
data processing extension. Our implementation is simplified in that it does not support transactions or
the use of parameters, and many of the methods are empty unless code is explicitly required. All of the
images shown were created using the Visual Basic IDE. The code snippets will be given in both lan-
guages unless there is a reason to do otherwise.

The Scenario
After the release of Reporting Services for SQL 2000 and the first edition of this book, it seemed that
everywhere that I went, I was asked the same question: Why doesn’t Reporting Services allow me to
consume existing DataSet objects? Alas, I had no answer.

It seems that a lot of companies have internal data silos. (Really?) Well, the complaint was that after
going to the trouble of getting different internal organizations to expose needed data via Web services,
you were unable to easily use it in a report.

After the release of Service Pack 1, the Books Online documentation contained an example extension
that used some of the dataset’s intrinsic properties to allow you to query a DataSet object and limit the
resulting rows based upon certain criteria. The only problem was that you were unable to do complex
filtering or limit the columns returned by a query. This example demonstrates one way that you might
give yourself the filtering and sorting that you need.

Creating and Setting Up the Project
Let’s start by creating our project. Create the Project by choosing File➪New➪Project. Change the name
of the Project to DataSetDataExtension. Use the Class Library template. After your project is created,
you need to set up your environment to help you work. The Visual Basic IDE tends to hide some things
from you, so you are going to make some changes to help our C# brethren following along. The first
thing you want to do is show all of your references. The default behavior of VB.NET is to hide them.
Choose Project➪Show All Files from the menu. The Explorer tab should now show you all of your
project references.

Next, you need to add the references to the required SSRS dlls. The Microsoft.ReportingServices
.DataProcessing namespace is needed to implement the data processing extension interfaces, and the
Microsoft.ReportingServices.Interfaces namespace is needed to implement the IExtension
interface. Both of these namespaces are defined in the same dll, Microsoft.ReportingServices
.Interfaces.dll. The location of extensions and their dependencies is a subdirectory below the
installation directory of SQL Server itself. I will refer to the SQL Server installation path as InstallPath. The
directory for the SSRS extensions dll that you need is InstallPath\MSSQL.3\Reporting Services\
ReportServer\bin. On my machine this directory is C:\Program Files\Microsoft SQL Server\
MSSQL.3\Reporting Services\ReportServer\bin. Choose Project➪Properties from the menu.
Browse to the appropriate directory and add the reference. Your Solution Explorer window should now
look something like that shown in Figure 13-4.

544

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 544

Figure 13-4

The name of the assembly needs to be changed to reflect your custom namespace. Choose Project➪
Properties from the menu. At this point, you may either choose to put the fill in the root namespace for
you components or put it in your code. The example code contains the namespaces directly. This was
another way for me to avoid IDE problems as shown in Figure 13-5.

Figure 13-5

Most of the classes created for this project have common requirements. Most of them have empty default
constructors, and all of them require the use of some common namespaces. The code below is a skeleton
of how each class should look after you create it. Replace the italicized “ClassName” with the name of the
class you are working on. This will allow you to concentrate only on the differences between the objects
that will be created in your data extension project.

Notice the use of an alias for the System.Data namespace. You will be working with DataSet objects in
this example that are defined in System.Data. To support the SSRS interface requirements you must have
a reference to Microsoft.ReportingServices.DataProcessing where IExtension is defined.
Because the common data interfaces are defined in both namespaces, you need an alias to avoid name
collisions. This namespace is not needed in the DataSetParameter or DataSetParameterCollection
classes.

545

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 545

C#
Using System;
using Microsoft.ReportingServices.DataProcessing;
using FCLData = System.Data;

namespace Wrox.ReportingServices.DataSetDataExtension
{

public class DataSetClassName
{
}

}

VB.NET
Imports System
Imports Microsoft.ReportingServices.DataProcessing
Imports FCLData = System.Data

Namespace Wrox.ReportingServices.DataSetDataExtension
Public Class DataSetClassName

End Class
End Namespace

Creating the DataSetConnection Object
The connection object is responsible for connecting to the data source and providing a mechanism for
accessing both the data processing extension-specific transaction and command objects. These responsibilities
are enforced through the IDbConnection interface. Because the connection object is the extension entry
point and will be the first object in the extension that will deal with SQL Reporting Services, it also is
required to support Iextension, as discussed previously. Because the connection object is usually
responsible for connecting to a unmanaged resource, it is required to implement IDisposable. The
aggregate interface for all these others is IDbConnectionExtension, which is what you will implement.
A diagram created with the new Visual Studio class designer is in Figure 13-6 shown below. Having the
class designer within Visual Studio makes it easier both to implement and understand the relationships
between objects in a complex system.

To add the DataSetConnection class to the project, choose Project➪Add Class from the menu. Change
the name of the class to DataSetConnection. Open the file, and indicate that the class should implement
the IDbConnection Extension interface, as discussed earlier. Visual Studio will jump in and create all
of the wrapper methods for you. Because you will be doing file IO and using regular expressions to
parse your ConnectionString property, you need to add those namespaces to this class.

546

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 546

Figure 13-6

C#
using System;
using System.IO;
using System.Text.RegularExpressions;
using Microsoft.ReportingServices.DataProcessing;

VB.NET
Imports System
Imports System.IO
Imports System.Text.RegularExpressions
Imports Microsoft.ReportingServices.DataProcessing

Variable Declarations
In order to maintain state for your connection object, you need to declare some member variables. The
connString variable will hold the connection string that will be used to connect to the data source. The
localName variable should hold a localized name of the current extension used to list the extension as a
data source option in the user interface of tools such as Visual Studio or SQL Management Studio. The
filename variable will hold the path to the DataSet object persisted as XML.

547

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 547

C#
private string m_userName;
private string m_password;
private bool m_integrated;
private string m_impersonate;
private string m_connectionString = String.Empty;
private string m_localizedName = “DataSet Data Source”;
private string m_fileName;

internal FCLData.DataSet dataSet;

VB.NET
Private m_impersonate As String
Private m_integrated As Boolean
Private m_password As String
Private m_userName As String
Private m_connectionString As String = String.Empty
Private m_localizedlName As String = “DataSet Data Source”
Private m_fileName As String

Friend dataSet As FCLData.DataSet = Nothing

Constructors
The DataSetConnection object has an empty default constructor, as well as an overloaded constructor
that allows the developer to create the object and initialize the connection string in one line of code.

C#
public DataSetConnection(string connectionString)
{

this. m_connectionString = connectionString;
}

VB.NET
Public Sub New(ByVal connectionString As String)
Me m_connectionString = connectionString
End Sub

Implementing IDbConnectionExtension
IDbConnectionExtension adds support for extending the SSRS security model. The interface defini-
tion is shown below. Notice the unusual use of WriteOnly properties.

C#
public interface IDbConnectionExtension : IDbConnection, IDisposable, IExtension
{

// Properties
string Impersonate { set; }
bool IntegratedSecurity {get; set; }

548

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 548

string Password { set; }
string UserName { set; }

}

VB.NET
Public Interface IDbConnectionExtension

Implements IDbConnection, IDisposable, IExtension

‘ Properties
WriteOnly Property Impersonate As String
Property IntegratedSecurity As Boolean
WriteOnly Property Password As String
WriteOnly Property UserName As String

End Interface

Impersonate Property
Windows supports the idea of impersonation. This is the idea that a process of execution can “assume”
the identity of a set of assigned security credentials. The Impersonate property allows the assignment
of a string representing the user account whose security context the process should run under.

C#
public string Impersonate
{

set { m_impersonate = value; }
}

VB.NET
Public WriteOnly Property Impersonate() As String

Implements IDbConnectionExtension.Impersonate
Set(ByVal value As String)

m_impersonate = value
End Set

End Property

IntegratedSecurity Property
The IntegratedSecurity property indicates whether or not you want the extension to run using
Windows security for both authentication (identifying the user), and authorization (denying/granting a
user permission to perform certain actions).

C#
public bool IntegratedSecurity
{

get{ return m_integrated;}
set {m_integrated = value;}

}

549

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 549

VB.NET
Public Property IntegratedSecurity() As Boolean

Implements IDbConnectionExtension.IntegratedSecurity
Get

Return m_integrated
End Get
Set(ByVal value As Boolean)

m_integrated = value
End Set

End Property

UserName/Password Properties
The UserName and Password properties are used during the Reporting Services authentication process.
The UserName/Password pair are authenticated against either the Windows credential store or some
custom store you provide. Next, an object that implements IPrincipal is created and assigned to the
current thread of execution. That object contains the user’s identity and role membership information and
is used to authorize user access to system resources (the data source). Good security practice dictates that
this information be available for the shortest time possible — thus the use of read-only properties.

C#
public string Password
{

set { m_password = value; }
}

public string UserName
{

set { m_userName = value; }
}

VB.NET
Public WriteOnly Property Password() As String
Implements IDbConnectionExtension.Password

Set(ByVal value As String)
m_password = value

End Set
End Property

Public WriteOnly Property UserName() As String
Implements IDbConnectionExtension.UserName

Set(ByVal value As String)
m_userName = value

End Set
End Property

Implementing IDbConnection
The IDbConnection interface is the standard mechanism that data providers use to control the use of
the connection object. These properties and methods help you make changes to the connection settings,
open and close the connection, and associate the connection with a valid transaction. Your connection
object does not support transactions due to its read-only nature and because you are working against a
file system, which is not a resource manager.

550

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 550

C#
public interface IDbConnection : IDisposable, IExtension

{
IDbTransaction BeginTransaction();
IDbCommand CreateCommand();
void Open();
void Close();
string ConnectionString { get; set; }
int ConnectionTimeout { get; }

}

VB.NET
Public Interface IDbConnection

Inherits IDisposable, IExtension
Function BeginTransaction() As IDbTransaction
Function CreateCommand() As IDbCommand
Sub Open()
Sub Close()
Property ConnectionString() As String
Property ConnectionTimeout() As Integer

End Interface

BeginTransaction Function
The BeginTransaction function is primarily responsible for initiating a new transaction and returning
a reference to a valid, implementation-specific transaction object. The file system, which is our data
store, does not support transactions, but this method is required by the interface. You need to ensure that
the developer who will use your object in code is aware of that fact. This is done by throwing a
NotSupportedException.

C#
public IDbTransaction BeginTransaction()

{ //example doesn’t support transactions
throw new NotSupportedException(“Transactions not supported”);

}

VB.NET
Public Function BeginTransaction() As IDbTransaction _

Implements IDbConnection.BeginTransaction
‘example doesn’t support transactions

Throw New NotSupportedException(“Transactions not supported”)
End Function

CreateCommand Function
The CreateCommand function is responsible for creating and returning a reference to a valid implemen-
tation-specific Command object. The method uses an overloaded constructor of your custom Command
object in order to pass that object a reference to the current connection.

551

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 551

C#
public IDbCommand CreateCommand()

{ // Return a new instance of the implementation-specific command object
return new DataSetCommand(this);

}

VB.NET
Public Function CreateCommand() As IDbCommand _

Implements IDbConnection.CreateCommand
‘Return a new instance of the implementation specific command object

Return New DataSetCommand(Me)
End Function

Open Method
In a full data provider implementation, the Open method is used to make a data source–specific connec-
tion. Your implementation will use the Open method to create an instance of a generic data set object
from the Framework Class Libraries and fill it from the filename provided in our ConnectionString
property.

C#
public void Open ()
{

this.dataSet = new FCLData.DataSet ();
this.dataSet.ReadXml (this.m_fileName);

}

VB.NET
Public Sub Open() Implements IDbConnection.Open

Me.dataSet = New FCLData.DataSet
Me.dataSet.ReadXml(Me.m_fileName)

End Sub

Close Method
The Close method is used to close your data source–specific connection. You are going to use the Close
method to release the DataSet object that you have in memory.

C#
public void Close ()
{

this.dataSet=null;
}

VB.NET
Public Sub Close() Implements IDbConnection.Close

set the connection state to close and return
Me.dataSet = Nothing

End Sub

552

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 552

ConnectionString Property
The ConnectionString property allows you to set the connection string through code. The property
uses a private variable to store the current connection string, which is used to provide the information
needed to connect to the data source. Most developers are familiar with this property because of its
frequent use in both traditional ADO and ADO.NET. The ConnectionString property is used to
indicate the file that you are going to parse. The user of your data processing extension should input the
path to the file they wish to parse into the connection string. You are storing the connection string in the
private member variable m_connString.

C#
public string ConnectionString

{
Get {return m_connectionString;}
Set {m_connectionString = value;}

}

VB.NET
Public Property ConnectionString() As String _

Implements IDbConnection.ConnectionString
Get

Return m_connString
End Get
Set(ByVal Value As String)

m_connString = Value
End Set

End Property

You want to enforce that the value passed into the ConnectionString property meets your criteria for
supplying the information needed to connect to the data source. You want to enforce that the string is in
the format:

FileName=c:\FileName.xml

You will accomplish this through the use of regular expressions. You need to modify the Set accessor to
reflect this change. First, you are going to execute that static/shared Match method of the Regex class.
You are passing in an expression that basically says “Parse the connection string and make matches on
character arrays that are preceded by FileName= and are not composed of beginning of line characters
or semicolons.” All that is left is test to see if the filename is valid, and, if so, assign it to your private file-
name variable. Your code should resemble that below.

C#
set
{
this.m_connectionString = value;
Match m = Regex.Match (value, “FileName=([^;]+)”, RegexOptions.IgnoreCase);
if (!m.Success)
{
throw (new ArgumentException (“‘FileName=<filename>’ must be present in the
connection string and point to a valid DataSet xml file”, “ConnectionString”));

}

553

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 553

if(!File.Exists(m.Groups[1].Captures [0].ToString ()))
{
throw (new ArgumentException(“Incorrect Filename”,”ConnectionString”));

}
this.m_fileName = m.Groups[1].Captures [0].ToString ();

}

VB.NET
Set(ByVal Value As String)

Me.m_connectionString = Value
Dim m As Match = Regex.Match(Value, “FileName=([^;]+)”,

RegexOptions.IgnoreCase)
If Not m.Success Then

Throw (New ArgumentException(“‘FileName=<filename>’ must be present string
and point to a valid DataSet xml file”, “ConnectionString”))

End If
If Not File.Exists(m.Groups(1).Captures(0).ToString) Then

Throw (New ArgumentException(“Incorrect FileName”, “ConnectionString”))
End If
Me.m_fileName = m.Groups(1).Captures(0).ToString

End Set

ConnectionTimeout Property
The ConnectionTimeout property allows you to set the timeout property of the connection. This is
used to control how long the interval for connecting to the source should be before an error is thrown.
Your class does not actually use this value, but it is implemented for consistency and due to interface
requirements. Returning a value of 0 indicates that there is an infinite timeout period.

C#
public int ConnectionTimeout

{
get
{ // Returns the connection time-out value.

// Zero indicates an indefinite time-out period.
return 0;

}
}

VB.NET
Public ReadOnly Property ConnectionTimeout() As Integer _

Implements IDbConnection.ConnectionTimeout
Get ‘ Returns the connection time-out value.

‘ Zero indicates an indefinite time-out period.
Return 0

End Get
End Property

554

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 554

Creating the DataSetParameter Class
The DataSetParameter class is not needed until the command class is created, but because of that
dependency you do need to create it. The parameter object is used to send parameters to the command
object that can be used in executing commands against the data source. Despite the fact that this class is
not used to perform any work, the interface requirements of the command class force you to create it.
This class also has interface requirements; it is required to support the IDataParameter interface
defined in the Reporting Services data processing extension assembly.

To add the DataSetParameter class to the project, choose Project➪Add Class from the menu and
change the name to DataSetParameter.

Declarations
The following declarations are used internally to hold both the value and the name of the parameter. The
name is stored in a string variable called m_parameterName. Because the value variable might contain
any type of value, the m_value is declared as an Object type.

C#
String m_parameterName;
Object m_value;

VB.NET
Dim m_parameterName As String
Dim m_value As Object

Implementing IDataParameter
The IDataParameter interface enforces that your custom parameter class allow a programmer to get
and set the name and value of the current parameter.

C#
public interface IDataParameter

{
string ParameterName { get; set; }
object Value { get; set; }

}

VB.NET
Public Interface IDataParameter

Property ParameterName() As String
Property Value() As Object

End Interface

Modify the class code to force the DataSetParameter class to implement IDataParameter using the
AutoComplete technique. Your code should resemble the following. The wrappers for all of your inter-
face methods should have been created automatically.

555

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 555

C#
namespace Wrox.ReportingServices.DataSetExtension
{

public class DataSetDataParameter : IDataParameter
{

VB.NET
Namespace Wrox.ReportingServices.DataSetExtension

Public Class DataSetParameter
Implements IDataParameter

ParameterName Property
The ParameterName property is used to store the name of the parameter in a string variable called
m_parameterName. This field is typically used to map to parameters in stored procedures but is unused
in this implementation.

C#
public String ParameterName

{
get { return m_parameterName; }
set { m_parameterName = value; }

}

VB.NET
Public Property ParameterName() As String _

Implements IDataParameter.ParameterName
Get

Return m_parameterName
End Get
Set(ByVal Value As String)

m_parameterName = value
End Set

End Property

Value Property
The Value property is similar to the name created earlier in that it is not actually used. The value is
stored in an object variable called m_value.

C#
public object Value

{
get { return m_value; }
set { m_value = value; }

}

556

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 556

VB.NET
Public Property Value() As Object _

Implements IDataParameter.Value
Get

Return m_value
End Get
Set(ByVal Value As Object)

m_value = Value
End Set

End Property

Creating the DataSetParameterCollection Class
The DataSetParameterCollection class is simply a collection of parameter objects. Although you
could have created a custom collection class that implements all of the required methods, an easier route
exists. The IDataParameterCollection interface is basically a subset of the IList interface used to
define other objects in the .NET Framework. By using an object already available, you reduce the
required coding effort considerably.

To add the DataSetParameterCollection class to the project, choose Project➪Add Class from the
menu. Change the name of the class to DataSetParameterCollection.

There is no need to create custom constructors or member variables for use in your collection class. This
is because you can use the internal variables and constructors that exist inside the ArrayList base class
that this class inherits from. The properties that you create will be mapped directly to properties and
methods that exist in the ArrayList class.

Namespaces
The DataSetParameterCollection class uses the standard namespaces discussed earlier. There is an
additional namespace that is needed because of the use of ArrayList. You must add the
System.Collections namespace and a private variable for our internal collection.

C#
using System;
using Microsoft.ReportingServices.DataProcessing;
using System.Collections;

VB.NET
Imports System
Imports Microsoft.ReportingServices.DataProcessing
Imports System.Collections

Implementing IDataParameterCollection
It would have been really elegant to create the DataParameterCollection with the Generics feature in
.NET 2.0. I chose not to use this because creating an object wrapper around an ArrayList should work with
all versions of the .NET Framework. The IDataParameterCollection interface defines a custom Add

557

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 557

method as well as provides methods to access the members of this collection through the IEnumerable
interface. The ArrayList base class implements this interface. Your class will use the internal ArrayList
class properties and methods to service its needs.

C#
public interface IDataParameterCollection : IEnumerable

{
int Add(IDataParameter parameter);

}

VB.NET
Public Interface IDataParameterCollection

Inherits IEnumerable
Function Add(ByVal parameter As IDataParameter) As Integer

End Interface

C#
The modified code in C# is:

namespace Wrox.ReportingServices.DataSetDataExtension
{

public class DataSetDataParameterCollection : IDataParameterCollection
{

ArrayList paramList;

VB.NET
The modified code in VB.NET is:

Namespace Wrox.ReportingServices.DataSetDataExtension

Public Class DataSetDataParameterCollection
Implements IDataParameterCollection

Private paramList As ArrayList

Since most of the functionality of the DataSetDataParameterCollection class exists through the
paramList reference, all that needs to be done is to create the wrapper Add method required by the
IDataParameter interface. This method is used by the internal collection to add parameters to an
instance of the collection object.

C#
public int Add(IDataParameter value)

{
return (paramList.Add (value));

}

558

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 558

VB.NET
Public Overloads Function Add(ByVal value As IDataParameter) As Integer _

Implements IDataParameterCollection.Add

Return (paramList.Add(value))

End Function

Creating the DataSetCommand Class
The command object is responsible for sending commands to the data source. This is enforced by making
the object implement the IDbCommand interface, which supplies a standard mechanism for passing in
commands to be executed against the data source as well as parameters that might be needed in the process
of executing these commands. It also defines a property that allows the developer to associate the command
with a transaction object. Your implementation is simplified in that it does not support transactions or
parameters.

In your implementation, this class is where the majority of the work is done. You need to process the
command text to know what data the user wants. You must validate that this text conforms to your
requirements, and then you need to create the internal data reference that will supply the data for the
data reader object to process. You are going to be using some of the built-in behaviors of the
System.Data.DataSet class to satisfy your needs.

To add the DataSetCommand class to the project, choose Project➪Add Class from the menu. Change the
name of the class to DataSetCommand. Use the Interface Autocomplete feature to have Visual Studio cre-
ate the wrappers for the methods that you will implement. Most of the functionality that exists in this
extension will live in this class.

Variable Declarations
Since, most of our work is done in this class, it make sense that most of our code is also. First, you need
to create variables to hold your property data. This class is actually going to be a wrapper around some
of the built-in DataSet functionality, so you will need reference variables for the data set objects as well
as other variables used for text parsing and the like. In order to not be repetitive, I will discuss the variables
in more depth where they are used.

C#
// property variables
int m_commandTimeOut=0;
string m_commandText = String.Empty;
DataSetConnection m_connection;
DataSetParameterCollection m_parameters;

//dataset variables
string tableName= String.Empty;
FCLData.DataSet dataSet = null;
internal FCLData.DataView dataView = null;

// regex variables
MatchCollection kwc = null;

559

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 559

Match fieldMatch= null;
//regex used for getting keywords
Regex keywordSplit = new Regex(@”(Select|From|Where| Order[\s] +By)”,

RegexOptions.IgnoreCase| RegexOptions.Multiline
| RegexOptions.IgnorePatternWhitespace | RegexOptions.Compiled);

// regex used for splitting out fields
Regex fieldSplit = new Regex(@”([^ ,\s]+)”,

RegexOptions.IgnoreCase | RegexOptions.Multiline
| RegexOptions.Compiled|RegexOptions.IgnorePatternWhitespace);

//constants
const int selectPosition = 0;
const int fromPosition = 1;
const int wherePosition = 2;
const int orderPosition = 3;
const string tempTableName = “TempTable”;

//internal variables
int keyWordCount=0;
bool filtering = false;
bool sorting = false;
bool useDefaultTable = false;

VB.NET
‘property variables
Private m_cmdTimeOut As Integer = 0
Private m_commandText As String = String.Empty
Private m_connection As DataSetConnection
Private m_parameters As DataSetParameterCollection = Nothing

‘dataset variables
Private tableName As String = String.Empty
Private dataSet As FCLData.DataSet
Friend dataView As FCLData.DataView

‘regex variables
Private kwc As MatchCollection
Private fieldMatch As Match
Private tableMatch As Match
Private keywordSplit As Regex = New Regex(“(Select|From|Where| Order[\s] +By)”,

RegexOptions.IgnoreCase Or RegexOptions.Multiline Or
RegexOptions.IgnorePatternWhitespace Or RegexOptions.Compiled)

Private fieldSplit As Regex = New Regex(“([^ ,\s]+)”, RegexOptions.IgnoreCase Or
RegexOptions.Multiline Or RegexOptions.Compiled Or
RegexOptions.IgnorePatternWhitespace)

‘Constants
Private tempTableName As String = “TempTable”
Private selectPosition As Integer = 0
Private fromPosition As Integer = 1
Private wherePosition As Integer = 2
Private orderPosition As Integer = 3

‘internal variables

560

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 560

Private keyWordCount As Integer = 0
Private filtering As Boolean = False
Private sorting As Boolean = False
Private useDefaultTable As Boolean = False

Constructors
You want the users of your processing extension to be forced to create the Command object either through the
CreateCommand method of the IDbConnection interface or by passing in a valid DataSetConnection
object as a parameter. The purpose of this is to ensure that you have access to the underlying DataSet object
created and parsed in the connection process. This can be done by deleting or not providing an empty
default constructor. This prevents the developer from creating the DataSetCommand object without the
correct initialization. In the constructor, you want to get a reference to the DataSet that you opened from
the file system in your connection object.

C#
internal DataSetCommand(DataSetConnection conn)
{

this.m_connection = conn;
this.dataSet = this.m_connection.dataSet;
this.m_parameters = new DataSetParameterCollection();

}

VB.NET
Friend Sub New(ByVal conn As DataSetConnection)

Me.m_connection = conn
Me.dataSet = Me.m_connection.dataSet
Me.m_parameters = New DataSetParameterCollection

End Sub

Implementing IDbCommand
The required interface for all Command objects is called IDbCommand. It consists of methods that allow the
developer to pass commands and parameters to the Command object. The most interesting method in our
implementation is the CommandText method where you will parse the command string provided by the
user and return the appropriate data.

C#
public interface IDbCommand : IDisposable

{
void Cancel();
IDataReader ExecuteReader(CommandBehavior behavior);
string CommandText { get; set; }
int CommandTimeout { get; set; }
CommandType CommandType { get; set; }
IDataParameter CreateParameter();
IDataParameterCollection Parameters { get; }
IDbTransaction Transaction { get; set; }

}

561

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 561

VB.NET
Public Interface IDbCommand

Inherits IDisposable
Sub Cancel()
Function ExecuteReader(ByVal behavior As CommandBehavior) As IDataReader
Property CommandText() As String
Property CommandTimeout() As Integer
Property CommandType() As CommandType
Function CreateParameter() As IDataParameter
Property Parameters() As IDataParameterCollection
Property Transaction() As IDbTransaction

End Interface

Now that you have created the method wrappers and created all of the variables that you need to work,
you may begin implementing your IDbCommand methods.

Cancel Method
The Cancel method is typically used to cancel a method that has been queued. Most implementations of
data providers are multithreaded and support the issue of multiple commands against the data store.
You have only created this method to support the IDbCommand interface requirements and should
inform the developer of your lack of support by throwing a NotSupportedException.

C#
public void Cancel()

{ // not supported
throw new NotSupportedException();

}

VB.NET
Public Sub Cancel() _

Implements IDbCommand.Cancel
‘not supported
Throw New NotSupportedException

End Sub

ExecuteReader Function
The ExecuteReader method returns an extension-specific reader object to the caller so that it can loop
through and read the data. The DataSetCommand object creates an instance of your custom reader object
by executing this method. A reference to your custom data reader is then returned. Your implementation
actually builds a temporary table with a schema built based on the query issued by the user. You don’t
want to fill this temporary table unless the user actually requests the data, so you are checking to see if it
is a schema-only command. You are also checking to see if the user indicated that they want all of the
fields available from the data source. If that is the case, you use the default DataTable, which already
contains all of the data.

C#
public IDataReader ExecuteReader (CommandBehavior behavior)
{
if(!(behavior == CommandBehavior.SchemaOnly) && !useDefaultTable)

562

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 562

{
FillView();

}
return (IDataReader) new DataSetDataReader(this);

}

VB.NET
Public Function ExecuteReader(ByVal behavior As CommandBehavior) As IdataReader

Implements IDbCommand.ExecuteReader
If Not (behavior = CommandBehavior.SchemaOnly) AndAlso Not useDefaultTable Then

FillView()
End If
Return CType(New DataSetDataReader(Me), IDataReader)

End Function

CommandText Property
Reporting Services does not manually create a separate command object. It uses the CreateCommand
method of the IDBConnection interface to return an implementation-specific command object. You will be
using the CommandText property to help us build the data schema that we will return, as well as filling
your data source for use of Reporting Services. This method has been broken down into methods reflecting
the actual work being done and to facilitate this discussion. Notice the ValidateCommandText method.
This method is the entry point for your text-parsing and table-building process.

C#
public String CommandText
{

get
{

return (this.m_commandText);
}

set
{

ValidateCommandText(value);
this.m_commandText = value;

}
}

VB.NET
Public Property CommandText() As String Implements IDbCommand.CommandText

Get
Return (Me.m_commandText)

End Get
Set(ByVal value As String)

ValidateCommandText(value)
Me.m_commandText = value

End Set
End Property

563

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 563

The ValidateCommandText method is used to parse the command text to ensure that it meets the
requirements for the extension. The first step is to apply the keywordSplit regular expression that was
defined in the member variable section. The regular expression is “(Select|From|Where| Order[\s]
+By)”, which could be translated into English as: Match the keywords “Select,” “From,” “Where,” and
“Order,” where each is followed by the word “By,” but allow spaces and nonvisible characters between
them. After you have parsed the statement, you can make some basic assumptions based upon the num-
ber of matches. At a minimum, you require that the user tell you the field names and the table name that
he or she wants to pull the information from. This means that you must have a Select keyword followed
by a field list and a From keyword followed by a table name, and thus the minimum keyword count is
two. If you have a keyword count greater than two, you know that the user has either given you a filtering
criteria such as Where userID = 3 or a sort criteria such as Order by lastname ASC. You can find out
which by checking the value in the third position. If that value is a Where clause, then you can assume
that the user wants filtering. If it is not, assume that sorting is the order of the day. If the count if four, you
know that both filtering and sorting are needed.

C#
private void ValidateCommandText(string cmdText)
{

kwc = keywordSplit.Matches (cmdText);
keyWordCount = kwc.Count;
switch(keyWordCount)
{
case 4:

sorting = true;
filtering = true;
break;

case 3:
if(kwc[keyWordCount -1].ToString().ToUpper() ==”WHERE”)

filtering=true;
else

sorting=true;
break;

case 2:
break;

default:
throw (new ArgumentException (“Command Text should start with

‘select <fields> from <tablename>’”));
}

ValidateTableName(cmdText);
ValidateFieldNames(cmdText);
if(filtering)
{

ValidateFiltering(cmdText);
}
if(sorting)
{

ValidateSorting(cmdText);
}

}

564

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 564

VB.NET
Private Sub ValidateCommandText(ByVal cmdText As String)

kwc = keywordSplit.Matches(cmdText)
keyWordCount = kwc.Count
Select Case keyWordCount

Case 4
sorting = True
filtering = True
‘ break

Case 3
If kwc(keyWordCount - 1).ToString.ToUpper = “WHERE” Then

filtering = True
Else

sorting = True
End If

Case Else
Throw (New ArgumentException(“Command Text should start with

‘select <fields> from <tablename>’”))
End Select
ValidateTableName(cmdText)
ValidateFieldNames(cmdText)
If filtering Then

ValidateFiltering(cmdText)
End If
If sorting Then

ValidateSorting(cmdText)
End If

End Sub

The next step in the process is validating that the table name and the field names provided by the user are
valid. You have created methods specifically for this purpose. Shown below is the ValidateTableName
method. In the member declaration section constant values were created indicating the assumed positions
of the keywords within the command text. The table name must immediately be followed by the From
keyword. You then use the position of that keyword to locate the table name. Next, you check to see if
your internal DataSet contains this table. If so, the table name is valid; otherwise, it is invalid.

C#
private void ValidateTableName(string cmdText)
{
//Get tablename
//get 1st match starting at end of from
fieldMatch = fieldSplit.Match(cmdText,

(kwc[fromPosition].Index) + kwc[fromPosition].Length+1);
if(fieldMatch.Success)
{

if(this.dataSet.Tables.Contains(fieldMatch.Value))
{
this.tableName = fieldMatch.Value;
}
else

565

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 565

{
throw new ArgumentException(“Invalid Table Name”);

}
}

}

VB.NET
Private Sub ValidateTableName(ByVal cmdText As String)

fieldMatch = fieldSplit.Match(cmdText, (kwc(fromPosition).Index) +
kwc(fromPosition).Length + 1)

If fieldMatch.Success Then
If Me.dataSet.Tables.Contains(fieldMatch.Value) Then

Me.tableName = fieldMatch.Value
Else

Throw New ArgumentException(“Invalid Table Name”)
End If

End If
End Sub

The next step is to validate the field names. You also want users to be able to use the * character to indi-
cate that they want all of the fields without having to list them individually. This is standard SQL syntax.
You need to parse all of the text between the Select statement and the From statement. This is done
using the constant values created earlier to signify character position and a regular expression to pull out
exactly what you are interested in. The fieldSplit regular expression look like “([^ ,\s]+)”,
which reads in English: Match all character groups that do not contain spaces, commas, and nonvisible
white space and have spaces at the end. If the first field is an asterisk, you know that the user wants all
fields. This means that you do not have to build a temporary table to reflect the schema and that you can
use the table they requested in the From portion of the text. If the first field is not an asterisk, you must
build a temp table reflecting the schema of the data that you will return. To avoid problems with a user
changing the fields, and the temp table previously existing, you will simply test for its existence each
time and remove it if you must. Next, you check to see whether the field names exist in your main table
by testing to see whether the column names exist. If they do, the column is valid and you add a column
with this name to your new temp table. You continue to do this as long as the field names are valid. If an
invalid field is submitted, you throw an exception to make the user aware of their mistake.

C#
public void ValidateFieldNames(string cmdText)
{
//get fieldnames
//get first match starting at the last character of the Select
// with a length from that position to the from
fieldMatch = fieldSplit.Match(cmdText,

(kwc[selectPosition].Index + kwc[selectPosition].Length+1),
(kwc[fromPosition].Index -
(kwc[selectPosition].Index+kwc[selectPosition].Length+1)));

if(fieldMatch.Value==”*”) // all fields, use default view
{

this.dataView = this.dataSet.Tables[this.tableName].DefaultView;
this.useDefaultTable = true;

}

566

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 566

else //custom fields : must build table/view
{

this.useDefaultTable = false; //don’t use default table
//remove table if exists - add new
if(this.dataSet.Tables.Contains(tempTableName))
{

this .dataSet.Tables.Remove(tempTableName);
}
FCLData.DataTable table = new FCLData.DataTable(tempTableName);
//loop through column matches
while(fieldMatch.Success)
{
if(dataSet.Tables[tableName].Columns.Contains(fieldMatch.Value))
{

FCLData.DataColumn col = this.dataSet.Tables[tableName].Columns[fieldMatch.Value] ;
table.Columns.Add(new FCLData.DataColumn(col.ColumnName,col.DataType));
fieldMatch = fieldMatch.NextMatch();

}
else
{
throw new ArgumentException(“Invalid column name”);
}

}
//add temptable to internal dataset and set view to tempView;
this.dataSet.Tables.Add(table);
this.dataView = new FCLData.DataView(table);
}
}

VB.NET
Private Sub ValidateFieldNames(ByVal cmdText As String)

fieldMatch = fieldSplit.Match(cmdText, (kwc(selectPosition).Index +
kwc(selectPosition).Length + 1), (kwc(fromPosition).Index -
kwc(selectPosition).Index + kwc(selectPosition).Length + 1)))

If fieldMatch.Value = “*” Then
Me.dataView = Me.dataSet.Tables(Me.tableName).DefaultView
Me.useDefaultTable = True

Else
Me.useDefaultTable = False
If Me.dataSet.Tables.Contains(Me.tempTableName) Then

Me.dataSet.Tables.Remove(Me.tempTableName)
End If
Dim table As FCLData.DataTable = New FCLData.DataTable(Me.tempTableName)

While fieldMatch.Success
If Me.dataSet.Tables(Me.tableName).Columns.Contains(fieldMatch.Value) Then

Dim col As FCLData.DataColumn =
dataSet.Tables(tableName).Columns(fieldMatch.Value)

table.Columns.Add(New FCLData.DataColumn(col.ColumnName,
col.DataType))

fieldMatch = fieldMatch.NextMatch
Else

Throw New ArgumentException(“Invalid column name”)
End If

567

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 567

End While
Me.dataSet.Tables.Add(table)
Me.dataView = New FCLData.DataView(table)

End If
End Sub

Assuming that the table name is valid and all of the requested fields are valid, you will use the temp
table you have built to satisfy data access requirements. The only thing left to do is add the new table to
the existing data set.

You have now validated all the parts of your query except the filtering and sorting criteria. In the
CommandText method you test whether filtering and sorting are enabled based upon your keyword
count. If they are enabled, you execute a method that uses the internal behavior of the DataSet class to do
the work. In the ValidateFiltering method, you need to parse out the text based upon the keyword
count. You either need to grab all of the text after the Where clause, or if an order clause exists, you need
to stop there.

C#
public void ValidateFiltering(string cmdText)
{
if(filtering)

{
StringBuilder sbFilterText = new StringBuilder();
int startPos =0;
int length =0;

startPos = (kwc[wherePosition].Index + kwc[wherePosition].Length+1);
if(keyWordCount ==3) //no “order by” - Search from Where till end
{

length = cmdText.Length-startPos;
}
else // “order by” exists - search from where position to “order by”
{

length = kwc[orderPosition].Index - startPos;
}

sbFilterText.Append(cmdText.Substring(startPos,length));
this.dataView.RowFilter = sbFilterText.ToString();

}
}

VB.NET
Private Sub ValidateFiltering(ByVal cmdText As String)

If filtering Then
Dim sbFilterText As StringBuilder = New StringBuilder
Dim startPos As Integer = 0
Dim length As Integer = 0
startPos = (kwc(wherePosition).Index + kwc(wherePosition).Length + 1)
If keyWordCount = 3 Then

length = cmdText.Length - startPos

568

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 568

Else
length = kwc(orderPosition).Index - startPos

End If
sbFilterText.Append(cmdText.Substring(startPos, length))
Me.dataView.RowFilter = sbFilterText.ToString

End If
End Sub

After you parse the text, you will use the DataView.RowFilter property to filter out results. Simply
apply the string that you have extracted to the RowFilter, and the DataView class takes care of the rest.
The same technique is applied to get ordering.

C#
public void ValidateSorting(string cmdText)

{
if(sorting)
{

StringBuilder sbFilterText = new StringBuilder();
int startPos =0;
int length =0;
//start from end of ‘Order by’ clause
startPos = (kwc[orderPosition].Index +

kwc[orderPosition].Length+1);

length = cmdText.Length - startPos;

sbFilterText.Append(cmdText.Substring(startPos,length));
this.dataView.Sort = sbFilterText.ToString();

}
}

VB.NET
Private Sub ValidateSorting(ByVal cmdText As String)

If sorting Then
Dim sbFilterText As StringBuilder = New StringBuilder
Dim startPos As Integer = 0
Dim length As Integer = 0
startPos = (kwc(orderPosition).Index + kwc(orderPosition).Length + 1)
length = cmdText.Length - startPos
sbFilterText.Append(cmdText.Substring(startPos, length))
Me.dataView.Sort = sbFilterText.ToString

End If
End Sub

CommandTimeout Property
The CommandTimeout property is used to specify how long the command object should wait for the
results of an executed command before throwing an exception. You are not actually using this value, but
it must be implemented due to interface requirements. Just return a zero value to indicate timeouts are
not supported.

569

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 569

C#
public int CommandTimeout

{ // Implemented the Property for consistency but it is not used.
get { return 0; }

}

VB.NET
Public Property CommandTimeout() As Integer _

Implements IDbCommand.CommandTimeout
Get

Return 0
End Get
Set(ByVal Value As Integer)

End Set
End Property

CommandType Property
Most data processing extensions allow the developer to pass in a command as text, or they can pass in a
fully initialized command object for the Execute reader method to examine and use. The
DataSetCommand class only accepts text, and any other type will cause your component to throw a
NotSupported exception.

C#
public CommandType CommandType

{ // supports only a text commandType
get { return CommandType.Text; }
set { if (value != CommandType.Text) throw new NotSupportedException(); }

}

VB.NET
Public Property CommandType() As CommandType _

Implements IDbCommand.CommandType
Get

Return CommandType.Text
End Get
Set(ByVal Value As CommandType)

If Value <> CommandType.Text Then
Throw New NotSupportedException

End If
End Set

End Property

CreateParameter Function
The CreateParameter returns an extension-specific parameter to the command object. The method must
be supported due to the interface requirements, although it is not actually used. The DataSetParameter
object is a simple class that implements another interface called IDataParameter, which allows it to be
returned as an object of the interface type.

570

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 570

C#
public IDataParameter CreateParameter()

{ //return DataSetDataParameter
return new DataSetDataParameter();

}

VB.NET
Public Function CreateParameter() As IDataParameter _

Implements IDbCommand.CreateParameter
Return New DataSetDataParameter

End Function

Parameters Property
The Parameters property returns a collection that implements the IDataParameterCollection interface.
Your custom collection class is the DataSetParameterCollection and satisfies these requirements. The
Parameters property allows the developer to index into the Parameters collection to set or get the
parameter values.

C#
public IDataParameterCollection Parameters

{
get
{

Debug.WriteLine (“IDBCommand: Retrieving parameters list”);
return this.m_parameters;

}
}

VB.NET
Public ReadOnly Property Parameters() As IDataParameterCollection Implements
IDbCommand.Parameters

Get
Debug.WriteLine(“IDBCommand: Retrieving parameters list”)
Return Me.m_parameters

End Get
End Property

Creating the DataReader Object
The data reader in our implementation does nothing more than read properties of our internal DataView.
The behavior of the data reader is enforced by the IDbDataReader interface, which supplies methods to
indicate the number, names, and types of the fields that will be read. It also allows the object to actually
access the data.

To add the DataSetDataReader class to the project, choose Project➪Add Class from the menu. Change
the name of the class to DataSetDataReader. After adding the class, add the custom namespace and
edit the class definition.

571

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 571

Declarations
The variables of the DataSetDataReader hold all the information that you will use to build the properties
supported by the DataSetDataReader class. The m_currentRow variable is used to store the value of the
current row as the data is being read from your CSV data file. The string array m_names contains the names
of the fields that will be read, while the m_types array provides access to the type of data that will be read.
As the data is read, it will be loaded into an array of the object type called m_cols. Data from the file will
be read by an internal StreamReader class called sr.

C#
FCLData.DataView dataView;
DataSetCommand dataSetCommand = null;
int currentRow= -1;

VB.NET
Private dataView As FCLData.DataView = Nothing
Private dataSetCommand As dataSetCommand = Nothing
Private currentRow As Integer = -1

Implementing IDbDataReader
The IDbDataReader interface enforces consistency in working with data. It provides properties and
methods that allow you to examine the data and its types as well as the Read method that will actually
do the dirty work.

C#
public interface IDataReader : IDisposable

{
Type GetFieldType(int fieldIndex);
string GetName(int fieldIndex);
int GetOrdinal(string fieldName);
object GetValue(int fieldIndex);
bool Read();
int FieldCount { get; }

}

VB.NET
Public Interface IDataReader

Inherits IDisposable
Function GetFieldType(ByVal fieldIndex As Integer) As Type
Function GetName(ByVal fieldIndex As Integer) As String
Function GetOrdinal(ByVal fieldName As String) As Integer
Function GetValue(ByVal fieldIndex As Integer) As Object
Function Read() As Boolean
Property FieldCount() As Integer

End Interface

You need to modify your class definition to force the custom DataSetDataReader class to support the
interface requirements.

572

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 572

C#
namespace Wrox.ReportingServices.DataSetDataExtension
{

public class DataSetDataReader : IDataReader
{

internal int currentRow;

VB.NET
Namespace Wrox.ReportingServices.DataSetDataExtension

Public Class DataSetDataReader
Implements IDataReader

GetFieldType Function
This property returns the type of data at a particular position within the stream that is being read. This
data is used to allow the developer to store the data being read in the correct data type upon retrieval
from the data reader.

C#
public Type GetFieldType (int fieldIndex)
{

return(this.dataView.Table.Columns[fieldIndex].DataType);
}

VB.NET
Public Function GetFieldType(ByVal fieldIndex As Integer) As Type Implements
IDataReader.GetFieldType

Return (Me.dataView.Table.Columns(fieldIndex).DataType)
End Function

GetName Function
The GetName method allows the developer to retrieve a data field from the DataReader object by pass-
ing in the name of the field to be read.

C#
public String GetName (int fieldIndex)
{

return this.dataView.Table.Columns[fieldIndex].ColumnName;
}

VB.NET
Public Function GetName(ByVal fieldIndex As Integer) As String Implements
IDataReader.GetName

Return(Me.dataView.Table.Columns(fieldIndex).ColumnName)
End Function

573

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 573

GetOrdinal Function
The GetName method allows the developer to index the data based on its position within the
DataReader stream.

C#
public int GetOrdinal (String fieldName)
{

return(this.dataView.Table.Columns[fieldName].Ordinal);
}

VB.NET
Public Function GetOrdinal(ByVal fieldName As String) As Integer Implements

IDataReader.GetOrdinal
Return (Me.dataView.Table.Columns(fieldName).Ordinal)

End Function

GetValue Function
The GetValue function retrieves the actual value from the data stream. All of these methods are typi-
cally used together. The developer pulls the type information from the stream, creates variables of the
correct type to hold this data, and gets the values of the data using the GetValue function.

C#
public object GetValue (int fieldIndex)
{

return(this.dataView [this.currentRow] [fieldIndex]);
}

VB.NET
Public Function GetValue(ByVal fieldIndex As Integer) As Object Implements
IDataReader.GetValue

Return (Me.dataView(Me.currentRow)(fieldIndex))
End Function

Read Method
The Read method is the workhorse of the DataSetDataReader class. The function loops through the current
DataView. If a line is successfully read, this is indicated to the user of your extension by incrementing the
row count variable m_currentRow and by returning a Boolean value. As long as true is returned, data is
successfully read. False is returned when the internal view hits the end of the result set.

C#
public Boolean Read ()

{
this.currentRow ++;
if (this.currentRow >= this.dataView.Count)
{

return (false);

574

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 574

}
return (true);

}

VB.NET
Public Function Read() As Boolean Implements IDataReader.Read

System.Threading.Interlocked.Increment(Me.currentRow)
If Me.currentRow >= Me.dataView.Count Then

Return (False)
End If
Return (True)

End Function

FieldCount Property
The FieldCount property returns the number of fields or columns available in each row of data that the
Read method returns.

C#
public int FieldCount
{ // Return the count of the number of columns,

get { return m_fieldCount; }
}

VB.NET
Public ReadOnly Property FieldCount() As Integer Implements IDataReader.FieldCount

Get

Return (Me.dataView.Table.Columns.Count)
End Get

End Property

Installing the DataSetDataProcessing Extension
After creating your custom data processing extension, you must install it to enable access. The installa-
tion process is two steps.

❑ Installing and configuring the extension.

❑ Configuring extension security.

This particular extension is used both by the Reporting Server and the report designer itself, which
requires us to install it in two locations. It must be installed on the report server and the workstation
used to design the reports.

Server Installation
Reporting Services has a standard location where extensions should be installed. This location is a subdirec-
tory below the installation directory of SQL Server itself. I will refer to the SQL Server installation path as
InstallPath. On my machine, this directory is C:\Program Files\Microsoft SQL Server\.

575

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 575

The directory that you will install the extension into is the bin directory of the report server: InstallPath\
MSSQL.3\Reporting Services\ReportServer\bin. Copy your custom data processing extension
assembly into this directory. The extension is now in the correct location, but you need to inform Reporting
Services of its presence. This is done by editing the configuration file that Reporting Services uses for its set-
tings. This file is called RSReportServer.config and is located in the parent directory. Open this file and
look for the <Data> section. Within this section, you should see entries similar to the following:

<Data>
<Permissions>

<PermissionSet class=”System.Security.NamedPermissionSet” version=”1”
Unrestricted=”true” Name=”FullTrust”
Description=”Allows full access to all resources”/>

</Permissions>
<Extension Name=”SQL”

Type=”Microsoft.ReportingServices.DataExtensions.SqlConnectionWrapper,
Microsoft.ReportingServices.DataExtensions”/>

<Extension Name=”OLEDB”
Type=”Microsoft.ReportingServices.DataExtensions.OleDbConnectionWrapper,

Microsoft.ReportingServices.DataExtensions”/>
<Extension Name=”ORACLE”

Type=”Microsoft.ReportingServices.DataExtensions.OracleClient
ConnectionWrapper,Microsoft.ReportingServices.DataExtensions”/>

<Extension Name=”ODBC”
Type=”Microsoft.ReportingServices.DataExtensions.OdbcConnection

Wrapper,Microsoft.ReportingServices.DataExtensions”/>
<Extension Name=”DATASET”

Type=”Wrox.ReportingServices.DataSetDataExtension.DataSetConnection,Wrox.ReportingS
ervices.DataSetDataExtension”/>
</Data>

Add the DataSet entry that you see in the highlighted code snippet. The Name tag is the unique name you
want users to see when they select your extension. The Type element contains the entry point for your
extension (the first object created and the one that is required to implement the IExtension interface),
followed by the fully qualified name of your extension. Save the file. Reporting Services will now recognize
your extension, but you must change the security policy to give the extension the permissions that it needs
to do its job.

Server Security configuration
The security policy file is located in the same directory as the server configuration file. Simply locate the
file called rssrvpolicy.config. This file contains the security policy information for SSRS, and an
entry should be made that looks similar to the following:

</CodeGroup>
<CodeGroup class=”UnionCodeGroup” version=”1” PermissionSetName=”FullTrust”
Name=”WroxSRS” Description=”Code group for my DataSet data processing
extension”>
<IMembershipCondition class=”UrlMembershipCondition”
version=”1”Url=”C:\Program Files\Microsoft SQL Server\MSSQL.3\Reporting
Services\ReportServer\bin\Wrox.ReportingServices.DataSetDataExtension.dll” />
</CodeGroup>

576

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 576

WorkStation Installation
The next task is installing the extension on your development machine so that you can use it in the
report designer. The process for installing the extension into the report designer is much the same as the
server, with the exception of the file names and locations. This is also done by copying the file to a spe-
cific directory of your development machine and making an entry in the configuration file so that the
designer is aware of the extension.

Copy your extension to the C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\
PrivateAssemblies directory. All of the files needed for workstation configuration are located here. The
configuration file of the designer is called RSReportDesigner.config. Insert the same information that
you inserted at the server-side extension at the end of the <Data> section in this file.

<Data
<Extension Name=”ODBC”
Type=”Microsoft.ReportingServices.DataExtensions.OdbcConnection
Wrapper,Microsoft.ReportingServices.DataExtensions”/>
<Extension Name=”DATASET”
Type=”Wrox.ReportingServices.DataSetDataExtension.DataSetConnection,Wrox.ReportingS
ervices.DataSetDataExtension”/>
</Data>

There is one additional requirement in this file. You must also tell Visual Studio what designer to use
with your extension. I chose not to implement a custom designer class but to use the Generic Query
Designer provided by Microsoft instead. Your query is based on SQL, so this works well. Make an entry
in the <Designer> section that immediately follows the <Data> section.

<Extension Name=”DataSet”
Type=”Microsoft.ReportingServices.QueryDesigners.GenericQueryDesigner,Microsoft.Rep
ortingServices.QueryDesigners”/>

WorkStation Security Configuration
The next step is to set up the security policy so the extension will run in the designer correctly. The
required file is called rspreviewpolicy.config. Add an entry resembling the following into this file.

<CodeGroup class=”UnionCodeGroup” version=”1” PermissionSetName=”FullTrust”
Name=”WroxSRS” Description=”Code group for my DataSet data processing
extension”>
<IMembershipCondition class=”UrlMembershipCondition” version=”1” Url=” C:\Program
Files\Microsoft Visual Studio 8\Common7\IDE\PrivateAssemblies
\Wrox.ReportingServices.DataSetDataExtension.dll” />
</CodeGroup>

Testing the DataSetDataExtension
In order to test the extension, a report that uses the custom extension must be created. You must also
create a DataSet file to contain your data or use the one provided in the sample code. The code is
generic enough that you may use it against any serialized data set. The file included in the example is
just a Select * from DimCustomer run against the AdventureWorksDW database and persisted from
a data set object.

577

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 577

Add a new project to your existing solution. Create the project by choosing File➪Add Project➪New
Project. If the development environment is set up correctly, you will see the Business Intelligence
template folder. Choose the Report Server Project Wizard template. Change the name of the project to
TestReport and click OK. This will launch the Report Wizard. Click Next. The Select Data Source
page will appear. Leave the default data source name, and click on the Type drop-down box. Your new
DataSetDataExtension should now be available. Using a FileName attribute, enter the physical path
to your serialized dataset into the Connection String text box. When you are done, the result should
resemble Figure 13-7.

Figure 13-7

Next, you need to indicate the credentials that you wish to use. Click on the Credentials button, which
will cause the Credentials windows to be displayed. Instruct the data source to use Windows integrated
security by selecting the radio button (see Figure 13-8).

Figure 13-8

578

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 578

After you have set both the type and connection string, you are ready to set up the basic data query. The
dataset that I used included a table called DimCustomer that I want to query. Enter Select * from
DimCustomer into the query window if you are using the sample provided or some statement that
works on your specific data. The query should resemble the text shown in Figure 13-9.

Figure 13-9

Simply finish the wizard by choosing your report style and the fields that you are interested in. I chose
the tabular report type. I then selected three fields and put them into the detail list. I chose the default
report style, and the resulting report is shown in Figure 13-10.

Figure 13-10

Next, you need to see if our extension actually returns data. Click on the Preview tab. The resulting data
should resemble Figure 13-11.

579

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 579

Figure 13-11

Now you know that our extension works. You can experiment with the field-limiting and -sorting func-
tionality by clicking on the Data tab. This brings up the data designer where you can enter more
advanced queries and test the results (see Figure 13-12).

Figure 13-12

Summary
In this chapter, you learned about the extensibility of Reporting Services and the areas that currently
support customization. Specifically, you learned:

❑ What extensibility options are available.

❑ Reasons for extending SQL Server Reporting Services.

❑ How to create custom extensions.

❑ How to install custom extensions.

580

Chapter 13

21_584979 ch13.qxp 1/27/06 7:45 PM Page 580

Along with the extensibility options available in SQL Reporting Services, you also learned about some of
the business opportunities created. Microsoft has created a flexible, powerful reporting solution that
allows you to modify its behavior by implementing the interfaces required by the particular extension
type. This functionality is sure to create a third-party market for tools, as well as allow the enterprise
developer to create custom solutions for the unique needs of their business.

Also discussed was the data access methods used by the .NET Framework and specifically how to create
a custom data processing extension to work with nonrelational data. The example is very simple and
does not stand alone as an application — although it could be easily extended to provide additional
functionality such as support for parameters. The primary purpose of the example is to familiarize you
with the requirements for creating and installing an extension. This type of extension was chosen
because it is used on the server for report processing and on the developer machine for report creation.

581

Extending Reporting Services

21_584979 ch13.qxp 1/27/06 7:45 PM Page 581

21_584979 ch13.qxp 1/27/06 7:45 PM Page 582

Migrating Access Reports

The following Access report controls, property settings, and other report elements will be con-
verted to report items in SQL Server Reporting Services if supported.

Controls
Control Converted to Item

Label Textbox

Textbox Textbox

Option Group (unsupported)

Toggle Button (unsupported)

Option Button (unsupported)

Check Box (unsupported)

Combo Box (unsupported)

List Box (unsupported)

Command Button (unsupported)

Image Image

Unbound Object Frame (unsupported)

Bound Object Frame (unsupported)

Page Break (unsupported)

Tab Control (unsupported)

Table continued on following page

22_584979 appa.qxp 1/27/06 7:33 PM Page 583

Control Converted to Item

Sub form Subreport

Sub report Subreport

Line Line

Rectangle Rectangle

ActiveX Controls (unsupported)

Property Settings
Property Supported

BackColor Yes

BackStyle Yes

BorderColor Yes

BorderStyle Yes

BorderWidth Yes

BottomMargin Yes

CanGrow (section) No

CanGrow (textbox) Yes

CanShrink (section) No

CanShrink (textbox) Yes

Caption Yes

DecimalPlaces No

FastLaserPrinting No

Filter No

FilterOn No

FontBold Yes

FontItalic Yes

FontName Yes

FontSize Yes

FontUnderline Yes

FontWeight Yes

ForceNewPage Yes

ForeColor Yes

584

Appendix A

22_584979 appa.qxp 1/27/06 7:33 PM Page 584

Property Supported

Format No

FormatConditions No

GrpKeepTogether No

Height Yes

HideDuplicates Yes

Hyperlink Yes

IsHyperlink Yes

IsVisible Yes

KeepTogether (group) Yes

KeepTogether (section) No

Left Yes

LeftMargin Yes

LineSlant Yes

LineSpacing Yes

LinkChildFields Yes

LinkMasterFields Yes

NewRowOrCol Yes

NumeralShapes No

Orientation No

PageFooter Yes

PageHeader Yes

Pages Yes

PaintPalette No

PaletteSource No

Picture Yes

PictureAlignment No

PicturePages No

PictureSizeMode No

PictureTiling (image) No

PictureTiling (report) Yes

ReadingOrder Yes

Table continued on following page

585

Migrating Access Reports

22_584979 appa.qxp 1/27/06 7:33 PM Page 585

Property Supported

RepeatSection Yes

RightMargin Yes

RunningSum Yes

ScrollBars No

SizeMode Yes

SpecialEffect No

TextAlign Yes

Top Yes

TopMargin Yes

Vertical No

Width Yes

Functions
Nearly all common expression functions (VBA and Access SQL) are supported by Reporting Services or
have Visual Basic .NET equivalents. The following domain aggregate functions are not supported and
do not have equivalent functionality. Equivalent aggregate functions exist in Transact SQL, but these
need to be applied within a query rather than on item properties.

Function Supported

DAvg No

DCount No

DFirst No

DLast No

DLookup No

DMax No

DMin No

DStDev No

DStDevP No

DSum No

DVar No

DVarP No

586

Appendix A

22_584979 appa.qxp 1/27/06 7:33 PM Page 586

Report Elements
Element Supported Comment

VBA Code Modules Yes

Events No

Parameterized queries Yes

Express functions Yes Reporting Services supports most VBA or Access
SQL functions that are allowed in Access property
expressions. All supported functions are converted to
the Visual Basic .NET equivalents. The most significant
functions commonly used in Access expressions and
not supported by Reporting Services are the domain
aggregate functions.

Access data source — Yes Connection string refers to the original Access database.
Access tables

Access data source — No Connection string refers to the original Access database
linked tables not the source of the linked tables.

Remote data source in Partial ODBC and OLEDB sources are supported, but certain
Access Data Project (ADP) characters are not allowed in names (‘;’, ‘<’, or ‘>’)

Group Section Yes Appropriate sorting and grouping properties are
applied to detail sections. Nested groupings are
created for additional group sections.

Field names and variables Yes Names are converted according to Reporting Services
rules. Field names that are the same as control/item
names are modified, and names containing spaces are
modified. Any variable names that don’t correspond to
fields are converted to report parameters.

Image formats Yes All image formats are converted to BMP and stored as
embedded images

During report conversion, the Access database or project is opened during the report conversion process.
Although the conversion engine handles most unsupported conversion issues gracefully, errors can cause
the process to stall under some conditions. In this case, the Access database may be left with open locks
on it, and you won’t be able to open the database. In such a case, delete the corresponding 1db file after
closing Visual Studio. In extreme cases, you may need to reboot the computer first.

587

Migrating Access Reports

22_584979 appa.qxp 1/27/06 7:33 PM Page 587

22_584979 appa.qxp 1/27/06 7:33 PM Page 588

Reporting Services
Object Model

Reporting Services exposes its application program interface (API) through the Reporting Services
Web service that interacts with the actual Reporting Server. This appendix is meant to be a quick ref-
erence to the programmatic functionality that Reporting Services exposes through this Web service.

Relevant code for both C# and VB.NET has been provided in this chapter. Book formatting con-
straints may cause the code lines to wrap. However, note that the VB.NET code lines should
reside on one line in the code editor, even though no underscore has been inserted in such cases.

CancelBatch
This method cancels a batch of commands that are created by using CreateBatch and associated
with a particular BatchID. The BatchID can be changed to a value equal to the BatchID that was
generated when the batch was created through the BatchHeaderValue property of the Web service.
When CancelBatch is called, any calls associated with that BatchID value cannot be executed.

C#
public void CancelBatch();

VB.NET
Public Sub CancelBatch()

CancelJob
A job is a task that a report server is actively processing. CancelJob cancels execution of a job by
passing in the JobID associated with that job.

C#
public bool CancelJob(string JobID);

23_584979 appb.qxp 1/27/06 7:33 PM Page 589

VB.NET
Public Function CancelJob(ByVal JobID As String) As Boolean

CreateBatch
The CreateBatch method creates a batch that allows the execution of multiple methods within the
scope of a single transaction. Upon execution, this method returns a BatchID. This batch identifier is
used to group commands and can be accessed through the BatchHeaderValue property of the Web
service.

C#
public string CreateBatch();

VB.NET
Public Function CreateBatch() As String

CreateDataDrivenSubscription
This method creates a data-driven subscription for a specified report. It requires passing in the extension
settings for the preferred delivery mechanism, as well as the DataRetrievalPlan and event type that
will cause the report to be delivered. The return value is a unique identifier for the new subscription.

C#
public string CreateDataDrivenSubscription(string Report, ExtensionSettings
ExtensionSettings, DataRetrievalPlan DataRetrievalPlan, string Description, string
EventType, string MatchData, ParameterValueOrFieldReference[] Parameters);

VB.NET
Public Function CreateDataDrivenSubscription(ByVal Report As String, ByVal
ExtensionSettings As ExtensionSettings, ByVal DataRetrievalPlan As
DataRetrievalPlan, ByVal Description As String, ByVal EventType As String, ByVal
MatchData As String, ByVal Parameters As ParameterValueOrFieldReference()) As
String

CreateDataSource
This method creates a new data source in the Reporting Server database. It is sensitive because it con-
tains user name and password information, and depending on the settings of the server, may require
that it be executed only over SSL.

C#
public void CreateDataSource(string DataSource, string Parent, bool Overwrite,
DataSourceDefinition Definition, Property[] Properties);

VB.NET
Public Sub CreateDataSource(ByVal DataSource As String, ByVal Parent As String,
ByVal Overwrite As Boolean, ByVal Definition As DataSourceDefinition, ByVal
Properties As Property())

590

Appendix B

23_584979 appb.qxp 1/27/06 7:33 PM Page 590

CreateFolder
The CreateFolder method creates a logical folder on the reporting server in which items such as
reports or data sources may be placed. If you are creating a nested folder hierarchy, then you must pass
in the full path of the parent folder. In addition, you must pass a collection of custom properties for the
folder. These properties can be used to search by or provide detailed information about the folder.

C#
public void CreateFolder(string Folder, string Parent, Property[] Properties);

VB.NET
Public Sub CreateFolder(ByVal Folder As String, ByVal Parent As String, ByVal
Properties As Property())

CreateLinkedReport
A linked report is defined as a report that does not contain a full report definition in the reporting server
and is primarily created for the purpose of being included in other reports. This method creates a report
and requires that you pass in the name of the linked report, the path of the report, the path to the report
definition upon which you are basing the report, and the report properties.

C#
public void CreateLinkedReport(string Report, string Parent, string Link,
Property[] Properties);

VB.NET
Public Sub CreateLinkedReport(ByVal Report As String, ByVal Parent As String, ByVal
Link As String, ByVal Properties As Property())

CreateModel
Creates a report model used to define the information in the database in business terms. The model is
used by the Report Builder.

C#
public Warning[] CreateModel(string Model, string Parent, byte[] Definition,
Property[] Properties);

VB.NET
Public Function CreateModel(ByVal Model As String, ByVal Parent As String,
Definition As Byte(), ByVal Properties As Property()) as Warning()

CreateReport
The CreateReport method adds a new report to the Reporting Server database. It requires that you
pass in the path where you want the report to be created, a Boolean value indicating whether you want
an existing report with the same name to be overridden, the report itself, and any custom properties that
you would like applied to the report.

591

Reporting Services Object Model

23_584979 appb.qxp 1/27/06 7:33 PM Page 591

C#
public Warning[] CreateReport(string Report, string Parent, bool Overwrite, byte[]
Definition, Property[] Properties);

VB.NET
Public Function CreateReport(ByVal Report As String, ByVal Parent As String, ByVal
Overwrite As Boolean, ByVal Definition As Byte(), ByVal Properties As Property())
As Warning()

CreateReportHistorySnapshot
A snapshot of a report is a view of that report frozen at a certain point in time. This method generates a
report history snapshot of a specified report. All the subreport items and parameters are also stored as
history. A string is returned which is a unique snapshot identifier.

C#
public string CreateReportHistorySnapshot(string Report,[out] Warning[] Warnings);

VB.NET
Public Function CreateReportHistorySnapshot(ByVal Report As String, ByRef Warnings
As Warning()) As String

CreateResource
This method adds a new resource to the Reporting Server database. It requires that you pass in the
resource, the parent directory, a Boolean value indicating whether to overwrite an existing resource with
the same name, the MIME-type of the resource, and any properties that you want to specify.

C#
public void CreateResource(string Resource, string Parent, bool Overwrite, byte[]
Contents, string MimeType, Property[] Properties);

VB.NET
Public Sub CreateResource(ByVal Resource As String, ByVal Parent As String, ByVal
Overwrite As Boolean, ByVal Contents As Byte(), ByVal MimeType As String, ByVal
Properties As Property())

CreateRole
This method creates a new security role in the Reporting Server database. The required fields are a string
role name, a description of the role, and a collection of tasks that you want the role to perform repre-
sented by task IDs.

C#
public void CreateRole(string Name, string Description, Task[] Tasks);

592

Appendix B

23_584979 appb.qxp 1/27/06 7:33 PM Page 592

VB.NET
Public Sub CreateRole(ByVal Name As String, ByVal Description As String, ByVal
Tasks As Task())

CreateSchedule
The CreateSchedule method allows the developer to create a shared schedule that can be used by
a subscription to deliver reports. The name of the schedule and a ScheduleDefinition object that
describes the schedule are the required parameters. The return value is a unique schedule ID that identi-
fies the newly created schedule.

C#
public string CreateSchedule(string Name, ScheduleDefinition ScheduleDefinition);

VB.NET
Public Function CreateSchedule(ByVal Name As String, ByVal ScheduleDefinition As
ScheduleDefinition) as String

CreateSubscription
Creates a subscription for a specified report in the Reporting Server database. The required parameters
are the name of the report, the delivery extension to use, a user-friendly description, the event that will
cause the subscription to be run, and match data that is needed by the EventType object. This method
returns a unique subscription ID for the newly created subscription.

C#
public string CreateSubscription(string Report, ExtensionSettings
ExtensionSettings, string Description, string EventType, string MatchData,
ParameterValue[] Parameters);

VB.NET
Public Function CreateSubscription(ByVal Report As String, ByVal ExtensionSettings
As ExtensionSettings, ByVal Description As String, ByVal EventType As String, ByVal
MatchData As String, ByVal Parameters As ParameterValue()) As String

DeleteItem
The DeleteItem method deletes a specified item from the Reporting Server database as well as any
objects that are related to that item, such as properties, subscriptions, or snapshots. It takes the full path
to the item to be deleted as a string parameter.

C#
public void DeleteItem(string Item);

VB.NET
Public Sub DeleteItem(ByVal Item As String)

593

Reporting Services Object Model

23_584979 appb.qxp 1/27/06 7:33 PM Page 593

DeleteReportHistorySnapshot
This method deletes an individual report history snapshot for a specified report. It requires that you
pass in the path to the report and an identifier for the specific history to be removed.

C#
public void DeleteReportHistorySnapshot(string Report, string HistoryID);

VB.NET
Public Sub DeleteReportHistorySnapshot(ByVal Report As String, ByVal HistoryID As
String)

DeleteRole
It deletes a specified role from the Reporting Server database. In addition, all the policies associated with
this role are also deleted. It requires you to pass in the name of the role to be deleted.

C#
public void DeleteRole(string Name);

VB.NET
Public Sub DeleteRole(ByVal Name As String)

DeleteSchedule
The DeleteSchedule method deletes a specific schedule from the Reporting Server database. Any
reports that were scheduled to run based on this schedule will no longer be processed. It requires pass-
ing in a string value representing the ID of the schedule.

C#
public void DeleteSchedule(string ScheduleID);

VB.NET
Public Sub DeleteSchedule(ByVal ScheduleID As String)

DeleteSubscription
This method allows the user to delete a subscription to a specified report. Executing the method requires
the subscription ID of the subscription to be deleted.

C#
public void DeleteSubscription(string SubscriptionID);

VB.NET
Public Sub DeleteSubscription(ByVal SubscriptionID As String)

594

Appendix B

23_584979 appb.qxp 1/27/06 7:33 PM Page 594

DisableDataSource
This method allows the developer to disable a specific data source. Reports and subscriptions that use
the specified data source will not run. It requires passing in the name of the data source that is to be
disabled.

C#
public void DisableDataSource(string DataSource);

VB.NET
Public Sub DisableDataSource(ByVal DataSource As String)

EnableDataSource
This method enables a data source that was previously disabled.

C#
public void EnableDataSource(string DataSource);

VB.NET
Public Sub EnableDataSource(ByVal DataSource As String)

ExecuteBatch
A batch identifier is returned when the CreateBatch Method is used. To execute a batch, the developer
sets the BatchHeaderValue property of the Web service proxy class to the appropriate batch ID.
All methods that are associated with this batch ID will execute within the scope of a single database
transaction.

C#
public void ExecuteBatch();

VB.NET
Public Sub ExecuteBatch()

FindItems
FindItems returns items that match the specified search criteria. The required parameters are the folder
to search, logical operators AND or OR, and a collection of search conditions. The return value is the
CatalogItem collection.

C#
public CatalogItem[] FindItems(string Folder, BooleanOperatorEnum BooleanOperator,
SearchCondition[] Conditions);

595

Reporting Services Object Model

23_584979 appb.qxp 1/27/06 7:33 PM Page 595

VB.NET
Public Function FindItems(ByVal Folder As String, ByVal BooleanOperator As
BooleanOperatorEnum, ByVal Conditions As SearchCondition())As CatalogItem()

FireEvent
FireEvent causes an event to be fired. Required parameters are the event to be fired and the data
required by the event.

C#
public void FireEvent(string EventType, string EventData);

VB.NET
Public Sub FireEvent(ByVal EventType As String, ByVal EventData As String)

FlushCache
FlushCache invalidates the cache for an individual report. The name of the report is the only parameter
passed to this method.

C#
public void FlushCache(string Report);

VB.NET
Public Sub FlushCache(ByVal Report As String)

GenerateModel
Generates a default Model for a shared DataSource.

C#
public Warning[] GenerateModel(string DataSource, string Model, string Parent,
Property[] Properties);

VB.NET
Public Function GenerateModel(ByVal DataSource As String, ByVal Model As String,
ByVal Parent As String, ByVal Properties As Property()) As Warning()

GetCacheOptions
This method returns the cache configuration for a report and the ExpirationDefinition settings that
describe when the cached copy of the report expires. The return value is a Boolean value indicating
whether the report is in the cache or not.

C#
public bool GetCacheOptions(string Report, [out] ExpirationDefinition Expiration);

596

Appendix B

23_584979 appb.qxp 1/27/06 7:33 PM Page 596

VB.NET
Public Function GetCacheOptions(ByVal Report As String, [out] ByRef Expiration As
ExpirationDefinition) As Boolean

GetDataDrivenSubscriptionProperties
This method returns the properties of a data-driven subscription. The required parameter is the ID of the
subscription. The other parameters are declared but not initialized. They will be returned with valid val-
ues representing the settings of the subscription. They are the extension settings, the data retrieval plan,
a description of the subscription, the current status of the subscription, the type of event that causes the
subscription to fire, and the match data for the event.

C#
public string GetDataDrivenSubscriptionProperties(string DataDrivenSubscriptionID,
[out] ExtensionSettings ExtensionSettings, [out] DataRetrievalPlan
DataRetrievalPlan, [out] string Description, [out] ActiveState Active, [out]
string Status, [out] string EventType, [out] string MatchData, [out] ref
ParameterValueOrFieldReference[] Parameters);

VB.NET
Public Function GetDataDrivenSubscriptionProperties(ByVal DataDrivenSubscriptionID
As String,[out] ByRef ExtensionSettings As ExtensionSettings, [out] ByRef
DataRetrievalPlan As DataRetrievalPlan, [out] ByRef Description As String, [out]
ByRef Active As ActiveState, [out] ByRef Status As String, [out] ByRef EventType As
String, [out] ByRef MatchData As String, [out] ByRef Parameters As
ParameterValueOrFieldReference())

GetDataSourceContents
GetDataSourceContents returns a DataSourceDefinition object representing the contents of a data
source. The required parameter is the name of the data source.

C#
public DataSourceDefinition GetDataSourceContents(string DataSource);

VB.NET
Public Function GetDataSourceContents(ByVal DataSource As String) As
DataSourceDefinition

GetExecutionOptions
This method returns the execution options and associated settings for an individual report. The required
parameters are the name of the report and an uninitialized ScheduleDefinition object. This object will
be returned with its properties set to the values for the report. The return value is an enum datatype that
indicates whether the report is based on live data or a snapshot.

C#
public ExecutionSettingEnum GetExecutionOptions(string Report, [out]
ScheduleDefinitionOrReference Schedule);

597

Reporting Services Object Model

23_584979 appb.qxp 1/27/06 7:33 PM Page 597

VB.NET
Public Function GetExecutionOptions(ByVal Report As String,[out] ByRef Schedule As
ScheduleDefinitionOrReference) As ExecutionSettingEnum

GetExtensionSettings
This method requires that you pass in the name of an extension. The return value is an array of known
parameters for the specific extension.

C#
public ExtensionParameter[] GetExtensionSettings(string Extension);

VB.NET
Public Function GetExtensionSettings(ByVal Extension As String)As
ExtensionParameter()

GetItemDataSourcePrompts
Gets the prompts associated with a particular item.

C#
public DataSourcePrompt[] GetItemDataSourcePrompts(string Item);

VB.NET
Public Function GetItemDataSourcePrompts(ByVal Item As String) as
DataSourcePrompt()

GetItemDataSources
Returns a DataSource collection associated with a particular item in the report catalog.

C#
public DataSource[] GetItemDataSources(string Item);

VB.NET
Public Function GetItemDataSources(ByVal Item As String) as DataSource()

GetItemType
It retrieves the type of an item, if it exists in the Reporting Server database. The required parameter is the
name of the object. The return value is an enumeration representing the type of object.

C#
public ItemTypeEnum GetItemType(string Item);

598

Appendix B

23_584979 appb.qxp 1/27/06 7:33 PM Page 598

VB.NET
Public Function GetItemType(ByVal Item As String) as ItemTypeEnum

GetModelDefinition
Returns the Model definition for a particular catalog item.

C#
public byte[] GetModelDefinition(string Item);

VB.NET
Public Function GetModelDefinition(ByVal Item As String) as Byte()

GetModelItemPermissions
Retrieves the permissions associated with a particular ModelItem.

C#
public string[] GetModelItemPermissions(string Model,string ModelItemID);

VB.NET
Public Function GetModelItemPermissions(ByVal Model As String, ModelItemID as
String) As String()

GetModelItemPolicies
Retrieves the policies associated with a particular ModelItem as well as a Boolean value indicating
whether the object inherits from its parent.

C#
public Policy[] GetModelItemPolicies(string Model, string ModelItemID, out bool
InheritParent);

VB.NET
Public Function GetModelItemPolicies(ByVal Model As String, ByVal ModelItemID as
String, [out] InheritParent as Bool) as Policy()

GetPermissions
GetPermissions returns a string array containing a list of user permissions that are associated with a
particular item in the Reporting Server database. The required input parameter is a string representing
the name of the item.

C#
public string[] GetPermissions(string Item);

599

Reporting Services Object Model

23_584979 appb.qxp 1/27/06 7:33 PM Page 599

VB.NET
Public Function GetPermissions(ByVal Item As String) As String()

GetPolicies
GetPolicies returns an array of Policy objects that are associated with a particular item as well as a
Boolean value indicating whether the item inherits those policies from its parent.

C#
public Policy[] GetPolicies(string Item, [out] ref bool InheritParent);

VB.NET
Public Function GetPolicies(ByVal Item As String, [out] ByRef InheritParent As
Boolean) As Policy()

GetProperties
GetProperties returns property values for a particular report object. You need to pass in an array of
Property objects with names initialized, and the method returns those objects with their values set.

C#
public Property[] GetProperties(string Item, Property[] Properties);

VB.NET
Public Function GetProperties(ByVal Item As String, ByVal Properties As Property())
As Property()

GetRenderResource
GetRenderResource returns the resource for a specified rendering extension format. It requires that
you pass in the format to use for processing device-specific information and the MIME-type of the
resource. It returns the resource as a base-64 encoded byte array.

C#
public byte[] GetRenderResource(string Format, string DeviceInfo,[out] string
MimeType);

VB.NET
Public Sub GetRenderResource(ByVal Format As String, ByVal DeviceInfo As String,
[out] ByRef MimeType As String) as Byte()

GetReportDefinition
This method retrieves the report definition for a report in base-64-encoded byte format. It can then be
converted into Report Definition Language for use in tools such as Visual Studio.

600

Appendix B

23_584979 appb.qxp 1/27/06 7:33 PM Page 600

C#
public byte[] GetReportDefinition(string Report);

VB.NET
Public Function GetReportDefinition(ByVal Report As String)As Byte()

GetReportHistoryLimit
This method returns an integer that indicates the number of snapshot history reports to maintain. The
required parameters are the name of the report, a Boolean value that will be altered in the method to
reflect whether the report has its own limit or uses the system limit, and an integer that will be returned
with the value of the current system limit.

C#
public int GetReportHistoryLimit(string Report, [out] bool IsSystem, [out] int
SystemLimit);

VB.NET
Public Function GetReportHistoryLimit(ByVal Report As String, , ByRef IsSystem As
Boolean, ByRef SystemLimit As Integer) as Integer

GetReportHistoryOptions
This method returns the report history snapshot options and properties that are generated for a report
by passing in the report name. The method returns a Boolean variable that indicates whether the report
allows the creation of manual snapshots. The property information is retrieved by output parameters,
which indicate whether snapshots have been kept and a schedule definition is associated with the
report.

C#
public bool GetReportHistoryOptions(string Report,[out] bool
KeepExecutionSnapshots, [out] ScheduleDefinitionOrReference Schedule);

VB.NET
Public Function GetReportHistoryOptions(ByVal Report As String,[out] ByRef
KeepExecutionSnapshots As Boolean, [out] ByRef Schedule As
ScheduleDefinitionOrReference) as Boolean

GetReportLink
The GetReportLink method returns the full path of the report, the report definition of which is used for
the specified linked report. The only parameter is the name of the report referred for the report definition.

C#
public string GetReportLink(string Report);

601

Reporting Services Object Model

23_584979 appb.qxp 1/27/06 7:33 PM Page 601

VB.NET
Public Function GetReportLink(ByVal Report As String) As String

GetReportParameters
This method returns report parameters for a specified report. The first parameter is the name of the
report. The next two parameters are used together. If a HistoryId is provided and the ForRendering
parameter is set to true, the returned properties belong to a snapshot of the provided report. The
ParameterValues argument can be used to verify valid parameters against a report. The Credentials
parameter returns the credentials to use to validate and check the parameters.

C#
public ReportParameter[] GetReportParameters(string Report, string HistoryID, bool
ForRendering, ParameterValue[] Values, DataSourceCredentials[] Credentials);

VB.NET
Public Function GetReportParameters(ByVal Report As String, ByVal HistoryID As
String, ByVal ForRendering As Boolean, ByVal Values As ParameterValue(), ByVal
Credentials As DataSourceCredentials()) As ReportParameter()

GetResourceContents
This method requires the developer to pass in the resource that needs retrieval. The method returns a
MIME-type and the value of the resource as a base-64-encoded byte array.

C#
Public byte[] GetResourceContents(string Resource, [out] string MimeType);

VB.NET
Public Function GetResourceContents(ByVal Resource As String, ByRef MimeType As
String) As Byte()

GetRoleProperties
This method returns a collection of tasks associated with a given role. The description string argument
will return containing the description for the role.

C#
public Task[] GetRoleProperties(string Name,[out] string Description);

VB.NET
Public Function GetRoleProperties(ByVal Name As String, ByRef Description As
String) as Task()

GetScheduleProperties
This method returns a Schedule object containing the schedule definition for a single shared schedule
by passing in a specific schedule ID.

602

Appendix B

23_584979 appb.qxp 1/27/06 7:33 PM Page 602

C#
public Schedule GetScheduleProperties(string ScheduleID);

VB.NET
Public Function GetScheduleProperties(ByVal ScheduleID As String) As Schedule

GetServerDateTime
This method is described in the documentation. It supposedly returns the current date and time of the
computer that is running the report server scheduler. It exists in the internal Reporting Server classes but
is not exposed through the WSDL-generated proxy class.

C#
public DateTime GetServerDateTime();

VB.NET
Public Function GetServerDateTime()

GetSubscriptionProperties
The GetSubscriptionProperties method returns a subscription and the associated information for a
specified report in the Reporting Server database. The required parameters are the name of the report, a
delivery extension object, a string to hold a user-friendly description, an Event object, and match data
that is needed by the EventType object. It also returns a string representing the owner of the subscrip-
tion. All of the parameters except the subscription have no initial value but return the settings for the
subscription after the method executes.

C#
public string GetSubscriptionProperties(string SubscriptionID,[out] ref
ExtensionSettings ExtensionSettings, [out] ref string Description, [out] ref
ActiveState Active, [out] ref string Status, [out] ref string EventType, [out] ref
string MatchData, [out] ref ParameterValue[] Parameters);

VB.NET
Public Function GetSubscriptionProperties(ByVal SubscriptionID As String,[out]
ByRef ExtensionSettings As ExtensionSettings, [out] ByRef Description As String,
[out] ByRef Active As ActiveState, [out] ByRef Status As String, [out] ByRef
EventType As String, [out] ByRef MatchData As String, [out] ByRef Parameters As
ParameterValue()) as String

GetSystemPermissions
This retrieves a string array representing the system permissions of the current user. An example of a
valid permission is the Create Roles permission.

C#
public string[] GetSystemPermissions();

603

Reporting Services Object Model

23_584979 appb.qxp 1/27/06 7:33 PM Page 603

VB.NET
Public Function GetSystemPermissions() As String()

GetSystemPolicies
This method returns an array of Policy objects representing groups and associated roles.

C#
public Policy[] GetSystemPolicies();

VB.NET
Public Function GetSystemPolicies() As Policy()

GetSystemProperties
This method requires passing in an array of Property objects with names initialized to the properties
that you are interested in. The method returns this array of properties with their values from the system,
indicating the system status.

C#
public Property[] GetSystemProperties(Property[] Properties) ;

VB.NET
Public Function GetSystemProperties(ByVal Properties As Property()) As Property()

InheritModelItemParentSecurity
Indicates that the Model should inherit its security attributes from its parent.

C#
public void InheritModelItemParentSecurity(string Model, string ModelItemID);

VB.NET
Public Sub InheritModelItemParentSecurity(ByVal Model As String, ByVal ModelItemID
As String)

InheritParentSecurity
This method deletes all the policies associated with an item, thereby causing it to inherit policies from its
parent.

C#
public void InheritParentSecurity(string Item);

VB.NET
Public Sub InheritParentSecurity(ByVal Item As String)

604

Appendix B

23_584979 appb.qxp 1/27/06 7:33 PM Page 604

ListChildren
This method returns a CatalogItem array, given a string value representing a specified folder. A
Boolean value that indicates whether the search should be recursive and traverse the entire directory
structure of the path below the specified folder is also required.

C#
public CatalogItem[] ListChildren(string Item, bool Recursive);

VB.NET
Public Function ListChildren(ByVal Item As String, ByVal Recursive As Boolean) As
CatalogItem()

ListDependantItems
This method returns a CatalogItem array, given a string value representing a specified folder. A
Boolean value that indicates whether the search should be recursive and traverse the entire directory
structure of the path below the specified folder is also required.

C#
public CatalogItem[] ListDependantItems(string Item);

VB.NET
Public Function ListDependantItems(ByVal Item As String) As CatalogItem()

ListEvents
This method returns an array of events that are defined on the report server.

C#
Public Event[] ListEvents();

VB.NET
Public Function ListEvents() As Event()

ListExtensions
It returns a list of Extension objects that are configured for a given extension type such as delivery, ren-
dering, or data. The parameter is an enumeration representing all of the extension types.

C#
public Extension[] ListExtensions(ExtensionTypeEnum ExtensionType);

VB.NET
Public Function ListExtensions(ByVal ExtensionType As ExtensionTypeEnum)As
Extension()

605

Reporting Services Object Model

23_584979 appb.qxp 1/27/06 7:33 PM Page 605

ListJobs
Method returns an array of Jobs that represent information about currently running jobs on the report
server.

C#
public Jobs[] ListJobs();

VB.NET
Public Function ListJobs()As Job()

ListModelDrillthroughReports
Lists drill through reports associated with a particular model item.

C#
public ModelDrillthroughReport[] ListModelDrillthroughReports(string Model, string
ModelItemID);

VB.NET
Public Function ListModelDrillthroughReports (ByVal Model As String, Byval
ModelItemID as String) As ModelDrillthroughReport()

ListModelItemChildren
Returns an array of ModelItems associated with a particular model.

C#
public ModelItem[] ListModelItemChildren(string Model, string ModelItemID,bool
Recursive);

VB.NET
Public Function ListModelItemChildren (ByVal Model As String, Byval ModelItemID as
String, Recursive as Boolean) As ModelItem()

ListModelPerspectives
Lists ModelItems available to a particular user.

C#
public ModelCatalogItem[] ListModelPerspectives(string Model);

VB.NET
Public Function ListModelPerspectives (ByVal Model As String) As ModelCatalogItem()

606

Appendix B

23_584979 appb.qxp 1/27/06 7:33 PM Page 606

ListReportHistory
This method returns an array of report history snapshots and their properties for a specified report.

C#
public ReportHistorySnapshot[] ListReportHistory(string Report);

VB.NET
Public Function ListReportHistory(ByVal Report As String)As ReportHistorySnapshot()

ListRoles
It returns an array of Roles defined on the report server from which their names and descriptions can
be extracted.

C#
public Roles[] ListRoles(SecurityScopeEnum SecurityScope);

VB.NET
Public Function ListRoles(ByVal SecurityScope as SecurityScopeEnum) As Role()

ListScheduledReports
This method returns an array of reports that are associated with a shared schedule.

C#
public CatalogItem[] ListScheduledReports(string ScheduleID);

VB.NET
Public Function ListScheduledReports(ByVal ScheduleID As String)As CatalogItem()

ListSchedules
This method returns an array containing all the shared schedules on the report server.

C#
public Schedule[] ListSchedules();

VB.NET
Public Function ListSchedules()As Schedule()

ListSecureMethods
It returns a string array of methods that require a secure connection when invoked.

607

Reporting Services Object Model

23_584979 appb.qxp 1/27/06 7:33 PM Page 607

C#
public string[] ListSecureMethods();

VB.NET
Public Function ListSecureMethods() As String()

ListSubscriptions
The ListSubscriptions method returns an array of Subscription objects that have been created for
a given report for a specific user. This array includes both standard and data-driven subscriptions.

C#
public Subscription[] ListSubscriptions(string Report, string Owner);

VB.NET
Public Function ListSubscriptions(ByVal Report As String, ByVal Owner As String) As
Subscription()

ListSubscriptionsUsingDataSource
This method returns a list of subscriptions associated with a given data source.

C#
public Subscription[] ListSubscriptionsUsingDataSource(string DataSource);

VB.NET
Public Function ListSubscriptionsUsingDataSource(ByVal DataSource As String) As
Subscription()

ListTasks
This method returns an array of Task objects from which item task information may be extracted. An
example of an item-level task is viewing a folder or a report.

C#
public Task[] ListTasks(SecurityScopeEnum SecurityScope);

VB.NET
Public Function ListTasks(ByVal SecurityScope as SecurityScopeEnum) As Task()

LogonUser
Creates an active session for the user with the specified credentials.

C#
public void LogonUser(string userName, string password, string authority);

608

Appendix B

23_584979 appb.qxp 1/27/06 7:33 PM Page 608

VB.NET
Public Sub LogonUser(userName as String, password as String, authority as string)

Logoff
Logs off the current user making requests.

C#
public void Logoff();

VB.NET
Public Sub Logoff()

MoveItem
The MoveItem method moves or renames an item in the Reporting Server database; required parameters
are the original location and the destination path.

C#
public void MoveItem(string Item, string Target);

VB.NET
Public Sub MoveItem(ByVal Item As String, ByVal Target As String)

PauseSchedule
This method pauses the execution of a given shared schedule. The required parameter is the associated
schedule ID.

C#
public void PauseSchedule(string ScheduleID);

VB.NET
Public Sub PauseSchedule(ByVal ScheduleID As String)

PrepareQuery
This method returns a data set containing the fields retrieved by the delivery query for a data-driven
subscription. The parameters are the data source to be used, the data definition object, and a Boolean
value to indicate whether the data definition has changed.

C#
public DataSetDefinition PrepareQuery(DataSource datasource, DataSetDefinition
dataset,[out] bool changed);

609

Reporting Services Object Model

23_584979 appb.qxp 1/27/06 7:33 PM Page 609

VB.NET
Public Function PrepareQuery(ByVal DataSource As DataSource, ByVal DataSet As
DataSetDefinition, [out] ByRef Changed As Boolean) as DataSetDefinition

RegenerateModel
Causes a model to be regenerated based on changes to the underlying data definition.

C#
public Warning[] RegenerateModel(string Model);

VB.NET
Public RegenerateModel(ByVal Model as String) as Warning()

RemoveAllModelItemPolicies
Removes all policies associated with a particular model item.

C#
public void RemoveAllModelItemPolicies(string Model);

VB.NET
Public Sub RemoveAllModelItemPolicies(ByVal Model as String)As String)

ResumeSchedule
This method is used to resume from a shared schedule that has been paused.

C#
public void ResumeSchedule(string ScheduleID);

VB.NET
Public Sub ResumeSchedule(ByVal ScheduleID As String)

SetCacheOptions
This method configures caching options for a specified report. Parameters of the report, whether to cre-
ate a cache of the report, and an expiration definition or date that controls how long the report is in the
cache are passed to this function.

C#
public void SetCacheOptions(string Report, bool CacheReport, ExpirationDefinition
Expiration);

610

Appendix B

23_584979 appb.qxp 1/27/06 7:33 PM Page 610

VB.NET
Public Sub SetCacheOptions(ByVal Report As String, ByVal CacheReport As Boolean,
ByVal Expiration As ExpirationDefinition)

SetDataDrivenSubscriptionProperties
This method sets the properties of a data-driven subscription.

C#
public void SetDataDrivenSubscriptionProperties(string DataDrivenSubscriptionID,
ExtensionSettings ExtensionSettings, DataRetrievalPlan DataRetrievalPlan, string
Description, string EventType, string MatchData, ParameterValueOrFieldReference[]
Parameters);

VB.NET
Public Sub SetDataDrivenSubscriptionProperties(ByVal DataDrivenSubscriptionID As
String, ByVal ExtensionSettings As ExtensionSettings, ByVal DataRetrievalPlan As
DataRetrievalPlan, ByVal Description As String, ByVal EventType As String, ByVal
MatchData As String, ByVal Parameters As ParameterValueOrFieldReference())

SetDataSourceContents
This replaces the contents of an existing data source. The parameters are the name of the source and a
data definition object defining all the source properties.

C#
public void SetDataSourceContents(string DataSource, DataSourceDefinition
Definition);

VB.NET
Public Sub SetDataSourceContents(ByVal DataSource As String, ByVal Definition As
DataSourceDefinition)

SetExecutionOptions
This method sets the execution options and the associated execution properties for an individual report.
The first parameter is the name of the report, followed by an enumeration indicating whether the report
should be executed in real time or scheduled. The third parameter, Schedule, is only used if the execu-
tion is scheduled.

C#
public void SetExecutionOptions(string Report, ExecutionSettingEnum
ExecutionSetting, ScheduleDefinitionOrReference Schedule);

VB.NET
Public Sub SetExecutionOptions(ByVal Report As String, ByVal ExecutionSetting As
ExecutionSettingEnum, ByVal Schedule As ScheduleDefinitionOrReference)

611

Reporting Services Object Model

23_584979 appb.qxp 1/27/06 7:33 PM Page 611

SetItemDataSources
Sets the DataSources associated with a particular catalog item.

C#
public void SetItemDataSources(string Item, DataSource[] DataSources);

VB.NET
Public Sub SetModelDefinition(Item as String, DataSources as DataSource())

SetModelDefinition
Sets the DataSources associated with a particular Model item.

C #
public Warning[] SetModelDefinition(string Model, byte[] Definition);

VB.NET
Public Function SetModelDefinition(Model as String, Definition as Byte()) as
Warning()

SetModelDrillthroughReports
Associates drill-through reports with a particular Model item.

C#
public void SetModelDrillthroughReports(string Model, string ModelItemID,
ModelDrillthroughReport[] Reports);

VB.NET
Public Sub SetModelDrillthroughReports(Model as String, ModelItemID as String,
Reports as ModelDrillthroughReport())

SetModelItemPolicies
Associates policies with a particular Model item.

C#
public void SetModelItemPolicies(string Model, string ModelItemID, Policy[]
Policies);

VB.NET
Public Sub SetModelItemPolicies(Model as String, ModelItemID as String, Policies as
Policy())

612

Appendix B

23_584979 appb.qxp 1/27/06 7:33 PM Page 612

SetPolicies
This method sets the policies that are associated with a specified item. The required parameters are the
item and an array of Policy objects to place on the specified item.

C#
public void SetPolicies(string Item, Policy[] Policies);

VB.NET
Public Sub SetPolicies(ByVal Item As String, ByVal Policies As Policy())

SetProperties
This sets the properties that are associated with a specified item. The required parameters are the item
for which you will set properties and an array of Property objects to place on the specified item.

C#
public void SetProperties(string Item, Property[] Properties);

VB.NET
Public Sub SetProperties(ByVal Item As String, ByVal Properties As Property())

SetReportDefinition
The SetReportDefinition method is used to change a report definition for a specified report. The
required parameter is the name of the report, followed by an array of bytes that are the report definition.
The return value is an array of warnings informing the developer of problems that occur.

C#
public Warning[] SetReportDefinition(string Report, byte[] Definition);

VB.NET
Public Function SetReportDefinition(ByVal Report As String, ByVal Definition As
Byte()) As Warning()

SetReportHistoryLimit
This allows the developer to specify the number of snapshots of a report that the report server retains.
The required parameters are the name of the report and a Boolean value indicating whether the default
system limit should be used or a specific limit.

C#
public void SetReportHistoryLimit(string Report, bool UseSystem, int HistoryLimit);

613

Reporting Services Object Model

23_584979 appb.qxp 1/27/06 7:33 PM Page 613

VB.NET
Public Sub SetReportHistoryLimit(ByVal Report As String, ByVal UseSystem As
Boolean, ByVal HistoryLimit As Integer)

SetReportHistoryOptions
This method allows the developer to set report history options that control snapshot creation and life-
time. The required parameters are the name of the report, a Boolean value that controls whether manual
snapshots can be created, and a Boolean value indicating whether snapshot histories should be main-
tained. You also need to pass in the schedule the snapshot should be created against.

C#
public void SetReportHistoryOptions(string Report, bool
EnableManualSnapshotCreation, bool KeepExecutionSnapshots,
ScheduleDefinitionOrReference Schedule);

VB.NET
Public Sub SetReportHistoryOptions(ByVal Report As String, ByVal
EnableManualSnapshotCreation As Boolean, ByVal KeepExecutionSnapshots As Boolean,
ByVal Schedule As ScheduleDefinitionOrReference)

SetReportLink
A linked report does not contain a full report definition. This method allows you to specify the report
that contains the full definition for the report. A linked report may be linked to more than one report
definition.

C#
public void SetReportLink(string Report, string Link);

VB.NET
Public Sub SetReportLink(ByVal Report As String, ByVal Link As String)

SetReportParameters
This method allows the developer to specify parameters for a report that it needs in order to be pro-
cessed. The parameters are the name of the report and a collection of parameters, the names of which
must match those defined in the report.

C#
public void SetReportParameters(string Report, ReportParameter[] Parameters);

VB.NET
Public Sub SetReportParameters(ByVal Report As String, ByVal Parameters As
ReportParameter())

614

Appendix B

23_584979 appb.qxp 1/27/06 7:33 PM Page 614

SetResourceContents
Resources such as images are stored as byte arrays. The SetResourceContents method allows the
developer to replace the contents of an existing resource by passing in a byte array representing the new
value. The required parameters are the resource to be accessed, the byte array that contains the value,
and the MIME-type of the resource.

C#
public void SetResourceContents(string Resource, byte[] Contents, string MimeType);

VB.NET
Public Sub SetResourceContents(ByVal Resource As String, ByVal Contents As Byte(),
ByVal MimeType As String)

SetRoleProperties
This method allows the developer to associate a group of tasks with a specified role. The required
parameters are the role name and the array of tasks to associate with the role.

C#
public void SetRoleProperties(string Name, string Description, Task[] Tasks);

VB.NET
Public Sub SetRoleProperties(ByVal Name As String, ByVal Description As String,
ByVal Tasks As Task())

SetScheduleProperties
This method allows the developer to set the properties of a shared schedule. The required parameters
are the name of the report, the schedule ID, and a schedule definition object that contains the schedule
properties for the report.

C#
public void SetScheduleProperties(string Name, string ScheduleID,
ScheduleDefinition ScheduleDefinition);

VB.NET
Public Sub SetScheduleProperties(ByVal Name As String, ByVal ScheduleID As String,
ByVal ScheduleDefinition As ScheduleDefinition)

SetSubscriptionProperties
This method allows the developer to set the properties of a shared subscription. The required parame-
ters are the name of the report, the subscription ID, delivery-specific setting information, a description of
the subscription, the event that causes the subscription to run, match data used by the specific type of
event used, and the parameters for the report.

615

Reporting Services Object Model

23_584979 appb.qxp 1/27/06 7:33 PM Page 615

C#
public void SetSubscriptionProperties(string SubscriptionID, ExtensionSettings
ExtensionSettings, string Description, string EventType, string MatchData,
ParameterValue[] Parameters);

VB.NET
Public Sub SetSubscriptionProperties(ByVal SubscriptionID As String, ByVal
ExtensionSettings As ExtensionSettings, ByVal Description As String, ByVal
EventType As String, ByVal MatchData As String, ByVal Parameters As
ParameterValue())

SetSystemPolicies
This allows the developer to set system policies by passing in an array of Policy objects.

C#
public void SetSystemPolicies(Policy[] Policies);

VB.NET
Public Sub SetSystemPolicies(ByVal Policies As Policy())

SetSystemProperties
This method allows the developer to set system properties by passing in an array of Property objects.

C#
public void SetSystemProperties(Property[] Properties);

VB.NET
Public Sub SetSystemProperties(ByVal Properties As Property())

UpdateReportExecutionSnapshot
This method creates a report history snapshot for a specified report.

C#
public void UpdateReportExecutionSnapshot(string Report);

VB.NET
Public Sub UpdateReportExecutionSnapshot(ByVal Report As String)

ValidateExtensionSettings
This method allows the developer to validate the Reporting Services extension settings. The required
parameters are the name of the extension and an array of parameter values to verify. The method returns
an array of extension parameter objects with initialized values if they are valid, and error messages if
they are not.

616

Appendix B

23_584979 appb.qxp 1/27/06 7:33 PM Page 616

C#
public ExtensionParameter[] ValidateExtensionSettings(string Extension,
ParameterValueOrFieldReference[] ParameterValues);

VB.NET
Public Function ValidateExtensionSettings (ByVal Extension As String, ByVal
ParameterValues As ParameterValueOrFieldReference()) Values As ExtensionParameter()

Public Properties
The Reporting Services Web service proxy class contains several properties that are used to control
how Reporting Services handles various requests. These properties and a description of their impact on
Reporting Services are discussed.

BatchHeaderValue
This value is used to group multimethod operations against the Reporting Services Web service.

C#
public BatchHeader BatchHeaderValue { get; set; }

VB.NET
Public Property BatchHeaderValue() As BatchHeader

ItemNamespaceHeaderValue
This value is used to retrieve properties for a specific item by setting either the ID or the name of the
property in the ItemNamespaceHeader.

C#
public ItemNamespaceHeader ItenNamespaceHeaderValue { get; set; }

VB.NET
Public Property ItemNamespaceHeaderValue() As ItemNamespaceHeader

ServerInfoHeaderValue
This property contains server-related information such as the edition of Reporting Services and the ver-
sion information.

C#
public ServerInfoHeader ServerInfoHeaderValue { get; set; }

VB.NET
Public Property ServerInfoHeaderValue() As ServerInfoHeader

617

Reporting Services Object Model

23_584979 appb.qxp 1/27/06 7:33 PM Page 617

23_584979 appb.qxp 1/27/06 7:33 PM Page 618

Transact SQL Command
Syntax Reference

A significant portion of this text is used with permission from Beginning Transact SQL, available
from Wrox Press.

SQL Server recognizes up to four parts of object names. Depending upon the context of an expres-
sion, some parts may or may not be necessary when referencing an object. When script runs on a
different server or when using a different database, related object names may be required. Note
that SQL Server 2005 recognizes the schema name in the third position, while SQL Server 2000 rec-
ognizes the object owner name in the same position. If you are using SQL Server 2000, substitute
the owner for the schema.

Object Reference Use and Context

object In the context of the local database, on the same server.
Object is owned by the dbo user (SQL Server 2000) or part of
the dbo schema (SQL Server 2005) and there are no duplicate
object names.

schema.object In the context of the local database, on the same server.
Object may be owned by a user other than dbo (SQL Server
2000) or part of a specific schema. Duplicate object names
that have different owners or schema names are permitted.
Also uses a standard convention for clarity.

database..object In the context of the same or different database on the same
server. Without specifying the owner or schema, assumes
the dbo owner or schema.

database.schema.object A three-part name fully describes an object on the same
server, in the same or different database.

Table continued on following page

24_584979 appc.qxp 1/27/06 7:45 PM Page 619

Object Reference Use and Context

server.database.schema A four-part name is valid in the context of a remote server or the
.object local server, in the local or a different database, and for any user or

schema.

server.database..object The database owner or schema in the third position can be omitted
to use the default dbo owner or schema.

server..schema.object The database name may be omitted to use the default database on
that server. This is a not a typical practice.

server...object Omitting the database and owner or schema name uses the default
database and the default dbo user or schema. This is not a typical
practice.

Transact-SQL Commands, Clauses, and
Predicates

Following are the core components of the Transact-SQL language. New commands for SQL Server 2005
are explicitly called out in this section.

WITH
This is a new method in SQL Server 2005 for defining an alias for the result set returned by a SELECT
expression.

WITH MyCTE
AS
(SELECT * FROM Product WHERE ListPrice < 1000)

Optionally, column aliases can be defined in parentheses following the Common Table Expression (CTE)
name:

WITH MyCTE (ID, ProdNumber, ProdName, Price)
AS
(SELECT

ProductID
, ProductNumber
, Name
, ListPrice
FROM Product WHERE ListPrice < 1000

)

SELECT
Return all columns from a table or view:

620

Appendix C

24_584979 appc.qxp 1/27/06 7:45 PM Page 620

SELECT * FROM table_name

Return specific columns from a table or view:

SELECT Column1, Column2, Column3 FROM table_name

Column alias techniques:

SELECT Column1 AS Col1, Column2 AS Col2 FROM table_name
SELECT Column1 Col1, Column2 Col2 FROM table_name
SELECT Col1 = Column1, Col2 = Column2 FROM table_name

Literal values:

SELECT ‘Some literal value’
SELECT ‘Some value’ AS Col1, 123 AS Col2

Returning an expression value:

SELECT (1 + 2) * 3

Returning the result of a function call:

SELECT CONVERT(VarChar(20), GETDATE(), 101)

TOP
Return a fixed number of rows:

SELECT TOP 10 * FROM table_name ORDER BY Column1
SELECT TOP 10 Column1, Column2 FROM table_name ORDER BY Column2

Return a fixed number of rows with the ties for last position. If the value in the nth row is the same as the
subsequent row(s), these rows are also returned.

SELECT TOP 10 WITH TIES Column1, Column2 FROM table_name ORDER BY Column2

Return a percentage of all available rows:

SELECT TOP 25 PERCENT * FROM table_name ORDER BY Column2
SELECT TOP 25 PERCENT Column1, Column2 FROM table_name ORDER BY Column2

For SQL Server 2005 only, substitute a variable or expression for a top values number:

DECLARE @TopNumber Int
SET @TopNumber = 15
SELECT TOP @ TopNumber * FROM table_name ORDER BY Column2

Top values–based on an expression:

SELECT TOP (SELECT a_column_value FROM some_table) * FROM another_table

621

Transact SQL Command Syntax Reference

24_584979 appc.qxp 1/27/06 7:45 PM Page 621

SELECT INTO
Create and populate a table from a result set:

SELECT Column1, Column2 INTO new_table_name FROM existing_table_or_view_name

FROM
Single table query:

SELECT * FROM table_name

Multi-table join query:

SELECT *
FROM table1.key_column INNER JOIN table2 ON table1.key_column = table2.key_column

Derived table:

SELECT DerTbl.Column1, DerTbl.Column2
FROM

(SELECT Column1, Column2 FROM some_table ...) AS DerTbl

WHERE
Exact match:

SELECT ... FROM ...
WHERE Column1 = ‘A literal value’

Not NULL:

SELECT ... FROM ...
WHERE Column1 IS NOT NULL

Any trailing characters:

SELECT ... FROM ...
WHERE Column1 LIKE ‘ABC%’

Any leading characters:

SELECT ... FROM ...
WHERE Column1 LIKE ‘%XYZ’

Any leading or trailing characters:

SELECT ... FROM ...
WHERE Column1 LIKE ‘%MNOP%’

622

Appendix C

24_584979 appc.qxp 1/27/06 7:45 PM Page 622

Placeholder wildcard:

SELECT ... FROM ...
WHERE Column1 LIKE ‘_BC_EF’

Criteria using parentheses to designate order:

SELECT ... FROM ...
WHERE

(Column1 LIKE ‘ABC%’ AND Column2 LIKE ‘%XYZ’)
OR
Column3 = ‘123’

GROUP BY
All nonaggregated columns in the SELECT list must be included in the GROUP BY list:

SELECT COUNT(Column1), Column2, Column3
FROM ... WHERE ...
GROUP BY Column2, Column3

Designating order:

SELECT COUNT(Column1), Column2, Column3
FROM ... WHERE ...
GROUP BY Column2, Column3
ORDER BY Column2 DESC, Column3 ASC

HAVING
Filter results based on values available after the aggregations and groupings are performed:

SELECT COUNT(Column1), Column2, Column3
FROM ... WHERE ...
GROUP BY Column2, Column3
HAVING COUNT(Column1) > 5

UNION
Combine multiple results with the same column count:

SELECT Column1, Column2 FROM table1_name
UNION
SELECT Column1, Column2 FROM table2_name

Combine literal values and query results:

SELECT -1 AS Column1, ‘A literal value’ AS Column2
UNION
SELECT Column1, Column2 FROM table1_name

623

Transact SQL Command Syntax Reference

24_584979 appc.qxp 1/27/06 7:45 PM Page 623

Include nondistinct selection (UNION performs SELECT DISTINCT by default):

SELECT Column1, Column2 FROM table1_name
UNION ALL
SELECT Column1, Column2 FROM table2_name

EXCEPT and INTERSECT
Select the differences (EXCEPT) or common values (INTERSECT) between two queries:

SELECT * FROM TableA EXCEPT SELECT * FROM TableB

SELECT * FROM TableA INTERSECT SELECT * FROM TableB

ORDER BY
Order a result set by one or more column values. The default order is ascending. If ordering by more
than one column, each column can have a different order.

SELECT * FROM table_name ORDER BY Column1

SELECT * FROM table_name ORDER BY Column1 DESC, Column2 ASC

COMPUTE (BY)
The COMPUTE and COMPUTE BY clauses generate totals that are appended to the end of an aggregate
query result set. These clauses are not very useful in applications because the aggregated results are not
in relational form and cannot be utilized in a dataset.

SELECT * FROM table_name ORDER BY Column1

SELECT * FROM table_name ORDER BY Column1 DESC, Column2 ASC

FOR Clause
The FOR clause is used with either the XML or BROWSE option in a SELECT statement. However, the
BROWSE and XML options are completely unrelated. FOR XML specifies that the result set is returned
in XML format. FOR BROWSE is used when accessing data through the DB-Library so that rows can be
browsed and updated one row at a time in an optimistic locking environment. There are several require-
ments when using the FOR BROWSE option. For more information consult the SQL Server Books Online
under the topic “Browse Mode.”

SELECT * FROM table_name FOR XML {XML Option}

SELECT * FROM table_name FOR BROWSE

OPTION Clause
The OPTION clause is used in a SELECT statement to provide a query hint that will override the query
optimizer and specify an index or specific join mechanism to be used along with other hint options. As
a rule, this is not a recommended practice but may be useful in rare cases to influence query processing
and performance.

624

Appendix C

24_584979 appc.qxp 1/27/06 7:45 PM Page 624

OPTION (HASH JOIN)

OPTION (OPTIMIZE FOR (@ProductCategory = ‘Widget’))

CASE
CASE evaluates one or more expressions and returns one or more specified values based on the evalu-
ated expression.

SELECT expression = CASE Column
WHEN value THEN resultant_value
WHEN value2 THEN resultant_value2
. . .
ELSE alternate_value
END
FROM table

SELECT value =
CASE
WHEN column IS NULL THEN value
WHEN column {expression true} THEN different_value
WHEN column {expression true} and price {expression true} THEN other_value
ELSE different_value
END,
column2

FROM table

INSERT
Adds a new row to a table:

INSERT table (column list)
VALUES
(column values)

INSERT table
SELECT columns FROM source expression

INSERT table
EXEC stored_procedure

UPDATE
Updates selected columns in a table:

UPDATE table SET column1 = expression1, column2 = expression2
WHERE filter_expression

Update a table based on the contents of another table:

UPDATE table SET column1 = expression
FROM table INNER JOIN table2
ON table.column = table2.column
WHERE table.column = table2.column

625

Transact SQL Command Syntax Reference

24_584979 appc.qxp 1/27/06 7:45 PM Page 625

DELETE
Deletes selected rows from a table:

DELETE table
WHERE filter_expression

Deletes rows from a table based on the contents of a different table:

DELETE table
FROM table INNER JOIN table2
ON table.column = table2.column
WHERE column = filter_expression

DECLARE @local_variable
This creates a named object that temporarily holds a value with the data type defined in the declaration
statement. Local variables have scope only within the calling batch or stored procedure. The value of a
local variable can be set with either a SET or SELECT operation. SELECT is more efficient and has the
advantage of populating multiple variables in a single operation, but the SELECT operation cannot be
confined with any data retrieval operation.

DECLARE @local_variable AS int
SET @local_variable = integer_expression

DECLARE @local_variable1 AS int, @local_variable2 AS varchar(55)
SELECT @local_variable1 = integer_column_expression, @local_variable2 =
character_column_expression FROM table

SET
The SET operator has many functions, from setting the value of a variable to setting a database or con-
nection property. The SET operator is divided into the categories listed in the following table:

Category Alters the Current Session Settings For

Date and time Handling date and time data

Locking Handling Microsoft SQL Server locking

Miscellaneous Miscellaneous SQL Server functionality

Query execution Query execution and processing

SQL-92 settings Using the SQL-92 default settings

Statistics Displaying statistics information

Transactions Handling SQL Server transactions

LIKE
LIKE is a pattern-matching operator for comparing strings or partial strings.

Compare a string value where the compared string is anywhere in the string:

626

Appendix C

24_584979 appc.qxp 1/27/06 7:45 PM Page 626

SELECT * FROM table WHERE column1 LIKE ‘%string%’

Compare a string value where the compared string is at the beginning of the string:

SELECT * FROM table WHERE column1 LIKE ‘string%’

Compare a string value where the compared string is at the end of the string:

SELECT * FROM table WHERE column1 LIKE ‘%string’

Compare a string value where a specific character or character range is in the string:

SELECT * FROM table WHERE column1 LIKE ‘[a-c]’
SELECT * FROM table WHERE column1 LIKE ‘[B-H]olden’

Compare a string value where a specific character or character range is not in the string:

SELECT * FROM table WHERE column1 LIKE ‘[M^c]%’ –Begins with M but not Mc

ALTER TABLE
Alter the structure of a table by adding or removing table objects such as Constraints, Columns, and
Partitions or enabling and disabling Triggers.

ALTER TABLE table_name ADD new_column int NULL
ALTER TABLE table_name ADD CONSTRAINT new_check CHECK (check expression)
ALTER TABLE table_name DISABLE TRIGGER trigger_name
ALTER TABLE table_name ENABLE TRIGGER trigger_name

CREATE DATABASE
Create a database and all associated files:

CREATE DATABASE new_database
ON (

NAME = ‘logical_name’,
FILENAME = ‘physical_file_location’,
SIZE = initial_size_in_MB,
MAXSIZE = max_size_in_MB, --If no MAXSIZE specified unlimited growth is assumed
FILEGROWTH = percentage_OR_space_in_MB)

LOG ON
(NAME = ‘logical_log_name’,

FILENAME = ‘physical_file_location’,
SIZE = initial_size_in_MB,
MAXSIZE = max_size_in_MB, --If no MAXSIZE specified unlimited growth is assumed
FILEGROWTH = percentage_OR_space_in_MB)

COLLATE database_collation

CREATE DEFAULT
Create a database-wide default value that can then be bound to columns in any table to provide a
default value.

627

Transact SQL Command Syntax Reference

24_584979 appc.qxp 1/27/06 7:45 PM Page 627

CREATE DEFAULT default_name AS default_value
--bind the default to a table column
sp_bindefault default_name, ‘table.column’

CREATE PROCEDURE
Create a new stored procedure:

CREATE PROC proc_name @variable variable_data_type ...n
AS
...procedure code

CREATE RULE
Create a database-wide rule, much like a check constraint, that can then be bound to individual columns
in tables throughout the database.

CREATE RULE rule_name AS rule_expression
--bind the Rule to a table column
sp_bindrule rule_name, ‘table.column’

CREATE TABLE
Create a new table:

CREATE TABLE table_name (
Column1 data_type nullability column_option,
Column2 data_type nullability column_option,
Column3 data_type nullability column_option,

--Column_option = Collation, IDENTITY, KEY...

Create a new partitioned table:

CREATE TABLE partitioned_table_name (col1 int, col2 char(10))
Column1 data_type nullability column_option,
Column2 data_type nullability column_option,
Column3 data_type nullability column_option

ON partition_scheme_name (column)

CREATE TRIGGER
Create a new trigger on a table that fires AFTER a DML (Data Manipulation Language) event or INSTEAD
OF a DML event.

CREATE TRIGGER trigger_name
ON table_name FOR dml_action –INSERT, UPDATE or DELETE
AS
...trigger_code
CREATE TRIGGER trigger_name
ON view_or_table_name INSTEAD OF dml_action –INSERT, UPDATE or DELETE
AS
...trigger_code

628

Appendix C

24_584979 appc.qxp 1/27/06 7:45 PM Page 628

CREATE VIEW
Creates a new view:

CREATE VIEW view_name
AS
...Select Statement

CREATE SCHEMA
Creates a new schema in SQL Server 2005 with the option of specifying a non-dbo owner with the
AUTHORIZATION clause.

CREATE SCHEMA schema_name AUTHORIZATION user_name

CREATE PARTITION FUNCTION
Creates a partition function in SQL Server 2005 to use in physically partitioning tables and indexes.

CREATE PARTITION FUNCTION partition_function_name (input_parameter_type)
AS RANGE LEFT –-or RIGHT
FOR VALUES (value1, value2, value3, ...n)

CREATE PARTITION SCHEME
This creates a partition scheme in SQL Server 2005 to use in physically partitioning tables and indexes.

CREATE PARTITION SCHEME partition_scheme_name
AS PARTITION partition_function_name
TO (filegroup1, filefroup2, filefroup3, ...n)

Script Comment Conventions
In-line comment:

SELECT ProductID, Name AS ProductName -- Comment text

Single-line comment:

/* Comment text */
-- Comment text

Comment block:

/***
spProductUpdateByCategory
Created by Paul Turley, 5-21-06
nospam@sqlreportservices.com
Updates product price info for a category

Revisions:
5-22-06 - Fixed bug that formatted C:

drive if wrong type was passed in.
**/

629

Transact SQL Command Syntax Reference

24_584979 appc.qxp 1/27/06 7:45 PM Page 629

Reserved Words
Reserved words should generally not be used as names of objects. Reserved words are typically easy
to see when using either Query Analyzer or SQL Server Management Studio. Both of these tools change
the color of reserved words to blue, but for whatever reason, not all reserved words are recognized by
Query Analyzer and Management Studio and color-coded. To make matters worse, some words are
color-coded blue even when they are not really reserved words. Also, if the object names are delimited
with double quotation marks or square brackets, which they often are if using a graphical tool to create
queries, then they won’t show up color-coded at all. However, use of a nondelimited reserved word,
whether it is blue or not, will always cause a syntax error to be raised. You will know when you have
placed a nondelimited reserved word in your script when you receive the error “Incorrect syntax near
the keyword ‘keyword’.” Keep in mind that if the decision is made to use a keyword in an object name,
you will be forced to delimit that keyword every time it is used in the future.

The following key words have significant meaning within Transact-SQL and should be avoided in object
names and expressions. If any of these words must be used in a SQL expression, they must be contained
within square brackets [].

ADD EXCEPT PERCENT

ALL EXEC PLAN

ALTER EXECUTE PRECISION

AND EXISTS PRIMARY

ANY EXIT PRINT

AS FETCH PROC

ASC FILE PROCEDURE

AUTHORIZATION FILLFACTOR PUBLIC

BACKUP FOR RAISERROR

BEGIN FOREIGN READ

BETWEEN FREETEXT READTEXT

BREAK FREETEXTTABLE RECONFIGURE

BROWSE FROM REFERENCES

BULK FULL REPLICATION

BY FUNCTION RESTORE

CASCADE GOTO RESTRICT

CASE GRANT RETURN

CHECK GROUP REVOKE

CHECKPOINT HAVING RIGHT

CLOSE HOLDLOCK ROLLBACK

CLUSTERED IDENTITY ROWCOUNT

630

Appendix C

24_584979 appc.qxp 1/27/06 7:45 PM Page 630

COALESCE IDENTITY_INSERT ROWGUIDCOL

COLLATE IDENTITYCOL RULE

COLUMN IF SAVE

COMMIT IN SCHEMA

COMPUTE INDEX SELECT

CONSTRAINT INNER SESSION_USER

CONTAINS INSERT SET

CONTAINSTABLE INTERSECT SETUSER

CONTINUE INTO SHUTDOWN

CONVERT IS SOME

CREATE JOIN STATISTICS

CROSS KEY SYSTEM_USER

CURRENT KILL TABLE

CURRENT_DATE LEFT TEXTSIZE

CURRENT_TIME LIKE THEN

CURRENT_TIMESTAMP LINENO TO

CURRENT_USER LOAD TOP

CURSOR NATIONAL TRAN

DATABASE NOCHECK TRANSACTION

DBCC NONCLUSTERED TRIGGER

DEALLOCATE NOT TRUNCATE

DECLARE NULL TSEQUAL

DEFAULT NULLIF UNION

DELETE OF UNIQUE

DENY OFF UPDATE

DESC OFFSETS UPDATETEXT

DISK ON USE

DISTINCT OPEN USER

DISTRIBUTED OPENDATASOURCE VALUES

DOUBLE OPENQUERY VARYING

DROP OPENROWSET VIEW

DUMMY OPENXML WAITFOR

Table continued on following page

631

Transact SQL Command Syntax Reference

24_584979 appc.qxp 1/27/06 7:45 PM Page 631

DUMP OPTION WHEN

ELSE OR WHERE

END ORDER WHILE

ERRLVL OUTER WITH

ESCAPE OVER WRITETEXT

ODBC Reserved Words
Although ODBC Key Words are not strictly prohibited, as a best practice to prevent driver inconsisten-
cies, they should be avoided. These are listed in the following table.

ABSOLUTE EXEC OVERLAPS

ACTION EXECUTE PAD

ADA EXISTS PARTIAL

ADD EXTERNAL PASCAL

ALL EXTRACT POSITION

ALLOCATE FALSE PRECISION

ALTER FETCH PREPARE

AND FIRST PRESERVE

ANY FLOAT PRIMARY

ARE FOR PRIOR

AS FOREIGN PRIVILEGES

ASC FORTRAN PROCEDURE

ASSERTION FOUND PUBLIC

AT FROM READ

AUTHORIZATION FULL REAL

AVG GET REFERENCES

BEGIN GLOBAL RELATIVE

BETWEEN GO RESTRICT

BIT GOTO REVOKE

BIT_LENGTH GRANT RIGHT

BOTH GROUP ROLLBACK

BY HAVING ROWS

CASCADE HOUR SCHEMA

632

Appendix C

24_584979 appc.qxp 1/27/06 7:45 PM Page 632

CASCADED IDENTITY SCROLL

CASE IMMEDIATE SECOND

CAST IN SECTION

CATALOG INCLUDE SELECT

CHAR INDEX SESSION

CHAR_LENGTH INDICATOR SESSION_USER

CHARACTER INITIALLY SET

CHARACTER_LENGTH INNER SIZE

CHECK INPUT SMALLINT

CLOSE INSENSITIVE SOME

COALESCE INSERT SPACE

COLLATE INT SQL

COLLATION INTEGER SQLCA

COLUMN INTERSECT SQLCODE

COMMIT INTERVAL SQLERROR

CONNECT INTO SQLSTATE

CONNECTION IS SQLWARNING

CONSTRAINT ISOLATION SUBSTRING

CONSTRAINTS JOIN SUM

CONTINUE KEY SYSTEM_USER

CONVERT LANGUAGE TABLE

CORRESPONDING LAST TEMPORARY

COUNT LEADING THEN

CREATE LEFT TIME

CROSS LEVEL TIMESTAMP

CURRENT LIKE TIMEZONE_HOUR

CURRENT_DATE LOCAL TIMEZONE_MINUTE

CURRENT_TIME LOWER TO

CURRENT_TIMESTAMP MATCH TRAILING

CURRENT_USER MAX TRANSACTION

CURSOR MIN TRANSLATE

DATE MINUTE TRANSLATION

Table continued on following page

633

Transact SQL Command Syntax Reference

24_584979 appc.qxp 1/27/06 7:45 PM Page 633

DAY MODULE TRIM

DEALLOCATE MONTH TRUE

DEC NAMES UNION

DECIMAL NATIONAL UNIQUE

DECLARE NATURAL UNKNOWN

DEFAULT NCHAR UPDATE

DEFERRABLE NEXT UPPER

DEFERRED NO USAGE

DELETE NONE USER

DESC NOT USING

DESCRIBE NULL VALUE

DESCRIPTOR NULLIF VALUES

DIAGNOSTICS NUMERIC VARCHAR

DISCONNECT OCTET_LENGTH VARYING

DISTINCT OF VIEW

DOMAIN ON WHEN

DOUBLE ONLY WHENEVER

DROP OPEN WHERE

ELSE OPTION WITH

END OR WORK

END-EXEC ORDER WRITE

ESCAPE OUTER YEAR

EXCEPT OUTPUT ZONE

EXCEPTION

Future and Miscellaneous Reserved Words
The following table contains keywords that may be reserved currently or in future editions of SQL
Server. As a convention, these words should be avoided in user-defined objects, table, and column
names.

ABSOLUTE FOUND PRESERVE

ACTION FREE PRIOR

ADMIN GENERAL PRIVILEGES

AFTER GET READS

634

Appendix C

24_584979 appc.qxp 1/27/06 7:45 PM Page 634

AGGREGATE GLOBAL REAL

ALIAS GO RECURSIVE

ALLOCATE GROUPING REF

ARE HOST REFERENCING

ARRAY HOUR RELATIVE

ASSERTION IGNORE RESULT

AT IMMEDIATE RETURNS

BEFORE INDICATOR ROLE

BINARY INITIALIZE ROLLUP

BIT INITIALLY ROUTINE

BLOB INOUT ROW

BOOLEAN INPUT ROWS

BOTH INT SAVEPOINT

BREADTH INTEGER SCROLL

CALL INTERVAL SCOPE

CASCADED ISOLATION SEARCH

CAST ITERATE SECOND

CATALOG LANGUAGE SECTION

CHAR LARGE SEQUENCE

CHARACTER LAST SESSION

CLASS LATERAL SETS

CLOB LEADING SIZE

COLLATION LESS SMALLINT

COMPLETION LEVEL SPACE

CONNECT LIMIT SPECIFIC

CONNECTION LOCAL SPECIFICTYPE

CONSTRAINTS LOCALTIME SQL

CONSTRUCTOR LOCALTIMESTAMP SQLEXCEPTION

CORRESPONDING LOCATOR SQLSTATE

CUBE MAP SQLWARNING

CURRENT_PATH MATCH START

CURRENT_ROLE MINUTE STATE

Table continued on following page

635

Transact SQL Command Syntax Reference

24_584979 appc.qxp 1/27/06 7:45 PM Page 635

CYCLE MODIFIES STATEMENT

DATA MODIFY STATIC

DATE MODULE STRUCTURE

DAY MONTH TEMPORARY

DEC NAMES TERMINATE

DECIMAL NATURAL THAN

DEFERRABLE NCHAR TIME

DEFERRED NCLOB TIMESTAMP

DEPTH NEW TIMEZONE_HOUR

DEREF NEXT TIMEZONE_MINUTE

DESCRIBE NO TRAILING

DESCRIPTOR NONE TRANSLATION

DESTROY NUMERIC TREAT

DESTRUCTOR OBJECT TRUE

DETERMINISTIC OLD UNDER

DICTIONARY ONLY UNKNOWN

DIAGNOSTICS OPERATION UNNEST

DISCONNECT ORDINALITY USAGE

DOMAIN OUT USING

DYNAMIC OUTPUT VALUE

EACH PAD VARCHAR

END-EXEC PARAMETER VARIABLE

EQUALS PARAMETERS WHENEVER

EVERY PARTIAL WITHOUT

EXCEPTION PATH WORK

EXTERNAL POSTFIX WRITE

FALSE PREFIX YEAR

FIRST PREORDER ZONE

FLOAT PREPARE

636

Appendix C

24_584979 appc.qxp 1/27/06 7:45 PM Page 636

Transact SQL System
Variables and

Functions

A significant portion of this text is used with permission from Beginning Transact SQL,
available from Wrox Press.

Variables and functions are often used interchangeably. SQL Server Books Online documents some
variables as if they were functions. However, it’s important to note that variables return a value,
whereas functions process specific business logic and many functions accept input arguments.
Optional arguments are denoted using square brackets.

System Global variables
The system-supplied global variables are organized into these categories:

❑ Configuration

❑ Cursor

❑ System

❑ System Statistics

25_584979 appd.qxp 1/27/06 7:25 PM Page 637

Configuration

Variable Name Return Type Description

@@DATEFIRST TinyInt Returns the system setting for the first day of the week.
1 = Monday, 2 = Tuesday, 3 = Wednesday, 4 = Thursday,
5 = Friday, 6 = Saturday, 7 = Sunday. U.S. default is 7.

@@DBTS VarBinary The last assigned unique TimeStamp value.

@@LANGID SmallInt The current language ID for the server.
(US English = 0, German = 1, French = 2, and so on).

@@LANGUAGE nVarChar The current language string for the server. Returns the
language name in the native language form (US_English,
Deutsch, Français, Dansk, Español, Italiano, and so on).

@@LOCK_TIMEOUT Int Lock timeout setting for the current session in
milliseconds.

@@MAX_CONNECTIONS Int The maximum concurrent connections setting for the
server.

@@MAX_PRECISION TinyInt The maximum precision setting for decimal and numeric
types. Default is 38 significant digits (total to the left and
right of the decimal point).

@@MICROSOFTVERSION Int Returns an internal tracking number used by product
development and support groups at Microsoft.

@@NESTLEVEL Int The current number of nested stored procedure or
trigger calls. This may be used to limit cascading and/or
recursive calls prior to reaching the system limit of 32
recursive calls.

@@OPTIONS Int The set of query-processing options for the current user
session. Multiple options are combined mathematically
using bitwise addition (that is, If SELECT @@OPTIONS &
(512 + 8192) > 0 ...). Any combination of option
values may be added to determine whether all these
options are enabled.

638

Appendix D

25_584979 appd.qxp 1/27/06 7:25 PM Page 638

Variable Name Return Type Description

Option values:
1 = DISABLE_DEF_CNST_CHK
2 = IMPLICIT_TRANSACTIONS
4 = CURSOR_CLOSE_ON_COMMIT
8 = ANSI_WARNINGS
16 = ANSI_PADDING
32 = ANSI_NULLS
64 = ARITHABORT
128 = ARITHIGNORE
256 = QUOTED_IDENTIFIER
512 = NOCOUNT
1024 = ANSI_NULL_DFLT_ON
2048 = ANSI_NULL_DFLT_OFF
4096 = CONCAT_NULL_YIELDS_NULL
8192 = NUMERIC_ROUNDABORT
16384 = XACT_ABORT

@@REMSERVER nVarChar Name of the remote server if executing remote
procedures.

@@SERVERNAME nVarChar Name of the current server.

@@SERVICENAME nVarChar Name of the Windows service for the current SQL Server
instance.

'ID Int The process/session ID assigned to the current user’s
connection.

@@TEXTSIZE Int The current value of the TEXTSIZE option for a query
returning data from a Text, nText, or Image type.

@@VERSION nVarChar Returns a text string with detailed information about
the current version of SQL Server. This includes the
major version, build number, service pack, and copyright
information.

Cursor

Variable Name Return Type Description

@@CURSOR_ROWS Int The row count for the currently open cursor. Used for
explicit cursor processing following an OPEN command.
If an asynchronous cursor is opened, the row count will
not be known and this variable returns –1.

@@FETCH_STATUS Int Used as a flag to indicate whether the open cursor has
navigated past the last row (EOF). Status values include:

0 = Normal fetch operation
–1 = Fetch past last row or unsuccessful
–2 = Fetched row has been removed

639

Transact SQL System Variables and Functions

25_584979 appd.qxp 1/27/06 7:25 PM Page 639

System

Variable Name Return Type Description

@@ERROR Int Value of the most recent error within the current user session.
Error numbers (from the sysmessages table) are used to
determine the status of an error condition.

@@IDENTITY Numeric Value of the most recently generated identity value. This is
typically the result of an identity column insert.

@@ROWCOUNT Int Number of rows affected by, or returned by, the last operation.

@@TRANCOUNT Int Number of currently active transactions. Used to determine
the number of nested transactions. The maximum number of
nested transactions is 11.

System Statistical

Variable Name Return Type Description

@@CONNECTIONS Int The total connects that have been opened or attempted since
the SQL Server service was last started.

@@CPU_BUSY Int The total time in milliseconds that the server has not been
idle since the SQL Server service was last started.

@@IDLE Int The total time in milliseconds that the server has been idle
since the SQL Server service was last started.

@@IO_BUSY Int The total time in milliseconds that the server has performed
physical disk I/O operations since the SQL Server service
was last started.

@@PACK_RECEIVED Int The total number of network packets received by the server
since the SQL Server service was last started.

@@PACK_SENT Int The total number of network packets sent by the server since
the SQL Server service was last started.

@@PACKET_ERRORS Int The total number of network packet errors that have
occurred since the SQL Server service was last started.

@@TIMETICKS Int The number of milliseconds per CPU tick. Each tick takes
1/32 of a second.

@@TOTAL_ERRORS Int The total number of disk read/write errors that have
occurred, while performing physical disk I/O, since the SQL
Server service was last started.

@@TOTAL_READ Int The total number of physical disk reads that have occurred
since the SQL Server service was last started.

@@TOTAL_WRITE Int The total number of physical disk writes that have occurred
since the SQL Server service was last started.

640

Appendix D

25_584979 appd.qxp 1/27/06 7:25 PM Page 640

System Functions
The system functions are organized into these categories:

❑ Aggregation

❑ Checksum

❑ Conversion

❑ Cursor

❑ Date

❑ Image/Text

❑ Mathematical

❑ Metadata

❑ Ranking

❑ Security

❑ System

❑ System Statistics

Aggregation

Function Name Return Type Description

AVG() (numeric — Calculates the arithmetic average for a range of
depends on input) column values. Internally, this function counts rows

and calculates the sum for all non-null values in the
column and then divides the sum by the count.
Returns the same numeric data type as the column.

COUNT() Int Counts all non-null values for a column. The row
count is returned using COUNT(*) regardless of null
values.

COUNT_BIG() BigInt Same as COUNT() but returns a BigInt type rather
than an Int type.

GROUPING() Int Used in conjunction with ROLLUP and CUBE
operations in a GROUP BY query, this function
returns 0 to indicate that it is on a detail row and
1 to indicate a summary row.

MAX() (numeric or date — Returns the largest value in a range of column
depends on input) values.

MIN() (numeric or date — Returns the smallest value in a range of column
depends on input) values.

Table continued on following page

641

Transact SQL System Variables and Functions

25_584979 appd.qxp 1/27/06 7:25 PM Page 641

Function Name Return Type Description

STDEV() Float Calculates the standard deviation for a range of
non-null column values.

STDEVP() Float Calculates the standard deviation over a population
for a range of non-null column values.

SUM() (numeric — Calculates the arithmetic sum for a range of non-
depends on input) null column values. If all values are NULL, returns

NULL.

VAR() Float Calculates the statistical variance for a range of non-
null column values. If all values are NULL, returns
NULL.

VARP() Float Calculates the statistical variance over a population
for a range of non-null column values. If all values
are NULL, returns NULL.

Checksum

Function Name Return Type Description

CHECKSUM() Int Calculates a checksum value for a row or range
of column values. This function accepts a single
column name, a comma-delimited list of columns,

or * to use the entire row. Accepts columns of all
types except Text, nText, Image, Cursor, and
Sql_Variant. The returned value itself is
meaningless but will consistently yield the same
result for a column or row unless a value changes.
String comparisons are case insensitive.

BINARY_CHECKSUM() Int Calculates a checksum value for a row or range
of column values. This function accepts a single
column name, a comma-delimited list of columns or,
* to use the entire row. Accepts columns of all types
except Text, nText, Image, Cursor, and Sql_
Variant. The returned value itself is meaningless but
will consistently yield the same result for a column or
row unless a value changes. String comparisons are
case sensitive.

CHECKSUM_AGG() Int Calculates a single checksum value for a range of Int
type column values. When applied to the result of the
CHECKSUM() or BINARY_CHECKSUM() functions,
returns a scalar (single value) checksum value for the
entire range of values. May be used to detect value
changes over a table or range of column values.

642

Appendix D

25_584979 appd.qxp 1/27/06 7:25 PM Page 642

Conversion

Function Name Return Type Description

CAST() (returns a Converts a value to a specified data type.
specified type) CAST(the_value_AS_the_type)

CONVERT() (returns a Converts (and optionally formats) a value to a specified
specified type) data type. Formatting may be applied to numeric and

date types.

CONVERT(the_type, the_value) or
CONVERT(the_type, the_value, format_number)

Cursor

Function Name Return Type Description

CURSOR_STATUS() SmallInt Returns the status of a previously opened cursor.

1 = Open and populated, 0 = Contains no records,
–1 = Closed, –2 = No cursor or de-allocated,
–3 = Doesn’t exist

Date

Function Name Return Type Description

DATEADD() DateTime or Returns a date value (DateTime or SmallDateTime)
SmallDateTime from a date value added by X number of date interval
(depending on units. Units may be Year, Quarter, Month, DayOfYear,
input type) Day, Hour, Minute, Second, or Millisecond.

DATEDIFF() Int Returns an integer representing the difference between
two date values (DateTime or SmallDateTime) in
specified date interval units. Units may be Year,
Quarter, Month, DayOfYear, Day, Hour, Minute,
Second, or Millisecond.

DATENAME() nVarChar Similar to DATEPART(). Returns a character string
representing the specified date part for a date value.
The Datepart parameter is the same as the DATEDIFF()
interval and includes Year, Quarter, Month, DayOfYear,
Day, Hour, Minute, Second, or Millisecond.

DATEPART() Int Similar to DATENAME(). Returns an integer representing
the specified date part for a date value. The Datepart
parameter is the same as the DATEDIFF() interval and
includes Year, Quarter, Month, DayOfYear, Day, Hour,
Minute, Second, or Millisecond.

Table continued on following page

643

Transact SQL System Variables and Functions

25_584979 appd.qxp 1/27/06 7:25 PM Page 643

Function Name Return Type Description

DAY() Int Returns the day part for a date as an integer.

GETDATE() DateTime Returns the current date and time value.

GETUTCDATE() DateTime Returns the current date and time value, for the Universal
Time Zone, based on the server’s time zone settings. UTC
is the same as Greenwich Mean Time (GMT).

MONTH() Int Returns the month part for a date as an integer.

YEAR() Int Returns the year part for a date as an integer.

Image/Text

Function Name Return Type Description

PATINDEX() Int Returns the character index (first position) for a character
string pattern occurring within another character string.
Similar to CHARINDEX() but supports wildcards.

TEXTPTR() VarBinary Returns a VarBinary text pointer handle to be used with
the READTEXT(), WRITETEXT(), and UPDATETEXT()
functions. Used for performing special operations on
Text, nText, and Image type column data.

TEXTVALID() Int Used to verify a VarBinary text pointer value, obtained
from the TEXTPTR() function.

Mathematical

Function Name Return Type Description

ABS() (numeric — same Returns the absolute value for a numeric value.
type as input)

ACOS() Float Computes the arccosine (an angle) in radians.

ASIN() Float Computes the arcsine (an angle) in radians.

ATAN() Float Computes the arctangent (an angle) in radians.

ATN2() Float Computes the arctangent of two values in radians.

CEILING() (numeric — same Returns the smallest integer value that is greater than or
type as input) equal to a number.

COS() Float Computes the cosine of an angle in radians.

COT() Float Computes the cotangent of an angle in radians.

DEGREES() (numeric — same Converts an angle from radians to degrees.
type as input)

644

Appendix D

25_584979 appd.qxp 1/27/06 7:25 PM Page 644

Function Name Return Type Description

EXP() Float Returns the natural logarithm raised to a specified
exponent. Result is in exponential form.

FLOOR() (numeric — Returns the largest integer value that is less than or
same type equal to a number.
as input)

LOG() Float Calculates the natural logarithm of a number using
base-2 (binary) numbering.

LOG10() Float Calculates the natural logarithm of a number using
base-10 numbering.

PI() Float Returns the value for pi.

POWER() Float Raises a value to a specified exponent as

FLOAT(the_value, the_exponent).

RADIANS() (numeric — Converts an angle from degrees to radians.
same type
as input)

RAND() Float Returns a fractional number based on a randomizing
algorithm. Accepts an optional seed value.

ROUND() (numeric — Rounds a fractional value to a specified precision.
same type
as input)

SIGN() Float Returns –1 or 1 depending on whether a single argu-
ment value is negative or positive.

SIN() Float Computes the sine of an angle in radians.

SQRT() Float Returns the square root of a value.

SQUARE() Float Returns the square (n2) of a value.

TAN() Float Computes the tangent of an angle in radians.

Metadata

Function Name Return Type Description

COL_LENGTH() Int Returns the length of a column from the column name.

COL_NAME() sysname Returns the name of a column from the object ID.
(nVarChar)

COLUMNPROPERTY() Int Returns a flag to indicate the state of a column property.

Table continued on following page

645

Transact SQL System Variables and Functions

25_584979 appd.qxp 1/27/06 7:25 PM Page 645

Function Name Return Type Description

DATABASEPROPERTY() Int This function is maintained for backward
compatibility with older SQL Server versions.
Returns a flag to indicate the state of a database
property.

DATABASEPROPERTYEX() SqlVariant Returns a numeric flag or string to indicate the
state of a database property.

DB_ID() SmallInt Returns the database ID from the database name.

DB_NAME() nVarChar Returns the database name from the database ID.

FILE_ID() SmallInt Returns the file ID from the file name.

FILE_NAME() nVarChar Returns the file name from the file ID.

fn_listextendedproperty() Table Returns a table object populated with extended
property names and their settings.

FULLTEXTCATALOGPROPERTY() Int Returns a flag to indicate the state of a full-text
catalog property.

FULLTEXTSERVICEPROPERTY() Int Returns a flag to indicate the state of a full-text
service property.

INDEX_COL() nVarChar Returns the name of a column contained in a
specified index, by table, index, and column ID.

INDEXKEY_PROPERTY() Int Returns a flag to indicate the state of an index
key property.

INDEXPROPERTY() Int Returns a flag indicating the state of an index
property.

OBJECT_ID() Int Returns an object ID from the object name.

OBJECT_NAME() nChar Returns an object name from the object ID.

OBJECTPROPERTY() Int This function allows you to get property
information from several different types of
objects. It is advisable to use a function designed
to query specific object types, if possible.
Returns a flag indicating the state of an object
property.

Ranking (SQL Server 2005)

Function Name Return Type Description

DENSE_RANK() Int Returns a running incremental value based on
an ORDER BY clause passed into the function.
Doesn’t preserve the ordinal position of the row
in the list if there are ties.

646

Appendix D

25_584979 appd.qxp 1/27/06 7:25 PM Page 646

Function Name Return Type Description

NTILE(n) Int Returns an evenly distributed ranking value,
dividing the result into a finite number of
ranked groups.

RANK() Int Returns a running incremental value based on
an ORDER BY clause passed into the function.
Preserves the ordinal position of the row in the
list with duplicate values for ties followed by
subsequent skips.

ROW_NUMBER() Int Returns a running incremental value based on
an ORDER BY clause passed into the function.

Security

Function Name Return Type Description

fn_trace_geteventinfo() Table Returns a table type populated with event
information for a specified trace ID.

fn_trace_getfilterinfo() Table Returns a table type populated with information
about filters applied to a trace for a specified
trace ID.

fn_trace_getinfo() Table Returns a table type populated with trace
information for a specified trace ID.

fn_trace_gettable() Table Returns a table type populated with file
information for a specified trace ID.

HAS_DBACCESS() Int Returns a flag indicating whether the current
user has access to a specified database.

IS_MEMBER() Int Returns a flag indicating whether the current
user is a member of a Windows group or SQL
Server role.

IS_SRVROLEMEMBER() Int Returns a flag indicating whether the current
user is a member of a database server role.

SUSER_SID() VarBinary Returns the security ID for a specified user
name.

SUSER_SNAME() nVarChar Returns the user name for a specified security ID.

USER_ID() SmallInt Returns a user name for a specified user ID.

fn_trace_geteventinfo() Table Returns a table type populated with event
information for a specified trace ID.

647

Transact SQL System Variables and Functions

25_584979 appd.qxp 1/27/06 7:25 PM Page 647

String Manipulation

Function Name Return Type Description

ASCII() Int Returns the numeric ASCII character value
for a standard character.

CHAR() Char Returns the ASCII character for a numeric
ASCII character value.

CHARINDEX() Int Similar to PATINDEX(), returns the index
(character position) of the first occurrence
of a character string within another
character string.

DIFFERENCE() Int Returns the numeric difference between
two character strings based on the consen-
sus Soundex values.

LEFT() VarChar Returns the leftmost X characters from a
character string.

LEN() Int Returns the length of a character string.

LOWER() VarChar Converts a character string to all lowercase
characters.

LTRIM() VarChar Removes leading spaces from the left side
of a character string.

NCHAR() nChar Like the CHAR() function, returns the
Unicode character for a numeric character
value.

PATINDEX() Int Returns the index (first character position)
for the first occurrence of characters
matching a specified pattern within another
character string. Wildcard characters may
be used.

QUOTENAME() nVarChar Returns a character string with square
brackets around the input value. Used with
SQL Server object names so that they can be
passed into an expression.

REPLACE() (character or Returns a character string with all
binary types, occurrences of one character or substring
depending on replaced with another character or
input) substring.

REPLICATE() VarChar Returns a character string consisting of a
specified number of repeated characters.

REVERSE() VarChar Returns a character string with all characters
in reverse order.

648

Appendix D

25_584979 appd.qxp 1/27/06 7:25 PM Page 648

Function Name Return Type Description

RIGHT() VarChar Returns a specific number of characters from
the rightmost side of a character string.

RTRIM() VarChar Removes trailing spaces from the right side
of a character string.

SOUNDEX() Char Returns a four-character alphanumeric
string representing the approximate
phonetic value of a word, based on the U.S.
Census Soundex algorithm.

SPACE() Char Returns a character string consisting of a
specified number of spaces.

STR() Char Returns a character string value that repre-
sents a converted numeric data type. Three
arguments include the value, the
overall length, and the number of decimal
positions.

STUFF() (character or Returns a character string with one string
binary types, placed into another string at a given
depending on position and for a specified length.
input)

SUBSTRING() (character or Returns a portion of a character string from
binary types, a specified position and for a specified
depending on length.
input)

UNICODE() Int Returns the numeric Unicode character
value for a specified character.

UPPER() VarChar Converts a character string to all uppercase
characters.

System

Function Name Return Type Description

APP_NAME() nVarChar Each session is associated with an
application name, passed to the database
server by explicit program code or by the
driver or data provider.

COALESCE() (same type as input) Returns the first non-null value from a
comma-delimited list of expressions.

COLLATIONPROPERTY() Sql_Variant Returns the value of a specific property for
a specified collation. Properties include
CodePage, LCID, and ComparisonStyle.

Table continued on following page

649

Transact SQL System Variables and Functions

25_584979 appd.qxp 1/27/06 7:25 PM Page 649

Function Name Return Type Description

CURRENT_TIMESTAMP() DateTime This function returns the current date
and time and is synonymous with the
GETDATE() function. It exists for ANSI-SQL
compliance.

CURRENT_USER() Sysname This function returns the name of the
(VarChar) current user and is synonymous with the

USER_NAME() function.

DATALENGTH() Int Returns the number of bytes used to store
or handle a value. For ANSI string types,
this will return the same value as the LEN()
function, but for other data types, the value
may be different.

ENCRYPT() VarChar Returns a hexadecimal value as a character
string from a character string value. The
result is a one-way encrypted value. This
value can be read by the database engine
(in the case of an object script definition)
but cannot be decrypted.

Fn_Get_SQL() Table Returns a table populated with the full text
of a query based on a process handle. This
value is stored in the sysprocesses table
referencing a SPID. This function was
introduced with SQL Server 2000 SP3.

Fn_HelpCollations() Table Returns a table type populated with a list of
collations supported by the current version
of SQL Server.

Fn_ServerSharedDrives() Table Returns a table type populated with a list of
drives shared by the server.

Fn_VirtualFileStats() Table Returns a table type populated with I/O
statistics for database files, including log
files.

FORMATMESSAGE() nVarChar Returns an error message from the
sysmessages table for a specified message

number and comma-delimited list of
parameters.

GETANSINULL() Int Returns the nullability setting for the
database, according to the ANSI_NULL_
DFLT_ON and ANSI_NULL_DFLT_OFF
database settings.

HOST_ID() Char Returns the workstation ID for the current
session.

650

Appendix D

25_584979 appd.qxp 1/27/06 7:25 PM Page 650

Function Name Return Type Description

HOST_NAME() nChar Returns the workstation name for the
current session.

IDENT_CURRENT() Sql_Variant Returns the last identity value generated
for a specified table regardless of the
session and scope.

IDENT_INCR() Numeric Returns the increment value specified in
the creation of the last identity column.

IDENT_SEED() Numeric Returns the seed value specified in the
creation of the last identity column.

IDENTITY() (same as input) Used in a SELECT. . . INTO statement to
insert an explicitly generated identity value
into a column.

ISDATE() Int Returns a flag to indicate whether a
specified value is, or is capable of being
converted to, a date value.

ISNULL() (same as input) Determines whether a specified value is null
and then returns a provided replacement
value.

ISNUMERIC() Int Returns a flag to indicate whether a
specified value is, or is capable of being
converted to, a numeric value.

NEWID() UniqueIdentifier Returns a newly generated
UniqueIdentifyer type value. This is a
128-bit integer, globally unique value,
usually expressed as an alphanumeric
hexadecimal representation (such as
89DE6247-C2E2-42DB-8CE8-
A787E505D7EA). This type is often used
for primary key values in replicated and
semi-connected systems.

NULLIF() (same as input) Returns a NULL value when two specified
arguments have equivalent values.

PARSENAME() nChar Returns a specific part of a four-part object
name.

PERMISSIONS() Int Returns an integer whose value is a
bitwise map indicating the permission or
combination of permissions for the current
user on a specified database object.

Table continued on following page

651

Transact SQL System Variables and Functions

25_584979 appd.qxp 1/27/06 7:25 PM Page 651

Function Name Return Type Description

PWDCONPARE() Int Compares an encrypted value with an
unencrypted character string value. May
be used to compare the encrypted and
unencrypted forms of a password to
determine whether they match. Returns 1
for a match and 0 for no match.

PWDENCRYPT() VarChar Returns the encrypted form of a character
string in hexadecimal form. May be used to
encrypt a password for storage. This value
cannot be decrypted using SQL Server tools
or Transact-SQL commands.

ROWCOUNT_BIG() BigInt Like the @@ROWCOUNT variable, returns the
number of rows either returned by or
modified by the last statement. Returns a
BigInt type.

SCOPE_IDENTITY() Sql_Variant Like the @@IDENTITY variable, this function
returns the last Identity value generated
but is limited to the current session and
scope (stored procedure, batch, or module).

SERVERPROPERTY() Sql_Variant Returns a flag indicating the state of
a server property. Properties include
Collation, Edition, Engine Edition,
InstanceName, IsClustered,
IsFullTextInstalled,
IsIntegratedSecurityOnly,
IsSingleUser, IsSyncWithBackup,
LicenseType, MachineName,
NumLicenses, ProcessID, ProductLevel,
ProductVersion, and ServerName.

SESSION_USER nChar Returns the current user name. Function is
called without parentheses.

SESSIONPROPERTY() Sql_Variant Returns a flag indicating the state of a
session property. Properties include:
ANSI_NULLS, ANSI_PADDING, ANSI_
WARNINGS, ARITHABORT, CONCAT_NULL_
YIELDS_NULL, NUMERIC_ROUNDABORT, and
QUOTED_IDENTIFIER.

STATS_DATE() DateTime Returns the date that statistics for a
specified index were last updated.

SYSTEM_USER nVarChar Returns the current user name. Function is
called without parentheses.

USER_NAME() nVarChar Returns the user name for a specified
User ID.

652

Appendix D

25_584979 appd.qxp 1/27/06 7:25 PM Page 652

In
de

x

Index

NUMERICS
3-D modeling

charts (in general), 242–244
column charts, 230–232
doughnut charts, 233–234
pie charts, 233–234

A
ABS() function, 644
ABSOLUTE ODBC reserved word, 632
Access (Microsoft)

connections, 174–176
control conversions, 583–584
Data Projects, 23
differences from Reporting Services, 8
function support, 586
importing Access reports, 93
property setting conversions, 584–586
queries, 176–178
report delivery, 30
supported report elements, 587

accessing
data sources, 490–492
folders, 489–490
Report Builder, 370–371
reports

Report Manager, 403
URL access, 40, 488–489, 492–493

resources
Report Manager, 403
URL access, 492

accumulative aggregation of rows, 206
ACOS() function, 644
ACTION ODBC reserved word, 632
actions, 272

ActiveViews, 65
ad hoc reports

defined, 31
Report Models, 369–370
Windows smart client applications, 370

ADA ODBC reserved word, 632
Adaptive Server, 179–180
ADD keyword, 630
ADD ODBC reserved word, 632
Add Table dialog (Query Builder), 80
Add Web Reference dialog, 503
adding

columns to tables, 197, 199
expressions, 394–396
fields, 245
page footers, 205
page headers, 205
report parameters, 135
roles, 408
rows (tables), 195
users and groups to role assignments, 413

adjusting
column width, 386
text, 385–386

administration
backups

encryption key, 475–476
Report Server Catalog, 474–475

log files, 34, 465–466
Management Studio, 461–462
Microsoft Baseline Security Analyzer, 464
monitoring performance, 476–483
Report Builder, 397
scripting, 38
scripts, 448
System Administrator role, 407

AdventureWorks sample databases, 33–34

26_584979 bindex.qxp 1/27/06 7:41 PM Page 653

aggregate functions
AVG(), 111, 205, 641
COUNT(), 111, 205, 641
COUNT_BIG(), 641
COUNTDISTINCT(), 111, 205
COUNTROWS(), 111, 205
FIRST(), 111, 205
GROUPING(), 641
LAST(), 111, 205
MAX(), 205, 641
MIN(), 206, 641
STDEV(), 111, 206, 642
STDEVP(), 111, 206, 642
SUM(), 111, 206, 642
VAR(), 111, 206, 642
VARP(), 111, 206, 642

alignment of column headers, 386
ALL keyword, 630
ALL ODBC reserved word, 632
ALLOCATE ODBC reserved word, 632
ALTER keyword, 630
ALTER ODBC reserved word, 632
ALTER TABLE statement, 627
alternative reporting solutions, 27–28
Analysis Services

Analysis Services 2005 provider, 55
connections, 158–159
data sources

changing, 158
creating, 156–157

enhancements to, 29
features, 155–156
MDX queries, 161–164, 170–173
MDX Query Designer, 170–171
Multidimensional Expressions (MDX), 55
Report Models, 363–366
reports

creating, 160–161
designing, 164–170

Unified Dimensional Model (UDM), 55
AND keyword, 630
AND ODBC reserved word, 632
ANSI SQL standard, 127
ANY keyword, 630
ANY ODBC reserved word, 632
application integration, 6, 11–16
application program interface (API), 589
APP_NAME() function, 649
architecture

data presentation, 270
formatting options, 270–271
limitations, 269
rendering options, 271
strengths, 269

ARE ODBC reserved word, 632
area charts, 229, 233
AS keyword, 630
AS ODBC reserved word, 632
ASC keyword, 630
ASC ODBC reserved word, 632
ASCII() function, 648
ASIN() function, 644
ASP.NET, 23
assembly

security, 253
support, 251–253

ASSERTION ODBC reserved word, 632
asymmetric encryption, 475
AT ODBC reserved word, 632
ATAN() function, 644
ATN2() function, 644
AttributeReference Collection Editor, 361–362
authentication, 406, 518
AuthentiCode certificate authority, 39
authoring phase of reporting lifecycle, 46
authorization, 518
AUTHORIZATION keyword, 630
AUTHORIZATION ODBC reserved word, 632
automation of tasks

installation process, 34
report deployment, 447
scripts, 446–451
subscriptions, 437–446

averaging values, 205
AVG() function, 111, 205, 641
AVG ODBC reserved word, 632
axes (charts), 241

B
background color, 102, 386–387
BACKUP keyword, 630
backups

encryption key, 475–476
Report Server Catalog, 474–475

bar charts, 103, 229
Baseline Security Analyzer, 464
batches

CreateBatch method, 590
ExecuteBatch method, 595

BatchHeaderValue property, 617
BEGIN keyword, 630
BEGIN ODBC reserved word, 632
Beginning Transact-SQL (Turley), 80
BeginTransaction function, 551
best practices

data sources, 180
report design, 259

BETWEEN keyword, 630

654

aggregate functions

26_584979 bindex.qxp 1/27/06 7:41 PM Page 654

BETWEEN ODBC reserved word, 632
BI (business intelligence), 21–22, 25
BIDS (Business Intelligence Development Studio), 9,

36, 39–40
BigInt data type, 112
BINARY_CHECKSUM() function, 642
Bit data type, 112
BIT ODBC reserved word, 632
BIT_LENGTH ODBC reserved word, 632
blurring of server- and client-side applications, 5–6
BookMark property, 212
bookmarks, 212
Books Online, 33, 459
BorderColor property, 184
borders (tables), 194
BorderStyle property, 184
BorderWidth property, 184–185
BOTH ODBC reserved word, 632
bound textbox items, 96
BREAK keyword, 630
Brooks, Frederick P., The Mythical Man-Month, 20
BROWSE keyword, 630
Browser role, 407
browsers

common uses, 461
compatibility, 94
report delivery, 29–30
URL access to reports, 40, 488

bubble charts, 105, 229, 235–236
BULK keyword, 630
business information workers, 4–5, 26
business intelligence (BI), 21–22, 25
Business Intelligence Development Studio (BIDS), 9,

36, 39–40
Business Intelligence Projects, 73
business managers, 4–5, 26
Business Objects, 268
business scorecard, 289–296
business vendors, 27
BY keyword, 630
BY ODBC reserved word, 632

C
C# interfaces, 539
caching

benefits of, 52
cached instances, 52–53
data sources, 428–429
defined, 52
effect on performance, 477–478
FlushCache method, 596
GetCacheOptions method, 596–597
session cache, 52
SetCacheOptions method, 610–611
snapshots, 53

calculating page width, 87
Cancel method, 562
CancelBatch method, 589
canceling methods, 562
CancelJob method, 589–590
candlestick charts, 106
CASCADE keyword, 630
CASCADE ODBC reserved word, 632
CASCADED ODBC reserved word, 633
cascading parameters, 138–144
CASE keyword, 630
CASE ODBC reserved word, 633
CASE predicate, 625
CAST() function, 643
CAST ODBC reserved word, 633
Catalog

backups, 474–475
ReportServer database, 61–63, 460
ReportServerTempDB database, 61, 63–64, 461

CATALOG ODBC reserved word, 633
CDATE() function, 248
CDEC() function, 248
CEILING() function, 644
certificate authorities, 39
changing data sources in Analysis Services, 158
CHAR() function, 648
CHAR ODBC reserved word, 633
CHARACTER ODBC reserved word, 633
CHARACTER_LENGTH ODBC reserved word, 633
CHARINDEX() function, 648
CHAR_LENGTH ODBC reserved word, 633
chart item, 103, 105
chart layout, 380–384
Chart Properties dialog, 237–238
charts

area charts, 229, 233
axes, 241
bar charts, 103, 229
bubble charts, 105, 229, 235–236
candlestick charts, 106
chart item, 102–106
column charts, 102–104, 229–232
creating, 237–242
defined, 35
detail rows, 296
doughnut charts, 229, 233–235
Dundas Chart, 228, 324–328
gauges, 287–289
gridlines, 241–242
legend, 242
line charts, 229, 233
multi-field data point charts, 279–284
page breaks, 121
pie charts, 105, 229, 233–235

655

charts

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 655

charts (continued)
properties, 237–238
scatter charts, 229
sparklines

sales trends, 301–303
team standings, 297–301

stacked charts, 232
stock charts, 106, 229
synchronizing, 294–296
3-D modeling, 242–244
top 10 charts, 285–286
uses, 228
x-axis, 241
y-axis, 241

check box list, 320–324
CHECK keyword, 630
CHECK ODBC reserved word, 633
CHECKPOINT keyword, 630
CHECKSUM() function, 642
checksum functions, 642
CHECKSUM_AGG() function, 642
CHOOSE() function, 249
CINT() function, 248
Cizer third-party report designer, 65
classes

DataSetCommand class, 559–561
DataSetDataParameterCollection class, 558
DataSetParameter class, 555
DataSetParameterCollection class, 557

client components, 33
client tools

Configuration Manager, 462
defined, 459, 461
Report Builder, 461
Report Designer, 461
SQL Server Management Studio, 461–462
Web browser, 461

client-side applications, 5–6
client-side reports, 10
CLOSE keyword, 630
Close method, 552
CLOSE ODBC reserved word, 633
closing connections, 552
CLUSTERED keyword, 630
COALESCE() function, 649
COALESCE keyword, 631
COALESCE ODBC reserved word, 633
code

custom code, 249–253
debugging, 254
rendering reports in program code, 40–41

code behind Data Source Views, 351–353
COLLATE keyword, 631
COLLATE ODBC reserved word, 633
COLLATION ODBC reserved word, 633

COLLATIONPROPERTY() function, 649
COL_LENGTH() function, 645
COL_NAME() function, 645
colors, 102, 386–387
column charts, 102–104, 229–232
column headers

alignment, 386
editing, 385–386
sorting, 308–309

COLUMN keyword, 631
COLUMN ODBC reserved word, 633
column sort report, 309–314
column width adjustments, 386
COLUMNPROPERTY() function, 645
Columns property, 118
columns (tables)

adding, 197, 199
dynamic columns, 315–316
hiding, 316
merging, 199–200
multiple columns, 118–119
resizing, 199
showing, 316

Command object, 542
Command parameter, 495
command-line installation of Reporting Services, 480
CommandText property, 563
CommandTimeout property, 569–570
CommandType property, 570
Comma-Separated Values (CSV) rendering extension,

31, 57, 538
comments in scripts, 629
COMMIT keyword, 631
COMMIT ODBC reserved word, 633
components (client and server), 33
components of Reporting Services

client tools, 459, 461–462
distribution of, 460
Report Server, 459–460
Report Server databases, 459–461

COMPUTE BY clause, 624
COMPUTE clause, 624
COMPUTE keyword, 631
conditional expressions, 246–248
conditional formatting, 116–118, 270–271, 385–386
configuration files, 474
Configuration Manager, 462
configuration tools

rsconfig.exe, 472–473
rsconfigtool.exe, 471–472
rs.exe, 473
rskeymgmt.exe, 473, 475

configuration variables
@@DATEFIRST, 638
@@DBTS, 638

656

charts (continued)

26_584979 bindex.qxp 1/27/06 7:41 PM Page 656

‘ID, 639
@@LANGID, 638
@@LANGUAGE, 638
@@LOCK_TIMEOUT, 638
@@MAX_CONNECTIONS, 638
@@MAX_PRECISION, 638
@@MICROSOFTVERSION, 638
@@NESTLEVEL, 639
@@OPTIONS, 638–639
@@REMSERVER, 639
@@SERVERNAME, 639
@@SERVICENAME, 639
@@TEXTSIZE, 639
@@VERSION, 639

configuring Reporting Services, 480–473
CONNECT ODBC reserved word, 633
Connection Manager, 343–344
Connection object, 542
CONNECTION ODBC reserved word, 633
connection strings

Analysis Services, 158–159
closing, 552
creating, 343
defined, 423
Microsoft Access, 174–176
opening, 552
timeout settings, 564

@@CONNECTIONS variable, 640
ConnectionString property, 553–564
ConnectionTimeout property, 564
CONSTRAINT keyword, 631
CONSTRAINT ODBC reserved word, 633
CONSTRAINTS ODBC reserved word, 633
constructors for data processing extensions, 561
CONTAINS keyword, 631
CONTAINSTABLE keyword, 631
content

folder structure, 401–402
hierarchal metaphor, 401
managing

programmatic interfaces, 405–406
Report Manager, 402–404
SQL Server Management Studio, 404–405

references, 401
security, 406–407

Content Manager role, 408
CONTINUE keyword, 631
CONTINUE ODBC reserved word, 633
controls

Microsoft Access, 583–584
parameter selection tools, 335–336
ReportViewer control, 526–527, 535

conversion functions, 643
CONVERT() function, 643
CONVERT keyword, 631

CONVERT ODBC reserved word, 633
converting

data types, 248
reports

Business Objects, 268
Crystal Reports, 268–269
Microsoft Access reports, 583–587
service providers, 93
universal report conversion utilities, 93

values to strings, 248
CORRESPONDING ODBC reserved word, 633
COS() function, 644
COT() function, 644
COUNT() function, 111, 205, 641
COUNT ODBC reserved word, 633
COUNT_BIG() function, 641
COUNTDISTINCT() function, 111, 205
counters, 480–483
counting

rows (tables), 205
values, 205

COUNTROWS() function, 111, 205
@@CPU_BUSY variable, 640
CREATE DATABASE statement, 627
CREATE DEFAULT statement, 627–628
CREATE keyword, 631
CREATE ODBC reserved word, 633
CREATE PARTITION FUNCTION statement, 629
CREATE PARTITION SCHEME statement, 629
CREATE PROCEDURE statement, 628
CREATE RULE statement, 628
CREATE SCHEMA statement, 629
CREATE TABLE statement, 628
CREATE TRIGGER statement, 628
CREATE VIEW statement, 629
CreateBatch method, 590
CreateCommand function, 551–552
CreateDataDrivenSubscription method, 590
CreateDataSource method, 590
CreateFolder method, 591
CreateLinkedReport method, 591
CreateModel method, 591
CreateParameter method, 570–571
CreateReport method, 591–592
CreateReportHistorySnapshot method, 592
CreateResource method, 592
CreateRole method, 592–593
CreateSchedule method, 593
CreateSubscription method, 593
creating

charts, 237–242
connections, 343
data groups, 186–187
data processing extensions, 552
data sources

657

creating

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 657

creating (continued)
with Analysis Services, 156–157
with Project Add Item Template, 128–129
in Report Manager, 424–425
with Report Wizard, 128–129
when defining a data set, 130

document map, 210–212
expressions, 206–207
extensions

data processing extensions, 543–551, 553–561
delivery extensions, 538

projects, 73–74
report history snapshots, 430–432
Report Models

with Analysis Services, 363–366
with SQL Server, 341–342, 353–357

reports
Analysis Services, 160–161
drill-down reports, 208–210
drill-through reports, 212–214
linked reports, 420–421
matrix reports, 221–224
subreports, 218–220
tabular reports, 192–198

role assignments, 410–412
roles, 408–410
scripts, 448–451
snapshots, 430–431
stored procedures, 148–150

credentials for data sources, 426
CRI (custom report items), 106
CRM (Customer Relationship Management) systems,

25
CROSS keyword, 631
CROSS ODBC reserved word, 633
Crystal Reports, 5, 23–24, 268–269
CSTR() function, 248
CSV (Comma-Separated Values) rendering extension,

31, 57, 538
currency format, 91
CURRENT keyword, 631
CURRENT ODBC reserved word, 633
CURRENT_DATE keyword, 631
CURRENT_DATE ODBC reserved word, 633
CURRENT_TIME keyword, 631
CURRENT_TIME ODBC reserved word, 633
CURRENT_TIMESTAMP() function, 650
CURRENT_TIMESTAMP keyword, 631
CURRENT_TIMESTAMP ODBC reserved word, 633
CURRENT_USER() function, 650
CURRENT_USER keyword, 631
CURRENT_USER ODBC reserved word, 633
cursor functions, 643
CURSOR keyword, 631
CURSOR ODBC reserved word, 633
cursor variables

@@CURSOR_ROWS, 639
@@FETCH_STATUS, 639

@@CURSOR_ROWS variable, 639
CURSOR_STATUS() function, 643
custom assembly

security, 253
support, 251–253

custom code, 249–253
custom delivery extensions, 61
custom fields, 245–246
custom report items (CRI), 106
custom user interface, 66–67
Customer Relationship Management (CRM) systems, 25
customers, 26–27

D
dashboards, 290
data groups

creating, 186–187
lists, 108–109, 188–192
matrices, 109–110
recursive relationships, 214–217
tables, 108–109, 192–197

data marts, 264
Data mode (Report Designer), 85
data presentation, 270
data processing extensions

Analysis Services 2005, 55
common tasks, 53–55
DataSetDataProcessing extension

BeginTransaction function, 551
Cancel method, 562
Close method, 552
Command object, 542
CommandText property, 563
CommandTimeout property, 569–570
CommandType property, 570
Connection object, 542
ConnectionString property, 553–564
ConnectionTimeout property, 564
constructors, 561
CreateCommand function, 551–552
CreateParameter method, 570–571
creating, 543–575
DataAdapter object, 542
DataReader object, 542, 571–572
DataSetCommand class, 559–561
DataSetConnection object, 546–548
DataSetDataParameterCollection class, 558
DataSetParameter class, 555
DataSetParameterCollection class, 557
ExecuteReader method, 562–563
FieldCount property, 575
GetFieldType method, 573
GetName method, 573

658

creating (continued)

26_584979 bindex.qxp 1/27/06 7:41 PM Page 658

GetOrdinal method, 574
GetValue method, 574
IDataParameter interface, 555–556
IDataParameterCollection interface, 557–559
IDbCommand interface, 561–562
IDbConnection interface, 550
IDbConnectionExtension interface, 548–549
IDbDataReader interface, 571–573
Impersonate property, 549
installing, 575–577
IntegratedSecurity property, 549–550
Open method, 552
ParameterName property, 556
Parameters property, 571
Password property, 550
Read method, 574–575
testing, 577–580
UserName property, 550
ValidateCommandText method, 564–565
ValidateFieldNames method, 566–568
ValidateFiltering method, 568–569
ValidateSorting method, 569
ValidateTableName method, 565–566
Value property, 556–557

defined, 37, 537
interfaces, 542–543
.NET data providers, 541
OLE DB, 55
Oracle, 54
process overview, 54
security, 576–577
SQL Server, 54
supported extensions, 55
supported providers, 54, 541

data regions
creating, 186–187
lists, 108–109, 187–192
matrices, 109–110
tables, 108, 192–197
uses, 187

data set parameters, 133
Data set Properties dialog, 133
data sets

data sources, 126–127
defined, 127
dynamic grouping, 305–307
filtering

multiple criterion report filtering, 277–279
report parameters, 151–155
step-by-step instructions, 389–393

data source properties, 420
Data Source View Wizard, 346–347
Data Source Views

code behind, 351–353
diagrams, 347–348
named queries, 350–351

relationships, 348–350
Report Models, 345–353
statistics, 356

Data Source Wizard, 343–344
data sources

accessing, 490–492
Analysis Services, 156–158
best practices, 180
cached reports, 428–429
connection strings, 423
CreateDataSource method, 590
creating

with Analysis Services, 156–157
with Project Add Item Template, 128–129
in Report Manager, 424–425
with Report Wizard, 128–129
when defining a data set, 130

credentials, 426
data sets, 126–127
defined, 35
DisableDataSource method, 595
EnableDataSource method, 595
filtering

parameters, 131–147, 430
stored procedures, 148–151

GetDataSourceContents method, 597
GetItemDataSourcePrompts method, 598
GetItemDataSources method, 598
ListSubscriptionsUsingDataSource method, 608
managing, 423–424
Microsoft Access, 174–178
Microsoft Excel, 178
Oracle P/L SQL, 178–179
query languages, 130–131
Report Models, 342–344
Report Wizard, 75–77
SetDataSourceContents method, 611
SetItemDataSources method, 612
shared data sources, 424
Sybase Adaptive Server, 179–180
transactional data sources, 263–264
updating, 426–427

data types
BigInt, 112
Bit, 112
converting, 248
Date, 112
Decimal, 112
Float, 112
Int, 112
Money, 112
SmallInt, 112

data warehouses, 25, 27–28, 264
DataAdapter object, 542
DATABASE keyword, 631

659

DATABASE keyword

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 659

DATABASEPROPERTY() function, 646
DATABASEPROPERTYEX() function, 646
databases

multidimensional databases, 28–29
OLAP databases, 36
relational databases, 27–28
ReportServer, 61–63, 460
ReportServerTempDB, 61, 63–64, 461
sample databases, 33–34

data-driven subscriptions
CreateDataDrivenSubscription method, 590
defined, 30, 38
GetDataDrivenSubscriptionProperties method, 597
managing, 437
Scheduling and Delivery Processor, 59
SetDataDrivenSubscriptionProperties method, 611

DATALENGTH() function, 650
DataReader object, 542, 571–572
DataSetCommand class, 559–561
DataSetConnection object, 546–548
DataSetDataParameterCollection class, 558
DataSetDataProcessing extension

BeginTransaction function, 551
Cancel method, 562
Close method, 552
Command object, 542
CommandText property, 563
CommandTimeout property, 569–570
CommandType property, 570
Connection object, 542
ConnectionString property, 553–564
ConnectionTimeout property, 564
constructors, 561
CreateCommand function, 551–552
CreateParameter method, 570–571
creating, 543–575
DataAdapter object, 542
DataReader object, 542, 571–572
DataSetCommand class, 559–561
DataSetConnection object, 546–548
DataSetDataParameterCollection class, 558
DataSetParameter class, 555
DataSetParameterCollection class, 557
ExecuteReader method, 562–563
FieldCount property, 575
GetFieldType method, 573
GetName method, 573
GetOrdinal method, 574
GetValue method, 574
IDataParameter interface, 555–556
IDataParameterCollection interface, 557–559
IDbCommand interface, 561–562
IDbConnection interface, 550
IDbConnectionExtension interface, 548–549
IDbDataReader interface, 571–573
Impersonate property, 549

installing, 575–577
IntegratedSecurity property, 549–550
Open method, 552
ParameterName property, 556
Parameters property, 571
Password property, 550
Read method, 574–575
testing, 577–580
UserName property, 550
ValidateCommandText method, 564–565
ValidateFieldNames method, 566–568
ValidateFiltering method, 568–569
ValidateSorting method, 569
ValidateTableName method, 565–566
Value property, 556–557

DataSetName property, 215
DataSetParameter class, 555
DataSetParameterCollection class, 557
Date data type, 112
date functions, 643–644
DATE ODBC reserved word, 633
DATEADD() function, 643
DATEDIFF() function, 643
@@DATEFIRST variable, 638
DATENAME() function, 643
DATEPART() function, 643
DAY() function, 644
DAY ODBC reserved word, 634
DBCC keyword, 631
DB_ID() function, 646
DB_NAME() function, 646
@@DBTS variable, 638
DEALLOCATE keyword, 631
DEALLOCATE ODBC reserved word, 634
debugging code, 254
DEC ODBC reserved word, 634
Decimal data type, 112
DECIMAL ODBC reserved word, 634
DECLARE keyword, 631
DECLARE @local_variable statement, 626
DECLARE ODBC reserved word, 634
DEFAULT keyword, 631
DEFAULT ODBC reserved word, 634
Default Value property, 419
DEFERRABLE ODBC reserved word, 634
DEFERRED ODBC reserved word, 634
defining parameters, 133
definition. See report definition
DEGREES() function, 644
DELETE keyword, 631
DELETE ODBC reserved word, 634
DELETE statement, 626
DeleteItem method, 593
DeleteReportHistorySnapshot method, 594
DeleteRole method, 594
DeleteSchedule method, 594

660

DATABASEPROPERTY() function

26_584979 bindex.qxp 1/27/06 7:41 PM Page 660

DeleteSubscription method, 594
deleting

roles, 410
rows (tables), 195

delivery extensions
creating, 538
custom delivery extensions, 61
defined, 37, 537–538
e-mail delivery extension, 60
file share delivery extension, 61
schedule-based events, 60
scheduling, 59
Scheduling and Delivery Processor, 57–58
snapshot update events, 60
subscriptions, 59

delivery of reports
e-mail delivery, 433
file share delivery, 434–435
Microsoft Office applications, 30
Pocket PC report file updates, 435
Web browsers, 29–30

delivery phase of reporting lifecycle, 47
delivery settings, 466
DENSE_RANK() function, 646
DENY keyword, 631
deploying

Report Models, 362–363
Reporting Services, 458, 468–480
reports by automation, 447

deployment locations, 84–85
DESC keyword, 631
DESC ODBC reserved word, 634
DESCRIBE ODBC reserved word, 634
DESCRIPTOR ODBC reserved word, 634
Designer window (Report Builder), 371
designing reports

Analysis Services, 164–170
best practices, 259
Business Intelligence Development Studio (BIDS), 9,

39–40
mobile devices, 254–257
offline report solutions, 257–258
parameters

cascading parameters, 138–144
data set parameters, 133
defining, 133
multi-select parameters, 144–147
query parameters, 134–135
referencing, 146–147
report parameters, 133, 135–137
resolution, 133

Report Builder, 11, 65
Report Definition Language (RDL), 64
Report Designer

client-side reports, 10–11
Data mode, 85

installing, 461
Layout mode, 85
margins, 88
Microsoft Integrated Development Environment, 9, 85
Preview mode, 85–86
scale units, 86–88
server-side reports, 10
Toolbox, 95

Report Wizard
data sources, 75–77
defined, 36
deployment locations, 84–85
design environment, 72–74
opening, 74
queries, 78–82
Query Builder, 78–82
report structure, 82–84
splash screen, 75

sample data, 264–265
test data, 264–265
third-party designers, 65
Visual Studio 2005, 9, 65

detail row (tables), 195
Details view (Report Manager), 404
development phases for reports, 266–268
device information (URL parameters), 497–498
DIAGNOSTICS ODBC reserved word, 634
diagrams of Data Source Views, 347–348
DIFFERENCE() function, 648
digital certificates, 39
DisableDataSource method, 595
DISCONNECT ODBC reserved word, 634
DISK keyword, 631
Disney Interactive Group, 25
Display Text property, 420
DISTINCT keyword, 631
DISTINCT ODBC reserved word, 634
DISTRIBUTED keyword, 631
distribution of Reporting Services components, 460
document map, 210–212
DOMAIN ODBC reserved word, 634
DOUBLE keyword, 631
DOUBLE ODBC reserved word, 634
doughnut charts, 229, 233–235
drawing items, 95
drill-down functionality in matrix reports, 225–227
drill-down reports

creating, 208–210
defined, 35, 106–107

drill-through reports
creating, 212–214
defined, 35, 106–107
ListModelDrillthroughReports method, 606
SetModelDrillthroughReports method, 612

DROP keyword, 631
DROP ODBC reserved word, 634

661

DROP ODBC reserved word,

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 661

dsp URL parameter prefix, 494
dsu URL parameter prefix, 494
DUMMY keyword, 631
DUMP keyword, 632
Dundas Chart, 228, 324–328
Dundas Gauge, 287–289, 328–334
dynamic columns, 315–316
dynamic fields, 315–316
dynamic grouping, 305–307
dynamic reporting, 12–13

E
Edit Expression window, 206–207
editing

column headers, 385–386
text, 385

EIS (Executive Information Services), 26
ELSE keyword, 632
ELSE ODBC reserved word, 634
e-mail delivery extension, 60
e-mail delivery of reports, 433
embedding server-side reports in a Windows application,

527–534
EnableDataSource method, 595
enabling encryption, 39
ENCRYPT() function, 650
encryption

asymmetric encryption, 475
automatic encryption, 38–39
enabling, 39
encryption key backups, 475–476
rskeymgmt.exe utility, 473, 475
Secure Sockets Layer (SSL), 38–39
symmetric encryption, 475

END keyword, 632
END ODBC reserved word, 634
END-EXEC ODBC reserved word, 634
Enterprise Reporter (Panorama Software), 42
ERP (Enterprise Resource Planning) systems, 21
ERRLVL keyword, 632
@@ERROR variable, 640
errors, 254
ESCAPE keyword, 632
ESCAPE ODBC reserved word, 634
events

FireEvent method, 596
ListEvents method, 605
Page_Load event, 519–524
schedule-based events, 60
snapshot update events, 60
support for, 272

Excel (Microsoft), 178
Excel rendering extension, 55–56, 538
EXCEPT keyword, 630
EXCEPT ODBC reserved word, 634

EXCEPT operator, 624
EXCEPTION ODBC reserved word, 634
exchanging data, 31
EXEC keyword, 630
EXEC ODBC reserved word, 632
EXECUTE keyword, 630
EXECUTE ODBC reserved word, 632
ExecuteBatch method, 595
ExecuteReader method, 562–563
executing reports

execution log, 478–480
Execution property, 418–419
execution timeout, 415
GetExecutionOptions method, 597–598
information about, 64
on-demand report generation, 428
process, 427
SetExecutionOptions method, 611
timer-triggered report execution, 477
user-triggered report execution, 477

Execution property, 418–419
executive dashboards, 290
Executive Information Services (EIS), 26
executive leadership and reporting, 26
EXISTS keyword, 630
EXISTS ODBC reserved word, 632
EXIT keyword, 630
EXP() function, 645
explicit formatting, 115–116
Explorer window (Report Builder), 371
Expression Builder, 206–207
expressions

adding, 394–396
conditional expressions, 246–248
creating, 206–207
Edit Expression window, 206–207
fields, 245–246
testing for null values, 249
uses, 206

extensibility
browser compatibility, 94
mobile device support, 95
modular extensible architecture, 537
offline viewing, 94–95

Extensible Markup Language (XML) rendering
extension, 57

extension points (interfaces), 538
extensions

data processing extensions
Analysis Services 2005, 55
common tasks, 53
creating, 543–575
defined, 37, 537
installing, 575–577
interfaces, 542–543
.NET data providers, 541

662

dsp URL parameter prefix

26_584979 bindex.qxp 1/27/06 7:41 PM Page 662

OLE DB, 55
Oracle, 54
process overview, 54
security, 576–577
SQL Server, 54
supported extensions, 55
supported providers, 54, 541
testing, 577–580

delivery extensions
creating, 538
custom delivery extensions, 61
defined, 37, 537–538
e-mail delivery extension, 60
file share delivery extension, 61
schedule-based events, 60
scheduling, 59
Scheduling and Delivery Processor, 57–58
snapshot update events, 60
subscriptions, 59

GetExtensionSettings method, 598
ListExtensions method, 605
rendering extensions

Comma-Separated Values (CSV), 57, 538
defined, 38, 538
Excel, 55–56, 538
Extensible Markup Language (XML), 57
HTML, 56, 538
image, 538
PDF, 56, 538
Tagged Image File Format (TIFF), 57
Web Archive (MHTML), 56–57, 538

scripting extensions, 38
security extensions, 37–38, 61, 538
ValidateExtensionSettings method, 616–617

EXTERNAL ODBC reserved word, 632
EXTRACT ODBC reserved word, 632

F
FALSE ODBC reserved word, 632
FETCH keyword, 630
FETCH ODBC reserved word, 632
@@FETCH_STATUS variable, 639
FieldCount property, 575
fields

adding, 245
custom fields, 245–246
dynamic fields, 315–316
expressions, 245–246
FieldCount property, 575
naming, 245

Fields window (Report Builder), 371
FILE keyword, 630
file share delivery extension, 61
file share delivery of reports, 434–435

file system report rendering, 512–518
FILE_ID() function, 646
FILE_NAME() function, 646
FILLFACTOR keyword, 630
filtering data sets

multiple criterion report filtering, 277–279
Report Builder, 389–393
report parameters, 151–155

filtering data sources
cascading parameters, 138–144
multi-select parameters, 144–147
parameter concepts, 131–133
query parameters, 134–135, 137
report parameters, 135–137, 430
stored procedures, 148–151

FindItems method, 595–596
FireEvent method, 596
FIRST() function, 111, 205
FIRST ODBC reserved word, 632
Float data type, 112
FLOAT ODBC reserved word, 632
FLOOR() function, 645
FlushCache method, 596
Fn_Get_SQL() function, 650
Fn_HelpCollations() function, 650
fn_listextendedproperty() function, 646
Fn_ServerSharedDrives() function, 650
fn_trace_geteventinfo() function, 647
fn_trace_getfilterinfo() function, 647
fn_trace_getinfo() function, 647
fn_trace_gettable() function, 647
Fn_VirtualFileStats() function, 650
folders

accessing, 489–490
CreateFolder method, 591
Report Manager

folder structure, 401–402
Home folder, 402
inheritance of security settings, 417
moving content between folders, 417
My Reports folder, 415–417

fonts
reports, 386
tables, 197

footer row (tables), 195, 197
footers, 203–205, 303–305
FOR clause, 624
FOR keyword, 630
FOR ODBC reserved word, 632
FOREIGN keyword, 630
FOREIGN ODBC reserved word, 632
form reports, 34
FORMAT() function, 248
Format parameter, 496–497
Format property, 112

663

Format property

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 663

FORMATMESSAGE() function, 650
formats, 30–31
formatting

BigInt data type, 112
Bit data type, 112
conditional formatting, 116–118, 270–271, 385–386
data types, 112
Date data type, 112
Decimal data type, 112
explicit formatting, 115–116
Float data type, 112
Int data type, 112
Money data type, 112
multiple columns, 118–119
regular expressions, 112
reports

alignment of column headers, 386
background color, 386–387
column width adjustments, 386
fonts, 386
number formatting, 386
text adjustments, 385–386

SmallInt data type, 112
standard formatting, 114–115

FORTRAN ODBC reserved word, 632
FOUND ODBC reserved word, 632
FREETEXT keyword, 630
FREETEXTTABLE keyword, 630
FROM clause, 622
FROM keyword, 630
FROM ODBC reserved word, 632
FULL keyword, 630
FULL ODBC reserved word, 632
FULLTEXTCATALOGPROPERTY() function, 646
FULLTEXTSERVICEPROPERTY() function, 646
FUNCTION keyword, 630
functions. See also methods

ABS(), 644
ACOS(), 644
aggregation functions, 641–642
APP_NAME(), 649
ASCII(), 648
ASIN(), 644
ATAN(), 644
ATN2(), 644
AVG(), 111, 205, 641
BeginTransaction, 551
BINARY_CHECKSUM(), 642
CAST(), 643
CDATE(), 248
CDEC(), 248
CEILING(), 644
CHAR(), 648
CHARINDEX(), 648
CHECKSUM(), 642
checksum functions, 642

CHECKSUM_AGG(), 642
CHOOSE(), 249
CINT(), 248
COALESCE(), 649
COLLATIONPROPERTY(), 649
COL_LENGTH(), 645
COL_NAME(), 645
COLUMNPROPERTY(), 645
conversion functions, 643
COS(), 644
COT(), 644
COUNT(), 111, 205, 641
COUNT_BIG(), 641
COUNTDISTINCT(), 111, 205
COUNTROWS(), 111, 205
CreateCommand, 551–552
CSTR(), 248
CURRENT_TIMESTAMP(), 650
CURRENT_USER(), 650
cursor functions, 643
CURSOR_STATUS(), 643
DATABASEPROPERTY(), 646
DATABASEPROPERTYEX(), 646
DATALENGTH(), 650
date functions, 643–644
DATEADD(), 643
DATEDIFF(), 643
DATENAME(), 643
DATEPART(), 643
DAY(), 644
DB_ID(), 646
DB_NAME(), 646
DEGREES(), 644
DENSE_RANK(), 646
DIFFERENCE(), 648
differences from variables, 637
ENCRYPT(), 650
EXP(), 645
FILE_ID(), 646
FILE_NAME(), 646
FIRST(), 111, 205
FLOOR(), 645
Fn_Get_SQL(), 650
Fn_HelpCollations(), 650
fn_listextendedproperty(), 646
Fn_ServerSharedDrives(), 650
fn_trace_geteventinfo(), 647
fn_trace_getfilterinfo(), 647
fn_trace_getinfo(), 647
fn_trace_gettable(), 647
Fn_VirtualFileStats(), 650
FORMAT(), 248
FORMATMESSAGE(), 650
FULLTEXTCATALOGPROPERTY(), 646
FULLTEXTSERVICEPROPERTY(), 646
GETANSINULL(), 650

664

FORMATMESSAGE() function

26_584979 bindex.qxp 1/27/06 7:41 PM Page 664

GETDATE(), 644
GETUTCDATE(), 644
GROUPING(), 641
HAS_DBACCESS(), 647
HOST_ID(), 650
HOST_NAME(), 651
IDENT_CURRENT(), 651
IDENT_INCR(), 651
IDENTITY(), 651
IDENT_SEED(), 651
IIF(), 246–248
image functions, 644
INDEX_COL(), 646
INDEXKEY_PROPERTY(), 646
INDEXPROPERTY(), 646
INSRT(), 248
ISDATE(), 651
IS_MEMBER(), 647
ISNOTHING(), 249
ISNULL(), 651
ISNUMERIC(), 651
IS_SRVROLEMEMBER(), 647
LAST(), 111, 205
LEFT(), 248, 648
LEN(), 648
LEVEL(), 206
LOG(), 645
LOG10(), 645
LOWER(), 648
LTRIM(), 648
mathematical functions, 644–645
MAX(), 111, 205, 641
metadata functions, 645–646
Microsoft Access, 586
MID(), 248
MIN(), 111, 206, 641
MONTH(), 644
NCHAR(), 648
NEWID(), 651
NTILE(n), 647
NULLIF(), 651
OBJECT_ID(), 646
OBJECT_NAME(), 646
OBJECTPROPERTY(), 646
PARSENAME(), 651
PATINDEX(), 644, 648
PERMISSIONS(), 651
PI(), 645
POWER(), 645
PWDCONPARE(), 652
PWDENCRYPT(), 652
QUOTENAME(), 648
RADIANS(), 645
RAND(), 645
RANK(), 647

ranking functions, 646–647
REPLACE(), 648
REPLICATE(), 648
REVERSE(), 648
RIGHT(), 248, 649
ROUND(), 645
ROWCOUNT_BIG(), 652
ROWNUMBER(), 206
ROW_NUMBER(), 647
RTRIM(), 649
RUNNINGVALUE(), 206
SCOPE_IDENTITY(), 652
security functions, 647
SERVERPROPERTY(), 652
SESSIONPROPERTY(), 652
SESSION_USER, 652
SIGN(), 645
SIN(), 645
SOUNDEX(), 649
SPACE(), 649
SQRT(), 645
SQUARE(), 645
STATS_DATE(), 652
STDEV(), 111, 206, 642
STDEVP(), 111, 206, 642
STR(), 649
string manipulation functions, 648–649
STUFF(), 649
SUBSTRING(), 649
.SUBSTRING(), 248
SUM(), 111, 206, 642
SUSER_SID(), 647
SUSER_SNAME(), 647
system functions, 649–652
SYSTEM_USER, 652
TAN(), 645
text functions, 644
TEXTVALID(), 644
TOSTRING(), 248
UNICODE(), 649
UPPER(), 649
USER_ID(), 647
USER_NAME(), 652
VAR(), 111, 206, 642
VARP(), 111, 206, 642
VB 6.0 functions, 248
VBScript functions, 248
YEAR(), 644

future and miscellaneous keywords, 634–636

G
Gates, Bill, Microsoft, 26
gauges, 287–289, 328–334
GenerateModel method, 596
generating scripts, 454–455

665

generating scripts

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 665

generation rules for Report Models, 354–356
Generic Query Designer (Query Builder), 78
GET ODBC reserved word, 632
GETANSINULL() function, 650
GetCacheOptions method, 596–597
GetDataDrivenSubscriptionProperties method, 597
GetDataSourceContents method, 597
GETDATE() function, 644
GetExecutionOptions method, 597–598
GetExtensionSettings method, 598
GetFieldType method, 573
GetItemDataSourcePrompts method, 598
GetItemDataSources method, 598
GetItemType method, 598–599
GetModelDefinition method, 599
GetModelItemPermissions method, 599
GetModelItemPolicies method, 599
GetName method, 573
GetOrdinal method, 574
GetPermissions method, 599–600
GetPolicies method, 600
GetProperties method, 600
GetRenderResource method, 600
GetReportDefinition method, 600–601
GetReportHistoryLimit method, 601
GetReportHistoryOptions method, 601
GetReportLink method, 601–602
GetReportParameters method, 510–512, 602
GetResourceContents method, 602
GetRoleProperties method, 602
GetScheduleProperties method, 602–603
GetServerDateTime method, 603
GetSubscriptionProperties method, 603
GetSystemPermissions method, 603–604
GetSystemPolicies method, 604
GetSystemProperties method, 604
GETUTCDATE() function, 644
GetValue method, 574
GLOBAL ODBC reserved word, 632
global variables. See variables
GMT (Greenwich Mean Time), 644
GO ODBC reserved word, 632
GOTO keyword, 630
GOTO ODBC reserved word, 632
GRANT keyword, 630
GRANT ODBC reserved word, 632
Graphical Query Designer (Query Builder), 78
greenbar reports, 272–277
Greenwich Mean Time (GMT), 644
gridlines (charts), 241–242
GROUP BY clause, 623
GROUP keyword, 630
GROUP ODBC reserved word, 632
Grouping and Sorting Properties dialog, 167–168,

186–187, 196–197
GROUPING() function, 641

groupings
defined, 35, 108
page breaks, 120

groups (of data)
creating, 186–187
lists, 108–109, 188–192
matrices, 109–110
recursive relationships, 214–217
tables, 108–109, 192–197

H
handling report requests, 51
Has Default property, 419
HAS_DBACCESS() function, 647
HAVING keyword, 630
HAVING ODBC reserved word, 632
header row (tables), 195, 197
headers, 203–205, 303–315help

Books Online, 33, 459
KBAlertz.com Web site, 459
Microsoft Developer Network (MSDN) Web site, 459

hiding rows/columns, 316
hierarchal metaphor of content, 401
history snapshots

CreateReportHistorySnapshot method, 592
creating, 430–432
defined, 53, 429
DeleteReportHistorySnapshot method, 594
GetReportHistoryLimit method, 601
GetReportHistoryOptions method, 601
ListReportHistory method, 607
scheduling, 430
SetReportHistoryLimit method, 613–614
SetReportHistoryOptions method, 614
snapshot ID, 500
UpdateReportExecutionSnapshot method, 616

Hitachi Consulting report migration service, 93
HOLDLOCK keyword, 630
Home folder, 402
HOST_ID() function, 650
HOST_NAME() function, 651
HOUR ODBC reserved word, 632
HTML rendering extension, 56, 538
HTTP requests for reports, 40, 488–489

I
‘ID variable, 639
IDataParameter interface, 543, 555–556
IDataParameterCollection interface, 543, 557–559
IDataReader interface, 543
IDataReaderExtension interface, 543
IDbCommand interface, 543, 561–562
IDbCommandAnalysis interface, 543
IDbConnection interface, 543, 550

666

generation rules for Report Models

26_584979 bindex.qxp 1/27/06 7:41 PM Page 666

IDbConnectionExtension interface, 543, 548–549
IDbDataReader interface, 571–573
IDbTransaction interface, 543
IDbTransactionExtension interface, 543
IDENT_CURRENT() function, 651
IDENT_INCR() function, 651
IDENTITY() function, 651
IDENTITY keyword, 630
IDENTITY ODBC reserved word, 633
@@IDENTITY variable, 640
IDENTITYCOL keyword, 631
IDENTITY_INSERT keyword, 631
IDENT_SEED() function, 651
@@IDLE variable, 640
IExtension interface, 543
IF keyword, 631
IIF() function, 246–248
IIS (Internet Information Services) virtual directory,

464–465
image functions, 644
image items, 98–102
image rendering extension, 538
Image Wizard, 98–101
images

gauges, 287–288, 328–334
indicators (graphical icons), 286–289, 291
navigating reports with image links, 212

IMMEDIATE ODBC reserved word, 633
Impersonate property, 549
impersonation, 549
importing

data, 31
Microsoft Access reports, 93

Imports statements, 450
IN keyword, 631
IN ODBC reserved word, 633
INCLUDE ODBC reserved word, 633
“Incorrect syntax near the keyword ‘keyword’” error

message, 630
INDEX keyword, 631
INDEX ODBC reserved word, 633
INDEX_COL() function, 646
INDEXKEY_PROPERTY() function, 646
INDEXPROPERTY() function, 646
INDICATOR ODBC reserved word, 633
indicators (graphical icons), 286–289, 291
information workers, 4–5, 26
Infragistics suite, 336
inheritance of security settings

folders, 417
role assignments, 412

InheritModelItemParentSecurity method, 604
InheritParentSecurity method, 604
INITIALLY ODBC reserved word, 633
INNER keyword, 631
INNER ODBC reserved word, 633

INPUT ODBC reserved word, 633
INSENSITIVE ODBC reserved word, 633
INSERT keyword, 631
INSERT ODBC reserved word, 633
INSERT statement, 625
INSRT() function, 248
Installer 2.0, 34
installing

DataSetDataProcessing extension, 575–577
Report Designer, 461
Reporting Services

automated installation process, 34
Books Online, 459
command-line installation, 480
components, 459–460
installation directory, 464
setup options, 458
system requirements, 463–464
Windows Installer 2.0, 34

Int data type, 112
INT ODBC reserved word, 633
INTEGER ODBC reserved word, 633
Integrated Windows Security, 538
IntegratedSecurity property, 549–550
integration with applications, 6, 11–16, 501
integration with third-party products, 41–42
IntelliSense (Visual Studio), 449–450
interaction features, 12–13
Interactive Sort feature, 308–309
interfaces

C#, 539
custom user interface, 66–67
data processing extensions, 542–543
defined, 539
extension points, 538
IDataParameter, 543, 555–556
IDataParameterCollection, 543, 557–559
IDataReader, 543
IDataReaderExtension, 543
IDbCommand, 543, 561–562
IDbCommandAnalysis, 543
IDbConnection, 543, 550
IDbConnectionExtension, 543, 548–549
IDbDataReader, 571–573
IDbTransaction, 543
IDbTransactionExtension, 543
IExtension, 543
Interface AutoComplete, 540–541
language differences, 539–540
programmatic interfaces, 405–406
Report Manager, 66
SharePoint Web Parts, 66
VB.NET, 539–541
Visual Studio controls, 66

intermediate format of reports, 51–52
intermediate report format, 428

667

intermediate report format

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 667

Internet Information Services (IIS) virtual directory,
464–465

Internet report access, 14
INTERSECT keyword, 631
INTERSECT ODBC reserved word, 633
INTERSECT operator, 624
INTERVAL ODBC reserved word, 633
INTO keyword, 631
INTO ODBC reserved word, 633
Intranet report access, 14
@@IO_BUSY variable, 640
IS keyword, 631
IS ODBC reserved word, 633
ISDATE() function, 651
IS_MEMBER() function, 647
ISNOTHING() function, 249
ISNULL() function, 651
ISNUMERIC() function, 651
ISOLATION ODBC reserved word, 633
IS_SRVROLEMEMBER() function, 647
item-level roles, 407–408
item-level security (Report Manager), 406, 413
ItemNamespaceHeaderValue property, 617
items

chart item, 102–106
custom report items (CRI), 106
drawing, 95
image items, 98–102
line items, 98
list items, 108–109, 187–192
placing, 95
rectangle item, 98–99
subreport item, 102
text boxes

BorderColor property, 184
BorderStyle property, 184
BorderWidth property, 184–185
bound textbox items, 96
padding, 185–186
setting properties, 96–97, 184–185
uses, 184

J
jobs, 606
JOIN keyword, 631
JOIN ODBC reserved word, 633
Joseph, Tommy, Disney Interactive Group, 25

K
KBAlertz.com Web site, 459
KEY keyword, 631
KEY ODBC reserved word, 633
Key Performance Indicator (KPI), 290–291
key success factors for reporting projects, 262–263

keywords
future and miscellaneous, 634–636
ODBC Key Words, 633–634
Transact-SQL (T-SQL), 630–632

KILL keyword, 631
KPI (Key Performance Indicator), 290–291

L
@@LANGID variable, 638
LANGUAGE ODBC reserved word, 633
@@LANGUAGE variable, 638
LAST() function, 111, 205
LAST ODBC reserved word, 633
Layout mode (Report Designer), 85
layouts

chart layout, 380–384
matrix layout, 376–380
table layout, 372–375

leadership and reporting, 26
LEADING ODBC reserved word, 633
LEFT() function, 248, 648
LEFT keyword, 631
LEFT ODBC reserved word, 633
legend (chart), 242
LEN() function, 648
LEVEL() function, 206
LEVEL ODBC reserved word, 633
lifecycle of reports

authoring phase, 46
defined, 29
delivery phase, 47
management phase, 46–47

LIKE keyword, 631
LIKE ODBC reserved word, 633
LIKE operator, 626–627
line charts, 229, 233
line items, 98
LINENO keyword, 631
linked reports

CreateLinkedReport method, 591
creating, 420–421
GetReportLink method, 601–602
SetReportLink method, 614
uses, 420

linking subreports to main reports, 218
links for navigating reports, 212
List Properties dialog, 189
ListChildren method, 605
ListDependantItems method, 605
ListEvents method, 605
ListExtensions method, 605
ListJobs method, 606
ListModelDrillthroughReports method, 606
ListModelItemChildren method, 606
ListModelPerspectives method, 606

668

Internet Information Services (IIS) virtual directory

26_584979 bindex.qxp 1/27/06 7:41 PM Page 668

ListReportHistory method, 607
ListRoles method, 607
lists

check box list, 320–324
data regions, 108–109, 188–192
page breaks, 120

ListScheduledReports method, 607
ListSchedules method, 607
ListSecureMethods method, 607–608
ListSubscriptions method, 608
ListSubscriptionsUsingDataSource method, 608
ListTasks method, 608
LOAD keyword, 631
Local Catalog server configuration, 467
LOCAL ODBC reserved word, 633
@@LOCK_TIMEOUT variable, 638
log files, 34, 465–466
LOG() function, 645
LOG10() function, 645
Logoff method, 609
LogonUser method, 608–609
LOWER() function, 648
LOWER ODBC reserved word, 633
LTRIM() function, 648

M
management phase of reporting lifecycle, 46–47
Management Studio

administration, 461–462
content management, 404–405
data sources, 424

managers, 4–5, 26
managing

data sources, 423–424
report content

programmatic interfaces, 405–406
Report Manager, 402–404
SQL Server Management Studio, 404–405

subscriptions, 435–437
manipulating strings, 648–649
margins, 88
marts, 264
MATCH ODBC reserved word, 633
mathematical functions

ABS(), 644
ACOS(), 644
ASIN(), 644
ATAN(), 644
ATN2(), 644
CEILING(), 644
COS(), 644
COT(), 644
DEGREES(), 644
EXP(), 645

FLOOR(), 645
LOG(), 645
LOG10(), 645
PI(), 645
POWER(), 645
RADIANS(), 645
RAND(), 645
ROUND(), 645
SIGN(), 645
SIN(), 645
SQRT(), 645
SQUARE(), 645
TAN(), 645

matrices
data regions, 109–110
page breaks, 121

matrix layout, 376–380
matrix reports

creating, 221–224
defined, 35
drill-down functionality, 225–227
subtotals, 224–225
summaries, 224–225

MAX() function, 111, 205, 641
MAX ODBC reserved word, 633
@@MAX_CONNECTIONS variable, 638
@@MAX_PRECISION variable, 638
MDX (Multidimensional Expressions), 28–29, 55
MDX queries, 161–164, 170–173
MDX Query Designer, 170–171
merging columns (in tables), 199–200
metadata functions, 645–646
methods. See also functions

Cancel, 562
CancelBatch, 589
canceling, 562
CancelJob, 589–590
Close method, 552
CreateBatch, 590
CreateDataDrivenSubscription, 590
CreateDataSource, 590
CreateFolder, 591
CreateLinkedReport, 591
CreateModel, 591
CreateParameter, 570–571
CreateReport, 591–592
CreateReportHistorySnapshot, 592
CreateResource, 592
CreateRole, 592–593
CreateSchedule, 593
CreateSubscription, 593
DeleteItem, 593
DeleteReportHistorySnapshot, 594
DeleteRole, 594
DeleteSchedule, 594

669

methods

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 669

methods (continued)
DeleteSubscription, 594
DisableDataSource, 595
EnableDataSource, 595
ExecuteBatch, 595
ExecuteReader, 562–563
FindItems, 595–596
FireEvent, 596
FlushCache, 596
GenerateModel, 596
GetCacheOptions, 596–597
GetDataDrivenSubscriptionProperties, 597
GetDataSourceContents, 597
GetExecutionOptions, 597–598
GetExtensionSettings, 598
GetFieldType, 573
GetItemDataSourcePrompts, 598
GetItemDataSources, 598
GetItemType, 598–599
GetModelDefinition, 599
GetModelItemPermissions, 599
GetModelItemPolicies, 599
GetName, 573
GetOrdinal, 574
GetPermissions, 599–600
GetPolicies, 600
GetProperties, 600
GetRenderResource, 600
GetReportDefinition, 600–601
GetReportHistoryLimit, 601
GetReportHistoryOptions, 601
GetReportLink, 601–602
GetReportParameters, 510–512, 602
GetResourceContents, 602
GetRoleProperties, 602
GetScheduleProperties, 602–603
GetServerDateTime, 603
GetSubscriptionProperties, 603
GetSystemPermissions, 603–604
GetSystemPolicies, 604
GetSystemProperties, 604
GetValue, 574
InheritModelItemParentSecurity, 604
InheritParentSecurity, 604
ListChildren, 605
ListDependantItems, 605
ListEvents, 605
ListExtensions, 605
ListJobs, 606
ListModelDrillthroughReports, 606
ListModelItemChildren, 606
ListModelPerspectives, 606
ListReportHistory, 607
ListRoles, 607
ListScheduledReports, 607
ListSchedules, 607

ListSecureMethods, 607–608
ListSubscriptions, 608
ListSubscriptionsUsingDataSource, 608
ListTasks, 608
Logoff, 609
LogonUser, 608–609
MoveItem, 609
Open, 552
PauseSchedule, 609
PrepareQuery, 609–610
Read, 574–575
RegenerateModel, 610
RemoveAllModelItemPolicies, 610
Render, 512–517
ResumeSchedule, 610
SetCacheOptions, 610–611
SetDataDrivenSubscriptionProperties, 611
SetDataSourceContents, 611
SetExecutionOptions, 611
SetItemDataSources, 612
SetModelDefinition, 612
SetModelDrillthroughReports, 612
SetModelItemPolicies, 612
SetPolicies, 613
SetProperties, 613
SetReportDefinition, 613
SetReportHistoryLimit, 613–614
SetReportHistoryOptions, 614
SetReportLink, 614
SetReportParameters, 614
SetResourceContents, 615
SetRoleProperties, 615
SetScheduleProperties, 615
SetSubscriptionProperties, 615–616
SetSystemPolicies, 616
SetSystemProperties, 616
UpdateReportExecutionSnapshot, 616
ValidateCommandText, 564–565
ValidateExtensionSettings, 616–617
ValidateFieldNames, 566–568
ValidateFiltering, 568–569
ValidateSorting, 569
ValidateTableName, 565–566

MHTML (MIME Encapsulation of Aggregate HTML
Documents) rendering extension, 56–57, 558

Microsoft Access
connections, 174–176
control conversions, 583–584
Data Projects, 23
differences from Reporting Services, 8
function support, 586
importing Access reports, 93
property setting conversions, 584–586
queries, 176–178
report delivery, 30
supported report elements, 587

670

methods (continued)

26_584979 bindex.qxp 1/27/06 7:41 PM Page 670

Microsoft Analysis Services, 29
Microsoft Baseline Security Analyzer, 464
Microsoft Developer Network (MSDN) Web site, 459
Microsoft Development Environment, 8–9
Microsoft Excel, 178
Microsoft Internet Information Services, 8
Microsoft .NET Framework, 37
Microsoft Office applications and report delivery, 30
@@MICROSOFTVERSION variable, 638
Microsoft.VisualBasic namespace, 450
MID() function, 248
migrating reports

Business Objects, 268
Crystal Reports, 268–269
Microsoft Access reports, 583–587
service providers, 93
universal report conversion utilities, 93

MIME Encapsulation of Aggregate HTML Documents
(MHTML) rendering extension, 56–57, 558

MIN() function, 111, 206, 641
MIN ODBC reserved word, 633
MINUTE ODBC reserved word, 633
miscellaneous keywords, 634–636
mobile devices, 95, 254–257
Model items

GetModelDefinition method, 599
GetModelItemPermissions method, 599
GetModelItemPolicies method, 599
ListModelItemChildren method, 606
RemoveAllModelItemPolicies method, 610
SetModelDefinition method, 612
SetModelDrillthroughReports method, 612
SetModelItemPolicies method, 612

Models
ActiveViews, 65
ad hoc reports, 369–370
AttributeReference Collection Editor, 361–362
CreateModel method, 591
creating

with Analysis Services, 363–366
with SQL Server, 341–342, 353–357

Data Source Views, 345–353
data sources, 342–344
defined, 341
deploying, 362–363
GenerateModel method, 596
generation rules, 354–356
modifying, 357–362
RegenerateModel method, 610
statistics, 356

modifying
report data, 316–320
Report Models, 357–362
role assignments, 413

modular extensible architecture, 537
MODULE ODBC reserved word, 634

Money data type, 112
monitoring performance, 476–483
MONTH() function, 644
MONTH ODBC reserved word, 634
MoveItem method, 609
moving content between folders, 417
MSDN (Microsoft Developer Network) Web site, 459
multicolumn reports, 35
multidimensional databases, 28–29
Multidimensional Expressions (MDX), 28–29, 55
multi-field data point charts, 279–284
multiple columns, 118–119
multiple criterion report filtering, 277–279
multi-select parameters, 144–147
My Reports folder (Report Manager), 415–417
My Reports role, 407
The Mythical Man-Month (Brooks), 20

N
named queries, 350–351
NAMES ODBC reserved word, 634
namespaces, 450
naming

fields, 245
projects, 73
stored procedures, 149

NATIONAL keyword, 631
NATIONAL ODBC reserved word, 634
NATURAL ODBC reserved word, 634
navigating reports

bookmarks, 212
document map, 210–212
images, 212
links, 212
text boxes, 212

NCHAR() function, 648
NCHAR ODBC reserved word, 634
@@NESTLEVEL variable, 639
.NET CLR performance counters, 483
.NET data providers and data processing extensions,

541
.NET Framework, 37
NEWID() function, 651
NEXT ODBC reserved word, 634
NO ODBC reserved word, 634
NOCHECK keyword, 631
NONCLUSTERED keyword, 631
NONE ODBC reserved word, 634
NOT keyword, 631
NOT ODBC reserved word, 634
NTILE(n) function, 647
NULL keyword, 631
NULL ODBC reserved word, 634
Null property, 419
NULLIF() function, 651

671

NULLIF() function

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 671

NULLIF keyword, 631
NULLIF ODBC reserved word, 634
number formatting, 386
numbering pages, 206–207
NUMERIC ODBC reserved word, 634

O
OBJECT_ID() function, 646
OBJECT_NAME() function, 646
OBJECTPROPERTY() function, 646
objects

Command object, 542
Connection object, 542
DataAdapter object, 542
DataReader object, 542, 571–572
DataSetConnection object, 546–548
names

parts of, 619–620
reserved words, 630

references, 619–620
OCTET_LENGTH ODBC reserved word, 634
ODBC Key Words, 633–634
OF keyword, 631
OF ODBC reserved word, 634
OFF keyword, 631
Office applications and report delivery, 30
offline report solutions, 257–258
offline viewing, 94–95
OFFSETS keyword, 631
OLAP databases, 36
OLE DB provider, 55
ON keyword, 631
ON ODBC reserved word, 634
on-demand report generation, 428
Online Analytical Processing (OLAP) systems, 25
Online Transaction Processing (OLTP) systems, 27
ONLY ODBC reserved word, 634
OPEN keyword, 631
Open method, 552
OPEN ODBC reserved word, 634
OPENDATASOURCE keyword, 631
opening

connections, 552
Report Manager, 403–404
Report Wizard, 74
reports, 385

OPENQUERY keyword, 631
OPENROWSET keyword, 631
OPENXML keyword, 631
OPTION clause, 624–625
OPTION keyword, 632
OPTION ODBC reserved word, 634
@@OPTIONS variable, 638–639
OR keyword, 632
OR ODBC reserved word, 634

Oracle P/L SQL data source, 178–179
Oracle provider, 54
ORDER BY clause, 624
ORDER keyword, 632
ORDER ODBC reserved word, 634
OUTER keyword, 632
OUTER ODBC reserved word, 634
out-of-the box reports, 8
OUTPUT ODBC reserved word, 634
OVER keyword, 632
OVERLAPS ODBC reserved word, 632

P
@@PACKET_ERRORS variable, 640
@@PACK_RECEIVED variable, 640
@@PACK_SENT variable, 640
PAD ODBC reserved word, 632
padding

tables, 201–203
text boxes, 185–186

page breaks
charts, 121
groupings, 120
lists, 120
matrices, 121
rectangles, 119
tables, 120

page count, 206
page footers, 203–205, 303–305
page headers, 203–205, 303–305
page numbers, 206–207
page width, 87
Page_Load event, 519–524
pagination control, 119–121
Panorama Software Enterprise Reporter, 42
Panorama third-party report designer, 65
parameter properties, 419–420
parameter selection tools, 335–336
parameterized stored procedures, 148
ParameterName property, 556
parameters

cascading parameters, 138–144
data set parameters, 133
defining, 133
multi-select parameters, 144–147
query parameters, 134–135
referencing, 146–147
report parameters

adding, 135
basing on queries, 137
defined, 133, 135–136
filtering data sets, 151–155
filtering data sources, 135–137, 430
GetReportParameters method, 510–512, 602
MDX queries, 170–173

672

NULLIF keyword

26_584979 bindex.qxp 1/27/06 7:41 PM Page 672

passing to a URL, 498–500
ReportTitle parameter, 136–137
retrieving, 510–512
SetReportParameters method, 614
TextColor parameter, 136–137

resolution, 133
separating, 488
URL parameters

Command, 495
device information, 497–498
dsp prefix, 494
dsu prefix, 494
Format, 496–497
pathinfo, 488
rc prefix, 494
rs prefix, 494–497
server, 488
virtualroot, 488

Parameters property, 571
PARSENAME() function, 651
PARTIAL ODBC reserved word, 632
parts of object names, 619–620
PASCAL ODBC reserved word, 632
passing report parameters to URL, 498–500
Password property, 550
pathinfo parameter, 488
PATINDEX() function, 644, 648
PauseSchedule method, 609
PDF rendering extension, 56, 538
PERCENT keyword, 630
performance

caching, 477–478
counters, 480–483
execution log, 478–480
report execution, 476–477

permissions
system permissions, 603–604
user permissions, 599–600

PERMISSIONS() function, 651
PI() function, 645
pie charts, 105, 229, 233–235
placing items, 95
PLAN keyword, 630
platform

overview, 47–48
Report Server

data processing extensions, 53–55
defined, 50
delivery extensions, 57, 60–61
rendering extensions, 55–57
Report Processor, 50–53
Scheduling and Delivery Processor, 57–60
security extensions, 61

Reporting Services Catalog
ReportServer database, 61–63
ReportServerTempDB database, 61, 63–64

Windows service, 61

XML Web service, 49
Pocket PC report file updates, 435
policies

GetPolicies method, 600
GetSystemPolicies method, 604
InheritParentSecurity method, 604
RemoveAllModelItemPolicies method, 610
SetModelItemPolicies method, 612
SetPolicies method, 613
SetSystemPolicies method, 616

population standard deviation, 206
population variance of all values, 206
portal integration, 15
POSITION ODBC reserved word, 632
POWER() function, 645
PRECISION keyword, 630
PRECISION ODBC reserved word, 632
prefixes for URL parameters

dsp, 494
dsu, 494
rc, 494
rs, 494–497

PREPARE ODBC reserved word, 632
PrepareQuery method, 609–610
PRESERVE ODBC reserved word, 632
Preview mode (Report Designer), 85–86
previewing

subreports, 221
tabular reports, 198–199

PRIMARY keyword, 630
PRIMARY ODBC reserved word, 632
PRINT keyword, 630
printing reports, 121–122
PRIOR ODBC reserved word, 632
private data sources, 424
private schedules, 432–433
PRIVILEGES ODBC reserved word, 632
PROC keyword, 630
PROCEDURE keyword, 630
PROCEDURE ODBC reserved word, 632
process for report execution, 427
ProClarity for Reporting Services, 42
Proclarity third-party report designer, 65
program code rendering of reports, 40–41
programmability, 30
programmatic interfaces, 405–406
Project Add Item Template, 128–129
projects

Business Intelligence Projects, 73
creating, 73–74
development phases, 266–268
key success factors, 262–263
naming, 73
solution scope, 263
specifications, 265–266
templates, 73

673

projects

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 673

Prompt User property, 420
properties

BatchHeaderValue property, 617
BookMark property, 212
BorderColor property, 184
BorderStyle property, 184
BorderWidth property, 184–185
charts, 237–238
Columns, 118
CommandText property, 563
CommandTimeout property, 569–570
CommandType property, 570
ConnectionString, 553–554
ConnectionTimeout property, 554
DataSetName property, 215
FieldCount property, 575
Format, 112
GetProperties method, 600
Impersonate property, 549
IntegratedSecurity property, 549–550
ItemNamespaceHeaderValue property, 617
Microsoft Access, 584–586
ParameterName property, 556
Parameters property, 571
Password property, 550
public properties, 617
report properties

data source properties, 420
Execution property, 418–419
parameters properties, 419–420
security properties, 420
subscription properties, 420

ServerInfoHeaderValue property, 617
SetProperties method, 613
SetRoleProperties method, 615
SetScheduleProperties method, 615
SetSubscriptionProperties method, 615–616
system properties

GetSystemProperties method, 604
SetSystemProperties method, 616

UserName property, 550
Value property, 556–557

PUBLIC keyword, 630
PUBLIC ODBC reserved word, 632
public properties, 617
Publisher role, 408
publishing reports

Report Manager, 421
Visual Studio, 421–423

PWDCONPARE() function, 652
PWDENCRYPT() function, 652

Q
queries

defined, 35
MDX queries, 161–164, 171–173

MDX Query Designer, 170–171
Microsoft Access, 176–178
named queries, 350–351
PrepareQuery method, 609–610
report parameters, 137
Report Wizard, 78–82
Structured Query Language (SQL), 127
Sybase Adaptive Server, 179

Query Builder
Add Table dialog, 80
Generic Query Designer, 78
Graphical Query Designer, 78
Report Wizard, 78–82
stored procedures, 149

query languages, 127–128, 130–131
query parameters, 134–135
QUOTENAME() function, 648

R
RADIANS() function, 645
RAISERROR keyword, 630
RAND() function, 645
RANK() function, 647
ranking functions, 646–647
rc URL parameter prefix, 494
RDL (Report Definition Language), 41, 51, 64, 92–93
READ keyword, 630
Read method, 574–575
READ ODBC reserved word, 632
READTEXT keyword, 630
REAL ODBC reserved word, 632
recipes for reports

business scorecard, 289–296
column sort report, 309–314
dynamic grouping, 305–307
gauges, 287–289
greenbar reports, 272–277
multi-field data point charts, 279–284
multiple criterion report filtering, 277–279
sparklines

sales trends, 301–303
team standings, 297–301

top 10 charts, 285–286
RECONFIGURE keyword, 630
records, sorting, 196–197
rectangles

page breaks, 119
rectangle item, 98–99

recursive relationships, 214–217
REFERENCES keyword, 630
REFERENCES ODBC reserved word, 632
referencing

content, 401
objects, 619–620
parameters, 146–147
Web services, 451, 503

674

Prompt User property

26_584979 bindex.qxp 1/27/06 7:41 PM Page 674

RegenerateModel method, 610
regular expressions, 112
relational data warehouses, 25, 27–28
relational databases, 27–28
relationships

Data Source Views, 348–350
recursive relationships, 214–217

RELATIVE ODBC reserved word, 632
Remote Catalog server configuration, 467–468
RemoveAllModelItemPolicies method, 610
removing

roles, 410
rows (tables), 195

@@REMSERVER variable, 639
Render method, 512–517
rendering extensions

Comma-Separated Values (CSV), 57, 538
defined, 38, 538
Excel, 55–57, 538
Extensible Markup Language (XML), 57
HTML, 56, 538
image, 538
PDF, 56, 538
Tagged Image File Format (TIFF), 57
Web Archive (MHTML), 56–57, 538

rendering reports
architecture, 271
embedding server-side reports in a Windows applica-

tion, 527–534
file systems, 512–518
program code, 40–41
ReportViewer control, 526–527, 535
security, 501
URL rendering, 501–502
Web, 518–526
Windows API, 502–509

REPLACE() function, 648
REPLICATE() function, 648
REPLICATION keyword, 630
report access

Report Manager, 403
URL access, 40, 488–489, 492–493

Report Builder
accessing, 370–371
ad hoc reporting, 31
administration, 397
defined, 65, 461
design environment, 11
Designer window, 371
Explorer window, 371
expressions, 394–396
features, 9
Fields window, 371
filter feature, 389–392
layouts

chart layout, 380–384

matrix layout, 376–380
table layout, 372–375

Report Layout window, 371
sort feature, 393

report caching
benefits of, 52
cached instances, 52–53
data sources, 428–429
defined, 52
effect on performance, 477–478
FlushCache method, 596
GetCacheOptions method, 596–597
session cache, 52
SetCacheOptions method, 610–611
snapshots, 53

report content
folder structure, 401–402
hierarchal metaphor, 401
managing

programmatic interfaces, 405–406
Report Manager, 402–404
SQL Server Management Studio, 404–405

references, 401
security, 406–407

report conversion. See converting
report definition

defined, 51
GetReportDefinition method, 600–601
Report Definition Language (RDL), 51
SetReportDefinition method, 613

Report Definition Language (RDL), 41, 51, 64, 92–93
report delivery

e-mail delivery, 433
file share delivery, 434–435
Pocket PC report file updates, 435

report delivery application types
Microsoft Office applications, 30
Web browsers, 29–30

report delivery extensions, 37
report deployment, 447
report design

Analysis Services, 164–170
best practices, 259
Business Intelligence Development Studio (BIDS), 9,

39–40
mobile devices, 254–257
offline report solutions, 257–258
parameters

cascading parameters, 138–144
data set parameters, 133
defining, 133
multi-select parameters, 144–147
query parameters, 134–135
referencing, 146–147
report parameters, 133, 135–137
resolution, 133

675

report design

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 675

report design (continued)
Report Builder, 11, 65
Report Definition Language (RDL), 64
Report Designer

client-side reports, 10–11
Data mode, 85
installing, 461
Layout mode, 85
margins, 88
Microsoft Integrated Development Environment, 9, 85
Preview mode, 85–86
scale units, 86–88
server-side reports, 10
Toolbox, 95

Report Wizard
data sources, 75–77
defined, 36
deployment locations, 84–85
design environment, 72–75
opening, 74
queries, 78–82
Query Builder, 78–82
report structure, 82–84
splash screen, 75

sample data, 264–265
test data, 264–265
third-party designers, 65
Visual Studio 2005, 9, 65

Report Designer
client-side reports, 10–11
Data mode, 85
installing, 461
Layout mode, 85
margins, 88
Microsoft Integrated Development Environment, 9, 85
Preview mode, 85–86
scale units, 86–88
server-side reports, 10
Toolbox, 95

report elements (Microsoft Access), 587
report execution

execution log, 478–480
Execution property, 418–419
execution timeout, 415
GetExecutionOptions method, 597–598
information about, 64
on-demand report generation, 428
process, 427
SetExecutionOptions method, 611
timer-triggered, 477
user-triggered, 477

Report Explorer Web Part, 534
report formats, 30–31
report formatting

alignment of column headers, 386

background color, 386–387
column width adjustments, 386
fonts, 386
number formatting, 386
text adjustments, 385–386

report history snapshots
CreateReportHistorySnapshot method, 592
creating, 430–432
defined, 53, 429
DeleteReportHistorySnapshot method, 594
GetReportHistoryLimit method, 601
GetReportHistoryOptions method, 601
ListReportHistory method, 607
scheduling, 430
SetReportHistoryLimit method, 613–614
SetReportHistoryOptions method, 614
snapshot ID, 500
UpdateReportExecutionSnapshot method, 616

Report Items. See items
Report Layout window (Report Builder), 371
report layouts

chart layout, 380–384
matrix layout, 376–380
table layout, 372–375

Report Log, 415
Report Manager

accessing Report Builder, 370
building your own version, 402
content management, 402–404
data sources, 424–427
Details view, 404
features, 39, 66
folders

folder structure, 401–402
Home folder, 402
inheritance of security settings, 417
moving content between folders, 417
My Reports folder, 415–417

opening, 403–404
publishing reports, 421
report access, 403
Report Definition Language (RDL), 41
report properties

data source properties, 420
Execution property, 418–419
parameter properties, 419–420
security properties, 420
subscription properties, 420

security
inheritance of security settings, 412–413
item-level security, 406, 413
My Reports folder, 416–417
role assignments, 410–413
role-based security, 406–410
system-level security, 406, 413

676

report design (continued)

26_584979 bindex.qxp 1/27/06 7:41 PM Page 676

site settings
execution timeout, 415
My Reports folder, 415–416
report histories, 414
Report Log, 415

subscriptions, 435–437
updating reports, 423
URL access to reports, 40
uses, 402–403

report migration. See migrating reports
Report Model Wizard, 353–357
Report Models

ActiveViews, 65
ad hoc reports, 369–370
AttributeReference Collection Editor, 361–362
CreateModel method, 591
creating

with Analysis Services, 363–366
with SQL server, 341–342, 353–357

Data Source Views, 345–353
data sources, 342–344
defined, 341
deploying, 362–363
GenerateModel method, 596
generation rules, 354–356
modifying, 357–362
RegenerateModel method, 610
statistics, 356

report parameters
adding, 135
basing on queries, 137
defined, 133, 135–136
filtering

data sets, 151–155
data sources, 135–137, 430

GetReportParameters method, 510–512, 602
MDX queries, 170–173
passing to a URL, 498–500
ReportTitle parameter, 136–137
retrieving, 510–512
SetReportParameters method, 614
TextColor parameter, 136–137

Report Parameters dialog, 135, 141–142
Report Processor, 50–53
report projects. See projects
report properties

data source properties, 420
Execution property, 418–419
parameters properties, 419–420
security properties, 420
subscription properties, 420

report publishing
Report Manager, 421
Visual Studio, 421–423

report recipes

business scorecard, 289–296
column sort report, 309–314
dynamic grouping, 305–307
gauges, 287–289
greenbar reports, 272–277
multi-field data point charts, 279–284
multiple criterion report filtering, 277–279
sparklines

sales trends, 301–303
team standings, 297–301

top 10 charts, 285–286
report request handling, 51
report scheduling, 432–433
Report Server

data processing extensions, 53–55
defined, 50, 459–460
delivery extensions, 57, 60–61
rendering extensions, 55–57
Report Processor, 50–53
Scheduling and Delivery Processor, 57–60
security extensions, 61
Web service, 460
Windows service, 460

Report Server Configuration Manager, 462
Report Server databases

defined, 459
ReportServer database, 61–63, 460
ReportServerTempDB database, 61, 63–64, 461

report structure, 82–84
report subscriptions. See subscriptions
report updates, 423
Report Wizard

data sources, 75–77, 128–129
defined, 36
deployment locations, 84–85
design environment, 72–75
opening, 74
queries, 78–82
Query Builder, 78–82
report structure, 82–84
splash screen, 75

reporting lifecycle
authoring phase, 46
defined, 29
delivery phase, 47
management phase, 46–47

reporting projects
Business Intelligence Projects, 73
creating, 73–74
development phases, 266–268
key success factors, 262–263
naming, 73
solution scope, 263
specifications, 265–266
templates, 73

677

reporting projects

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 677

Reporting Services
application integration, 16
components

client tools, 459, 461–462
distribution of, 460
Report Server, 459–460
Report Server databases, 459–461

configuration files, 474
configuring, 480–473
delivery settings, 466
deploying, 458, 468–480
extensibility, 537
features, 24–25
installing

automated installation process, 34
Books Online, 459
command-line installation, 480
components, 459–460
installation directory, 464
setup options, 458
system requirements, 463–464
Windows Installer 2.0, 34

integration with applications, 6, 11–16
Internet Information Services (IIS) virtual directory,

464–465
log files, 465–466
programmability, 30
release details, 19–20
server configurations

Local Catalog, 467
Remote Catalog, 467–468

service credentials, 464
system requirements, 31–32
user profile, 4–5

Reporting Services Catalog
backups, 474–475
ReportServer database, 61–63, 460
ReportServerTempDB database, 61, 63–64, 461

Reporting Services Configuration Tool
(rsconfigtool.exe), 471–472

reporting solutions
alternatives, 27–28
automation, 22–23
business intelligence (BI), 21–22
challenges of existing reporting solutions, 23–24
today’s requirements, 21
traditional methods, 20
users, 26–27

reports
Analysis Services, 160–161
client-side reports, 10
CreateReport method, 591–592
drill-down reports

creating, 208–210
defined, 35, 106

drill-through reports

creating, 212–214
defined, 35, 106–107
ListModelDrillthroughReports method, 606
SetModelDrillthroughReports method, 612

embedding server-side reports, 527–534
footers, 203, 205
form reports, 34
headers, 203–205
intermediate format, 52
linked reports

CreateLinkedReport method, 591
creating, 420–421
GetReportLink method, 601–602
SetReportLink method, 614
uses, 420

margins, 88
matrix reports

creating, 221–224
defined, 35
drill-down functionality, 225–227
subtotals, 224–225
summaries, 224–225

modifying data, 316–320
multicolumn reports, 35
navigating

bookmarks, 212
document map, 210–212
images, 212
links, 212
text boxes, 212

out-of-the box reports, 8
page count, 206
page footers, 303–305
page headers, 303–305
page numbers, 206–207
page width, 87
pagination control, 119–121
printing, 121–122
server-based reports, 8–9
server-side reports, 10
setting size, 87–90
specifications, 265–266
subreports

creating, 218–220
defined, 218
linking to main reports, 218
previewing, 221
uses, 218

tabular reports
creating, 192–198
defined, 34, 108
previewing, 198–199

titles, 385
user-designed reports, 9
uses, 25–27

ReportServer database, 61–63, 460

678

Reporting Services

26_584979 bindex.qxp 1/27/06 7:41 PM Page 678

ReportServerTempDB database, 61, 63–64, 461
ReportTitle parameter, 136–137
ReportViewer control, 526–527, 535
reserved words

future and miscellaneous, 634–636
ODBC Key Words, 633–634
Transact-SQL (T-SQL), 630–632

resizing columns (in tables), 199
resources

accessing
Report Manager, 403
URL access, 492

CreateResource method, 592
GetRenderResource method, 600
GetResourceContents method, 602
SetResourceContents method, 615

RESTORE keyword, 630
RESTRICT keyword, 630
RESTRICT ODBC reserved word, 632
ResumeSchedule method, 610
retrieving report parameters, 510–512
RETURN keyword, 630
return types

ABS() function, 644
ACOS() function, 644
APP_NAME() function, 649
ASCII() function, 648
ASIN() function, 644
ATAN() function, 644
ATN2() function, 644
AVG() function, 641
BINARY_CHECKSUM() function, 642
CAST() function, 643
CEILING() function, 644
CHAR() function, 648
CHARINDEX() function, 648
CHECKSUM() function, 642
CHECKSUM_AGG() function, 642
COALESCE() function, 649
COLLATIONPROPERTY() function, 649
COL_LENGTH() function, 645
COL_NAME() function, 645
COLUMNPROPERTY() function, 645
@@CONNECTIONS variable, 640
CONVERT() function, 643
COS() function, 644
COT() function, 644
COUNT() function, 641
COUNT_BIG() function, 641
@@CPU_BUSY variable, 640
CURRENT_TIMESTAMP() function, 650
CURRENT_USER() function, 650
@@CURSOR_ROWS variable, 639
CURSOR_STATUS() function, 643
DATABASEPROPERTY() function, 646

DATABASEPROPERTYEX() function, 646
DATALENGTH() function, 650
DATEADD() function, 643
DATEDIFF() function, 643
@@DATEFIRST variable, 638
DATENAME() function, 643
DATEPART() function, 643
DAY() function, 644
DB_ID() function, 646
DB_NAME() function, 646
@@DBTS variable, 638
DEGREES() function, 644
DENSE_RANK() function, 646
DIFFERENCE() function, 648
ENCRYPT() function, 650
@@ERROR variable, 640
EXP() function, 645
@@FETCH_STATUS variable, 639
FILE_ID() function, 646
FILE_NAME() function, 646
FLOOR() function, 645
Fn_Get_SQL() function, 650
Fn_HelpCollations() function, 650
fn_listextendedproperty() function, 646
Fn_ServerSharedDrives() function, 650
fn_trace_geteventinfo() function, 647
fn_trace_getfilterinfo() function, 647
fn_trace_getinfo() function, 647
fn_trace_gettable() function, 647
Fn_VirtualFileStats() function, 650
FORMATMESSAGE() function, 650
FULLTEXTCATALOGPROPERTY() function, 646
FULLTEXTSERVICEPROPERTY() function, 646
GETANSINULL() function, 650
GETDATE() function, 644
GETUTCDATE() function, 644
GROUPING() function, 641
HAS_DBACCESS() function, 647
HOST_ID() function, 650
HOST_NAME() function, 651
‘ID variable, 639
IDENT_CURRENT() function, 651
IDENT_INCR() function, 651
IDENTITY() function, 651
@@IDENTITY variable, 640
IDENT_SEED() function, 651
@@IDLE variable, 640
INDEX_COL() function, 646
INDEXKEY_PROPERTY() function, 646
INDEXPROPERTY() function, 646
@@IO_BUSY variable, 640
ISDATE() function, 651
IS_MEMBER() function, 647
ISNULL() function, 651
ISNUMERIC() function, 651

679

return types

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 679

return types (continued)
IS_SRVROLEMEMBER() function, 647
@@LANGID variable, 638
@@LANGUAGE variable, 638
LEFT() function, 648
LEN() function, 648
@@LOCK_TIMEOUT variable, 638
LOG() function, 645
LOG10() function, 645
LOWER() function, 648
LTRIM() function, 648
MAX() function, 641
@@MAX_CONNECTIONS variable, 638
@@MAX_PRECISION variable, 638
@@MICROSOFTVERSION variable, 638
MIN() function, 641
MONTH() function, 644
NCHAR() function, 648
@@NESTLEVEL variable, 639
NEWID() function, 651
NTILE(n) function, 647
NULLIF() function, 651
OBJECT_ID() function, 646
OBJECT_NAME() function, 646
OBJECTPROPERTY() function, 646
@@OPTIONS variable, 638–639
@@PACKET_ERRORS variable, 640
@@PACK_RECEIVED variable, 640
@@PACK_SENT variable, 640
PARSENAME() function, 651
PATINDEX() function, 644, 648
PERMISSIONS() function, 651
PI() function, 645
POWER() function, 645
PWDCONPARE() function, 652
PWDENCRYPT() function, 652
QUOTENAME() function, 648
RADIANS() function, 645
RAND() function, 645
RANK() function, 647
@@REMSERVER variable, 639
REPLACE() function, 648
REPLICATE() function, 648
REVERSE() function, 648
RIGHT() function, 649
ROUND() function, 645
@@ROWCOUNT variable, 640
ROWCOUNT_BIG() function, 652
ROW_NUMBER() function, 647
RTRIM() function, 649
SCOPE_IDENTITY() function, 652
@@SERVERNAME variable, 639
SERVERPROPERTY() function, 652
@@SERVICENAME variable, 639
SESSIONPROPERTY() function, 652

SESSION_USER function, 652
SIGN() function, 645
SIN() function, 645
SOUNDEX() function, 649
SPACE() function, 649
SQRT() function, 645
SQUARE() function, 645
STATS_DATE() function, 652
STDEV() function, 642
STR() function, 649
STUFF() function, 649
SUBSTRING() function, 649
SUM() function, 642
SUSER_SID() function, 647
SUSER_SNAME() function, 647
SYSTEM_USER function, 652
TAN() function, 645
TEXTPTR() function, 644
@@TEXTSIZE variable, 639
TEXTVALID() function, 644
@@TIMETICKS variable, 640
@@TOTAL_ERRORS variable, 640
@@TOTAL_READ variable, 640
@@TOTAL_WRITE variable, 640
@@TRANCOUNT variable, 640
UNICODE() function, 649
UPPER() function, 649
USER_ID() function, 647
USER_NAME() function, 652
VAR() function, 642
VARP() function, 642
@@VERSION variable, 639
YEAR() function, 644

returning
row numbers, 206
values

first value of a range of values, 205
greatest value of a range of values, 205
last value of a range of values, 205
lowest value of a range of values, 206
one of a list of values based on a provided integer

index value, 249
REVERSE() function, 648
REVOKE keyword, 630
REVOKE ODBC reserved word, 632
RIGHT() function, 248, 649
RIGHT keyword, 630
RIGHT ODBC reserved word, 632
role assignments

adding users and groups, 413
creating, 410–412
inheritance of security settings, 412–413
modifying, 413
securable objects, 413

role-based security (Report Manager), 406–410

680

return types (continued)

26_584979 bindex.qxp 1/27/06 7:41 PM Page 680

roles
adding, 408
Browser, 407
Content Manager, 408
CreateRole method, 592–593
creating, 408–410
DeleteRole method, 594
deleting, 410
GetRoleProperties method, 602
item-level, 407–408
ListRoles method, 607
My Reports, 407
Publisher, 408
removing, 410
SetRoleProperties method, 615
Site User, 407
System Administrator, 407
system-level, 407

ROLLBACK keyword, 630
ROLLBACK ODBC reserved word, 632
ROUND() function, 645
ROWCOUNT keyword, 630
@@ROWCOUNT variable, 640
ROWCOUNT_BIG() function, 652
ROWGUIDCOL keyword, 631
ROWNUMBER() function, 206
ROW_NUMBER() function, 647
ROWS ODBC reserved word, 632
rows (tables)

accumulative aggregation of rows, 206
adding, 195
counting, 205
deleting, 195
detail row, 195
footer row, 195, 197
header row, 195, 197
hiding, 316
removing, 195
returning row numbers, 206
showing, 316
sorting, 196–197

rs URL parameter prefix, 494–497
RS utility, 448–449
rsconfig.exe utility, 472–473
rsconfigtool.exe utility, 471–472
rs.exe utility, 473
rskeymgmt.exe utility, 473, 475
RSReportServer.Config file, 39
RTRIM() function, 649
RULE keyword, 631
rules for Report Models, 354–356
Rules Generation Wizard, 357
running stored procedures, 151
RUNNINGVALUE() function, 206

S
sales trends, 301–303
sample data, 264–265
sample databases, 33–34
sample deployment script, 451–454
SAVE keyword, 631
scale units, 86–88
scales, 286–289
scatter charts, 229
schedule-based events, 60
schedules

CreateSchedule method, 593
DeleteSchedule method, 594
GetScheduleProperties method, 602–603
ListScheduledReports method, 607
ListSchedules method, 607
PauseSchedule method, 609
ResumeSchedule method, 610
Scheduling and Delivery Processor, 59
SetScheduleProperties method, 615

schedule-triggered subscriptions, 436–437
scheduling

report history snapshots, 430
reports

private schedules, 432–433
shared schedules, 432–433

subscriptions, 436–437
Scheduling and Delivery Processor, 57–60
SCHEMA keyword, 631
SCHEMA ODBC reserved word, 632
scope for reporting projects, 263
SCOPE_IDENTITY() function, 652
scorecards

defined, 289–290
indicators, 291
Key Performance Indicators (KPIs), 290–291
synchronizing charts, 294–296
targets, 290–291
variance, 292–294

screen size (and report design), 255–257
scripting extensions, 38
scripts

automation, 446–447
comments, 629
creating, 448–451
generating, 454–455
Imports statements, 450
RS utility, 448–449
rs.exe utility, 473
sample deployment script, 451–454
Web service references, 451

SCROLL ODBC reserved word, 633
SECOND ODBC reserved word, 633
SECTION ODBC reserved word, 633

681

SECTION ODBC reserved word

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 681

securable objects (role assignments), 413
Secure Sockets Layer (SSL), 38–39
SecureConnectionLevel element, 39
security

authentication, 518
authorization, 518
content, 406–407
custom assembly, 253
data processing extensions, 576–577
Integrated Windows Security, 538
integration with forms and applications, 501
rendering reports, 501
Report Manager

inheritance of security settings, 412–413
item-level security, 406, 413
My Reports folder, 416–417
role assignments, 410–413
role-based security, 406–410
system-level security, 406, 413

security extensions, 37–38, 61, 538
security functions, 647
security inheritance

folders, 417
role assignments, 412

security properties, 420
SELECT command, 620–621
SELECT INFO command, 622
SELECT keyword, 631
SELECT ODBC reserved word, 633
selecting tables, 194
separating parameters, 488
server components, 33
server configurations

Local Catalog, 467
Remote Catalog, 467–468

Server Explorer, 148–149
server parameter, 488
server-based reports, 8–9
ServerInfoHeaderValue property, 617
@@SERVERNAME variable, 639
SERVERPROPERTY() function, 652
server-side applications, 5–6
server-side reports, 10
service credentials, 464
@@SERVICENAME variable, 639
session cache, 52
SESSION ODBC reserved word, 633
SESSIONPROPERTY() function, 652
SESSION_USER function, 652
SESSION_USER keyword, 631
SESSION_USER ODBC reserved word, 633
SET keyword, 631
SET ODBC reserved word, 633
SET operator, 626
SetCacheOptions method, 610–611
SetDataDrivenSubscriptionProperties method, 611

SetDataSourceContents method, 611
SetExecutionOptions method, 611
SetItemDataSources method, 612
SetModelDefinition method, 612
SetModelDrillthroughReports method, 612
SetModelItemPolicies method, 612
SetPolicies method, 613
SetProperties method, 613
SetReportDefinition method, 613
SetReportHistoryLimit method, 613–614
SetReportHistoryOptions method, 614
SetReportLink method, 614
SetReportParameters method, 614
SetResourceContents method, 615
SetRoleProperties method, 615
SetScheduleProperties method, 615
SetSubscriptionProperties method, 615–616
SetSystemPolicies method, 616
SetSystemProperties method, 616
setting report size, 87–90
SETUSER keyword, 631
shared data sources, 424
shared schedules, 432–433
SharePoint Services, 15
SharePoint Web Parts, 66, 534–535
showing rows/columns, 316
SHUTDOWN keyword, 631
SIGN() function, 645
Simple Mail Transfer Protocol (SMTP) server, 60
SIN() function, 645
single sign-on, 538
site settings (Report Manager)

execution timeout, 415
My Reports folder, 415–416
report histories, 414
Report Log, 415

Site User role, 407
SIZE ODBC reserved word, 633
SmallInt data type, 112
SMALLINT ODBC reserved word, 633
smart client applications, 370
SMTP (Simple Mail Transfer Protocol) server, 60
snapshot update events, 60

snapshots
CreateReportHistorySnapshot method, 592
creating, 430–431
defined, 53, 429
DeleteReportHistorySnapshot method, 594
GetReportHistoryLimit method, 601
GetReportHistoryOptions method, 601
ListReportHistory method, 607
SetReportHistoryLimit method, 613–614
SetReportHistoryOptions method, 614
snapshot ID, 500
UpdateReportExecutionSnapshot method, 616

682

securable objects

26_584979 bindex.qxp 1/27/06 7:41 PM Page 682

snapshot-triggered subscriptions, 436
software developers, 4–5
solution scope for reporting projects, 263
SOME keyword, 631
SOME ODBC reserved word, 633
sorting reports

column headers, 308–309
Interactive Sort feature, 308–309
records, 196–197
Report Builder, 393

SOUNDEX() function, 649
SPACE() function, 649
SPACE ODBC reserved word, 633
sparklines

sales trends, 301–303
team standings, 297–301

specifications for reports, 265–266
SQL ODBC reserved word, 633
SQL Server Books Online, 33
SQL Server Management Studio

administration, 461–462
content management, 404–405
data sources, 424

SQL Server provider, 54
SQL Server Reporting Services (SSRS). See Reporting

Services
SQL (Structured Query Language), 127
SQLCA ODBC reserved word, 633
SQLCODE ODBC reserved word, 633
SQLERROR ODBC reserved word, 633
SQLSTATE ODBC reserved word, 633
SQLWARNING ODBC reserved word, 633
SQRT() function, 645
SQUARE() function, 645
SSL (Secure Sockets Layer), 38–39
SSRS (SQL Server Reporting Services). See Reporting

Services
stacked charts, 232
standard deviation, 206
standard formatting, 114–115
standard subscriptions

CreateSubscription method, 593
defined, 30, 38
DeleteSubscription method, 594
GetSubscriptionProperties method, 603
ListSubscriptions method, 608
ListSubscriptionsUsingDataSource method, 608
managing, 436
Scheduling and Delivery Processor, 59
SetSubscriptionProperties method, 615–616

statistical variables. See system statistical variables
statistics

Data Source Views, 356
Report Models, 356

STATISTICS keyword, 631
STATS_DATE() function, 652
STDEV() function, 111, 206, 642
STDEVP() function, 111, 206, 642
stock charts, 106, 229
stored data source credentials, 426
stored procedures

creating, 148–150
naming, 149
parameterized stored procedures, 148
Query Builder, 149
running, 151
Sybase Adaptive Server, 179

STR() function, 649
strings

converting values to strings, 248
string manipulation functions, 648–649

structure of reports, 82–84
Structured Query Language (SQL), 127
STUFF() function, 649
subreport item, 102
subreports

creating, 218–220
defined, 218
linking to main reports, 218
previewing, 221
uses, 218

subscription properties, 420
subscriptions

automating, 437–446
data-driven subscriptions

CreateDataDrivenSubscription method, 590
defined, 30, 38
GetDataDrivenSubscriptionProperties method, 597
managing, 437
Scheduling and Delivery Processor, 59
SetDataDrivenSubscriptionProperties method, 611

managing, 435–437
schedule-triggered subscriptions, 436–437
snapshot-triggered subscriptions, 436
standard subscriptions

CreateSubscription method, 593
defined, 30, 38
DeleteSubscription method, 594
GetSubscriptionProperties method, 603
ListSubscriptions method, 608
ListSubscriptionsUsingDataSource method, 608
managing, 436–437
Scheduling and Delivery Processor, 59
SetSubscriptionProperties method, 615–616

SUBSTRING() function, 649
.SUBSTRING() function, 248
SUBSTRING ODBC reserved word, 633
subtotals, 111–112, 224–225
success factors for reporting projects, 262–263

683

success factors for reporting projects

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 683

SUM() function, 111, 206, 642
SUM ODBC reserved word, 633
sum of all values, 206
summaries (matrix reports), 224–225
supported providers for data processing extensions,

54–55
SUSER_SID() function, 647
SUSER_SNAME() function, 647
Sybase Adaptive Server, 179–180
symmetric encryption, 475
synchronizing charts, 294–296
syntax for URLs, 488–489
System Administrator role, 407
system administrators, 4–5
system functions, 649–652
system global variables. See variables
System Monitor, 481–483
System namespace, 450
system permissions, 603–604
system policies

GetSystemPolicies method, 604
SetSystemPolicies method, 616

system properties
GetSystemProperties method, 604
SetSystemProperties method, 616

system requirements, 31–32, 463–464
system statistical variables

@@CONNECTIONS, 640
@@CPU_BUSY, 640
@@IDLE, 640
@@IO_BUSY, 640
@@PACKET_ERRORS, 640
@@PACK_RECEIVED, 640
@@PACK_SENT, 640
@@TIMETICKS, 640
@@TOTAL_ERRORS, 640
@@TOTAL_READ, 640
@@TOTAL_WRITE, 640

system variables
@@ERROR, 640
@@IDENTITY, 640
@@ROWCOUNT, 640
@@TRANCOUNT, 640

System.Collections namespace, 450
System.Data namespace, 450
System.Diagnostics namespace, 450
System.IO namespace, 450
system-level roles, 407
system-level security (Report Manager), 406, 413
SYSTEM_USER function, 652
SYSTEM_USER keyword, 631
SYSTEM_USER ODBC reserved word, 633
System.Web.Services namespace, 450
System.Xml namespace, 450

T
TABLE keyword, 631
table layout, 372–375
TABLE ODBC reserved word, 633
tables

borders, 194
columns

adding, 197, 199
dynamic columns, 315–316
hiding, 316
merging, 199–200
resizing, 199
showing, 316

data regions, 108–109, 192–197
fonts, 197
padding, 201–203
page breaks, 120
rows

accumulative aggregation of rows, 206
adding, 195
counting, 205
deleting, 195
detail row, 195
footer row, 195, 197
header row, 195, 197
hiding, 316
removing, 195
returning row numbers, 206
showing, 316
sorting, 196–197

selecting, 194
text styles, 197
tooltips, 195

tabular reports
creating, 192–198
defined, 34, 108
previewing, 198–199

Tagged Image File Format (TIFF), 57
TAN() function, 645
targets, 290–291
tasks

ListTasks method, 608
security, 407

team standings, 297–301
templates for projects, 73
TEMPORARY ODBC reserved word, 633
test data, 264–265
testing

DataSetDataProcessing extension, 577–580
expressions for null values, 249

text
adjustments, 385–386
editing, 385

684

SUM() function

26_584979 bindex.qxp 1/27/06 7:41 PM Page 684

text boxes
BorderColor property, 184
BorderStyle property, 184
BorderWidth property, 184–185
bound textbox items, 96
navigating reports, 212
padding, 185–186
setting properties, 96–97, 184–185
uses, 184

text functions, 644
text styles, 197
Textbox Properties dialog, 136
TextColor parameter, 136–137
TEXTPTR() function, 644
TEXTSIZE keyword, 631
@@TEXTSIZE variable, 639
TEXTVALID() function, 644
Thawte certificate authority, 39
THEN keyword, 631
THEN ODBC reserved word, 633
third-party designers, 65
third-party product integration, 41–42
3-D modeling

charts (in general), 242–244
column charts, 230–232
doughnut charts, 233–234
pie charts, 233–234

TIFF (Tagged Image File Format), 57
time

DATEADD() function, 643
DATEDIFF() function, 643
DATENAME() function, 643
DATEPART() function, 643
GETDATE(), 644
GETUTCDATE() function, 644
Greenwich Mean Time (GMT), 644
Universal Time Zone (UTC), 644

TIME ODBC reserved word, 633
timeout settings for connections, 554
timer-triggered report execution, 477
TIMESTAMP ODBC reserved word, 633
@@TIMETICKS variable, 640
TIMEZONE_HOUR ODBC reserved word, 633
TIMEZONE_MINUTE ODBC reserved word, 633
titles, 385
TO keyword, 631
TO ODBC reserved word, 633
Toolbox (Report Designer), 95
tools

RS utility, 448–449
rsconfig.exe, 472–473
rsconfigtool.exe, 471–472
rs.exe, 473
rskeymgmt.exe, 473–475

tooltips, 195
top 10 charts, 285–286
TOP keyword, 631
TOP predicate, 621
TOSTRING() function, 248
@@TOTAL_ERRORS variable, 640
@@TOTAL_READ variable, 640
@@TOTAL_WRITE variable, 640
TRAILING ODBC reserved word, 633
TRAN keyword, 631
@@TRANCOUNT variable, 640
TRANSACTION keyword, 631
TRANSACTION ODBC reserved word, 633
transactional data sources, 263–264
Transact-SQL (T-SQL)

ALTER TABLE statement, 627
CASE predicate, 625
COMPUTE BY clause, 624
COMPUTE clause, 624
CREATE DATABASE statement, 627
CREATE DEFAULT statement, 627–628
CREATE PARTITION FUNCTION statement, 629
CREATE PARTITION SCHEME statement, 629
CREATE PROCEDURE statement, 628
CREATE RULE statement, 628
CREATE SCHEMA statement, 629
CREATE TABLE statement, 628
CREATE TRIGGER statement, 628
CREATE VIEW statement, 629
DECLARE @local_variable statement, 626
DELETE statement, 626
EXCEPT operator, 624
FOR clause, 624
FROM clause, 622
GROUP BY clause, 623
HAVING clause, 623
INSERT statement, 625
INTERSECT operator, 624
LIKE operator, 626–627
OPTION clause, 624–625
ORDER BY clause, 624
reserved words, 630–632
SELECT command, 620–621
SELECT INFO command, 622
SET operator, 626
TOP predicate, 621
UNION operator, 623–624
UPDATE statement, 625
WHERE clause, 622–623
WITH clause, 620

TRANSLATE ODBC reserved word, 633
TRANSLATION ODBC reserved word, 633
transparency of images, 102
TRIGGER keyword, 631

685

TRIGGER keyword

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 685

triggers for subscriptions, 436–437
TRIM ODBC reserved word, 634
TRUE ODBC reserved word, 634
TRUNCATE keyword, 631
TSEQUAL keyword, 631
T-SQL (Transact-SQL). See Transact-SQL (T-SQL)
Tufte, Edward (creator of sparklines), 297
Turley, Paul, Beginning Transact-SQL, 80

U
UNICODE() function, 649
Unified Dimensional Model (UDM) (Analysis Services), 55
UNION keyword, 631
UNION ODBC reserved word, 634
UNION operator, 623–624
UNIQUE keyword, 631
UNIQUE ODBC reserved word, 634
Universal Time Zone (UTC), 644
UNKNOWN ODBC reserved word, 634
UPDATE keyword, 631
UPDATE ODBC reserved word, 634
UPDATE statement, 625
UpdateReportExecutionSnapshot method, 616
UPDATETEXT keyword, 631
updating

data sources, 426–427
reports, 423

UPPER() function, 649
UPPER ODBC reserved word, 634
URL access

to data sources, 490–492
to folders, 489–490
to reports, 40, 488–489, 492–493
to resources, 492

URL parameters
Command, 495
device information, 497–498
Format, 496–497
pathinfo, 488
prefixes

dsp, 494
dsu, 494
rc, 494
rs, 494–497

server, 488
virtualroot, 488

URL rendering of reports, 501–502
URL syntax, 488–489
USAGE ODBC reserved word, 634
USE keyword, 631
user authentication, 406, 518
user authorization, 518
user interaction, 12–13
user interface

custom user interface, 66–67
Report Manager, 66
SharePoint Web Parts, 66
Visual Studio controls, 66

USER keyword, 631
USER ODBC reserved word, 634
user permissions, 599–600
user profile, 4–5
user-designed reports, 9
USER_ID() function, 647
USER_NAME() function, 652
UserName property, 550
users

Logoff method, 609
LogonUser method, 608–609
SESSION_USER function, 652
SYSTEM_USER function, 652
USER_NAME() function, 652

user-supplied data source credentials, 426
user-triggered report execution, 477
USING ODBC reserved word, 634
UTC (Universal Time Zone), 644
utilities

RS utility, 448–449
rsconfig.exe, 472–473
rsconfigtool.exe, 471–472
rs.exe, 473
rskeymgmt.exe, 473–475

V
ValidateCommandText method, 564–565
ValidateExtensionSettings method, 616–617
ValidateFieldNames method, 566–568
ValidateFiltering method, 568–569
ValidateSorting method, 569
ValidateTableName method, 565–566
VALUE ODBC reserved word, 634
Value property, 556–557
values

averaging, 205
converting to strings, 248
counting, 205
expressions, 206
population variance of all values, 206
returning

first value of a range of values, 205
greatest value of a range of values, 205
last value of a range of values, 205
lowest value of a range of values, 206
one of a list of values based on a provided integer

index value, 249
standard deviation, 206
sum of all values, 206
URL parameters

686

triggers for subscriptions

26_584979 bindex.qxp 1/27/06 7:41 PM Page 686

Command parameter, 495
Format parameter, 496–497

variance, 206, 292–294
VALUES keyword, 631
VALUES ODBC reserved word, 634
VAR() function, 111, 206, 642
VARCHAR ODBC reserved word, 634
variables

configuration variables, 638–639
@@CONNECTIONS, 640
@@CPU_BUSY, 640
cursor variables, 639
@@CURSOR_ROWS, 639
@@DBTS, 638
@@DATEFIRST, 638
differences from functions, 637
@@ERROR, 640
@@FETCH_STATUS, 639
‘ID, 639
@@IDENTITY, 640
@@IDLE, 640
@@IO_BUSY, 640
@@LANGID, 638
@@LANGUAGE, 638
@@LOCK_TIMEOUT, 638
@@MAX_CONNECTIONS, 638
@@MAX_PRECISION, 638
@@MICROSOFTVERSION, 638
@@NESTLEVEL, 639
@@OPTIONS, 638–639
@@PACKET_ERRORS, 640
@@PACK_RECEIVED, 640
@@PACK_SENT, 640
@@REMSERVER, 639
@@ROWCOUNT, 640
@@SERVERNAME, 639
system statistical variables, 640
system variables, 640
@@TEXTSIZE, 639
@@TIMETICKS, 640
@@TOTAL_ERRORS, 640
@@TOTAL_READ, 640
@@TOTAL_WRITE, 640
@@TRANCOUNT, 640
@@VERSION, 639

variance, 206, 292–294
VARP() function, 111, 206, 642
VARYING keyword, 631
VARYING ODBC reserved word, 634
VB 6.0 functions, 248
VB.NET interfaces, 539
VBScript functions, 248
vendors, 27
Verisign certificate authority, 39
@@VERSION variable, 639
VIEW keyword, 631

VIEW ODBC reserved word, 634
viewing reports offline, 94–95
views (Data Source Views)

code behind, 351–353
diagrams, 347–348
named queries, 350–351
relationships, 348–350
Report Models, 345–351, 353
statistics, 356

virtual directory (in IIS), 464–465
Virtual Reality Modeling Language (VRML), 98
virtualroot parameter, 488
Visual Basic language, 249–250
Visual Studio

controls, 66
features, 9, 65
IntelliSense, 449–450
publishing reports, 421–423
Visual Source Safe integration, 422

Visual Studio .NET, 23–24
VRML (Virtual Reality Modeling Language), 98

W
WAITFOR keyword, 631
warehouses, 264
warnings, 254
Web

authentication, 518
authorization, 518
Page_Load event, 519–524
report rendering, 518–526

Web application integration, 14–15
Web Archive rendering extension, 56–57, 538
web browsers

common uses, 461
compatibility, 94
report delivery, 29–30
URL access to reports, 40, 488

web farm, 468–470
Web Parts, 66, 534–535
Web service

Intranet and Internet report access, 14
performance counters, 482–483
referencing, 451, 503
XML Web service, 49

Web service (Report Server), 460
Web sites

Infragistics suite, 336
KBAlertz.com, 459
Microsoft Developer Network (MSDN), 459

WHEN keyword, 632
WHEN ODBC reserved word, 634
WHENEVER ODBC reserved word, 634
WHERE clause, 622–623

687

WHERE clause

In
de

x

26_584979 bindex.qxp 1/27/06 7:41 PM Page 687

WHERE keyword, 632
WHERE ODBC reserved word, 634
WHILE keyword, 632
Windows API for rendering reports, 502–509
Windows application integration, 15–16
Windows Installer 2.0, 34
Windows service, 61
Windows Service performance counters, 483
Windows service (Report Server), 460
Windows SharePoint Services (WSS), 15
Windows smart client applications, 370
WITH clause, 620
WITH keyword, 632
WITH ODBC reserved word, 634
wizards

Data Source View Wizard, 346–347
Data Source Wizard, 343–344
Image Wizard, 98–101
Report Model Wizard, 353–357
Report Wizard

data sources, 75–77, 128–129
defined, 36
deployment locations, 84–85
design environment, 72–74
opening, 74
queries, 78–82
Query Builder, 78–82
report structure, 82–84
splash screen, 75

Rules Generation Wizard, 357
WORK ODBC reserved word, 634
WRITE ODBC reserved word, 634
WRITETEXT keyword, 632
WSS (Windows SharePoint Services), 15

X
x-axis (charts), 241
XML (Extensible Markup Language) rendering

extension, 57
XML format, 31
XML Web service, 49

Y
y-axis (charts), 241
YEAR() function, 644
YEAR ODBC reserved word, 634

Z
ZONE ODBC reserved word, 634

688

WHERE keyword

26_584979 bindex.qxp 1/27/06 7:41 PM Page 688

