Teach Yourself Perl 5in 21 days

David Till

Table of Contents:

| ntroduction

« Who Should Read This Book?

. Special Features of This Book

. Programming Examples

. End-of-Day Q& A and Workshop
. Conventions Used in This Book

. What You'll Learn in 21 Days

Week 1 Week at a Glance

. Where You're Going

Day 1 Getting Started

. What Is Perl?
. How Do | Find Perl?
o Where Do | Get Perl?
o Other Places to Get Perl
. A Sample Perl Program
« Running a Perl Program
o If Something Goes Wrong
. The First Line of Your Perl Program: How Comments Work
o Comments
. Line 2: Statements, Tokens, and <STDI N>
o Statements and Tokens
o Tokens and White Space
o What the Tokens Do: Reading from Standard Input
. Line 3: Writing to Standard Output
o Function Invocations and Arguments
. Error Messages

. Interpretive Languages Versus Compiled Languages

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Day 2 Basic Operators and Control Flow

Storing in Scalar Variables Assignment
o The Definition of a Scalar Variable
o Scalar Variable Syntax
o Assigning a Value to a Scalar Variable
. Performing Arithmetic
o Example of Miles-to-Kilometers Conversion
o The chop Library Function
. EXpressions
o Assignments and Expressions
. Other Perl Operators
. Introduction to Conditional Statements
. Theif Statement
o The Conditional Expression
o The Statement Block
o Testing for Equality Using ==
o Other Comparison Operators
. Two-Way Branching Using i f and el se
. Multi-Way Branching Using el si
. Writing Loops Using the whi | e Statement
. Nesting Conditional Statements
. Looping Using the unti | Statement
. Summary
. Q&A
. Workshop
o Quiz

o Exercises

Day 3 Understanding Scalar Values

. What Is a Scalar Value?
. Integer Scalar Values
o Integer Scalar Value Limitations

. Floating-Point Scalar Values
o Floating-Point Arithmetic and Round-Off Error
. Using Octal and Hexadecimal Notation
o Decimal Notation
o Octal Notation
o Hexadecimal Notation
o Why Bother?
. Character Strings
o Using Double-Quoted Strings
o Escape Sequences
o Single-Quoted Strings
. Interchangeability of Strings and Numeric Values
o Initial Values of Scalar Variables

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Day 4 More Operators

. Using the Arithmetic Operators
o EXxponentiation
o The Remainder Operator
o Unary Negation
. Using Comparison Operators
o Integer-Comparison Operators
o String-Comparison Operators
o String Comparison Versus Integer Comparison
o Comparison and Floating-Point Numbers
. Using Logical Operators
o Evaluation Within Logical Operators
o Logical Operators as Subexpressions
. Using Bit-Manipulation Operators
o What Bits Are and How They Are Used
o The Bit-Manipulation Operators
. Using the Assignment Operators
o Assignment Operators as Subexpressions
. Using Autoincrement and Autodecrement
o The Autoincrement Operator Pre-Increment
o The Autoincrement Operator Post-Increment

o The Autodecrement Operator
o Using Autoincrement With Strings
. The String Concatenation and Repetition Operators
o The String-Concatenation Operator
o The String-Repetition Operator
o Concatenation and Assignment
. Other Perl Operators
o The Comma Operator
o The Conditional Operator
. The Order of Operations
o Precedence
o Associativity
o Forcing Precedence Using Parentheses

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Day 5 Listsand Array Variables

. Introducing Lists
. Scalar Variables and Lists
o Lists and String Substitution
. Storing Lists in Array Variables
. Accessing an Element of an Array Variable
o More Details on Array Element Names
. Using Lists and Arrays in Perl Programs
o Using Brackets and Substituting for Variables
. Using List Ranges
o Expressions and List Ranges
. More on Assignment and Array Variables
o Copying from One Array Variable to Another
o Using Array Variables in Lists
o Substituting for Array Variables in Strings
o Assigning to Scalar Variables from Array Variables
. Retrieving the Length of a List
. Using Array Slices
o Using List Ranges in Array-Slice Subscripts
o Using Variables in Array-Slice Subscripts
o Assigning to Array Slices

o Overlapping Array Slices

o Using the Array-Slice Notation as a Shorthand
. Reading an Array from the Standard Input File
. Array Library Functions

o Sorting a List or Array Variable

o Reversing a List or Array Variable

o Using chop on Array Variables

o Creating a Single String from a List

o Splitting a String into a List

o Other List-Manipulation Functions
. Summary
. Q&A
. Workshop

o Quiz

o EXxercises

Day 6 Reading from and Writing to Files

. Opening a File
o The File Variable
o The Filename
o The File Mode
o Checking Whether the Open Succeeded
. Reading from a File
o File Variables and the Standard Input File
o Terminating a Program Using di e_
o Reading into Array Variables
. Writing to aFile
o The Standard Output File Variable
o Merging Two Files into One
. Redirecting Standard Input and Standard Output
. The Standard Error File
. Closing aFile
. Determining the Status of a File
o File-Test Operator Syntax
o Available File-Test Operators
o More on the - e Operator
o Testing for Read Permission-the -r Operator
o Checking for Other Permissions
o Checking for Empty Files
o Using File-Test Operators with File Variables

. Reading from a Sequence of Files
o Reading into an Array Variable

. Using Command-Line Arguments as Values
o ARGV and the <> Operator

. Opening Pipes

. Summary

. Q&A

« Workshop
o Quiz

o EXxercises

Day 7 Pattern Matching

. Introduction
. The Match Operators
o Match-Operator Precedence
. Special Characters in Patterns
o The + Character
o The[] Special Characters
o The* and ? Special Characters
o Escape Sequences for Special Characters
o Matching Any Letter or Number
o Anchoring Patterns
o Variable Substitution in Patterns
o Excluding Alternatives
o Character-Range Escape Sequences
o Matching Any Character
o Matching a Specified Number of Occurrences
o Specifying Choices
o Reusing Portions of Patterns
o Pattern-Sequence Scalar Variables
o Special-Character Precedence
o Specifying a Different Pattern Delimiter
. Pattern-Matching Options
o Matching All Possible Patterns
o Ignoring Case
o Treating the String as Multiple Lines
o Evaluating a Pattern Only Once
o Treating the String as a Single Line
o Using White Space in Patterns
. The Substitution Operator

o Using Pattern-Sequence Variables in Substitutions
o Options for the Substitution Operator
o Evaluating a Pattern Only Once
o Treating the String as Single or Multiple Lines
o Using White Space in Patterns
o Specifying a Different Delimiter
. The Translation Operator
o Options for the Translation Operator
. Extended Pattern-Matching
o Parenthesizing Without Saving in Memory
o Embedding Pattern Options
o Positive and Negative Look-Ahead
o Pattern Comments

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Week 1 Week 1in Review

Week 2 Week 2 at a Glance

. Where You're Going

Day 8 More Control Structures

. Using Single-Line Conditional Statements

o Problems with Single-Line Conditional Statements
. Looping Using the f or Statement

o Using the Comma Operator in afor Statement
. Looping Through a List: The f or each Statement

o Theforeach Local Variable

o Changing the Value of the Local Variable

o Using Returned Lists in the f or each Statement
. The do Statement
. Exiting a Loop Using the | ast Statement
. Using next to Start the Next Iteration of a Loop
. Theredo Statement
. Using Labeled Blocks for Multilevel Jumps

o Using next and redo with Labels
. The conti nue Block
. The got o Statement

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Day 9 Using Subroutines

. What Is a Subroutine?
. Defining and Invoking a Subroutine
o Forward References to Subroutines
. Returning a Value from a Subroutine
o Return Values and Conditional Expressions
. Thereturn Statement
. Using Local Variables in Subroutines
o Initializing Local Variables
. Passing Values to a Subroutine
o Passing a List to a Subroutine
. Calling Subroutines from Other Subroutines
. Recursive Subroutines
. Passing Arrays by Name Using Aliases
. Using the do Statement with Subroutines
. Specifying the Sort Order
. Predefined Subroutines
o Creating Startup Code Using BEG N
o Creating Termination Code Using END
o Handling Non-Existent Subroutines Using AUTOLOAD

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Day 10 Associative Arrays

. Limitations of Array Variables
. Definition
. Referring to Associative Array Elements

. Adding Elements to an Associative Array
. Creating Associative Arrays
. Copying Associative Arrays from Array Variables
. Adding and Deleting Array Elements
. Listing Array Indexes and Values
. Looping Using an Associative Array
. Creating Data Structures Using Associative Arrays
o Linked Lists
o Structures
o Trees
o Databases
o Example: A Calculator Program

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Day 11 Formatting Your Output

. Defining a Print Format
. Displaying a Print Format
. Displaying Values in a Print Format
o Creating a General-Purpose Print Format
o Choosing a Value-Field Format
o Printing Value-Field Characters
o Using the Multiline Field Format
. Writing to Other Output Files
o Saving the Default File Variable
. Specifying a Page Header
o Changing the Header Print Format
. Setting the Page Length
o Using pri nt with Pagination
. Formatting Long Character Strings
o Eliminating Blank Lines When Formatting
o Supplying an Indefinite Number of Lines
. Formatting Output Using printf _

. Summary

. Q&A

. Workshop
o Quiz

o Exercises

Day 12 Working with the File System

. File Input and Output Functions

o Basic Input and Output Functions
Skipping and Rereading Data

o System Read and Write Functions

o Reading Characters Using get c_

o Reading a Binary File Using bi nnode_
. Directory-Manipulation Functions

o The nkdir Function

o The chdir Function

o The opendir Function

o Thecl osedi r Function

o Thereaddir Function

o Thetelldir and seekdir Functions

o Therew nddir Function

o Therndi r Function
. File-Attribute Functions

o File-Relocation Functions

o Link and Symbolic Link Functions

o File-Permission Functions

o Miscellaneous Attribute Functions
. Using DBM Files

o The dbnopen Function

o The dbntl ose Function
. Summary
. Q&A
. Workshop

n Quiz

o Exercises

O

Day 13 Process, String, and Mathematical Functions

. Process- and Program-Manipulation Functions
o Starting a Process
o Terminating a Program or Process
o Execution Control Functions
o Miscellaneous Control Functions
. Mathematical Functions

o The si n.and cos Functions
o The at an2 Function
o Thesgrt Function
o The exp Function
o Thelog Function
o The abs Function
o Therand and srand Functions
. String-Manipulation Functions
o Theindex Function
o Therindex Function
o Thelength Function
o Retrieving String Length Using tr _
o The pos Function
o The substr Function
o The study Function
o Case Conversion Functions
o The quot enet a Function
o Thej oi n Function
o Thesprintf Function
. Summary
. Q&A
. Workshop
o Quiz

o Exercises

Day 14 Scalar-Conversion and List-Manipulation Functions

. The chop Function
« The chonp Function
. Thecrypt Function
. The hex Function
. Theint Function
. The oct Function
o The oct Function and Hexadecimal Integers
. The ord and chr Functions
. The scal ar Function
. The pack Function
o The pack Function and C Data Types
. The unpack Function
o Unpacking Strings
o Skipping Characters When Unpacking

o The unpack Function and uuencode
. Thevec Function
. Thedefined Function
. The undef Function
. Array and List Functions
o The grep Function
o Thesplice Function
o The shift Function
o The unshi ft Function
o The push Function
o The pop Function
o Creating Stacks and Queues
o Thesplit Function
o Thesort andreverse Functions
o The map Function
o The want array Function
. Associative Array Functions
o The keys Function
o The val ues Function
o The each Function
o The del et e Function
o The exi sts Function

. Summary

- Q&A

. Workshop
o Quiz

o Exercises

Week 2 Week 2 in Review

Week 3 Week 3 at a Glance

. Where You're Going

Day 15 System Functions

. System Library Emulation Functions
o The get grent Function
o The set grent _and endgr ent Functions
o The get grnamFunction

o The getgrid Function

o The get net ent Function

o The get net byaddr Function

o The get net bynane Function

o The setnetent and endnet ent Functions
o The get host byaddr Function

o The get host bynane Function

o The get host ent, set host ent , and endhost ent Functions
o The getl ogi n Function

o The get pgr p and set pgr p Functions

o The get ppi d Function

o The get pwnamFunction

o The get pwi d Function

o The get pwent Function

o The set pwent and endpwent Functions
o Thegetpriority andsetpriority Functions
o The get pr ot oent Function
o The get pr ot obynanme and get pr ot obynunber Functions
o The set prot oent and endpr ot oent Functions
o The get servent Function
o The get servbyname and get ser vbyport Functions
o The set servent and endservent Functions
o The chroot Function
o Theioctl Function
o The al ar mFunction
o Calling the System sel ect Function
o The dunp Function
. Socket-Manipulation Functions
o The socket Function
o The bi nd Function
o Thelisten Function
o The accept Function
o The connect Function
o The shut down Function
o The socket pair Function
o The get sockopt and set sockopt Functions
o The get socknane and get peer nanme Functions
« The UNIX System V IPC Functions
o IPC Functions and the r equi r e Statement
o The nmsgget Function
o The msgsnd Function

o The msgrcv Function

o Thensgctl Function

o The shnget Function

o The shmwite Function
o The shnr ead Function
o Theshnctl Function

o The senget Function

o The senop Function

o Thesenct| Function

Summary

Q&A

Workshop
o Quiz

o EXxercises

Day 16 Command-Line Options

Specifying Options
o Specifying Options on the Command Line
o Specifying an Option in the Program
The - v Option: Printing the Perl Version Number
The - ¢ Option: Checking Your Syntax
The - wOption: Printing Warnings
o Checking for Possible Typos
o Checking for Redefined Subroutines
o Checking for Incorrect Comparison Operators
The - e Option: Executing a Single-Line Program
The - s Option: Supplying Your Own Command-Line Options
o The -s Option and Other Command-Line Arguments
The - P Option: Using the C Preprocessor
o The C Preprocessor: A Quick Overview
The -1 Option: Searching for C Include Files
The - n Option: Operating on Multiple Files
The - p Option: Operating on Files and Printing
The -i Option: Editing Files
o Backing Up Input Files Using the -i Option
The - a Option: Splitting Lines
The - F Option: Specifying the Split Pattern
The - 0 Option: Specifying Input End-of-Line
The -1 Option: Specifying Output End-of-Line
The - x Option: Extracting a Program from a Message

. Miscellaneous Options

o The -u Option

o The-uUOption

o The -SOption

o The -DOption

o The - T Option: Writing Secure Programs
. The -d Option: Using the Perl Debugger

. Summary

- Q&A

. Workshop
o Quiz

o Exercises

Day 17 System Variables

. Global Scalar Variables
o The Default Scalar Variable:$_
o The Program Name: $0
o The User ID: $< and $>
o The Group ID: $(and $)

o The Version Number: $]

o The Input Line Separator: $/

o The Output Line Separator: $_

o The Output Field Separator: $,

o The Array Element Separator: $"

o The Number Output Format: $#

o The eval Error Message: $@

o The System Error Code: $?

o The System Error Message: $!

o The Current Line Number: $.

o Multiline Matching: $*

o The First Array Subscript: $[

o Multidimensional Associative Arrays and the $; Variable
o The Word-Break Specifier: $:

o The Perl Process ID: $$

o The Current Filename: $ARGVY

o The Write Accumulator: $"A

o The Internal Debugging Value: $"D
o The System File Flag: $*F

o Controlling File Editing Using $71 _
o The Format Form-Feed Character: $"L_

o Controlling Debugging: $7P
o The Program Start Time: $°T
o Suppressing Warning Messages: $"W
o The $2X Variable
. Pattern System Variables
o Retrieving Matched Subpatterns
o Retrieving the Entire Pattern: $&
o Retrieving the Unmatched Text: the $° and $' Variables

o The $+ Variable
. File System Variables
o The Default Print Format: $~
o Specifying Page Length: $=
o Lines Remaining on the Page: $-
o The Page Header Print Format: $~_
o Buffering Output: $|
o The Current Page Number: $%
. Array System Variables
o The @ Variable
o The @RGV Variable
o The @ Variable
o The @NCVariable
o The % NCVariable
o The %ENV Variable
o The sl GVariable
. Built-In File Variables
o STDI N, STDOUT, and STDERR
o ARGV
o DATA
o The Underscore File Variable
Specifying System Variable Names as Words

. Summary
. Q&A
. Workshop
o Quiz
o Exercises

Day 18 Referencesin Perl 5

. Introduction to References
. Using References
. Using the Backslash Operator

. References and Arrays
. Multidimensional Arrays
. References to Subroutines
o Using Subroutine Templates
. Using Subroutines to Work with Multiple Arrays
o Pass By Value or By Reference?
. References to File Handles
o What Does the *vari abl e Operator Do?
. Using Symbolic References... Again
o Declaring Variables with Curly Braces
. More on Hard Versus Symbolic References
. For More Information

. Summary

. Q&A

. Workshop
o Quiz

. EXercises

Day 19 Object-Oriented Programming in Perl|

. An Introduction to Modules
o The Three Important Rules
. Classes in Perl
« Creating a Class
. Blessing a Constructor
o Instance Variables
. Methods
. Exporting Methods
. Invoking Methods
. Overrides
. Destructors
. Inheritance
. Overriding Methods
. A Few Comments About Classes and Objects in Perl

. Summary

. Q&A

. Workshop
o Quiz

o Exercises

Day 20 Miscellaneous Features of Perl

. Therequire Function
o Therequire Function and Subroutine Libraries
o Using r equi r e to Specify a Perl Version
. The $#array Variables
o Controlling Array Length Using $#array_
. Alternative String Delimiters
o Defining Strings Using <<
. Special Internal Values
. Using Back Quotes to Invoke System Commands
. Pattern Matching Using ?? and the reset Function
o Using reset with Variables
. Other Features of the <> Operator
o Scalar Variable Substitution and <>
o Creating a List of Filenames
. Global Indirect References and Aliases
. Packages
o Defining a Package
o Switching Between Packages
o The mai n Package
o Referring to One Package from Another
o Specifying No Current Package
o Packages and Subroutines
o Defining Private Data Using Packages
o Packages and System Variables
o Accessing Symbol Tables
. Modules
o Creating a Module
o Importing Modules Into Your Program
o Using Predefined Modules
. Using Perl in C Programs
. Perl and CGI Scripts
. Translators and Other Supplied Code

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Day 21 The Perl Debugger

. Entering and Exiting the Perl Debugger
o Entering the Debugger
o Exiting the Debugger
. Listing Your Program
o Thel command
o The - Command
o The wCommand
o The// and 22?2 Commands
o The s Command
. Stepping Through Programs
o The s Command
o The n Command
o Thef command
o The Carriage-Return Command
o Ther Command
. Displaying Variable Values
o The Xx Command
o The v Command
. Breakpoints
o The b Command
o The c Command
o The L Command and Breakpoints
o The d and D Commands
. Tracing Program Execution
. Line Actions
o The a Command
o The ACommand
o The <and > Commands
o Displaying Line Actions Using the L Command
« Other Debugging Commands
o Executing Other Perl Statements
o The HCommand: Listing Preceding Commands
o The! Command: Executing Previous Commands
o The T Command: Stack Tracing
o The p Command: Printing an Expression
o The = Command: Defining Aliases
o Predefining Aliases
o The h Command: Debugger Help

. Summary
. O&A
. Workshop

o Quiz

Week 3 Week 3in Review

Appendix A Answers

. Answers for Day 1, "Getting Started"
o Quiz
o EXercises
. Answers for Day 2, "Basic Operators and Control Flow"

O
o EXercises

. Answers for Day 3, "Understanding Scalar Values"
] .
o EXercises

. Answers for Day 4, "More Operators"

O

o EXercises

. Answers for Day 5, "Lists and Array Variables"
] .
o EXercises

. Answers for Day 6, "Reading from and Writing to Files"
] .
o EXercises

. Answers for Day 7, "Pattern Matching"
] .
o EXercises

. Answers for Day 8, "More Control Structures"

O
o EXercises

. Answers for Day 9, "Using Subroutines”
] .
o EXercises

. Answers for Day 10, "Associative Arrays"
] .
o EXercises

. Answers for Day 11, "Formatting Your Output"

O

o EXxercises
. Answers for Day 12, "Working with the File System"

O
‘(ED
N

o EXercises
. Answers for Day 13, "Process, String, and Mathematical Functions"
o Quiz
o EXercises
. Answers for Day 14, "Scalar-Conversion and List-Manipulation Functions
o Quiz
o EXercises
. Answers for Day 15, "System Functions"
o Quiz
o EXercises
. Answers for Day 16, "Command-Line Options"
o Quiz
o EXercises
. Answers for Day 17, "System Variables"
o Quiz
o EXercises
. Answers for Day 18, "References in
Perl 5"
o Quiz
o Exercises
. Answers for Day 19, "Object-Oriented Programming in Perl"
o Quiz
o Exercises
. Answers for Day 20, "Miscel laneous Features of Perl"
O ui
o Exercises
. Answers for Day 21, "The Perl Debugger"

o Quiz

N

Appendix B ASCI | Character Set

Credits

Copyright © 1996 by Sams Publishing
SECOND EDITION

All rights reserved. No part of this book shall be reproduced, stored in a retrieval

system, or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein. For information, address
Sams Publishing, 201 W. 103rd St., Indianapolis, IN 46290.

International Standard Book Number: 0-672-30894-0 HTML conversion by :
M/s. LeafWriters (India) Pvt. Ltd.
Website : http://leaf.stpn.soft.net

e-mail : leafwriters@ leaf.stpn.soft.net

Publisher and Richard K. Swadley Acquisitions Greg Wiegand

President Manager

Development Dean Miller Managing Editor Cindy Morrow

Manager

Marketing Manager John Pierce Assistant Kristina Perry
Marketing Manager

Acquisitions Editor Chris Denny Development Angelique Brittingham,
Editors Keith Davenport

Software Steve Straiger Production Editor Tonya R. Simpson

Development

Specialist

Copy Editor Kimberly K. Hannel Technical Reviewer Elliotte Rusty Harold

Editorial Bill Whitmer Technical Edit Lynette Quinn

Coordinator Coordinator

Formatter Frank Sinclair Editorial Carol Ackerman, Andi
Assistants Richter Rhonda, Tinch-

Mize

Cover Designer Tim Amrhein Book Designer Gary Adair

Copy Writer Peter Fuller Production Team Brad Chinn
Supervisor

Production Michael Brumitt, Charlotte Clapp, Jason Hand, Sonja Hart, Louisa

Klucznik, Ayanna Lacey, Clint Lahnen, Paula Lowell, Laura Robbins,
Bobbi Satterfield, Carol Sheehan, Chris Wilcox

Acknowledgments

http://leaf.stpn.soft.net/
mailto:leafwriters@leaf.stpn.soft.net

| would like to thank the following people for their help:

. David Macklem at Sietec Open Systems for al lowing me to take the time off to
work on the first edition of this book

. Everyone at Sams Publishing, for their efforts and encouragement

. Jim Gardner, for telling the people at Sams Publishing about me

I'd also like to thank all those friends of mine (you know who you are) who tolerated
my going stir-crazy as my deadlines approached.

About the Authors

David Till

David Till is a technical writer working in Toronto, Ontario, Canada. He holds a
master's degree in computer science from the University of Waterloo; programming
languages was his major field of study. He also has worked in compiler development and
on version-control software. He lists his hobbies as "writing, comedy, walking, duplicate
bridge, and fanatical support of the Toronto Blue Jays."

He can be reached via e-mail at an671@ r eenet . t or ont 0. on. ca Or davet @!| g. com Or on
the World Wide Web at http://ww. i nterl og. conml ~davet /.

Kamran Husain

Kamran Husain is a software consultant with experience in UNIX system programming.
He has dabbled in all sorts of software for real-time systems applications,
telecommunications, seismic data acquisition and navigation, X Window/Motif and
Microsoft Windows applications. He refuses to divulge any more of his qualifications.
Kamran offers consulting services and training classes through his company, MPS Inc., in
Houston, Texas. He is an alumnus of the University of Texas at Austin.

You can reach Kamran through Sams Publishing or via e-mail at khusai n@eosoft. comor
npsi @ol . com

| ntroduction

This book is designed to teach you the Perl programming language in just 21 days. When
you finish reading this book, you will have learned why Perl is growing rapidly in
popularity: It is powerful enough to perform many useful, sophisticated programming
tasks, yet it is easy to learn and use.

http://www.interlog.com/~davet/

Who Should Read This Book?

No previous programming experience is required for you to learn everything you need to
know about programming with Perl from this book. In particular, no knowledge of the C
programming language is required. If you are familiar with other programming
languages, learning Perl will be a snap. The only assumption this book does make is that
you are familiar with the basics of using the UNIX operating system.

Special Features of This Book

This book contains some special elements that help you understand Perl features and
concepts as they are introduced:

. Syntax boxes

. DO/DON'T boxes
. Notes

. Warnings

. Tips

Syntax boxes explain some of the more complicated features of Perl, such as the control
structures. Each syntax box consists of a formal definition of the feature followed by
an explanation of the elements of the feature. Here is an example of a syntax box:

The syntax of the f or statement is

for (exprl; expr2; expr3) {

st at enent bl ock

expr 1 is the loop initializer. It is evaluated only once, before the start of the loop.

expr 2 is the conditional expression that terminates the loop. The conditional expression
in expr 2 behaves just like the ones in whi | e and i f statements: If its value is zero, the
loop is terminated, and if its value is nonzero, the loop is executed.

st at ement _bl ock is the collection of statements that is executed if (and when) expr 2 has
a nonzero value.

expr 3 is executed once per iteration of the loop, and is executed after the last
statement in st at ement _bl ock Is executed.

Don't try to understand this definition yet!

DO/DON'T boxes present the do's and don'ts for a particular task or feature. Here is an
example of such a box:

Don‘t

DON'T confuse the | operator (bitwise OR) with the | |
operator (logical OR).

DO make sure you are using the proper bitwise operator.
It's easy to slip and assume you want bitwise OR when
you really want bitwise AND. (Trust me.

Notes are explanations of interesting properties of a particular program feature. Here is
an example of a note:

NOTE

In left-justified output, the value being displayed
appears at the left end of the value field. In right-
justified output, the value being displayed appears at the
right end of the value field.

Warnings warn you of programming pitfalls to avoid. Here is a typical warning:

i
= s

WARNING

You cannot use the | ast statement inside the do
statement. The do statement, although it behaves like
the other control structures, is actually implemented
differently.

Tips are hints on how to write your Perl programs better. Here is an example of a tip:

TIP

It is a good idea to use all uppercase letters for your
file variable names. This makes it easier to distinguish
file variable names from other variable names and from
reserved words.

Programming Examples

Each feature of Perl is il lustrated by examples of its use. In addition, each chapter of
this book contains many useful programming examples complete with explanations; these
examples show you how you can use Perl features in your own programs.

Each example contains a listing of the program, the input required by and the output
generated by the program, and an analysis of how the program works. Special icons are
used to point out each part of the example: Type, Input-Output, and Analysis.

In the Input-Output example fol lowing Listing IN.1, there are some special typographic
conventions. The input you enter is shown in bol d nonospace type, and the output
generated by the system or the program is shown in pl ai n nonospace type. The system
prompt ($ in the examples in this book) is shown so that you know when a command is to
be entered on the command line.

Listing IN.1. Asimple Perl program with comments.

1. #!/usr/local/bin/perl

2: # this programreads a line of input, and wites the |line
3: # back out

4: $inputline = <STDI N>; # read a line of input

5: print($inputline); # wite the |ine out

$ program N_1
This is a line of input.
This is a line of input.

$

- “ILine 1 is the header comment. Lines 2 and 3 are comments, not executable lines
of code. Line 4 reads a line of input. Line 5 writes the line of input on your screen.

End-of-Day Q& A and Workshop

Each day ends with a Q&A section containing answers to common questions relating to
that day's material. There also is a Workshop at the end of each day that consists of
quiz questions and programming exercises. The exercises often include BUG BUSTER
exercises that help you spot some of the common bugs that crop up in Perl programs. The
answers to these quiz questions as well as sample solutions for the exercises are
presented in Appendix A, "Answers."

Conventions Used in This Book

This book uses different typefaces to help you differentiate between Perl code and
regular English, and also to help you identify important concepts.

. Actual Perl code is typeset in a special nonospace font. You'l l see this font used in
listings and the Input-Output examples, as well as in code snippets. In the
explanations of Perl features, commands, filenames, statements, variables, and
any text you see on the screen also are typeset in this font.

. Command input and anything that you are supposed to enter appears in a bol d
nmonospace font. You'll see this mainly in the Input-Output examples.

. Placeholders in syntax descriptions appear in anital i c nonospace font. Replace
the placeholder with the actual filename, parameter, or whatever element it
represents.

. ltalics highlight technical terms when they first appear in the text and are
sometimes used to emphasize important points.

What You'll Learnin 21 Days

In your first week of learning Perl, you'll learn enough of the basics of Perl to write
many useful Perl programs. Here's a summary of what you'll learn in Week 1:

Day 1, "Getting Started," tells you how to get Perl, how to run Perl
programs, and how to read from your keyboard and write to your screen.

Day 2, "Basic Operators and Control Flow," teaches you about simple

arithmetic, how to assign a value to a scalar variable, and how to control
execution using conditional statements.

Day 3, "Understanding Scalar Values," teaches you about integers,

floating-point numbers, and character strings. It also shows you that all
three are interchangeable in Perl.

Day 4, ""More Operators," tells you all about operators and expressions in
Perl and talks about operator associativity and precedence.

Day 5, "Lists and Array Variables,"” introduces you to lists, which are
collections of values, and to array variables, which store lists.

Day 6, "Reading from and Writing to Files,” tells you how to interact

with your file system by reading from input files, writing to output files,
and testing for particular file attributes.

Day 7, "Pattern Matching," describes pattern-matching in Perl and shows

how you can substitute values and translate sets of characters in text
strings.

By the end of Week 2, you'l I have mastered almost all the features of Perl; you'll also
have learned about many of the library functions supplied with the language. Here's a
summary of what you'll learn:

Day 8, ""More Control Structures," discusses the control flow
statements not previously covered.

Day 9, ""Using Subroutines,” shows how you can break your program into
smaller, more manageable, chunks.

Day 10, ""Associative Arrays," introduces one of the most powerful and

useful constructs in Perl-arrays-and it shows how you can use these arrays
to simulate other data structures.

Day 11, "Formatting Your Output,” shows how you can use Perl to
produce tidy reports.

Day 12, ""Working with the File System," shows how you can interact with
your system's directory structure.

Day 13, ""Process, String, and Mathematical Functions," describes the
library functions that interact with processes running on the system. It
also describes the functions that perform trigonometric and other
mathematical operations, and the functions that operate on strings.

Day 14, ""Scalar-Conversion and List-Manipulation Functions," describes

the library functions that convert values from one form to another and
the functions that work with lists and array variables.

By the end of Week 3, you'l 1 know all the features and capabilities of Perl. It covers
the rest of the Perl library functions and describes some of the more esoteric concepts
of the language. Here's a summary of what you'll learn:

Day 15, "System Functions," describes the functions that manipulate the
Berkeley UNIX and UNIX System V environments.

Day 16, ""Command-Line Options," describes the options you can supply with
Perl to control how your program runs.

Day 17, ""'System Variables," describes the built-in variables that are
included automatically as part of every Perl program.

Day 18, ""References in Perl 5, describes the pointer and reference
features of Perl 5, including multi-dimensional arrays.

Day 19, "Object-Oriented Programming in Perl," describes the object-

oriented capabilities added to Perl 5. These enable you to hide information
and divide your program into individual file modules.

Day 20, ""Miscel laneous Features of Perl,” covers some of the more exotic
or obscure features of the language.

Day 21, ""The Perl Debugger," shows you how to use the Perl debugger to
discover errors quickly.

ol

Week at a Glance

CONTENTS

. Where You're Going

In your first week of teaching yourself Perl, you'l l learn enough of the basics to write
many useful Perl programs. Although some experience in using a programming language
will be an advantage as you read this book, it is not required. In particular, you don't
need to know the C programming language before you read this book.

To use this book effectively, you should be able to try out some of the features of Perl
as you learn them. To do this, you should have Perl running on your system. If you don't
have Perl, Day 1, "Getting Started," tells how you can get it for free.

Each chapter of this book contains quiz and exercise questions that test you on the
material covered in the day's lesson. These questions are answered in Appendix A,
"Answers."

WhereYou're Going
The first week covers the essentials of Perl. Here's a summary of what you'll learn.

Day 1, "Getting Started," tells you how to get Perl, how to run Perl programs, and how
to read input from your keyboard and write output to your screen.

Day 2, "Basic Operators and Control Flow," teaches you about simple arithmetic, how to
assign a value to a scalar variable, and how to control execution using conditional

statements.

Day 3, "Understanding Scalar Values," teaches you about integers, floating-point

numbers, and character strings. It also shows you that all three are interchangeable in
Perl.

Day 4, "More Operators,” tells you all about operators and expressions in Perl and talks
about operator associativity and precedence.

Day 5, "Lists and Array Variables,"” introduces you to lists, which are collections of
values, and to array variables, which store lists.

Day 6, "Reading from and Writing to Files," tells you how to interact with your file
system by reading from input files, writing to output files, and testing for particular
file attributes.

Finally, Day 7, "Pattern Matching," describes pattern matching in Perl and shows how
you can substitute values and translate sets of characters in text strings.

This is quite a bit of material to learn in one week; however, by the end of the week
you'll know most of the essentials of Perl and will be able to write many useful
programs.

e el e

Chapter 1
Getting Started

CONTENTS

. What Is Perl?
. How Do | Find Perl?
o Where Do | Get Perl?
o Other Places to Get Perl
. A Sample Perl Program
« Running a Perl Program
o If Something Goes Wrong
. The First Line of Your Perl Program: How Comments Work
o Comments
. Line 2: Statements, Tokens, and <STDI N>
o Statements and Tokens
o Tokens and White Space
o What the Tokens Do: Reading from Standard Input
. Line 3: Writing to Standard Output
o Function Invocations and Arguments
. Error Messages
. Interpretive Languages Versus Compiled Languages

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Welcome to Teach Yourself Perl 5in 21 Days. Today you'll learn about the following:

. What Perl is and why Perl is useful

. How to get Perl if you do not already have it

. How to run Perl programs

. How to write a very simple Perl program

. The difference between interpretive and compiled programming languages
. What an algorithm is and how to develop one

What |s Per|?

Perl is an acronym, short for Practical Extraction and Report Language. It was designed
by Larry Wall as a tool for writing programs in the UNIX environment and is
continually being updated and maintained by him.

For its many fans, Perl provides the best of several worlds. For instance:

. Perl has the power and flexibility of a high-level programming language such as
C. In fact, as you will see, many of the features of the language are borrowed
from C.

. Like shell script languages, Perl does not require a special compiler and linker to
turn the programs you write into working code. Instead, all you have to do is
write the program and tell Perl to run it. This means that Perl is ideal for
producing quick solutions to small programming problems, or for creating
prototypes to test potential solutions to larger problems.

. Perl provides all the features of the script languages sed and awk, plus features
not found in either of these two languages. Perl also supports a sed-to-Perl
translator and an awk-to-Perl translator.

In short, Perl is as powerful as C but as convenient as awk, sed, and shell scripts.
NOTE

This book assumes that you are familiar with the basics
of using the UNIX operating system

As you'll see, Perl is very easy to learn. Indeed, if you are familiar with other
programming languages, learning Perl is a snap. Even if you have very little
programming experience, Perl can have you writing useful programs in a very short time.
By the end of Day 2, "Basic Operators and Control Flow," you'l | know enough about

Perl to be able to solve many problems.

How Dol Find Perl?

To find out whether Perl already is available on your system, do the following:

. Ifyou are currently working in a UNIX programming environment, check to see
whether the file /usr/ 1 ocal / bi n/ perl exists.

. Ifyou are working in any other environment, check the place where you
normal ly keep your executable programs, or check the directories accessible from
your PATHenvironment variable.

IT you do not find Perl in this way, talk to your system administrator and ask whether
she or he has Perl running somewhere else. If you don't have Perl running in your
environment, don't despair-read on!

WhereDo | Get Perl?

One of the reasons Perl is becoming so popular is that it is available free of charge to
anyone who wants it. If you are on the Internet, you can obtain a copy of Perl with file-
transfer protocol (FTP). The following is a sample FTP session that transfers a copy of
the Perl distribution. The items shown in boldface type are what you would enter
during the session.

$ ftp prep.ai.nmt.edu
Connected to prep.ai.mt. edu.

220 aeneas FTP server (Version wu-2.4(1) Thu Apr 14 20:21:35 EDT 1994)
ready.

Nane (prep.ai.mt.edu:dave): anonynous

331 Cuest login ok, send your conplete e-mail address as password.
Passwor d:

230- Wl cone, archive user!

230-

230-1f you have probl ens downl oadi ng and are seeing "Access denied" or
230-"Perm ssi on deni ed", please make sure that you started your FTP
230-client in a directory to which you have wite perm ssion.

230-

230-1f you have any problens with the GNU software or its
downl oadi ng,

230- pl ease refer your questions to <gnu@REP.Al.MT.EDU>. If you have
any

230- ot her unusual problens, please report themto
<r oot @daeneas. M T. EDU>.

230-
230-1f you do have problens, please try using a dash (-) as the first
230-character of your password - this will turn off the continuation

230- messages that may be confusing your FTP client.

230-

230 CGuest login ok, access restrictions apply.

ftp> cd pub/gnu

250-1f you have probl ens downl oadi ng and are seeing "Access deni ed" or
250- " Perm ssi on deni ed", please make sure that you started your FTP
250-client in a directory to which you have wite pern ssion.

250-

250- Pl ease note that all files ending in are conpressed with

.9z
250-'gzip', not with the unix 'conpress’' program Get the file READMVE
250- and read it for nore information.

250-

250- Pl ease read the file READVE

250- it was last nodified on Thu Feb 1 15:00:50 1996 - 32 days ago
250- Pl ease read the file READVE-about-.diff-files

250- it was last nodified on Fri Feb 2 12:57:14 1996 - 31 days ago
250- Pl ease read the fil e READVE-about-.gz-files

250- it was last nodified on Wd Jun 14 16:59:43 1995 - 264 days ago
250 CWD command successful .

ftp> binary

200 Type set to |I.

ftp> get perl-5.001.tar.qgz

200 PORT command successful .

150 Opening ASCII node data connection for perl-5.001.tar.gz (1130765
byt es).

226 Transfer conpl ete.

1130765 bytes received in 9454 seconds (1.20 Kbytes/s)
ftp> quit

221 CGoodbye.

$

The commands entered in this session are explained in the fol lowing steps. If some of
these steps are not familiar to you, ask your system administrator for help.

1. The command

$ ftp prep.ai.nmt.edu
connects you to the main Free Software Foundation source depository at MIT.

2. The user ID anonynous tells FTP that you want to perform an anonymous FTP
operation.

3. When FTP asks for a password, enter your user ID and network address. This lets
the MIT system administrator know who is using the MIT archives. (For security
reasons, the password is not actually displayed when you type it.)

4. The command cd pub/ gnu sets your current working directory to be the directory
containing the Perl source.

5. The bi nary command tells FTP that the file you'll be receiving is a file that
contains unreadable (non-text) characters.

6. The get command copies the file perl - 5. 001. t ar. gz from the MIT source
depository to your own site. (It's usually best to do this in off-peak hours to make
things easier for other Internet users-it takes awhile.) This file is quite large
because it contains all the source files for Perl bundled together into a single
file.

7. The qui t command disconnects from the MIT source repository and returns you to
your own system.

Once you've retrieved the Perl distribution, do the fol lowing:

1. Create a directory and move the file you just received, per| - 5. 001. t ar. gz, to this
directory. (Or, alternatively, move it to a directory already reserved for this
purpose.)

2. The perl-5.001.tar. gz file is compressed to save space. To uncompress it, enter the
command

$ gunzip perl-5.001.tar.gz
gunzi pis the GNU uncompress program. If it's not available on your system, see
your system administrator. (You can, in fact, retrieve it from
prep. ai . mt.eduusing anonymous FTP with the same commands you used to
retrieve the Perl distribution.)
When you run gunzi p, the file per! -5. 001. tar. gzwill be replaced by per| -
5.001. tar, which is the uncompressed version of the Perl distribution file.

3. The next step is to unpack the Perl distribution. In other words, use the
information in the Perl distribution to create the Perl source files. To do this,
enter the following command:

$ tar xvf - <perl-5.001.tar
As this command executes, it creates each source file in turn and displays the
name and size of each file as it is created. The t ar command also creates

subdirectories where appropriate; this ensures that the Perl source files are
organized in a logical way.

4. Using your favorite C compiler, compile the Perl source code using the makefile
provided. (This makefile should have been created when the source files were
unpacked in the last step.)

5. Place the compiled Perl executable into the directory where you normally keep
your executables. On UNIX systems, this directory usually is called
/usr/1ocal /bi n,and Perl usually is named / usr /1 ocal / bi n/ perl .

You might need your system administrator's help to do this because you might not have
the necessary permissions.

Other Placesto Get Perl

IT you cannot access the MIT site from where you are, you can get Perl from the
fol lowing sites using anonymous FTP:

North America

Site Location

ftp.netlabs.com [[Internet address 192. 94. 48. 152
Directory /pub/outgoing/perl5.0

ftp.cis.ufl.edu Internet address 128. 227. 100. 198
Directory /pub/perl/src/5.0
ftp.uu. net Internet address 192. 48. 96. 9

Directory /Il anguages/ per|l

ftp. khor os. unm edu|{Internet address 198. 59. 155. 28
Directory /pub/perl

ftp.cbi.tamucc. edu|[Internet address 165. 95. 1. 3
Directory /pub/duff/Perl

ftp. netronet.com (Internet address 192. 245. 137. 1
Directory /pub/perl/sources

geneti cs. upenn. edu|lInternet address 128. 91. 200. 37
Directory /perl5

Europe

Site Location

ftp.cs.ruu.nl Internet address 131. 211. 80. 17
Directory /pub/ PERL/ perl5.0/src

ftp.funet.fi Internet address 128. 214. 248. 6

Directory

/ pub/ | anguages/ perl / ports/perl5
ftp.zrz. tu- Internet address 130. 149. 4. 40
berlin. de Di rectory /pub/unix/ per|l

src.doc.ic.ac.uk |[Internet address 146. 169. 17.5
Directory /packages/ perl5

Australia

Site Location

sungear. mane. nu. oz. auj|Internet address 128. 250. 209. 2
Directory /pub/perl/src/5.0

South America

Site Location

ftp.inf.utfsmcl Internet address 146. 83. 198. 3
Directory /pub/gnu

You also can obtain Perl from most sites that store GNU source code, or from any site
that archives the Usenet newsgroup conp. sour ces. uni x.

A Sample Per| Program

Now that Perl is available on your system, it's time to show you a simple program that
illustrates how easy it is to use Perl. Listing 1.1 is a simple program that asks for a line
of input and writes it out.

T |

Listing 1.1. Asimple Perl program that reads and writes a line of input.

1. #!/usr/local/bin/perl
2: Sinputline = <STDI N>;

3: print($inputline);

$prograntl_1
This is ny line of input.

This is ny line of input.

Line 1 is the header comment. Line 2 reads a line of input. Line 3 writes the line of input
back to your screen.

The following sections describe how to create and run this program, and they describe it
in more detail.

Running a Per| Program

To run the program shown in Listing 1.1, do the fol lowing:

1. Using your favorite editor, type the previous program and save it in a file called
programl_1.

2. Tell the system that this file contains executable statements. To do this in the
UNIX environment, enter the command

$ chnod +x progrant_1
3. Run the program by entering the command

$ progrant_1

When you run progrant_1, it waits for you to enter a line of input. After you enter the
line of input, progrant_1 prints what you entered, as fol lows:

$ progrant_1

This is ny line of input.
This is ny line of input.
$

I f Something Goes Wrong

If Listing 1.1 is stored in the file progrant_1 and run according to the preceding steps,
the program should run successfully. If the program doesn't run, one of two things has
likely happened:

. The system can't find the file programt_1.
. The system can't find Perl.

If you receive the error message

progranmil_1 not found

or something similar, your system couldn't find the file progrant_1. To tell the system
where progrant_1 is located, you can do one of two things in a UNIX environment:

. Enter the command ./ programl_1, which gives the system the pathname of
programl_1 relative to the current directory.

. Add the current directory . to your PATHenvironment variable. This tells the
system to search in the current directory when looking for executable programs
such as progrant_1.

If you receive the message

[usr/1local/bin/perl not found

or something similar, this means that Perl is not instal led properly on your machine. See
the section "How Do | Find Perl?" earlier today, for more details.

If you don't understand these instructions or are still having trouble running Listing
1.1, talk to your system administrator.

TheFirst Lineof Your Perl Program: How Comments
Work

Now that you've run your first Perl program, let's look at each line of Listing 1.1 and
figure out what it does.

Line 1 of this program is a special line that tells the system that this is a Perl program:

#! [/ usr/ 1 ocal / bi n/ perl

Let's break this line down, one part at a time:

. The first character in the line, the # character, is the Perl comment character. It
tells the system that this line is not an executable instruction.

. The! character is a special character; it indicates what type of program this is.
(You don't need to worry about the details of what the! character does. All you
have to do is remember to include it.)

. Thepath/usr/I ocal /bin/perl isthe location of the Perl executable on your
system. This executable interprets your program; in other words, it figures out what
you want to do and then does it. Because the Perl executable has the job of
interpreting Perl instructions, it usually is cal led the Perl interpreter.

If, after reading this, you still don't understand the meaning of the line

#!/usr/ 1 ocal / bi n/ perl don't worry. The actual specifics of what it does are not
important for our purposes in this book. Just remember to include it as the first line of
your program, and Perl will take it from there.

NOTE

If you are running Perl on a system other than UNIX,
you might need to replace the line

#! / usr/ 1 ocal / bi n/ perl with some other line indi-cating
the location of the Perl interpreter on your system. Ask
your system administrator for details on what you need
to include here.

After you have found out what the proper first line is in
your environment, include that line as the first line of
every Perl program you write, and you're all set

Comments

As you have just seen, the first character of the line

#! [/ usr/ 1 ocal / bi n/ perl

Is the comment character, #. When the Perl interpreter sees the #, it ignores the rest of
that line.

Comments can be appended to lines containing code, or they can be lines of their own:

$i nputline = <STDI N>; # this line contains an appended conment

this entire line is a comment

You can-and should-use comments to make your programs easier to understand. Listing
1.2 is the simple program you saw ear lier, but it has been modified to include comments
explaining what the program does.

NOTE

As you work through the lessons in this book and create
your own programs-such as the one in Listing 1.2-you
can, of course, name them anything you want. For

il lustration and discussion purposes, I've adopted the
convention of using a name that corresponds to the
listing number. For example, the program in Listing 1.2 is
called programl_2

The program name is used in the Input-Output examples
such as the one following this listing, as well as in the
Analysis section where the listing is discussed in detail.
When you follow the Input-Output example, just
remember to substitute your program's name for the one
shown in the example

T |

Listing 1.2. A simple Perl program with comments.

1. #!/usr/local/Dbin/perl

2: # this programreads a line of input, and wites the |ine
3: # back out

4: $inputline = <STDI N>; # read a line of input

5: print($inputline); # wite the |ine out

$ progranl_2

This is a line of input.

This is a line of input.

The behavior of the program in Listing 1.2 is identical to that of Listing 1.1 because the
actual code is the same. The only difference is that Listing 1.2 has comments in it

Note that in an actual program, comments normally are used only to explain
complicated code or to indicate that the following lines of code perform a specific task.
Because Perl instructions usual ly are pretty straightforward, Perl programs don't need
to have a lot of comments.

Don‘t

DO use comments whenever you think that a line of code
Is not easy to understand.

DON'T clutter up your code with unnecessary comments.
The goal is readability. If a comment makes a program
easier to read, include it. Otherwise, don't bother.

DON'T put anything else after /usr/ 1 ocal / bi n/ perl in

the first line:
#!/usr/1ocal / bi n/ perl

This line is a special comment line, and it is not treated
like the others.

Line 2: Statements, Tokens, and <smoi

Now that you've learned what the first line of Listing 1.1 does, let's take a look at line
2:

$i nputline = <STDI N>;

This is the first line of code that actually does any work. To understand what this line

does, you need to know what a Perl statement is and what its components are.
Statements and Tokens

The line of code you have just seen is an example of a Per| statement. Basically, a
statement is one task for the Perl interpreter to perform. A Perl program can be
thought of as a col lection of statements performed one at a time.

When the Perl interpreter sees a statement, it breaks the statement down into smaller
units of information. In this example, the smaller units of information are $i nput 1 i ne, =,
<STDI N>, and ; . Each of these smaller units of information is cal led a token.

Tokens and White Space

Tokens can normally be separated by as many spaces and tabs as you like. For example,
the following statements are identical in Perl:

$i nputline = <STDI N>;
$i nput | i ne=<STDI N>;

$i nputline = <STDI N>;

Your statements can take up as many lines of code as you like. For example, the
following statement is equivalent to the ones above:

$i nputline

<STDI N>

The collection of spaces, tabs, and new lines separating one token from another is
known as white space.

When programming in Perl, you should use white space to make your programs more
readable. The examples in this book use white space in the fol lowing ways:

. New statements always start on a new line.
. One blank space is used to separate one token from another (except in special
cases, some of which you'l I see today).

What the Tokens Do: Reading from Standard I nput

As you've seen already, the statement

$i nputline = <STDI N>;

consists of four tokens: $i nput | i ne, =, <STDI N>, and ; . The following subsections explain
what each of these tokens does.

The $i nput | i ne and = Tokens

The first token in line 1, $i nput I i ne (at the left of the statement), is an example of a
scalar variable. In Perl, a scalar variable can store one piece of information.

The = token, cal led the assignment operator, tells the Perl interpreter to store the item
specified by the token to the right of the = in the place specified by the token to the left
of the =. In this example, the item on the right of the assignment operator is the <STDI N>
token, and the item to the left of the assignment operator is the $i nput | i ne token.
Thus, <STDI N> is stored in the scalar variable $i nput | i ne.

Scalar variables and assignment operators are covered in more detail on Day 2, "Basic
Operators and Control Flow."”

The <STDI N> Token and the Standard I nput File

The next token, <STDI N>, represents a line of input from the standard input file. The
standard input file, or STDIN for short, typically contains everything you enter when
running a program.

For example, when you run progrant_1 and enter

This is a line of input.

the line you enter is stored in the standard input file.

The <STDI N> token tells the Perl interpreter to read one line from the standard input
file, where a line is defined to be a set of characters terminated by a new line. In this
example, when the Perl interpreter sees <STDI N>, it reads in

This is a line of input.

If the Perl interpreter then sees another <STDI N> in a different statement, it reads
another line of data from the standard input file. The line of data you read earlier is

destroyed unless it has been copied somewhere else.
NOTE

If there are more lines of input than there are <STDI N>
tokens, the extra lines of input are ignored

Because the <STDI N> token is to the right of the assignment operator =, the line

This is a line of input.

Is assigned to the scalar variable $i nput | i ne.
The; Token

The ; token at the end of the statement is a special token that tells Perl the statement
is complete. You can think of it as a punctuation mark that is like a period in English.

Line 3: Writing to Standard Output

Now that you understand what statements and tokens are, consider line 3 of Listing 1.1,
which is

print ($inputline);
This statement refers to the library function that is called pri nt. Library functions, such

as print, are provided as part of the Perl interpreter; each library function performs a
useful task.

The pri nt function's task is to send data to the standard output file. The standard output
file stores data that is to be written to your screen. The standard output file sometimes
appears in Perl programs under the name STDOUT.

In this example, pri nt sends $i nput | i ne to the standard output file. Because the second
line of the Perl program assigns the line

This is a line of input.

to $i nput | i ne, thisis what pri nt sends to the standard output file and what appears on
your screen.

Function I nvocations and Arguments

When a reference to pri nt appears in a Perl program, the Perl interpreter calls, or
invokes, the pri nt library function. This function invocation is similar to a function
invocation in C, a GOSUB statement in BASIC, or a PERFORMstatement in COBOL. When
the Perl interpreter sees the pri nt function invocation, it executes the code contained
in print and returns to the program when pri nt is finished.

Most library functions require information to tell them what to do. For example, the
pri nt function needs to know what you want to print. In Perl, this information is
supplied as a sequence of comma-separated items located between the parentheses of the
function invocation. For example, the statement you've just seen:

print ($inputline);

supplies one piece of information that is passed to pri nt : the variable $i nput | i ne. This
piece of information commonly is cal led an argument.

The following call to pri nt supplies two arguments:

print ($inputline, $inputline);

You can supply pri nt with as many arguments as you like; it prints each argument
starting with the first one (the one on the left). In this case, pri nt writes two copies of
$i nput | i ne to the standard output file.

You also can tell print to write to any other specified file. You'l | learn more about
this on Day 6, "Reading From and Writing To Files."

Error Messages

IT you incorrectly type a statement when creating a Perl program, the Perl interpreter
will detect the error and tell you where the error is located.

For example, look at Listing 1.3. This program is identical to the program you've been
seeing all along, except that it contains one small error. Can you spot it?

Listing 1.3. A program containing an error.

1: #!/usr/local/bin/perl

2: Sinputline = <STDI N>

3: print ($inputline);

$ progranl_3

Syntax error in file progranl_3 at |ine3, next char (

Execution of programl_3 aborted due to conpilation errors.

$

When you try to run this program, an error message appears. The Perl interpreter has
detected that line 2 of the program is missing its closing ; character. The error message
from the interpreter tells you what the problem is and identifies the line on which the

problem is located

TIP

You should fix errors starting from the beginning of
your program and working down.

When the Perl interpreter detects an error, it tries to
figure out what you meant to say and carries on from
there; this feature is known as error recovery. Error
recovery enables the interpreter to detect as many
errors as possible at one time, which speeds up the
development process.

Sometimes, however, the Perl interpreter can get
confused and think you meant to do one thing when you
really meant to do another. In this situation, the
interpreter might start trying to detect errors that
don't real ly exist. This problem is known as error

cascading.

It's usually pretty easy to spot error cascading. If the
interpreter is telling you that errors exist on several
consecutive lines, it usually means that the interpreter
Is confused. Fix the first error, and the others might
very well go away

|nter pretive Languages Versus Compiled L anguages

As you've seen, running a Perl program is easy. All you need to do is create the program,
mark it as executable, and run it. The Perl interpreter takes care of the rest. Languages
such as Perl that are processed by an interpreter are known as interpretive languages.

Some programming languages require more complicated processing. If a language is a
compiled language, the program you write must be translated into machine-readable code
by a special program known as a compiler. In addition, library code might need to be added
by another special program known as a linker. After the compiler and linker have done
their jobs, the result is a program that can be executed on your machine-assuming, of
course, that you have written the program correctly. If not, you have to compile and
link the program all over again.

Interpretive languages and compiled languages both have advantages and
disadvantages, as fol lows:

. Asyou've seen with Perl, it takes very little time to run a programin an
interpretive language.

. Interpretive languages, however, cannot run unless the interpreter is available.
Compiled programs, on the other hand, can be transferred to any machine that
understands them.

As you'll see, Perl is as powerful as a compiled language. This means that you can do a
lot of work quickly and easily.

Summary

Today you learned that Perl is a programming language that provides many of the
capabilities of a high-level programming language such as C. You also learned that Perl
Is easy to use; basically, you just write the program and run it.

You saw a very simple Perl program that reads a line of input from the standard input
file and writes the line to the standard output file. The standard input file stores

everything you type from your keyboard, and the standard output file stores
everything your Perl program sends to your screen.

You learned that Perl programs contain a header comment, which indicates to the
system that your program is written in Perl. Perl programs also can contain other
comments, each of which must be preceded by a #.

Perl programs consist of a series of statements, which are executed one at a time. Each
statement consists of a collection of tokens, which can be separated by white space.

Perl programs call library functions to perform certain predefined tasks. One example
of a library function is pri nt, which writes to the standard output file. Library
functions are passed chunks of information called arguments; these arguments tell a
function what to do.

The Perl interpreter executes the Perl programs you write. If it detects an error in your
program, it displays an error message and uses the error-recovery process to try to
continue processing your program. If Perl gets confused, error cascading can occur, and
the Perl interpreter might display inappropriate error messages.

Finally, you learned about the differences between interpretive languages and
compiled languages, and that Perl is an example of an interpretive language.

Q& A

Is there any particular editor | need to use with Perl?
No. Perl programs are ordinary text files. You can use any text editor you like.
Why do | need to enter the chnod +x command before running my program?

Because Perl programs are ordinary text files, the UNIX operating system does
not know that they are executable programs. By default, text files have read
and write permissions granted, which means you can look at your file or change
It. The chnod +x command adds execute permission to the file; when this
permission is granted, the system knows that this is an executable program.

Q: Can | use pri nt to print other things besides input lines?

A: Yes. You'll learn more about how you can use pri nt on Day 3, "Understanding
Scalar Values."

Q: Why is Perl available for free?

>0 20

A: This encourages the dissemination of computer knowledge and capabilities.
It works like this: You can get Perl for free, and you can use it to write
interesting and useful programs. If you want, you can then give these programs
away and let other people write interesting and useful programs based on your
programs. This way, everybody benefits.
You also can modify the source for Perl, provided you tell everybody that your
version is a modification of the original. This means that if you think of a clever
thing you want Perl to do, you can add it yourself. (However, you can't blame
anybody else if your modification breaks something or if it doesn't work.)
Of course, you don't have to give your Perl programs away for free. In fact, you
even can sell your Perl programs, provided you don't borrow anything from
somebody else's program.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you've learned. Try
to understand the quiz and exercise answers before continuing to the next day.

Quiz
1. What do Perl's fans appreciate about Perl?

What does the Perl interpreter do?
3. Define the following terms:

N

statement

token

argument

error recovery

e standard input file

What is a comment, and where can it appear?

Where is Perl usually located on a UNIX machine?

What is a header comment, and where does it appear in a program?
What is a library function?

o O T QD

~No gk

Exercises

Modify programi_1 to print the input line twice.

Modify programi_1 to read and print two different input lines.

Modify progranml_1 to read two input lines and print only the second one.
BUG BUSTER: What is wrong with the following program?

o

#!/usr/ 1 ocal / bi n/ perl
$i nputline = <STDI N>;

print ($inputline)
. BUG BUSTER: What is wrong with the fol lowing program?

#! [usr/ 1 ocal / bi n/ perl
$i nputline = <STDI N>;
print nmy line! print($inputline);
. What does the fol lowing program do?

#! [/ usr/ 1 ocal / bi n/ perl
$i nputline = <STDI N>;
$i nputline2 = <STDI N>;
print ($inputline2);
print ($inputline);

Chapter 2

Basic Operatorsand Control Flow

CONTENTS

. Storing in Scalar Variables Assignment
o The Definition of a Scalar Variable
o Scalar Variable Syntax
o Assigning a Value to a Scalar Variable
. Performing Arithmetic
o Example of Miles-to-Kilometers Conversion
o The chop Library Function
. Expressions
o Assignments and Expressions
. Other Perl Operators
. Introduction to Conditional Statements
. Theif Statement
o The Conditional Expression
o The Statement Block
o Testing for Equality Using ==
o Other Comparison Operators
. Two-Way Branching Using i f and el se
. Multi-Way Branching Using el si f
. Writing Loops Using the whi | e Statement
. Nesting Conditional Statements
. Looping Using the unti| Statement

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Today's lesson gives you the information you need to write some simple Perl programs.
You'll learn the following:

. More about scalar variables and how to assign values to them

. The basic arithmetic operators and how they work with scalar variables

. What an expression is

. How to use theif statement and the == operator to test for simple conditions
. How to specify two-way and multi-way branches using el se and el si f

. How to write simple loops using the whi | e and unti | statements

Storing in Scalar Variables Assignment

In yesterday's lesson, you saw the fol lowing statement, which assigns a line of input
from the keyboard to the variable $i nput | i ne:

$i nputline = <STDI N>;

This section tells you more about variables such as $i nput | i ne and how to assign values
to these variables.

The Definition of a Scalar Variable

The variable $i nput I i ne is an example of a scalar variable. A scalar variable stores
exactly one item-a line of input, a piece of text, or a number, for example. Items that can
be stored in scalar variables are called scalar values.

You'll learn more about scalar values on Day 3, "Understanding Scalar Values." For

today, all you need to remember is that a scalar variable stores exactly one value,
which is a scalar value.

Scalar Variable Syntax

The name of a scalar variable consists of the character $ fol lowed by at least one
letter, which is followed by any number of letters, digits, or underscore characters
(that is, the _ character).

The following are examples of legal scalar variable names:

$x
$var
$ny_vari abl e

$var 2

$a_new vari abl e

These, however, are not legal scalar variable names:

vari abl e # the $ character is mssing

$ # there nmust be at | east one letter in the nane
$47x # second character nust be a letter

$_var # again, the second character nust be a letter
$vari abl e! # you can't have a ! in a variable nane

$new. var # you can't have a . in a variable nane

Perl variables are case-sensitive. This means that the following variables are different:

$VAR
$var

$Var

Your variable name can be as long as you want.

$this_is_a really_long _but_I|egal _nane

$this_is_a really_long but_|egal _nanme_that_is_different

The $ character is necessary because it ensures that the Perl interpreter can distinguish
scalar variables from other kinds of Perl variables, which you'l | see on later days.

TIP

Variable names should be long enough to be self-
explanatory but short enough to be easy to read and

type.

Assigning aValueto a Scalar Variable

The following statement contains the Perl assignment operator, which is the = character:

$i nputline = <STDI N>;

Remember that this statement tells Perl that the line of text read from the standard
input file, represented by <STDI N>, is to become the new value of the scalar variable
$i nput | i ne.

You can use the assignment operator to assign other values to scalar variables as well.

For example, in the fol lowing statement, the number 42 is assigned to the scalar
variable $var:

$var = 42;

A second assignment to a scalar variable supersedes any previous assignments. In these
two statements:

$var 42;

$var 113;

the old value of $var, 42, is destroyed, and the value of $var becomes 113.

Assignment statements can assign text to scalar variables as well. Consider the
following statement:

$nane = "inputdata";

In this statement, the text i nput dat a is assigned to the scalar variable $nane.

Note that the quotation marks (the " characters) on either end of the text are not part
of the text assigned to $nane. This is because the " characters are just there to enclose
the text.

Spaces or tabs contained inside the pair of " characters are treated as part of the text:

$nane = "John Q Hacker";

Here, the spaces on either side of the Qare considered part of the text.

In Perl, enclosed text such as John Q Hacker is known as a character string, and the
surrounding " characters are an example of string delimiters. You learn more about
character strings on Day 3; for now, all you need to know is that everything inside the

" characters is treated as a single unit.
Performing Arithmetic

As you've seen, the assignment operator = takes the value to the right of the = sign and
assigns it to the variable on the left of the =:

$var = 42;

Here, the value 42 is assigned to the scalar variable $var.

In Perl, the assignment operator is just one of many operators that perform tasks, or
operations. Each operation consists of the fol lowing components:

. The operator, such as the assignment operator (=)
. One or more operands, such as $var and 42

This might sound a little confusing, but it's really quite straightforward. To il lustrate,
Table 2.1 lists some of the basic arithmetic operators that Perl supports.

Table 2.1. Basic arithmetic operators.

Operator Operation
+ Addition
- Subtraction

* Multiplication

/ Division

You use these operators in the same way you use +, -, and so on when you do arithmetic
on paper. For example, the following statement adds 17 and 5 and then assigns the
result, 22, to the scalar variable $var:

$var = 17 + 5;

You can perform more than one arithmetic operation in a single statement like this one,
which assigns 19 to $var :

$var = 17 + 5 - 3;

You can use the value of a variable in an arithmetic operation, as fol lows:

$varl = 11;

$var 2 $varl * 6;

The second statement takes the value currently stored in $var 1, 11, and multiplies it by
6. The result, 66, is assigned to $var 2.

Now examine the fol lowing statements:

$var 11;

$var $var * 6;

As you can see, $var appears twice in the second statement. What Perl does in this case is
straightforward:

1. The first statement assigns the value 11 to $var.

2. In the second statement, the Perl interpreter retrieves the current value of $var,
11, and multiplies it by 6, producing the result 66.

3. This result, 66, is then assigned to $var (destroying the old value, 11).

As you can see, there is no ambiguity. Perl uses the old value of $var in the arithmetic
operation, and then it assigns the result of the operation to $var.

NOTE

Perl always performs multiplication and division before
addition and subtraction-even if the addition or
subtraction operator appears first. Perl does this to
conform to the rules of arithmetic. For example, in the
following statement:

$var = 5 + 6 * 4;

$var is assigned 29: 6 is multiplied by 4, and then 5 is
added to the result

Example of Milesto-Kilometers Conversion

To see how arithmetic operators work, look at Listing 2.1, which performs a simple miles-
to-kilometers and kilometers-to-miles conversion.

T |

Listing 2.1. Miles-to-kilometers converter.

1. #!/usr/local/bin/perl

3: print ("Enter the distance to be converted:\n");
4: $originaldist = <STDI N>;

5: chop (%originaldist);

6: $mles = $originaldist * 0.6214;

7: S$kiloneters = $originaldist * 1.609;

8: print ($originaldist, " kiloneters =", $niles,
9: " mles\n");

10: print ($originaldist, " mles =", $kiloneters,
11: " kilometers\n");

$ progran_1

Enter the distance to be converted:

10

10 kil oneters = 6.2139999999999995 ni | es

10 mles = 16.09 kil oneters

M Line 3 of this program asks for a distance to convert. To do this, it prints the
following text on your screen

Enter the di stance to be converted:

Note that the\ n at the end of the text is not printed. The \ n is a special sequence of
characters that represents the newline character; when the pri nt library function sees
\ n, it starts a new line of output on your screen. (You'll learn more about special
sequences of characters such as\ n on Day 3.)

At this point, you can enter any number you want in response to the program's request
for a distance. The input/output example shows an entry of 10.

Line 4 retrieves the line of input you entered and then assigns it to the variable named
$ori gi nal di st.

Line 5 calls the library function chop, which gets rid of the closing newline character
that is part of the input line you entered. The chop library function is described in the
following section, "The chop Library Function."

Line 6 determines the number of miles that is equivalent to 10 kilometers and assigns
this number to the variable $ni | es.

Line 7 determines the number of kilometers that is equivalent to 10 miles and assigns
this number to the variable $ki | onet ers.

Lines 8-11 print the values of the variables $ni | es and $ki | onet ers.

NOTE

Different machines handle floating-point numbers
(numbers containing a decimal point) in different ways.
Because of this, the numbers displayed in your Listing 2.1
output might not be exactly the same as the numbers
shown here. These minor differences will appear
whenever a floating-point number is printed.

For more information on difficul ties with floating-point
numbers, refer to the discussion of round-off errors on
Day 3, "Understanding Scalar Values.

Thechop Library Function

The program shown in Listing 2.1 calls a special library function, chop. This function
assumes that a line of text is stored in the variable passed to it; chop's job is to delete
the character at the right end of the line of text. Consider this example:

$line = "This is ny line";

chop ($line);

After chop is called, the value of $I i ne becomes
This is ny lin

Here's why Listing 2.1 uses chop. The statement

$origi nal di st = <STDI N>;

assigns a line of input from the standard input file to the variable $ori gi nal di st. When
you type 10 and press Enter, the line of input assigned to $ori gi nal di st consists of three
characters: the 1, the 0, and a newline character. When chop is called, the newline
character is removed, and $ori gi nal di st now contains the value 10, which can be used
in arithmetic operations.

You'll learn more about using lines of input in arithmetic operations and about
conversions from lines of input to numbers on Day 3. For now, just remember to call chop

after reading a number from the standard input file.

$ori gi nal di st = <STDI N>;

chop ($originaldist);

EXpressions

Now that you know a little more about operators, operands, and how they both work,
it's time to learn some more terminology as well as the details about exactly what Perl
is doing when it evaluates operators such as the arithmetic operators and the
assignment operator.

In Perl, a collection of operators and operands is known as an expression. Each expression
yields a result, which is the value you get when the Perl interpreter evaluates the
expression (that is, when the Perl interpreter performs the specified operations). For
example, in the simple expression

the result is 20, or 4 times 5.

You can think of an expression as a set of subordinate expressions. Consider this example:
4 * 5+ 3*6

When the Perl interpreter evaluates this expression, it first evaluates the
subexpressions 4 * 5and 3 * 6, yielding the results 20 and 18. These results are then
(effectively) substituted for the subexpressions, leaving the fol lowing:

20 + 18

The Perl interpreter then performs the addition operation, and the final result of the
expression is 38.

Consider the following statement:
$var = 4 * 5 + 3;

As you can see, the Perl interpreter multiplies 4 by 5, adds 3, and assigns the result, 23,

to $var . Here's what the Perl interpreter is doing, more formally, when it evaluates this
expression ($var = 4 * 5 + 3):

1. The subexpression 4 * 5 is evaluated, yielding the result 20. The expression being
evaluated is now
$var = 20 + 3
because the multiplication operation has been replaced by its result.
2. The subexpression 20 + 3 is evaluated, yielding 23. The expression is now
$var = 23
3. Finally, the value 23 is assigned to $var.

Here's one more example, this time using the value of a variable in an expression:

$varl

15;

$var 2

$varl - 11;

When the Perl interpreter evaluates the second expression, it does the fol lowing:

1. It retrieves the value currently stored in $var 1, which is 15, and replaces the
variable with its value. This means the expression is now
$var2 = 15 - 11
and $var 1 is out of the picture.
2. The Perl interpreter performs the subtraction operation, yielding
$var2 = 4
3. $var 2 is thus assigned the value 4.

NOTE

An expression and a statement are two different things.
A statement, however, can contain a Perl expression. For
example, the statement

$var2 = 4;

contains the Perl expression

$var2 = 4

and is terminated by a semicolon (;).

The distinction between statements and expressions will
become clearer when you encounter other places where
Perl statements use expressions. For example, expressions

are used in conditional statements, which you'll see
later today.

Assignments and Expressions

The assignment operator, like all Perl operators, yields a result. The result of an
assignment operation is the value assigned. For example, in the expression

$var = 42

the result of the expression is 42, which is the value assigned to $var .

Because the assignment operator yields a value, you can use more than one assignment
operator in a single expression:

$varl = $var2 = 42;

In this example, the subexpression

$var2 = 42

is performed first. (You'll learn why on Day 4, "More Operators,” in the lesson about
operator precedence.) The result of this subexpression is 42, and the expression is now

$varl = 42

At this point, 42 is assigned to $var 1.
Other Perl Operators

So far, you have encountered the following Perl operators, which are just a few of the
many operators Perl supports:

. The assignment operator, =.
. The arithmetic operators +, -, *,and /.

You'll learn about additional Perl operators on Day 4.

| ntr oduction to Conditional Statements

So far, the Perl programs you've

seen have had their statements executed in sequential

order. For example, consider the kilometer-to-mile conversion program you saw in

Listing 2.1:

#! [usr/ 1 ocal / bi n/ perl

print ("Enter the distance to be converted:\n");

$ori gi nal di st = <STDI N>;

chop ($original dist);

$miles = $originaldist * 0.6214;

$Kkil ometers = $originaldist * 1.6009;

print ($originaldist,
"mles\n");
print ($originaldist,

" kilonmeters\n");

"kiloneters =", $mles,

"mles =", $kiloneters,

When the Perl interpreter executes this program, it starts at the top of the program and
executes each statement in turn. When the final statement is executed, the program is

terminated.

All the statements in this program are unconditional statements-that is, they always are
executed sequential ly, regardless of what is happening in the program. In some
situations, however, you might want to have statements that are executed only when
certain conditions are true. These statements are known as conditional statements.

Perl supports a variety of conditional statements. In the following sections, you'l l
learn about these conditional statements:

Statement Description

i f Executes when a specified condition is true.

i f-el se Chooses between two alternatives.

i f-el sif-el se Chooses between more than two alternatives.

Wil e and unti | Repeats a group of statements a specified
number of times.

Perl also has other conditional statements, which you'll learn about on Day 8, "More
Control Structures.”

Thei f Statement

Theif statement is the simplest conditional statement used in Perl. The easiest way to
explain how the i f statement works is to show you a simple example:

if ($nunber) {

print ("The nunber is not zero.\n");

The i f statement consists of (closing brace character):
This statement consists of two parts:

. The code between the if and the open brace character ({).
. The code between the { and the }.

The first part is known as a conditional expression; the second part is a set of one or more
statements cal led a statement block. Let's look at each part in detail.

The Conditional Expression

The first part of ani f statement-the part between the parentheses-is the conditional
expression associated with thei f statement. This conditional expression is just like any
other expression you've seen so far; in fact, you can use any legal Perl expression as a
conditional expression.

When the Perl interpreter sees a conditional expression, it evaluates the expression.
The result of the expression is then placed in one of two classes:

. If the resultis a nonzero value, the conditional expression is true.
. Ifthe resultis zero, the conditional expression is false.

The Perl interpreter uses the value of the conditional expression to decide whether to
execute the statements between the { and} characters. If the conditional expression is
true, the statements are executed. If the conditional expression is false, the statements

are not executed.
In the example you have just seen,

i f ($nunber) {

print ("The nunber is not zero.\n");

the conditional expression consists of the value of the variable $nunber. If $nunber
contains something other than zero, the conditional expression is true, and the
statement

print ("The value is not zero.\n");

Is executed. ITf $nunber currently is set to zero, the conditional expression is false, and
the pri nt statement is not executed.

Listing 2.2 is a program that contains this simplei f statement.

Listing 2.2. A program containing asimple example of ani f statement.

1. #!/usr/local/bin/perl

3: print ("Enter a nunber:\n");

4: $nunber = <STDI N>;

5: chop ($nunber);

6: if ($nunber) {

7. print ("The nunber is not zero.\n");
8. }

9: print ("This is the last line of the program\n");

$ progran_2

Enter a nunber:

5

The nunber is not zero.

This is the last line of the program

M'Yﬂ Lines 3, 4, and 5 of Listing 2.2 are similar to lines you've seen before. Line 3
tells you to enter a number; line 4 assigns the line you've entered to the variable
$nunber; and line 5 throws away the trailing newline character

Lines 6-8 constitute thei f statement itself. As you have seen, this statement evaluates
the conditional expression consisting of the variable $nunber . If $nunber is not zero, the
expression is true, and the call to pri nt is executed. If $nunber is zero, the expression is
false, and the call to pri nt is skipped; the Perl interpreter thus jumps to line 9.

The Perl interpreter executes line 9 and prints the fol lowing regardless of whether the
conditional expression in line 6 is true or false:

This is the last |ine of the program

Now that you understand how ani f statement works, you're ready to see the formal
syntax definition for the i f statement.

The syntax for thei f statement is

if (expr) {

st at enent bl ock

This formal definition doesn't tell you anything you don't already know. expr refers to
the conditional expression, which evaluates to either true or false. st at ement _bl ock is
the group of statements that is executed when expr evaluates to true.

i

-

WARNING

If you are familiar with the C programming language,
you probably have noticed that the i f statement in Perl
is syntactical ly similar to the i f statementin C. There is
one important difference, however: In Perl, the braces ({
and }) must be present

The following statement is illegal in Perl because the { and} are missing:

i f ($nunber)

print ("The value is not zero.\n");

Perl does support a syntax for single-line conditional statements. This is discussed on
Day 8.

The Statement Block

The second part of the i f statement, the part between the { and the}, iscalled a
statement block. A statement block consists of any number of legal Perl statements
(including no statements, if you like).

In the following example, the statement block consists of one statement:

print ("The value is not zero.\n");

NOTE

A statement block can be completely empty. In this
statement, for example:

if ($nunber == 21) {

}

there is nothing between the { and }, so the statement
block is empty. This is perfectly legal Perl code,
although it's not particularly useful

Testing for Equality Using ==

So far, the only conditional expression you've seen is an expression consisting of a single
variable. Although you can use any expression you like and any operators you like, Perl
provides special operators that are designed for use in conditional expressions. One such
operator is the equality comparison operator, ==.

The == operator, like the other operators you've seen so far, requires two operands or
subexpressions. Unlike the other operators, however, it yields one of two possible
results: true or false. (The other operators you've seen yield a numeric value as a
result.) The == operator works like this:

. If the two subexpressions evaluate to the same numeric value, the == operator
yields the result true.

. If the two subexpressions have different values, the == operator yields the result
false.

Because the == operator returns either true or false, it is ideal for use in conditional
expressions, because conditional expressions are expected to evaluate to either true or
false. For an example, look at Listing 2.3, which compares two numbers read in from the
standard input file.

Listing 2.3. A program that uses the equality-comparison operator to
compare two numbers entered at the keyboard.

1: #!/usr/local/bin/perl

3: print ("Enter a nunmber:\n");

4: $nunberl = <STDI N>;

5: chop ($nunberl);

6: print ("Enter another nunber:\n");

7: $nunber2 = <STDI N>;

8: chop ($nunber?2);

9: if ($nunberl == $nunber2) {

10: print ("The two nunbers are equal.\n");
11: }

12: print ("This is the last line of the program\n");

$ progran_3

Enter a nunber:

17

Ent er anot her nunber:

17

The two nunbers are equal .

This is the last |ine of the program

$

gum.nﬂ Lines 3-5 are again similar to statements you've seen before. They print a
message on your screen, read a number into the variable $nunber 1, and chop the newline
character from the number

Lines 6-8 repeat the preceding process for a second number, which is stored in $nunber 2.

Lines 9-11 contain the i f statement that compares the two numbers. Line 9 contains the
conditional expression

$nunber1 == $nunber?2

I the two numbers are equal, the conditional expression is true, and the pri nt
statement in line 10 is executed. If the two numbers are not equal, the conditional
expression is false, so the pri nt statement in line 10 is not executed; in this case, the
Perl interpreter skips to the first statement after theif statement, which is line 12,

Line 12 is executed regardless of whether or not the conditional expression in line 9 is
true. It prints the fol lowing message on the screen:

This is the last |line of the program

>

LF A

WAaRNING
Make sure that you don't confuse the = and == operators.
Because any expression can be used as a conditional
expression, Perl is quite happy to accept statements such

as

i f ($nunmber = 5) {

print ("The nunber is five.\n");

Here, the i f statement is evaluated as fol lows:

1. The number 5 is assigned to $number, and the following
expression yields the result 5:
$nunber = 5

2. The value 5 is nonzero, so the conditional expression is true.

3. Because the conditional expression is true, this statement is
executed:

print ("The nunber is five.\n");

Note that the pri nt statement is executed regardless of

what the value of $nunber was before the i f statement.
This is because the value 5 is assigned to $nunber by the
conditional expression.

To repeat: Be careful when you use the == operator

Other Comparison Operators

The == operator is just one of many comparison operators that you can use in conditional
expressions. For a complete list, refer to Day 4.

Two-Way Branching Usingif and el se

When you examine Listing 2.3 (shown previously), you might notice a problem. What
happens if the two numbers are not equal? In this case, the statement

print ("The two nunbers are equal.\n");

iIs not printed. In fact, nothing is printed.

Suppose you want to modify Listing 2.3 to print one message if the two numbers are equal
and another message if the two numbers are not equal. One convenient way of doing
this is with thei f -el se statement.

Listing 2.4 is a modification of the program in Listing 2.3. It uses the i f -el se statement to
print one of two messages, depending on whether the numbers are equal.

Listing 2.4. A program that uses thei f -el se statement.

1. #!/usr/local/bin/perl
2:
3: print ("Enter a nunber:\n");

4: $nunberl = <STDI N>;

a

chop ($nunberl);

6: print ("Enter another nunber:\n");

7: $nunber2 = <STDI N>;

8: chop ($nunber?2);

9: if ($nunberl == $nunber?2) {

10: print ("The two nunbers are equal.\n");

11: } else {

12: print ("The two nunbers are not equal.\n");
13: }

14: print ("This is the last line of the program\n");

$ progran2_4

Enter a nunber:

17

Ent er anot her nunber:

18

The two nunbers are not equal.

This is the last |ine of the program

$

g"”'“! Lines 3-8 are identical to those in Listing 2.3. They read in two numbers, assign
them to $nunber 1 and $nunber 2, and chop their newline characters

Line 9 compares the value stored in $nunber 1 to the value stored in $nunber 2. If the two
values are equal, line 10 is executed, and the fol lowing message is printed:

The two nunbers are equal .

The Perl interpreter then jumps to the first statement after thei f -el se statement-line
14,

If the two values are not equal, line 12 is executed, and the following message is
printed:

The two nunbers are not equal.

The interpreter then continues with the first statement after thei f -el se-line 14.

In either case, the Perl interpreter executes line 14, which prints the fol lowing message:

This is the last |ine of the program

The syntax for thei f -el se statement is

if (expr) {
statenent block 1
} else {

statenent bl ock 2

As in thei f statement, expr is any expression (it is usually a conditional expression).
st at ement _bl ock_1 is the block of statements that the Perl interpreter executes if expr

Is true, and st at enent _bl ock_2 is the block of statements that are executed if expr is
false.

Note that the el se part of thei f -el se statement cannot appear by itself; it must always
followanif.

TIP

In Perl, as you've learned, you can use any amount of
white space to separate tokens. This means that you can
present conditional statements in a variety of ways.

The examples in this book use what is cal led the one true
brace style:

i f ($nunber == 0) {
print ("The nunber is zero.\n");

} else {
print ("The nunber is not zero.\n");
}

In this brace style, the opening brace ({) appears on the
same line as thei f or el se, and the closing brace (})
starts a new line.

Other programmers insist on putting the braces on
separate lines:

i f ($nunber == 0)
{

print ("The nunber is zero.\n");

}

el se

{

print ("The nunber is not zero.\n");

}

Still others prefer to indent their braces:

i f ($nunber == 0)

print ("The nunber is not zero.\n");

}

| prefer the one true brace style because it is both
legible and compact. However, it doesn't really matter
what brace style you choose, provided that you follow
these rules:

The brace style is consistent. Every i f and el se that appears in
your program should have its braces displayed in the same way.

. The brace style is easy to follow.
. The statement blocks inside the braces always should be
indented in the same way.

IT you do not follow a consistent style, and you write
statements such as

if ($nunber == 0) { print ("The nunber is zero"); }

you'll find that your code is difficult to understand,
especial ly when you start writing longer Perl programs

Multi-Way Branching Using el si f

Listing 2.4 (which you've just seen) shows how to write a program that chooses between
two alternatives. Perl also provides a conditional statement, thei f -el si f -el se
statement, which selects one of more than two alternatives. Listing 2.5 il lustrates the
use of el si f.

Listing 2.5. A program that uses thei f -el si f -el se statement.

1. #!/usr/local/bin/perl

3: print ("Enter a nunber:\n");

4: $nunberl = <STDI N>;

5: chop ($nunberl);

6: print ("Enter another nunber:\n");

7: $nunber2 = <STDI N>;

8: chop ($nunber?2);

9: if ($nunmberl == $nunber?2) {

10: print ("The two nunbers are equal.\n");

11: } elsif ($nunberl == $nunber2 + 1) {

12: print ("The first nunber is greater by one.\n");

13: } elsif ($nunberl + 1 == $nunber2) {

14: print ("The second nunber is greater by one.\n");
15: } else {

16: print ("The two nunbers are not equal .\n");

17: }

18: print ("This is the last line of the program\n");

$ progran_5

Enter a nunber:

17

Ent er anot her nunber:

18

The second nunber is greater by one.
This is the last |ine of the program

$

g 'M'Yg You already are familiar with lines 3-8. They obtain two numbers from the
standard input file and assign them to $nunber 1 and $nunber 2, chopping the terminating
newline character in the process

Line 9 checks whether the two numbers are equal. If the numbers are equal, line 10 is
executed, and the fol lowing message is printed:

The two nunbers are equal .

The Perl interpreter then jumps to the first statement after theif -el si f -el se
statement, which is line 18.

If the two numbers are not equal, the Perl interpreter goes to line 11. Line 11 performs
another comparison. It adds 1 to the value of $nunber 2 and compares it with the value of
$nunber 1. If the two values are equal, the Perl interpreter executes line 12, printing
the message

The first nunber is greater by one.

The interpreter then jumps to line 18-the statement following thei f -el si f -el se
statement.

IT the conditional expression in line 11 is false, the interpreter jumps to line 13. Line 13
adds 1 to the value of $nunber 1 and compares it with the value of $nunber 2. If these two
values are equal, the Perl interpreter executes line 14, which prints

The second nunber is greater by one.

on the screen. The interpreter then jumps to line 18.

IT the conditional expression in line 13 is false, the Perl interpreter jumps to line 15 and
executes line 16, which prints

The two nunbers are not equal.

on the screen. The Perl interpreter continues with the next statement, which is line 18.

If you have followed the program logic to this point, you've realized that the Perl
interpreter eventually reaches line 18 in every case. Line 18 prints this statement:

This is the last |ine of the program

The syntax of thei f -el si f -el se statement is as fol lows:

if (expr_1) {
statenent bl ock 1
} elsif (expr_2) {

stat enent _bl ock_2

} elsif (expr_3) {

st at enent _bl ock_3

} else {

defaul t _st at enment bl ock

Here, expr _1, expr _2, and expr _3 are conditional expressions. st at ement _bl ock_1,
statement bl ock_2, statement bl ock_3, and def aul t _st at ement _bl ock are blocks of
statements.

The ... indicates that you can have as many el si f statements as you like. Each el si f
statement has the same form:

} elsif (expr) {

st at enent bl ock

Syntactically, anif -el se statement s justani f -el si f -el se statement with no el si f
parts.

If you want, you can leave out the el se part of thei f -el si f -el se statement, as fol lows:

if (expr_1) {
statenent bl ock 1
} elsif (expr_2) {
st at enent bl ock_2
} elsif (expr_3) {

st at enent bl ock_3

Here, if none of the expressions-expr _1, expr _2, expr _3, and so on-are true, the Perl
interpreter just skips to the first statement following thei f -el si f -el se statement.

NOTE

Theel sif parts of thei f -el si f -el se statement must
appear between thei f part and the el se part

Writing Loops Using the wii 1 e Statement

The conditional statements you've seen so far enable the Perl interpreter to decide
between alternatives. However, each statement in the Perl programs that you have seen
is either not executed or is executed only once.

Perl also enables you to write conditional statements that tell the Perl interpreter to
repeat a block of statements a specified number of times. A block of statements that can
be repeated is known as a loop.

The simplest way to write a loop in Perl is with the whi | e statement. Here is a simple
example of a whi | e statement:

whil e ($nunber == 5) {

print ("The nunber is still 5'\n");

The whi | e statement is structurally similar to theif statement, but it worksin a
slightly different way. Here's how:

. First, the conditional expression located between the parentheses is tested.

. If the conditional expression is true, the statement block between the { and} is
executed. If the expression is false, the statement block is skipped, and the Perl
interpreter jumps to the statement following the whi | e statement. (This is called
exiting the loop.)

. If the statement block is executed, the Perl interpreter jumps back to the start of
the whi | e statement and tests the conditional expression over again. (This is the
looping part of the whi | e statement, because at this point the Perl interpreter is
executing a statement it has executed before.)

The statement block in the whi | e statement is repeated until the conditional expression
becomes false. This means that the statement

whil e ($nunmber == 5) {

print ("The nunber is still 5'\n");

loops forever (which is referred to as going into an infinite loop) if the value of $nunber is
5, because the value of $nunber never changes and the fol lowing conditional expression
is always true:

$nunber == 5

For a more useful example of a whi | e statement-one that does not go into an infinite
loop-take a ook at Listing 2.6.

T |

Listing 2.6. A program that demonstrates the whi | e statement.

1. #!/usr/local/bin/perl

3: $done = O;
4: S$count = 1;
5. print ("This line is printed before the loop starts.\n");

6: while ($done == 0) {

7: print ("The value of count is ", $count, "\n");
8: if ($count == 3) {

9: $done = 1,

10: }

11: $count = $count + 1,

12: }

13: print ("End of |oop.\n");

$ progran_6

This line is printed before the | oop starts.
The value of count is 1

The value of count is 2

The value of count is 3

End of | oop.

$

- Lines 3-5 prepare the program for looping. Line 3 assigns the value 0 to the
varlable $done. (As you'll see, the program uses $done to indicate whether or not to
continue looping.) Line 4 assigns the value 1 to the variable $count . Line 5 prints the
following line to the screen

This line is printed before the |oop starts.

The whi | e statement appears in lines 6-12. Line 6 contains a conditional expression to be
tested. IT the conditional expression is true, the statement block in lines 7-11 is
executed. At this point, the conditional expression is true, so the Perl interpreter
continues with line 7.

Line 7 prints the current value of the variable $count . At present, $count isset to 1. This
means that line 7 prints the following on the screen:

The value of count is 1

Lines 8-10 test whether $count has reached the value 3. Because $count is 1 at the
moment, the conditional expression in line 8 is false, and the Perl interpreter skips to
line 11.

Line 11 adds 1 to the current value of $count, setting it to 2.

Line 12 is the bottom of the whi | e statement. The Perl interpreter now jumps back to
line 6, and the whole process is repeated. Here's how the Perl interpreter continues from

here:

. Line 6: $done == 0 is true, so continue.

. Line 7: Print The val ue of count is 2 on the screen.

« Line 8: $count is 2; $count == 3 is false, so skip to line 11.

. Line 11: 1is added to $count ; $count is now 3.

. Line 12: Jump back to the start of the loop, which is line 6.

. Line 6: $done == 0 is true, so continue.

. Line 7: Print The val ue of count is 3 on the screen.

. Line 8: $count is 3; $count == 3is true, and theif statement block is executed.

. Line 9: $done is set to 1. Execution continues with the first statement after thei f,
which is line 11.

. Line 11: $count is set to 4.

. Line 12: Jump back to line 6.

. Line 6: $done == 0 is now false, because the value of $done is 1. The Perl
interpreter exits the loop and continues with the first statement after whi | e,
which is line 13.

Line 13 prints the fol lowing message on the screen:

End of | oop.

At this point, program execution terminates because there are no more statements to
execute.

The syntax for the whi | e statement is

while (expr) {

st at enent _bl ock

As you can see, the whi | e statement is syntactically similar to thei f statement. expr is
a conditional expression to be evaluated, and st at enent _bl ock is a block of statements
to be executed while expr is true.

Nesting Conditional Statements

Thei f statement in Listing 2.6 (shown previously) is an example of a nested conditional
statement. It is contained inside another conditional statement (the whi | e statement). In
Perl, you can nest any conditional statement inside another. For example, you can have
a whi | e statement inside another whi | e statement, as fol lows:

while (expr_1) {
sonme_st at enent s
while (expr_2) {
i nner _st at enent _bl ock

}

sone_nore_st at enent s

Similarly, you can have ani f statement inside another i f statement, or you can have a
whi | e statement inside ani f statement.

You can nest conditional statements inside el si f and el se parts of i f statements as
well:

if ($nunber == 0) {
sone statenents go here
} elsif ($nunber == 1) {
whil e ($nunber2 == 19) {
here is a place for a statenent bl ock
}
} else {
whil e ($nunber2 == 33) {

here is a place for another statenent bl ock

The braces ({ and }) around the statement block for each conditional statement ensure
that the Perl interpreter never gets confused.

TIP

If you plan to nest conditional statements, it's a good
idea to indent each statement block to indicate how
many levels of nesting you are using. If you write code
such as the following, it's easy to get confused:

while ($done == 0) {

print ("The value of count is", $count, "\n");
if ($count == 3) {

$done = 1;

}

$count = $count + 1;

}

Although this code is correct, it's not easy to see that
the statement

$done = 1;

isactually inside anif statement thatis inside awhil e
statement. Larger and more complicated programs
rapidly become unreadable if you do not indent properly.

L ooping Using theunti1 Statement

Another way to loop in Perl is with the unti | statement. It is similar in appearance to
the whi | e statement, but it works in a slightly different way.

. The whi | e statement loops while its conditional expression is true.
. Theuntil statement loops until its conditional expression is true (that is, it loops
as long as its conditional expression is false).

Listing 2.7 contains an example of the unti| statement.

Listing 2.7. A program that uses the unti| statement.

1. #!'/usr/local/bin/perl

2:

3: print ("What is 17 plus 26?2\n");
4: S$correct_answer = 43; # the correct answer
5: $input _answer = <STDI N>;

6: chop ($input_answer);

7: until ($input_answer == $correct_answer) {
8: print ("Wong! Keep trying!'\n");
9: $i nput _answer = <STDI N>;

10: chop ($i nput_answer);

11: }

12: print ("You' ve got it!\n");

$ progran_7

VWhat is 17 plus 267
39

Wong! Keep trying!
43

You' ve got it!

$

gum.nﬂ Lines 3 and 4 set up the loop. Line 3 prints the fol lowing question on the
screen

VWhat is 17 plus 267?

Line 4 assigns the correct answer, 43, to $correct _answer.

Lines 5 and 6 retrieve the first attempt at the answer. Line 5 reads a line of input and

stores it in $i nput _answer . Line 6 chops off the newline character.

Line 7 tests whether the answer entered is correct by comparing $i nput _answer with
$correct _answer. If the two are not equal, the Perl interpreter continues with lines 8-
10; if they are equal, the interpreter skips to line 12.

Line 8 prints the following on the screen:
Wong! Keep trying!

Line 9 reads another attempt from the standard input file and stores it in
$i nput _answer.

Line 10 chops off the newline character. At this point, the Perl interpreter jumps back
to line 7 and tests the new attempt.

The interpreter reaches line 12 when the answer is correct. At this point, the following
message appears on the screen, and the program terminates:

You' ve got it!
The syntax for the unti| statement is

until (expr) {

st at enent bl ock

As in the whi | e statement, expr is a conditional expression, and st at ement _bl ock is a
statement block.

Summary

Today, you learned about scalar variables and how to assign values to them.

Scalar variables and values can be used by the arithmetic operators to perform the basic
arithmetic operations of addition, subtraction, multiplication, and division. The chop
library function removes the trailing newline character from a line, which enables you
to read scalar values from the standard input file.

A collection of operations and their values is known as an expression. The values
operated on by a particular operator are called the operands of the operator. Each
operator yields a result, which then can be used in other operations.

An expression can be divided into subexpressions, each of which is evaluated in turn.

Today you were introduced to the idea of a conditional statement. A conditional
statement consists of two components: a conditional expression, which yields a result of
either true or false; and a statement block, which is a group of statements that is
executed only when the conditional expression is true.

Some conditional expressions contain the == operator, which returns true if its operands
are numerically equal, and returns false if its operands are not.

The following conditional statements were described today:

. Theif statement, which is executed only if its conditional expression is true
. Thei f -el se statement, which chooses between two alternatives

. Theif-el sif-el se statement, which chooses between multiple alternatives
. The whi | e statement, which loops while a condition is true

. Theuntil statement, which loops until a condition is true

You also learned about nesting conditional statements, as well as about infinite loops
and how to avoid them.

Q&A

Q: Which should I use, the whi | e statement or the unti| statement?

A: It doesn't matter, really; it just depends on which, in your judgment, is easier to
read.

Once you learn about the other comparison operators on Day 4, "More

Operators," you'l I be able to use the whi | e statement wherever you can use an
until statement, and vice versa.

Q: In Listing 2.7, you read input from the standard input file in two separate
places. Is there any way | can reduce this to one?

A: Yes, by using the do statement, which you'll encounter on Day 8, "More Control

Structures."
Q: Do | really need both a $done variable and a $count variable in Listing 2.6?
A: No. On Day 4 you'll learn about comparison operators, which enable you to test

whether a variable is less than or greater than a particular value. At that
point, you won't need the $done variable.

Q: How many el si f parts can |l have inanif -el si f -el se statement?

Effectively, as many as you like. (There is an upper limit, but it's so large that
you are not likely ever to reach it.)

How much nesting of conditional statements does Perl allow? Can | put an
i f inside awhil e thatisinsideanif thatisinside anuntil?

Yes. You can nest as many levels deep as you like. Generally, though, you don't
want to go too many levels down because your program will become difficult to
read.

The logical operators, which you'll learn about on Day 4, make it possible to
produce more complicated conditional expressions. They'll eliminate the need for
too much nesting.

Wor kshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you've learned. Try
and understand the quiz and exercise answers before you go on to tomorrow's lesson.

Quiz

1. Define the following terms:
a. expression
b. operand
c. conditional statement
d. statementblock
e. infinite loop

2. When does a whi | e statement stop looping?

3. When does an unti | statement stop looping?

4. What does the == operator do?

5. What is the result when the following expression is evaluated?
14 + 6 * 3 - 10/ 2

6. Which of the following are legal scalar variable names?
a. $hello
b. $_test
C. $now.is the tine_to come_to the_ aid _of the party
d. $friesé&gravy
€. $96tears
f. $tea for 2

Exercises

1. Write a Perl program that reads in a number, multiplies it by 2, and prints the

result.

2. Write a Perl program that reads in two numbers and does the fol lowing:

o ltprintsError: can't divide by zero if the second number is 0.

o 1T the first number is 0 or the second number is 1, it just prints the first
number (because no division is necessary).

o Inall other cases, it divides the first number by the second number and
prints the result.

. Write a Perl program that uses the whi | e statement to print out the first 10

numbers (1-10) in ascending order.

. Write a Perl program that uses the unti| statement to print out the first 10

numbers in descending order (10-1).

. BUG BUSTER: What is wrong with the fol lowing program? (Hint: there might be

nore than one bug!)

#!/usr/ 1 ocal / bi n/ perl

$val ue = <STDI N>;

if ($value = 17) {

print ("You typed the number 17.\n");

el se {

print ("You did not type the nunber 17.\n");

. BUG BUSTER: What is wrong with the fol lowing program?

#! [/ usr/ 1 ocal / bi n/ perl

program which prints the next five nunbers after the

nunber typed in

$i nput = <STDI N>;

chop ($i nput);

$input = $input + 1; # start with the next nunber;

$input = $termnate + 5; # we want to loop five tines

until ($input == $termnate) ({

print ("The next nunber is ", $termnate, "\n");

e e e e

Chapter 3

Understanding Scalar Values

CONTENTS

. What Is a Scalar Value?
. Integer Scalar Values
o Integer Scalar Value Limitations
. Floating-Point Scalar Values
o Floating-Point Arithmetic and Round-Off Error
. Using Octal and Hexadecimal Notation
o Decimal Notation
o Octal Notation
o Hexadecimal Notation
o Why Bother?
. Character Strings
o Using Double-Quoted Strings
o Escape Sequences
o Single-Quoted Strings
. Interchangeability of Strings and Numeric Values
o Initial Values of Scalar Variables
. Summary
- Q&A
. Workshop
o Quiz

o EXxercises

Today's lesson describes everything you need to know about scalar values in Perl.
Today, you learn about the following:

. Scalar values

. How integers are represented

. Floating-point values

. The octal and hexadecimal notations

. Character strings, and using the double-quote and single-quote characters to
enclose them

. Escape sequences
. The interchangeability of character strings and numeric values

What |sa Scalar Value?

Basical ly, a scalar value is one unit of data. This unit of data can be either a number or a
chunk of text.

There are several types of scalar values that Perl understands. Today's lesson describes
each of them in turn and shows you how you can use them.

|nteger Scalar Values

The most common scalar values in Perl programs are integer scalar values, also known
as integer constants or integer literals.

An integer scalar value consists of one or more digits, optional ly preceded by a plus or
minus sign and optional ly containing underscores.

Here are a few examples:

14
10000000000
-27

1_000_000

You can use integer scalar values in expressions or assign them to scalar variables, as
follows:

$x = 12345;
if (1217 + 116 == 1333) {

statenent bl ock goes here

Integer Scalar Value Limitations

In Perl, there is a limit on the size of integers included in a program. To see what this
limit is and how it works, take a look at Listing 3.1, which prints out integers of various

Listing 3.1. A program that displays integers and il lustrates their size
limitations.

1. #!/usr/local/bin/perl

3: $value = 1234567890;

4: print ("first value is ", $value, "\n");
5: $value = 1234567890123456;

6: print ("second value is ", $value, "\n");
7: $value = 12345678901234567890;

8: oprint ("third value is ", $value, "\n");

JOureui]

$ progran8_1

first value is 1234567890

second val ue is 1234567890123456
third value is 12345678901234567168

$

En.m'sﬂ This program assigns integer scalar values to the variable $val ue, and then
prints $val ue

Lines 3 and 4 store and print the value 1234567890 without any difficulty. Similarly,
lines 5 and 6 successfully store and print the value 1234567890123456.

Line 7 attempts to assign the value 12345678901234567890 to $val ue. Unfortunately, this
number is too big for Perl to understand. When line 8 prints out the value assigned to
$val ue, it prints out

12345678901234567168

As you can see, the last three digits have been replaced with different values.

Here's what has happened: Perl actually stores integers in the floating-point registers
on your machine. In other words, integers are treated as if they are floating-point
numbers (numbers containing decimal points).

On most machines, floating-point registers can store approximately 16 digits before
running out of space. As the output from line 8 shows, the first 17 digits of the number
12345678901234567890 are remembered and stored by the Perl interpreter, and the rest
are thrown away. This means that the value printed by line 8 is not the same as the
value assigned in line 7.

This somewhat annoying limitation on the number of digits in an integer can be found in
almost all programming languages. In fact, many programming languages have an upper
integer limit of 4294967295 (which is equal to 232 minus 1).

The number of digits that can be stored varies from machine to machine. For a more
detailed explanation, refer to the discussion of precision in the following section,
"Floating-Point Scalar Values."

.

WaRNING

An integer constant that starts with a 0 is a special case:

$x = 012345;

The 0 at the beginning of the constant (also known as a
leading zero) tells the Perl interpreter to treat this as an
octal integer constant. To find out about octal integer
constants, refer to the section called "Using Octal and
Hexadecimal Notation" later today

Floating-Point Scalar Values

As you have just seen, integers in Perl actually are represented as floating-point

numbers. This means that an integer scalar value is actually a special kind of floating-
point scalar value.

In Perl, a floating-point scalar value consists of all of the following:

. An optional minus sign (-)

. Asequence of digits, optional ly containing a decimal point
. An optional exponent

Here are some simple examples of floating-point scalar values:

11. 4
-275

-0.3

The optional exponent tells the Perl interpreter to multiply or divide the scalar value
by a power of ten. An exponent consists of all of the following:

. The letter e (Eis also acceptable)
. Anoptional +or -
. Aone-, two-, or three-digit number

The number in the exponent represents the value by which to multiply or divide,
represented as a power of 10. For example, the exponent e+01 tells the Perl interpreter
to multiply the scalar value by 10 to the power of 1, or 10. This means that the scalar
value 8e+01 is equivalent to 8 multiplied by 10, or 80.

Similarly, the exponent e+02 is equivalent to multiplying by 100, e+03 is equivalent to
multiplying by 1,000, and so on. The following scalar values are all equal:

541e+01
54. 1e+02

5.41e+03

A negative exponent tells the Perl interpreter to divide by 10. For example, the value
54e- 01 is equivalent to 54 divided by 10, or 5.4. Similarly, e- 02 tells the Perl interpreter

to divide by 100, e- 03 to divide by 1,000, and so on.

The exponent e+00 is equivalent to multiplying by 1, which does nothing. Therefore, the
following values are equal:

5. 12e+00

5.12

If you want, you can omit the + when you multiply by a power of ten.

5.47e+03

5.47e03

Listing 3.2 shows how Perl works with and prints out floating-point scalar values.

T |

Listing 3.2. A program that displays various floating-point scalar
values.

1: #!/usr/local/bin/perl

3: $value = 34.0;

4. print ("first value is ", $value, "\n");

5: $value = 114. 6e-01;

6: print ("second value is ", $value, "\n");
7: $value = 178.263e+19;

8: print ("third value is ", $value, "\n");

9: $value = 123456789000000000000000000000;

10: print ("fourth value is ", $value, "\n");
11: $value = 1.23e+999;

12: print ("fifth value is ", $value, "\n");

13: $value = 1.23e-999;

14: print ("sixth value is ", $value, "\n");

$ progranB8_2

first value is 34

second val ue is 11.460000000000001
third value is 1.7826300000000001e+21
fourth value is 1.2345678899999999e+29
fifth value is Infinity

sixth value is O

$

[As in Listing 3.1, this program stores and prints various scalar values. Line 3
aSS|gns the floating-point value 34. 0 to $val ue. Line 4 then prints this value. Note that
because there are no significant digits after the decimal point, the Perl interpreter
treats 34. 0 asif it is an integer

Line 5 assigns 114. 6e- 01 to $val ue, and line 6 prints this value. Whenever possible, the
Perl interpreter removes any exponents, shifting the decimal point appropriately. As a
result, line 6 prints out

11. 460000000000001

which is 114. 6e- 01 with the exponent e- 01 removed and the decimal point shifted one
place to the left (which is equivalent to dividing by 10).

Note that the number printed by line 6 is not exactly equal to the value assigned in line
5. This is a result of round-off error. The floating-point register cannot contain the exact

value 11. 46, so it comes as close as it can. It comes pretty close-in fact, the first 16 digits
are correct. This number of correct digits is known as the precision, and it is a property of
the machine on which you are working; the precision of a floating-point number varies

from machine to machine. (The machine on which I ran these test examples supports a
floating-point precision of 16 or 17 digits. This is about normal.)

NOTE

The size of an integer is roughly equivalent to the
supported floating-point precision. If a machine supports
a floating-point precision of 16 digits, an integer can be
approximately 16 digits long.

Line 6 shows that a floating-point value has its exponent removed whenever possible.
Lines 7 and 8 show what happens when a number is too large to be conveniently
displayed without the exponent. In this case, the number is displayed in scientific
notation.

In scientific notation, one digit appears before the decimal point, and all the other
significant digits (the rest of the machine's precision) follow the decimal point. The
exponent is adjusted to reflect this. In this example, the number

178. 263e+19

is converted into scientific notation and becomes

1. 7826300000000001e+21

As you can see, the decimal point has been shifted two places to the left, and the
exponent has, as a consequence, been adjusted from 19 to 21. As before, the 1 at the end is
an example of round-off error.

I an integer is too large to be displayed conveniently, the Perl interpreter converts it
to scientific notation. Lines 9 and 10 show this. The number

123456789000000000000000000000

is converted to

1. 2345678899999999e+29

Here, scientific notation becomes useful. At a glance, you can tell approximately how
large the number is. (In conventional notation, you can't do this without counting the
Zeros.)

Lines 11 and 12 show what happens when the Perl interpreter is given a number that is
too large to fit into the machine's floating-point register. In this case, Perl just prints
thewordinfinity.

The maximum size of a floating-point number varies from machine to machine. Generally,
the largest possible exponent that can be stored is about e+308.

Lines 13 and 14 il lustrate the case of a number having a negative exponent that is too
large (that is, it's too small to store). In such cases, Perl either gets as close as it can or
just prints 0.

The largest negative exponent that produces reliable values is about e- 309. Below that,
accuracy diminishes.

Floating-Point Arithmetic and Round-Off Error

The arithmetic operations you saw on Day 2, "Basic Operators and Control Flow," also

work on floating-point values. On that day, you saw an example of a miles-to-kilometers
conversion program that uses floating-point arithmetic.

When you perform floating-point arithmetic, you must remember the problems with
precision and round-off error. Listing 3.3 il lustrates what can go wrong and shows you
how to attack this problem.

Listing 3.3. Aprogram that il lustrates round-off error problems in
floating-point arithmetic.

1. #!/usr/local/bin/perl

3: $value = 9.01e+21 + 0.01 - 9.01le+21;
4: print ("first value is ", $value, "\n");
5. $value = 9.01e+21 - 9.0l1le+21 + 0.01;

6: print ("second value is ", $value, "\n");

$ progranB8_3
first value is 0

second value is 0.01

$

. Line 3 and line 5 both subtract 9. 01e+21 from itself and add 0. 01. However, as
you can see when you examine the output produced by line 4 and line 6, the order in
which you perform the addition and subtraction has a significant effect

In line 3, a very small number, 0. 01, is added to a very large number, 9. 01e+21. If you
work it out yourself, you see that the result is 9. 01000000000000000000001e+21.

The final 1 in the preceding number can be retained only on machines that support 24
digits of precision in their floating-point numbers. Most machines, as you've seen, handle
only 16 or 17 digits. As a result, the final 1, along with some of the zeros, is lost, and the
number instead is stored as 9. 0100000000000000e+21.

This is the same as 9. 01e+21, which means that subtracting 9. 01e+21 yields zero. The 0. 01
is lost along the way.

Line 5, however, doesn't have this problem. The two large numbers are operated on first,
yielding 0, and then 0. 01 is added. The result is what you expect: 0. 01.

The moral of the story: Floating-point arithmetic is accurate only when you bunch
together operations on large numbers. If the arithmetic operations are on values stored
in variables, it might not be as easy to spot this problem.

$result = $nunberl + $nunber2 - S$nunber 3:

If $nunber 1 and $nunber 3 contain large numbers and $nunber 2 is small, $resul t is likely
to contain an incorrect value because of the problem demonstrated in Listing 3.3.

Using Octal and Hexadecimal Notation

So far, all the integer scalar values you've seen have been in what normally is called
base 10 or decimal notation. Perl also enables you to use two other notations to represent
integer scalar values:

. Base 8 notation, or octal
. Base 16 notation, or hexadecimal (sometimes shortened to hex)

To use octal notation, put a zero in front of your integer scalar value:

$result = 047;

This assigns 47 octal, or 39 decimal, to $resul t.

To use hexadecimal notation, put 0x in front of your integer scalar value, as fol lows:

$result = Oxif;

This assigns 1f hexadecimal, or 31 decimal, to $resul t.

Perl accepts either uppercase letters or lowercase letters as representations of the
digits a through f:

$resul t oxe;

$result OXE;

Both of the preceding statements assign 14 (decimal) to $resul t.

If you are not familiar with octal and hexadecimal notations and would like to learn
more, read the following sections. These sections explain how to convert numbers to
different bases. I you are familiar with this concept, you can skip to the section called
"Character Strings."

Decimal Notation

To understand how the octal and hexadecimal notations work, take a closer look at
what the standard decimal notation actually represents.

In decimal notation, each digit in a number has one of 10 values: the standard numbers 0
through 9. Each digit in a number in decimal notation corresponds to a power of 10.
Mathematically, the value of a digit x in a number is

x * 10 to the exponent n,

where n is the number of digits you have to skip before reaching x.

This might sound complicated, but it's really straightforward. For example, the number
243 can be expressed as fol lows:

. 2*10 to the exponent 2 (which is 200), plus
« 4*10 to the exponent 1 (which is 40), plus
. 3*10 to the exponent 0 (which is 3* 1, which is 3)

Adding the three numbers together yields 243.
Octal Notation

Working through these steps might seem like a waste of time when you are dealing with
decimal notation. However, once you understand this method, reading numbers in other
notations becomes simple.

For example, in octal notation, each digit x in a number is

X * 8 to the exponent n

where x is the value of the digit, and n is the number of digits to skip before reaching x.
This is the same formula as in decimal notation, but with the 10 replaced by 8.

Using this method, here's how to determine the decimal equivalent of 243 octal:

. 2*8to the exponent 2, which is 2 * 64, or 128, plus
. 4*8to the exponent 1, which is 4 * 8, or 32, plus
. 3*8to the exponent 0, whichis3*1, or3

Adding 128, 32 and 3 yields 163, which is the decimal notation equivalent of 243 octal.
Hexadecimal Notation

Hexadecimal notation works the same way, but with 16 as the base instead of 10 or 8. For

example, here's how to convert 243 hexadecimal to decimal notation:

. 2*16 to the exponent 2, which is 2 * 256, or 512, plus
. 4*16 to the exponent 1, which is 4 * 16, or 64, plus
. 3*16 to the exponent 0, whichis3* 1, or 3

Adding these three numbers together yields 579.

Note that the letters a through f represent the numbers 10 through 15, respectively.
For example, here's the hexadecimal number fe in decimal notation:

. 15* 16 to the exponent 1, which is 15 * 16, or 240, plus
. 14 * 16 to the exponent 0, whichis 14 * 1, or 14

Adding 240 and 14 yields 254, which is the decimal equivalent of fe.
Why Bother?

You might be wondering why Perl bothers supporting octal and hexadecimal notation.
Here's the answer: Computers store numbers in memory in binary (base 2) notation, not
decimal (base 10) notation. Because 8 and 16 are multiples of 2, it is easier to represent
stored computer memory in base 8 or base 16 than in base 10. (You could use base 2, of
course; however, base 2 numbers are clumsy because they are very long.)

NOTE

Perl supports base-2 operations on integer scalar values.
These operations, called bit-manipulation operations, are
discussed on Day 4, "More Operators.

Character Strings

On previous days, you've seen that Perl enables you to assign text to scalar variables. In
the following statement, for instance

$var = "This is sone text";

the text This is sonme text isan example of what is called a character string (frequently
shortened to just string). A character string is a sequence of one or more letters, digits,
spaces, or special characters.

The following subsections show you

. How you can substitute for scalar variables in character strings
. How to add escape sequences to your character strings
. How to tell the Perl interpreter not to substitute for scalar variables

NOTE

C programmers should be advised that character strings
in Perl do not contain a hidden null character at the
end of the string. In Perl, null characters can appear
anywhere in a string. (See the discussion of escape
sequences later today for more details.

Using Double-Quoted Strings

Perl supports scalar variable substitution in character strings enclosed by double quotation-
mark characters. For example, consider the fol lowing assignments:

$nunber = 11;

$text = "This text contains the nunber $nunber.";

When the Perl interpreter sees $nunber inside the string in the second statement, it
replaces $nunber with its current value. This means that the string assigned to $t ext is
actually

This text contains the nunmber 11.

The most immediate practical application of this is in the pri nt statement. So far, many of
the pri nt statements you have seen contain several arguments, as in the fol lowing:

print ("The final result is ", $result, "\n");

Because Perl supports scalar variable substitution, you can combine the three arguments
to print into a single argument, as in the following:

print ("The final result is $result\n");

NOTE

From now on, examples and listings that call pri nt use
scalar variable substitution because it is easier to read

Escape Sequences

Character strings that are enclosed in double quotes accept escape sequences for special
characters. These escape sequences consist of a backslash (\) fol lowed by one or more
characters. The most common escape sequence is \ n, which represents the newline
character as shown in this example:

$text = "This is a string ternm nated by a newine\n";

Table 3.1 lists the escape sequences recognized in double-quoted strings.

Table 3.1. Escape sequences in strings.

Escape Description
Sequence

\a Bell (beep)

\b Backspace

\cn The Ctrl+n character

\e Escape

\E Ends the effect of \L,\Uor\Q

\f Form feed

\ Forces the next letter into
lowercase

\L All following letters are
lowercase

\n Newline

\r Carriage return

\Q Do not look for special pattern
characters

\t Tab

\u Force next letter into uppercase

\U All following letters are
uppercase

\v Vertical tab

The \ Qescape sequence is useful only when the string is used as a pattern. Patterns are
described on Day 7, "Pattern Matching."

The escape sequences\ L, \ U, and \ Qcan be turned off by \ E, as fol lows:

$a = "T\LH S IS A\ESTRING'; # sane as "This is a STRI NG'

To include a backslash or double quote in a double-quoted string, precede the backslash
or quote with another backslash:

$resul t "A quote \" in a string";

$resul t "A backslash \\ in a string";

A backslash also enables you to include a $ character in a string. For example, the
statements

$result = 14;

print("The value of \$result is $result.\n");

print the following on your screen:

The val ue of $result is 14.

You can specify the ASCII value for a character in base 8 or octal notation using\ nnn,
where each n is an octal digit; for example:

$result = "\377"; # this is the character 255, or EOF

You can also use hexadecimal notation to specify the ASCII value for a character. To do
this, use the sequence \ xnn, where each n is a hexadecimal digit.

$result = "\ xff"; # this is also 255

Listing 3.4 is an example of a program that uses escape sequences. This program takes a
line of input and converts it to a variety of cases.

Listing 3.4. A case-conversion program.

1. #!/usr/local/bin/perl

3: print ("Enter a line of input:\n");

4: S$inputline = <STDI N>

5: print ("uppercase: \Uinputline\E\n");
6: print ("lowercase: \L$inputline\E\n");

7: print ("as a sentence: \L\u$inputline\E\n");

[Oureui]

$ progranB8_4

Enter a line of input:

tHis I's M/ | NpUT Li NE.

uppercase: THI'S I'S My | NPUT LI NE.

| owercase: this is nmy input |ine.

as a sentence: This is ny input |ine.

$

BNM“ﬂ Line 3 of this program reads a line of input and stores it in the scalar variable

$i nputline

Line 5 replaces the string $i nput | i ne with the current value of the scalar variable

$i nput | i ne. The escape character \ Utells the Perl interpreter to convert everything in
the string into uppercase until it sees a\ E character; as a result, line 4 writes the
contents of $i nput | i ne in uppercase.

Similarly, line 6 writes the input line in all lowercase characters by specifying the
escape character \ L in the string.

Line 7 combines the escape characters\L and\ u. The\ L specifies that everything in the
string is to be in lowercase; however, the \ u special character temporarily overrides this
and tells the Perl interpreter that the next character is to be in uppercase. When this
character-the first character in the line-is printed, the \ L escape character remains in
force, and the rest of the line is printed in lowercase. The resultis as if the input line is
a single sentence in English. The first character is capitalized, and the remainder is in
lowercase.

Single-Quoted Strings

Perl also enables you to enclose strings using the' (single quotation mark) character:
$text = 'This is a string in single quotes';

There are two differences between double-quoted strings and single-quoted strings. The
first difference is that scalar variables are replaced by their values in double-quoted
strings but not in single-quoted strings. The following is an example:

$string = "a string”;
$text = "This is $string"; # becones "This is a string"
$text = '"This is $string'; # remains '"This is $string'

The second difference is that the backslash character, \, does not have a special meaning
in single-quoted strings. This means that the statement

$text = 'This is a string.\n';

assigns the following string to $t ext :

This is a string.\n

The\ character is special in only two instances for single-quoted strings. The first is
when you want to include a single-quote character' in astring.

$text = 'This string contains \', a quote character"';

The preceding line of code assigns the fol lowing string to $t ext :

This string contains ', a quote character

The second instance is to escape the backslash itself.

$text = 'This string ends with a backslash \\';

The preceding code line assigns the fol lowing string to $t ext :

This string ends with a backslash \

As you can see, the double backslash makes it possible for the backslash character (\) to
be the last character in a string.

=

-

WaRrNING

Single-quoted strings can be spread over multiple lines.
The statement

$text = 'This is two
| i nes of text

Is equivalent to the statement
$text = "This is two\nlines of text\n";
This means that if you forget the closing' for a string,

the Perl interpreter is likely to get quite confused
because it won't detect an error until after it starts

H processing the next line H

| nter changeability of Stringsand Numeric Values

As you've seen, you can use a scalar variable to store a character string, an integer, or a
floating-point value. In scalar variables, a value that was assigned as a string can be
used as an integer whenever it makes sense to do so, and vice versa. In the following
example:

$string = "43";
$nunber = 28;
$result = $string + $nunber;

the value of $stri ng is converted to an integer and added to the value of $nunber. The
result of the addition, 71, is assigned to $resul t.

Another instance in which strings are converted to integers is when you are reading a
number from the standard input file. The following is some code similar to code you've
seen before:

$nunber = <STDI N>;
chop ($nunber);

$result = $nunber + 1;

This is what is happening: When $nunber is assigned a line of standard input, it really is
being assigned a string. For instance, if you enter 22, $nunber is assigned the string 22\ n
(the \ n represents the newline character). The chop function removes the \ n, leaving the
string 22, and this string is converted to the number 22 in the arithmetic expression.

1N

WarNING

If a string contains characters that are not digits, the
string is converted to 0 when used in an integer context.
For example:

$result = "hello" * 5;

this assigns 0 to $result, since "hello" becones
0

This is true even if the string is a valid hexadecimal
integer if the quotes are removed, as in the following:

$result = "Oxff" + 1;

In cases like this, Perl does not tell you that anything
has gone wrong, and your results might not be what you
expect.

Also, strings containing misprints might not contain
what you expect. For example:

$result = "12084"; # the letter O not the nunber 0

When converting from a string to an integer, Perl starts
at the left and continues until it sees a letter that is
not a digit. In the preceding instance, 12034 is converted
to the integer 12, not 12034

Initial Values of Scalar Variables

In Perl, all scalar variables have an initial value of the null string, "". This means that
you do not need to define a value for a scalar variable.

#! [/ usr/1ocal / bin/ perl
$result = $undefi ned + 2; # $undefined is not defined

print ("The value of \$result is $result.\n");

This short program is perfectly legal Perl. The output is

The value of $result is 2.

Because $undefi ned is not defined, the Perl interpreter assumes that its value is the
null string. This null string is then converted to 0, because it is being used in an
addition operation. The result of the addition, 2, is assigned to $resul t.

TIP

Although you can use uninitialized variables in your
Perl programs, you shouldn't. If your Perl program gets
to be large (as many complicated programs do), it might be
difficult to determine whether a particular variable is
supposed to be appearing for the first time or whether it
is a spelling mistake that should be fixed. To avoid
ambiguity and to make life easier for yourself, initialize
every scalar variable before using it

Summary

Perl supports three kinds of scalar values: integers, floating-point numbers, and
character strings.

Integers can be in three notations: standard (decimal) notation, octal notation, and
hexadecimal notation. Octal notation is indicated by a leading 0, and hexadecimal
notation is indicated by a leading 0x. Integers are stored as floating-point values and
can be as long as the machine's floating-point precision (usually 16 digits or so).

Floating-point numbers can consist of a string of digits that contain a decimal point and
an optional exponent. The exponent's range can be anywhere from about e- 309 to e+308.
(This value might be different on some machines.) When possible, floating-point numbers
are displayed without the exponent; failing that, they are displayed in scientific
notation (one digit before the decimal point).

When you use floating-point arithmetic, be alert for round-off errors. Performing
arithmetic operations in the proper order-operating on large numbers first-might yield
better results.

You can enclose character strings in either double quotes (") or single quotes ('). Ifa
scalar variable name appears in a character string enclosed in double quotes, the value
of the variable is substituted for its name. Escape characters are recognized in strings
enclosed in double quotes; these characters are indicated by a backslash (\).

Character strings in single quotes do not support escape characters, with the exception
of \\ and\' . Scalar variable names are not replaced by their values.

Strings and integers are freely interchangeable in Perl whenever it is logical ly possible
to do so.

Q&A

Q: IT Perl character strings are not terminated by null characters, how does
the Perl interpreter know the length of a string?

A: The Perl interpreter keeps track of the length of a string as well as its contents.

In Perl, you do not need to use a null character to indicate "end of string."

Q: Why does Perl use floating-point registers for floating-point arithmetic
even though they cause round-off errors?

A: Basically, it's a performance issue. It's possible to write routines that store
floating-point numbers as strings and convert parts of these strings to numbers
as necessary; however, you often don't need more than 16 or so digits of precision
anyway.

Applications that need to do high-speed arithmetic calculations of great
precision usually run on special computers designed for that purpose.

Q: What happens if | forget to call chop when reading a number from the
standard input file?

A: As it happens, nothing. Perl is smart enough to ignore white space at the end of a
line that consists only of a number. However, it's a good idea to get into the
habit of using chop to get rid of a trailing newline at all times, because the
trailing newline becomes significant when you start doing string comparisons.
(You'll learn about string comparisons on Day 4, "More Operators.")

Wor kshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you've learned. Try
and understand the quiz and exercise answers before you go on to tomorrow's lesson.

Quiz

1. Define the following terms:
a round-of f error
b octal notation
C preci sion
d scientific notation

2. Convert the following numbers from octal notation to decimal:
a 0377
b 06
C 01131

3. Convert the following numbers from hexadecimal notation to decimal notation:

a Oxf f
b 0Ox11

C Oxbead

4. What does the following line print?
print ("I am bored\ Db\ b\ b\b\bhappy!\n");

5. Suppose the value of $numis 21. What string is assigned to $t ext in each of the
following cases?

a $text = "This string contains $num";
b $text = "\\$numis ny favorite nunber.";
c $text = "Assign \$numto this string.';
6. Convert the following numbers to scientific notation:
a 43. 71
b 0. 000006e- 02
C 3
d -1.04
Exercises

1. Write a program that prints every number from 0 to 1 that has a single digit after
the decimal place (that s, 0.1, 0.2, and so on).
2. Write a program that reads a line of input and prints out the following:
o 1 if the line consists of a non-zero integer
o 0 if the line consists of 0 or a string
(Hint: Remember that character strings are converted to 0 when they are
converted to integers.)
3. Write a program that asks for a number and keeps trying until you enter the
number 47. At that point, it prints Correct! and rings a bell.

4. BUG BUSTER: What is wrong with the fol lowing program?
#! /usr/ 1 ocal / bi n/ perl
$i nputline = <STDI N>;

print (‘here is the value of \$inputline\', ": $inputline");
5. BUG BUSTER: What is wrong with the fol lowing code fragment?

$nunl = 6. 02e+23;

$nun? = 11. 4;

$nunB = 5.171e+22;

$numd = -2.5;

$result = $nunl + $nun? - $nunB + $nun¥;
6. BUG BUSTER: What is wrong with the following statement?
$result = "26" + "Oxce" + "1";

e e e

Chapter 4

More Operators

CONTENTS

Using the Arithmetic Operators
o EXponentiation
o The Remainder Operator
o Unary Negation
. Using Comparison Operators
o Integer-Comparison Operators
o String-Comparison Operators

o String Comparison Versus Integer Comparison

o Comparison and Floating-Point Numbers
. Using Logical Operators

o Evaluation Within Logical Operators

o Logical Operators as Subexpressions
. Using Bit-Manipulation Operators

o What Bits Are and How They Are Used

o The Bit-Manipulation Operators
. Using the Assignment Operators

o Assignment Operators as Subexpressions
. Using Autoincrement and Autodecrement

o The Autoincrement Operator Pre-Increment

o The Autoincrement Operator Post-Increment

o The Autodecrement Operator
o Using Autoincrement With Strings

. The String Concatenation and Repetition Operators

o The String-Concatenation Operator
o The String-Repetition Operator
o Concatenation and Assignment
. Other Perl Operators
o The Comma Operator
o The Conditional Operator
. The Order of Operations
o Precedence
o Associativity

o Forcing Precedence Using Parentheses

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

On Day 2, "Basic Operators and Control Flow," you learned about the following
operators:

. The arithmetic operators +, -, *, and /
. The comparison operator ==
. The assignment operator =

Today, you learn about the rest of the operators that Perl provides, as well as about
operator associativity and precedence. The operators are

. The arithmetic operators **, % and - (unary negation)
. The other integer- and string-comparison operators

. The logical operators

. The bit-manipulation operators

. The assignment operators

. Autoincrement and autodecrement

. Concatenating and repeating strings

. The comma and conditional operators

Using the Arithmetic Operators

The arithmetic operators that you have seen so far-the +, -, *, and / operators-work the
way you expect them to: They perform the operations of addition, subtraction,
multiplication, and division.

Perl also supports three other arithmetic operations:

. Exponentiation
. The modulo or remainder operation
. Unary negation

Although these operators aren't as intuitively obvious as the ones you've already seen,
they are quite easy to use.

Exponentiation

The exponentiation operator, **, provides a convenient way to multiply a number by itself
repeatedly. For example, here is a simple Perl statement that uses the exponentiation
operator:

$x = 2 ** 4;

The expression 2 ** 4 means "take four copies of two and multiply them." This statement
assigns 16 to the scalar variable $x.

Note that the following statements are equivalent, but the first statement is much more
concise:

$x
$x

2 ** 7,

2 * 2% 2% 2*2*2* 2

When an exponentiation operator is employed, the base value (the value to the left of
the **) is the number to be repeatedly multiplied. The number to the right, called the
exponent, is the number of times the multiplication is to be performed. Here are some other
simple examples of the exponentiation operator:

$x = 9 ** 2; # 9 squared, or 81
$x = 2 ** 3; #2*2* 2, or 8
$x = 43 ** 1; # this is just 43

The ** operator also works on the values stored in variables:

$x = Py ** 2;

Here, the value stored in $y is multiplied by itself, and the result is stored in $x. $y is not
changed by this operation.

$x = 2 ** By;

In this case, the value stored in $y becomes the exponent, and $x is assigned 2 multiplied
by itself $y times.

You can use the exponent operator with non-integer or negative exponents:

2 ** -5 # this is the fraction 1/32

5 ** 2.5 # this is 25 * the square root of 5

Listing 4.1 shows an example of a simple program that uses the exponential operator. It
prompts for a number, $exponent , and printsout 2 ** $exponent .

Listing 4.1. A program that prints out the powers of two.

1. #!'/usr/local/bin/perl

3: # this program asks for a nunber, n, and prints 2 to the

4. # exponent n

6: print ("Enter the exponent to use:\n");
7: $exponent = <STDI N>;

8: chop ($exponent);

9: print ("Two to the power $exponent is ",

10: 2 ** $exponent, "\n");

[Oureu]

$ programt_1
Enter the exponent to use:
16

Two to the power 16 is 65536

M‘.ﬂ The program shown in Listing 4.1 is useful if you have to use, or be aware of,
numbers such as 4,294,967,295 (the largest number that can be stored in a 32-bit unsigned
integer) and 2,147,483,647 (the largest number that can be stored in a 32-bit signed

integer). The former is equivalentto2 ** 32 - 1, and the latter is equivalentto2 **
31 - 1

Don‘t

DON'T use the exponent operator with a negative base
and a non-integer exponent:

(-5) ** 2.5 # error

The result of this expression is a complex (non-real)
number (just as, for instance, the square root of -2 is a
complex number). Perl does not understand complex
numbers.

DON'T produce a result that is larger than the largest
floating-point number your machine can understand:

10 ** 999999 # error

In this example, the exponent is too large to be stored on
most machines.

The Remainder Operator

The remainder operator retrieves the remainder resulting from the division of one integer
by another. Consider the fol lowing simple example:

$x = 25 % 4;

In this case, 25 divided by 4 yields 6, with a remainder of 1. The remainder, 1, is assigned to
$X.

The %operator does not work on values that are not integers. Non-integers are
converted to integers, as fol lows:

$x = 24.77 % 4.21; +# sane as 25 4

Because division by 0 is impossible, you can't put a 0 to the right of a %operator.

$x = 25 % 0; # error: can't divide by 0

$x = 25 % 0. 1; # error: 0.1 is converted to O

Unary Negation

The unary negation operator is a - character in front of a single value. (This distinguishes it
from the subtraction operator, which appears between two values.) It is equivalent to
multiplying the value by -1, as il lustrated by this example:

- 5; # identical to the integer -5

- $y; # equivalent to $y * -1

Using Comparison Operators

On Day 2, "Basic Operators and Control Flow," you learned about the equality
comparison operator (==), which compares two values and tests whether they are equal.

$x = %a == $b’

Recall that the value of $x depends on the values stored in $a and $b:

. Ifsa equals $b, $a == $b is true, and $x is assigned a nonzero value.
. If$aisnotequal to $b, $a == $b is false, and $x is assigned 0.

The == operator is an example of a comparison operator. Comparison operators are most
commonly used in control statements such as the i f statement, as fol lows:

if ($a == $b) {

print("$a is equal to $b\n");

In Perl, the comparison operators are divided into two classes:

. Comparison operators that work with numbers
. Comparison operators that work with strings

| nteger -Comparison Operators

Table 4.1 defines the integer-comparison operators available in Perl.

Table 4.1. Integer-comparison operators.

Operator |[Description

< Less than

> Greater than

== Equal to

<= Less than or equal to

>= Greater than or equal to

I= Not equal to

<=> Comparison returning 1, 0, or -
1

Here are simple examples of each of the first six operators in Table 4.1:

$x < 10 # true if the value of $x is less than 10
$x > 10 # true if $x is greater than 10

$x == 10 # true if $x is equal to 10

$x <= 10 # true if $x is less than or equal to 10

$x >= 10 # true if $x is greater than or equal to 10
$x 1= 10 # true if $x is not equal to 10

Each of these operators yields one of two values:

. True, or nonzero
. False, or zero

The <=> operator is a special case. Unlike the other integer comparison operators, <=>
returns one of three values:

. 0, if the two values being compared are equal
. 1,if the first value is greater
. -1, if the second value is greater

For example, consider the following statement:
Py = $x <=> 10;

These are the possible results:

. If $x is greater than 10, the first value in the comparison is greater, and $y is
assigned 1.

. If $x is less than 10, the second value in the comparison is greater, and $y is
assigned -1.

. If$x isequal to 10, $y is assigned 0.

Integer Comparisons and Readability

In any given statement, it's best to use the comparison that can be most easily read. For
example, consider the following:

if (3.2 < $x) {

conditionally executed stuff goes here

Although the expression 3. 2 < $x< is perfectly valid, it isn't easy to read because
variables usual ly appear first in comparisons. Instead, it would be better to use

if ($x >= 3.2) {

because this is easier to understand. I'm not sure exactly why this is true; | think it's
related to the way the English language is spoken. (Normally, we say, "If | had five
dollars, I'd buy some milk," instead of, "If five dollars had I, I'd buy some milk," even
though both are correct.)

String-Comparison Operators

For every numeric-comparison operator, Perl defines an equivalent string-comparison
operator. Table 4.2 displays each string-comparison operator, the comparison it performs,
and the equivalent numeric-comparison operator.

Table 4.2. String- and numeric-comparison operators.

String Comparison operation Equivalent numeric
operator operator
| t Less than <
gt Greater than >
eq Equal to ==
l e Less than or equal to <=
ge Greater than or equal to ||>=
ne Not equal to I =
cnp Compare, returning 1,0, [|<=>
or -1

Perl compares strings by determining their places in an alphabetical order. For example,
the string aaa is less than the string bbb, because aaa appears before bbb when they are
sorted alphabetically.

Here are some examples of string-comparison operators in action:

$result = "aaa" It "bbb"; # result is true
$result = "aaa" gt "bbb"; # result is false
$result = "aaa" eq "bbb"; # result is fal se
$result = "aaa" |le "aaa"; # result is true
$result = "aaa" ge "bbb"; # result is false
$result = "aaa" ne "aaa"; # result is fal se
$result = "aaa" cnp "bbb"; # result is -1

If you are familiar with the C programming language, you might have noticed that the
behavior of the cnp operator is identical to that of the C function strcnp().

String Comparison Versus Integer Comparison

You might be thinking: If strings and integers are equivalent in Perl, why do we need

two kinds of comparison operators?

To answer this, consider the strings 123 and 45. The result when these two strings are
compared depends on whether a string or integer comparison is being performed.

"123" < "45";

$resul t

$resul t "123" |t "45";

In the first statement, the strings 123 and 45 are converted to integers, and 123 is
compared to 45. The result is false and $resul t is assigned 0, because 123 is not less than
45,

In the second statement, 123 is alphabetical ly compared to 45. Because 123 is
alphabetical ly less than 45, the result in this case is true, and $resul t is assigned a
nonzero value.

Because these results are different, you must ensure that you are using the proper
comparison operator every time. If you don't, your program can contain errors that are
not easy to spot. For instance, consider the following:

$varl = "string 1";
$var2 = "string 2";
$result = $varl == $var2; # this statenent is bad

Because == is a numeric-comparison operator, the valuesstring 1L andstring 2 are
converted to integers before the comparison is performed. Because both strings are non-
numeric, they are both converted to the integer 0, and the fol lowing comparison becomes
true:

$varl == $var?2

This is probably not what you want.
Comparison and Floating-Point Numbers

There is one thing to keep in mind when you use comparison operators: Floating-point
numbers don't always behave properly in comparisons.

Take a look at Listing 4.2.

Listing 4.2. A program that contains a floating-point comparison.

1: #!/usr/local/bin/perl

2:
3: $valuel = 14.3;
4: $value2 = 100 + 14.3 - 100;

5. if ($valuel == $value2) {
6: print("value 1 equals value 2\n");
7: } else {

8: print("value 1 does not equal value 2\n");

$ programt_2
val ue 1 does not equal value 2

$

BNM‘“ﬂ At first glance, you might think that $val uel and $val ue2 are identical.
However, when you run this program, you get the following:

val ue 1 does not equal value 2

What is wrong? To find out, print out the values of $val uel and $val ue2 before doing the
comparison.

#!/usr/ | ocal / bin/perl

$val uel 14. 3;

$val ue2 100 + 14.3 - 100;

print("value 1 is $valuel, value2 is $value2\n");
if ($val uel == $val ue2) {

print("value 1 equals value 2\n");
} else {

print("value 1 does not equal value 2\n");

When you run this program, you get the following output:

value 1 is 14.300000000000001, value 2 is 14.299999999999997

val ue 1 does not equal value 2

Well, Perl isn't lying: $val uel and $val ue2 are different. What happened?

To understand what's going on, consider what happens when you take an ordinary
calculator and tell it to divide 8 by 3. The actual answer is

2.6666666. . .

with the number of 6s being infinite. Because your calculator can't display an infinite
number of 6s, what it displays is something like the following:

2.6666666667

This is as close to the actual number as your calculator can get. The difference between
the actual number and the number displayed is an example of a round-off error.

Round-off errors often occur when Perl (or almost any other programming language)
stores a floating-point number or adds a number to a floating-point number. The
statement

$val uel = 14. 3;

actually assigns

14. 300000000000001

to $val uel, because 14. 3 cannot be exactly represented in the machine's floating-point
storage. When 100 is added to this number and subtracted again, the result is

14. 299999999999997

Note that both numbers are very close to 14.3 but aren't exactly 14.3 due to round-off
errors. What's worse, each number is affected by a different set of round-off errors, so
the two numbers are not identical.

The moral of the story? Be very careful when you use floating-point numbers in
comparisons, because round-off errors might affect your results.

Using L ogical Operators

The comparison operators you've seen so far are sufficient if you need to test for only
one condition before executing a particular code segment, as in this example:

if ($value == 26) {

the code to execute if the condition is true

Suppose, however, that a particular section of code is to be executed only when a
variety of conditions are true. You can use a sequence of i f statements to test for the
conditions, as follows:

if ($valuel == 26) {
if ($value2 > 0) {
if ($stringl eq "ready") {

print("all three conditions are true!\n");

This is tiresome to write and not particularly easy to read.

Fortunately, Perl provides an easier way to deal with multiple conditions: the logical
operators. The following logical operators are defined:

$a || $b # logical or: true if either is nonzero
$a && $b # logical and: true only if both are nonzero
I $a # logical not: true if $a is zero

Perl 5 also defines these logical operators:

$a or $b # anot her form of |ogical or

$a and $b # anot her form of |ogical and

not %$a # anot her form of | ogical not

$a xor $b # logical xor: true if either $a or $b is nonzero,

but not both

The or, and, and not operators listed are identical to| |, &, and !, except that their
precedence is lower. (Operator precedence determines the order in which operators are
evaluated, and is discussed later today.)

In each case, the result of the operation performed by a logical operator is nonzero if
true and 0 if false.

$a = 5;

$b = 0;

$a || $b; # true: $a is not zero

$b || $a; # al so true

$a && $b; # false: $b is zero

I $a; # false: $a is nonzero, so ! $a is zero

I $b; # true: $b is zero, so ! $b is nonzero

These logical operators enable you to test for multiple conditions more conveniently.
Instead of writing, for example, this code:

if ($valuel == 26) {
if ($value2 > 0) {
if ($stringl eq "ready") {

print("all three conditions are true!\n");

you now can write this code instead:

if ($value == 26 && $value2 > 0 && $stringl eq "ready") {

print("all three conditions are truel\n");

In each case, the result is the same: the pri nt operation is performed only when $val ue is
26, $val ue2 is greater than 0, and $stri ngl is "ready."

Evaluation Within L ogical Operators

When Perl sees a logical AND operator or a logical OR operator, the expression on the
left side of the operator is always evaluated first. For example, consider the following:

$a = 0;
$b = 106;

$result = $a && $b

When Perl is evaluating the expression $a && $b, it first checks whether $a is 0. If $a is 0,
$a && $b must be false regardless of the value of $b, so Perl doesn't bother checking the
value of $b. (This is cal led short-circuit evaluation.)

Similarly, in the following example, Perl doesn't bother checking $b, because $a is
nonzero and therefore $a || $b must be true:

$a = 43;
$b = 11;
$result = $a || $b

You can take advantage of the order of evaluation of expressionsin || or & to
safeguard your code.

$x == 0 || By / $x > 5

Here is how the preceding statement protects you from division-by-zero errors:

. If$xisnoto, $x == 0is false, so Perl evaluates $y / $x > 5. This cannot produce a
division-by-zero error, because $x is guaranteed to be some value other than 0.

« IT$xis0,$x == 0 is true. This means that
$x == 0 || $y / $x > 5
is true, so Perl doesn't bother evaluating the expression to the right of the||. As

a result, the expression
$y /| $x > 5
is not evaluated when $x is 0, and the division-by-zero error is avoided.

L ogical Operators as Subexpressions

Expressions that contain logical operators can be contained in larger expressions. The
following is an example:

$nyval = $a || $b || $c;

Here, Perl evaluates the expression $a || $b || $c and assigns its value to $nyval .

To understand the behavior of this statement, recall that the | | operator evaluates its
subexpressions in the order given, and evaluates a subexpression only if the previous
subexpression is zero. This means that $b is evaluated only if $a is zero.

When the logical OR operator is used in a larger expression, its value is the last
subexpression actual ly evaluated, which is the first subexpression of the logical OR
operator that is nonzero. This means that

$nyval = $a || $b || $c;

is equivalent to

if ($a != 0) {
$nyval ue = $a;
} elsif ($b 1= 0) {
$myval ue = $b;
} else {

$nyval ue = $c;

The logical AND operator works in the same way, but isn't as useful. The statement

$myval = $a && $b && $c;

is equivalent to

if ($a == 0) {
$nyval ue = $a;

} elsif ($b == 0) {

$b;

$nyval ue

} else {

$nmyval ue = $c;

This means that $nyval is set to either 0 or the value of $c.
Using Bit-M anipulation Operators

Perl enables you to manipulate the binary digits (or bits) of an integer. To understand
how Perl does this, first look at what a bit is and how computers store integers. Once you
understand how bits work, you can easily figure out how the bit-manipulation operators
work. (If you are familiar with binary notation and the computer representation of an
integer, feel free to skip the following section.)

What Bits Areand How They Are Used

On Day 3, "Understanding Scalar Values," you learned that Perl understands three
different notations for integers:

. Standard notation, or base 10
. Octal notation, or base 8
. Hexadecimal notation, or base 16

However, when a computer stores an integer, it uses none of these notations; instead, it
uses base 2, or binary notation.

In binary notation, every number is represented as a series of 0s and 1s. For instance, the
number 124 is represented as

01111100

To understand how to get from base-10 notation to binary notation, recall what the
number 124 represents. When we write "124," what we really mean is the following:

« 4multiplied by 1, plus
. 2multiplied by 10, plus
« 1 multiplied by 100

In grade school, your teacher probably said these digits represented the "ones place,"” the
"tens place,” and the "hundreds place.” Each "place” is ten times larger than the place to
Its right. This means that you also can think of 124 as fol lows:

« 4 multiplied by 1 (or 10 to the exponent 0), plus
. 2multiplied by 10 to the exponent 1, plus
. 1 multiplied by 10 to the exponent 2

In binary notation, you can use this same method, but replace the 10s with 2s. Here's how
to use this method to figure out that the binary number 01111100 is equivalent to 124 in
standard notation. Starting from the right, you have:

« Omultiplied by 2 to the exponent 0, which is 0
. Omultiplied by 2 to the exponent 1, which is 0
1 multiplied by 2 to the exponent 2, which is 4
1 multiplied by 2 to the exponent 3, which is 8
1 multiplied by 2 to the exponent 4, which is 16
1 multiplied by 2 to the exponent 5, which is 32
. 1 multiplied by 2 to the exponent 6, which is 64

. Omultiplied by 2 to the exponent 7, which is 0
Adding 2, 8, 16, 32, and 64 gives you 124.

Each of the Os and 1s in the binary number 01111100 is called a bit (which is short for
binary digit). Each bit can have only two possible values: 0 or 1.

In computers, integers are stored as a sequence of bits. This sequence of bits is normally 8,
16, or 32 bits long, depending on the size and configuration of your computer. In the
examples in today's lesson, 8-bit integers are assumed; to convert an 8-bit binary number
to a 16-bit binary number, just add eight zeros to the left. For example, the following
numbers are equivalent:

01111100 # 124 as an 8-bit integer

0000000001111100 # 124 as a 16-bit integer

The examples in today's lesson use 8-bit integers. The Perl bitwise operators will work on
integers of any size.

The Bit-Manipulation Operators

The following bit-manipulation operators are supported in Perl:

« The & (bitwise AND) operator

. The| (bitwise OR) operator

. The ~ (bitwise XOR or "exclusive or") operator

« The ~ (bitwise NOT) operator

. The << (left shift) and >> (right shift) operators

The Bitwise AND Operator

In Perl, the & operator represents the bitwise AND operation. This operation works as
follows:

. The value to the left side of the & (also called the left operand of the & operation)
IS converted to an integer, if necessary.

. The value to the right side of the & (the right operand) also is converted to an
integer.

. Each bit of the left operand is compared to the corresponding bit of the right
operand.

. Ifapair of corresponding bits both have the value 1, the corresponding bit of the
resultisset to 1. Otherwise, the corresponding bit of the result is set to 0.

This might sound complicated, but when you take a look at an example, you'll see that
it's pretty easy to figure out. For instance, consider the following:

$result = 124.3 & 99;

First, the left operand, 124.3, is converted to an integer, becoming 124. (The right
operand, 99, does not need to be converted.) Next, take a look at the binary
representations of 124 and 99:

01111100 # this is 124 in binary

01100011 # this is 99 in binary

When you examine each pair of bits in turn, you can see that only the second and third
pairs (from the left) are both 1. Thus, the & operation yields the following binary result:

01100000

This is 96 in standard notation. As a consequence, the statement

$result = 124.3 & 99;

assigns 96 to $resul t.

Don‘t

DO use the & operator with strings, provided the strings
can be converted to numbers, as fol lows:

$result = "124.3" & "99";

Remember: Strings and integers are interchangeable in
Perl.

DON'T confuse the & operator with the && operator. The
&& operator performs a logical AND operation, not a
bitwise AND operation. For example, the statement

$result = 124.3 && 99;

assigns a nonzero value to $resul t (because 124.3 and 99
are both nonzero). This nonzero value is not likely to be
the result you want.

DON'T use the & operator with negative integers, because
Perl will convert them to unsigned integers, and you
won't get the result you want.

The Bitwise OR Oper ator

The bitwise OR operator, | , also compares two integers one bit at a time. However, in the

bitwise OR operation, a result bit is 1 if either of the corresponding bits in the operands is
1.

To see how this works, ook at another example:

$result = 124.3 | 99;

Here's how this operation is performed:

. As before, the two operands are converted to integers if necessary. The operands
become 124 and 99; in binary representation, these are, as before,

01111100

01100011

. Each bit of the left operand is compared with the corresponding bit in the right
operand. If either of the corresponding bits is 1, the corresponding result bit is 1.

In this example, every bit becomes 1 except the first one, because at least one of each of
the other pairsis a 1. Therefore, the result is

01111111

which translates to 127. This means that the fol lowing statement assigns 127 to $resul t:

$result = 124.3 | 99;

Don‘t

DO make sure you are using the proper bitwise operator.
It's easy to slip and assume you want bitwise OR when you
really want bitwise AND. (Trust me.)

DON'T confuse the | operator (bitwise OR) with the | |
operator (logical OR).

The Bitwise XOR Operator

The bitwise XOR ("exclusive or") operator, ~, is similar to the bitwise OR operator, but it's
a little more demanding. In the bitwise OR operation, a result bit is 1 if either of the
corresponding bits in the operands is 1. In the bitwise XOR operation, a result bitis 1 if
exactly one of the corresponding bits in the operands is 1.

Here is an example of the bitwise XOR operation:

$result = 124.3 ~ 99;

This works as fol lows:

. Asbefore, 124.3 is converted to 124, and the binary representations of the two
operands are as fol lows:

01111100 # this is 124

01100011 # this is 99

. Each bit of the left operand is compared with the corresponding bit of the right
operand. The corresponding result bit is set to 1 if exactly one of the bits in the
operands is 1.

In this case, the result is

00011111

which is 31. To work through how you get this result, consider the following:

. The first bit of the left operand and the first bit of the right operand are both 0.
This means the first bit of the result is 0.

. The second bit of the left operand and the second bit of the right operand both are
1. Therefore, the second bit of the resultis 0, not 1.

. The same applies for the third bits: Both are 1, so the result bit is 0.

. The fourth bit of the left operand is 1, and the fourth bit of the right operand is 0.
Here, exactly one of the bits is 1, so the result bit becomes 1.

. Same for the fifth and sixth pairs: The first bit is 1 and the second is 0, so the result
is 1.

. The seventh bit of the left operand is 0, and the seventh bit of the right operand is
1. Again, exactly one of the bits is 1, and the result bit is also 1.

. Same for the eighth pair: The first bit is 0, the second is 1, so the resultis 1.

From this, you can determine that the fol lowing statement assigns 31 to $resul t :

$result = 124.3 ~ 99;

The Bitwise NOT Operator

Unlike the other bitwise operators you've seen so far, the bitwise NOT operator, ~, is a
unary operator, meaning it works on only one operand.

The way it works is straightforward, as fol lows:

. The operand is converted to an integer, if necessary.
. Each bit of the operand is examined. If a bit is 0, the corresponding result bit is set
to 1, and vice versa.

For example, consider the following:

$result = ~99;

The binary representation of 99 is

01100011

Applying the bitwise NOT operation to this number produces

10011100

This number, in standard notation, is 156. Therefore, the fol lowing statement assigns 156
To $resul t:

$result = ~99;

Note that the number of bits used to store an integer affects the results produced by the
~ operator. For example, if integers are stored in 16 bits on your computer, the number 99
Is represented as

0000000001100011

This means that applying ~ to this number yields

1111111110011100

which is 65436 in standard notation. As a consequence, the statement

$result = ~99;

assigns 65436, not 156, to $resul t. (On a computer with 32-bit integers, the value assigned
is 4294967196.)

The Shift Operators

Perl enables you to shift the bits of an integer using the << (shift left) and >> (shift
right) operators. For example, in the statement

$result = $x >> 1;

every bit of the value stored in $x is shifted one place to the right, and the result is
assigned to $resul t ($x itself is not changed).

To see how this works, consider the fol lowing example:

$result = 99 >> 1;

As you saw earlier, the binary representation of 99 is

01100011

Shifting every bit right one place yields

00110001

Note that a 0 is added at the far left, and the bit at the far right disappears.

Because 00110001 in binary notation is the same as 49 in standard notation, the
following statement assigns 49 to $resul t:

$result = 99 >> 1;

The <<, or shift-left, operator works in the same way:

$result = 99 << 1;

The shift-left operator works as fol lows:

01100011 # the binary representation of 99

11000110 # after shifting left 1 bit

The result of the shift is 198, which is assigned to $resul t .

Don‘t

DO remember that when you use the >> operator, the bits
on the right are lost. For example:

$resultl
$result?2

17 >> 1;
16 >> 1;

In this case, $resul t 1 and $resul t 2 are the same value, 8.
This is because the rightmost bit is shifted out in both
cases.

DON'T shift left too far, or you might not get the result
you want. For example, if you are using 16-bit integers,
the statement

$result = 35000 << 1;

does not assign 70000 to $resul t as you might think it
would because the largest value that can be stored in a
16-bit integer is 65536.

Shifting and Powersof 2

In the following statement, the variable $resul t is assigned the value 49:

$result = 99 / 2;

Take a look at the binary representations of 99 and 49:

01100011 # 99 in binary form

00110001 # 49 in binary form

As you can see, dividing by 2 is identical to shifting right one bit-in each case, every bit is
moved one place to the right. Similarly, shifting right two bits is equivalent to dividing
by 4:

$result = 99 / 4; # $result is assigned 24
01100011 # 99 in binary

00011000 # 24 in binary

Multiplying by 4 is similar to shifting left two bits:

$result = 17 * 4; # $result is assigned 68
00010001 # 17 in binary

01000100 # 68 in binary

The general rules are as fol lows:

. Shifting left n bits, where n is some number greater than 0, is equivalent to
multiplying by 2**n.

. Shifting right n bits, where n is some number greater than 0, is equivalent to
dividing by 2**n.

In the early days of programming, many programmers used shift operators in place of
multiplication and division wherever possible, because the shift operations were usually
more efficient. (In fact, some compilers would optimize their code by converting
multiplication and division to shifts.) Today, it's usual ly best to use the shift operators
when you are manipulating bits, and to use the multiplication and division operators
when you're actually doing arithmetic. This will make your programs easier to
understand.

Using the Assignment Operators

As you saw on Day 2, the assignment operator = associates, or assigns, a value to a
variable. For example, the statement

$result = 42;

assigns the value 42 to the variable $resul t.

The = operator can appear more than once in a single statement. For example, in the
statement

$val uel = $value2 = "a string";

the character string a string is assigned to both $val uel and $val ue2.

Perl also supports other assignment operators, each of which combines an assignment

with another operation. For example, suppose that you want to add a value to a scalar
variable and assign the result to the following variable:

$var = $var + 1;

Another way to write this is with the += assignment operator:

$var += 1;

This statement adds the value 1 to the existing value of $var.

An assignment operator exists for just about every bitwise operator and arithmetic
operator that Perl supports. Table 4.3 lists the assignment operators supported in Perl.

Table 4.3. The assignment operators.

Operator |Operations performed

= Assignment only

+= Addition and assignment

-= Subtraction and assignment

*= Multiplication and
assignment

/= Division and assignment

%= Remainder and assignment

*k= Exponentiation and
assignment

&= Bitwise AND and assignment

|= Bitwise OR and assignment

N= Bitwise XOR and assignment

Table 4.4 shows examples of the assignment operators, along with equivalent statements
that use operators you've seen earlier.

Table 4.4. Examples of assignment operators.

Statement Equivalent Perl
using assignment operator
statement

$a = 1; none (basic assignment)
$a -= 1 $a = $a - 1;

$a *= 2 $a = $a * 2;

$a /= 2; $a = $a / 2;

$a % 2 $a = $a % 2;

$a **= 2; $a = $a ** 2;

$a &= 2; $a = %$a & 2;

$a | = 2; $a = $a | 2;

$a "= 2; $a = $a " 2;

Assignment Operators as Subexpressions

Any expression that contains an assignment operator can appear on the left side of
another assignment operator. The following is an example:

($a = $b) += 3;

In cases such as this, the assignment enclosed in parentheses is performed first. This
assignment is then treated as a separate subexpression whose value is the variable to
which it is being assigned. For example, $a = $b has the value $a.

This means that the statement shown previously is equivalent to the following two
statements:

$a = $b;

$a += 3;

TIP

Don't use assignments in this way unless you absolutely
have to. At first glance, the statement
($a = $b) += 3;

appears to add 3 to $b as well as to $a.

Using Autoincrement and Autodecr ement

So far, you've seen two ways to add 1 to a scalar variable:

$a = $a + 1;

$a += 1;

The first method uses the standard assignment operator = and the addition operator +,
and the second method uses the addition assignment operator +=.

Perl also supports a third method of adding 1 to a scalar variable: the autoincrement
operator, or ++. Here are some examples of the ++ operator in action:

$Pa++;
++%a;
$result = $a++;

$result2 = ++%a;

In each case, the ++ operator tells Perl to add 1 to the value stored in $a.

In some of the examples, the ++ is in front of the variable it is affecting, whereas in
others the ++ follows the variable. If the ++ is first, the operation is a pre-increment
operation; if the ++ follows, the operation is a post-increment operation.

The Autoincrement Operator Pre-Increment

To understand how the pre-increment operation works, first recall that you can use a
single statement to assign a value to more than one variable, as fol lows:

$varl

43;

$var 2 $varl += 1;

Here, the original value stored in $var 1, 43, has 1 added to it. The result, 44, becomes the
new value of $var 1. This new value of 44 is then assigned to $var 2.

The pre-increment operation works in the same way:

$varl = 43;

$var2 = ++$vari;

The following code fragment tells Perl to add 1 to $var 1 before doing anything else:

++$var 1

As a result, svar 1 becomes 44 before the value of $var 1 is assigned to $var 2. Therefore,
$var 2 is assigned 44.

The ++ operator is most frequently used in whi | e statements. Listing 4.3 provides an
example of a simple program that uses the ++ operator in a whi | e statement.

Listing 4.3. A program that uses the pre-increment operation.

1. #!/usr/local/bin/perl

2: $value = 0;

3: while (++$value <= 5) {

4: print("value is now $value\n");
5}

6: print("all done\n");

[Oureu]

$ programd_3

value is now 1
value is now 2
value is now 3

value is now 4

value is now 5
all done

$

M Note that the pre-increment operation enables you to add 1 to $val ue and test
it all at the same time. This means that you no longer have to remember to add the
following:

$val ue = $value + 1;

at the bottom of the whi | e statement, which means that you are less likely to write a
whi | e statement that goes on forever.

Now see what happens when you change
whil e (++$val ue <= 5) {
to this:
while (++$value <= 0) {
and then run the program again. This time, you get the following:

all done

Because the ++ operator is in front of $val ue, 1 is added to $val ue before testing. This
means that $val ue is not less than or equal to 0 when the whi | e statement is executed
for the first time; as a result, the code inside the whi | e statement is never executed.

The Autoincrement Operator Post-l1ncrement

The post-increment operator also adds 1 to the variable with which it is associated.
However, its behavior is slightly different:

$varl

43;

$var 2

$var 1++;

When the ++ operator appears after the variable, the ++ operator is performed after every-
thing else is finished. This means that the original value of $var 1, 43, is assigned to $var 2.
After this assignment is completed, 1 is added to $var 1 and the new value of $var 1
becomes 44.

To see how this works in whi | e statements, examine Listing 4.4. Although it is similar to
Listing 4.3, it performs a post-increment operation instead of a pre-increment operation.

T |

Listing 4.4. A program that uses the post-increment operation.

1. #!/usr/local/bin/perl

2: $value = 0;

3: while ($val ue++ <= 5) {

4: print("value is now $value\n");
5.}

6: print("all done\n");

$ programi_4

value is now 1
val ue i s now 2
value is now 3
value is now 4
value is now 5
value is now 6

all done

m You are probably wondering why the output of Listing 4.4 contained the
following line:

value is now 6

To figure out what happened, examine the value stored in $val ue each time the condition
in the whi | e statement is tested. Table 4.5 lists the contents of $val ue when the
condition is tested, the result of the test, and $val ue immediately after the condition is
tested (after the ++ operator is applied).

Table 4.5. Condition evaluation.

$val ue at time of Result $val ue after
test test
0 true (0 <=5) 1
1 true (1 <=5) 2
2 true (2<=5) 3
3 true (3 <=5) 4
4 true (4 <=5) 5
5 true (5<=5) 6
6 false (6 <= 7 (exit whi | e)
5)

As you know, when the condition at the top of a whi | e statement is true, the code inside
the statement is executed, which in this case is

print("value is now $val ue\n");

This is why the line

value is now 6

appears-$val ue is 5 at the time the condition is tested, so the result is true.

To fix this problem, change the whi | e condition to the following and run the program

again:
while ($value < 5) {
This is the output you get from the changed program:

value is now 1
value is now 2
value is now 3
value is now 4
value is now 5

all done

Now, when $val ue is 5, the statement

whil e ($val ue++ < 5)

is false, and the code inside the whi | e is not executed.

The Autodecrement Operator

As you've seen, the ++ operator adds 1 to the value of the variable it is associated with
and can appear either before or after the variable. The - - operator, or autodecrement
operator, works in the same way, but it subtracts 1 from the value of the variable it is
associated with, as fol lows:

$a- -;
- - $a;
$result = %a--;

$result2 = --%a;

When the - - operator is in front of the variable, the operation is a pre-decrement
operation, which means that 1 is subtracted from the variable before anything else
happens.

$varl 56;

$var 2

--$var 1;

This subtracts 1 from $var 1 and assigns the result, 55, back to $var 1. The value 55 is then
assigned to $var 2.

When the - - operator follows the variable, the operation is a post-decrement operation,
which means that 1 is subtracted from the variable after everything else happens.

$varl = 56;

$var 2 $var 1--:

This assigns 56 to $var 2 and then subtracts 1 from $var 1, which means that $var 1 now has
the value 55.

Don‘t

DO be careful when you use the autoincrement and
autodecrement operators. As you've seen, it's easy to get
confused and tell your program to loop one too many
times or one too few.

| tend not to use these operators in whi | e statements
except in very simple cases, because they can get
confusing. A better solution is to use the f or statement,
which you'l l learn about on Day 8, "More Control

Structures."

DON'T use ++ or - - on both sides of a single variable, as
in this statement, because it isn't allowed in Perl:

++$var 1--;

DON'T use autoincrement or autodecrement on a
variable and then use the variable again in the same
statement.

$varl
$var 2

10;
$varl + ++$varl

Is $var 2 now 20, 21, or 22? It's impossible to tell. Even
different versions of Perl can produce different results!

Using Autoincrement With Strings

If a string value contains only alphabetic characters, the ++ operator can be used to
"add one" to a string. In other words, the operator replaces the last character of the
string with the next letter of the alphabet. The following is an example:

$stringvar = "abc";

$stringvar ++;

Here, $stri ngvar now contains abd.
Note that this works only with ++, not - - :

$stringvar = "abc";

$stringvar--;

The - - operator treats abc as a number, which means that it is equivalent to 0. The
resulting value of $st ri ngvar is, therefore, -1.

Auto-incrementing strings using ++ also works on capital letters.

$stringvar = "aBC';

$stringvar ++;

The value stored in $stri ngvar iS now aBD.

If the last letter of the string is z or z, ++ converts this letter to a or A and then "adds
one" to the second-to-last character of the string:

$stringvar = "abz";
$stringvar ++; # $stringvar now contains "aca"

$stringvar = "AGZZZ";

$stringvar ++; # $stringvar now contains "AHAAA"

This also works if the string contains one or more trailing digits.

$stringvar = "ab4";

$stringvar ++; # $stringvar now contains "ab5"

As in numeric operations, incrementing a string that ends in 9 carries over to the next
character of the string. This works regardless of whether the next character is a digit
or alphabetic character.

$stringvar = "bc999";

$stringvar ++; # $stringvar now contains "bd000"

8

-

WaRrNING

Incrementing string values using ++ works only if the
variable has not already been converted to a number.

$stringvar = "abc";
$stringvar += 5;
$stringvar ++;

Here, the value of $stri ngvar is 6 because abc is
converted to 0 by the += operator in the second
statement.

Also note that this does not work if the string value
contains any character other than a letter or digit, or if
a digit is located in the middle of the string.

$stringvar = "ab*c";
$stringvar ++;
$stringvar = "ab5c";

$stringvar ++;

In both of these cases, the value stored in $stri ngvar is
converted to its numeric equivalent, 0, before the ++
operation is performed. This means that $stri ngvar is

” assigned the value 1. H

The String Concatenation and Repetition Operators

So far, the Perl operators you've seen operate only on integers. (To be exact, they can
also operate on strings, but they convert the strings to integers first.) Perl also supports
the following special operators that manipulate strings:

. The . operator, which concatenates (joins together) two strings
. The x operator, which repeats a string
. The. = operator, which combines concatenation and assignment

The String-Concatenation Oper ator

The string-concatenation operator, ., joins two strings together. For example, the
following statement assigns the string pot at ohead to $newst ri ng:

$newstring = "potato"” . "head";

You can use the . operator with variables as in this example:

$stringl "pot at 0";

$string2 "head";

$newstring = $stringl . $string2;

This also assigns pot at ohead to $newst ri ng. Note that the values of $stri ngl and
$string2 are not changed by the . operator: $stri ngl still has the value pot at o, and
$string2 still has the value head.

The String-Repetition Oper ator

The string-repetition operator, x (literally the letter x), makes multiple copies of a
string and joins the copies together, as shown in this example:

$newstring = "t" x 5;

This statement takes five copies of the string t and joins them together, producing the

stringttttt. This string is then assigned to the variable $newst ri ng.
You can use variables as operands for the x operator, if you like, as fol lows:
$copystring = "t";

$repeats = 5;

$newstring = $copystring x $repeats;

The only restriction is that the variable on the right of the x must contain an integer or
a value that can be converted to an integer.

Don’t

DO make sure you leave a space between the x operator
and the values or variables on either side:

$newstri ng
$newst ri ng

$newst ri ng

$oldstring x 5; # this is correct
$ol dstringx 5; # incorrect

$ol dstring x5; # also incorrect

Normally, you don't need to put spaces between an
operator and its operands.

$x = $x + 1; #this is K
$x=%$x+1; # this is also K

You need spaces around the x because the letter x can
appear in variable names. (For example, $ol dstri ngx isa
perfectly valid variable name.)

Concatenation and Assignment

The . = operator combines the operations of string concatenation and assignment. For
example, the following statements:

$a = "be";

$a .= "witched"; # $a i s now "bew tched"

are equivalent to these statements:

$a = "be";

$a = $a . "wi tched";

You can use the . = operator to write a very simple program that reads multiple lines of
input and joins them into a single string. This program is shown in Listing 4.5.

Listing 4.5. A program that reads input lines and concatenates them.

1: #!/usr/local/bin/perl

2: S$resultstring = "";

3: print("Enter your input - type an enpty line to quit\n");
4: $input = <STDI N>;

5: chop ($input);

6: while ($input ne "") {

7: $resul tstring .= $input;
8: $i nput = <STDI N>;

9: chop ($input);

10: }

11: print ("Here is the final string:\n");

12: print ("$resultstring\n");

[Oureu]

$ programt_5
Enter your input - type an enpty line to quit

this

t est

Here is the final string:

t hi si sat est

$

o ol As you can see from the output of Listing 4.5, the four input lines are joined
and have become a single string.

Note that there is a much simpler way to do this in Perl: using the built-in function
join().You'll learn aboutjoi n() on Day 5, "Lists and Array Variables."

Other Per| Operators

Perl also supports two other operators that do not fit into any of the preceding
categories:

. The comma operator
. The conditional operator

The Comma Operator

The comma operator (,) is an operator borrowed from the C programming language. It
guarantees that a particular part of an expression (the part before the,) is evaluated
first.

Here is an example of a simple statement that uses the , operator:
$varl += 1, S$var2 = $varl;

Because the, operator indicates that the left operand is to be performed first, 1 is added
to $var 1 before $var 1 is assigned to $var 2. In effect, the , operator breaks a statement
into two separate statements, as fol lows:

$varl += 1;

$var2 = $varl

In fact, the only real reason to use the, operator is when two operations are so closely
tied together that it is easier to understand the program if they appear as part of the
same expression.

The comma operator is often used in conjunction with the = operator, as fol lows:

$val = 26;

$result = (++$val, $val + 5);

In this statement, the

++$val

operation is performed first, because it appears before the , operator. This adds 1 to $val ,
which means that $val now has the value 27. Then this new value of $val has 5 added to
it, and the result, 32, is assigned to $resul t .

Note that the fol lowing expression is enclosed in parentheses:

++$val, $val + 5

This indicates that this set of operations is to be performed first. Had the parentheses not
been present, the statement would have been

$result = ++$val, $val + 5;

In this case, everything before the comma would be performed first:

$result = ++$val

This means that $resul t would be assigned 27, not 32.

You'll learn more about parentheses and the order of operations later today, in the
section titled "The Order of Operations."

The Conditional Operator

The conditional operator also is borrowed from the C programming language. Unlike the
other operators you've seen, the conditional operator requires three operands, as
follows:

. A condition to test

. Avalue that is to be used when the test condition is true (evaluates to a nonzero
value)

. Avalue that is to be used when the test condition is false (evaluates to zero)

The first two operands are separated by the character ?, and the second and third
operands are separated by the character : .

Here is a simple example of an expression that uses the conditional operator:
$result = $var == 0 ? 14 : 7;

Here, the test condition is the expression
$var == 0

If this expression is true, the value 14 is assigned to $resul t. Ifitis false, the value 7 is
assigned to $resul t.

As you can see, the conditional operator behaves just like the i f and el se statements.
The expression

$result = $var == 0 ? 14 : 7;
is identical to the following:

if ($var == 0) {

14:

$resul t
} else {

$resul t

I
X

The difference between the conditional operator and theii f -el se construct is that the
conditional operator can appear in the middle of expressions. For example, the
conditional operator can be used as another way to prevent division by 0, as fol lows:

$result = 43 + ($divisor == 0 ? 0 : $dividend / $divisor);

Here, $resul t is assigned the value 43 plus the result of $di vi dend divided by $di vi sor,
unless $di vi sor is 0. If $di vi sor is 0, the result of the division is assumed to be 0, and
$resul t isassigned 43.

Listing 4.6 is a simple program that reads from the standard input file and compares the
input line with a predetermined password.

T |

Listing 4.6. A very simple password checker.

1. #!/usr/local/bin/perl

2: print ("Enter the secret password:\n");

3: $password = "bl uejays"”;

4: S$inputline = <STDI N>;

5: chop ($inputline);

6: S$outputline = $inputline eq $password ?

7: "Yes, that is the correct password!\n"

8: "No, that is not the correct password.\n";

9: print ($outputline);

$ programi_6

Enter the secret password:
orioles

No, that is not the correct password.

$

- | When you run programd_6 and type in a random password, you get the results
shown in the Input-Output example.

The advantage of using the conditional operator here is that the assignment to
$out put I i ne occurs in only one place, and the statement is much more concise. If you use
i f and el se, you need two assignments to $out put | i ne and five lines, as follows:

if ($inputline eq $password) {

$out put | i ne "Yes, that is the correct password!\n";
} else {

"No, that is not the correct password.\n");

$out put | i ne

Of course, the i f and el se statements are easier to use when things get more complex.
Consider the following example:

if ($varl == 47) {
print("varl is already 47\n");
$is_fortyseven = 1;
} else {
$varl = 47;
print("varl set to 47\n");

$is_fortyseven = 0;

You can write this using the conditional operator if you use the comma operator, as
follows:

$varl == 47 ? (print("varl is already 47\n"), $is_fortyseven = 1)

($varl = 47, print("varl set to 47\n"), $is fortyseven = 0);

As you can see, this is difficult to understand. The basic rules are as fol lows:

. Use the conditional operator for very simple conditional statements.
. Useif and el se for everything else.

Conditional Operatorson the L eft Side of Assignments

In Perl 5, you can use the conditional operator on the left side of an assignment. This
enables you to assign a value to either of two variables, depending on the result of a
conditional expression.

$condvar == 43 ? $varl : $var2 = 14;

This statement checks whether $condvar has the value 43. If it does, $var 1 is assigned 14.
If it doesn't, $var 2 is assigned 14.

Normally, you won't want to use conditional operators in this way because your code
will become difficult to follow. Although the following code is a little less efficient,
It performs the same task in a way that is easier to understand:

$condvar == 43 ? $varl = 14 : $var2 = 14;

The Order of Operations

Perl, like all programming languages, has a clearly defined set of rules that determine
which operations are to be performed first in a particular expression. The fol lowing
three concepts help explain these rules:

. The concept of precedence
. The concept of associativity
. The ability to override precedence and associativity using parentheses

Precedence

In grade school, you learned that certain arithmetic operations always are performed
before other ones. For example, multiplication and division always are performed before
addition and subtraction.

4 +5* 3

Here, the multiplication is performed first, even though the addition is encountered first
when the statement is read from left to right. Because multiplication always is
performed first, it has higher precedence than addition.

Table 4.6 defines the precedence of the operators in Perl. The items at the top of the
table have the highest precedence, and the items at the bottom have the lowest.

Table 4.6. Operator precedence.

Operator

Operation Performed

++, - -

Autoincrement and
autodecrement

Operators with one operand

Exponentiation

Pattern-matching operators

Multiplication, division,
remainder, repetition

Addition, subtraction,
concatenation

<<, >>

Shifting operators

-e,-r,etc.

File-status operators

<, <=,>>=1t,le,gt,
ge

Inequality-comparison operators

==, 1=, <=>, eq, ne, cnp

Equality-comparison operators

& Bitwise AND
|, "~ Bitwise OR and XOR
&& Logical AND
| | Logical OR
List-range operator
? and: Conditional operator (together)
=, +=, -5, %=, Assignment operators
and so on
Comma operator
not Low-precedence logical NOT

and Low-precedence logical AND

or, xor Low-precedence logical OR and
XOR

Using this table, you can determine the order of operations in complicated expressions.
For example:

$result = 11 * 2 + 6 ** 2 << 2;

To determine the order of operations in this expression, start at the top of Table 4.6 and
work down. The first operator you see is **, which means that it is performed first,
leaving

$result = 11 * 2 + 36 << 2;

The next operation you find in the table is the * operator. Performing the multiplication
leaves the fol lowing:

$result = 22 + 36 << 2;

The + operator is next:

$result = 58 << 2;

Next up is the << operator:

$result = 232;

The = operator is last on the list and assigns 232 to $resul t.

You might have noticed that Table 4.6 contains some operators that you've not yet seen
and which you'll learn about later:

. The list-range operator, defined on Day 5
. The file-status operators, defined on Day 6, "Reading from and Writing to Files"
. The pattern-matching operators, =~ and ! ~, defined on Day 7, "Pattern Matching"

Associativity

The rules of operator precedence enable you to determine which operation to perform
first when an expression contains different operators. But what should you do when an
expression contains two or more operators that have the same precedence?

In some cases, it doesn't matter what order you perform the operations in. For example:
$result = 4 + 5 + 3;

Here, $resul t gets 12 no matter which addition is performed first. However, for some
operations the order of evaluation matters.

$result = 2 ** 3 ** 2:

If you perform the leftmost exponentiation first, $resul t isassigned 8 ** 2, or 64. If you
perform the rightmost exponentiation first, $result is assigned 2 ** 9, or 512.

Because the order of operations is sometimes important, Perl defines the order in which
operations of the same precedence are to be performed. Operations that are performed
right-to-left (with the rightmost operation performed first) are said to be right associative.
Operations that are performed left-to-right (with the leftmost operation performed
first) are left associative.

Table 4.7 lists the associativity for each of the Perl operators. The operators are sorted
according to precedence (in the same order as Table 4.6).

Table 4.7. Operator associativity.

Operator Associativity

++, - - Not applicable

-, | Right-to-left

* Right-to-left

=, 1~ Left-to-right

* 1, % X Left-to-right

+ -, Left-to-right

<<, >> Left-to-right

-e,-r, Not applicable and so on

<, <=,>>=It,le gt,ge Left-to-right
==,1=,<=> eq, ne, cnp Left-to-right
& Left-to-right
|, " Left-to-right
&& Left-to-right
| Left-to-right

Left-to-right
? and: Right-to-left
=, +=, -5, %=, Right-to-left
and so on

Left-to-right
not Left-to-right
and Left-to-right
or, xor Left-to-right

From Table 4.7, you see that the exponentiation operator is right associative. This means
that in the following:

$result = 2 ** 3 ** 2:

$resul t is assigned 512, because the rightmost ** operation is performed first.
Forcing Precedence Using Par entheses

Perl enables you to force the order of evaluation of operations in expressions. To do
this, use parentheses as fol lows:

$result =4 * (5 + 3);

In this statement, 5 is added to 3 and then multiplied by 4, yielding 32.

You can use as many sets of parentheses as you like:
$result =4 ** (5 %(8 - 6));

Here, the result is 4:

. 8 - 6isperformed, leaving4 ** (5 % 2)
« 5 % 2isperformed, leaving4 ** 1

4 ** 11is4

Don't

DO use parentheses whenever you aren't sure whether a
particular operation is to be evaluated first. For
example, | don't know many programmers who remember
that addition operators are evaluated before shifts:

$result = 4 << 2 + 3;

And virtually no one remembers that && has higher
precedence than | | :

if ($value == 0 || $value == 2 && $val ue2 ==
"hello") {
print("nmy condition is true\n");

}

You can make life a lot easier for people who read your
code if you use parentheses when the order of evaluation
Is not obvious. For example:

$result = 4 << (2 + 3);

if ($value == 0 || ($value == 2 && $val ue2 ==
"hello0")) {

print("nmy condition is true\n");

}

DO use multiple lines, extra spaces, and indentation to
make complicated expressions easier to read. For example:

if ($value == 0 ||
($value == 2 && $value2 == "hello")) {

Here, it's obvious that there are two main conditions to
be tested and that one of them contains a pair of
subconditions.

DON'T leave out closing parentheses by mistake.

$result =4 + (2 << ($value / 2); # error

This statement will be flagged as erroneous because you
are missing a closing parenthesis.

A handy way of checking whether you have enough
parentheses in complicated expressions is to use this
simple trick:

. Start at the left end of your expression.
. Starting from 0, add 1 for every left parenthesis you see.
. Subtract 1 for every closing parenthesis you see.

If your final result is 0, you've got enough opening and
closing parentheses. (This doesn't guarantee that you've
put the parentheses in the right places, but at least you
now know that you have enough of them.)

Summary

Today you learned about the operators that Perl supports. Each operator requires one
or more operands, which are the values on which the operator operates. A collection of
operands and operators is known as an expression.

The operators you learned how to use are as follows:

. The arithmetic operators +, -, *,/, % **, and unary negation
. The integer-comparison operators ==, ! =, <, >, <=, >=, and <=>
. The string-comparison operatorseq, ne, I t, gt, | e, ge,and cnp
. The logical operators| |, &, and!

. The bit-manipulation operators|, & *, ~, <<, and >>

. The assignment operators =, +=,-=,*=,/= %, **= 1= &=, "=, and . =
. The autoincrement operator ++

. The autodecrement operator - -

. The string-concatenation operator .

. The string-repetition operator x

. The comma operator,

. The conditional operator (? and : together)

You also learned about operator precedence and associativity, two concepts that tell
you which operators in an expression usual ly are performed first. Operator precedence
and associativity can be controlled by putting parentheses around the operations you
want to perform first.

Q& A

Q: Is there a limit on how large my expressions can be?

A: Effectively, no. There is a limit, but it's so large that no one would possibly want
to create an expression that long, because it would be impossible to read or
understand.***It's easier to understand expressions if they are shorter.

Q: Is it better to use += or ++ when adding 1 to a variable?

A: It's best to use ++ when using a variable as a counter in a whi | e statement (or in
other loops, which you learn about on Day 8, "More Control Structures"”). For

other addition operations, you should use +=.
Q: Why are some operators left associative and others right associative?

A: Most operators are left associative, because we normally read from left to right.
Assignment is right associative because it's easier to read. For instance:
$varl = $var2 = 5;
If assignment happened to be left associative, $var 1 would be assigned the old
value of $var 2, not 5. This would not be obvious to a casual reader of the
program.Exponentiation is right associative because that's how exponentiation is
performed in mathematics.Other operators that are right associative are easier to
read from right to left.

Wor kshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you've learned. Try
and understand the quiz and exercise answers before you go on to tomorrow's lesson.

Quiz

1. Define the following terms:
operator
operand
expression
precedence
associativity
hat operations are performed by the fol lowing operators?
&&
&

=]
(¢}

hat operators perform the following operations?
string-equality comparison
remainder
string duplication
bitwise OR

QOO TPSPOOTPSOOD TR

e. numeric greater-than-or-equal-to
4. What is the binary representation of the fol lowing numbers?
a. 171
b. 1105
c. 0
5. What is the standard (base-10) representation of the following numbers?
a. 01100100
b. 00001111
c. 01000001
6. What is the value of the fol lowing expressions?
a. 17 * 2 ** 3/ 9 %2 << 2
b. 0 & (171567 * 98275 / 1174.5 ** 4)
C. 1171 ~ 904
d. "abc" . "de" x 2

Exercises

1. Write a program that uses the << operator to print out the first 16 powers of 2.

2. Rewrite the following statement using the conditional operator:
if ($varl == 5 || $var2 ==7) {
$result = $varl * $var2 + 16.5;
} else {
print("condition is false\n");
$result = 0;

}

3. Rewrite the following expression using thei f and el se statements:
$result = $varl <= 26 ? ++$var2 : O;

4. Write a program that reads two integers from standard input (one at a time),
divides the first one by the second one, and prints out the quotient (the result)
and the remainder.

5. Why might the following statement not assign the value 5. 1 to $resul t ?
$result = 5.1 + 100005.2 - 100005. 2;

6. Determine the order of operations in the following statement, and add
parentheses to the statement to indicate this order:
$result = $varl * 2 << 5 + 3 || $var2 ** 3, $var3;

7. What value is assigned to $resul t by the following code?
$varl =43;
$var2 = 16;
$result = ++$var2 == 17 ? $varl++*2-5: ++$varl * 3 - 11,

8. BUG BUSTER: Find and fix the bugs in the fol lowing program:
#! [/ usr/ | ocal / bi n/ perl

$num = <STDI N>;

chop ($num;

$x =",

$x += "hello";

if ($x !'= "goodbye" | $x == "farewel I ") {

$result = $numeq 0 ? 43;

} else {
$result = ++Snumt+;
}

print("the result is $result\n");

Chapter 5

Listsand Array Variables

CONTENTS

. Introducing Lists
. Scalar Variables and Lists
o Lists and String Substitution
. Storing Lists in Array Variables
. Accessing an Element of an Array Variable
o More Details on Array Element Names
. Using Lists and Arrays in Perl Programs
o Using Brackets and Substituting for Variables
. Using List Ranges
o Expressions and List Ranges
. More on Assignment and Array Variables
o Copying from One Array Variable to Another
o Using Array Variables in Lists
o Substituting for Array Variables in Strings
o Assigning to Scalar Variables from Array Variables
. Retrieving the Length of a List
. Using Array Slices
o Using List Ranges in Array-Slice Subscripts
o Using Variables in Array-Slice Subscripts
Assigning to Array Slices
Overlapping Array Slices
o Using the Array-Slice Notation as a Shorthand
. Reading an Array from the Standard Input File
. Array Library Functions
o Sorting a List or Array Variable
o Reversing a List or Array Variable
o Using chop on Array Variables
o Creating a Single String from a List
o Splitting a String into a List
o Other List-Manipulation Functions
. Summary
. Q&A

O

O

. Workshop
o Quiz

o Exercises

The Perl programs you have seen so far deal with scalar values, which are single units of
data, and scalar variables, which can store one piece of information.

Perl also enables you to define an ordered collection of values, known as a list; this
collection of values can be stored in variables known as array variables.

Today's lesson describes lists and array variables, and it shows you what you can do
with them. Today, you learn about the following:

. What lists are

. The relationship between scalar variables and lists
. Storing lists in array variables

. Accessing an element of an array variable or list
. How to use list ranges

. Assigning to array variables

. Assigning to scalar variables from array variables
. Retrieving the length of a list

. Using array slices

. Using an array to store input

. Sorting a list or array variable

. Reversing a list or array variable

. Creating astring from a list

. Creating a list from a string

Introducing Lists

A list is a sequence of scalar values enclosed in parentheses. The following is a simple
example of a list:

(1, 5.3, "hello", 2)

This list contains four elements, each of which is a scalar value: the numbers 1 and 5. 3,
the string hel | 0, and the number 2.

Lists can be as long as needed, and they can contain any scalar value. A list can have
no elements at all, as fol lows:

0)

This list also is called an empty list.

NOTE

A list with one element and a scalar value are different
entities. For example, the list
(43.2)

and the scalar value
43.2

are not the same thing. This is not a severe limitation
because one can be converted to or assigned to the
other. See the section titled "Assigning to Scalar
Variables from Array Variables" later today.

Scalar Variablesand Lists

A scalar variable name can always be included as part of a list. In this case, the current
value of the scalar variable becomes the list element value. For example:

(17, $var, "a string")

If $var has been assigned the value 26, the second element of the list becomes 26. (It
remains 26 even if a different value is assigned to $var.)

Similarly, you can use the value of an expression as an element of a list. For example:

(17, 26 << 2)

This list contains two elements: 17 and 104 (which is 26 left-shifted two places).
Expressions in lists, like other expressions, can contain scalar variables.

(17, $varl + $var?2)

Here, the expression $var1 + $var 2 is evaluated and its value becomes the second

element of the list.

Listsand String Substitution

Because character strings are scalar values, they can be used in lists, as fol lows:

("my string", 24.3, "another string")

You can substitute for scalar variable names in character strings in lists, as fol lows:

($val ue, "The answer is $val ue")

This list contains two elements: the value of the scalar variable $val ue, and a string
containing the name of $val ue. If the current value of $val ue is 26, the two elements of
the list are 26 and The answer is 26.

Storing Listsin Array Variables

Perl enables you to store lists in special variables designed for that purpose. These
variables are called array variables (or arrays for short).

The following is an example of a list being assigned to an array variable:
@rray = (1, 2, 3);

Here, the list (1, 2, 3) is assigned to the array variable @rray.

Note that the name of the array variable starts with the character @ This enables Perl
to distinguish array variables from other kinds of variables-for example, scalar
variables, which start with the character $. As with scalar variables, the second
character of the variable name must be a letter, while subsequent characters of the
name can be letters, numbers, or underscores. Array variable names can be as long as
you want.

The following are legal array-variable names:

@ry_array
@ist2

@ _very long array_nanme_wth | ots_of underscores

The following are not legal array-variable names:

@.array # can't start with a nunber
@ array # can't start with an underscore
@. new. arr ay # . is not a legal variabl e-nane character

When an array variable is first created (that is, seen for the first time), it is assumed to
contain the empty list () unless it is assigned to.

NOTE

Because Perl uses @and $ to distinguish array variables
from scalar variables, the same name can be used in an

array variable and in a scalar variable. For example:
$var = 1;

@ar = (11, 27.1, "a string");

Here, the name var is used in both the scalar variable
$var and the array variable @ar . These are two
completely separate variables.

Normally, you won't want to use the same name in both
an array and a scalar variable, because this is confusing.

Accessing an Element of an Array Variable

After you have assigned a list to an array variable, you can refer to any element of the
array variable as if it is a scalar variable.

For example, to assign the first element of the array variable @rray to the scalar
variable $scal ar, use the following statement:

$scal ar = $array[0];

The character sequence [0] is an example of a subscript. A subscript indicates a particular
element of an array. In this case, 0 refers to the first element of the array. Similarly,
the subscript 1 refers to the second element of the array, as fol lows:

$scal ar = $array[1];

Here, the second element of the array @rr ay is assigned to $scal ar. The general rule is
this:

An array subscript n, where n is any non-negative integer, always refers to array
element n+1.

This notation is employed to ensure compatibility with the C programming language,
which also starts its array subscripting with 0.

You can assign a scalar value to an individual array element in the same way:

@rray = (1, 2, 3, 4);

$array[3] = 5;
After the second assignment, the value of @rray becomes
(1, 2, 3, 5)

This is because the fourth element of the array has been replaced.

NOTE

If you try to access an array element that does not
exist, the Perl interpreter uses the null string (which is

equivalent to zero).
@rray = (1, 2, 3, 4);
$scal ar = S$array[4];

Here, $array[4] refers to the fifth element of @rr ay,
which does not exist. In this case, $scal ar is assigned the
null string.

NOTE

The same thing happens when the subscript is a negative
number, as fol lows:

$scal ar = $array[-1];
Once again, the null string is assigned to $scal ar.

Note also that arrays automatical ly grow when a
previously unreferenced element is assigned to for the

first time:
@rray = (1, 2, 3, 4);
$array[6] = 17;

Because the seventh element of @rray is assigned 17, the
value of @rray is now

(1, 2, 3, 4, ", "", 17)

The missing fifth and sixth elements now contain the
null string.

You can use the value of a scalar variable as a subscript, as fol lows:

$i ndex = 1;

$scal ar = S$array[$i ndex] ;

Here, the value of $i ndex, 1, becomes the subscript. This means that the second element
of @rray is assigned to $scal ar.

F
L »

WARNING

When you use a scalar variable as a subscript, make sure
that the value stored in the scalar variable corresponds
to an array element that exists. For example:

@rray = (1, 2, 3, 4);
$i ndex 4;

$scal ar = $array[$i ndex];

Here, the third statement tries to access the fifth
element of @rray, which does not exist. In this case,
$scal ar is assigned the null string, and the Perl
interpreter doesn't tell you that anything went wrong.

More Detailson Array Element Names

Note that the first character of an array-element variable name is the $ character, not
the @character. For example, to refer to the first element of the array @ot at o, use

$pot at o[0]
and not
@ot at o[0]

The basic rule is as fol lows:

Things that reference one value-such as scalar variables and array elements-must start
with a $.

NOTE

Even though references to elements of array variables
start with a $, the Perl interpreter still has no trouble
distinguishing scalar variables from array-variable
elements. For example, if you have defined a scalar
variable $pot at o and an array variable @ot at o, the
Perl interpreter uses the subscript to distinguish
between the scalar variable and the array-variable

element.

$result = $potato; # the scalar variable $potato
$result = $potato[0]; # the first elenent of

@ot ato

Using Listsand Arraysin Perl Programs

Now that you have seen how lists and array variables work, it's time to take a look at a
simple program that uses them. Listing 5.1 is a simple program that prints the elements of
a list.

T |

Listing 5.1. A program that prints the elements of a list.

1. #!/usr/local/bin/perl

3: @rray = (1, "chicken", 1.23, "\"Having fun?\"", 9.33e+23);
4: $count = 1,

5: while ($count <= 5) {

6: print ("elenent $count is $array[$count-1]\n");

7: $count ++;

$ progranb_1

element 1 is 1

element 2 is chicken
element 3 is 1.23

elenment 4 is "Having fun?"

element 5 is 9.3300000000000005+e23

$

Line 3 assigns a list containing five elements to the array variable @rray.

Line 5 tests whether $count is less than or equal to 5. This conditional expression
ensures that the whi | e statement loops five times.

Line 6 prints the current value of $count and the corresponding element of @rray. Note
that the expression used in the subscript is $count - 1, not $count , because subscripting
starts from 0. For example, when count is 3, the subscript is 2, which means that the third
element of @rray is printed.

When you examine line 6, you see that Perl lets you substitute for array elements in
character strings. When the Perl interpreter sees $arr ay[$count - 1] in the character
string, it replaces this array element name with its corresponding value.

Listing 5.2 is another example of a program that uses arrays. This one is a little more
interesting; it uses the built-in functionsrand and i nt to generate random integers
between 1 and 10.

Listing 5.2. A program that generates random integers between 1 and 10.

1. #!/usr/local/bin/perl
2:

3: # collect the random nunbers

nunber

4: S$count = 1;
5: while ($count <= 100) {
6: $randnum = int(rand(10)) + 1;
7: $randt ot al [$randnun] += 1;
8: $count ++;
9: }
10:
11: # print the total of each nunber
12: $count = 1;
13: print ("Total for each nunber:\n");
14: while ($count <= 10) {
15: print ("\tnunber $count: $randtotal [$count]\n");
16: $count ++;
17: }
1Oureut]
$ progranb_2
Total for each nunber:
number 1: 11
nunmber 2: 8
nunmber 3: 13
nunmber 4: 6
number 5: 10
number 6: 9
nunmber 7: 12
number 8: 11

nunmber 10: 9

m This program is divided into two parts: the first part collects the random
numbers, and the second part prints them.

Line 5 ensures that the loop iterates (is performed) 100 times. You can just as easily have
the program generate any other quantity of random numbers just by changing the value
in this conditional expression.

Line 6 generates a random number between 1 and 10 and assigns it to the scalar variable
$randnum To see how it does this, first note that the code fragment

int (rand (10))

actually is two function calls, one inside another. When the Perl interpreter sees this,
it first calls the inner one, which is rand. The value returned by r and becomes the
argument to the library functionint.

Here's how line 6 generates a random number:

1. First, it calls the Perl library function r and. This function generates a floating-
point random number between 0 and 1 and then multiplies it by the argument it is
passed. In this program, r and is passed 10, which means that the random number is
multiplied by 10 and is now a floating-point number that is greater than 0 and
less than 10.

2. The value returned by r and is then passed to the library function i nt, which takes
a floating-point number and gets rid of the non-integer part. This operation is
known as truncation. The integer produced by this truncation operation becomes
the return value of the function. For example, the following returns 5:
int (5.7)

In this program, i nt truncates the random number returned by r and and returns
the resulting integer, which is now a random number between 0 and 9.

3. The value 1 is added to the number returned by i nt, resulting in a random number
between 1 and 10.

4. This number is assigned to the scalar variable $r andnum

Line 7 now adds 1 to the element of the array @ andt ot al corresponding to the number
generated. For example, if the random number is 7, the array element $randt ot al [7] has
1 added to it.

NOTE

As you can see, line 7 works even though @ andt ot al is
not initialized. When the program refers to an array
element for the first time, the Perl interpreter assumes
that the element has an initial value of the null string
", This null string is converted to 0, which means that
adding 1 for the first time produces the result 1, which is
what you want.

The second part of the program, which prints the total of each random number, starts
with lines 12 and 13. These lines get things started by resetting the counter variable
$count to 1 and printing an introductory message.

The conditional expression in line 14 ensures that the loop iterates 10 times-once for
each possible random number.

Line 15 prints the total for a particular random number.
Using Brackets and Substituting for Variables

As you have just seen, Perl lets you substitute for array-element variable names in
strings, as fol lows:

print ("elenment $count is $array[$count-1]\n");

This might lead to problems if you want to include the characters[and] in character
strings. For example, suppose that you have defined the scalar variable $var and the
array variable @ar . The character string

"$var[0]"

substitutes the value of the first element of @ar in the string. To substitute the value
of svar and keep the [0] as it is, you must use one of the following:

"${var}[0]"
"$var\[0] "
"$var" . "[0]"

The character string

"${var}[0]"

uses the brace characters{ and} to keep var and [separate; this tells the Perl
interpreter to substitute for the variable $var, not $var [0] . After the substitution, the
brace characters are not included in the string.

NOTE

To include a brace character after a $, use a backslash,
as follows:

"$\{var}"

This character string contains the text ${var}.

The character string

"$var\[0]"

uses\ to indicate that the [character is to be given a different meaning than normal;
in this case, this means that [is to be treated as a printable character and not as part of
the variable name to be substituted.

The expression
"$var" . "[0]"

consists of two character strings joined together by the . operator. Here, the Perl
interpreter replaces the first character string with the current value of $var.

Using List Ranges

Suppose that you want to define a list consisting of the numbers 1 through 10, inclusive.
You can do this by typing each of the numbers in turn.

(1, 2, 3, 4, 5 6, 7, 8, 9, 10)

However, there is a simpler way to do it: Use the list-range operator, whichis.. (two
consecutive period characters). The following is an example of a list created using the
list-range operator:

(1..10)

This tells Perl to define a list that has a first value of 1, a second value of 2, and so on
up to 10.

The list-range operator can be used to define part of a list.

(2, 5..7, 11)

This list consists of five elements: the numbers 2, 5, 6, 7, and 11.

List-range operators can be used with floating-point values. For example:

(2.1..5.3)

This list consists of four elements: 2. 1, 3. 1, 4. 1, and 5. 1. Each element of the list is one
greater than the previous element, and the last element of the list is the largest
possible number less than or equal to the number to the right of the .. operator. Here,
5.1 1s less than 5. 3, so it is included in the list; however, 6. 1 is greater than 5. 3,s0 it is
not included.

NOTE

If the value to the left of the .. operator is greater
than the value to the right, an empty list is created.

(4.5..1.6)
Because 4. 5 is greater than 1. 6, this list is empty.

If the two values are equal, a one-element list is
created.

(3..3)

” This is equivalent to the list (3). H

List-range operators can specify ranges of strings. For example, the list ("aaa", "aab",
"aac", "aad") can be expressed as ("aaa".."aad").Similarly, the list ("BCY", "BCZ",
"BDA", "BDB") isequivalent to ("BCY".."BDB"), and the statement @l phabet =
("a".."z"); creates a list consisting of the 26 lowercase letters of the alphabet and
assigns this list to the array variable @l phabet .

List ranges also enable you to use strings to specify numbers that contain leading zeros.
@lay_of _nmonth = ("01".."31");

This statement creates a list consisting of the strings 01, 02, 03 and so on, up to 31, and
then assigns this list to @ay_of _nont h. Because each string contains two characters,
this array is suitable for use when you are printing a date in a format such as 08- June-
1960.

Expressionsand List Ranges

The values that define the range of a list-range operator can be expressions, and these
expressions can contain scalar variables. For example:

($var 1. . $var 2+5)

This list consists of all values between the current value of $var 1 and the current
value of the expression $var 2+5.

Listing 5.3 is an example of a program that uses list ranges. This program asks for a start
number and an end number, and it prints all the numbers between them.

Listing 5.3. A program that uses list ranges to print a list of numbers.

1. #!/usr/local/bin/perl

2:

3: print ("Enter the start nunber:\n");
4: $start = <STDI N>;

5: chop ($start);

6: print ("Enter the end nunber:\n");
7. $end = <STDI N>;

8: chop (%$end);

9: @ist = ($start..S%end);

10: $count = 0;

11: print ("Here is the list:\n");

12: while ($list[$count] !'= 0 || $list][$count-1] == -1 |
13: $list][$count+1] == 1) {

14: print ("$list[$count]\n");

15: $count ++;

16: }

JOureui]

$ progranb_3

Enter the start nunber:
-2

Enter the end nunber:

2

Here is the |ist:

M Lines 3 through 5 retrieve the start of the range to be printed. Line 3
retrieves the number from the standard input file. Line 4 assigns the resulting number
to the scalar variable $start. Line 5 chops the trailing newline character.

Lines 6 through 8 repeat the same process for the end of the range, assigning the end of
the range to the scalar variable $end.

Line 9 creates a list that consists of the numbers between $st art and $end, and stores
the list in the array variable @i st .

Line 10 initializes the counter variable $count to 0.
Line 11 isa pri nt statement that indicates that the list is about to be printed.

Lines 12 and 13 are the start of the loop that prints the range. The conditional
expression to be evaluated consists of three subexpressions that are operands for the
logical or operator | | . If any of these subexpressions are true, the loop continues.

The first subexpression tests for the end of the range. To do this, it takes advantage of
the fact that an unidentified list element is equal to the null string and that the null
string is equivalent to 0. When the list element $l i st [$count] is undefined, the
following subexpression is false:

$list[$count] !'=0

The second and third subexpressions cover the cases in which 0 is actual ly a part of the
list. If the list to be printed contains 0, one or both of the fol lowing conditions must be
true:

« The number 1 must be the next element in the list.
. The number -1 must be the previous element in the list.

The second and third subexpressions test for these conditions. If either or both of these
conditions is true, at least one of the fol lowing subexpressions also must be true:

$list][$count-1] == -1

$list][$count+1] == 1

This ensures that the loop continues. Of course, this doesn't cover the case in which the
list consists of just 0; however, that's not a meaningful case. (If you want to be finicky,
you can add a special chunk of code that prints 0 if $st art and $end are both 0, but
that's not real ly worth bothering with.)

After this, the rest of the program is straightforward. Line 14 prints a number in the
range, line 15 adds one to the counter variable $count, and line 16 ends the whi | e
statement.

TIP

One of the problems with Perl is that it is sometimes
difficult to distinguish the following scalar variable or
array-element values:

. The null string "", which is converted to 0 in
numeric expressions

. Anundefined variable or element, which defaults
to the null string, which in turnis converted to 0
IN Nnumeric expressions

. The string 0, which is converted to the number 0 in
numeric expressions

. A non-numeric string such as st ri ng, which is
converted to 0 in numeric expressions

There are several ways of dealing with this confusion:

1. Retrieve the length of the list stored in an array
variable before processing it. This ensures that
you don't go past the end of the list. See the
section titled "Retrieving the Length of a List"
later in today's lesson for more details on how to
do this.

2. Compare the value with the string 0 rather than
the number 0, as fol lows:
if ($value eq "0")

This handles the strings that convert to 0 in
numeric expressions that are not o itself. (It
doesn't handle strings such as 0000 or 0. 0, which
you might want your program to consider
equivalent to 0; to deal with these, see the
discussion of the spl it function later in today's
lesson.)

3. Initialize the scalar variable or array element to
a value other than 0 that you know is not going
to appear naturally in your program, such as -

99999.

Which particular method is best depends on
the program you want to write, the input it
expects, and how "bulletproof"” the program
needs to be.

Moreon Assignment and Array Variables

So far, you've seen that you can assign lists to array variables.
@rray = (1, 2, 3, 4, 5);

You've also seen that you can assign an element of an array to a scalar variable.
$scal ar = $array[3];

The following sections describe the other ways you can use assignment with lists and
array variables.

Copying from One Array Variableto Another

You also can assign one array variable to another.
@esult = @riginal;

Here, the list currently stored in the array variable @ri gi nal is copied to the array
variable @esul t . Each element of the new array @esul t is the same as the
corresponding element of the array @ri gi nal . Listing 5.4 shows that this is true.

Listing 5.4. A program that copies an array and compares the elements
of the two arrays.

1. #!/usr/local/bin/perl

2:
3: @rrayl = (14, "cheeseburger", 1.23, -7, "toad");
4: @rray2 = @rrayl;

5: $count = 1;

6: while ($count <= 5) {

7: print("elenment $count: S$arrayl[$count-1] ");
8: print("$array2[$count-1]\n");

9: $count ++;

10: }

JOureui]

$ progranb_4

element 1: 14 14

el enent 2: cheeseburger cheeseburger
element 3: 1.23 1.23

element 4: -7 -7

el ement 5: toad toad

$

BNM“d Line 3 assigns the list

(14, "cheeseburger", 1.23, -7, "toad")

to the array variable @rray1. Line 4 then copies this array into a second array variable,
@rray?2.

The rest of the program prints the elements of each array, as fol lows:

. Line5initializes the counter variable $count to 1.

. The conditional expression in line 6 ensures that the loop is performed five times.

. Lines 7 and 8 print the matching element of each array. (Note that the subscript is
$count - 1, not $count , because the subscript 0 is the first element of the array.)

. Line 9 adds one to the counter variable $count .

NOTE

You can assign to multiple arrays in one statement. For
example:

@rrayl = @rray2 = (1, 2, 3);

This assigns a copy of the list (1, 2, 3) toboth @rray1
and @rray?2.

Using Array Variablesin Lists

As you've already seen, lists can contain scalar variables. For example:
@ist = (1, $scalar, 3);

Here, the value of the scalar variable $scal ar becomes the second element of the list
assigned to @i st .

You also can specify that the value of an array variable is to appear in a list, as
follows:

@istl

(2, 3, 4);

@ist2

(1, @istl, 5);

Here, the value of the array variable @i st 1-the list (2, 3, 4)-issubstituted for the
name @i st 1, and the resulting list (1, 2, 3, 4, 5) isassigned to @i st 2.

Listing 5.5 shows an example of a list being contained in another list.

Listing 5.5. A program that assigns a list as part of another list.

1. #!/usr/local/bin/perl

2:
3: @nnerlist =" never ";
4. @uterlist = ("I", @nnerlist, "fail!\n");

5. print @uterlist;

$ progranb_5

| never fail!

g M'Yg Although this program is quite simple, it contains a couple of new tricks. The
first of these is in line 3. Here, a scalar value, " never " (note the surrounding spaces),
Is assigned to the array variable @ nner i st. This works because the Perl interpreter
automatical ly converts the scalar value into a one-element list before assigning it to
the array variable.

Line 4 assigns a list to the array variable @ut erli st. This list is assembled by taking the
following list:

("1, @nnerlist, "fail!\n")

and substituting in the current value of the array variable @ nnerlist. Asaresult, the
list assigned to @uterlist is

("t", "™ never ", "faill\n")

Line 5 prints the list. To do this, it calls the library function pri nt and passes it the
array variable @uterl i st. When print is given an array variable or a list to print, it

prints each element in turn. This means that the following is written to the standard
output file:

| never faill

Note that pri nt doesn't leave any spaces between the elements of the list when it prints
them. The only reason the output is readable is because the character string contains
spaces around never . This means that pri nt isn't usually used to print a list of numbers
in this way:

@ist = (1, 2, 3);

print @i st;

This prints the fol lowing, which isn't quite what you want:

123

TIP

In Listing 5.5, the argument passed to the pri nt function
is not enclosed in parentheses. This is perfectly
acceptable. In Perl, the parentheses enclosing
arguments to functions are optional. For example, when
you call the library function chop, instead of writing

chop ($nunber);
you can write
chop $nunber;

Although this saves a few extra keystrokes, it makes
things a little less readable (in this author's opinion)

Besides, eliminating the parentheses can lead to
problems. Consider the following example

$fred = "Fred";
print (("Hello, " . $fred . "!\n") x 2);

This code prints

Hel | o, Fred!
Hel | o, Fred!

In this case, the parentheses enclosing the arguments to
print are absolutely necessary. Without them, you have

print ("Hello, " . $fred . "I\n") x 2;

When the Perl interpreter sees this statement, it assumes
that print is being called with the fol lowing argument,
which is not what you want:

"Hello, " . $fred . "!\n"

As always in programming, the basic rule to follow is

this: Do whatever makes your program easier to work
with, and use your best judgment.

Substituting for Array Variablesin Strings

As you have seen, Perl does not leave spaces if you pass an array variable to print:

@rray = (1, 2, 3);

print (@rray, "\n");

This prints the following on your screen:
123

To get around this problem, put the array you want to print into a string:
print ("@rray\n");

When the Perl interpreter sees the array variable inside the string, it substitutes the
values of the list assigned to the array variables, and leaves a space between each pair
of elements. For example:

@rray = (1, 2, 3);

print ("@rray\n");
This prints the following on your screen:

123

Assigning to Scalar Variablesfrom Array Variables

Consider the following assignment, which you've already seen:
@rray = ($varl, $var2);

Here, the values of the scalar variables $var 1 and $var 2 are used to form a two-element
list that is assigned to the array variable @rr ay.

Perl also enables you to take the current value of an array variable and assign its
components to a group of scalar variables. For example:

@rray = (5, 7);
($varl, S$var2) = @rray,

Here, the first element of the list currently stored in @rray, 5, is assigned to $var 1. The
second element, 7, is assigned to $var 2.

Additional elements in an array, if they exist, are ignored. For example:
@rray = (5, 7, 11);
($varl, $var2) = @rray;

Here, 5 is assigned to $var 1, 7 is assigned to $var 2, and 11 is not assigned to anything.

IT there are more scalar variables than elements in an array variable, the excess scalar
variables are assigned the null string, as fol lows:

@rray = (5, 7);
($varl, $var2, $var3) = @rray;

This assigns 5 to $var 1 and 7 to $var 2. Because there are not enough elements in @rr ay
to assign anything to $var 3, $var 3 is assigned the null string " ".

NOTE

You also can assign to several scalar variables using a
list. For example:

($varl, $var2, $var3) = ("one", "two", "three");

This assigns one to $var 1, t wo to $var 2, andt hree to
$var 3.

As with array variables, extra values in the list are
ignored and extra scalar variables are assigned the null
string, as fol lows:

($varl, $var2) = (1, 2, 3); # 3 is ignored
($varl, $var2, $var3) = (1, 2); # $var3 is now ""

Retrievingthe Length of aList

As you've seen, lists and array variables can be any length you want. As a consequence,
Perl provides a way of determining the length of the list assigned to an array variable.

Here's how it works: If an array variable (or list) appears anywhere that a scalar value
Is expected, the Perl interpreter obtains a scalar value by calculating the length of
the list assigned to the array variable.

Consider the following example:

@rray = (1, 2, 3);

$scal ar = @rray;

In the assignment to $scal ar, the Perl interpreter replaces @rr ay with the length of
the list currently assigned to @rr ay, which is 3. $scal ar, therefore, is assigned the
value 3.

NOTE

Note that the fol lowing two statements are not
equivalent:

$scal ar = @rray;
($scal ar) = @rray;

In the first statement, the length of the list in @rray is
assigned to $scal ar. In the second statement, the first
element of @rray is assigned to $scal ar.

It is always important to remember that $scal ar and
($scal ar) are not the same thing. $scal ar is a scalar
variable, and ($scal ar) is a one-element list containing
$scal ar.

Being able to access the length of an array is useful if you want to write a loop that
performs an operation on every element of an array. Listing 5.6 is an example of a
program that does just that.

Listing 5.6. A program that prints every element of an array.

1. #!/usr/local/bin/perl

3: @rray = (14, "cheeseburger", 1.23, -7, "toad");

4: $count = 1,

5: while ($count <= @rray) {

6: print("el ement $count: $array[$count-1]\n");

7: $count ++;

$ progranb_6

element 1: 14

el enent 2: cheeseburger
el ement 3: 1.23

element 4: -7

el enent 5: toad

nuﬂ The only new feature of this program is line 5, which compares the counter
variable $count to the length of the array @rr ay. Because the list assigned to @rr ay
contains five elements, the conditional expression

$count <= @rray

ensures that the loop iterates five times.

Once again, note that the subscript in line 6 is $count - 1, not $count . This caution bears
repeating: It is very easy to forget to subtract 1 when you use a value as a subscript.

If you like, you can write your loop in a different way and use $count as a subscript. For
example:

$count = 0O;
while ($count < @rray) {

print ("elenent $count+1: $array[$count]\n");

As you can see, this isn't any easier to fol low because you now have to remember these
two things:

1. The conditional expression now must use the < operator, not the <= operator. If

you use <= here, the loop iterates six times, not five.

2. The value of $count is now not the same as the element you are referring to. For
example, if you are printing the third element of the array, $count has the value

2. This means that references to $count, such as
el enent $count +1:

must add one to the value of $count to get the result you want.

As you can see, there is no intuitive or obvious way of writing programs that loop
through arrays. Generally, it's best to pick the way that is easiest for you to remember.

i

-

WARNING

You cannot retrieve the length of a list without first
assigning the list to an array variable. For example:

@rray = (10, 20, 30);
$scal ar = @rray;

This assigns 3 to $scal ar. Compare this with the
following statement:

$scal ar = (10, 20, 30);

This statement actual ly assigns 30 to $scal ar, not 3. In
this statement, the subexpression

(10, 20, 30)

is treated as three scalar values separated by comma
operators.

For more details on the comma operator, refer to "The
Comma Operator" in Day 4.

Using Array Slices

As you've seen, array subscripting enables you to change or access one element of an

array. For example:

$var = S$array[2];

$array| 2]

= $var;

Perl enables you to access more than one element of an array at a time in much the same
way. Following is a simple example:

@ubarray = @rray[O0, 1];

Here, the code fragment

@rray[0, 1]

refers to the first two elements of the list stored in the array variable. This portion of
the array is known as an array slice. An array slice is treated just like any other list. In
the statement

@ubarray = @rray[O0,1];

the list consisting of the first two elements of @rr ay is assigned to the array variable
@ubarray.

Here is another example:

@lice = @rray[1, 2, 3];

This statement assigns the array slice consisting of the second, third, and fourth
elements of @rray to the array variable @l i ce.

o,

WaRNING

Although single elements of an array are referenced
using the $ character, array slices are referenced using

Q@

$var = $array[0];
@ubarray = @rray|[O, 1];

The basic rules are as follows:

. References to single items, such as scalar variables or single
array elements, start with a $.

. References to array variables or array slices, which refer to
lists, start with a @

Listing 5.7 shows a simple example of an array slice.

T |

Listing 5.7. A program that demonstrates the use of an array slice.

=

#!/usr/ 1 ocal / bi n/ perl

3: @rray = (1, 2, 3, 4);
4. @ubarray = @rray[l, 2];
5. print ("The first elenent of subarray is $subarray[0]\n");

6: print ("The second el enment of subarray is $subarray[1]\n");

$ progranb_7
The first el enment of subarray is 2

The second el enent of subarray is 3

M Line 3 of this program assigns the following list to the array variable @rray:
(1, 2, 3, 4)

Line 4 assigns a slice of the array variable @rray to the array variable @ubarray. The
array slice

@rray[1, 2]

specifies that the second and third elements of the array are to be treated as a list and
assigned to @ubarr ay.

NOTE

In array slices, as in references to single elements of an
array, subscripts start from zero. For example, the array
slice

@rray[1, 2]

refers to the second and third elements of an array.

The final two lines of the program print the two elements of the array variable
@ubarray. As you can see, these elements are identical to the second and third elements
of @rray.

Using List Rangesin Array-Slice Subscripts

Perl provides a convenient way to refer to large array slices. Instead of writing
@rray[0,1, 2, 3, 4]

to refer to the first five elements of array @urr ay, you can use the list range operator,
as follows:

@rray[0..4]
This enables you to assign large array slices easily:

@ubarray = @rray[0..19];

This assigns the first 20 elements of @rray to @Gubarr ay.

Using Variablesin Array-Slice Subscripts

You can use the value of a scalar variable in a list range in an array slice subscript. The
following is an example:

$endrange = 19;

@ubarr ay @rray[0. . $endrange] ;

Here, the scalar variable $endr ange contains the upper limit of the array slice, which in
this case is 19. This means that the array slice to assign is

@rray[0..19]

which assigns the first 20 elements of @rray to @Gubarr ay.

You can also use the list stored in an array variable to define an array slice. Listing 5.8
shows how this works.

Listing 5.8. A program that uses an array variable as an array-slice
subscript.

1. #!'/usr/local/bin/perl
2.

3. @rray = ("one", "two", "three", "four", "five");

4: @ange = (1, 2, 3);
5. @ubarray = @rray[@ange];

6: print ("The array slice is: @ubarray\n");

$ progranb_8

The array slice is: two three four

M'Yﬂ Line 3 of this program assigns the following list to the array variable @rr ay:
("one", "two", "three", "four", "five")

Line 4 assigns the list (1, 2, 3) to the array variable @ ange, which is to serve as the
list range.

Line 5 uses the value of @ ange as the array subscript for an array slice. Because @ ange
contains (1, 2, 3), theslice of @rray that is selected consists of the second, third, and
fourth elements. These elements are then assigned to the array variable @ubarr ay.

Line 6 prints the selected array slice. When the Perl interpreter sees the variable name
@ubarray in the character string to be printed, it substitutes the value of @ubarr ay
for its name. Because @ubar r ay is inside a character string, the Perl interpreter leaves
a space between each pair of elements when printing.

Compare line 6 with the following:
print (@ubarray, "\n");

Here, pri nt leaves no spaces between the elements of @ubar r ay, which means that it
prints

t wot hr eef our

Which outcome you want depends, of course, on what you want your program to do.
Assigningto Array Slices

You can assign to array slices using the notation you have just seen. The following is an
example:

@rray[0,1] = ("string", 46);

Here, the first two elements of the array @urray become st ri ng and 46, respectively.

You can use list-range operators and variables when you assign to array slices as well.
The following is an example:

@rray[0..3] = (1, 2, 3, 4);

@rray[0..%$endrange] = (1, 2, 3, 4);

IT there are more items in the array slice than in the list, the extra items in the array
slice are assigned the null string, as fol lows:

@rray[0..2] = ("stringl", "string2");

The third element of @rray now holds the null string.

If there are fewer items in the array slice than in the list, the extra items in the list are
ignored, as in the fol lowing:

@rray[0..2] = (1, 2, 3, 4);

In this assignment, the fourth element in the list, 4, is not assigned to anything.

When an array slice is assigned to, the remainder of the array is not changed. Listing 5.9
shows how this works.

Listing 5.9. A program that assigns to an array slice.

1. #!/usr/local/bin/perl

3: @rray = ("oldl", "old2", "old3", "old4");
4. @rray[1,2] = ("new2", "new3d");

5. print ("@rray\n");

[Ourpu]

$ progranb_9
ol d1 new2 new3 ol d4

$

:ENMHA In the preceding program, the only statement that did not appear in previous
programs is line 4, which assigns the list ("new2", "new3") to the array slice of @urray
consisting of the second and third elements. This assignment changes the value of
@urray from

("ol d1", "ol d2", "ol d3", "ol d4")

to

("ol d1", "new2", "new3", "ol d4")

Line 5 then prints the changed array.

Overlapping Array Slices

As you've seen, Perl enables you to use array slices on either side of an assignment
statement. The following is an example:

@ewarray = @rray| 2, 3, 4];

@rray[2,3,4] = @ewarray;

This means that you can assign from one array slice to another, even if the two slices
overlap, as in the fol lowing:

@rray[1,2,3] = @rray[2,3,4];

The Perl interpreter has no problem with this statement because it copies the list stored
in @rray[2, 3, 4] into a temporary location (invisible to you) before assigning it to
@rray[1, 2, 3].

Listing 5.10 provides an example of overlapping array slices in use.

T |

Listing 5.10. A program containing over lapping array slices.

1. #!/usr/local/bin/perl

3: @rray = ("one", "two", "three", "four", "five");
4: @rray[1,2,3] = @rray[2,3,4];

5. print ("@rray\n");

$ progranb_10

one three four five five

tlme of assignment, the array slice @rray|[2, 3, 4] contains the list
("three", "four", "five")

This list consists of the last three elements of @r r ay. Assigning this list to
@rray[1, 2, 3] means that the list stored in @rr ay changes from

“lLine4isan example of an assignment with overlapping array slices. At the

("one", "two", "three", "four", "five")
to
("one", "three", "four", "five", "five")
NOTE

Overlapping array slices of varying lengths are dealt
with in the same way as other array slice assignments of
non-matching lengths. For example:

@rray = (1, 2, 3, 4, 5);
@rray[0..2] = @rray][3,4];

This assignment assigns the array slice @rray|[3, 4],
which is the list (4, 5), to the array slice @rray[0..2].
After this assignment, the value of @rray is the list

(4, 5, "", 4, 5)
The third element of @rray is now the null string

because there are only two elements in the array slice
being assigned.

Using the Array-Slice Notation as a Shorthand

So far, I've been using the following array-slice notation to refer to consecutive
elements of an array:

@rray[0, 1]

In Perl, however, there is no real difference between an array slice and a list
containing consecutive elements of the same array. For example, the following
statements are equivalent:

@ubarr ay @rray[O0,1];

($array[0], S$array[1]);

@ubarr ay

Because of this, you can use the array-slice notation to refer to any elements of an
array, regardless of whether they are in order. For example, the following two
statements are equivalent:

@ubarray = ($array[4], $array[1l], $array[3]);

@ubarr ay @rray[4,1, 3];

In both cases, the array variable @ubarray is assigned a list consisting of three
elements: the fifth, second, and fourth elements of @rr ay.

You can use this array-slice notation in a variety of ways. For example, you can assign
one element of an array multiple times:

@ubarray = @rray[O0,0,0];

This creates a list consisting of three copies of the first element of @rr ay, and then
assigns this list to @ubarr ay.

The array-slice notation provides an easy way to swap elements in a list. The following
is an example:

@rray[1l,2] = @rray[2,1];

This statement swaps the second and third elements of @rray. As with the overlapping
array slices you saw earlier, the Perl interpreter copies @rray[2, 1] into a temporary

location before assigning it, which ensures that the assignment takes place properly.

For an example of a program that swaps array elements, look at Listing 5.11, which sorts
the elements in an array using a simple sort algorithm.

T |

Listing 5.11. A program that sorts an array.

1. #!/usr/local/bin/perl

3: # read the array fromstandard input one itemat a tine
4. print ("Enter the array to sort, one itemat a tine.\n");
5. print ("Enter an enpty line to quit.\n");

6: $count = 1;

7: S$inputline = <STDI N>;

8: chop ($inputline);

9: while ($inputline ne "") {

10: @rray[$count-1] = $inputline;
11: $count ++;

12: $i nputline = <STDI N>;

13: chop ($inputline);

14: }

15:

16: # now sort the array

17: S$count = 1;

18: while ($count < @rray) {

19: $x = 1;

20: while ($x < @rray) {

21: if (Sarray[$x - 1] gt S$array[$x]) {

22: @rray[$x-1, $x] = @rray|[$x, $x-1];
23: }

24: $x++;

25: }

26: $count ++;

27 '}

28:

29: # finally, print the sorted array

30: print ("@rray\n");

JOureui]

$ progranb_11

Enter the array to sort, one itemat a tine.
Enter an enpty line to quit.

f oo

baz

di p

bar

bar baz dip foo
$

BNM“ﬂ This program is divided into three parts:

. Reading the array
. Sorting the array
. Printing the array

Lines 3-14 read the array into the variable @rray. The conditional expression in line 9,

$i nputline ne "",istrue as long as the line is not empty. (Recall that an empty line
consists of just the newline character, which the library function chop removes.) In this
example, the listfoo baz di p bar is read into the array variable @rr ay.

Lines 17-27 perform the sort. The sort consists of two loops, one inside the other. The
inner loop works like this:

« Line 21 compares the first item in the list with the item next to it. If the first item
is greater, line 22 swaps the two items. Otherwise, the two items are left where
they are. In this example, f oo is greater than baz, so f oo becomes the second
element in the list. At this point, the list is
baz foo dip bar

. The program then loops back to line 21, which now compares the second pair in the
list (the second and third elements). The new second element, f oo, is compared to
di p. f oo is greater, so f oo becomes the new third element, and di p becomes the
second element:
baz dip foo bar

. Line 20 terminates the loop when the last pair is compared. (Note that the
conditional expression compares the inner counting variable $x with the length
of the array variable @rray. When $x becomes equal to @rray, every pair of
elements in the list has been compared.)

At this point, the largest element in the list is at the far end of the list:

baz dip bar foo

The largest value in the list, f oo, has been moved to the far right end of the list, where
it belongs. The other elements have been displaced to make room.

Lines 17-19 and 26-27 contain the outer loop. This outer loop just makes sure that the
inner loop is repeated n- 1 times, where n is the number of elements in the list. When the
inner loop is repeated a second time, the second-largest element moves up to the second
position from the right:

baz bar dip foo

The final pass through the inner loop sorts the final two elements:

bar baz dip foo

Line 30 then prints the sorted list.

NOTE

You'll never need to write a program that sorts values
in a list because Perl has a library function, sort, that
does it for you. See the section "Array Library
Functions" later today for more details.

Reading an Array from the Standard I nput File

In the programs you have seen so far, single lines of input are read from the standard
input file and stored in scalar variables. For example:

$var = <STDI N>;

In this case, every appearance of <STDI N> means that another line of input is obtained
from the standard input file.

Perl also provides a quicker approach: If you assignh <STDI N> to an array variable instead
of a scalar variable, the Perl interpreter reads in all of the data from the standard
input file at once and assigns it. For example, the statement

@rray = <STDI N>;

reads everything typed in and assigns it all to the array variable @rray. The variable
@r ray now contains a list; each element of the listis a line of input.

Listing 5.12 is an example of a simple program that reads its input data into an array.

Listing 5.12. A program that reads data into an array and writes the
array.

1. #!/usr/local/bin/perl

2:

3: @rray = <STDI N>;

4. print (@rray);

$ progranb_12

Here is ny first line of data.
Here is another |ine.

Here is the last |ine.

"D

Here is ny first line of data.
Here is another |ine.

Here is the last |ine.

g 'M'Yg As you can see, this program is very short. Line 3 reads the input from the
standard input file. In this example, the input that is entered consists of the three lines

Here is nmy first line of data.
Here is another line.

Here is the last |ine.

followed by the Ctrl+D key combination. Ctrl+D produces a special character that
indicates end of file; when the Perl interpreter sees this, it knows that there is no more
input.

NOTE

A blank line is perfectly acceptable input and does not
terminate the reading of input from the standard input
file. Only the Ctrl+D character can do that.

Also note that the Ctrl+D character is a non-printing
character. When you type it, nothing appears on the
screen. In the examples in this book, control characters
that are part of the input, such as Ctrl+D, are
represented by the » character followed by the letter
typed. For example, Ctrl+D is represented as

"D

This representation is the standard one used in the
computing world.

After line 3 is executed, the array variable @rray contains a list comprising three
elements: the three lines of input you just entered. The last character of each input
line is the newline character (because you didn't call chop to get rid of it).

Line 4 prints the lines of input you just read. Note that you do not need to separate the
lines with spaces or newline characters because each line in @rray is terminated by a
newline character.

i,

WAaRNING

When you use the following statement:
@rray = <STDI N>;

every line of input you enter is stored in @rray all at
once. If you enter a lot of input, @rr ay can get very
large.

Use this statement only when you real ly need to work
with the entire input file at once.

Array Library Functions

Perl provides a number of library functions that work on lists and array variables. You

can use them to do the following:

. Sort array elements in alphabetical order

. Reverse the elements of an array

. Remove the last character from all elements of an array
. Merge the elements of an array into a single string

. Split astring into array elements

The following sections describe these array library functions.
SortingalList or Array Variable

The library function sort sorts the elements of an array in alphabetical order and
returns the sorted list.

The syntax for the sort library function is

retlist = sort (array);

In this syntax, array is the list to sort,andret!i st is the sorted list.

Here are some examples:

@rray = ("this", "is", "a", "test");

@rray2 = sort (@rray);

After sort iscalled, the value of @rray2 is the list
("a", "is", "test", "this")

Note that sort does not modify the original list. The statement
@rray2 = sort (@rray);

does not change the value of @rray. To replace the contents of an array variable with
the sorted list, put the array variable on both sides of the assignment, as fol lows:

@rray = sort (@rray);

Here, the sorted list is put back in @rr ay.

i,

WAaRNING

The sorted list must be assigned to an array variable in
order to be used. The statement

sort (@array);

doesn't do anything useful because the sorted list is not
assigned to anything.

Note that sort treats its items as strings, not integers; items are sorted in alphabetical,
not numeric, order. For example:

@rr ay
@rr ay

(70, 100, 8);

sort (@rray);

In this case, sort produces

(100, 70, 8)

not

(8, 70, 100)

Because sort is treating the elements of the list as strings, the strings to be sorted are
70, 100, and 8. When sorting characters that are not alphabetic, sort looks at the
internal representation of the characters to be sorted. If you are not familiar with
ASCII (which will be described shortly), this might sound complicated, but it's not too
difficult to understand.

Here's how it works: When Perl (or any other programming language) stores a character
such asr or 1, what it actually does is store a unique eight-bit number that corresponds
to this character. For example, the letter r is represented by the number 114, and 1 is

represented by the number 49. Every possible character has its own unique number.

The sort function uses these unique numbers to determine how to sort character
strings. When sorting 70, 100, and 8, sort looks at the unique numbers corresponding to
7,1, and 8, which are the first characters in each of the strings. As it happens, the
unique number for 1 is less than that for 7, which is less than that for 8 (which makes
sense when you think of it). This means that 100 is "less than" 70, and 70 is "less than" 8.

Of course, if two strings have identical first characters, sort then compares the second
characters. For example, when sort sorts 72 and 7$, the first characters are identical;
sort then compares the unigue number representing 2 with the number representing $. As
it happens, the number for $ is smaller, so 7$ is "less than" 72.

NOTE

The set of unique numbers that correspond to the
characters understood by the computer is known as the
ASCII character set.

Most computers today use the ASCII character set, with
a couple of exceptions as fol lows:

. Some IBM computers use an IBM-developed
character set called EBCDIC. EBCDIC works the
same way as ASCII. In both cases, a character such
asr or 1is translated into a number that
represents it. The only difference between
EBCDIC and ASCII is that the translated numbers
are different.

. Computers that print a variety of spoken
languages, or which deal with languages such as
Japanese or Chinese, use a more complicated 16-bit
code to represent the wide variety of characters
they understand.

You don't really need to worry about what character
set your machine uses, except to take note of the sorting
order. A complete listing of the ASCII characters can be
found in Appendix B, "ASCII Character Set.”

Using Other Sort Keys

Normally, sort sorts in alphabetical order. You can tell the Perl interpreter to sort
using any criterion you like. To learn more about sort keys, refer to Day 9, "Using

Subroutines.”
Reversingalist or Array Variable

The library function r ever se reverses the order of the elements of a list or array
variable, and returns the reversed list.

The syntax for thereverse library function is

retlist = reverse (array);

array is the list to reverse, andret i st is the reversed list.

Here is an example:

@rray = ("backwards", "is", "array", "this");

@rray2 = reverse(@rray);
The value assigned to @rray?2 is the list
("this", "array", "is", "backwards")

As with sort, rever se does not change the original array.

IT you like, you can sort and reverse the same list by passing the list returned by sort to
rever se. Listing 5.13 shows an example of this. It reads lines of data from the standard
input file and sorts them in reverse order.

Listing 5.13. A program that sorts input lines in reverse order.

1. #!/usr/local/bin/perl
2:

3: @nput = <STDI N>;

4. @nput = reverse (sort (@nput));

5. print (@nput);

$ progranb_13
f oo
bar
di p
baz
"D
f oo
di p
baz

bar

M'Yﬂ Line 3 reads all the input lines from the standard input file into the array
variable @ nput . Each element of input consists of a single line of input terminated with
a newline character.

Line 4 sorts and reverses the input line. First, sort is called to sort the input lines in
alphabetical order. (Recall that when one library function appears inside another, the
innermost one is called first.) The list returned by sort is then passed to r ever se, which
reverses the order of the elements of the list. The resultis a list sorted in reverse
order, which is then assigned to @ nput .

Line 5 prints the sorted lines. Because each line is terminated by a newline character,
no extra spaces or newline characters need to be added to make the output readable.

NOTE

If you like, you can omit the parentheses to the call to
rever se. This gives you the following statement:

@nput = reverse sort (@ nput);

Here is a case where eliminating a set of parentheses
actual ly makes the code more readable; it is obvious
that the statement sorts @ nput in reverse order.

Using chop on Array Variables

As you've seen, the chop library function removes the last character from a character
string. The following is an example:

$var = "bat he";

chop ($var); # $var now contains "bath"

The chop function also can work on lists in array variables. If you pass an array
variable to chop, it removes the last character from every element in the list stored in
the array variable. For example:

@ist = ("rabbit", "12345", "quartz");

chop (@ist);
After chop is called, the list stored in @i st is

("rabbi", "1234", "quart")

The chop function often is used on arrays read from the standard input file, as shown in
the following:

@rray = <STDI N>;

chop (@rray);

This call to chop removes the newline character from each input line. In the following
section, you will see programs in which this is helpful.

Creatinga Single Stringfrom a List

The library function j oi n creates a single string from a list of strings, which then can
be assigned to a scalar variable.

The syntax for thej oi n library function is
string = join (array);

ar ray is the list to join together, and st ri ng is the resulting character string.

The following is an example using j oi n:
$string = join(" ", "this", "is", "a", "string"),

The first element of the list supplied toj oi n contains the characters that are to be
used to join the parts of the created string together. In this example, $st ri ng becomes
this is a string.

j oi n can specify other join strings besides " ". For example, the following statement
uses a pair of colons to join the strings:

$string = join("::", "words", "and", "colons");

In this statement, $stri ng becomes wor ds: : and: : col ons.

You can use any list or array variable as part or all of the argument toj oi n. For
example:

@ist = ("here", "is", "a"),
$string = join(" ", @ist, "string");
This assignshere is a string to$string.

Listing 5.14 is a simple program that uses j oi n. It joins together all the input lines from
the standard input file.

Listing 5.14. A program that takes its input and joins it into a single
string.

1. #!/usr/local/bin/perl

3: @nput = <STDI N>;
4: chop (@nput);
5. $string = join(" ", @nput);

6: print ("$string\n");

[Oureui]

$ progranb 14
Thi s

i's

ny

i nput

"D

This is ny input
$

BNM“ﬂ Line 3 reads all of the input lines into the array variable @ nput . Each
element of @ nput is asingle line of input terminated by a newline character.

Line 4 passes the array variable @ nput to the library function chop, which removes the
last character from each element of the list stored in @ nput . This removes all of the
trailing newline characters.

Line 5 callsj oi n, which joins all the input lines into a single string. The first argument
passed tojoinis" ", which tellsjoi n to put one space between each pair of lines. This
turns the list

("This"™, "is", "ny", "input")
into the string
This is ny input

Line 6 prints the string produced by j oi n. Note that the call to pri nt has to specify a
newline character because all the newline characters in the input lines have been
removed by the call to chop.

Splittinga String intoa List

As you've seen, the library function j oi n creates a character string from a list. To undo
the effects of j oi n-to split a character string into separate items-call the function
split.

The syntax for the library function split is
array = split (string);

string is the character string to split, and ar r ay is the resulting array.
The following is a simple example of the use of split:

$string = "words::separated::by::colons";

@rray = split(/::/, $string);

The first argument passed to spl it tells it where to break the string into separate
parts. In this example, the first argumentis:: (two colons); because there are three
pairs of colons in the string, spl i t breaks the string into four separate parts. The result
is the list

("words", "separated", "by", "colons")

which is assigned to the array variable @rray.

NOTE

The/ characters surrounding the:: inthe call tosplit
indicate that the : : is a pattern to be matched. Perl
supports a wide variety of special pattern-matching
sequences, which you will learn about on Day 7,

"Pattern Matching."

The spl it function is used in a variety of applications. Listing 5.15 uses spl it to count
the number of words in the standard input file.

T |

Listing 5.15. A simple word-count program.

=

#! [/ usr/ 1 ocal / bi n/ perl

3: $wordcount = O;
4: $line = <STD N>;

5. while ($line ne "") {

6: chop ($line);

7: @rray = split(/ /, $line);
8: $wor dcount += @rray;

9: $li ne = <STDI N>;

10: }

11: print ("Total nunber of words: $wordcount\n");

$ progranb_15

Here is sone input.

Here are sone nore words.
Here is nmy last line.

"D

Total nunber of words: 14

$

m When you enter a Ctrl+D (End-of-File) character and read it using <STDI N>,
the resulting line is the null string. Line 5 of this program tests for this null string.

Note that line 5 has no problem distinguishing the end of file from a blank input line
because a blank input line contains the newline character, and chop has not yet been
called. Once the Perl interpreter knows that the program is not at the end of file, line
6 can be called; it chops the newline character off the end of the input line.

Line 7 splits the input line into words. The first argument to split,/ /, indicates that
the line is to be broken whenever the Perl interpreter sees a space. The resulting list is
stored in @rr ay.

Because each element of the list in @rray is one word in the input line, the total
number of words in the line is equivalent to the number of elements in the array. Line 8
takes advantage of this to count the number of words in the input line. Here's how line
8 works:

. When an array variable appears in a place where the Perl interpreter normally
expects a scalar value, the number of elements in the list stored in the array
variable is substituted for the variable name. In this program, when the Perl
interpreter sees @rr ay, it replaces it with the number of elements in @rr ay.

. Because the number of elements in the array is the same as the number of words in

the input line, the statement
$wor dcount += @rray;

actually adds the number of words in the line to $wor dcount .

NOTE

Listing 5.15 does not work properly if an input line
contains more than one space between words. The
following is an example:

This is a line

Because there are two spaces between Thi s andi s, the
split function breaks

This is

into three words: Thi s, an empty word"", and i s.
Because of this, the line

This is a line

appears to contain five words when it real ly contains
only four.

To get around this problem, what you need is a pattern
that matches one or more spaces. To learn about special
patterns such as this, see Day 7.

Listing 5.16 is an example of a program that uses split,joi n,andrever se to reverse the
word order of the input read from the standard input file.

Listing 5.16. A program that reverses the word order of the input file.

1. #!/usr/local/bin/perl

3: @nput = <STDI N>;

4. chop (@nput);

6: # first, reverse the order of the words in each |line

7: S$currline = 1,

8: while ($currline <= @nput) {

9: @wrds = split(/ /, $input[S$currline-1]);

10: @wrds = reverse(@words);

11: $input[$currline-1] = join(" ", @words, "\n");
12: $currline++;

13: }

14:

15: # now, reverse the order of the input lines and print them
16: @nput = reverse(@nput);

17: print (@nput);

$ progranb_16

Thi s sentence

isin

reverse order.
"D

order. reverse
inis

sentence This

$

g 'M'Yg Line 3 reads all of the standard input file into the array @ nput . Line 4 then
removes the trailing newline characters from the input lines.

Lines 7-13 reverse each individual line. Line 7 compares the current line number, stored
in $currli ne, with the number of lines of input. (Recall that the number of elements in
the list is used whenever an array variable appears where a scalar value is expected.)

Line 9 splits a line of input into words. The first argument tosplit,/ /,indicates thata
split is to occur every time a space is seen. The list of words is stored in the array
variable @wr ds.

Line 10 reverses the order of the list of words stored in @wr ds. After the list has been
reversed, line 11 joins the input line back together again. Note that line 11 appends a
newline character to the input line.

Now that the words in each individual line have been reversed, all that the program
needs to do is reverse the order of the lines themselves. Line 16 accomplishes this.

Line 17 prints the reversed input file. Note that the period character (.) appears at the
end of the first word; this is because the reversing program isn't smart enough to detect
and get rid of it. (You can use spl i t to get rid of this, too, if you want.)

Other List-Manipulation Functions

Perl provides several other list-manipulation functions also. To learn about these,
refer to Day 14, "Scalar-Conversion and List-Manipulation Functions."

Summary

In today's lesson, you learned about lists and array variables. A list is an ordered
collection of scalar values. A list can consist of any number of scalar values.

Lists can be stored in array variables, which are variables whose names begin with the
character @

Individual elements of array variables can be accessed using subscripts. The subscript 0
refers to the first element of the list stored in the array variable, the subscript 1 refers
to the second element, and so on. If an array element is not defined, it is assumed to hold
the null string "". If a previously undefined array element is assigned to, the array
grows appropriately.

The list-range operator provides a convenient way to create a list containing
consecutive numbers.

You can copy lists from one array variable to another. In addition, you can include an
array variable in a list, which means that the list stored in the array variable is copied
into the list containing the array-variable name.

Array-variable names can appear in character strings; in this case, the elements of the
list are included in place of the variable name, with a space separating each pair of

elements.
You can assign values to scalar variables from array variables, and vice versa.

If an array variable appears in a place where a scalar variable is expected, the length of
the list stored in the array variable is used.

You can access any part of a list stored in an array variable by using the array-slice
notation. You can assign values to array slices, and they can be used anywhere a list is
expected.

The entire contents of the standard input file can be stored in a single array variable.

The library functions sort and rever se sort and reverse lists, respectively. The
function chop removes the last character from each element of a list. The function
split breaks asingle string into a collection of list elements. The function j oi n takes a
collection of list elements and joins them into a single string.

Q&A

Q: How can | tell whether a reference to an array variable such as @rray
refers to the stored list or to the length of the list?

A: It's usually pretty easy to tell. In a lot of places, using a list makes no sense:

$result = $nunber + @rray;
For example, it makes no sense here to add a list to $nunber, so the length of the
list stored in @rray is used.

Q: Why do array elements use $ for the first character of the element name,
and not @ Wouldn't it make more sense to refer to an array element as
@rray[2]
because we all know that the @indicates an array variable?

A: This relates to the first question. The Perl interpreter needs to know as soon as

possible whether a variable reference is a scalar value or a list. The $ indicates
right away that the upcoming item is a scalar value.
Eventually, you'll get used to this notation.

Q: Is there a difference between an undefined array variable and an array
variable containing the empty list?

A: No. By default, all array variables contain the empty list. Note, however, that
the empty list is not the same as a list containing the null string:
@rray = ("");
This list contains one element, which happens to be a null string.

Q: How large an input file can | read in using the fol lowing statement?
@rray = <STDI N>;

Perl imposes no limit on the size of arrays. Your computer, however, has a finite
amount of memory, which limits how large your arrays can be.

Why does Perl add spaces when you substitute for an array variable in a
string?

The most common use of string substitution is in the pri nt statement. Normally,
when you print a list you don't want to have the elements of the list running
together, because you want to see where one element stops and the next one
starts.

To print the elements of a string without spaces between them, pass the list to
pri nt without enclosing it in a string, as fol lows:

print ("Here is ny list", @ist, "\n");

Why does $ appear before 1 in the ASCII character set?

The short answer is: Just because. (This reasoning occurs more often in computing
than you might think.)

Here's a more detailed explanation: On early machines that used the ASCII
character set, performance was more efficient if there was a relationship
between, for instance, the location of the uppercase alphabetic characters and
the lowercase alphabetic characters. (In fact, if you add 0x20, or 20 hexadecimal,
to the ASCII representation of an uppercase letter, you get the corresponding
lowercase letter.)

Establishing relationships such as these meant that gaps existed between, for
example, the representation of z (which is 90) and the representation of a (which
Is 97). These gaps are filled by printable non-alphanumeric characters; for
example, the representation of [is 91.

As for why $ appears before 1, as opposed to ?, which appears after 1, the
explanation is: Just because.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you've learned. Try
and understand the quiz and exercise answers before you go on to tomorrow's lesson.

Quiz

1.

Define the following terms:
a. list

b. empty list

c. array variable

d. subscript

e. array slice

Assume the fol lowing assignments have been performed:
@ist = (1, 2, 3);
$scalarl = "hello";

$scalar2 = "there";
What is assigned to the array variable @ew i st in each of the following cases?
a. @ewist = @i st;
@ew i st reverse(@ist[1,2]);
@ew i st ($scalarl, @ist[1,1]);
($dumy, @ewist) = @i st;
@ewist[2,1,3] = @ist[1,2,1];
. @ewist = <STDI N>;
3. Assume that the following assignments have been performed:
@istl = (1, 2, 3, 4);
@ist2 = ("one", "two", "three");
What is the value of $resul t in each of the following cases?
($dumy, S$result) = @istl;
$result = @ist1;
($result) = @i st2;
($result) = @istl[l..2];
$result = $list2[$listl[$listl[0]]];
$result = $list2]3];
4. What is the difference between a list and an array variable?
5. How does the Perl interpreter distinguish between an array element and a scalar
variable?
6. How can you ensure that the @ $, and [characters are not substituted for in
strings?
7. How can you obtain the length of a list stored in an array variable?
What happens when you refer to an array element that has not yet been defined?
9. What happens when you assign to an array element that is larger than the
current length of the array?

S0 o0CT

oo

Exercises

1. Write a program that counts all occurrences of the word t he in the standard
input file.

2. Write a program that reads lines of input containing numbers, each of which is
separated by exactly one space, and prints out the fol lowing:
a. The total for each line
b. The grand total

3. Write a program that reads all input from the standard input file and sorts all
the words in reverse order, printing out one word per line with duplicates
omitted.

4. BUG BUSTER: What is wrong with the fol lowing statement?
$result = @rray[4];

5. BUG BUSTER: What is wrong with the fol lowing program? (See if you can figure

out what's wrong without checking the listings in today's lesson.)
#! [usr/ 1 ocal / bi n/ perl

@ nput = <STDI N>;
$currline = 1;

while ($currline < @nput) {
@wrds = split(/ /, $input[S$currline]);
@wrds = sort(@words);

$input[$currline] = join(" ", @words);
$currline++;
}

print (@ nput);

Chapter 6

Reading from and Writing to Files

CONTENTS

. Opening a File
o The File Variable
o The Filename
o The File Mode
o Checking Whether the Open Succeeded
. Reading from a File
o File Variables and the Standard Input File
o Terminating a Program Using di e_
o Reading into Array Variables
. Writing to a File
o The Standard Output File Variable
o Merging Two Files into One
. Redirecting Standard Input and Standard Output
. The Standard Error File
. Closing aFile
. Determining the Status of a File
o File-Test Operator Syntax
o Available File-Test Operators
o More on the - e Operator
o Testing for Read Permission-the -r Operator
o Checking for Other Permissions
o Checking for Empty Files
o Using File-Test Operators with File VVariables
. Reading from a Sequence of Files
o Reading into an Array Variable
. Using Command-Line Arguments as Values
o ARGV and the <> Operator
. Opening Pipes
. Summary
. Q&A
. Workshop
o Quiz

o EXercises

So far, you've learned to read input from the standard input file, which stores data
that is entered from the keyboard. You've also learned how to write to the standard
output file, which sends data to your screen. In today's lesson, you'll learn the
following:

. How to open afile

. How to read from and write to an opened file

. How to redirect standard input and standard output and how to use the standard
error file

. How to close a file

. About file-test operators, which determine the status of a file

. How to read from multiple files

. How to use command-line arguments

. How to open pipes

Opening a File

Before you can read from or write to a file, you must first open the file. This operation
tells the operating system that you are currently accessing the file and that no one
else can change it while you are working with it. To open a file, call the library
function open.

The syntax for the open library function is
open (filevar, filenane);

When you call open, you must supply two arguments:
. filevar represents the name you want to use in your Perl program to refer to the

file.
. fil enanme represents the location of the file on your machine.

TheFileVariable

The first argument passed to open is the name that the Perl interpreter uses to refer to
the file. This name is also known as the file variable (or the file handle).

A file-variable name can be any sequence of letters, digits, and underscores, as long as
the first character is a letter.

The following are legal file-variable names:

fil ename
MY _NANE
NAME2

A REALLY LONG FI LE VARI ABLE NAVNE

The following are not legal file-variable names:

1NAME
A. FI LE. NAME
_ANOTHERNAME

i f

i f isnot a valid file-variable name because it has another meaning: as you've seen, it
indicates the start of ani f statement. Words such asi f that have special meanings in
Perl are known as reserved words and cannot be used as names.

Tip

It's a good idea to use all uppercase letters for your file-
variable names. This makes it easier to distinguish file-
variable names from other variable names and from
reserved words.

The Filename

The second item passed to open is the name of the file you want to open. For example, if
you are running Perl on a UNIX file system, and your current working directory
contains a file named fi | e1 that you would like to open, you can open it as follows:

open(FI LEL, "filel");

This statement tells Perl that you want to open the filefi | el and associate it with the
file variable FI LE1.

If you want to open a file in a different directory, you can specify the complete
pathname, as fol lows:

open(FILEL, "/u/jqpublic/filel”);

This opens the file/ u/j gpublic/fil el and associates it with the file variable FI LEL.

NOTE

If you are running Perl on a file system other than
UNIX, use the filename and directory syntax that is
appropriate for your system. The Perl interpreter
running on that system will be able to figure out where
your file is located.

TheFile Mode

When you open a file, you must decide how you want to access the file. There are three
different file-access modes (or, simply, file modes) available in Perl:

read mode [|Enables the program to read the existing contents of
the file but does not enable it to write into the file

write mode ||Destroys the current contents of the file and
overwrites them with the output supplied by the
program

append mode ||Appends output supplied by the program to the existing
contents of the file

By default, open assumes that a file is to be opened in read mode. To specify write mode,
put a > character in front of the filename that you pass to open, as fol lows:

open (QUTFILE, ">/u/jqpublic/outfile");

This opens the file/ u/j gpublic/outfil e for writing and associates it with the file
variable QUTFI LE.

To specify append mode, put two > characters in front of the filename, as fol lows:

open (APPENDFI LE, ">>/u/jqpublic/appendfile");

This opens the file / u/ j gpubl i c/ appendfi | e in append mode and associates it with the file
variable APPENDFI LE.

NOTE
Here are a few things to remember when opening files:

. When you open a file for writing, any existing
contents are destroyed.

. You cannot read from and write to the same file
at the same time.

. When you open a file in append mode, the existing
contents are not destroyed, but you cannot read
the file while writing to it.

Checking Whether the Open Succeeded

Before you can use a file opened by the open function, you should first check whether
the open function actually is giving you access to the file. The open function enables
you to do this by returning a value indicating whether the file-opening operation
succeeded:

. Ifopen returns a nonzero value, the file has been opened successfully.
. Ifopen returns 0, an error has occurred.

As you can see, the values returned by open correspond to the values for true and false
in conditional expressions. This means that you can use open inif and unl ess statements.
The following is an example:

if (open(MYFILE, "/u/jqgpublic/nyfile")) {

here's what to do if the file opened

The code inside thei f statement is executed only if the file has been successfully
opened. This ensures that your programs read or write only to files that you can access.

NOTE

If open returns false, you can find out what went wrong
by using the file-test operators, which you'll learn
about later today.

Reading from a File

Once you have opened a file and determined that the file is available for use, you can
read information from it.

To read from a file, enclose the file variable associated with the file in angle brackets
(<and >), as fol lows:

$li ne = <MYFI LE>;

This statement reads a line of input from the file specified by the file variable MyFI LE
and stores the line of input in the scalar variable $I i ne.

Listing 6.1 is a simple program that reads input from a file and writes it to the standard
output file.

Listing 6.1. A program that reads lines from a file and prints them.

1. #!/usr/local/bin/perl

3: if (open(MYFILE, "filel")) {

4: $line = <MYFI LE>;

5: while ($line ne "") {

6: print ($line);

7. $line = <MYFI LE>;
8: }

$ progranbd_1
Here is a line of input.
Here is another |ine of input.

Here is the last line of input.

B M'Yﬂ Line 3 opens the filefil el in read mode, which means that the file is to be
made available for reading. fil el is assumed to be in the current working directory. The
file variable MyFI LE is associated with the filefil el.

IT the call to open returns a nonzero value, the conditional expression
open(MYFI LE, "filel")

IS assumed to be true, and the code inside the i f statement is executed.

Lines 4-8 print the contents of fi | e1. The sample output shown here assumes thatfil el
contains the following three lines:

Here is a line of input.
Here is another line of input.

Here is the last line of input.

Line 4 reads the first line of input from the file specified by the file variable MyFI LE,
which isfil el. This line of input is stored in the scalar variable $l i ne.

Line 5 tests whether the end of the file specified by MyFI LE has been reached. If there
are no more lines left in MyFI LE, $I i ne is assigned the empty string.

Line 6 prints the text stored in $! i ne, which is the line of input read from MyFI LE.

Line 7 reads the next line of MyFI LE, preparing for the loop to start again.

File Variables and the Standard I nput File

Now that you have seen how Perl programs read input from files in read mode, take
another look at a statement that reads a line of input from the standard input file.

$li ne = <STDI N>;

Here's what is actual ly happening: The Perl program is referencing the file variable
STDI N, which represents the standard input file. The < and > on either side of STDI N tell
the Perl interpreter to read a line of input from the standard input file, just as the <
and > on either side of MyFI LE in

$line = <MYFI LE>;

tell the Perl interpreter to read a line of input from MyFI LE.

STDI Nis a file variable that behaves like any other file variable representing a file in
read mode. The only difference is that STDI N does not need to be opened by the open
function because the Perl interpreter does that for you.

Terminating a Program Using di e

In Listing 6.1, you saw that the return value from open can be tested to see whether the
program actual ly has access to the file. The code that operates on the opened file is
contained in ani f statement.

If you are writing a large program, you might not want to put all of the code that
affects a file inside ani f statement, because the distance between the beginning of the
i f statement and the closing brace (}) could get very large. For example:

if (open(MYFILE, "filel")) {

this could be many pages of statenents!

Besides, after a while, you'l 1 probably get tired of typing the spaces or tabs you use to
indent the code inside the i f statement. Perl provides a way around this using the
library function di e.

The syntax for the di e library function is
di e (nmessage);

When the Perl interpreter executes the di e function, the program terminates
immediately and prints the message passed to di e.

For example, the statement
die ("Stop this now\n");
prints the following on your screen and terminates the program:

Stop this now

Listing 6.2 shows how you can use di e to smoothly test whether a file has been opened
correctly.

T |

Listing 6.2. A program that uses di e when testing for a successful file
open operation.

1. #!/usr/local/bin/perl

3: unless (open(MYFILE, "filel")) {

4. die ("cannot open input file filel\ln");

7: # if the programgets this far, the file was
8: # opened successfully

9: $line = <MYFI LE>;

10: while ($line ne "") {

11: print ($line);
12: $li ne = <MYFI LE>;
13: }

$ progranb_2
Here is a line of input.
Here is another |ine of input.

Here is the last line of input.

M'Yﬂ This program behaves the same way as the one in Listing 6.1, except that it
prints out an error message when it can't open the file.

Line 3 opens the file and tests whether the file opened successful ly. Because this is an
unl ess statement, the code inside the braces ({ and }) is executed unless the file opened
successfully.

Line 4 is the call to di e that is executed if the file does not open successfully. This
statement prints the fol lowing message on the screen and exits:

cannot open input file filel

Because line 4 terminates program execution when the file is not open, the program can
make it past line 5 only if the file has been opened successfully.

The loop in lines 9-13 is identical to the loop you saw in Listing 6.1. The only difference
is that this loop is no longer inside ani f statement.

NOTE

Here is another way to write lines 3-5:

open (MYFILE, "filel") || die ("Could not open
file");

Recall that the logical OR operator only evaluates the
expression on its right if the expression on its left s
false. This means that di e is called only if open returns
false (if the open operation fails).

Printing Error Information Using di e

If you like, you can have di e print the name of the Perl program and the line number of
the statement containing the call to di e. To do this, leave off the trailing newline
character in the character string, as fol lows:

die ("Mssing input file");

If the Perl program containing this statement is called nypr og, and this statement is line
14 of nypr og, this call to di e prints the fol lowing and exits:

M ssing input file at myprog |ine 14.

Compare this with

die ("Mssing input file\n");

which simply prints the following before exiting:

M ssing input file

Specifying the program name and line number is useful in two cases:

. If the program contains many similar error messages, you can use di e to specify the
line number of the message that actually appeared.

. If the program is called from within another program, you can use di e to indicate
that this program generated the error.

Reading into Array Variables

Perl enables you to read an entire file into a single array variable. To do this, assign
the file variable to the array variable, as fol lows:

@rray = <MYFl LE>;

This reads the entire file represented by MyFI LE into the array variable @rray. Each
line of the file becomes an element of the list that is stored in @rr ay.

Listing 6.3 is a simple program that reads an entire file into an array.

T |

Listing 6.3. A program that reads an entire input file into an array.

1. #!/usr/local/bin/perl

3: unless (open(MYFILE, "filel")) {

4. die ("cannot open input file filel\ln");
5.}

6: @nput = <MYFI LE>;

7: print (@nput);

$ progrant_3
Here is a line of input.
Here is another line of input.

Here is the last line of input.

; =l Lines 3-5 open the file, test whether the file has been opened successfully,
and terminate the program if the file cannot be opened.

Line 6 reads the entire contents of the file represented by MyFI LE into the array
variable @ nput . @ nput now contains a list consisting of the following three elements:

("Here is a line of input.\n",
"Here is another line of input.\n",

"Here is the last line of input.\n")

Note that a newline character is included as the last character of each line.

Line 7 uses the pri nt function to print the entire file.
Writingto aFile

After you have opened a file in write or append mode, you can write to the file you have
opened by specifying the file variable with the pri nt function. For example, if you have
opened a file for writing using the statement

open(QUTFI LE, ">outfile");
the following statement:
print OQUTFILE ("Here is an output line.\n");

writes the following line to the file specified by QUTFI LE, which is the file called
outfile:

Here is an output line.

Listing 6.4 is a simple program that reads from one file and writes to another.

Listing 6.4. A program that opens two files and copies one into another.

1. #!/usr/local/bin/perl

3: unless (open(INFILE, "filel")) {

4. die ("cannot open input file filel\ln");

5. }

6: unless (open(QUTFILE, ">outfile")) {

7: die ("cannot open output file outfile\n");
8. }

9: $line = <INFlLE>

10: while ($line ne "") {

11: print OUTFILE ($line);
12: $line = <I NFI LE>;
13: }

This program writes nothing to the screen because all output is directed to the file
calledoutfile.

g"”'“ﬂ Lines 3-5 openfil el for reading. If the file cannot be opened, line 4 is
executed, which prints the fol lowing message on the screen and terminates the program:

cannot open input file filel

Lines 6-8 open out fi | e for writing; the > in >out fi | e indicates that the file is to be
opened in write mode. If out fi | e cannot be opened, line 7 prints the message

cannot open output file outfile

on the screen and terminates the program.

The only other line in the program that you have not seen in other listings in this
lesson is line 11, which writes the contents of the scalar variable $l i ne on the file
specified by QUTFI LE.

Once this program has completed, the contents of fi | el are copied into out fi | e.
Here is a line of input.

Here is another |ine of input.

Here is the last line of input.

i,

WAaRNING

Make sure that files you open in write mode contain
nothing valuable. When the open function opens a file
in write mode, any existing contents are destroyed.

The Standard Output File Variable

If you want, your program can reference the standard output file by referring to the
file variable associated with the output file. This file variable is named STDOUT.

By default, the pri nt statement sends output to the standard output file, which means
that it sends the output to the file associated with STDOUT. As a consequence, the
following statements are equivalent:

print ("Here is a line of output.\n");

print STDOUT ("Here is a line of output.\n");

NOTE

You do not need to open STDOUT because Perl
automatical ly opens it for you.

Merging Two Filesinto One

In Perl, you can open as many files as you like, provided you define a different file
variable for each one. (Actually, there is an upper limit on the number of files you can
open, but it's fairly large and also system-dependent.) For an example of a program that
has multiple files open at one time, take a look at Listing 6.5. This program merges two
files by creating an output file consisting of one line from the first file, one line from
the second file, another line from the first file, and so on. For example, if an input file
named ner gel contains the lines

al
a2

a3

and another file, ner ge2, contains the lines

b1l
b2
b3

then the resulting output file consists of

al
bl
az2
b2

a3

b3

Listing 6.5. A program that merges two files.

1: #!/usr/local/bin/perl

3: open (INFILEL, "nergel") ||
4: die ("Cannot open input file nmergel\n");

5: open (INFILE2, "nmerge2") ||

6: die ("Cannot open input file nmerge2\n");
7: $linel = <INFILEl>;

8: $line2 = <| NFI LE2>;

9: while ($linel ne "" || $line2 ne "") {
10: if ($linel ne "") {

11: print ($linel);

12: $li nel = <I NFI LE1>;
13: }

14: if ($line2 ne "") {

15: print ($line2);

16: $line2 = <I NFI LE2>;

17: }

18: }

[Oureui]

$ progranbt_5
al
bl

a2

b2

a3

b3

; Lines 3 and 4 show another way to write a statement that either opens a file
or calls di e if the open fails. Recall that the | | operator first evaluates its left
operand; if the left operand evaluates to true (a nonzero value), the right operand is
not evaluated because the result of the expression is true.

Because of this, the right operand, the call to di e, is evaluated only when the left
operand is false-which happens only when the call to open fails and the file ner gel
cannot be opened.

Lines 5 and 6 repeat the preceding process for the file ner ge2. Again, either the file is
opened successfully or the program aborts by calling di e.

The program then loops repeatedly, reading a line of input from each file each time. The
loop terminates only when both files have been exhausted. If one file is empty but the
other is not, the program just copies the line from the non-empty file to the standard
output file.

Note that the output from this program is printed on the screen. If you decide that you
want to send this output to a file, you can do one of two things:

« You can modify the program to write its output to a different file. To do this, open
the file in write mode and associate it with a file variable. Then, change the pri nt
statements to refer to this file variable.

. You can redirect the standard output file on the command line.

For a discussion of the second method, see the following section.

Redirecting Standard I nput and Standard Output

When you run programs on UNIX, you can redirect input and output using < and >,
respectively, as fol lows:

mypr og <i nput >out put

Here, when you run the program called nypr og, the input for the program is taken from
the file specified by i nput instead of from the keyboard, and the output for the program
is sent to the file specified by out put instead of to the screen.

When you run a Perl program and redirect input using <, the standard input file
variable STDI N now represents the file specified with <. For example, consider the
following simple program:

#!/usr/ 1 ocal / bi n/ perl
$line = <STDI N>;

print ($line);

Suppose this program is named nyper | prog and is called with the command

nyperl prog <filel

In this case, the statement

$li ne = <STDI N>;

reads a line of input fromfi | el because the file variable STDI N representsfil el.

Similarly, specifying > on the command file redirects the standard output file from the
screen to the specified file. For example, consider this command:

nyperl prog <filel >outfile

It redirects output from the standard output file to the file called out fi | e. Now, the
following statement writes a line of data tooutfil e:

print ($line);

The Standard Error File

Besides the standard input file and the standard output file, Perl also defines a third
built-in file variable, STDERR, which represents the standard error file. By default, text

sent to this file is written to the screen. This enables the program to send messages to
the screen even when the standard output file has been redirected to write to a file. As
with STDI Nand STDOUT, you do not need to open STDERR because it automatically is
opened for you.

Listing 6.6 provides a simple example of the use of STDERR The output shown in the input-
output example assumes that the standard input file and standard output file have been
redirected to files using <and >, as in

nyprog <infile >outfile

Therefore, the only output you see is what is written to STDERR.

T |

Listing 6.6. A program that writes to the standard error file.

1. #!/usr/local/bin/perl

3: open(MYFILE, "filel") ||

4: die ("Unable to open input file filelln");
5. print STDERR ("File filel opened successfully.\n");
6: $line = <MYFI LE>;

7: while ($line ne "") {

8: chop ($line);
9: print ("\U$line\E\n");
10: $li ne = <MYFI LE>;

11: }

$ progranb_6
File filel opened successfully.

$

M This program converts the contents of a file into uppercase and sends the
converted contents to the standard output file.

Line 3 tries toopenfil el. If the file cannot be opened, line 4 is executed. This calls di e,
which prints the fol lowing message and terminates:

Unable to open input file filel

NOTE

The function di e sends its messages to the standard
error file, not the standard output file. This means that
when a program terminates, the message printed by di e
always appears on your screen, even when you have
redirected output to a file.

IT the file is opened successfully, line 5 writes a message to the standard error file,
which indicates that the file has been opened. As you can see, the standard error file is
not reserved solely for errors. You can write anything you want to STDERR at any time.

Lines 6-11 read one line of fi | el at a time and write it out in uppercase (using the escape

characters\ uand\ E, which you learned about on Day 3, "Understanding Scalar
Values").

Closing a File

When you are finished reading from or writing to a file, you can tell the Perl
interpreter that you are finished by calling the library function cl ose.

The syntax for the cl ose library function is

close (filevar);

cl ose requires one argument: the file variable representing the file you want to close.
Once you have closed the file, you cannot read from it or write to it without invoking

open again.

Note that you do not have to call cl ose when you are finished with a file: Perl
automatical ly closes the file when the program terminates or when you open another

file using a previously
statements:

open (MYFI LE,
print MYFILE ("
open (MYFI LE,

print MYFILE ("

defined file variable. For example, consider the following

">filel");

Here is a line of output.\n");

">file2");

Here is another line of output.\n");

Here, whenfil e2 is opened for writing, fi | el automatically is closed. The file variable
MYFI LE is now associated with fi | e2. This means that the second pri nt statement sends
the following tofil e2:

Here i s anot her

I ine of output.

Don't

DO use the <> operator, which is an easy way to read
input from several files in succession. See the section

titled "Reading from a Sequence of Files," later in this
lesson, for more information on the <> operator.

DON'T use the same file variable to represent multiple
files unless it is absolutely necessary. It is too easy to
lose track of which file variable belongs to which file,
especially if your program is large or has many nested
conditional statements.

Deter mining the Status of a File

Many of the example programs in today's lesson call open and test the returned result
to see whether the file has been opened successfully. If open fails, it might be useful to

find out exactly why the file could not be opened. To do this, use one of the file-test
operators.

Listing 6.7 provides an example of the use of a file-test operator. This programis a slight
modification of Listing 6.6, which is an uppercase conversion program.

T |

Listing 6.7. A program that checks whether an unopened file actually
exists.

1. #!/usr/local/bin/perl

3: unless (open(MYFILE, "filel")) {

4: if (-e "filel") {

5: die ("File filel exists, but cannot be opened.\n");
6: } else {

7. die ("File filel does not exist.\n");

8: }

9: }

10: $line = <MYFI LE>;

11: while ($line ne "") {

12: chop ($line);

13: print ("\U$line\E\n");
14: $l i ne = <MYFI LE>;

15: }

$ progranb_7

File filel does not exist.

$

m Line 3 attempts to open the filefil el for reading. Iffil el cannot be opened,
the program executes the i f statement starting in line 4.

Line 4 is an example of a file-test operator. This file-test operator, - e, tests whether its
operand, a file, actual ly exists. If the file fi | el exists, the expression-e "filel"
returns true, the message File filel exists, but cannot be opened. isdisplayed, and
the program exits. Iffil el does not exist, -e "filel" is false, and the library function
di e prints the fol lowing message before exiting:

File filel does not exist.

File-Test Operator Syntax
All file-test operators have the same syntax as the - e operator used in Listing 6.7.

The syntax for the file-test operators is
- X expr

Here, x is an alphabetic character and expr is any expression. The value of expr is
assumed to be a string that contains the name of the file to be tested.

Because the operand for a file-test operator can be any expression, you can use scalar
variables and string operators in the expression if you like. For example:

$var = "filel";
if (-e $var) {
print STDERR ("File filel exists.\n");
}
if (-e $var . "a") {

print STDERR ("File filela exists.\n");

In the first use of - e, the contents of $var, fil el, are assumed to be the name of a file,
and this file is tested for existence. In the second case, a is appended to the contents of
filel, producing the stringfil ela. The - e operator then tests whether a file named
fil ela exists.

NOTE

The Perl interpreter does not get confused by the
expression

-e $var . "a"

because the . operator has higher precedence than the -
e operator. This means that the string concatenation is
performed first.

The file-test operators have higher precedence than the
comparison operators but lower precedence than the
shift operators. To see a complete list of the Perl
operators and their precedences, refer to Day 4, "More

Operators."

The string can be a complete path name, if you like. The following is an example:

if (-e "/u/jqpublic/filel™) {

print ("The file exists.\n");

Thisi f statement tests for the existence of the file/u/j gpublic/filel.
Available File-Test Operators

Table 6.1 provides a complete list of the file-test operators available in Perl. In this
table, nane is a placeholder for the name of the operand being tested.

Table 6.1. The file-test operators.

Operator ||[Description

-b Is nane a block device?

-C Is name a character device?

-d Is nane a directory?

-e Does nane exist?

- f Is narre an ordinary file?

-9 Does nane have its set gi d bit set?

-k Does narre have its "sticky bit" set?

-l Is namre a symbolic link?

-0 Is nane owned by the user?

-p Is nane a named pipe?

- T Is name a readable file?

-S Is nane a non-empty file?

-t Does name represent a terminal?

-u Does nane have its set ui d bit set?

-W Is nane awritable file?

- X Is name an executable file?

-z Is nane an empty file?

-A How long since nane accessed?

-B Is nane a binary file?

-C How long since nane's inode accessed?

-M How long since name modified?

-0 Is name owned by the "real user"” only?*

-R Is nane readable by the "real user" only?*

-S Is name a socket?

-T Is nane a text file?

-W Is nane writable by the "real user"” only?*

- X Is name executable by the "real user” only?*
* In this case, the "real user” is the useri d specified at login, as
opposed to the effective user ID, which is the useri d under which you
currently are working. (On some systems, a command such as
/user/ 1 ocal / et c/ sui d enables you to change your effective user ID.)

The following sections describe some of the more common file-test operators and show
you how they can be useful. (You'l also learn about more of these operators on Day 12,

"Working with the File System.")

Moreon the- e Operator

When a Perl program opens a file for writing, it destroys anything that already exists
in the file. This might not be what you want. Therefore, you might want to make sure
that your program opens a file only if the file does not already exist.

You can use the - e file-test operator to test whether or not to open a file for writing.
Listing 6.8 is an example of a program that does this.

Listing 6.8. A program that tests whether a file exists before opening it
for writing.

1:

10:

11:

12:

13:

14:

15:

16:

17:

#!/usr/ 1 ocal / bi n/ perl

unl ess (open(INFILE, "infile")) {

die ("Input file infile cannot be opened.\n");
}
if (-e "outfile") {

die ("Qutput file outfile already exists.\n");
}
unl ess (open(OQUTFILE, ">outfile")) {

die ("Qutput file outfile cannot be opened.\n");
}
$line = <I NFI LE>;
while ($line ne "") {

chop ($line);

print QUTFILE ("\U$line\E\n");

$line = <I NFl LE>;

$ progranb_8
Qutput file outfile already exists.

$

M'Yﬂ This program is the uppercase conversion program again; most of it should be
familiar to you.

The only difference is lines 6-8, which use the - e file-test operator to check whether
the output file out fi | e exists. If out fi | e exists, the program aborts, which ensures that
the existing contents of out fi | e are not lost.

If out fi | e does not exist, the fol lowing expression fails:

-e "outfile"

and the program knows that it is safe to open out fi | e because it does not already exist.
Using File-Test Operatorsin Expressions

If you don't need to know exactly why your program is failing, you can combine all of
the tests in Listing 6.8 into a single statement, as fol lows:

open(I NFILE, "infile") && !(-e "outfile") &&

open(QUTFI LE, ">outfile") || die("Cannot open files\n");

Can you see how this works? Here's what is happening: The && operator, logical AND, is
true only if both of its operands are true. In this case, the two && operators indicate
that the subexpression up to, but not including, the | | is true only if all three of the
following are true:

open(I NFILE, "infile")
I'(-e "outfile")
open(QUTFI LE, ">outfile")

All three are true only when the following conditions are met:

. Theinput fileinfil e can be opened.
. The output file out fi | e does not already exist.
. The output file out fi | e can be opened.

IT any of these subexpressions is false, the entire expression up to the || is false. This
means that the subexpression after the | | (the call to di e) is executed, and the program
aborts.

Note that each of the three subexpressions associated with the && operators is
evaluated in turn. This means that the subexpression

I'(-e "outfile")

is evaluated only if

open(I NFILE, "infile")

Is true, and that the subexpression

open(QUTFI LE, ">outfile")

is evaluated only if

I'(-e "outfile")

is true. This is exactly the same logic that Listing 6.8 uses.

If any of the subexpressions is false, the Perl interpreter doesn't evaluate the rest of
them because it knows that the final result of

open(I NFILE, "infile") & !(-e "outfile") &&

open(QUTFI LE, ">outfile")

IS going to be false. Instead, it goes on to evaluate the subexpression to the right of the
| | , which is the call to di e.

This program logic is somewhat complicated, and you shouldn't use it unless you feel
really comfortable with it. The i f statements in Listing 6.8 do the same thing and are
easier to understand; however, it's useful to know how complicated statements such as
the following one work because many Perl programmers like to write code that works in
this way:

open(I NFILE, "infile") & !(-e "outfile") &&

open(QUTFI LE, ">outfile") || die("Cannot open files\n");

In the next few days, you'l I see several more examples of code that exploits how
expressions work in Perl. "Perl hackers"-experienced Perl programmers-often enjoy
compressing multiple statements into shorter ones, and they delight in complexity. Be
warned.

Testing for Read Permission-the- r Operator

Before you can open a file for reading, you must have permission to read the file. The -r
file-test operator tests whether you have permission to read a file.

Listing 6.9 checks whether the person running the program has permission to access a
particular file.

Listing 6.9. A program that tests for read permission on a file.

1: #!/usr/local/bin/perl

w

unl ess (open(MYFI LE, "filel")) {
4: if ('(-e "filel")) {

5: die ("File filel does not exist.\n");

6: }oelsif (V(-r "filel")) {

7: die ("You are not allowed to read filel.\n");
8: } else {

9: die ("Filel cannot be opened\n");

10: }

11: }

$ progrant_9

You are not allowed to read filel

M'Yﬂ Line 3 of this program tries to openfil el. If the call to open fails, the
program tries to find out why.

First, line 4 tests whether the file actually exists. IT the file exists, the Perl
interpreter executes line 6, which tests whether the file has the proper read permission.
IT it does not, di e is called; it then prints the fol lowing message and exits:

You are not allowed to read filel

NOTE

You do not need to use the - e file-test operator before
using the -r file-test operator. If the file does not exist, -
r returns false because you can't read a file that isn't
there.

The only reason to use both -e and - r is to enable your
program to determine exactly what is wrong.

Checking for Other Permissions

You can use file-test operators to test for other permissions as well. To check whether
you have write permission on a file, use the - wfile-test operator.

if (-w"filel") {
print STDERR ("I can wite to filel.\n");

} else {

print STDERR ("I can't wite to filel.\n");

The - x file-test operator checks whether you have execute permission on the file (in
other words, whether the system thinks this is an executable program, and whether you

have permission to runitifitis), asillustrated here:

if (-x "filel") {
print STDERR ("I can run filel.\n");

} else {

print STDERR ("I can't run filel.\n");

NOTE

If you are the system administrator (for example, you are
running as user ID r oot) and have permission to access
any file, the -r and - wfile-test operators always return
true if the file exists. Also, the - x test operator always
returns true if the file is an executable program.

Checking for Empty Files

The - z file-test operator tests whether a file is empty. This provides a more refined test
for whether or not to open a file for writing: if the file exists but is empty, no
information is lost if you overwrite the existing file.

Listing 6.10 shows how to use - z.

Listing 6.10. A program that tests whether the file is empty before
opening it for writing.

=

#!/usr/ 1 ocal / bi n/ perl

3: if (-e "outfile") {

4. if ('(-w"outfile")) {

5: die ("Mssing wite permssion for outfile.\n");
6: }

7: if ('(-z "outfile")) {

8: die ("File outfile is non-enpty.\n");

9: }

10: }

11: # at this point, the file is either enpty or doesn't exist,

12: # and we have permission to wite to it if it exists

JOureui]

$ progrant_10
File outfile is non-enpty.

$

BNM“ﬂ Line 3 checks whether the file out fi | e exists using - e. IT it exists, it can only
be opened if the program has permission to write to the file; line 4 checks for this using -

Line 7 uses - z to test whether the file is empty. If it is not, line 7 calls di e to terminate
program execution.

The opposite of - z is the - s file-test operator, which returns a nonzero value if the file
IS not empty.

$size = -s "outfile";
if ($size == 0) {

print ("The file is enpty.\n");
} else {

print ("The file is $size bytes long.\n");

The - s file-test operator actually returns the size of the file in bytes. It can still be
used in conditional expressions, though, because any nonzero value (indicating that the
file is not empty) is treated as true.

Listing 6.11 uses - s to return the size of a file that has a name which is supplied via the
standard input file.

Listing 6.11. A program that prints the size of a file in bytes.

1. #!/usr/local/bin/perl

3: print ("Enter the nanme of the file:\n");

4: $filenane = <STDI N>;

5: chop ($fil enane);

6: if (!'(-e $filenane)) {

7: print ("File $filename does not exist.\n");

8. } else{

9: $size = -s $fil enane;
10: print ("File $filenane contains $size bytes.\n");

11: }

$ progrant_11
Enter the nane of the file:
filel

File filel contains 128 bytes.

‘M'Yﬂ Lines 3-5 obtain the name of the file and remove the trailing newline
character.

Line 6 tests whether the file exists. IT the file doesn't exist, the program indicates this.

Line 9 stores the size of the file in the scalar variable $si ze. The size is measured in
bytes (one byte is equivalent to one character in a character string).

Line 10 prints out the number of bytes in the file.
Using File-Test Operatorswith File Variables

You can use file-test operators on file variables as well as character strings. In the
following example the file-test operator - z tests the file represented by the file
variable MyFI LE:

if (-z MYFILE) {

print ("This file is enpty!\n");

As before, this file-test operator returns true if the file is empty and false if it is not.

>

L A

WaRrNING
Remember that file variables can be used only after you
open the file. If you need to test a particular condition
before opening the file (such as whether the file is

nonzero), test it using the name of the file.

Reading from a Sequence of Files

Many UNIX utility programs are invoked using the fol lowing command syntax:

programane filel file2 file3 ...

A program that uses this command syntax operates on all of the files specified on the
command line in order, startingwith filel. Whenfil el has been processed, the program
then proceedson tofil e2, and so on until all of the files have been exhausted.

In Perl, it's easy to write programs that process an arbitrary number of files because
there is a special operator, the <> operator, that does all of the file-handling work for
you.

To understand how the <> operator works, recall what happens when you put < and >
around a file variable:

$li st = <MYFI LE>;

This statement reads a line of input from the file represented by the file variable MyFI LE
and stores it in the scalar variable $li st. Similarly, the statement

$list = <>

reads a line of input and stores it in the scalar variable $l i st ; however, the file from
which it reads is contained on the command line. Suppose, for example, a program
containing a statement using the <> operator, such as the statement

$list = <>;

is called nyprog and is cal led using the command

$ nyprog filel file2 file3

In this case, the first occurrence of the <> operator reads the first line of input from
filel. Successive occurrences of <> read more lines fromfilel. Whenfil el is exhausted,
<> reads the first line fromfil e2, and so on. When the last file, fi | e3, is exhausted, <>
returns an empty string, which indicates that all the input has been read.

NOTE

If a program containing a <> operator is called with no
command-line arguments, the <> operator reads input
from the standard input file. In this case, the <>
operator is equivalent to <STDI N>.

I a file named in a command-line argument does not
exist, the Perl interpreter writes the fol lowing message
to the standard error file:

Can't opennane:No such file or directory

Here, nane is a placeholder for the name of the file that
the Perl interpreter cannot find. In this case, the Perl
interpreter ignores nane and continues on with the next
file in the command line.

To see how the <> operator works, ook at Listing 6.12, which displays the contents of
the files specified on the command line. (If you are familiar with UNIX, you will
recognize this as the behavior of the UNIX utility cat .) The output from Listing 6.12
assumes that filesfil el andfil e2 are specified on the command line and that each file
contains one line.

Listing 6.12. A program that displays the contents of one or more files.

1. #!/usr/local/bin/perl

3: while (S$inputline = <>) {

4: print ($inputline);

$ progrant 12 filel file2
This is aline fromfilel

This is aline fromfile2.

$

; lonce again, you can see how powerful and useful Perl is. This entire program
con3|sts of only five lines, including the header comment and a blank line.

Line 3 both reads a line from a file and tests to see whether the line is the empty string.
Because the assignment operator = returns the value assigned, the expression

$inputline = <>

has the value "" (the null string) if and only if <> returns the null string, which
happens only when there are no more lines to read from any of the input files. This is
exactly the point at which the program wants to stop looping. (Recall that a "blank
line" in a file is not the same as the null string because the blank line contains the
newline character.) Because the null string is equivalent to false in a conditional
expression, there is no need to use a conditional operator such as ne.

When line 3 is executed for the first time, the first line in the first input file, filel,is
read and stored in the scalar variable $i nput | i ne. Because fi | el contains only one
line, the second pass through the loop, and the second execution of line 3, reads the
first line of the second input file, fil e2.

After this, there are no more linesin eitherfilel orfile2, so line 3 assigns the null
string to $i nput | i ne, which terminates the loop.

o,

WAaRNING

When it reaches the end of the last file on the command
line, the <> operator returns the empty string. However,
If you use the <> operator after it has returned the
empty string, the Perl interpreter assumes that you
want to start reading input from the standard input
file. (Recall that <> reads from the standard input file
if there are no files on the command line.)

This means that you have to be a little more careful
when you use <> than when you are reading using

<MYFI LE> (Where MyFI LE is a file variable). If mvFI LE has
been exhausted, repeated attempts to read using

<MYFI LE> continue to return the null string because
there isn't anything left to read.

Reading into an Array Variable

As you have seen, if you read from a file using <STDI N> or <MyFI LE> in an assignment to
an array variable, the Perl interpreter reads the entire contents of the file into the
array, as follows:

@rray = <MWFI LE>;
This works also with <>. For example, the statement
@rray = <>;

reads all the contents all of the files on the command line into the array variable
@rray.

As always, be careful when you use this because you might end up with a very large
array.

Using Command-Line Argumentsas Values

As you've seen, the <> operator assumes that its command-line arguments are files. For
example, if you start up the program shown in Listing 6.12 with the command

$ progrant_12 nyfilel nyfile2

the Perl interpreter assumes that the command-line arguments nyfil el and nyfil e2 are
files and displays their contents.

Perl enables you to use the command-line arguments any way you want by defining a
special array variable called @RGv. When a Perl program starts up, this variable
contains a list consisting of the command-line arguments. For example, the command

$ progrant_12 nyfilel nyfile2

sets @GARGV to the list

("nyfilel™, "nyfile2")

NOTE

The shell you are running (sh, csh, or whatever you are
using) is responsible for turning a command line such as

progrant_12 nyfilel nyfile2

into arguments. Normal ly, any spaces or tab characters
are assumed to be separators that indicate where one
command-line argument stops and the next begins. For
example, the following are identical:

progrant_12 nyfilel nyfile2
progrant_12 nyfilel nyfile2

In each case, the command-line arguments are nyfil el
and nyfil e2.

See your shell documentation for details on how to put
blank spaces or tab characters into your command-line
arguments.

As with all other array variables, you can access individual elements of @G\RGv. For
example, the statement

$var = $ARGV[0] ;

assigns the first element of @RGV to the scalar variable $var.

You even can assign to some or all of @RGv if you like. For example:

$ARGV[0] = 43;

IT you assign to any or all of @RGv, you overwrite what was already there, which means
that any command-line arguments overwritten are lost.

To determine the number of command-line arguments, assign the array variable to a
scalar variable, as follows:

$numargs = @ARGV,

As with all array variables, using an array variable in a place where the Perl
interpreter expects a scalar variable means that the length of the array is used. In this
case, $nunar gs is assigned the number of command-line arguments.

i
L »

WARNING

C programmers should take note that the first element
of @RGv, unlike ar gv[0] in C, does not contain the name
of the program. In Perl, the first element of @G\RGV is the
first command-line argument.

To get the name of the program, use the system variable
$0, which is discussed on Day 17, "System Variables."

To see how you can use @ARGV in a program, examine Listing 6.13. This program assumes
that its first argument is a word to look for. The remaining arguments are assumed to be
files in which to look for the word. The program prints out the searched-for word, the

number of occurrences in each file, and the total number of occurrences.

This example assumes that the filesfil el andfil e2 are defined and that each file
contains the single line

This file contains a single line of input.

This example is then run with the command

$ programmane single filel file2

where pr ogr ammane is a placeholder for the name of the program. (If you are running the
program yourself, you can name the program anything you like.)

Listing 6.13. A word-search and counting program.

1. #!/usr/local/bin/perl

3: print ("Wrd to search for: $ARGV[O]\n");
4: $filecount = 1;
5: $total wrdcount = O;

6: while ($filecount <= @RGV-1) {

7: unl ess (open (I NFILE, $ARGV[$filecount])) {

8: die ("Can't open input file $ARGV[$filecount]\n");
9: }

10: $wor dcount = O;

11: while ($line = <INFILE>) {

12: chop ($line);

13: @wrds = split(/ /, $line);

14: $w = 1;

15: while ($w <= @wrds) {

16: if ($words[$w 1] eq $ARGV[0]) {
17: $wor dcount += 1;

18: }

19: S+,

20: }

21: }

22: print ("occurrences in file $ARGV[$filecount]: ");
23: print ("$wordcount\n");

24: $fil ecount ++;

25: $t ot al wor dcount += $wor dcount ;

26: }

27: print ("total nunber of occurrences: $totalwordcount\n");

$ progranb_13 single filel file2
Wrd to search for: single
occurrences in file filel: 1
occurrences in file file2: 1
total nunber of occurrences: 2

$

g 'M'Yg Line 3 prints the word to search for. The program assumes that this word is
the first argument in the command line and, therefore, is the first element of the array
@GARGV.

Lines 7-9 open a file named on the command line. The first time line 7 is executed, the
variable $fi | ecount has the value 1, and the file whose name is in $ARGV[1] is opened.

The next time through, $fi | ecount is 2 and the file named in $ARGV[2] is opened, and so
on. If a file cannot be opened, the program terminates.

Line 11 reads a line from a file. As before, the conditional expression

$li ne = <I NFI LE>

reads a line from the file represented by the file | NFI LE and assigns it to $l i ne. I the
file is empty, $I i ne is assigned the null string, the conditional expression is false, and
the loop in lines 11-21 is terminated.

Line 13 splits the line into words, and lines 15-20 compare each word with the search
word. If the word matches, the word count for this file is incremented. This word count
Is reset when a new file is opened.

ARGV and the <> Operator

In Perl, the <> operator actual ly contains a hidden reference to the array @RGV. Here's
how it works:

1. When the Perl interpreter sees the <> for the first time, it opens the file whose
name is stored in $ARGV[0] .

2. After opening the file, the Perl interpreter executes the following library
function:

shift (@R ;
This library function gets rid of the first element of @\RGv and moves every other

element over one. This means that element x of @RGV becomes element x- 1.

The <> operator then reads all of the lines of the file opened in step 1.

4. When the <> operator exhausts an input file, the Perl interpreter goes back to
step 1 and repeats the cycle again.

w

If you like, you can modify your program to retrieve a value from the command line and
then fix @RGV so that the <> operator can work properly. If you modify Listing 6.13 to do
this, the resultis Listing 6.14.

Listing 6.14. A word-search and counting program that uses <>.

1. #!/usr/local/bin/perl

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

$sear chword = $ARGV[0] ;
print ("Word to search for: $searchword\n");
shift (@\RGV);
$t ot al wor dcount = $wordcount = O;
$filename = $ARGV[0] ;
while ($line = <>) {

chop ($line);

@wrds = split(/ /, $line);

$w = 1;

while ($w <= @wrds) {

if ($words[$w 1] eq $searchword) {

$wor dcount += 1;

}
$w+;
}
if (eof) {
print ("occurrences in file $filename: ");
print ("$wordcount\n");
$t ot al wor dcount += $wor dcount ;
$wor dcount = 0;
$filename = $ARGV[O];
}

}

print ("total nunber of occurrences: $totalwordcount\n");

$ progrant_14 single filel file2
Wrd to search for: single
occurrences in file filel: 1
occurrences in file file2: 1
total nunber of occurrences: 2

$

M Line 3 assigns the first command-line argument, the search word, to the
scalar variable $sear chwor d. This is necessary because the call toshift in line5
destroys the initial value of $ARGV[0] .

Line 5 adjusts the array @RGV so that the <> operator can use it. To do this, it calls the
library function shi ft. This function "shifts" the elements of the list stored in GARGV.
The element in $ARGV[1] is moved to $ARGV] 0], the element in $ARGV[2] is moved to
$ARGV[1], and so on. After shi ft is called, @RGV contains the files to be searched, which
is exactly what the <> operator is looking for.

Line 7 assigns the current value of $ARGV[0] to the scalar variable $fi | enane. Because
the <> operator in line 8 calls shi ft, the value of $ARGV[0] is lost unless the program
does this.

Line 8 uses the <> operator to open the file named in $ARGV[0] and to read a line from
the file. The array variable @RGV is shifted at this point.

Lines 9-16 behave as in Listing 6.13. The only difference is that the search word is now in
$sear chwor d, not in $ARGV[0] .

Line 18 introduces the library function eof . This function indicates whether the
program has reached the end of the file being read by <>. If eof returns true, the next
use of <> opens a new file and shifts @\RGv again.

Lines 19-23 prepare for the opening of a new file. The number of occurrences of the
search word is printed, the current word count is added to the total word count, and
the word count is reset to 0. Because the new filename to be opened is in $ARGV[0], line
23 preserves this filename by assigning it to $fi | enane.

NOTE

You can use the <> operator to open and read any file
you like by setting the value of @RGv yourself. For
example:

@ARGV = ("nyfilel™, "nyfile2");
while ($line = <>) {

}

Here, when the statement containing the <> is executed
for the first time, the file nyfil el is opened and its first
line is read. Subsequent executions of <> each read
another line of input from nyfil el. Whennyfilelis
exhausted, nyfil e2 is opened and read one line at a time.

Opening Pipes

On machines running the UNIX operating system, two commands can be linked using a
pipe. In this case, the standard output from the first command is linked, or piped, to the
standard input to the second command.

Perl enables you to establish a pipe that links a Perl output file to the standard input
file of another command. To do this, associate the file with the command by calling
open, as fol lows:

open (MYPIPE, "| cat >hello");

The | character tells the Perl interpreter to establish a pipe. When MyPI PE is opened,
output sent to MyPI PE becomes input to the command

cat >hello

Because the cat command displays the contents of the standard input file when called
with no arguments, and >hel | o redirects the standard output file to the file hel | o, the
open statement given here is identical to the statement

open (MYPIPE, ">hello");

You can use a pipe to send mail from within a Perl program. For example:

open (MESSAGE, "| nmumil dave");
print MESSAGE ("Hi, Dave! Your Perl programsent this!\n");

cl ose (MESSAGE);

The call to open establishes a pipe to the command mai | dave. The file variable MESSAGE
Is now associated with this pipe. The call to pri nt adds the line

Hi, Dave! Your Perl program sent this!

to the message to be sent to user ID dave.

The call to cl ose closes the pipe referenced by MESSAGE, which tells the system that the
message is complete and can be sent. As you can see, the call to cl ose is useful here
because you can control exactly when the message is to be sent. (If you do not call

cl ose, MESSAGE is closed-and the message is sent-when the program terminates.)

Summary

Perl accesses files by means of file variables. File variables are associated with files by
the open statement.

Files can be opened in any of three modes: read mode, write mode, and append mode. A file
opened in read mode cannot be written to; a file opened in either of the other modes
cannot be read. Opening a file in write mode destroys the existing contents of the file.

To read from an opened file, reference it using <nane>, where nane is a placeholder for
the name of the file variable associated with the file. To write to a file, specify its file
variable when calling pri nt.

Perl defines three built-in file variables:

« STDI N, which represents the standard input file
. STDOUT, which represents the standard output file
. STDERR, which represents the standard error file

You can redirect STDI Nand STDOUT by specifying < and >, respectively, on the command
line. Messages sent to STDERR appear on the screen even if STDOUT is redirected to a file.

The cl ose function closes the file associated with a particular file variable. cl ose
never needs to be called unless you want to control exactly when a file is to be made

inaccessible.

The file-test operators provide a way of retrieving information on a particular file. The
most common file-test operators are

. -e,which tests whether a file exists

. -r,-w, and - x, which test whether a file has read, write, and execute permission,
respectively

. -z, which tests whether a file is empty

. -s,which returns the size of a file

You can use - wand - z to ensure that you do not overwrite a non-empty file.

The <> operator enables you to read data from files specified on the command line. This
operator uses the built-in array variable @RGv, whose elements consist of the items
specified on the command line.

Perl enables you to open pipes. A pipe links the output from your Perl program to the
input to another program.

Q&A

Q: How many files can | have open at one time?

A: Basically, as many as you like. The actual limit depends on the limitations of
your operating system.

Q: Why does adding a closing newline character to the text string affect how
di e behaves?

A: Perl enables you to choose whether you want the filename and line number of

the error message to appear. If you add a closing newline character to the
string, the Perl interpreter assumes that you want to control how your error
message is to appear.

Q: Which is better: to use <>, or to use @RGv and shi ft when appropriate?

A: As is often the case, the answer is "It depends." If your program treats almost all
of the command-line arguments as files, it is better to use <> because the
mechanics of opening and closing files are taken care of for you. If you are doing
a lot of unusual things with @RGy, it is better not to manipulate it to use <>,
because things can get complicated and confusing.

Q: Can | open more than one pipe at a time?

A: Yes. Your operating system keeps all of the various commands and processes
organized and keeps track of which output goes with which input.

Q: Can | redirect STDERR?

>

Yes, but there is (normally) no reason why you should. STDERRS job is to report
extraordinary conditions, and you usually want to see these, not have them
buried in a file somewhere.

How many command-line arguments can | specify?
Basically, as many as your command-line shell can handle.
Can l write to a file and then read from it later?

Yes, but you can't do both at the same time. To read from a file you have written
to, close the file by calling cl ose and then open the file in read mode.

>0 20

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you've learned. Try
and understand the quiz and exercise answers before you go on to tomorrow's lesson.

Quiz

1. Define the following terms:
a. filevariable
b. reserved word
c. file mode
d. append mode
e. pipe
2. From where does the <> operator read its data?
3. What do the following file-test operators do?
a. -r
b. -x
C. -s
4. What are the contents of the array @RGv when the fol lowing Perl program is
executed?
$ nyprog filel file2 file3
5. How do you indicate that a file is to be opened:
a. Inwrite mode?
b. In append mode?
c. Inread mode?
d. Asapipe?
6. What is the relationship between @RGv and the <> operator?

Exercises

1. Write a program that takes the values on the command line, adds them together,
and prints the result.
2. Write a program that takes a list of files from the command line and examines

their size. If a file is bigger than 10,000 bytes, print

Filenanmeis a big filel

where nane is a placeholder for the name of the big file.

. Write a program that copies a file named fil el tofil e2, and then appends another
copyoffileltofile2.

. Write a program that counts the total number of words in the files specified on
the command line. When it has counted the words, it sends a message to user ID
dave indicating the total number of words.

. Write a program that takes a list of files and indicates, for each file, whether the
user has read, write, or execute permission.

. BUG BUSTER: What is wrong with the fol lowing program?
#! [/ usr/ 1 ocal / bi n/ perl

open (QUTFILE, "outfile");
print OQUTFILE ("This is my nessage\n");

|| e e i

Chapter 7

Pattern Matching

CONTENTS

. Introduction
. The Match Operators
o Match-Operator Precedence
. Special Characters in Patterns
o The + Character
o The[] Special Characters
o The* and ? Special Characters
o Escape Sequences for Special Characters
o Matching Any Letter or Number
o Anchoring Patterns
o Variable Substitution in Patterns
o Excluding Alternatives
o Character-Range Escape Sequences
o Matching Any Character
o Matching a Specified Number of Occurrences
o Specifying Choices
o Reusing Portions of Patterns
o Pattern-Sequence Scalar Variables
o Special-Character Precedence
o Specifying a Different Pattern Delimiter
. Pattern-Matching Options
o Matching All Possible Patterns
o Ignoring Case
o Treating the String as Multiple Lines
o Evaluating a Pattern Only Once
o Treating the String as a Single Line
o Using White Space in Patterns
. The Substitution Operator
o Using Pattern-Sequence Variables in Substitutions
o Options for the Substitution Operator
o Evaluating a Pattern Only Once
o Treating the String as Single or Multiple Lines

o Using White Space in Patterns
o Specifying a Different Delimiter
. The Translation Operator
o Options for the Translation Operator
. Extended Pattern-Matching
o Parenthesizing Without Saving in Memory
o Embedding Pattern Options
o Positive and Negative Look-Ahead
o Pattern Comments

. Summary

- Q&A

. Workshop
o Quiz

o EXxercises

This lesson describes the pattern-matching features of Perl. Today, you learn about the
following:

. How pattern matching works

. The pattern-matching operators

. Special characters supported in pattern matching
. Pattern-matching options

. Pattern substitution

. Translation

. Extended pattern-matching features

| ntr oduction

A pattern is a sequence of characters to be searched for in a character string. In Perl,
patterns are normally enclosed in slash characters:

/ def/

This represents the pattern def .

IT the pattern is found, a match occurs. For example, if you search the string r edef i ne
for the pattern/def/, the pattern matches the third, fourth, and fifth characters.

redefi ne

You already have seen a simple example of pattern matching in the library function
split.

@rray = split(/ /, $line);

Here the pattern/ / matches a single space, which splits a line into words.

The Match Operators

Perl defines special operators that test whether a particular pattern appears in a
character string.

The =~ operator tests whether a pattern is matched, as shown in the following:

$result = $var =~ /abc/;

The result of the =~ operation is one of the following:

. A nonzero value, or true, if the pattern is found in the string
. 0, or false, if the pattern is not matched

In this example, the value stored in the scalar variable $var is searched for the pattern
abc. If abc is found, $resul t is assigned a nonzero value; otherwise, $resul t isset to
Zero.

The ! ~ operator is similar to =~, except that it checks whether a pattern is not matched.

$result = $var !~ /abc/;

Here, $resul t isset to 0 if abc appears in the string assigned to $var, and to a nonzero
value if abc is not found.

Because =~ and ! ~ produce either true or false as their result, these operators are

ideal ly suited for use in conditional expressions. Listing 7.1 is a simple program that uses
the =~ operator to test whether a particular sequence of characters exists in a
character string.

Listing 7.1. A program that il lustrates the use of the matching
operator.

1. #!/usr/local/bin/perl

3: print ("Ask me a question politely:\n");

4: $question = <STDI N>;

5. if ($question =~ /pleasel/) {

6: print ("Thank you for being politel\n");
7: } else {

8: print ("That was not very polite!\n");

$ progranv_1

Ask nme a question politely:

May | have a glass of water, please?
Thank you for being polite!

$

;En.m'sﬂ Line 5 is an example of the use of the match operator =~ in a conditional
expression. The following expression is true if the value stored in $quest i on contains
the word pl ease, and it is false if it does not:

$questi on =~ /pl ease/

Match-Operator Precedence

Like all operators, the match operators have a defined precedence. By definition, the =~
and ! ~ operators have higher precedence than multiplication and division, and lower
precedence than the exponentiation operator **.

For a complete list of Perl operators and their precedence, see Day 4, "More Operators."”

Special Charactersin Patterns

Perl supports a variety of special characters inside patterns, which enables you to
match any of a number of character strings. These special characters are what make
patterns useful.

The+ Character

The special character + means "one or more of the preceding characters." For example,
the pattern/ de+f/ matches any of the fol lowing:

def
deef
deeef

deeeeeeef

NOTE

Patterns containing + always try to match as many
characters as possible. For example, if the pattern

| ab+/
Is searching in the string
abbc

it matches abb, not ab.

The + special character makes it possible to define a better way to split lines into words.
So far, the sample programs you have seen have used

@wrds = split (/ /, $line);

to break an input line into words. This works well if there is exactly one space between
words. However, if an input line contains more than one space between words, as in

Here's multiple spaces.

the call to split produces the following list:

("Here' s", "", "rrultipl e", """, "spaces.")

The pattern/ / tellssplit tostartanew word whenever it sees a space. Because there
are two spaces between each word, spl i t starts a word when it sees the first space, and
then starts another word when it sees the second space. This means that there are now
"empty words" in the line.

The + special character gets around this problem. Suppose the call tosplit is changed
to this:

@rray = split (/ +/, $line);

Because the pattern/ +/ tries to match as many blank characters as possible, the line

Here's multiple spaces.

produces the following list:

("Here's", "multiple", "spaces")

Listing 7.2 shows how you can use the/ +/ pattern to produce a count of the number of
words in a file.

Listing 7.2. Aword-count program that handles multiple spaces
between words.

=

#! [/ usr/ 1 ocal / bi n/ perl

3: $wordcount = O;
4: $line = <STD N>;

5. while ($line ne "") {

6: chop ($line);

7: @words = split(/ +/, $line);
8: $wor dcount += @wr ds;

9: $li ne = <STDI N>;

10: }

11: print ("Total nunber of words: $wordcount\n");

$ progranv_2

Her e is sone input.

Here are sone nore words.
Her e is ny last |line.
"D

Total nunber of words: 14

$

gNM“g This is the same word-count program you saw in Listing 5.15, with only one
change: The pattern/ +/ isbeing used to break the line into words. As you can see, this
handles spaces between words properly.

You might have noticed the fol lowing problems with this word-count program:

. Spaces at the beginning of a line are counted as a word, because spl i t always
starts a new word when it sees a space.
. Tab characters are counted as a word.

For an example of the first problem, take a look at the following input line:

This line contains | eading spaces.

The call tosplit in line 7 breaks the preceding into the following list:
("", "This", "line", "contains", "|eading", "spaces")

This yields a word count of 6, not the expected 5.

There can be at most one empty word produced from a line, no matter how many leading
spaces there are, because the pattern/ +/ matches as many spaces as possible. Note also
that the program can distinguish between lines containing words and lines that are
blank or contain just spaces. If a line is blank or contains only spaces, the line

@wrds = split(/ +/, $line);

assigns the empty list to @wr ds. Because of this, you can fix the problem of leading
spaces in lines by modifying line 8 as fol lows:

$wordcount += (@words > 0 && $words[0] eq "" ?

@wrds-1 : @wrds);

This checks for lines containing leading spaces; if a line contains leading spaces, the
first "word" (which is the empty string) is not added to the word count.

To find out how to modify the program to deal with tab characters as well as spaces, see
the following section.

The[] Special Characters

The [] special characters enable you to define patterns that match one of a group of

alternatives. For example, the following pattern matches def or def:

/d[eE] f/

You can specify as many alternatives as you like.

/ a[0123456789] c/

This matches a, followed by any digit, fol lowed by c.

You can combine [] with + to match a sequence of characters of any length.

/ d[eE] +f /

This matches all of the following:

def
dEf
deef
dEef

dEEEeeeEef

Any combination of E and e, in any order, is matched by [eE] +.

You can use [] and + together to modify the word-count program you've just seen to
accept either tab characters or spaces. Listing 7.3 shows how you can do this.

Listing 7.3. Aword-count program that handles multiple spaces and
tabs between words.

1. #!/usr/local/bin/perl

3: $wordcount = O;
4: $line = <STD N>;

5. while ($line ne "") {

6 chop ($line);

7 @words = split(/[\t]1+/, $line);
8: $wor dcount += @wr ds;

o: $line = <STDI N>;

10: }

11: print ("Total number of words: $wordcount\n");

$ progranv_3

Here is sone input.

Here are sonme nore words.
Here is ny last line.

"D

Total nunber of words: 14

$

gum.nﬂ This program is identical to Listing 7.2, except that the patternisnow /[\t
]1+/.

The\t special-character sequence represents the tab character, and this pattern
matches any combination or quantity of spaces and tabs.

NOTE

Any escape sequence that is supported in double-quoted
strings is supported in patterns. See Day 3,
"Understanding Scalar Values," for a list of the escape
sequences that are available.

The* and ? Special Characters

As you have seen, the + character matches one or more occurrences of a character. Perl
also defines two other special characters that match a varying number of characters: *
and 2.

The * special character matches zero or more occurrences of the preceding character.
For example, the pattern

[de*f/

matches df , def , deef , and so on.

This character can also be used with the [] special character.
/[eE] */

This matches the empty string as well as any combination of E or e in any order.

f
L
WaRNING
Be sure not to confuse the * special character with the

+ special character. If you use the wrong special
character, you might not get the results that you want.

For example, suppose that you modify Listing 7.3 to call
split as follows:

@wrds = split (/[\t]*/, $list);

This matches zero or more occurrences of the space or
tab character. When you run this with the input

a line
here's the list that is assigned to @wr ds:
("a", "t", "i", "n", "e")

Because the pattern/[\t]*/ matches on zero
occurrences of the space or tab character, it matches
after every character. This means that split starts a
word after every character that is not a space or tab. (It
skips spaces and tabs because /[\t]*/ matches them.)

The best way to avoid problems such as this one is to use
the * special character only when there is another
character appearing in the pattern. Patterns such as

/b*[c]/

never match the null string, because the matched
seguence has to contain at least the character c.

The ? character matches zero or one occurrence of the preceding character. For
example, the pattern

[de?f/

matches either df or def. Note that it does not match deef , because the ? character does
not match two occurrences of a character.

Escape Sequencesfor Special Characters

If you want your pattern to include a character that is normally treated as a special
character, precede the character with a backslash \ . For example, to check for one or
more occurrences of * in a string, use the fol lowing pattern:

I\ *+/

The backslash preceding the * tells the Perl interpreter to treat the * as an ordinary
character, not as the special character meaning "zero or more occurrences."

To include a backslash in a pattern, specify two backslashes:

TN\ +/

This pattern tests for one or more occurrences of \ in a string.

If you are running Perl 5, another way to tell Perl that a special character is to be
treated as a normal character is to precede it with the \ Qescape sequence. When the
Perl interpreter sees\ Q every character following the \ Qis treated as a normal
character until \ E is seen. This means that the pattern

/\ Qrab*/

matches any occurrence of the string ~ab*, and the pattern

/\ Q ab\ E*/

matches ~a followed by zero or more occurrences of b.

For a complete list of special characters in patterns that require\ to be given their
natural meaning, see the section titled "Special-Character Precedence,"” which contains
a table that lists them.

TIP

In Perl, any character that is not a letter or a digit can
be preceded by a backslash. If the character isn't a
special character in Perl, the backslash is ignored.

If you are not sure whether a particular character is a
special character, preceding it with a backslash will
ensure that your pattern behaves the way you want it
to.

Matching Any Letter or Number

As you have seen, the pattern

/ a] 0123456789] ¢/

matches a, fol lowed by any digit, followed by c. Another way of writing this is as
follows:

[a[0-9]c/

Here, the range [0- 9] represents any digit between 0 and 9. This pattern matches a0c,
alc, a2c, and so on up to a9c.

Similarly, the range [a- z] matches any lowercase letter, and the range [A- Z] matches
any uppercase letter. For example, the pattern

J[A-Z][A-Z]/

matches any two uppercase letters.

To match any uppercase letter, lowercase letter, or digit, use the following range:

/[0-9a-zA-Z]/

Listing 7.4 provides an example of the use of ranges with the [] special characters. This
program checks whether a given input line contains a legal Perl scalar, array, or file-
variable name. (Note that this program handles only simple input lines. Later examples
will solve this problem in a better way.)

Listing 7.4. A simple variable-name validation program.

1. #!/usr/local/bin/perl

3: print ("Enter a variable nanme:\n");
4: $varnane = <STDI N>;

5: chop ($varnane);

6: if ($varnane =~ /\$[A-Za-z][_0-9a-zA-Z]*/) {

7: print ("$varnane is a |legal scalar variable\n");
8: } elsif ($varname =~ / @A-Za-z][_0-9a-zA-Z]*/) {

9: print ("$varnanme is a legal array variable\n");

10: } elsif ($varnane =~ /[A-Za-z][_0-9a-zA-Z]*/) {

11: print ("$varnanme is a legal file variable\n");
12: } else {

13: print ("l don't understand what $varname is.\n");
14: }

$ progranv_4
Enter a vari abl e name:
$resul t

$result is a legal scalar variable

M'Yﬂ Line 6 checks whether the input line contains the name of a legal scalar
variable. Recall that a legal scalar variable consists of the fol lowing:

. A$character
« An uppercase or lowercase letter
. Zero or more letters, digits, or underscore characters

Each part of the pattern tested in line 6 corresponds to one of the aforementioned
conditions given. The first part of the pattern, \ $, ensures that the pattern matches
only if it begins with a $ character.

NOTE

The $ is preceded by a backslash, because $ is a special
character in patterns. See the following section,
"Anchoring Patterns,” for more information on the $
special character.

The second part of the pattern,
[A- Za- z]

matches exactly one uppercase or lowercase letter. The final part of the pattern,
[0-9a-zA-Z]*

matches zero or more underscores, digits, or letters in any order.

The patterns in line 8 and line 10 are very similar to the one in line 6. The only
difference in line 8 is that the pattern there matches a string whose first character is @
not $. In line 10, this first character is omitted completely.

The pattern in line 8 corresponds to the definition of a legal array-variable name, and
the pattern in line 10 corresponds to the definition of a legal file-variable name.

Anchoring Patterns

Although Listing 7.4 can determine whether a line of input contains a legal Perl
variable name, it cannot determine whether there is extraneous input on the line. For
example, it can't tell the difference between the following three lines of input:

$resul t
j unk$resul t

$resul t #) unk

In all three cases, the pattern

I\ $[a- zA-Z] [_0-9a- zA- Z] */

finds the string $resul t and matches successfully; however, only the first line is a
legal Perl variable name.

To fix this problem, you can use pattern anchors. Table 7.1 lists the pattern anchors
defined in Perl.

Table 7.1. Pattern anchors in Perl.

Anchor Description

AOr\A Match at beginning of string
only

$or\z Match at end of string only

\b Match on word boundary

\B Match inside word

These pattern anchors are described in the fol lowing sections.

The~ and $ Pattern Anchors

The pattern anchors ~ and $ ensure that the pattern is matched only at the beginning
or the end of a string. For example, the pattern

[~def/

matches def only if these are the first three characters in the string. Similarly, the
pattern

/ def $/

matches def only if these are the last three characters in the string.

You can combine ~ and $ to force matching of the entire string, as fol lows:

[~def $/

This matches only if the string is def .

In most cases, the escape sequences\ Aand\ z (defined in Perl 5) are equivalent to ~ and

$, respectively:

/'\ Adef\ Z/

This also matches only if the string is def .

NOTE
\ Aand\ z behave differently from ~ and $ when the
multiple-line pattern-matching option is specified.
Pattern-matching options are described later today.

Listing 7.5 shows how you can use pattern anchors to ensure that a line of input is, in
fact, a legal Perl scalar-, array-, or file-variable name.

Listing 7.5. A better variable-name validation program.

1. #!/usr/local/bin/perl

3: print ("Enter a variable nanme:\n");

4: $varnanme = <STDI N>;

5: chop ($varname);

6: if ($varnane =~ /M $[A-Za-z][_0-9a-zA-Z]*3$/) {

7: print ("$varnane is a |legal scalar variable\n");
8: } elsif ($varname =~ /"@A-Za-z][_0-9a-zA-Z]*$/) {

9: print ("$varnane is a legal array variable\n");
10: } elsif ($varnane =~ /" A-Za-z][_0-9a-zA-Z]*$/) {

11: print ("$varnane is a legal file variable\n");
12: } else {

13: print ("I don't understand what $varname is.\n");

14: }

$ progranv_5
Enter a vari abl e name:
x$resul t

| don't understand what x$result is.

M‘.ﬂ The only difference between this program and the one in Listing 7.4 is that
this program uses the pattern anchors ~ and $ in the patterns in lines 6, 8, and 10. These
anchors ensure that a valid pattern consists of only those characters that make up a
legal Perl scalar, array, or file variable.

In the sample output given here, the input

x$resul t

Is rejected, because the pattern in line 6 is matched only when the $ character appears
at the beginning of the line.

Word-Boundary Pattern Anchors

The word-boundary pattern anchors, \ b and\ B, specify whether a matched pattern must
be on a word boundary or inside a word boundary. (A word boundary is the beginning or
end of aword.)

The \ b pattern anchor specifies that the pattern must be on a word boundary. For
example, the pattern

/'\ bdef/

matches only if def is the beginning of a word. This means that def and def ghi match
but abcdef does not.

You can also use \ b to indicate the end of a word. For example,

[def\ b/

matches def and abcdef, but not def ghi . Finally, the pattern

/'\ bdef\ b/

matches only the word def , not abcdef or def ghi .

NOTE

A word is assumed to contain letters, digits, and
underscore characters, and nothing else. This means
that

/'\ bdef/

matches $def ghi : because $ is not assumed to be part of a
word, def is the beginning of the word def ghi , and
/\ bdef/ matches it.

The\ B pattern anchor is the opposite of \ b. \ B matches only if the pattern is contained
in a word. For example, the pattern

/' \ Bdef/

matches abcdef , but not def . Similarly, the pattern

/ def\ B/

matches def ghi , and

/' \ Bdef \ B/

matches cdef g or abcdef ghi , but not def , def ghi , or abcdef .

The\ b and\ B pattern anchors enable you to search for words in an input line without
having to break up the line using spl i t. For example, Listing 7.6 uses \ b to count the
number of lines of an input file that contain the word t he.

T |

Listing 7.6. A program that counts the number of input lines containing
the wordt he.

1. #!/usr/local/bin/perl

3: $thecount = 0;
4: print ("Enter the input here:\n");
5. $line = <STDI N>;

6: while ($line ne "") {

7: if ($line =~ /\bthe\b/) {
8: $t hecount += 1,
9: }

10: $li ne = <STDI N>;

11: }

12: print ("Nunmber of lines containing 'the': $thecount\n");

$ progranv_6
Enter the input here:

Now is the tine

for all good nen
to cone to the aid
of the party.

"D

Nunber of lines containing '"the' : 3

$

- | This program checks each line in turn to see if it contains the word t he, and
then prints the total number of lines that contain the word.

Line 7 performs the actual checking by trying to match the pattern
/\ bt he\ b/

If this pattern matches, the line contains the word t he, because the pattern checks for
word boundaries at either end.

Note that this program doesn't check whether the word t he appears on a line more than
once. It is not difficult to modify the program to do this; in fact, you can do it in several
different ways.

The most obvious but most laborious way is to break up lines that you know containt he
into words, and then check each word, as fol lows:

if ($line =~ /\bthe\b/) {
@wor ds

$count = 1;

split(/[\t]+, $line);

while ($count <= @wrds) {
if ($words[$count-1] eq "the") {
$t hecount += 1;

}

$count ++;

A cute way to accomplish the same thing is to use the pattern itself to break the line
into words:

if ($line =~ /\bthe\b/) {
@wrds = split(/\bthe\b/, $line);

$t hecount += @wrds - 1;

In fact, you don't even need thei f statement.

@wrds = split(/\bthe\b/, $line);

$t hecount += @wrds - 1;

Here's why this works: Every time spl i t sees the word t he, it starts a new word.
Therefore, the number of occurrences of t he is equal to one less than the number of
elements in @wr ds. If there are no occurrences of t he, @wr ds has the length 1, and
$t hecount is not changed.

i,

WAaRNING

This trick works only if you know that there is at least
one word on the line.

Consider the following code, which tries to use the
aforementioned trick on a line that has had its newline
character removed using chop:

$li ne = <STDI N>;

chop ($line);

@wrds = split(/\bthe\b/, $line);
$t hecount += @wrds - 1;

This code actual ly subtracts 1 from $t hecount if the line
is blank or consists only of the word t he, because in
these cases @wr ds is the empty list and the length of
@wr ds is 0.

Leaving off the call to chop protects against this
problem, because there will always be at least one
"word" in every line (consisting of the newline
character).

Variable Substitution in Patterns

If you like, you can use the value of a scalar variable in a pattern. For example, the
following code splits the line $I i ne into words:

$pattern = "[\\t]+";

@wrds = split(/$pattern/, $line);

Because you can use a scalar variable in a pattern, there is nothing to stop you from
reading the pattern from the standard input file. Listing 7.7 accepts a search pattern
from a file and then searches for the pattern in the input files listed on the command
line. If it finds the pattern, it prints the filename and line number of the match; at the
end, it prints the total number of matches.

This example assumes that two files exist, fil el andfil e2. Each file contains the
following:

This is a line of input.

This is another line of input.

If you run this program with command-line argumentsfil el andfil e2 and search for
the pattern anot her, you get the output shown.

Listing 7.7. A simple pattern-search program.

1: #!/usr/local/bin/perl
2.

3: print ("Enter the search pattern:\n");

4: S$pattern = <STDI N>;

5: chop ($pattern);

6: S$filenane = $ARGV[O] ;

7: $linenum = $nmat chcount = O;
8: print ("Matches found:\n");

9: while ($line = <) {

10: $l i nenum += 1;

11: if ($line =~ /$pattern/) {

12: print ("$filenane, line $linenumn");
13: @wrds = split(/$pattern/, $line);
14: $mat chcount += @wrds - 1;

15: }

16: if (eof) {

17: $l i nenum = 0;

18: $fil enane = $ARGV[0] ;

19: }

20: }

21: if ($matchcount == 0) {

22: print ("No matches found.\n");

23: '} else {

24 print ("Total nunber of natches: $matchcount\n");

25: }

$ progranv_7 filel file2
Enter the search pattern

anot her

Mat ches found:
filel, line 2
file2, line 2
Total nunber of matches: 2

$

m This program uses the fol lowing scalar variables to keep track of
information:

. $pattern contains the search pattern read in from the standard input file.
. $fil enane contains the file currently being searched.

. $li nenumcontains the line number of the line currently being searched.

. $mat chcount contains the total number of matches found to this point.

Line 6 sets the current filename, which corresponds to the first element in the built-in
array variable @RGv. This array variable lists the arguments supplied on the command
line. (To refresh your memory on how @RGV works, refer back to Day 6, "Reading from
and Writing to Files.") This current filename needs to be stored in a scalar variable,
because the <> operator in line 9 shifts @RGv and destroys this name.

Line 9 reads from each of the files on the command line in turn, one line at a time. The
current input line is stored in the scalar variable $! i ne. Once the line is read, line 10
adds 1 to the current line number.

Lines 11-15 handle the matching process. Line 11 checks whether the pattern stored in
$pattern iscontained in the input line stored in $I i ne. If a match is found, line 12 prints
out the current filename and line number. Line 13 then splits the line into "words,"
using the trick described in the earlier section, "Word-Boundary Pattern Anchors."”
Because the number of elements of the list stored in @wr ds is one larger than the
number of times the pattern is matched, the expression @wrds - 1 isequivalent to the
number of matches; its value is added to $mat chcount .

Line 16 checks whether the <> operator has reached the end of the current input file. If
it has, line 17 resets the current line number to 0. This ensures that the next pass
through the loop will set the current line number to 1 (to indicate that the program is
on the first line of the next file). Line 18 sets the filename to the next file mentioned
on the command line, which is currently stored in $ARGV[0] .

Lines 21-25 either print the total number of matches or indicate that no matches were
found.

NOTE

Make sure that you remember to include the enclosing /
characters when you use a scalar-variable name in a
pattern. The Perl interpreter does not complain when it
sees the following, for example, but the result might
not be what you want:

@wrds = split($pattern, $line);

Excluding Alternatives

As you have seen, when the special characters[] appear in a pattern, they specify a set
of alternatives to choose from. For example, the pattern

/d[eE] f/

matches def or dEf.

When the » character appears as the first character after the [, it indicates that the
pattern is to match any character except the ones displayed between the [and]. For
example, the pattern

/d[~eE] f/

matches any pattern that satisfies the fol lowing criteria:

. The first character is d.
. The second character is anything other than e or E.
. The last characteriisf.

NOTE

To include a» character in a set of alternatives,
precede it with a backslash, as fol lows:

/d[\ ~eE] f/

This pattern matches d~f, def, or dEf .

Character-Range Escape Sequences

In the section titled "Matching Any Letter or Number” earlier in this chapter, you
learned that you can represent consecutive letters or numbers inside the [] special
characters by specifying ranges. For example, in the pattern

/a[1-3]c/

the [1- 3] matches any of 1, 2, or 3.

Some ranges occur frequently enough that Perl defines special escape sequences for
them. For example, instead of writing

/[0-9]/
to indicate that any digit is to be matched, you can write

/\d/

The \ d escape sequence means "any digit."

Table 7.2 lists the character-range escape sequences, what they match, and their
equivalent character ranges.

Table 7.2. Character-range escape sequences.

Escape sequence ||Description Range

\d Any digit [0-9]

\D Anything other than a digit |[|["0-9]

\w Any word character [_0-9a-zA- 7]

\W Anything not a word [*_0-9a-zA-Z]
character

\'s White space [\r\t\n\f]

\S Anything other than white [\r\t\n\f]
space

These escape sequences can be used anywhere ordinary characters are used. For example,
the following pattern matches any digit or lowercase letter:

/[\da-z]/

NOTE

The definition of word boundary as used by the\ b and\ B
special characters corresponds to the definition of word
character used by \wand \ w

IT the pattern/\w W matches a particular pair of
characters, the first character is part of a word and the
second is not; this means that the first character is the
end of a word, and that a word boundary exists between
the first and second characters matched by the pattern.

Similarly, if /\Ww matches a pair of characters, the
first character is not part of a word and the second
character is. This means that the second character is the
beginning of a word. Again, a word boundary exists
between the first and second characters matched by the
pattern.

Matching Any Character

Another special character supported in patterns is the period (.) character, which
matches any character except the newline character. For example, the following
pattern matches d, followed by any non-newline character, followed by f :

/d.f/

The . character is often used in conjunction with the * character. For example, the
following pattern matches any string that contains the character d preceding the
character f:

/d.*f/

Normally, the . * special-character combination tries to match as much as possible. For

example, if the string banana is searched using the following pattern, the pattern
matches banana, not ba or bana:

/'b.*al

NOTE

There is one exception to the preceding rule: The . *
character only matches the longest possible string that
enables the pattern match as a whole to succeed.

For example, suppose the string M ssi ssi ppi is searched
using the pattern

IM*i.*pil/

Here, the first . * in/ M *i . *pi / matches
M ssi ssi ppi

If it tried to go further and match

M ssi ssi ppi

or even

M ssi ssi ppi

there would be nothing left for the rest of the pattern
to match.

When the first . * match is limited to
M ssi ssi ppi

the rest of the pattern,i. *pi , matchesi ppi , and the
pattern as a whole succeeds.

Matching a Specified Number of Occurrences

Several special characters in patterns that you have seen enable you to match a

specified number of occurrences of a character. For example, + matches one or more
occurrences of a character, and ? matches zero or one occurrences.

Perl enables you to define how many occurrences of a character constitute a match. To
do this, use the special characters{ and}.

For example, the pattern

/de{1,3}f/

matches d, fol lowed by one, two, or three occurrences of e, followed by f . This means
that def, deef , and deeef match, but df and deeeef do not.

To specify an exact number of occurrences, include only one value between the { and
the}.

/ de{3}f/

This specifies exactly three occurrences of e, which means this pattern only matches
deeef .

To specify a minimum number of occurrences, leave off the upper bound.

/de{3,1}f/

This matches d, fol lowed by at least three es, fol lowed by f .

Finally, to specify a maximum number of occurrences, use 0 as the lower bound.

/ de{0, 3}/

This matches d, fol lowed by no more than three es, fol lowed by f .

NOTE

You can use { and } with character ranges or any other
special character, as fol lows:

/[a-2z]{1, 3}/
This matches one, two, or three lowercase letters.
/. {3}/

This matches any three characters.

Specifying Choices

The special character | enables you to specify two or more alternatives to choose from
when matching a pattern. For example, the pattern

/ def | ghi /
matches either def or ghi . The pattern
/[a-z]+|[0-9] +/

matches one or more lowercase letters or one or more digits.

Listing 7.8 is a simple example of a program that uses the | special character. It reads a
number and checks whether it is a legitimate Perl integer.

Listing 7.8. Asimple integer-validation program.

1. #!/usr/local/bin/perl

3: print ("Enter a nunber:\n");

4: $nunber = <STDI N>;

5: chop ($nunber);

6: if ($nunmber =~ /~-2\d+$| "-?0[xX] [\da-fa-F] +$/) {

7: print ("$nunber is a legal integer.\n");

8: } else {

9: print ("$nunber is not a legal integer.\n");
10: }

$ progranv_8
Enter a nunber:
Ox3ff1l

Ox3ffl is a legal integer.

M-Yﬂ Recall that Perl integers can be in any of three forms:

. Standard base-10 notation, as in 123
. Base-8 (octal) notation, indicated by a leading 0, as in 0123
. Base-16 (hexadecimal) notation, indicated by a leading 0x or 0X, as in OXif f

Line 6 checks whether a number is a legal Perl integer. The first alternative in the
pattern,

Ao\ d+$

matches a string consisting of one or more digits, optionally preceded by a-. (The~ and $
characters ensure that this is the only string that matches.) This takes care of integers
in standard base-10 notation and integers in octal notation.

The second alternative in the pattern,

N-?20[xX] [\ da-fa-F] +$

matches integers in hexadecimal notation. Take a look at this pattern one piece at a
time:

. The ~ matches the beginning of the line. This ensures that lines containing
leading spaces or extraneous characters are not treated as valid hexadecimal
integers.

. The-? matches a - ifitispresent. This ensures that negative numbers are matched.

. The 0 matches the leading 0.

. The[xX] matches the x or X that fol lows the leading 0.

. The[\da-fa-F] matches any digit, any letter between a and f, or any letter
between A and F. Recall that these are precisely the characters which are
allowed to appear in hexadecimal digits.

. The + indicates that the pattern is to match one or more hexadecimal digits.

. The closing $ indicates that the pattern is to match only if there are no
extraneous characters fol lowing the hexadecimal integer.

>

-

WAaRNING

Beware that the following pattern matches either x or
one or more of y, not one or more of x ory:

I x| y+/

See the section called "Special-Character Precedence"
later today for details on how to specify special-
character precedence in patterns.

Reusing Portions of Patterns

Suppose that you want to write a pattern that matches the following:

. One or more digits or lowercase letters

. Followed by a colon or semicolon

. Followed by another group of one or more digits or lowercase letters
. Another colon or semicolon

. Yet another group of one or more digits or lowercase letters

One way to indicate this pattern is as fol lows:

[[\da-z]+[:;][\da-z]+[:;][\da-z] +/

This pattern is somewhat complicated and is quite repetitive.

Perl provides an easier way to specify patterns that contain multiple repetitions of a
particular sequence. When you enclose a portion of a pattern in parentheses, as in

([\da-z] +)

Perl stores the matched sequence in memory. To retrieve a sequence from memory, use
the special character \ n, where n is an integer representing the nth pattern stored in
memory.

For example, the aforementioned pattern can be written as

[([\da-z]+])[:;1\1[:;]\1/

Here, the pattern matched by [\ da- z] + is stored in memory. When the Perl interpreter
sees the escape sequence \ 1, it matches the matched pattern.

You also can store the sequence [: ;] in memory, and write this pattern as fol lows:

/([\da-z] +) ([::])\1\2\ 1/

Pattern sequences are stored in memory from left to right, so\ 1 represents the
subpattern matched by [\ da- z] + and \ 2 represents the subpattern matched by |[:;].

Pattern-sequence memory is often used when you want to match the same character in
more than one place but don't care which character you match. For example, if you are
looking for a date in dd-mm-yy format, you might want to match

INA{ 2} ([\W)\d{2}\ 1\ d{ 2}/

This matches two digits, a non-word character, two more digits, the same non-word
character, and two more digits. This means that the following strings all match:

12-05-92

26.11. 87

07 04 92

However, the following string does not match:

21-05.91

This is because the pattern is looking for a - between the 05 and the 91, not a period.

i,

WAaRNING

Beware that the pattern

INA{2} ([\ W)\ d{2}\ 1\ d{ 2}/
iIs not the same as the pattern
[(\d{2}) ([VW)\ 1\ 2\ 1/

In the first pattern, any digit can appear anywhere. The
second pattern matches any two digits as the first two
characters, but then only matches the same two digits
again. This means that

17-17-17
matches, but the following does not:

17-05-91

Patter n-Sequence Scalar Variables

Note that pattern-sequence memory is preserved only for the length of the pattern.
This means that if you define the fol lowing pattern (which, incidental ly, matches any
floating-point number that does not contain an exponent):

[-2(\d+)\ . 2(\d+)/

you cannot then define another pattern, such as the fol lowing:

I\ 1/

and expect the Perl interpreter to remember that\ 1 refers to the first\ d+ (the digits
before the decimal point).

To get around this problem, Perl defines special built-in variables that remember the
value of patterns matched in parentheses. These special variables are named $n, where n
Is the nth set of parentheses in the pattern.

For example, consider the following:

$string = "This string contains the nunber 25.11.";

$string =~ /-?2(\d+)\.?2(\d+)/;

$i nt eger part $1;

$deci mal part $2;
In this case, the pattern

J-2(\d+)\ . 2(\ d+)

matches 25. 11, and the subpattern in the first set of parentheses matches 25. This means
that 25 is stored in $1 and is later assigned to $i nt eger part . Similarly, the second set of
parentheses matches 11, which is stored in $2 and later assigned to $deci nal part.

i,

WARNING

The values stored in $1, $2, and so on, are destroyed
when another pattern match is performed. If you need
these values, be sure to assign them to other scalar
variables.

There is also one other built-in scalar variable, $&, which contains the entire matched
pattern, as follows:

$string = "This string contains the nunber 25.11.";
$string =~ /-?2(\d+)\.?2(\d+)/;

$nunber = $&;

Here, the pattern matched is 25. 11, which is stored in $& and then assigned to $nunber .

Special-Character Precedence

Perl defines rules of precedence to determine the order in which special characters in
patterns are interpreted. For example, the pattern

I x| y+l

matches either x or one or more occurrences of y, because + has higher precedence than |
and is therefore interpreted first.

Table 7.3 lists the special characters that can appear in patterns in order of precedence
(highest to lowest). Special characters with higher precedence are always interpreted
before those of lower precedence.

Table 7.3. The precedence of pattern-matching special characters.

Special Description
character

() Pattern memory

+* 2?2 {} Number of occurrences
" $\b\B Pattern anchors

| Alternatives

Because the pattern-memory special characters () have the highest precedence, you can
use them to force other special characters to be evaluated first. For example, the
pattern

(ab| cd) +

matches one or more occurrences of either ab or cd. This matches, for example, abcdab.

o

L= A

WarNING
Remember that when you use parentheses to force the
order of precedence, you also are storing into pattern
memory. For example, in the sequence

/ (ab] cd) +(.) (ef| gh)+\ 1/

the\ 1 refers to what ab| cd matched, not to what the .
special character matched.

Now that you know all of the special-pattern characters and their precedence, look at
a program that does more complex pattern matching. Listing 7.9 uses the various special-
pattern characters, including the parentheses, to check whether a given input string is
a valid twentieth-century date.

Listing 7.9. A date-validation program.

1. #!/usr/local/bin/perl

3: print ("Enter a date in the format YYYY-MMDD:\n");
4: $date = <STDI N>;

5: chop ($date);

7: # Because this pattern is conplicated, we split it
8. # into parts, assign the parts to scal ar vari abl es,
9: # then substitute themin later.

10:

11: # handl e 31-day nonths

12: $ndl = "(0[13578]|1[02])\\2(0[1-9]|[12]\\d|3[01])";

13: # handl e 30-day nont hs

14: $nd2 = "(0[469]| 11)\\2(0[21-9]|[12]\\d|30)";

15: # handl e February, w thout worrying about whether it's
16: # supposed to be a | eap year or not

17: $nd3 = "02\\2(0[1-9]|[12]\\d)";

18:

19: # check for a twentieth-century date

20: $match = $date =~ /~(19)?2\d\d(.) ($ndl| $nd2| $nd3) $/ ;
21: # check for a valid but non-20th century date

22: %ol ddate = $date =~ /~(\d{1,4})(.)($md1| $nd2| $nd3) $/;
23: if ($match) {

24 print ("$date is a valid date\n");

25: } elsif (%ol ddate) {

26: print ("$date is not in the 20th century\n");
27: } else {

28: print ("$date is not a valid date\n");

29: }

$ progranv_9

Enter a date in the format YYYY- MM DD:
1991-04- 31

1991-04-31 is not a valid date

$

g"”'“ﬂ Don't worry: this program is a 1ot less complicated than it looks! Basically,
this program does the fol lowing:

1. It checks whether the date is in the format YYyy- Mvt DD. (It al lows YY- M DD, and

also enables you to use a character other than a hyphen to separate the year,

month, and date.)

It checks whether the year is in the twentieth century or not.

It checks whether the month is between 01 and 12.

4. Finally, it checks whether the date field is a legal date for that month. Legal
date fields are between 01 and either 29, 30, or 31, depending on the number of
days in that month.

w N

IT the date is legal, the program tells you so. If the date is not a twentieth-century
date but is legal, the program informs you of this also.

Because the pattern to be matched is too long to fit on one line, this program breaks it
into pieces and assigns the pieces to scalar variables. This is possible because scalar-
variable substitution is supported in patterns.

Line 12 is the pattern to match for months with 31 days. Note that the escape sequences
(such as\ d) are preceded by another backslash (producing\\ d). This is because the
program actual ly wants to store a backslash in the scalar variable. (Recall that
backslashes in double-quoted strings are treated as escape sequences.) The pattern

(0[13578] | 1[02])\ 2(0[1- 9] | [12] \ d| 3[01])

which is assigned to $nd1, consists of the following components:

. The sequence (0[13578] | 1[02]), which matches the month values 01, 03, 05, 07, 08,
10, and 12 (the 31-day months)

. \ 2, which matches the character that separates the day, month, and year

. Thesequence (0[1-9]|[12]\d]| 3[01]), which matches any two-digit number
between 01 and 31

Note that\ 2 matches the separator character because the separator character will
eventually be the second pattern sequence stored in memory (when the pattern is
finally assembled).

Line 14 is similar to line 12 and handles 30-day months. The only differences between
this subpattern and the one in line 12 are as follows:

. The month values accepted are 04, 06, 09, and 11.
. The valid date fields are 01 through 30, not 01 through 31.

Line 17 is another similar pattern that checks whether the month is 02 (February) and
the date field is between 01 and 29.

Line 20 does the actual pattern match that checks whether the date is a valid
twentieth-century date. This pattern is divided into three parts.

« ~(19) 2\ d\ d, which matches any two-digit number at the beginning of a line, or any
four-digit number starting with 19

. The separator character, which is the second item in parentheses-the second item
stored in memory-and thus can be retrieved using \ 2

« ($nd1| $nd2| $nd3) $, which matches any of the valid month-day combinations
defined in lines 12, 14, and 17, provided it appears at the end of the line

The result of the pattern match, either true or false, is stored in the scalar variable
$mat ch.

Line 22 checks whether the date is a valid date in any century. The only difference
between this pattern and the one in line 20 is that the year can be any one-to-four-digit
number. The result of the pattern match is stored in $ol ddat e.

Lines 23-29 check whether either $nmat ch or $ol ddat e is true and print the appropriate
message.

As you can see, the pattern-matching facility in Perl is quite powerful. This program is
less than 30 lines long, including comments; the equivalent program in almost any
other programming language would be substantially longer and much more difficult to
write.

Specifying a Different Pattern Delimiter

So far, all the patterns you have seen have been enclosed by / characters.

[de*f/

These / characters are known as pattern delimiters.

Because / is the pattern-delimiter character, you must use \/ to include a/ character in
a pattern. This can become awkward if you are searching for a directory such as, for
example, / u/j gpubl i c/ perl/progl.

/\/u\/jqpublic\/perl\/progl/

To make it easier to write patterns that include / characters, Perl enables you to use
any pattern-delimiter character you like. The following pattern also matches the

directory/u/j qpublic/ perl/progl

m /u/jgpublic/perl/progl!

Here, the mindicates the pattern-matching operation. If you are using a pattern
delimiter other than/, you must include the m

i,

WAaRNING

There are two things you should watch out for when
you use other pattern delimiters.

First, if you use the' character as a pattern delimiter,
the Perl interpreter does not substitute for scalar-
variable names.

m $var'

This matches the string $var, not the current value of
the scalar variable $var.

Second, if you use a pattern delimiter that is normally a
special-pattern character, you will not be able to use
that special character in your pattern. For example, if
you want to match the pattern ab?c (which matches a,
optionally followed by b, followed by ¢) you cannot use
the ? character as a pattern delimiter. The pattern

nPab?c?

produces a syntax error, because the Perl interpreter
assumes that the ? after the b is a pattern delimiter. You
can still use

nf?ab\ ?¢c?

but this pattern won't match what you want. Because
the ? inside the pattern is escaped, the Perl interpreter
assumes that you want to match the actual ? character,
and the pattern matches the sequence ab?c.

Patter n-M atching Options

When you specify a pattern, you also can supply options that control how the pattern is
to be matched. Table 7.4 lists these pattern-matching options.

Table 7.4. Pattern-matching options.

Option Description

g Match all possible patterns

i Ignore case

m Treat string as multiple
lines

0 Only evaluate once

S Treat string as single line

X Ignore white space in
pattern

All pattern options are included immediately after the pattern. For example, the
following pattern uses the i option to ignore case:

[ab*c/i

You can specify as many of the options as you like, and the options can be in any order.
Matching All Possible Patterns

The g operator tells the Perl interpreter to match all the possible patterns in a string.
For example, if you search the string bal at a using the pattern

/.alg

which matches any character followed by a, the pattern matches ba, | a, and t a.

If a pattern with the g option specified appears as an assignment to an array variable,
the array variable is assigned a list consisting of all the patterns matched. For example,

@rat ches = "balata" =~ /.alg;

assigns the following list to @mt ches:

Now, consider the following statement:

$match = "balata" =~ /.alg;

The first time this statement is executed, $mat ch is assigned the first pattern matched,
which in this case is ba. IT this assignment is performed again, $mat ch is assigned the
second pattern matched in the string, which is | a, and so on until the pattern runs out
of matches.

This means that you can use patterns with the g option in loops. Listing 7.10 shows how
this works.

T |

Listing 7.10. A program that loops using a pattern.

1. #!/usr/local/bin/perl

2:

3: while ("balata" =~ /.alg) {
4: $match = $&;

5: print ("$match\n");
6: }

$ progranv_10

ba

ta

i =1 The first time th rough the loop, $mat ch has the value of the first pattern
matched which is ba. (The system variable $& always contains the last pattern matched;
this pattern is assigned to $nat ch in line 4.) When the loop is executed for a second time,
$mat ch has the value | a. The third time through, $mat ch has the value t a. After this, the
loop terminates; because the pattern doesn't match anything else, the conditional
expression is now false.

Determining the Match L ocation

IT you need to know how much of a string has been searched by the pattern matcher
when the g operator is specified, use the pos function.

$of f set = pos($string);

This returns the position at which the next pattern match will be started.

You can reposition the pattern matcher by putting pos() on the left side of an
assignment.

pos($string) = $newoffset;

This tells the Perl interpreter to start the next pattern match at the position specified
by $newof f set .

=,

WARNING

If you change the string being searched, the match
position is reset to the beginning of the string.

NOTE

The pos function is not available in Perl version 4.

Ignoring Case

Thei option enables you to specify that a matched letter can either be uppercase or
lowercase. For example, the following pattern matches de, dE, De, Or DE:

/ deli

Patterns that match either uppercase or lowercase letters are said to be case-insensitive.

Treating the String as M ultiple Lines

The moption tells the Perl interpreter that the string to be matched contains multiple
lines of text. When the moption is specified, the ~ special character matches either the
start of the string or the start of any new line. For example, the pattern

/["The/ m
matches the word The in
This pattern matches\nThe first word on the second |line

The moption also specifies that the $ special character is to match the end of any line.
This means that the pattern

/line.$/ m
is matched in the following string:

This is the end of the first line.\nHere's another |ine.

NOTE

The moption is defined only in Perl 5. To treat a string as
multiple lines when you run Perl 4, set the $* system
variable, described on Day 17, "System Variables.”

Evaluating a Pattern Only Once

The o option enables you to tell the Perl interpreter that a pattern is to be evaluated
only once. For example, consider the fol lowing:

$var = 1;

$li ne = <STDI N>;

while ($var < 10) {
$result = $line =~ /$var/o;
$li ne = <STDI N>;

$var ++;

The first time the Perl interpreter sees the pattern/ $var/, it replaces the name $var
with the current value of $var, which is 1; this means that the pattern to be matched is
/1/.

Because the o option is specified, the pattern to be matched remains/ 1/ even when the
value of $var changes. If the o option had not been specified, the pattern would have
been/ 2/ the next time through the loop.

TIP

There's no real reason to use the o option for patterns
unless you are keen on efficiency. Here's an easier way
to do the same thing:

$var = <STDI N>;
$mat chval = $var
$line = <STDI N>;
while ($var < 10) {

$result = $line =~ /$matchval /;
$line = <STDI N>;
$var ++;

}

The value of $mat chval never changes, so the o option is
not necessary.

Treating the Stringasa SingleLine

The s option specifies that the string to be matched is to be treated as a single line of
text. In this case, the . special character matches every character in a string, including
the newline character. For example, the pattern/a. *bc/ s is matched successfully in
the following string:

axxxXxx \ nxxxxbc

IT the s option is not specified, this pattern does not match, because the . character does
not match the newline.

NOTE
The s option is defined only in Perl 5.

Using White Space in Patterns

One problem with patterns in Perl is that they can become difficult to follow. For
example, consider this pattern, which you saw earlier:

INA{ 2} ([\W)\d{2}\ 1\ d{ 2}/

Patterns such as this are difficult to fol low, because there are a lot of backslashes,
braces, and brackets to sort out.

Perl 5 makes life a little easier by supplying the x option. This tells the Perl interpreter
to ignore white space in a pattern unless it is preceded by a backslash. This means that
the preceding pattern can be rewritten as the following, which is much easier to
follow:

INA{2} ([\W) Vd{2} \1 \d{2}/x

Here is an example of a pattern containing an actual blank space:

ITA-Z] [a-z]+ \ [A-Z] [a-z]+ /X

This matches a name in the standard first-name/last-name format (such as John Smi t h).
Normally, you won't want to use the x option if you're actually trying to match white
space, because you wind up with the backslash problem all over again.

NOTE
The x option is defined only in Perl 5.

The Substitution Operator

Perl enables you to replace part of a string using the substitution operator, which has
the following syntax:

s/ pattern/repl acenent/

The Perl interpreter searches for the pattern specified by the placeholder pattern. If it
finds pat t er n, it replaces it with the string represented by the placeholder r epl acenent.
For example:

$string = "abcl23def";

$string =~ s/ 123/ 456/;

Here, 123 is replaced by 456, which means that the value stored in $stri ng is now
abc456def .

You can use any of the pattern special characters in the substitution operator. For
example,

s/ [abc] +/ 0/

searches for a sequence consisting of one or more occurrences of the lettersa, b, and c
(in any order) and replaces the sequence with 0.

If you just want to delete a sequence of characters rather than replace it, leave out
the replacement string as in the fol lowing example, which deletes the first occurrence

of the pattern abc:

s/ abc//

Using Patter n-Sequence Variablesin Substitutions

You can use pattern-sequence variables to include a matched pattern in the
replacement string. The following is an example:

s/ (\d+)/[$1]/

This matches a sequence of one or more digits. Because this sequence is enclosed in
parentheses, it is stored in the scalar variable $1. In the replacement string, [$1], the
scalar variable name $1 is replaced by its value, which is the matched pattern.

NOTE

Because the replacement string in the substitution
operator is a string, not a pattern, the pattern special
characters, such as[], *, and +, do not have a special
meaning. For example, in the substitution

s/ abc/[def]/

the replacement string is [def] (including the square
brackets).

Optionsfor the Substitution Operator

The substitution operator supports several options, which are listed in Table 7.5.

Table 7.5. Options for the substitution operator.

Option||Description

g Change all occurrences of the pattern

i Ignore case in pattern

e Evaluate replacement string as expression

m |[Treat string to be matched as multiple
lines

0 Evaluate only once

S Treat string to be matched as single line

X Ignore white space in pattern

As with pattern matching, options are appended to the end of the operator. For example,
to change all occurrences of abc to def, use the following:

s/ abc/ def/g

Global Substitution

The g option changes all occurrences of a pattern in a particular string. For example,
the following substitution puts parentheses around any number in the string:

s/ (\d+)/($1) /g

Listing 7.11 is an example of a program that uses global substitution. It examines each
line of its input, removes all extraneous leading spaces and tabs, and replaces multiple
spaces and tabs between words with a single space.

Listing 7.11. A simple white space cleanup program.

1. #!/usr/local/bin/perl

3: @nput

4: $count = O;

<STDI N>;

5: while ($input[$count] ne "") {
6: $i nput [$Scount] =~ s/ [\t]+//;
7: $i nput [$count] =~ s/[\t]+\n$/\n/;

8: $i nput [$count] =~ s/[\t]+/ /g;

9: $count ++;
10: }
11: print ("Formatted text:\n");

12: print (@nput);

$ progranv_11

This is a line of i nput .

Her e i s another line.
Thi s is ny last |line of i nput .
"D

Formatted text:
This is a line of input.
Here is another |ine.

This is ny last line of input.

B M'Yﬂ This program performs three substitutions on each line of its input. The first
substitution, in line 6, checks whether there are any spaces or tabs at the beginning of
the line. If any exist, they are removed.

Similarly, line 7 checks whether there are any spaces or tabs at the end of the line
(before the trailing newline character). If any exist, they are removed. To do this, line 7
replaces the fol lowing pattern (one or more spaces and tabs, fol lowed by a newline
character, followed by the end of the line) with a newline character:

/T \t]+ n$/

Line 8 uses a global substitution to remove extra spaces and tabs between words. The

following pattern matches one or more spaces or tabs, in any order; these spaces and
tabs are replaced by a single space:

IT \t]+

Ignoring Case

Thei option ignores case when substituting. For example, the following substitution
replaces all occurrences of the words no, No, NO, and nowith NO. (Recall that the\b
escape character specifies a word boundary.)

s/\ bno\ b/ NO gi

Replacement Using an Expression

The e option treats the replacement string as an expression, which it evaluates before
replacing. For example, consider the following:

$string = "0Oabcl";

$string =~ s/[a-zA-Z] +/ $& x 2/ e

The substitution shown here is a quick way to duplicate part of a string. Here's how it
WOorks:

1. The pattern/[a-zA-Z] +/ matches abc, which is stored in the built-in variable $&.

2. The e option indicates that the replacement string, $& x 2, is to be treated as an
expression. This expression is evaluated, producing the result abcabc.

3. abcabc is substituted for abc in the string stored in $st ri ng. This means that the
new value of $string is Oabcabcl.

Listing 7.12 is another example that uses the e option in a substitution. This program
takes every integer in a list of input files and multiplies them by 2, leaving the rest of
the contents unchanged. (For the sake of simplicity, the program assumes that there are
no floating-point numbers in the file.)

Listing 7.12. A program that multiplies every integer in a file by 2.

=

#! [/ usr/ 1 ocal / bi n/ perl

3: $count = O;

4: while ($ARGV[$count] ne "") {

5: open (FILE, "$ARGV[S$count]");
6: @ile = <Fl LE>;

7: $l i nenum = 0O;

8: while ($file[$linenuni ne "") {
9 $file[$linenuni =~ s/\d+/ $& * 2/eg;
10: $l i nenumt+;

11: }

12: cl ose (FILE);

13: open (FILE, ">$ARGV[$count]");
14: print FILE (@ile);

15: close (FILE);

16: $count ++;

17: }

If a file naned foo contains the text
Thi s contai ns the nunber 1.

Thi s contai ns the nunber 26.

and the name f oo is passed as a command-line argument to this program, the
file f oo becomes

Thi s contai ns the nunber 2.

Thi s contai ns the nunber 52.

m This program uses the built-in variable @RGV to retrieve filenames from the
command line. Note that the program cannot use <>, because the fol lowing statement
reads the entire contents of all the files into a single array:

@ile = <>;

Lines 8-11 read and substitute one line of a file at a time. Line 9 performs the actual
substitution as fol lows:

1. The pattern\ d+ matches a sequence of one or more digits, which is automatically
assigned to $&.

2. The value of $&is substituted into the replacement string.

3. The e option indicates that this replacement string is to be treated as an
expression. This expression multiplies the matched integer by 2.

4. The result of the multiplication is then substituted into the file in place of the
original integer.

5. The g option indicates that every integer on the line is to be substituted for.

After all the lines in the file have been read, the file is closed and reopened for
writing. The call to print in line 14 takes the list stored in @i | e-the contents of the
current file-and writes them back out to the file, overwriting the original contents.

Evaluating a Pattern Only Once

As with the match operator, the o option to the substitution operator tells the Perl
interpreter to replace a scalar variable name with its value only once. For example, the
following statement substitutes the current value of $var for its name, producing a
replacement string:

$string =~ /abc/ $var/ o;

This replacement string then never changes, even if the value of $var changes. For
example:

$var = 17;

while ($var > 0) {
$string = <STDI N>;
$string =~ /abc/ $var/ o;
print ($string);

$var--; # the replacenment string is still "17"

Again, as with the match operator, there is no real reason to use the o option.
Treating the String as Singleor Multiple Lines

As in the pattern-matching operator, the s and moptions specify that the string to be
matched is to be treated as a single line or as multiple lines, respectively.

The s option ensures that the newline character \ n is matched by the . special
character.

$string = "This is a\ntwo-line string."”;
$string =~ s/a.*ol/onels;

$string now contains "This is a one-line string."

If the moption is specified, » and $ match the beginning and end of any line.

$string = "The The first |ine\nThe The second |ine";
$string =~ s/"Thel//gm

$string now contains "The first |ine\nThe second |ine"
$string =~ s/e$/ k/gm

$string now contains "The first |ink\nThe second |ink"

o,

WAaRNING

The\ Aand\ z escape sequences (defined in Perl 5) always
match only the beginning and end of the string,
respectively. (This is the only case where\Aand\ z
behave differently from» and $.)

NOTE

The mand s options are defined only in Perl 5. To treat a
string as multiple lines when you run Perl 4, set the $*
system variable, described on Day 17.

Using White Space in Patterns

The x option tells the Perl interpreter to ignore all white space unless preceded by a
backslash. As with the pattern-matching operator, ignoring white space makes
complicated string patterns easier to read.

$string =~ s/\d{2} ([\W) \d{2} \1 \d{2}/$1-$2-$3/x

This converts a day-month-year string to the dd- nm yy format.

NOTE

Even if the x option is specified, spaces in the replacement
string are not ignored. For example, the following
replaces 14/ 04/ 95 with 14 - 04 - 95, not 14- 04- 95:

$string =~ s/\d{2} ([\W) \d{2} \1 \d{2}/$1 - $2 -
$3/ x

Also note that the x option is defined only in Perl 5.

Specifying a Different Delimiter

You can specify a different delimiter to separate the pattern and replacement string in
the substitution operator. For example, the following substitution operator replaces
/ u/ bi n with /usr /1 ocal / bi n:

s#/ u/ bi n#/ usr /1 ocal / bi n#

The search and replacement strings can be enclosed in parentheses or angle brackets.

s(/u/bin)(/usr/local/bin)

s</u/bin>\/usr\/local\/bin/

NOTE

As with the match operator, you cannot use a special
character both as a delimiter and in a pattern.

s. a.c. def.

This substitution will be flagged as containing an error
because the . character is being used as the delimiter.
The substitution

s.a\.c. def.

does work, but it substitutes def for a. c, where. isan
actual period and not the pattern special character.

The Trangdation Operator

Perl also provides another way to substitute one group of characters for another: the
tr translation operator. This operator uses the following syntax:

tr/stringl/string2/

Here, stringl contains a list of characters to be replaced, and st ri ng2 contains the
characters that replace them. The first character in stringl is replaced by the first
character in string2, the second character in stri ngl is replaced by the second
character in stri ng2, and so on.

Here is a simple example:

$string = "abcdef ghi cba";

$string =~ tr/abc/def/;

Here, the characters a, b, and ¢ are to be replaced as fol lows:

. All occurrences of the character a are to be replaced by the character d.
. All occurrences of the character b are to be replaced by the character e.
. All occurrences of the character