Advanced Perl Programming

http://kickme.to/tiger/

http://kickme.to/tiger/

X

1

gy
=
<

By Sriram Srinivasan; ISBN 1-56592-220-4, 434 pages.
First Edition, August 1997.
(See the catalog page for this book.)

Search the text of Advanced Perl Programming.

Index

Table of Contents

Preface

Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:

Data References and Anonymous Storage
| mplementing Complex Data Structures
Typeglobs and Symbol Tables
Subroutine References and Closures

Eva

Modules

Object-Oriented Programming

Chapter 8: Object Orientation: The Next Few Steps
Chapter 9: Tie

Chapter 10: Persistence

Chapter 11:

I mplementing Object Persistence

Chapter 12:

Networking with Sockets

Chapter 13:

Networking: |mplementing RPC

Chapter 14:

User Interfaces with Tk

Chapter 15:

GUI Example: Tetris

Chapter 16:

GUI Example: Man Page Viewer

Chapter 17:

Template-Driven Code Generation

Chapter 18:

Extending Perl:A First Course

Chapter 19:

Embedding Perl: The Easy Way

Chapter 20:

Perl Internals

Appendix A: Tk Widget Reference

Appendix B: Syntax Summary

http://www.oreilly.com/catalog/advperl/
file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

Examples

The Perl CD Bookshelf
Navigation

Copyright © 1999 O'Reilly & Associates. All Rights Reserved.

file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/examples/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/

Preface Next: Why
Perl?

Preface

Contents:

The Case for Scripting

Why Perl?

What Must | Know?

The Book's Approach
Conventions

Resources

Perl Resources

Wed Liketo Hear from You
Acknowledgments

Errors, like straws, upon the surface flow;
He who would search for pearls must dive below.

- John Dryden, All for Love, Prologue

Thisbook has two goals. to make you a Perl expert, and, at a broader level, to supplement your current
arsenal of techniques and tools for crafting applications. It covers advanced features of the Perl language,
teaches you how the perl interpreter works, and presents areas of modern computing technology such as
networking, user interfaces, persistence, and code generation.

Y ou will not merely dabble with language syntax or the APIs of different modules as you read this book.
Y ou will spend just as much time dealing with real-world issues such as avoiding deadlocks during
remote procedure calls and switching smoothly between data storage using aflat file or a database.
Along the way, you'll become comfortable with such Perl techniques as run-time evaluation, nested data
structures, objects, and closures.

This book expects you to know the essentials of Perl - aminimal subset, actually; you must be
conversant with the basic data types (scalars, arrays, and hashes), regular expressions, subroutines, basic
control structures (i f, whi | e, unl ess, for, f oreach), filel/O, and standard variables such as
@ARGV and $. Should this not be the case, | recommend Randal Schwartz and Tom Christiansen's
excellent tutorial, Learning Perl, Second Edition.

The book - in particular, this preface - substantiates two convictions of mine.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm

Thefirst isthat atwo-language approach is most appropriate for tackling typical large-application
projects. a scripting language (such as Perl, Visual Basic, Python, or Tcl) in conjunction with a systems
programming language (C, C++, Java). A scripting language has weak compile-time type checking, has
high-level data structures (for instance, Perl's hash table is a fundamental type; C has no such thing), and
does not typically have a separate compilation-linking phase. A systems programming language is
typically closer to the operating system, has fine-grained data types (C has short, int, long, unsigned int,
float, double, and so on, whereas Perl has a scalar datatype), and istypically faster than interpreted
languages. Perl spans the language spectrum to a considerable degree: It performs extremely well asa
scripting language, yet gives you low-level access to operating system AP, is much faster than Java (as
this book goes to press), and can optionally be compiled.

The distinction between scripting and systems programming languages is a contentious one, but it has
served me well in practice. This point will be underscored in the last three chapters of the book (on
extending Perl, embedding Perl, and Perl internals).

| believe that neither type of language is properly equipped to handle sophisticated application projects
satisfactorily on its own, and | hope to make the case for Perl and C/C++ as the two-language
combination mentioned earlier. Of course, it would be most gratifying, or totally tubular, as the local
kids are wont to say, if the design patterns and lessons learned in this book help you even if you were to
choose other languages.

The second conviction of mineisthat to deploy effective applications, it is not enough just to know the
language syntax well. Y ou must know, in addition, the internals of the language's environment, and you
must have a solid command of technology areas such as networking, user interfaces, databases, and so
forth (specially issues that transcend language-specific libraries).

Let'slook at these two pointsin greater detail.

The Case for Scripting

| started my professional life building entire applications in assembler, on occasion worrying about trying
to save 100 bytes of space and optimizing away that one extrainstruction. C and PL/M changed my
world view. | found myself getting a chance to reflect on the application as awhole, on the life-cycle of
the project, and on how it was being used by the end-user. Still, where efficiency was paramount, as was
the case for interrupt service routines, | continued with assembler. (Looking back, | suspect that the
PL/M compiler could generate far better assembly code than |, but my vanity would have prevented such
an admission.)

My applications' requirements continued to increase in complexity; in addition to dealing with graphical
user interfaces, transactions, security, network transparency, and heterogeneous platforms, | began to get
involved in designing software architectures for problems such as aircraft scheduling and network
management. My own efficiency had become a much more limiting factor than that of the applications.
While object orientation was making me more effective at the design level, the implementation language,
C++, and the libraries and tools available weren't helping me raise my level of programming. | was still
dealing with low-level issues such as constructing frameworks for dynamic arrays, meta-data, text
manipulation, and memory management. Unfortunately, environments such as Eiffel, Smalltalk, and the

NeXT system that dealt with these issues effectively were never avery practical choice for my
organization. Y ou might understand why | have now become a raucous cheerleader for Java as the
application development language of choice. The story doesn't end there, though.

Lately, the realization has slowly crept up on methat | have been ignoring two big time-sinks at either
end of a software life-cycle. At the designing end, sometimes the only way to clearly understand the
problem isto create an electronic storyboard (prototype). And later, once the software is implemented,
users are always persnickety (er, discerning) about everything they can see, which means that even
simple form-based interfaces are constantly tweaked and new types of reports are constantly requested.
And, of course, the sharper devel opers wish to move on to the next project as soon as the software is
implemented. These are occasions when scripting languages shine. They provide quick turnaround,
dynamic user interfaces, terrific facilities for text handling, run-time evaluation, and good connections to
databases and networks. Best of all, they don't need prima donna programmers to baby-sit them. Y ou can
focus your attention on making the application much more user-centric, instead of trying to figure out
how to draw a pie chart using Xlib's[1] lines and circles.

[1] X Windows Library. Someone once mentioned that programming X Windowsislike
taking the square root of a number using Roman numerals!

Clearly, it isnot practical to develop complex applications in a scripting language alone; you still want to
retain features such as performance, fine-grained data structures, and type safety (crucial when many
programmers are working on one problem). Thisiswhy | am now an enthusiastic supporter of using
scripting languages along with C/C++ (or Java when it becomes practical in terms of performance).
Many people have been reaping enormous benefits from this component-based approach, in which the
components are written in C and woven together using a scripting language. Just ask any of the zillions
of Visua Basic, PowerBuilder, Delphi, Tcl, and Perl programmers - or, for that matter, Microsoft Office
and Emacs users.

For a much more informed and eloquent (not to mention controversial) testimonial to the scripting
approach, please read the paper by Dr. John Ousterhout,[2] available at

http://www.scripti cs.com/peopl &/john.ousterhout/.

[2] Inventor of Tcl (Tool Command Language, pronounced “tickle").

For an even better feel for this argument, play with the Tcl plug-in for Netscape (from the same address),
take alook at the sources for Tcl applets ("Tclets"), and notice how compactly you can solve ssmple
problems. A 100-line applet for a calculator, including the UI? | suspect that an equivalent Java applet
would not take fewer than 800 lines and would be far less flexible.

Advanced Perl Next: Why

Programming Perl?
Book Why Perl?
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

http://www.scriptics.com/people/john.ousterhout/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: The Case for Preface Next: What
Scripting Must | Know?

Why Perl?

So why Perl, then, and not Visual Basic, Tcl, or Python?

Although Visual Basic is an excellent choice on a Wintel[3] PC, it's not around on any other platform, so
it has not been a practical choice for me.

[3] Wintel: The Microsoft Windows + Intel combination. I'll henceforth use the term " PC"
for this particular combination and explicitly mention Linux and the Mac when | mean those
PCs.

Tcl forces meto go to C much earlier than | want, primarily because of data and code-structuring
reasons. Tcl's performance has never been the critical factor for me because | have always implicitly
accounted for the fact and apportioned only the non-performance-critical code to it. | recommend Brian
Kernighan's paper "Experience with Tcl/Tk for Scientific and Engineering Visualization," for his
comments on Tcl and Visual Basic. It isavailable at http://inferno.bell-labs.com/cm/cs/who/bwk.

Most Tcl users are basically hooked on the Tk user interface toolkit; count me among them. Tk also
works with Perl, so | get the best part of that environment to work with a language of my choice.

| am an unabashed admirer of Python, a scripting language devel oped by Guido Van Rossum (please see
http://www.python.org/). It has a clean syntax and a nice object-oriented model, is thread-safe, has tons
of libraries, and interfaces extremely well with C. | prefer Perl (to Python) more for practical than for
engineering reasons. On the engineering side, Perl isfast and is unbeatable when it comes to text support.
It is also highly idiomatic, which means that Perl code tends to be far more compact than any other
language. The last one is not necessarily a good thing, depending on your point of view (especially a
Pythoner's); however, all these criteria do make it an excellent tool-building language. (See Chapter 17,
Template-Driven Code Generation, for an example). On the other hand, there are alot of things going for

Python, and | urge you to take a serious ook at it. Mark Lutz's book Programming Python (O'Reilly,
1996) gives agood treatment of the language and libraries.

On the practical side, your local bookstore and the job listings in the newspaper are good indicators of
Perl's popularity. Basically, thismeans that it is easy to hire Perl programmers or get someone to learn
the language in a hurry. 1'd wager that more than 95% of the programmers haven't even heard of Python.
‘Tis unfortunate but true.

It is essential that you play with these languages and draw your own conclusions; after all, the

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
http://inferno.bell-labs.com/cm/cs/who/bwk
http://www.python.org/
http://www.python.org/

observations in the preceding pages are colored by my experiences and expectations. As Byron
Langenfeld observed, "Rare is the person who can weigh the faults of others without putting his thumb
on the scales." Where appropriate, this book contrasts Perl with Tcl, Python, C++, and Java on specific
features to emphasi ze that the choice of alanguage or atool is never afirm, black-and-white decision
and to show that mostly what you can do with one language, you can do with another too.

Previous: The Case for Advanced Perl Next: What
Scripting Programming Must | Know?
The Case for Scripting Book What Must | Know?
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

&Advanced Perl Programming o

Previous: Why Preface | Next: The Book's Approach|
Perl?

What Must | Know?

To use Perl effectively in an application, you must be conversant with three aspects:
« Thelanguage syntax and idioms afforded by the language.

o ThePerl interpreter for writing C extensions for your Perl scripts or embedding the Perl
interpreter in your C/C++ applications.

« Technology issues such as networking, user interfaces, the Web, and persistence.

Figure 1 shows amap of the topics dealt with in this book. Each major aspect listed above is further

classified. Therest of this section presents a small blurb about each topic and the corresponding chapter
where the subject is detailed. The discussion is arranged by topic rather than by the sequence in which
the chapters appear.

Figure 1: Classification of topics covered in this book

[Data-types
Indirection (References)
CIOSUTES Memory Management
Modules Meta-Data | Perl Wrappers (Ties)
Perl Synlax Objects | Wrappers C Data Wrappers

Fun-time Evaluation
| Exception Handling

| Embadding
Perl Interpreter Extending
_ Internals
| Persistence
Technology User-Interfaces

Networking with Sockets
| Code Generation

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

Language Syntax

Pointers or references bring an enormous sophistication to the type of data structures you can create with
alanguage. Perl's support for references and its ability to let you code without having to specify every
single step makes it an especially powerful language. For example, you can create something as elaborate
as an array of hashes of arrayq4] all in asingle line. Chapter 1, Data References and Anonymous

Storage, introduces you to references and what Perl does internally for memory management. Chapter 2,
Implementing Complex Data Structures, exercises the syntax introduced in the earlier chapter with afew
practical examples.

[4] WE'll henceforth refer to indexed lists/arrays as "arrays' and associative arrays as
"hashes" to avoid confusion.

Perl supports references to subroutines and a powerful construct called closures, which, as L1SPers
know, is essentially an unnamed subroutine that carries its environment around with it. This facility and
its concomitant idioms will be clarified and put to good use in Chapter 4, Subroutine References and

Closures.

References are only one way of obtaining indirection. Scalars can contain embedded pointers to native C
data structures. This subject is covered in Chapter 20, Perl Internals. Ties represent an aternative case of
indirection: All Perl values can optionally trigger specific Perl subroutines when they are created,
accessed, or destroyed. This aspect isdiscussed in Chapter 9, Tie.

Filehandles, directory handles, and formats aren't quite first-class data types; they cannot be assigned to
one another or passed as parameters, and you cannot create local versions of them. In Chapter 3,
Typeglobs and Symbol Tables, we study why we want these facilities in the first place and the
work-arounds to achieve them. This chapter focuses on a somewhat hidden data type called atypeglob
and itsinternal representation, the understanding of which is crucia for obtaining information about the
state of the interpreter (meta-data) and for creating convenient aliases.

Now let's turn to language issues not directly related to Perl data types.

Perl supports exception handling, including asynchronous exceptions (the ability to raise user-defined
exception from signal handlers). As it happens, eval is used for trapping exceptions as well asfor
run-time evaluation, so Chapter 5, Eval, does double-duty explaining these distinct, yet related, topics.

Section 6.2, "Packages and Files', details Perl's support for modular programming, including features
such as run-time binding (in which the procedure to be called is known only at run-time), inheritance
(Perl's ahility to transparently use a subroutine from another class), and autol oading (trapping accesses to
functions that don't exist and doing something meaningful). Chapter 7, Object-Oriented Programming,
takes modules to the next logical step: making modules reusable not only from the viewpoint of alibrary
user, but also from that of a developer adding more facetsto the library.

Perl supports run-time evaluation: the ability to treat character strings as little Perl programs and
dynamically evaluate them. Chapter 5 introduces the eval keyword and some examples of how this
facility can be used, but its importance is truly underscored in later chapters, whereit is used in such
diverse areas as SQL query evaluation (Chapter 11, Implementing Object Persistence), code generation

(Chapter 17), and dynamic generation of accessor functions for object attributes (Chapter 8, Object
Orientation: The Next Few Steps).

The Perl Interpreter

Three chapters are devoted to working with and understanding the Perl interpreter. There are two main
reasons for delving into this internal aspect of Perl. Oneisto extend Perl, by which | mean addinga C
module that can do things for which Perl is not well-suited or is not fast enough. The other isto embed
Perl in C, so that a C program can invoke Perl for a specific task such as handling aregular expression
substitution, which you may not want to code up in C.

Chapter 18, Extending Perl:A First Course, presents two tools (xsubpp and SWIG) to create custom
dynamically loadable C libraries for extending the Perl interpreter.

Chapter 19, Embedding Perl:The Easy Way, presents an easy APl that was developed for this book to
enable you to embed the interpreter without having to worry about the internals of Perl.

But if you really want to know what is going on underneath or want to develop powerful extensions,
Chapter 20 should quench your thirst (or drown you in detail, depending on your perspective).

Technology Areas

| am of the opinion that an applications developer should master at least the following six major
technology areas: user interfaces, persistence, interprocess communication and networking, parsing and
code generation, the Web, and the operating system. This book presents detailed explanations of the first
four topics (in Chapters Chapter 10, Persistence through Chapter 17). Instead of just presenting the API
of publicly available modules, the book starts with real problems and devel ops useful solutions, including
appropriate Perl packages. For example, Chapter 13, Networking: Implementing RPC, explains the
implementation of an RPC toolkit that avoids deadlocks even if two processes happen to call each other
at the same time. As another example, Chapter 11, develops an "adaptor” to transparently send a

collection of objectsto a persistent store of your choice (relational database, plain file, or DBM file) and
implements querying on all of them.

This book does not deal with operating system specific issues, partly because Perl hides a tremendous
number of these differences and partly because these details will distract us from the core themes of the
book. Practically all the code in this book is OS-neutral.

| have chosen to ignore web-related issues and, more specifically, CGI. Thisis primarily because there
are numerous bookg[5] and tutorials on CGI scripting with Perl that do more justice to this subject than
the limited space on this book can afford. In addition, developers of most interesting CGI applications
will spend much more time with the concepts presented in this book than with the ssmple details of the
CGil protocol per se.

[5] Refer to Shishir Gundavaram's book CGI Programming on the World Wide Web
(O'Reilly)

Previous: Why Advanced Perl [Next: The Book's Approach|

Perl? Programming
Why Perl? Book The Book's Approach
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

MAdvanced Perl Programming =~ o

| Previous: What Must | Know?| Preface Next:
Conventions

The Book's Approach

Y ou have not bought this book just to see a set of features. For that, free online documentation would suffice. | want to
convey practical problem-solving techniques that use appropriate features, along with the foundations of the technology
areas mentioned in the previous section.

A Note to the Expert

This book takes a tutorial approach to explaining bits and pieces of Perl syntax, making the need felt for a particular
concept or facility before explaining how Perl fills the void. Experienced people who don't need the justifications for any
facilities or verbose examples will likely benefit by first taking alook at Appendix B, Syntax Summary, to quickly take
in all the syntactic constructs and idioms described in this book and go to the appropriate explanations should the need
arise.

It is my earnest hope that the chapters on technology, embedding, extending, and Perl interpreter internals (the
non-syntax-related ones) will be useful to the casual user and expert alike.

Systems View

This book tends to take the systems view of things; most chapters have a section explaining what is really going on
inside. | believe that you can never be a good programmer if you know only the syntax of the language but not how the
compilation or run-time environment is implemented. For example, a C programmer must know that it isabad ideafor a
function to return the address of alocal variable (and the reason for this restriction), and a Java programmer should know
why athread may never get control in a uniprocessor setup even if it is not blocked.

In addition, knowing how everything works from the ground up results in a permanent understanding of the facilities.
People who know the etymology of words have much less trouble maintaining an excellent vocabulary.

Examples

Perl isahighly idiomatic language, full of redundant features.[6] While I'm as enthusiastic as the next person about cool
and bizarre ways of exploiting alanguage,[7] the book is not a compendium of gee-whiz features; it sticks to the minimal
subset of Perl that is required to develop powerful applications.

[6] There are hundreds of ways of printing "Just Another Perl Hacker," mostly attributed to Randal
Schwartz. See: http://www.perl.com/CPAN/misc/japh.

[7] Asajudge for the Obfuscated C Code contest, | see more than my fair share of twisted, cryptic, and
spectacular code. See http://www.ioccc.org/ if you don't know about this contest. Incidentally, if you think
Perl isn't confusing enough already, check out the Obfuscated Perl contest at

http://fahrenheit-451.media mit.edu/tpj/contest/.

In presenting the example code, | have also sacrificed efficiency and compactness for readability.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
http://www.perl.com/CPAN/misc/japh
http://www.ioccc.org/
http://fahrenheit-451.media.mit.edu/tpj/contest/

FTP

If you have an Internet connection (permanent or dialup), the easiest way to use FTP is viayour web browser or favorite
FTP client. To get the examples, simply point your browser to:

ftp://ftp.oreilly.com/published/oreilly/nutshell/advanced perl/examples.tar.gz

If you don't have aweb browser, you can use the command-line FTP client included with Windows NT (or Windows
95).

%ftp ftp.oreilly.com

Connected to ftp.oreilly.com

220 ftp.oreilly.com FTP server (Version 6.34 Thu COct 22 14:32:01 EDT 1992) ready.
Name (ftp.oreilly.comusernane): anonynous

331 Guest login ok, send e-mail address as password.

Passwor d: user name@ost nane Use your usernanme and host here
230 CGuest |l ogin ok, access restrictions apply.

ftp> cd /published/oreilly/nutshell/advanced per!l

250 CAD command successf ul .

ftp> get READVE

200 PORT conmand successful .

150 Opening ASCI|I node data connection for READVE (xxxX bytes).

226 Transfer conplete.

| ocal : README renote: README

XXXX bytes received in xxx seconds (xxx Kbytes/s)

ftp> binary

200 Type set to |

ftp> get exanples.tar.gz

200 PORT conmand successful .

150 Openi ng BI NARY node data connection for exanples.tar.gz (xxxx bytes).
226 Transfer conplete. |local: exanples.tar.gz renote: exanples.tar.gz
XXXX bytes received in xxx seconds (xxx Kbytes/s)

ftp> quit

221 Goodbye.

%

FTPMAIL

FTPMAIL isamail server available to anyone who can send electronic mail to and receive electronic mail from Internet
sites. Any company or service provider that allows email connections to the Internet can access FTPMALIL, as described
in the following paragraph.

Y ou send mail to ftpmail @online.oreilly.com. In the message body, give the FTP commands you want to run. The server
will run anonymous FTP for you and mail the files back to you. To get a complete help file, send a message with no
subject and the single word "help” in the body. The following is an example mail message that gets the examples. This
command sends you alisting of the files in the selected directory and the requested example files. The listing is useful if
you are interested in alater version of the examples.

Subj ect :

reply-to usernanme@ost nane (Message Body) Wiere you want files nuailed
open

cd /published/oreilly/nutshell/advanced. perl

dir

get READVE

node bi nary

ftp://ftp.oreilly.com/published/oreilly/nutshell/advanced_perl/examples.tar.gz
mailto:ftpmail@online.oreilly.com

uuencode
get exanples.tar.gz
qui t

A signature at the end of the message is acceptable aslong as it appears after "quit.”

[Previous: What Must | Know?| Advanced Perl Next:
Programming Conventions
What Must | Know? Book Conventions
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming | Perl
Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

&Advanced Perl Programming o

Previous: The Book's Preface Next:
Approach Resources

Conventions
The following typographic conventions are used in this book:
Italic

is used for filenames and command names. It is also used for e ectronic mail addresses and URLS.
Constant W dth

isused for code examples, as well as names of elements of code.
Bold

isused in code sections to draw attention to key parts of the program. It also marks user input in
examples.

Courier lItalic

Isused in code sections to draw attention to code generated automatically by tools.

Previous: The Book's Advanced Perl Next:
Approach Programming Resources
The Book's Approach Book Resources
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: Preface Next: Perl
Conventions Resources
Resources

These are some books that | have found immensely useful in my professional life, in particular in
applications development. Perhaps you will too.

1. Design Patterns. Elements of Reusable Object-Oriented Software. Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides. Addison-Wesley (1994)

2. Programming Pearls. Jon Bentley. Addison-Wesley (1986)
Just get it. Read it on the way home!
3. More Programming Pearls. Jon Bentley. Addison-Wesley (1990)
4. Design and Evolution of C++. Bjarne Stroustrup. Addison-Wesley (1994)
Fascinating study of the kind of considerations that drive language design.
5. The Mythical Man-Month. Frederick P. Brooks. Addison-Wesley (1995)
One of the most readable sets of essays on software project management and devel opment.
6. Bringing Design to Software. Terry Winograd. Addison-Wesley (1996)
What we typically don't worry about in an application - but should.
7. BUGSIin Writing. Lyn Dupré. Addison-Wesley (1995)

Highly recommended for programmers writing technical documentation.

Previous: Advanced Perl Next: Perl
Conventions Programming Resources
Conventions Book Perl Resources
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

&Advanced Perl Programming o

Previous: Preface Next: We'd Like to Hear from
Resources You

Perl Resources

Thisisalist of books, magazines, and web sites devoted to Perl:

1. Programming Perl, Second Edition. Larry Wall, Tom Christiansen, and Randal Schwartz. O'Reilly
(1996)

2. Learning Perl. Randal Schwartz. O'Rellly (1993)

3. The Perl Journal. Edited by Jon Orwant. At http://www.tpj.com/

4. Tom Christiansen's Perl web site, http://www.perl.com/perl/index.html

5. Clay Irving's Perl Reference web site, http://reference.perl.com/

Previous: Advanced Perl Next: We'd Like to Hear from
Resources Programming You
Resources Book Wed Like to Hear from Y ou
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
http://www.tpj.com/
http://www.perl.com/perl/index.html
http://reference.perl.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: Perl Preface Next:
Resources Acknowledgments

We'd Like to Hear from You

We have tested and verified all of the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any errors
you find, aswell as your suggestions for future editions, by writing:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

1-800-998-9938 (in US or Canada)

1-707-829-0515 (international/local)

1-707-829-0104 (FAX)

Y ou can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to:

nuts@oreilly.com (viathe Internet)

To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com (viathe Internet)

Previous: Perl Advanced Perl Next:
Resources Programming Acknowledgments
Perl Resources Book Acknowledgments
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
mailto:nuts@oreilly.com
mailto:bookquestions@oreilly.com
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: We'd Like to Hear Preface Next: 1. Data References and
from You Anonymous Storage

Acknowledgments

To my dear wife, Alka, for insulating me from life's daily demands throughout this project and for
maintaining insanely good cheer in al thetime | have known her.

To our parents, for everything we have, and are.

To my editors, Andy Oram and Steve Talbott, who patiently endured my writing style through endless
revisions and gently taught me how to write abook. To O'Reilly and Associates, for allowing both
authors and readers to have fun doing their bit.

To Larry Wall, for Perl, and for maintaining such a gracious and accessible Net presence. To the regular
contributors on the Perl 5 Porterslist (and to Tom Christiansen in particular), for enhancing,
documenting, and tirelessly evangelizing Perl, all in their "spare" time. | envy their energy and
dedication.

To thisbook's reviewers, who combed through this book with almost terrifying thoroughness. Tom
Christiansen, Jon Orwant, Mike Stok, and James L ee reviewed the entire book and offered great insight
and encouragement. | am also deeply indebted to Graham Barr, David Beazley, Peter Buckner, Tim
Bunce, Wayne Caplinger, Rgjappa lyer, Jeff Okamoto, Gurusamy Sarathy, Peter Seibel, and Nathan
Torkington for reading sections of the book and making numerous invaluable suggestions. Any errors
and omissions remain my own. A heartfelt thanks to Rao Akella, the amazing quotemeister, for finding
suitable quotes for this book.

To my colleagues at WebL ogic and TCSI, for providing such aterrific work environment. I'm amazed
I'm actually paid to have fun. (There goes my raise....)

To al my friends, for the endless cappuccino walks, pool games, and encouraging words and for their
patience while | was obsessing with this book. | am truly blessed.

To the crew at O'Reilly who worked on this book, including Jane Ellin, the production editor, Mike
Sierrafor Tools support, Robert Romano for the figures, Seth Maidlin for the index, Nicole Gipson
Arigo, David Futato, and Sheryl Avruch for quality control, Nancy Priest and Edie Freedman for design,
and Madeleine Newell for production support.

Previous: We'd Like to Hear Advanced Perl Next: 1. Data References and
from You Programming Anonymous Storage

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

Wed Like to Hear from Y ou Book 1. Data References and
Index Anonymous Storage

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: Chapter 1 | Next: 1.2 Using References
Acknowledgments

1. Data References and Anonymous
Storage

Contents:
Referring to Existing Variables

Using References

Nested Data Structures
Querying a Reference
Symbolic References

A View of the Internals
References in Other Languages
Resources

If | were meta-agnostic, 1'd be confused over whether 1'm agnostic or not - but I'm not quite sureif | feel
that way; hence | must be meta-meta-agnostic (I guess).

- Douglas R. Hofstadter, Godel, Escher, Bach

There are two aspects (among many) that distinguish toy programming languages from those used to
build truly complex systems. The more robust languages have:

« Theability to dynamically allocate data structures without having to associate them with variable
names. We refer to these as "anonymous' data structures.

« The ability to point to any data structure, independent of whether it is allocated dynamically or
statically.

COBOL isthe one true exception to this; it has been a huge commercial successin spite of lacking these
features. But it is also why you'd balk at developing flight control systemsin COBOL.

Consider the following statements that describe afar smpler problem: afamily tree.

Margeis 23 yearsold and is married to John, 24.
Jason, John's brother, is studying computer science at MIT. Heisjust 19.
Their parents, Mary and Robert, are both sixty and livein Florida.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

Mary and Marge's mother, Agnes, are childhood friends.

Do you find yourself mentally drawing a network with bubbles representing people and arrows
representing relationships between them? Think of how you would conveniently represent this kind of
information in your favorite programming language. If you were a C (or Algol, Pascal, or C++)
programmer, you would use a dynamically allocated data structure to represent each person’s data (name,
age, and location) and pointers to represent relationships between people.

A pointer issimply avariable that contains the location of some other piece of data. This location can be
amachine address, asitisin C, or ahigher-level entity, such asaname or an array offset.

C supports both aspects extremely efficiently: Y ou use malloc(3)[1] to alocate memory dynamically and
apointer to refer to dynamically and statically allocated memory. While thisis as efficient asit gets, you
tend to spend enormous amounts of time dealing with memory management issues, carefully setting up
and modifying complex interrelationships between data, and then debugging fatal errors resulting from
"dangling pointers' (pointers referring to pieces of memory that have been freed or are no longer in
scope). The program may be efficient; the programmer isn't.

[1] The number in parentheses is the Unix convention of referring to the appropriate section
of the documentation (man pages). The number 3 represents the section describing the C
API.

Perl supports both concepts, and quite well, too. It allows you to create anonymous data structures, and
supports a fundamental datatype caled a"reference,”" loosely equivalent to a C pointer. Just asC
pointers can point to data as well as procedures, Perl's references can refer to conventional data types
(scalars, arrays, and hashes) and other entities such as subroutines, typeglobs, and filehandles.[2] Unlike

C, they don't let you peek and poke at raw memory locations.
[2] WE'l study the latter set in Chapter 3, Typeglobs and Symbol Tables.

Perl excels from the standpoint of programmer efficiency. Aswe saw earlier, you can create complex
structures with very few lines of code because, unlike C, Perl doesn't expect you to spell out every thing.
A linelikethis:

$line[19] = "hello";

doesin one line what amounts to quite a number of linesin C - allocating a dynamic array of 20 elements
and setting the last element to a (dynamically allocated) string. Equally important, you don't spend any
time at all thinking about memory management issues. Perl ensures that a piece of datais deleted when
no oneis pointing at it any more (that is, it ensures that there are no memory leaks) and, conversely, that
it is not deleted when someone is still pointing to it (no dangling pointers).

Of course, just because al this can be done does not mean that Perl is an automatic choice for
implementing complex applications such as aircraft scheduling systems. However, there is no dearth of
other, less complex applications (not just throwaway scripts) for which Perl can more easily be used than
any other language.

In this chapter, you will learn the following:

« How to create references to scalars, arrays, and hashes and how to access data through them

(dereferencing).
« How to create and refer to anonymous data structures.

« What Perl doesinternally to help you avoid thinking about memory management.

1.1 Referring to Existing Variables

If you have a C background (not necessary for understanding this chapter), you know that there are two
waysto initialize apointer in C. Y ou can refer to an existing variable:

int a, *p;

p =& [/* p now has the "address" of a */

The memory is statically allocated; that is, it is allocated by the compiler. Alternatively, you can use
malloc(3) to allocate a piece of memory at run-time and obtain its address:

p = malloc(sizeof(int));

This dynamically allocated memory doesn't have a name (unlike that associated with a variable); it can
be accessed only indirectly through the pointer, which iswhy we refer to it as "anonymous storage."

Perl provides references to both statically and dynamically allocated storage; in this section, we'll the
study the former in some detail. That allows usto deal with the two concepts - references and anonymous
storage - separately.

Y ou can create areference to an existing Perl variable by prefixing it with a backslash, like this:

Create sone vari abl es

$a = "mam ma";

@rray = (10, 20);

%hash = ("laurel™ => "hardy", "nick" => "nora");

Now create references to them

$ra = \ $a; # $ra now "refers" to (points to) $a
$rarray = \ @urray;

$rhash = \%ash;

Y ou can create references to constant scalars in asimilar fashion:

$ra = \10;

$rs = \"hello worl d";

That'sal thereisto it. Since arrays and hashes are collections of scalars, it is possible to take a reference
to an individual element the same way: just prefix it with a backslash:

$r_array _elenment = \$array[1]; # Refers to the scal ar $array[1]

$r_hash_el enent = \$hash{"laurel"}; # Refers to the scal ar
$hash{"l aurel "}

1.1.1 A Reference Is Just Another Scalar

A reference variable, such as $ra or $rarray, is an ordinary scalar - hence the prefix *$'. A scalar, in other
words, can be anumber, astring, or areference and can be freely reassigned to one or the other of these
(sub)types. If you print ascalar whileit isareference, you get something like this:

SCALAR(0xb06¢0)

While a string and a number have direct printed representations, a reference doesn't. So Perl prints out
whatever it can: the type of the value pointed to and its memory address. There israrely areason to print
out areference, but if you have to, Perl supplies areasonable default. Thisis one of the things that makes
Perl so productive to use. Don't just sit there and complain, do something. Perl takes this motherly advice
serioudly.

While we are on the subject, it isimportant that you understand what happens when references are used
as keys for hashes. Perl requires hash keys to be strings, so when you use areference as akey, Perl uses
the reference's string representation (which will be unique, because it is a pointer value after all). But
when you later retrieve the key from this hash, it will remain a string and will thus be unusable as a
reference. It is possible that a future release of Perl may lift the restriction that hash keys have to be
strings, but for the moment, the only recourse to this problem isto use the Tie::RefHash module
presented in Chapter 9, Tie. | must add that thisrestriction is hardly debilitating in the larger scheme of

things. There are few algorithms that require references to be used as hash keys and fewer still that
cannot live with this restriction.

1.1.2 Dereferencing

Dereferencing means getting at the value that a reference points to.

In C, if pisapointer, *p refers to the value being pointed to. In Perl, if $r is areference, then $$r, @$r,
or %$%r retrieves the value being referred to, depending on whether $r is pointing to a scalar, an array, or
ahash. It is essential that you use the correct prefix for the corresponding type; if $r is pointing to an
array, then you must use @$%$r, and not %%$r or $$r. Using the wrong prefix resultsin afatal run-time
error.

Think of it thisway: Wherever you would ordinarily use a Perl variable ($a, @b, or %c), you can replace
the variable's name (a, b, or c) by areference variable (aslong as the reference is of the right type). A
referenceis usablein all the places where an ordinary data type can be used. The following examples
show how references to different data types are dereferenced.

1.1.3 References to Scalars

The following expressions involving a scalar,

$a += 2;

print $a; # Print $a's contents ordinarily

can be changed to use areference by simply replacing the string "a" by the string "$ra":
$ra = \ $a; # First take a reference to %a

$$ra += 2; # instead of $a += 2;
print $$ra; # instead of print $a

Of course, you must make sure that $rais areference pointing to a scalar; otherwise, Perl dies with the
run-time error "Not a SCALAR reference’”.

1.1.4 References to Arrays

Y ou can use ordinary arrays in three ways:

« Accessthe array as a whole, using the @array notation. Y ou can print an entire array or push
elementsinto it, for example.

« Access single el ements using the $array[$i] notation.
» Access ranges of elements (slices), using the notation @array[index1,index2,...].

Referencesto arrays are usable in all three of these situations. The following code shows an example of
each, contrasting ordinary array usage to that using references to arrays.

$rarray = \@urray,;

push (@rray , "a", 1, 2); # Using the array as a whol e
push (@rarray, "a", 1, 2); # Indirectly using the ref. to the array

print $array[$i] ; # Accessing single elenents
print $$rarray[1]; # Indexing indirectly through a
reference: array replaced by $rarray
@l = @rray[1,?2,3]; # Ordinary array slice
@l = @rarray[l, 2, 3]; # Array slice using a reference

Note that in all these cases, we have simply replaced the string array with $rarray to get the appropriate
indirection.

Beginners often make the mistake of confusing array variables and enumerated (comma-separated) lists.
For example, putting a backslash in front of an enumerated list does not yield areference to it:

$s = \('a', 'b'", 'c¢c"); # WARNI NG probably not what you think
Asit happens, thisisidentical to
$s = (\'a', \'b', \'c"); # List of references to scalars

An enumerated list dways yields the last element in ascalar context (asin C), which means that $s
contains a reference to the constant string c. Anonymous arrays, discussed later in the section
"References to Anonymous Storage,” provide the correct solution.

1.1.5 References to Hashes

References to hashes are equally straightforward:

$rhash = \ %ash;
print $hash{"keyl"}; # Ordinary hash | ookup
print $$rhash{"keyl"}; # hash repl aced by $rhash

Hash dlices work the same way too:
@lice = @rhash{' keyl' , 'key2'}; # instead of @ash{' keyl' , 'key2'}

A word of advice: You must resist the temptation to implement basic data structures such as linked lists
and trees just because a pointerlike capability is available. For small numbers of elements, the standard
array datatype has pretty decent insertion and removal performance characteristics and isfar less
resource intensive than linked lists built using Perl primitives. (On my machine, a small test shows that
inserting up to around 1250 elements at the head of a Perl array is faster than creating an equivalent
linked list.) And if you want BTrees, you should look at the Berkeley DB library (described in Section

10.1, "Persistence Issues') before rolling a Perl equivalent.

1.1.6 Confusion About Precedence

The expressions involving key lookups might cause some confusion. Do you read $$rarray[1] as
H Srarray[1]} or {$Srarray}[1] or & $rarray}[1]?

(Pause here to give your eyestime to refocus!)

As it happens, the last one is the correct answer. Perl follows these two simple rules while parsing such
expressions. (1) Key or index lookups are done at the end, and (2) the prefix closest to a variable name
binds most closely. When Perl sees something like $$rarray[1] or $$rhash{ "browns'}, it leaves index
lookups ([1] and {"browns'}) to the very end. That leaves $$rarray and $$rhash. It gives preference to
the *$' closest to the variable name. So the precedence works out like this; ${ $rarray} and ${ $rhash} .
Another way of visualizing the second rule is that the preference is given to the symbols from right to left
(the variable is dways to the right of a series of symbols).

Note that we are not really talking about operator precedence, since $, @ , and % are not operators; the
rules above indicate the way an expression is parsed.

1.1.7 Shortcuts with the Arrow Notation

Perl provides an aternate and easier-to-read syntax for accessing array or hash elements: the ->[|
notation. For example, given the array's reference, you can obtain the second element of the array like
this:

$rarray = \@urray,;

print $rarray->[1] ; # The "visually clean" way

instead of the approaches we have seen earlier:
print $$rarray[1]; # Noi sy, and have to think about precedence

print ${$rarray}[1]; # The way to get tendinitis!

| prefer the arrow notation, because it isless visually noisy. Figure 1.1 shows away to visualize this
notation.

Figure 1.1: Visualizing $rarray->[1]

amay | [1][|

1]

srarray

Similarly, you can use the ->{ } notation to access an element of a hash table:

$rhash = \ %hash;
print $rhash->{"k1"};

#instead of
print $$rhash{"k1l"};

or

print ${$rhash}{"kl1"};

Caution: This notation works only for single indices, not for slices. Consider the following:

print $rarray->[0,2]; # Warning: This is NOT an indirect array slice.
Per| treats the stuff within the brackets as a comma-separated expression that yields the last term in the
array: 2. Hence, this expression is equivalent to $rarray->[2], which is an index lookup, not a dlice.

(Recall the rule mentioned earlier: An enumerated or comma-separated list always returns the last
element in a scalar context.)

1.1.8 No Automatic Dereferencing

Perl does not do any automatic dereferencing for you.[3] Y ou must explicitly dereference using the
constructs just described. Thisissimilar to C, in which you have to say *p to indicate the object pointed
to by p. Consider

$rarray = \@rray;
push ($rarray, 1, 2, 3); # Error: $rarray is a scalar, not an array
push (@rarray, 1, 2, 3); # K

[3] Except for filehandles, as we will seein Chapter 3.

push expects an array as the first argument, not areference to an array (which isascalar). Similarly,
when printing an array, Perl does not automatically dereference any references. Consider

print "$rarray, $rhash";
This prints

ARRAY(0xc70858), HASH(0xb75ce8)

This issue may seem benign but has ugly consequences in two cases. The first iswhen areference is used
in an arithmetic or conditional expression by mistake; for example, if you said $a += $r when you realy
meant to say $a += $%r, you'll get only a hard-to-track bug. The second common mistake is assigning an
array to ascalar ($a= @array) instead of the array reference ($a = \@array). Perl does not warn you in
either case, and Murphy's law being what it is, you will discover this problem only when you are giving a
demo to a customer.

Previous: Advanced Perl | Next: 1.2 Using References|
Acknowledgments Programming
Acknowledgments Book 1.2 Using References
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

P& Advanced Perl Programming

Previous: 1.1 Referring to Chapter 1 Next: 1.3 Nested Data
Existing Variables Data Refer ences and Anonymous Structures
Storage

1.2 Using References

References are absolutely essential for creating complex data structures. Since the next chapter is devoted
solely to this topic, we will not say more here. This section lists the other advantages of Perl's support for
indirection and memory management.

1.2.1 Passing Arrays and Hashes to Subroutines

When you pass more than one array or hash to a subroutine, Perl merges all of them into the @ _array
available within the subroutine. The only way to avoid this merger is to pass references to the input arrays
or hashes. Here's an example that adds elements of one array to the corresponding elements of the other:
@rrayl = (1, 2, 3); @rray2 = (4, 5, 6, 7);
AddArrays (\@rrayl, \@rray2); # Passing the arrays by reference.
print "@rrayl \n";

sub AddArrays

{
ny ($rarrayl, $rarray?) = @;
$len2 = @rarray2; # Length of array2
for ($i =0 ; $i < $len2; $i++) {
$rarrayl->[$i] += $rarray2->[$i];
}
}

In this example, two array references are passed to AddArrays which then dereferences the two
references, determines the lengths of the arrays, and adds up the individual array elements.

1.2.2 Performance Efficiency

Using references, you can efficiently pass large amounts of data to and from a subroutine.

However, passing references to scalars typically turns out not to be an optimization at al. | have often
seen code like this, in which the programmer has intended to minimize copying while reading lines from a
file:

while ($ref _line

Get Next Line()) {

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

sub Get NextLine () {
ny $line = <F> ;
exit (0) unl ess defined($line);

return \ $line; # Return by reference, to avoid copying

}

GetNextLine returns the line by reference to avoid copying.

Y ou might be surprised how little an effect this strategy has on the overall performance, because most of
the time is taken by reading the file and subsequently working on $line. Meanwhile, the user of
GetNextLineisforced to deal with indirections ($$ref_line) instead of the more straightforward buffer
$line[4]

[4] The operative word hereis "typically." Most applications deal with lines 60-70 bytes
long.

Incidentally, you can use the standard library module called Benchmark to time and compare different
code implementations, like this:

use Benchmark;

timethis (100, "GetNextLine()"); # Call ProcessFile 100 tines, and
#time it

The modul e defines a subroutine called timethis that takes a piece of code, runs it as many times as you

tell it to, and prints out the elapsed time. We'll cover the use statement in Chapter 6, Modules.

1.2.3 References to Anonymous Storage

So far, we have created references to previously existing variables. Now we will learn to create references
to "anonymous" data structures - that is, values that are not associated with a variable.

To create an anonymous array, use square brackets instead of parentheses:

$ra =1 1; # Creates an enpty, anonynpus array
and returns a reference to it
[1,"hell0"]; # Creates an initialized anonynous array
and returns a reference to it

$ra

This notation not only allocates anonymous storage, it also returns areference to it, much as malloc(3)
returns a pointer in C.

What happens if you use parentheses instead of square brackets? Recall again that Perl evaluates the right
side as a comma-separated expression and returns the value of the last element; $ra contains the value
"hello”, which is likely not what you are looking for.

To create an anonymous hash, use braces instead of square brackets:
$rh ={ }; # Creates an enpty hash and returns a

reference to it
$rh = {"k1", "v1", "k2", "v2"}; # A popul ated anonynous hash

Both these notations are easy to remember since they represent the bracketing characters used by the two
datatypes - brackets for arrays and braces for hashes. Contrast this to the way you'd normally create a
named hash:

An ordinary hash uses the prefix and is initialized with a |ist

w thin parent heses
%hash = ("flock" => "birds", "pride" => "lions");

An anonynous hash is a list contained wthin curly braces.
The result of the expression is a scalar reference to that hash.
$rhash = {"flock" => "birds", "pride" => "lions"};

What about dynamically allocated scalars ? It turns out that Perl doesn't have any notation for doing
something like this, presumably because you almost never need it. If you really do, you can use the
following trick: Create areference to an existing variable, and then let the variable pass out of scope.

{
ny $a = "hello world"; #
#

$ra \ $a;

}
print "$$ra \n"; # 3

The my operator tags avariable as private (or localizes it, in Perl-speak). Y ou can use the local operator
instead, but there is a subtle yet very important difference between the two that we will clarify in Chapter

3. For this example, both work equally well.

Now, $raisaglobal variable that refers to the local variable $a (not the keyword local). Normally, $a
would be deleted at the end of the block, but since $ra continues to refer to it, the memory allocated for $a
is not thrown away. Of course, if you reassign $rato some other value, this space is deallocated before $ra
IS prepared to accept the new value.

Y ou can create references to constant scalars like this:
$r = \10; $rs = \"hell o";

Constants are statically allocated and anonymous.

A reference variable does not care to know or remember whether it points to an anonymous value or to an
existing variable's value. Thisisidentical to the way pointers behavein C.

1.2.4 Dereferencing Multiple Levels of Indirection

We have seen how areference refers to some other entity, including other references (which are just
ordinary scalars). This means that we can have multiple levels of references, like this:

$a = 10;
$ra =\ $a; # reference to $a's val ue.
$rra = \9%ra; # reference to a reference to $ra's val ue

$rrra = \$rra; # reference to a reference to a reference ...

Now welll dereference these. The following statements all yield the same value (that of $a):

print $a; # prints 10. The follow ng statenents print the sane.
print $$ra; # $a seen fromone level of indirection.
print $$$rra; # replace ra with {$rra} : still referring
to $a's value
print $$$$rrra; # ... and so on.

Incidentally, this example illustrates a convention known to Microsoft Windows programmers as
"Hungarian notation."[5] Each variable name is prefixed by itstype ("r" for reference, "rh" for reference
to ahash, "i" for integer, "d" for double, and so on). Something like the following would immediately
trigger some suspicion:

$$rh_col l ections[0] = 10; # RED FLAG : 'rh' being used as an array?

Y ou have avariable called $rh_collections, which is presumably a reference to a hash because of its
naming convention (the prefix rh), but you are using it instead as a reference to an array. Sure, Perl will
alert you to this by raising arun-time exception ("Not an ARRAY referenceat - line 2."). But it is easier
to check the code while you are writing it than to painstakingly exercise all the code paths during the
testing phase to rule out the possibility of run-time errors.

[5] After Charles Simonyi who started this convention at Microsoft. This conventionisa
topic of raging debates on the Internet; people either loveit or hateit. Apparently, even at
Microsoft, the systems folks use it, while the application folks don't. In alanguage without
enforced type checking such as Perl, | recommend using it where convenient.

1.2.5 A More General Rule

Earlier, while discussing precedence, we showed that $$rarray[1] is actually the same as ${ $rarray}[1]. It
wasn't entirely by accident that we chose braces to denote the grouping. It so happens that there is amore
general rule.

The braces signify ablock of code, and Perl doesn't care what you put in there aslong asit yields a
reference of the required type. Something like { $rarray} is a straightforward expression that yields a
reference readily. By contrast, the following example calls a subroutine within the block, which in turn
returns a reference:

sub test {
return \ $a; # returns a reference to a scal ar vari abl e

}

$a = 10;

$b = ${test()}; # Calls a subroutine test within the bl ock, which
yields a reference to $a
This reference is dereferenced

print $b; # prints "10"

To summarize, ablock that yields a reference can occur wherever the name of avariable can occur.
Instead of $a, you can have ${ $ra} or H $array[1]} (assuming $array[1] has areference to $a), for
example.

Recall that ablock can have any number of statementsinside it, and the last expression evaluated inside
that block representsiits result value. Unless you want to be a serious contender for the Obfuscated Perl
contest, avoid using blocks containing more than two expressions while using the general dereferencing
rule stated above.

1.2.5.1 Trojan horses

While we are talking about obfuscation, it is worth talking about a very insidious way of including
executable code within strings. Normally, when Perl sees astring such as"$a", it does variable
interpolation. But you now know that "a"' can be replaced by a block aslong asit returns areferenceto a
scalar, so something like thisis completely acceptable, even within a string:

print "${foo()}";

Replace foo() by system ('/bin/rm **) and you have an unpleasant Trojan horse:
print "${system('/bin/rm*")}"

Per| treatsit like any other function and trusts system to return areference to a scalar. The parameters
given to system do their damage before Perl has a chance to figure out that system doesn't return a scalar
reference.

Moral of the story: Be very careful of strings that you get from untrusted sources. Use the taint-mode
option (invoke Perl as perl -T) or the Safe module that comes with the Perl distribution. Please see the
Perl documentation for taint checking, and see the index for some pointers to the Safe module.

Previous: 1.1 Referring to Advanced Perl Next: 1.3 Nested Data
Existing Variables Programming Structures
1.1 Referring to Existing Book 1.3 Nested Data Structures
Variables Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 1.2 Using Chapter 1 Next: 1.4 Querying a
References Data References and Anonymous Reference
Storage

1.3 Nested Data Structures

Recall that arrays and hashes contain only scalars; they cannot directly contain another array or hash as
such. But considering that references can refer to an array or a hash and that references are scalars, you
can see how one or more elementsin an array or hash can point to other arrays or hashes. In this section,
we will study how to build nested, heterogeneous data structures.

Let us say we would like to track a person's details and that of their dependents. One approach isto
create separate named hash tables for each person:
Y%sue = (# Parent
‘nane’ => 'Sue',
‘age' => '45");
% ohn = (# Child
"nane' => 'John',
‘age' =>'20");
%oeggy = (# Child
‘nane' => 'Peggy',
‘age' => '16");

The structures for John and Peggy can now be related to Sue like this:

@hildren = (\% ohn, \%eqgy);
$sue{' children'} = \@hildren;

O
$sue{ ' children'} = [\% ohn, \%eggy];

Figure 1.2 shows this structure after it has been built.

Figure 1.2: Mixing scalars with arrays and hashes.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

mameg Sirg

age 45

ciidren . |_]__| | |
name John name Peggy
age 20 ange 16

Thisis how you can print Peggy's age, given %osue:
print $sue{children}->[1]->{age};

1.3.1 Implicit Creation of Complex Structures

Suppose the first line in your program isthis:
$sue{children}->[1]->{age} = 10;

Perl automatically creates the hash %sue, givesit a hash element indexed by the string chi | dr en,
points that entry to a newly allocated array, whose second element is made to refer to afreshly allocated
hash, which gets an entry indexed by the string age. Tak about programmer efficiency.

1.3.2 Final Shortcut: Omit Arrows Between Subscripts

While on the subject of programmer efficiency, let us discuss one more optimization for typing. You can
omit -> if (and only if) it is between subscripts. That is, the following expressions are identical:

print $sue{children}->[1]->{age};

print $sue{children}[1] {age};

Thisis similar to the way C implements multidimensional arrays, in which every index except the last
one behaves like a pointer to the next level (or dimension) and the final index corresponds to the actual
data. The difference - which doesn't really matter at a usage level - between C's and Perl's approachesis
that C treats an n-dimensional array as a contiguous stream of bytes and does not allocate space for
pointers to subarrays, whereas Perl allocates space for references to intermediate single-dimension
arrays.

Continuing from where we left off, you will find that even such a simple example benefits from using
anonymous arrays and hashes, rather than named ones, as shown in the following snippet:

Ysue = (# Parent
' nane' => ' Sue',
" age’ => "45",
‘children' => | # Anon array of two hashes
{ # Anon hash 1

"nane' => 'John',
‘age' =>"'20
|

{ # Anon hash 2
"nanme’ => ' Peggy’,
‘age' => '16'

)i

This snippet of code contains only one named variable. The "children" attribute is areference to an
anonymous array, which itself contains references to anonymous hashes containing the children's details.
This nesting can be as degp as you want; for example, you might represent John's educational
qualifications as a reference to an anonymous array of hash records (each of which contain details of
school attended, grade points, and so on). None of these arrays or hashes actually embed the next level
hash or array; recall that the anonymous array and hash syntax yields references, which iswhat the
containing structures see. In other words, such a nesting does not reflect a containment hierarchy. Try
print values(%sue) to convince yourself.

It is comforting to know that Perl automatically deletes all nested structures as soon as the top-level
structure (%osue) is deleted or reassigned to something else. Internal structures or elements that are are
still referred to elsewhere aren't deleted.

Previous: 1.2 Using Advanced Perl Next: 1.4 Querying a
References Programming Reference
1.2 Using References Book 1.4 Querying a Reference
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 1.3 Nested Data Chapter 1 Next: 1.5 Symbolic
Structures Data Refer ences and Anonymous References
Storage

1.4 Querying a Reference

The ref function queries a scalar to see whether it contains areference and, if so, what type of dataitis
pointing to. ref returns false (a Boolean value, not a string) if its argument contains a number or a string;
and if it'sareference, ref returns one of these strings to describe the data being referred to: "SCALAR",
"HASH", "ARRAY", "REF" (referring to another reference variable), "GLOB" (referring to atypeglob),
"CODE" (referring to a subroutine), or "package name " (an object belonging to this package - we'll see
more of it |ater).

$a = 10;

$ra =\ $a;

ref($a) yields FALSE, since $ais not areference.
ref($ra) returnsthe string "SCALAR", since $rais pointing to a scalar value.

Previous: 1.3 Nested Data Advanced Perl Next: 1.5 Symbolic
Structures Programming References
1.3 Nested Data Structures Book 1.5 Symbolic References
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

MAdvanced Perl Programming =0

Previous: 1.4 Querying a Chapter 1 Next: 1.6 A View of the
Reference Data References and Anonymous Internals
Storage

1.5 Symbolic References

Normally, a construct such as $$var indicates that $var is areference variable, and the programmer expects this expression
to return the value that was pointed to by $var when the references were taken.

What if $var is not areference variable at al? Instead of complaining loudly, Perl checks to see whether $var contains a
string. If so, it uses that string as aregular variable name and messes around with this variable! Consider the following:
$x = 10;
$var = "x";
$$var = 30; # Modifies $x to 30 , because $var is a synbolic

reference !

When evaluating $$var, Perl first checks to see whether $var is areference, which it is not; it's astring. Perl then decides
to give the expression one more chance: it treats $var's contents as a variable identifier ($x). The example hence ends up
modifying $x to 30.

It isimportant to note that symbolic references work only for global variables, not for those marked private using my.

Symbolic references work equally well for arrays and hashes also:

$var = "x";
@var = (1, 2, 3); # Sets @ to the enunerated list on the right

Note that the symbol used before $var dictates the type of variable to access: $$var is equivalent to $x, and @var is
equivalent to saying @.

Thisfacility isimmensely useful, and, for those who have done this kind of thing before with earlier versions of Perl, is
much more efficient than using eval. Let us say you want your script to process a command-line option such as
"-Ddebug_level=3" and set the $debug_level variable. Thisis one way of doing it:

while ($arg = shift @RGV){
if ($arg =~ /-D(\w+)=(\w+)/) {
$var _nane = $1; $val ue = $2;
$$var _nane = $val ue; # O nore conpactly, $$1 = $2;

}

On the other hand, Perl's eagernessto try its damnedest to get an expression to work sometimes doesn't help. In the
preceding examples, if you expected the program logic to have areal reference instead of a string, then you would have
wanted Perl to point it out instead of making assumptions about your usage. Fortunately, there's away to switch this
eagerness off. Perl has a number of compile-time directives, or pragmas. The strict pragmatells Perl to do strict error
checking. Y ou can even enumerate specific aspects to be strict about, one of which is “refs:

use strict 'refs'; # Tell Perl not to allow synbolic references
$var = "x";
$$var = 30;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

Thisresultsin arun-time error whenever you try to use a symbolic reference:
Can't use string ("x") as a SCALAR ref while "strict refs" in use at try.pl line

The strict directive remainsin effect until the end of the block. It can be turned off by saying no strict or, more
specifically, no strict 'refs.

Previous: 1.4 Querying a Advanced Perl Next: 1.6 A View of the
Reference Programming Internals
1.4 Querying a Reference Book 1.6 A View of the Internals
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming | Perl
Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

&Advanced Perl Programming o

Previous: 1.5 Symbolic Chapter 1 Next: 1.7 References in Other
References Data References and Anonymous Languages
Storage

1.6 A View of the Internals

Let us now take alook inside Perl to understand how it manages memory. Y ou can safely skip this
section without loss of continuity.

A variable logically represents a binding between a name and avalue, as Figure 1.3 illustrates.[6]

[6] Thisistrue whether the variable is global, dynamically scoped (using | ocal ()), or
lexically scoped (using my ()). More details are given in Chapter 3.

Figure 1.3: A variable is a name and value pair

Name Value

n E-EI. ~ - "mama"

An array or ahash is not just a collection of numbers or strings. It is acollection of scalar values, and
this distinction isimportant, as Figure 1.4 illustrates.

Figure 1.4: An array value is a collection of scalar values

Name Value

Wrong view of a list =@k - 10, 20

Correct view of alist =@k > | | | | 9 SFs walre

10 20 | e Each list eloment Is 2
aralar value

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

Each box in Figure 1.4 represents a distinct value. An array has one value that represents the collection of

scalar values. Each element of the array isadistinct scalar value. Thisis analogousto a pride of lions
being treated as a single entity (which iswhy we refer to it in the singular) that has properties distinct
from those of the individual lion.

Notice also that while a name always points to a value, a value doesn't always have to be pointed to by a
name, as the array elementsin Figure 1.4 or anonymous arrays and hashes exemplify.

1.6.1 Reference Counts

To support painless and transparent memory management, Perl maintains a reference count for every
value, whether it is directly pointed to by a name or not. Let's add this piece of information to our earlier
view. Refer to Figure 1.5.

Figure 1.5: Adding reference counts to all values

Name Value
reference count
¥
||$a|| . E -mama" $|=.|. = .I.'I'IF.l.fI'IF.l." .:
Il$rall = 1 l $]‘_'-a = I'q.$--a.'
" - 1 l | | | Bl = {1':'_. 2':':' H
i | 0| i | 20

Asyou can see, the reference count represents the number of arrows pointing to the value part of a
variable. Because there is aways an arrow from the nameto its value, the variable's reference count is at
least 1. When you obtain areference to a variable, the corresponding value's reference count is
Incremented.

It isimportant to stress the point that even though we would like to think of $ra as pointing to $a, it really
points to $a's value. In fact, $ra does not even know whether the value it is pointing to has a
corresponding entry in the symbol table. The value of the reference variable is the address of another
scalar value, which does not change even if $a's value changes.

Perl automatically deletes a value when its reference count drops to zero. When variables (named values)
go out of scope, the binding between the name and the value is removed, resulting in the value's
reference count being decremented. In the typical case in which this count is 1, the value is deleted (or
garbage collected).[7]

[7] For efficiency, Perl doesn't actually deleteit; it just sendsit to its own free pool and
reuses it when you need a new value. It islogically deleted, nevertheless.

The reference counting technique is sometimes referred to as " poor man's garbage collection," in contrast
to much more sophisticated techniques used by environments such as L1SP, Java, and Smalltalk (though
the early versions of Smalltalk used reference counting). The problem is that reference counts take up
space, which adds up if you consider that every piece of datain your application has an extrainteger
associated with it.

Then there is also the problem of circular references. The simplest caseisthis:
$a = \ 3a;

Thisisaclassic case of narcissism. $a's reference count indicates that something is pointing to it, so it
will never get freed. A more practical case of circular referencesisthat of network graphs (each node
keeps track of each of its neighbors) or ring buffers (where the last element points to the first one).
Modern garbage collection algorithms implemented in Java and Smalltalk can detect circular references
and deallocate the entire circular structure if none of the elements are reachable from other variables.

On the other hand, reference counting is ssimple to understand and implement and makes it easy to
integrate Perl with C or C++ code. Please refer to item 2 in the Section 1.8, "Resources’ section at the

end of the chapter for a comprehensive treatment of garbage collection techniques.

Note that while symbolic references allow you to access variables in an indirect way, no actual reference
variables are created. In other words, the reference count of a symbolically accessed variable is not
modified. Hence symbolic references are also called soft references, in contrast to hard references, which
actually allocate storage to keep track of the indirection.

Thisissimilar to the concept of soft versus hard linksin the Unix filesystem. Thei-node of afile hasits
reference count incremented every time someone creates a hard link to that file, so you can't really delete
the file's contents until its reference count goes down to zero. A symbolic link, on the other hand, stores
only the name of the file and can point to a nonexistent file; you'll never know until you try to open the
file using the symboalic link.

1.6.2 Array/Hash References Versus Element References

Recall that there is a distinction between the array as a whole and each of its constituent scalar values.
The array's value maintains its own reference count, and each of its elements has its own. When you take
areferenceto an array, its own reference count is incremented without its e ements getting affected, as
shown in Figure 1.6.

Figure 1.6: Taking areference to an array

Name Value
"@array" - | |
. | 10
n $Iﬂrra'}r n - 'I | l

!

1|20

darray

Srarray =

= (10,20} ;

“Harray;

In contrast, Figure 1.7 shows the picture when you create a reference to an element of an array or a hash.

Figure 1.7: Referring to a list element

Name Value

"array"— 1 | | |

!

1|1u

ngr array elem"—s | |

!

2|zn

darray

Sr_array_elem

(10,20) ;

= ‘\Sarray[1]

When you take a reference to an element of an array (or a hash), Perl increments that scalar value's
reference count. If, say, you now pop it from the array, its reference count goes down by 1 because the
array is no longer interested in the scalar value. But since there is an outstanding reference to the array
element (and its reference count is still 1), it is not destroyed. Figure 1.8 shows the picture after @array

has been popped once.

Figure 1.8: @array popped once; $r_array_elem holds on to the popped scalar

Name Value

"garray" — 1 | | | |

1|1n 1|21:||

"Sr array elem” — = 1 | l |

Previous: 1.5 Symbolic Advanced Perl Next: 1.7 References in Other
References Programming Languages
1.5 Symbolic References Book 1.7 References in Other
Index Languages

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 1.6 A View of the Chapter 1 Next: 1.8
Internals Data References and Anonymous Resources
Storage

1.7 References in Other Languages

1.7.1 Tcl

Tcl does not have away of dynamically allocating anonymous data structures but, being a dynamic
language, supports creation of new variables (names assigned automatically) at run-time. This approach
Isnot only slow, but also highly error prone. In addition, the only way to pass a variable by referenceis
to pass the actual name of a variable, such as Perl's symbolic references. All this makesit very difficult to
create complex data structures (and very unmaintainable if you do so). But, in all fairness, it must be
stressed that Tcl is meant to be a glue language between applications and toolkits, and it is expected that
most complex processing happens in the C-based application itself, rather than within the script. Tcl was
not designed to be used as a full-fledged scripting or development language (though | have heard that its
limited scope hasn't stopped people from writing 50,000-line scripts to drive oil rigs!).

1.7.2 Python

Python is similar to Javain that, except for fundamental types, all objects are passed around by reference.
This means that assigning a list-valued variable to another simply resultsin the second list variable being
an alias of thefirst; if you want a copy, you have to explicitly do so and pay the corresponding pricein
performance. | much prefer this style to Perl's because you typically refer to structures much more than
making a copy, and it is nice to have a default that is efficient and eases typing.

Like Perl, Python reference counts each of its data types, including user-defined types defined in C/C++
extensions.

1.7.3 C/C++

C and C++ support pointers whose type safety can be checked at compile time. Since a pointer contains
the raw address of the data, areference to a piece of datais as efficient and compact as it gets. On the
other hand, this puts all the responsibility of memory management on the programmer. It isworth
examining the implementation of interpreters such as Tcl, Perl, and Python (all having been implemented
in C) to learn about memory management strategies.

C++ supports the notion of references, which allows you to create aliases to existing variables. This
facility is reminiscent of the typeglob aliasing facility (which we'll study in Chapter 3) but bears no

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

resemblance to Perl references.

1.7.4 Java

In Java, everything is passed by reference except for fundamental types such asint and float. There are
no issues of memory management, since the Java framework supports garbage collection (which runsin
a separate thread so as not to freeze up the application threads). Being asrich as C++ in data types and
with no memory management hassles, it holds immense promise for programming-in-the-large.

Previous: 1.6 A View of the Advanced Perl Next: 1.8
Internals Programming Resources
1.6 A View of the Internals Book 1.8 Resources
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

&Advanced Perl Programming o

Previous: 1.7 References in Chapter 1 Next: 2. Implementing
Other Languages Data Refer ences and Anonymous Complex Data Structures
Storage

1.8 Resources

1. perlref (Perl documentation)

2. Uniprocessor Garbage Collection Techniques. Paul Wilson. International Workshop on Memory
Management, 1992.

This paper gives a comprehensive treatment of GC issues. Available from
ftp://ftp.cs.utexas.edu/pub/garbage/gcsurvey.ps

Previous: 1.7 References in Advanced Perl Next: 2. Implementing
Other Languages Programming Complex Data Structures
1.7 References in Other Book 2. Implementing Complex
Languages Index Data Structures

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
ftp://ftp.cs.utexas.edu/pub/garbage/gcsurvey.ps
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 1.8 Chapter 2 [Next: 2.2 Example: Matrices]
Resources

2. Implementing Complex Data
Structures

Contents:
User-Defined Structures

Example: Matrices
Professors, Students, Courses
Pass the Envelope
Pretty-Printing

Resources

Don't worry, spiders,
| keep house
casually.

- Kobayashi Issa

The success of Perl is atribute to the fact that many problems can be solved by using just its fundamental
data types. Jon Bentley's books Programming Pearls and More Programming Pearls are further
testament to how much can be achieved if the basic data structures are dynamic and memory
management is automatic. But as programs become more complex, moving from the domain of the script
to that of the application, there is an increasing need for representing data in much more complex ways
than can sometimes be achieved with the basic data types alone.

In this chapter, we will apply the syntax and concepts learned in Chapter 1, Data References and
Anonymous Storage to afew "real" examples. We will write bits of code that build complex structures

from file-based data and use sequences of $'s and @'s without batting an eyelid. For each problem, we
will examine different ways of representing the same data and study the trade-offs in program versus
programmer efficiency. In the interest of clarity, we will not worry too much about error handling.

Tom Christiansen has written an excellent series of tutorials called FMTEYEWTK (Far More Than
Everything Y ou've Ever Wanted to Know!) [3]. This series contains a motley collection of topics that

crop up on the Perl Usenet groups. | admire them for their lucid, patient, and detailed explanations and
recommend that you read them at some point. (Now is better!) Some of them are now packaged with the

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

Perl distribution; in particular, the perldsc (data structures cookbook) document is atutorial for building
and manipulating complex structures.

Before we start the examples, we will study what it takes to create structures a la C or C++.

2.1 User-Defined Structures

The struct declaration in C provides a notion of user-defined types (though it doesn't quite have
first-class status, like an int), and a typedef statement is then used to alias it to a new type name. Java and
C++ have the class declaration to compose new data types out of fundamental data types. These
constructs allow you to combine a bunch of named attributes under a single banner but still provide
access to each individual attribute.

Perl has no such built-in template feature.[1] One commonly used convention is to simulate structures
using a hash table, as shown in Figure 2.1.

[1] WE'll discuss a module called ObjectTemplate in Chapter 7, Object-Oriented
Programming, that providesthis.

Figure 2.1: Simulating C structures with Perl hashes

C Perl
struct foo { $foo = |
int aj; a == 10,
char* str; str = "good"

} = {10, *"goocd" }:) ;

Perl'simplementation of hash tablesis actually quite efficient in terms of both performance and space.
Since hash keys are immutabl e strings, Perl keeps only one systemwide copy of a hash key. This
prevents a hundred foo structures from creating a hundred copies of the strings a and str.

Another way to create a user-defined collection of attributesisto use an array @foo instead, which is
slightly more efficient, yet atad more cumbersome:

$a = 0; $str = 1; # I ndices
$f oo[$a] = 10; # Equivalent to foo.a = 10 in C
$foo[$str] = "hell o"; # equivalent to foo.str = "hello" in C

Remember, if acertain data structure is represented far more easily in C than in Perl and requires a
considerable amount of manipulation, you could consider keeping it in C/C++ itself and not bother
duplicating it in Perl. Y ou will need to provide a set of C procedures that can manipulate this data. A
very simple tool called SWIG (discussed in Chapter 18, Extending Perl:A First Course) allows you to do

this painlessly.

Y ou can also use pack or sprintf to encode a set of valuesto get one composite entity, but accessing

individual data elementsis neither convenient nor efficient (in time). pack is a good option when you
need to be frugal about space, because it converts alist of valuesinto one scalar value without
necessarily changing each individual item's machine representation; sprintf is less efficient in this regard,
because it converts everything to a printable representation.

Previous: 1.8 Advanced Perl [Next: 2.2 Example: Matrices|
Resources Programming
1.8 Resources Book 2.2 Example: Matrices
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 2.1 User-Defined Chapter 2 Next: 2.3 Professors,
Structures | mplementing Complex Data Students, Courses
Structures

2.2 Example: Matrices

Before we embark on this example, you must know that if you really want a good efficient
implementation of matrices, you should check out the PDL module (Perl Data Language) from CPAN.

To gain a better understanding of different matrix representations, we will write routines to construct
these structures from a datafile and to multiply two matrices. Thefile is formatted as follows:

MAT1
1 2 4
10 30 O

MAT2
5 6
1 10

Each matrix has alabel and some data. We use these labels to create global variables with the
corresponding names (@MAT1 and @MAT?2).

An array of arraysisthe most intuitive representation for a matrix in Perl, since there is no direct support
for two-dimensional arrays:

@atrix = (
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]

).

Change 6, the elenent at row 1, colum 2 to 100
$matrix[1][2] = 100;

Note that @matrix isasimple array whose el ements happen to be references to anonymous arrays.
Further, recall that $matrix[1][2] isasimpler way of saying $matrix[1]->[2].

Example 2.1 reads the file and creates the array of arrays structure for each matrix. Pay particular

attention to the push statement (highlighted); it uses the symbolic reference facility to create variables
(@{$matrix_name}) and appends a reference to anew row in every iteration. We are assured of newly
allocated rows in every iteration because @row islocal to that block, and when the if statement is done,
its contents live on because we squirrel away areference to the array's value. (Recall that it is the value

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

that is reference counted, not the name.)
Example 2.1: Reading a Matrix from a File

sub matrix read file {
ny ($filenanme) = @;

open (F, $fi|enanef || die "Could not open $filenanme: $!";
while ($line = <F>) {
chonp($line);

next if $line =~ /"\s*$/; # skip blank Iines
if ($line =~ IN[AZa-z]\wW)/) {
$matri x_nane = $1;
} else {
ny (@ow) = split (/\s+/, $line);
push (@$matrix_nane}, \@ow,) # insert the rowarray into
the outer matrix array
}
}
cl ose(F);

}

Now let us use this array-of-arrays structure to multiply two matrices. In case you have forgotten how
matrix multiplication works, the product of two matrices Ay, (M rows, n columns) and By, is defined as

Xij =KZI=L:1Aik ' Ekj

The element (i, j) of the matrix product is the sum of successive pairs of elements taken from the iy, row
of A and the jy, column of B. Translated into Perl, it looks like Example 2.2.

Example 2.2: Matrix Multiply

sub matrix_multiply {
ny ($r_matl, $r_mat2) = @; # Taking matrices by reference
ny ($r_product); # Returing product by reference
ny ($r1, $cl) = matrix_count _rows _cols ($r_matl);
ny ($r2, $c2) = matrix_count _rows _cols ($r_mt2);
die "Matrix 1 has $cl colums and matrix 2 has $r2 rows."
. " Cannot multiply\n" unless ($cl == $r2);
for ($i =0; $i < $rl; $i++) {
for ($) = 0; % < $c2; $++) {
$sum = 0;
for ($k = 0; $k < $cl; Pk++) {
$sum += $r_mat 1->[$i] [Sk] * Sr_mat2->[$Kk][$j];
}

$r_product->[$i][$] = $sum

}
$r _product;

}

sub matrix_count_rows_cols { # return nunber of rows and col ums
ny ($r_mat) = @;
nmy $numrows = @r_nmat;
ny $numcols = @$r _mat->[0]}; # Assune all rows have an equal no.
of col ums.
($num rows, $num col s);

}

mat ri x_nul ti pl y takestwo matrices by reference. A single element is obtained as $r_mat->[$i][$],
and asingle row is obtained as $r_mat->[Q].

2.2.1 Hash of Hashes Representation

If the matrix islarge and sparse (only afew elements have nonzero values), a hash of hashesislikely a
more space-efficient representation. For example, the matrix

o0 100
200 0 0
[300 0

can be built like this;

$matri x{0}{2} = 100;
$matri x{1}{0} = 200;
$matri x{2}{1} = 300;

The code above creates a hash table, %omatrix, which maps arow number to a nested hash. Only rows
with nonzero elements are represented. Each nested hash maps a column number to the actual value of
the element at that row and column. Again, only columns with nonzero valuesin that row are
represented. Of course, we have to store the total number of rows and columns separately, since unlike
the array representation, these numbers are not implicit. Since %omatrix is a hash, they can be stored as
$matrix{ rows} and $matrix{ cols}. Because hash indices are strings, this approach is efficient only if the
matrix is large and sparse.

To make the matrix routines developed in the previous section work for this new representation, it might
seem a simple matter to convert all square bracketsto braces. True, it'll work, but there's a subtle
problem. Let's say that the entire third row of amatrix is zero-valued (so there's no entry for
$r_mat->{2}). Now, if you do this:

$el enent = $r_mat->{2}{3};

Perl automatically creates an entry for $r_mat->{ 2}, and hangs a hash reference off thisentry. (The
nested hash table is not created.) Thus the very act of examining an element gobbles up space, which is
what we had hoped to avoid in the first place when we chose the hash of hashes representation. To
prevent this, we have to check for the presence of a hash element with exists before retrieving it, as

shown next:
if ((exists $r_mat->{$row}) && (exists $r_mat->{Srow}{Scol})) {

2.2.2 Other Matrix Representations

If the columns are sparse but the rows are well represented, you could choose an array of hashes
structure. It is possible to store a matrix even more economically in terms of space, using asingle hash
table, at the expense of more complex code. If you imagine the matrix as a grid and number each cell of
the grid consecutively, any cell can then be identified with exactly one unique number. So in a matrix
with 10 rows and 5 columns, the element (8, 4) will have the number 38 (7 * 5 + 3) and hence can be
referred to as $r_mat->{ 38} . We actually use this scheme in Chapter 15, GUI Example: Tetris (though

that usage is more for convenience than for saving space). The choice of data structure depends on the
size of the matrices, performance, and coding convenience.

Changing the data structure of a program clearly ends up changing all code that depends on it. To contain
the amount of changes required (should the structure change), it is always a good ideato have only a
small set of procedures that know the structure. For example, if you had procedures such as

create matrix(),get _elenent(mat,i,)),andset el enent(nmat,i,j), other
procedures do not have to know the internal representation. Coding for change is often better than coding
for run-time efficiency. We'll discuss this approach agreat deal more in Chapter 7.

Previous: 2.1 User-Defined Advanced Perl Next: 2.3 Professors,
Structures Programming Students, Courses
2.1 User-Defined Structures Book 2.3 Professors, Students,
Index Courses

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

MAdvanced Perl Programming

Previous: 2.2 Example: C.ha ter 2 Next: 2.4 Pass
Matrices Implementing Complex Data the Envelope
Structures

2.3 Professors, Students, Courses

This example shows how you might represent professor, student, and course data as hierarchical records and
how to link them up. Assume that the data files look like this:

#file: professor. dat

id : 42343 #Enmpl oyee | d
Name . E. F. Schunacher
Ofice Hours: Mon 3-4, Wd 8-9

Cour ses : HS201, SS343 #Cour se t aught

#file: student. dat

id : 52003 # Registration id
Nane . @Gari bal di

Cour ses . H301, H302, MO1 # Courses taken
#fil e: courses. dat

id : HS201

Description : Small is beautiful

Class Hours : Mon 2-4, Wd 9-10, Thu 4-5

Each "id:" line starts a new record.

Among other tasks, let us say we are required to find out whether there is a scheduling conflict on professors
and students' hours. Because our focus is on data representation and getting afeel for Perl's reference syntax,
we will look at implementing only some parts of the problem.

2.3.1 Representation

A hash table is a good representation for a heterogeneous record, as we mentioned earlier, so a student
structure may be implemented like this:
$student {42343} = {

" Nane' => '"@Gribaldi",

'Courses' =>[1};

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

A number of subtle design choices have been made here.

We could have replaced "foreign keys' (to use the database term) such as "HS201" with references to the
corresponding course data structures. We didn't, because it is then tempting to directly dereference these
references, in which case the student code is aware of how the course datais structured.

We maintain separate global hash tables for students, courses, and professors - yet another effort to keep
mostly unrelated data completely separate and to make it possible to change a part of the system without
affecting everyone.

Thereis one piece of datawe haven't discussed before: time ranges. Both professors and courses have certain
"busy" or "active" hours. What is a good representation for this? Y ou might choose to represent the line "Mon
2-3, Tue 4-6" asfollows:
$tinme_range = {

"Mon' => [2, 3],

"Tue' => [4, 6]
}

There isamuch ssimpler representation, in case you haven't already guessed it. The key insight is that since we
are concerned only with clashes in time, the system should be able to quickly tell us whether a professor or a
course is"active" in agiven hour of the week or not. Considering that there areonly 24 * 7 = 168 hoursin a
week, the entire week's schedul e can be represented by a bitmap vector of 21 bytes (168/8). If abit is set, we
know that the professor is teaching something in that hour. In fact we can reduce the storage requirements
further if we only account for the effective hoursin aweek (say, 7:00 A.M. to 7:00 P.M., Monday to Friday).
That bringsit down to 8 bytes (12 hours * 5 days/ 8). The nice thing here is that an entire sequence of time
ranges boils down to one scalar containing a bitmap vector. The other cool thing is that you can obtain time
conflicts by logically AND-ing two bitmaps.

Having settled the representation, et us write some code to read the professor.dat file, and construct the data
structures.

Example 2.3: Read professor.dat and Create Hierarchical Records in Memory
nmy (Y%rofs); # prof read file() populates this data structure fromfile
sub prof _read file {

ny ($filenane) = @;
my ($line, $curr_prof);

open (F, $filenane) || die "Could not open $fil enane”;
while ($line = <F>) {

chomp($line);

next if $line =~ /"MN\s*$/; # skip blank |ines

if ($line =~ /7~id.*:\s*(.*)/) {
Use an anonynous hash to store a professor's data
$prof s{$1} = Scurr_prof = {};

} elsif ($line =~ /~rOFfice Hours. *:\s*(.*)/) {
$1 contains a string like 'Mn 2-3, Tue 4-6'
$curr_prof->{OFfice Hours} = interval parse($1l);

} elsif ($line =~ /~Courses.*:\s*(.*)/) {
$1 contains sonething like 'HS201, MA101'

ny (@ourses_taught) = split(/[\s,]+, $1);
$curr_prof->{Courses} = \ @ourses_taught;

}

Notice that the courses_taught array islocal to the block. When the block ends, $curr_prof->{ Courses}
continues to hang on to this array. Y ou can omit one step like this:

$curr_prof->{Courses} = [split(/[\s,]+, $1)];
| prefer the earlier approach because it is more readable.

The interval _parse method parses a string such as "Mon 3-5, Wed 2-6" into a bit string, as was mentioned
earlier. The code looks like this:

Each hour in a week (wth days from7amto 7pm gets its own
unique bit in an 8-byte string.
Mon 7-8 is the Oth bit, Mon 6-7pmis 11, ... Fri 6-7 (pm is 60th.
ny %ase hours = (
non => 0, tue => 12, wed => 24 , thu => 36, fri => 48
)

sub interval parse {

ny ($interval _sequence) = @; #contains "Mn 3-5, Tue 2-6"

ny ($tinme_range) = "";

foreach $day_hours (spllt /.1, $interval sequence) {

$day_hours contains "Mn 3-5" etc.
ny ($day, $from $to) =
($day_hours =~ /([A-Za-z]+).*(\d+)-(\d+)/);

if $fromor $to is less than 7, it nust be afternoon. Normalize
it by adding 12. Then reduce it to a zero base by subtracting 7
(that is, 7 hrs to 19 hrs becones 0 - 12. Finally,
normal i ze each hour in a day with respect to weekly hours,
by adding in the day's "base hour"
$to =19 if $to == 7;
$from+= 12 if $from< 7 ; $to += 12 if $to <= 7;
ny $base = $base hours{lc $day};
$from += $base - 7; $to += $base - 7;
At this point Tue 7a. m==> 12 and Tue 4 p.m=> 21
for ($i = $from $i < $to; $i++) {

Set the corresponding bit

vec($tine_range, $i, 1) = 1;

HHHFHH

}
}
$time_range;
}

To check for scheduling constraints on a professor's time, we have to calculate overlapping hours between the
professor's office hours and each course he or she teaches and between the courses themselves, as shown in

Example 2.4.

Example 2.4: Checking Constraints on a Professor's Time

sub prof_check _constraints {

}

nmy ($prof) = @;
ny $r_prof = $profs{$prof}; # Uprofs created by prof read file
ny $office_hours = $r_prof->{OfFfice Hours};
ny $rl_courses = $r_prof->{Courses};
for $i (0 .. $#{$rl _courses}) {
$course_hours = course _get hours($rl _courses->[$i]);
if (interval _conflicts($office hours, $course hours)) {
print "Prof. ", $r_prof->{nane},
O fice hours conflict with course $course taught\n";
}
for $ (i .. $#{$rl_courses}) {
ny ($other course _hours) = course _get hours($rl _courses->[$j]);
if (interval _conflicts ($course_hours, $other_course_hours)) {
print "Prof. ", $r_prof->{name},
Course conflict: ", $rl_courses->[$i],
$rl_courses->[$j], "\n";

Thesubroutinei nt erval _confl i ct s simply compares the two bitmaps, as shown below:
sub interval _conflicts {

}

ny ($t1, $t2) = @;
my ($conbined) = $t1 & $t2;
$conbined will have at |east one bit set if there's a conflict
ny $offset = | ength($conbined) * 8;
start counting down fromlast bit, and see if any is set
while (--$offset >= 0) {
return 1 if vec($conbi ned, $of fset, 1);
}

return O;

Note that all knowledge of the internal representation of atime interval is encapsulated in functions with the
prefix i nt er val _. These functions thus encapsulate an abstract data type called "interval." When we study
modules and objectsin later chapters, we will learn ways of organizing such pieces of code into reusable

entities.
Previous: 2.2 Example: Advanced Perl Next: 2.4 Pass
Matrices Programming the Envelope
2.2 Example: Matrices Book 2.4 Pass the Envelope

Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |
Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 2.3 Professors, C.h ter 2 Next: 2.5
Students, Courses I mplementing Complex Data Pretty-Printing
Structures

2.4 Pass the Envelope

Let us say we are given atext file containing Academy Award (Oscar) winners by year and category,
formatted as follows:

1995: Act or: Ni chol as Cage

1995: Pi ct ure: Braveheart

1995: Supporting Actor: Kevin Spacey
1994: Act or : Tom Hanks

1994: Pi cture: Forrest Gunp

1928: Pi ct ure: W NGS

We would like to provide the following services:[2]

« Given ayear and category, print the corresponding entry.

« Givenayear, print al entriesfor that year.

« Given acategory, print the year and title of all entries for that category.
« Print all entries sorted by category or by year.

[2] To seeredl historical databases for the Oscars, look at http://oscars.qguide.com/. (Illustra,
an object-oriented database from Informix, is used for the grunge work.)

2.4.1 Data Representation

Since we would like to retrieve entries by category or by year, we use a double indexing scheme, as
shown in Figure 2.2.

Figure 2.2: Data structure to represent Oscar winners

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
http://oscars.guide.com/

Picture Actor : %category_index
Tyear_index l l
1995 —» [] n
1094 — = [|
gntry W Aeference to entry
1994 Anonymous list
Picture
Forrest Gump

Each entry includes a category, ayear, and the name of the corresponding winner. We choose to keep
this information in an anonymous array (an anonymous hash would do just as well). The two indices
%year_index and %category_index map the year and category to anonymous arrays containing
references to the entries. Here is one way to build this structure:

open (F, "oscar.txt") || die "Could not open database: $:";
%category index = (); %ear _index = ();
while ($line = <F>) {
chomp $l i ne;
($year, $category, $nane) = split (/:/, $line);
create_entry($year, S$category, $nane) if $nane;

}
sub create entry { # create entry (year, category, nane)
ny($year, S$category, $nane) = @;
Create an anonynous array for each entry
$rilEntry = [$year, $category, $nane];
Add this to the two indices
push (@ $year _i ndex {$year}}, $rlEntry); # By Year
push (@ $cat egory_i ndex{$category}}, $rlEntry); # By Category
}

Notice that each push statement does afair bit of work. It creates an entry in the index (if required),
hangs an anonymous array off that entry (if required), and pushes the reference to the entry into that

array.

Another important thing to notice is how braces have been used to specify the correct precedence in the
expression @ $year _i ndex{$year }} . If we had omitted the braces, the expression @$year_index
would be evaluated first and then indexed as a hash, according to the rules explained in the section
"Confusion About Precedence" in Chapter 1.

2.4.2 Print All Entries for a Given Year

Thisisasimple matter of traversing the %year_index hash:

sub print _entries for_year {
ny($year) = @;
print ("Year : $year \n");
foreach $rlEntry (@ $year _i ndex{$year}}) {
print ("\t",$rlEntry->[1], " = ",$rlEntry->[2], "\n");
}

}
2.4.3 Print All Entries Sorted by Year

We aready know how to print entries for agiven year. Find out al years for which we have data, sort
them, and call print_entries for_year for each year:
sub print_all _entries_for_year {
foreach $year (sort keys %ear index) {
print _entries for _year($year);
}

}
2.4.4 Print a Specific Entry, Given a Year and Category

We can traverse either index, and we choose to traverse the %oyear _index index, since there are
substantially fewer categories per year than the number of years for which a category isvalid:

sub print _entry {

ny($year, S$category) = @;
foreach $rlEntry (@ $year i ndex{$year}}) {
if ($rlEntry->[1] eq $category) {

print "$category (S$year), ", $rlEntry->[2], "\n";
return;
}
.
print "No entry for $category ($year) \n";
}
Previous: 2.3 Professors, Advanced Perl Next: 2.5
Students, Courses Programming Pretty-Printing
2.3 Professors, Students, Book 2.5 Pretty-Printing
Courses Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 2.4 Pass the C.h ter 2 Next: 2.6
Envelope | mplementing Complex Data Resources
Structures

2.5 Pretty-Printing

In building complicated data structures, it is always nice to have a pretty-printer handy for debugging.
There are at |east two options for pretty-printing data structures. Thefirst is the Perl debugger itself. It
uses afunction called dunpVal ue in afile called dumpvar.pl, which can be found in the standard
library directory. We can help ourselvesto it, with the caveat that it is an unadvertised function and could
change someday. To pretty-print this structure, for example:

@anple = (11.233,{3 => 4, "hello" => [6,7]});

we write the following:

requi re 'dunpvar.pl';
dunpVal ue(\ @anpl e); # always pass by reference

This prints something like this:

0 11.233
1 HASH(O0xb75dcO0)
3 =>4
"hell 0 => ARRAY(0xc70858)
0O 6
1 7

We will cover the require statement in Chapter 6, Modules. Meanwhile, just think of it as afancy
#include (which doesn't load thefileif it is aready |oaded).

The Data::Dumper module available from CPAN is another viable alternative for pretty-printing. Chapter
10, Persistence, covers this module in some detail, so we will not say any more about it here. Both
modules detect circular references and handle subroutine and glob references.

It isfun and instructive to write a pretty-printer ourselves. Example 2.5 illustrates a simple effort, which

accounts for circular references but doesn't follow typeglobs or subroutine references. This exampleis
used asfollows:

pretty print(@anple); # Doesn't need a reference
This prints
11. 233

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

{ # HASH(0xb78b00)
3 =>4
hell o =>
[# ARRAY(0xc70858)
.6
7

:]
}
The following code contains specialized procedures (print_array, print_hash, or print_scalar) that know
how to print specific datatypes. print_ref, charged with the task of pretty-printing areference, smply
dispatches control to one of the above procedures depending upon the type of argument giventoit. In

turn, these procedures may call pri nt _r ef recursively if the datatypes that they handle contain one or
more references.

Whenever areferenceis encountered, it is also checked with a hash %already seen to determine whether
the reference has been printed before. This prevents the routine from going into an infinite loop in the
presence of circular references. All functions manipulate the global variable $level and call
print_indented, which appropriately indents and prints the string given to it.

Example 2.5: Pretty-Printing

$level = -1; # Level of indentation

sub pretty print {
ny S$var;
foreach $var (@) {
if (ref ($var)) {
print_ref($var);
} else {
print_scal ar ($var);

}

}

}

sub print_scalar {
++$l evel ;
ny $var = shift;
print_indented ($var);
-- %l evel ;

}

sub print_ref {
ny $r = shift;

if (exists ($already seen{$r})) {
print_indented ("$r (Seen earlier)");

return;
} else {

$al ready _seen{ $r}=1;
}

ny $ref type = ref (%r);

if ($ref _type eq "ARRAY") {
print_array($r);

} elsif ($ref_type eq "SCALAR') {
print "Ref -> $r";
print_scal ar ($%r);

} elsif ($ref_type eq "HASH') {
print_hash($r);

} elsif ($ref _type eq "REF") {
++3l evel ;
print_indented("Ref -> ($r)");
print_ref($%r);

-- %l evel ;

} else {
print_indented ("$ref_type (not supported)”);

}

sub print_array {
my ($r_array) = @;
++$l evel ;
print_indented ("[# $r_array");
foreach $var (@r_array) {
if (ref ($var)) {
print_ref($var);
} else {
print_scal ar($var);

}
}
print_indented ("]");
-- %l evel ;

sub print_hash {

ny($r _hash) = @;

ny($key, $val);

++$l evel ;

print_indented ("{ # $r_hash");

while (($key, $val) = each %br hash) {
$val = ($val ? $val : """");
++3l evel ;
if (ref ($val)) {

print_indented ("$key =>");
print_ref($val);

} else {
print_indented ("$key => $val");

}
-- %l evel ;
}
print_indented ("}");
-- %l evel ;
}
sub print_indented {
$spaces = ": " x $level;
print "${spaces}$ [0]\n";
}

print_ref smply printsits argument (areference) and returnsif it has already seen thisreference. If you
were to read the output produced by this code, you would find it hard to imagine which reference points
to which structure. As an exercise, you might try producing a better pretty-printer, which identifies
appropriate structures by easily identifiable numeric labels like this:

hello =>

| # 10
. 6

S
o]

. foobar => array-ref # 10

}

The number 10 is an automatically generated label, which is more easily identifiable than something like

ARRAY (0xc70858).

Previous: 2.4 Pass the Advanced Perl Next: 2.6
Envelope Programming Resources
2.4 Pass the Envelope Book 2.6 Resources
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

&Advanced Perl Programming o

Previous: 2.5 Chapter 2 Next: 3. Typeglobs and
Pretty-Printing Implementing Complex Data Symbol Tables
Structures

2.6 Resources

1. The FMTYEWTK series (Far More Than You Ever Wanted To Know). Tom Christiansen.
Available at http://www.perl.com/perl/everything to know

Previous: 2.5 Advanced Perl Next: 3. Typeglobs and
Pretty-Printing Programming Symbol Tables
2.5 Pretty-Printing Book 3. Typeglobs and Symbol
Index Tables

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
http://www.perl.com/perl/everything_to_know
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

P& Advanced Perl Programming e

Previous: 2.6 Chapter 3 Next: 3.2
Resources Typeglobs

3. Typeglobs and Symbol Tables

Contents:
Perl Variables, Symbol Table, and Scoping

Typeglobs
Typeglobs and References

Filehandles, Directory Handles, and Formats

We are symbols, and inhabit symbols.
- Ralph Waldo Emerson

This chapter discusses typeglobs, the symbol table, filehandles, formats, and the differences between
dynamic and lexical scoping. At first sight, these topics may seem to lack a common theme, but as it
happens, they are intimately tied to typeglobs and symbol tables.

Typeglobs are immensely useful. They alow usto efficiently create aliases of symbols, which isthe basis
for avery important module called Exporter that is used in alarge number of freely available modules.
Typeglobs can aso be aliased to ordinary references in such away that you don't have to use the
dereferencing syntax; thisis not only easier on the eye, it is faster too. At the same time, using typeglobs
without understanding how they work can lead to a particularly painful problem called variable suicide.
This might explain why most Perl literature gives typeglobs very little attention.

Closely related to typeglobs and symbol tables is the subject of dynamic versus lexical scoping (using
local versus my). There are a couple of useful idioms that arise from these differences.

Thisisthe only chapter that starts off by giving a picture of what is going on inside, rather than first
presenting examples that you can use directly. The hope is that you will find the subsequent discussions
really easy to follow.

3.1 Perl Variables, Symbol Table, and Scoping

Variables are either global or lexical (those tagged with my). In this section we briefly study how these
two are represented internally. Let us start with global variables.

Perl has a curious feature that is typically not seen in other languages: you can use the same name for both

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

data and nondata types. For example, the scalar $spud, the array @spud, the hash %spud, the subroutine
& spud, the filehandle spud, and the format name spud are all simultaneously valid and completely
independent of each other. In other words, Perl provides distinct namespaces for each type of entity. | do
not have an explanation for why this feature is present. In fact, | consider it arather dubious facility and
recommend that you use a distinct name for each logical entity in your program; you owe it to the poor
fellow who's going to maintain your code (which might be you!).

Perl uses a symbol table (implemented internally as a hash table)[1] to map identifier names (the string
"spud" without the prefix) to the appropriate values. But you know that a hash table does not tolerate
duplicate keys, so you can't really have two entries in the hash table with the same name pointing to two
different values. For this reason, Perl interposes a structure called a typeglob between the symbol table
entry and the other data types, as shown in Figure 3.1; it isjust a bunch of pointersto values that can be
accessed by the same name, with one pointer for each value type. In the typical case, in which you have
unigue identifier names, all but one of these pointers are null.

[1] Actually, it is one symbol table per package, where each package is a distinct namespace.
For now, this distinction does not matter. Wel'll revisit thisissue in Chapter 6, Modules.

Figure 3.1: Symbol table and typeglobs

Symbal Table Typenloh

{*spud)
— s sralar valye (Sspud)
-

e ist valug (Bzpud)

s hashvalue {%Hspud)

Foo:: e
e code value (Ezpud)
e filehandle {spud)
R — o format {spud)

A typeglob isareal datatype accessible from script space and has the prefix "*"; while you can think of it
as awildcard representing all values sharing the identifier name, there's no pattern matching going on.

Y ou can assign typeglobs, store them in arrays, create local versions of them, or print them out, just as
you can for any fundamental type. More on thisin a moment.

3.1.1 Lexical Variables

Lexical variables (those tagged with my) aren't listed in the symbol table at all. Every block and
subroutine gets alist of one or more arrays of variables called scratchpads (typically one, but moreif the
subroutine recurses). Each lexical variable is assigned one slot from a scratchpad; in fact, different types
of variables with the same name - $spud and %spud, say - occupy different slots. Since a subroutine's
lexical variables are independent of any other's, we get truly local variables. We will have more to say on
this subject in Chapter 20, Perl Internals.

3.1.2 Lexical Versus Dynamic Scoping

There are two ways of getting private values inside a subroutine or block. Oneis to use the local operator,
which operates on global variables only; it saves their values and arranges to have them restored at the
end of the block. The other option isto use my, which not only creates a new variable, it marksit as
private to the block.

On the surface, both local and my behave identically:

$a = 20; # gl obal variabl e
{

| ocal (%$a); # save $a's ol d val ue;

new val ue i s undef

ny (@) ; # Lexical variable

$a = 10; # Modify $a's new val ue

@ = ("wallace", "grommt");

print $a; # prints "10"

print "@"; # prints "wallace grommt"”
}
Bl ock ended. Back to gl obal scope where only $a is valid
print $a; # prints "20", the old val ue
print @; # prints a warning, because no gl obal @

A global variable created because of alocal statement gets deallocated at the end of the block.

While their usage isidentical, there's one important difference between local and my. The my declaration
creates truly local variables, such as auto variablesin C. Thisis called lexical binding. The variableis
private to the block in which it is declared and is available only to that block (what you can see lexically
defines the bounds). It is not available to subroutines that are called from the block.

In contrast, the local operator does not create new variable. When applied to global variables, it squirrels
their values away and restores them at the end of the block. Because the variables themselves are global,
their new value is available not only to the block in which the local operator is used, but also to all called
subroutines. Consider

$x = 10;
first();

sub first {
| ocal ($x) = "zen"; # $x is still global, and has a new val ue
second() ;

}

sub second {
print $x; # Prints "zen", the current value of the global $x

}

From global scope, we call first, which localizes the global $x, setsit to a new value (the string "zen"),
and calls second. second sees the last value of $x, as set by first. This processis called dynamic scoping,
because the value of $x seen by second depends on the particular call stack. This feature can be quite

confusing in practice, because if you wrote another subroutine that declared alocal $x and called second,
it would pick up that version of $x.

In other words, local makes a global variable's new value temporary; it does not change the essential
nature of the variable itself (it still remains global). my creates atruly local variable. Which iswhy you

can say
| ocal $x{foo}; # Squirrel away $x{foo}'s val ue.

but not
ny $x{foo}; # Error. $x{foo} is not a variable

It is recommended that you use my wherever possible, because you almost always want lexical scoping.
In addition, as we shall seein Chapter 20, lexically scoped variables are faster than dynamically scoped

variables.
3.1.2.1 When would you ever need to use local?

The fact that local saves avariable's value and arranges to have that value restored at the end of the block
resultsin avery neat idiom: localizing built-in variables. Consider alocal version of the built-in array
representing the program's arguments, @ARGV::

{ # Start of a new bl ock
| ocal (@\RGV) = ("/hone/al one"”, "/vassily/kandinski");
while (<>) {
Iterate through each file and process each |ine
print; # print, for exanple

}
} # Block ends. The original @WRGV restored after this.

The diamond operator (<>) needs a globally defined @ARGV to work, so it looks at the typeglob
corresponding to the ARGV entry in the symbol table.[2] What it doesn't know, however, isthat local has
temporarily replaced @ARGV's value with a different array. The diamond operator treats each element of
this array as afilename, opensit, reads alinein every iteration, and moves on to the first line of the next
file when necessary. When the block is over, the original @ARGYV is restored. This example does not
work with my, because this operator creates awholly new variable.

[2] For efficiency, Perl doesn't do a symbol table lookup at run-time. The compilation phase
ensures that the corresponding opcodes know which typeglob to pick up. More on thisin

Chapter 20.

This technique works for other built-in variables too. Consider the variable $/ , which contains the input
record separator ("\n" by default). The diamond input operator uses this separator to return the next chunk
(by default, the next line). If you undef it, the whole file is durped in, in one fell swoop. To avoid having
to save the original value of $/ and restore it later, you can use local instead, like this.

{

| ocal $/ = undef; # Saves previous value of $/, and substitutes
it with undef
$a = <STDI N>; # Slurp all of STDIN into $a

}

local is also used for localizing typeglobs, which, asit turns out, is the only way of getting local
filehandles, formats, and directory handles.

Previous: 2.6 Advanced Perl Next: 3.2
Resources Programming Typeglobs
2.6 Resources Book 3.2 Typeglobs
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

P& Advanced Perl Programming e

Previous: 3.1 Perl Variables, Chapter 3 Next: 3.3 Typeglobs and
Symbol Table, and Scoping Typeglobsand Symbol Tables References

3.2 Typeglobs

Typeglobs, we mentioned earlier, can be localized (with local only) and assigned to one another.
Assigning atypeglob has the effect of aliasing one identifier name to another. Consider

$spud = "Wow ";
@pud = ("idaho", "russet");
*potato = *spud; # Alias potato to spud using typegl ob assi gnment

print "$potato\n"; # prints "Ww "
print @otato, "\n"; # prints "idaho russet”

Once the typeglob assignment is made, all entities that were called "spud" can now also be referred to as
"potato” - the names are freely interchangeable. That is, $spud and $potato are the same thing, and so are
the subroutines & spud and & potato. Figure 3.2 shows the picture after a typeglob assignment; both entries

in the symbol table end up pointing to the same typeglob value.[3]
[3] Thereisawee bit of ssimplification here, which we will clarify in Chapter 20.

Figure 3.2: Assigning *spud to *potato: both symbol table entries point to the same
typeglob

(*spud, *potato)

L ‘fries’ Sspud, Spotato
'spud’ —»
— "i1daho’ ‘russet’ Bspud, @potato
‘potato’ — 'a’ 'AMA" ‘b’ 'BBB’ %spud, %potato
e

The alias holds true until the typeglob is reassigned or removed. (We will shortly see how to remove a
typeglob.) In the example, there is no subroutine called spud, but if we define it after the typeglobs have
been assigned, that subroutine can also be invoked as potato. It turns out that the alias works the other

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

way too. If you assign anew list to @potato, it will also be automatically accessible as @spud.

3.2.1 Temporary Aliases

For now, thereis no easy, intuitive way to get rid of an alias created by a typeglob assignment (you may
reassign it, of course). Y ou can, however, get temporary aliases using local, because it restores the
typeglob's values at the end of the block.

Consider
$b = 10;
{

| ocal *b; # Save *b's val ues

*b = *a; # Alias b to a

$b = 20; # Same as nodi fying $a instead
} # *b restored at end of bl ock
print $a; # prints "20"
print $b; # prints "10"

local *b localizes all changes to variables named "b"; that is, it puts all of *b's value pointers into
safekeeping and substitutes an undef value for all of them. This lasts until the end of the block,
whereupon the previous values of everything named "b" are restored ($b becomes 10 again). Now,
because of the alias (*b = *4d), the assignment $b = 20 has the effect of modifying both $a and $b. But at
the end of the block, only $b isrestored, and $ais left with the new value.

While we are on the subject, it isimportant to recall that lexical variables and the symbol table have
nothing to do with each other; for this reason, localizing a typeglob with my is a compile-time error:

ny(*F);

The script dies with this error: "Can't declare ref-to-glob cast in my."

3.2.2 Using Typeglob Aliases

This section discusses a number of places where typeglob aliases work very well.

3.2.2.1 Efficient parameter passing

Aliases happen to be quite a bit faster than references, because they don't need to do any dereferencing.
Consider

$a = 10;
*b = *a ; $b++ ; # 1. Increnment $a indirectly through the typeglob
$r = \8%a; $$r++;, # 2. Increnment $a indirectly through the reference

Case 1 isaround one and a half times faster than case 2 on my PC.

The example code below uses typeglobs to efficiently pass an array by reference to a subroutine,
DoubleEachEntry, which doubles each element of the array:

@rray = (10, 20);

Doubl eEachEntry(*array); # @rray and @opy are identical.
print "@rray \n"; # prints 20 40

sub Doubl eEachEntry {
$ [0] contains *array
| ocal *copy = shift; # Create a local alias
foreach $el enent (@opy) {
$el ement *= 2;
}

}

Note that only one parameter is passed to the subroutine. The typeglob * copy springs into existence when
it isfirst encountered, but because it didn't exist prior to the local statement, it and the corresponding entry
in the symbol table are removed at the end of the block.

Incidentally, the code also takes advantage of the fact that the foreach statement internally aliases each
successive element of @copy to $element, so modifying $element affects the e ements of @copy (and
therefore @array as well).

Y ou cannot use alexically scoped array as a parameter to DoubleEachEntry, because lexical variables
don't have typeglobs associated with them. The restriction is easily circumvented, however. Typeglobs
and references are strangely equivalent, asit turns out. Y ou can pass in an ordinary referenceto a
subroutine expecting atypeglob, and it'll work well. (We'll have alittle more to say about thisin the
section "Typeglobs and References.") That is, you can pass lexically scoped arrays to DoubleEachEntry

likethis:

ny @rray = (1, 2, 3);
Doubl eEachEntry(\@rray); # Instead of *array, which wouldn't work

3.2.2.2 Aliasing on command lines

| often embed the Perl interpreter in my C/C++ programs to provide a powerful shell-like frontend. While
| like to use long and descriptive subroutine names in Perl scripts, it is painful to keep typing them on the
frontend's prompt. Aliases are very useful here:

sub a_ | ong _drawn_out sub _nane {
print "A sub by any other nanme is still a sub \n";
}

*f = *a |l ong_drawn_out _sub nane; # create an alias

Now typing f() on the command line is the same as calling the original subroutine but much easier on the
carpals!

3.2.2.3 Friendly predefined variables with aliases

Consider the opposite case. Perl has a number of cryptic built-in variables such as $!, $/, and $@ , and
many people would much rather work with longer descriptive names. The module English.pm in the
standard Perl library comesto the rescue; it provides nice big, long aliased names, such as $ERRNO,
$INPUT_RECORD_SEPARATOR, and $EVAL_ERROR (respectively). Try this:

use Engli sh; # Inport the nodule file called English. pm
Try deleting a non-existent file
unlink ('/tnmp/foo');
if ($ERRNO) { # Use $ERRNO instead of $!

print $ERRNO, "\n"; # Prints "No such file or directory"”
}

(WEe'll cover packages and the use statement in Chapter 6.) | think these well-known names should have

been in there from the very beginning, instead of having to memorize funny-looking variables and an
accompanying list of mnemonics. Some argue that you can use the same scheme for other languages ("use
Dutch;"), but considering that the other system calls are in English anyway, | think that there's no point
providing specific aliases for a small subset of the things you have to remember.

3.2.3 Aliasing Problem: Variable Suicide

Aliases, combined with the fact that local doesn't really create new variables (it temporarily slaps a new
value onto a global variable), often leads to weird values of variables that presumably haven't even been
touched. Consider the following simple case:
$x = 10;
foo(*x);
sub foo {
local (*y) = @;
print "Before value of y : $y \n";
| ocal ($x) = 100;
print "After value of y : $y \n";
}

This prints the following:

Before value of y : 10
After value of y : 100

Can you resolve the mystery? Clearly, $y has not been touched between thetwo pri nt statements, but
its value seems to have changed. Hint: it reflects that of $x.

L et's trace the events in sequence:

$x = 10; Assign a value to gl obal $x

function called

Save global *y's values. Alias it to *x
Because of the alias, $y is the sane as $x,
hence this prints 10

| MPORTANT: | ocal saves $x's val ue (10)

and substitutes 100. Note that it does not
create a new $x vari able

repl aced by 100

But *y is still aliased to *x. Therefore,
$y now contains 100

| ocal *y = *Xx;
print "before val ue"

| ocal $x = 100;

print "after val ue";

HFHEFEHHFHHFHEHITEH

The interaction of aliases and local can be even more subtle. Consider
foreach $f (10, 20, 30) {

foo (*f);

}

sub foo {
local (*g) = @;
$g++;

}

This prints the error: "Modification of aread-only value attempted at try.pl line 6."

The sequence is asfollows: For efficiency, the foreach operator aliases $f to the next element of thelist in
every iteration, each of which isa constant. The subroutine foo aliases *g to *f, which means that $g is
aliased to a constant. For this reason, the operation $g++ causes a problem.

Moral of the story: if you want truly local variables, use my. Use typeglob aliasing and local sparingly.

Previous: 3.1 Perl Variables, Advanced Perl Next: 3.3 Typeglobs and
Symbol Table, and Scoping Programming References
3.1 Perl Variables, Symbol Book 3.3 Typeglobs and References
Table, and Scoping Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 3.2 Chapter 3 Next: 3.4 Filehandles,
Typeglobs Typeglobs and Symbol Tables Directory Handles, and
Formats

3.3 Typeglobs and References

Y ou might have noticed that both typeglobs and references point to values. A variable $a can be seen
simply as a dereference of atypeglob ${*a}. For this reason, Perl makes the two expressions ${\$a} and
${*a} refer to the same scalar value. This equivalence of typeglobs and ordinary references has some
interesting properties and results in three useful idioms, described here.

3.3.1 Selective Aliasing

Earlier, we saw how a statement like *b = *a makes everything named "a" be referred to as"b" also.
Thereisaway to create selective aliases, using the reference syntax:

*b =\ $a; # Assigning a scalar reference to a typeglob

Perl arranges it such that $b and $a are aliases, but @b and @a (or &b and & a, and so on) are not.

3.3.2 Constants

We get read-only variables by creating references to constants, like this:

*Pl = \3.1415927;
Now try to nodify it.
$PI = 10;

Perl complains. "Modification of aread-only value attempted at try.pl line 3."

3.3.3 Naming Anonymous Subroutines

We will cover anonymous subroutines in the next chapter, so you might want to come back to this
example later.

If you find it painful to call a subroutine indirectly through areference (& $rs()), you can assign a name to
it for convenience:
sub generate _greeting {

my ($greeting) = @;
sub { print "$greeting world\n";}

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

$rs = generate greeting("hello");

Instead of invoking it as $&s(), give it your own nane.

*greet = $rs;

greet (); # Equivalent to calling $&s(). Prints "hello world\n"

Of course, you can also similarly give a name to other types of references.

3.3.4 References to Typeglobs

We have seen how references and typeglobs are equivalent (in the sense that references can be assigned
to typeglobs). Perl also alows you to take references to typeglobs by prefixing it with a backslash as
usual:

$ra = *a;
References to typeglobs are not used much in practice, because it is very efficient to pass typeglobs

around directly. Thisis similar to the case of ordinary scalars, which don't need references to pass them
around for efficiency.

Previous: 3.2 Advanced Perl Next: 3.4 Filehandles,
Typeglobs Programming Directory Handles, and
Formats
3.2 Typeglobs Book 3.4 Filehandles, Directory
Index Handles, and Formats

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 3.3 Typeglobs and Chapter 3 Next: 4. Subroutine
References Typeglobs and Symbol Tables References and Closures

3.4 Filehandles, Directory Handles, and Formats

The built-in functions open and opendir initialize afilehandle and a directory handle, respectively:

open(F, "/honme/calvin");
opendir (D, "/usr");

The symbols F and D are user-defined identifiers, but without a prefix symbol. Unfortunately, these
handles don't have some basic facilities enjoyed by the important data types such as scalars, arrays, and
hashes - you cannot assign handles, and you cannot create local handles:[4]

[4] | don't know why filehandles didn't get a standard prefix symbol and the other features
enjoyed by the other data types.

| ocal (G; # invalid
G=F # also invalid

Before we go further, it isimportant to know that the standard Perl distribution comes with a module
called FileHandle that provides an object-oriented version of filehandles. This alows you to create
filehandle "objects," to assign one to the other, and to create them local to the block. Similarly, directory
handles are handled by DirHandle. Developers are now encouraged to use these facilities instead of the
techniques described next. But you still need to wade through the next discussion because thereis alarge
amount of freeware code in which you will see these constructs; in fact, the standard modules
FileHandle, DirHandle, and Symbol, as well asthe entire 1O hierarchy of modules, are built on this
foundation.

Why isit so important to be able to assign handles and create local filehandles? Without assignment, you
cannot pass filehandles as parameters to subroutines or maintain them in data structures. Without local
filehandles, you cannot create recursive subroutines that open files (for processing included files, which
themselves might include more, for example).

The ssimple answer to this solution is to use typeglob assignment. That is, if you feel the urge to say,
G=F

or,

| ocal (F);

you can write it instead in terms of typeglobs:

*G = *F,

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

or,
| ocal (*F);

Similarly, if you want to store filehandles in data structures or create references to them, you use the
corresponding typeglob. All I/O operators that require filehandles also accept typeglob references. Let us
take alook at what we can do with assigning filehandles and localizing them (using typeglobs, of
COUrse).

3.4.1 1/0 Redirection

The following example shows how 1/0 can be simply redirected:
open(F, '">/tnp/x') || die;

*STDOUT = *F;

print "hello world\n";

The print function thinks it is sending the output to STDOUT but ends up sending it to the open file
instead, because the typeglob associated with STDOUT has been aliased to F. If you want this redirection
to be temporary, you can localize * STDOUT.

3.4.2 Passing Filehandles to Subroutines

The following piece of code passes a filehandle to a subroutine:

open (F, "/tnp/sesane") || die $!;

read_and print(*F);

sub read_and print {
local (*G = @; # Filehandle Gis the sane as filehandle F
while (<G) { print; }

}

Y ou might wonder why you don't need to do the same with open; after al it is a subroutine too and takes
afilehandle as a parameter. Well, for built-in functions such as open, read, write, and readdir, Perl
automatically passes the typeglob of that symbol (instead of astring called "F"*, for example).

3.4.3 Localizing Filehandles

Let uslook at a subroutine that traverses include declarations in C header files. The subroutine shown
next, ProcessFile, looks at each line of afile and, if it matches a#include declaration, extracts the
filename and calls itself recursively. Since it has more lines to process in the original file, it cannot close
thefilehandle F. If Fisglobal, it cannot be reused to open another file, so we use local (*F) to localize it.
That way, each recursive invocation of Pr ocessFi | e getsits own unique filehandle value.

sub ProcessFile {
ny ($filenane) = @;
my ($line);
| ocal (*F); # Save ol d val ue of typeglob, (which neans
its filehandl es, anong ot her things)
open (F, $filenanme) || return;

while ($line = <F>) {
sane as before

cl ose(F);

}

Although we have not studied packages, it might be worth it to see how we could have used the
FileHandle module in this case:

use Fil eHandl e;
sub ProcessFile {

ny ($filenane) = @;

my ($line);

ny $fh = new Fil eHandl e; # Create |ocal filehandle
open ($fh, $filenanme) || return;

while ($line = <$fh>) {

}

cl ose($f h);

}
3.4.4 Strings as Handles

It so happens that typeglobs and objects of the FileHandle module are not the only solution. All Perl |/0O
functions that accept a handle also happen to accept a string instead. Consider

$fh = "foo";
open ($fh, "< /home/snoopy") ;
read ($fh, $buf, 1000);

When open examines its parameters, it finds a string where a typeglob should have been. In this case, it
automatically creates atypeglob of that name and then proceeds as before. Similarly, when read gets a
string instead of atypeglob, it looks up the corresponding typeglob from the symbol table, and then the
internal filehandle, and proceeds to read the appropriate file. This extralookup is slightly slower than
using a bareword symbol, but the time taken isinsignificant if you do the I/O in reasonably large chunks
(the optimal size varies from system to system).

Previous: 3.3 Typeglobs and Advanced Perl Next: 4. Subroutine
References Programming References and Closures
3.3 Typeglobs and References Book 4. Subroutine References and
Index Closures

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 3.4 Filehandles, Chapter 4 Next: 4.2 Using Subroutine
Directory Handles, and References
Formats

4. Subroutine References and Closures

Contents:
Subroutine References

Using Subroutine References
Closures

Using Closures

Comparisons to Other Languages
Resources

Many are called, but few are called back.
- Sister Mary Tricky

Aswith ordinary variables, subroutines can be named or anonymous, and Perl has a syntax for taking a
reference to either type. Such references work rather like pointers to functionsin C, and they can be used
to create such sophisticated structures as the following:

« Digpatch tables. Or data structures that map events to subroutine references. When an event comes
in, adigpatch table is used to ook up the corresponding subroutine. Thisis useful in creating large
and efficient switch statements, finite state machines, signal handlers, and GUI toolkits.

« Higher-order procedures. A higher-order procedure takes other procedures as arguments (like the
C library procedure gsort) or returns new procedures. The latter feature is available only in
interpreted languages such as Perl, Python, and LISP (hey, L1SPers, you have lambda functions!).

« Closures. A closureis asubroutine that, when created, packages its containing subroutine's
environment (all the variablesit requires and that are not local to itself).

In the following sections, we look at the syntax for taking and managing subroutine references and
subsequently use them in the applications listed.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

4.1 Subroutine References

There's nothing particularly fancy or magical about subroutine references. In this section, we'll study how
to create references to named and anonymous subroutines and how to dereference them.

4.1.1 References to Named Subroutines

We saw earlier that to take areference to an existing variable, we prefix it with a backslash. It is much
the same with subroutines. \& mysub is areference to & mysub. For example:

sub greet {
print "hello \n";
}

$rs = \&greet; # Create a reference to subroutine greet

It isimportant to note that we are not calling the greet subroutine here, in the same way that we don't
evaluate the value of a scalar when we take areferenceto it.

Contrast thisto the following code, which uses parentheses:

$rs = \&greet ();

This expression likely doesn't do what you expect. It calls greet and produces areference to itsreturn
value, which isthe value of the last expression evaluated inside that subroutine. Since print executed last
and returned a1 or a0 (indicating whether or not it was successful in printing the value), the result of this

expression is areference to ascalar containing 1 or 0! These are the kind of mistakes that make you wish
for type-safety once in awhile!

To summarize, do not use parentheses when taking a subroutine reference.

4.1.2 References to Anonymous Subroutines

Y ou can create an anonymous subroutine simply by omitting the name in a subroutine declaration. In
every other respect, the declaration isidentical to a named one.

$rs = sub {
print "hello \n";
b

This expression returns a reference to the newly declared subroutine. Notice that because it isan
expression, it requires the semicolon at the end, unlike the declaration of a named subroutine.

4.1.3 Dereferencing Subroutine References

Dereferencing a subroutine reference calls the subroutine indirectly. Aswith data references, Perl does
not care whether $rsis pointing to a named or an anonymous subroutine; dereferencing works the same
way in either case.

It should come as no surprise that prepending $rs with the appropriate prefix - "&", in this case -

dereferencesit:
&brs(10, 20); # Call the subroutine indirectly

That's adl thereistoiit.

Just as you can use the -> syntax with arrays or hashes ($ra->[10] or $rh->{'k2'}), you can call
subroutines indirectly through references, like this:

$rsub->(10);

In fact, subroutine calls can be chained if the intermediate calls return subroutine references. For
example:

$rs = \&testl;
$rs->("Batman")->("Robin"); # Prints "Batman and Robi n"

sub testl {
ny $arg = shift;
print "S$arg";
return \ & est 2;

}

sub test2 {
my $arg = shift;
print " and $arg\n";

}

4.1.4 Symbolic References

Recall that symbolic references contain names (strings), not real references. Thereisno differencein
syntax between real and symbolic references. Consider

sub foo { print "foo called\n" }
$rs = "foo";
&rs(); # prints "foo called"

Using symbolic references is a mite slower than using real references.

Previous: 3.4 Filehandles, Advanced Perl Next: 4.2 Using Subroutine
Directory Handles, and Programming References
Formats
3.4 Filehandles, Directory Book 4.2 Using Subroutine
Handles, and Formats Index References

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 4.1 Subroutine .Ch ter 4 Next: 4.3
References Subroutine References and Closures
Closures

4.2 Using Subroutine References

Let'slook at some common examples of using subroutine references: callback functions and higher-order
procedures.

A callback function is an ordinary subroutine whose reference is passed around. The caller (who uses
that reference) doesn't necessarily have an idea of which subroutine is getting invoked. Let's examine
three simple examples involving callback functions. dispatch tables, signal handlers, and plotting
functions.

4.2.1 Dispatch Table

A typical dispatch table is an array of subroutine references. The following example shows %ooptions as a
dispatch table that maps a set of command-line options to different subroutines:

Yoptions = (# For each option, call appropriate subroutine.
"-h" => \ &hel p,
"of => sub {$askNoQuestions = 1},
o => sub {$recursive = 1},
" default " => \&default,
);

ProcessArgs (\ @\RGV, \%options); # Pass both as references

Some of these referencesin this code are to named subroutines. Others don't do much, so it isjust
simpler to code them as inline, anonymous subroutines. ProcessArgs can now be written in avery
generic way. It takes two arguments: areference to an array that it parses and a mapping of options that it
refers to while processing the array. For each option, it calls the appropriate "mapped” function, and if an
invalid flag is supplied in @ARGV, it calls the function corresponding to the string _default_.

ProcessArgsis shown in Example 4.1.

Example 4.1: ProcessArgs

ProcessArgs (\ @QARGV, \%options); # Pass both as references
sub ProcessArgs {

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

Notice the notation: rl =ref. to array, rh = ref. to hash
ny ($rl Args, $rhOptions) = @;
foreach $arg (@rl Args) {
if (exists $rhQptions->{$arg}) {
The val ue nmust be a reference to a subroutine
$rsub = $rhQptions->{$arg};
&$rsub(); # Call it.
} else { #option does not exi st.
i f (exists $rhOptions->{" default_"}) {
& $rhOptions{" default "}};
}

}

Y ou can omit one step by using the block form of dereferencing (hark back to Section 1.2.5,"A More
General Rule"), likethis:

i f (exists $rhOptions->{$arg}) {
& $rhOptions->{$arg}}(); # Dereference and call sub in one shot
}

| prefer the more verbose version for its readability.

4.2.2 Signal Handlers

Usually, a program works by calling functions implemented by the operating system, not vice versa. An
exception to this rule is when the operating system has an urgent message to deliver to the program. In
many operating systems, the delivery is accomplished by means of signals. A signal might be issued, for
example, when a user presses Ctrl-C, when a floating-point exception is trapped by the hardware, or
when a child process dies. Y ou can specify afunction to be called whenever asignal is delivered to your
program. This allows you to take appropriate action. A Ctrl-C handler, for example, might perform
clean-up before exiting. A floating-point exception handler might set an error flag and resume normal
operation.

Perl provides a convenient way to specify signal handlers for each type of signal. There's a special
variable called %SIG whose keys are the names of signals, and its values correspond to subroutine names
or references, which are called for the corresponding signal.

sub ctrl _c_handler {
print "Crl C pressed \n";
}

$SIG {"INT"} = \&ctrl _c _handler; # "INT" indicates "Interrupt"
signal .

Here, the word INT isareserved string and signifies keyboard interrupts with Ctrl-C. Y our operating
system's documentation for signals will tell you the names of signals that might be sent to your program
or script. In fact, you can get this information from Perl aso by asking it to print out some of its

configuration information:

use Config; # Load the Config nodul e
print $Config{sig nane};

When you assign values to %SIG, Perl also alows you to give the name of the subroutine, so you don't
have to give it a subroutine reference:

$SIG {"INT"} = 'ctrl _c_handler'; # Nane of the subroutine passed.

Incidentally, signal handlers are fraught with peril. Perl internally uses C library functions such as
malloc, which are not reentrant. If asignal handler istriggered just when such afunction is being called
and the signal handler aso happens to call the same function, the function gets totally confused and is
likely to crash the system. This behavior is even more insidious at the script level, because you have no
idea when Perl might call malloc. (Chapter 20, Perl Internals, should give you avery good idea.) The
moral of the story isthat you should attempt to do the least possible work in asignal handler, such as set
aprevioudy defined global variable to true, and check this variable's value in the code outside.

4.2.2.1 Expression plotting

Suppose we want to plot a variety of functions, of the general type:
y = f(x)

wheref (x) isafunction that takes a number as an argument and returns another number. Examples
include sin(x), cos(x), and sgrt(x). But in addition to such simple examples, we would like to be able to
plot arbitrarily complex expressions such as

y = sin(2x) + cos?(x);

It is easy to develop a subroutine plot that can plot this expression in the range O to 2:

$PI = 3.1415927;
$rs = sub { # Anonynous subrouti ne
ny($x) = @;
return sin (2*$x) + cos($x) ** 2; # Function to be plotted
b
plot ($rs, 0, 2 * $PI, 0.01);

Thisis an example of a higher-order procedure that takes (a reference to) another user-defined subroutine
as an input parameter and callsit one or more times. sort is an example of a built-in higher-order
procedures; the differenceis that it takes subroutine names, not references.

Previous: 4.1 Subroutine Advanced Perl Next: 4.3
References Programming Closures
4.1 Subroutine References Book 4.3 Closures
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

P& Advanced Perl Programming e

Previous: 4.2 Using Chapter 4 | Next: 4.4 Using Closures|
Subroutine References Subr outine References and
Closures

4.3 Closures

Instead of returning data, a Perl subroutine can return areference to a subroutine. Thisisrealy no
different from any other ways of passing subroutine references around, except for a somewhat hidden
feature involving anonymous subroutines and lexical (my) variables. Consider

$greeting = "hello world";
$rs = sub {

print $greeting;
1

&brs(); #prints "hello world"

In this example, the anonymous subroutine makes use of the global variable $greeting. No surprises here,
right? Now, let's modify thisinnocuous example slightly:

sub generate _greeting {
my($greeting) = "hello world";
return sub {print $greeting};

}

$rs = generate greeting();

&rs(); # Prints "hello world"

The generate_greeting subroutine returns the reference to an anonymous subroutine, which in turn prints
$greeting. The curious thing is that $greeting isamy variable that belongs to generate _greeting. Once
generate_greeting finishes executing, you would expect all itslocal variables to be destroyed. But when
you invoke the anonymous subroutine later on, using & $rs(), it manages to still print $greeting. How does
it work?

Any other expression in place of the anonymous subroutine definition would have used $greeting right
away. A subroutine block, on the other hand, is a package of code to be invoked at a later time, so it
keeps track of all the variablesit is going to need later on (taking them "to go,” in a manner of speaking).
When this subroutine is called subsequently and invokes print "$greeting”, the subroutine remembers the
value that $greeting had when that subroutine was created.

Let's modify this abit more to really understand what thisidiom is capable of:

sub generate _greeting {
ny($greeting) = @; # $greeting prined by argunents

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

return sub {

ny($subject)= @;
print "$greeting $subject \n";

}s
}
$rsl = generate _greeting("hello");
$rs2 = generate _greeting("ny fair");

$rsl and $rs2 are two subroutines holding on to different $greeting's
&rsl ("world") ; # prints "hello world"
&rs2 ("lady") ; # prints "ny fair | ady"

Instead of hardcoding $greeting, we get it from generate greeting's arguments. When generate greeting is
called the first time, the anonymous subroutine that it returns holds onto $greeting's value. Hence the
subroutine referred to by $rsl behaves somewhat like this:
$rsl = sub {

ny ($subject) = @;

ny $greeting = "hell o";

print "$greeting $subject\n"; # $greeting's value is "hell 0"

}

The subroutine is known as a closure (the term comes from the LISP world). Asyou can see, it captures
$greeting's value, and when it isinvoked later on, it needs only one parameter.

Like some immigrants to a country who retain the culture and customs of the place in which they are
born, closures are subroutines that package all the variables they need from the scope in which they are
created.

As it happens, Perl creates closures only over lexical (my) variables and not over global or localized
(tagged with local) variables. Let's take a peek under the covers to understand why thisis so.

4.3.1 Closures, Behind the Scenes

If you are not interested in the details of how closures work, you can safely go on to the next section
without loss of continuity.

Recall that the name of avariable and its value are separate entities. When it first sees $greeting, Perl
binds the name "greeting" to afreshly alocated scalar value, setting the value's reference count to 1
(there's now an arrow pointing to the value). At the end of the block, Perl disassociates the name from the
scalar value and decrements the value's reference count. In atypical block where you don't squirrel away
references to that value, the value would be deall ocated, since the reference count comes down to zero. In
this example, however, the anonymous subroutine happens to use $greeting, so it increments that scalar
value's reference count, thus preventing its automatic deallocation when generate _greeting finishes. When
generate greeting is called a second time, the name "greeting” is bound to a whole new scalar value, and
so the second closure gets to hang on to its own scalar value.

Why don't closures work with local variables? Recall from Chapter 3, Typeglobs and Symbol Tables, that
variables marked local are dynamically scoped (or "temporarily global"). A local variable's value depends

on the call stack at the moment at which it is used. For this reason, if $greeting were declared local, Perl
would look up its value when the anonymous subroutineis called (actually when print is caled inside it),
not when it is defined. Y ou can verify this with a simple test:

sub generate _greeting {
| ocal ($greeting) = @;
return sub {
print "$greeting \n" ;
}
}

$rs = generate_greeting("hello");
$greeti ng = "CGoodbye";
&brs(); # Prints "Goodbye", not "hello"

The anonymous subroutine is not a closure in this case, because it doesn't hang onto the local value of
$greeting ("hello") at the time of its creation. Once generate greeting has finished executing, $greeting is
back to its old global value, which is what is seen by the anonymous subroutine while executing.

It might appear that every time generate greeting returns an anonymous subroutine, it creates awhole
new packet of code internally. That isn't so. The code for the anonymous subroutine is generated once
during compiletime. $rsisinternaly areference to a"code value," which in turn keeps track not only of
the byte-codes themselves (which it shares with all other subroutine references pointing to the same piece
of code), but also all the variables it requires from its environment (each subroutine reference packsits
own private context for later use). Chapter 20 does less hand-waving and supplies exact detalils.

To summarize, aclosure is the special case of an anonymous subroutine holding onto data that used to
belong to its scope at the time of its creation.

Previous: 4.2 Using Advanced Perl | Next: 4.4 Using Closures|
Subroutine References Programming
4.2 Using Subroutine Book 4.4 Using Closures
References Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 4.3 .Cha ter 4 Next: 4.5 Comparisons to
Closures Subroutine References and Other Languages
Closures

4.4 Using Closures

Closures are used in two somewhat distinct ways. The most common usage is as "smart” callback
procedures. The other idiom isthat of "iterators' (or "streams,” asthey are known in the LISP world).

4.4.1 Using Closures as "Smart" Callbacks

Since closures are subroutine references with a bit of private datathrown in, they are very convenient to use
as callback proceduresin graphical user interfaces.

Let's say you create a button using the Tk toolkit and give it a subroutine reference. When the button is
pressed, it calls this subroutine back. Now if the same subroutine is given to two different buttons on the
screen, there's a problem: How does the subroutine know which button is calling it? Simple. Instead of
giving the button areference to an ordinary subroutine, you give it a"smart" callback subroutine - a
closure. This closure stores away some data specific to a button (such as its name), and when the subroutine
Iscaled, it magically has access to that data, as shown in Example 4.2.

This example creates two buttons that when clicked, print out their title strings. Though the discussion
about packages and, specifically, the Tk moduleis slated for chapters to come, you might still understand
the gist of the code in Example 4.2. For the moment, pay attention only to the part that uses closures

(highlighted in boldface) and not to the mechanics of using the Tk module.

CreateButton creates a GUI button and feeds it a reference to an anonymous subroutine reference
($callback_proc), which holds on to $title, amy variable in its enclosing environment. When the user clicks
on the button, the callback is invoked, whereupon it usesiits stored value of $title.

Example 4.2: Passing Closures Instead of Ordinary Subroutines

use Tk;

Creates a top | evel w ndow

$t opwi ndow = Mai nW ndow >new() ;

Create two buttons. The buttons print their nanmes when clicked on.
Cr eat eBut t on($t opwi ndow, "hel |l 0");

Cr eat eBut t on($t opwi ndow, "worl d");

Tk: : Mai nLoop(); # Dispatch events.

sub CreateButton {

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

ny ($parent, $title) = @;

ny($b) ;

$cal | back_proc = sub {

print "Button $title pressed\n”;

3
$b = $parent->Button(
'-text' => "$title", # Button title
'-fg = 'red', # foreground col or

‘-command' => $cal | back_proc # sub to call when the button
is pressed
);
$b- >pack();
}

Note that the buttons couldn't care less whether they get references to ordinary subroutines or closures.

4.4.2 lterators and Streams

An iterator keeps track of whereit currently isin a"stream" of entities and returns the next logical entity
every timeitiscalled. It is like a database cursor, which returns the next record from a stream of records
(the list of records that match the given query). A stream can be bounded (a set of records from a database)
or unbounded (a stream of even numbers).

Let'stake alook at how closures can be used to represent streams and iterators. The first exampleisa
stream of even numbers and an iterator on this stream that returns the next even number whenever it is
called. Clearly, we cannot generate all possible even numbers (as in the bounded case), but we can aways
compute the next even number if we remember the previous number generated. The iterator remembers this
crucia piece of information.

Subroutine even_number_printer _gen takes an integer and returns a subroutine that prints even numbers
starting from the given integer.[1] This program is shown in Example 4.3.

[1] This example and explanation are based on Robert Wilensky's excellent book LISPcraft
(W.W. Norton and Co.).

Example 4.3: An Even Number Stream Generator

sub even_nunber _printer_gen {
This function returns a reference to an anon. subroutine.
This anon. subroutine prints even nunbers starting from $i nput.
ny($i nput) = @;
if ($input %2) { $input++}; # Next even nunber, if the given
nunber is odd
$rs = sub {
print "$input "; # Using $input,whichis a nmy variable
declared in an outside scope
$i nput += 2;
b

return $rs; # Return a reference to the subroutine above

}

And now for its usage:

W want even nunbers starting from 30. Ask even_nunber printer_gen
for a custom zed iterator that can do such a thing.

Siterator = even_nunber printer_gen(30);
$iterator now points to a closure.
Every time you call it, it prints the next successive even nunber.
for ($i = 0; $i < 10; $i++) {
&Piterator();

}
print "\n";
This prints

30 32 34 36 38 40 42 44 46 48

$iterator holds on to $input and uses it as private storage subsequently, storing the last even number. Of
COourse, you can create as many iterators as you want, each primed with its own starting number:

$iteratorl = even_nunber _print_gen (102);
Siterator2 = even_nunber _print_gen (22);

&biteratorl(); # Prints 102
&iterator2(); # Prints 22
&iteratorl(); # Prints 104
&biterator2(); # Prints 24

Notice how each subroutine reference is using its own private value for $input.

Can two closures share the same variables? Sure, aslong as they are created in the same environment.
Example 4.4 produces two anonymous functions, one that prints even numbers and another that prints odd

numbers. Each of these functions prints out the even (or odd) number after the number last printed (by
either function), regardless of how many times either of them is called in succession.

Example 4.4: Closures Sharing Variables

sub even_odd_print_gen {
$last is shared between the two procedures
my ($rsi, $rs2);
ny ($last) = shift; # Shared by the two cl osures bel ow
$rsl = sub { # Even nunber printer
if ($last %2) {$last ++;}
el se { $last += 2};
print "$last \n";
3
$rs2 = sub { # Odd nunber printer
if ($last %2) {$last += 2 }

el se { $l ast ++};
print "$last \n";
b
return ($rsl, 9$rs2); # Returning two anon sub references

}

($even_iter,$odd iter) = even_odd print_gen(10);
&peven_iter (); # prints 12
&bodd _iter (); # prints 13
&bodd_iter (); # prints 15
&beven_iter (); # prints 16
&bodd iter (); # prints 17

This example takes advantage of the fact that Perl can return multiple values from one subroutine, so there
is no problem returning references to two anonymous subroutines, both of which happen to be referring to
$last. You can call even_odd print_gen as many times as you want with different seeds, and it keegps
returning pairs of subroutine closures. The important point is that to share the same data, the anonymous
subroutines must have been created in the same scope. This example aso highlights the fact that a closure
truly hangs onto the my variables it needs instead of copying or interpolating the variable's values.

4.4.2.1 Random number generation

Let's turn our attention to a more useful example of an unbounded stream, that of a stream of random
numbers. The strategy isidentical to that used in the previous example: the iterator keeps track of the last
generated pseudo-random number.

Y ou might argue that the rand() function represents an iterator primed with a seed (using srand). Y ou are
right. But let's say you want to write a simulation program that depends on two independent sources of
random number generation. Using rand in both these sources does not make them independent; the reason
Is that rand happens to calculate a new random number based on the last number it generated (it storesit in
aglobal variable), and calling rand for one stream affects the next number retrieved by the other stream.

Closures provide a nice solution, because they are a combination of code and private data. Instead of using
srand, we'll use the function my_srand, which returns a random-number-generating subroutine, seeded with
an appropriate initial value. In other words, my_srand is a "generator of random number generators" that
returns a custom anonymous subroutine, primed with an initial value for $rand.

In the implementation in Example 4.5, please don't pay too much attention to the algorithm itself (the linear

congruential method), because the randomness due to the particular constants chosen has not been tested (it
also repeats every 1,000 numbers). Besides, there are much better algorithms.

Example 4.5: A Random-Number-Generating Stream

sub ny_srand {
ny ($seed) = @;
Returns a random nunber generator function
Being predictive, the algorithmrequires you to supply a
randominitial val ue.

ny $rand = $seed;
return sub {
Conpute a new pseudo-random nunber based on its old val ue
This nunber is constrai ned between 0 and 1000.
$rand = ($rand*21+1) %4000;
1
}

We can now use my_srand as many times as we want and get back completely independent closures, each
capable of generating random numbers from its own starting point:
$randomiterl = ny_srand (100);
$randomiter2 = ny_srand (1099);
for ($i = 0; $i < 100; $i++) {
print $random.iterl(), " ", $randomiter2(), "\n";
}

4.4.3 Closures Versus Objects

If you don't have a background in object orientation, you might be able to understand this section better
after you have read Section 7.2, "Objects in Perl".

An object, to give the street definition, is a package of data and functions. The data provides the context for
the object's functions to work properly. When you say, for example, $button->setForeground("yellow"), the
setForeground function automatically knows which button you are talking about.

In asense, the facility for closures attempts the same feature - it is aso a binding between a subroutine and
some private data that is available only to that subroutine. As we saw earlier, in the even_odd print_gen
example, there can be any number of subroutines that can refer to the same basic data, as long as they were
all created in exactly the same scope. Abelson, Sussman, and Sussman'’s delightful Sructure and

Inter pretation of Computer Programs [3] illustrates how to create and use such objectsin Scheme (aLISP

dialect).

Perl supports a number of features for object orientation (such as inheritance and virtual functionsa la
C++) that make it easier to create iterators and streams in an object-oriented style than by using closures
(the object's attributes reflect the "state”" of the iterator). Closures are also much more space-intensive than
objects but atrifle faster; we will study the reason for thisin Chapter 20.

| prefer objects to closuresin all cases except one: callback procedures. | find it easier to implement
callbacks with simple closures than to create "callback objects," as you might typically do in C++ (and
have to, in Java). In the CreateButton example above, you could create a callback object with exactly one
"method," say, execute(). The button would call the method $callback object->execute() when it was
clicked upon, and the execute method of that object would know exactly what to do. The callback object
can store all the context for execute to work. Instead of all thiswork, it is ssmpler and more direct to use
closures, because they automatically squirrel away the required context.

Tom Christiansen's perltoot document (toot stands for Tom's Object-Oriented Tutorial [2]) implements
objects using closures to represent the objects state. It is an interesting approach, but | don't use it because

there are ssimpler approaches for obtaining privacy; besides, they are faster too. More on thisin Chapter 7,
Object-Oriented Programming.

Previous: 4.3 Advanced Perl Next: 4.5 Comparisons to
Closures Programming Other Languages
4.3 Closures Book 4.5 Comparisons to Other
Index Languages

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

| Previous: 4.4 Using Closures| Chapter 4 Next: 4.6
Subroutine References and Resources
Closures

4.5 Comparisons to Other Languages
4.5.1 Tcl

Tcl programmers rely heavily on dynamic evaluation (using eval) to pass around bits and pieces of
code. While you can do thisin Perl also, Perl's anonymous subroutines are packets of precompiled code,
which definitely work faster than dynamic evaluation. Perl closures give you other advantages that are
not available in Tcl: the ability to share private variables between different closures (in Tcl, they have to
be global variables for them to be sharable) and not worry about variable interpolation rules (in Tcl, you
have to take care to completely expand all the variables yourself using interpolation before you pass a
piece of code along to somebody else).

4.5.2 Python

Python offers aweak form of closures: a subroutine can pick up variables only from itsimmediate
containing environment. Thisis called "shallow binding," while Perl offers "deep binding." Mark Lutz's
Programming Python (O'Reilly, 1996) shows a workaround to achieve deep binding, by setting default
arguments to values in the immediately enclosing scope.

| prefer the environment to handle this stuff automatically for me, as Perl does.

4.5.3 C++

C++ supports pointers to subroutines but does not support closures. Y ou have to use the callback object
idiom wherever a callback subroutine needs some contextual datato operate. If you don't want a separate
callback object, you can inherit your object from a standard callback class and override a method called,
say, "execute," so that the caller can simply say callback _object->execute().

4.5.4 Java

Java offers neither closures nor pointers to subroutines (methods). Interfaces can be used to provide a
standardized callback interface so that the caller doesn't have to care about the specific class of the object
(aslong asit implements that interface).

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

[Previous: 4.4 Using Closures| Advanced Perl Next: 4.6

Programming Resources
4.4 Using Closures Book 4.6 Resources
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

&Advanced Perl Programming o

Previous: 4.5 Comparisons to _Ch ter 4 Next:
Other Languages Subroutine Refer ences and 5. Eval
Closures

4.6 Resources

1. perlref, perlmod, perlsub, perltoot (Perl documentation).

2. Structure and Interpretation of Computer Programs. Harold Abelson, Gerald Jay Sussman, Julie
Sussman. MIT Press, 1996.

Uses LISP to explain higher-order procedures and closures. A pleasure to read.

Previous: 4.5 Comparisons to Advanced Perl Next:
Other Languages Programming 5. Eval
4.5 Comparisons to Other Book 5. Evdl
Languages Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 4.6 Chapter 5 Next: 5.2 The Block Form:
Resources Exception Handling

5. Eval

Contents:
The String Form: Expression Evaluation

The Block Form: Exception Handling
Watch Y our Quotes

Using Eval for Expression Evaluation
Using Eval for Efficiency

Using Eval for Time-Outs

Eval in Other Languages

Resources

One person’'s data is another person's program.
- Programming Pearls, Communications of the ACM, Sept. 1985

Y ears ago, afriend of mine showed me an elegant program running on atiny 48K machine, the BBC
Micro, that accepted any mathematical expression such assi n(x) + cos (x**2) and graphed it.
Fresh from a study of parsers, I'd wondered how many hundreds of linesit took him to write it. He
showed me the code; the entire program fit on the small screen. He had used the eval statement
provided by BASIC.

Most self-respecting scripting languages such as BASIC (some versions, anyway), Perl, Tcl, LISP, and
Python have afeature that clearly sets them apart from systems programming languages like C: the
ability to treat character strings aslittle programs.[1]

[1] On arelated note, see the section "Dynamic Behavior” in Section 20.22 for other Perl
constructs that set Perl apart from systems programming languages.

For me, Perl's run-time evaluation capability is one of the biggest reasons for using the language. (The
other isitsterrific support for regular expressions.) | use run-time evaluation for creating little snippets of
code on the fly, which then execute at typical Perl speeds (i.e., fast!), for writing sophisticated
interpreters for little languages.[2] The eval function is the gateway to this power. We will use this
feature in Chapter 7, Object-Oriented Programming, for creating object accessor functions, and in
Chapter 11, Implementing Object Persistence, for building an SQL query evaluator, among other things.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

[2] For adelightful discussion of little languages, do have alook at Jon Bentley's More
Programming Pearls[3].

Asit turns out, Perl's eval function works in two somewhat distinct ways, depending on the type of its
argument. If given astring, eval treats the string as a little program and compiles and executes it (as
mentioned above); thisis called dynamic expression evaluation. The contents of the string may or may
not be known at compile time. Alternatively, if given ablock of code - that is, the code is known at
compile time - eval traps run-time exceptions.

Dynamic expression evaluation and exception handling are very different topics and one would expect
them to be performed by different keywords. Larry Wall once mentioned that he had toyed with the idea
of using a different keyword, try, for the exception-handling version, but he was into keyword
conservation at that point. | find that a single keyword actually works well because expressions evaluated
on the fly have a greater chance of generating run-time exceptions as code known at compile-time.

In this chapter, you will gain an in-depth understanding of how the two forms of eval work and add an
important dimension to your toolkit of idioms.

5.1 The String Form: Expression Evaluation

When Perl is given afile to execute or a string as a command line option (using -€), it needs to parse the
contents, check it for syntax errors, and, if all isfine, execute it. Perl makes this feature available to the
programmer through the eval string form. This contrasts powerfully with languages such as C, C++, or
Java, where the compiler itself is a separate beast from your program, not available to it at run-time. In
other words, the Perl interpreter itself works somewhat like this:

Slurp in the entire file
while ($line = <>) {

$str .= $line; # Accumul ate the entire file.
}
$str now contains the entire file. Execute it !
eval $str;

Asyou can see, eval handles any Perl script handed to it. The beauty of this thing is that thisfacility is
available not just to Larry, but to mortals like you and me. Try this:

put sonme code inside $str

$str = "$c = $a + $b'; # Perl doesn't care what's inside $str
$a = 10; $b = 20;

eval $str; # Treat $str as code, and execute it.
print $c; # prints 30

In this snippet, $str is treated as an ordinary string at first, because that iswhat it is. But eval thinks of it
as a program and executes it. The important point isthat it doesn't think of it as a separate program, but
asif it belonged right there in the original code instead of theeval statement, as shown in Figure 5.1.

Figure 5.1: eval compiles and executes the string in its own context

sa = 10; 5k = 20; sa = 10; sk = 20;

SSLr = '5c = §a + 5b'; | L aguivalent to
eval Sstr: = Sc = Sa + 5bh;
print Sc: print 5c;

For this reason, the string that is given to eval can use variables and subroutines available to it at that
point, including my and local variables, and optionally produce new ones in the same environment. In the
preceding example, the string given to eval adds two initialized variables ($a and $b) and produces a new
variable, $c.

If you have more than one statement inside the string (remember that the string can be as big a program
asyou want), eval evaluates al of them and returns the result of the last evaluation:

$str = '$a++; $a + $b'; # Contains two expressions
$a = 10; $b = 20;
$c = eval $str; # $c gets 31 (result of the 2nd expression, $a+3$b)

Of coursg, it's quite pointlessto eval apiece of code that you know at compile time, asin the example
above. Things get interesting if $str comes from elsewhere - standard input, afile, or over the network.
We will shortly look at some examples that make use of this.

NOTE: The string form of eval isasecurity risk. If the string argument comes from an
untrusted source and contains, say,

system(‘'rm *")

the code would be merrily executed - and result in a distinct lack of merriment on your part.
In situations in which you cannot trust input, you can use the taint-checking option provided
by Perl, which prevents you from using data derived from outside the program to affect files
or things outside the program [5]. Y ou can also use the Safe module bundled with the Perl
distribution, which provides safe compartmentsin which to eval strings, similar to the
environment that a web browser provides for Javaor Tcl/Tk applets.

What if $str doesn't contain avalid Perl expression? Perl then puts an error message in a special variable
caled $@ (or SEVAL_ERROR, if you use the English module). Since eval compiles the string before
actually executing it, this can be either a compilation or arun-time error. $@ is guaranteed to be undef if
$str contains error-free code (well, 1 should say free of syntax errors, because it can't really protect you
against flawed logic).

Since eval is used by the Perl interpreter itself to parse and execute a given script, the error strings (in
$@) are exactly those you see on the standard error output when processing a flawed script.

There is one subtle, yet important, point that needs to be mentioned. eval treats the string as a block,
which iswhy it is able to process a number of statements (not just expressions) and return the value of
the last statement. This also means that you don't see the changes to localized or lexical variables present

in the eval'ed string.

Previous: 4.6 Advanced Perl Next: 5.2 The Block Form:
Resources Programming Exception Handling
4.6 Resources Book 5.2 The Block Form:
Index Exception Handling

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 5.1 The String Chapter 5 | Next: 5.3 Watch Your Quotes]
Form: Expression Evaluation Eval

5.2 The Block Form: Exception Handling

In thisform, eval isfollowed by ablock of code, not a scalar containing a string. It is used for handling
run-time errors, or exceptions. Errors can be internal built-in ones (out-of-memory, divide-by-zero) or
user-defined ones produced by die.

The following example shows how you can use the block form eval to trap arun-time divide-by-zero error:

eval {
$a = 10; $b = O;
$c = $a / $b; # Causes a run-tinme error,
which is trapped by eval
}s
print $@ # Prints "lllegal division by 0 at try.pl line 3

When the script is compiled, Perl syntax-checks the block of code and generates code. If it encounters a
run-time error, Perl skips the rest of the eval block and sets $@ to the corresponding error text.

To signal your own errors, you use die. Perl knows whether a piece of code is currently executing inside an
eval, and so, when dieis called, Perl simply gives the error string - die's argument - to the global $@, and
jumps to the statement following the eval block. In the following example, open fileinvokesdieif it has
trouble opening afile. To use thisfunction, wrap it inside an eval.
sub open_file {

open (F, $ [0]) || die "Could not open file: $!'";

}
$f = "test.dat’;
while (1) {
eval {
open_file($f); # if open_file dies, the programdoesn't quit
}s
| ast unl ess $@ # no error: break out of the I oop.
print "$f is not present. Please enter new file nane $f";
chomp($f = <STDI N>);
}

JavalC++ programmers would of course recognize the parallel to the throw, try, and catch statements,
where try corresponds to the eval block, catch to the checking of $@, and throw to die. (Essentially, the

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

caller saysto the run-time environment, "Here, try this code, and catch whatever errors are thrown by the
callee.")

Onething | like alot about the Java environment is that both the interpreter and the standard libraries make
extensive and consistent use of try, throw, and catch for error handling. In some ways, using these
constructs is better than simply returning an error code, because it requires the programmer to pay attention
to errors (if you ignore the error, the program dies).

In C++ and Java, afunction can rethrow an exception if it doesn't want to handle it itself. In Perl, you can
do so by calling die without arguments:

eval {
}i
if ($@=~ /sorry, bucko/) {
} else {
hrm .. don't know what to do with it.
die; # ldentical to die $@

}

If there is an enclosing eval block, this exception will be caught; otherwise, the program terminates.

5.2.1 Standard Modules

Since C++ and Java contain special constructs for trapping and handling errors, some Perl programmers
would like them too. Here are a couple of options.

5.2.1.1 Exception.pm

As this book goes to press, a new module, Exception, built over eval and die, isjust being announced to
CPAN. Y ou need to understand Perl's support for object orientation to understand the following small
example, so you might want to revisit this example on a subsequent reading.

This snippet throws exceptions if you attempt to withdraw more than $300 or exceed the current balance:

use Exception;
package Anount ExceededException; # User-defined exception
@ SA = (' Exception');

package Overdraft Exception; # User-defined exception
@ SA = (' Exception');

package BankAccount;
sub w t hdraw noney ({
ny $armount = shift;
i f ($anount > 300) {
t hrow new Anmount ExceededExcepti on;
}

i f ($anount > $bal ance) {

t hrow new Overdraft Excepti on;

}
C # Change bal ance
}
try {
print "How nuch do you need?"; chonp($anount = <STDI N>);
wi t hdr aw_noney ($anount);
}

cat ch Anmount ExceededExcepti on =>
sub {print 'Cannot w thdraw nore than $300'},

Overdraft Exception =>
sub {print $_[O0]->nmessage},
Default =>

sub {print "Internal error. Try later"};
5.2.1.2 exceptions.pl

The standard Perl library currently has a module called exceptions.pl, which is aso athin wrapper over eval
and die and provides subroutines called catch and throw. catch takes a piece of code as a string (instead of
as ablock, as the previous example) and alist of regular expressions to match against the error string when
it eval's the code.

This module has one serious problem, which is actually solved by the newer module, Exception.pm:
because cat ch isasubroutine, lexical variables in the current scope (localized with my) are not available
toit.

| suspect that programmers disdain making alanguage look like another;[3] in the final analysis, using eval
and diein theraw is probably the easiest option.

[3] That excludes Larry Wall, considering that he designed Perl to look like C, sh, and awk!

Previous: 5.1 The String Advanced Perl | Next: 5.3 Watch Your Quotes]|
Form: Expression Evaluation Programming
5.1 The String Form: Book 5.3 Watch Y our Quotes
Expression Evaluation Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 5.2 The Block Chapter 5 Next: 5.4 Using Eval for
Form: Exception Handling Eval Expression Evaluation

5.3 Watch Your Quotes

There are some subtleties associated with the way quotes or blocks are interpreted by Perl. Consider the
differences between the following statements:

$str = "$c = 10';

#

eval $str; # 1
eval "$str"; # 2
eval '$str'; # 3

eval { $str }; # 4

Cases 1 and 2 have identical results, and cases 3 and 4 behave identically. Can you see why? Thetrick is
to know what the interpreter does before handing it over to eval.

In case 1, Perl gives the contents of $str to eval, just as it would for any other function. Hence eval sees
thestring' $c = 10", treatsit like alittle program, and executes it.

In case 2, Perl does variable interpolation on the double-quoted string before handing it over to eval.
Again, eval seesthe contents of $str, compilesit, and executesit, assigning 10 to $c.

In case 3, the argument to eval is a single-quoted string, which is not expanded during the variable
interpolation stage. For this reason, eval sees a hardcoded string (with the characters"$", "s", "t", "r") and
treatsit like alittle program as before. As a standalone program, it is quite useless, of course. Since eval
returns the result of the last expression, it returns the value of $str (the string $¢ = 10). That is, if you say,

$s = eval '$str';
$swill contain $¢ = 10.

Case 4 isidentical to case 3, except that the code inside the block is checked for syntax errors at
compile-time (at the same time as the rest of the script).

That's dl thereisto know about eval. Now, let us see how to useit for expression evaluation, exception
handling, and efficiency.

Previous: 5.2 The Block Advanced Perl Next: 5.4 Using Eval for
Form: Exception Handling Programming Expression Evaluation

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

5.2 The Block Form: Book 5.4 Using Eval for Expression
Exception Handling Index Evaluation

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

MAdvanced Perl Programming

Previous: 5.3 Watch Your Chapter 5 Next: 5.5 Using Eval for
Quotes Eval Efficiency

5.4 Using Eval for Expression Evaluation

There are anumber of tasks, such as parsing and expression evaluation, in which you can make Perl do all the
dirty work. Assuming, of course, that your parsing requirements are similar to Perl's own. Perl, after al, knows
athing or two about parsing and evaluating Perlish statements!

Let's assume that your input data is a bunch of quoted strings and you would like to verify that the quotes are
bal anced:

'He said, "come on over"'

"There are tinmes when "Peter"” doesn\'t work at all"

Instead of fretting over backslash escapes and writing code to check whether the quotes are correctly paired
(balanced), you can ssimply eval the strings, as shown in Example 5.1. Remember that a string is a correct Perl

expression too. If Perl puts an error in $@, you can be sure you have faulty input.

Example 5.1: eval.pl

whil e (defined($s = <>)) { # Read a line into $s
$result = eval $s; # Evaluate that |ine
i f ($@ { # Check for conpile or run-tine errors.
print "Invalid string:\n $s";
} else {

print $result, "\n";

}
}

The neat thing about this code isthat it works equally well as afancy calculator, because $s can be any valid
Per| statement, with arithmetic operators, loops, variable assignments, subroutines, and so on. Here's how you
might use the program:

% perl eval . pl

2 * log (10);
4.60517018598809

$a = 10; $a += $a ** 2;

110

for (1..10) {print $_, " "}
12345678910

For each line you enter, Perl computes and prints out the result (shown in non-bold type). How much simpler a
shell can you possibly ask for? Note that the code requires each input line to be a fully formed expression, so

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

you cannot write multiline expressions, but you can always change the program to start evaluating only when
the user enters ablank line.

It isworth contrasting these few lines with the effort of learning lex and yacc - see, for example, the yacc, lex,
and C-based calculator ("hoc") developed by Kernighan and Pike in their classic, The Unix Programming
Environment. Other static languages such as Java and C++ present similar challenges:. you are forced to
reinvent the wheel, since you don't have access to the power of the compiler itself.

5.4.1 Expression Evaluation in Substitutions

The Perl substitution operator is ordinarily of the form s/r egex/r epl acenent / and substitutes the
replacement string wherever the input string matches the regular expression pattern. The /e flag adds a twist to
this: it tells the substitution operator that the second part is a Perl expression, not an ordinary replacement
string; the result of the expression is used as the replacement instead. Consider

$line = ' Expression Eval uation';
$line =~ s/ (\wt)/ scalar (reverse($1l)) /eg;
print $line; # prints "noisserpxE noitaul avE"

The second parameter to the substitute operator is an expression: reverseis used in ascalar context to reverse
the string given to it. The /g flag ensures that every word is matched and reversed.

Thistopic is somewhat tangential to the eval keyword, but it is still germane to our discussion about run-time
expression evaluation; in fact, /e stands for "expression,” not for "eval." This expression is checked for syntax at
compile-time, so if you need to watch for run-time errors, you still need to put the entire statement within an
eval block. Consider another example, which replaces any string containing the pattern "number/number” with
an equivalent fraction:

$I = "H s chances of winning are between 2/5 and 1/ 3';
eval {

$I =~ s|(\d+)/(\d+)| $1 / $2 |egq;
}

print $I unless $@

This prints "His chances of winning are between 0.4 and 0.333333333333333." The eval block traps
divide-by-zero errors.

Previous: 5.3 Watch Your Advanced Perl Next: 5.5 Using Eval for
Quotes Programming Efficiency
5.3 Watch Y our Quotes Book 5.5 Using Eval for Efficiency
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |
Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

MAdvanced Perl Programming

Previous: 5.4 Using Eval for Chapter 5 Next: 5.6 Using Eval for
Expression Evaluation Eval Time-Outs

5.5 Using Eval for Efficiency

Here are some examples where run-time evaluation can greatly speed up execution.

5.5.1 A Fast Multipattern grep

Consider agrep-like Perl script that can search for any number of patterns and print out only those lines that
match all the given patterns (the order of the patterns being unimportant). Y ou might structure the code like
this:
while ($s = <>) {
$all _matched = 1; # start by assuming all patterns match $s
foreach $pat (@atterns) {
if ($s '~ /$pat/) {
$al |l _matched = 0; # No, our assunption was w ong
| ast ;
}
}
print $s if $all_matched;
}

The problem with this code is that the regular expression (/$pat/) is compiled afresh for every line and for every
pattern. That is, if you have, say, 10,000 lines in the text to be searched, and three patterns to search for, a.*b,
[0-9], and [*def], the patterns will be compiled 30,000 times. The /o flag, which tells Perl to compile the regular
expression, cannot be used here because $pat can vary as the program executes.

The fastest approach would be to hardcode the patterns as shown next. Unfortunately, it is also the least
reusabl e approach.
while ($s = <>) {
if (($s =~ /a.*bl/) &&
($s =~ /[0-9]%/) &&
($s =~ /[~def]/)) {
print $s;

}

The good newsisthat it is possible to get thislevel of efficiency without losing generality. Theideaisto
hand-craft the "hard-wired" code above at run-time and then to eval it.

The strings constituting the code to be generated are shown in bold in Example 5.2.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

Example 5.2: Compiling Regular Expression Strings for Blazing Speed

$code = "while (<>) {';

$code .= "if (/';
$code .= join ('/ && /', @atterns);
$code .= "'/) {print $;}}";

print $code, "\n";

eval $code; # Ahh, finally !

Check if faulty regul ar expressions given as input patterns
die "Error ---: $@n Code:\n$code\n" if ($Q@;

If @patterns contains the three strings "~abc", "ghi", "efg$", for example, the code supplied to eval looks like
this:

while (<>) {if (/~foo/ &% /bar$/ & /ghi/) {print $_;}}

One way to make this example even more efficient is to sort the patterns such that those patterns with
beginning- or end-of-line markers (* and $) are evaluated first. It is much faster to check for a pattern anchored
to the beginning or end of the line than to search al over the string. Another enhancement to make isfor the
user to supply the Boolean operator instead of hardcoding & & . See the perlfag6 document (FAQ on regular
expressions) that is bundled with the Perl distribution.

5.5.2 Extracting Columns from a File

Let uslook at another example that builds and evaluates Perl code dynamically, for efficiency. We build a
program called col, which extracts columns from afile, similar to the Unix cut(1) command. It isinvoked as
shown below:

% col -s80 8-14 20+8 test.dat

Thisinvocation treats test.dat as a fixed-format file with 80-column records and extracts two columns from
each record, one starting at character position 8 and ending at 14 (the index of the leftmost column is 1, not 0)
and the other going from 20 through 28, as shown in Figure 5.2. If the -s option is not given, the script treats

newlines as record terminators and reads the file line by line. col alows column ranges to overlap.

Figure 5.2: Using col for extracting columns

g-14 20-28

- - - =

asda hisdf the triplewon 18 swormine broa
festdat |we, preealmum, =s=afifdt tone inat and =sar
feeled mame of Anemone these sedeg but

'|' ————— : -
f
¥

\

|
sdf the lewon is
outp! @& lmam , fdt tone

name of one these

Y ou aready know that substr extracts substrings given a starting location and the substring length. Writing col
iIsasimple matter of calling substr in aloop, once for each range given on the command line:

for each line in the file {
for each colum range in the conmand |ine argunents ({
print substr (line, range);
}

}

Asan aside, we don't use unpack instead of substr because we would like the input ranges to overlap.

A more efficient alternative to the preceding solution is to "flatten the loop" and use constants wherever
possible, as shown in the following code snippet (for the specific command-line invocation above). For each
record read from afile, this code extracts the substring indicated by input range and pads it with spaces as
necessary. It also appends a delimiter ("[") to each extracted column.

Y o e
sub col {
ny $tnp;
while (1) {
$s = get _next _line();
$col ="";

HPART 2 == - m s m e e e e eeeeaeaaa
$s .= " " x (14 - length($s)) if (length($s) < 14);
$tnp = substr($s, 7, 7);

$tnp .= " " x (7 - length($tnp));
$col .="|" . $tnp;
$s .= ' ' x (28 - length($s)) if (length($s) < (28));

$tnp = substr($s, 19, 9);

$tmp . = "X (9 - length($tm));
$col .="|" . S$tnp;
= =g T

print $col, "\n";

}

$tmp contains one column at any time, and $col accumulates each such column to be output and is finally
printed.

Given the command line as shown, let's compose this subroutine at run-time. Notice that parts 1 and 3 are
independent of the command-line arguments. Part 2, which extracts al the columnsin each line, isthe only one
that is shaped by command-line arguments.

As was mentioned earlier, you must watch your quotes carefully. Assume that $col1 and $offset hold 7 and 6,
respectively, so that we need to insert thisline of code into our executable string:

$tnp = substr($s, 7, 6);

Here is how we can generate thisline:
$code = "$tnp = substr($s, ' . "$coll, SPoffset)";

Note how we use single and double quotes to carefully control variable interpolation. Example 5.3 shows the
three parts being generated by generate partl, generate part2, and generate part3. The subroutine

get_next_line converts tabs to equivalent spaces to preserve the visual effect of atab. generate part3 also evals
this generated code and introduces the new subroutine col. As before, the strings representing the code are
shown in bold lettering.

Example 5.3: col: A Script to Extract Columns from a File
Extracts colums of text froma file

Usage : col [-s<n>] col-rangel, col-range2, files ..
where col -range is specified as col1l-col2 (colum 1 through col um2)

or col 1+n, where n is the nunber of col umms.

$size = 0; # 0 => line-oriented input, else fixed format.
@iles = (); # List of files

$open new file = 1; # force get _next line() to open the first file
$debuggi ng = 0; # Enable with -d command |ine flag

$col = "";

$code = ""

generate part1();

generate part2();

generate part3();

col (); # sub col has now been generated. Call it !
exit(0);

sub generate_partl {
CGenerate the initial invariant code of sub col ()

$code = "sub col { ny $tnmp;'; # Note the single quotes
$code .= "while (1) {$s = get _next line(); $col ="";";
$delimter ='|";

}

Hoe o o e o e o e o e m e e e -

sub generate_part2 {
Process argunents
my ($col 1, $col 2);
foreach $arg (@RGV) ({
if (($coll, $col2) = ($arg =~ /*(\d+)-(\d+)/)) {
$col 1--;# Make it O based
$of fset = $col 2 - $col 1
add_range($col 1, $offset);
} elsif (($coll, $offset) = ($arg =~ /M(\d+H)\+(\d+)/)) {
$col 1--;
add_range($col 1, $offset);
} elsif ($size = ($arg =~ /-s(\d+)/)) {
noop
} elsif ($arg =~ /7~-d/) {
$debuggi ng = 1;
} else {
Must be a file nane

push (@iles, $arg);

}
}
}
Hoo o e e o e m o -
sub generate part3 {
$code .= "print $col, "\n";}}';
print $code if $debugging; # -d flag enabl es debuggi ng.
eval $code;
if ($@ {
die "Error \n $@n $code \n";
}
}
Hoo o o o o e o o e e o e e o e oo

sub add_range {
ny ($col 1, $nunChars) = @;
substr conplains (under -w) if we | ook past the end of a string
To prevent this, pad the string with spaces if necessary.

$code .= "\$s .= "' ' x ($coll + $nuntChars - length(\$s))";
$code .= if (length(\$s) < ($col 1+$nuntChars)
)i
$code .= "\$tnmp = substr(\$s, $col 1, $nunthars);";
$code .= "$tnp .= "X (" . $nunChars . ' - length($tmp));";
$code .= "\$col .= "$delimter' . \$tnp; ";
}
H e
sub get _next _line {
my ($buf) ;
NEXTFI LE:

i f ($open_new file) {
$file = shift @iles || exit(0);
open (F, $file) || die "$@\n";
$open_new file = 0O;

}
if ($size) {
read(F, $buf, $size);
} else {
$buf = <F>;
}
if (! $buf) {
cl ose(F);

$open_new file = 1;
got o NEXTFI LE;

}

chomp($buf);
Convert tabs to spaces (assunme tab stop width == 8)

expand | eading tabs first--the common case
$buf =~ s/~(\t+)/" ' x (8 * length($l))/e;

Now | ook for nested tabs. Have to expand themone at a tinme - hence
the while loop. In each iteration, a tab is replaced by the nunber of
spaces left till the next tab-stop. The | oop exits when there are

no nore tabs left

1 while ($buf =~ s/\t/'" ' x (8 - length($)uB)/e);

$buf ;

get_next_line uses the substitute operator's /e option to remove tabs. Can you guess why we have to use the
while loop instead of the /g option? The reason is that to expand atab to the correct number of spaces, we have
to know where the tab and the next tab stop are located. This means we have to know the number of characters
from the beginning of the line to the tab, which is obtained by computing length($). In the next iteration, this
length needs to account for the previously expanded tab. While /g does a global replace, it never revisitsa
substituted portion (that is, it always moves forward), with the result that by using this option, you can never
find out how long the partially substituted string is at any point. Instead, we use the whi | e loop to traverse the
string from the beginning for each tab found.

Previous: 5.4 Using Eval for Advanced Perl Next: 5.6 Using Eval for
Expression Evaluation Programming Time-Outs
5.4 Using Eval for Expression Book 5.6 Using Eval for Time-Outs
Evaluation Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |
Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

P& Advanced Perl Programming e

Previous: 5.5 Using Eval for Chapter 5 Next: 5.7 Eval in Other
Efficiency Eval Languages

5.6 Using Eval for Time-Outs

When you call eval, Perl makes a note of the next statement to start executing just in case adie isinvoked
somewhere within. Internally, die happens to invoke alongjmp, so Perl wastes no time at all transferring
control back up to the statement following eval, regardless of how deep the stack is. (All temporary and
local variables created in the eval 'ed code are automatically garbage collected.)

The use of setjmp and longjmp internally gives us one new technique: aborting blocked system calls and
infinite loops. Let's say you want to wait at most 10 seconds for the user to type something.[4] If you say
$buf = <>, the program is blocked until the user deigns to hit a carriage return, but we would like Perl to
abort it after waiting 10 seconds. Generating a time-out is not really a problem; the built-in function
alarm() can be used to generate an ALRM signal after a given number of seconds, like this:

$SI GALRM = \ & i nmed_out;

al ar m(10) ; # Tells the OS to issue an ALRM signal after 10 seconds
$buf = <>; # Go into a bl ocking read

[4] Thanksto Tom Christiansen for this example.

The procedure timed_out is called (after 10 seconds) regardless of what Perl happens to be executing at
that time, be it a blocked read or an infinite loop. The problem is, how does timed_out force Perl to
abandon what Perl happened to be doing at the time it was called? That's where eval/die comein. Put an
eval around $buf = <> and adieinside timed_out(), and control will be restored to the statement
following eval (theif statement), as shown here:

$SI GALRM = \ & i nmed _out;

eval {

alarm (10);

$buf = <3;

al arm(0) ; # Cancel the pending alarmif user responds.
1

If ($@=~ /GOT TIRED OF WAITING) {
print "Timed out. Proceeding wth default\n";

}

sub tinmed_out {
die "GOT TIRED OF WAI TI NG';

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

}

If the user doesn't hit areturn within 10 seconds, timed_out is called from the signal handler, which calls
die, which internally longjmps over to the statement following the innermost eval. If the user does hit a
return within the allotted time, alarm(0) is called to reset the alarm.

Note that if the alarm goes off, $@ contains something like "GOT TIRED OF WAITING at foo.pl line
100," so you cannot use eq; you must use aregular expression match (or the index operator).

Tom Christiansen pointed out a subtle and interesting point. It is essential that you set alarm inside the
eval block, because on a heavily loaded machine (and for small time-out periods), it is possible to lose the
time-dlice after the call to alarm and before it has a chance to enter the protected section (the eval block).
Later on, when the program regains the time-dlice, it is possible that the time-out interval has expired, and
the program will abort.

Previous: 5.5 Using Eval for Advanced Perl Next: 5.7 Eval in Other
Efficiency Programming Languages
5.5 Using Eval for Efficiency Book 5.7 Eval in Other Languages
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 5.6 Using Eval for Chapter 5 Next: 5.8
Time-Outs Eval Resources

5.7 Eval in Other Languages

Let'sfind out what other languages have by way of run-time evaluation and exception handling.

5.7.1 Tcl (Tool Command Language)

The Tcl interpreter follows the typical shell syntax: each statement is a command followed by a bunch of
arguments. If the command is known at compile-time, it generates byte-codes and executes it
subsequently, but if it isavariable, the interpreter waits until run-time to compile and execute that
statement. (Earlier versions of Tcl always treated the program as strings and parsed a statement every
timeit was hit, even if it was within aloop. Asthis book goesto press, the Tcl interpreter has just
recently taken some steps toward becoming a byte-code interpreter.) Tcl supports a user-level eval call,
which recursively calls the parser and interprets the contents of the string as a command followed by a
bunch of parameters.

For error handling, Tcl provides the error and catch statements, equivalent to die and eval in Perl.

5.7.2 Python

Python's eval function allows a string to be evaluated and executed, but the string cannot contain
newlines. An exec statement allows newlines, but since Python relies on leading whitespace instead of an
explicit block structure, it isimportant that you get the whitespace correct in adynamically constructed
string to be given to exec. Thisis quite abit more painful than getting the block scoping right in Perl.

Python goes through a compilation and execution stage similar to Perl, and for every module called
module.py, it stores the intermediate byte codes in afile called module.pyc. The next time the moduleis
used, the intermediate byte code file is automatically picked up. Perl islikely to see thiskind of facility
in the near future, considering that Malcolm Beattie's Perl compiler isin the alpha stage as of this
writing.

For exception handling, Python supports the notion of exception classes as part of the language, like Java
and C++. Y ou raise exceptions with raise and trap them with atry/except/finally syntax. (try and except
are equivalent to the eval BLOCK form. The finally keyword indicates a default except block that is
invoked if none of the other except statements is able to trap the exception.) | especialy like how the
interpreter and the Python library make consistent use of this facility.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

5.7.3C /[C++

There is no run-time evaluation, but there are a number of public domain and commercial interpreters
that can be linked in with your C application to support C or C++-like interpreted languages. L ook for
C-Interp or XCoral in the free compilerslist available from http://www.idiom.com/free-compilers.

C has no keywords for exception handling. C++ hasat r y/ cat ch/ t hr owsyntax identical to Java's.
Exceptions can be user-defined objects and can have their own private data as well as behavior.

5.7.4 Java

Java goes through the same two phases as Perl: (1) compilation to an intermediate byte-code form, and
(2) execution of thisintermediate code. What it doesn't allow, however, is the production and evaluation
of new code on the fly. Thereisreally no reason why thisisn't technically feasible, because the javac
compiler itself iswritten in Java, and it should be possible to package it as alibrary instead of a

standal one program without violating new security constraints.

For error handling, Javahasat r y/ cat ch syntax that is equivalent to the eval BLOCK approach in
Perl, in that all the code is known at compile-time. Exceptions are true first-class objects in Java, so you
can discriminate between them much better than the string comparison required in Perl. Java has the

t hr ow keyword to raise a user-defined exception, similar to Perl's die.

Java does strict type-checking and requires that a function enumerate the exceptions it might throw (this
Is considered part of the signature of the function). So if you call afunction that throws an exception,
Java either requires your function to either not rethrow it or, if you want to passit on, you have to include
that exception as part of your function's signature. This way, when you see afunction, you know the
exact list of exceptions you have to deal with, which isvery important for big applications written by a
team of people. Depending on your viewpoint, Perl doesn't have any such feature or restriction.

Previous: 5.6 Using Eval for Advanced Perl Next: 5.8
Time-Outs Programming Resources
5.6 Using Eval for Time-Outs Book 5.8 Resources
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

http://www.idiom.com/free-compilers
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

&Advanced Perl Programming o

Previous: 5.7 Eval in Other Chapter 5 Next: 6.
Languages Eval Modules

5.8 Resources

1. More Programming Pearls. Jon Bentley. Addison-Wesley, 1990.
Especially relevant to this chapter is Column 9, Little Languages.

2. Run-time code generation. Collection of WWW links and papers by Don Pardo, at
http://www.cs.washington.edu/homes/pardo/rtcg.d/index.html.

3. perlsec. Perl documentation on security-related issues.

Previous: 5.7 Eval in Other Advanced Perl Next: 6.
Languages Programming Modules
5.7 Evadl in Other Languages Book 6. Modules
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
http://www.cs.washington.edu/homes/pardo/rtcg.d/index.html
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 5.8 Chapter 6 [Next: 6.2 Packages and Files]
Resources

6. Modules

Contents:

Basic Package

Packages and Files

Package [nitialization and Destruction
Privacy

| mporting Symbols

Nesting Packages

Autoloading

Accessing the Symbol Table

L anguage Comparisons

Lifeis a struggle with things to maintain itself among them. Concepts are the strategic plan we formin
answer to the attack.

- Jose Ortegay Gasset, The Revolt of the Masses

One of the chief reasons why languages such as awk and the various Unix shells don't get used for
building even moderately complex systemsistheir lack of support for modular programming. There are
no bodies of code that you can just pick up and plug into your application; instead, you end up cutting
and pasting from other standalone scripts. In contrast, languages such as Perl have been highly successful
because of the wide availability of third-party modules (libraries). When comparing languages, | consider
the availability of libraries to be more important than pure language features.

Perl allows you to partition your code into one or more reusable modules. In this chapter, we will study
how to:

« Define modules using the package keyword.

» Load predefined modules with use and require; we have already seen afew examples of use in the
earlier chapters.

« Access package specific variables and subroutines using the "::" notation.

o Load functions at run-time.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

6.1 Basic Package

The package keyword signifies the beginning of a new namespace. All global identifiers (names of
variables, subroutines, filehandles, formats, and directory handles) mentioned after this statement
"belong" to that package. For example:

package BankAccount;
$total = O;
sub deposit {
ny ($anount)= @;
$total += $anmount;
print "You now have $total dollars \n";

sub wi t hdraw {
ny ($anount)= @;
$total -= $anmount;
$total = 0 if $total < O;
print "You now have $total dollars \n";

}

The user-defined global identifiers $total, deposit, and withdraw belong to the BankA ccount package.
The scope of a package lasts until the end of the innermost enclosing block (if it is declared inside that
block) or until another package statement is encountered. In the absence of an explicit package
declaration, Perl assumes a package name called main.

Thisis how you use the global symbols from another package:

package ATM # Start a different nane-space now
BankAccount : : deposit(10); # Call a foreign subroutine
print $BankAccount::total; # Access a foreign variable

To access an identifier in adifferent namespace, you need to put the package name before the variable
name; thisis called fully qualifying the name. Note that you must say $BankA ccount::total, not
BankAccount::$total; the$ signisfollowed by the fully qualified name. If an identifier is not fully
qgualified, Perl looksfor it in the currently active package.

Since the package statement simply dictates the effective namespace, you can switch between different
namespaces at will:

package A;

$a = 10; # This $a is in package A

package B;

$a = 20; # This $a is in package B, and is conpletely independent
of the other $a

package A; # Make A the current package.

print $a; # prints 10;

C++ programmers will recognize the resemblance to that |anguage's namespace facility.

6.1.1 Packages and Variables

In Chapter 3, Typeglobs and Symbol Tables, | mentioned that all global names go into a symbol table.
That was a bit of awhite lie. Each package actually gets its own symbol table, distinct from all others.
(We will have more to say on this subject in the section "Accessing the Symbol Table" later in this
chapter). User-defined identifiers in package main are not treated specially in any way except that you
can also refer to avariable, say $x, in that packageas™ $: : x".

The built-in variablessuch as $|, $_, @ARGV, and %ENV aways belong to package main, and Perl
allows you to refer to these variables in any package without having to prefix them with main::. These
arethe only truly global variablesin Perl.

Y ou may also recall that lexical (my) variables are not associated with symbols and typeglobs and
therefore have nothing to do with packages. It is a compile-time error to say something like

ny $BankAccount::total; # Error

This a'so means that you can have two variables of the same type and the same name, if oneis a package
global and oneisalexical. The following piece of codeislegal, but definitely not recommended:

$x = 10 ; # gl obal to package nmin
ny $x = 20; # lexical at file scope
print $x; # prints 20. Lexical variables are given priority.

6.1.2 Symbolic References

Symbolic references work as we have seen earlier, for variables as well as functions. Consider

package A;
$x = 10;

package B;
Access $A :x synbolically
print ${"A :x"};

or even nore indirectly
$pkg = A

$var _nane = "x";
print ${"3${pkg}::$var_nanme"};

Call a subroutine indirectly
& "A::foo"} (10, 20); # ldentical to A :foo(10, 20);

We will make extensive use of thisfacility in Chapter 8, Object Orientation: The Next Few Steps.

Previous: 5.8 Advanced Perl | Next: 6.2 Packages and Files|
Resources Programming
5.8 Resources Book 6.2 Packages and Files

Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 6.1 Chapter 6 Next: 6.3 Package
Basic Package M odules Initialization and Destruction

6.2 Packages and Files

The same package declaration can be present in multiple files. Or multiple packages can be declared in
onefile. By convention, a package is usually assigned its own file and named package.pm or package.pl.
Files with the suffix .pm are called Perl modules, and packages inside files with the suffix .pl are usually
referred to aslibraries. The former naming convention is preferred now because the use statement
requiresit, as we will soon see.

The require keyword simply loads afile into your program (sourcesit, in shell parlance). Thisisidentical
inspirit to #i ncl ude in C, except that Perl does not bother about afile that has already been loaded:[1]

require "test.pl"; # load test.pl if it hasn't already been | oaded

[1] Another important distinction from C or C++ is that modules are not split up into
separate declaration and implementation files (header files versus™.c" files) and it is not
necessary to go through alinker to bring modul es together.

If you omit the suffix and the quotes, a.pm suffix is assumed. The use statement is similar in that respect,
but is more restrictive in that it accepts only module names, not filenames. So, while thereisno
necessary relation between module names and filenames in general, use does force you to adopt a
standard naming convention, which is avery good thing indeed, in my opinion. But there is more to use
than just syntactic sugar.

The big difference between use and require is that the use statement is executed as soon asit is parsed.
For this reason, the following attempt to load a module dynamically won't work, because the assignment
statement is executed only after everything has been parsed and compiled:

$pkg _name = "Account"; # executes at run-tine
use $pkg_nane; # executes at conpile-tine

Itis, infact, asyntax error; you have to use requirein this case. The advantage of useisthat when a
program starts executing, there's a guarantee that all required modules have been successfully loaded, and
there won't be any surprises at run-time.

Another important difference between use and require is described later, in the section "Importing

Symbols."

When afileisrequired or use'd, it is expected to return a Boolean success value (zero for failure,
nonzero for success). That is, the last executing statement at global scope must be a statement such as

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

"return 1;" or just "1;". Note that thisis not necessarily the last statement in thefile; it isjust the last
executing statement.

6.2.1 Load Path

Perl first looks for the file given to use or require in the current directory and then looks up the @INC
built-in array to search the include paths. By default, @INC contains afew standard directory names
specified when the interpreter was installed and built. On my machine, @INC looks like this:

% perl -e 'print "@NC \n";"'
[opt/lib/perl5/ sund4-solaris/5. 004 /opt/lib/perl5
/opt/lib/perl5/site perl/sund4-solaris /opt/lib/perl5/site perl

Y ou can also use perl -V to get this and other configuration information.
If you want to specify additional directories of your own, you have these choices:

1. Usethe-I command-line option as you would with the C preprocessor:
% perl -1/home/sriram perl -I1/local/nylib script.pl
| sometimes have instrumented or development versions of my modules in a separate directory.

This option makes it easy to use these modules without having to change any of the code that uses
them.

2. Set the PERL5LIB environment variable as a set of paths, separated by colons.

3. Modify @INC before calling require:

unshift (@NC, "/usr/perl/include"); # Prepend a directory nane
require 'foo.pl';

Previous: 6.1 Advanced Perl Next: 6.3 Package
Basic Package Programming Initialization and Destruction
6.1 Basic Package Book 6.3 Package Initialization and

Index Destruction

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

P& Advanced Perl Programming e

Previous: 6.2 Packages and Chapter 6 Next: 6.4
Files Modules Privacy

6.3 Package Initialization and Destruction

There are times when you want to do some initialization before any other code is executed. Perl goes
further: it gives you a chance to execute code whileit is still in the compilation stage.

Normally, while parsing afile, Perl compiles the entire code, and when this process is successfully
completed, it starts executing from the first global statement onward. However, if it encounters a
subroutine or ablock called BEGIN while parsing, it not only compilesit, but also executesit right away,
before resuming the compilation of the rest of the file. A small experiment underscores this point:

sub BEG N { # can also just say BEGN{ }; the word "sub" is optional
print "Washi ngton was here \n";
}

f oo*** # Intentional error

This prints the following:

Washi ngt on was here
syntax error at x.pl line 4, near "** ;"
Execution of x.pl aborted due to conpilation errors.

Whereas a program with a syntax error normally does not get executed at all, aBEGIN subroutine
occurring before the error will be executed.

Because a BEGIN block gets executed even before the compilation phase is over, it can influence the rest
of the compilation. If you want to hardcode an include path in your program, hereis how to do it:

BEG N {
unshift (@NC, "../include");
}
use Foo; # Looks for Foo.pmin "../include" first

An easier approach isto use the lib module that is packaged with the Perl distribution:
use lib gwm../include); # prepends the directory to @NC

Just as you want to do initialization before any other code executes, there are times when you want to do
some clean-up after all the code has executed. The END block is called just before the program is due to
exit, independent of whether it was a successful exit or not. That is, even if the program dies because of,
say, an arithmetic exception, the END block is called anyway. The block is not invoked if the program
dies because of an uncaught signal.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

BEGIN and END are borrowed from awk. And asin awk, Perl supports multiple BEGIN and END
statements. BEGIN statements are executed in the order in which they are seen, while END statements are
executed in reverse order of appearance (last in, first out). If there are multiple packages with many
BEGIN or END blocks, the order in which the packages were loaded is taken into account.

Previous: 6.2 Packages and Advanced Perl Next: 6.4
Files Programming Privacy
6.2 Packages and Files Book 6.4 Privacy
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 6.3 Package Chapter 6 | Next: 6.5 Importing Symbols|
Initialization and Destruction M odules

6.4 Privacy

Symbolsin Perl are freely accessible; privacy is not enforced. The online documentation says, rather
colorfully, "Perl does not enforce private and public parts of its modules as you may have been used to in
other languages like C++, Ada, or Modula-17. Perl doesn't have an infatuation with enforced privacy. It
would prefer that you stayed out of its living room because you weren't invited, not because it has a
shotgun."[2]

[2] | once saw this gem in apiece of C++ code: "#def i ne private public",just
before including a header file. Someone who wants data that badly will find a means to get
at it!

In addition to accessing a foreign package's existing variables or subroutines, a package can easily create
new names in another package's namespace, as we saw earlier. Consider

package Test;
Create a variable subroutine and subroutine in another package
$mai n: : foo = 10;
sub mai n:: nmyFunc {
print "Hello \n";
}

package nai n;
nmyFunc() ; # prints "Hello"

Although thisis not a very kosher thing to do in a normal application, this facility can be put to good use
if applied in a controlled manner. Y ou can use it to import foreign package symbol names into your own
namespace; we will study thisin the next section.

6.4.1 Enforcing Privacy

Y ou can use the my operator at file scope to get unassailably private variables. Because they are not
associated in any way with a package, they cannot be accessed from a different scope (in this case, file
scope). But because they don't have anything to do with packages, they are restricted at most to file
boundaries. Consider

package A;
ny $a = 10; # A lexical variable

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

package B;

print $A::a; # No such variable in package A

print $a; # prints 10, because it can see the |lexical variable
(even though package Bis in effect)

What if you want to make a subroutine name private? Y ou cannot use my to declare a private subroutine,
but you can use anonymous subroutines and hold references to them in lexical variables:

ny $rs func = sub {
b

Now, $rs_func can be dereferenced from within that scope (if it is aglobal variable anywhere within that
file), but it cannot be accessed in another file. Whenever you want to call this function, you can either say
& $rs func or, if you intend to call it anumber of times, use typeglob aliasing for convenience and
efficiency:
{

| ocal (*func) = $rs_func;

for (1..100) {func()};

}

While you can hide your own global identifiers, there's nothing you can do to prevent another module
from installing new names into your namespace. In fact, older Perl libraries took this liberty alot more.
(Look at the bigint.pl package in the standard Perl library, for example.)

Previous: 6.3 Package Advanced Perl | Next: 6.5 Importing Symbols|
Initialization and Destruction Programming
6.3 Package Initialization and Book 6.5 Importing Symbols
Destruction Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

MAdvanced Perl Programming

Previous: 6.4 Chapter 6 | Next: 6.6 Nesting Packages|
Privacy M odules

6.5 Importing Symbols

Sometimes, you may want to selectively import symbols into your namespace, just for typing efficiency. For
example, you might want to say sgrt instead of math::sqrt or deposit instead of BankAccount::deposit. The use
statement allows you to specify an optional list of function names to be imported:

use BankAccount ('w thdraw , 'deposit');
wi thdraw(); # Can now call function without fully qualifying it.

For its part, the module has to be ready to export these names (and only them) to whoever usesit. It should
also have a policy for what it should do if the user does not specify alist at all. Both these tasks are handled
for you by a standard module called Exporter. The BankA ccount class can be implemented as shown next:

package BankAccount;

use Exporter;

@ SA = (' Exporter'); # Inherit from Exporter
@XPORT_K = ('wthdraw , 'deposit');

sub deposit { }
sub withdraw { }

This code |oads the Exporter module and arranges to inherit from that module, using the @I SA array. For
now, take it on faith that this works; we will study inheritance shortly. The @EXPORT_OK array states which
symbols are fine to export. The user of this module can in turn specify alist of one or more symbols specified
in @EXPORT_OK to the use statement. If the user says,

use BankAccount (' deposit');

the deposit function can be called without fully qualifying the name, in contrast to withdraw(). To tell the
Exporter module not to export any symbols into your namespace, leave the list blank.

If the module uses @EXPORT instead of @EXPORT _OK, the user gets all the exported symbols, regardiess
of whether they were mentioned in the import list or not. | recommend that as a module writer, you use the
more polite @EXPORT_OK .

Please see the Exporter documentation for numerous other features, which, among other things, allow the user
of the module to import groups of functions using tag names, or to specify the group using one or more regular
expressions.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

6.5.1 How Do use and Exporter Work?

If you are not interested in the details of how use and Exporter work, you can easily skip this section without
loss of continuity. Thisis one of those "knowledge for knowledge's sake" kind of sections.

The statement
use BankAccount ('w thdraw , 'deposit');

behaves exactly asif you had said

BEG N { require BankAccount;
BankAccount::inport('w thdraw , 'deposit');}

BEGIN ensures that this statement is parsed and executed as soon as it is seen. require loads the file
BankAccount.pmiif it has not been loaded already. Finally, the import subroutine is called on that module.[3]

[3] A bit of awhitelie here. It actually does BankA ccount->import (uses an arrow instead of the
1), adlightly different way of calling a subroutine. Welll study this notation in detail in Chapter 7,

Object-Oriented Programming. For now, this explanation is adequate.

import is not a Perl keyword. It issimply a call to a user-defined subroutine known as import, and the module
can define it any way it wishes and do what it wants with its argument list. If BankAccount does not define
import and doesn't inherit it, there is no difference between use BankAccount and require BankAccount. By
using Exporter, a module can ssimply inherit an import method without having to implement it.

To understand how Exporter works, let us build an import subroutine ourselves. We develop a smple module
called Environment that lets us quickly access environment variables. Thisis how we want to useit:

use Envi ronnent;
print $USER, $PATH,

Instead of saying $ENV{'USER'}, we can now simply say $USER. In other words, the Environment module
(and specifically afunction called import in that module) installs variables like SUSER and $PATH in its
caller's namespace.

Example 6.1 shows one way to do write this subroutine.

Example 6.1: Environment.pm: Create Variables Corresponding to Environment Variables

package Environnent;
sub inport {
Get sone caller details; its package name, and the current file nane
and | i ne nunber
ny ($call er _package) = caller;
foreach $envt _var _nane (keys %ENV) {
*{"${call er _package}::${envt _var _nane}"} = \$ENV{$envt var nane};
}
}

1, # To signify successful initialization

To keep the example small, import ignores its parameter list. It uses the caller built-in function to find out the
calling package's name and creates aliases in that package. For an environment variable USER, the statement

inside the foreach line is trandated to this:
*{"mai n:: USER'} = \ $ENV{ USER} ;

assuming that main is the calling package.

This small nugget encapsulates most of the knowledge of Chapter 3. The right-hand side returns a reference to
the scalar containing the value of the environment variable, which is assigned to a typeglob. (Remember our
discussion of selective aliasing?) The typeglob expression on the left creates a symbol table entry in main's
symbol table, whose scalar component is made to point to the value from the right-hand side. Exporter works
exactly the same way, except that it aliases only function names.

Incidentally, the standard Perl distribution contains a module called Env that looks quite similar to our
Environment package. The only distinction isthat instead of creating an aias of the environment variables,
Env uses the tie mechanism,[4] a much more inefficient way of doing things than the approach just shown.

[4] WE'll discussthet i e approach in Chapter 9, Tie.

Previous: 6.4 Advanced Perl | Next: 6.6 Nesting Packages|
Privacy Programming
6.4 Privacy Book 6.6 Nesting Packages
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |
Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 6.5 Importing Chapter 6 Next: 6.7
Symbols M odules Autoloading

6.6 Nesting Packages

Since all packages are global in scope, nesting of packages is not supported. However, you can have two
packages, one called A and another called A::B, to give anillusion of nesting. Thisis anaming
convention only and implies no necessary relation between the two packages; however, this convention
istypically applied to groups of related packages, and the term "nested packages' does not seem wrong
in such cases. For example, you could have a module called Math::Matrix for matrix manipulation and
another called Math::Poisson that supports an infrastructure for simulating queuing models. The only
relation between the two modules is that they both are mathematical in nature; they don't share any
Implementation characteristics.

The :: notation is used as before to access variables and subroutines of nested packages:

$p = Mat h:: Poi sson:: cal cul ate _probability($l anbda, $t);
print $Math::Constants::Pl;

When you say use File, recall that Perl looks for afile called File.om. If you say, use Math::Poisson, Perl
looks for afile called Math/Poisson.pm (directory Math, file Poisson.pm). The double colon gets
trandlated to afilename separator, because the colon has a special significance for DOS filenames. Perl
Imposes no limits on the level of nesting.

Previous: 6.5 Importing Advanced Perl Next: 6.7
Symbols Programming Autoloading
6.5 Importing Symbols Book 6.7 Autoloading
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

MAdvanced Perl Programming o

Previous: 6.6 Nesting Chapter 6 Next: 6.8 Accessing the
Packages Modules Symbol Table

6.7 Autoloading

If you invoke afunction called Test::func(), for example, and if func() has not been defined in module Test,
Perl automatically looks for a subroutine called Test:: AUTOLOAD(). If such a subroutine exists, Perl callsit
with the arguments that were passed to func(). In addition, a variable called SAUTOLOAD is set to the full
name of the function that was called (" Test::func"). Objective-C programmers will recognize this as being
similar to the ":forward" declaration, in which an object uses this statement to trap all procedure callsit doesn't
handle, in order to forward it to a"delegate.”

The AUTOLOAD subroutine can do just about anything it wants. For example, it can do one of the following:
« Handlethe call itself. The caller of Test::func does not know that AUTOLOAD really handled the call.

« Automatically create a subroutine on the fly (using eval) to do the right thing, and then call that new
subroutine. In fact, instead of calling that subroutine, you can simply go to it, like this:

sub AUTOLQAD {

... Create subroutine ...

goto &AUTOLOAD;, # junp to it
}

Thisisaspecial form of goto that erases the stack-frame of the AUTOLOAD routine so that Test::func
will not know it has been being called from AUTOLOAD.

« Dynamically load an object file (or aDLL in Microsoft Windows), using the standard Dynal oader
module, and then execute the appropriate call. Thisis one of the more popular uses of AUTOLOAD.

« Usethe system function to launch another program by the same name. Shell.pmin your Perl library is
the really fancy version of thisfacility. Hereisasimplified version:

sub AUTOLOAD {
ny($program = $AUTOLQAD;
We are just interested in the conmand nane, not in
the package nane
$program =~ s/ ™. *:://;
system ("$program @");

use Shell:

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

ls ("-IR); # Triggers a call to AUTOLOAD since sub |s() doesn't exi st
mail ('-s "This is a test" joe@oo.com< letter.txt"');

Autoloading can also be used to delay the loading of subroutines until they are absolutely necessary. A module
called Autosplit (in the standard distribution) is used to split a module into multiple modules, each with one
subroutine from the original, and the Autoloader module can subsequently be used to subsequently load only
the file corresponding to the called subroutine.

Previous: 6.6 Nesting Advanced Perl Next: 6.8 Accessing the
Packages Programming Symbol Table
6.6 Nesting Packages Book 6.8 Accessing the Symbol
Index Table

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |
Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 6.7 Chapter 6 Next: 6.9 Language
Autoloading Modules Comparisons

6.8 Accessing the Symbol Table

Perl has a number of features that permit introspection, chief among them the ability to get information
about the contents of the symbol table. This property is sometimes called reflection or introspection.

Reflection makes it easy to write system-level tools such as debuggers and profilers. We will also use
this property in Chapter 11, Implementing Object Persistence, to develop a module that can transparently
dump an object's datato afile or a database (and subsequently restore it) without having to write any
application-specific code.

We saw earlier in this chapter that each package gets its own symbol table (also called stash, short for
"symbol table hash"). Perl makes these stashes available as regular associative arrays. The stash for a
package named Foo can be accessed by using the hash called %Foo::. The main packageis available as
%main::, or ssimply as %::. In fact, al other packages hash tables are available from the main stash
(Yomain:: hence pointsto itself), asillustrated in Figure 6.1.

Figure 6.1: Packages' stashes are available in main's namespace

package main's stash (&main: ;)
e
Typeglob nathagﬂ stash (2Fao: 1)
]
Fooz: s .-E’%:] -
A —
L

Iterating through the all the symbolic names inside a package is simple:

foreach $nane (keys %min::) {
print "$nanme, \n";
}

Aswe saw earlier, each of these symbolic names maps to a typeglob, which itself points to one or more
values (one or more of each type: scalar, array, hash, subroutine, filehandle, format name, or directory

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

handle). Unfortunately, there's no direct way to find out which values actually exist. Example 6.2 shows

away to dump all the variablesin a given package and also demonstrates a way to find out which values
exist for a given typeglob.

Example 6.2: Dumping All Symbols in a Package

package DUVMPVAR
sub dunpvar {
ny ($packageNane) = @;

| ocal (*alias); # a local typeglob

W want to get access to the stash corresponding to the package
name

*stash = *{"${packageNane}::"}; # Now %stash is the synbol table
$, =" " # Qut put separator for print

lterate through the synbol table, which contains gl ob val ues
i ndexed by synbol nanes.
whil e (($var Nane, $gl obVal ue) = each %t ash) {

pri nt "$var Name ============================= \n";

*alias = $gl obVal ue;

i f (defined ($alias)) {

print "\t \$$varNane $alias \n";
}

if (defined (@lias)) {
print "\t \@varNane @lias \n";
}

i f (defined (%lias)) {
print "\t \%varNane ",%lias," \n";

}
}
}
This snippet of acodeillustrates how to use DUMPVAR:
package XX;
$x = 10;
@ = (1,3,4);
% =(1,2,3,4, 5, 6);
$z = 300;
DUMPVAR: : dunpvar (" XX");
This prints:
X ==
$x 10
y e s e
@ 13 4
Z —_—_———_—

% 123456

dumpvar() works by creating an alias to each typeglob successively and then enumerating each type to
see whether that value is defined. It isimportant to realize that it merely dumps the global data at the
topmost level, because anonymous data structures hanging off various references are not dumped at all.

Previous: 6.7 Advanced Perl Next: 6.9 Language
Autoloading Programming Comparisons
6.7 Autoloading Book 6.9 Language Comparisons
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 6.8 Accessing the Chapter 6 Next: 7. Object-Oriented
Symbol Table M odules Programming

6.9 Language Comparisons

In this chapter, we have seen that Perl offers namespace partitioning, limited access protection,
reflection, run-time subroutine loading (autoloading), package initialization and destruction constructs,
and exportation of names to different namespaces. Let's ook at some other languages with these features
in mind.

6.9.1 Tcl

Tcl's "package” feature basically provides away to annotate a set of code with a version number and for
the user of that code to explicitly state the version it requires. Tcl flags an error if there's a mismatch. Perl
supports version numbers also (more on thisin the next chapter).

Packages don't act like global namespaces as they do in Perl. Instead, Tcl supports the concept of
multiple interpreters coexisting in the same program to provide completely distinct namespaces. This
facility is used to create SafeTcl, which offers secure and insecure compartments in which to evaluate
code. Perl's Safe package uses a completely different mechanism internally (neither packages nor
multiple interpreters), as we shall seein Chapter 20, Perl Internals.

For reflection, Tcl hasan "info" command for finding out about globa symbols. It has no inheritance
feature, but several free extensions such as[incr Tcl | and stoop attempt to fill the gap by providing an
object orientation layer over the basic language.

Dynamic function calls are common and trivial to implement; just specify the name of acommand as a
variable, and it will get interpolated and executed at run time.

6.9.2 Python

Python offers packaging facilities very similar to Perl's. Each Python module is a namespace (a
dictionary or hash table keyed by name), and Python allows you to traverse and query this dictionary.
Like Perl, it does not enforce privacy of namespaces and leaves it to the programmer's judgment to
respect module boundaries. As amodule's user, you can import specific symbolsinto your namespace.
(There is no mechanism equivaent to @EXPORT, which | think is a good thing.) Python does not
provide anything like Perl's file-scope lexicals, which means that, unlike Perl, Python cannot give you
true privacy if you need it.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

6.9.3 C/C++

Of all the languages mentioned here, C and C++ are the least dynamic; their focusis on getting
everything nailed down at compile-time so at run-time the code can just whistle along.

Virtual functionsin C++ provide run-time binding of functions. While compile-time type checking
ensures that thisis a safe binding, it also tends to make the code verbose in comparison to more dynamic
languages such as Objective C or even Java.

C++ supports RTTI (Run Time Type Identification), but this feature is limited to finding the actual type
of apointer and to dynamically cast it. (The run-time environment throws an exception if a pointer is
wrongly cast.) The facility does not tell you what avariableis really pointing to.

6.9.4 Java

Java offers two levels of modularity: packages and classes, where a package is a collection of classes.
(Wel'll learn about the notion of classes in the next chapter.) Perl's package is equivalent to both. Java
does not allow one package to mess around with another package's namespace (no export) but allows a
package to selectively import the classesit requires. It focuses a considerable amount of attention on
security, which hasn't really stopped determined crackers. The Perl world has third-party packages called
Safe and Penguin (which depends on Safe) that attempt to provide similar isolation characteristics (and
don't offer any security guarantees either).

Since the arrival of the Java Beans and the 1.1 version of the Java Development Kit (JDK), Java has
gained significant reflection capabilities, though nowhere near the amount of publicly available
information Perl gives you. There are reasonably good arguments to be made both for providing this
information and for not providing it; everything comes down to different models of programming. Men
were sent to the moon while FORTRAN and COBOL ruled the roost, which proves that you can get a
whole ot done if you don't indulge in language wars.

Java allows you to dynamically "dispatch™ afunction call, by giving the function's name as a string, and
to trap an exception if the function doesn't exist; thisis like using Perl's symbolic references.

Previous: 6.8 Accessing the Advanced Perl Next: 7. Object-Oriented
Symbol Table Programming Programming
6.8 Accessing the Symbol Book 7. Object-Oriented
Table Index Programming

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 6.9 Language Chapter 7 Next: 7.2
Comparisons Objects in Perl

/. Object-Oriented Programming

Contents:
OO: An Introduction

Objectsin Perl

UNIVERSAL

Recap of Conventions

Comparison with Other OO Languages
Resources

There was a child went forth every day,
And the first object he look'd upon, that object he became.

- Walt Whitman, There Was a Child Went Forth

Object orientation (OO) isthe latest software methodology to occupy the airwaves, hyped to a point
where the term "object-oriented design” seems to automatically imply a good design. In this chapter, we
will study what the noiseis all about and build objects using Perl. | will leave it to the plethora of OO
literature to convince you that there is a respectable middle-ground and that the object revolution is
indeed a good thing.

If you are already conversant with OO, you could ssmply read the "Objects" section in Appendix B,
Syntax Summary. Among other things, it supplies a C++ example and translates it to equivalent Perl
code.

7.1 OO: An Introduction

Fred Brooks, in his classic The Mythical Man-Month [18], says:

The programmer at wit's end for lack of space can often do best by disentangling himself
from his code, rearing back, and contemplating his data. Representation is the essence of
programming.

He was talking about space reduction, but it is nevertheless sage advice.

Complex systems are inherently hierarchical, and many abstractions and methodol ogies have been

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

invented to take advantage of this aspect. Until the late seventies, functional decomposition (top-down
design) held sway as the definitive method to understand and implement complex systems. A devel oper
would begin by writing high-level pseudo-code and continue refining each part of it until it was detailed
enough to be trandlated into an implementation language. Nicklaus Wirth called this approach stepwise
refinement. Then came structured methodologies, SA/SD (structured analysis/structured design) chief
among them, which employed many tools and notations such as data-flow diagrams, process
specifications, data dictionaries, state transition diagrams, and entity-relationship diagrams to design,
document, and develop a system. The accent continued to be on the procedural side of systems
development rather than on the dynamic (state transitions) or structural (data) facets.

The key redlization in the last 15 years or so has been that a system's functionality tends to change alot
more than the data on which it acts. A personnel information system keeping track of employee details
soon knows as much about an employee asit ever will. On the other hand, its functionality tends to track
management reshuffles, tax laws, medical insurance changes, and the noisy arrivals and silent departures
of Directors of Human Resources.

Thisrealization has completely inverted the way a problem is tackled now. Data and ways of structuring
it are now given primary importance, and code is organized in modules around important pieces of data.
The benefits are immense and immediate.

First, the database and the code are in sync, since the code is organized along lines of data. There are
those who cry about the "impedance mismatch” between object-oriented programs and relational
databases (RDBM Ss), but that is because RDBM Ss have been limited to simple data types; thereis no
fundamental mismatch between the relational and object models. Vendors such as Informix/Illustra and
Oracle have recently begun to offer abstract data types also in their RDBM S offerings.

Focusing on data has another important advantage: Data structures tend to be something you can identify
with. For example, an airline company has airplanes, routes, and flight legs as prominent entities. In
designing a flight-planning system, these entities provide a good focus on which to center your
discussions, analysis, and design. Anybody who has had writer's block when starting a brand-new design
document would surely appreciate this approach! The final design and implementation are also more
comprehensible (and hence maintainable) because it is easier to explain. Fred Brooks remarksin The
Mythical Man-Month, "Show me your flowcharts and conceal your tables, and I'll continue to be
mystified. Show me your tables, and | won't usually need your flowcharts; they'll be obvious."

Finally, a system divided into data-centric modules can be easily apportioned among a team of
programmers. All changes to a given piece of data or a set of related data are done only by its "owner";
that devel oper becomes a component supplier for other people in the project.

Object orientation is the latest step along this course. Not only is the code data-centric, it also strivesto
encapsulate (hide) the actual data structures, preferring instead to expose alimited, well-documented
interface: a set of functions that know how to manipulate these data structures. These data structures are
called objects. VCRs, watches, cars, and other real-world objects are excellent examples of the kind of
objects we wish to emulate, because they successfully hide all the myriad complexities behind really
simple interfaces. (Of course, the fact that most VCRs show a blinking "12:00" indicates that there is still
a considerable amount of interface ssimplification to be done.) While you can surely implement
well-encapsul ated data-centric designs using conventional languages such as C or COBOL or even
assembler, object-oriented languages provide two features that are more than just syntactic conveniences:

polymor phism and inheritance. We will see how these features facilitate the construction of reusable
modules.

It must be stressed that OO methodologies are similar to SA/SD in that both account for the functional,
dynamic, and structural aspects of a system. But they differ significantly in style and emphasis; OO
design methodologies pay attention to data abstractions first and procedural abstractions last.

Previous: 6.9 Language Advanced Perl Next: 7.2
Comparisons Programming Objects in Perl
6.9 Language Comparisons Book 7.2 Objectsin Perl
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

P& Advanced Perl Programming e

Previous: 7.1 OO: An _ _Cﬁ‘w _ Next: 7.3
Introduction Object-Oriented Programming UNIVERSAL

7.2 Objects in Perl

Let us define afew preliminary terms before we start implementing objectsin Perl.
An object (also caled an instance), like a given car, has the following:

« Attributes or properties (color: red; seating capacity: 4; power: 180 HP)

o ldentity (my car isdifferent from your car)

« Behavior (it can be steered and moved forward and backward)

Objects of a certain type are said to belong to a class. My car and your car belong to the class called Car
or, if you are not too worried about specific details, to aclass called Vehicle. All objects of aclass have
the same functionality.

In this section, we study how to create objects and how to enrich basic designs using inheritance and
polymorphism.

7.2.1 Attributes

An object isacollection of attributes. An array or a hash can be used to represents this set, aswe
discussed in Chapter 2, Implementing Complex Data Structures. For example, if you need to keep track of

an employee's particulars, you might choose one of these approaches:
Use a hash table to store Enpl oyee attributes

%enpl oyee = (" nane" => "John Doe",

"age” => 32,

"position" => "Software Engi neer");
print "Name: ", $enpl oyee{nane};

Or use an array

$nane_field = 0; $age field = 1; $position field = 2;
@npl oyee = ("John Doe", 32, "Software Engi neer");
print "Name: ", $enpl oyee[$nane fiel d];

The section "Efficient Attribute Storage” in Chapter 8, Object Orientation: The Next Few Steps describes
amore efficient approach for storing attributes. Meanwhile, we will use ahash table for all our examples.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

7.2.2 Unique ldentity

Clearly, one %employee won't suffice. Each employee requires a unique identity and his or her own
collection of attributes. Y ou can either allocate this structure dynamically or return areference to alocal
data structure, as shown below:

Usi ng an anonynous hash
sub new _enpl oyee {
ny ($nanme, $age, $starting position) = @;

ny $r_enpl oyee = { # Create a uni que obj ect
"nane" => $nane, # using an anonynous hash
uageu => $age,
"position" => $starting_position

3

return $r_enpl oyee; # Return "object"

}

OR, returning a reference to a |ocal variable
sub new _enpl oyee {
nmy ($name, age, Sstarting _position) = @;
nmy %enpl oyee = (

"nanme” => $nane,
uageu => $age,
"position" => $starting_position
)
return \ %enpl oyee; # return a reference to a |local object
}
Use it to create two enpl oyees
$enmpl = new enpl oyee("John Doe", 32, "Software Engineer");

$enmp2 = new _enpl oyee(" Nornma Jean", 25, "Vice President");
new_employee() returns areference to a unique data structure in both cases.

Asauser of this subroutine, you are not expected to know whether this scalar contains areferenceto a
Perl data structure or whether it contains a string (for example, it could just contain a database primary
key, while the rest of the details are in a corporate database). The employee details are hence well
encapsulated. Not that encapsulation should not be confused with enforced privacy.

In the preceding example, the hash table is the object, and the reference to the hash table is termed the
object reference. Keep in mind that we have not introduced any new syntax since the last chapter.

7.2.3 Behavior

All functions that access or update one or more attributes of the object constitute the behavior of the
object.

Consider
sub pronote_enpl oyee {

ny $r _enpl oyee = shift;
$r _enpl oyee->{"position"} =
| ookup_next _posi tion($r_enpl oyee->{"position"});

}

To use it
pronot e_enpl oyee($enpl);

Such functions are also called instance methods in OO circles because they require a specific instance of
the an object; an employee, in this case.

To avoid having to suffix every method with the suffix " _employee," we put al these functionsin a
package of their own, called Employee:

package Enpl oyee;

sub new { # No need for the suffix.

}

sub pronote {

}

To use this module, you need to say:

$enp = Enpl oyee: : new("John Doe", 32, "Software Engineer");
Enpl oyee: : pronot e($enp) ;

Asyou can seg, this code is beginning to encapsul ate a class called Employee: the user of this code
invokes only the interface functions new and promote and does not know or care about the type of data
structure used to store employee details, or, as we mentioned earlier, whether a database is being used
behind the scenes.

7.2.4 The Need for Polymorphism

What we have seen thus far is the kind of stuff that a C programmer would do, except that he or she
would likely use a struct to keep track of the attributes. Thisis precisely the way the stdio library works,
for example. fopen() is a constructor that returns a pointer to a unique FILE structure, allocated
dynamically. The pointer (the object reference) is supplied to other methods like fgets() and fprintf().

Unfortunately, complications arise when the problem gets more involved. Let us say we have to keep
information about hourly and regular employees. Hourly employees get paid by the hour and are eligible
for overtime pay, while regular employees get a monthly salary. One way to approach it isto create a new
function per type of employee:
package Enpl oyee;
Creating Regul ar Enpl oyees
sub new regqgul ar {

ny ($nane, $age, $starting position, $nmonthly salary) = @;

ny $enpl oyee = {

"nanme" => $nane,

"age" => $age,
"position” => $starting _position,
"mont hly_sal ary" => $nonthly_sal ary,
3
return $enpl oyee; # return the object reference
}
Hourly Enpl oyees
sub new_hourly {
ny ($nanme, $age, $starting_position,
$hourly rate, $overtinme rate) = @;

ny $enpl oyee = {

"nanme" => $nane,

"age" => $age,

"position" => $starting_position,
"hourly rate" => $hourly rate,

"overtinme_rate" => $overtine_rate
3
return $enpl oyee; # return the object reference

}

Now, if we want to get an employee's year-to-date salary, we have to make a distinction between the two
types of employees. We could provide the two subroutines compute _hourly ytd income() and
compute_regular_ytd income(), but of course the story doesn't end there. Other differences between
hourly and regular employees (such as allowed vacation, medical benefits, and so on) or the introduction
of other types of employees (such as temporary employees) results in a combinatorial explosion of
functions. Worse, the interface requires the user of this package to make a distinction between types of
employees to be able to call the right function.

To get us out of thisbind, we put different types of employeesin different packages. Then we use the
bless keyword to tag objects internally with a pointer to the packages they belong to. The boldface linesin
the following example show the changes from the code presented above (explanations follow):

package Regul ar Enpl oyee;
sub new {
nmy ($name, age, Sstarting position, $nonthly salary) = @;

ny $r_enpl oyee = {

"nanme" => $nane,

"age" => $age,

"position” => $starting_position,

"mont hly_sal ary" => $nonthly_sal ary,

"mont hs_wor ked" => 0,
3
bl ess $r _enpl oyee, ' Regul ar Enpl oyee' ; # Tag object with pkg nane
return $r_enpl oyee; # Return object

}

sub pronote {

#. ..
}
sub conpute_ytd i nconmge{
ny $r_enp = shift;
Assune the nonths worked attribute got nodified at sone point
return $r_enp->{'nmonthly salary'} * $r_enp->{' nont hs_worked'};

}
Hm o o e e e e o e o e o e aa oo
package Hourl yEnpl oyee;
sub new {
ny ($nane, $age, $starting position,
$hourly rate, S$overtinme rate) = @;
ny $r_enpl oyee = {
"nanme" => $nane,
"age" => $age,
"position" => $starting position,
"hourly rate" => $hourly_rate,
"overtine_rate" => $overtine_rate
1
bl ess $r _enpl oyee, ' Hourl yEnpl oyee';
return $r_enpl oyee;
}
sub pronote {
#...
}

sub conpute_ytd_incone {
ny ($r_enp) = $_[0];
return $r_enp->{'hourly rate'} * $r_enp->{' hours_worked'}
+ $r_enp->{'overtinme_rate'} * $r_enp->{' overtinme_hours_worked'};

}

blessis given an ordinary reference to a data structure. It tags that data structure (note: not the
reference[1]) as belonging to a specific package and thus bestows on it some more powers, as we shall

soon see. blessisto our hash table what baptism isto a child. It doesn't change the data structure in any
way (which still remains a hash table), just as baptism doesn't really alter a person except to give them an
additional identity.

[1] Thereferenceislikeavoi d * in C. The object istyped, not the C pointer or Perl
reference.

The nice thing about blessisthat it gives us adirect way of using this object. Here's how:
First create two objects as before.

$enpl = Regqul ar Enpl oyee: : new(' John Doe', 32, # Pol ynor phi sm
" Sof twar e Engi neer', 5000);
$enmp2 = Hourl yEnpl oyee: : new(' Jane Smth', 35, # Pol ynor phi sm

"Auditor', 65, 90);

Now use the arrow notation to directly invoke instance methods, or, asthey say in OO-land, invoke
methods on the object:

Direct invocation
$enpl- >pronote();
$enp2- >conput e_ytd i ncone();

When Perl sees $empl->promote(), it determines the class to which $empl belongs (the one under which
it has been blessed). In this casg, it is the Regular-Employee. Perl then calls this function as follows:
Regul ar Enpl oyee: : pronot e($enpl) . In other words, the object on the left side of the arrow is
simply given as the first parameter of the appropriate subroutine.

Both the :: and -> notations are in fact permissible, unlike in C++. The first one is more flexible because
Per| figures out the class at run time, while the latter is faster because the function to be called is known at
compiletime. There is nothing magical about an instance method in Perl. It is an ordinary subroutine
whose first parameter ssimply happens to be an object reference. (Y ou might have noticed that the promote
method did not change from the previous section.)

So isthis mere syntactic sugar? Finally, all we seem to have achieved is the ability to call an instance
method of an object through an alternate notation.

No, we have gained an important advantage. The module user doesn't have to discriminate between types
of objectsusing an if statement but instead | ets Perl take care of routing acall to the appropriate function.
That is, instead of saying something like
if (ref($enp) eq "Hourl yEnpl oyee") {

$i nconme = Hourl yEnpl oyee: : conpute_ytd i ncome($enp);
} else {

$i nconme = Regul ar Enpl oyee: : conput e_ytd_i ncone($enp) ;
}

we can simply say,
$i nconme = $enp->conpute_ytd i ncome();

This ability of Perl to call the appropriate modul€e's function is called run-time binding. Incidentally, recall
from Chapter 1, Data References and Anonymous Storage, that the ref function returns a string indicating
the type of the entity pointed to by the reference; in the case of a blessed object reference, it returns the
name of the corresponding class.

Note that while processing payroll records, $emp can be aregular employee in one iteration and an hourly
employee in another. This feature is called polymorphism (poly + morph = the ability of an object to take
on many forms).

Polymorphism and run-time binding are the chief contributions of object-oriented languages. They give a
system an enormous amount of flexibility because you can now add a new type of employee (with the
same interface as the other types) without having to change the payroll-processing code. Thisis possible
because each object "knows' how to compute its own year-to-date income. It pays to remember this
cardinal rule:

It isindicative of inflexible procedural design if you find yourself using conditional

statements to distinguish between object types.

The design isflexible also because you can add new methods to any of the packages without hurting what
Is aready present.

7.2.5 Class Methods and Attributes

Class attributes are properties that pertain to all instances of aclass, but don't vary on a per-employee
basis. For example, one insurance company might provide health coverage for all employees, so it doesn't
make sense to store the name of this company in each and every employee.

Class methods (also known as static methods) are functions that are relevant to that class but don't need a
specific object instance to work with. For example, a subroutine called get_employee names() doesn't
require an employee object as input to figure out what it hasto do.

Perl has no specific syntax for class attributes and methods, unlike C++ or Java. Class attributes are
simply package global variables, and class methods are ordinary subroutines that don't work on any
specific instance. Perl supports polymorphism and run-time binding for these ordinary subroutines (not
just instance methods), which can be leveraged to produce atruly flexible design. Consider

$record = <STDIN>; # Tab delimted record containing enpl oyee details
($type, $nane, $age, $position) = split(/\t/, $details);

Create an enpl oyee object of the appropriate class
$enp = $type->new $nane, S$age, $position);

Now use the object as before
$enp- >conput e_ytd_i nconme();

In this example, $type can contain either of these two strings: "HourlyEmployee" or "RegularEmployee.”
Note that this variable is not an object; it is simply the name of a class. This approach improves on the
example in the previous section by avoiding having to hardcode the name of the package. Why isthat an
improvement? Well, if you didn't have this facility, you would have had to say something like thisto
create an appropriately typed object:
if ($type eq "Hourl yEnpl oyee") {

$enp = Hourl yEnpl oyee->new....);
} else {

$enp
}

Any piece of code that explicitly depends upon checking the class or type of an object requires too much
maintenance. If you introduce a new type of employee tomorrow, you'll have to go back and add the new
type to all such pieces of code.

Regul ar Enpl oyee->new(....);

Recall that in the case of an instance method, the object to the left of the arrow is passed as the first
parameter to the subroutine. It is no different here. The procedure HourlyEmployee::new must be
rewritten to expect this:

package Hourl yEnpl oyee;

sub new {
ny ($pkg, $nane, $age, $starting_position,
$hourly rate, $overtine_rate) = @;

Given that both instance and class methods are ordinary subroutines, you can always write a subroutine
that can function as either, by checking the type of the first parameter supplied to it. Consider the
following constructor, which creates a new object or a clone of an existing one, depending on how it is
invoked:
package Enpl oyee;
sub new {

$arg = shift;

if (ref(%arg)) {

Called as $enp->new(): Clone the Enployee given to it

#.o...

} else {
Called as Enpl oyee->new(): Create a new enpl oyee
#.o..

}

Y ou can now use this method as follows:

Using new() as a class nethod
$empl = Enpl oyee- >new "John Doe", 20, "Vice President");

Using new() as an instance nethod to clone the enployee details
$emp2 = $enpl->new);

I'll leave it up to you to answer why you might want to clone an employee!

What have we learned in this section? If we write all our class methods to expect the name of the module
asthe first parameter, we make it possible for the modul€e's user to employ run-time binding and
polymorphism. We will follow this practice from now on.

Y ou might be curious why a class method needs to be supplied the name of its own module. We'll answer
this shortly when we deal with inheritance.

7.2.5.1 Detour: The indirect notation

Perl wouldn't be Perl if there weren't a couple of alternativesto suit everyone's fancy. It supports an
aternative to the arrow notation, called the indirect notation, in which the function name precedes the
object or class name. An example should make this clear:

$enmp = new Enpl oyee ("John Doe", 20, "Vice President");

C++ folks will identify with this notation. This approach can be used for objects too:
pronmote $enp "Chai rman”, 100000; # G ve hima pronotion and a raise

Notice that there is no comma between $emp and the first argument (" Chai r man™). Thisis how Perl
knows that you are calling a method using the indirect notation and not calling a subroutine in the current

package. Perhaps you will identify more with the following example:

use Fil eHandl e;
$fh = new Fil eHandl e("> foo.txt");
print $fh "foo bar\n";

print is amethod on the FileHandle module.

While the indirect notation has the same effect as the arrow notation, it cannot be used in achain of calls.
The following is possible only with the arrow notation:

use Fil eHandl e;
$fh = Fil eHandl e->new("> foo.txt")->autoflush(1l); # Chain of calls

7.2.6 The Need for Inheritance

Perl allows a module to specify alist of other module names, in aspecia array called @ISA. When it
does not find a particular class or instance method in amodule, it looks to seeif that module's @I SA has
been initialized. If so, it checksto seeif any of those modules support the missing function, picks the first
one it can find, and passes control to it. Thisfeatureis called inheritance. Consider

package Man;
@ SA = gw Mammal Soci al _Ani mal) ;

This allows us to specify that Man issaMammal and is-a Socia_ Animal. All traits (read: methods)
common to mammals are supported in the Mammal class and don't have to be implemented in Man too.
Let uslook at amore practical example.

In our attempts to distinguish between hourly and regular employees, we have gone to the other extreme
and made them completely independent. Clearly, there are a number of common attributes (name, age,
and position) and behavior (promote, say) that they all share as employees. We can thus use inheritance to
"pull out" the common aspects into a superclass (or base class) called Employee:

package Enpl oyee; #Base cl ass

sub al | ocat e{
ny ($pkg, $nane, $age, $starting_position) = @;
my $r_enpl oyee = bless {

"nane" => $nane,

"age" => $age,

"position” => $starting_position
}. $pkg;

return $r_enpl oyee;

}
sub pronote {
ny $r_enpl oyee
ny $current position
ny $next _position
$r _enpl oyee->{"position"}

shift;

$r _enpl oyee->{"position"};

| ookup_next _position($current_position);
$next _position;

e
package Hourl yEnpl oyee;
He o s e e e e o e o e o
@ SA = ("Enpl oyee"); # Inherits from Enpl oyee
sub new {
ny ($pkg, $nane, $age, $starting_position,
$hourly rate, S$overtinme rate) = @;
Let the Enpl oyee package create and bl ess the object
nmy $r _enpl oyee = $pkg->al | ocat e($nane, $age,
$starting position);
Add Hourl yEnpl oyee-specific attributes and we are done.
$r_enpl oyee->{"hourly rate"} = $hourly_rate;
$r_enpl oyee->{"overtinme _rate"} = $overtine_rate;
return $r_enpl oyee; # return the object reference
}
sub conpute_ytd i ncone {
}
... And simlarly for package Regul ar Enpl oyee

Whatever is common to al employees isimplemented in the base class. Since both HourlyEmployee and
RegularEmployee need a class method called new() to allocate a hash table, to blessit, and to insert
common attributes into this table, we factor this functionality out into ainheritable subroutine called
alocate in module Employee .

Notice how allocate avoids hardcoding the name of a class, thus ensuring maximum reusability.
HourlyEmployee::new() calls $pkg->allocate, which means that the first parameter to allocate, $pkg, has
the value HourlyEmployee. alocate uses this to bless the object directly into the inherited class.
HourlyEmployee::new doesn't need to create the object anymore; it just has to insert its own specific
attributes.

Nothing has changed from the user's point of view. Y ou still say,
$enp = Hourl yEnpl oyee->new....);

But we have now managed to eliminate redundant code in the modules and left them open for future
enhancements.

7.2.6.1 Overriding base classes

L et us say we wanted to ensure that hourly employees should never rise above the level of a manager. The
example shows how to override the base class's promote() method to do this check. Here's how:
package Hourl yEnpl oyee;
sub pronote {
ny $obj = shift;
di e "Hourly Enpl oyees cannot be pronoted beyond ' Manager'"
if ($obj->{position} eq ' Manager');

call base class's pronote
$obj - >Enpl oyee: : pronot e(); #Specify the package explicitly
}

This syntax tells Perl to start the search for promote() in the @I SA hierarchy, starting from Employee. A
small problem hereisthat by hardcoding the name of a class (Employee), we make it difficult for usto
change our mind about the inheritance hierarchy. To avoid this, Perl provides a pseudoclass called
SUPER, like Smalltalk, so that you can say,

$obj - >SUPER: : pronot e() ;

This searches the @I SA hierarchy for the appropriate promote subroutine. Now, if we interpose another
package between Employee and HourlyEmployee in the inheritance hierarchy, we just need to update
HourlyEmployee's @I SA array.

NOTE: We have now gradually eliminated the need for the :: notation to call a modul€e's
subroutines. A subroutine either isimported directly into your namespace, in which case you
don't need to fully qualify its name, or isinvoked by using the -> notation. Y ou still need to

use "::" to access aforeign package's variables.

7.2.7 Object Destruction

Perl automatically garbage collects a data structure when its reference count drops to zero. If adata
structure has been blessed into a module, Perl allows that module to perform some clean-up before it
destroys the object, by calling a special procedure in that module called DESTRQOY and passing it the
reference to the object to be destroyed:

package Enpl oyee;

sub DESTROY {

ny ($emp) = @;
print "Alas, ", $enp->{"nanme"},

is now no |longer with us \n";

}

Thisissimilar to C++'s destructor or the finalize() method in Javain that Perl does the memory
management automatically, but you get a chance to do something before the object is reclaimed. (Unlike
Javasfi nal i ze, Perl's garbage collection is deterministic; DESTROY is called as soon as the object is
not being referred to any more.)

Note that you are not compelled to declare this subroutine; you do so only if you have some clean-up
work to be done. In amodule such as Socket, you would close the corresponding connection, but in
something like Employee, where no external system resources are being held up, you don't have to
provide a DESTROY method. But recall that AUTOLOAD s called if afunction is not found. In the casein
which you supply AUTOLQOAD but not the DESTROY method, you might want to ensure that AUTOLOAD
checks for this possibility:

sub AUTOLOAD {
ny $obj = $ [0];
$AUTOLOAD contains the nanme of the m ssing method

Never propagate DESTROY net hods

return i f $AUTOLOAD =~ /:: DESTROYS/ ;
#H

}
7.2.8 Accessor Methods

According to Rumbaugh et al. [15]:

Encapsulation can be violated when code associated with one class directly accesses the
attributes of another class. Direct access makes assumptions about storage format and
location of the data. These details must be hidden within the class....The proper way to access
an attribute of another object isto "ask for it" by invoking an operation on the object, rather
than ssimply "taking it."

Thisisastrue for classes related by inheritance as for unrelated classes.

To discourage direct access to an object's attributes, we provide "accessor methods." These two methods
read and update the "position™ attribute of an employee:

$pos = $enp->get _position(); # read attribute
$enp- >set _position(" Software Engi neer"); # wite attribute

The more popular convention is to have one method to handle both read and write access:

$pos = $enp->position(); # read attribute
$enp- >posi ti on(" Sof t war e Engi neer"); # wite attribute

Thisis how the module might implement it:

package Enpl oyee;
sub position {
ny $obj = shift;
@ ? $obj->{position} = shift # nodify attribute
$obj - >{ posi tion}; # retrieve attribute

}

Note that the method returns the latest value of the position attribute in both cases, because in both cases
(get and set), the expression $obj->{ position} isthe last to be evaluated.

It might seem a complete waste of time to call a method every time you need to touch an attribute. But, as
it happens, accessor methods are absolutely necessary in designing for change. Consider the following
advantages:

Encapsulation

Accessor methods hide how object attributes are stored. If you change the way this layout is done,
only these methods need to be modified; the rest of the code, including derived classes, remain
untouched. In Perl, asin other OO scripting languages, in which reengineering may be necessary
for performance or space efficiency, accessor methods are a good thing. Smalltalk, CORBA
(Common Object Request Broker Architecture), and ActiveX are other well-known cases in which
the only way to an attribute is through an accessor.

Side effects

Accessor methods are sometimes used for triggering actionsin addition to retrieving or updating
the attribute. GUI toolkits use thisidiom routinely. For example:

$but t on- >f oreground_col or (' yel l ow) ;

This not only changes the value of the foreground color attribute, but updates the screen too.
Access checking

Accessor methods can be made to disallow updates. For example, primary key attributes such as an
employee's name should not be updatable once created; an accessor can easily enforce this.

Computed attributes

An employee'sincome can be seen as an attribute, though internally it needs to be computed.
Instead of writing a method like compute_ytd_income(), you simply call it income(). This makesiit
look like an attribute accessor, and it can disallow updates to this attribute.

Moral of the story: Get in the habit of writing accessor methods. In the next chapter, we will study a
module called ObjectTemplate, a standard library called Class.: Template, and a module on CPAN called
MethodMaker, all of which automatically create accessor methods for you, so thereis really no reason not
to use such methods.

Cavesat: Even if your attributes are wrapped in accessor methods, you should be wary of unrelated classes
using these methods. When reviewing a piece of code, always look for the real intention behind these
accesses, sometimes it may be better to provide other methods that make this access unnecessary. For
example, a user should always use $emp->promote() instead of directly updating the position attribute.

Previous: 7.1 OO: An Advanced Perl Next: 7.3
Introduction Programming UNIVERSAL
7.1 OO: An Introduction Book 7.3 UNIVERSAL
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 7.2 . M . Next: 7.4 Recap of
Objects in Perl Object-Oriented Programming Conventions

7.3 UNIVERSAL

All modulesimplicitly inherit from a built-in module called UNIVERSAL and inherit the following three
methods:

isa (package name)
For example, Rectangle->isa('Shape') returns true if the Rectangle module inherits (however
indirectly) from the Shape module.

can (function name)

Rectangle->can('draw’) returns true if the Rectangle or any of its base packages contain afunction
called draw.

VERSION (need version)

If you say,
package Bank;
$VERSI ON = 5. 1;

and the user of this module says,
use Bank 5. 2;

Perl automatically calls Bank->VERSION(5.2), which can, for instance, make sure that all
libraries required for version 5.2 are loaded. The default VERSI ON method provided by
UNIVERSAL simply diesif the Bank's $VERSION variable has alower value than that needed by
the user of the module.

Because Perl allows a package to shamelessly trample on other namespaces, some packages use the
UNIVERSAL module as a holding area for some global subroutines that they wish to export to everyone.
| recommend that you do not use this "feature” yourself (or at least not in those that you contribute to
CPAN!).

7.3.1 Searching for Methods

We have mentioned two places that Perl searches when it cannot find a method in the target module: the
inheritance hierarchy (@ISA) and AUTOLOAD. While checking the inheritance hierarchy, Perl checks
the base classes' @I SA arraystoo: a depth-first search is conducted, and the first available one is used.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

Let us examine the precise order in which all these subroutines are searched. Given:

package Man;
@ SA = g Mammal Soci al _Ani mal) ;

acal to Man->schmooze results in the following search sequence. First the normal inheritance hierarchy
IS checked:

1.

o v & D

Man::schmooze

Mammal::schmooze

(Mammal's base classes, recursively)::schmooze
Social_ Animal::schmooze

(Socia_Animal's base classes, recursively)::schmooze

UNIVERSAL ::schmooze (because UNIVERSAL isimplicitly at the end of every module's @I SA
array)

Then AUTOLOAD islooked up in the same order:

7.
8.
9.
10.
11.
12.

Man::AUTOLOAD

Mammal::AUTOLOAD

(Mammal's base classes, recursively)::AUTOLOAD
Social_ Animal::AUTOLOAD

(Socia_Animal's base classes, recursively)::AUTOLOAD
UNIVERSAL::AUTOLOAD

Thefirst available subroutine is given the control and the search is stopped. If al fails, Perl throws a
run-time exception.

Previous: 7.2 Advanced Perl Next: 7.4 Recap of
Objects in Perl Programming Conventions
7.2 Objects in Perl Book 7.4 Recap of Conventions
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

MAdvanced Perl Programming

Previous: 7.3 _ F:ha ter 7 _ Next: 7.5 Comparison with
UNIVERSAL Object-Oriented Programming Other OO Languages

7.4 Recap of Conventions

While Perl allows us infinite flexibility in how we organize our modules, we choose to stick to the particular set
of conventions introduced in this chapter so that everyone deals with modulesin a consistent fashion. Let us
quickly summarize these conventions:

« A module must be present in its own file called <module>.pm. (Remember that the last executing global
statement must return 1 to signify successful loading.)

« All subroutines in a module should be designed as methods. That is, they should expect either the name
of aclass or an object reference as their first parameter. For added convenience, they should be able to
deal with either.

« Package names should never be hardcoded. Y ou must always use the package name obtained as the first
argument to supply to bless. This enables a constructor to be inherited.

« Always provide accessor methods for class and instance attributes.

The following example puts all these techniques and conventions into practice.

7.4.1 Example

Consider a store that sells computers and individual components. Each component has a model number, aprice,
and arebate. A customer can buy individual components, but can also put together a custom computer with
specific components. The store adds a sales tax to the final price. The objective of this example isto provide the
net price on any item you can buy from the store.

We need to account for the facts that a part may consist of other parts, that the sales tax may depend on the type
of part and the customer's location, and that we may have to charge for labor to assemble a computer

One useful technique for jJump-starting adesign is to use case analysis, as propounded by Ivar Jacobson [19].

You look at the interface from the point of view of the user, without worrying about specific objects' attributes.
That way, we can understand the objects' interface without worrying about implementation details. Let's say this
Is how we want to use the system:

$cdrom = new CDROM (" Toshi ba 5602");

$nonitor = new Monitor ("Viewsonic 15GS");
print $nonitor->net _price();

$conput er = new Conput er ($noni tor, $cdrom;
print $conmputer->net _price();

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

Figure 7.1 shows one way of designing the object model. | have used Rumbaugh's OMT (Object Modeling
Technique) notation to depict classes, inheritance hierarchies, and associations between classes. The triangle
indicates an is-arelationship, and the line with the 1+ indicates a one-to-many relationship. The computer is-a

store item and contains other components (has-a relationship). A CD-ROM or monitor is a component, whichin
turn is astoreitem.

Figure 7.1: Object model for computer store example

Storeltem
model
[riGe
rebate
price()
net_price()
I I
Computer Component
COmponents '+
pricel) l
I |
COROM Moniter

All attributes common to all store items are captured in the Storeltem class. To compute the net price of any
component, we have to take rebate and sales tax into account. But when assembling componentsto build a
computer, we have to add sales tax only at the end; we can't ssimply add up all the components' net prices. For
this reason, we split the calculation into two: price, which subtracts the rebate from the price, and net_price,
which adds on the sales tax. At present, the component classes are empty classes, because their entire
functionality is captured by Storeltem. Clearly, if the problem stopped here, this design would be unnecessarily
complex; we could have ssmply had one lookup table for prices and rebates and one function to calculate the
prices. But we are designing for change here. We expect it to get fleshed out when we start accounting for taxes
by location, dealing with components containing other components, and charging for labor. It is best to adopt a
generalized mentality from the very beginning.

The Computer class does not use its price attribute; instead, it adds up the prices of its constituent components.
It doesn't need to override the net_price functionality, because that function ssmply adds the sales tax onto an
object's price, regardless of the type of the object.

Example 7.1 gives atrandlation of the object model into code.

Example 7.1: Sample Object Implementation

package Storeltem

ny $ sales_ tax = 8.5; # 8.5%added to all conponents's post rebate price

sub new {
my ($pkg, $nane, $price, $rebate) = @;
bl ess {
Attributes are marked with a | eadi ng underscore, to signify that
they are private (just a convention)
_hanme => $nane, _price => $price, _rebate => $rebate
} }, $pkg;

Accessor nethods
sub sales tax {shift; @ ? $ sales tax = shift : $_sal es_tax}
sub nanme {ny $obj = shift; @ ? $obj->{_name} = shift : $obj->{_nane}}
sub rebate {ny $obj = shift; @ ? $obj->{ rebate} = shift
$obj ->{ rebate}}
sub price {ny $obj = shift; @ ? $obj->{ price} = shift
$obj ->{_price} - $obj-> rebate}
}

sub net _price {
ny $obj = shift;
return $obj->price * (1 + $obj->sales_tax / 100);

package Conponent;
@SA = g Storeltem;

package Mbnitor;

@ SA = gw Conponent) ;

Hard-code prices and rebates for now

sub new { $pkg = shift; $pkg->SUPER: : new "NMonitor", 400, 15)}

package CDROM
@ SA = gw Conponent) ;
sub new { $pkg = shift; $pkg->SUPER: : new(" CDROM', 200, 5)}

package Conputer;
@SA = g Storeltem;

sub new {
ny $pkg = shift;
ny $obj = $pkg- >SUPER: : new(" Conputer", 0, 0); # Dunmy value for price
$obj - >{ _conponents} = []; # list of components
$obj - >conponents(@) ;
$obj ;

Accessors
sub conponents {
ny $obj = shift;
@ ? push (@ $obj->{ _conponents}}, @)
. @ $obj ->{ conponents}};

sub price {
ny $obj = shift;
ny $price = 0;
ny $conponent;
f oreach $conponent ($obj->conponents()) {
$price += $conponent ->price();
}

$pri ce;
}

The design for change philosophy isin evidence here. All instance variables get accessor methods, which makes
it possible for us to override price() in the Computer class. The Computer::components accessor method can
now be changed at alater date to check for compatibility of different components. Even the package global
variable $sales tax is retrieved through an accessor method, because we expect that different components may
later on get different sales taxes, so we ask the object for the sales tax.

Notice also that the constructors use SUPER to access their super classes new routines. Thisway, if you create
a Component::new tomorrow, none of the other packages need to be changed. Storeltem::new blesses the object
into a package given to it; it does not hardcode its own package name.

If you put these packages into different files, recall from Chapter 6, Modules, that the files should have the

<package name>.pm naming convention. In addition, they should have a 1; or return 1; as the last executing
statement.

Previous: 7.3 Advanced Perl Next: 7.5 Comparison with
UNIVERSAL Programming Other OO Languages
7.3 UNIVERSAL Book 7.5 Comparison with Other
Index OO Languages

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |
Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 7.4 Recap of . Chapter 7 . Next: 7.6
Conventions Object-Oriented Programming Resources

7.5 Comparison with Other OO Languages

7.5.1 Tcl

The base Tcl library does not have any object-oriented features. It has recently acquired a package
construct that provides a namespace for subroutines and global variables (there is no relationship
between packages). Tcl isavery malleable language, and several freely available libraries strive to
Impose an object-oriented structure on the language. A package called stoop provides a pure Tcl solution
featuring single and multiple inheritance, dynamic binding, run-time type identification, and so on.
Another, called [incr Tcl], isadlightly more ambitious effort and provides a C++-like set of keywords
and facilities. incr Tcl requires a patch to Tcl, though.

7.5.2 Python

Python is an excellent language for learning object orientation. (It also happens to be my favorite OO
scripting language.) All facilities, including internal data structures such as lists and dictionaries (hash
tables) and external libraries have consistent object-oriented interfaces. Python provides a number of
hooks for class developersto write different types of accessor methods and supports multiple inheritance.
All objectsin Python are implemented as hash tables, unlike in Perl, in which you have to choose a
representation (or looking at it more optimistically, where you are free to choose the optimal
representation).

7.5.3 C++ and Java

There are anumber of significant differences between Perl and C++ in their approach to
obj ect-orientation.

« Object structure . C++ requires you to declare your object's structure using the class keyword,
unlike Perl, which doesn't care how you keep your object's state - as a hash, array, or scalar. The
only thing Perl really asksisthat you return a blessed reference to that data.

« Privacy. C++ has keywords to enforce various shades of privacy (private, protected, public). Perl
does not enforce privacy; if you need privacy you can use lexical variables.

« Constructors/destructors. C++ requires that the constructing subroutine of an object have the same
name as the class. Perl doesn't have any such strictures - any subroutine can be a constructor (the

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

name new is just a convention). On the other hand, when an object is going to be destroyed, both
Perl and C++ require well-known destructor names. A C++ constructor isreally an initializer; the
memory is allocated before the constructor is given control. In Perl, it is the programmer's
responsibility to do both allocation and initialization.

« Satic versusinstance methods. C++ provides the static keyword to distinguish between static
functions and object methods. Perl doesn't make that distinction - subroutines are indistinguishable
from each other. A Perl subroutine can examine its arguments and can act as either.

« Declaration and definition. C++, unlike Perl, requires that declaration of a class be independent of
its implementation (unless the implementation isinline). The typical C++ convention is to put the
declarations in a header file and the implementation in a separate file.

« Compile-time versus run-time features. C++ requires that all classinformation, such asthe
inheritance hierarchy, the number and type of attributes and methods, and so on, be known at
compile-time. Perl allows a run-time redefinition of everything; you can add, delete, or update
methods or change the inheritance hierarchy by changing @I SA. | recommend that you not take
advantage of this ability.

« Run-time binding. Since C++ does strict type-checking, run-time binding works only if the objects
inherit from a common base class. Perl doesn't have this restriction.

Much of what has been said of C++ in the above comparison is true of Javatoo.

Previous: 7.4 Recap of Advanced Perl Next: 7.6
Conventions Programming Resources
7.4 Recap of Conventions Book 7.6 Resources
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 7.5 Comparison . F:h ter 7 . Next: 8. Object Orientation:
with Other OO Languages Object-Oriented Programming The Next Few Steps

7.6 Resources

1.

perltoot (Perl documentation). Tom Christiansen.

"Tom's object-oriented tutorial" gives an excellent treatment of object orientation and, specifically,
OO with Perl. A must-read.

comp.object FAQ
From ftp://rtfm.mit.edu/pub/usenet/comp.object. One of the best FAQ compilations around.

Object-Oriented Modeling and Design. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen. Prentice-Hall, 1991.

An excellent treatment of object orientation, especially as translated to a programming language.
Also contains good comparisons of OO with other software methodologies.

Design Patterns: Elements of Reusable Object-Oriented Software. Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides. Addison-Wesley, 1994.

Thisbook is acatalog of commonly used patterns of interacting objects (independent of language).
Even if the patterns themselves are sometimes intuitive, the very act of giving them aname
enriches an object practitioner's vocabulary.

Bringing Design to Software. Terry Winograd. Addison-Wesley, 1996.

Among other things, this book examines several highly successful software products and argues
that user-oriented design is the best software methodology. (None of the products that have really
sold have worried particularly about object-oriented programming.) Interesting and persuasive.

The Mythical Man-Month. Frederick P. Brooks. Addison-Wesley, 1995.

Object-Oriented Software Engineering: A Use Case Driven Approach. Ivar Jacobson.
Addison-Wesley, 1994,

Previous: 7.5 Comparison Advanced Perl Next: 8. Object Orientation:
with Other OO Languages Programming The Next Few Steps
7.5 Comparison with Other Book 8. Object Orientation: The

OO Languages Index Next Few Steps

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
ftp://rtfm.mit.edu/pub/usenet/comp.object

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 7.6 Chapter 8 Next: 8.2
Resources Delegation

8. Object Orientation: The Next Few Steps

Contents:
Efficient Attribute Storage

Delegation
On Inheritance

Resources

No ties bind so strongly as the links of inheritance.
- Stephen Jay Gould

This chapter is essentially a motley collection of ideas, techniques, and opinions related to Perl objects. |
have not attempted to weave these threads too closely. The topics are as follows:

Efficient attribute storage

Search for an aternative way of representing object attributes, instead of hash tables. The two
strategies examined in this chapter occupy less space and are faster.

Delegation

How to use AUTOLOAD to automatically forward method calls.
Inheritance and composition

What | find objectionable about inheritance, along with alternative ways of structuring classes.

8.1 Efficient Attribute Storage

Hash tables have traditionally been used for storing object attributes. There are good reasons for doing this:

« Each attribute is self-describing (that is, the name and type of each attribute are easily obtained from
the object), which makes it easy to write readable code. It also helps modules that do automatic
object persistence or visualization of objects, without the object's explicit cooperation.

« Each classin aninheritance hierarchy can add attributes freely and independently.

« Infact, each instance (not just the class) can possess a unique set of attributes and can change this set
at run time. The artificial intelligence community often uses this slot- or frame-based approach

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

because it adapts itself very well to new pieces of information.

Of course, not every problem requires this degree of generality. In addition, while Perl's hash tables are fast
(within 15% of the speed of arrays) and reasonably compact (key strings are not duplicated), they are not
exactly inexpensive. Creating 100 objects means that you have 100 hash tables, each of which tends to
optimistically allocate extra space to accommodate future insertions,

This section illustrates two alternate approaches, one using arrays and another using typeglobs. Both
approaches are less general than the hash table approach but are faster and leaner. Thefirst isamodule
called ObjectTemplate developed for this book.[1] The other uses typeglobs and has seen limited
application in some standard CPAN modules, most notably O and Net. | hesitate to suggest this as an
aternative approach because it isway too "hackish,” but | present it here to enable you to understand these
standard modules.

[1] | originally posted atria version of this approach to comp.lang.perl.misc asa module
called ClassTemplate. The version presented here is a significant improvement.

8.1.1 ObjectTemplate: Attribute Storage Using Arrays

The module presented in this section uses arrays to store attributes (but not the array per object approach).
Let us briefly see its usage before moving on to the implementation.

To implement the Employee class, with the attributes "name," "age," and "position,” you simply inherit
from ObjectTemplate, and supply alist of attribute names to a static method called attributes (exported by
ObjectTemplate), as follows:

package Enpl oyee;

use (bj ect Tenpl at e; # I nport CbjectTenpl ate
@ SA = gwW Obj ect Tenpl ate); # Inherit fromit.
attri butes gwm nane age position); # Declare your attributes

That'sall. A user of this module can now create Employee objects using a dynamically generated method
called new and retrieve and modify attributes using accessor methods (also created automagically):

use Enpl oyee;
$obj = Enpl oyee- >new(
"name” => "Norma Jean",
"age" => 25
); # new() created by ObjectTenpl ate
$obj - >positi on("Actress");
print $obj->nanme, ":", $obj->age, "\n";

Note that Perl permits you to omit the trailing parentheses for any method call in which thereisno
ambiguity about its usage. Any word following an arrow is automatically treated as a method, asin the
preceding case.

ObjectTemplate provides the following features for an inherited class:

1. Analocator function called new. This allocates an object blessed into the inherited class. new calls
initialize, which in turn can be overridden in the inherited class, as explained earlier.

2. Accessor methods with the same name as the attributes. These methods are created in the inherited
module, and everyone, including the object's own methods, gains access to the attributes only
through these methods. This is because ObjectTemplate is the only module that knows how the
attributes are stored. For example,

package Enpl oyee;
sub pronote {

ny $enp = shift; # $enp is the object
nmy $current_position = $enp->position(); # CGet attribute

ny $next position = | ookup_next position($current position);
$r_enpl oyee- >posi ti on($next _position); # Set attribute

}

3. The user package can create its own custom accessor methods with the same naming convention as
above; in this case, ObjectTemplate does not generate one automatically. If a custom accessor
method wants access to the attribute managed by ObjectTemplate, it can use the get_attribute and
set_attribute methods.

4. new() takesan initializer list, a sequence of attribute name-value pairs.
5. ObjectTemplate takes attribute inheritance (@I SA) into account, for both the memory layout, and the

accessors. Consider

package Enpl oyee;

use (bj ect Tenpl at €;

@ SA = gwW (bj ect Tenpl at e);
attri butes gw nane age);

package Hourl yEnpl oyee;
@ SA = gwW Enpl oyee) ;
attri butes gw hourly wage);

In this example, an object of the HourlyEmployee class contains two inherited attributes, name and
age, that all employees possess, and hourly wage, that only hourly employees possess.

6. All attributes are scalar-valued, so a multivalued attribute such asf r i ends hasto be stored asa
reference:

attributes gwfriends);
$obj->friends([J' Joe']); # an array reference to the accessor

Thisis of course true of the hash table representation also.
8.1.1.1 ObjectTemplate internals overview

Figure 8.1 shows how ObjectTemplate organizes object attributes.

Figure 8.1: ObjectTemplate's attribute storage scheme

Bname dage Bposition

john 23 anginear
Employeg —~ 0 . I I— I— v

objects” —. rrary 32 president

The data structure is quite simple. Instead of allocating one array or hash per object, ObjectTemplate
creates only as many arrays as there are attributes (the columns shown in the figure). Each object is merely
a"horizontal slice" across these attribute columns. When new() is called, it allocates a new logical row and
Inserts each element of the initializer array in the corresponding attribute column at the new row offset. The
"object," therefore, is merely a blessed scalar containing that row index. This schemeis more
space-efficient than the hash approach, because it creates so few container arrays (only as many as there are
attributes), and it is faster because array accesses are always alittle faster than hash accesses.

There's adlight hitch when an object is deleted. Although the corresponding row islogically free, we can't
really move up the rest of the rows below, because the other object references (which are indices) and their
datawill get out of sync. ObjectTemplate therefore reuses deallocated (free) rows by maintaining a
per-package "freelist" caled @ f r ee. Thisisalinked list of all free rowswith ascalar $ free pointing to
the head of thislist. Each element of thislist contains the row index of the next free row. When an object is
deleted, $ free points to that row, and the corresponding index in the free list points to the previous entry
pointedtoby $ free.

Since the freed and active rows do not overlap, we take the liberty of using one of the attribute columns
(thefirst one) to hold @ free. Thisis done using typeglob aliasing. Figure 8.2 shows a snapshot of this
structure.

Figure 8.2: ObjectTemplate's scheme for managing holes created by deleted objects

B free,2 _name 2_age B position
fohm - 23 —— engineer
5 free = 1—= 2 | 1
4 -
Joe — 32 — president
-

Y ou might have noticed that I'm using the same identifier name, _free, for two variables, $ free and @free.
Although | frown on thisideain general, | have used it here for two reasons. First, both are required for the
same task; second, one typeglob alias gives us access to both variables in one shot. Thisisimportant for
performance, as we shall see soon.

8.1.1.2 ObjectTemplate implementation

ObjectTemplate uses objects, typeglob aliasing, symbolic references, and eval liberally, so if you
understand the code below, you can consider yourself a Perl hacker! One way to pore through this code is
to read the descriptions supplied in this section while using the debugger to step through a small example
that uses this module. Of course, you don't have to understand the code to useit.

package Qbj ect Tenpl at e;

requi re Exporter;

@bj ect Tenpl ate: : | SA = gwm Exporter);

@bj ect Tenpl at e: : EXPORT = gwm attri butes);

nmy $debugging = 0; # assign 1 to it to see code generated on the fly

Create accessor nethods, and new()
sub attributes {
ny ($pkg) = caller;
@ " ${pkg}:: ATTRIBUTES "} = @;
ny $code = "";
foreach ny $attr (get_attribute_names($pkg)) {
If afield nanme is "color", create a global array in the
calling package called @ol or
@"${pkg}::_Sattr"} = ();

Define accessor only if it is not already present
unl ess ($pkg->can("$attr")) {

$code .= _define accessor (pkg, Sattr);
}

}

$code .= _define_constructor($pkg);

eval $code;

if ($@ {

die "ERROR defining constructor and attributes for '$pkg :"

"\n\t$@n"
$code;

}

}

attributes uses symbolic references to create aglobal array called @ ATTRIBUTES that remembers the
attribute names. This array isthen used by get_attribute names to access all attributes defined in the current
package and all its super classes. For each such attribute, at t r i but es creates aglobal array in the
current package, aswe saw in Figure 8.1. If an accessor has not been defined for that attribute, it calls

_define_accessor to generate the method dynamically. Finally, it calls _define constructor to create the
subroutine new directly into the calling package.

sub _define_accessor {
my ($pkg, $attr) = @;

This code creates an accessor nethod for a given

attribute nane. This nethod returns the attribute val ue
if given no args, and nodifies it if given one arg.

Either way, it returns the latest value of that attribute

qq makes this block behave |Iike a doubl e-quoted string

ny $code = qqf
package $pkg;

sub $attr { # Accessor
\@ > 1 ?\$ ${attr} \[\${\$_[0]}] =\$_[1] # set
\$ ${attr} \[\${\$ [0]}]; # get

}
if (!defined \$ free) {

Alias the first attribute colum to free
* free = *_S$attr;
\'$ free = 0;

}

};
$code;

}

_define_accessor is called for every field name given to attributes and for every attribute found in the
modul€e's superclasses. For an attribute called age in the Employee module, for example, it generates the
following code:

package Enpl oyee;

sub age { # Accessor
@ ? $_age[$$_[0]] = $_[1]; # set
$_age[$$_[0]]; # get

}
if (!defined $ free) {
* free = * age; # Alias the first attribute colum
#to free
$ free = 0;
}

$ [0] contains the object, and $ [1] contains the attribute value. Therefore $$ [0] contains the row index,
and $_age[$$ [0]] contains the value of the age attribute of that object. In addition, _define_accessor
aliases _freeto ageif the aliases don't already exist.

sub _define_constructor {
ny $pkg = shift;
ny $code = qqf

package $pkg;

sub new {
ny \'$class = shift;
ny \$inst id;

if (defined(\$ free[\$ free])) {
\$inst id =\$ free;
\$ free = \$ free[\$ free];
undef \$ free[\$inst id];

} else {
\$inst id =\$ free++

}

ny \$obj = bless \\\S$inst_id, \$class;
\ $obj ->set _attributes(\@) if \@;
\$obj->initialize;

\ $obj ;

}
¥
$code;

}

_define_constructor generates code for a constructor called new to beinstalled in the calling package. new
checksthefreelist, and if it contains rows to spare, it uses the row number from the top of that list. It then
undef's the head of the list, because the free list is aiased to the first attribute column, and we don't want
that attribute's assessor picking up garbage values. If the free list does not contain any spare rows, the
object is assigned the next logical index.

sub get _attribute_nanes {
ny $pkg = shift;
$pkg = ref ($pkg) if ref($pkg);
my @esult = @"${pkg}:: ATTRI BUTES "};
i f (defined (@"${pkg}::1SA"})) {
foreach ny $base pkg (@"${pkg}::1SA"}) {
push (@esult, get attribute names($base pkqg));
}
}

@esul t;
}

get_attribute_names recurses through the package's @I SA array to fetch all attribute names. This can be
used by anyone requiring object meta-data (such as object persistence modules).

$obj->set _attributes (name => 'John', age => 23);
O, %obj->set _attributes (['age'], [# sub set _attributes {
ny $obj = shift;
ny $attr_nane;
if (ref($_[0])) {
ny ($attr_nane list, $attr value list) = @;
my $i = 0;
foreach $attr_nane (@attr_nane_list) {

$obj ->%attr _nane(S$attr _value |ist->[$i++]);

}
} else {
ny ($attr_name, $attr_val ue);
while (@) {
$attr _nanme = shift;
$attr _value = shift;
$obj ->$attr_nane(S$attr_val ue);
}

}

set_attributesis given alist of attribute name-value pairs and ssimply calls the accessor method for each
attribute. It can also be called with two parameters; an array of names and an array of values.

@ttrs = $obj->get _attributes (gw nane age));
sub get _attributes {

ny $obj = shift;

ny (@etval);
\ map $obj->${_}(), @;

get _attri but es usesnmap to iterate through all attribute names, setting $ to each namein every
iteration. The first part of map simply calls the corresponding accessor method using a symbolic reference.
Because of some weird precedence issues, you cannot omit the curly bracesin ${ }.

sub set _attribute {
ny ($obj, $attr _name, Pattr _value) = @;
ny ($pkg) = ref($obj);
${"${pkg}:: _Sattr_nane"}[$$obj] = $attr _val ue;

sub get _attribute {
my ($obj, $attr_nane, $attr_value) = @;
ny ($pkg) = ref($obj);
return ${"${pkg}:: S$attr_nane"}[$$obj];
}

The get/set_attribute pair updates a single attribute. Unlike the earlier pair of methods, this pair does not
call an accessor; it updates the attribute directly. We saw earlier that attributes does not attempt to create
accessor methods for those that already exist. But if the custom accessors still want to use the storage
scheme provided by ObjectTemplate, they can use the get/set_attribute pair. The expression

H{ pkg}::_$attr_name represents the appropriate column attribute, and $$obj represents the logical row.
(Recall that the object is simply areference to an array index.) These methods are clearly not as fast as the
generated accessor methods, because they use symbolic references (which involve variable interpolation in
astring and an extra hash lookup).

sub DESTROY {
release id back to free |i st
ny $obj = $ [0];

ny $pkg = ref ($obj);
| ocal *_free = *{"${pkg}::_free"};
ny $inst id = $$obj;
Release all the attributes in that row
| ocal (*attributes) = *{"${pkg}::_ATTRI BUTES "};
foreach ny $attr (@ttributes) {
undef ${"${pkg}:: Sattr"}[$inst _id];
}

$ free[S$inst id] = $ free;
$ free = $inst_id;
}

DESTROY releases dl attribute values corresponding to that object. Thisis necessary because the object is
merely areference to an array index, which, when freed, won't touch the reference counts of any of the
attributes. A module defining its own DESTROY method must make sure that it always calls
ObjectTemplate::DESTROY.

sub initialize { }; # dummy nethod, if subclass doesn't define one.

Modules are expected to override this method if they want to do specific initialization, in addition to what
the automatically generated new() does.

8.1.1.3 Suggested changes to ObjectTemplate

There are (at least) two areas that could use considerable improvement. Oneisthat get_attributes and
set_attributes are slow because they always call accessor methods, even if they know which accessors are
artificially provided. Because set_attributesis called by the automatically generated new, it Slows down
object construction dramatically. (Using this new without arguments is twice as fast as allocating an
anonymous hash, but after invoking set_attributes, it is around three times slower.)

Second, custom accessor methods suffer in speed because they are forced to invoke the other slow pair,
get_attribute and set_attribute. Possibly a better alternative isto dynamically generate accessor methods
prefixed withan" ", so that the developer can write normal accessor methods (without the prefix), and also
call these private methods.

Y ou might also want to check out the MethodM aker module available on CPAN, and the Class:: Template
module that is bundled with the standard distribution. These modules also create accessor methods
automatically but assume that the object representation is a hash table. If you like the interface these
modules provide, you can attempt to merge their interface with the attribute storage scheme of
ObjectTemplate.

8.1.2 Attribute Storage Using Typeglobs

This approach, as we mentioned earlier, is not exactly a paragon of readability and is presented here only
because it is used in some freely available libraries on CPAN, like the 1O and Net distributions. If you don't
wish to understand how these modules work, you can easily skip this section without loss of continuity.

We learned from Chapter 3, Typeglobs and Symbol Tables, that atypeglob contains pointers to different
types of values. If we somehow make a typeglob into an object reference, we can treat these value pointers

as attributes and access them very quickly. Consider the following foo typeglob:

${*f oo} "Oh, ny!!" ; # Use the scalar part to store a string
@ *f oo} (10, 20); # Use the array part to store an array
open (foo, "foo.txt"); # Use it as a filehandle

We are able to hang different types of values (at most one of each type) from just one identifier, foo. If we
want many such objects, we can use the Symbol module in the Perl library to create referencesto
dynamically created typeglobs:

use Synbol ;
$obj = Synbol ::gensyn(); # ref to typeglob

$obj contains areference to atypeglob. The different parts of a typeglob can be individually accessed (by
replacing foo with $obj):

${*$obj} ="Ch, my!!" ; # Use the scalar part to store a string
@*%obj} = (10, 20); # Use the array part to store an array
open ($obj, "foo"); # Use it as a filehandle

Clearly, thisis ahideous approach for most general objects; if you need another scalar-valued attribute, for
example, you have no option but to put it in the hash part of thistypeglob. The reason why the 10 group of
modules uses this hack is that an instance of any of these modules can be treated as a filehandle and passed
directly (without dereferencing) to the built-in 1/0O functions such as read and write. For example:

$sock = new | O : Socket(... various paraneters ...) ;
print $sock "Hell o, are you there";
$nessage = <$sock>;

WE'll use 10::Socket module extensively in the chapters on networking with sockets.[2]

[2] Y ou don't have to know the following technique, or how the | O::Socket module is built, to
useit.

Let us build asmall module called File to examine this technique in greater detail. This module allows you
to open afile and read the next line; in addition, it allows you to put back aline so that the next attempt to
read the file returns that line:

package mai n;

$obj = File->open("File.pnt);

print $obj->next _line();

$obj - >put _back("---------------"--------- \n");

print $obj->next _line(); # Should print the string put back above

print $obj->next _line();

Since this code opens the File module itself, it should print the following:
package Fil e;

use Synbol ;

This module uses the scalar part of the typeglob object as a"putback™” buffer, the array part of the typeglob
to store all the lines read from the file, and the filehandle part of the typeglob to store the filehandle. The
implementation of the File module is shown in Example 8.1.

Example 8.1: File Module, Built Using a Typeglob Representation

package Fil e;

use Synbol ;
sub open {

ny ($pkg, $filenane) = @;

$obj = gensyn(); # Al l ocate a typegl ob

open ($obj, $filenanme) || return undef; # Use it as a filehandle

bl ess $obj, $pkg; # Upgrade to a File "object”
}

sub put back {

ny ($r_obj, $line) = @;

${*$r _obj} = $line; # The scal ar part holds the
} # current |ine

sub next _line {
ny $r_obj = $_[0];

ny $retval;
if (${*$r_obj}) { # Check putback buffer
$retval = ${*$r_obj }; # yep, it's got stuff
${*$r _obj} =""; # enpty it.
} else {
$retval = <$r_obj >; # no. read fromfile
push(@*%$r_obj}, $retval); # add to history list.
}
$retval
}
1;
Previous: 7.6 Advanced Perl Next: 8.2
Resources Programming Delegation
7.6 Resources Book 8.2 Delegation

Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 8.1 Efficient . Chapter 8 Next: 8.3 On
Attribute Storage Object Orientation: The Next Inheritance
Few Steps

8.2 Delegation

Delegation is a technique whereby an object forwards method calls to an appointed delegate object. In
the following example, an Enpl oyee class simply delegates al tax-related functionality to the
$acccounting_dept object:
package Enpl oyee;
sub conpute_after tax_incone {

$me = $_[0];

return $accounti ng _dept->conpute_after tax_income($ne);

}

There are cases in which you want all method calls that are not handled by a class to be automatically
forwarded to adelegate. Thisisacinch in Perl, since the AUTOLOAD function is called when a
procedure is not found within that package or its base classes:
package Enpl oyee;
sub AUTOLQAD {

my $obj = $_[0];

$AUTOLOAD contai ns the nane of the m ssing nethod

Never propagate DESTROY net hods
return i f $SAUTOLOAD =~ /:: DESTROY$/ ;

Strip it off its |eading package nane (such as Enpl oyee::)

SAUTOLOAD =~ s/ ™. *:: /],

$obj - >{del egat e} ->SAUTOLOAD(@) ; # Note, $obj is still part of @,
so the del egated function knows
the original target

}

Noticethat AUTOLOAD iscalled if DESTRQOY is not defined, and it isimportant that you not forward
that message, or the delegate will think Perl is about to destroy it and release its resources prematurely.

Thistechnique is often employed in the guts of client/server libraries. In atypical client/server system,

the server hasthe "real" objects. But the system is written in such away that a client can remotely invoke

amethod of the object, with familiar OO syntax. For example, if a client program wants to invoke a

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

method on aremote bank account, it should be able to say something like this:
$account - >deposi t (100); # Deposit 100 bucks.

On the surface, it seems like an ordinary method call. What the library hides from you is that the
deposit() functionality is actually sitting on adifferent machine. How is this accomplished? Well, the
$account object reference is actually areference to alightweight proxy object on the client side. Its sole
purpose isto forward calls to the remote machine (by sending messages over a socket, for example) and
to wait for the response to come back. In other words, the account object is not the real account. It isonly
amessage forwarder. It delegatesits functionality to the remote object with the help of the messaging
system underneath.

Previous: 8.1 Efficient Advanced Perl Next: 8.3 On
Attribute Storage Programming Inheritance
8.1 Efficient Attribute Storage Book 8.3 On Inheritance
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 8.2 Chapter 8 Next: 8.4
Delegation Object Orientation: The Next Resources
Few Steps

8.3 On Inheritance

| have never been quite comfortable with using inheritance liberally, and | don't subscribe to the theory
that thisfeature is essential for software reuse. There are three related but distinct flavors of inheritance,
and in thissection, I'll list what | like or dislike about these aspects. The three types of inheritance are as
follows:

« Attribute inheritance
« Implementation inheritance

« Interface inheritance

8.3.1 Attribute Inheritance

The facility provided by alanguage for a subclass to inherit attributes from a base class or a structure is
called attribute inheritance. While C++ and Java provide this facility, Perl doesn't. The onusis on the
Perl programmer to figure out away for a superclass and a subclass to agree on a common inheritable
representation. For this reason, a hash table is a frequent choice, but not necessarily an economical one,
as has been pointed out earlier.

My problem with attribute inheritance is that it introduces a tremendous amount of coupling between an
inherited class and aderived class. A change in the way abase classislaid out has drastic consequences
for the derived class. Thisis clearly aviolation of encapsulation. C++ treats all attributes as private by
default but then provides a keyword called "protected,” whereby it makes them freely available to
derived classes, while still hiding them from the general public. Bjarne Stroustrup, the creator of C++,
regrets thisin his excellent book The Design and Evolution of C++ [8]:

One of my concerns about pr ot ect ed isexactly that it makesit too easy to use acommon
base the way one might sloppily have used global data....In retrospect, | think that

pr ot ect ed isacase where "good arguments" and fashion overcame my better judgement
and my rules of thumb for accepting new features.

A better option is to provide accessor methods and rely on interface inheritance. More on this soon.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

8.3.2 Implementation Inheritance

Perl supports only this flavor of inheritance. Implementation inheritance, like attribute inheritance, forces
base and inherited classes to have a common understanding of the layout of the object's attributes;
attribute inheritance is almost always required in using implementation inheritance.

Subclassing is not easy, as Erich Gammaet a. say in Design Patterns[7]:

Designing a subclass a so requires an in-depth understanding of the parent class. For
example, overriding one operation might require overriding another. An overridden
operation might be required to call an inherited operation. And subclassing can lead to an
explosion of classes, because you might have to introduce many new subclasses for even a
simple extension.

They suggest using composition instead, a topic we will touch on shortly.

8.3.3 Interface Inheritance

Attribute and implementation inheritance are for the convenience of the object implementor. Interface
inheritance is for the user of a package. Perl supports only implementation inheritance.

The set of publicly available methods defines an object's interface. A derived class can add to this
interface by adding new methods. But whether it actually overrides a base class implementation is strictly
amatter of implementation detail; from the user's point of view, it still offers the same methods.

The important thing about an interface is that it represents the contract between the user and the object. If
two objects have identical interfaces, they can be interchangeably used. This substitutability aspect
represents the most important feature alanguage or a set of components can provide.

8.3.4 Using Composition Instead

| was once convinced about the need for implementation inheritance when | was writing some widgets
for Xt/Motif (GUI frameworks for the X Windows platform). This framework goes to a great extent to
provide single inheritance in C (both attribute and implementation), but the result isn't easy to work with.
When C++ came along, | quickly became enthusiastic about alanguage that supported inheritance, and
attempted to implement the widget set in C++. Then when John Ousterhout's Tk came along, | marveled
at the ease of creating widgets, even though it wasin C and provided all the features that Motif provides
(and much more). The Tk architecture used composition, not inheritance. | have been suitably chastened.

The idea of composition isfor an object to be composed out of other objects. That is, it forms ahas-a or
uses-a relationship with other classes, instead of an is-a relationship. Many examples in published
literature glorify implementation inheritance, but these turn out to be far better (smpler and more
readable) candidates for composition. Take this commonly illustrated example of aclass called

Vi ce- Pr esi dent , inheriting from aclass called Manager , inheriting from a class called

Enpl oyee. Itistruethat aV.P. is-a Manager, who in turn is an Employee, so the case is made for
attribute and implementation inheritance. But what happens when an employee is promoted? The object
isforced to changeits class - clearly, aterrible design. The better way to approach thisissue isto realize

that an employee plays one or more roles in a company (that of a manager, vice-president, or lead
technical engineer), and when the employee is promoted, thisrole is merely updated. In other words, the
Employee object uses the Role class, which for its part, captures everything to be known about that role,
such asthe job description, salary range, and prerequisites.

Composition is also called component-driven programming. The key to developing reusable software is
to develop completely encapsulated components with well-defined and documented interfaces.
Designing for inheritance has, in my experience, rarely yielded the benefit that the hype would suggest.

Perl provides the most crucial features required to create plug and play components: polymorphism and
run-time binding. Y ou can say $obj->draw(), and Perl calls the appropriate draw() method, depending on
$obj's class. Since Perl is an untyped language, it makes this statement work for graphic shapes, guns,
and lotteries. | value this feature much more than its support for implementation inheritance.

Previous: 8.2 Advanced Perl Next: 8.4
Delegation Programming Resources
8.2 Delegation Book 8.4 Resources
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

&Advanced Perl Programming o

Previous: 8.3 Chapter 8 Next:
On Inheritance Object Orientation: The Next 9. Tie
Few Steps

8.4 Resources

1. Design Patterns: Elements of Reusable Object-Oriented Software. Erich Gamma, Richard Helm,
Ralph Johnson and John Vlissides. Addison-Wesley, 1994.

2. The Design and Evolution of C++. Bjarne Stroustrup. Addison-Wesley, 1994.

Previous: 8.3 Advanced Perl Next:
On Inheritance Programming 9. Tie
8.3 On Inheritance Book 9. Tie
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 8.4 Chapter 9 Next: 9.2
Resources Tying Arrays

9. Tie

Contents:

Tying Scalars

Tying Arrays

Tying Hashes

Tying Filehandles

Example: Monitoring Variables
Comparisons with Other Languages

Give me awild tie brother,

One with a cosmic urge,

Atiethat will swear and rip and tear,
When it sees my old blue serge.

- Stoddard King, The Ties That Bind

Normally, when you read or update a scalar, array, hash, or filehandle, Perl performs the appropriate
operation on the corresponding internal data structure. Alternatively, you can use the tie keyword to bind
the value (or variable) to a user-defined object, so that when you read from or write to that variable, Perl
simply calls a specific method of the object it istied to. In other words, while it provides the
implementation for a"normal” variable, Perl expects a user-defined module to do so for atied variable.
Once avariableistied, even accesses from the C API of the Perl library are delegated to the
corresponding tied object.

This approach may seem like syntactic sugar, but as you'll see from the examplesin this chapter, it isthe
syntax that givesit its power: an ordinary variable can be made to invoke a user-defined function
whenever avariable is manipulated, without the user's code changing or being necessarily aware of the
subterfuge. The most common use of this technique is to tie a hash variable to a module that can
manipulate DBM files, which are typically disk-based hash tables (they can also be BTrees). This
technique allows you to make a hash value persistent and is capable of storing much more information
than can fit into available memory, while giving the impression that you are manipulating an ordinary
associative array.

In the following pages, we will study how tie works with the various data types, and look at a few useful
examples of thisfeature.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

9.1 Tying Scalars

At the most basic level, there are only four things you can do with ascalar. Y ou can create it, get or set
its value, and destroy it (by ending the scope or undef'ing it). tie allows you to supply a subroutine to be
called back for each of these operations.

The syntax of tieisasfollows:
tie variable, classnane, |ist;

Thefirst parameter should be one of the four supported types described above. The second parameter is
the name of a user-defined class. Y ou are expected to have invoked use cl assnane or require
cl assnane before caling tie.

When this statement is executed, Perl checks the type of the variable (the first parameter). It then calls
the method cl assnanme->TIESCALAR(l i st), or TIEARRAY, TIEHASH, or TIEHANDLE,
depending on whether thetied variable isa scalar, array, hash, or filehandle. It isarun-time error if this
method is not present in the class. TIESCALAR() is expected to return an object, which isthen internally
associated with (or tied to) the given variable. Now, when you read and write to the variable, Perl
internally callsobj ect ->FETCH() and obj ect ->STORE(new val ue), respectively. Finally, when
the tied variable goes out of scope, Perl callsobj ect ->DESTROY (). Simple, isn't it?

The names FETCH, STORE, and TIESCALAR are similar to AUTOLOAD and DESTROY in that they
have a special significance for Perl only under appropriate circumstances. That is, amodule can have a
method called FETCH, which can be used normally like any other user-defined subroutine. But if you
use tie, this method assumes a special meaning.

Perl does not care about the exact data structure used for the object (whether you used a hash or
ObjectTemplate). Table 9.1 shows a variable "$temperature” tied to an automatic temperature control

system, which is represented by a Perl module called AC.pm.[1] An attempt to read $Stemperature's value

istranglated to a call to the temperature sensor, and an attempt to set its value translates to a command to
the heating system to do what is needed.

[1] Air conditioning, not aternating current!

Table 9.1: Flow of Control inaTie Scalar Operation

When you say: Perl trandatesit to the method The method lookslike this:
call:
tie $tenperature, $obj = AC->TI ESCALAR() package AC
"AC ; TI ESCALAR
s Perl now "ties" SUP_ _ SCA {
$t enper at ur e and $obj $ac = bless {...},
$pkg;
return $ac;
}

$x = $obj - >FETCH() ; sub FETCH {

$ac->get _tenp();
}

sub STORE {
($obj, $t) = @;
$ac- >set _tenp($t);

$x = S$tenperature;

$tenperature = 20; $obj - >STORE(20) ;

}

unti e $tenperature; $obj - >DESTROY() sub DESTROY {
#or }
undef $tenperature;

or when $t enper at ur e goes
out of scope

Asyou can see, the AC moduleis an ordinary class with a constructor and three object methods (whose
names happen to be special). Perl interacts with this module behind the scenes, providing the user with a
much simpler interaction model. Y ou can get the tied object as the return value of tie or invoke the tied
function to get to it at any other time. Therefore the statement

$t enperature = 20;
isidentical to
(tied $tenperature)->STORE(20);

The untie function restores the original value of the variable and also calls the object's DESTROY
method.

Perl does not constrain the object's module in any way other than to expect it to provide the methods we
saw earlier. It can store whatever data it wants, can have other methods, and is perfectly usableevenina
non-tie context.

9.1.1 Example: Stopwatch

Let uslook at a simple example of a stopwatch using atied scalar. When you store any valueinto it, it
notes the current time (that is, it ignores the value). When you retrieve avalue from it, it returns the
amount of time elapsed since the last time a store was attempted on it. Thisis how it is used:

use St opwat ch;
tie $s, 'Stopwatch';

$s is scalar transparently tied to a Stopwatch object.

$s = 0; # Witing to it forces a reset
sl eep(10); # Sl eep 10 seconds
print "$s\n"; # Should print 10

The example might sometimes print 9 because of sleep's resolution.

Example 9.1 shows how Stopwatch is implemented.

Example 9.1: Stopwatch Implemented Using tie

package Stopwatch;

sub TI ESCALAR {
ny ($pkg) = @;
nmy $obj = tine(); # $obj stores the tine at |ast reset.
return (bl ess \$obj, $pkg);

}

sub FETCH {
ny ($r_obj) = @;
Return the tine el apsed since it was | ast reset
return (time() - $$r_obj);

}

sub STORE {
my ($r_obj, $val) = @;
Ignore the value. Any wite to it is seen as a reset
return ($$r _obj) =time());

}

1;

TIESCALAR notes the current time and returns a reference to a blessed scalar (with the current time in
it). Aswas mentioned earlier, you are under no obligation to provide a blessed scalar reference; Perl
does not care whether the object isascalar or an array or a complex data structure. The only requirement
Isthat it be blessed into a module that supports the FETCH and STORE methods. In this case, FETCH
computes the interval between the current time (as reported by time) and the last reset time.

Incidentally, the time calculations in this module work at the granularity of only a second. If you want a
finer granularity, you can use the Time::HiRes modul e available from CPAN, which gives microsecond
resolution on Unix systems (gives access to the uslegp and ualarm system calls). On Microsoft Windows
systems, you can use the Win32::Timer call for millisecond-level timing.

9.1.1.1 tie works with anonymous values

The first argument to tie must boil down to a scalar, array, hash, or filehandle value ; it does not have to
be avariable. The following code shows two valid examples of scalar ties:

$r = \$s;
tie $$r, 'Stopwatch'; # Indirect tie to $s

@oo = (1, 2);
tie $foo[1], 'Stopwatch';

Asyou can see, this facility works with the underlying values and is not associated with a variable name
(unlike the trace facility in TCL).

Previous: 8.4 Advanced Perl Next: 9.2
Resources Programming Tying Arrays
8.4 Resources Book 9.2 Tying Arrays
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

P& Advanced Perl Programming e

Previous: 9.1 C_m‘w Next: 9.3
Tying Scalars Tie Tying Hashes

9.2 Tying Arrays

Tying an array to a module runs along very similar lines, as shown in Table 9.2. There aretwo levels at
which you can work with anormal array. At one level, you can get and set the value of the entire array
and the last element’s index (using $#array). At another level, you can get or set individual elements and
create or destroy its elements using splice, push, pop, and so on. As this book goesto print, tie handles
reads and writes only to array elements and does not alow the array itself to be modified in any way. This
situation is expected to be remedied in the not-too-distant future.

Table 9.2: tieand Array Access

When you say: Perl trandatesit to:

tie @rray, 'Foo',1,2|$obj = Foo->TlI EARRAY (1, 2);
$a = Sarray[5]; $obj - >SFETCH(5) ;

$array[5] = "aa" $obj - >STORE(5, "aa");

untie @array; $obj - >DESTROY() ;

One useful example of tied arrays is to emulate a bitset. If you set the 200th element to 1, the module can
set the 200th bit in abit array, using vec().

The next section shows an example of tied arrays to wrap atext file.

9.2.1 TIEARRAY Example: File as an Array

This example builds afacility called TieFile to make atext file appear as an array. If you want to examine
the 20th line of foo.txt, for example, you write:

tie @ines, 'TieFile' , 'foo.txt';
print $lines[20];
For simplicity, this module does not accept updates to any element.

When asked to fetch the nth line, the TieFile module shown in Example 9.2 reads the file until it reaches

that line and returnsit. Since it is wasteful to keep traversing the entire file every time alineis requested,
TieFile keeps track of the file offsets of the beginning of each line so that when you ask it for aline that it

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

has already visited, it knows the precise offset to seek to before reading. The object created by
TIEARRAY has two fields. one to store this array of offsets and another to store the filehandle of the
open file. These two fields are stored in an anonymous array. (Alternatively, you can use a hash or the
ObjectTemplate module.)

Example 9.2: TieFile.pm: Mapping a File to an Array

package TieFil e;
use Synbol ;

use strict;

The object constructed in TIEARRAY is an array, and these are the
fields

ny $F_OFFSETS

ny $F_FlI LEHANDLE

O; # List of file seek offsets (for each |ine)
1, # Open filehandle

sub TI EARRAY {
my ($pkg, $filenane) = @;
my $fh = gensyn();
open ($fh, $filenane) || die "Could not open file: $'\n";
bless [[0], # Oth lineis at offset O

$fh
1. $pkg;
}
sub FETCH {
ny ($obj, $index) = @;
Have we already read this |ine?
my $rl_offsets = $obj->[$F_OFFSETS] ;
ny $fh = $obj->[$F_FI LEHANDLE] ;
if ($index > @rl _offsets) {
$obj ->read _until ($index);
} else {
seek to the appropriate file offset
seek ($fh, $rl_offsets->[$index], 0);
}
return (scalar <$fh>); # Return a single line, by evaluating <$fh>
in a scal ar cont ext
}
sub STORE {
die "Sorry. Cannot update file using package TieFile\n";
}

sub DESTROY {

my ($obj) = @;
close the fil ehandl e

cl ose($obj - >[$F_FI LEHANDLE]) ;
}

sub read _until {
ny ($obj, $index) = @;
ny $rl_offsets = $obj->[$F_OFFSETS] ;
ny $l ast i ndex @rl _offsets - 1;
ny $last_offset = $rl_offsets->[3$last_index];
ny $fh = $obj - >[$F_FI LEHANDLE] :
seek ($fh, $last offset, 0);
ny $buf;
whi |l e (defined($buf = <$fh>)) {
$l ast _offset += | ength($buf);
$l ast _i ndex++;
push (@rl _offsets, $last offset);
| ast if $last _index > $index;

}
1;

Y ou may have noticed that this module works only if you assign strings or numbers to the tied array's
elements. If you assign it areference, it simply convertsit into a string and stores it into the file, which is
patently useless when the datais read back from the file. In other words, this module should ideally
"serialize" the data structure pointed to by the reference before storing it into the file, and recreate it when
requested. We'll have more to say on this subject in Chapter 10, Persistence.

Previous: 9.1 Advanced Perl Next: 9.3
Tying Scalars Programming Tying Hashes
9.1 Tying Scalars Book 9.3 Tying Hashes
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 9.2 Chapter 9 | Next: 9.4 Tying Filehandles|
Tying Arrays Tie

9.3 Tying Hashes

Accesses to tied hash tables are fully supported, unlike arrays. The tie-hash facility allows you to trap
operations on the entire hash table (%h = ()), accesses to individual elements, and queries (exists,
defined, each, keys, and values). Table 9.3 shows how these actions are mapped to method invocations
on the tied object.

Table 9.3: tie and Hash Access

When you say: Perl trandatesit to:

tie %, 'Foo', 'a'" => 1|%0obj = Foo->TIEHASH('a', 1);
$h{ a} $obj - >FETCH (' a')

$h{a} =1 $obj ->STORE ('a', 1)

del ete $h{a} $obj - >DELETE(' a')

exi sts $h{a} $obj - >EXI STS(' a')

keys (%), val ues(%) $l k = $obj - >FI RSTKEY () ;
each (%) do {

$val = $obj - >FETCH $I k} ;
} while ($l k = $obj - >NEXTKEY($l k)) ;

% = () $obj - >CLEAR()
W = (a=> 1) $obj - >CLEAR()

$obj - >STORE(' a' , 1)
untie % $obj - >DESTROY()

FIRSTKEY and NEXTKEY are expected to return the next key in the sequence. This sufficesif keysis
invoked by the calling code; but if values or each is called, it calls FETCH for each key.

The most common (and natural-looking) use of tieis as afrontend for DBM files, which, aswe
mentioned earlier, are disk-based hash tables. Perl comes enabled with various flavors of DBM support.
The following example uses the SDBM module, which comes with the standard Per| distribution:

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

use Fcntl:
use SDBM Fil e;
tie (Y%, 'SDBM File', 'foo.dbm, O RDWR O CREAT, 0640)

|| die $'; # Open dbmfile
$h{a} = 10; # Wite to file transparently
while (($k, $v) = each %) { # Iterate over all keys in file
print "$k, $v\n"
}
untie %; # Flush and cl ose the dbmfile

Perl old-timers may recognize the similarity to the dbm_open function. tie just happens to be amore
genera facility.

Tied hashes have the same problem outlined in the last section: Y ou cannot store references unless you
explicitly serialize the structures referred to into one stream (from which you can recreate the data
structure later). The MLDBM module, which we will explore further in Chapter 10, attemptsto tie

multilevel hashesto aDBM file.

Two other modules in the standard Per| distribution usetie internally. Config makes all information
known to the build environment (that is, to configure) as a hash (%Config) in the caller's namespace, like
this:
use Config;
while (($k, $v) = each %Config) {

print "$k => $v \n";
}

Env is another standard library that uses tie to make environment variables appear as ordinary variables.
We saw anon-tie variant of Env in the section "Importing Symbols' in Chapter 6, Modules.

Previous: 9.2 Advanced Perl | Next: 9.4 Tying Filehandles|
Tying Arrays Programming
9.2 Tying Arrays Book 9.4 Tying Filehandles
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

&Advanced Perl Programming o

Previous: 9.3 Ch .ter 9 Next: 9.5 Example:
Tying Hashes Tie Monitoring Variables

9.4 Tying Filehandles

Tied filehandles call a user-defined object whenever you read from or write to afilehandle, as shown in
Table 9.4. Note that the tie statement takes a typeglob, not a bareword.

Table 9.4: tie and Filehandles

When you say: Per| trandatesit to:

tie *FH, 'Foo', 'a','Db’ $obj = Foo->TIEHANDLE('a','b');
<EH> $obj - >READLI NE() ;

read (FH, $buf, $len, $offset) $obj - >READ($buf, $l en, $of fset)
sysread (FH, $buf, $len, $offset)

get c(FH) $obj - >GETC()

print FH "I do"; #No comma after FH|$obj->PRINT("I do");

untie *FH; $obj - >DESTROY() ;

This method can be used to simulate afile or process with atest driver or to monitor accessto a
filehandle for silently logging a conversation (like the tee(1) command). Tk, which we will study in
detail in Chapter 14, User Interfaces with Tk, supportstiesto let you redirect I/O to its text widget. We

will look at a small example of this feature when we study that widget.

Previous: 9.3 Advanced Perl Next: 9.5 Example:
Tying Hashes Programming Monitoring Variables
9.3 Tying Hashes Book 9.5 Example: Monitoring

Index Variables

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

MAdvanced Perl Programming o

Previous: 9.4 Tying Chapter 9 Next: 9.6 Comparisons with
Filehandles Tie Other Languages

9.5 Example: Monitoring Variables

tie makesit really convenient to monitor a variable. In this section, we will develop amodule called
Monitor.pm that prints out a message on STDERR whenever avariable of your choice is accessed. [2]

[2] Thisisalightweight version of a CPAN module called Tie::Watch, written by Stephen
Lidie. Tie::Watch is used to invoke user-defined callbacks when certain variables are accessed.

use Monitor;
moni tor (\ $x, 'x');
monitor(\ %, 'y');

Whenever $x or %y is changed, this module prints out something like this on STDERR:

W ot e . $x ... 10
Read $x ... 10
D ed . $X

Wote : $y{a} ... 1
Cleared : %

This module is useful while debugging, whereit is not clear at what point a certain variable is changing,
especially when it changes indirectly through a reference. This module can be enhanced to support watch
expressions such as print ‘ahhh’ when $array[5] > 10. Given Perl's support for eval, thisis a reasonably
simple task.

noni t or takes avariable by reference and a name to be used when it prints out its messages. The first
parameter is used to do atie on the variable. tie has the unfortunate property that it hides the original value
held by the variable. (The valueisrestored upon untie.) Clearly, we don't want Heisenberg's Uncertainty
Principle to creep in here - our act of monitoring should not affect the user's view of that variable. For this
reason, we store away the original value as an attribute of the tied object and have FETCH and STORE use
this copy. Finally, when we are not interested in the variable any more, we use unmonitor, which calls untie
internally.

Monitor, shown in Example 9.3, delegates responsibility to a nested module dedicated to each type of value

(scalar, array, hash). The tie constructors in these modules return a blessed anonymous array (the tied
object), which stores the name supplied by the user (the second parameter of monitor) and the current value
of the variable.

Example 9.3: Monitor.pm

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

package Monitor;

require Exporter;

@SA = ("Exporter");

@EXPORT = gw(noni tor unnonitor);
use strict;

sub nmonitor {
ny ($r_var, $nane) = @;
my ($type) = ref($r_var);
if ($type =~ /SCALAR/) {
return tie $$r_var, 'Monitor::Scalar', $r_var, $nane;
} elsif ($type =~ / ARRAY/) {
return tie @r var, 'Mnitor::Array', $r _var, $nane;
} elsif ($type =~ /HASH) {
return tie %r _var, 'Mnitor::Hash', $r var, $nane;
} else {
print STDERR "require ref. to scalar, array or hash" unl ess $type;
}
}

sub unnonitor {
ny ($r_var) = @;
ny ($type) = ref ($r _var);
my $obj ;
if ($type =~ [/ SCALAR/) {
Moni t or:: Scal ar - >unnoni tor ($r _var);
} elsif ($type =~ / ARRAY/) {
Moni tor:: Array->unnonitor($r_var);
} elsif ($type =~ /HASH) {
Moni t or: : Hash- >unnoni t or ($r _var);
} else {
print STDERR "require ref. to scalar, array or hash" unl ess $type;

package Monitor:: Scal ar;

sub TI ESCALAR {
my ($pkg, $rval, $name) = @;
ny $obj = [$nane, $$rval];
bl ess $obj, $pkg;
return $obj;

}
sub FETCH {
ny ($obj) = @;
ny $val = $obj->[1];

print STDERR ' Read $, $obj->[0], " ... $val \n";
return $val ;

}
sub STORE {
ny ($obj, $val) = @;
print STDERR 'Wote $', $obj->[0], " ... $val \n";
$obj ->[1] = $val;
return $val;
}

sub unnoni tor {
ny ($pkg, $r_var) = @;
ny S$val ;
{
ny $obj = tied $$r _var;
$val = $obj->[1];
$obj ->[0] = " UNMONI TORED ";
}
untie $$r_var;
$$r _var = $val;

}
sub DESTROY {

ny ($obj) = @;

if ($obj->[0] ne " UNMONI TORED ') {

print STDERR ' Di ed $', $obj->[0];

}
}
o o o o o o o e o o o e

sub Tl EARRAY {
my ($pkg, $rarray, $nane) = @;
ny $obj = [$nanme, [@rarray]];
bl ess $obj, $pkg;
return $obj;

}
sub FETCH {
my ($obj, $index) = @;
my $val = $obj->[1]->[$i ndex];
print STDERR ' Read $', $obj->[0], "[$index] ... S$val\n";
return $val;
}
sub STORE {

my ($obj, $index, $val) = @;

print STDERR 'Wote $', $obj->[0], "[$index] ... S$val\n";
$obj ->[1] - >[$i ndex] = $val;
return $val;

sub DESTROY {
ny ($obj) = @;
if ($obj->[0] ne " UNMONI TORED ') {
print STDERR ' Di ed %, $obj->[0];
}

}

sub unnoni tor {

my ($pkg, $r_var) = @;

ny $r_array;

{
ny $obj = tied @r _var;
$r_array = $obj->[1];
$obj ->[0] = " UNMONI TORED ";

}

untie @r var;

@r _var = @r _array;

package Monitor:: Hash

sub TI EHASH {
ny ($pkg, $rhash, $nane) = @;
my $obj = [$nane, {%brhash}];
return (bl ess $obj, $pkg);

}
sub CLEAR {
ny ($obj) = @;
print STDERR 'Cleared %, $obj->[0], "\n";
}
sub FETCH {
my ($obj, $index) = @;
my $val = $obj->[1]->{$i ndex};
print STDERR ' Read $', $obj->[0], "{S$index} ... S$val\n";
return $val;
}
sub STORE {

ny ($obj, $index, $val) = @;
print STDERR 'Wote $', $obj->[0], "{$index} ... S$val\n";

$obj - >[1] - >{ $i ndex} = $val;
return $val ;

}
sub DESTROY {
ny ($obj) = @;
if ($obj->[0] ne ' _UNMONI TORED ') {
print STDERR ' Di ed %, $obj->[0];
}
}

sub unnoni tor {
ny ($pkg, $r_var) = @;
ny $r _hash;
{
my $obj = tied %br var;
$r _hash = $obj->[1];
$obj->[0] = " UNMONI TORED ";
}
unti e %br_var;
O%r var = %br hash;
}
1;

unmonitor is slightly tricky. We want to do an untie, but Perl restores the variable's value to that held by it
just before tie was invoked. Clearly, thisis undesirable. We want this operation to go on without the
variable's user being affected in any way. Since we have the variable's current value as an attribute of the tied
object, we can attempt to restore the value after the untie. Unfortunately, the following code doesn't quite
work:

For a tied scal ar

ny $obj = tied $$r var; # Get the object tied to the variable

$l at est _val ue = $obj->[1]; # Extract the | atest val ue

untie $$r _var; # untie

$$r _var = $l atest _val ue; # Restore the variable to the | atest
val ue

Perl complains, "Can't untie: 1 inner references still exist ..." if the -w flag is turned on. The problem is that
the local variable $obj bumps up the reference count of the tied object, so an untie is not able to DESTROY
the tied object. The solution isfairly straightforward: extract the value in an inner block and let $obj go out
of scope, likethis:

ny $l at est val ue;

{
ny $obj = tied $$r _var;
$l at est _value = $obj->[1]; # Extract the | atest val ue.
Note that $latest value is defined
outside this inner block
}

$obj is no longer in scope, so we can peacefully untie.

untie $$r_var;
$$r _var = $l atest val ue;

Previous: 9.4 Tying Advanced Perl Next: 9.6 Comparisons with
Filehandles Programming Other Languages
9.4 Tying Filehandles Book 9.6 Comparisons with Other
Index L anguages

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming
| Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 9.5 Example: Ch .ter 9 Next: 10.
Monitoring Variables Tie Persistence

9.6 Comparisons with Other Languages

We have used the tie facility in two ways. Oneisto give an existing package an easy frontend (as Perl
does for DBM files); another isto monitor an existing variable. Let us examine what the other languages
have to offer in these contexts.

9.6.1 Tcl

Tcl provides acommand called trace to trap read and write accesses to scalars and associative arrays.
(Scalars and lists are interchangeable, so there's no separate facility for the latter.) The Tk toolkit puts
tracing to good use, as we shall soon seein Section 14.1, "Introduction to GUIs, Tk, and Perl/Tk". trace

doesn't occlude the previous value, so writing a monitoring package is simpler.

Tcl's C APl allows you to create traces much more easily than is possible with Perl. (Actually, this ease
of use factor istrue of the rest of the Tcl API also, as we shall seein Chapter 20, Perl Internals.)

While an existing Tcl package can use this facility to provide an easy frontend for a package, I'm not
aware of any that take advantage of it, as Perl doesfor DBM files.

9.6.2 Python

Python allows you to write special functions per classcalled getattr and _ setattr _ that allow you
to trap accesses to member attributes (or simulate new attributes). Similarly, you can make a class
simulate an array by providing special methods called getitem and __ setitem . There are 40 such
methods to overload all kinds of behavior.

9.6.3 C++

C++ does not alow dynamic traces to be put on avariable. On the other hand, it does provide an
extensive set of operators and operator-overloading syntactic structures to allow you to substitute an
object where fundamental data types or other objects are used.

Commercial tools and libraries such as Purify are capable of setting a dynamic trace on any region of
memory. They also provide a C API to write your own callbacks on such an event.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

9.6.4 Java

Java does not allow you to arbitrarily trap accesses. Some commercial transaction- processing systems go
to the extent of looking at the byte-code to recognize accesses to member attributes and insert traces
where necessary. This allows them to make any object transactional without the explicit cooperation of
the object. This approach is clearly not for the faint of heart!

Java does not have any way to implement the other aspect either: making a class appear as an ordinary
variable.

Previous: 9.5 Example: Advanced Perl Next: 10.
Monitoring Variables Programming Persistence
9.5 Example: Monitoring Book 10. Persistence
Variables Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 9.6 Comparisons Chapter 10 [Next: 10.2 Streamed Data
with Other Languages

10. Persistence

Contents:
Persistence | ssues

Streamed Data
Record-Oriented Approach
Relational Databases
Resources

There must be at least 500,000,000 rats in the United States. Of course, I'm speaking only from memory.
- Edgar Wilson Nye

It would be an ideal world indeed if we never had to worry about fatal bugs or power failures.[1] For
now, we have to contend with the fact that the attention span of a computer isonly aslong asits cord and
that our dataistoo precious to be left within the confines of electronic memory. The ability of a system
or module to make an application's data live longer than its application is called persistence.[2]

[1] Or end-users, as aletter to Byte magazine once complained!

[2] WEI use the term "system” to mean a C implementation, such asa DBM library or a
database, and "modul€e" to refer to a Perl module.

Considering that databases amount to a multi-billion-dollar industry and that DBI (Database I nterface)
and associated Perl modules are next only to CGI in CPAN's download statistics, it would not be a
stretch to say that persistence is the most important of all technologies. In this chapter, we first study the
myriad factorsto be considered in making our data persistent; we then play with most of the freely
available Perl persistence modules and hold them up against the checklist of factors, to clearly
understand their strengths and weaknesses and what they provide and where they expect the devel oper to
step in. In the next chapter, we will use some of these modules to create an object persistence framework
to store an object transparently in files and databases.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

10.1 Persistence Issues

Data ranges from simple comma-delimited records to complex self-referential structures. Usersvary in
level of paranoia and their ability (and need) to share persistent data. Application programmers attempt to
juggle between solutions that are varying combinations of simple, robust, and efficient. The following

list examines these differencesin a dightly greater detail:

Serialization
Ordinary arrays and hashes can be written to afile using tabs, commas, and so on. Nested
structures such as arrays of hashes or arrays of arrays have to be flattened, or serialized, before
they can be dumped into afile. If you have ever packed the wiring for your holiday lights, you
know that not only do you have to strive for atight packing, you have to do it in away that it can
be easily and efficiently unscrambled the next time you need to use it. Further, data items can be
typeglobs, can contain pointers to native C data structures, or can be references to other data items

(making the structures cyclic or self-referential). In this chapter, we will study three modules that
serialize data: FreezeThaw, Data::Dumper, and Storable.

Boundaries

Ordinary files, being byte streams, neither offer nor impose any kind of boundaries; you have to
decide how you keep each dataitem distinct and recognizable on disk. DBM and ISAM systems
impose a record-oriented structure. Relational databases provide record and column boundaries; if
your data can be dlotted into such a grid structure, you are in luck; otherwise, you have what is
commonly called an "impedance mismatch." Newer technologies, such as object-relational and
object-oriented databases, attempt to make this "restriction” or "failure" a nonissue.[3]

[3] E.F. Codd, considered the father of relational database theory, has constantly
maintained that this mismatch is not an inherent part of the theory itself; it isan
artifact of the RDBM S implementation technol ogy.

Concurrency

Multiple applications or users may want concurrent access to persistent data stores. Some systems
ignore this issue atogether; others offer different types of locking schemes.

Access privileges
Most persistence solutions leave it to the operating system to enforce file-level privileges (create,
update, read, or delete). Databases offer afiner level of access restriction.

Random access and insertion

Databases make it easy to insert anew record or update a single attribute. With streams, you have
no option but to serialize and rewrite the entire data into thefile.

Queries
DBM and ISAM files alow you to selectively fetch records on the basis of the primary key, and

databases allow you to selectively fetch records on the basis of any field. The more datayou have,
the less you can afford the luxury of examining each record to see whether it matches your criteria.

Transactions

Important commercial applications require "ACID" properties from persistence solutions [3]:

Atomicity : A series of actions that happen as one unit or not at all.

Consistency : The transaction must leave the system in a consistent state. Consistency isthe
responsibility of the application; a transaction monitor or a database knows nothing about
specific application domains to judge what is consistent and what is not.

| solation: Reads and writes from independent transactions must be isolated from each other;
the result should be identical to what would result if the applications were forced to operate
on the datain serial order, one at atime.

Durability : Once atransaction finishes, its results must be firmly committed to disk.

Currently, only databases provide thisfacility, and there are very few transactional file systems
going around. The 2.0 release of the Berkeley DB library provides concurrency, transactions, and
recovery, but the Perl wrappers have not been updated to take advantage of it, as of thiswriting.

Meta-data

If you have access to information that describes your data - meta-data - you can afford to hardcode
less. Databases make meta-data explicitly available, while the other solutions simply translate
from disk to in-memory Perl structures and let Perl provide the meta-information.

Machine independence

Y ou may want to retrieve data from afile that has been created on a different type of machine.
Y ou have to contend with differences in integer and floating-point representation: size aswell as
byte order.

Portability and transparency

Finally, requirements change, and an application that accounts for some of the factorslisted above
may have to account for more factors - or worse, a different set of factors. There have been several
attempts to provide a layer of uniformity between different solutions; for example, DBl and ODBC
are two efforts that specify a consistent API across competing relational database implementations.
We will be more ambitious in the next chapter: we will build ourselves a set of modules that hide
the API differences between file and database storage. It is afact that the more transparency you
look for, the more of an impact there is on performance.

In the following pages we examine a variety of Perl modules that enable us to persistently store our data.
We classify them by the boundary constraints: streamed (no boundaries), record-oriented, and
grid-oriented (relational databases).

Previous: 9.6 Comparisons Advanced Perl | Next: 10.2 Streamed Data)
with Other Languages Programming
9.6 Comparisons with Other Book 10.2 Streamed Data
Languages Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 10.1 Persistence Cha. ter 10 Next: 10.3 Record-Oriented
Issues Persistence Approach

10.2 Streamed Data

We look at three modules, FreezeThaw, Data::Dumper, and Storable, in this section. All of them serialize
Perl data structuresto ASCII or binary strings; only Storable actually writes them to disk. The other two
modules are important because they can be used in conjunction with other persistence mechanisms such
as databases and DBM files. All of them correctly account for blessed object references and
self-referential data structures, but trip up when it comes to typeglobs, tied variables, or scalars
containing pointers to C data types (justifiably so). It isalso impossible for these (or any) modules to
understand implicit relationships. For example, if you use the ObjectTemplate approach described in
Section 8.1, "Efficient Attribute Storage”, the "object” isbasically an array index, and so the disk will get
to see only a bunch of meaningless array indices minus the data. Another subtle error occurs when you
use references as hash indices and Perl converts them to strings (such as SCALAR(0xe3f434)). Thisis
not areal reference, so if you store the hash table to afile and recreate it, the implicit reference to the
original structureis not valid any more.

Moral of the story: simple nests of Perl structures are handled easily; in al other cases, it is your
responsibility to translate your application data into a structure containing ordinary Perl elements before
sending it to disk.

10.2.1 FreezeThaw

FreezeThaw, written by llya Zakharevich, is a pure Perl module (no C extensions) and encodes complex
data structures into printable ASCI|I strings. It does not deal directly with files and leavesit to you to send
the encoded string to anormal file, aDBM file, or a database. Here's an example of the modul€e's use:

use FreezeThaw gw(freeze thaw); # Inport freeze() and thaw)
Create a conplex data structure: a hash of arrays
$c = { "even' =>[2, 4, 6, 8],
‘odd" => 11, 3, 5, 7]};
Create sanpl e object
$obj = bless {'foo' => "bar'}, 'Exanple';
$msg = freeze($c, $obj);
open (F, "> test") || die;
syswite (F, $nmsg, length($nsg)); # can also use wite() or print()

The freeze() function takes alist of scalars to be encoded and returns one string. Arrays and hashes must
be passed by reference. The thaw method takes an encoded string and returns the same list of scalars:

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

($c, $obj) = thaw ($nsQ);

We will use FreezeThaw in Section 13.1, "Msg: Messaging Toolkit", to send data structures across a

socket connection. Because the encoding is ASCII, we don't need to worry about machine-specific details
such as byte order, or the length of integers and floating point numbers.

10.2.2 Data::Dumper

Data::Dumper, written by Gurusamy Sarathy, is similar in spirit to FreezeThaw, but takes a very different
approach. It convertsthe list of scalars passed to its Dunper function into pretty-printed Perl code,
which can be stored into afile and subsequently evaled. Consider

use Dat a: : Dunper ;
Create a conplex data structure: a hash of arrays
$c = { '"even' =>[2, 4,],
‘odd" => 11, 3,1};
Create sanpl e object
$obj = bless {'foo' => "bar'}, 'Exanple';
$nmsg = Dunper ($c, $obj);

print $nmsg;
This prints
$VARL = {
even => |
2,
4
1,
odd => |
1,
3

}i
$VAR2 = bl ess({
foo => 'bar'
}, 'Exanple');

Data::Dumper assigns an arbitrary variable name to each scalar, which is not really useful if you want to
eval it subsequently and recreate your original data. The module allows you to assign your own variable
names by using the Dump method:

$a 100;

@ = (2,3);
print Data::Dunper->Dunp([$a, \ @], ["foo", "*bar"]);

This prints
$f oo = 100;
@ar = (

2,

3
),

Dump takes two parameters. areference to alist of scalars to be dumped and areference to alist of
corresponding names. If a"*" precedes a name, Dunp outputs the appropriate type of the variable. That
is, instead of assigning to $b areference to an anonymous array, it assignsared list to @b. Y ou can
substitute Dumpx for Dump and take advantage of a C extension that implements the same functionality
and gives you a speed increase of four to five times,

Data::Dumper gives you an opportunity to specify custom subroutines to serialize and deserialize data,
which allows you to smooth the troublesome spots mentioned earlier. Please refer to the documentation
for details.

10.2.3 Storable

Storable is a C extension module for serializing data directly to files and is the fastest of the three
approaches. The store function takes a reference to a data structure (the root) and the name of afile. The
retrieve method does the converse: given afilename, it returns the root:

use Storable;
$a = [100, 200, {'foo' => 'bar'}];
eval {
store(%a, 'test.dat');
}s

print "Error witing to file: $@ if $@
$a = retrieve('test.dat');

If you have more than one structure to stuff into afile, smply put all of them in an anonymous array and
pass this array's reference to store.

Y ou can pass an open filehandle to store fd instead of giving afilename to store. The functions nstore
and nstore_fd can be used for storing the datain "network™ order, making the data machine-independent.
When you useretrieve or retrieve fd, the datais automatically converted back to the native machine
format (while storing, the module stores a flag indicating whether it has stored itin a
machine-independent format or not).

Previous: 10.1 Persistence Advanced Perl Next: 10.3 Record-Oriented
Issues Programming Approach

10.1 Persistence I ssues Book 10.3 Record-Oriented

Index Approach

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 10.2 Streamed Cha. ter 10 Next: 10.4 Relational
Data Persistence Databases

10.3 Record-Oriented Approach

In this section, we will study three modules that essentially depend on the DBM library. DBM isa
disk-based hash table, originally written by Ken Thompson for the Seventh Edition Unix system. This
library has since spawned many variants: SDBM (Simple DBM, a public-domain module bundied with
Perl), NDBM (New DBM, which is packaged with some operating systems), and GDBM (from the Free
Software Foundation). All these libraries can be accessed from equivalent Perl modules, which use Perl's
tie facility to provide transparent access to the disk-based table. Performance and portability are the only
criteriafor selecting one of these systems. Be warned that the files produced by these approaches are not
interchangeable.

10.3.1 DBM

We use SDBM here, because it is bundled with Perl. The SDBM _File module provides a wrapper over
this extension:

use Fcntl;

use SDBM Fil e;

tie (%capital, 'SDBM File', 'capitals.dat’', O RDWR O CREAT, 0666)
|| die $!';

$capi t al { USA}

$capi t al { Col onbi a}

untie %apital;

"Washi ngton D.C ";
"Bogot a";

The tie statement associates the in-memory hash variable, %capital, with the disk-based hash file,
capitals.dat. Read and write accesses to %capital are automatically translated to corresponding accesses
to the file. untie breaks this association and flushes any pending changesto the disk. O RDWR and
O_CREAT, "constants' imported from Fcntl, specify that capitals.dat is to be opened for reading and
writing, and to create it if it doesn't exist. The file's mode (bitmask for access privileges) is set to the
0644 in this case - the result of 0666 & ~022, where 022 is the umask.

The biggest problem with the DBM approaches mentioned earlier is that the value in atied key-value
pair has to be a string or number; if it is areference, these modules do not dereference it automatically.
S0 to associate a key with a complex data structure, you must serialize the structure using Data:: Dumper
or Freeze-Thaw, which is exactly what is done by MLDBM, described next.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

10.3.2 MLDBM

Gurusamy Sarathy's MLDBM (multilevel DBM) stores complex valuesin aDBM file. It uses
Data::Dumper to serialize any data structures, and uses a DBM module of your choice (SDBM_Fileis
used by default) to send it to disk. Thisishow it is used:

use SDBM Fi | e;
use MLDBM gw (SDBM Fil e);

use Fcntl;
tie (%, 'M.DBM, 'bar', O CREAT| O RDWR, 0666) || die $!;
$sanpl e = {"burnt' => "unber', 'brownian’' => 'notion'} ;

$h{pairs} = $sanpl e; # Creating a disk-based hash of hashes
untie %,;

All parametersto tie following the string "MLDBM" are simply passed to the module specified in the use
statement.

10.3.3 Berkeley DB

DB [5] - aso referred to as Berkeley DB - isa public-domain C library of database access methods,
including B+Tree, Extended Linear Hashing, and fixed/variable length records. The latest release also
supports concurrent updates, transactions, and recovery. The corresponding Perl module, DB_File, putsa
DBM wrapper around the B-tree and hashing implementations, and atied array wrapper over the
fixed/variable length record (also known as the recno access method).

The DBM usage isidentical to the ones shown in the preceding sections. The tie statement is as follows:
use DB Fil e;

use Fcntl; # For the constants O RDWR and O CREAT

tie (%, 'DB File', $file, O RDWR O CREAT, 0666, $DB BTREE);

The $DB_BTREE constant tells the library to use the btree format, allowing the key-value pairs to be
stored in a sorted, balanced multiway tree; that is, the keys are stored in lexical order. Y ou can aso
specify your custom sorting subroutine like this:
$DB BTREE->{' conpare'} = \&sort _ignorecase,
sub sort _ignorecase {

my ($keyl, $key2) = @;

$keyl =~ s/\s*//qg; # Get rid of white space
$key2 =~ s/\s*//qg;
| c($keyl) cnp | c($key?2); # | gnore case when conparing

}

Now, when you use keys, values, or each to retrieve data from the tied hash, you get them in your custom
sorted order. An ordinary hash and the other DBM modules do not give you this facility.

You can use $DB_RECNO instead of $DB_BTREE, which uses TIEARRAY totreat afileasa
collection of variable-length records:

use Fcntl ;

use DB Fil e;
tie (@, 'DBFile, '"foo.txt', O RDWR O CREAT, 0666, $DB RECNO ;

print $I[1]; # Retrieve second |ine
$I[3] = 'Three nusketeers'; # Modify fourth |ine
untie @;

Aswas mentioned in Chapter 9, Tie, the current TIEARRAY implementation allows only array indexing;
operators like push and splice are not supported. The DB_File module provides extra methods called
push, pop, shift, unshift, and length, which can be used like this:

$db =tied @;

$db- >push($x) ;

Previous: 10.2 Streamed Advanced Perl Next: 10.4 Relational
Data Programming Databases
10.2 Streamed Data Book 10.4 Relational Databases
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

MAdvanced Perl Programming

Previous: 10.3 Chapter 10 Next: 10.5
Record-Oriented Approach Persistence Resources

10.4 Relational Databases

Relational databases have been around for awhile, and while most commercial implementations have
standardized on SQL, they differ significantly in the native C API. There have been several solutions to this.
Microsoft popularized the ODBC (Open DataBase Connectivity) initiative, which has become the de facto
standard in the (Wintel) PC world and provides a standard frontend to a large number of relational databases.
PC Perl users using the ActiveWare port can access the ODBC library using the Win32::ODBC module.

Meanwhile in the Perl/Unix world, Tim Bunce and other developers, who had been writing mutually
incompatible wrapper modules for different databases, came up with the DBI (Database | nterface)
specification and implementation to merge their efforts. DBI issimilar in spirit and interface to the ODBC
specification.

The ODBC specification has recently been accepted as the basis for the SQL CLI (Call-Level Interface) SO
standard, and it is expected that all database vendors will eventually provide a compliant-client library. When
that becomes common-place, you can expect the DBI implementation to be rewritten to take advantage of this
interface or go away completely.

In this section, we will take alook at both DBI and Win32::ODBC.

10.4.1 DBI (Database Interface)

Back in the days when modules and dynamic loading were not built into Perl, the database wrappers had to be
linked in to create custom Perl executables called sybperl (for Sybase), oraperl (for Oracle), and so on. These
libraries have since been rewritten to take advantage of Perl Version 5's features but have preserved the old
API, which means that your scripts written for one database won't work for another. If you want portability,
the DBI module is the only option. DBI makes calls to modules called DBDs (database drivers), which are
specific to a database vendor and drive the native vendor API. If you use Oracle, for example, you can use
oraper| for marginally better performance, or you can use the DBI and DBD::Oracle combination for
portability. Oraperl and DBD::Oracle are both based on the same underlying code. The following web site,
maintained by Alligator Descartes, is awonderful repository of things DBI:

http://www.symbol stone.org/technol ogy/perl/DBI/.

Using DBI isasimple matter of connecting to the appropriate database and firing off SQL queries:[4]

[4] I'll assume that you are comfortable with SQL.
use DBI;
$dbnane = 'enpdb'; $user = 'sriram;
$password = 'foobar'; $dbd = ' Oracle';

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
http://www.symbolstone.org/technology/perl/DBI/

$dbh = DBI - >connect ($dbnanme, S$user, $password, $dbd);
if (!$dbh) {

print "Error connecting to database; $DBl::errstr\n”;
}

connect returns a database handle, which represents the connection to a specific database. The $dbd parameter
in thisexampletellsit to load the DBD::Oracle module. This parameter can be followed by areferenceto a
hash of driver or connection-specific attributes. Some database vendors allow multiple connections to be
created.

All DBI statements return undef on failure. The error code and errors strings can be obtained from $DBI ::err
and $DBI::errstr; these reflect the errorsin the last executed DBI statement.

10.4.1.1 Basic SQL accesses

SQL statements can be executed like this (the equivalent of execute immediate in embedded SQL):

$dbh->do("del ete from enptable where status != "active'");
print "Error: $DBl::err $DBl::errstr” if $DBl::err;

If you make the same query or a similar-looking query a number of times, you force the system to parseit over
and over again. To avoid this overhead, you can compile a parameterized query using prepare, and execute it
many times.

The prepare method is given a query with parameter placeholders indicated by "7?":

$sth = $dbh->prepare ('insert into enptable (nanme, age)
val ues (?, ?)");

Y ou can execute this statement over and over again using the returned statement handle, each time supplying
it an array of values corresponding to each placeholder. These values are sometimes referred to as binding
parameters. In fact, do internally prepares and executes the query given to it.

The following piece of code reads employee names and ages from standard input and uses the statement
handle created above to insert rows into the database:
whil e (defined($line = <>)) {

chomp($line);

id, nanme, age separated by tab

($id, $nane, $age) = split (/\t/, $line);

$st h- >execut e($i d, $nane, S$age);

die "Error: $DBl::err $DBl::errstr" if $DBl::err;

}

If the field is nullable, you can indicate a null value by passing undef to execute.
10.4.1.2 Select

The following example shows how to retrieve information in bulk, using the SQL sel ect statement:

$cur = $dbh->prepare(’' sel ect nane, age from enptabl e where age < 40');
$cur - >execut e() ;
die "Prepare error: $DBl::err $DBlI::errstr” if $DBl::err;

whil e (($nanme, $age) = $cur->fetchrow) {
print "Nane: $nanme, Age: $age \n";
}

$cur->finish();

The prepare statement returns a statement handle as before. When executed, this handle is associated
internally with an open database cursor and is used to fetch each row returned by the database. fetchrow
returns the values corresponding to the fields specified in thesel ect query. finish closes the cursor.

10.4.1.3 Query meta-data

Once a statement is prepared and executed, DBI stores the following pieces of information as attributes of the
statement handle:

$DBI : : rows

The number of rows affected or returned
$st h- >{ NUM _FI ELDS}

The number of fields returned by a select
$st h- >{ NUM_PARAMS}

The number of parameters returned by any query

After asel ect query, the following attributes contain references to arrays of field-specific information:
$st h- >{ NAVE}

Column names returned by the query
$st h- >{ NULLABLE}

Booleans indicating whether fields are nullable or not
$st h- >{ TYPE}

Field types
$st h- >{ PRECI SI ON}

Floating-point precision of field
$st h- >{ SCALE}

Field lengths

Let us use what we have learned this far and create a Perl replacement for the interactive SQL frontends
shipped with most relational databases (programs such assql pl us andi sql). Example 10.1 does this.

Example 10.1: sql.pl: Interactive SQL Frontend

use DBI;
$dbnane = ' DEMO732'; $user = 'scott';
$password = "tiger'; $dbd = 'COracle';

$dbh = DBI - >connect ($dbnane, $user, $passwor d, $dbd) | |

die "Error connecting $DBIl::errstr\n";;

while(1) {
print "SQ.> "; # Pronpt
$stnt = <STDI N>:
| ast unl ess defined($stnt);
last if ($stnmt =~ /Ms*exit/);
chonp ($stnt);
$stnt =~ s/;\s*3$//;

$sth = $dbh- >prepare($stnt);

if ($DBl::err) {
print STDERR "$DBI::errstr\n”;
next ;

}

$st h- >execut e() ;

if ($DBl::err) {
print STDERR "$DBI::errstr\n”;

next ;
}
if ($stm =~ /M s*select/i) {
ny $rl_nanes = $st h- >{ NAVE}; # ref. to array of col. nanes
while (@esults = $sth->fetchrow) { # retrieve results
if ($DBl::err) {
print STDERR $DBI::errstr,"\n";
| ast ;
}
foreach $field name (@rl _nanes) {
printf "%0s: %\n", $field _nane, shift @esults;
}
print "\n";
}
$st h->fi ni sh;
}

}
$dbh->commi t ;

The script prepares and executes al statements. If the statement isasel ect query, it fetches each row and
prints out each value annotated by the corresponding column name. Note that fetchrow returns a reference to
an array of valuesin ascalar context.

10.4.1.4 Transactions

When a database connection is created by using connect, DBI (or the database) automatically starts a
transaction. To end a transaction, you can use the commit or rollback methods on the database handle; a new
transaction isimmediately started implicitly. Distributed transactions, as defined by the XA standard, are not
supported.

10.4.1.5 Special functions

Driver-specific functions can be called by using the func method of the database handle. For example, the
mMSQL database driver provides an internal function called _ListFields, which returns information about
columnsin atable. It isinvoked as follows:

$ref = $dbh->func($table, ' ListFields');

Clearly, using func is a nonportable solution.
10.4.1.6 What DBI does not provide

It isinstructive to list common database tasks for which DBI does not currently provide an interface. Thisis
not meant as a slight on the DBI/DBD implementors; it isjust an indicator of the fact that databases vary
enormously in every aspect not touched by the standards committees.

Meta-data

DBI provides a $dbh->tables() method to fetch alist of all accessible table names. However, thereisno
function to return the names of columnsin a given table. Fortunately, there is asimple, portable
solution. Because a select query returns meta-information, we can use adummy query that we know
will definitely not fetch any rows but will execute successfully:

select * from $table where 1 = 0O;

Thewher e clauseis perfectly valid, but the condition will never succeed. The "*" makesit return all
the columns, which we can study using $sth's attributes, as explained earlier in the section Section

10.4.1.3, "Query meta-data."
Creating databases

Database APIs differ widely in how databases (not tables) are created; you have to use vendor-specific
APIsor toolsfor this. Once adatabase is set up, however, DBI can be used to create or drop tablesin
that database.

Inserts/creates from arrays

Bulk insertion or updates of data from arraysis not astandard SQL CLI[5] feature. If thereistruly a

large amount of data to be inserted, you are likely better off dumping the datainto afile and using the
appropriate bulk copy utility (such as Sybase's bep) to transfer it to the database at high speeds. (For
even better performance, drop the indexes before loading the data and recreate them later.)

[5] Call Leve Interface - another name for the standardized C API that all RDBMS
vendors are expected to support.

Stored procedures and triggers
Stored procedures and triggers are very different from vendor to vendor. All Perl database modules such

as oraperl and sybperl provide such accessto their native database facilities, but DBI does not attempt to
generalize any of them. Please refer to the module documentation for details or to the DBI web site [6]

for suggested approaches.
Uniform error numbers
DBI may be portable, but it doesn't provide a portable set of common error codes. For example, assume
that you want to create atable if it is not already present. Y ou might try something like this:
$dbh- >do("create table enptable (id char (15), nane char (40),

age integer)");

If $DBI::err contains an error code, you don't want to take it serioudly if it says something like
"table/view aready present." Unfortunately, if you are using Oracle, this error code is 955, and for
Sybase it is something entirely different. There goes portability out of the window!

10.4.2 Win32::0DBC

The Win32::0DBC moduleis available on the ActiveWare port of Microsoft Windows systems and resembles
the DBI approach. Consider the following script, which retrieves all records from an employee table:

use W n32:: ODBC,

$dbh = new W n32:: ODBC ($dbnane) ;

i f $dbh->Sql ("select * fromenptable") {
print "Error: ', $db->Error(), "\n";
$dbh- >d ose();
exit(1);

}

@anes = $dbh->Fi el dNanes();

whi | e ($dbh->FetchFrow()) {

Data returns the val ues
@al ues = $dbh->Data();
do sonething with @anes and @al ues.

}

The Sl statement is equivalent to DBI's do. ODBC does not have the concept of statement handles; instead,
the database handle is used to fetch the results of the last query.

Meta-datais available in the form of two methods: TablelList, which returns alist of table names, and
ColAttributes, which returns the specified attribute of each of the supplied field namesin the current record.

Previous: 10.3 Advanced Perl Next: 10.5
Record-Oriented Approach Programming Resources
10.3 Record-Oriented Book 10.5 Resources

Approach Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |
Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

&Advanced Perl Programming o

Previous: 10.4 Relational Cha. ter 10 Next: 11. Implementing
Databases Persistence Object Persistence

10.5 Resources

1. Transaction Processing: Concepts and Techniques. Jim Gray and Andreas Reuter. Morgan
Kaufman, 1992.

One of the most informative and readable computer texts around. If something about transactions
is not covered here, maybe it doesn't exist!

2. An Introduction to Database Systems, Volumes | and I1. C.J. Date. Addison-Wesley, 1994,
A thorough treatment of persistence issues and database technol ogy.

3. Berkeley DB library, at http://mongoose.bostic.com/db/.

4. DBI web site by Alligator Descartes: http://www.symbol stone.org/technol ogy/perl/DBI/.

Previous: 10.4 Relational Advanced Perl Next: 11. Implementing
Databases Programming Object Persistence
10.4 Relational Databases Book 11. Implementing Object
Index Persistence

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
http://mongoose.bostic.com/db/
http://www.symbolstone.org/technology/perl/DBI/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

P& Advanced Perl Programming e

Previous: 10.5 Chapter 11 Next: 11.2
Resources Design Notes

11. Implementing Object Persistence

Contents:
Adaptor: An Introduction

Design Notes
| mplementation
Resources

God gave us our memories so that we might have rosesin December.
- James Matthew Barrie

The Amazon is formed by the confluence of two rivers: the Solimdes, a yellowish, silt-laden river, and the
dramatic Rio Negro, ariver with jet-black water.[1] Twelve miles downstream of their meeting, the two

rivers defiantly retain their separate identities while sharing the same bed. Somehow, this seemsto bear a
strange resemblance to the subject at hand: object persistence.

[1] The color comes from suspended minerals and decomposed organic matter from marginal
swamps.

There are two important camps in the commercial computing world: purveyors of OO (language
designers, object evangelists) and persistence vendors (database and TP[2] monitor implementors). Like
the Solimdes and the Rio Negro, the two camps (and multiple camps within their ranks) have their own
agendas, even as they strive to merge at some point in the future.

[2] Transaction-processing.

The OO folks would like nothing more than commercial-grade persistence (in terms of performance,
stability, and scalability) and propose methods to retrofit various persistence stores onto an object model.
Some of their prominent efforts include the CORBA Persistence Services specification from the Object
Management Group, Sun's PJava (Persistent Java), and the OLE Persistence framework from Microsoft.
Meanwhile, the database folks are grafting OO features onto their offerings. RDBM S vendors such as
Informix and Oracle have announced object-relational databases (supporting abstract data types, not just
plain scalar data), and the various TP monitor products from Tandem, IBM, Tuxedo, and Encina are
sporting object-oriented interfaces. Thereis atiny object persistence camp, the Object Database
Management Group, comprising the OODB vendors, but their presence is quite negligible
(commercialy).

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

One of the hot topicsin all these groups is the subject of "orthogonal" persistence - the ability to make an
application or object persistent without embedding any, or much, persistence-specific code in the object.

Theideaisvery seductive: Design your object model, implement it in memory, and then add persistence
on the "side." Thisway, the objects don't have to be cluttered with the myriad details (and differences) of
databases, nor do they have to deal with filesystem errors, data formatting, and other problems.[3] Y ou

can think of it thisway: if you never embed user-interface-specific code inside an object, why would you
do so for persistence?

[3] For an excellent bibliography on the topic, please refer to the PJava design paper [9].

There have traditionally been two approaches to achieving the transparency mentioned above.

Thefirst isto take advantage of the systems side of things, such as the hardware, operating system, and
compiler. For example, object-oriented databases such as Object Store and the Texas Persistent Store (a
public-domain library) use the Unix system's mmap and npr ot ect callsto transparently move data from
memory to disk and back. Another interesting systems-oriented approach comes from a group at Bell
Labs, which has built alibrary that stores the state of an application by having it ssimply dump corein a
controlled fashion, thus faithfully rendering all memory-based data structures onto disk.[4] They have

augmented this facility with recovery and transactions and made this approach almost completely
transparent to the application.

[4] Note that Perl's dunp operator does produce a core file, but it also aborts the application,
a somewhat unpleasant feature.

The second approach for achieving transparent or orthogonal persistence isto supply application-level
tools and libraries, an approach that is considerably more portable than the systems approach. CASE
tools, for example, generate code to automate the task of sending objects to a persistent store (typically a
relational database), while libraries such as Microsoft Foundation Classes ask the objects to stream
themselves out to afile. In the latter case, the objects have to implement streaming methods. In either
case, the code to be written by hand isfairly minimal, so it is still areasonably transparent approach.

In this chapter, we will discuss a pilot project called Adaptor, a persistence framework for Perl objects
(and written in Perl, of course). Thisis an application-level approach and doesn't expect the objectsto
implement persistence-specific methods. Unlike typical CASE tooals, it does not generate any code files,
because Perl is a dynamic language.

The primary objective of the Adaptor project was to study orthogonal persistence; this, | thought, could be
done by "adapting" objects to specific types of persistent stores, using information completely outside the
objects; the implementation described in this chapter depends on configuration files to describe which
attributes map to which database columns, and how.

A secondary objective of this project was to study how you might code an application differently if you
could always take queries and transaction atomicity for granted; that is, even if you didn't have a database
at al, suppose you could ask some entity, "Give me all employees whose salary exceeds $100,000," and
the application would be persistence-ready from the very beginning. I'm of the firm belief that you cannot
simply drop persistence into an application; the object implementations look very different if they know
that there is some kind of persistence up ahead (even if they don't quite have any specifics about the type
of persistence). Thisis similar to the case of applications knowing that there may be a graphical user

interface in the future and that it may be event-driven; for example, you may not write errors out to
STDERR, and might make sure that no code gets indefinitely blocked on I/O. (We'll actually discuss
these issuesin Section 14.1, "Introduction to GUIs, Tk, and Perl/Tk".)

This chapter is probably more important for the issues it brings up than the specifics of the
implementation; however, an implementation is necessary to clearly understand the problem.

11.1 Adaptor: An Introduction

Adaptor isintended to be a group of modules that translate a uniform persistence interface to specific
types of persistent stores, as shown in Figure 11.1. This chapter describes the two that have been
implemented: Adaptor::File, capable of storing objectsin plain files, and Adaptor::DBI, which can store
them in relational databases. From here on, we will use the term "adaptor" to mean an object of any of
these modules.

Figure 11.1: Adaptor modules
npph::almn

.. Objects serialized fo &
B E byt streaim
IJIuer:ls 0 ;
I | hiects siotted into
C é.. . Adaptor-DBM .._..| DEM rows

”m |- LT Objects slotted into
« Adaptor:DBl |4 RDBME rows and columns

An adaptor represents atypical persistent store capable of accommodating a heterogeneous collection of
objects; an Adaptor::File object isawrapper over afile, and an Adaptor::DBI object isawrapper over a
database connection. All adaptors provide basic SQL querieq 5] and transactions.[6]

[5] Only SQL wher e clauses, not the entire select clause; joins are not supported either.
[6] Adaptor::File implements afairly limited model, but it does support the interface.

Before we use these modules, let us create afew test application objects. We use the ObjectTemplate
library discussed in Section 8.1, "Efficient Attribute Storage”, for this task:

use Qbj ect Tenpl at e;

package Enpl oyee;
@ SA = (' QbjectTenpl ate');
@ATTRI BUTES = gw _id nane age dept);

package Departnent;
@SA = (' Cbj ect Tenpl ate');
@ATTRI BUTES = gwW _i d nanme address);

= new Departnent (nanme => 'Materials Handling');
$empl = new Enpl oyee (nane => 'John', age => 23, dept => $dept);
= new Enpl oyee (nane => 'Larry', age => 45, dept => $dept);

We now have three objects, free of database-specific code. To stow these objects into a persistent store,
we start by creating an instance of afile or database adaptor as follows:

$db = Adaptor::File->new('test.dat', "enpfile.cfg');

The adaptor object, $db, is now associated with file test.dat and stores all objects given toiit in thisfile.
An object may have attributes that it doesn't wish to be made persistent: some attributes may be computed
(after_tax_salary), while others may refer to filehandles, sockets, or GUI widgets. For this reason, the
adaptor expects the devel oper to state, in a configuration file (empfile.cfg, in this example), which
attributes must be made persistent. empfile.cfg looks like this:

[Enpl oyee]

attributes = _id, nane, age

[Depart nent |

attributes = _id, nane, address

The adaptor can now be asked to store objectsinitsfile, test.dat, as follows:
$db- >st or e($dept) ;
$db- >st ore($enpl);
$db- >st or e($enp2) ;

Our "database" now has a number of objects, and we can query this database using the retrieve_where
method, like this:

@nps = $db->retrieve_where (' Enpl oyee', "age < 40 & & name != 'John'");
foreach $emp (@nps) {

$enp->print();
}

This method takes a class name and a query expression and returns object references of the specified class
that match this criteria.

The flush method is used to ensure that the data in memory is flushed out to disk:
$db->f | ush();

Y ou can store objects under the purview of transactions:

$db- >begi n_transaction();

$db- >st ore($enpl);

$db- >st or e($enp2) ;

$db->conmit _transaction(); # or rollback transaction

The file adaptor keeps track of all objects given to its store method, and it flushes them to disk on

commit_transaction. If, instead, you call rollback_transaction, it ssimply discardsitsinternal structures and
reloads the file, thus getting rid of all changes you may have made to the objects. Thisis by no means a
real transaction (it doesn't protect the data from system failures), but it does support atomic updates,
which can be used as an automatic undo facility.

To store these objects in a database instead of afile, all we need to do is make $db an instance of the
Adaptor::DBI class. Everything else remains unchanged, except that you can feel alot safer about your
data because you get real transactions.

The Adaptor::DBI constructor's arguments are database-specific:
$db = Adapt or:: DBl - >new $user, $password, ' Sybase', 'enpdb.cfg');

This method calls DBI::new with the first three parameters. The last parameter is, as before, a
configuration file, with some extra database-specific mapping information:

[Enpl oyee]

tabl e = enp

attributes = _id, nane, age

col ums = id, nane, age

[Depart nment |

tabl e = dept

attributes = _id, nane, address
col ums = id, nane, address

The attributes parameter specifiesthe list of attributes to be extracted out of an instance of agiven
module, and columns lists the corresponding column names in the database. Many adaptors can use the
same configuration file.

Previous: 10.5 Advanced Perl Next: 11.2
Resources Programming Design Notes
10.5 Resources Book 11.2 Design Notes
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 11.1 Adaptor: An _Cha ter 11 . Next: 11.3
Introduction I mplementing Object Persistence Implementation

11.2 Design Notes

The adaptor interface is undoubtedly simple; in this section, we will ask ourselves whether it istoo
simplistic. The Adaptor implementation is still at the level of a prototype but, as we shall see in the next
few pages, is significant enough to challenge us on all the issues that the people working with object
persistence are trying to grapple with.

11.2.1 Design Goals

| wanted the Adaptor API to be transparent ; that is, to be able to change the type of persistent store at
will. The ideawas to write small prototypes without messing around with databases and then migrate to a
database for the real thing by simply changing the adaptor. Further, | wanted to retain the flexibility of an
object living in multiple persistent stores concurrently, because that is the only way to copy objects from
one store to another.

| wanted to retain the best features of memory-based data structures (navigability, speed, ease of use) and
those of databases (transactions, concurrency, queries), where available. Finaly, | did not want the
adaptor to break object encapsulation, which means that the implementation could not assume anything
about how a modul e stores instance-specific information and, more subtly, how it constructs its objects.

11.2.2 Object Encapsulation

One important stricture that we easily forget is that an object is not just data. The three serialization
modules we saw in the last chapter - FreezeThaw, Data::Dumper, and Storable - all make this
assumption. They look past an object reference at the underlying structure and serialize whatever is
reachable from there. This assumes that all instance-specific data is reachable from the reference: afase
assumption. For example, an object reference of type ObjectTemplate is merely areferenceto a scalar.
By studying that reference, you have no idea of the object's attributes.

There is aworse problem with the above modules: when restoring objects from a byte stream, they
simply recreate the original data structure in memory and bless it under the target module, without the
modul€e's involvement. This has the possibility of missing afew key initializations.

To avoid these problems, Adaptor requires each class that wants persistence to support three methods: a
constructor, new(), and two attribute accessor methods, get_attributes() and set_attributes(), as follows:

1. new() : The module must provide this constructor (a"default constructor,” in C++ parlance),

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

capable of creating an object without any input parameters. The simplest default constructor for
creating hash-table-based objects looks like this:

sub new {
bless {}; # bless a hash-table reference and return it.
}

Of course, an even simpler aternative isto use ObjectTemplate, which provides an inheritable
default constructor. Asit happens, it also provides the other two methods listed next.

2. get _attributes(LI ST): Givenalist of attribute names, this method should return alist of
corresponding values. For now, the restriction is that these values must be scalars (a big limitation;
we will have more to say about this shortly). Because this method can be coded efficiently, it is
preferable to Adaptor calling individual accessor functions. For example, if you use a hash table
for your objects, you can implement this method as a hash dlice:

sub get _attributes {
ny $obj = shift; # @ now contains nanmes of attributes
@ $obj}{@}; # hash slice returns correspondi ng val ues

}
Adaptor uses the configuration file to specify the list of persistent attributes.

3. set_attributes(LI ST): Givenalist of attribute name and value pairs, this method updates
the appropriate attributes. Both this function and get_attributes above must allow an attribute
called _id, for reasonsto be outlined shortly.

These methods are perfectly general functions; they are not tied to persistence in any way. In contrast,
some libraries, especially in the C++ world (Microsoft Foundation Classes and the NIH library), require
the object to support a streaming interface. Since a streamed object is of no use to a database, | chose to
keep the attributes distinct. Besides, if we wanted to send these attributes to afile, we know we can
always rely on other modules to stream them, without having to ask the object to do it for us.

11.2.3 Object-Adaptor Protocol

When storing the object, the adaptor consults the configuration information for the list of persistent
attributes for that class. It givesthislist to get_attributes to retrieve the corresponding values and,
depending on the type of the adaptor, either serializesit to afile or updates the database with an SQL

query.

When retrieving an object from the database, the adaptor calls new() on the appropriate class and calls
set_attributes to prime the newly constructed object with data from the persistent store.

11.2.4 Multivalued Attributes and Database Mapping

Adaptor::DBI simply translates an object to asingle row in an RDBM S table. For this reason, it requires
each value returned by get_attributes to be a simple scalar (number or string, not areference). My hopeis
to eventually ease this restriction with the help of typemaps - pieces of code that can perform customized
trandations of datatypes.[7]

[7] In Section 18.1, "Writing an Extension: Overview", we will see how the concept of
typemaps is used in creating extensions.

Here are the currently available choices for how to handle an object with one or more non-simple-scalar
attributes:

1. Customized {get,set} attributes. Adaptor::DBI alows multivalued attributes in memory. All it
requiresisthat get_attributes trandate such attributes to a simple scalar in away that set_attributes
will be able to convert back to the original structure, when the datais read back from disk. It can
do this translation using FreezeThaw, Data::Dumper, sprintf, or pack; the last two are probably the
best, because you can control the length of the resulting scalar (it matters because database
columns have predeclared maximum sizes). The scalar can then be mapped to a database column
capable of accommodating a variable number of characters (such asVARCHAR) or a binary string
(such as Oracle's RAW or LONG RAW). Incidentally, there are still alot of problems associated
with BLOB (Binary Large OBjects) columns. some databases only alow one BLOB column, and
others sport an API that is completely different from that of the conventional data types.

2. Usefile storage : Adaptor::File doesn't care whether the attributes are references or ordinary
scalars, because it ssmply hands over the attributes to Storable. In other words, get/set_attributes
doesn't have to worry about multivalued attributes if you use Adaptor::File. Of course, the solution
won't work if you decide to use a database adaptor tomorrow. There is also the danger that you
might inadvertently store unrelated objects this way, just because they happen to be reachable from
some attribute.

3. Separate object class: If an attribute is areference to a sequence of homogenous records (an
employee has multiple records of educational qualifications, for example), that attribute can be
modeled as a separate class that getsits own table. More on this when we study object associations
later in this section.

Since { get,set} _attributes are general methods, how do they know whether or not to serialize complex
attributes? Well, they don't. If you want to make this distinction, you could have adifferent set of
attribute names for persistence purposes (db_address, for example) and have these methods recognize
these specia cases. This strategy conflicts with our original intention of not embedding db-specific code
within an object. Oh, well. As Jiri Soukup notes in his book Taming C++: Pattern Classes and
Persistence for Large Projects[11], "It is popular to show elegant C++ programs, and eleganceis not a

feature of programs providing persistent data.”

11.2.5 Inheritance and Database Mapping

The common strategy for mapping an inheritance relationship to a database is to have the superclass and
derived class each map to its own table. The table representing the derived class contains all the attributes
of all its superclasses; in other words, the inheritance hierarchy is flattened. Another strategy - less
commonly used - isto create one table with the union of all attributes of an inheritance hierarchy and
have all objects of all classesin that hierarchy use that one table. Y ou can have an extra column identify
the specific class of object. Adaptor does not have a problem with either strategy, because it puts the
burden of interpreting the attribute names and values on the get/set methods.

11.2.6 Object Identity

One key notion in OO circlesisthat an object has properties separate from itsidentity. Two objects may
have identical properties but still occupy different address spaces; they will be considered equivalent, not
identical.

In memory, an object's address provides its identity, and in a database, the primary key does the same.
Adaptor requires each object to support an attribute called _id, so afuture implementation can
automatically convert relationship attributes (those that point to other objects) to the _ids of the objects
on the other end. For example, if you ask an Employee object for its dept attribute, it will ask the
department object it is pointing to for its _id and return that. Note that the object doesn't necessarily have
to alocate memory for its_id; the get/set_attributes methods can compute it on the fly based on some
other attribute. For example, an employee object can return the Social Security number or employee
number when asked for its _id.

When store() is called, Adaptor supplies the object with a unique identity, if it doesn't already have one.
The identity cannot be asimple global counter, because when the program restarts, it will get reset to 0,
and the adaptor will start handing out numbers that might have been given to persistent objectsin an
earlier incarnation. Storing the counter's last valuein afile is slow because you have to make sure you
flush this value to the file every single time you store an object. (Y ou never know when the program
might crash.) The current implementation experiments with an alternate approach. When the program
starts, it notes down the time (using time, which returns the seconds elapsed since January 1, 1970), and
appendsto it afive-digit counter; the combined number can be used as an object identifier. When the
counter overflows, the timeis again noted. If the program crashes and comes back again, the identifier is
unigue, unlessit crashes and comes back up within one second. The trouble with this scheme isthat it
generates long identifiers (eight bytes, using pack()). It also does not work in a distributed setup, because
thereisthe real possibility that two programs call time() within the same second, thus generating the
same identifier. To avoid this, you have to create an even bigger identifier that incorporates the |P
address of the machine.

11.2.7 Object Associations

An attribute that is a reference to some other object can be translated to the other object's _id value (a
foreign key, in database-speak) when storing it in adatabase or file. As currently implemented, Adaptor
does not automatically do this trandation, because | don't have a good solution to handle the following
problem.

Assume that an employee object's dept attribute points to a department object. When storing dept, we can
simply store the department object's _id. No problems so far. Now, when we retrieve the employee
record back from disk, what do we do with the encoded dept attribute? Do we immediately create a
department object so that the in-memory dept attribute can refer to it? If so, what data should it contain?
Should we read the database to correctly popul ate the department object? That has the problem that an
INnnocuous query on an employee ends up loading all kinds of objects from the database. Alternatively,
should we keep the department in an uninitialized state, and only populate it the first timeit is used?
Further, we must ensure that when the department datais read from disk, it doesn't create a fresh new
object, because one with the same identity already exists in memory. We will have more to say on this
subject in the following section. For now, it eases my life alittle to leave it to the objects to implement

foreign key attributes.

Now let uslook at how associations of varying cardinalities can be implemented in a database regardless
of how they appear in memory.

One-to-many associations such as a department containing alist of employees can be implemented as a
foreign-key attribute on the many side. That is, in the database, the employee object points back to its
containing department object, instead of the department maintaining a multivalued attribute.

Many-to-many associations can be modeled as a separate class; this way, each association becomes a
single record in the database. For example, an employee can work on many projects; a project has many
employees working on it; we can model this relationship in a separate class called ProjectEmployee. This
scheme has the additional advantage that the relationships can be queried and updated, independent of
the objects they are supposed to connect. Associations with cardinalities higher than two (ternary
associations, for example) map to distinct tables. Rumbaugh et al. [6] give an excellent treatment of

database-mapping approaches.

All these strategies (or limitations) will change dramatically once object-relational extensions become
widely available.

11.2.8 Uniqueness of Objects in Memory

Close on the heels of object identity issues comes a very thorny problem. Consider the following query:
@nps = $db->retrieve where (' Enployee', 'age < 40');

Thisreturns alist of object references that match the query criteria. Now if you re-issue this query, it is
not too much to expect it to return an identical list of objects (the same object references, that is). This
means that Adaptor has to keep an in-memory cache of objects that have been retrieved from disk in
previous queries, so that if a database row isreread, the corresponding object is reused. The problem with
this schemeisthat if this cacheisin script space, it increments the reference count of all its constituent
objects, which means that once an object isin this cache, it will never be freed, evenif no oneelseis
interested in it. In other words, the cache can never shrink, and in the worst case, it has a copy of all the
objects present in the database.

One solution to this problem is to implement the cache in C and not update the reference count at all.[8]

If al persistent objects were to inherit from a module called Persistent, say, then this module's DESTROY
method can be used to remove unwanted entries from this cache.

[8] You will know how to do this once you have read Chapter 20, Perl Internals.

The Adaptor::DBI module, as currently implemented, takes the easy way out and creates a fresh set of
objects for each query, leaving it to Perl to automatically deall ocate them when no other object refersto
them. This means that the applications developer has to be careful when modifying an object returned
from aquery. Thisisaclumsy solution, | know. In addition, there is currently no provision for cache
Inconsistency - where the cache is out-of-date if someone else modifies the database.

The Adaptor::File module does not have this problem because it maintains alist of all objects givento its
store() method (for reasons to be explained in the next section); hence successive identical queries return

identical lists.

11.2.9 Queries

One big reason why object-oriented databases haven't caught on is the lack of a query language (or at
least a standard query language). When you have a million objectsin the database, it would be aterrible
thing to load every single object in memory to see whether it matches your criteria; thisisajob best left
to the database. Adaptor::DBI simply translates queries to equivalent SQL queries, while Adaptor::File
implements a simple-minded scheme for file based objects: it converts the query expression to an

eval able Perl expression and cycles through al objects, matching them against the query specification.

11.2.10 Schema Evolution

Let us say you have sent your objects data to afile, and tomorrow, some more attributes are added to the
object implementation. The schemais said to have evolved. The framework has to be able to reconcile
old data with newer object implementations.

Previous: 11.1 Adaptor: An Advanced Perl Next: 11.3
Introduction Programming Implementation
11.1 Adaptor: An Introduction Book 11.3 Implementation
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

P& Advanced Perl Programming

Previous: 11.2 _Cha ter 11 _ Next: 11.4
Design Notes I mplementing Object Persistence Resources

11.3 Implementation

This section explains the implementation of Adaptor::DBI and Adaptor::File. We will cover only the key
procedures that perform query processing and file or database I/O. Pay as much attention to the design
gotchas and unimplemented features as you do to the code.

11.3.1 Adaptor::File

An Adaptor::File instance represents all objects stored in one file. When this adaptor is created (using
new), it reads the entire file and tranglates the data to in-memory objects. Slurping the entire file into
memory avoids the problem of having to implement fancy on-disk schemes for random access to
variable-length data; after all, that isthe job of DBM and database implementations. For this reason, this
approach is not recommended for large numbers of objects (over 1,000, to pick a number).

The file adaptor has an attribute called all _instances, a hash table of all objects given to its store method
(and indexed by their _id), as shown in Figure 11.2.

Figure 11.2: Structure of file adaptor

File Adaptor

file gmp. dat Objects

all_instances ——— =

11.3.1.1 Storing objects

L et us examine the two methods for storing objectsto files: store() and flush.

store allocates a new unique identifier for the object (if necessary) and ssmply pegs the object onto the

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

all_instances hash. It doesn't send the data to disk.

sub store { # adapt or - >st or e($obj)
(@ == 2) || die 'Usage adaptor->store ($obj to store)';
ny ($this, $obj to store) = @; # $this is "all _instances’
ny ($id) = $obj to store->get _attributes(’' _id);
ny $all _instances = $this->{all _instances};
if (!defined ($id)) {
Haven't seen this object before. Generate an id (doesn't
matter how this id is generated)
$id = $this-> get _next _id();
$obj to store->set _attributes(' _id => $id);

}
$al | _instances->{$id} = $obj to store;
$i d; # Return the object identifier

}

Note that the object istold about its new identifier (using set_attributes), so if it isgiven again to store, a
new identifier is not allocated.

Therea work of storing the datain the fileis done by flush:

sub flush { # adapt or->fl ush();
ny $this = $ [0];
my $all _instances = $this->{"all _instances'};
ny $file = $this->{'file'};
return unl ess defined $file;
open (F, ">$file") || die "Error opening $file: $'\n";
ny ($id, $obj);
while (($id, $obj) = each %all instances) {
ny $class = ref ($obj);
ny @ttrs =
$obj ->get _attributes(@$thi s->get_attrs_for_class($class)});
Storable::store_fd([$class, $id, @ttrs], *F);
}
cl ose(F);

}

flush ssimply walks the al_instances hash and, for each user-defined object, callsits get_attributes
method. get_attrs for_classreturnsalist of persistent attributes for each class (as an array reference) and
isloaded from the configuration file supplied to the adaptor's constructor.

The attribute values, together with the class and instance identifier, are packaged in an anonymous array
before being given to Storable::store fd.

Thisimplementation is unsatisfactorily slow (a second or two to store 1,000 objects), largely because so
many lookups and accessor functions are called per object. At this stage of prototyping, | do not consider
it abigissue.

11.3.1.2 Retrieving objects

Theload_all method, called from new, simply does the reverse of flush. It reads the file, recreates each
object, and insertsit in the all_instances attribute as shown:

sub load all { # $all _instances = load all ($file);
ny $file = shift;
return undef unless -e $file;
open(F, $file) || croak "Unable to |oad $file: $!";
G obal information first
ny ($class, $id, $obj, $rh _attr _nanes, @ttrs, $all _instances);

eval {
while (1) {
($class, $id, @ttrs) = @Storable::retrieve fd(*F)};
$obj = $all i nstances->{$id};
$obj = $class->new() unl ess defined($obj);
$rh_attr _nanmes = $this->get _attrs for _class($cl ass);
$obj - >set _attri butes(
"id" => $id,
map {$rh_attr_nanes->[$] => Pattrs[$_]}
(0 .. S$#attrs)
);
$al | _i nstances->{$i d} = $obj;
}
1
$al | i nstances;

}

load_all calls Storable'sretrieve fd function, calls the constructor of the appropriate class (new) to
construct an uninitialized object of that class, and invokes set_attributes on this newly created object. The
map statement constructs alist of attribute name-value pairs. When Storable::retrieve _fd has no more
data, it throws an exception (using die). It breaks the infinite loop but is trapped by the eval.

11.3.1.3 Query processing

The retrieve_where method accepts a class name and a query expression, which is a subset of the SQL
syntax. The query is not guaranteed to work for SQL keywords such as LIKE, BETWEEN, and IN;
however, it will work for the database adaptor because it is sent untranslated to the database.

Writing a query processor for parsing and executing arbitrary query expressionsis not atrivial task. But
we know that Perl itself deals with expression evaluation, so if we can convert a query to a Perl
expression, we can simply use eval to do the dirty work for us, as we saw in Chapter 5, Eval.

retrieve_where hence invokes parse_query to convert the expression to an evalable Perl Boolean
expression and dynamically creates a piece of code incorporating this expression to traverse all the objects
in the all_instances attribute. That is, a call such as:

retrieve_where (' Enpl oyee', 'age < 45 && nane != 'John")

Istrandated to the following piece of Perl code, and evaled:

ny $dumy_key; ny $obj ;

whil e (($dunmy_key, $obj) = each %ball instances) {
next unl ess ref($obj) eq "Enpl oyee";
ny ($age, $nane) = $obj->get _attributes(qgw age nane));
push (@etval, $obj) if $age < 45 && $nanme ne ' John';

}

The Boolean expression in the push statement and the list of attribute names are both returned by
parse_guery, discussed later. retrieve_where isimplemented like this;

sub retrieve_where {
ny ($this, $class, $query) = @;
ny $all _instances = $$this;
blank queries result in a list of all objects
return $this->retrieve_ all () if ($query '~ /\S/);

ny ($bool ean_expression, @ttrs) = parse_query($query);

@ttrs contains the attribute nanes used in the query

Construct a statenent to fetch the required attri butes,

of the form

ny ($nane, $age) = $obj->get attributes(gw nane age));

ny $fetch_stmt = "nmy (" . join(",",mp{'$. $} @ttrs) . ") ="
"\ $obj ->get _attributes(gm @ttrs))";

ny (@etval);

ny $eval _str = qqf
ny \ $dunmy_key; ny \$obj;
while ((\$dumry_key, \$obj) = each \% $all instances) {
next unless ref(\$obj) eq "$cl ass”;
$fetch_stnt;
push (\@etval, \$obj) if ($bool ean_expression);

} }
p,ri nt STDERR "EVAL:\n\t$eval str\n" if $debugging ;
eval ($eval str);

if ($@ {
print STDERR "Il -fornmed query:\n\t$query\n";
print STDERR $@if $debuggi ng;

}

@ etval;

}

Instead of constructing alist of objectsfor every query, retrieve_where should optionally take a callback
reference as the third parameter, which can be called for every object that matches this query.

Now let ustake alook at parse query, which, as was mentioned earlier, trandates the SQL wher e clause
to aPerl expression. The input query expression is essentially a series of query terms of the form variable
op value, strung together with logical operators (& & and |[|). The rules of the transformation are as
follows:

1.

If query isblank, it should evaluate to TRUE.

2. Escaped quotes should be preserved. That is, a string such as "foo\'bar" should not cause confusion.
3. "="
4. variable is mapped to $variable. When processing this step, parse_query also keeps a note of the

attribute names encountered. Thislist isreturned to its calling procedure, retrieve_where.

If value is a quoted string, then op gets mapped to the appropriate string comparison operator (see
%string_op below).

parse_guery isimplemented like this:

my %string_op

(# Map from any operator to corresponding string op

== => 'eq',
' <! = 'It",
<=t = 'le',
i => ‘gt’,
> => ! ge' ,
1= => T'ne',
);
ny $ANY OP = '<=|>=| <| >| ! =| =="; # Any conparison oper at or
sub parse _query {
ny ($query) = @;
Rule 1.
return 1 if ($query =~ /MN\s*$/);
First squirrel away all instances of escaped quotes - Rule 2.

This way it doesn't get in the way when we are processing
rule 5.
$query =~ s/\\[# Hopefully \200 and \201 aren't being

$query =~ s/\\["]/\201/g; # being used.

Rule 3 - Replace all '='" by '==

$query =~ s/ ([N ><=])=/$1 == /q;

my %attrs;

Rule 4 - extract fields, and replace var with $var
$query =~

s/ (\w+)\s*($ANY _OP)/ $attrs{$1} ++, "\3$$1 $2"/ eq;
Rule 5 - replace conpari son operators before quoted strings
with string conparison opersators
$query =~
s{
(SANY_OP) (?# Any conpari son operator)
\s* (?# followed by zero or nore spaces,)

['" (?# then by a quoted string)
H
$string_op{$1} . " \'" . $2 . "\"'
} goxse; # gl obal, conpil e-once, extended,
treat as single |line, eval
Restore all escaped quote characters
$query =~ s/\200/\\'/g;
$query =~ s/\201/\\"/g;
($query, keys %attrs); # Return nodified query, and field |ist
}

11.3.2 Adaptor::DBI

Adaptor::DBI is considerably simpler than Adaptor::File. It does not maintain atable of objectsin
memory; when asked to store an object, it sends it to the database, and when asked to retrieve one or more
objects, it smply passes the request along to the database. This schemeis also its biggest failing, as was
pointed out earlier in the section "Uniqueness of Objectsin Memory."

The new method simply opens a DBI connection, aswasillustrated in Chapter 10, Persistence, and
creates an adaptor object with the connection handle as its sole attribute. No rocket science here.

11.3.2.1 Storing objects

The adaptor's store method sends an object to the database:

sub store { # adapt or - >st or e($obj)
(@ == 2) || croak 'Usage adaptor->store ($obj)";
ny $sql _cnd,

ny ($this, $obj) = @;
ny $class = ref ($obj);
ny $rh_class_info = $map_i nf o{ $cl ass};
ny $table = $rh_class_info->{"table"};
croak "No mappi ng defined for package $cl ass”
unl ess defi ned($tabl e);
nmy $rl _attr _nanes = $rh _class _info->{"attributes"};
ny ($id) = $obj->get _attributes(' _id);
ny ($attr);
if (!defined ($id)) {
$id = $this-> get _next id($table);
$obj - >set _attributes(' _id => $id);
Generate a statenent |ike:

i nsert into Enployee (_id, nane, age)
val ues (100, "jason", 33)
$sgl _cnd = "insert into $table (";

ny ($col nane, $type, S$attr);
ny (@ttrs) = $obj->get _attributes(@rl _attr_nanes);
$sql _cmd .= join(",",@rl _attr_nanes) . ") values (";

nmy $val _cmd = "";
foreach $attr (@ttrs) {

my $quote = (Sattr =~ /\D)
? mern

$val _cnd .= "${quote}${attr}${quote},";
}
chop ($val cnd);
$sql _cmd .= $val _cnd . ")" ;
} else {
bject already exists in the database. Update it
with a statenent |ike:
updat e Enpl oyee set nane = "jason", age = 33
where id = 100;

$sqgl _cnd = "update $table set ";
ny ($name, $quote);
ny @ttrs = $obj->get_attributes(@rl _attr_nanes);
foreach $name (@rl _attr_names) {
if ($name eq ' _id) {
shift @ttrs; # Can't update primary row
next ;
}
$attr = shift @ttrs;
$quote = (Sattr =~ /\D/)

? mrn
$sql _cnd . = "$néma=${quot e}${attr}${quote},";
}
chop($sql _cnd); # renove trailing comm
$sqgl _cnd .= " where _id = $id";

}

Sgl query constructed. Gve it to the appropriate db connection
to execute.
$t hi s->{dbconn}->do($sql _cnd); #
die "DBlI Error: $DBl::errstr” if $DBl::err;
$i d;
}

The global variable %omap_info stores database configuration information for every package mentioned in
the configuration file: the name of the corresponding database table, the list of persistent attributes, and
the corresponding database column names. If the object already has an attribute called _id, the
corresponding database row is updated; otherwise, a new identifier is allocated and a new database row is
inserted. All string valued attributes are automatically quoted.

Clearly, we can do much better than this implementation. If we create 1000 objects, the preceding code
creates and evaluates 1000 fresh SQL insert statements. A better approach isto prepare

I nsert/del et e/lupdat e/f et ch statements for each class the first time an object of that classis
encountered, like this:

$i nsert{' Enpl oyee' }

$dbh- >prepare (
"insert into Enployee (_id, nane, age)
values (? , ? , ?)");

$del et e{"' Enpl oyee'} $dbh- >prepare (
"del ete from Enpl oyee where _id = ?"
$dbh- >prepare (
"updat e Enpl oyee (nane=?, age=?");
$dbh- >prepare (
"sel ect nanme, age, from Enpl oyee
where id = ?");

$updat e{"' Enpl oyee' }

$fetch {' Enpl oyee'}

store can simply execute these statements with the appropriate statements. An even faster way isto take
advantage of stored procedures. Asit stands, the current implementation works reasonably well for
prototypes.

Incidentally, Adaptor::DBI's flush() method does not do anything, because store() doesn't keep any object
In memory.

11.3.2.2 Queries

retrieve_where creates a select query from the mapping information for that class. As was pointed out
earlier, the same query executed twice will get you two different sets of objects, whose data are duplicates
of the other:

sub retrieve where {
nmy ($this, $class, $query) = @;
ny $where;
$where = ($Squery =~ /\S/)
? "where $query"”

ny $rh_class_info = $map_i nf o{ $cl ass};
ny $table = $rh_class_info->{"table"};
croak "No mappi ng defined for package $cl ass”
unl ess defi ned($t abl e);
my $rl_attr_nanmes = $rh_class_info->{"attributes"};
my $rl_col _nanes = $rh_class_info->{"colums"};

ny $sql _cnd = "sel ect "
join(",", @%$rl_col _nanes})

. " from $tabl e $where";
print $sqgl _cnd if $debuggi ng;
ny $rl_rows = $t hi s->{d}->do($sql _cnd);
ny @ etval;
ny $size = @rl _attr_names - 1;

if ($rl _rows && @rl _rows) {

my $i; nmy $rl_row
foreach $rl _row (@rl _rows) {
my $obj = $cl ass->new,
$obj - >set _attributes(map {
$rl_attr_nanes->[$_] => $rl _row>[$_]
}(0 .. $size));
push (@etval, $obj);
}
}
@ etval ;
}

The preceding set_attributes statement perhaps requires some explanation. The objective of this statement
Isto set all the attributes returned by the database. Since set_attributes requires alist of name-value pairs,
we use the map built-in function to return alist. This function takes two parameters - a block of code and
alist - and, for each element of the list, evaluates the block in alist context. The function returns alist
containing the result executing that block across all iterations.

At this point, if your enthusiasm continues unabated, you may find it worthwhile to go back and
understand how Adaptor handles the issues raised in the "Design Notes' section.

Previous: 11.2 Advanced Perl Next: 11.4
Design Notes Programming Resources
11.2 Design Notes Book 11.4 Resources
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 11.3 _Cha ter 11 . Next: 12. Networking with
Implementation I mplementing Object Persistence Sockets

11.4 Resources

The following books and web sites have good treatments of object persistence:

1.

Object-Oriented Modeling and Design. James Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, and William Lorensen. Prentice-Hall, 1991.

An excellent treatment of implementing OO modelsin relational databases.
Object Persistence. Roger Sessions. Prentice Hall, 1996.

A discussion of the CORBA Persistence architecture. Interesting as much for the discussion of
politics behind such committees, as the technical material.

CORBA Persistence Service Specification, Object Management Group (OMG), at
http://www.omg.org.

PJava: Orthogonal Persistence for Java, at http://www.dcs.gla.ac.uk/pjaval. Look especially for the

design paper entitled "Design Issues for Persistent Java: a Type-Safe, Object-Oriented,
Orthogonally Persistent System."

Object Database Management Group (ODMG): http://www.odmg.org.

Taming C++: Pattern Classes and Persistence for Large Projects. Jiri Soukup. Addison-Wesley,
1994,

"Equal Rightsfor Functional Objects, or, The More Things Change, The More They Arethe
Same." Henry Baker.

This paper shows you that there's much more to object identity than meets the eye. Download from
ftp://ftp.netcom.com/pub/hb/hbaker/Obj ectl dentity.html.

Previous: 11.3 Advanced Perl Next: 12. Networking with
Implementation Programming Sockets
11.3 Implementation Book 12. Networking with Sockets
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm
http://www.omg.org/
http://www.dcs.gla.ac.uk/pjava/
http://www.odmg.org/
ftp://ftp.netcom.com/pub/hb/hbaker/ObjectIdentity.html
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 11.4 Chapter 12 Next: 12.2 Socket APl and
Resources |O::Socket

12. Networking with Sockets

Contents:
Networking Primer

Socket APl and 10::Socket
Handling Multiple Clients
Real-World Servers

|O Objects and Filehandles
Prebuilt Client Modules
Resources

| plugged my phone in where the blender used to be. | called someone. They went " Aaaaahhh..."
- Steven Wright

Programs can communicate with each other in a variety of ways. They can use files, anonymous/named
pipes, System V interprocess messaging primitives, BSD sockets, and TLI (Transport Layer Interface).
Socket and TLI communications come under the purview of "networking," a step up from the other IPC
(interprocess communication) mechanisms, because they don't constrain the communicating processes to
be on the same machine. This chapter provides a primer on socket communications and builds simple
client/server configurations using Graham Barr's 10 library (part of the standard Per| distribution). This
knowledge is put to use in the next chapter, where we build an asynchronous message passing module,
and another for doing remote procedure calls (RPC).

Networking is the second of four important technol ogies that we discuss in this book; the others are user
Interfaces, persistence, and code generation. This chapter, like the other three, is as much about the
technology as it is about Perl's support for it. Andrew Tanenbaum'’s textbook on computer networks [5] is
awonderful introduction to computer networking. (I also rate it as one of the best computer books ever
written.) This chapter provides just enough introduction to networks to work with Perl, sockets, and
TCP/IP.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

12.1 Networking Primer

Mail (paper and electronic) and telephones are two distinct forms of communication. A telephone
conversation is connection-oriented, because the caller and the called "own" the line (have a continuous
link) until the end of the conversation. Connection-oriented communication guarantees message delivery,
preserves the order in which messages are sent, and allows a stream of datato be sent. Mail, in contrast,
Is a connectionless mode of transfer, which transports information in packets (or datagrams) and gives
no guarantees about message delivery and the order in which the packets are received. It has a higher
overhead because each packet identifies its sender and the intended receiver; in contrast, a
connection-oriented conversation proceeds without further ado, once the parties have identified
themselves. Computer networks offer you a similar choice of connection versus connectionless mode of
datatransfer. It must be mentioned that there are connectionless protocols such as reliable UDP that do
offer guaranteed delivery and sequence integrity.

The networking world assigns each computer an internet address, also called an | P address (short for
Internet Protocol), a sequence of four bytes typically written in adot sequence, like this: 192.23.34.1.
(Thiswill change with IPv6, because the world is fast running out of four-byte IP addresses.) Just as you
have convenient phone aliases such as 1-800-FL OWERS, computers are often given unique aliases, such
as www.yahoo.com. Now, many programs can run on one machine, and it is not enough to deliver a
message to the machine: it hasto be handed over to the appropriate application program running on that
machine. A program can ask for one or more ports to be opened, the equivalent of a private mailbox or
telephone extension. To send a message to a program, you need its full address: its machine name and the
port on which it is listening. Standard applications such as ftp, telnet, and mail actually comein pairs; for
example, the ftp program you use talks to a counterpart server program called ftpd (ftp daemon) on the
remote computer. Such server programs listen on standard port numbers; when you type
www.yahoo.com on your web browser, the browser automatically connects to port 80 on that machine,
where it assumes the corresponding web server to be listening. Port numbers 1-1024 are reserved for
standard, well-known Internet applications. Many platforms reserve the name "localhost” (and the
address 127.0.0.1) to mean the machine on which the program is running.

Once assigned a socket, your program has a choice of using a connection-oriented protocol called
TCP/IP (Transport Control Protocol/IP) or a connectionless one, UDP/IP (User Datagram Protocol).
Clearly, sender and receiver must use the same protocol. The TCP/IP model is usually preferred over
UDP because it provides for data sequencing, end-to-end reliability (checksums, positive
acknowledgments, time-outs), and end-to-end flow control (if the sender is sending data faster than the
receiver can handleit, it will block the sender when the receiver's buffers are full). If the communications
medium is very good, such asaLAN, UDP may perform much better because it doesn't spend time
accounting for the worst case. In a production system, however, you can never really take a chance, so
we will stick to TCP in this chapter.

The socket abstraction and APl were introduced in BSD 4.2 to provide a uniform interface over different
types of protocols (there are others besides TCP and UDP), and, depending on the protocol used, a socket
behaves like either atelephone recelver or amailbox. In either case, it takes one socket on each side to
make a conversation (which is why sockets are also known as communications end-points). The socket
API allows you to specify the domain of the communicating entities - the "Unix domain™ is used for
processes on the same machine, and the "Internet domain” is used for processes on different machines.

http://www.yahoo.com/
http://www.yahoo.com/

This chapter examines the more generally accepted (and useful) "Internet domain™ option.

TLI (Transport Layer Interface), another API introduced in System V (Release 3.0, 1986), provides a
very similar-looking alternative to the socket abstraction, but becauseit is not as widely used as the BSD
socket interface, we will not discussit in this chapter.

Previous: 11.4 Advanced Perl Next: 12.2 Socket API and

Resources Programming 10::Socket
11.4 Resources Book 12.2 Socket APl and
Index O::Socket

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

MAdvanced Perl Programming

Previous: 12.1 Networking Chapter 12 Next: 12.3 Handling Multiple
Primer Networking with Sockets Clients

12.2 Socket APl and 10::Socket

Perl provides native support for sockets and a module called Socket to smooth some of the rough edges
associated with the native socket call. It turns out that there are still alarge number of options to deal with, and
since most applications use afairly standard set of options, we instead use atruly convenient module called
1O::Socket, which is built on Socket.

This section uses this module to build a sending and receiving program.

12.2.1 Receiver

Just as you would ask the phone company for atelephone number and a physical handset, both sender and
receiver ask the module to create sockets. Sockets, like telephones, are bidirectional endpoints. once a
connection is established, either side can send and receive data, aslong as there is an understanding between
the two programs about the direction of communication.

Because only the receiving side needs to have awell-known address, we create a receiving socket as follows:

use |1 G : Socket;
$sock = new I O : Socket:: I NET (Local Host => ' gol dengate',
Local Port => 1200,

Proto = 'tcp',
Li sten => 5,
Reuse => 1,

)

die "Could not connect: $!" unless $sock;

The 10::Socket::INET module provides a nice wrapper for Internet domain sockets. The LocalHost and

L ocalPort parameters specify the host and port on which this socket is going to listen. The number 1200 is
chosen arbitrarily, but you must make sure that it doesn't conflict with the port number used by some other
application on that machine (otherwise, you get an error saying, "Address already in use"). We set the Reuse
option, because if this program ends without properly closing the socket and is subsequently restarted, it will
complain about the socket being in use. The Listen option specifies the maximum number of callersthat can
be put on hold while they are dialing this number, figuratively speaking.

Once created, the socket isall set to receive incoming calls. The accept() method listens on the given port until
another program attempts to connect to it (we'll shortly see the calling side to see how thisis done); at this
point, accept returns a new socket:

$new _sock = $sock->accept ();

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

Thisisanalogous to a switchboard operator indicating a different handset for you to converse on, while he
goes back to waiting for the main number to ring. Messages sent by the client can now be obtained by reading
from $new_sock. Y ou can use this socket as afilehandle and call any of the input operators, <>, read, or
sysread, like this:

$buf = <$new sock>;
or,
$bytes read = sysread ($new sock, $buf, $num bytes to read);

Both return undef on an end of file condition.

The following code summarizes the above discussion. It binds a socket to an address and waits for an
incoming connection request. When that happens, it reads the new socket created until the other end closesits
end of the connection. At this point, the <> operator returns undef (sysread returns O, the number of bytes
read).
use |1 G : Socket;
$sock = new | O : Socket:: I NET (Local Host => ' gol dengate',

Local Port => 1200,

Proto => "tcp',
Li sten => b5,
Reuse =1

);
di e "Socket could not be created. Reason: $!" unless $sock;
whi l e ($new _sock = $sock->accept()) {
whi |l e (defined ($buf = <$new sock>)) {
print $buf;
}
}

cl ose ($sock);

Y ou can also use $new_sock->get_ling() instead of <$new_sock>.

12.2.2 Sender

The calling side is even simpler. It creates a socket giving it the receiver's address and, if successful, starts
sending datato it:

use | O : Socket ;
$sock = new | O : Socket:: I NET (Peer Addr => ' gol dengate',
Peer Port => 1200,
Proto => 'tcp',
);
di e "Socket could not be created. Reason: $!'\n" unl ess $sock;
foreach (1 .. 10) {
print $sock "Msg $: How are you?\n";
}

cl ose ($sock);

Notice how the parametersto the 10::Socket::INET::new method define whether it is a server- or client-side
socket. The Listen and Reuse parameters are ignored for sending ports.

12.2.3 Bidirectional Communications

Y ou can read and write from sockets, but as the preceding scripts show, two communicating processes must
have a common understanding of who is doing the talking and who the listening. The programs can deadlock
if both are too polite and start reading their respective sockets (sysread and other input operators wait until
they are able to read the requisite amount of data). They can aso deadlock if both are too impolite and start
speaking into the phone at the same time, figuratively speaking (syswrite blocks once the buffersfill up, and
because the other end is not listening, deadlock is alikely possibility). In atypical client/server setup, this
protocol iswell established. The client program initiates the conversation, makes a request, and waits for an
answer. The typical server never attempts to connect to a client program or initiate requests; it listens and
responds. Deadl ocks thus happen only in peer-peer conversations.

Previous: 12.1 Networking Advanced Perl Next: 12.3 Handling Multiple
Primer Programming Clients
12.1 Networking Primer Book 12.3 Handling Multiple
Index Clients

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |
Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

P& Advanced Perl Programming e

Previous: 12.2 Socket API Cha te_r 12 Next: 12.4 Real-World
and 10::Socket Networ king with Sockets Servers

12.3 Handling Multiple Clients

The fact that accept, read, and sysread are blocking calls has more implications for the server.[1] A
single-threaded process can invoke only one of these calls at atime, which isfineif there aren't too many
clients clamoring for the server's attention and if no client ties the server up for too long atime. The redl
world is ugly, and you have to resolve thisissue. There are three ways of doing this:

1. Create multiple threads of control (processes or threads) and have each call block in its own thread.

2. Make these calls only when you are absolutely sure they won't block. Well call thisthe "select”
approach, because we use the select call to ensure that a socket has something to offer.

3. Make these calls nonblocking using fentl or ioctl.
[1] accept blocks until someone tries to connect.

Aswe shall see, option 2 should be used in conjunction with option 3 in production systems. In all cases,
the client code remains unaffected while we try out these options.

Incidentally, there is a fourth option. Some systems support an asynchronous 1/O notification: a SIGIO
signal is sent to the process if a specified socket isready to do 1/0. We will not pay attention to this
approach because there is no way for asignal handler to know which socket is ready for reading or
writing.

12.3.1 Multiple Threads of Execution

Perl doesn't have threads yet (at least not officialy[2]), but on Unix and similarly empowered systems, it

supports fork, the way to get process-level parallelism. The server process acts as a full-time receptionist:
it blocks on accept, and when a connection request comes in, it spawns a child process and goes back to
accept. The newly created child process meanwhile has a copy of its parent's environment and shares all
open file descriptors. Hence it is able to read from, and write to, the new socket returned by accept. When
the child is done with the conversation, it Simply exits. Each processis therefore dedicated to its own task
and doesn't interfere with the other. The following code shows an example of aforking server:

[2] Macolm Beattie has a working prototype of athreaded Perl interpreter, which will be
incorporated into the mainstream in the Perl 5.005 release.

Forki ng server
use | O : Socket ;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

$SI G{ CHLD}
$mai n_sock

sub {wait ()};
new | O : Socket:: I NET (Local Host => 'gol dengate',
Local Port => 1200,

Li st en => 5,
Proto = 'tcp',
Reuse = 1,

);
di e "Socket could not be created. Reason: $!\n" unless ($sock);
whi l e ($new _sock = $mai n_sock->accept()) {
$pid = fork();
die "Cannot fork: $!" unless defined($pid);
if ($pid == 0) {
Child process
whil e (defined ($buf = <$new sock>)) {
do sonething with $buf
print $new sock "You said: $buf\n";
}
exit(0); # Child process exits when it is done.
} # else '"tis the parent process, which goes back to accept ()

}

cl ose ($mai n_sock);

Thefork call resultsin two identical processes - the parent and child - starting from the statement
following the fork. The parent gets a positive return value, the process ID ($pid) of the child process. Both
processes check this return value and execute their own logic; the main process goes back to accept, and
the child process reads a line from the socket and echoes it back to the client.

Incidentally, the CHLD signal has nothing to do with IPC per se. On Unix, when a child process exits (or
terminates abnormally), the system gets rid of the memory, files, and other resources associated with it.
But it retains a small amount of information (the exit statusif the child was able to execute exit(), or a
termination status otherwise), just in case the parent uses wait or waitpid to enquire about this status. The
terminated child processis also known as a zombie process, and it is always a good thing to remove it
using wait; otherwise, the process tables keep filling up with junk. In the preceding code, wait doesn't
block, becauseit is called only when we know for sure that a child process has died - the CHLD signal
arranges that for us. Be sure to read the online documentation for quirks associated with signalsin genera
and SIGCHLD in particular.

12.3.2 Multiplexing Using select

The reason we forked off a different process in the preceding section was to avoid blocking during accept,
read, or write for fear of missing out on what is happening on the other sockets. We can instead use the
select call, introduced in BSD Unix, that returns control when a socket (any filehandle, in fact) can be
read from or written to. This approach allows us to use a single-threaded process - somewhat akin to
firing the receptionist and handling all the incoming calls and conversations oursel ves.

The interface to the native select call is not very pretty, so we use the 10::Select wrapper modul e instead.
Consider

use |1 O : Socket ;

use 1O : Sel ect;

$sockl = new | O : Socket (....);
$sock2 = new | O : Socket (....);
$read set = new | O : Sel ect;
$read_set - >add($sockl);

$wite set = new | O : Sel ect;
$wite_set->add($sockl, $sock2);

The 1O::Select module's new method creates an object representing a collection of filehandles, and add
and remove modify this set. The select method (which calls Perl's native select function) accepts three sets
of filehandles, or 10::Select objects, which are monitored for readability, writability, and error conditions,
respectively. In the preceding snippet of code, we create two such sets - afilehandle can be added to any
or al of these setsif you so wish - and supply them to the select method as follows:

($r _ready, $w ready, S$error) =
| O : Sel ect->sel ect ($read_set, $wite_set, $error_set, $tineout);

select blocks until an interesting event occurs (one or more filehandles are ready for reading, writing, or
reporting an error condition) or the time-out interval has elapsed. At this point, it creates three separate
lists of ready filehandles and returns references to them. The time-out is in seconds but can be expressed
as a floating-point number to get millisecond resolution.

L et us use this information to implement a program that retrieves messages from one or more clients:

Create main socket ($main_socket) as before ...
#o.o...

use 1 G : Sel ect;
$readabl e _handl es = new | O : Sel ect () ;
$r eadabl e_handl es- >add($nmai n_socket) ;
while (1) { #Infinite | oop
select() blocks until a socket is ready to be read or witten
($new readabl e) = 1 G : Sel ect - >sel ect ($readabl e_handl es,
undef, undef, 0);
If it cones here, there is at |east one handl e
toread fromor wite to. For the nonent, worry only about
the read side.
foreach $sock (@new readable) {
if ($sock == $mai n_socket) {
$new sock = $sock->accept();
Add it to the list, and go back to sel ect because the
new socket may not be readabl e yet.
$r eadabl e_handl es- >add($new_socKk) ;
} else {
It is an ordinary client socket, ready for reading.
$buf = <$sock>;
I f ($buf) {

.... Do stuff with S$buf
} else {
Cient closed socket. W do the sane here, and renove
it fromthe readabl e handles |i st
$r eadabl e_handl es- >r enove($sock) ;
cl ose($sock);

}

We create a listening socket, $main_socket, and configure it to listen on awell-known port. We then add
this socket to a newly created 10::Select collection object. When select returns the first time,
$main_socket has something to read from (or has an error, a possibility that we ignore for the moment); in
other words, it has received a connection request and is guaranteed not to block when accept is called.
Now, we are not interested in being blocked if the socket returned from accept has nothing to say, so we
add it to the list of filehandles being monitored for readability. When select returns the next time, we
know that one of the two socketsis ready for reading (or both are ready). If $main_socket is ready, we
repeat the exercise above. If not, we have a socket with something to read.

select also returnsif one or more remote sockets are closed. The corresponding sockets on the listening
end return 0 when any of the I/O operators are used (O bytes read or written). The server above removes
these sockets from the | O::Select collections to prevent from select returning the same defunct sockets
every time.

12.3.2.1 Blocking looms again

All we have done in this section is depend on select to tell usthat afilehandleisready for reading or
writing before actually attempting to read or write from it. Unfortunately, we still don't know how much
data has accumulated in the I/O buffers (for purposes of reading) or how much can be written to it (the
other side may be reading slowly, and there's alimit to how much you can pump in from this side). Both
sysread and syswrite return the number of bytes actually read or written, so you would have to invoke
them in aloop until the entire message is read or written. Once you have drained the buffers (or filled
them, as the case may be), there isthe very real possibility that it might block the next time you attempt to
read or write if the other side doesn't do something quick. One option isto invoke select in every iteration
of the loop and proceed only if it confirms the socket's availability. This slows you down when the
filehandle can accommodate your read or write requests. Besides, you have to quit the loop anyway when
select tells you that a filehandle isn't ready and make the attempt later on when the file descriptor changes
state.

For single-threaded programs the next option is to make the filehandle non-blocking. Read on.

12.3.3 Nonblocking Filehandles

Any filehandle can be made nonblocking by using the operating-system-specific fentl or ioctl call, like
this:

use POCSI X;

fentl ($sock, F_SETFL(), O NONBLOCK());

The Fentl module (file control) makes the constants in the fentl.h file avail able as functions. The fentl
function takes acommand like F_SETFL ("set flag") and an argument that is specific to that command.
Depending on the operating system, the flag to set nonblocking I/0O may also be knownasO_NDELAY
or FNDELAY.

In any case, once this operation is carried out, sysread and syswrite return undef (not 0) and set $! to
EAGAIN (or EWOULDBLOCK on BSD 4.3) if they cannot carry out the operation right away. The
following code accounts for these return and error values when reading a socket:

Want to read 1024 bytes
$bytes to read = 1024; $nsg = '';
while ($bytes_to_read) {
$bytes_read = sysread($sock, $buf, $bytes to read);
i f (defined($bytes read)) {
if ($bytes read == 0) {
Renpte socket closed connection
cl ose($sock);

| ast ;
} else {
$nsg . = $buf;
$bytes to read -= $bytes read;
}
} else {
If ($! == EAGAIN()) {
Can return to select. Here we choose to
spin around waiting for sonething to read.
} else {
| ast ;
}

}

One simple option isto forget the select call and simply spin around in a polling loop, calling read (or
sysread) on each socket (or accept on the main socket) to check whether it has anything to say, or calling
write (or syswrite) if we have something to say, without fear that it would block. This approach isa
constant drain on the CPU because the processis never idle. Y ou should always strive to build a quiescent
[3] server, in client/server parlance.

[3] "Marked by inactivity or repose,” as Webster's Tenth Collegiate Dictionary putsit.

Y ou might have noticed that we have ignored clientsin all these discussion. If aclient iswilling to block,
thereisnoissue at al, since, unlike the server side, it is not talking to more than one entity. But if it
contains a GUI, it clearly cannot afford to block, and we have much the same problem. We will revisit
thisissuein Section 14.1, "Introduction to GUIs, Tk, and Perl/Tk". In a system in which there is no clear

delineation between "clients' and "servers' - a cluster of bank computersis an example of such a
peer-to-peer system - every process is modeled on the more general server framework described in the

preceding pages.

Y ou can now see that all three approaches to creating servers have their individual quirks and failings.
The next section introduces us to techniques and strategies used in typical production servers.

Previous: 12.2 Socket API Advanced Perl Next: 12.4 Real-World
and 10::Socket Programming Servers
12.2 Socket API and Book 12.4 Real-World Servers
|O::Socket Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 12.3 Handling Chapter 12 Next: 12.5 IO Objects and
Multiple Clients Networ king with Sockets Filehandles

12.4 Real-World Servers

Single-threaded servers are essentially event-driven - they execute in response to atime-out or an 1/0O
event. They typically don't spend much CPU time for a given request, because they need to get back to
select to service other events that might have queued up in the meantime. Most production
single-threaded servers also use nonblocking filehandles (combining the second and third options listed
in the section "Handling Multiple Clients"). In the next chapter, we will build a small message-passing
library using these techniques. The advantage of using single-threading is that frequent short-cycle
requests are handled with very little overhead. In addition, data structures can easily be shared between
all parallel conversations or cached for future conversations. A chat server, for example, benefits most
from such an architecture.

The multiprocess solution is chosen when the server cannot guarantee how long a given request is going
to take. Web serversfollow this approach and simply spawn a CGl (Common Gateway |nterface)
program to handle the conversation with the corresponding web browser on the other end. Nowadays, the
trend isto handle quick tasks in the web server itself and spawn programs only when the task might hold
up the entire server. Of course, the problem is that spawning processesis expensive, so a popular option
Isto prespawn afixed number of processes and hand the task to them whenever arequest comesin.
Clearly, if there are many more sockets than there are prespawned processes, the parent has no option but
to use select to multiplex between them. As you can see, the options described in the previous section are
by no means independent of each other.

Multithreading is an option if the environment supportsit (Perl doesn't yet). Javais enthusiastic about
this approach and expects a thread to block on /O calls; in fact, it doesn't even provide an interface to
select. The advantage of this approach is that it is much more lightweight in comparison to the
multiprocess version. In addition, you get parallelism and data sharing. The disadvantage is that typical
workstations tend to perform badly if you introduce, say, 40 or more kernel level threads, so they can
support only alimited number of concurrent clients. Threads on Solaris are better off, because they make
adistinction between lightweight, user-level threads and kernel threads. In any case, thisis not an option
currently available to a Perl programmer, so the discussion is moot.

Previous: 12.3 Handling Advanced Perl Next: 12.5 10 Objects and
Multiple Clients Programming Filehandles
12.3 Handling Multiple Book 12.510 Objects and

Clients Index Filehandles

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Previous: 12.4 Real-World Chapter 12 Next: 12.6 Prebuilt Client
Servers Networking with Sockets Modules

12.5 10 Objects and Filehandles

Perl supports the BSD socket call, which returns afilehandle, as open does for files and pipes. This
filehandle can be used as an argument for all the built-in input-output operators: <>, read, sysread, print,
write, syswrite, and so on. In addition, it can be used by socket-specific functions such as send, recv, and
setsockopt.

The 10::Socket module's new method returns an object that can also be used as a parameter to these 1/0
routines. Internally, it calls socket and uses the typeglob corresponding to the filehandle to store other
attributes; we described this hideous-looking trick in Section 8.1, "Efficient Attribute Storage”. In other
words, its return value is the same object that was given to socket, which iswhy it does not matter to the
I/O operators which option you choose. My recommendation is to go for the considerably easier to use
|O::Socket option.

|O::Select is another story, however. If performance is absolutely crucial, you may prefer to do yourself
what 10::Select implements:

$r bitset = $w bitset = $e bitset = '";

Monitor $sockl for reading

vec($r_bitset, $sockl->fileno(), 1) = 1;

Monitor $sock2 for witing
vec($w bitset, $sock2->fileno(), 1)
Monitor both for errors

$e bitset = $r_bitset | $w bitset;

1;

($nfound, $tineleft) =
select ($r _bitset, $w bitset, $e bitset, $tineout);

The native select function requires three bit vectors representing collections of open files, sockets, or
pipes. Each bit in these bit sets corresponds to an integer file descriptor, which in turn istracked by the
appropriate filehandles or 10 objects. The fileno() method of 10::Socket, or the built-in function, fileno,
can be used to retrieve this number. Therest is simple: we create three bit sets, for checking readability,
writability, and error conditions, and use vec to set the appropriate bitsin each bit set. Before select
returns, it modifies the bit setsto indicate which file descriptors are ready for doing input or output.

Because these bit sets are modified, we have to construct them all over again before going back to select,
which gets to be somewhat expensive. Instead, a common technique is to make a copy of these sets

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

before getting them clobbered by select:
Set up $r _bitset and $w bitset once

while (1) {
($nfound, $tineout) = select ($r _copy = $r bitset,
$w _copy = $w bitset,
$e_copy = $e bitset, $tineout);

Check $r_copy, $w copy for readiness ...
}

Note that the assignment happens before select gets control, and select sees only $r_copy, $w_copy, and
$e copy, which it feels free to modify.

The only place where we really save time over using 10::Select is that we don't have to make allist of
ready filehandles; we can process the bit set directly. For the applications | have built, this marginal gain
in efficiency is not worth it, so | use 1O::Select.

Previous: 12.4 Real-World Advanced Perl Next: 12.6 Prebuilt Client
Servers Programming Modules
12.4 Real-World Servers Book 12.6 Prebuilt Client Modules
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

P& Advanced Perl Programming e

Previous: 12.5 10 Objects Chapter 12 Next: 12.7
and Filehandles Networ king with Sockets Resources

12.6 Prebuilt Client Modules

Applications such as mail clients, FTP, web browsers, telnet, and Usenet news-readers are built to use
TCP/IP and sockets. Severadl libraries available on CPAN give you the client-side libraries to roll your
own FTP or mail reader, for example, without having to worry about the application protocol. (Note that
there are no libraries to write your own servers to handle these protocols.) In this section, we will take a
brief look at a couple of interesting client modul es packaged under the Net hierarchy and available as
libnet from CPAN. These packages were also written by Graham Barr.

12.6.1 Net::FTP

This module implements the client side of the File Transfer Protocol and is used like this:

use Net:: FTP;

$ftp = Net::FTP->new("ftp.digital.conl);

die "Could not connect: $!'" unless $ftp;

$ft p- >l ogi n(' anonynous', 'nme@oo.com); # Quest User; emmil as passwd
$ft p- >cwd(' / pub/ pl an/ perl/ CPAN) ; # cwd: Change Working Directory
$ft p->get (' i ndex');

$ftp->quit();

This module supports all the commands that you can issue from a standard FTP program.

As currently implemented, the get call blocks until the entire file is transmitted, so whileit isvery useful
for a batch application (such as mirroring an FTP site nightly), you cannot use it to write agraphical FTP
client.

12.6.2 Net::POP3

Thislibrary gives an interface to programmatically access a POP (Post Office Protocol) server, used, for
example, on dial-up connections. The POP server storesincoming email until the mail reader comes and
"visits the post office." Let us study a small example based on Net::POPS.

The trouble with most PC-based mail readersis that they don't give you a preview of the messages and

don't wait for you to decide whether you really want to download any of them. People take the Internet's
bandwidth for granted all the time, and you might find yourself helplessly waiting as an email containing
the latest photograph of Madonna's baby trickles slowly through your dial-up connection. The Perl-based

file:///D|/Cool Stuff/old/ftp/preview/perl/search/asrch.htm

POP client shown below provides a preview of the messages sitting on the POP server: it smply liststhe
first three lines of al available messages:

use Net:: POP3;

$m = Net : : POP3- >new(' pop. nyhost.com); # Nane of POP server

di e "Coul d not open account” unless $m

$n = $m >l ogin('sriram, 'foofoo'); # Login, passwd
print "Nunmber of nsgs rec