Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

André Dos Santos Lessa

]:}ythﬂ]:'l Publisher: Sams Publishing

First Edition December 12, 2000
ISBN: 0-672-31994-2, 960 pages

Buy Print Version

Front Matter

Table of Contents

The Python Developer’s Handbook is designed to expose experienced developers
Index to Python and its uses. Beginning with a brief introduction to the language and its
About the Author syntax, the book moves quickly into more advanced programming topics,
including embedding Python, network programming, GUI toolkits, JPython, Web
development, Python/C API, and more. Python is an interpreted, object-oriented
programming language. Its syntax is simple and easy to learn, and it encourages
programmers to write and think clearly. The Python Developer’s Handbook is
carefully written, well-organized introduction to this powerful, fast-growing
programming language for experienced developers.

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
http://www.informit.com/safari/author_bio.asp?ISBN=0672319942
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/printed.asp?editor=informit&mode=add&locale=en-US-INFM02&CF__AUX_STORE_FRONT=IT&sku=0672319942&ofrurl=http%3A%2F%2Fsafari%2Eoreilly%2Ecom%2Fmain%2Easp

Web Development > Python Developer's Handbook > Introduction See All Titles

< BACK Make Note | Bookmark CONTINUE >

Introduction

When | was a little kid, | had this dream where a snake would rule and dominate the entire world
(actually, I guess that a penguin was also part of the dream...but never mind). I didn't pay much
attention to the fact at that time because | thought the dream was caused by an overexposure to all those
Japanese series that were popping up on the screens. Later, in my teenage years, there was this science
project where | had to spend some time studying snakes to display at an exhibition. After analyzing
Red Tail boas and coral snakes, | found this 3-year old giant of 10 feet, 40+ pounds. Instantly, I
recognized that snake as being the same one that | had seen in my dream years before. Its name was
Python, but at that time, I still couldn't figure out what was the relationship between that reptile and the
world domination.

Fifteen years ago, | was trying to select a channel in my old TV set, when a special program caught my
attention—A huge animated foot was dancing in the opening titles. After the program started, there
were a group of funny guys who were playing jokes about parrots and lumberjacks. After watching
tons of episodes and all their five films, I decided to write a book about them. | noticed that they were
called Python too. Maybe that was the answer. That troupe would dominate the entire world. | wanted
to let everyone know about it. Initially | had planned to write about the actors and their most famous
sketches, but I had to abandon the idea when | realized that my editors wouldn't give me enough time to
write a book of approximately 25,030 pages. That would be a nice bestseller, though.

Even though none of the previous facts has really happened, both have at least one thing in
common—the name Python. Python is also a scripting language whose name's origin has much to do
with the English troupe than with the legless reptile. This book will guide you step-by-step through the
universe of Python, a fantastic programming language that can help you to implement solutions for
almost all types of IT challenges that you might face. Almost all IT-related tasks, such as the
manipulation of database systems, or the design of Web-driven applications can be managed using
Python. Maybe that's the answer for my dream.

For the last couple of months, I've been trying to organize all the information about Python that | have
available, arranging them in this book. | can't say that | have included every little thing in the book, but
| do know that | have covered the most important aspects of the Python language. Note that along the 5-
month development period of this book, Python had several version upgrades, which made things way
more difficult to organize. So, | apologize if something important is missing.

This book is organized into 18 chapters and some additional appendixes, where each one covers a
specific aspect of the language. Inside each chapter, you will find many hints about how to use Python

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A14%3A18+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=8&now=5%2F31%2F2002+4%3A14%3A18+PM

to meet your needs. As you might agree with me, it is impossible to cover every single aspect of the
language in such a complete and up-to-date way. That's why | choose to provide Web links to other
sources of material that I think will be useful for your learning.

What this book covers?
A short answer is

The book starts with a very extensive review of the language and the modules that come as part of the
Python distribution. It goes through Object-Oriented Programming, Networking, Web Development,
Graphical Interfaces, and other important topics. The last chapter covers JPython, a version of Python
that runs in Java systems.

A long answer is

Chapter 1 explains what Python is, why Python must be used, where to get support and how to go
through each installation process.

Chapter 2 is a complete review of the Python programming language. By the end of this chapter, you
will learn how to create Python applications.

Chapter 3 shows which main modules extensions are currently available and for what purposes they
can be used. The focus here is to expand your knowledge about the Python libraries, showing the

resources that you already have available in the Python programming language.

Chapter 4 demonstrates how to handle exception situations and how to avoid error messages.

Chapter 5 introduces the OO methodology in a very complete and direct way. You will be able to
easily create and use objects and classes in your programs after reading this chapter.

Chapter 6 discusses extending and embedding Python. You will learn how to extend Python methods
using other languages and how to call Python methods from within other applications.

Chapter 7 explains objects interfacing and distribution. The information provided in this chapter
explains objects distribution and how to use them from within other systems.

Chapter 8 shows all the database options available within Python. For those that don't know anything
about database yet, it explains how databases work and how to execute basic SQL statements.

Chapter 9 provides very useful information concerning the use and manipulation of some advanced
topics, including images, sounds, threads, and scientific Python Modules.

Chapter 10 explains basic network concepts and invites you to play with these concepts using Python
programs.

Chapter 11 provides information concerning how to use Python for Internet development. It also
introduces you to some well-known Python third-party Web applications.

Chapter 12 provides information concerning how to use Python for scripting programming.

Chapter 13 provides information concerning how to use Python for data parsing and manipulation, such
as XML parsing and mail processing.

Chapter 14 shows what the available GUI options for graphic designing in Python are.

Chapter 15 provides Tkinter information. For those that don't know yet, Tkinter is the standard Python
GUI.

Chapter 16 shows some performance suggestions, and guides you through the process of writing clean
code within style.

Chapter 17 introduces a handful programming tools. You will learn how to go through all the
development stages without fear, including how to debug, compile, and distribute Python applications.

Chapter 18 demonstrates how easy it is to mix Java and Python using JPython.

Now that you know that you have a lot of interesting material to learn, | suggest you accept my hint:

The best way to read this book is by sitting on a comfortable beach chair, or laying on your bed, and
relaxing. If for some reason, if you think the topic is getting boring, just turn the page and go to another
chapter until you find something that you like. Later, you can return to where you originally left. This
book can be read from the start, or you can go directly to the chapter that teaches a specific
functionality. It's your choice!

So, what are you waiting for? Turn this page at once, and get ready to start dominating the world.

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=8

About the Author
Acknowledgments
Tell UsWhat You Think!
I ntroduction
|: Basic Programming
1. Introduction
| ntroduction to Python
Why Use Python?
Main Technical Features
Python Distribution
Installing and Configuring Python
Python and Other L anguages
Patches and Bugs List
PSA and the Python Consortium
Summary
2. Language Review
L anguage Review
The Shell Environment
Programs
Built-In Data Types
Operators
Expressions
Control Statements
Data Structures
Functions and Procedures
Modules and Packages
| nput and Output
File Handling
Summary
Code Example
3. Python Libraries
Python Libraries
Python Services
types
UserDict
UserList

operator

<= Return to book index

new

user

builtin

main
The String Group
Miscellaneous
Generic Operational System
Optional Operational System
Debugger
Profiler
| nternet Protocol and Support
| nternet Data Handling
Restricted Execution
Multimedia
Cryptographic
UNIX Specific

SGI IRIX Specific
Sun OS Specific
M S Windows Specific
Macintosh Specific
Undocumented Modules
Summary

4. Exception Handling
Exception Handling
Standard Exceptions (Getting Help from Other Modul es)
Raising Exceptions
Catching Exceptions
try/finally
Creating User-defined Exceptions
The Standard Exception Hierarchy
Summary
Code Examples

5. Object-Oriented Programming
Object-Oriented Programming
An Introduction to Python OOP
Python Classes and I nstances
Methods Handling
Speciad Methods
| nheritance
Polymorphism
Encapsulation
M etacl asses
Summary
Code Examples

I1: Advanced Programming

6. Extending and Embedding Python
Extending and Embedding Python
The Python/C API
Extending
Compiling and Linking Extension Modules
SWIG—The Simple Wrapper Interface Generator
Other Wrappers

Embedding

Summary
Code Examples

7. Objects Interfacing and Distribution
Object Interfacing and Distribution
| nterfacing Objects
I ntroduction to COM Objects
| mplementing COM Objects in Python
Distributing Objects with Python
Summary
Code Examples
8. Working with Databases
Working with Databases
Flat Databases
DBM (Database Managers) Databases

Object Seriaization and Persistent Storage

The ODBC Module
ADO (ActiveX Data Objects)
Using SQL
Python DB API
Summary
9. Other Advanced Topics
Other Advanced Topics
Manipulating |mages
Working with Sounds
Restricted Execution Mode
Scientific Computing
Regular Expressions
Threads
Summary
Code Examples
[11: Network Programming
10. Basic Networ k Background
Networking
Networking Concepts
HTTP
Accessing URLs
ﬂ)
SMTP/POP3/IMAP
Newsgroups—Telnet and Gopher

Summary
11. Web Development

Web Development
Configuring Web Servers for Python/CGI Scripts
Third-Party Internet Applications
Other Applications
Site Management Tools
Summary

12. Scripting Programming
Web Programming
An Introduction to CGI
The cgi Module
Creating, Installing, and Running Y our Script
Python Active Scripting
Summary

13. Data M anipulation
Parsing and Manipulating Data
XML Processing
XML-RPC
XDR Data Exchange Format
Handling Other Markup L anguages
MIME Parsing and Manipulation
Generic Conversion Functions
Summary

IV: Graphical I nterfaces

14. Python and GUI's
Python GUI Toolkits
The Tkinter Module
Overview of Other GUI Modules
Designing a Good Interface
Summary

15. Tkinter
Introduction to Tcl/Tk
Tkinter
Geometry Management
Handling Tkinter Events
Tkinter Widgets
Designing Applications
PMW—Python Mega Widgets
Tkinter Resources

Summary

V: Developing with Python
Chapter

16. Development Environment
Building Python Applications
Development Strategy
| ntegrated Development Environments
IDLE

Pythonwin

Summary
17. Development Tools

The Development Process of Python Programs
Compiling Python
Editing Code
Python Scripts
Generating an Executable Python Bytecode
| nterpreter
Debugging the Application
Profiling Python
Distributing Python Applications
Summary
VI: Python and Java
Chapter

18. JPython
Welcome to JPython

Java Integration

Downloading and Installing JPython
The Interpreter

The JPython Registry

Creating Graphical Interfaces

Embedding
|pythonc
Running JPython Applets
Summary

VII: Appendixes

A. Python/C API
Python/C API
TheVery High Level Layer
Reference Counting
Exception Handling

Standard Exceptions
Utilities
Abstract Objects Layer
Concrete Objects Layer
Initialization, Finalization, and Threads
Memory Management
Defining New Object Types
B. Running Python on Specific Platforms
Python on Win32 Systems
Python on MacOS Systems
Python on UNIX Systems
Other Platforms
C. Python Copyright Notices
Python 2.0 License Information
Python's Copyright Notice (version 1.6)
Python's Copyright Notice (until version 1.5.2)
Copyright Notice of the profile and pstats Modules
Copyright Notice of JPython with OROM atcher
Copyright Notice of JPython without OROM atcher
D. Migrating to Python 2.0
Python 1.6 or Python 2.0. Which One to Choose?
New Development Process
Enhancements
Expected Code Breaking

Web Development > Python Developer's Handbook > About the Author See All Titles

Make Note | Bookmark CONTINUE >

About the Author

My name is André dos Santos Lessa. | decided to follow an IT career when | was just 11 years old;
that happened the day | first saw a real computer—well, actually it was just a TK85. On my next
birthday after that fateful day, | got a TK90X. Then came the MSX, 386, 486, and so forth. This long-
time background has opened many doors (and Windows!) to me. I got both my graduate and my post-
graduate degrees in the computer field.

At this time, | am an IT consultant with little more than eight years of professional IT experience,
ranging from database administration to Web design. Currently, I work for Emplifi Inc., where | use
my best technical skills to support projects at Deloitte Consulting.

As | really like undertaking new technologies, mostly anything Web related, I've created and designed
some interesting sites for the Web. www.lessaworld.com, www.bebemania.com.br, and

www.alugueaqui.com.br are my little toys.

The most recent endeavour that | became part of is called i Tr aceYou. com which is an

international and well-grounded project that brings a new security philosophy to good old services that
we are used to. It is scheduled to be released by October, 2000.

| was born in Rio de Janeiro, Brazil, but | moved to the United States in 1998 in a quest for new
challenges for my career. When | am not working (just a few seconds per day), | try to spend some time
with my wife Renata. Currently, we live in the city of Pittsburgh, and she is pregnant with our first
child, who is called Jodo Pedro.

If necessary, you can contact me by sending a note to my main email account, which is
webmaster@lessaworld.com.

Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=2
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A13%3A19+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=2&now=5%2F31%2F2002+4%3A13%3A19+PM
http://www.lessaworld.com/
http://www.bebemania.com.br/
http://www.alugueaqui.com.br/
mailto:webmaster@lessaworld.com
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=2

Web Development > Python Developer's Handbook > Acknowledgments See All Titles

< BACK Make Note | Bookmark CONTINUE >

Acknowledgments

| would like to render my acknowledgments to the ones who most shared my life during the last few
months while | wrote this book, giving me support and inspiration to conclude this beautiful work.

God
My parents, Neuza & Josué My wife, Renata
Thank you all!

In addition, | would like to express gratitude to my entire family and friends for being so friendly, and
for supporting my wife and | in our decision to move to the United States.

... and of course, for sending Brazilian goodies and baby gifts to us by mail!

Beth, Bruno, Carol, Cleber, Dinda Teca, Djalminha, Gabriel Jorge, Gustavo, Jorge, Juliana, Lucas,
Matheus, Ney, Patricia Beatriz, Penha, Rafael, and Victor. And if | forgot about you, consider yourself
included in this list!

Thanks folks! (Valeu galera!)

Also, | would like to thank everyone at Macmillan for the patience and comprehension that they had
every time | was late in my milestones.

A special thank you goes to my Technical Editor James Henstridge for providing outstanding
suggestions and remarks about the contents of this book.

Rhonda, you were great correcting my English mistakes and reviewing my writings!
Thanks Katie, thanks Mandie. | do know I gave you a lot of work, didn't I?

Dawn, Amy, Scott, even though we didn't have much contact, | know that you were all there every time
this book needed you. God bless you all!

And last, but not least, Shelley, thanks for discovering me! I still remember that day, March 14, when |
got your email asking me if | had ever considered authoring. Well, this book says everything. Thank
you very much for this opportunity.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=4
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A13%3A37+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=4&now=5%2F31%2F2002+4%3A13%3A37+PM

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=4

Web Development > Python Developer's Handbook > Tell Us What You Think! See All Titles

< BACK Make Note | Bookmark CONTINUE >

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value your opinion
and want to know what we're doing right, what we could do better, what areas you'd like to see us
publish in, and any other words of wisdom you're willing to pass our way.

You can email or write me directly to let me know what you did or didn't like about this book—as well
as what we can do to make our books stronger.

Please note that | cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail | receive, | might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and phone
or fax number. I will carefully review your comments and share them with the author and editors who
worked on the book.

Email: webdev sams@mcp.com

Mark Taber

Associate Publisher

_ Sams Publishing

Mail: 201 West 103rd Street
Indianapolis, IN 46290 USA

<BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=6
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A13%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=6&now=5%2F31%2F2002+4%3A13%3A58+PM
mailto:webdev_sams@mcp.com
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=6

Web Development > Python Developer's Handbook > I: Basic Programming See All Titles

< BACK Make Note | Bookmark CONTINUE >

Part |: Basic Programming

Part | Basic Programming

Chapter 1 Introduction

Chapter 2 Language Review

Chapter 3 Python Libraries

Chapter 4 Exception Handling

Chapter 5 Object-Oriented Programming

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=10
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A14%3A37+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=10&now=5%2F31%2F2002+4%3A14%3A37+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=10

Web Development > Python Developer's Handbook > 1. Introduction See All Titles

< BACK Make Note | Bookmark CONTINUE >

Chapter 1. Introduction

Nobody expects the Spanish Inquisition

This chapter explains to you why Python is considered to be a good language, why it should be used,
what its main features are, where you can find support, and how to go through each installation process.

<BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=12
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A14%3A55+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=12&now=5%2F31%2F2002+4%3A14%3A55+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=12

Web Development > Python Developer's Handbook > 1. Introduction > Introduction to See All Titles
Python

< BACK Make Note | Bookmark CONTINUE >

Introduction to Python

Python is an open source language that is getting a lot of attention from the market. It combines ease of
use with the capability to run on multiple platforms because it is implemented focusing on every major
operating system. Guido van Rossum created the language nearly 11 years ago and since then, Python
has changed through the years, turning itself into one of the most powerful programming languages
currently available.

Python is a good prototype language. In just a few minutes, you can develop prototypes that would take
you several hours in other languages. It also embodies all object-oriented concepts as part of its core
engine. Therefore, creating programming object-oriented applications in Python is much easier than it
would be in other languages such as Java or C++.

As | just said, Python is an open source project. Consequently, it is truly free. No copylefts or
copyrights are involved in its license agreement. You can change it, modify it, give it away, sell it, and
even freely distribute it for commercial use. Its copyright only protects the author from legal problems
that might occur if someone decides to sue the author for errors caused by using Python, or if someone
else tries to claim ownership of the language.

Maybe you still don't know Python, but many companies are out there using it. The problem is these
companies don't want to go public talking about it because they think that using Python without getting
the attention of their competitors is a good strategy. Okay, | know that you are curious to know who in
the world is using Python. Organizations like Industrial Light and Magic, Yahoo!, Red Hat, and NASA
are some of companies that run Python applications.

Note
You can always check out the latest news about Python by visiting

http://www.python.org/News.html.

Nowadays, many developers are contributing to Python's support. That means that, currently, a lot of
people are testing and designing modules for the language. If you spend some time visiting Python's

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=13
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A15%3A12+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=13&now=5%2F31%2F2002+4%3A15%3A12+PM
http://www.python.org/News.html

official Web site, you can get a list of several development groups that are working hard to give Python
some support to new technologies, such as XML and image processing.

Both Perl and Java already have a large group of programmers who are very devoted to their
programming languages, and, today, Python is starting to get there.

Notice that Python is a language extremely easy to code if you have ever programmed before. Guido
claims to have fun every time he has to do something using Python. Learning Python through this book
will be exciting too. Soon, you will have some practice and understand the reason | say that.

In this chapter, | give you a quick overview of Python's main features. The other chapters of this book
cover in detail the topics that I mention next.

Python!? What Is It?
Let's define Python:

Python is an interpreted, high-level programming language, pure object-oriented, and powerful server-
side scripting language for the Web. Like all scripting languages, Python code resembles pseudo code.
Its syntax's rules and elegant design make it readable even among multiprogrammer development
teams. The language doesn't provide a rich syntax, which is really helpful. The idea behind that is to
keep you thinking about the business rules of your application and not to spend time trying to figure out
what command you should use.

Quoting Guido van Rossum—"Rich syntax is more of a burden than a help."

It is also true (and later you will have a chance to check it out) that Python is interactive, portable, easy
to learn, easy to use, and a serious language. Furthermore, it provides dynamic semantics and rapid
prototyping capabilities.

Python is largely known as a glue language that connects existing components. It is embeddable in
applications from other languages (C/C++, Java, and so on), and it is also possible to add new modules
to Python, extending its core vocabulary.

Python is a very stable language because it has been in the market for the last 10 years and also because
its interpreter and all standard libraries have their source code available along with the binaries.
Distributing the sources for everyone is a good development strategy because it makes developers from
all around the world work together. Anyone can submit suggestions and patches to the official
development team, led by Python's creator—Guido van Rossum.

Guido is the coauthor of the second implementation of the scripting language ABC—a language that
was used, mostly, for teaching purposes in the '80s by a small number of people. Python is directly
derived from ABC.

Python was born in an educational environment, in the Christmas of 1989 at CWI in Amsterdam,
Netherlands. Guido was a researcher at CWI at that time. Initially, it was just a project to keep him
busy during the holidays. Later, it became part of the Amoeba Project at CWI. Its first public release
was in February of 1991.

For a long time, Python's development occurred at CNRI in Reston, VA in the United States. In June of
2000, the Python development team moved to PythonLabs, a member organization of the BeOpen
Network, which is maintained by the lead developers of the Python language, including Guido.

On October 27, 2000 the entire PythonLabs Team has left BeOpen.com because of some mutual
disagreements concerning the future of Python. The Team is now working for Digital Creations (the
makers of Zope - http://www.digicool.com/), and Guido has just announced the idea of creating a non-
profit organization called Python Software Foundation (PSF)in order to take ownership of future
Python developments.

By the way, Python was named after the British comedy troupe Monty Python. It had a comedy series
called Monty Python's Flying Circus on the BBC in the '70s. Guido is a huge fan.

As many Monty Python quotes are throughout the chapters of this book as in any other Python book.
That is something of a standard behavior among Python authors, and | won't be the one who will try to
change it.

Note

"Nobody expects the Spanish Inquisition™ is one of the most famous quotes that is always recited by
Guido. Each chapter of this book is headed by a famous Monty Python quote.

< BACK Make Note | Bookmark CONTINUE >

http://www.digicool.com/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=13

Index terms contained in this section

ABC scripting language

Amoeba Project

BBC (British Broadcasting Corporation)
BeOpen Network

British Broadcasting Corporation (BBC)
CNRI

code

pseudo
CWI

Industrial Light and Magic

Internet
Python news Web site

languages

scripting

ABC

Monty Python 2nd
Monty PythonO

s Flying Circus
NASA
news site, Python
pseudo code

Python
introduction to 2nd

PythonLabs
Red Hat
Rossum, Guido van 2nd 3rd 4th
scripting languages
ABC
syntax

Python
Web sites

Python news
Yahoo!

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 1. Introduction > Why Use Python? See All Titles

< BACK Make Note | Bookmark CONTINUE >

Why Use Python?

Let's take a look at an interesting scenario:

Imagine that you don't have a team of programmers who are professionally trained. In addition to that,
you are in a position to choose a programming language that would be the best solution for projects that
require GUI implementations and the use of complex routines along with OOP technology.
Unfortunately, and by chance, you don't have much money to spend in a big investment, well... If |
were you, | would pick up Python as my choice.

But if you are simply a programmer who, for this moment, only wants to know what the significant
advantages are that Python has to offer you, maybe you are asking yourself why you need this language
if you already know many others.

The answer is quite simple. Although the original plan is not to turn Python into an all-purpose
language, you can easily do almost anything if you know how. The next couple of paragraphs list and
explain why Python is a cool programming language and what things make Python more flexible than
other languages.

Readability

Python's syntax is clear and readable. The way Python's syntax is organized imposes some order to
programmers. Experts and beginners can easily understand the code and everyone can become
productive in Python very quickly. It is also important to mention that Python has fewer "dialects” than
other languages, such as Perl. And because the block structures in Python are defined by indentations,
you are much less likely to have bugs in your code caused by incorrect indentation.

It Is Simple to Get Support

The Python community always provides support to Python users. As we already know, Python code is
freely available for everyone. Therefore, thousands of developers worldwide are working hard to find
bugs and create patches to fix those bugs. Furthermore, many people are creating new enhancements to
the language and sending them for approval.

Fast to Learn

The language is very easy to learn because its source code resembles pseudo code. It doesn't ask for

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=14
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A15%3A28+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=14&now=5%2F31%2F2002+4%3A15%3A28+PM

long and strange lines of code. Therefore, less training is a direct result. Companies don't need to spend
much time to have their programmers coding in Python. Once you start learning Python, you can do
useful coding almost immediately. And after some practice, your productivity will suddenly increase.

You can design a high-level, object-oriented programming code in a friendly and interpreted Python
environment. This feature works great for small tasks.

Fast to Code

Python provides fast feedback in several ways. First, the programmer can skip many tasks that other
languages require him to take. Therefore, it reduces both the cost of program maintenance and the
development time. If necessary, Python enables a fast adaptation of the code. You can change the high-
level layer of your application without changing the business rules that are coded within your modules.

The interactive interpreter that comes with the Python distribution brings rapid development strategies
to your project. In spite of traditional programming languages that require several distinct phases (such
as compiling, testing, and running) and other scripting languages that require you to edit the code
outside the execution environment, Python is a ready-to-run language. Every time you use Python's
interactive interpreter, you just need to execute the code you have. A direct benefit of this feature over
Perl is the way you can interactively test and play around with your code.

Python provides a bottom-up development style in which you can build your applications by importing
and testing critical functions in the interpreter before you write the top-level code that calls the
functions.

The interpreter is easily extensible. It enables you to embed your favorite C code as a compiled
extension module.

Reusability

Python encourages program reusability by implementing modules and packages. A large set of modules
has already been developed and is provided as The Standard Python Library, which is part of the
Python distribution.

You can easily share functionality between your programs by breaking the programs into modules, and
reusing the modules as components of other programs.

Portability

Besides running on multiple systems, Python has the same interface on multiple platforms. Its design
isn't attached to a specific operational system because it is written in portable ANSI C. This means that
you can write a Python program on a Mac, test it using a Linux environment, and upload it to a
Windows NT server. Everything mentioned here is possible because Python supports most of its

features everywhere. However, you must know that some modules were developed to implement
specific mechanisms of some operational systems and, of course, programs that use those modules
don't work in all environments.

But, wait a minute. This problem affects only some specific modules. Usually, you can make most of
your applications run on multiple platforms without changing one line of code. How many other
languages can claim this type of behavior?

Python is well integrated with both UNIX and Windows platforms. The Macintosh environment also
supports Python applications, even though it doesn't provide a full set of solutions yet. But don't worry.
Developers are currently working on that.

Object-Oriented Programming

Usually, scripting languages have object-orientation support included in the language as an add-on.
However, everything in Python, as in Smalltalk, is designed to be object-oriented. You can start
programming using non-OO0 structures, but it doesn't take too long for you to find out that it is much
simpler if you use its OO features. Some of the implemented OO functionality in Python is inheritance
and polymorphism.

Overall Conclusion

The overall conclusion is that Python is a fantastic language that provides all these features for free. |
assure you that if you want all these features in any other language, you will have to buy costly third-
part libraries. Every detail in Python's project is part of a huge plan to have the most used and necessary
features of other languages in a unique environment.

If someone asks which are the cases that Python doesn't provide the best solution, | would have just one
answer: applications that require huge amounts of low-level data processing. That is said because, as
you already know, Python is an interpreted language; and for that reason, it is proven to be a little bit
slower than compiled languages. However, even in cases such as this, Python makes it easy to replace
bottlenecks with C implementations, which speeds things up without sacrificing Python's features.

If you have already decided that Python is exactly what you need, be sure to go through all the
following chapters. It will be fun.

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=14

Index terms contained in this section

ANSI C language, portable
code

pseudo
languages

portable ANSI C
libraries

Standard Python, The

portable ANSI C language
pseudo code

Python
reasons for using 2nd 3rd 4th

reusability

Python
Standard Python Library, The

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 1. Introduction > Main Technical See All Titles
Features

< BACK Make Note | Bookmark CONTINUE >

Main Technical Features

Now that you already know many reasons why you should use Python, let's focus on some of its main
technical features.

Automatic Memory Management

Python objects are collected whenever they become unreachable. Python identifies the "garbage,"
taking the responsibility from you.

Exception Handling

The exception handling support helps you to catch errors without adding a lot of error checking
statements to the code. By the way, it is said that Python programs never crash; they always return a
t raceback message.

Rich Core Library

Many extension modules were already developed and became part of The Standard Python Library of
tools, which can be used by programmers in any Python application. Besides those generic modules,
we have others that are specific for particular platforms or environments. The Standard Python Library
makes the tasks that are simple in theory also simple in practice.

In a short time, programmers can make their Python programs speak to HTTP, FTP, SMTP, Telnet,
POP, and many other services because Python modules perform all the common daily tasks. You can
download a Web page, parse HTML files, show windows on the screen, and even use—as part of your
programs—-built-in interfaces that were created to handle many operational system services.

Web Scripting Support and Data Handling

Python enables you to write CGI programs that work fine in several environments. Have you ever
imagined switching platforms without changing the code? All right, it's possible if Python is the choice.
There is even more: You can parse XML, HTML, SGML, and every other kind of text by using Python
built-in classes and regular expression methods.

Built-In Elements

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=15
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A15%3A49+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=15&now=5%2F31%2F2002+4%3A15%3A49+PM

Python provides a huge list of useful built-in elements (the language's basic data structure) along with
many special operations that are required to correctly process them. This list is as follows:

. Data types—such as strings, tuples, lists, hash tables, and so on
. Operations—Iike searching routine statements (in and not in), sorting, and so on
Development Flow

Even though it doesn't have any compilation or linking process, Python supports byte compilation. The
compiled code is saved in an intermediate language called bytecode that can be accessed by any system
that has a Python virtual machine. This feature offers a kind of portability similar to the one that Java
also offers. Applications can be used in several different systems without the need for compilation.
Furthermore, you can create a standalone executable and securely distribute your applications.

Clear Syntax and a Diversity of Useful Lexical Elements

The way Python is organized seems to encourage object-oriented programming because everything is
an object. In addition to that, it has various helpful lexical elements, such as the following:

. Operator overloading—The same operator has different meanings according to the elements that
are being referenced.

. Dynamic typing—You don't need to assign types in your code. After you assign a value to an
object, it instantly knows what type it should assume. You can even assign different types to the
same variable within the same program.

. Name resolution—Each structure (module, class, and so on) defines its own scope of names.

. Indentation—There are no line-end markers as in Java and C++, where programmers need to
use semicolons. Python defines indentations by using block structures.

Embeddable and Extendable

Python can be embedded in applications written in many other programming and scripting languages.
Whenever you need to have a programmable interface for your applications, give Python a chance.
Python is well known for easily gluing everything.

Python also enables you to add low-level modules to the interpreter. Those built-in modules are easily
written in C and C++. Extension modules are easily created and maintained using Python. For tasks
like this, you can develop components in C and run them through Python subclasses.

Objects Distribution

Python can be used to implement routines that need to talk to objects in other applications. For
example, Python is a great tool to glue Windows COM components. Besides that, Python also has a
few CORBA implementations that enable you to use cross-platform distributed objects, as well.

Databases

Python has interfaces to all major commercial databases, provides several facilities to handle flat-file
databases, and implements object-persistence systems that can save entire objects to files. But the
greatest database feature is that Python defines a standard database API, which makes it easy to port
applications to different databases.

GUI Application

You can create applications that implement graphical user interfaces (GUIs), which are portable to
many system calls, libraries, and windowing systems such as Windows MFC, Macintosh, Motif, and
UNIX's X Window System. This is possible because many GUI bindings were developed for Python.
The Python distribution is bundled with Tkinter, a standard object-oriented interface to the Tk GUI API
that has become the official GUI development platform for Python.

Introspection

You can develop programs in Python to help in the creation of other programs in Python. The most
important examples are the Debugger and the Profiler. And there is even more: Python has an
Integrated Development Environment (IDLE) developed using Python for use with Python.

Third-Party Projects Integration

The Python Extension NumPy (Numerical Extensions to Python) along with the Python Library PIL
(Python Imaging Library) prove that everyone who contributes to the language can make his projects
almost a required complement to the standard Python distribution.

<BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=15

Index terms contained in this section

data types
Python
distribution
objects
Python
dynamic typing
IDLEO
\t?

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 1. Introduction > Python Distribution See All Titles

< BACK Make Note | Bookmark CONTINUE >

Python Distribution

At the time of this writing, the last official version of Python is version 2.0, released on October 16,
2000. Prior to that, we had version 1.6 final released on September 5, 2000, and version 1.5.2 released
on April 13, 1999.

After release 2.0, Guido plans to work on two more 2. x releases that might be available by the end of
2000 or January 2001. After that, all his attention will be dedicated to a total Python redesign, a future
project called Python 3000. Despite many rumors that have been spread in the Python community,
Guido affirms that this mythical version is "not as incompatible as people fear."

This book was planned to be a Python 1.5.2 book. But it turned out to cover the migration from 1.5.2 to
2.0. That's why you will see much of the text focusing on release 1.5.2, and special notes about release
2.0.

The latest Python source codes for your UNIX, Windows, or Mac system are maintained under the
CVS revision control system. CVS (Concurrent Version System) is a version control system that stores
and manages the code that is in process of development. Remember! The source code available through
CVS might be slightly different from the one released along with the last official release.

If you want to download the source code from CVS, go to http://www.python.org/download/cvs.htmi

and check out the instructions that show how to get the appropriate CVS client for your system. The
Python CVS tree is currently hosted by SourceForge at http://sourceforge.net/projects/python/.

It is normal to have more than one Python installation in your system. You can install the official
version in one location and build the CVS source code in some other location.

Guido van Rossum, the creator of Python, maintains high-quality Python documentation at Python's
official Web site. You can download Python's documents from http://www.python.org/doc/. There are
versions in HTML, PostScript, and PDF. Part of this documentation is included in the distribution
packages.

The 1.5.2 distribution comes with five tutorials that you should wisely go through:

« The Python Tutorial

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=16
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A16%3A04+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=16&now=5%2F31%2F2002+4%3A16%3A04+PM
http://www.python.org/download/cvs.html
http://sourceforge.net/projects/python/
http://www.python.org/doc/

. The Library Reference

. The Language Reference

. Extending and Embedding Python

. The Python/C API
The new release 2.0 also contains the following manuals:

. Distributing Python Modules

. Installing Python Modules

. Documenting Python
The first two manuals above cover how to setup the the Python Distribution Utilities ("Distutils™) in
order to create source and built distributions. The former uses the module developer's point-of-view,
and the latter uses the end-user's point-of-view.

The last manual shows how to follow some standard guidelines for documenting Python.

Python's current documentation is also available for download at
http://www.python.org/doc/current/download.htmi.

More information about Python 2.0 documentation and downloading can be found at
http://www.PythonLabs.com.

System Requirements

Python runs on many platforms. Its portability enables it to run on several brands of UNIX, Macintosh,
Windows, VMS, Amiga, OS/2, Be-OS, and many others. Most all platforms, which have a C compiler,
support Python. You can try to compile Python yourself in any architecture you want because the
source code is distributed along with the binaries.

You should also have a text editor because sometimes it is easier to use an application like emacs,

pi co, notepad, orother similar one, instead of using the interpreter or the graphical development
environment. If you are using emacs, make sure that python-mode is installed because it makes it a
lot easier to develop Python code. See Chapter 17, "Development Tools," for details.

After downloading the source code at http://www.python.org/download/download source.html, you

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/237#5.html
http://www.python.org/doc/current/download.html
http://www.pythonlabs.com/
http://www.python.org/download/download_source.html

can carefully play around with it and if you want to go one step further, port it to another platform.

If you are using UNIX, it's going to be necessary to have t ar and the GNU gzi p programs in-hand in
order to unpack the downloaded files.

If you are using Windows, you must have WinZip available for the task.

GNU gzi p is available at http://www.gnu.org/software/gzip/gzip.html and WinZip is available at
http://www.winzip.com.

Depending on the system that you are using, you might need to get a C compiler in case you have need
to download the source code instead of the binary distribution.

Right now it is okay to use the binary distributions (whenever they are available), but when you
become more confident with the language, you might want to build a Python version that uses your
own extensions. So, you will need to have a C compiler.

Remember that you are free to use Python's source code any way you want. The full C source code is
freely available for download.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

1.5.2 release (Python)
tutorials
2.0 release (Python)
manuals 2nd
code
source
Concurrent Version System (CVS); downloading
Python;downloading
Concurrent Version System (CVS)

CcVvsO
?

© 2002, O'Reilly & Associates, Inc.

http://www.gnu.org/software/gzip/gzip.html
http://www.winzip.com/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=16

Web Development > Python Developer's Handbook > 1. Introduction > Installing and See All Titles
Configuring Python

< BACK Make Note | Bookmark CONTINUE >

Installing and Configuring Python

Setting up Python in your system is a very easy process because all versions are freely available and
highly documented. Check the following instructions that show how to download the files from the
binary repository. Each distribution includes reference manuals that demonstrate in detail how to install
and configure Python for that specific environment. See Chapter 17 for details about how to build

Python from source code.

Python's Web site—nhttp://www.python.org/download—nhas a section that gives you access to all
distributions that are available for download (see Figure 1.1).

Figure 1.1. Python's download Web page is the place where you can get the latest Python releases.

3 Downdoad Pethon Soltwae - Miciosofl Inlernst Explorer provided by MSH
| Bl Em N Fgotes Ioos Hep

- T - - e T: TN S
Back Frai-aal Siop Fahedh Hicsre Search Favores Hisbory Ml Prd FesiGuids
| Audchomss |4 hosgr /vewew. pathon oo dowmioasd radect bimi =] 6o | |unks
Home Seasch Download Documrntaton -1
Help Mews Comamunity SIG:
Index Dovwnlead Standard Python Software
Windours S5/HEMTT (Most ports are now version 1.5 2, some of the less populas ones are soll version 1.5 or oldes)
Macinfash
L » Wndewws 95098 and BT (Inpel)
= Macmtosh
E ® Lanm
Windows 3.1 + Q572
DDS L] 1']!21\:'\:\'-‘-'5 3 1. . —
= DD
Other = Ciber platferms (Areaga, BeOS, QNI VIS, Poicn, Windews CE, BISC OF, VeWerlks,
Salares AlphaT)
Python Bugs List + Source (Al Unos vanants: Linw:, Sun Solans, SGLIRIX, DEC U, IBW AT, HP-TX, 500,
MeXT, B5SD. FreaeBSD, MetBSTE and Wnd
CWVS Access T Feete L.I“ : and Wendowes)
- :E‘Iu:-r: Disgd 1ast
Contnbuted Seftware o Public read-oely CVS tree (For you bleeding-edge developers aut there)
Other Items o Download
Eythen fo = EBpectics on Pythen 1.5 2 - the labest vession
Pythen fip cortrib =l
& [[[=IMp Comprter

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=17
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A16%3A17+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=17&now=5%2F31%2F2002+4%3A16%3A17+PM
http://www.python.org/download
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/17#1.html

Up-to-date versions for the most popular distributions are always available.
Keep this URL because we will go to the site later to download other Python items that we might need.
UNIX Environment

The UNIX distribution is, in my opinion, the best distribution. It comes with POSIX bindings, and it
supports environment variables, files, sockets, and so on. It is perfect for all flavors of UNIX.

Linux Installation

These days, all the major Linux distributions include Python, which makes your life simple because
you don't have to download the files. Sometimes, Python is even automatically installed for you. Just
make sure that you have the latest version.

If you already have Python installed in your machine, and you've got a new Python RPM package, you
must execute the following command in order to update the RPM: (Note that this filename reflects the
1.5.2 version.)

rpm-Uhv python-1.5.2-2.i386.rpm

Otherwise, run the following command in your Linux prompt to install the RPM package.

rpm-ihv python-1.5.2-2.1386.rpm

When the installation process is over, check to see whether everything went fine by typing pyt hon at
the prompt. You should get access to the Python interpreter, and when you are satisfied, press Ctrl+D

to leave it.

Perfect! Now you are ready to start coding in Python.

In case you are using a Linux system that doesn't offer RPM support, you need to download the source
code and compile it in your machine. Or, check whether your Linux distribution included Python.
Instructions for compiling Python are provided in Chapter 17.

Other UNIX Systems

If you are running a UNIX system other than Linux, you need to download the source code and
compile it in your own machine.

Download the file py152. t gz from http://www.python.org/download/download_source.html. Note
that this file corresponds to version 1.5.2. You might need to change the filename for the latest version.

Following the instructions listed in the READIVE file of the distribution will show you how to build and
install the source code.

Macintosh Environment

MacPython is a Python version available for the Macintosh. Jack Jansen maintains it, and you can have
full access to the entire documentation at his Web site. Currently, version 1.5.2 is available for
download at http://www.cwi.nl/~jack/macpython.html. Beta versions from version 1.6 are also

available.

You can also download this distribution at Python's official Web site at
http://www.python.org/download/download _mac.html. The full distribution is available in one unique

file that also contains Tkinter and an interactive development environment.

Windows Environment

The Win32 and COM extensions by Mark Hammond are the result of an excellent work that is
successfully reducing the distance between the overall performance of Python for UNIX and Python for
Windows platforms. The following instructions show how to install the Python version for Windows
systems. Note that to install the Win32 extensions, you need to install a separate package called

W n32al | - xxx. exe. You should replace the xxx with the number of the latest available release.

The installation process is very straightforward within Win32 systems (Windows 95/98/2000 and NT).
Go to the Python for Windows download page at
http://www.python.org/download/download windows.html and choose a location. If the location you

selected isn't available at the moment, choose a mirror site.

Let's download the py152. exe file (Python's version 1.5.2). Now that you have downloaded the file,
save it to a location on your local hard disk.

Double-clicking the file will launch an Installation Wizard as shown in Figure 1.2.

Figure 1.2. PythonWin's Installation Wizard guides you through a very simple installation process.

http://www.python.org/download/download_source.html
http://www.cwi.nl/~jack/macpython.html
http://www.python.org/download/download_mac.html
http://www.python.org/download/download_windows.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/17#7.html

Select Components

Choosa which components to install by checking the bokes
below,

[+ | Python Uity Scripts B52 k
[| Puthon Help Files 4887 k
V| Puthon test suite 995 k
v Puthon interpreter and library J50E k
W Tel/Tk installation 1732 k
Diigk Space Heguired: 11832 k
Dizk Space Hemaining: 1673385 k

<Back | Neut>] Cancel

Select everything and confirm the selections. The installation process will start and after Python is
installed, you will be asked if you also want to install Tcl/Tk (see Figure 1.3). | strongly suggest that
you install it too because later you will learn how to create GUI interfaces using Tkinter. After you
confirm it, the Wizard will guide you through Tcl's 8.0.5 for Windows installation. Choose the full
installation, confirm it, and that's it. Your Windows system is fully configured to use both PythonWin
and IDLE.

Figure 1.3. Installing Tcl/Tk now enables you to create GUI applications later.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/17#8.html

Install Tcl/Tk?]|

FPuthon can now run the Tel/Tk installer.

T hiz iz needed if you want to use Tkinter or
[DLE. If vou don't want to install Tel/Tk., or
already have Tel/Tk installed, simply bit No.

After the Tel/Tk installer iz finished, vou will be
presented with the final panel of the Fython
installation.

Do vou want to install Tel/ Tk now?

No

| suggest that you spend some time going through all the documentation that was installed in your
machine.

Right now you might have everything already set up in your environment.

If you decide later to download and build the source code, download the same source code that is
provided for UNIX systems at http://www.python.org/download/download source.html.

Get the file py152. t gz and follow the instructions listed in the README file. It clearly explains how
you could use Microsoft Visual C++ 5.0 to build the source code. See Chapter 17 for more details.

If you are interested in downloading Python 2.0, the following link takes you directly to its download
page.

http://www.pythonlabs.com/products/python2.0/download python2.0.html

At PythonLabs, you have the source tarball available to build Python from the source in the platform of
your choice. Note that if you are running Windows, you can download and run the Windows installer
as well.

The following links cover the 2.0 distribution.
News about Python 2.0

http://www.pythonlabs.com/products/python2.0/news.html

Python 2.0 Manuals

http://www.python.org/download/download_source.html
http://www.pythonlabs.com/products/python2.0/download_python2.0.html
http://www.pythonlabs.com/products/python2.0/news.html

http://www.pythonlabs.com/doc/manuals/python2.0/

Python 2.0 - The new license

http://www.pythonlabs.com/products/python?2.0/license.html

Note

A special note is necessary here to let you know that Python 2.0 doesn't run a separate Tcl/Tk
installer anymore. It installs all the files it needs under the Python directory. This was made to avoid
conflicting problems with other Tcl/Tk installations that you might have on your system.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

code
source
Python;downloading 2nd 3rd
configuring
Python 2nd 3rd 4th
downloading
source code
Python 2nd 3rd
Windows installer
downloading:Python 2.0

installers
Tcl/Tk

Windows:downloading and running

installing
Python 2nd 3rd 4th

Internet

Python source code Web site 2nd 3rd
Jansen, Jack
links

Python 2.0 2nd

downloading
Linux

http://www.pythonlabs.com/doc/manuals/python2.0/
http://www.pythonlabs.com/products/python2.0/license.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=17

installing Python

MacPython
Python
installing and configuring 2nd 3rd 4th

Python 2.0

downloading
links 2nd

PythonLabs Web site
PythonWin Installation Wizard

RPM package
installing
Linux

running
Windows insttaller

source code

Python

downloading 2nd 3rd

source tarball
tarball (source)
Tcl/TK installer
Web sites

Python source code 2nd 3rd

PythonLabs
Windows
installing Python 2nd

Windows installer
downloading and running

wizards
PythonWin

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 1. Introduction > Python and Other See All Titles
Languages

< BACK Make Note | Bookmark CONTINUE >

Python and Other Languages

Scripting languages, as everyone knows, are slower than compiled languages. Python uses its
interpreter to manage most of the things you need to worry about when using compiled languages. The
consequence is that you have a productive application in a short period. However, the application
doesn't run as fast as a compiled version. Okay; it is slower, but who cares? Nowadays, the
development time is a great differential between companies. It doesn't matter whether an application
runs slower or faster in Python than in other languages. The fact is that you have saved a considerable
amount of time. And by the way, it's not as slow as many people say.

Python incorporates the best of scripting languages (Perl, Tcl, Awk) and systems languages (Java, C,
C++). If you work in large projects, the use of Python will give you fast and reliable results.

However, Python doesn't beat other languages all the time. C and C++ are good for performance-
critical modules of an application because they are system languages that talk almost directly to the
processor. For that reason, many programmers create Python extensions using these languages when
time is crucial for the project.

Python Versus C/C++
The following is a list of differences between Python and C/C++:
. Python's array constructs don't have the same number of problems that arrays written in C have.

. Most of the memory allocation and reference errors that we easily get when coding C/C++
programs are eliminated as Python performs automatic memory management.

. Python checks array references for boundary violations.

. In many cases, developing an application in Python requires much less code than an equivalent
application in C.

In general, Python is a great tool to test C/C++ applications. Python adds some contribution to C/C++
projects by gluing components and handling interfaces to test them.

In addition to C/C++, Python is often compared to Perl, Java, and Tcl.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=18
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A16%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=18&now=5%2F31%2F2002+4%3A16%3A44+PM

Python Versus Perl

Python is easier to learn than Perl, and it presents a more readable code. Perl is an excellent language
too. Perl is great for work that requires text manipulation and data extraction, and it is also a great
language for system administrators. The Windows distribution of Perl is apparently pretty good, so it
can be used productively under Windows. However, Perl is much more productive when used in a
UNIX environment. Python's productivity is platform-independent. Another important difference is that
Python was designed to be fully object-oriented and Perl had object-orientation implemented later as an
add-on to the language. One problem with Perl is that because "there's more than one way to do it,"
different programmers in large projects might know different subsets of the language and will not be
able to read each other's code.

Python Versus Tcl

Python's syntax is much clearer than Tcl's. Besides, it is the fastest one, and it needs less C extensions
than those Tcl requires when doing the same job. Similar to Tcl, Python uses Tk as its standard GUI.
Also, Python has more data types than just strings.

Python Versus Smalltalk

The following list shows some differences between Python and Smalltalk:
. Python has scalability because it can handle small routines and large applications equally well.
« Python is much easier to learn than Smalltalk.

. Python enables the use of C and C++ code in programs that require a good performance because
it is extensible.

« As most of Smalltalk's users come from the scientific society, the Numeric Python Extension
becomes helpful by covering many mathematical aspects and making them easily written in
Python.

Python Versus Java

Python offers dynamic typing and a rapid development environment that requires less code and no
compilation phase. Although Python runs slower than Java, it is the more portable one.

JPython

It's a new Python implementation that is 100% written in Java. You can use all the features of Python

languages along with the entire universe of Java classes. The integration between JPython and Java is
better than the integration between Python and C++ because JPython can use Java classes without
needing a wrapper generator. Several other reasons why you should consider giving JPython a try are
as follows:

. JPython is interactive, as is CPython.

. JPython applications can import Java classes directly and, whenever required, integrate Java
classes with their own JPython classes.

. JPython compiles directly to Java bytecode, generating Java . cl ass files, which can be used
to create applets.

By the way, JPython programmers also refer to Non-Java Python as CPython in order to distinguish
Python's Java Implementation from Python's C implementation.

Conclusion

Now, just imagine projects that require several layers of application design. Do you think that these
projects'leaders have some kind of problem to scale up their applications? If you've been in a situation
like that, have you ever thought about using the same language for all your needs? Are you going to
have a programmer coding in JavaScript? (That language doesn't support exception handling.)

Say that you need to create some Java routines, using Servlets, for the back end. What if this
programmer doesn't know Java? Are you going to explain Java to him, or are you going to hire a Java
programmer?

Nowadays, technology and projects are moving too fast. You don't have time to teach new technologies
to the people who are coding your applications. This is one more reason to stick with Python. You have
the flexibility to play in all bases and do almost everything using the same language.

| am sure you are satisfied now that you know the reasons why Python is a fantastic language. What are
you waiting for? | strongly encourage you to use Python now.

For more information about Python versus other languages, check out the following URL.:

http://www.python.org/doc/Comparisons.html.

< BACK Make Note | Bookmark CONTINUE >

http://www.python.org/doc/Comparisons.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=18

Index terms contained in this section

C programming language
vs. Python

C++ programming language
vs. Python

Java programming language
vs. Python

JPython
languages
C and C++
vs. Python
Java
vs. Python
Perl

vs. Python
Smalltalk
vs. Python
Perl programming language
vs. Python
Python
vs. C and C++

vS. Java
vs. Perl
vs. Smalltalk
Smalltalk programming language
vs. Python

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 1. Introduction > Patches and Bugs See All Titles
List

< BACK Make Note | Bookmark CONTINUE >

Patches and Bugs List

In case you notice something bizarre happening while you are coding, you can check it out in order to
find out whether it is a bug or not.

A query tool is provided by Python's official Web site to enable searches in the bug’s list. Go to
http://www.python.org/search/search _bugs.html and perform your search. You will be able to identify

which bugs are opened, resolved, and so on.

If you think that you might have caught a new bug, you can fill out a form to let the developer's team
know about it. Remember to ALWAY'S check the Python Bugs List before reporting a bug. It is also
good to take a look at the current CVS tree before reporting any bugs.

If you have fixed a bug and want to submit your patch to the PSA team, follow the standard Patch
Submission Guidelines at http://www.python.org/patches/.

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

bug list
Python
finding
bugs
fixes

bugs
Patch Submission Guidelines

patches

Python
Python
patches and bug list

searching

bugs
submitting

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=19
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A16%3A54+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=19&now=5%2F31%2F2002+4%3A16%3A54+PM
http://www.python.org/search/search_bugs.html
http://www.python.org/patches/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=19

bug fixes

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 1. Introduction > PSA and the See All Titles
Python Consortium

< BACK Make Note | Bookmark CONTINUE >

PSA and the Python Consortium

The Python Software Activity (PSA) was established by CNRI Inc. to be the home of Python and to
guide its development according to the common interests of the Python development community. A
large number of contributions are submitted periodically. The PSA Web site stores the official
documentation and download area of Python distributions. PSA's creation has taken some of the
responsibility that Guido had. As a result, a group is working to develop Python, instead of just one
man. This fact helps propagate the maturity of Python's development strategy.

You can obtain more information about the PSA by visiting its official home page at
http://www.python.org (see Figure 1.4). That is the place where all the information about Python gets
officially organized and published. Note that with the move of Guido and his team to PythonLabs, the
future of PSA is uncertain. The information currently available says that CNRI, which manages the
existing PSA, will determine its future at the end of the current membership term, on October 1, 2000.

Figure 1.4. The Python Software Activity (PSA) official home page.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=20
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A17%3A07+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=20&now=5%2F31%2F2002+4%3A17%3A07+PM
http://www.python.org/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/20#1.html

ﬁ hitp: £ vy ppithcn. oigf - Microzoft Infernet Exploies provided by MSH
| B E@ Mew Fgeiter Tos: Heb | &
o > s B [= T [IR = R B
Back Fedaied Slop Fahedi Home Search Favorfes Hitbary sl Pt FeslGoids
| Audchess [82] hosgr /vwenen. python eg! =] 6o | |unke
[Home Sraach Deownload Deocumentasien 1=l

Help Hews Commurety Sl

Special topics

Topic Gudes

Dthon 1.6

Byithen 1.5.2

Windowrs S5 EHTT W
[{EEkon (Java) MNote: The Python news and recent announcements have been moved From the home page. You can
Tester (TelTk) now fallow the hnk = the top barmer to view recent Python news

Emace suppait

= Pyihon 1.6 is coming]
[DLE
Contributed softurars = Python wans the Jolt Productivity Award in the category Languages and Development

Emaroraments,
on.Job Baged [Zpecial asnomncements] [Pythen news |

Eython Events
Python Consartium Welcome to the officzal website For the Python linguage, The followmg ftems are accesshle Bom the

Prthon Buas Lit top of each page on this site

Patches (indebnes s Home - thas nace anentalion Anmaimcsments news ll

£] [o Intere

Several Special Interest Groups (SIGs), hosted by PSA, are currently studying and developing special
topics of Python, such as XML Processing, String Processing, Python in Education, Distributed
Objects, and many other important topics. To find out what newest groups are being formed and to
participate in the discussions that are conducted in their mailing lists, take a look at
http://www.python.org/sigs/. Much of Python's real work takes place on Special Interest Group mailing

lists.

Behind the PSA, a group of companies and individuals helps to propagate the Python voice. They work
together, creating conferences and keeping their Web site up-to-date. If you want to be part of the PSA,
get more details at http://www.python.org/psa/.

After you become a member of the PSA, you are eligible to have an account on the Web site
http://starship.python.net.

Today, this site is filled with information provided by many Python developers from all around the
world.

On Oct 25, 1999, the Python Consortium was publicly announced and officially began its mission "'to
ensure Python's continued support and development.”

http://www.python.org/sigs/
http://www.python.org/psa/
http://starship.python.net/

The membership fees that are received by the Consortium members support the development of Python
and JPython. Many organizations have already registered as part of the Consortium (for more
information, see http://www.python.org/consortium/).

The Corporation for National Research Initiatives (CNRI) is a nonprofit organization that hosts the
Python Consortium. Check out its Web site at http://www.cnri.reston.va.us/.

Even with his transition to PythonLabs, Guido van Rossum remains the Technical Director of the
Python Consortium, and BeOpen.com continues to be just a member.

Support and Help

Python has a Usenet newsgroup called conp. | ang. pyt hon. This newsgroup is an excellent source
of Python information and support. The guys who really know the language always hang out there.

One of the best ways to keep yourself up-to-date to the Python world is to sign up for the Python
general mailing lists and to always check the newsgroup for some information that might be helpful for
you.

Go to http://www.python.org/psa/MailingLists.html and look for the list that provides the level of
information that you need. At this time, there are four main mailing lists:

Tutor is a list for beginners who have basic knowledge and need simple and straight
answers.

JPython is a list that openly discusses the Python implementation for Java.

Announcements is a list that doesn't have huge traffic. The objective of this list is just to
publish important notices to the Python community.

An open discussion mailing list generates an average of 100 daily messages and covers
everything related to general Python discussion topics.

Python Conferences and Workshops

The Python community has organized many workshops and conferences to discuss Python hot topics.
You can have access to the materials that were used for the presentations, and you can also download
many technical documents provided by the people who have participated in the conferences and
workshops.

For more details about the latest events and upcoming ones, check out the Web page at

http://www.python.org/consortium/
http://www.cnri.reston.va.us/
http://www.python.org/psa/MailingLists.html

http://www.python.org/workshops/.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

BeOpen.com

CNRIO
?

© 2002, O'Reilly & Associates, Inc.

http://www.python.org/workshops/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=20

Web Development > Python Developer's Handbook > 1. Introduction > Summary See All Titles

< BACK Make Note | Bookmark CONTINUE >

Summary

Python is an interpreted, high-level programming language, pure object-oriented and powerful server-
side scripting language for the Web. It is an open source project that doesn't have any copylefts or
copyrights involved in its license agreement.

You should consider moving to Python because it is simple to get support from the Python community;
it is fast to learn and code it; it offers object-oriented programming support; and it provides a readable,
reusable, and portable coding language.

The main technical features that distinguish Python from the other languages are as follows:
. Automatic memory management
. Exception handling management
. Rich core library
. Web scripting support and data handling
. Rich built-in elements
« Clear syntax and useful lexical elements
. Embeddable and Extendable language
« Obijects Distribution support
. Databases support
. GUI applications support
. Introspection

. Easily integrated to third-party projects.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=21
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A17%3A25+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=21&now=5%2F31%2F2002+4%3A17%3A25+PM

Python runs on many platforms, such as Microsoft Windows, Linux, and Macintosh. The source code
and the documentation are freely downloadable. It is also available for downloading the binaries for
some systems.

Python is always compared against other languages and, usually, it wins.
Python has an implementation in Java called JPython.

Two institutions have guided the Python community along the last few years: the Python Software
Activity (PSA) and The Python Consortium. The PSA took the responsibility of creating Python
conferences and workshops and keeping the Python official Web site up and running, whereas The
Python Consortium supported the development of Python and JPython. Today, the future of these two
institutions is a little uncertain because Guido and his whole development team have moved to
BeOpen.com to support PythonLabs.com.

The Python community has been doing a great job by providing help to new Python aficionados. Most
of this help is provided through the mailing lists, newsgroups, bug lists, and other available forms of
support.

By the way, Python has nothing to do with those legless reptiles. It was named after the British comedy
troupe Monty Python.

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=21

Web Development > Python Developer's Handbook > 2. Language Review See All Titles

< BACK Make Note | Bookmark CONTINUE >

Chapter 2. Language Review

Spam spam spam spam spam spam spam and spam!

This chapter offers a complete review of the Python programming language. After you finish reading it,
you will understand and master the concepts of this language. Furthermore, you will learn everything
that is necessary to write useful Python programs.

<BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=23
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A17%3A37+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=23&now=5%2F31%2F2002+4%3A17%3A37+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=23

Web Development > Python Developer's Handbook > 2. Language Review > Language See All Titles
Review

< BACK Make Note | Bookmark CONTINUE >

Language Review

Some people say that Python is a magic language because it enables you to do almost everything with a
minimum amount of code. The coding speed depends only on your effort to acquire the required
knowledge to decide which commands you should use. Different from other languages, Python doesn't
sell the idea of being able to code one task in many ways. The reason for that is because there is only
one dialect of Python. Therefore, the core language doesn't provide a huge number of grammar styles
and definitions. Consequently, you can keep the entire vocabulary in your mind without too much
effort.

After spending some time studying Python, you can easily master the whole set of instructions that
shapes the core language. As Python doesn't have any hard-to-remember commands, the language is
very comfortable and simple. Most of the work that you have to do is identify the right module for your
needs. By the way, Python's standard library of modules is very complete and well documented.

This chapter will guide you across the lines of code that are required to reach the stardom. Among
other things, handling control statements and performing files management will become easy tasks for
you.

Later, in the following chapters, you will learn how to go through each important Python module and
understand what it does and how useful it can be for you.

Now, let's roll up our sleeves and start working.

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=24
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A17%3A55+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=24&now=5%2F31%2F2002+4%3A17%3A55+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=24

Web Development > Python Developer's Handbook > 2. Language Review > The Shell See All Titles
Environment

< BACK Make Note | Bookmark CONTINUE >

The Shell Environment

The Python language is wrapped within a shell development environment. The main component of this
shell is a command line interpreter, which is perfect for practicing, learning, and testing your programs.

Command Line Interpreter

The command line interpreter is the heart of Python's shell environment. To access the command line
interpreter, you need to switch to the prompt of your operating system. The following examples
presume that the python directory is in your system's pat h environment variable.

On a UNIX system, you must type

$ pyt hon

If you are running MS Windows, just say

c:\> python

Note that in both cases, you just need to type the word pyt hon; the rest is part of the shell prompt.

The Python for Windows installation also provides access to the command line interpreter by clicking
its icon on the Start menu (see Figure 2.1).

Figure 2.1. By clicking on the Python (command line) icon, you gain access to the shell environment.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=25
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A18%3A07+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=25&now=5%2F31%2F2002+4%3A18%3A07+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/25#2.html

l:d Accesonsg

=) Momowae

=) CompUriversty Ordire Learing

Ao Aziohat

=) Metreapa Communacater

[Hoton Aniin

=) Oriing Servces

) Sicon Maotion Control Programs

= St

o) Obwowre

=) Inkeividen Wil VD

B Irternet Bxhorer

EfS MSDOS Prosgt

l.‘Si Dulieck Expinss

13] MWindows Explorer

}E COSMOPOLITAN Vietual Makecver 2
B8 Microsol Excel

L3
¥
k
¥
L
L3
L
L3
L
k
L3

IEEEEE .

After the command line interpreter is loaded (see Figure 2.2), you can start coding your own programs.

Figure 2.2. Python's command line interface is now ready to use.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/25#3.html

['4 python
| Aulo

Fython 1.5.

2 (80, Apr 13 1929, 10:51:212) [M5C 32 bit CInteld] on wini2

Copyright 1991-1995% Stichting Mathematisch Centrum, Amsterdam
sy print "Hello Python World™
Hello Python World

P

Instead of using the command line interpreter, you can also use a graphical user interface called | DLE
(see Figure 2.3).

Figure 2.3. | DLE is Python's GUI interpreter.

i *Python Shell”
Fis Edit Debug Windows Help

Fython 1.5.2 (#0, Apr 13 1935, 10:51:127) [MSC 32 bit (Intel]] on win3z -
Copyright 1991-1%95 Stichting Mathematisch Centrum, AmstTerdam ™
x> oprint "Hello PyChon world'
Hello Python world
S |

KNl

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/25#4.html

Note

See Chapter 16, "Development Environment," for details about using | DLE.

As you can see by looking at the coding area in both Figures 2.2 and 2.3, the interpreter's primary
prompt is a >>>.

Let's start interacting with Python by running a variation of the standard " hel | o wor | d" program.

>>> print "Hello Python Wrl d"
Hell o Python World

The previous example demonstrates that the screen is the standard output device for commands that are
typed in the interpreter's prompt. Next, another example is demonstrated. Note that the first command
doesn't print anything because it is just an assignment operation. The result of the operation is passed to
and stored at the informed variable. On the other hand, the second command has its output redirected to
the standard output, which enables you to see the result of the operation.

>>> gl fa + 2

=3
>>> aglfa * 4
20

Python's syntax automatically indicates when a statement requires a subblock. The interpreter's
secondary prompt ... means that the next line is a continuation from the current line and not a new line.

In some cases, when you finish entering a multiline statement, you need to type ENTER at the
beginning of the first line located after the end of the code block. By doing so, you will return to the
primary prompt.

Four basic situations that use a secondary prompt are as follows:

. When you explicitly add a line continuation with a backslash \ literal:

>>> print "I ama lunberjack " + \

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/25#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/25#4.html

.."and I am OK. "
| ama lunberjack and I am K

« When parenthetical expressions are incomplete:

>>> print ("I ama |unberjack " + \
Ltand | am oK)
| am a |unberjack and | am OK.

>>> a = {
..."song': 'lunberjack'

.}

. Multiline statements ending with a :

>>> | f 1==2:
print "This line will never be printed"

>>>

. When you comment a line:

>>> # The next function statenent returns 2 plus 2.
.. 242
4

Tip

If you need to quit the interpreter while working on UNIX or MS Windows systems, press
CTRL+D or CTRL+Z, respectively.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

accessing
command line interpreter 2nd

applications
hello world

command line interpreter 2nd 3rd
hello world program

interpreters
command line 2nd 3rd

launching

command line interpreter 2nd
opening

command line interpreter 2nd

programs
hello world

prompts

secondary
running
command line interpreter 2nd

secondary prompts
shell environment 2nd 3rd
software

hello world
statements

requirements for subblock
subblocks

requirements in statements
syntax

statements requiring subblocks

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=25

Web Development > Python Developer's Handbook > 2. Language Review > Programs See All Titles

< BACK Make Note | Bookmark CONTINUE >

Programs

Until now, all the examples were written directly in the interpreter environment. However, most Python
programs are executed as external scripts, being loaded from files.

You can write your own Python scripts by using any text editor of your choice. Remember to always
save your files using the . py extension.

As with any other UNIX scripting language, Python scripts (for UNIX) need a special handling.

First, you need to put a "shebang" in the first line of the script. This line declares the location of
Python's interpreter in your system. For example

#! [usr/ | ocal / bi n/ pyt hon

Note that this example works only if Python was installed under the given mounting point. Most Linux
systems have Python installed under / usr by default, so the preceding example will not work. Today,

the following line of code seems to be more common, and does not depend on where Python is
installed:

#! [usr/ bi n/ env python

If you are running your scripts on an MS Windows environment, you can keep this line of code for
portability purposes because the literal # is only used to identify comment lines that are ignored by the
interpreter, so it will cause no harm to your programs.

Tip

The "shebang" line is only meaningful when you work on a UNIX system.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=26
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A18%3A34+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=26&now=5%2F31%2F2002+4%3A18%3A34+PM

If you don't know where Python is located on your UNIX system, use the following command:

$ wherei s python

Also, remember to set the permissions on your script to 755 in order to let every user be able to
execute it.

$ chnod +x scri pt name. py

or

$ chnod 755 scri pt nane. py

As you cannot directly execute Python scripts in the MS Windows systems through the command line,
you have two options: Either double-click the file using Windows Explorer or call the interpreter,
passing the filename as an argument. For example,

c:\>python scri pt nane. py

Another way to call the interpreter on Windows systems is by typing st art scri pt nane. py at
the shell prompt. This command will find and execute the program associated with the extension . py.

If you want to open the interpreter after executing a program, use the - i argument when calling the

script. The interpreter will run your script, and after it executes all the commands, it will open its
command-line interface for you. Here's how to call the script with a command-line option:

c:\python -i scriptnane. py

Otherwise, after the script finishes its execution, it will automatically close the interpreter.

After spending some time creating Python programs, you might find some . pyc files in the same
directory in which you are saving your . py scripts. See Chapter 17, "Development Tools," to know
more about this other file extension.

Indentation

Python delimits code blocks by using indentation. There is no concept of { } s or Begi n/ Ends as in

other languages. When you indent a block of code, you define the way the statements are grouped. It
also reduces errors due to bad indentation. For instance, the following C or Perl code looks like a single
I f statement, but the second statement is always executed:

I f (expression)
st at enent 1;
st at enent 2;

Python doesn't suffer from this problem because indentation defines block structure.

Another great aspect of this implementation is that you can reduce the size of your code while using
indentation instead of conventional block delimiters.

Tip

Keep in mind that tabs are internally converted to spaces (1 tab = 8 spaces), and blank lines
are ignored when part of scripts.

| suggest you write one statement per line, using a newl i ne (ENTER) to terminate each line. If you

decide to have more than one statement in the same line, you need to separate them by using
semicolons, as shown in the following:

>>> print "When AH "; print "were young.."

Remember that you must put a backslash \ at the end of lines that need to be broken into two lines:

>>> t = "Nobody expects " + \
..."the Spani sh i nquisition"

Lexical Analysis

It is unnecessary to declare the type of a variable in Python programs. The same variable name might
have different types at different occasions because it is re-initialized every time a value gets assigned to
it, as illustrated in the following:

>>> x = "Al batross!!"
>>> print X

Al bat r oss!!

>>> x = 123

>>> print X

123

You can assign any object type to a variable (for example, functions, classes, and modules). The
following example shows how you can create a variable that references the r ound() function object:

>>> X = round
>>> print x(27.234523, 2)
27. 23

You don't have to worry about deallocating variables in Python. Python objects are collected whenever
they become unreachable because Python does reference counting. This means that as long as there is a
reference to an object, the object isn't collected. When you delete a reference to an object, its reference
counting goes down by one, and when the count has dropped to 0, it is eligible for garbage collection.
Note that under CPython, objects are deallocated as soon as the reference count reaches 0.

The problem with reference counting is that you can create circular references, such as the following:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]

>>> a. append(b)

>>> a

[1, 2, 3, [4, 5, 6]]

>>> b. append(a)

>>> a

[1, 2, 3, [4, 5, 6, [.]]]
>>> p

[4, 5, 6, [1, 2, 3, [.]]]
>>> del a

>>> del b

Now, you can never refer to variables a and b, nor to their contents again, and because each one of

them is still referenced by the other list, they cannot be collected, either. Note that recursion is
indicated by the [..] element. | know that it is fairly easy to fall into this trap, and although some work
is being done to cure this problem, | strongly suggest that you avoid recursive constructs. As you might
notice, del removes the reference to the object, which could cause it to be deallocated if its reference
count reaches 0.

You can monitor the reference counting of an object by using the sys. get r ef count () function:

>>> jnport sys
>>> sys. getref count (b)
3

Note that you can break the circular reference if you insert the following lines between the appends
and del s:

>>> del a[-1]
>>> del b[-1]

Actually, we are just breaking the references by removing the [...] entries from the lists. Note that the
release 2.0 of Python makes sure that deleting objects is safe even for deeply nested data structures.
The Python interpreter is now using a new mechanism to collect unused objects. From time to time,
this mechanism performs a cycle detection algorithm that searches for inaccessible cycles and deletes
the participating objects. This process has been named Garbage Collection of Cycles.

There are a couple of parameters of the garbage collection that you can manipulate. The module gc

provides functions that helps you out with that. Of course, you always have the option to disable this
feature. To do so, simply specify the argument "' -without-cycle-gc " when running the Python
configure script.

Reserved Words

Python has reserved a group of words for its own use. Those words have specific meanings that cannot
be changed. You cannot use these words as identifiers in your code.

“and, assert, break, class, continue, def, del, elif, else, except,
exec, finally, for, from global, if, inmport, in, is, |anbda, not,
or, pass, print, raise, return, try, while"

Identifiers

Python identifiers are any objects created by programmers (such as variables, classes, and so on).
Identifiers can be named using any of the following characters: A- Z, a-z, 0-9, and . However,

they can't start with a digit.
You must write your code carefully because Python identifiers are case sensitive.

The special characters: $, % and @ aren't allowed to be part of an identifier's name. Besides that, $
and @can be used only in a program, inside quoted strings. The %character may be used in a program
because it is the nod operator.

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=26

Index terms contained in this section

$ (dollar sign)
identifier names
% (percent sign)
identifier names
; (semicolon)
separating statements on same line
@ (at sign)
identifier names
[] element
[E

| entries
[nd]i argument
\ (backslash)

adding line breaks
adding

line breaks

applications
opening interpreters after executing
arguments
[nd]i
assigning
objects to variables
at sign (@)
identifier names

backslash (\)
adding line breaks

blank lines in scripts

breaking

circular references
breaks

lines
case sensitivity

identifiers
characters

identifier names
circular references

classesO
O

collecting

garbage
unused objects

commands
del

start scriptname.py
whereis python

counting
reference

creating
line breaks

scripts 2nd 3rd 4th 5th

deallocating
variables

declaring
variables

del command

dollar sign ($)
identifier names

elements

|

entries
[E
|

executing

scripts from Windows
finding

Python in UNIX
functions

round()

sys getrefcount()
garbage collection
Garbage Collection of Cycles
identifiersO

o

interpreters
opening after executing programs

launching
interpreters after executing programs
scripts from Windows
line breaks
adding
lines
blank, in scripts

separating statements on
shebang

monitoring

reference counting, objects
naming

identifiers
numbers

starting identifiers with

objects
assigning to variables

monitoring reference counting
unused
collecting
objectsO
O
opening
interpreters after executing programs
scripts from Windows
percent sign (%)
identifier names

permissions
setting on scripts

programs
opening interpreters after executing

recursion

[] element

reference counting

references
circular

round() function

running
interpreters after executing programs

scripts from Windows

scripts
executing from Windows

lines in

setting permissions
tabs in

writing 2nd 3rd 4th 5th

searching
Python in UNIX

semicolons (

)

separating statements on same line
sensitivity
case
identifiers
separating
lines
statements on same line
setting
permissions on scripts

shebang line
software
opening interpreters after executing

start scriptname.py command
statements

separating on same line
sys getrefcount() function
tabs in scripts
UNIX

finding Python

shebang line
unused objects

collecting
variables
assigning objects to

deallocating
declaring

variablesO
0

whereis python command
Windows

executing scripts from
writing

scripts 2nd 3rd 4th 5th

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Built-In Data See All Titles
Types

< BACK Make Note | Bookmark CONTINUE >

Built-In Data Types

Built-in data types are types that are already built into the interpreter. They are divided into two groups:
Immutable Data Types

These objects cannot have their values altered (for example, strings, numbers, and tuples).

Mutable Data Types

These objects can have their values manipulated (for example, lists and dictionaries).

Sometimes, it becomes necessary to assign a nul | value to a variable using the special data type known

as None:

>>> X
>>> X

>>> print X
>>>

>>>
>>>

As you could see, nothing was returned. However, if you try to print this value, the pr i nt method of the
object will specially handle the None value by returning a None result. This is shown in the following:

>>> print X
None

Numbers

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=27
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A18%3A51+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=27&now=5%2F31%2F2002+4%3A18%3A51+PM

Python provides the following numeric data types: integer, floating-point, hexadecimal (base 16), and
octal (base 8). Some examples of these data types are 43, 1.5, 0xB3, and 045, respectively.

Tip

Hexadecimal numbers must always be preceded by Ox, and octal numbers must be preceded by 0.

Python can do a lot of things with numbers:

It can write equations:

>>> 3*(3.0/ 34)
0. 264705882353

It can use functions:

>>> round(12. 32, 1)
12.3

It can make comparisons:

>>> X = 2
>>> 0<x<b5
1

It can make binary operations, such as shi f t i ng and maski ng:

>>> 16<<2
64

>>> 40&0xab
40

>>> 2|1

>>> ~2
-3

>>> 374
7

A very important detail is the fact that Python truncates i nt eger divisions:

>>> 3/ 2
1

If you really want the decimals, you have two options. Either you pass a converted number to the division
function, or you put a decimal point in your number, as illustrated here:

>>> x = 3

>>> float(x)/2
1.5

>>> X

3

>>> 3.0/2

1.5

Python supports long integers—with unlimited size. To let Python know that it should handle an integer
as a long integer, you need to put an L at the end of the number:

>>> 2L**100
1267650600228229401496703205376L

Otherwise you get an error message:

>>> 2**100
Traceback (innernost |ast):
File "<stdin>", line 1, in ?

Overfl owError: integer pow)

Chapter 4, "Exception Handling," teaches you how to interpret this exception message.

Python also handles complex numbers in the format (r eal part + i nmaginary part):

>>> 2] **2
(-4+0j)

Strings

Python considers a string as a sequence of characters. Therefore, every time you use, for example, the
string " Parrot ", internally Python handles it as the sequence [" P", "a", "r", "r", "o",

"t"]. The first indexer value is always the number zero. Hence, to have access to the letter P, you need
tosay " Parrot "[0] and to access the letter a, you needtosay " Parrot"[1] . Using the same
concept, we can get access to all the other elements.

The following is an example of string operators:

>>> "dead parrot " + "sketch" # concatenation
"dead parrot sketch"

>>> "parrot " * 2 # repetition
"parrot parrot”

>>> "parrot"[1] # 1 ndexing

n a.ll

>>> "parrot"[-1] # i ndexi ng backward
lltll

>>> "parrot"[1: 3] # slicing (%)

n ar n

When slicing, it isn't necessary to include both first and last elements. Whenever you omit one of the
elements, it is assumed that you want everything in that direction. Note that the second argument is
always a positional reference.

>>> "parrot"[1:]
"arrot”
>>> "parrot"[: 3]

Always remember that assigning z = x doesn't make a copy of the object x. Instead, it creates a new
reference for that object (as you already saw in the earlier r ound example). If you have to create a copy
of a sequence named X, Yyou need to type:

>>> 7z = x[:]

The variable z will identify the middle of the variable x, and it will be initialized with everything from
the left direction plus everything from the right direction. Note that since Python 1.5,i d(s) ==
I d('s[:]) for strings because of string interning.

Strings cannot be modified after creation. It isn't possible to assign a value to a substring because strings
are immutable. See the error message in the next example:

>>> t = "pxrrot"

>>> t[1:2] = "a"

Traceback (innernost |ast):
File "<stdin>", line 1, in ?

TypeError: object doesn't support slice assignnent

In cases like this, the usual solution is a little trick:

s = s[:left_elenment] + new substring + s[right_el enent:]

For example

>>> t = "pxrrot”

>>> t = t[:1] + "a" + t[2:]
>>> t

"parrot”

Let me show you other useful operations that you can do with strings:

>>> | en("parrot")

6

>>> "parrot”

1

>>> "t" in "parrot”
1

>>> "\n, \0, \x"
"\ 012, \000, \\x"

< "sket ch"

Get its length
Conpare one string agai nst another.
This | ogical test needs a char |eft operand

Use escape codes

Table 2.1 lists the escape codes supported by Python strings.

Table 2.1. Escape Codes Supported by Python Strings

Escape Code Description

\\ backslash

\' single quote

\" double quote

\b backspace

\e escape

\0 null

\n linefeed, also known as \012

\v vertical tab

\t horizontal tab

\r carriage return

\f form feed

\Onn octal value, the nn domain is: 0..7
\xnn hexa value, the nn domain is: 0..9, A..F, a..f

Next is an example of escape code:

>>> print "l
| am a | unberjack
and I am K

am a | unberjack\ nand |

am K"

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/27#5.html

You can use either single quotes or double quotes. They are both interpreted the same way.

Both strings ' Spanmi and " Spant' are basically the same thing.

Python also accepts triple quotes for remarks that span across several lines:

>>>t = """| ama |unberjack
..and I amOK"""

>>> print t

| am a | unberj ack

and I am K

>>>

"I ama lunberjack\ 01l2and I am OK"

Note that the escape code \ 012 becomes part of the string.

If you need to create strings with the / (slash literal), you must use raw strings. Raw strings are identified
by the letter r right before the first quote, as shown in the following:

>>> print r"\n, \f, \x"
\n, \f, \x

There is one more thing that I think you should know about strings. The enclosing backticks =~ tell the
interpreter to understand that the enclosed object is of string data type:

>>> n = 123
>>> print 'n + " Parrot”
123 Parr ot

Note

Python doesn't treat the contents of back quotes as commands to execute, as do Perl and sh.

Prior to version 2.0, you had to rely on the st r i ng module to manipulate your string objects because the
string-manipulation functionality was in the st r i ng module. With this new release, the methods were
pushed to the string type. Note that old st r i ng module was not removed from the distribution because it
is still necessary for backwards compatibility.

The following example shows how to call a method from a string object.

>>> "Python '.join('Wrld)
Pyt hon Worl d

Note that' Pyt hon ' . join(' Wbr| d') isequivalent to the old string module:
string.join("Wrld", "Python ")

Besides the methods that were inherited from the st r i ng module, two new methods were added:
startsw th() andendsw t h().

s.startswth(t) is equivalent to s[:len(t)] ==

and

s.endswith(t) is equivalent to s[-len(t):] ==

Unicode Support

Unicode is a new immutable string data type supported by Python 2.0. Basically, it can represent
characters using 16-bit numbers, instead of the 8-bit numbers used by the ASCII standard, which means
that Unicode strings can support up to 65,536 distinct characters. Note that when combining an 8-bit
string and an Unicode string, the resulting string is an Unicode string.

In order to write a Unicode string in Python, you need to use the notation u” st ri ng" . If you need to
write arbitrary Unicode characters, you can use the new escape sequence, \ uHHHH, where HHHH is a 4-
digit hexadecimal number from 0000 to FFFF. Note that you can also use the existing \ x HHHH escape
sequence. Another option is to use octal escapes whenever you need to write characters up to U+01FF
(represented by \ 777).

True and False Logical Values

Falsity is represented by zeros, empty structures, or the value None (for example, 0, [], {}, (),
None).

Logical Truth is represented by results different from zero and non-empty structures (for example, 1,
[2], (1,2,3), "abc").Thefollowingi f statement checks whether the variable t has any value;
in this case, the statement returns true, allowing the block contents to be executed:

>>>t = "Parrot”
>>> i f t:
print "Parrot"

Par r ot

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

/ (slash literal)
creating strings

\\ escape code
\O
escape code

\O

escape code
" (back quotes)

strings
"~ (backticks)

strings
assigning
null values to variables
values to substrings
back quotes ()

strings
backticks (")
strings
binary operations
numbers in

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=27

calling
methods
from string objects
charactersO
@)

codes
escape

comparisons
numbers
complex numbers
handling
copying
objects
creating
strings, slash literal (/)

data types
immutable

None
decimals in numbers

double quotes (O
)

strings
duplicating
objects
endswith() method

equations
numbers in

error messages
assigning values to substrings

handling long integers

escape codes
floating-point numbers

functions
numbers in

handling

complex numbers

long integers
hexadecimal numbers
immutable data types
indexer values

strings

integers
division of, truncations

long
handling
long integers
handling
masking

numbers in

messages
error
assigning values to substrings

handling long integers

methods
calling from string objects

endswith()
print
startswith()
modules
string
None data types

null value
assigning to variables

0]
(double quotes)

strings

O
O (triple quotes):strings

O
(single quote)
strings
objects
copyin
string
calling methods
octal numbers

operations

binary

numbers in

print method
guotes

strings 2nd
raw strings

creating strings with slash literal (/)
shifting

numbers in
single quotes (O

)

strings

slash literal (/)

creating strings
slicing

strings
startswith() method
string modules
string objects

methods

calling
strings 2nd 3rd 4th
stringsO
0]

substrings

assigning values
support

Unicode 2nd
triple quotes (O

o

O)strings
truncations
division of integers
Unicode support 2nd
values
assigning to substrings
indexer

strings
null

assigning to variables

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Operators See All Titles

< BACK Make Note | Bookmark CONTINUE >

Operators

Next, | list the available Python operators in their precedence order. | also provide some specific details
about some of them.

1. O, [1. {}
2. “object”
3. object[i], object[l:r], object.attribute, function()

The . (dot) operator is used to access attributes and methods of a variable (object). In the
following example, the dot enables the object t to access its method append.

>>> t = ["p","a","r", ", 0"
>>> t.append("t")
>>> t

["p","a","r","r","o","t"]

4., +x, -X, ~X
These are bitwise operators.

5. x**y

6. x*y, xly, x%

The %(modulo) operator lets you know whether a number is divisible by another number. For
example,ifa % b == 0, aisdivisible by b.

7. X+y, X-y

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=28
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A19%3A05+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=28&now=5%2F31%2F2002+4%3A19%3A05+PM

8.

10.

11.

12.

Tip

X<<y, X>>Y

These operators provide shifting operations. The << operator ensures left shifting (at bit level),
and the >> operator ensures right shifting (at bit level).

>>> X = 2 # the binary representation is 0010

>>> x << 1 # the binary representation wll be 0100
4

X &Yy

The bitwise AND operator
X Ny

The bitwise XOR (exclusive OR) operator

The bitwise OR operator
<, <=, > >=, == I= <> is, is not, in, not in

The operators i n and not i n work only with lists. Another aspect of this group is that there's
an important difference between the == operator and the = assigning symbol.

I s checks whether two variables refer to the same object. On the other hand, i s not checks
whether two variables don't refer to the same object.

The == operator ensures equality testing, whereas = assigns a value to a variable.

Keep in mind that x = y doesn't create a new copy of y. Instead, it makes a reference to it.
However, if later you define x=x+1, a new reference for x is created, and then they become
different because the operator has created a new object.

Note that x. append(5) doesn't create a new reference to x because x changes itself without
using a = operator.

13. not
14. and
15. or, | anbda args: expr

As a good programmer, you need to know that logical operations can also be emulated by using i f
statements. Note that the return values are not limited to zeros and ones.

The operation a and b can be written as the following:

>>> def newand(a, b):
if not a: #l1f a is fal se
return a
el se:
return b

The operation a or b can be written as the following:

>>> def newor(a,b):
if a: #l1f a is true
return a
el se:
return b

The operation not a can be written as the following:

>>> def newnot (a):

if not a: #l1f a is fal se
return O

el se:
return 1

Augmented Assignment

Starting with Python 2.0, the language also implements a full set of augmented assignment operators.
Thatincludes: +=, -=, *= [= %, **= &=, |= "= »= and «=

For example, instead of saying x = x+1, you can choose tosay x += 1

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

% (modulo) operator
<

<
operator

. (dot) operator

= (equal) sign

== operator 2nd

AND operator

augmented assignment operators

bitwise operators 2nd

copying

objects
dot (.) operator

duplicating
objects
equal (=) sign
exclusive OR (XOR) operator
if statements
in operator
iS not operator
IS operator
left shifting

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=28

modulo (%) operator
not in operator
objects
copyin
operator
operators
augmented assignment
OR operator
right shifting
shifting
statements
if
XOR (exclusive OR) operator

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Expressions See All Titles

< BACK Make Note | Bookmark CONTINUE >

Expressions

Python operators support a wide range of expressions, such as

>>> X,y,Z = z-X, y*z, x+y # Parallel assignnent: exanple 1
>>> X,y,Z = 5,4,3 # Parallel assignnent: exanple 2
>>> a,b = b,a # Swi tchi ng assignnents

>>a =Db =c¢c =10 # Multiple assignnents

>>> string. atof(s) # Functions support

>>> 20 < x < 40 # Multiple range testing

The last example is equivalent to

>>> 20 < x and x < 40

Built-In Functions

The following functions are always available when you load the Python interpreter. You don't need to
import them because they are already part of the __bui | ti n__ module, which is always imported
when you launch Python.

appl y()

It executes a given f unct i on, passing the arguments provided.

basic syntax: appl y(function, (tuple of positional argunents) [,

di ctionary of keywords argunents])

>>> apply (raise_salary, (6000), {'enployee':"John', "id :13})

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=29
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A19%3A17+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=29&now=5%2F31%2F2002+4%3A19%3A17+PM

Note that starting at Python 1.6, the functionality of appl y is now available with normal function
calling, such as

>>> args = (6000,)
>>> kwargs = { 'enployee':"John', '"id':13}
>>> rai se_salary(*args, **kwargs)

coerce()

coer ce is used to try to convert the two given arguments x and y to the same type, returning them as
atuple.

basic syntax: coerce(X, y)

>>> coerce(42,5.4)
(42.0, 5.4)

filter()
It creates a new list by taking each element of | i st for which f uncti on evaluatestot r ue.

basic syntax: fil ter(function, list)

>>> a = range (4)

>>> p = filter(lanbda x: x < 3, a)
>>> print b

[0, 1, 2]

gl obal s()
It returns the global namespace dictionary.

basic syntax: gl obal s()

I nput ()

It provides an input interface for the user. Only numbers are accepted.
basic syntax: i nput ([pronpt])

a = input("Please, type a nunber greater than 5. ")

I f a<5:
print "a is not greater than 5"

| ocal s()
It returns the local namespace dictionary
basic syntax: | ocal s()

map()

It appliesaf uncti on to each element of | i st, producing another list. If f uncti on is set to None
and multiple lists are provided, a tuple matrix is generated in the format of a list.

basic syntax: map(function, |ist)

>>> | st = map(None, [1,2,3,4], [1,2,3,4,5,6])
>>> | st
[(1, D, (2, 2), (3, 3), (4, 4), (None, 5, (None, 6)]

open()

It opens a file. (See the section "File Handling" for details.)

basic syntax: open(fi |l enane [, node [, bufsize]])

pow()

It returns x**y or (x**y) % z, depending on the number of arguments that are transported.

basic syntax: pow(X, vy [, z])
raw_i nput ()

It reads from standard input (sys. st di n), returning the read data as a string. pr onpt is an optional
text that can be displayed in the screen.

basic syntax: raw_i nput ([pronpt])
reduce()

It applies a f unct i on cumulatively to the items in sequence (implied loop), returning a single
value.i ni ti al i zer isan optional starting value.

basic syntax: r educe(functi on, sequence [,initializer])

>>> | nport operator

>>> a = [1, 2, 3]

>>> print reduce(operator.add, a)
6

The equivalent Python code for this function is something like

def reduce(func, list):
ret = list[O]
for x inlist[1:]:
ret = func(ret, Xx)
return ret

__inport__()

This is a function invoked by the import statement. To import a module, you just need to inform the
nodul e nane.

basic syntax: i nport__ (nodul e _nane [,globals() [, locals() [,from

list]]])

>>> npodnane = "string”
>>> string = __inport__ (nmodnane)
>>> string

rel oad()

It reloads an already imported nodul e. Internally, it callsthe __i nport ___ function.
basic syntax: r el oad(nodul e)

Sequence Functions

The next set is built-in functions that deal with sequences.

range()

It returns a list of numbers according to the transported information.

basic syntax: vari able = range([initial _value,] final _value-1 [, step])

>>> | st = range(1,5)
>>> | st
[1, 2, 3, 4]

See the section "Data Structures" for details.

xrange()

It is similar to r ange(), but it doesn't assign the returned list to a variable, Therefore, it doesn't use
as much memory, so you won't run out of memory by typing xr ange(2000000000) , for instance.

basic syntax: xrange([initial value,] final value-1 [, step])

See the section "Data Structures" for details.

l en()

It returns the length/number of elements of st ri ng.
basic syntax: | en(vari abl enane)

max()

It returns the maximum/Ilargest element of sequence.

basic syntax: max(sequence)

>>> max(1, 2, 3)

3

>>> max(" My BRAIN HURTS")

n YII

mn()

It returns the minimum/smallest element of sequence.

basic syntax: m n(sequence)

>>> i n(" MY BRAI N HURTS")

zi p()

It returns a list of tuples where each tuple contains the i-th element from each of the given sequences.
This function generates a resulting list whose length is exactly the same as of the shortest given
sequence. Note that, on the other hand, the function map(None, sequencel, sequence2, ..

pads the resulting list with None when the sequences don't have the same length.
basic syntax: zi p(sequencel, sequence 2, sequence3, ..)

Object Manipulation

The next set is built-in functions that deal with object handling.

setattr()

It sets a new val ue for obj ect . nane

basic syntax: set att r (obj ect, nane, val ue)

getattr()

It returns the at t r i but e from obj ect . This command is equivalent to obj ect. attri bute.
basic syntax: get attr (obj ect, attribute)

hasattr ()

It returns 1 if obj ect hasattri bute, O ifitdoesn't.

basic syntax: hasattr(object, attribute)

delattr()

It deletes the at t ri but e from obj ect . This command is equivalent to del
obj ect.attri bute.

basic syntax: del attr (obj ect, attribute)
type()
It returns the type of obj ect .

basic syntax: t ype(obj ect)

>>> type("andre")
<type "string">

dir()

It returns a list of attribute names from the active namespace. obj ect can be anything (a variable, a
module, a class, and so on).

basic syntax: di r ([obj ect])

cal | abl e()

It returns 1 if obj ect is callable. Otherwise, it returns O.
basic syntax: cal | abl e(obj ect)

hash()

It returns a hash value for obj ect .

basic syntax: hash(obj ect)

id()

It returns the system unique identifier of obj ect .

basic syntax: i d(obj ect)

vars()

It returns the symbol table of obj ect or a dictionary from the local namespace.
basic syntax: var s([obj ect])
Mathematical/Logical Functions

The next set is built-in functions that deal with mathematical and logical operations.

abs()
It returns the absolute value of nunber .

basic syntax: abs(nunber)

>>> abs(-12), abs(34), abs(+20.23), abs(-10.82)

(12, 34, 20.23, 10.82)

cnp()

It returns - 1 when x<y; O when x==y, 1 when x>y

basic syntax: cnp(X, y)

>>> cnp(10, 20), cnp(25,25), cnp(30, 25)
(-1, 0, 1)

round()

It rounds nunber to the given number of deci mal s. Note that the provided number is rounded to
an integer by default.

basic syntax: r ound(nunber [, deci nal s])
di vnod()
It returns a tuple (quotient, remainder), resulting in the expression di vi dend/ di vi sor.

basic syntax: di vnod(di vi dend, di vi sor)

>>> di vod(25/ 3)
(8, 1)

Code Functions

The next set is built-in functions that deal with Python bytecode manipulation.

eval ()

It evaluates the compiled code st ri ng object as if it were Python code, and returns the result.
gl obal s and | ocal s define the namespaces for the operation. Note that eval can evaluate

expressions only—not arbitrary statements. Therefore, eval (' i nport string') won't work.

basic syntax: eval (string [,globals [,locals]])

>>>a =eval('2*y + (20 / x)")

exec()

exec is a statement that executes a st r i ng containing Python code. gl obal s and | ocal s define
the namespaces for the operation.

basic syntax: exec string [in globals [,|ocal s]]

>>> a="for b in range(4):\n print b,\n'
>>> exec a
0123

execfil e()

It executes the statements included in the f i | e provided. gl obal s and | ocal s define the
namespaces for the operation.

basic syntax: execfile(file [, gl obal s[,|ocal s]])

>>> execfile("c:\\python\progran2. py")

You can redefine the global and the local namespaces for these functions by creating dictionaries, just
like the next example shows. If you omit the values, the current environment namespace is always
used.

>>> gl obal svar = {'x': 7}
>>> execfile("c:\\python\\progran®. py", gl obal svar)

compi | e()

It compiles a code object (st ri ng) that optionally might be located inafi |l e. Thet ype value
depends on the following: if st r i ng is a sequence of statements, t ype is" exec"; ifstringisa

single expression, t ype is" eval "; and if st ri ng is an executable statement, t ype is
"single".

basic syntax: conpil e(string, file, type)

>>> a = "for i in range(0,10): print i,"
>>> b = conpile(a, "", "exec")
>>> exec b
0123456789
>>> g = "123 * 2"
>>> c = conpile(a, "", "eval")
>>> d = eval (¢)
>>> d
246
Tip

If you need to evaluate or execute the same code many times in your application, the application
will get more optimized if you compile all the source code first.

Type Conversion

The next set is built-in functions that deal with data type conversion.
int ()

It converts obj ect to an integer number.

basic syntax: i nt (obj ect)

l ong()

It converts obj ect to a long integer.

basic syntax: | ong(obj ect)

As of Python 2.0, the functionsi nt () and | ong() have an optional base argument, which can be

used when the first argument is a string. Note that if you try to use this second argument with a value
that is not a string, you get a TypeEr r or exception message. The following examples demonstrate

what happens when we use this argument: i nt (' 450", 10) returns450,andi nt (' 25", 16)
returns 37.

float ()

It converts obj ect to a floating-point number.

basic syntax: f | oat (obj ect)

conpl ex()

It creates a complex number in the format (r eal number + i magi nar y number)
basic syntax: conpl ex(real [,i magi nary])

str()

It returns the printable representation of obj ect . It returns the same value thata " pri nt obj ect
statement does.

basic syntax: st r (obj ect)
repr()

ANERN

It is equivalent to the enclosing backticks ~ ~ . It returns an expression that can be evaluated.
basic syntax: r epr (obj ect)

You can use eitherrepr () or to get the representation of an escape character.

>>> repr (' spamn')
"'spam\ 012" "

tupl e()

It creates a tuple based on sequence.
basic syntax: t upl e(sequence)
list()

It creates a list based on sequence.

basic syntax: | i st (sequence)

chr ()

It converts ani nt eger into one character.
basic syntax: chr (i nt eger)

ord()

It returns the ASCII value of st ri ng.
basic syntax: or d(string)

hex()

It converts an obj ect into a hexadecimal value.
basic syntax: hex(obj ect)

oct ()

It converts an obj ect into an octal value.
basic syntax: oct (obj ect)

uni code()

This function takes an 8-bit string and creates a Unicode string.

basic syntax: uni code(string [, encoding] [, errors])

encodi ng and er r or s are some additional arguments that you can also provide to the function. The
first one is a string that names the encoding to use. er r or s defines what to do when an invalid
character is used for the current encoding. You have three options for values here: st ri ct causes an
exception to be raised on any encoding error, i gnor e simply ignores any errors, and r epl ace
replaces the invalid character with the official replacement character U+FFFD whenever it finds any
problem.

uni chr ()
This function returns a 1-length Unicode string containing the given character.

basic syntax: uni chr (char act er)

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

arguments
base
functions
base arguments
functions

code functions 2nd
data type conversion functions 2nd

code 2nd

data type conversion 2nd
handling objects 2nd
int()

base argument

long()
base argument

mathematical/logical

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=29

sequence
syntax
unichr
zip()
unicode()
syntax
zip()

N

.
handling
objects
functions 2nd

int() function
base argument

logical functions
mathematical functions
objects
handling
functions 2nd
seqguence functions
syntax
functions
abs

callable

oerce
compile

omplex

elattr

L

E

ivmod

L]
x
D
(@]
=h
D

etattr
lobals
asatftr

o
S

3
S5

OE
(@)
o =
E

o
=
o

;

,
Q
>
D

aw input
reduce
eload

seqguence
etattr

nichr

nicode

ars
xrange

G

tuples

zip() function

syntax

type conversion functions 2nd
unichr() function

syntax
unicode() function

syntax
zip() function

syntax

F

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Control See All Titles
Statements

< BACK Make Note | Bookmark CONTINUE >

Control Statements

Python implements all the necessary types of control statements that your program might require. The
syntax provided by Python'si f, for, and whi | e statements should be enough for your needs.

Tip

Remember to type a colon at the end of each line where you enter a statement declaration.

ifleliflelse

The general syntax for the i f / el i f/ el se statement is as follows:

1: if <condition>:

2: <st at enent s>

3: [elif <condition>:
4. <st at enent s>]

5: [elif <condition>:
6: pass]

7 ...

8: [el se:

9.

<st at enent s>]

Note that both el i f and el se clauses are optional. As you can see in lines 3 through 7, it is only
necessary to use el i f when you need to handle multiple cases. That is exactly how you implement the
sw t ch/ case statements from other languages.

Line 6 introduces you to an empty clause that does nothing. It is called pass.

for

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=30
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A19%3A29+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=30&now=5%2F31%2F2002+4%3A19%3A29+PM

The f or statement implements loops within a sequence (list). Each element in the sequence
assigns its value to var i abl e on its turn. The general syntax is as follows:

for <variable> in <sequence>:
<st at ement s>

[el se:
<st at enent s>]

The el se clause is only executed when the f or statement isn't executed at all, or after the last loop
has been executed. In other words, the el se statement is always executed unless the br eak statement
Is executed inside the loop.

Let's see some examples:

>>> for nin[1,2,3,4,5]:
print n,

1, 2, 3, 4, 5
>>>t =1[(1,2),(2,4),(3,6)]
>>> for t1, t2 in t:

print t1, t2

wWN -
o BN

whi | e

The whi | e statement implements a loop that executes the st at enent s while the condi ti on
returnst r ue.

whi | e <condi ti on>:
<st at ement s>
[el se:
<st at ement s>

The el se clause is only executed when the whi | e statement isn't executed at all, or after the last loop
has been executed. In other words, the el se statement is always executed unless the br eak statement
Is executed inside the loop.

The following example demonstrates the use of the whi | e statement:

>>> x = 5
>>> while x > 0;

print X,
X = x-1
54321

The next example implements an infinite loop because the pass statement does nothing and the
condition will always be t r ue.

>>> while 1:
pass

br eak/ cont i nue

Next are two commands that can be used inside f or and whi | e types of loop.
br eak

The br eak clause exits a loop statement without executing the el se clause.

>>> for nin[1, 2, 3]:
print n,
If n ==

. br eak

...el se:
print "done"

12
conti nue

The cont i nue clause skips the rest of the loop block, jumping all the way back to the loop top.

>>> x = §
>>> while x > 0:

X =X -1
i f x ==
conti nue
print X,
4210
< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

control statements 2nd
else statement 2nd
if/elif/else statement
pass statement

statements
control 2nd
else 2nd
if/elif/else
pass
while
syntax
statements
for
if/elif/else
while statement

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=30

Web Development > Python Developer's Handbook > 2. Language Review > Data Structures See All Titles

< BACK Make Note | Bookmark CONTINUE >

Data Structures

Python implements a variety of data structures, such as lists, tuples, ranges, and dictionaries (also known as
hash tabl es).

Lists

Lists are mutable sequences of objects indexed by natural numbers that can be changed after they are
created.

Lists are very flexible and easy to create. They are always enclosed in brackets:

>>> | st =[1,2,3,4 # this is sinple |ist

A list can have elements of different data types:

>>> Ist = [1, "ni!", 2]

Lists can also include other lists:

>>> |st = [1, "ni!", [1,2, "Abatross!!"]]

A list uses the same operators that st r i ngs use. For example, you need to use slice notation to grab a
range of elements from a list.

>>> |st =1, "ni!", [1, 2, 3, 4, "Abatross!!", 3]]
>>> | st[1]
"nil"

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=31
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A19%3A40+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=31&now=5%2F31%2F2002+4%3A19%3A40+PM

To grab elements from lists that are located inside other lists, you need to use a pair of brackets to represent
each list. Check out the next couple of examples.

>>> | st =1, "nmi!", [1, 2, 3, 4, "Albatross!!", 3]]
>>> | st[2][4]

“Al batross!!"

>>> | st[2][4]]5]

wpn

Let's see some examples of operations that can be applied to a list.

Identifying an Entry

>>> I St - [n pII , n a.Il . n r n , n r n , n 0|I , "t II]
>>> | st.index("o")
4

Assigning Values to a List

>>> |st = ["p", "a", "r", "r", "o", "t"]
>>> | st[1l] = "aaaaaaaaaaaaa"

>>> | st

[n plI , n a.a.a.a.a.a.a.a.a.a.a.a.a.ll , n r n , n r. n , n Oll , llt Il]

Assigning Values to a Slice

>>> |st = ["p", "a", "r", "r", "o", "t"]

>>> | st[1:4] = ["aaaaaaaaaaaaa", "rrr", "rrrr"
>>> | st

["p", "aaaaaaaaaaaaa", "rrr", "rrrr", "0", "t"]

Inserting Values

The following example starts inserting values at index number 6.

>>> | st = ["p", "a", "r", "r", "0o", "t"]
>>> | st[6:] =[" ", "s", "k", "e", "t", "c", "h"]
[' pI b l a‘) l r') I rl) ' Ol) I t') t) ' S') ' kl b l el) l t') I CI) ' h‘]

If the list was longer than 6 elements, the statement would overwrite a portion of the list. Note that you can
also insert a value in this list with

>>> | st.insert(6, val)

Deleting a Value

>>> |st = ["p", "a", "r", "r", "o", "t"]
>>> del |st[-1]

>>> | st

["p", "a", "r", "r", "0"]

>>> del Ist[0:2

["r", "r", "O"

The following example converts objects to their string representation:

>>> | st = [10, 20, 30,"inquisition", "l unberjack"]
>>> text = ""
>>> for elenent in |st:
text = text + "elenent’
enabl es the concatenati on of any object
print text
10
1020
102030
102030' i nqui sition'
102030" i nqui sition'' | unberjack'

List Comprehension

Starting with release 2.0, there is a new notation to create lists whose elements are computed from another
list (or lists). The method is called List Comprehension, and it adopts the following format:

[expression for expressionl in sequencel
[for expression2 in sequence?]
[...Tfor expressionN in sequenceN
[if condition]]

All f or ..i n clauses are evaluated and iterated from left to right. That means that the resulting list is a

cartesian product of the given sequences. For example, if you have three lists of length 5, the output list has
125 elements. The i f clause is optional, but when present, it can limit the number of pairs that will become

part of the resulting list by adding pairs to the resulting list only when the result condition of the i f
statement evaluates to true. Check the following example:

letters = ' py'
nunmbers = (1.52, 1.6, 2.0)
>>> [(lI,n) for | in letters for n in nunbers]

[(("p*, 1.52), ("p', 1.6), ("p', 2.0), ("y", 1.52), ('y', 1.6),
("y', 2.0)]

This new concept is more efficient than a f or loop with ani f statement along withal i st. append()
function call.

Built-In Methods

To list all the bui | t - i n methods of a list, go to the interpreter and type di r ([]) .

Let's practice the methods that you have found, and see what happens to our list | st .

>>> Ist = [0, 1, 2]

>>> | st. append(5) # appends the elenment 5 to the |ist
>>> | st

[0, 1, 2, 5]

>>> | st. append((5, 6)) # appends the tuple (5, 6)

>>> | st

[0, 1, 2, 5, (5, 6)]

>>> | st. pop() # renoves the last elenent of the |ist

(5, 6)

>>>
[0,
>>>
>>>
[0,
>>>
7

>>>
[0,
>>>
>>>
[5,
>>>
>>>
[0,
>>>
>>>
[0,
>>>
2

>>>
4

>>>
>>>

[0,

| st

1, 2, 5]

| st.insert(2,7)
| st

1, 7, 2, 5]
| st. pop(2)
| st

1, 2, 5]

| st.reverse()
| st

2, 1, 0]

| st.sort()
| st

1, 2, 5]

inserts the elenent 7 at i ndex nunber 2

renoves the el enent at i ndex nunber 2

reverse the |ist order

sorts the list elenents

| st.extend([3, 4, 5]) # adds this list to our original Iist

| st

1, 2, 5, 3, 4, 5]

| st.count (5) # counts the nunber of elenents nunber 5 that exist.

| st.index(3) # returns the associ ated i ndex of el enent 3.

| st.renove(2) # renoves the el enent nunber 2 (not the index!!!)

| st
1, 5, 3, 4, 5]

Note that up to release 1.5.2, whenever you used | st . append (1, 2), atuple (1, 2) would be

appended to the list | st . Now, with release 2.0, when you do that, you get an TypeEr r or exception
followed by a message like " append requires exactly 1 argunent; 2 given". Don't
panic! To fix that, you just need to add an extra pair of parenthesis, like this: | st . append ((1, 2)).

Ranges

A range is an actual list of integers. The bui | t - i n function r ange() provides this data structure.

>>> r = range(2,5)
>>> print r
[2,3, 4]

When the first argument is left out, it is assumed to be zero.

>>> r = range(3)
>>> print r
[0,1,2]

When you provide a third argument to the r ange() function, you specify the interval that you want to
exist between the list elements.

>>> r = range(2, 10, 2)
>>> print r
[2, 4, 6, 8]

Let's see an example of stepping backward:

>>> r = range(5, 1, -1)
>>> print r
[5, 4, 3, 2]

The xr ange() function computes the values only when they are accessed. This function returns an
XrangeType obj ect, instead of storing a large list of numbers in a variable.

>>> for n in xrange(10):
print n,

o, 1, 2, 3, 4, 5, 6, 7, 8, 9

The previous example also works with the r ange() function, although it will store the whole list in
memory.

It is possible to assign a reference to the return value of the xr ange() function to a variable, as you will
see next. Note that we are not storing the values, only a reference to the function.

>>> | st = xrange(10)

>>> | st
(0, 1, 2, 3, 4, 5 6, 7, 8, 9

However, you can convert this reference later into a real list by using the t ol i st () method.

>>> | st.tolist()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Tuples
A tuple is a sequence of immutable Python objects.

The general syntax of a tuple is as follows:

variable = (elenentl, elenent2, .)

It looks like a list without the brackets. Note in the following examples that parentheses are optional.

>>> t = (]_’)
>>> print t

(1,)

>>> t = 1,

>>> print t

(1,)

>>>t = () # this is an enpty tuple.
>>> print t

()

>>>t = (1, 2,3)
>>> print t

(1, 2,3)

>>>t =1,2,3
>>> print t

(1, 2,3)

Note that in the previous example, it is necessary to use the comma when defining a length-1 tuple.

Otherwise, the variable being created wouldn't be defined as of type tuple. Instead, the interpreter would
think that you wanted to assign a numeric value to the variable.

A tuple really looks like a list. The difference between tuples and lists is that tuples are immutable.

You can bypass this rule if you bind a new structure to the old tuple variable.

>>>t = 10, 15, 20
>>> 1t =t[0],t[2]
>>> t

(10, 20)

Other Interesting Facts About Tuples
. They support indexing.
>>> t = 10, 20, 30, 40

>>> print t[1]
20

. You will see, later in this chapter, that you need to use tuples whenever you need to return more
than one value from a function.

>>> Def tuplefunction():
return 10, 20, 30

>>> X, Yy, z = tuplefunction()

>>> print X, y, z
10 20 30

Dictionaries (hash t abl es)

Dictionaries illustrate the only mapping type of Python. They represent finite sets of objects indexed by
nearly arbitrary values. | say nearly because dictionary keys cannot be variables of mutable type, which are
compared by value rather than by object identity.

Python dictionaries are also known as associ ati ve arrays orhash tabl es. The general syntax

of a dictionary is as follows:

variable = {"keyl":"val uel", "key2":"value2", .}

Dictionaries are always enclosed in braces. They associate key elements with val ue elements—keys and
values are displayed separated by a colon.

The values of a dictionary can be of any type, but the keys must be of an immutable data type (such as
strings, numbers, or tuples). Dictionary keys have no natural order and are always listed in arbitrary order
because it uses a hash technique to implement a fast lookup.

Let's focus now on the operations that we can implement with dictionaries. First, let's create a simple
dictionary.

>>> dic = {"bird":"parrot", "fish":"tuna", "dino":"t-rex"}

Now, let's apply some operations to it:

>>> dic["fish"] # val ue | ookup
“tuna"
>>> di c["ani mal "] # rai ses a KeyError exception
Traceback (innernost |ast):
File "<stdin>", line 1, in ?

KeyError: ani mal
>>> del dic["fish"] # deletes the key fish
>>> print dic

{"bird : "parrot', 'dino': '"t-rex'}

>>> dic["dino"] = "brontosaur" # updates an entry

>>> dic["parrot age"] = 58 # adds an entry
>>> dic

{"bird": "parrot", "dino": "brontosaur", "parrot age": 58}
>>> | en(dic) # provi des the nunber of keys

3

Built-In Methods

The following sequence of commands shows the bui | t - i n methods that are implemented for

dictionaries.

>>> di C - {ll a.II: 1, n bll: 2’ IICII : 3}
>>> di c. keys() # creates a |list of keys. Very used in for statenents.

["a","b","c"]

>>> di c. val ues() # creates a |list of values

["1","2","3"]

>>> dic.itens() # creates a tuple with the dictionary el enents

[(llall’lllll)’(llbll’ll2l|),(llcll’ll3ll)]
>>> di c. has_key("a") # returns 1 if key exists. Oherwise it returns O.
1

dic.get(val ue, default)

If key exists, returns its value. Gherwise it returns the second arg.
>>> dic.get("b", None)

2

di c.update(dictionary)
adds the dictionary in the argunent to the original dictionary.
>>> di c. update({"d": 4})

>>> newdi ¢ = dic.copy() # creates a copy of the dictionary
>>> keys = dic. keys()

>>> keys. sort () # sorts the dictionary keys

>>> dic.cl ear() # renoves all the itens fromthe dictionary.

Python 2.0 contains a brand-new method for dictionaries, which is called set def aul t () . This method
returns the value for the given key (exactly as the get () method would do). However, if the given key is

not found, it returns the given default value, and at the same time, it initializes the given key with the
default value, as demonstrated in the following code.

I f dict.has_key(key):
return dict[key]

el se:
di ct[key] = ["default val ue"]
return dict[key]

is the same of saying

return dict.setdefault(key, "default val ue")

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

()_(parenthesis)

1st append
1st.append
() (parenthesis)
applying
operations to dictionaries

arguments
range() function

backward stepping

converting
references into lists

creating
dictionaries

data structures 2nd 3rd 4th 5th 6th
dictionaries
methods

functions
returning values from, tuples

xrange()
indexing
support, tuples
List Comprehension 2nd
lists 2nd
converting references into

vs. tuples
medhots

tolist()

methods
for dictionaries
setdefault
operations
applying to dictionaries
operators
lists
parenthesis ()

1st append
references

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=31

converting into lists

returning
values from functions, tuples

setdefault() method
stepping backward
structures

support

indexing, tuples
syntax

tuples
tolist() method

tuples
values
returning from functions, tuples

xrange() function

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Functions and See All Titles
Procedures

<BACK Make Note | Bookmark CONTINUE >

Functions and Procedures

Functions and procedures are blocks of code that you can access from several different parts of your code.
As you already know, Python gives you some bui | t - i n functions, but you can also create your own

functions. Yours are called user - def i ned functi ons. Functions and procedures provide better
modularity for your application and a high degree of code reusing.

Procedures are functions that don't return a value. The only difference between a function and a procedure

is that a procedure has either a r et ur n command without arguments (that returns None), or it doesn't
have any return statement. From now on, | will use only the word f unct i on.

While functions are being executed, they create their own nanmespace.
Every time you invoke a function, such as f uncti on (a, b, c)

. Python does a search within its nanmespaces looking for f unct i on to identify whether this is a
python object.

. Python creates a tuple of the arguments that were passed. Following our example, we have
arguments=(a,b,c).

« Python invokes the function internally like this: appl y(functi on, argunents).
As you can see, tuples are an unavoidable concept inside the language.
Python, by nature, allows introspection to an unprecedented degree. You can separate a function name from
its parameters, store them in some place, play around with them, and later use the apply built-in

function to execute the function.

Functions

Functions always start with the abbreviation def . Their end is defined by the last line of the indented
block of code that goes underneath.

The general format of a function is as follows:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=32
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A19%3A53+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=32&now=5%2F31%2F2002+4%3A19%3A53+PM

def functionnane(argl, arg2, .): # tuple of argunents
“docunentation string" # opti onal
<st at enent s>

Let's see a real example now:

>>> def addnunbers(x,vy):
"This function returns argl + arg2"
return x + vy

>>> addnunbers(3, 4)
9

Remember that to call a function without arguments, it's necessary to use empty parentheses.

>>> vari abl e = nane() # instead of variable = nane

As a matter of fact, remember that you can assign functions to variables.

>>> x = abs
>>> print x(-2) # it's the sane as saying print abs(-2)
-2

X = abs returns the own function, and assigns its value to x.
Python uses dynamic namespaces. In order to show that, the next example uses the value of n, available at

the time of calling the function, because n isn't defined inside the function nor is it part of its list of
arguments. n is part of the global namespace of the function.

>>> def add to _n(arg):
return n + arg

Variables that have values assigned to them inside a function always belong to the function nanmespace.

Study the next example to learn how to change a global variable inside a function by using the keyword
gl obal .

>>> x = 10

>>> def nudge():
gl obal x
x = 20
return X

Python implements procedural abstraction. Although this topic has a scary name, it is something very easy
and simple. Python offers this feature by providing anonymous functions implemented with the keyword
| anbda. This type of abstraction can be used when the function is just an expression. In other words,

| anmbda is just another way of writing def , except that it doesn't have to be named, and you can only put

an expression in it. (The return is implicit.) It is intended to be just a shorthand to write small functions
easier as shown in the following:

>>> f = |anbda x: x * 2
>>> f (20)
40

The previous case can also be written as follows:

>>> def f(x):

.. return x * 2
>>> f (30)

60

Here's another example:

>>> def conpose(funcl, func2,y):
f = lanbda x, fl=funcl, f2=func2: f1(f2(x))
return f(y)

>>> conpose(chr, abs, - 65)
1 Al

Note that in this last example, it is necessary to pass the default arguments to the | anmbda function because
Python has only local and global namespaces.

| anbda is very useful for functions—such as map, filter, andr educe—that need a function as an
argument.

>>> def listtostring(list):
return reduce(lanbda string, item string + chr(item, list, "")

>>> |isttostring([1,2,3,4,5])
"\ 001\ 002\ 003\ 004\ 005"

Parameters

All parameters (arguments) in the Python language are passed by reference. Modules, classes, instances,
and other functions can be used as arguments to functions and examined dynamically. Keep in mind that
you don't need to specify the object type of an argument. By default, arguments have a positional behavior,
and you need to inform them in the same order that they were defined.

>>> def powerdivision(x,y):
return x/y

>>> print powerdivision(4,2)
2

Whenever mutable objects (dictionaries and lists)—that are transported to a function as arguments—change
within the function, their external values also change.

>>> a = [1]
>>> def changeli st (argunent):
ar gunent . append(4)

changel i st (a)

>>> a
[1, 4]

Python also offers you named arguments. This type is different from positional arguments because it
enables you to call a function and pass argument names and values in an arbitrary way—the order isn't
important at all.

Both function calls

>>> connect (port =80, nane="ww. bebemani a.com br")

and

>>> connect (nanme="www. bebemani a. com br", port=80)

are executed perfectly well and in the same way (when the function is implemented, of course).

Default arguments are also allowed by the syntax. If the argument isn't provided, the default value takes
place. The default value is optional. Even though its absence doesn't break your program, its presence cuts
many lines from your code, as shown in the following:

>>> def connect (port=80):

The following example demonstrates namespace handling along with default arguments:

>>> g = 5

>>> def test(b = a):
print b

>>> test()

>>> test(2)

>>> a = 10

>>> test() # Note that the b wasn't reassigned
5

This effect is because the value of a was collected when the function was created.

In some cases, you cannot pre-identify the number of arguments that you might need. For this kind of
situation, you can use the special symbols * and * * next to a generic argument name.

*ar gs gets a tuple of values in the received order; * * ar gs gets a dictionary mapping
ar gunent nane: val ue.

>>> def showargs(*args):
defines a list of an undefined nunber of argunents.
print args

>>> showar gs(10, 20, 30)
(10, 20, 30)

>>> def add(*args):
sunr0
for arg in args:
SumEsum+ar g
return sum

>>> add(1, 2, 3, 4)

10

>>> add(1, 2,3,4,5,6,7)
28

Returning Values

The r et ur n expression halts the execution of a function, but when it's followed by an expression, it
returns the expression.

>>> def returnargunent (Xx):
return x

>>> 5

5

A function can return multiple values by using tuples.
>>> def returntuple(s,p):
return (s, p)
;;> x = 10
>>> y = 20
>>> a, b = returntuple(x,y) # or (a, b) = returntuple(x,y)

>>> print a, b
10, 20

It is also possible for a function to have no r et ur n at all. When that happens, the value None is returned.
Built-In Methods

When you have a function f , the following bui | t - i n methods can be accessed:

>>> f. doc__ or f.func_doc # "docunentation string"

>>> f, npanme__ or f.func_nane # "function nane"

>>> f . func_code # byte-conpil e code

>>> f . func _defaults # tuple containing the default argunents
>>> f . func_gl obal s # dictionary defining the gl obal nanespace

Let's get the docunent ati on stri ng of thej oi n function, which is part of the st ri ng module.

>>> jnport string

>>> print string.join.__doc_
join(list [,sep]) -> string
joinfields(list [,sep]) -> string

Return a string conposed of the words in list, with intervening
occurences of sep. Sep defaults to a single space.

(join and joinfields are synonynous)

Dynamic Namespace

Maybe you haven't noticed yet, but Python uses dynamic namespace concepts. Each function, module, and
class defines its own namespace when it is created.

When you inform an instruction, command, or statement to Python, it searches first inside the local
namespace and afterwards inside the global namespace.

Python has the following namespaces:

Built-in names— i nt, string, def, print, andsoon

Global names— Declared as global and assigned at the top-level of a module
Local names— Assigned inside a function

When you are writing your code, you have two forms of writing an object name. You can use qualified
names and ungualified names. Qualified names use object namespaces as references, for example:

>>> print obj ectnanespace. obj ect nane

Unqualified names deal with scopes, provided the object is in your namespace. For example

>>> print objectnane

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=32

Index terms contained in this section

* (asterisk)
identifying number of arguments, functions

**

identifying number of arguments, functions

abbreviations
def, functions

abstraction
procedural 2nd

arguments
calling functions without
functions

assigning
functions to variables

asterisk (*)
identifying number of arguments, functions

calling

functions without arguments
changing

global variables inside functions

commands
return
def abbreviation, functions
default arguments
dynamic namespaces
editing
global variables inside functions

format
functions

functions 2nd 3rd 4th 5th
assigning to variables
calling without arguments
changing global variables inside
formats of
namespace 2nd 3rd
user-defined

global keyword

global variables

changing inside functions
handling

namespaces
identifying

number of arguments, functions
keywords

global
lambda

lambda keyword

modifying
global variables inside functions

multiple values
returning, functions

named arguments
namespace function 2nd 3rd
namespaces

dynamic
positional arguments

procedural abstraction 2nd
procedures 2nd 3rd 4th 5th
return command

returning
values

tuples
returning multiple values, functions

user-defined functions
values

returning
variables
assigning functions to
global
changing inside functions

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Modules and See All Titles
Packages

< BACK Make Note | Bookmark CONTINUE >

Modules and Packages

A module is a collection of classes, functions, and variables saved in a text file.

When referencing a module within your Python application, you don't need to specify the file
suffix—your program text files must carry a . py extension. Modules can be written in Python or in C.

No matter what option you use, you call both types of modules using the same syntax. The following
syntax imports and creates the global namespace for a module:

I nport <nodul e>

A module filename called your nodul e. py should be mentioned in your import clause as follows:

>>> jnport yournodul e

It is also possible to have multiple modules imported at the same time, using just one import statement
as follows:

>>> jnport nl, nR, nB

Tip

An interesting fact you should know is that all the code is executed when it is imported for the first
time.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=33
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A20%3A05+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=33&now=5%2F31%2F2002+4%3A20%3A05+PM

Some modules are always available in Python. Others (including yours) are files and need to be
imported (in most cases, those files have . py or. pyc suffixes). To be imported, a file must have been

saved in one of the directories listed in the sys. pat h variable.

If you need your module to be runnable and importable at the same time, you need to put something
like the following line of code at the end of the file:

| f name == " main__": your_function()

Tip

Remember that in UNIX, you need to change the permission of a file to make it executable.

You can find out the contents of a module by typing:

di r (<nodul e>)

For example,

>>> dir (mat h)

Now we will talk about packages.

A package is a collection of modules in the same directory. Package names must be subdirectories of
one of the directories listed in the sys. pat h variable.

A package directory must have, at least,anempty __ i nit . py file, and it might contain
subpackages (subdirectories). Each subdirectory also needs, at least, anempty __init__ . py file.

In the statement

>>> jnport a.b

the module named a. b designates a submodule named b inside a package called a.

When you import a package, its subpackages aren't imported all together. You need to explicitly say
thatinthe _init__ . py file.

It would be similar to saving the following lineinthe __init . py file of your package:

I nport subpackagel, subpackage2, subpackage3

Remember that to locate modules and packages, Python uses the paths that are stored at sys. pat h.

This variable is a simple list, like any other, and you can add any directory to this list that you want.
Type sys. pat h at the pr onpt of your interpreter to know the current contents of this variable.

A new feature incorporated to release 2.0 is the possibility to rename modules when importing them.
The syntax for that can be either

I nport nodul e as newnane

or

from nodul e i nport nane as newnane

This feature is equivalent to the code

I nport nodul e
newnodul e = nodul e
del nodul e

Built-In Methods

All these built-in functions are part of the __bui | ti n__ module, and you can use them after you
have a module or package named m

>>> m __dict # lists the nodule dictionary

>>> mx = m__dict_ ["x"] # provides access to a specific attribute
>>> m __doc___ # returns the docunentation string

>>> m __ _nane__ # returns the nane of the nodul e

>>m_ file # returns the file nane

>>> m __path_ # returns the fully qualified package nane

fromin Contrast to i nport

The i nport and f r omstatements allow one module to refer to objects from another module's

namespace. They help eliminate problems with different modules that have some internal names equal.
The next examples discuss the possible ways to use these statements.

>>> jnport string
>>> print string.join(list)

The previous example imports the st r i ng module as a local reference to an external module,
allowing fully qualified references to any other objects in the st r i ng namespace.

The next example adds the j oi n() function to the namespace of the current module. This method
allows you to control exactly which names you import into your local namespace from a module.

>>> fromstring inport join
>>> print join(list)

Now, take a look at the next line:

>>> fromstring inport *

The problem with this syntax is that if the st r i ng module defines its own dosonet hi ng()
function, you lose the dosonet hi ng() that might exist in your current namespace.

If you instead do a simple i nport string, you will keep your current dosonet hi ng()
function. However, the dosonet hi ng() function from the st ri ng module will now be accessed
by stri ng. dosonet hi ng() .

Tip

The main reason that you don't wantto do f r om <nodul e> i nport * isto avoid namespace
clashing.

Also, let me tell you that identifiers beginning with _ (one underscore), such as _sal ary, aren't
imported by af r om <nodul e> i nport * clause.

>>> | nport packagel.string
>>> print packagel.string.join(list)

The previous example loads the module st ri ng from the package packagel.

>>> from packagel inport string
>>> print string.join(list)

In order to access the st r i ng module, you need to reference its objects by typing
string. <obj ect >. This is the recommended notation to import a module from a package.

>>> from packagel.string inport join
>>> print join(list)

In the syntax form <package. nodul e> i nport <obj ect >, the <obj ect > can be a
subpackage of the package, a function, a class, a variable, and so on.

>>> from packagel inport *

If you just say f r om package i nport *, itisn't guaranteed that all modules will be i npor t
unless you insert the following piece of code inthe __i ni t __. py file of the package.

all __ = ["rmodul el", " nodul e2", " nodul e3"]

This is a list containing the names of the package modules that should be imported:

>>> from package. subpackage. nodul e i nport *

Whenever you use a structure like package. subpackage. nodul e, Python ensures that the
package's i nit__ . py isloaded first. Afterwards, the subpackage's i nit__ . py is loaded, and

only after they have been imported will the module finally be imported. After a package is loaded,
there is no difference between a package and a module. Module objects represent both of them.

Releasing and Reloading Modules

After you have imported a module, you can release it from the system memory at anytime you want.
The following example is to give you an idea of what | am talking about:

I nport string, sys
st = ["a","b","c","d"]
print string.join(lst,"-")
del string
del sys.nodul es["string"]

Note that you also need to delete the module's reference, which exists in the sys. nodul e variable.

The command r el oad <nodul e> reloads and re-executes a module. Note that objects created
before the reloading will use the previous version until they are re-created. Try to avoid using this
command.

You can easily find out what the imported modules are by typing

>>> sys. nodul es. key()

['os.path', 'operator', 'os', 'exceptions', ' _ main__"', 'ntpath',
"strop', 'nt', 'sys', ' builtin_', 'site', 'signal', UserDct',
"string', 'stat', 'cmath']

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

.py extension
commands
reload module

creating
global namespaces, modules

directories

packages
dosomething() function 2nd
extensions

Py
finding

contents of modules

foldersO
0

from statement 2nd 3rd

functions
dosomething() 2nd

oin

global namespaces
importing and creating, modules

import statement 2nd 3rd
importing
global namespaces, modules
modules

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=33

syntax to rename
modules from packages 2nd
join() function
modules 2nd 3rd 4th
renaming
syntax
string
namespaces

global
importing and creating, modules

string
packages 2nd 3rd 4th
reload module command

renaming
modules

syntax
searching
contents of modules

statements
from 2nd 3rd

import 2nd 3rd
string module
string hamespace

syntax
importing and creating global namespaces, modules

modulles
renaming

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Input and See All Titles
Output

< BACK Make Note | Bookmark CONTINUE >

Input and Output

Python, as any other language, provides means to get input from the user and also to display
information to him.

Let's see how we can handle it.

>>> x = input ("type anything: ")
>>> print "You have typed ", X

Note that the input prompt can be anything, even an empty one.

If the user types 5, X is properly treated as a number. To make x become a string, the user must
explicitly type the quotes.

To avoid this problem, you can use the r aw_i nput function:

>>> x = raw_i nput ("type anything: ")
>>> print "You have typed ", X

Now, it doesn't matter whether the user types the quotes.

Note that the pr i nt command requires objects to be separated by commas:

>>> print "parrot", "sketch"
parrot sketch

Displaying Information

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=34
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A20%3A17+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=34&now=5%2F31%2F2002+4%3A20%3A17+PM

Let's delve a little bit deeper into this topic.

Python has three standard file objects, which are available from the sys module. The interpreter uses
them to provide input and output facilities. (Refer to Chapter 3, "Python Libraries," for details and
examples—the sys module.)

They are known as sys. stdi n, sys.stdout, sys.stderr

pri nt statements are mapped to the sys. st dout . Hence, they send the textual representation of
objects to the standard output stream:

>>>j nport sys
>>>sys. stdout. wite("Nudge-nudge\ n")
Nudge- nudge

Did you know that it is possible to re-map the standard output device?
Yes, that is possible.

You can run the following code to write to a file:

>>> sys.stdout = open("outputtest.txt", "w')
>>> print "hello"
>>> gys. stdout. cl ose

>>> gys. stdout = sys.__stdout__
>>> sys. exit()

Note that sys. st dout __ stores the original st dout .

The last line restores the sys. st dout ___ original value to such an extent that new pri nt
statements will display onscreen, instead of being sent to a file.

As additional information, this program uses sys. exi t () to quit its execution (refer to Chapter 3 for
details).

Starting with release 2.0, the pr i nt statement can have its output directed to a file-like object, as it is
demonstrated in the following example.

print >> sys.stderr, "Sorry, you cannot do that!"

Formatting Operations

Python provides formatting operations similar to the pri nt f () function from the C language.

Take a look at the following example:

>>> print "M. Lunberjack! do not sing!"

What if you don't want to hard-code the name inside the string? Compare the previous line of code
against the following one:

>>> print "M. %, do not sing!" % soneone

Flexible, don't you think? And by the way, the order of the elements doesn't affect the final result.

Therefore, saying

>>> print "M. %" % sonmeone

IS the same as saying

>>> print soneone %"M. %"

As a matter of fact, the following example shows how Python handles multiple format arguments. Note

that you need to provide a tuple of values to fill the position indicated by the formatting operators (see

Table 2.2).

>>> print "The % has % w ngs" % ("parrot", 2)

Table 2.2. Formatting Operators Table

Formatting Operator |Description

%l decimal integer

% decimal integer

% unsigned integer

%0 octal integer

U hexadecimal integer

X hexadecimal integer (uppercase letters)
% floating point as [-Jm.dddddd

% floating point as [-Jm.dddddde+xx

% floating point as [-]m.ddddddE+xx

%9, % floating point where the exponent is less than -4 or greater than the precision
%s any printable object (such as strings)
% a single character

90 the literal %

The following code is another simple example:

>>> value = 14

>>> print "The value is %" % val ue

The value is 14

Next, you will see some special ways to format operations by putting special characters between the %
literal and the formatting operator. Before going through the examples, we need to initialize some

variables.

>>> jntg = 42

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/34#3.html

>>> fltn = 13.142783
>>> strg = "hell 0"
>>> dict = {"xx":13, "yy":1.54321, "zz":"parrot"}

« You can use dictionary key names in parentheses.

>>> print "% zz)s" % dict
parr ot

. By using the - literal, you can left align the string block.

>>> print "% 8dend" % fltn
"13 end"

. By using the + literal, you can show positive and negative numerical signs.

>>> print "%d" %intg
+42

. Ifyou insert a zero, you will get a zero-filling.

>>> print "9%98d " %intg
" 0000042"

. Maximum field width (strings)

>>> print "%).2s" %strg
n hell

. Period (.) + precision (floating-point numbers)

>>> print "99.2f" %fltn
13. 14

« Minimum number of digits (integer)

>>> print "9%9.10f" %intg
0000000042

Tip

A * can be used in the place of any number. It uses the next value that matches that format in a
tuple.

>>> print "9%.*f" % (5, 3, 2. 45)
2.450

Note

Python 2.0 contains a new format string called % , which prints the r epr () value of the given

argument. You can clearly see the difference between %r and %s by looking at the following
example.

"% %' % (' Python', 'Python')

returns the string

" Pyt hon' Pyt hon

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

%% formatting operator
%c formatting operator

%d formatting operator
%e formatting operator
%E formatting operator
%f formatting operator

%g formatting operator
%G formatting operator
%i formatting operator

%o formatting operator

%r format string
comparing with %s format string

%s format string
comparing with %r format string

%s formatting operator
%u formatting operator
%x formatting operator
%X formatting operator
* (asterisk)

replacing numbers with
asterisks (*)

replacing numbers with
comparing

%r and %s format strings
displaying

input and output
format strings

%r and %s

comparing

formatting operations 2nd
input

users 2nd 3rd

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=34

modules

Sys
numbers
replacing with asterisks (*)

operations
formatting 2nd

output
print statements

users 2nd 3rd
print statement
print statements

output
replacing
numbers with asterisks (*)
statements
print
output
strings
format
%r and %s, comparing

sys module
tuples
replacing numbers with asterisks (*)
users
input and output 2nd 3rd
viewing
input and output

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > File Handling See All Titles

< BACK Make Note | Bookmark CONTINUE >

File Handling

Python's core language supports all the basic functions that are necessary to manipulate files. It isn't
necessary to import any modules to use them. Whenever you use the open function to get access to a
file, Python creates a file object that supports all the built-in methods that apply to this new object.

Opening a File
basicsyntax:file = open (filenane[, node[, buffersize]])

Themodecanber, w, ora(read, wite, andappend, respectively). If none of them are
mentioned, r ead mode is assumed.

If you are working with a binary file, add the letter b to the mode indicator (for example, r b or wb).
The b stands for binary mode (text translation mode).

You can also place a + sign to the mode letter to indicate ar ead/ wri t e open (for example, r + or
w+)—it is useful when you need to perform both operations (read and write) in the file. Remember that
if you use w+, it will first truncate the file length to zero.

The last argument in the open syntax is the buf f er si ze clause, which means

. 0 unbuf f er ed

. 1 =1ine buffered
. If buffersize is greater than 1, its value is equal to the buffer size, in bytes.
. If negative, the buffer size is the system default(default behavior).

Here's an example:

file
[1 ne

open("foo.txt", "r")
file.readline()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=35
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A20%3A28+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=35&now=5%2F31%2F2002+4%3A20%3A28+PM

line = line[:-1] #chop off the newl ine character
while |ine:

print |ine

line = file.readline()

line = line[:-1]
file.close()

Supported Methods
The following methods are supported by all file objects.

read()

Itreadsupton byt es. But, if you don't provide any argument, r ead() reads all available data
from the file.

basic syntax: fi | e. read([nbyt es])

>>> file = open("foo.txt").read()

Ifyousayfile = open("foo.txt").read(100), Python will read the file up to its first 100
bytes.

readl i ne()
It reads only one line at a time (until, and including, the newl i ne character).

basic syntax: fi | e. readl i ne()

>>> file=open("test.txt","r")
>>> while 1:
line = file.readline()
i f not |ine:
br eak

Bothread() andr eadl i ne() functions return an empty string for EOF.
readl i nes()
It reads the entire file into a list of strings.

basic syntax: fi | e. readl i nes()

>>> fil| e=open("test.txt","r")
>>> for line in file.readlines():
print |ine

wite()
It writes a string to a file.

basic syntax: file.wite(string)

>>> file.wite(' Spam)

writelines()
It writes a list of strings to a file.

basicsyntax: file.writelines(list)

>>> file.witelines(["W are the knights who say ..","ni!"])

seek()

It goes to a new file posi ti on. If how=0, it starts from the beginning of the file; if how=1, the
position is relative to the current position; if how=2, the position is relative to the end of the file. The

default value for howis 0.

basic syntax: fi | e. seek(position[, how])
tell()

It returns the current file pointer.
basicsyntax:file.tell ()

Fi | eno()

It returns an integer file descriptor.
basic syntax: fil e.fil eno()
flush()

It flushes the internal buffer.

basic syntax: fil e. flush()

cl ose()

It closes the file.

basic syntax: fi | e. cl ose()
truncate()

It truncates the file.

basic syntax: fi |l e. truncat e([si ze])

Now, let's mix two distinct concepts. The next line of code takes the filename and the file extension
from two variables, and combines them to create the name of a file that should be opened.

>>> file=open ("¥%.%" % (file_nanme, file_extension)).read()

Remember that you need to escape your backslashes to prevent them from being interpreted as
beginning a character code. See the next example.

>>> fil| e=open(' C. \ Aut oexec. bat') # wrong way
>>> fil| e=open(' C.\\Aut oexec. bat') # right way

The functions that you saw in this chapter are perfect for handling strings. Chapter 8, "Working with
Databases," explains how to use other file handling functions to save entire objects into a file.

File Object Attributes

Some special attributes for files are as follows:

>>> file.closed # returns O if the file is closed; 1 otherw se
>>> file. nbde # returns the I1/O node for the file
>>> file. nane # returns the nane of the file

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

+ (addition) sign
\ (backslash)

escaping
a (append) mode

addition (+) sign

append (a) mode

b (binary) mode

backslash (\)
escaping

binary (b) mode

buffersize statement

clausesO
O

escaping

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=35

backslashes (\)
file handling 2nd

functions
handling files 2nd

handling
files 2nd

methodsO
o)

modes

append (a)

binary (b

read (r)

text t(anslationO
(@]
write (w)
lus (+) sign

r (read) mode

read (r) mode

statement
buffersize

syntax
close() function
Fileno() function
flush() function
opening files
read() function
readline() function
readlines() function
tell() function
truncate() function
write() function
writelines() function

text translation modeO
@)

w (write) mode
write (w) mode

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Summary See All Titles

< BACK Make Note | Bookmark CONTINUE >

Summary

Python is a language that doesn't ask too much from programmers while they are learning it. A
programmer can code almost anything using a minimum amount of code. Python provides a command-
line interpreter, which is the interface to its shell environment.

Python programs can be typed and executed directly in the interpreter or stored and called from files.
No matter where the programmer is entering the code, indentation is vital. It is extremely critical that
all code blocks follow the indentation rules defined by the language.

Python does object reference counting in order to keep you away from the job of deallocating variables
by doing its own memory management.

The language has two groups of built-in data types that already exist in the interpreter: the immutable
data types (for example, strings, numbers, and tuples) and the mutable data types (for example, lists and
dictionaries).

Python also provides a number of built-in functions that are always available when you load the
interpreter. Besides that, it enables you to define and use your own group of functions, which are called
user-defined functions. Apart from that, Python also implements procedural abstraction using the
function | anbda.

The basics control statementsi f, for, andwhi | e are provided by Python too. They all have
predictable behavior. However, the statements f or and whi | e also implement the el se structure.

Python defines three types of dynamic namespace: built-in names, global names, and local names. This
feature allows you to encapsulate your objects within distinct scopes.

You can use modules and packages (collections of modules) to store your programs. Both are well
supported by Python.

All the regular features that provide input and output operations are currently supported by Python.
Along with that, Python's core language supports all the basic functions necessary to manipulate files.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=36
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A20%3A39+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=36&now=5%2F31%2F2002+4%3A20%3A39+PM

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=36

Web Development > Python Developer's Handbook > 2. Language Review > Code Example See All Titles

< BACK Make Note | Bookmark CONTINUE >

Code Example

This is a very simple benchmark application that offers you a general overview of Python programming. Note
that this version doesn't provide any type or error handling and the interface is still very rough.

Before going through the code, you must first understand what the program does. Figure 2.4 shows an
interaction with the program.

Figure 2.4. This example covers many aspects of basic Python concepts.

welcome to the benchmark tool!

want to load the saved resi
ST Er TNE Company name, or pr

YOu are

of this company?

* the company name, or press ENTER when you are

: The
is the m

#ant tTo save QLI results

Sihvpythonhymy briefcases

The program consists of two questions that should be answered by an n number of companies. These questions
cover the number of IT employees and the total IT cost of a company. The benchmark uses the t ot al cost

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=37
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A20%3A50+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=37&now=5%2F31%2F2002+4%3A20%3A50+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/37#1.html

/ enpl oyee value to calculate the statistics.

After checking the results, you have the option to save them in a file, and later when opening the application
again, you get the option to visualize them again.

Listing 2.1 Benchmark Tool (File benchmark.py)

1. ###
2: # Program Benchmark tool
3: # Author: Andre S Lessa
4. Hi#
5:
6: ### inport nodul es
7.
8: inport sys
9: inport string
10: inport operator
11:
12: ### create dictionary of questions
13:
14: def definequiz():
15: gquestions = { }
16: questions["1"] = "What is the nunber of IT enployees of this
conpany?"
17: guestions["2"] = "What is the total IT cost of this conpany?"
18:
19: return questions
20:
21:. ### Loop to collect conpani es data
22:
23: def collectresults():
24. conpany = get conpanynamne()
25: whi | e conpany:
26: I f conpany == ""
27: br eak
28:
29: qui zkeys = qui z. keys()
30: gui zkeys. sort ()
31: for question in quizkeys:
32: showguesti on(l o_questi on=questi on, | o_conpany=conpany)
33:
34. conmpany = get conpanynane()
35:
36: if len(answers) > O:
37: generateresul ts()
38: showr esul t s(gl _conpani es, gl _avg, gl_max, gl _mn)

40:
41
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64.
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:

HH#

def

HHH

def

HHH

def

userinput = raw_input ("Do you want to save your results ? ")

I f string.upper(userinput[0]) == "Y":
saveresul ts(gl _conpanies, gl _avg, gl _max, gl _mn)

return
Generate benchmark results

generateresults():
gl obal gl conpanies, gl _avg, gl _max, gl_mn

gl _conpani es = string.join(answers. keys(), ",")
conpany_count = | en(answers. keys())
lo_avg =[]

for company in answers. keys():
| o_enpl oyees = answer s[conpany] [0] [1]
| o_cost = answers[conpany][1]][1]
average = (float(lo_cost) / int(lo_enployees))

|l o_avg = lo_avg + [average]
gl _max = max(l o_avgQ)
gl_ mn = mn(lo_avg)
gl _avg = reduce(operator.add, |o_avg) / company_count
return

Interface to enter conpany name

get conpanynane() :

print "Please enter the conpany nane, " }
"or press ENTER when you are done."
userinput = raw_i nput ()

return userinput

Di spl ays questions and collect results

showguestion(l o_question, | o_conpany):
print quiz[lo_question]
i f answers. has_key(| o_conpany):
answers[| o_conpany] = answers[|o_conpany] + }
[coerce(l o _question, raw_input())]
el se:
answer s[| o_conpany] = [coerce(lo_question, raw_i nput())]
return

87:

88:

89:

90:

91:

92:

93:

94:

95:

96:

97

98:

99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124
125:
126:
127:
128:
129:
130:
131:
132:

Save results in a file

def saveresults(*argunents):

open(fil enanme, "w'")

for value in argunents:
file.wite(repr(val ue)+"\ n")
file.close
showr esul t s(gl _conpani es, gl __avg, gl _max, gl _mn)
"The results were saved."

HHH

def

HHH#

def

fil

pri
pri

e

nt
nt

Load results froma file

| oadresul ts():

count = 0
file = open(filenane, "r")
line = file.readline()
line = line[:-1]
while |ine:
i f count ==
| o_conpanies = line
I f count ==
|l o_avg = float(line)
elif count == 2:
lo_ max = float(line)
elif count == 3:
lomn = float(line)
line = file.readline()
line = line[:-1]
count = count + 1

file.close()

return(lo_conpanies, lo avg, |lo nax, |o_mn)

Show results in the screen

showr esul ts(l o_conpanies, |1o_avg, |lo_max, lo_mn):

pri
pri
pri
pri
pri
pri
pri

nt
nt
nt
nt
nt
nt
nt

return

" Conpani es :

| o_conpani es

"0 2f
"00. 2f
"00. 2f

i s the average cost/enpl oyees”
I s the maxi num cost/ enpl oyees”
IS the m ninum cost/ enpl oyees”

133: ### Main action bl ock

% 1 o0_avg
% | o_max
%lo mn

134:
135: def main():

136: pri nt

137: print "Welcone to the benchmark tool!"

138: pri nt

139:

140: userinput = raw_input("Do you want to | oad the saved results ? ")
141:

142: I f userinput == "":

143: col l ectresul ts(

144: elif string.upper(userinput[0]) == "Y":

145: gl _conpanies, gl _avg, gl _max, gl _mn = | oadresults()
146: show esul t s(gl _conpani es, gl _avg, gl _nmax, gl _mn)
147: el se:

148: col l ectresul ts()

149:

150: pri nt

151: sys.exit()

152:

153: ### d obal Vari abl es

154:

155: quiz = definequiz()
156: answers = { }

157: filenane = "results.txt"
158: gl conpanies = ""

159: gl _avg = 0

160: gl _max = 0

161: gl _mn =20

162:

163: main()

Note that the program effectively starts at line 155, when the global variables are declared, and soon after that,
the mai n() function is executed.

The following list shows some of the important concepts that are provided by this simple example.
Lines 8-10—Loads the required modules.
Lines 15-17, 53, 81—Dictionary manipulation.

The answer s dictionary has the following structure:

{companyl: [(questionl,answerl), (question2,answer2), company2: [(questionl,answerl),
(question2,answer?), ...}

Note that the dictionary values are lists of tuples.

Line 27—br eak statement that exits the whi | e loop.

Lines 29,30—Sorts dictionary keys.

Line 32—Named arguments.

Line 40—User input.

Lines 41, 51—Uses functions from imported modules.

Line 41—String manipulation.

Lines 53, 63-65—Uses built-in functions.

Line 90—~Function with undefined number of arguments.
Lines 81-85—Creates and inserts a tuple in the dictionary.
Line 93—Adds a newline character to the value.

Line 104—Reads a line (delimited by the newline character).
Line 105—Removes the newline character.

Line 127—Formats the numbers to display only two decimals.
Line 151—EXxits the application.

Line 163—Calls to the function that initializes the program.

< BACK Make Note | Bookmark

CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=37

Index terms contained in this section

benchmark tool source code
code
benchmark tool
source code
benchmark tool
tools
benchmark
source code
utilities
benchmark
source code

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries See All Titles

< BACK Make Note | Bookmark CONTINUE >

Chapter 3. Python Libraries

All right, it's a fair cop, but society is to blame.

This chapter shows what main module services and extensions are currently available for the Python
programming language. The focus here is to expand your knowledge by introducing the most used
modules and listing some examples for you.

<BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=39
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A21%3A07+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=39&now=5%2F31%2F2002+4%3A21%3A07+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=39

Web Development > Python Developer's Handbook > 3. Python Libraries > Python See All Titles
Libraries

< BACK Make Note | Bookmark CONTINUE >

Python Libraries

The first chapter has given you a good introduction about the Python core language. Everything you
have successfully learned will be applied from now on. All the topics covered in the previous chapters
are the building blocks for your Python mastering.

Now we will concentrate on this chapter. Python's standard distribution is shipped with a rich set of
libraries. These libraries intend to offer flexibility to the programmers.

The libraries (also known as modules) cover many topics, such as the following:

Python core services— A group of modules, such as sys and os, that enable you to
interact with what is behind the interpreter.

Network and Internet services— Python has modules for almost everything that is
Internet related. You have many network client protocol implementations that handle the
most used Internet services, such as HTTP and FTP. Python also provides support for
parsing mark-up languages, like XML and HTML.

Regular expressions— The r e module is a very comprehensive choice for text
manipulation because it provides Perl 5 style patterns and matching rules.

These are just some of the features implemented by the modules that are reviewed by this chapter.
The Library Reference

The robustness of Python's library is something amazing. Many users have contributed to the
development of these modules during the last few years.

Some modules were written in C and are built into the interpreter. Others are written in Python and can
be loaded by using the i nport command.

Keep in mind that some of the interfaces may change slightly (for instance, bug fixes) with the next
release. Therefore, | suggest that you visit Python's Web site once in a while, and keep yourself up-to-
date. You can always browse the latest version of the Python Library Reference at

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=40
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A21%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=40&now=5%2F31%2F2002+4%3A21%3A21+PM

http://www.python.org/doc/lib

| encourage you to use this chapter in order to get a quick overview about the existing Python libraries.
After you have exhausted all the material provided by this book, check out the online Python Library
Reference to see the minor details about each one of these Python module interfaces.

This chapter introduces you to the practical side of several modules'utilization. The next pages show
what main functions each module exposes, and, whenever possible, some examples are listed.

Some of the modules—such as debugger (pdb), profil er, Tki nter (the standard Python
GUI API) and r e—aren't deeply studied here because they are presented in detail in other chapters of
this book. Whenever this happens, the chapter number is mentioned next to the module name.

The Standard Library of Modules

This book covers the latest version of the Standard Library of Modules that is available at the time of
this writing. The modules are presented in the same order as they are shown in Python's official
documentation. This was done to make the work of cross-referencing easier for you.

The following topics are the group names that organize the modules you will find.
Python Services
String
Miscellaneous
Generic Operational System
Optional Operational System
Debugger
Profiler
Internet Protocol and Support
Internet Data Handling

Restricted Execution

http://www.python.org/doc/lib

Multimedia
Cryptographic

UNIX Specific

SGI IRIX Specific
Sun OS Specific

MS Windows Specific
Macintosh Specific

Undocumented Modules

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
Python Library Reference
Standard Library of Modules
Python Library Reference
Standard Library of Modules

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=40

Web Development > Python Developer's Handbook > 3. Python Libraries > Python Services See All Titles

< BACK Make Note | Bookmark CONTINUE >

Python Services

This first group of modules is known as Python Services. These modules provide access to services related to
the interpreter and to Python's environment.

sys
The sys module handles system-specific parameters, variables, and functions related to the interpreter.
Sys. ar gv

This object contains the list of arguments that were passed to a program.

If you pass arguments to your program, for example, by saying,

c:\ python programpy -a -h -c

you are able to access those arguments by retrieving the value of sys. ar gv:

>>> jnmport sys
>>> gys. argv
["program py", "-a", "-h", "-c"]

You can use this list to check whether certain parameters are transported to the interpreter.

>>> | f "-h" in sys.argv:
>>> print "Sorry. There is no help available.”
sys.exit()

This is a function used to exit a program. Optionally, it can have ar et ur n code. It works by raising the
Syst enExi t exception. If the exception remains uncaught while going up the call stack, the interpreter shuts

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=41
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A21%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=41&now=5%2F31%2F2002+4%3A21%3A33+PM

down.

basic syntax: sys. exit ([return_code])

>>> | nmport sys
>>> sys. exit(0)

The r et ur n_code argument indicates the return code that should be passed back to the caller application.

The sys module also contains three file objects that take care of the standard input and output devices (see
Chapter 1, "Introduction,"” for more details about these objects).

sys. st di n— File object that is used to read data from the standard input device. Usually it is
mapped to the user keyboard.

sys. st dout — File object that is used by every pri nt statement. The default behavior is to
output to the screen.

sys. st derr— It stands for standard error output. Usually, it is also mapped to the same object
of sys. st dout.

Example:

>>> jnport sys

>>> data = sys.stdin.readlines()

>>> str = "Counted % lines.” %I en(data)
>>> sys.stdout.wite (str)

Now, save the previous example in a file named count | i nes. py, and test it by typing the following
instructions on your prompt:

On Uni x: cat coutlines.py | python countlines. py
On DOS and W ndows: type countlines.py | python countlines. py

sys. nodul es

It is a dictionary that contains the modules that were loaded by the current session.

sys. pl atforns
This is a string that shows the current platform (for example, " wi n32", "mac", "l i nux-i 386").

You can test which platform is running a program by doing something like this:

I f sys.platfornms == "w n32"
<do sonet hi ng>
elif sys.platform== "nac"

<do sonet hi ng el se>

sys. path

This is the list of directories that are searched to find the location of a module at the time of importing it.

>>> | nmport.sys

>>> sys. path

['", "C\\Program Fil es\\Python\\Li b\\plat-win',

"C.\\Program Fil es\\ Python\\Lib', "C\\Program Fil es\\Python\\DLLs",
"C:\\Program Fil es\\ Python\\Li b\\lib-tk',' C\\PROGRAM FI LES\\ PYTHON\\ DLLs'
' C:\\ PROGRAM FI LES\\ PYTHON\ \ |'i b",

' C:\\ PROGRAM FI LES\\ PYTHON\\ | i b\ \ pl at-wi n",

" C:\\ PROGRAM FI LES\\ PYTHON\\ i b\\ i b-t k",

' C:\\ PROGRAM FI LES\\ PYTHON]

You can easily update this list to include your own directories.

sys. buil tin_nodul e_nanes

This is the list of modules that are not imported as files.

>>> | nmport sys
>>> sys. bui |l ti n_nodul e_nanes

(" _builtin_', " min_"', ' locale', ' _socket', "array', 'audioop',
"binascii', 'cPickle', 'cStringlO, 'cnmath', "errno', 'imageop', 'inp',
"marshal', 'math', 'nmd5', 'nsvcrt', 'new, 'nt', 'operator', 'pcre',
‘regex', 'rgbinmg', 'rotor', 'select', 'sha', 'signal', 'soundex', 'strop',

‘struct', 'sys', 'thread', '"tinme', 'w nsound')

For all the next sys objects, see Chapter 4, "Exception Handling," for details.

sys. exc_info()

Provides information about the current exception being handled.

Sys. exc_type, sys.exc_value, sys.exc_traceback

It is another way to get the information about the current exception being handled.

sys. |l ast _type, sys.last_val ue and sys. | ast_traceback

Provides information about the last uncaught exception.

Python 2.0 contains a mode detailed version information function called sys. ver si on_i nf o. This function

returns a tuple in the format (major, minor, micro, level, serial). For example, suppose the version number of
your Python system is 3. 0. 4al phal, the functionsys. versi on_info() returns(3, 0, 4,

‘al pha', 1). Note that the level can be one of the following values: alpha, beta, or final.

Another set of functions added to Python 2.0 are: sys. getrecursionlimt() and
sys.setrecursionlimt(). Thesefunctions are responsible for reading and modifing the maximum

recursion depth for the routines in the system. The default value is 1000, and you can run the new script
M sc/find_recursionlimt.py inorderto know the maximum value suggested for your platform.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

arguments
return code

file objects

sys module
functions

sys.exec.traceback()
sys.exec.value()
sys.getrecursionlimit()
sys.last.value()
sys.recursionlimit()
sys.version info()

libraries
Python Services 2nd

modules

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=41

sys 2nd 3rd
objects
file
sys module
Python Services 2nd
return code argument

syntax
sys.exit() function

sys module 2nd 3rd
sys.exec.traceback() function
sys.exec.value() function
sys.getrecursionlimit() function
sys.last.value() function
sys.recursionlimit() function
sys.version_info() function

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > types See All Titles

< BACK Make Note | Bookmark CONTINUE >

types
The t ypes module stores the constant names of the built-in object types.

FunctionType, D ct Type, Li st Type, and St ri ngType are examples of the built-in type
names.

You can use these constants to find out the type of an object.

>>> jnport types
>>> | f type("Parrot") == types. StringType:
Print "This is a string!"

This is a string

The complete list of built-in object types, that are stored at the t ypes module, can be found in Chapter
5, "Object-Oriented Programming."

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

modules
types
types module

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=42
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A21%3A47+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=42&now=5%2F31%2F2002+4%3A21%3A47+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=42

Web Development > Python Developer's Handbook > 3. Python Libraries > UserDict See All Titles

< BACK Make Note | Bookmark CONTINUE >

User Di ct

The User Di ct module is a class wrapper that allows you to overwrite or add new methods to
dictionary objects.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
Python Services

Python Services

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=43
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A21%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=43&now=5%2F31%2F2002+4%3A21%3A58+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=43

Web Development > Python Developer's Handbook > 3. Python Libraries > UserList See All Titles

< BACK Make Note | Bookmark CONTINUE >

User Li st

The User Li st module is a class wrapper that allows you to overwrite or add new methods to list
objects.

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=44
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A22%3A11+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=44&now=5%2F31%2F2002+4%3A22%3A11+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=44

Web Development > Python Developer's Handbook > 3. Python Libraries > operator See All Titles

< BACK Make Note | Bookmark CONTINUE >

oper at or

The oper at or module stores functions that access the built-in standard operators. The main reason

for the oper at or module is that oper at or . add, for instance, is much faster than | anbda a, b:
a+b.

For example, the line

>>> | nport operator
>>> operator.div(6, 2)
3

provides the same result that the next line does.

>>> 6 [2
3

This module is mostly used when it becomes necessary to pass an operator as the argument of a
function. For example

1: inport sys, glob, operator
2: sys.argv = reduce(operator.add, map(glob.glob, sys.argv))
3: print sys.argv

To run the previous example, save the code in a file and execute it by switching to your OS prompt and
typing:

pyt hon yourfil enane. py *.*

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=45
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A22%3A23+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=45&now=5%2F31%2F2002+4%3A22%3A23+PM

The heart of this example is Line 2. Let's interpret it:

The gl ob. gl ob() function is applied for each element of the original sys. ar gv list object (by
using the map() function). The result is concatenated and reduced into a single variable sys. ar gv.
The concatenation operation is performed by the oper at or . add() function.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

functions
lob.glob

map()
operator.add()
glob.glob() function

libraries
Python Services

map() function
modules

operator
operator module

operator.add() function
Python Services

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=45

Web Development > Python Developer's Handbook > 3. Python Libraries > traceback See All Titles

< BACK Make Note | Bookmark CONTINUE >

t raceback

The t r aceback module supports pri nt andr et ri eve operations of the traceback stack. This
module is mostly used for debugging and error handling because it enables you to examine the call
stack after exceptions have been raised.

See Chapter 4 for more details about this module.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

call stack

stacks
call

traceback
traceback stack

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=46
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A22%3A36+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=46&now=5%2F31%2F2002+4%3A22%3A36+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=46

Web Development > Python Developer's Handbook > 3. Python Libraries >linecache See All Titles

< BACK Make Note | Bookmark CONTINUE >

| i necache

The | i necache module allows you to randomly access any line of a text file.

For example, the next lines of code belong to the filec: \ tenp\ interface. py.

I mport time, sys

name = raw_i nput ("Enter your nanme: ")

print "H %, how are you?" % nane

f eedback = raw_i nput ("What do you want to do now? ")
print "I do not want to do that. Good bye!"
tinme.sleep(3)

sys.exit()

Check the result that is retrieved when the function

| i necache. getline(file,linenunber) iscalled.

>>> jnport |inecache
>>> print |inecache.getline("c:\ \ tenp\ interface.py", 4)
f eedback = raw_ i nput ("What do you want to do now? ")

<BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=47
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A22%3A48+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=47&now=5%2F31%2F2002+4%3A22%3A48+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=47

Web Development > Python Developer's Handbook > 3. Python Libraries > pickle See All Titles

< BACK Make Note | Bookmark CONTINUE >

pi ckl e

The pi ckl e module handles object serialization by converting Python objects to/from portable strings
(byt e- st reans).

See Chapter 8, "Working with Databases," for details.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

modules

pickle
pickle module

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=48
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A22%3A59+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=48&now=5%2F31%2F2002+4%3A22%3A59+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=48

Web Development > Python Developer's Handbook > 3. Python Libraries > cPickle See All Titles

< BACK Make Note | Bookmark CONTINUE >

cPi ckl e

The cPi ckl e module is a faster implementation of the pi ckl e module.

See Chapter 8 for details.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
Python Services

Python Services

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=49
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A23%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=49&now=5%2F31%2F2002+4%3A23%3A10+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=49

Web Development > Python Developer's Handbook > 3. Python Libraries > copy_reg See All Titles

< BACK Make Note | Bookmark CONTINUE >

copy_reg

The copy_r eg module extends the capabilities of the pi ckl e and cpi ckl e modules by registering
support functions.

See Chapter 8 for details.

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=50
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A23%3A22+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=50&now=5%2F31%2F2002+4%3A23%3A22+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=50

Web Development > Python Developer's Handbook > 3. Python Libraries > shelve See All Titles

< BACK Make Note | Bookmark CONTINUE >

shel ve

The shel ve module offers persistent object storage capability to Python by using dictionary objects.
The keys of these dictionaries must be st r i ngs and the values can be any object that the pi ckl e
module can handle.

See Chapter 8 for more details.

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=51
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A23%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=51&now=5%2F31%2F2002+4%3A23%3A33+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=51

Web Development > Python Developer's Handbook > 3. Python Libraries > copy See All Titles

< BACK Make Note | Bookmark CONTINUE >

copy

The copy module provides shallow and deep object copying operations for lists, tuples, dictionaries,
and class instances.

copy. copy()

This function creates a shallow copy of the x object.

>>> | nport copy

>>> x =[1, 2, 3, [4, 5, 6]]
>>>y = copy. copy(X)

>>> print y

[1, 2, 3, [4, 5, 6]]

>>> jd(y) == id(x)

As you can see at the end of the previous example, the new list is not the old one.

As you can see, this function provides the same result that y=x[:] does. It creates a new object that

references the old one. If the original object is a mutable object and has its value changed, the new
object will change too.

copy. deepcopy()

It recursively copies the entire object. It really creates a new object without any link to the original
structure.

basic syntax: vari abl e = copy. deepcopy(obj ect)

>>> | nport copy
>>> |istone = [{ "nanme":"Andre"} , 3, 2]
>>> | isttwo = copy. copy(listone)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=52
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A23%3A48+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=52&now=5%2F31%2F2002+4%3A23%3A48+PM

>>> |istthree = copy. deepcopy(!i stone)

>>> | istone[O0]["nanme"] = "Renata"

>>> | i st one. append(" Pyt hon")

>>> print listone, listtwo, |listthree
[{ "name":"Renata"} , 3, 2, "Python"]
[{ "name":"Renata"} , 3, 2]

[{ "name":"Andre} , 3, 2]

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
Python Services
Python Services

syntax
functions
copy.deepcopy()

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=52

Web Development > Python Developer's Handbook > 3. Python Libraries > marshal See All Titles

< BACK Make Note | Bookmark CONTINUE >

mar shal

The mar shal module is an alternate method to implement Python object serialization. It allows you to

read/write information in a binary format, and convert data to/from character strings. Basically, it is just
another way to do byte stream conversions by using serialized Python objects. It is also worth
mentioning that mar shal is used to serialize code objects for the . pyc files.

This module should be used for simple objects only. Use the pi ckl e module to implement persistent
objects in general.

See Chapter 8 for details.

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

marshal module

modules
marshal

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=53
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A24%3A00+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=53&now=5%2F31%2F2002+4%3A24%3A00+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=53

Web Development > Python Developer's Handbook > 3. Python Libraries >imp See All Titles

< BACK Make Note | Bookmark CONTINUE >

I np

The i np module provides mechanisms to access the internal i npor t statement implementation. You might
want to use this module to overload the Python i npor t semantics. Note that the i hooks module provides
an easy-to-use interface for this task.

i np. find _nodul e()

This function identifies the physical location of a given module name.

basic syntax: fi |l e, path, desc = inp.find_nodul e(nodul enane)
i np. | oad_nodul e()

This one loads and returns a module object based on the information provided.

basic syntax: obj = i np. | oad_nodul e(nodul enane, fil e, pat h, desc)

>>> jnport inp
>>> def new nport (nmodul enamne):

file, path, desc = inp.find_nodul e(modul enane)
nodul eobj = i np. | oad_nodul e(nodul enane, fil e, pat h, desc)
return nodul eobj

...math = new nport (mat h)

...math. e

2.71828182846

I np. getsuffixes()
It lists the precedence order in which files are imported when using the i nport statement.

Typing the following commands in my environment accomplishes this:

>>> jnport inp

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=54
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A24%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=54&now=5%2F31%2F2002+4%3A24%3A13+PM

>>> | np. get_suffixes()
[(".pyd, 'rb'", 3), (".dIl', "rb", 3), (".py', 'r', 1), ('.pyc', 'rb'", 2)]

Note that if | have a module stored in a file called mynodul e. pyc, and I enter the command i npor t
mynodul e at the interpreter, the system initially searches for a file called mynodul e. pyd, and then for
one called nynodul e. dl | , one called mynodul e. py, and finally it searches for a file called
mynodul e. pyc.

Tip

When importing packages, this concept is ignored because directories precede all entries in this list.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

imp module 2nd
importing

packages
libraries

Python Services
modules

imp 2nd
packages

importing
Python Services

syntax
functions
imp.find.module()

imp.load.module()

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=54

Web Development > Python Developer's Handbook > 3. Python Libraries > parser See All Titles

< BACK Make Note | Bookmark CONTINUE >

par ser

The par ser module offers you an interface to access Python's internal par ser trees and code
compiler.

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=55
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A24%3A31+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=55&now=5%2F31%2F2002+4%3A24%3A31+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=55

Web Development > Python Developer's Handbook > 3. Python Libraries > symbol See All Titles

< BACK Make Note | Bookmark CONTINUE >

synbol

The synbol module includes constants that represent the numeric values of internal nodes of Python's
parse trees. This module is mostly used along with the parser module.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
Python Services

Python Services

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=56
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A24%3A46+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=56&now=5%2F31%2F2002+4%3A24%3A46+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=56

Web Development > Python Developer's Handbook > 3. Python Libraries >token See All Titles

< BACK Make Note | Bookmark CONTINUE >

t oken

The t oken module is another module that is used along with the par ser module. It stores a list of all
constants (t okens) that are used by the standard Python tokenizer. These constants represent the
numeric values of leaf nodes of the parse trees.

< BACK Make Note | Bookmark CONTINUE >
© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=57
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A25%3A00+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=57&now=5%2F31%2F2002+4%3A25%3A00+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=57

Web Development > Python Developer's Handbook > 3. Python Libraries > keyword See All Titles

< BACK Make Note | Bookmark CONTINUE >

keyword

The keywor d module tests whether a string is a Python keyword. Note that the keyword-checking
mechanism is not tied to the specific version of Python being used.

keywor d. kwl i st

This is a list of all Python keywords.

>>> jnport keyword
>>> keywor d. kwl i st

['and', 'assert', 'break', 'class', 'continue', 'def', ‘del', 'elif",
"else', 'except', 'exec', 'finally', 'for', 'from, 'global', "if'",
“inport', 'in', 'is', 'lanbda', 'not', 'or', 'pass', 'print', 'raise',

‘return', "try', "while']

keywor d. i skeywor d()

This function tests whether a string is a Python keyword:

>>> | nport keyword

>>> str = "inport"

>>> keyword. i skeyword(str)

1

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=58
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A25%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=58&now=5%2F31%2F2002+4%3A25%3A13+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=58

Web Development > Python Developer's Handbook > 3. Python Libraries >tokenize See All Titles

< BACK Make Note | Bookmark CONTINUE >

t okeni ze

The t okeni ze module is an analysis tool that provides a lexical scanner for Python source code.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

modules
tokenize

tokenize module

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=59
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A25%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=59&now=5%2F31%2F2002+4%3A25%3A24+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=59

Web Development > Python Developer's Handbook > 3. Python Libraries > pyclbr See All Titles

< BACK Make Note | Bookmark CONTINUE >

pycl br

The pycl br module offers class browser support in order to provide information about classes and
methods of a module.

See Chapter 5 for details.

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=60
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A25%3A36+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=60&now=5%2F31%2F2002+4%3A25%3A36+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=60

Web Development > Python Developer's Handbook > 3. Python Libraries > code See All Titles

< BACK Make Note | Bookmark CONTINUE >

code

The code module interprets base classes, supporting operations that pertain to Python code objects. In
other words, it can simulate the standard interpreter's interactive mode.

The next code opens a new interpreter within your interpreter:

>>> jnport code
>>> interpreter = code.lnteractiveConsol e()
>>> interpreter.interact()

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
Python Services

Python Services

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=61
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A25%3A48+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=61&now=5%2F31%2F2002+4%3A25%3A48+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=61

Web Development > Python Developer's Handbook > 3. Python Libraries > codeop See All Titles

< BACK Make Note | Bookmark CONTINUE >

codeop

The codeop module offers a function to compile Python code. This module is accessed by the code
module and shouldn't be used directly.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

codeop module
modules
codeop

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=62
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A25%3A59+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=62&now=5%2F31%2F2002+4%3A25%3A59+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=62

Web Development > Python Developer's Handbook > 3. Python Libraries > pprint See All Titles

< BACK Make Note | Bookmark CONTINUE >

ppri nt

The ppri nt (pretty printer) module prints Python objects so that the interpreter can use them as input
for other operations.

>>> i nport pprint

>>> var = [(1,2,3),"Parrot"]
>>> pprint. pprint(var)
[(1,2,3),"Parrot"]

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=63
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A26%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=63&now=5%2F31%2F2002+4%3A26%3A10+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=63

Web Development > Python Developer's Handbook > 3. Python Libraries > repr See All Titles

< BACK Make Note | Bookmark CONTINUE >

repr

The r epr module is an alternate r epr () function implementation that produces object
representations that limit the size of resulting strings.

>>> jnport repr

>>> var = ["Spani * 10]

>>> print var

[' SpanSpantSpantSpantSpantSpantSpantSpantpantpani |
>>> print repr.repr(var)

[' SpanSpantSpam.nSpanSpantpan |

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

modules
repr

repr module

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=64
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A26%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=64&now=5%2F31%2F2002+4%3A26%3A21+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=64

Web Development > Python Developer's Handbook > 3. Python Libraries > py_compile See All Titles

< BACK Make Note | Bookmark CONTINUE >

py_conpile

The py_conpi | e module is a single function that compiles Python source files, generating a byt e-
code file.

>>> jnport py_conpile
>>> py_conpil e. conpil e("testprogram py")

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

modules

py_compile
py compile module

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=65
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A26%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=65&now=5%2F31%2F2002+4%3A26%3A44+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=65

Web Development > Python Developer's Handbook > 3. Python Libraries > compileall See All Titles

< BACK Make Note | Bookmark CONTINUE >

conpi | eal |

The conpi | eal I module compiles all Python source files that are stored in a specific directory tree.
Note that conpi | eal | uses py_conpi | e.

conpileall.conpile dir()
This function byt e- conpi | es all source files stored in the provided di r ect or y tree.

basic syntax: conpi | e. conpil e_di r(directory)

>>> jnport conpil eall

>>> conpileall.conpile dir("c:\\tenp")
Listing c:\tenp ...

Conpi ling c:\tenp\progranS. py ...

Conpi ling c:\tenp\programt. py ...

Conpi ling c:\tenp\progranb. py ...

1

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=66
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A26%3A56+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=66&now=5%2F31%2F2002+4%3A26%3A56+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=66

Index terms contained in this section

compileall module
libraries
Python Services
modules
compileall
Python Services
syntax
functions
compileall.compile.dir()

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > dis See All Titles

< BACK Make Note | Bookmark CONTINUE >

di s

The di s module is a Python byt e- code dissassembler. This module enables you to analyze Python
byt e- code.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

dis module

modules
dis

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=67
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A27%3A09+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=67&now=5%2F31%2F2002+4%3A27%3A09+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=67

Web Development > Python Developer's Handbook > 3. Python Libraries > new See All Titles

< BACK Make Note | Bookmark CONTINUE >

new

The newmodule implements a runtime interface that allows you to create various types of objects such
as class objects, function objects, instance objects, and so on.

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=68
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A27%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=68&now=5%2F31%2F2002+4%3A27%3A21+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=68

Web Development > Python Developer's Handbook > 3. Python Libraries > site See All Titles

< BACK Make Note | Bookmark CONTINUE >

site

The si t e module performs site-specific packages'initialization. This module is automatically imported
during initialization.

< BACK Make Note | Bookmark CONTINUE >
© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=69
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A27%3A34+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=69&now=5%2F31%2F2002+4%3A27%3A34+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=69

Web Development > Python Developer's Handbook > 3. Python Libraries > user See All Titles

< BACK Make Note | Bookmark CONTINUE >

user

The user module is a user-specific mechanism that allows one user to have a standard and customized
configuration file.

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=70
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A27%3A47+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=70&now=5%2F31%2F2002+4%3A27%3A47+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=70

Web Development > Python Developer's Handbook > 3. Python Libraries > __ builtin__ See All Titles

< BACK Make Note | Bookmark CONTINUE >

_builtin__

The _builtin__ moduleisasetof built-in functions that gives accesstoall bui | t-i n
Python identifiers. You don't have to import this module because Python automatically imports it.

Most of the content of this module is listed and explained in the section "Built-In Functions™ of Chapter
2, "Language Review."

< BACK Make Note | Bookmark CONTINUE >
© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=71
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A27%3A57+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=71&now=5%2F31%2F2002+4%3A27%3A57+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/29#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=71

Web Development > Python Developer's Handbook > 3. Python Libraries > _main__ See All Titles

< BACK Make Note | Bookmark CONTINUE >

The __mai n__ module is the top-level script environment object in which the interpreter's main
program executes. Thisishowtheif _ name == ' __nmain__"' code fragment works.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
Python Services

Python Services

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=72
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A28%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=72&now=5%2F31%2F2002+4%3A28%3A10+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=72

Web Development > Python Developer's Handbook > 3. Python Libraries > The String See All Titles
Group

< BACK Make Note | Bookmark CONTINUE >

The String Group

This group is responsible for many kinds of string services available. These modules provide access to
several types of string manipulation operations.

Note that since release 2.0, all these functions are tied directly to string objects, as methods. The
st ri ng module is still around only for backward compatibility.

string

The st ri ng module supports common string operations by providing several functions and constants
that manipulate Python strings.

string.split()
This function splitsa st ri ng into a list. If the del i m t er is omitted, whi t e- spaces are used.

basic syntax: string.split(string [,delimter])

>>> print string,split("a b c")
["a","b","c"]

string.atof ()

It converts a st ri ng to a floating number.
basic syntax: st ri ng. at of (string)
string.atoi()

It converts a st ri ng to an integer. at oi takes an optional second argument: base. If omitted, the
start of the string (for instance, Ox for hexadecimal) is used to determine the base.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=73
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A28%3A23+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=73&now=5%2F31%2F2002+4%3A28%3A23+PM

basic syntax: stri ng. atoi (string[, base])

string.atol ()

It convertsa st ri ng toalong integer. at ol takes an optional second argument: base. If omitted,
the start of the string (for instance, Ox for hexadecimal) is used to determine the basic syntax:
string.atol (string[, base])

string. upper()

It converts a st ri ng to uppercase.

basic syntax: st ri ng. upper (stri ng)

string. find()

It returns the index position of the subst ri ng within st ri ng. Optionally, you can specify the
string's range that should be used in the search.

basic syntax: stri ng. find(string, substring[, start [,end]])
string.join()

This function joins the string elements of al i st using separ at or to separate them.
basic syntax: string.join(list, separator)

string.capitalize()

It capitalizes the first character of st ri ng.

basic syntax: stri ng. capitalize(string)

string. capwords()

This function capitalizes the first letter of each word in st r i ng and removes repeated, leading, and
trailing whitespace.

basic syntax: st ri ng. capwor ds(stri ng)

string.lower()

It converts all characters in st ri ng to lowercase.

basic syntax: stri ng. | ower (stri ng)
string.lstrip(),string.rstrip() andstring.strip()
These functions remove leading and/or trailing whitespace from st ri ng.

basic syntaxes:

string.lstrip(string)
string.rstrip(string)
string.strip(string)

string.ljust(),string.rjust() andstring.center()

These functions define the alignment of st r i ng within a variable of wi dt h characters.

basic syntaxes:

string.ljust(string, w dth)
string.rjust(string, w dth)
string.center(string, wdth)

string.replace()

It replaces a maxi mumnumber of occurrences of ol dt ext with newt ext instring. If maxi num
Is omitted, all occurrences are replaced.

basic syntax: stri ng. repl ace(string, oldtext, newtext [, nmaxinumnm)

string.zfill()

It inserts zeros on the left side of a st r i ng that has wi dt h characters.

basic syntax: string. zfill (string, w dth)

Next, | list a few constants that can be used to test whether a certain variable is part of a specific
domain:

>>> jnport string

>>> string.digits
"0123456789"

>>> string.octdigits
"01234567"

>>> string. uppercase

" ABCDEFGHI J KL MNOPQRSTUVWKY"
>>> string. hexdigits
"0123456789abcdef ABCDEF"
>>> string. | owercase
"abcdef ghi j kl mopqr st uvwxy"

Let's write an example that uses st ri ng. upper case:

>>> text = "F"
>>> |f text in string.uppercase:
print "% is in uppercase format" %t ext

"Fis in uppercase format"

string. maketrans()

Returns a translation table that maps each character in the f r omstring into the character at the same
position in the t o string. Then this table is passed to the translate function. Note that both f r omand
t o must have the same length.

basic syntax: st ri ng. maketrans(from to)

string.transl ate()

Based on the given table, it replaces all the informed characters, according to the table created by the
st ri ng. maket r ans function. Optionally, it deletes from the given string all characters that are

presented in char st odel et e.

basic syntax: string.transl ate(string, table[, charstodel ete])

re

The r e module performs Perl-style regular expression operations in strings, such as matching and
replacement.

Tip

As a suggestion, always use r aw st r i ng syntax when working with regular expression because
it makes the work of handling special characters simpler.

>>> jnport re
>>> data = r"Andre Lessa"

>>> data = re.sub("Lessa", "L.", data)
>>> print data
Andre L.

See Chapter 9, "Other Advanced Topics," for more details about creating regular expression patterns.

Note

It is expected that in version 1.6, the r e module will be changed to a front end to the new sr e
module.

r egex

The r egex module is an obsolete module since Python version 1.5. This module used to support
regular expression search and match operations.

If necessary, you can use the r egex-t o-r e HOWTO to learn how to migrate from the r egex

module to the r e module. Check out the address http://www.python.org/doc/howto/regex-to-re/.

regsub

The r egsub module is another obsolete module. It also handles string operations (such as substitution

and splitting) by using regular expressions. The functions in this module are not thread-safe, so be
careful.

struct

The st r uct module interprets strings as packed binary data. It processes binary files using the
functions pack(), unpack(), andcal csi ze(). This module allows users to write platform-

independent, binary-file manipulation code when using the big-endian or little-endian format
characters. Using the native formats does not guarantee platform independence.

f pf or mat

The f pf or mat module provides functions that deal with floating point numbers and conversions.
Stringl O

The St ri ngl Omodule creates a string object that behaves like a file, but actually, it reads and writes

data from string buffers. The St r i ngl Oclass, which is exposed by the St r i ngl Omodule supports
all the standard file methods.

>>> jnport StringlO

>>> str = Stringl O Stringl Q("Line 1\ nLine 2\ nLine 3")
>>> str.readl i nes()

[" Linel\ 012', 'Line2\ 012', 'Line3"]

An additional method provided by this classis St ri ngl O. get val ue()

It returns and closes the st ri ng obj ect.

basic syntax: vari abl e = stringobject. getval ue()

>>> jnport StringlO
>>> text = "Line 1\ nLine 2\ nLine 3"

http://www.python.org/doc/howto/regex-to-re/

>>> str = Stringl O Stringl ()
>>> str.wite(text)

>>> result = str.getval ue()
“Line 1\ 012Line 2\ 012Li ne 3"

cStringl O

The ¢St ri ngl Ois a faster version of the St r i ngl Omodule. The difference is that you cannot
subclass this module. It is necessary to use St r i ngl Oinstead.

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

calcsize() function
cStringlO module
functions

calcsize()

ack

string.rjust()
string.rstrip()

string.uppercase()

unpack()

func’gionsc')
(0]
libraries
String Group 2nd 3rd 4th 5th 6th
methods
StringlO.getvalue()
metr]odsc')
(0]
modules
cStringlO
re
regex
string 2nd 3rd 4th
pack() function
raw string syntax

re module

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=73

regex module

String Group library 2nd 3rd 4th 5th 6th
string module 2nd 3rd 4th

string.rjust() function

string.rstrip() function
string.uppercase() function
StringlO.getvalue() method

syntax
functions

string.atof()
string.atoi()
string.capitalize()
string.capwords()
string.center() 2nd

string.find()
string.join()
string.ljust()
string.lower()
string.lstrip()

string.maketrans()
string.replace()

string.rjust()
string.rstrip()
string.split()
string.translate()
string.upper()
string.zfill()

raw string
StringlO.getvalue() method

unpack() function

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > Miscellaneous See All Titles

< BACK Make Note | Bookmark CONTINUE >

Miscellaneous

This group handles many functions that are available for all Python versions.

mat h

The mat h module provides standard mathematical functions and constants. It doesn't accept complex
numbers, only integers and floats. Check out the following example:

I nport math

>>> mat h. cos(180)
- 0. 598460069058
>>> mat h. si n(90)
0. 893996663601
>>> mat h. sqrt (64)
8.0

>>> mat h. | og(10)
2. 30258509299

>>> mat h. pi # The mat hemati cal constant pi
3. 14159265359
>>> pmat h. e # The mat hemati cal constant e

2.71828182846

cmat h

The cmat h module also provides standard mathematical functions and constants. However, its

implementation enables it to accept complex numbers as arguments. All the returned values are
expressed as complex numbers.

random

The r andommodule generates pseudo-random numbers. This module implements all the randomizing
functions provided by the whr andommodule plus several pseudo-random real number generators.
These random modules aren't very secure for encryption purposes.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=74
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A28%3A37+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=74&now=5%2F31%2F2002+4%3A28%3A37+PM

random choi ce()

It randomly picks one element from | i st .

basic syntax: r andom choi ce(l i st)

>>> | st = ["A","I","b","a","t",""r","o","s", s, " "]
>>> while | st:

el ement = random choi ce(l st)

| st. renove(el enent)

print el enent, # inserts a |linefeed

bl oAsr ! I t s a

random r andon)

It returns a random floating-point number between 0. 0 and 1. O.
basic syntax: r andom r andom()

random r andi nt ()

It returns a random integer n, wherex <= N <= vy.

basic syntax: r andom r andi nt (X, y)

whr andom

The whr andommodule provides a Wichmann-Hill floating-point pseudo-random number generator.
This module is mostly useful when you need to use multiple independent number generators.

whr andom whr andom()

This function initializes multiple random generators using the same seed.

>>> jnport whrandom
>>> rga = whrandom whr andon(2, 1, 3)

>>> rgb = whrandom whrandonm(2, 1, 3)
>>> rga. randon()
0. 0337928613026
>>> rgb. randon()
0. 0337928613026

bi sect

The bi sect module has an array bisection algorithm that provides support for keeping lists in sorted
order without the need for sorting them out all the time.

array

The ar r ay module is a high efficiency array implementation that handles large lists of objects. The
array type is defined at the time of creation.

By using this module, you can create an Ar r ay Ty pe object that behaves exactly like any other list,
except that it isn't recommended for storing elements of different types.

>>> | nport array

>>> s = "This is a string"
>>> a = array.array("c", s)
>>> g[5:7] = array.array("c", "was")

>>> print a.tostring()
This was a string

Note that NunPy provides a superior array implementation, which can be used for more than just
numeric algorithms.

Note that Python 2.0 has improved the ar r ay module, and new methods were added to its array
objects, including: count (), extend(), i ndex(), pop(), andrenove().

Conf i gPar ser

The Conf i gPar ser module is a basic configuration file parser that handles structures similar to
those found in the Microsoft Windows INI file.

Note

Note that as of Release 2.0, the Conf i gPar ser module is also able to write config files as well as
read them.

fileinput

Thefil ei nput module helps you by writing a loop that reads the contents of a file, line by line.

>>> jnport fileinput

>>> for

cal endar

line in fileinput.input("readne.txt"):
i f line.isfirstline:
print "<< This is the first |line >>"
print "filename = %" %line.fil enane
print " ----- e !
el se:
print "<< This is the |line nunber %>>" % /line.lineno

print |ine

The cal endar module provides general calendar-related functions that emulate the UNIX cal
program, allowing you to output calendars, among other things.

cnd

The cnmd module is a simple interface used as a framework for building command line interpreters and
shells. You just need to subclass its cnd. Cd class in order to create your own customized
environment.

shl ex

The shl ex module helps you write simple lexical analyzers (tokenizers) for syntaxes that are similar
to the UNIX shell.

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

array module
methods

ArrayType object
bisect module 2nd
calendar module 2nd
cmath module
ConfigParser module
files
files
ConfigParser module
libraries
Miscellaneous 2nd 3rd
methods

array module
Miscellaneous library 2nd 3rd

modules
array
methods

bisect 2nd
calendar 2nd
cmath
ConfigParser
files
random
objects

ArrayType
random module

syntax
functions
random.choice()

random.randint()
random.random()

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=74

Web Development > Python Developer's Handbook > 3. Python Libraries > Generic Operational System See All Titles

< BACK Make Note | Bookmark CONTINUE >

Generic Operational System

This group of services provides interfaces to operating system features that you can use in almost every platform. Most of
Python's operating system modules are based on the Posi x interface.

0s

The os module is a portable OS API that searches for Operating-System—dependent built-in modules (mac, posi x, nt),

and exports their functionality using the same interface. Certain tools are available only on platforms that support them.
However, it is highly recommended that you use this module instead of the platform-specific modules, which are really an
implementation detail of os. By using the os module, you make your program more portable.

0S. environ
This is a dictionary that contains all the environment variables.

You can search for a specific variable:

>>> jnport o0s
>>> path = os. environ["PATH"] #USER, EDI TOR, etc...

or list all of them:

>>> for key in o0s.environ. keys():

print key, = , 0s.environ[key]

0S. nane

It returns the name of the current system.

>>> pane = 0S. hane # "posix","dos","mac", "nt
nt

0s. get cwd()

This function returns the current working directory.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=75
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A28%3A52+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=75&now=5%2F31%2F2002+4%3A28%3A52+PM

>>> 0s. get cwd()
"C\ \ Program Files\ \ Python'

os.curdir

This is a simple constant that returns the OS-specific string used to identify the current directory.

>>> os.curdir

os. listdir()

If di rect ory is omitted, it lists the filenames of the current directory. Otherwise, it lists the filenames of di r ect ory.

basic syntax: os. l i stdir([directory])

>>> files = os.listdir(os.curdir)

os. renane()

It renames a file.

basic syntax: os. renane(ol dfil e, newfil e)
os. chnod()

It changesthe fi | e node. This isa UNIX command.

basic syntax: os. chnod(fil e, node)
0s. system()
It opens an Operating System subshell and executes the command.

basic syntax: 0s. syst em(conmand)

>>> os.system("rm-rf + fil ename)

0s. popen()

This is a UNIX function that returns a file-like object. It allows you to execute ashel | comrand and read the standard

output of external pipes (by setting mode to r) or write to their standard input (by setting node to w). The default mode is
r . Note that even though popen is a UNIX function, it is also implemented on the other Python ports.

basic syntax: os. popen(shel |l comrand, nobde)

>>> file = os.popen('sed \ 's/yes/no/g > output','w)
>>> file.wite("yes\ n")
>>>

>>> file = os.popen('cat manual .txt"', 'r")
>>> f = file.read()

0s. renove()

Itdeletesafil e.

basic syntax: os. r enove(fil e)

os. nkdir ()

It createsanew di rectory.

basic syntax: os. mkdi r (di rect ory)
os.rmdir ()

It removes an existing di rect ory.

basic syntax: os. rndi r (di rect ory)

os. renovedirs()

It is a wrapper for r ndi r that deletes everything under the di r ect ory.
basic syntax: os. r enovedi rs(di rectory)
0s. path

The os. pat h is a module imported by the os module that exposes useful common functions to manipulate pathnames.
Remember that you don't have to explicitly import os. pat h. You get it for free when you import os.

0s. pat h. exi st s()
Itreturnst r ue if pat h really exists.

basic syntax: 0s. pat h. exi st s(pat h)

os.path.isfile()

It returns t r ue if the specified pat h is a file.
basic syntax: os. pat h. i sfil e(pat h)

os. path.isdir()

It returns t r ue if the specified pat h is a directory.
basic syntax: 0s. pat h. i sdi r (pat h)

os. pat h.split()

Itsplitsfi | ename, returning a tuple that contains the directory structure and filename, which together combine the original
fil ename argument.

basic syntax: os. pat h. split(fil enane)
di rcache

The di r cache module reads directory listings using a cache. Note that this module will be replaced by the new module
fil ecnp inPython 1.6.

st at

The st at module works along with the os module by interpreting information about existing files that is extracted by the
os. st at () function and stored on a tuple structure. This tuple containsthe fi |l e si ze, thefil e owner group,
the file owner name, thel ast accessedand| ast nodi fi ed dates, and its node.

st at cache

The st at cache module is a simple optimization of the os. st at () function.

statvfs

The st at vf s module stores constants that are used to interpret the results of a call to the os. st at vf s() function. By the

way, the 0s. st at vf s provides information about your file system.

>>> jnport statvfs, os

>>> stat = os.statvfs(".")

>>> maxfnl = stat[statvfs.F_NAVEMAX]

>>> print "%l is the maximnumfile name | ength” % maxfnl
>>> print "that is allowed on your file system"™

255

cnp

The cnp module is used to compare files. Note that this module will be replaced by the new module f i | ecnp in Python
1.6.

cnpcache

The cnpcache module is a more efficient version of the cnp module for file comparisons. Note that this module will be
replaced by the new module f i | ecnp in Python 1.6.

time

The t i me module exposes functions for time access and conversion. It is important to remember that there are no Year 2000
issues in the Python language.

time.tinme()
It returns the current timestamp in seconds since the UNIX epoch began (start of 1970, UTC - Universal Time Coordinated).
basic syntax: ti me. ti me()

time.localtine()

It converts a time expressed in seconds into a time tuple. This tuple has the following format: (4digitsyear, month, day, hour,
minute, second, day of week, day of year, daylight savings flag).

basic syntax: ti me. | ocati ne(seconds)
time.asctinme()
It converts a time tuple into a 24-character string.

basic syntax: ti me. ascti me(tupl e)

>>> jnport tine

>>> tinme.tine()

957044415. 14

>>> tinme.localtinme(tine.tinme())

(2000, 4, 29, 17, 42, 14, 5, 120, 1)

>>> tinme.asctine(time.localtine(tinme.tine()))
"Sat Apr 29 17:42:59 2000

time.sleep()
It suspends the execution of a program for a specific number of seconds.

basic syntax: t i me. sl eep(seconds)

>>> jnport time

>>> time. sl eep(10) # waits for 10 seconds

sched

The sched module implements a general-purpose event scheduler.
get pass

The get pass module implements a portable function that enables the user to type a password without echoing the entry in
the screen.

basic syntax: get pass. get pass([pronpt])
This module also provides a function to collect information about the user's login.

basic syntax: get pass. get user ()

i nport getpass
defaul t pwd = " Ahhhhh"
user = getpass. getuser()
print "Hello %," % user
pass = getpass. get pass("Pl ease, type the password. ")
i f pass == defaul t pwd:
print "Wl cone back to the systeni!
el se:
print r"You' ve just activated the detonation process. Sorry"

curses
The cur ses module is a terminal independent 1/O interface to the curses UNIX library.

For more details, check out the cur ses HOWTO at http://www.python.org/doc/howto/curses/curses.html.

get opt

The get opt module is a parser for command-line options and arguments (sys. ar gv). This module provides the standard
C get opt functionality.

1: >>> inport getopt

2: >>>args = ['-h","-r","origin.txt',"—#file ,"work.txt"'," 755 ,"'777"]
3: >>> opts, pargs = getopt.getopt(args, "hr:', ['file="])

4: >>> opts

5 [('-h", ""), ("-r','origin.txt") , ("—file ,"work.txt')]

6: >>> pargs

7:

[' 755", 777"]

http://www.python.org/doc/howto/curses/curses.html

Before transporting arguments to this function, line 2 shows you that single options must be preceded by a single hyphen and
long options must be preceded by double hyphens.

In line 3, note that single options that require an argument must end with a colon. On the other hand, long options that require
an argument must end with an equal sign.

The get opt . get opt () returns two values: A tuple that contains pairs of (opti on, ar gunent) values (line 5), and a
list of standalone arguments that aren't associated with any options (line 7).

tempfile

The t enpf i | e module generates unique temporary filenames based on templates defined by the variables
tenpfile.tenpdir andtenpfile.tenpl ate.

tenpfile. nktenmp()

This function returns a temporary filename. It doesn't physically create or remove files.
basic syntax: fi | ename = tenpfil e. nkt enp()

>>> jnport tenpfile, os

>>> tenp = tenpfile. nktenp()

>>> open(tenp, 'wW)

>>> 0s. close(file)
>>> os.renmove(file)

tempfil e. TenporaryFil e()

This function returns a file object that is saved in your temporary local folder (/ t mp or c: / t enp, for example). The
system removes this file after it gets closed.

basic syntax: fi | eobj ect = tenpfile. TenporaryFile()
errno

The er r no module makes available the standard er r no system symbols, such as EACCES, EADDRI NUSE, and
EDEADL OCK.

Each symbol is associated to a constant error code value.

>>> jnport errno
>>> errno. ELOOP
10062

More information about this module and its symbols is provided in Chapter 4.
gl ob

The gl ob module finds and returns pathnames matching a specific pat t er n, just like the UNI X shel | does.

basic syntax: gl ob. gl ob(pattern)

>>> jnport gl ob

>>> | st = glob.glob("c:\ \ *.txt")

>>> print | st

["c:\ \ FRUNLOG TXT', 'c:\ \ DETLOG TXT', 'c:\ \ BOOTLOG TXT', 'c:\ \ SETUPLOG TXT',
"c:\ \ NETLOG TXT', 'c:\ \ RESETLOG TXT']

f nmat ch

The f nmat ch module uses wildcards to provide support for UNIX shell-style filename pattern matching. These wildcards
are different from those normally used by the r e module.

fnmat ch. f nmat ch()

This function returns 1 (t r ue) if the provided filename matches the pattern defined.

basic syntax: f nmat ch. f nmat ch()f i | enanme, pattern)

>>> jnport fnmatch
>>> fnmatch. fnmatch("foo.gif", "*.gif")
1

fnmat ch. transl at e()

This function converts a f nmat ch- st yl e pattern into a regular expression.

basic syntax: vari abl e == fnmat ch. transl at e(pattern)

>>> jnport fnmatch

>>> regexpr = fnmatch.translate("*.txt")
>>> print regexpr

K\ Ltxt $

shutil

The shut i | module provides high-level file operations. Essentially, it offers many file-copying functions and one directory

removal function.

shutil.copyfile()

It makes a straight binary copy of the source file, calling it newcopy.
basic syntax: shuti | . copyfil e(source, newcopy)
shutil.rmree()

It deletes the pat h directory, including all of its subdirectories, recursively. If i gnore_error s issetto O, errorsare
ignored. Otherwise, the oner r or function argument is called to handle the error. If the clause oner r or is set to None, an
exception is raised when an error occurs.

basic syntax: shuti |l .rntree(path, ignore_errors=0, onerror=None)

| ocal e

The | ocal e module provides access to the POSI X locale mechanism, enabling internationalization services. This module
defines a set of parameters that describe the representation of strings, time, numbers, and currency.

The good thing about using this module is that programmers don't have to worry about the specifics of each country where
their applications are executed.

nmut ex

The nmut ex module defines a mut ex class that allows mutual-exclusion support via acquiring and releasing locks.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

cmp module
curses module

finding
variables

fnmatch module

functions

getopt.getopt()

getpass.getpass()
getpass.getuser()
lob.glob

os.statvfs()

getopt.getopt() function
getpass.getpass() function
getpass.getuser() function
glob.glob() function

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=75

libraries

listing

variables
modules

cmp

curses

fnmatch

mutex

o0s 2nd 3rd

os.path 2nd

sched

shutil 2nd

stat

tempfile
mutex module
0s module 2nd 3rd
0s.path module 2nd
os.statvfs() function
sched module

searching
variables

shutil module 2nd

stat module

syntax

functions
fnmatch.fnmatch()
fnmatch.translate()
getpass.getpass()
getpass.getuser()
lob.glob

o0s.chmod()
os.listdir()
0s.mkdir()
0s.path.exists()
0s.path.isdir()
o0s.path.isfile()
o0s.path.split()
0s.popen()
os.remove()
os.removedirs()
os.rename()
0s.rmdir()
0s.system()
shutil.copyfile()
shutil.rmtree()

tempfile.mktemp()
tempfile. Temporary File()
time.asctime()
time.sleep()

time.time()

tempfile module
variables

finding
listing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > Optional See All Titles
Operational System

< BACK Make Note | Bookmark CONTINUE >

Optional Operational System

The next set of modules implements interfaces to optional operational system features. Keep in mind
that these features are not available for all platforms.

si gnal

The si gnal module provides mechanisms to access POSI X signals in order to let the programmer set
her own signal handlers for asynchronous events.

A good example is the case when it is necessary to monitor the users, checking whether they press
CTRL+C to stop the execution of a program. Although Python provides default handlers, you can
overwrite them by creating your own.

I nport signal, sys
def signal _handl er(signal, frane):
print "You have pressed CTRL+C'
signal . signal (signal.SIGNT, signal.SIG |G\
print "Now, you can\ 't stop the script wwth CTRL+C " }
"for the next 10 seconds!"
signal . signal (signal.SI GALRM al arm handl er)
signal . al arn{ 10)
while 1:
print "I am | ooping"

def al arm handl er(signal, frane):
print "Now you can | eave the progrant
sys. exit(0)

signal . signal (signal.SI G NT, signal handl er)
print "Press CTRL+C'
whil e 1:

conti nue

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=76
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A29%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=76&now=5%2F31%2F2002+4%3A29%3A13+PM

Some of the available signals you can use are as follows:

SIGALRM Alarm

SIGCONT Continue

SIGING Terminal interrupt character
SIGQUIT Terminal Quit character

SIGTERM Termination

SIG_IGN Signal handler that ignores a signal
socket

The socket module provides access to a low-level BSD socket-style network interface.

See Chapter 10, "Basic Network Background," for details.

sel ect

The sel ect module is used to implement polling and to multiplex processing across multiple 1/0
streams without using threads or subprocesses. It provides access to the BSD sel ect () function
interface, available in most operating systems.

On windows it only works for socket s. On UNIX, it is used for pi pes, sockets, files, and
SO on.

See Chapter 10 for details.

t hr ead

The t hr ead module supports lightweight process threads. It offers a low-level interface for working
with multiple threads.

See Chapter 9 for details.

t hr eadi ng
The t hr eadi ng module provides high-level threading interfaces on top of the t hr ead module.
See Chapter 9 for details.

Queue

The Queue module is a synchronized queue class that is used in thread programming to move Python
objects between multiple threads.

See Chapter 9 for details.

anydbm

The anydbmmodule is a generic dom st yl e interface to access variants of the dbmdatabase.
See Chapter 8 for details.

dunbdbm

The dunbdbmmodule is a simple, portable, and slow database implemented entirely in Python.
See Chapter 8 for details.

dbhash

The dbhash module provides a function that offers a dbom st ylI e interface to access the BSD
database library.

See Chapter 8 for details.

whi chdb

The whi chdb module provides a function that guesses which dbm nodul e (dbm gdbm or
dbhash) should be used to open a specific database.

See Chapter 8 for details.

bsddb
The bsddb module provides an interface to access routines from the Berkeley db library.

See Chapter 8 for details.

zlib

The zI i b module provides functions that allow compression and decompression using the zl i b
library. The compression that is provided by this module is compatible with gzi p.

For more details check out the zI i b library home page at http://www.cdrom.com/pub/infozip/lib.

gzip

The gzi p module offers support for gzi p files. This module provides functions that allow
compression and decompression using the GNU compression program gzi p.

This module has a class named Gzi pFi | e that can be used to read and write files compatible with the
GNU gzi p program. The objects that are generated by this class behave just like file objects. The only
exception is that the seek and t el | methods aren't part of the standard implementation.

>>> jnport gzip

>>> gzipfile = gzip. &ipFile("backup.gz")
>>> contents = gzipfile.read()

>>> print contents

rlconpl eter
The r | conpl et er module provides a completion function for the r eadl i ne module.

The r eadl i ne module is a UNIX module that is automatically imported by r | conpl et er. It uses
a compatible GNU readline library to activate input editing on UNIX.

< BACK Make Note | Bookmark CONTINUE >

http://www.cdrom.com/pub/infozip/lib
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=76

Index terms contained in this section

completion function
functions

completion
libraries
Optional Operational System 2nd 3rd

modules
ricompleter

signal 2nd
Optional Operational System library 2nd 3rd

rlcompleter module
signal module 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > Debugger See All Titles

< BACK Make Note | Bookmark CONTINUE >

Debugger

The pdb module defines an interactive source code debugger for Python programs. You can use this

tool to verify and modify variables and to set and examine breakpoints. It allows inspection of stack
frames, single stepping of source lines, and code evaluation. This module is based on the module bdb,

which implements a generic Python debugger base class.

See Chapter 17,"Development Tools," for details.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

modules
pdb
pdb module

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=77
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A29%3A28+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=77&now=5%2F31%2F2002+4%3A29%3A28+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=77

Web Development > Python Developer's Handbook > 3. Python Libraries > Profiler See All Titles

< BACK Make Note | Bookmark CONTINUE >

Profiler

The pr of i | er module is a code execution profiler. This tool can be used to analyze statistics about

the runtime performance of a program. It helps you to identify what parts of your program are running
slower than the expected and what can be done to optimize it. The pst at s module works along with

the pr of i | er module in order to analyze the collected data.

See Chapter 17 for details.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

modules

pstats
pstats module

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=78
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A29%3A38+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=78&now=5%2F31%2F2002+4%3A29%3A38+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=78

Web Development > Python Developer's Handbook > 3. Python Libraries > Internet See All Titles
Protocol and Support

< BACK Make Note | Bookmark CONTINUE >

Internet Protocol and Support

These are the modules that implement internet protocols and support for related technology.
For examples and details about the following modules, refer to Chapters 10-12.
cgi

The cgi module is used to implement CGI (common gateway interface) scripts and process form
handling in Web applications that are invoked by an HTTP server.

See Chapter 12, "Scripting Programming," for details.

urllib

The ur | I'i b module is a high-level interface to retrieve data across the World Wide Web. It opens any
URL using sockets.

See Chapters 10 and 12 for details.

httplib

The ht t pl i b module implements the client side of the HTTP (Hypertext Transfer Protocol) protocol.
Tip

HTTP is a simple text-based protocol used for World Wide Web applications.

See Chapters 10 and 12 for details.

ftplib

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=79
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A29%3A45+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=79&now=5%2F31%2F2002+4%3A29%3A45+PM

The f t pl i b module implements the client side of the FTP protocol. You can use it for mirroring FTP
sites. Usually the ur | I i b module is used as an outer interface to f t pl i b.

See Chapters 10 and 12 for details.

gopherlib

The gopher | i b module is a minimal client-side implementation of the Gopher protocol.
poplib

The popl i b module provides a low-level, client-side interface for connecting to a POP3 server using
a client protocol, as defined in the Internet standard RFC 1725.

See Chapter 10 for details.
I maplib

The i npal i b module provides a low-level, client-side interface for connecting to an IMAP4 mail
server using the | MAP4r ev 1 client protocol, as defined in the Internet standard RFC 2060.

See Chapter 10 for details.
nntplib

The nnt pl i b module implements a low-level interface to the client side of the NNTP (Network News
Transfer Protocol) protocol—a service mostly known for implementing newsgroups.

See Chapter 10 for details.
smplib

The snt pl i b module provides a low-level client interface to the SMTP protocol that can be used to
send email to any machine in the Internet that has an SMTP or ESMTP listener daemon.

See Chapter 10 for details.

telnetlib

Thet el net | i b module implements a client for the telnet protocol.

url parse

The ur | par se module manipulates a URL string, parsing it into tuples. It breaks a URL up into
components, combines them back, and converts relative addresses to absolute addresses.

See Chapters 10 and 12 for details.

Socket Ser ver

The Socket Ser ver module exposes a framework that simplifies the task of writing network servers.

Rather than having to implement servers using the low-level socket module, this module provides four
classes that implement interfaces to the mostly used protocols: TCPSer ver , UDPSer ver,

Uni xSt r eanSer ver, and Uni xDat agr anSer ver . All these classes process requests
synchronously.

See Chapter 10 for details.

BaseHT TPSer ver

The BaseHTTPSer ver module defines two base classes for implementing basic HTTP servers (also
known as Web servers).

See Chapter 10 for details.

Si npl eHTTPSer ver

The Si npl eHTTPSer ver module provides a simple HTTP server request-handler class. It has an
interface compatible with the BaseHTTPSer ver module that enables it to serve files from a base
directory.

See Chapter 10 for details.

CA HTTPSer ver

The CA HTTPSer ver module defines a simple HTTP server request-handler class. It has an interface
compatible with BaseHTTPSer ver that enables it to serve files from a base directory, but it can also
run CGlI scripts.

See Chapters 10 and 12 for details.

asyncore

The asyncor e module provides the basic infrastructure for writing and handling asyncronous socket
service clients and servers that are the result of a series of events dispatched by an event loop.

See Chapter 10 for details.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

httplib module
Internet

libraries

Internet Protocol and Support 2nd 3rd

libraries

Internet Protocol and Support 2nd 3rd
modules

httplib

smtplib
protocols

Internet Protocol and Support library 2nd 3rd

smtplib module

support
Internet Protocol and Support library 2nd 3rd

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=79

Web Development > Python Developer's Handbook > 3. Python Libraries > Internet Data See All Titles
Handling

< BACK Make Note | Bookmark CONTINUE >

Internet Data Handling

This group covers modules that support encoding and decoding of data handling formats and that are
largely used in Internet applications.

For more details and examples about using these modules, see Chapter 13, "Data Manipulation."”

sgmlib

The sgm | i b module is an SGML (Standard Generalized Markup Language) parser subset. Although
it has a simple implementation, it is powerful enough to build the HTML parser.

htmlib

The ht m | i b module defines a parser for text files formatted in HTML (Hypertext Markup
Language).

ht M entitydefs

The ht M ent i t ydef s module is a dictionary that contains all the definitions for the general entities
defined by HTML 2.0.

xm b
The xm | i b module defines a parser for text files formatted in XML (Extensible Markup Language).
formatter

The f or mat t er module is used for generic output formatting by the HTM_Par ser class of the
ht m | i b module.

rfc822

The r f 822 module parses mail headers that are defined by the Internet standard RFC 822. The

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=80
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A29%3A53+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=80&now=5%2F31%2F2002+4%3A29%3A53+PM

headers of this form are used in a number of contexts including mail handling and in the HTTP
protocol.

m net ool s

The m met ool s module provides utility tools for parsing and manipulation of MIME multipart and
encoded messages.

Tip

MIME (multipurpose Internet mail extensions) is a standard for sending multipart multimedia data
through Internet mail.

MmeWite

The M meW i t e module implements a generic file-writing class that is used to create MIME-encoded
multipart files.

multifile

Thermul tifil e module enables you to treat distinct parts of a text file as file-like input objects.
Usually, this module uses text files that are found in MIME encoded messages.

bi nhex

The bi nhex module encodes and decodes files in bi nhex4 format. This format is commonly used to
represent files on Macintosh systems.

uu

The uu module encodes and decodes files in uuencode format. This module does its job by
transferring binary data over an ASCII-only connection.

bi nasci i

The bi nasci i module implements methods to convert data between binary and various ASCII-
encoded binary representations.

base64

The base64 module performs base64 encoding and decoding of arbitrary binary strings into text

strings that can be safely emailed or posted. This module is commonly used to encode binary data in
mail attachments.

xdrlib

The xdr I i b module is used extensively in applications involving Remote Procedure Calls (RPC).

Similarly, it is often used as a portable way to encode binary data for use in networked applications.
This module is able to encode and decode XDR data because it supports the external data
representation (XDR) Standard.

mai | cap

The mai | cap module is used to read mai | cap files and to configure how MIME-aware applications
react to files with different MIME types.

Note

mai | cap files are used to inform mail readers and Web browsers how to process files with
different MIME types.

m met ypes

The m met ypes module supports conversions between a filename or URL and the MIME type
associated with the filename extension.

Essentially, it is used to guess the MIME type associated with a file, based on its extension, as shown in
Table 3.1.

Table 3.1. Some MIME Type Examples

Fi | ename Ext ension M ME Type Associ at ed
.htm text/html
. rdf application/xml

.gif image/gif

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/80#17.html

quopr i

The quopr i module performs encoding and decoding of MIME quoted printable data. This format is
primarily used to encode text files.

mai | box

The mai | box module implements classes that allow easy and uniform access to read various mailbox
formats in a UNIX system.

mhlib
The mhl i b module provides a Python interface to access IVH folders and their contents.
mmfy

The m m f y module has functions to convert and process simple and multipart mail messages to/from
the MIME format.

netrc

The net r ¢ module parses, processes, and encapsulates the . net r ¢ configuration file format used by
the UNIX FTP program and other FTP clients.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

data
handling
Internet Data Handling library 2nd 3rd 4th

handling
data
Internet Data Handling library 2nd 3rd 4th

Internet Data Handling library 2nd 3rd 4th

libraries
Internet Data Handling 2nd 3rd 4th

mailcap module
modules

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=80

mailcap
xdrlib

xdrlib module

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > Restricted See All Titles
Execution

< BACK Make Note | Bookmark CONTINUE >

Restricted Execution

Restricted Execution is the basic framework in Python that allows the segregation of trusted and
untrusted code. The next modules prevent access to critical operations mostly because a program
running in trusted mode can create an execution environment in which untrusted code can be executed
with limited privileges.

rexec

The r exec module implements a basic restricted execution framework by encapsulating, in a class,

the attributes that specify the capabilities for the code to execute. Code executed in this restricted
environment will only have access to modules and functions that are believed to be safe.

Basti on

The Bast i on module provides restricted access to objects. This module is able to provide a way to
forbid access to certain attributes of an object.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

execution
Restricted Execution library

libraries
Restricted Execution

Restricted Execution library

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=81
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A30%3A01+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=81&now=5%2F31%2F2002+4%3A30%3A01+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=81

Web Development > Python Developer's Handbook > 3. Python Libraries > Multimedia See All Titles

< BACK Make Note | Bookmark CONTINUE >

Multimedia

The next several modules implement algorithms and interfaces that are mainly useful for multimedia
applications.

audi oop
The audi oop module manipulates raw audio data, such as samples and fragments.
I mageop

The i mageop module manipulates raw image data by operating on images consisting of 8- or 32-bit
pixels stored in Python strings.

alfc

The ai f ¢ module is devoted to audio file access for Al FF and Al FC formats. This module offers
support for reading and writing files in those formats.

sunau
The sunau module provides an interface to read and write files in the Sun AU sound format.
wav e

The wave module provides an interface to read and write files in the WAV sound format. It doesn't
support compression/decompression, but it supports mono/stereo channels.

chunk

The chunk module provides an interface for reading files that use EA | FF 85 data chunks. This
format is used in the Al FF/ Al FF- C, RMFF, and Tl FF formats.

col or sys

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=82
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A30%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=82&now=5%2F31%2F2002+4%3A30%3A10+PM

The col or sys module defines bidirectional conversions of color values between colors expressed in
RGB and three other coordinate systems: YI Q HLS, and HSV.

r gbi ny

The r gbi ng module allows Python programs to read and write SGIi ngl i b . r gb files—without
requiring an SGI environment.

I nghdr
The i nghdr module determines the type of an image contained in a file or byte stream.

sndhdr

The sndhdr module implements functions that try to identify the type of sound contained in a file.

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
Multimedia 2nd

Multimedia library 2nd

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=82

Web Development > Python Developer's Handbook > 3. Python Libraries > Cryptographic See All Titles

< BACK Make Note | Bookmark CONTINUE >

Cryptographic
The following modules implement various algorithms of cryptographic nature.
For more information about this topic, you can also check out the following Web site:

http://starship.python.net/crew/amk/python/crypto.html

It contains cryptographic modules written by Andrew Kuchling for reading and decrypting PGP files.

md5

The nd5 module is a cryptographically secure hashing algorithm that implements an interface to RSA's
MD5 message digest algorithm. Based on a given string, it calculates a 128-bit message signature.

sha

The sha module is a message digest algorithm that implements an interface to NIST's secure hash
algorithm, known as sha. This module takes a sequence of input text and generates a 160-bit hash
value.

npz
The npz module implements the interface to part of the GNU multiple precision integer libraries.

rotor

The r ot or module implements a permutation-based encryption and decryption engine. (The design is
derived from the Enigma device, a machine used by the Germans to encrypt messages during WWI1.)

>>> | nport rotor

>>> nessage = raw_i nput ("Enter the nessage")
>>> key = raw_i nput ("Enter the key")

>>> new = rotor.new otor(key)

>>> enc = new.encrypt(nmessage)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=83
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A30%3A19+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=83&now=5%2F31%2F2002+4%3A30%3A19+PM
http://starship.python.net/crew/amk/python/crypto.html

>>> print "The encoded nessage is: ", repr(enc)
>>> dec = new . decrypt(enc)
>>> print "The decoded nessage is: ", repr(dec)

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

devices

Enigma
Enigma device

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=83

Web Development > Python Developer's Handbook > 3. Python Libraries > UNIX Specific See All Titles

< BACK Make Note | Bookmark CONTINUE >

UNIX Specific

This group of modules exposes interfaces to features that are specific to the UNIX environment.
posSi X

The posi x module provides access to the most common POSI X system calls. Do not import this
module directly; instead, | suggest that you import the os module.

>>> uid = posix.getuid() # returns the user id

pwd

The pwd module provides access to the UNIX passwd (password database) file routines.

pwd. get pwnan)

Returns the password of a given user.

basic syntax: password = get pwnan{ user nane) [1]

>>> jnport pwd, getpass
>>> pw = pwd. get pwnan(get pass. getuser ())[1]

grp
The gr p module provides access to the UNIX group database.

crypt

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=84
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A30%3A28+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=84&now=5%2F31%2F2002+4%3A30%3A28+PM

The cr ypt module offers an interface to the UNIX cr ypt routine. This module has a hash function
based on a modified DES algorithm that is used to check UNIX passwords.

To encrypt:

newpwd = crypt.crypt(passwordstring, salt)

sal t consists of a two-random character seed used to initialize the algorithm.

To verify:

I f newpwd == crypt.crypt(passwordstring, newpwd[: 2])
| nport get pass

| nport pwd

i nport crypt

unanme = get pass. getuser() # get usernane from environnent
pw = get pass. get pass() # get entered password

real pw = pwd. get pwnan(unane)[1] # get real password
entrpw = crypt.crypt(pw, realpw:2]) # returns an encrypted password
I f real pw == entrpw # conpare passwords
print "Password Accepted"
el se:
print "Get |ost."

dl nodul e

The dl nodul e module exposes an interface to call C functions in shared objects that handle

dynamically linked libraries. Note that this module is not needed for dynamic loading of Python
modules. The documentation says that it is a highly experimental and dangerous device for calling
arbitrary C functions in arbitrary shared libraries.

dbm

The dbmmodule is a database interface that implements a simple UNIX (n) dbomlibrary access
method. dbmobjects behave like dictionaries in which keys and values must contain string objects. This

module allows strings, which might encode any python objects, to be archived in indexed files.
See Chapter 8 for details.

gdbm

The gdbmmodule is similar to the dbmmodule. However, their files are incompatible. This module
provides a reinterpretation of the GNU dbmlibrary.

See Chapter 8 for details.
term os

The t er m os module provides an interface to the POSI X calls for managing the behavior of the
POSI Xtty.

TERM OS
The TERM OS module stores constants required while using the t er m os module.

tty

The t t y module implements terminal controlling functions for switching the t t y into cbr eak and
r aw modes.

pty
The pt y module offers utilities to handle the pseudo-terminal concept.
fcntl

The f cnt | module performs file and 1/0O control on UNIX file descriptors. This module implements
Thefcntl () andi octl () system calls, which can be used for file locking.

pi pes

The pi pes module offers an interface to UNIX shell pipelines. By abstracting the pipeline concept, it
enables you to create and use your own pipelines.

posi xfile

The posi xfi | e module provides file-like objects with support for locking. It seems that this module
will become obsolete soon.

resource

The r esour ce module offers mechanisms for measuring and controlling system resources used by a
program.

ni s

The ni s module is a thin wrapper around Sun's NIS library.

sysl og

The sysl og module implements an interface to the UNIX sysl og library routines. This module

allows you to trace the activity of your programs in a way similar to many daemons running on a typical
GNUY/Linux system.

| mport sysl og
sysl og. syslog(' This script was activated')
print "I ama |unberjack, and I am OK!'"

sysl og. sysl og(' Shutting down script')

Usethecommandtail -f /var/| og/ messages toread what your script is writing to the log.
popen2

The popen2 module allows you to create processes by running external commands and to connect their
accessible streams (st di n, st dout, and st der r) using pipes.

| nport os, popen2

strl = os.popen('Is',"'r").read()
print strl

outl,inl = popen2. popen2('cat')
inl.wite(strl)

i nl. cl ose()

str2 = outl.read()

out 1. cl ose()

print str2

Note

Note that as of release 2.0, functions popen2, popen3, popen4 are supported on the Windows
Platform.

commands
The commands module provides functions that execute external commands under UNIX by

implementing wrapping functions for the os. popen() function. Those functions get a system
command as a st r i ng argument and return any output generated by that command.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

checking
UNIX passwords

dimodule module
encrypting

UNIX passwords
functions

popen2

popen3

popen4
gdbm module
arp module
libraries

operating systems

UNIX Specific 2nd

modules

dimodule

gdbm

arp

pwd
passwords

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=84

UNIX, encrypting
UNIX, verifying
popen2 function
popen3 function
popen4 function
pwd module
syntax

functions
pwd.getpwnam()

UNIX Specific library 2nd

verifying
UNIX passwords

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > SGI IRIX See All Titles
Specific

< BACK Make Note | Bookmark CONTINUE >

SGI IRIX Specific

The following features are specific to SGI's IRIX Operating System.

al

The al module implements access to the audio functions of the SGI Indy and Indigo workstations.
AL

The AL module stores constants that are used with the al module.

cd

The cd module provides an interface to the Silicon Graphics CD-ROM Library.

fl

The f I module provides an interface to the FORMS Library (by Mark Overmars) for GUI
applications.

FL
The FL module stores constants that are used with the f | module.

flp

The f | p module defines functions that can load stored form designs created by the form designer
(f desi gn) program that comes with the FORMS library (the f I module).

fm

The f mmodule implements an interface that provides access to the IRIS font manager library.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=85
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A30%3A36+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=85&now=5%2F31%2F2002+4%3A30%3A36+PM

gl

The gl module implements an interface that provides access to the Silicon Graphics graphic library.

Note that this is different for OpenGL. There is a wrapper for OpenGL called PyOpenGL. More details
can be found at Chapter 14, "Python and GUIs."

DEVI CE

The DEVI CE module defines the constants that are used with the gl module.
a

The GL module stores the constants that are used with the gl module.
imgfile

The i ngf i | e module implements support to access SGI'si ngl i b image files.

] Peg

The j peg module provides image file access (read and write) to the JPEG compressor and
decompressor format written by the Independent JPEG Group (1JG).

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

al module
IRIX Operating System

SGI IRIX Specific library 2nd
libraries

operating systems

SGI IRIX Specific 2nd

modules

al
SGI IRIX Specific library 2nd

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=85

Web Development > Python Developer's Handbook > 3. Python Libraries > Sun OS See All Titles
Specific

< BACK Make Note | Bookmark CONTINUE >

Sun OS Specific

These modules implement interfaces that are specific to the Sun OS Operating System.

sunaudi odev

The sunaudi odev module implements an interface that gives you access to the Sun audio hardware.

SUNAUDI ODEV

The SUNAUDI ODEV module stores the constants that are used with the sunaudi odev module.

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=86
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A30%3A45+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=86&now=5%2F31%2F2002+4%3A30%3A45+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=86

Web Development > Python Developer's Handbook > 3. Python Libraries > MS Windows See All Titles
Specific

< BACK Make Note | Bookmark CONTINUE >

MS Windows Specific

The next modules define interfaces that are specific to the Microsoft Windows Operating System.

msvcrt

The msvcrt module implements many functions that provide access to useful routines from the
Microsoft Visual C++ runtime library.

W nsound

The wi nsound module implements an interface that provides access to the sound-playing
environment provided by W ndows Platforms.

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
operating systems
MS Windows Specific
MS Windows Specific library
Windows
MS Windows Specific library

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=87
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A30%3A54+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=87&now=5%2F31%2F2002+4%3A30%3A54+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=87

Web Development > Python Developer's Handbook > 3. Python Libraries > Macintosh See All Titles
Specific

< BACK Make Note | Bookmark CONTINUE >

Macintosh Specific

The following modules implement specific interfaces to the Macintosh Operating System.

For more information about Macintosh module, take a look at the online Macintosh Library Reference
at http://www.python.org/doc/mac.

fi ndertool s

The f i ndert ool s module provides access to some of the functionality presented in the Macintosh
fi nder. Itlaunches, prints, copies, and moves files; it also restarts and shuts down the machine.

macf s

The macf s module is used to manipulate files and aliases on the Macintosh OS.

macost ool s

The macost ool s module implements functions for file manipulation on the Macintosh OS.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
operating systems
Macintosh Specific
Macintosh Specific library
Windows
Macintosh Specific library

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=88
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A31%3A04+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=88&now=5%2F31%2F2002+4%3A31%3A04+PM
http://www.python.org/doc/mac
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=88

Web Development > Python Developer's Handbook > 3. Python Libraries > Undocumented See All Titles
Modules

< BACK Make Note | Bookmark CONTINUE >

Undocumented Modules

Currently, the modules listed in this section don't have any official documentation. However, you might
find some information about them in this book, by browsing an updated version of the online library
reference, or by checking some other Web site.

Frameworks
The next modules represent some Python frameworks that don't have any official documentation yet.

Tki nt er — This module allows you to create GUIs (graphical user interfaces) because
it implements an interface to the Tcl/Tk windowing libraries (see Chapter 15, "Tkinter,"
for details).

Tkdnd— This module provides drag-and-drop support for Tki nt er .
t est — This package is responsible for the regression-testing framework.

Miscellaneous Useful Utilities

At this time this book went to press, the following modules didn't have any official documentation.
dircmp

This module defines a class on which to build directory comparison tools.

t zpar se

This module is an unfinished work to parse a time zone specification.

i hooks

The i hooks module is a framework that manages the co-existence of different import routines.

Platform Specific Modules

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=89
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A31%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=89&now=5%2F31%2F2002+4%3A31%3A13+PM

These are implementation details of the os module.
dospat h, macpat h, posi xpat h, ntpath

These modules are for their platforms what the os. pat h module is for the UNIX platform. They can
all be used by any platform in order to handle pathnames of different platforms.

Multimedia

At the time this book went to press, the following modules didn't have any official documentation.

audi odev, sunaudi o, toaiff

Obsolete
The following modules became obsolete as of release 1.6:

stdwin, soundex, cml, cmpcache, dircache, dump, find, grep, packmail, poly, zmod, strop, util, and
whatsound.

Note that release 2.0 hasn't made any module obsolete. All modules that were replaced were moved to
the | i b- ol d subdirectory of the distribution. That list, includes: cmp, cmpcache, dircmp, dump, find,

grep, packmail, poly, util, whatsound, zmod.
ni
Before version 1.5a4, the ni module was used to supporti nport package statements.

dunp

The dunp module prints the definition of a variable. Note that this module can be substituted for the
pi ckl e module.

>>> jnport dunp

>>> var = (10, 20, 30, 40)

>>> dunp. dunpvar (" newar", var)
newar = (10, 20, 30, 40)

Extension Modules
The following modules are obsolete tools to support GUI implementations.

st dwi n— This module provides an interface to the obsolete STDW N. STDW Nis an
unsupported platform-independent GUI interface that was replaced by Tki nt er .

st dw nevent s— Interacts with the st dwi n module by providing pi pi ng services.

New Modules on Python 2.0

Next, you a have a list of new modules that were introduced to Python recently. As always, | suggest
you take a look at the 2.0 documentation for details about any given module.

atexit— Registers functions to be called when Python exits. If you already use the
function sys. exi t func(), you should change your code to import at exi t, and

call the function at exi t . regi st er (), passing as an argument the function that you
want to call on exit.

codecs— Provides support (base classes) for Unicode encoders and decoders, and
provides access to Python's codec registry. You can use the functions provided by this
module to search for existing encodings, or to register new ones. Most frequently, you
will adhere to the function codecs. | ookup(encodi ng), which returns a 4-

function tuple: (encoder, decoder, stream_reader, stream_writer). This module along with
the unicodedata module was added as part of the new Unicode support to Python 2.0.
The condec class defines the interface for stateless encoders and decoders. The

following functions and classes are also available in this module.

codec. encode() — Takes a Unicode string, and returns a 2-tuple (8-bit-string,

length). The length part of the tuple shows how much of the Unicode string was
converted.

codec. decode() — Takes an 8-bit string, and returns a 2-tuple (ustring, length). The
length part of the tuple shows how much of the 8-bit string was consumed.

codecs. stream reader(fil e _object)— Thisis a class that supports
decoding input from a stream. Objects created with this class carry the r ead() ,
readl i ne(), andreadl i nes() methods, which allow you to take the given

encoding of the object, and read as a Unicode string.

codecs.streamwiter(fil e _object)— Thisis a class that supports
encoding output to a stream. Objects created with this class carry thewri t e() and

wri telines() methods, which allow you to pass Unicode string to the object, and let
the object translate them to the given encoding on output.

unicodedata— This module provides access to the Unicode 3.0 database of character
properties. The following functions are available:

uni codedat a. cat egory(u' P') returns the 2-character string 'Lu’, the 'L'denoting
it's a letter, and 'u’'meaning that it's uppercase.

uni codedat a. bi di recti onal (u'\ x0660') returns 'AN', meaning that
U+0660 is an Arabic number.

encodings— This is a package that supplies a wide collection of standard codecs.
Currently, only the new Unicode support is provided.

distutils— Package of tools for distributing Python modules.

filecmp— This module comes into place of both the cnp. py, the cnpcache. py and
di r cnp. py modules.

gettext— Provides an interface to the GNU gettext message catalog library in order to
supply internationalization (I118N) and localization (L10N) support for Python programs.

Imputil— This module is an alternative API for writing customized import hooks in a
simpler way. It is similar to the existing ihooks module.

linuxaudiodev— Provides audio for any platform that supports the Open Sound System

(OSS). Most often, it is used to support the / dev/ audi o device on Linux boxes. This
module is identical to the already existing sunaudi odev module.

mmap— This module works on both Windows and Unix to treat a file as a memory
buffer, making it possible to map a file directly into memory, and make it behave like a
mutable string.

pyexpat— This module is an interface to the Expat XML parser.

robotparser— Initially at Tool s/ webchecker/, this module parses a

< BACK

robot s. t xt file, which is used for writing web spiders.

sre— This module is a new implementation for handling regular expressions. Although
it is still very raw, its features include: faster mechanism, and support to unicode. The
idea of the development team is to reimplement the re module using sre (without making
changes to the re API).

tabnanny— Originally at Tool s/ scri pt s/, this module checks Python sources for
tab-width dependance (ambiguous indentation).

urllib2— This module is an experimental version of urllib, which will bring new and
enhanced features, but will be incompatible with the current version.

UserString— This module exposes a base class for deriving objects from the string
type.

xml— This package covers the whole-new XML support and it is organized in three
subpackages: xml.dom, xml.sax, and xml.parsers.

webbrowser— A module that provides a platform independent API to launch a web
browser on a specific URL.

_winreg— This module works as an interface to the Windows registry. It contains an
enhanced set of functions that has been part of PythonWin since 1995.

zi pfi | e— This module reads and writes zip-format archives (the format produced by
PKZIP and zip applications. Not the one produced by the gzip program!).

Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=89

Index terms contained in this section

winreg module
atexit module
codecs module 2nd
disutils module
encodings module
filecmp module
gettext module
imputil module

libraries
Undocumented Modules

linuxaudiodev module
mmap module
modules
winreg
atexit
codecs 2nd
disutils
encodings
filecmp
gettext

imputil
linuxaudiodev
mmap
obsolete
pyexpat
robotparser
sre
tabnanny
Undocumented
unicodedata
urllib2
UserString
webbrowser
xml
zipfile
obsolete modules
pyexpat module
robotparser module
sre module
tabnanny module
Undocumented Modules
unicodedata module
urllib2 module

UserSTring module
webbrowser module
xml module

zipfile module

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > Summary See All Titles

< BACK Make Note | Bookmark CONTINUE >

Summary

Python's standard distribution is shipped with a rich set of libraries (also known as modules). This
chapter introduces you to the practical side of several modules'utilization.

The following items are groups that organize all the modules that are mentioned in this chapter.
Python Services

The modules from this group provide access to services related to the interpreter and to Python's
environment.

The String Group

This group is responsible for many kinds of string services available. Its modules provide access to
several types of string manipulation operations.

Miscellaneous

This group handles many functions that are available for all Python versions, such as mathematical
operations and randomizing functions.

Generic Operational System

This group of services provides interfaces to operating system features that you can use in almost every
platform.

Optional Operational System
This set of modules implements interfaces to optional operational system features.
Debugger

The pdb module defines an interactive source code debugger for Python programs.

Profiler

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=90
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A31%3A23+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=90&now=5%2F31%2F2002+4%3A31%3A23+PM

The pr of i | er module is a code execution profiler.

Internet Protocol and Support
These are the modules that implement internet protocols and support for related technology.
Internet Data Handling

This group covers modules that support encoding and decoding of data handling formats and that are
largely used in Internet applications.

Restricted Execution
These modules prevent access to critical operations.
Multimedia

This group of modules implements algorithms and interfaces that are mainly useful for multimedia
applications.

Cryptographic
These modules implement various algorithms of cryptographic nature.
OS Specific (UNIX, SGI IRIX, SUN OS, MS Windows, and Macintosh)

These groups of modules expose interfaces to features that are specific to the OS environment of each
one of them.

Undocumented Modules
This group contains the modules that currently don't have any official documentation.
New Modules in Python 2.0

These are the new modules that will be part of the next release of Python.

<BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=90

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 4. Exception Handling See All Titles

< BACK Make Note | Bookmark CONTINUE >

Chapter 4. Exception Handling

Oh my God, he's fallen off the edge of the cartoon.

This chapter's aim is to teach you how to handle exception situations and how to manage error
messages. Certainly the next couple of pages will guide you through a fantastic “catch-all-errors" kind
of programming experience.

<BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=92
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A31%3A29+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=92&now=5%2F31%2F2002+4%3A31%3A29+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=92

Web Development > Python Developer's Handbook > 4. Exception Handling > Exception See All Titles
Handling

< BACK Make Note | Bookmark CONTINUE >

Exception Handling

Exceptions are mostly used for error handling and event notification. They work by breaking the
regular flow of a program and jumping to a special set of statements that handle the exception case.
Python has many standard exceptions, which are exceptions already built into the language. Python
also supports user-defined exceptions, which are exceptions created by users. The provided exceptions
are almost no different from user-defined exceptions—the only difference is that they are defined in
one of the files in the standard library (except i ons. py).

Any unexpected program behavior drives the interpreter to raise an exception. Many scenarios can help
an exception to be raised, such as dividing a number by zero or reading from a nonexistent file. Note
that the programmer can also manually raise exceptions with the r ai se statement.

The default behavior of Python, when it encounters unhandled exceptions, is to terminate the program
and to display a traceback message that describes the error condition. My goal in this chapter is to show
you how to handle those exceptions.

If you don't handle exceptions in your program, Python's interpreter returns a traceback message that
shows the error message, the exception type, the function that contains the error, and the line of code
that has caused the error. Hence, a complete history of what has caused the error is provided.

So that you can start learning how Python raises and handles exceptions, | will define the following
example:

>>>a ={ "a":1,"b": 2}
>>> def returnel enent (el enent):
print a[el ement]

Now, we will call this function:

>>> print returnelement("c")

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=93
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A31%3A40+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=93&now=5%2F31%2F2002+4%3A31%3A40+PM

Note that "c" is not part of the a dictionary. Therefore, Python raises an exception that displays the
following traceback message.

Traceback (innernost |ast):

File "<stdin>", line 1, in ?

File "<stdin>", line 2, in returnel enent
KeyError: c

The last line of the traceback message tells us what exception was raised and what element has caused
the exception to be triggered. If we run the previous code in the interpreter, the Fi | e clause is set to

"<st di n>" by default because the code lines come from the keyboard and not from a file. However, if
we run the code from an external file, the filename becomes part of the Fi | e clause. It is also worth

mentioning that the line numbers are relative to the statement where the error occurred when the code
was entered interactively. So, we get line 2 in the traceback because the exception occurred on the
second line of the function, which was treated as a single statement. The outermost part of the trace
says line 1 because the call to r et ur nel enment was treated as a one-line statement.

Next to the filename, we have a line number, which is the line in which the error has been triggered.
Next to the line number is the name of the function that caused the error.

Tip

By handling exceptions, you can save a lot of time while testing your code.

Exceptions can be handled by using eithert ry/ except ortry/ fi nal | y statements. The
difference between them is that an except clause is only executed when an exception is raised, and a
final | y clause is always executed; it doesn't matter whether an exception is raised or not. Also, the
try/finally block doesn't catch the exception liket ry/ except can.

Next is the standard structure forat ry/ except statement:

try:
<st at enent s>

except [<exception_nanme> [, <instance variable>]]:
<exception handling statenents>

[el se:
<statenents executed only when no exception is rai sed>]

The el se block must be inserted after the last exception block, and it is only executed when the t ry
block doesn't raise any errors.

In order to handle multiple exceptions, you can use multiple except clauses for the same t r y block.

The next example raises an error message whenever it can't find a given element.

>>> npane = ["Andre", "Renata", "Joao", "Rebecca"]
>>> def getnane(order):
try:
I f order < 10:
data = nane[order]
el se:
file = open("nanmes.txt")
data = file.readline()
file.close()
return data
except | ndexError:
print "This name is not in the list."
except | Oerror:
print "The file nanes.txt does not exist."

>>> get nanme(0)

" Andr e"

>>> get nane(8)

"This name is not in the list."

>>> get nanme(20)

"The file names.txt does not exist."

Python syntax also enables you to use a single except clause that handles all exceptions. The general
syntax for the except clause for handling all exceptions is to not specify any exception types at all,
such as

try:
<st at enent s>
except:
<exception handling statenents>

Next, you have the syntax and an example for handling multiple exception types.

except (exceptionl, exception 2, exception 3)[, variable]:

>>> pnane = ["Andre", "Renata", "Joao", "Rebecca"]
>>> def getnane(order):
try:
I f order < 10:
data = nane[order]
el se:
file = open("nanmes.txt")
data = file.readline()
file.close()
return data
except (lIndexError, 1CError):
print "Data not available."

>>> get nane(8)

"Data not avail able."
>>> get nanme(20)

"Data not avail able."

You can also use t ry/ except statements to ignore exceptions. The next structure uses a pass

statement to ignore an exception whenever it gets raised. However, note that if an exception is raised,
all the remaining statements in the t r y block will not be executed.

try:
<st at enent s>

except <exception_nane>:
pass

In the next example, we use exceptions not to catch and handle an unexpected error, but to ignore
errors that we know might happen when the code is running. As you can see, an exception is raised
every time you try to convert a text string into a float number in line 6. However the pass statement in

line 8 simply ignores the problem.

1: >>> inport string

2: >>> |ist =["1","3","Mnkey","Parrot","10"]
3: >>> total =0

4. >>> for z in |list:

5 >>> try:

6: >>> total = total + string.atof(z)
7. >>> except :

8. >>> pass

9: >>> print total

10: 14
< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

exceptions

handling 2nd 3rd

raising
handling

exceptions 2nd 3rd
pass statement
raise statement
raising

exceptions
statements

pass

raise

try/except 2nd

try/finally

syntax
handling multiple exceptions

try/except statement 2nd
try/finally statement

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=93

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 4. Exception Handling > Standard Exceptions See All Titles
(Getting Help from Other Modules)

< BACK Make Note | Bookmark CONTINUE >

Standard Exceptions (Getting Help from Other Modules)

Apart from the except i on module, other Python modules offer you some advanced functionality to handle
exceptions. We will talk about the sys and the t r aceback modules.

You can use the sys. exc_i nf o() thread-safe function to get information about the current exception being
handled. This function returns a tuple of values that is equivalent to the values provided by three other sys
nodul e objects:

sys.exc_type—Returns the exception type

sys.exc_value—Returns the exception value

Sys. exc_t raceback—Returns a traceback object

Note that these objects only work when called fromw thin an except cl ause.>>>

I nport sys
>>> try:
1/0
... except:
print sys.exc type, ":", sys.exc_value
exceptions. ZeroDi vi sionError : integer division or nodul o

The last example can also be implemented as

>>> jnmport sys
>>> try:
1/0
except:
info = sys.exc_info()
exc_type = info[0]

exc_val ue = info[1]
exc_traceback = info[2]
print exc type, ":", exc_value

exceptions. ZeroDi vi sionError : integer division or nodul o

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=94
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A31%3A49+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=94&now=5%2F31%2F2002+4%3A31%3A49+PM

A more compact way to assign the values to the variables is by using sequence unpacking, as is demonstrated by the
following:

exc_type, exc_value, exc_traceback = self.exc_info()

The Python module called t r aceback, which is part of the standard Python library, helps you to debug the cal |
st ack after an exception has been raised.

1: >>> inport traceback

2: >>> try:

3: 1/0

4. except:

5: print "The next |ines show the traceback nessage”
6: [TR 4 S e "
7: t raceback. print _exc()

8: [TR) S e "
9: ...

10: The next lines show the traceback nessage

I e R

12: Traceback (innernost |ast):

13: File "<stdin>", line 2, in ?

14: ZeroDivisionError: integer division or nodulo

IR R L

The previous program chooses the right time to display the traceback message by using the
t raceback. print _exc() function (line 7).

You can also extract the traceback information by parsing the results of sys. exc_t r aceback.

>>> jnport sys, traceback

>>> try:
result = 1/0
except :

trace = traceback. extract _tb(sys. exc_traceback)

for filename, |ineno,function, nessage in trace:
print "File name: ", filenane
print "Error nessage: ", nmessage
print "Line: ", lineno

print "Function: ", function

By using the objects sys. | ast _type, sys. |l ast _val ue, andsys. | ast _traceback, you can get the
details about the last uncaught exception. When | say that, | mean the last exception that had a traceback message

displayed.

>>> jnport sys

>>> x =0

>>> 1 [x

Traceback (innernost |ast):
File "<stdin>", line 1, in ?

ZeroDi visionError: integer division or nodulo

>>> 1.0/ 10

0.1

>>> print sys.last _type

exceptions. ZeroDi vi si onError

>>> print sys.|ast_val ue

i nteger division or nodul o

< BACK Make Note | Bookmark

Index terms contained in this section

exceptions
standard

uncaught
functions
traceback.print_exc()
modules
sys 2nd 3rd
tradeback 2nd

objects
sys module
values 2nd
sys.last_traceback

sys.last type

sys.last value
standard exceptions
sys module 2nd 3rd
sys.exe traceback value 2nd
sys.exe type value
sys.exe value value
sys.last traceback object
sys.last_type object
sys.last_value object
traceback.print_exc() function

CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=94

tradeback module 2nd
uncaught exceptions

values
sys module objects 2nd

sys.exe traceback 2nd
sys.exe_type
sys.exe value

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 4. Exception Handling > Raising See All Titles
Exceptions

< BACK Make Note | Bookmark CONTINUE >

Raising Exceptions

There are several ways to raise exceptions. You can either raise your own exceptions or Python standard
exceptions by using any of the four techniques listed as follows:

. raise class

. raise exception, argument

. raise exception, (argumentl, argument2, ...)
. raise exception (argumentl, argument2, ...)

Note that the second and third forms of raising exceptions use the old form of passing arguments with
the exception. | recommended using only the first and fourth forms.

Passing None, as the second argument, to the r ai se statement is equivalent to omitting it.
rai se cl ass, Noneisequivalenttorai se cl ass()

Check the following cases.

rai se | ndexError()

rai se | ndexError

rai se IndexError("x is out of range")
rai se I ndexError, "x is out of range"

In the previous lines, the examples use a standard exception called | ndexEr r or . However, you can
raise any one of the supported built-in exceptions.

Look at another example that uses a different exception:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=95
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A31%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=95&now=5%2F31%2F2002+4%3A31%3A58+PM

op = raw_input("Enter an operator: ")
opl = input("Enter first operand: ")
op2 = input("Enter second operand: ")
If op == "+":
print opl + op2
el se:
rai se RuntinmeError("l don't know this conmand")

In the next chapter, after learning how you can handle classes, you will be able to easily understand this
next example. For the present time, take a deep breath and just have some fun.

This example raises an exception that blocks your access to nonexistent members of the c class.

1: >>> class c:

2 def _init__(self, nane):

3 sel f. nane = nane

4 def getattr_(self, attr):
5. .. I f attr <> "nane":
6. ... rai se Attri buteError
7 ...

8: >>> a = c("Andre")

9: >>> a.nane

10: ' Andre'

11: >>> a. age

The following traceback message is generated after running the command located at line 11.

Traceback (innernost |ast):

File "<stdin>", line 1, in ?

File "<stdin>", line 6, in __getattr_
AttributeError

As you can see, line 5 checks the name of the attribute that is being passed to the method. That makes
the exception in line 6 to always be raised when the attribute name is not "name".

However, note that if you assign something to a. age, as demonstrated next, getting the value of

a. age will no longer cause the error. To handle that, you would need to write a code to deal with the
__setattr__ method, but that would be another example.

>>> a.age = 32
>>> print a.age
32

Raising an Exception to Leave the Interpreter

Raising the Syst enExi t exception is a generic way to leave the Python interpreter.

C.\ Program Fi | es\ Pyt hon>pyt hon

Python 1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on w n32
Copyright 1991-1995 Stichting Mat hemati sch Centrum Anst erdam

>>> rai se Systenkxit

C.\ Program Fi | es\ Pyt hon>

The next example demonstrates how you can trap the Syst enExi t exception.

>>> try:
rai se Systenktxit
except SystenExit:
print "Sorry. You can not |eave."

Sorry. You can not | eave.

The sys. exi t () function raises an exception Syst enExi t that, if not caught, causes the thread to
exit silently.

>>> jnport sys
>>> try:
sys.exit()
except SystenkExit:
print "I have already told you. You can not |eave."

| have already told you. You can not | eave.

Raising an Exception to Leave Nested Loops

Sometimes you are so deeply involved in your data structures that you only want to get out of all your
nested loops quickly. Normally, you would have to use br eak for each level of interaction. The next

example demonstrates how to handle this situation by using exceptions.

>>> ExitLoop = "ExitLoop"
>>> try:
i =1
while i < 10:
for j in xrange(1l,5):
print i,]j
i f (i==2) and (] ==3):
rai se ExitLoop

=i + 1
except ExitLoop:
print "i=2 and j=3 is a special case.”
11
12
13
14
2 1
2 2
2 3
=2 and j=3 is a special case.

Raising String Exceptions

Older versions used to support only strings for both Python standard exceptions and user-defined
exceptions.

>>> Networ kError = "NetworkError"
>>> rai se NetworkError, "Bad host name"

Nowadays, Python supports both strings and exception classes. There are costs to using class exceptions
because they must be instantiated to be caught. Note that most people don't use exceptions to control the
flow of their program, so they don't occur much.

However, classes give you much more flexibility to generalize the type of error that you want to catch.
Tip

Try to define your own exceptions as classes instead of strings.

Instancing an Exception Class

Every time an exception is raised, an instance of the exception class is created. The next syntax
demonstrates how to catch a class instance in your program.

try:
<st at enent s>

except exception, instance:
<st at enent s>

The i nst ance variable is an instance of the raised exception. Therefore, it inherits attributes from the
exception class.

Each instance has an attribute called ar gs that returns the error string in a tuple format.

>>> try:
a=1[1,2]
print a[4]
except | ndexError, b:
print b.args

('"l'ist index out of range',)

Particularly, the Envi r onnent Er r or exception has a 2-tuple or 3-tuple structure that can be

translated as (error number, string error message, and an optional filename).

>>> try:
file = open("Parrot")
except EnvironnmentError, b:
print b.args

(2, "No such file or directory')

When the instance belongs to a Synt axEr r or class exception, four special attributes are also
returned: filename, lineno, offset, and text.

>>> try:
a = "x===10"
exec a
except SyntaxError, b:
print b.args

("invalid syntax', (None, 1, 4, 'x===10'))

Note
Modules are parsed before being run, so syntax errors in a file can't be caught by t r y/ except

blocks that surround the error. You can catch it from the bit of code that imported the module,
however.

Debugging Your Code

Exceptions are very good for helping to debug your code. You can use the assert command to raise a
debugging exception that transports a message to your exception handling code.

The syntax isassert <Test Statenent> [, argunent]

This command raises an Asser ti onEr r or exception whenever <Test St at enent > evaluates to
fal se.

For example

>>> def divide (a,b):
assert b !'=0, "Can't divide by zero"

: return a/b
>>>
>>> di vi de(10, 0)
Traceback (innernost |ast):

File "<stdin>", line 1, in ?

File "<stdin>", line 2, in divide
AssertionError: Can't divide by zero

The assert command is equivalent to

>>> |f debug_ :c
>>> I f not (<Test Statenent>):
>>> rai se AssertionError [, argunent]

__debug__ isabuilt-in name and has its value setto t r ue by default. Toset _debug__ to
f al se, itis necessary to change the interpreter to run in optimized mode.

Tip

Calling the interpreter with the - Ooption activates the optimized mode.

c:\>python -0O

Currently, Python's command-line option - X turns all standard exceptions into strings. Version 1.6 is

expected to have this option removed, and make all standard exceptions into classes. User code that
deals with string exceptions will still be supported, but not encouraged.

See Chapter 17, "Development Tools," for more details about other command-line options that you
can transport as configuration parameters to the interpreter.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

[nd]O option
[nd]X option
args attribute
assert command 2nd
attributes
args
catching
class instances
class instances
catching
classes
exception
instancing 2nd

code
debugging
exceptions
commands
assert 2nd
debugging
code

exceptions
EnvironmentError exception

exception classes
instancing 2nd

exceptions
EnvironmentError

IndexError

raising 2nd 3rd 4th 5th

string

raising

SyntaxError

SystemEXxit 2nd
functions

raise class()

sys.exit()

IndexError exception
instance variable

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=95

instances
class

catching
instancing
exception classes 2nd

interpreters
raising exceptions to leave

modes

optimized
modules

parsing
optimized mode
options

[nd]O

[nd]X
parsing

modules
raise class() function
raise statement
raising

exceptions 2nd 3rd 4th 5th
source code

debugging

exceptions

statements

raise

try/except
string exceptions

raising
syntax

commands

assert command

SyntaxError exception
sys.exit() function
SystemEXxit exception 2nd
try/except statement

variables
instance

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 4. Exception Handling > Catching Exceptions See All Titles

< BACK Make Note | Bookmark CONTINUE >

Catching Exceptions

Look at an example that shows how to catch a specific exception message.

1. >>> def zerodivision(x):

2: return 1/x

3 ..

4. >>> def test(x):

5: try:

6: print zerodivision(x)

7: except ZeroDivisionError:

8: print "You can not divide this nunber by Zero"
9: ..

10: test(0)

In line 7, we are specifying the exact exception type that we want to catch.

You can also replace lines 7 and 8 from the previous example with the text from the next snippet. The difference is
that this new scenario also shows the error message provided by the interpreter.

except ZeroDivisionError, error_nessage:
print "You can't divide this nunber by Zero - ", error_nessage

Besides catching Python standard exceptions, it is also possible to catch user-defined, non-Error exceptions.

>>> found = "Item f ound”
>>> def searcher(arg):
if arg ==
print "executing the routine."
el se:
rai se found

>>> try:
sear cher ()
>>> except found:
print "The routine has failed."

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=96
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A32%3A06+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=96&now=5%2F31%2F2002+4%3A32%3A06+PM

..el se:
print "The routine was successfully concl uded"

The next example re-raises an exception because the wi n32pi pe module is not present in the system.

>>> try:
i nport w n32pi pe
except:
raise InportError, "The nodule is not avail abl e"
Traceback (i nnernost | ast):
File "<stdin>", line 4, in ?
I mportError: The nodule is not avail able

The next example actually shows how to raise the same exception (provided the exception is a class exception).
This type of implementation doesn't require you to know the name of the exception being raised.

>>> | nport sys

>>> try:
i nport w n32pi pe

except:

rai se sys. exc_val ue

Traceback (i nnernost | ast):

File "<stdin>", line 4, in?
| mportError: No nodul e named wi n32pi pe

The following code catches an | OEr r or exception and raises a Syst enmExi t exception by using the
sys. exit () function.

>>> jnmport sys
>>> try:
file = open("file.txt")
except | OError:
print "Error opening file for reading"
sys. exit(0)

Catching Standard Errors

The er r no module makes available the standard er r no system symbols, which can be used to check the

meaning of an error.

>>> jnport errno

>>> try:

>>> file = open("test. py")

>>> except | OError, (errcode, errmnsg):
>>> i f errcode == errno. ENCENT:

>>> print "File does not exist!"
>>>

You can check the entire list of er r or symbols by typing,

>>> | nport errno

>>> dir(errno)

["E2BI G, 'EACCES , 'EADDRI NUSE', ' EADDRNOTAVAIL', EAFNOSUPPORT', 'EAGAIN ,
' EALREADY', ' EBADF', 'EBUSY', 'ECH LD , 'ECONNABORTED , 'ECONNREFUSED |,
' ECONNRESET' , ' EDEADLK', ' EDEADLOCK' , ' EDESTADDRREQ , ' EDOM , ' EDQUOT',
"EEXI ST', 'EFAULT', 'EFBIG, 'EHOSTDOMN , ' EHOSTUNREACH , ' EILSEQ ,
"EINPROGRESS', 'EINTR, '"EINVAL', "EIO, '"EISCONN, 'EISDIR, 'ELOOP',
"EMFILE' , '"EMLINK , 'EMSGSI ZE', ' ENAMETOOLONG , ' ENETDOWN , ' ENETRESET',
" ENETUNREACH , ' ENFILE', 'ENOBUFS , 'ENODEV', 'ENCENT', 'ENOEXEC , 'ENOLCK',
" ENOVEM , ' ENOPROTOOPT', 'ENOSPC , 'ENOSYS' , 'ENOTCONN , 'ENOTDI R,

" ENOTEMPTY', ' ENOTSOCK', 'ENOITY', 'ENXIO, 'EOPNOTSUPP', 'EPERM,

" EPFNOSUPPORT' , ' EPI PE', ' EPROTONOCSUPPORT' , ' EPROTOTYPE' , ' ERANCE',

' EREMOTE' , ' ERCFS , ' ESHUTDOMWN , ' ESOCKTNOSUPPORT', 'ESPIPE , 'ESRCH ,

" ESTALE', ' ETI MEDOUT', ' ETOOMANYREFS , 'EUSERS', 'EWOULDBLOCK', 'EXDEV',
' WBABASEERR , ' WBAEACCES', ' WSAEADDRI NUSE' , ' WSAEADDRNOTAVAI L',

" WBAEAFNOSUPPORT' , ' WSAEALREADY' , ' WSAEBADF' , ' WSAECONNABORTED

" WBAECONNREFUSED , ' WSAECONNRESET' , ' WSAEDESTADDRREQ , ' WSAEDI SCON'

" WBAEDQUOT' , ' WSAEFAULT' , ' WBAEHOSTDOMWN , ' WBAEHOSTUNREACH

" WEAEI NPROGRESS' , ' WBAEI NTR', ' WSAEI NVAL' , ' WSAEI SCONN' , ' WSAELOOF'

" WBAEMFI LE' , ' WBAEMSGSI ZE', ' WSAENAMETOOLONG , ' WSAENETDOWN

" WBAENETRESET' , ' WSAENETUNREACH , ' WSAENOBUFS' , ' WSAENOPROTOOPT'

" WSAENOTCONN' , ' WBAENOTEMPTY' , ' WSAENOTSOCK' , ' WSAEOPNOTSUPF'

" WBAEPFNOSUPPORT' , ' WSAEPRCOCLI M, ' WSAEPROTONOSUPPORT' , ' WSAEPROTOTYPE'
" WBAEREMOTE' , ' WBAESHUTDOWN' , ' WEBAESOCKTNOSUPPORT' , ' WSAESTALE'

" WBAETI MEDOUT' , ' WSAETOOVMANYREFS' , ' WBAEUSERS' , ' WSBAEWOULDBLOCK'

" WGANOTI NI TI ALI SED , ' WSASYSNOTREADY' , ' WSAVERNOTSUPPCRTED , ' __doc_ ',

name__ ', 'errorcode']

Use the os. strerror () function to \ retrieve the system message associated to a specific error symbol.

>>> jnmport 0s, errno
>>> 0s.strerror(errno. EPERM
"QOperation not permtted"

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

catching
exceptions 2nd
displaying
error symbols
errno module
error symbols
viewing
exceptions

catching 2nd
functions

os.sterror()
messages
system

retrieving
modules
errno

os.sterror() function

retrieving
system messages
system messages
retrieving
viewing
error symbols

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=96

Web Development > Python Developer's Handbook > 4. Exception Handling > try/finally See All Titles

< BACK Make Note | Bookmark CONTINUE >

try/finally

Thetry/ final |y statement is good for clean-up actions. The code in the f i nal | y block is always
executed, no matter whether the t r y block fails or not.

1: try:

2: f = open("c:\\autoexec.bat")

3: lines = f.readlines()

4: finally:

5: f.close() # it is always executed

6: print "It is done" # it is executed on success only

The previous piece of code opens a file and tries to read its lines. It is not necessary to check whether
the process raises an error in order to close the file because the cl ose function in line 5 is always

executed, no matter what. Now, take a look at line 6. The pri nt statement is only executed when the
final | y block is bypassed because when an error is raised, the f i nal | y block is executed and the
program is terminated immediately afterwards if the exception is not handled, leaving the exception

unhandled.
Tip

finallyandexcept clauses cannot be used together along with a unique t r y clause.

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=97
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A32%3A12+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=97&now=5%2F31%2F2002+4%3A32%3A12+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=97

Index terms contained in this section

clauses
except
finally 2nd
try

except clause

exceptions
try/finally statement 2nd

finally clause 2nd
statements
try/finally 2nd 3rd

try clause
try/finally statement 2nd 3rd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 4. Exception Handling > Creating See All Titles
User-defined Exceptions

< BACK Make Note | Bookmark CONTINUE >

Creating User-defined Exceptions

Python allows you to create your own exceptions by subclassing any standard Python exception.

Note

Take a look at Chapter 5, "Object-Oriented Programming," for more details about working with
classes.

>>> | nport exceptions
>>> cl ass ConfigError (exceptions.Exception):
def __init__ (self, arg=None):
self.args = arg

>>> try:
rai se ConfigError("Bad hostnanme")
except ConfigError, e:
print e.args

Bad host name

The i npor t statement from the previous example isn't really necessary because the excepti ons

module contents are automatically imported by the interpreter. Remember that you can't use the prefix
"excepti ons" because the excepti ons module is not available inthe __mai n__ namespace
until you import it.

The next example uses the class created in the previous example as a base class to create a new class.

>>> class TinmeoutError(ConfigError):

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=98
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A32%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=98&now=5%2F31%2F2002+4%3A32%3A21+PM

def printargs(self):
print self.args

>>> try:
rai se TinmeoutError, "Tineout"
except TinmeoutError, e:

e.printargs()

Ti meout

As you could see, just by overridingthe i ni t __ method, you are able to create your own exception
classes.

You can also change the output of a traceback message by overwriting the __str__ method.

>>> class Confi gError(Exception):
def __init_ (self, args=None):
self.args = args

def _ str__ (self):
return "\ nError in the nodule configuration\ n" + }
. "self.args + "\ n"..
>>> rai se ConfigError, "bad hostnane"
Traceback (innernost |ast):
File "<stdin>", line 1, in ?

__main__.ConfigError
Error in the nodul e configuration
bad host nane

<BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=98

Index terms contained in this section

creating
user-defined exceptions

exceptions
subclassing 2nd

user-defined, creating
import statement

statements
import

subclassing
exceptions 2nd

user-defined exceptions
creating

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 4. Exception Handling > The See All Titles
Standard Exception Hierarchy

< BACK Make Note | Bookmark CONTINUE >

The Standard Exception Hierarchy

Python comes filled with many built-in exceptions. All these exceptions are part of the except i ons
module, which is always loaded prior to any program execution.

The following structure identifies the standard exception hierarchy, and, immediately afterwards, it is
given the description of each exception type.

This structure, which resembles a tree, shows you that all exceptions are derived from a base class
named Except i on. If we highlight, for example, the | npor t Er r or exception, we note that it is a

subclass of the St andar dEr r or class. In addition to that, the St andar dEr r or class is a subclass
of the Except i on class. Table 4.1 shows the structure.

Table 4.1. The Exception Class Hierarchy

Exception
Systenkxi t
St andar dEr r or
Keyboar dl nt er r upt

| nport Error

Envi r onnment Er r or

| OError

OSErr or

EOFErr or

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=99
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A32%3A30+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=99&now=5%2F31%2F2002+4%3A32%3A30+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/99#1.html

Runti meError

Not | npl ement edEr r or

NaneEr r or

UnboundLocal Err or

AttributeError

Synt axError

TypeErr or

AssertionError

LookupErr or
| ndexError

KeyEr r or

Arithneti cError
Overfl owError
Zer oDi vi si onError

Fl oat i ngPoi nt Err or

Val ueError

Syst entrror

Menor yErr or

Except i on— This is the root class. All exception classes are subclasses of this base
class. Every user exception class should be derived from this class too.

Syst enmExi t — This is an exception because it isn't really an error message. Instead, it

can be used to exit a program. The important thing is that this exception doesn't return
any t r aceback message.

St andar dEr r or — It is the base class for all errors (except for Syst enExi t, of
course).

Keyboar dl nt er r upt — It is raised when an interrupt key, such as CTRL+C, is
pressed.

| mpor t Err or — It is raised when Python cannot find a module to import.

Envi r onnment Er r or — This is the base class for errors that occur outside the Python
environment. The | CEr r or and OSEr r or classes subclass it.

| OEr r or — ltis raised by | / Ooperation errors.

OSEr r or — This one is raised by operating system errors, usually generated by the os
module.

ECFEr r or — Exception raised when an End-of-File (EOF) error occurs.

Runt i meEr r or — This is a special type of exception raised by errors that aren't
covered by any of the other exceptions.

Not | npl enent edEr r or — Methods or functions that aren't implemented should
raise this exception.

>>> def updateregistry():
>>> rai se Not | npl enent edError

NameEr r or — It is raised when the interpreter finds a namne that is neither in the
| ocal norinthe gl obal namespace.

UnboundLocal Err or — This is a new exception that was created for version 1.6. It
subclasses the NaneEr r or exception, raising an error when a local variable is
undefined.

At tri but eError— ltisraised by attribute reference and attribute assignment kinds

of errors. Note that starting with version 1.6, this exception will have a more friendly
error message, which is expected to break some code that assumes the message to be
exactly equivalent to the attribute name.

Synt axEr r or — Itis raised by syntax errors.

TypeEr r or — This exception is raised when you try to apply a function operation to
an object of inappropriate type.

Asserti onErr or— This kind of exception is raised when an asser t statement
fails by evaluating to false.

LookupEr r or — This is the base class for i ndexi ng and key errors. The
| ndexErr or and KeyEr r or classes subclass it.

| ndexEr r or — It is raised by "sequence out of range" errors.
KeyEr r or — It is raised when a key is not found in a dictionary.

Arithmeti cError— This is the base class for arithmetic errors. The classes
Overfl owkrror, ZeroDi vi si onError, and Fl oati ngPoi nt Err or subclass
it.

Over f | owEr r or — This exception is raised when the result is so large that it makes
the operation overflow.

Zer oDi vi si onEr r or — It is raised when an operation that tries to divide a number
by zero is performed.

Fl oat i ngPoi nt Er r or — This exception is raised by f | oat i ng- poi nt operation
errors. Note that on Linux systems, you are required to enable the SI GFPE handling
with the f pect | module to use this exception.

Val ueEr r or — This one is raised when you try to perform an action using the right
type but the wrong value.

Syst enEr r or — Itis raised if a Python's interpreter internal error takes place.

Menor yEr r or — This exception is raised by a recoverable out-of-memory error.

As exception classes are grouped within other exception classes (known as base classes), it becomes
much easier to catch several different types of errors/exceptions by using just one except clause.

Base classes are never raised, but can be used to catch up errors.

The next scenario shows how to cover multiple exceptions by declaring only the base class exception.

>>> dict ={ 1L:"First Elenent", 2: "Second El enent"}
>>> | i st [13, 14, 15, 16]

Based on these structures, we get the following error messages when we try any out-of-range type of
operations.

>>> dict[3]

Traceback (innernost |ast):
File "<stdin>", line 1, in ?

KeyError: 3

>>> | ist][8]
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
| ndexError: |ist index out of range

The following example is able to catch both | ndexEr r or and KeyEr r or exceptions.

>>> def getel enent (el enent):

>>> try:

>>> i f elenment < 10:

>>> print dict[elenment]

>>> el se:

>>> print list[elenment]

>>> except LookupError:

>>> print "Sorry. This el enent does not exist"

>>> getel enent (1)

First El enent

>>> get el enent (20)

Sorry. This el enent does not exi st

Now, let's talk about release 2.0. Check the next code.

def showcounter():
print "counter=", counter
counter = counter + 1
showcount er ()

The previous code raises an exception on the pr i nt statement in both 1.5.2 and 2.0 release. However,
in 1.5.2 a NanmeEr r or exception is raised, while in 2.0 a new exception is raised. This new exception
is called UnboundLocal Error, which is a subclass of the NameEr r or exception.

Talking about new exceptions, the Python 2.0 release comes with two more brand-new exceptions.
They are called TabErr or and | ndent ati onErr or, and they are subclasses of the

Synt axEr r or exception.

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

classes
NameError

code:Python 2.0
standard exceptions

exceptions
standard 2nd 3rd

Pyton 2.0 code

hierarchies
standard exceptions 2nd 3rd

NameError class
operations

out-of-range
out-of-range operations

Python 2.0
code
standard exceptions

standard exceptions 2nd 3rd

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=99

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 4. Exception Handling > Summary See All Titles

< BACK Make Note | Bookmark CONTINUE >

Summary

Python exceptions are mostly used for error handling and event notification. If you don't handle
exceptions in your program, Python's interpreter returns traceback messages.

Python comes filled with many built-in exceptions. All these exceptions are part of the except i ons
module, which is always loaded prior to any program execution.

Exceptions can be handled by using eithert ry/ except ortry/ fi nal | y statements. The
difference between them is that an except clause is only executed when an exception is raised, and a
final | y clause is always executed, no matter whether an exception is raised or not. The

try/ final |y statement is good for clean-up actions, but remember that it doesn't actually catch the
exceptions.

Python supports both strings and exception classes. As exception classes are grouped within other
exception classes (known as base classes), it becomes much easier to catch several different types of
errors/exceptions by using just one except clause. Base classes are never raised, but can be used to

catch up errors.

You can either raise your own exceptions or use Python standard exceptions. Python allows you to
create your own exceptions by subclassing any standard Python exception.

Exceptions can be raised for several purposes (for example, exit the interpreter, leaving nested loops,
and so on). Every time an exception is raised, an instance of the exception class is created.

The assert command helps debug your code by raising a debugging exception.

Besides the except i ons module, the sys, the errno, andthetraceback modules also offer
you some advanced functionality to handle exceptions.

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=100
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A32%3A37+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=100&now=5%2F31%2F2002+4%3A32%3A37+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=100

Web Development > Python Developer's Handbook > 4. Exception Handling > Code Examples See All Titles

< BACK Make Note | Bookmark CONTINUE >

Code Examples

This first example returns the square root of a given input value. If the input value is negative or if it is a
character, two traceback messages are displayed.

Listing 4.1 Square root (File squareroot.py)

1. ###

2. # Program Square root

3: # Author: Andre S Lessa

4. Hit#

5:

6: ### inport nodul es

7.

8: inport sys, traceback, math

9:

10: try:

11: n = float(raw_i nput ("Pl ease, enter a nunber: "))
12: print "The sqrt of % is %" % (n, math.sqrt(n))
13:

14: except (ValueError, TypeError, OverflowError):

15: Print M----mm oo "
16: print "This is the standard traceback nessage:”
17: print ™"

18: traceback. print _exc()

19:
20: L | S e "
21: print "This is the custom zed traceback nessage:"”
22: print ""
23: info = sys.exc_info()
24 exc_type = info[O0]
25: exc_value = info[1]
26: exc_traceback = info[2]
27
28: trace = traceback. extract tb(sys. exc _traceback)
29: print "Exception Type: ", exc_type
30: print "Error Message: ", exc_val ue
31: print "File nane: ", trace[0][0O]
32: print "Error nessage: ", trace[0][1]
33: print "Line: ", trace[0][2]

34 print "Function: ", trace[O0][3]

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=101
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A32%3A43+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=101&now=5%2F31%2F2002+4%3A32%3A43+PM

35: el se:
36: print "Everything went just fine."

The except clause in line 14 covers Val ueError, Overfl owError, and TypeError exceptions.
The el se clause in line 35 is only executed when no exception is raised.

The next lines show the two traceback messages that are displayed by this program: Python standard traceback
message and a customized version.

C.\ python> s:\ pyt hon\ squar er oot . py
Pl ease, enter a nunber: |

This is the standard traceback nessage:

Traceback (innernost |ast):

File "s:\python\squareroot.py", line 11, in ?

n = float(raw_i nput ("Pl ease, enter a nunber: "))
ValueError: invalid literal for float(): i

This is the custom zed traceback nessage:

Excepti on Type: excepti ons. Val uekrror

Error Message: invalid literal for float(): i

File nane: s:\ pyt hon\ squar er oot . py

Error nessage: 11

Li ne: ?

Functi on: n = float(raw_input("Pl ease, enter a nunber: "))

This example uses multiple except clauses (lines 17 and 20). It also takes advantage of the assert
command to raise a debug exception (line 15).

Listing 4.2 Internet country codes (File countrycode.py)

1. ###

2: # Program Country code

3: # Author: Andre S Lessa

4. H#H##

5:

6: ### inport nodul es

7.

8: inport sys, string

9:
10: matrix ={ "brazil":"br","france":"fr","argentina":"ar", "usa": "us"}

11:
12: def getcode(country):

13: try:

14. data = matri x[string.|lower(country)]

15: assert data != "br", "You cannot select this country " + }

"for this action!"

16: return data

17: except KeyError:

18: print sys.exc_type, ":", "% is not inthe list." %}
sys. exc_val ue

19: print

20: except AssertionError, b:

21: print b

22: print

23:

24: while 1:

25: country = raw_i nput ("Enter the country nane or press x to exit: ")

26: if country == "x":

27: br eak

28: code = getcode(country)

29: i f code !'= None:

30: print "9%'s country code is %" % (country, code)

31: pri nt

The following screen dump shows the execution of this program. Note that the program doesn't end after an
exception has been raised.

C.\>pyt hon s:\python\ countrycode. py
Enter the country name or press x to exit: Mexico
exceptions. KeyError : nexico is not in the |ist.

Enter the country nanme or press x to exit: USA
USA' s country code is us

Enter the country name or press x to exit: Brazi
You cannot select this country for this action!

Enter the country name or press x to exit: Argentina
Argentina's country code is ar

Enter the country name or press x to exit: X

C.\ Pyt hon>

See more exception handling cases in the final section of the next chapter.

<BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=101

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming See All Titles

< BACK Make Note | Bookmark CONTINUE >

Chapter 5. Object-Oriented Programming

Is it a bird? No! Is it a plane? No! It's bicycle repair man!

This chapter introduces object-oriented methodology in a very complete and straightforward way. You
will be able to easily create and use objects and classes in your programs after going through the next
pages of material.

<BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=103
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A32%3A51+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=103&now=5%2F31%2F2002+4%3A32%3A51+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=103

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming > See All Titles
Object-Oriented Programming

< BACK Make Note | Bookmark CONTINUE >

Object-Oriented Programming

Python uses the traditional class architecture for object-oriented programming (OOP).
The object-oriented model adopted by Python
« Promotes modular design
. Promotes and facilitates Python software reusability
. Uses notions of real-world objects to develop programs
. Results in better quality software (but, of course, you can write bad code with any paradigm)

Object-oriented programming promotes data abstraction, information hiding, encapsulation, and
modular programming.

Saying that OOP promotes data abstraction means that we define the functions that operate on the data.
The ideal scenario provides encapsulated data that can be accessible only through the class methods.
However, in Python, we cannot totally block the programmer from accessing the information that is
stored inside a class.

Encapsulation, Inheritance, and Polymorphism are the most important thoughts provided by OOP.
Python doesn't strictly follow the standard concepts, but you will see how far it goes.

Encapsulation— Data can only be accessed or manipulated by means of a set of
interface functions. Encapsulation of data enables information hiding. Python provides
encapsulation through conventions rather than strictly enforcing it, which can be
preferable.

Inheritance— With inheritance, the derived class (also known as subclass, descendant,
or child class) inherits the data members and class methods of its base (parent) class.

Polymorphism— It enables a function to have several different kinds of interfaces.
Depending on the parameters used by the caller, the class knows which interface should
be used. Python achieves this through its dynamic typing and late binding.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=104
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A02+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=104&now=5%2F31%2F2002+4%3A33%3A02+PM

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

object-oriented programming (OOP)
programming
object-oriented (OOP)

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=104

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming > See All Titles
An Introduction to Python OOP

< BACK Make Note | Bookmark CONTINUE >

An Introduction to Python OOP

A class defines a category of objects in terms of the data it encapsulates and the operations on the data
that are allowed by the interface functions. Essentially, a class is a template from which objects can be
created.

Each object created from a class is an instance of a class. They all look alike and exhibit a similar
behavior.

A class stores object attributes (also known as data members) and the behavior of objects (mostly
known as methods). This behavior can be inherited from other (base) classes. The non-method
attributes of the class are usually referred to as class members or class attributes so that they are not
confused with instance attributes.

Each class has its own namespace in which all the assignments and function definitions occur.
Class Instances

A class instance is a Python object, and similar to every Python object, it has the following properties:
identity, object type, attributes, methods, and value.

| will use the following class definition as the basis for the next explanations. First, let's declare the c
class, and then we will create an instance of this class called obj .

>>> cl ass cC:
def __init_ (self, value=None):
sel f. name = val ue

>>> obj = c()
>>> obj . name = "Andre"

The identity is the memory location allocated for the object. It can be identified by using the i d()
function.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=105
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A08+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=105&now=5%2F31%2F2002+4%3A33%3A08+PM

>>> jd(obj)
6623988

The object type is the object's internal representation. It defines the supported methods and operation
for each object. You can use the t ype() function in order to find out the type of a specific object.

>>> type(obj)
<type 'instance'>

>>> type(obj.nane)
<type 'string' >

While we're talking about object types, let's take a quick break from the whole class issue and examine
the types for Python objects defined in extension modules, which do not necessarily act like classes.

Table 5.1 lists all Python built-in object types defined by the t ypes module. Note that almost all the
types shown in this table are unrelated to Python classes.

Table 5.1. Built-In Object Types Defined by the t ypes Module

Built-In Object Type Description
NoneType the None (null) object
| nt Type integer

LongType arbitrary precision integer
Fl oat Type floating point

Conpl exType complex number
StringType list of characters

Li st Type list

Tupl eType tuple

XrangeType returned by xrange()
Di ct Type dictionary

Bui I ti nFuncti onType built-in functions

Bui | ti nMet hodType built-in methods

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/105#2.html

Funti onType

user-defined function

C assType

class object/definition

I nst anceType

class object instance/class instance

Met hodType bound class method

UnboundMet hodType unbound class method

Modul eType module

Fil eType file

CodeType* raw byte-compiled code

FrameType* represent execution frame

Tr acebackType* stacks the traceback information of an exception
SliceType* generated by extended slices

El | i psi sType*

it is used in extended slices

*The checked types indicate internal Python objects that can be exposed to the user.

The attributes and methods of an object are bound properties that must be accessed by putting a dot (.)

after the object name.

>>> obj . nane
" Andr e"

At last, the value of an object is better visualized by an example.

>>> obj . nane =

The string " Andr e" is the value assigned to the nane attribute of the object obj .

< BACK

" Andr e"

Make Note | Bookmark

CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=105

Index terms contained in this section

attributes
classes

instance
attributes property
base classes
BuiltinFunctionType object type
BuiltinMethodType object type
class attributes
class instances 2nd 3rd
class members
classes

base
ClassType object type
CodeType object type
ComplexType object type
DictType object type
EllipsisType object type
FileType object type
FloatType object type
FrameType object type
FunctionType object type
identity property
instance attributes

instances
classes 2nd 3rd

InstanceType object type
IntType object type
ListType object type 2nd
LongType object type
members

class

methods property
MethodType object type
modules

types
built-in object types

ModuleType object type
NoneType object type
object type property 2nd
object types

types module
object-oriented programming (OOP) 2nd 3rd

programming

object-oriented (OOP) 2nd 3rd
properties

attributes

identity

methods

object type 2nd

value
SliceType object type
StringType object type
TracebackType object type
TupleType object type
types module

built-in object types
UnboundMethodType object type
value property
XrangeType object type

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming > Python Classes and See All Titles
Instances

< BACK Make Note | Bookmark CONTINUE >

Python Classes and Instances

In Python, a class is a user-defined data type, and as in most other languages, you define Python classes using the keyword
cl ass.

cl ass <cl ass nane>:
<cl ass statenents>

The class statements section contains any valid Python statement that defines class constants or class methods. Note that the
contents of the variable namespace formed by executing the commands in the class statement make up the class dictionary.

Two ways to create classes are

. You can define it from scratch.

cl ass <cl ass nane>:
["docunentation text"]
<cl ass statenents>

. You can create a new class that inherits properties of other classes. This is called subclassing, and you will learn more
about it later in this chapter.

cl ass <cl ass name> [(basecl assl, baseclass2, .)]:
["docunentation text"]
<st at ement s>

A class definition starts at the keyword cl ass and ends at the last line of the indented block of code that goes underneath.

Methods and class constants define a class namespace. Usually, a class has several methods, and they must all start with the
keyword def .

Tip

Methods are how to call functions in a class.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=106
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A18+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=106&now=5%2F31%2F2002+4%3A33%3A18+PM

All methods have the additional argument sel f as the first argument in the method header—The convention is to call it
sel f because it could be any other name. Python's sel f argument is similar to the t hi s keyword in C++. Its function is to
transport a reference of the object in a way that when a method is called, it knows which object should be used.

>>> cl ass a:
def __init_ (self):
print self

>>> b = a()

>>> Db
<__main__.a instance at 795420>

In order to reference an attribute within a class, you need to use either sel f . attri but e orcl assnane. attri but e.
Note that the sel f. at t ri but e syntax is to remove ambiguities between instance variables and function local variables.
Also, sel f.attri buteandcl assname. attri but e are different. The second sets class attributes, which will affect
all instances of the class.

>>> cl|l ass c:
def __init__ (self, val ue=None):
sel f. nane = val ue

To reference an attribute while using a class instance, you have to use i nst ancenane. attri but e.

>>> obj . nane

A class can also contain class variable assignments. These variables are shared by all the class instances. Class variables are
useful when the assignment of default values to instances is required. Class variables do not have the sel f . prefix.

For example

>>> cl|l ass Student:

default _age = 20 # class vari able
def __init__ (self):
sel f.age = Student. default_age # instance variabl e

Note that in the previous example, we had to use St udent . def aul t _age instead of using only def aul t _age because
the global namespace for a method is the module in which it was defined—not the class namespace.

The next example creates an instance variable that has the same name of the class variable.

>>> c| ass Student:

default _age = 20 # class vari abl e
def __init__ (self, age):
sel f.default _age = age # instance variabl e

Suppose that you have the following code stored in a file called c: \ pyt hon\ studentfil e. py. This code defines
three different variables named def aul t _age (at lines 2, 4, and 9).

cl ass Student:
default _age = 20 # base class variable
def __init__ (self, age):
sel f.default _age = age # base class instance variable

cl ass Newst udent (Student):
"New student cl ass”
def __init_ (self, age=20):

1:
2
3
4.
5:
6
7
8
9 sel f.defaul t _age = age # instance variabl e

The following code imports the previous module. Which variable is being used by the instance call at line 5?

1: >>> inport sys
2: >>> gys.path = sys.path + ["c:\ \ python']
3: >>> inport studentfile
4: >>> Joao = studentfil e. Newstudent (15)
5: >>> Joao. defaul t _age
6: 15
Tip

In order for Python to find your modules, the directory where you save them must be an entry of the sys. pat h list.

The answer is the instance variable of the newstudent class (line 9 from the first listing). In cases like this, the search order is
defined as

1. instance variables
2. class variables

3. base classes variables—note that the search order for base classes makes the deepest-level classes used first

>>> Renata = studentfile. newstudent ()

>>> print Renata.default age
20

The following variation is slightly different than the previous code. This example shows what you need to do to make the
class Newst udent call the superclass's __i ni t __ method.

6: class Newstudent (Student):
"New student class”
def __init__ (self):
Student. init__(self, Student.default age)

© o

Note that we are calling the __i ni t __ method of the St udent class (the superclass). The class constant
St udent . def aul t _age is also used in this example. It is important to say that when calling unbound methods (methods
that are not tied to an instance) like this one, you must explicitly say that the first argument is sel f .

1: >>> Joao = studentfil e. Newstudent ()
2: >>> Joao. default age
3. 20

Attributes of a Class
Next, | list the attributes that classes expose to programmers.

cl assnane. __di ct __—This attribute contains the class namespace dictionary.

>>> studentfile.newstudent. dict

{ "_init__": <function __init__ at 799e90>, '_doc__': 'New student
class', ' nmodule_': 'studentfile'}
cl assnane. __doc__—This one returns the documentation string of the class.

>>> studentfile. newstudent. doc
' New st udent cl ass'

cl assnane. __nane__ —This attribute returns the class name.

>>> studentfil e. newstudent. name
' newst udent'’

cl assnane. __nodul e__—This one provides the module name that contains the class.

>>> studentfile. newstudent. nodule
"studentfile'

cl assname. __bases__—This is a tuple containing the names of the base classes.

>>> studentfil e. newstudent. bases
(<cl ass studentfile.student at 799e00>,)

The Python Class Browser

The pycl br module offers you the possibility of browsing all the information about classes that is stored in a specific
module.

readmodule()

This function reads the nodul e and returns a dictionary in the format { cl assnane: cl assi nf o}, where cl assi nf o
is an instance object of the class.

basic syntax: vari abl e = pycl br. readnodul e(nodul e)

>>> jnport pycl br

>>> nodul et obrowse = pycl br.readnodul e("profile")

>>> for classnanme, classinfo in nodul etobrowse.itens():
print "C ass nanme: %" % cl assnane

Cl ass name: HotProfile
Class nanme: A dProfile
Cl ass nane: Profile

or, if you use our student example

>>> jnport pyclbr

>>> nodul et obrowse = pycl br.readnodul e("studentfile")

>>> for classnane, classinfo in nodul et obrowse.itens():
print "Cl ass nanme: %" % cl assnane

Cl ass nane: student
Cl ass nane: newst udent

If you need to go deeper than that, you can look at the cl assi nf o object.

Python Instances

Each instance defines its own namespace of data, and it inherits behavior from the class (and possible base classes) that have
originated it.

In order to create a new instance of a class, you just need to say

new nstance = cl assnane()

Suppose that you have a Per son class like this

cl ass Person:
def __init_ (self, nane):
sel f. name = nane
self.famly =[]
def addmenber (sel f, nenber):
self.fam |y. append(menber)

For example, if you want to create a new instance of the chef class, you must type:

>>> ant hony = Person()

You can also pass arguments to the __i ni t __ function of the class. These arguments can be used to set the initial values of
an object. Let's see how it works.

>>> ant hony = Person("ant hony")

To call the methods of a class, you have to use the dot notation:

>>> ant hony. addnenber (" son")

You also need to use the dot notation to have access to variables (attributes) of each instance.

>>> ant hony.fam |y
["son"]

An interesting detail about Python object attributes is that they don't need to be declared inside the class before they get used
because they can be created dynamically.

>>> cl ass Dummyd ass:
pass

>>> colors = Dumyd ass()
>>> color.alarm= "red"

The next example dynamically creates multiple attributes for the col or s instance.

>>> cl ass record:
def __init_ (self, **args):
self.__dict__.update(args)

>>> colors = record(al arnm="red", normal ="green")

>>> col ors. nor nal
' green'

i sinstance() and i ssubcl ass()

The built-in functions i si nst ance() andi ssubcl ass() are always available without the need for importing any
module because they are part of the __bui | ti n__ module.

i si nstance()

This function tests whether an object is an instance of a class. It returns 1 if the object is an instance. Otherwise, it returns O.
Note that this function handles subclass relationships as well—for instance, i si nst ance(subcl assi nst ance,
super cl ass) returnstr ue.

basic syntax: i si nst ance(i nst ance_obj ect, cl ass_object)

>>> cl| ass a:
pass

>>> inst = a()
>>> jsinstance(inst, a)
1

As you can see next, you can also use this function to identify the object's type. Note however, that this is behavior that works
for non—instance objects. Floats and ints act quite differently from Python class instances (for instance, there is no way to

subclass t ypes. | nt Type).

>>> jnport types

>>> jsinstance(3, types.I|ntType)

1

>>> jsinstance(3, types. Fl oat Type)
0

i ssubcl ass()
This function returns 1 if the class object cl assobj 1 is a subclass (derived class) of the class object cl assobj 2.

basic syntax: i ssubcl ass(cl assobj 1, cl assobj 2)

>>> cl| ass a:
pass

>>> class b(a):
pass

>>> j ssubcl ass(a, b)
1

Instance Attributes

obj . __di ct__ —TFhisis the dictionary that contains all the attributes defined for the obj instance.

>>> colors. __dict__
{ "alert': 'yellow, "alarm:

red', "norma': 'green'}

obj . __cl ass__—H shows the class that has created the obj instance.

>>> colors. class_
<class __mmin__.record at 7883a0>

To get just the name of the class, use

>>> colors. __class__._ nane
"record'

obj . __nmet hods__ —This attribute is a list of all supported methods of the obj instance. Note that this
attribute is available for lists and dictionaries, which are not class instances.

>>> a=[1, 2]

>>> a. nmethods

['append', 'count', 'extend', 'index', 'insert', 'pop', 'renove','reverse',
"sort']

>>> b={ 1:''}
>>> b. nmethods
['clear', 'copy',

get', 'has_key',

itens', 'keys', 'update', 'values']

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

accessing
variables
instances

arguments
self

attributes
classname. bases

classname. _dict
classname.__doc
classname. _module
classname.__name

obj. _class

obj.__dict

obj. methods
browsing

classes
calling

methods

classes

class instances

creating

class keyword 2nd
class statements

classname. bases attribute
classname. _dict attribute
classname. doc attribute
classname. module attribute
classname. name attribute
constants

Classes
creating

class instances

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=106

def keyword

definitions
classes

functions
isinstance()
issubclass()

accessing variables
classes

creating
isinstance() function

issubclass() function

keywords
class 2nd
def

methods
classes

calling
modules
pyclbr
browsing classes

obj. _class__ attribute

obj. dict _ attribute

obj. _methods__ attribute
object-oriented programming (OOP)

programming -
object-oriented (OOP)

pyclbr module
browsing classes

self argument
statements
class
syntax
functions
isinstance()
issubclass()
readmodule()

variables
accessing
instances

classes 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming > See All Titles
Methods Handling

< BACK Make Note | Bookmark CONTINUE >

Methods Handling

Whenever you have to write methods in your classes, always keep in mind that the namespace
searching order for attributes and methods is instance, class, and base classes; and don't forget that
sel f is always the first or only argument to be used in method headers.

Accessing Unbounded Methods

The next example shows what you should do in order to unbind a class method and use it outside the
class definition.

1: obj = classnane()
2: unet hod = cl assnane. net hodnane()
3: unet hod(obj, args)

Line 1: Creates a class instance object.

Line 2: Creates an object that references the class method. The method is still unattached to the object
at this stage.

Line 3: Executes the class method by transporting the instance reference (obj) and the list of
arguments (ar gs).

Note that the first argument to an unbound method must be an instance of the correct class, or an
exception will be thrown.

Handling Global Class Variables

The next example defines a function that prints a class variable. Every time a new instance is created,
d obal count increases.

>>> def printd obal count():

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=107
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A25+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=107&now=5%2F31%2F2002+4%3A33%3A25+PM

print G obal count.n

>>> cl ass Couting:
n==~0
def __init_ (self):
d obal count.n = dobalcount.n + 1

>>> jnc Couti ng()
>>> jnc = Couting()
>>> print @ obal count ()

The next code overwrites the class variable x when subclassing the basecl| ass class.

>>> cl ass basecl ass:
X =5
def nmultiply(self, a):
return a * (self._ class__.x)

>>> cl ass inherited(basecl ass):
X =9

>>> x = inherited()
>>> x.multiply(2)
18

After a method is defined, it uses the variable values that are associated to the current namespace.

>>> class A
n =1
def printn(self):
print self.n

>>> class B(A):
n =2

>>> class C(B):
n =3

>>> obj1 = ()
>>> obj 1. printn()

>>> obj 2 = B()
>>> obj 2. printn()

Calling Methods from Other Methods

The next code exposes how simple it is to create a method to call another method.

>>> cl ass c:
def funcx(self):
sel f.funcy()
def funcy(self):

print "N !"
>>> obj = ¢()
>>> obj . funcx()
Ni !
< BACK Make Note | Bookmark

Index terms contained in this section

accessing
unbounded method

handling
methods

methods

handling
unbounded

accessing
object-oriented programming (OOP)
handling methods

programming

CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=107

object-oriented (OOP)
handling methods

unbounded methods
accessing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming > See All Titles
Special Methods

< BACK Make Note | Bookmark CONTINUE >

Special Methods

Python exposes some special methods that are easily highlighted in the code because they start and end
with __ (double underscores). These methods override (inherit) built-in functions of the same name

that are provided by Python itself. The next list shows some of the most used special methods.

__init__(self)—Thisisthe constructor method, which is called during creation of

instances. Usually, this is the place where the instance variables are initialized, among
other things.

__str__(sel f)—This method is called when st r () is called on instances of this

type. It specifies how the object must be displayed when it is used as a string (for
example, when a pri nt command is applied to an object).

__repr__ (sel f)—This method is called when r epr () is called on instances of this

type. This method provides a readable representation of the object. Usually, it is possible
to re-create an object by using this method. Although not guaranteed, and the standard
r epr of an instance can't be executed to re-create the instance.

__getattr__ (self, name)—Implement this method to trap or modify the access
to nonexisting members, for example, returning the attribute self.name.

__setattr__(self, nanme, val ue)—This method allows you to control setting
of attributes in the instance. It assigns the given value to the self.name instance's

attribute. Note that you canalsouse "sel f. _dict __['attr'] = .." toset
attributes from within __setattr__ (if you do it the normal way, you will get infinite
recursion).

__delattr__(sel f, name) —Implement this method to delete a specific attribute
of an object. It's like saying del sel f. nane.

__del (self)—The _del _ method covers the deletion of the object. Be careful

because sometimes it isn't immediately used when an object is destroyed (JPython
behavior). CPython's garbage collector destructs objects as soon as their reference count

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=108
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=108&now=5%2F31%2F2002+4%3A33%3A33+PM

reaches zero.

__cnp__(sel f, ot her)—Implement this method to compare and return a negative,
zero, or positive number.

__hash__ (sel f) —Implement this method to generate a 32-bit hash index.

__nonzero__(sel f)—Implement this method to return O or 1 for truth-value

testing.

__call __ (self)—Classes thatimplementthe cal | __ method are callable, and
their instances can be invoked like a function. This is the concept used by the built-in
functions. The syntax obj (*ar gs) isequivalenttoobj. call __(*args).

__getitem_ (self, index)—Thismethod supports list indexing, returning
sel f[i ndex].

>>> cl ass Seq:
def _ getitem (self, i):
if i < b5:
return i
el se:
rai se | ndexError

>>> s = Seq()

>>> for i in s:

>>> print i,

o, 1, 2, 3, 4

>>> print s[2]

2

>>> print s[6]

Traceback (innernost |ast):
File "<stdin>, line 1, in ?

File "<stdin>", line 6, in __getitem _
| ndexErr or

Next, you have some more special methods that deal with sequence and number-related methods.

| en__('sel f)—Fhis method is called to return the length of the instance when

| en() is called on an instance of this type.

add__ (self, other)—Implement this methodtoreturnsel f + ot her.

__sub__ (self, other)—Implement this methodto returnsel f — ot her.
mul __ (sel f, other)—Implement this method to returnsel f * ot her.
div__ (self, other)—Implement this methodtoreturnself / ot her.
nod __ (sel f, other)—Implement this method to return sel f % ot her.
__neg__ (sel f)—Implement this method to return sel f negat ed.

__pos___ (sel f)—Implement this method to return sel f positive.

__abs__ ('sel f)—This method is called to return the absolute value of sel f when
abs() is called on instances of this type.

__inv__ (self)—Implement this method to return the inverse of sel f .
__Ishift__ (self, other)—Implement this method to returnsel f shifted
left by ot her .

__rshift__ (self, other)—Implement this method to return sel f shifted
right by ot her .

__and__ (self, other)—Implement this method to return the bitwise and value
of sel f and ot her.

__or__ (self, other)—Implement this method to return the bitwise or value of
sel f and ot her.

__Xxor__ (self, other)—Implement this method to return the bitwise exclusive
or value of sel f and ot her.

__not_ (sel f)—Implement this method to return the outcome of not sel f.
(Note that there isno __not __ () discipline for object instances; only the interpreter
core defines this operation.)

__setitem __ (a, b, c)—Implement this method to set the value of a at index b
toc.

__delitem _ (a, b)—Implement this method to remove the value of a at index
b.

__getslice__ (a, b, c)—Implement this method to return the slice of a from
index b to index c—1.

__setslice__ (a, b, c, v)—Implement this method to set the slice of a from
index b to index c—1 to the sequence v.

__delslice__ (a, b, c)—Implement this method to delete the slice of a from
index b to index c-1.

The next example has a class definition that overrides some methods. Note that every instance of this
class is callable,

>>> cl ass Aut hor:

.def __init_(self, argnane):

.. sel f. nane = ar gnane

.def _ str_ (self):

return sel f.nane

.def __repr__(self):

return "sel f.nane’

.def __call_(self, other):
return self.nane + other

>>> obj = Aut hor (" Andre")
>>> print obj

Andr e

>>> 0bj

" Andr e’

>>> obj (" Lessa")

" Andre Lessa'

Python 2.0 has added a special set of operators to the language, which are called augmented assignment
operators. These operators can be overriden by inserting an 'i'in front of the name, for example,

__isub__ implements in-place __sub__ (in other words, the - = operator).

Also in this new release, you have access to the built-in method __cont ai ns__, which gives you
access to customize the i n operator.

Method Attributes

A method implements some special attributes that can be accessed from within the class that
implements it.

Suppose that you have a method called et hod:
nmet hod. __doc___ —Returns the documentation string of net hod.
nmet hod. __nanme__ —Returns the net hod name.
met hod. i m_cl ass—Returns the class that has defined net hod.
nmet hod. i m sel f —Returns the instance associated with net hod.

The next example retrieves and printsthe __ i ni t __ method's documentation string.

>>> cl ass c:
def __init__ (self):
"This is a nmethod "
print self. init_ . doc
>>> obj] = c()
This is a nethod

Overloading Operators

Python operators are implemented for a class by implementing the equivalent special methods. This
feature is called operator overloading.

Extensive support exists for operators overloading via the double-underscored special methods such as
_add_and_init__.

Note that the following expressions are equivalent:

a*b=_ml__(a b
len(a) = _len_(a)
a+b=__add (a,b)

The following example overrides the __add___ method and returns a tuple of results.

>>> cl ass c:
def __init_ (self, x, y):
sel f.x X
self.y y
def __add_(self, other):
return (self.x + other.x, self.y + other.y)

>>> obj 1 = c(5, 2)

>>> obj 2 = ¢(10, 4)
>>> print objl + obj2
(15, 6)

Of course, in real life, you would be more likely to want to return an instance of the class c, rather
than just a tuple.

Some others built-in methods you can use or overwrite are as follows:

__sub__(self, other)
__div__(self, other)

abs (self)

hex_ (self)

int_ (self)

Another small example

>>> c| ass C
def _init_ (self, value):
sel f.val ue = val ue
def _ sub_ (self, other):
return self.value - other.val ue

>>> vara = C(5)
>>> varb = C(3)
>>> varc = vara - varb
>>> print varc

< BACK Make Note | Bookmark

Index terms contained in this section

call _(self) method
cmp__ (self,other) method
del (self) method
delattr _ (self, name) method
getattr __ (self, name) method
getitem__ (self, index) method 2nd
hash (self) method
init__ (self) method
len__ (self) method
nonzero__ (self) method
repr__(self) method
setattr _ (self, name, value) method
str__ (self) method

augmented assignment operators

overriding
handling

methods

call _ (self)

cmp (self,other)

CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=108

del (self

delattr _ (self, name)
getattr _ (self, name)
getitem__ (self, index) 2nd
hash _ (self)

init__ (self)

len_ (self

nonzero__ (self)
repr__(self)

setattr _ (self, name, value)
str__ (self

special 2nd 3rd
object-oriented programming (OOP)
handling methods 2nd 3rd 4th 5th 6th
operators
augmented assignment
overriding
overloading
overloading
operators
overriding
augmented assignment operators
programming
object-oriented (OOP)
handling methods 2nd 3rd 4th 5th 6th
special method 2nd 3rd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming > See All Titles
Inheritance

< BACK Make Note | Bookmark CONTINUE >

Inheritance

A subclass is a class that inherits attribute names and methods from another class—the operation is called
subclassing.

A base class (superclass) is defined as a class that another class inherits attributes from. Base classes are
listed in parentheses in a subclass header. You have to separate base classes by putting commas between
them, within the parentheses.

When you create a subclass, you can add or overwrite any methods of its base classes.
Python classes can be created:

. From scratch

>>> cl| ass A:

pass

. By using single inheritance

>>> class B(A):

pass

. By using multiple inheritance

>>> class D(B, O):
pass

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=109
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A42+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=109&now=5%2F31%2F2002+4%3A33%3A42+PM

For a conceptual standpoint, take a look at the following example
Where,

Baseclass=writing tools
subclass = pen
subclass = chal k

Both subclasses pen and chal k inherit characteristics of the base classwri ti ng
t ool s.

The subsequent class defines a complex class called Enpl oyee.

cl ass Enpl oyee:
def __init__(self,nane, sal ary=0):
sel f. name = nane
self.salary = salary
self.famly =[]
def raisesalary(self, percent):
self.salary = self.salary + (self.salary * percent)
def work (self):
print self.name, "wites conputer code."
def hasfam|ly(self):
return len(self.famly) == # returns a bool ean result
def addmenber(self, x):
self.fam |y. append(x)
def renovenenber(self, x):
if len(self.famly) > O:
x = self.famly[-1]
del self.fam|ly[-1]
return Xx

The next class is a subclass of the Enpl oyee class.

cl ass Person(Enpl oyee):
“"this is the class Person"

def __init__ (self, nanme):
Enpl oyee. init__ (self, name, 50000)
def work (self):
print self.name, "works |ike any other enployee."

Inherited methods of base classes aren't automatically called. It is necessary to call them explicitly. That's
why, in the previous example, the Per son. __i nit __ method had to call the Enpl oyee. __init_

method.

It is always necessary to pass the sel f argument because base classes don't know what instance is being
used. The previous example passes three parameters to the base class's __i ni t __ method (the sel f
reference, an argument, and a default value for the other argument).

Multiple inheritance is defined by entering multiple classes in the header of a new class. The order used
for informing the base classes really does matter. The precedence order, for a search in the base classes,
starts at the classes located at the left side.

class A
pass
class B(A):
pass
class C
pass
class OB, O):
pass

The precedence order for class D inheritance is: B, A, C.
Tip
You always have to use fully qualified names when calling a superclass's method (if it has been

overridden) because if the class has multiple base classes containing the same symbol, the first one
found is used.

>>> cl ass A
.def _init_ (self, nane):

sel f.name = nane
.def printnane(self):
print 'The nane % belongs to class Al' % sel f.nane

>>> class B(A):

... basecl ass=A

.def __init__ (self, nane):

.. self. baseclass. init__(self, nane)

.def printnanme(self):
print 'The name % bel ongs to class B!' % sel f. nane
sel f.__ basecl ass. print nane(sel f)

>>> class C(B):

... basecl ass=B

.def _init_(self, nane):

. self. baseclass. _init__(self, nane)

.def printnanme(self):
print 'The nane % belongs to class Cl' % sel f.nane
sel f. __ basecl ass. print nane(sel f)

>>> A("nonkey"). printnanme()

The nane nonkey bel ongs to cl ass Al
>>> B("parrot"). printname()

The nane parrot belongs to cl ass B!
The nane parrot belongs to class Al
>>> C("ant"). printnanme()

The nane ant belongs to class C
The nane ant bel ongs to cl ass B!
The nane ant bel ongs to class Al

< BACK Make Note | Bookmark

CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=109

Index terms contained in this section

base class

classes
base

creating
subclasses 2nd 3rd

inheritance 2nd
multiple inheritance
object-oriented programming (OOP)
inheritance 2nd
programming
object-oriented (OOP)
inheritance 2nd

subclass

superclassing
superclassO
@)

Writi;g
subclasses 2nd 3rd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming > See All Titles
Polymorphism

< BACK Make Note | Bookmark CONTINUE >

Polymorphism

The concept of polymorphism doesn't really apply to Python objects because Python doesn't offer type
declaration. This concept (having a function or method work for multiple argument types) is something
you get for free with Python because of the dynamic typing. It does exist, but you don't usually
explicitly code for it. When handling an obj . met hod expression, the meaning of met hod depends

on the type, or class, of the object obj .

Python doesn't know what type of object implements an interface until the program is running. This
feature is called runtime binding.

Python variables are typed, just not explicitly so. They are typed implicitly as the program uses them.
For instance, if a program invokes abs(x) , it doesn't make sense for x to be any object but a number.

Therefore, the variable x is informally typed.

The capability of dealing with objects at different levels of abstraction is one of the most important
features of object-oriented programming and a very important part of Python.

The next example shows how you can use just one function to implement poly morphism in Python.
C++ refers to this variety of polymorphism as method overloading.

>>> cl ass pol ynor ph:
..def handle_ int(self, argint):
print "% is an int' % argint
..def handle str(self, argStr):
print "% is a string % argStr
..def handl e(self, arg):
i f type(arg) == type(1l):
sel f. handl e_int(arg)
elif type(arg) == type('"):
sel f. handl e_str(arg)
el se:
print "% is not a string nor an integer" %arg

>>> p = pol ymor ph()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=110
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A50+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=110&now=5%2F31%2F2002+4%3A33%3A50+PM

>>> p. handl e(10)
10 is an integer

>>> p. handl e(" Al batross!!")
Al batross!! is a string

The following code implements a class that does not work because the program tries to apply the
general concept of polymorphism. This is a very common mistake that always catches programmers
who don't know this concept doesn't exist in Python.

Note that we try to define two different implementations of the same method (see lines 3 and 6). Right
below this sample of code, you can see a traceback message that is provided by the interpreter when we
try to run it.

\
\
\%

Begi nning of a Python class THAT DOES NOT WORK...

>>> cl ass Pol i nor pherror:

def __init_ (self):
print 'No argunents!’

def _init_ (self, args):
print 'One argunent!’
self.args = args

NSO RLME

10: >>> ## End of a python class THAT DOES NOT WORK
11: ...
12: >>> x = Pol i nor pherror()
>>> x = Pol i norpherror()
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
TypeError: not enough argunents; expected 2, got 1

You cannot do method overloading as shown in the previous example. The next example presents a
suggestion for the correct way to implement a solution for this problem.

>>> cl ass Pol i nor pherror:
.def __init__(self, args=None):
I f args == None:
print 'No argunents!’

if args ==
print 'One argunent!’
self.args = args

The behavior of overloaded functions and methods is better implemented in Python using default
arguments or by explicitly looking at the types of the arguments passed into the function.

If you have a class for which you need to specify both a default constructor and a constructor that takes
initial values of state as arguments, | suggest that you do so by transporting default arguments to the
__init__ method.

>>> cl ass Ani nal :
.def _init_ (self, nanme = "Parrot"):
: sel f. name = nane
.def printAniml(self):
print self.nane

>>> p = Ani mal ()

>>> p. printAni mal ()
Par r ot

>>> p = Ani mal (" Monkey")
>>> p. printAni mal ()
Monkey

If you want to initialize a variable but you don't want to enforce an object type, you can use the None
type.

>>> cl ass Ani mal :
.def __init__(self, name = None):
sel f. name = nane
.def printAniml(self):
print self.nane

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

binding
runtime
implementing
polymorphism 2nd
initializing
variables
method overloading 2nd
object-oriented programming (OOP)
polymorphism
overloading
method 2nd
polymorphism
programming
object-oriented (OOP)
polymorphism
runtime binding
typed variables
variables
initializing
typed

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=110

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming > See All Titles
Encapsulation

< BACK Make Note | Bookmark CONTINUE >

Encapsulation

All Python attributes (variables and methods) are public. Even though you cannot have private
attributes in Python, you can use the following two agreements:

. By convention, attributes preceded with a single underscore (for example, _n) are to be viewed
as internal variables, not to be used externally.

. Attributes starting with double underscores (for example, __n) aren't explicitly exported. They
arerenamed to _Cl ass___Vari abl enane when byte compiled. Because the name of a class
Is used as part of the variable name, the attribute __n (when inside a subclass) isn't the same
___nvariable defined at a base class. This is probably the closest to pri vat e that you will get.

But, it isn't really a private implementation because when you know the name of the class, you
can access the attribute. C++ programmers probably know this as name mangling.

We cannot say that Python supports private attributes because it is still possible to have access to the
attributes if you know the class and attributes names. For example, in a class called C, the attribute
self. _attr becomessel f. C attr, when exported from the class. Hence, you can access

this attribute by referencingitas _C attr.

>>> cl ass Nunber:
.def __init__ (self, value):
self. _n = value
. self._n = value
.def _repr__(self):
. return '%(%)"' % (self. class__. nane__, self. _n)
..def add(self, value):
. self. n =self. _n + value
.def incr(self):
self. n=self. n+1

Based on the previous class, we will have some interactive examples next.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=111
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A59+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=111&now=5%2F31%2F2002+4%3A33%3A59+PM

>>> a = Nunber (20)

>>> a
Nunber (20)
>>> a. add(4)
>>> a
Nunber (24)
>>> a.incr()
>>> a
Number (25)
>>> a. n

25

>>> a. n = 30
>>> a
Nunber (30)
>>> a. Nunber n
20

The important thing to remember is that nothing in Python is private (unless it is hidden within a C
extension type).

To demonstrate that you can use default arguments to help storing the environment variables in a
variable from the class namespace, the next example initializes the value of the variable n by using a

default argument. The value of n is assigned at the time of defining the function and is stored at the
class namespace.

>>> v = 10

>>> class C

..def storen(self, n=v):
return n

>>> obj A = ()
>>> obj A storen()
10

>>> v = 20

>>> objB = ()
>>> obj B. storen()
10

>>> n = 30

>>> 0bj C = ()

>>> obj C. storen()
10

Note that the value of n remains constant for all instances of the class C.

The following example shows that it is possible to manipulate the internal attributes of an object by
directly accessing the members of a class.

>>> cl|l ass fun:
.def _init_ (self):
self.total = None

>>> a = fun()
>>> b = fun()
>>> a.total = 2
>>> p.total = 3
>>> print a, b
2 3

In this next example, we hide the a() method definition by preceding it with two underscores. Note

that if you later need to access this method (and you don't want to rename it), you must create a
reference to the method, as shown in the following example.

>>> class C
.def __ a(self):
print "ni!"

>>> a = C()
>>> a. b()
ni!

<BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=111

Index terms contained in this section

accessing
private attributes 2nd

attributes
objects

changing
private
accessing 2nd
changing
object attributes
class namespaces 2nd
editing
object attributes
encapsulation
mangling
name

manipulating

object attributes
modifying

object attributes
name mangling
namespaces

class 2nd
object-oriented programming (OOP)

encapsulation
objects

changing attributes
private attributes

accessing 2nd
programming

object-oriented (OOP)

encapsulation

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming > See All Titles
Metaclasses

< BACK Make Note | Bookmark CONTINUE >

Metaclasses

A metaclass is just a class that is used as a template to create class-like entities.

Normally, you create instances based on classes. The goal here is to create classes (metainstances)
based on other classes (metaclasses). The resulting metainstances are used as base classes for your own
classes.

The whole idea is to offer you the possibility of operating Python's internal class-handling engine.
Everything that usually happens behind the scenes while manipulating your classes and objects now
can be accessed and changed. The meta instance makes it easier for you to handle the task of modifying
the attribute lookup behavior of objects.

Prior to Python, version 1.5, it was necessary to use C extensions in order to define metaclasses.

The subsequent code defines a simple metaclass and its supporting classes. Note that this structure
doesn't cover the whole model.

1: >>> inport types
2: >>> class METACLASS:

3: def _init_ (self, nane, bases, nanespace):
4. self. nanme__ = nane

5: self. bases = bases

6: self. nanmespace _ = nanespace

7. def __call__(self):

8: return METAI NSTANCE(sel f)

9. ..

10: >>> cl ass METAI NSTANCE:

11: .def __init__ (self, netacl ass):

12: ... self. metaclass__ = netacl ass

13: .def _ getattr_(self, nane):

14: ... try:

15: ... value = self. netaclass_ . nanespace__ [nane]
16: ... except KeyError:

17. ... raise AttributeError, nane

18: ... I f type(value) is not types. FunctionType:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=112
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A34%3A09+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=112&now=5%2F31%2F2002+4%3A34%3A09+PM

19: ... return val ue

20: ... return METHODWRAPPER(val ue, self)

21: ...

22: >>> cl ass METHODWRAPPER:

23: .def __init__ (self, function, netainstance):

24. ... sel f.function = function

25: .. sel f.instance = netai nstance

26: ... self. nanme__ = self.function.__name__

27. .def __call__(self, *args):

28. ... return apply(self.function, (self.instance,) + args)
29:

Line 2 : Defines the metaclass METACLASS.

Lines 3-6 : Creates a new metaclass. The __init___method expects three arguments: The metainstance
name, a tuple of base classes, and a dictionary of the metainstance namespace.

Lines 7-8 : Invokes METAI NSTANCE. __init__ when METACLASS is called, returning a
metainstance.

Line 10 : Defines the metainstance METAI NSTANCE.

Line 13 : Handles the access to attributes of the user instance by checking whether it is part of the user
class namespace (lines 14-17). If the attribute is a value, it returns the value. Otherwise, if the attribute
is a function, it returns an instance of the METHODWRAPPER class, which is actually the result of the

function call.

Line 22 : Defines the METHODWRAPPER class, which handles all the accesses to the method attributes
of the user class.

Now that we are ready to call metaclasses, you can use metainstances as base classes of your own
classes, trapping the access to your class objects. The next line of code creates an instance of a
metainstance.

>>> BASECLASS = METACLASS(' BASECLASS , (), { })

Let me explain to you what is really happening here:

We are creating a class called BASECLASS whose behavior is inherited from the METACLASS
constructor class. The METACLASS. i nit __ method is invoked at this stage.

From now on, every class that you create—which uses BASECLASS as the base class—will inherit the
whole behavior that you have specified in the METACLASS definition.

The following code exemplifies a user class that has our BASECLASS as the base class.

>>> cl ass CEQ(BASECLASS) :
def push(self, nane):
sel f. nane = [nane]
def pop(self):
i f len(self.nanme) > O:
item = sel f.nane[- 1]
del self.nane[-1]
print item

Now it's time to illustrate the use of this whole concept.

>>> | TCEO = CEQ()

>>> | TCEQO. push(" Andre")
>>> | TCEQ. pop()

[' Andre']

>>> | TCEQO. nane

[]

Note that | TCEO = CEQ() invokes METACLASS. _cal | __, which creates a METAI NSTANCE
instance, whereas all the other calls invoke METAI NSTANCE. __getattr_ .

More details about metaclasses can be found at the following addresses:

http://www.python.org/doc/essays/metaclasses/

and Mess—The Meta-Extension System Set (old stuff) at
http://starship.python.net/crew/da/mess/doc/Tutorial.

http://www.python.org/doc/essays/metaclasses/
http://starship.python.net/crew/da/mess/doc/Tutorial

Mess is a set of extensions that allows the creation of new types, among other things. It's not certain
whether it will ever be integrated into Python, but its documentation can provide a lot of help in
understanding metaclass concepts.

Maybe you will like to take a look at the Ext ensi onCl ass extension by Digital Creations that uses

metaclasses to allow creation of class-like objects in C (and is a lot easier to use than Mess). This
extension illustrates how the Python class mechanism can be extended, and provides a lightweight
mechanism developed for making Python extension types more class-like. Classes can be developed in
an extension language, such as C or C++, and treated like other Python classes.

http://www.digicool.com/releases/ExtensionClass/

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

creating
instances
metainstances

Digital Creations
ExtensionClass extension

ExtensionClass extension

extensions
ExtensionClass

Mess

instances
metainstances

creating

Mess
metaclasses 2nd
metainstances

creating instances of

object-oriented programming (OOP)
metaclasses 2nd
programming
object-oriented (OOP)
metaclasses 2nd

© 2002, O'Reilly & Associates, Inc.

http://www.digicool.com/releases/ExtensionClass/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=112

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming > See All Titles
Summary

< BACK Make Note | Bookmark CONTINUE >

Summary

Python is a language that implements object-oriented programming (OOP) by supporting classes and
class instances.

A class is a template from which objects can be created. It has its own namespace and stores object
attributes and methods, which can be inherited from other base classes—a process called subclassing.

A class can also contain class variable assignments. These variables are shared by all the class
instances, and they are part of the class namespace. All class attributes (variables and methods) are
public.

In order to identify the right variable that is used when you get multiple variables with the same name
within your code, the following search order is followed: instance variables, class variables, and base
class variables.

Python has a module called pycl br (Python Class Browser) that offers you the possibility of

browsing all the information about classes that is stored in some other specific module. Note that most
of this information can also be deduced through introspection. pycl br gives you another benefit in

that you don't need to import the module.

Each object created from a class is an instance of a class, which has some specific properties: identity,
object type, attributes, methods, and value.

Classes and instances have built-in attributes that provide access to their internal definitions
(namespace, name, and so on).

The built-in functions i si nst ance() andi ssubcl ass() are provided to help determine the
inheritance properties of instance and class objects.

Each instance defines its own namespace of data, and it inherits behavior from the class (and possible
base classes) that have originated it.

Python object attributes don't need to be declared inside the class before they get used because they can
be created dynamically.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=113
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A34%3A17+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=113&now=5%2F31%2F2002+4%3A34%3A17+PM

Class methods can be unbound and used outside a class definition. They also carry some special
attributes that can be called from within the class that implements them. These attributes enable the
access to the method's name, the method's documentation string, and so on.

All method definitions must carry the argument sel f , whose function is to transport a reference of
the object in a way so that when a method is called, it knows which object should be affected.

Python exposes some special methods, suchas __init_ (), __str__ (), andsoon. These
methods inherit built-in functions of the same name that are provided by Python itself.

Python operators can be re-created by remapping their built-in functions and methods. This feature is
called operator overloading. Extensive support exists for operators overloading via the double-
underscored special methodssuchas __add () and _div__ ().

Python classes can be created from scratch by using single inheritance and multiple inheritance.

A subclass is a class that inherits attribute names from another class, whereas a base class is defined as
a class that another class inherits attributes from. When you create a subclass, you can add or overwrite
any method from its base classes. However, inherited methods of base classes aren't automatically
called. It is necessary to call them explicitly.

The order used to inform the base classes in a class header is really important. The precedence order for
attribute searches in the base classes starts at the class located at the left side.

Python doesn't offer type declaration because it doesn't know what type of object implements an
interface until the program is running. This feature is called runtime binding.

A single underscore preceding the attribute name is used to point out internal attributes that shouldn't
be used externally. Attributes starting with double underscores aren't explicitly exported.

Python also offers you the possibility of operating its internal class handling engine by using
metaclasses and metainstances. A metaclass is just a class used as a template to create class-like
entities, and the use of metainstance makes it easier for you to handle the task of modifying the
attribute lookup behavior of objects.

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=113

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming > Code See All Titles
Examples

< BACK Make Note | Bookmark CONTINUE >

Code Examples

This application subclasses an exception class and executes the commands stored in a file. The filename is asked
by the application.

Listing 5.1 Configuration File (File configfile.py)

1. ###

2: # Program Configuration File

3: # Author: Andre S Lessa

4: ###

5:

6: ### i1nport nodul es

7.

8: inport exceptions, sys

9:

10: configfile = raw_input("Configuration File: ")
11:

12: class ConfigError (exceptions. Exception):
13: def __init__(self, arg=None):

14. self.args = arg

15:

16: try:

17: try:

18: file = open(configfile)

19: lines = file.readlines()
20: finally:
21: file.close()
22: except:
23: print "Error. Invalid file nane."
24 sys.exit()
25:
26: lines[0] = lines[O][:-1]
27:
28: if lines[0] !'= "CFQ000":
29: rai se ConfigError, "lnvalid header."
30:
31: lines = lines[1:]
32:
33: for line in |ines:
34: try:

35: exec line

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=114
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A34%3A25+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=114&now=5%2F31%2F2002+4%3A34%3A25+PM

36: except LookupError, b:

37: If b.args[0] == "list index out of range":
38: print "Error. Invalid index entry"

39: el se:

40: print "Error. CGeneric LookupError entry"
41: except Systenkxit:

42: print "Error. sys.exit() cannot be used."

Lines 12-14: The class Conf i gEr r or is created. It inherits all the attributes from the
excepti ons. Excepti on class.

Line 29: Raises our new exception class.

In order to test this program, we have to create a file called conf i g. t xt that contains the following lines:

CFG&2000

pri nt

print "Configuration File"
print M----------oo-ao-- "
server = "SRV0OO1"

port = 80

print "Server: ", server
print "Port: ", port

The next interaction shows how to call the program. It also shows the results provided by the program when no
exception is raised.

C.\ Python>python configfile.py
Configuration File: config.txt

Configuration File

Server: SRV001
Port: 80

C.\ Program Fil es\ Python>

This simple program creates a class structure that stores and prints a list of groceries.

Listing 5.2 Groceries List (File groceries.py)

1. ###
2: # Program G oceries List

3: # Author: Andre S Lessa

4: #Hi##

5:

6: ### inport nodul es

7.

8:

9: class grocery:

10: “Itens that you need to buy at the grocery store."
11: def __init_ (self, name, quantity=1):
12: sel f. name = nane

13: self.quantity = quantity

14:

15: items = { }
16: print "Type ENTER when you are done."

17: while 1:

18: name = raw_i nput ("G ocery nane: ")

19: if name == "":

20: br eak

21: quantity = raw_input ("% quantity: " % (nane))
22: if quantity == "":

23: I tens[nanme] = grocery(nane)

24 el se:

25: i tens[name] = grocery(nane, quantity)

26:

27 print Me---- oo \ nList of groceries to buy"
28 print Me---e e "

29:

30: for itemin itens. keys():

31: print "Grocery : ", itens[item.nane,

32: print "\ tQuantity: ", itens[item.quantity
33:

34: print "--------- "

Line 9: Declares the gr ocer y class.

Line 10: The class's documentation text.

Line 11: A default value is defined for the quant i t y argument.

Lines 22-25: Uses a different interface to initialize the object, depending on the information provided.
Lines 31-32: Provides access to the object attributes.

The next interaction shows how the program works.

C.\ Python>python groceries. py
Type ENTER when you are done.

G ocery nane: bananas
bananas quantity: 12

G ocery nane: apples
appl es quantity: 6
Grocery nane: pears
pears quantity: 8
Grocery nane: pineapple
pi neappl e quantity:
Grocery nane:

Grocery : pineapple Quantity: 1
Grocery : pears Quantity: 8
Grocery : apples Quantity: 6
Grocery : bananas Quantity: 12
C\ Python>

This file introduces two classes and one function that extensively manipulate class methods and attributes.

Listing 5.3 Company employees (File company.py)

1. ###

2: # Program Conpany enpl oyees

3: # Author: Andre S Lessa

4: #H##

5:

6: ### inport nodul es

7.

8: inport types

9:

10: cl ass Enpl oyee:

11: "Generic class for all conpany enpl oyees"
12:

13: __enpl oyees = 0

14:

15: def __init__(self, name, sal ar y=500. 00):
16: sel f. name = nane

17: self.salary = salary

18: self.famly = []

19: Enpl oyee. _enpl oyees = Enpl oyee. enpl oyees + 1
20:

21: def _ str__ (self):

22: return "enpl oyee: %" % sel f. nane
23:

24 def raisesalary(self, percent):

25: self.salary = self.salary + (self.salary * (1.0/percent))
26:

27: def job(self):

28: print self.nanme, "wites Python code."
29:

30: def hasfam | y(self):

31: return len(self.famly) >0

32:

33: def addnenber (self, nane):

34 self.fam|y. append(nane)

35:

36: def renovenenber(self, arg):

37: if len(self.famly) > O:

38: if type(arg) == type(1):

39: sel f.renovenenber _i nt(arg)

40: elif isinstance(arg, types. StringType):
41: sel f.renmovenenber _str(arg)

42:

43: def renmovenenber _int(self, index):

44: menber = self.fam |l y[index]

45: del self.famly[index]

46: return nenber

47:

48: def renovenenber_str(self, nane):

49: for nmenber in self.famly:

50: i f menber == nane:

51: del self.famly[self.famly.index(nmenber)]
52: return nenber

53:

54: def _ getitem_ (self, index):

55: menber = self.famly[index]

56: return nenber

57:

58: cl ass Leader (Enpl oyee):

59: "Conpany' s Leader of the enpl oyees”

60: def __init__ (self, name):

61: Enpl oyee. init__ (self, nane, 1500. 00)
62: def job(self):

63: print self.nanme, "supervises who wites Python code."
64:

65: def total enpl oyee():

66: return Enpl oyee. enpl oyee_enpl oyees

Line 10: Defines the Enpl oyee class.

Line 13: Class variable __enpl oyees.

Line 19: Increments the number of employees.

Line 31: Returns a logical value (O or 1).

Lines 36-41: Implements polymorphism by enabling the user to enter both string and integer values.
Lines 43-52: Helper methods for the polymorphism implementation.
Line 54: Enables the slicing of employees instances.

Line 58: Defines a subclass Leader that inherits attributes from the Enpl oyee class.
Lines 60-63: The __init () andthej ob() methods are overwritten.

Line 65: Provides a function that returns the total number of employees who are currently part of the class.

The following interaction shows how the classes must be used.

>>> | pport conpany

>>> andre = conpany. enpl oyee("Andre") # Creates an enpl oyee instance
>>> print andre

enpl oyee: Andre

>>> print andre.salary

500

>>> andre.rai sesalary(10) # Raises his salary in 10 percent

>>> andre. sal ary

550.0

>>> andre. job() # Shows his job description

Andre writes Python code.
>>> andre. hasfam | y()
0

>>> andre.
>>> andre.
>>> andre.
>>> andre.
1

>>> andr e.
[' Renata',
>>> andre.
>>> andre.
[' Renata',
>>> andre.
>>> andre.
[' Rebecca'
>>> andre.
>>> andre.

[]

addnmenber (" Renat a")
addnenber ("Joao Pedro")
addnenber (" Rebecca")
hasfam | y()

famly

"Joao Pedro', 'Rebecca']
r enovenenber (" Joao Pedro")
famly

' Rebecca']
renmovenenber (" Renat a
famly

]

Add a nenber to his famly

Add a nenber to his famly

Add a nenber to his famly
Returns 1 or O

Renove string menber fromli st

renmovenenber (0) # Renove index nmenber fromli st

famly

>>> andr e. addnenber ("Joao Pedro")

>>> andr e. addnenber (" Renat a")

>>> andr e. addnmenber (" Rebecca")

>>> andr e[0]

" Joao Pedro'

>>> andre[1l

' Renat a'

>>> andr e[2]

' Rebecca

>>> conpany. tot al enpl oyee()# Shows the total nunber of enpl oyees
1

>>> renata = conpany. enpl oyee(" Renat a")
>>> conpany. t ot al enpl oyee()

2

>>> Joao = conpany. Leader ("Joao Pedro") # Creates a | eader instance
>>> Joao. sal ary

1500. 0

>>> Joao. j ob()

Joao Pedro makes food

>>> conpany. t ot al enpl oyee()

3

>>>

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

code

company employees
company employees

source code
employees

source code
lists

company employees

source code

source code

company employees

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=114

Web Development > Python Developer's Handbook > II: Advanced Programming See All Titles

< BACK Make Note | Bookmark CONTINUE >

Part II: Advanced Programming

Part Il Advanced Programming

Chapter 6 Extending and Embedding Python

Chapter 7 Objects Interfacing and Distribution

Chapter 8 Working with Databases

Chapter 9 Other Advanced Topics

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=116
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A34%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=116&now=5%2F31%2F2002+4%3A34%3A33+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=116

Web Development > Python Developer's Handbook > 6. Extending and Embedding See All Titles
Python

< BACK Make Note | Bookmark CONTINUE >

Chapter 6. Extending and Embedding Python

What is your name? ... What is your quest? ... What is your favorite color?

The information provided in this chapter is a big step for those who want to be highly specialized in
Python programming. It demonstrates how you can create Python extension modules in C and C++,
and how you can embed Python objects in other non-Python applications.

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

creating

Python extension modules
embedding

Python objects

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=118
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A34%3A42+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=118&now=5%2F31%2F2002+4%3A34%3A42+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=118

Web Development > Python Developer's Handbook > 6. Extending and Embedding See All Titles
Python > Extending and Embedding Python

< BACK Make Note | Bookmark CONTINUE >

Extending and Embedding Python

Python has the capability to glue applications together. No doubt this is one of Python's most important
and well-known features. The reason for that is mostly because Python provides a two-way
communication channel to C by supporting both embedding and extending functionality. Whenever
you use Python code to call C code, you are extending Python. On the other hand, if you use C code to
call Python code, you are embedding Python. Even though these features can bring great results to your
application, most programmers never need to use these Python capabilities. Well, most programmers
will have to use the results of someone else extending Python.

We already know that Python can be used to write simple code in a shorter time. However, we can also
use C/C++ code to provide efficient and fast data processing, such as create built-in modules containing
functions, variables, exceptions; define new built-in object types in C; and call C library functions and
system calls.

Python has a good relationship with C because Python's interpreter is written in C, and since the
beginning, the interpreter has been ready to work with extension modules. Furthermore, the fact that C
Is supported on almost all platforms makes Python a good choice between cross-platform languages.
By writing extension modules in Python, you can generate tight C/C++ interfaces that can be used both
in production environments and in efficient prototype testing wrappers.

Currently, many Python-contributed modules (implemented as C extensions) provide interfaces to
many different system components. Those extension modules allow Python to talk to already existing
subroutine libraries, to native application programmer interfaces, and to special-purpose devices. They
are imported and handled the same as any other Python module written in Python.

The extension modules are used mostly to add new functionality to Python when there is no other way
to interface Python with a particular system or hardware. Sometimes, when Python code is inefficient,
extension modules are also used to boost performance.

If you need to call Python routines from inside your application, you can use the embedding
functionality to have them called by your application.

In order to write Python extensions, you must have the source code for the Python interpreter and
access to a C or C++ compiler. If you are running Windows, your compiler choice should be Microsoft
Visual C++ version 5 or later. Note that most Linux distributions have a package that contains all the

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=119
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A34%3A51+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=119&now=5%2F31%2F2002+4%3A34%3A51+PM

necessary files needed for compiling extensions, so you don't need a full source distribution in this
case. On Red Hat like systems, this package is called pyt hon- devel .

The Python official documentation and the links that are listed throughout this chapter are a good
source of information about this topic.

Embedding and Extending the Python Interpreter:

http://www.python.org/doc/current/ext/ext.html

Some people using Win32 claim to have successfully used the Free Borland Compiler to compile
Python extension modules.

Free Borland Compiler:

http://www.borland.com/bcppbuilder/freecompiler/

Some people also successfully used GNU gcc with the mingw32 runtime. There is some info at
http://starship.python.net/crew/kernr/mingw32/Notes.html

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applications
non-Python
embedding Python objects in
C programming language
extending and embedding Python
C++ programming language
extending and embedding Python
creating
Python extension modules
embedding
Python objects
extension modules
creating
modules
extension
creating
objects

http://www.python.org/doc/current/ext/ext.html
http://www.borland.com/bcppbuilder/freecompiler/
http://starship.python.net/crew/kernr/mingw32/Notes.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=119

embedding in hon-Python applications
programming languages
C

extending and embedding Python
C++
extending and embedding Python
programs
non-Python
embedding Python objects in
software
non-Python
embedding Python objects in

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding See All Titles
Python > The Python/C API

< BACK Make Note | Bookmark CONTINUE >

The Python/C API

Python provides an intuitive and clean C Application Programmers Interface (API) that exposes the
interface to the Python runtime system. This API provides a great number of functions to manipulate
Python objects and built-in types from C and C++. Most of the functions work in much the same way
as they would when called from the interpreter.

To include this API in your C/C++ program, you just need to add the header " <Pyt hon. h>" to your
source code.

Internally, this header file includes both Python and C header files, including: <st di 0. h>,
<string. h> <errno.h>, and<stdlib. h>. Therefore, you don't need to include these again
once you include " <Pyt hon. h>".

Python/C API Reference Manual (This link takes you to the official and latest
documentation about the Python/C APL.):

http://www.python.org/doc/current/api/api.html

Check Appendix A, "Python/C API" of this book for more details and for a complete list of the
interface functions provided by the Python/C API.

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=120
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A34%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=120&now=5%2F31%2F2002+4%3A34%3A58+PM
http://www.python.org/doc/current/api/api.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=120

Index terms contained in this section

<
Python.h header file
adding
Python/C Application Programmers Interface (API)
Application Programmers Interface (API)
Python/C
extending and embedding
applications
non-Python
embedding Python objects in;Python/C Application Programmers Interface (API)
C programming language
extending and embedding Python
C++ programming language
extending and embedding Python
creating
Python extension modules
Python/C Application Programmers Interface (API)
embedding
Python objects
Python/C Application Programmers Interface (API)

files
header
<Python.h

header files
<

Python.h
inserting
Python/C Application Programmers Interface (API)
interfaces
Python/C Application Programmers (API)
extending and embedding

objects
Python
embedding in non-Python applications;Python/C Application Programmers Interface (API)
programming languages
C

extending and embedding Python
C++
extending and embedding Python
programs
non-Python
embedding Python objects in;Python/C Application Programmers Interface (API)
Python/C Application Programmers Interface (API)
extending and embedding
software
non-Python

embedding Python objects in;Python/C Application Programmers Interface (API)

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding Python See All Titles
> Extending

< BACK Make Note | Bookmark CONTINUE >

Extending

Because Python cannot access C/C++ functions in a straightforward way, it is necessary to handle the
conversion between Python and C/C++ data types when putting them to work together. That is when we
use the Python extension modules. These extensions work like a thin wrapper of functions written in
C/C++ that are necessary to bring the C/C++ functionality to the developer.

It is widely known that interpreted languages execute intensive applications slower than compiled
languages. As a result, it is a good choice to implement as extension modules the application routines
that need to run fast, such as network access, database manipulation, and routines that intensively use
the graphical interface.

Keep in mind that you always have to think about whether it is really necessary to implement routines as
extension modules. Are you sure that the processing speed will get better by calling C functions instead
of just using plain Python?

Before starting to implement anything in C, | suggest that you analyze and test your Python code. Check
to see whether it can be optimized. Profile it, and only if you find some big problem, create C
extensions. As an example, if you have the execution time of a function that only accounts for 1% of the
program execution time, you have only reduced total execution time by 0.5%.

And remember, before you implement some surreal extension, to first check the Python distribution and
the contributed modules. What you need might already be there.

Some good links to where you can check for existing modules are
The Python contributed modules page at

http://www.python.org/download/Contributed.html

The Vaults of Parnassus collection of Python resources at

http://www.vex.net/~x/parnassus/

The extension modules should be used to write specific operations, and not complete applications. By
doing this, you will spend less time developing the wrapping interfaces.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=121
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A35%3A05+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=121&now=5%2F31%2F2002+4%3A35%3A05+PM
http://www.python.org/download/Contributed.html
http://www.vex.net/~x/parnassus/

The next two links provide a good source of information about writing an extension module:
"How to Write a Python Extension,” by Michael P. Reilly:

http://starship.python.net/crew/arcege/extwriting/pyext.html

"Extension Classes, Python Extension Types Become Classes,"” by Jim Fulton:

http://www.digicool.com/releases/ExtensionClass/

Creating New Extensions

| presume that if you came this far, you are sure that you want to use extension modules. So, let's start
developing something.

First, in many places, you will see the naming convention for extension module files defined as
nodul enanmenodul e. c¢. Second, all extension modules must include the Python/C API

" <Pyt hon. h>" system header file.

The next example is an extension module called hel | owor | dnodul e. c that is used to demonstrate
how easy it is to create a Python extension.

[* File: helloworl dnodul e.c */
#i ncl ude " <Pyt hon. h>"

[* external function*/
static PyObject *sayhell o(PyQhject *self)
{
return Py Buil dval ue("s","Hello Python World!");

}

/* name binding table */

static PyMet hodDef hel |l omet hods[] = {
{"say", sayhello, METH VARARGS },
{NULL, NULL} /* sentinel */

};

/* initialization function*/
DL _EXPORT(void) inithello()

{
Py I nitMdul e("hello”, hellonethods);

http://starship.python.net/crew/arcege/extwriting/pyext.html
http://www.digicool.com/releases/ExtensionClass/

After linking this module to your interpreter, it becomes promptly accessible for your use (see Figure
6.1).

Figure 6.1. As you can see, there is no difference between the way you use an extension module and
the other modules.

=1 T1

== e/
Mp Computer FREE PC
Trairirg

3 —

& 7

==

Hy Decumenti windp

s, | E P | i Yy F0D00, OB:IEZ@ELSy [HSC 32 bat (lateld] on windd
% prigh

Lichling Hathematisch Cemirem, Anstlerdan
Iri el FREE! Insiant
Exphoind M assangs

g

Ascycia Bin
Cick Hetn

m

Orlire Wy Bredoate
Ferees

- A
=
Dutood; Amesiica Ordines
[50

= sl

Mtk Mo
Nesighisorhood Commurscator

S|

InbatVidao Bhuslight com
WinlD\T

It is important to stick to the naming convention because when the module is first imported, the
I ni t nodul enane() function is called.

Every time you implement a C function that Python will call, you have to define two arguments. The
first one is called sel f, and it is a pointer to the called object. The argument sel f is used when

implementing built-in methods to point to the bound object. When a function is implemented, sel f is
set to NULL.

The other argument is usually called ar gs, which is a pointer to a tuple object that contains the
arguments of the function.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/121#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/121#2.html

Check out another example. This one passes arguments between Python and C.

/* File: systemmodul e.c*/
#i ncl ude " <Pyt hon. h>"

static PyQbject *system conmmand(PyCbj ect *self, PyQbject *args)

int return_status;

char *program

char *argunent;

static char statenent[255];

i f (!PyArg_ParseTupl e(args, "ss", &program &argunent))

return NULL,
sprintf(statenent, "% %", program argunent);

return_status = systen{(statenent);
return Py BuildValue("i", return_status);

}

static PyMet hodDef systemmethods[] = {
{"command", system command, METH VARARGS},

{NULL, NULL}
¥

DL _EXPORT(void) initsystem() {
Py_I ni t Modul e("systent, systenmret hods);
}

The next set of instructions calls the command() function that is part of the syst emmodule, which is
stored in the syst emmodul e. c file.

>>> jnport system
>>> system conmand("dir","| nore")

All interface items are Python objects. Thus, function arguments and return values are pointers to
PyQhj ect structures. PyQbj ect s are C representations of real Python objects. All PyQbj ect s have
a reference count.

You shouldn't declare a variable of type PyCbj ect . Instead, you have to declare PyCbj ect *

pointers to the actual storage of the object. Because all Python objects have a similar behavior, they can
be represented by a single C type (PyCbj ect *). Note that a variable of type PyObj ect can be

defined, but it won't be of much use.
In order to implement basic extensions, you essentially use the following commands:

PyArg ParseTupl e(args, format, argl [, arg2 [, ..]])—€hecks the
argument types and converts them to C values. It returns a t r ue value when the checking
and the conversion doesn't return any errors.

PyAr g_Par seTupl e—Used to parse the PyCbj ect that contains the function
arguments (ar gs). The second argument is a format string that lists the object types that

you expect to collect, and all the other arguments are pointers to be filled with values from
the parsing operation. Note that you can add the function name to the format string to
make error messages a bit more informative.

Py Buil dval ue(format, Cvarl [, Cvar2 [, ..]])—Converts C objects into
Python Objects based on the formatting string. Py _Bui | dVal ue is mostly used when it
IS necessary to return values to the Python interpreter.

Tip

C functions that return a void argument must return the Python type called None.

Py_| NCREF(Py_None) ;
return Py_None;

For this other example, let's create a function that takes two Python objects and returns a pointer to a
Python object.

/*

File: divisionnodul e.c*/

#i ncl ude " <Pyt hon. h>"

static PyQbject *division function(PyCbject *self, PyQbject *args)

{ Py(Qbject *result = NULL;

}

| ong a, b;

i f (PyArg_ParseTupl e(args, "ii", &a, &b)) {
result = Py Buildvalue("i", a/ b);

}

return result;

static PyMet hodDef divisionnethods[] = {
{"divide", division_function, METH VARARGS},

};

{NULL, NULL},

DL_EXPORT(voi d) i nitdivision()

{
}

Py I nit Modul e("di vision", divisionnethods);

Importing an Extension Module

As you could see in the previous example, in order to allow Python to import your module, a few steps
are required.

Step 1. Create a method array. Each element of this array is a structure that contains:
the function's name to be exported to the Python interface, the C function's name and a
indicator that shows how arguments must be passed. Each function of the module to be
exported to Python must be an element in this array. Note that the last element of the
array works as a sentinel, and it must contain NULLSs.

static PyMet hodDef systemmet hods[] = {
{"command”, system comrand, METH VARARGS},
{ NULL, NULL}

};

The third argument of each array entry can beMETH_VARARGS means that the
arguments are in a tuple format.VETH_VARARGS | METH_KEYWORDS indicates that
keyword arguments are also allowed. It will just pass a NULL for the extra argument if no
keyword arguments are given.

The nodul enanmenet hods|[] array has a fourth optional element, which is a documentation
string.

Step 2. Create the initialization function of the module. This function should be declared
as non-static. All the others should be defined as static in order to avoid name conflicts
with other modules.

The i ni t nodul enane() function is automatically called by the interpreter. The
DL_EXPORT() definition is used to expose the module entry point. Note that the DL_ EXPORT
macro only does something on the Win32 platform.

DL _EXPORT(void) initsystem() {
Py_I ni t Modul e("systent, systenmmret hods);

In this example, the Py | ni t Modul e creates a "syst e’ module object based on the array
syst enmet hods.

You can verify that by checking the sys. nodul es dictionary after importing the extension module.

Formatting Strings

Whenever you use the PyAr g _Par seTupl e() orthe Py _Bui | dVal ue() function, you must

follow a mechanism that is based on some formatting tables, which are mentioned next, in order to make
the correct conversion between Python types and C types.

Both functions check the arguments type by looking at a formatting string. All the elements of the
formatting string must match in type and number with the variables that are also part of the function's
list of arguments.

Sometimes, it isn't strictly necessary to have both sides (C and Python) matching in type. The reality is
that the receiving field only has to be big enough to fit the received value; hence, the Python type called

f | oat is easily stored by a C doubl e variable. Of course, using a C type that doesn't match the format
character will cause problems that might only affect some platforms.

The literals |, :, and; have special meanings when placed inside a formatting string.

| —The remaining arguments in the formatting string are optional. The C variables will

keep their original values in case they aren't assigned to any arguments. You should make
sure that the variables are initialized for optional arguments.

. —The string after the colon is the function name to be called in case of error messages.

; — The string after the semicolon is the user error message that must substitute for the
original error message.

Tip

A given formatting string must contain only one | with : or; because : and ; are mutually
exclusive.

Table 6.1 covers all the elements that can be part of a PyAr g_Par seTupl e's formatting string. Just to
remind you, PyAr g_Par seTupl e() is used to convert Python objects into C objects.

Table 6.1. A PyArg_Par seTupl e's Formatting String Elements

Element Python Type |C Type Notes
S string char * The C stri ng is NULL terminated:;

The Python st ri ng cannot be None and it cannot
contain embedded NULLS, otherwise, a
TypeEr r or exception is raised.

s# string char *, int Pointer to the character st ri ng and its length.
Note that s# allows embedded NULLSs in the string.
z string or None |char * Python st ri ng can be None. If that happens, the
C pointer is set to NULL.
z# string or None |char *, int Similar to s#.
b integer char Storesatiny int (8-bitinteger)inachar.
integer short int

i integer i nt

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/121#5.html

integer I 'ong i nt

c string of length 1 /char

f float f1 oat

d float doubl e

D complex Py conpl ex

O object PyQbj ect * The C variable (of type PyQbj ect *) stores an s

pointer to the address of the Python obj ect. The
object reference count isn't increased.

o object typeobj ect, PyQbject * Similarto O, but it also looks at the address of the
Python-type object that specifies the required type.

If the Python object doesn't match the required
type, a TypeError exception is raised.

Q& object function, variable Converts a Python object into a C variable of
arbitrary type (voi d *), using a function.

It is equivalent to: st at us =
function(object, variable).

The returned st at us should be 1 for success and
O for failure.

S string PyStringQoject * Similar to O, but it expects a st ri ng object. It
raises a TypeEr r or exception otherwise.

Note

Using anything other than the given types could very easily cause problems on some architectures.

If the Python object is a tuple, the number of matching variables passed to the C function must be equal
to the number of formatting elements informed. A tuple is indicated in the formatting string by placing
the formatting elements between parenthesis.

The Py _Bui | dVal ue function is used to return values to the Python program that has called the
extension module. Its functionality is similar to PyAr g_Par seTupl e.

This function doesn't create a tuple of one element automatically, unless you enclose the single
formatting element in parentheses.

Table 6.2 covers the Py_Bui | dVal ue function and all the elements that can be part of its formatting
string. Just to remind you, this function is used to convert C objects into Python objects.

Table 6.2. A Py_Bui | dval ue's Formatting String Elements

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/121#6.html

Element|C type Python type Notes

S char * string If the C string pointer is NULL, None is returned.

s# char *, int |string Converts the C pointer to a character string and its length into a
Python string object. If the C pointer is NULL, None is returned.

z char * string or None |Similarto s.

z# char *, int |string or None |Similarto s#.

b char integer

h short int integer

i I nt integer

I | ong int integer

c char string of length 1

f fl oat float

d doubl e float

o PyGbj ect * object It increments the reference count of the transported object.

a t ypeobj ect,

PyGbj ect * |object

O& function, variable object It returns a Python object, or NULL if an error occurs.
S PyCbj ect * |object Same as O,
N PyQbj ect * object Similar to O, except that the reference count isn't incremented.

The following list complements the previous table by showing how Python tuples, lists, and dictionaries
are generated.

. Matching items between parenthesis are converted into a Python tuple.
. Matching items between square brackets are converted into a Python list.

. Matching items between curly braces are converted into a Python dictionary. Each consecutive
pair of values forms a dictionary entry in the format (key, value).

Exporting Constants

In addition to methods, you can also export constants back to Python. You just need to bind the constant
name to the module namespace dictionary.

/* File: pinodule.c*/

#i ncl ude " <Pyt hon. h>"

stati c PyMet hodDef pinethods[] = {
{NULL, NULL}

b
DL_EXPORT(voi d)
i nitpi()
{ PyQbject *nodul e, *dictionary;
PyQbj ect *pi val ue;

nodul e = Py I nitMdule("pi", pinethods);
di ctionary = PyMdul e _Get Di ct (nodul e) ;

pi val ue = PyFl oat _FronDoubl e(3. 1415926) ;
PyDict_Setltenttring(dictionary, "pi", pivalue);
Py DECREF(pi val ue);

Error Checking

You must indicate errors in your extension module by returning NULL to the interpreter because
functions signal errors by returning NULL. If your function has no r et ur n at all, you need to return
the None object.

return Py Buil dval ue("");

or

Py | NCREF(Py _None) ;
return Py None;

In case you need to raise an exception, you can do that prior to the r et ur n NULL statement. Note that
returning NULL without raising an exception is bad.

Handling Exceptions

Exceptions work as functions in the Python/C API. For example, to raise an | ndexEr r or exception,

you just need to call PyExc_Set St ri ng() priortother et urn NULL statement.

Extension modules also support the creation of new exception types.

/* File: testexceptionnodul e.c*/
#i ncl ude " <Pyt hon. h>"
static Py(Qbject *exception = NULL;

static PyMet hodDef testexceptionnethods[] = {
{ NULL, NULL}

};

DL_EXPORT(voi d)
I nittestexception()
{ PyQbject *nodul e, *dictionary;
nmodul e = Py I nitMdul e("testexception”, testexceptionnethods);
di ctionary = PyMdul e _Get D ct (nodul e) ;

exception = PyErr NewException("testexception.error™, NULL, NULL);
PyDi ct _Setltenttring(dictionary, "error", exception);

If you need to raise your just-created exception, just call it:

PyErr_Set String(exception, "I could not do that");

Check Appendix A for more information about the Python/C API exception functions, including how to
handle threads in your extensions.

Reference Counting

We all know that programmers are responsible for dynamic memory allocation and deallocation in C
and C++.

However, Python extensions don't benefit from all the security provided by the Python runtime system.
There are a lot of things that you have to be worried about. The main thing is reference counting.

The core Python counts references to every Python object that is created, which enables it to deallocate
an object when it doesn't have any more references.

If an object's reference count reaches 0, this object is marked for deallocation. If this same object
references other objects, their references are decremented too. The code for deallocating referenced
objects occurs in the object destructor.

The counter is incremented when a reference to the object is created, and it is decremented when the
reference is deleted. If the reference count becomes zero, the object is released. That's how Python
works.

However, Python extensions don't have this functionality built in. You have to increment (Py | NCREF)
and decrement (Py_ DECREF) the references by yourself.

You can be sure that your reference counting is wrong if your system crashes when you either return a
value from the extension module or when you exit the application.

Too few Py | NCREFs can cause the application to freeze at an unspecific time, whereas too few
Py DECREFs cause memory leaks that drive the application to use more and more memory for the
process.

An object reference count is defined as the number of owned references to it. The owner of a reference
is responsible for calling Py DECREF() . Itis also possible to borrow a reference to an object. The

borrower should neither call Py DECREF() nor use the reference after the reference owner has

disposed of it. If you are borrowing a reference, make sure that you are absolutely certain the owner will
not release the reference while you are using it.

To make a borrowed reference to become an owned reference, you just need to call Py | NCREF() for
the mentioned object.

Take a look at following lines of code:

PyQhj ect *Q
if (! PyArg ParseTuple(args, "O', &) return NULL;

You don't need to call Py DECREF() before leaving the module that implements this kind of code
because PyAr g Par seTupl e() returns borrowed references, and releasing references that you don't
own can cause you severe problems. Py | NCREF and Py _DECREF are implemented as macros, so
only pass a variable as the argument because the argument is evaluated twice after macro expansion.

Python Official Documentation—Reference Counts

http://www.python.org/doc/current/api/refcounts.html

"Debugging Reference Count Problems," by Guido van Rossum

http://www.python.org/doc/essays/refcnt.html

Building Extensions in C++

Python has a C-based interpreter, and it becomes a bit harder to adjust code to compile it as C++
because Python has some restrictions when it comes to creating extension modules using C++.
However, there are some things that you can do in order to reduce your problems. The next hints will
help you to link Python to a C++ compiler.

The problems depend on the C++ compiler that you are using. However the most common ones are
discussed in the following paragraphs.

If the Python interpreter is compiled and liked by a C compiler, you cannot use global or static C++
objects with constructors. Unless you use a C++ compiler. But, you can initialize the globals in the
module's init function instead.

You need to place extern " C' { ...}around the Python include files. You need to define the
Python API as a C segment to the C++ compiler as well.

extern "C'{
#i ncl ude " <Pyt hon. h>"

}

If the header files for Python on your machine already include the extern " C' { ...} stuff, adding
an extraext ern " C" block will cause an error on most compilers (as the ext ern " C" syntax is not
valid C).

Functions that are going to be called by the interpreter (in particular, module initialization functions)
have to be declared usingextern " C".

extern "C' {
DL_EXPORT(voi d)

http://www.python.org/doc/current/api/refcounts.html
http://www.python.org/doc/essays/refcnt.html

I ni t nodul enanme()

{
}

Py I nit Modul e(" nodul enane”, nodul enanme_net hods) ;

This same declaration could also be written as

extern "C' DL_EXPORT(voi d)
I ni t nodul enanme()

{

Py I nitMdul e(" nmodul enane”, nodul enanme_net hods) ;

You have these same concerns when building a dynamic module. In fact, there are more concerns (for
instance, the DL_ EXPORT stuff isn't required if the module is statically linked to the interpreter).

You can use Python to access many C++ class libraries. You just need to have the right wrapper that
provides the necessary access to the libraries.

Tip

When embedding Python in your C++ code, it isn't necessary to recompile Python itself using C++.
However, if you want to use C++ extension modules, the Python interpreter might have to be
compiled with a C++ compiler though recent Linux distributions should work fine without a
recompile.

For more information, check out
"Binding Python to C++," by Guido van Rossum

http://www.python.org/workshops/1994-11/C++Python.txt

< BACK Make Note | Bookmark CONTINUE >

http://www.python.org/workshops/1994-11/C++Python.txt
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=121

Index terms contained in this section

applications
non-Python

args argument
arguments
args
self
b element 2nd
blocks .
extern O

CO{E}

CO{E}
borrowed references
building
extensions, C++ 2nd
c element 2nd
C programming language

C++ programming language
building extensions 2nd

checking
errors
extension modules 2nd

command() function

commands
implementing extensions

Py BuildValue(format, Cvarl [, Cvar2 [, 1)

PyArg ParseTuple

PyArg ParseTuple(args, format, argl [, arg2 [, I])
compiling

Python

counters
incrementing and decrementing 2nd 3rd

counting
references
extension modules 2nd
creating
extensions

extensions, C++ 2nd

d element
D element
d element

deallocating
objects
declaring
variables
PyObiject
decrementing

counters 2nd 3rd

double variable
elements
b 2nd
c2nd

oloIz

N
52
o

@)
Ro
N
S
a

2 11 1o |0 (o

z 2nd
z# 2nd
embedding

error checking

extension modules 2nd

exceptions
handling

extension modules 2nd

raising

returning NULL values

extension modules

importing
extensions

building, C++ 2nd

creating

implementing
extern O
co

{ E } block

{E }block

f element 2nd
float variable

formatting
strings 2nd 3rd 4th 5th

functions

command()
Py BuildValue()

string elements
Py DECREF() 2nd
Py INCREF() 2nd
PyArg ParseTuple()
string elements 2nd
h element 2nd

handling

exceptions

extension modules 2nd

i element 2nd
implementing

extensions
importing

extension modules

incrementing
counters 2nd 3rd

| element 2nd

modules
extension

importing
N element

NULL value
checking errors, extension modules

returning without raising exceptions
O element 2nd
O! element 2nd

0&
element 2nd

objects
deallocating

owned references
programming languages
C

C++
building extensions 2nd

programs
non-Python

Py BuildValue() function

string elements
Py BuildValue(format, Cvarl [, Cvar2 [,]]) command
Py DECREF() function 2nd
Py INCREF() function 2nd
PyArg ParseTuple command
PyArg_ParseTuple() function

string elements 2nd
PyArg ParseTuple(args, format, argl [, arg2 [,]]) command
PyObiject

declaring variables
Python

recompiling
raising

exceptions

returning NULL values

recompiling

Python

reference counting
extension

extension modules

references
borrowed

owned

returning
NULL value without raising exceptions

s element

S element

s element

S element

s# element 2nd
self argument

software
non-Python

strings
formatting 2nd 3rd 4th 5th

values
NULL
checking errors, extension modules

returning without raising exceptions

variables
declaring

PyObiject
double

float

verifying

errors
extension modules 2nd

Z element 2nd
z# element 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding Python See All Titles
>Compiling and Linking Extension Modules

< BACK Make Note | Bookmark CONTINUE >

Compiling and Linking Extension Modules

Two options are available for building Python extension modules. The first one compiles and links the
module into the interpreter. This option makes the module always available to the interpreter.

The second option doesn't require that you recompile the interpreter because it dynamically links the
modules to the system.

Linking Static Extensions to the Interpreter

Before starting, make sure that you have already compiled the interpreter's source code (refer to Chapter
17, "Development Tools," for more details). Building and installing Python before adding new modules
Is essential to have the libraries and other files in the right places.

Static Extensions on UNIX
On UNIX, Python modules written in C are easily identified by looking at the

[usr/1ib/Pythonl. 5 directory. Most of the time, they are the shared library files with the . so
extension. Although, if you are using HPUX, the extension is . sl , and on some others it is just. o.

The next few steps show how to create static extensions on UNIX.
Step 1.
You need to copy your module to the Modul es directory.
Step 2.
You have to add the following entry to the end of the / nodul es/ Set up. i n configuration

file, which is located in the Python source tree. This file has the list of all the external libraries
needed by the interpreter.

static
nodul enane fil enanme

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=122
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A35%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=122&now=5%2F31%2F2002+4%3A35%3A24+PM

For example,

hel | o / mt/ hda/ pyt hon/ hel | owor | dnodul e. ¢

If your extension module requires additional libraries, add the argument - | | i br ar ynane at the end
of the line.

For example,

hel |l o / mt/ hda/ pyt hon/ hel | owor | dnodul e. ¢ -1/ mt/ hda/ pyt hon/ auxnodul e. c

The *st at i c* flag builds the modules as static modules. The other option is to use the * shar ed*
flag, which means that they have to be built as shared modules (known as DLLs on Windows).

The last step is to recompile Python as normal to include the extra module by typing . / conf i gur e
and make in the top of the Python Source tree. The Python interpreter is rebuilt after that.

To execute the new interpreter and test your new extension module, just call it like this:

./ pyt hon

Static Extensions on Windows
The following instructions are based on the use of Microsoft Visual C++ version 5.

First, you need to inform Python's i ncl ude pat h. To do that, go to Tools, Options, Directories (see
Figure 6.2).

Figure 6.2. You need to inform the include path.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/122#4.html

S pehuild - Miciomolt Developer Studia - [C:5 WM odiudes\bsddbmosdule o]

|/ Fe £t Wew Inset Broect Buld Took Window Helo

=18 x|

| R me - - | mE

=+

= & 2] &} w

|

5 EA ghokeal rrmbeers]

dl oy inil_Mkinle

- |[@emx 1w

_thiptar d.prd = 0 e
-

Linking. ..

lpython . exe — 0 arror(:
-

lprthon_d sxs = 0 srro;

;lﬂ|

Edior | Tabs | Debug | Compatbdiy | Buld Dictores | | [EI5]

rdidtyipe
s erer—— |

stz Sy dachoriag for
[winz2 x| Jechade e |
Dipeciones X+ -+
10 WProgeaen Fles\here S b AWCUHELLIDE =i

C:\Progeam FilesheS hadio\AWCWMF Cunclude
CWPrograrn e\ Dend S VAT Lharchada
P THINNPTHON 1.5 2HCLUDE

I

B

‘his platfora™):

8. hash. lewdex):

o

MRS | [BEC FCOL [0 FEeh

It is also necessary to inform the library's location (see Figure 6.3). You need to add the
pyt hon15. | i b directory to your Tools, Options, Directories, Library files.

Figure 6.3. You need to inform the python15.lib path.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/122#5.html

b - Mictogodl Developer Sludio

||EBe Edt Wiew Incet Poiect Buld Took Windws Heb
[cEd a2 o mE S | MR-
"__'..;;.1-4 w[lehgobal menbers] ¥| g itk ;I"'-i:_v| A0S T

T E I o
= Ehiuﬂ:m

- er—————— (L
Oplion

Edior | Tabs | Debug | Compatbdiy | Buld Dictores | | [EI5]
Plstorme Show dusctones lor

w2 i [(P x|

s [N P] f Irip_ | (REechooeE x4+ +
—_— | C:\Progrom Flle\Den S VLR =
i | timg 1nterkedisate IC:\Proageam Flesh\ DS hadia\WCMWFCUL o =
4 Compilin = DN SLEAL Ca-s\DEWS TLDIONYCALIE

e DOWISLAL CoDEVETUDIDWEHFCD

Lisking P THINFTHON-1.5 AFUBUILD

Creatins Library °
|z . dll - 0 arroris), | —
[e | coxa |

gl

Now, the rest is easy.

1. Using a text editor, open the \ PC\ conf i g. c file.

2. Look for the first comment. You need to add an external reference to the i ni t function of your
module.

/* -- ADDMODULE MARKER 1 -- */
extern void initnodul enane();

3. Locate the next comment. You need to add the module name and the init function.

/* -- ADDMODULE MARKER 2 -- */
{" modul ename”, i nitnodul enane},

4. Using a text editor, open the / PCbui | d/ pyt hon15. dsp file.

5. Go to the end of the file. Locate the entry that references the yuvconver t . c source file. You
need to add the location of your module's source file just before that entry.

SOURCE=. . \ Modul es\ your nodul enanmenodul e. ¢
End Source File
Begin Source File

SOURCE=. . \ Modul es\yuvconvert.c
End Source File
End Tar get

End Proj ect

6. Using Microsoft Visual C++, open the / PCbui | d/ pcbui | d. dswworkspace.
7. Selectthe Bat ch Bui | d option and say Rebui I d Al'l.
By default, the EXE file and the DLLs will be saved in your / Pcbui | d/ directory.

Linking Dynamic Extensions to the Interpreter
Now look at what you should do in order to create dynamic extension modules.
Dynamic Extensions on UNIX
The next few steps show how to build Dynamic extensions on UNIX.
Step 1.

Put the reference to your module in the Set up. i n file. If your module references other source
files, you should include them too. You might want to create a new Set up. i n file in the
directory containing your module.

shar ed
spam hel | owor | dnodul e. ¢

Step 2.
Copy the Makefi | e. pre. i n file to the directory where your module is located.

Step 3.

Type

make -f Makefile.pre.in boot
make

This process creates a hel | owor | dnodul e. so file.

You could also try

gcc -c -1/usr/local/include/pythonl.5 hell oworl dnodul e.c
gcc -shared hell oworl dnodul e. 0 -0 hel | owor | dnodul e. so

Dynamic Extension on Windows
Next, how you can build a Dynamic Extension on Windows is illustrated.

Step 1. Create a directory in the Python top-level directory. Give it the name of your
module.

For example, c: \ pyt hon\ Pyt hon- 1. 5. 2\ pi nodul e
Step 2.
Copy your nodul enanenodul e. c file to this directory.
Step 3.

Copy the files exanpl e. def, exanpl e. dsp, exanpl e. dsw, and exanpl e. nak,
which are located at the / PC/ exanpl e_nt directory of the standard distribution to your new

directory. Don't forget to rename the prefix of these files in order to match the name of your
module.

Step 4.
On each file, replace the occurrences of exanpl e with your module name.
Step 5.

Choose the Bui | d Menu option in order to generate your nodul enane. dl | .

A subdirectory was created underneath your working directory. This subdirectory, called Rel ease,
contains your nodul enane. dl | .

A tool created by David Ascher is very useful to create Python extension modules. It uses a UNIX
Set up. i n file to generate and build a Microsoft Visual C++ project. This tool is called

conpi | e. py.

To use it, you just need to put your C module and the conpi | e. py file in the same directory, and
execute the tool. When fired, the program creates a MS Visual C++ project (. dsp extension) and the
workspace (. dswextension).

Along with those files, it also creates a subdirectory called / pyds in which it stores the python
extension module (. pyd extension).

In order to use this extension in your application, the interpreter needs to be able to locate the . pyd file
by looking at the sys. pat h's variable.

conpi | e. py is available at

http://starship.python.net:9673/crew/da/Code/compile

Installing and Using Dynamic Modules
You have four simple choices:

. Place your nodul e. so or nodul e. dl | in adirectory that is defined by your PYTHONPATH
environment variable. The si t e- packages directory under the | i b directory is a good place
to put your extension modules.

http://starship.python.net:9673/crew/da/code/compile

. At runtime, you can add the extension module's path to sys. pat h.

. On Windows, you can place the extension module in the same directory of the pyt hon. exe
file.

. Put the extension in the current directory when you start Python.

You won't find any difference while running dynamic modules. They act exactly the same way as the
static modules that are linked to the interpreter.

Accessing Generic DLLs

Sam Rushing has created an extension module called cal | dI | that enables Python to call any function
that is part of a W ndows DLL. It doesn't matter whether the DLL is a Python extension.

The problem to remember is that errors caused by non-Python extension DLLs don't return exception
codes but error messages.

With this module you can call any function in any DLL. This means that you can do just about anything

on Win32. This module includes a library that gives access to lots of the system GUI features, and a
‘callback’generator for i 386, which lets external functions call back into Python as if it were C. (Much

of the Win32 API uses callbacks.)

Along with that, you can access ODBC by directly calling functions in odbc32. dI | using a wrapper
module called odbc. py. The ODBC module is implemented using cal | dl | , and it has a few extra

practical pieces; code for managing data sources, installing ODBC itself, and creating and maintaining
Jet (Microsoft Access) databases. It has also been tested with ODBC drivers from Oracle and
Objectivity. Of course, using cal | dI | destroys any platform or architecture independence your

program may have had.

You can see more details at http://www.nightmare.com/software.html.

< BACK Make Note | Bookmark CONTINUE >

http://www.nightmare.com/software.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=122

Index terms contained in this section

shared flag

static flag

applications
non-Python

Ascher, David
C programming language

extending and embedding Python 2nd 3rd 4th 5th 6th
C++ programming language

extending and embedding Python 2nd 3rd 4th 5th 6th
calldll module 2nd
compile.py tool 2nd
compiling

extension modules 2nd 3rd 4th 5th 6th 7th

creating
Python extension modules

dynamic extensions

linking to interpreters 2nd 3rd 4th
dynamic modules

installing and running
embedding

Python objects

error messages
non-Python extension dynamic link libraries (DLLS)

extension modules

extensions
dynamic
linking to interpreters 2nd 3rd 4th
static
linking to interpreters 2nd 3rd

flags
shared
static
installing
dynamic modules
interpreters
linking dynamic extensions 2nd 3rd 4th
linking static extensions 2nd 3rd
linking
dynamic extensions to interpreters 2nd 3rd 4th
extension modules 2nd 3rd 4th 5th 6th 7th

static extensions to interpreters 2nd 3rd

messages
error
non-Python extension dynamic link libraries (DLLS)
modules
calldll 2nd
dynamic
installing and running
extension

odbc.py
objects
Python

odbc.py module
programming languages
C

extending and embedding Python 2nd 3rd 4th 5th 6th
C++
extending and embedding Python 2nd 3rd 4th 5th 6th
programs
non-Python

running
dynamic modules

Rushing, Sam

software
non-Python

static extensions
linking to interpreters 2nd 3rd

tools
compile.py 2nd

UNIX

linking static extensions to interpreters 2nd
utilities

compile.py 2nd

Windows
linking dynamic extensions to interpreters 2nd

linking static extensions to interpreters

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding See All Titles
Python > SWIG—The Simple Wrapper Interface Generator

< BACK Make Note | Bookmark CONTINUE >

SWIG—The Simple Wrapper Interface Generator

SWIG (Simple Wrapper and Interface Generator) is an automated tool create by David Beazley used to
write interfaces between Python and existing C libraries. These interfaces can contain several single
functions.

The programmer doesn't have to write any special wrapping functions to provide the glue between the
Python scripting language and the C functions.

SWIG works by reading an interface file that contains function and method prototypes. It automatically
does the necessary type conversion, checks the code for error, produces a C file, compiles the file, and
builds it into a shared object file.

It works by taking the declarations commonly found in C/C++ header files and using them to generate
the glue code (wrappers) that scripting languages need to access the underlying C/C++ code.

SWIG is better suited as a mechanism for controlling a variety of C programs because it enables
someone to combine bits and pieces of completely different software packages without waiting for
someone else to write a special purpose module.

The handling of datatypes when using SWIG for prototyping and control application is very easy
because whenever SWIG finds an unknown datatype, it simply assumes that it is some kind of complex
datatype. Consequently, wrapping a complex C program doesn't imply too much work.

SWIG provides a convenient way of building Python interfaces to libraries.

You just need to write simple interface definitions, which SWIG uses to generate the C program that
conforms to the Python/C extension guidelines.

SWIG makes it even easier to use scripting languages by automating the process of connecting
scripting languages to C/C++ code.

Many reasons you should try SWIG are as follows:

You can easily replace the mai n() function of a C program with Python's interpreter.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=123
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A35%3A51+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=123&now=5%2F31%2F2002+4%3A35%3A51+PM

C/C++ code is easily tested because you can call C functions and libraries directly from
your scripting environment.

Debugging your C code also becomes easier once you use Python's interpreter.
Remember that you don't need to change your C code in order to use SWIG.

SWIG can integrate different C/C++ programs together by turning them into extension
modules. After the extensions are created, Python can combine and use them to generate
new applications.

SWIG understands and parses ANSI C/C++ syntax.
The output of SWIG is a fully functional scripting language module.

As SWIG is designed to work with existing C/C++ code, it will be rarely necessary to
change your existing programs.

Your C/C++ code remains separate from your Python code.
SWIG output can be freely extended and customized.

Now, the most interesting thing is that you don't need to master all the details about the
Python/C API in order to use the basics of SWIG to create your Python extension
modules. SWIG automates the process of generating a Python extension based on the
header of the functions that you want to export.

Take a look at the following example and see how simple it is to generate a wrapper file. We will first
create an input file, and call it hel | owor | d. i .

/] file: helloworld.i

%wodul e hell oworl d
%
#i ncl ude "hell oworl d. h"

%

char *say();

Now, we will use SWIG to generate the wrapper file. We need to pass an argument to SWIG informing
that the wrapper must be created for the Python language. That's because SWIG works with many

different languages.

% swi g -python helloworld.i
Cenerating wappers for Python...
%

As you can see, a wrapper file called hel | owor | d_wr ap. ¢ was created for you.

More information about SWIG can be found at the following Web pages:
SWIG official Web site:

http://www.swig.org

SWIG Users Guide—Chapter 9, "SWIG and Python" :

http://www.swiqg.org/Docl.1/PDF/Python.pdf

"Using SWIG to Control, Prototype, and Debug C Programs with Python":

http://www.swiqg.org/papers/Py96/python96.html

"Feeding a Large-scale Physics Application to Python":

http://www.swiqg.org/papers/Py97/beazley.html

"Interfacing C/C++ and Python with SWIG™:

http://www.swiqg.org/papers/PyTutorial97/PyTutorial97.pdf

"The Benefits of Scripting Languages," by John Ousterhout:

http://www.scriptics.com/people/john.ousterhout/scripting.html

<BACK Make Note | Bookmark CONTINUE >

http://www.swig.org/
http://www.swig.org/Doc1.1/PDF/Python.pdf
http://www.swig.org/papers/Py96/python96.html
http://www.swig.org/papers/Py97/beazley.html
http://www.swig.org/papers/PyTutorial97/PyTutorial97.pdf
http://www.scriptics.com/people/john.ousterhout/scripting.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=123

Index terms contained in this section

applications
non-Python
embedding Python objects in;Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th
Beazley, David
C programming language
extending and embedding Python 2nd 3rd 4th
C++ programming language
extending and embedding Python 2nd 3rd 4th
code
glueO
O

creating
Python extension modules
Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th
embedding
Python objects
Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th

files
wrapper
generating 2nd
generating
wrapper files 2nd
glue code®
6]
objects
Python
embedding in non-Python applications;Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd
4th
programming languages
C
extending and embedding Python 2nd 3rd 4th
C++
extending and embedding Python 2nd 3rd 4th
programs
non-Python

embedding Python objects in;Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th
Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th
software
non-Python
embedding Python objects in;Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th

tools

Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th
utilities

Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th
wrapper files

generating 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding See All Titles
Python > Other Wrappers

< BACK Make Note | Bookmark CONTINUE >

Other Wrappers

Besides SWIG, there are other very interesting wrapper projects, such as SIP, which is specifically
designed for integrating C++ class libraries with Python by generating compilable C++ code from a set
of specification files that are similar to C++ header files.

"SIP—Python Bindings for Qt and KDE," by Phil Thompson:

http://www.river-bank.demon.co.uk/software/

"Python + KDE Tutorial,” by Boudewijn Rempt:

http://www.xs4all.nl/~bsarempt/python/tutorial.html

"SCXX (Simplified CXX) is a lightweight C++ wrapper for dealing with PyObjects," by
Gordon McMiillan:

http://starship.python.net/crew/gmcm/scxx.html

"CXX—A facility for creating Python extensions in C++," by Paul F. Dubois:

http://www.foretec.com/python/workshops/1998-
11/proceedings/papers/dubois/dubois.html

Note that this last document is very instructive because it shows how to create new object types in
Python by using CXX.

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=124
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A36%3A00+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=124&now=5%2F31%2F2002+4%3A36%3A00+PM
http://www.river-bank.demon.co.uk/software/
http://www.xs4all.nl/~bsarempt/python/tutorial.html
http://starship.python.net/crew/gmcm/scxx.html
http://www.foretec.com/python/workshops/1998-11/proceedings/papers/dubois/dubois.html
http://www.foretec.com/python/workshops/1998-11/proceedings/papers/dubois/dubois.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=124

Index terms contained in this section

applications

non-Python

embedding Python objects in;wrappers

C programming language

extending and embedding Python
C++ programming language

extending and embedding Python
creating

Python extension modules

wrappers
embedding
Python objects

Wrappers
objects
Python
embedding in non-Python applications;wrappers
programming languages
C

extending and embedding Python
C++
extending and embedding Python
programs
non-Python
embedding Python objects in;wrappers
software
non-Python
embedding Python objects in;wrappers
wrappers
creating extension modules and embedding Python objects

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding Python See All Titles
>Embedding

< BACK Make Note | Bookmark CONTINUE >

Embedding

We will now talk about how to embed Python inside other programs. Python offers a clean interface that
allows embedding to occur.

You might be asking yourself why would you want to do it. Well, the answer is quite simple; as a
scripting language, Python can wire its interpreter into other programs to enable you to make calls to
specific Python functions and execute particular Python statements from them.

Those programs will have the capability to load Python scripts and execute Python services that belong
to specific Python modules. You can also call Python functions directly from your C code and access the
Python objects that are returned by them.

In order to embed Python inside a program, you just need to use the Python APlI—the Python EXE is not
necessary.

Implementing Callback Functions

Embedding Python allows you to access and use the Python interpreter from inside your application. But
what happens if you need to call back your application functions from inside Python?

For this reason, it is a good practice to provide a module written in C that exposes an API related to the
application. Therefore, when embedding Python within your routines, you can make your application
communicate both ways with your Python program by accessing the Python extension modules.

Embedding the Python Interpreter

The next example adds Python functionality to a C program.

/'l File: enbedding.c

#i ncl ude <stdio. h>
#i ncl ude <Pyt hon. h>
int main(int argc, char **argv)

{

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=125
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A36%3A07+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=125&now=5%2F31%2F2002+4%3A36%3A07+PM

Py Initialize();

PyRun_Si npl eString("print 'Hello Python Wrld ");
printf("You are ny visitor nunber %", args);

Py Finalize();

return(O0);

Python provides a set of function calls that provide an interface to the Python interpreter. The most
important ones are

. Py_Initialize—Initializes and allocates the internal resources of the interpreter in order to
start using the API.

. PyRun_Si npl eSt r i ng—Executes Python code strings in the contextofthe _ main__

module. Each string must be a complete Python command. This high-level function reads from a
character buffer and returns O for success and - 1 when exceptions occur. Another function

called PyRun_St r i ng provides more control of the code execution. The source code of this
function is available in your installation in the Pyt hon/ pyt honr un. c file.

Tip

Remember that you need to inform the new line character at the end of each command line to make
sure that the interpreter validates the command.

Py Fi nal i ze—Releases the internal resources and shuts down the interpreter. You
should always call this function before leaving the program.

PyRun_Si npl eFi | e—Executes Python commands that are stored in a file. This
function reads from a FI LE pointer.

Check out this other example:

/'l File: enbedding2.c

#i ncl ude "Python. h"
mai n(i nt argc, char **argv)

{

Py Initialize();

PySys_Set Argv(int argc, char **argv);
PyRun_Si npl eString("print 'Hello Python World'\n");
PyRun_Si npl eString("print sys.argv\n");

PyFi nalize();

Py_Exit(0);

. PySys_Set Ar gv—This function sets the values for the sys. ar gv list.

You can access a module written in Python from C by getting a pointer to the module object as follows:

nodul e = Pyl nport | nport Modul e(" <nmodul enane>") ;

If the module hasn't been imported yet (that is, it isn't yet present in sys.modules), this function
initializes the module; otherwise it simply returns the value of sys. nodul es[" <nodul enanme>"] .

It doesn't enter the module into any namespace—it only ensures that it has been initialized and it is
stored in sys. nodul es.

You can then access the module's attributes (that is, any name defined in the module) using
PyQhj ect Get AttrString() asfollows:

attr = PyQbject GetAttrString(nodul e, "<attrnane>");

It is also possible to assign values to variables in the module using the
PyQhj ect _Set Attr String() function.

There is a very straightforward example of embedding Python in a C program in the file
/ Deno/ enbed/ deno. ¢, which is part of your Python distribution source code.

Embedding on UNIX

On UNIX, you must link your C application against the Python interpreter library, which is called
| i bpyt honl. 5a.

When compiling the your pr ogr am c into a object file (your pr ogr am 0), you need to specify the
directory of the Python distribution.

For example,

gcc -g -Cc yourprogramc

Note

You need to make sure that the header files required by your program are correctly installed on your
system.

When compiling the object file into an executable file, you need to include the libraries and references
for any extension modules embedded into the Python interpreter itself.

Check the Makef i | e file of the Python interpreter to know the files that must be mentioned.

Listing 6.1 File: Makefile...
VERSION= 1.5

LI BPYTHON= $(blddir)/libpython$(VERSION). a

LIBS= -lreadline -lterncap -lcurses -lgdbm-1tk8.0 -l1tcl 8.0 -1X11 -1IdI
SYSLIBS= -Im

MODLI BS= -L/usr/ X11R6/1ib -1/usr/local/pgsqgl/include
-L/usr/local/pgsql/lib -Icrypt

ALLLI BS= $(LIBPYTHON) $(MODLIBS) $(LIBS) $(SYSLIBS)

All the libraries found in the Makef i | e file are used as arguments to the function that compiles the
object file, as you can see next.

gcc yourprogramo /usr/local/contrib/Python-1.5.2/1ibpythonl.5. a
-L/usr/ X11R6/1ib -1/usr/local/pgsql/include -L/usr/local/pgsql/lib

-lcrypt -lreadline -lIterncap -lcurses -lgdbm-1tk8.0 -1tcl 8.0 -1 X11
-1dl -Im-o0 yourprogram

The last step is to type make to build the application.

Note

In order to compile an extension module for use with the embedded python interpreter, you just need
to compile the module into the executable and make sure that you call the i ni t function for the

module after initializing the interpreter.

Embedding Python in C++

You don't have to recompile your interpreter. You just need to write your main program in C++ and use
a C++ compiler to compile and link your program.

Embedding Python in Other Applications

On Windows, Python itself is implemented in a DLL called Pyt hon15. dl | . Note that the file
Pyt hon. exe is a small program that calls all the routines stored in the DLL. This is a good example
showing that it must be easy to embed Python because it already embeds itself.

Besides all this talk about embedding Python in C and C++ applications, Python can also be embedded
in other applications, such as Delphi. However, note that implicitly, the embedding process is at the C
level too.

Dr. Dietmar Budelsky and Morgan Martinet merged their two separate projects and created The Python
for Delphi project. The purpose of this project is to provide an interface to the Python language in
Delphi.

This project consists of a set of components that wrap the Pyt hon15. dI | into Delphi. These
components let you easily execute Python scripts, create new Python modules and new Python types.

You can create Python extensions as DLLs and much more. Currently, it supports Delphi versions 3, 4,
and 5.

The Python for Delphi project:

http://www.multimania.com/marat/delphi/python.htm

http://www.multimania.com/marat/delphi/python.htm

NSAPI/NSAPY

A real-life example of how Python can be used by other applications is in the case of embedding Python
under Netscape HTTP Servers that support the NSAPI module protocol.

This marriage brings several add-ons to the Netscape Server mostly because of the general scripting
capabilities acquired from the Python language.

In order to do this embedding, it is necessary to use the Nsapy, which is an extension that works by
embedding the interpreter within Netscape HTTP Servers that use NSAPI.

NSAPI—The Netscape Server API:

http://oradbl.jinr.ru/netscape/NSAPI/

"Nsapy," by Gregory Trubetskoy:

http://www.ispol.com/home/grisha/nsapy/nsapy.html

Example of embedding Python under a Netscape Commerce server:

http://starship.python.net/crew/aaron watters/embed/

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

accessing
module attributes

modules

applications
non-Python

assigning

values to variables, modules
attributes

modules

accessing
Budelsky, Dietmar

http://oradb1.jinr.ru/netscape/nsapi/
http://www.ispol.com/home/grisha/nsapy/nsapy.html
http://starship.python.net/crew/aaron_watters/embed/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=125

C programming language

callback functions

implementing
compiling

extension modules
creating

embedding
interpreters 2nd 3rd 4th

extension modules
compiling

files
Makefile

functions
callback

implementing
init()
PyRun_String()
implementing
callback functions

init() function

interpreters
embedding 2nd 3rd 4th

Makefile file
Martinet, Morgan
module attributes

accessing
module protocols
NSAPI/NSAPY 2nd

modules

accessing
extension

compiling

Python15.dll
NSAPI/NSAPY module protocol 2nd

objects

programs
non-Python

protocols
module
NSAPI/NSAPY 2nd
PyRun_String() function
Pythonl15.dll module
software
non-Python

UNIX
embedding interpreters 2nd

values
assigning to variables, modules
variables
modules
assigning values to

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding See All Titles
Python > Summary

< BACK Make Note | Bookmark CONTINUE >

Summary

This chapter exposes the extending and embedding functionality that gives Python the credit of
possessing the capability to glue applications together.

Whenever you use Python code to call C code, you are extending Python. On the other hand, if you use
C code to call Python code, you are embedding Python.

Python has a good relationship with C because Python's interpreter is written in C, and since its
beginning, the interpreter has been ready to work with extension modules.

The extension modules are mostly used to add new functionality to Python when there is no other way
to interface Python with a particular system or hardware. Sometimes, when Python code is inefficient,
extension modules are also used to boost performance.

If you need to call Python routines from inside your application, you can use the embedding
functionality to have them called by your compiled language.

Python provides an intuitive and clean C Application Programmers Interface (API) that exposes the
interface to the Python runtime system. This API provides a great number of functions to manipulate
Python objects and built-in types from C and C++.

In order to use your new extension modules, you can't forget to create the initialization function of the
module and the method array that assigns the internal function names with the function names that are
exposed in the module's interface.

The most important functions of an extension module are PyAr g_Par seTupl e and

Py Bui | dVval ue. They handle all the interfacing between C and Python. Both functions check the
argument's type by looking at a formatting string. Tables 6.1 and 6.2 (one for each function) list all the
possible formatting strings.

In addition to methods, you can also export constants back to Python. You just need to bind the
constant name to the module namespace dictionary.

You must indicate errors in your extension module by returning NULL to the interpreter because

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=126
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A36%3A18+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=126&now=5%2F31%2F2002+4%3A36%3A18+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/121#5.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/121#6.html

functions signal errors by returning NULL. You can also use exception functions defined by the
Python/C API. New exceptions can be created and stored at extension module as well.

Python extensions don't benefit from all the safety provided by the Python runtime system. There are a
lot of things that you have to be worried about. The main thing is reference counting, which is handled
by the Py | NCREF and Py DECREF functions.

It becomes harder to adjust and compile code as C++ because Python has a C-based interpreter that has
some restrictions when it comes to creating extension modules using C++.

Two options are available for building Python extension modules. The first one compiles and links the
module into the interpreter. This option makes the module always available to the interpreter.

The second option doesn't require that you recompile the interpreter because it dynamically links the
modules to the system.

SWIG is an automated tool create by David Beazley that is used to write interfaces between Python and
existing C libraries. These interfaces can contain several single functions. The programmer doesn't
have to write any special wrapping functions to provide the glue between the Python scripting language
and the C functions. Besides SWIG, other applications (such as SIP and SCXX) are suitable for helping
programmers wrap their C code.

While embedding Python in your programs, you will have the ability to load Python scripts and execute
Python services that belong to specific Python modules. You can also call Python functions directly
from your C code and access the Python objects that are returned by them. In order to embed Python
inside a program, you just need to use the Python API—the Python EXE isn't necessary. When

embedding Python in your C++ code, it isn't necessary to recompile Python itself using C++.

In order to start the Python API service in your program, it is necessary to callthe Py I nitiali ze
function. To shutdown the Python interpreter, it is necessary to call the Py _Fi nal i ze function.

Python can be easily embedded in various languages and applications, such as C++, Delphi and
Netscape Servers.

<BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=126

Index terms contained in this section

applications

non-Python

embedding Python objects in 2nd

C programming language

extending and embedding Python 2nd
C++ programming language

extending and embedding Python 2nd
creating

Python extension modules 2nd
embedding

Python objects 2nd
extension modules

creating 2nd
modules

extension

creating 2nd

objects

embedding in non-Python applications 2nd
programming languages

C

extending and embedding Python 2nd
C++
extending and embedding Python 2nd
programs
non-Python
embedding Python objects in 2nd
software
non-Python
embedding Python objects in 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding Python > Code See All Titles
SEINES

< BACK Make Note | Bookmark CONTINUE >

Code Examples

Listing 6.1 Benchmark Extension (File benchmarkmodule.c)

1: #include "<Python. h>"

2:

3: static Py(Qbject *

4. benchmar k_gener ate(PyCbj ect *self, PyQbject *args);

5. {

6: I nt i ndex, nunber_of argunents;

7: PyQbj ect *nunberslist = NULL;

8: PyQbj ect *check val ue = NULL;

9: PyFl oat Obj ect *aux float = NULL;

10: doubl e el enent val ue;

11: doubl e m ni rum val ue = 100;

12: doubl e maxi num val ue = 0;

13: char *exi st _check;

14:

15: if (!PyArg_ParseTuple (args, "0O0', &nunberslist, &check val ue))
16: return NULL;

17:

18: if (!PyList_Check(nunberslist))

19: {
20: PyErr_Set String(PyExc_TypeError, "Invalid list of values !");
21: return NULL
22: }
23:
24 i f (!PyFl oat Check(check val ue))
25: {
26: PyErr_Set String(PyExc_TypeError, "lInvalid checking value !'");
27: return NULL
28: }
29:

30: nunber of argunents = PyList_Si ze(nunberslist);
31: exi st _check = "No";

32:

33: for (index=0; index<nunber_of argunents; index++)

34: {

35: aux_float = (PyFl oat Object *) PyList _Getltem(nunberslist, index);
36: I f (!PyFloat Check(aux float))

37: {

38: PyErr _SetString(PyExc _TypeError, "Invalid list value !'");

39: return NULL;

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=127
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A36%3A26+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=127&now=5%2F31%2F2002+4%3A36%3A26+PM

40: }

41: el enment _val ue = PyFl oat _AsDoubl e(aux_fl oat);
42: if (elenent _value < 0)
43: {
44: PyErr _Set String(PyExc_TypeError, "The val ues cannot be |l ess than O
')
45: return NULL;
46: }
47.
48: if (el ement_value > 100)
49: {
50: PyErr_Set Stri ng(PyExc_TypeError,
"The val ues cannot be greater than 100 !");
51: return NULL;
52: }
53:
54: I f (el enment _val ue < m ni num val ue)
55: m ni num val ue = el enent _val ue;
56:
57: i f (el ement _val ue > maxi num val ue)
58: maxi mum val ue = el enent _val ue;
59:
60: I f (el enment _val ue == PyFl oat _AsDoubl e(check_val ue))
61: exi st _check = "Yes";
62: }
63: return Py Buildvalue("(ffs)", mninmmyvalue, naxinmm val ue,
exi st_check);
64: }
65:
66: static PyMet hodDef benchmark _net hods[] = {
67: {"generate", benchmark _generate, METH VARARGS, "M ni num Val ue,
Maxi mum Val ue"},
68: {NULL, NULL}
69: };
70:
71: DL_EXPORT(void) initbenchmark()
72: {
73: Py I nitMdul e("benchmark”, benchmark_ net hods) ;
74. }

Line 9: PyFl oat Qbj ect is a subtype of PyQbj ect .

Line 18: Checks whether the first argument is a list.
Line 24: Checks whether the type of the second argument is a float.

Line 26: Raises a TypeEr r or exception.

Line 30: Returns the list's length.

Line 60: PyFl oat _AsDoubl e converts a Python Float into a C double.

Next, you can see a small interaction with this program. To execute it, we have to pass two arguments: The first one
is a list of numbers, and the second one is a float number. This program returns the minimum and maximum values
from the list, along with a logical test that informs whether the float number is part of the list.

Python 1.5.2 (#0, May 30 2000, 00:16:14) [MSC 32 bit (Intel)] on w n32
Copyright 1991-1995 Stichting Mat hemati sch Centrum Anst erdam

>>> jnport benchmark

>>> penchmar k. generate([1.1],1.1)

(2.1, 1.1, 'Yes')

>>> penchmar k. generate([1, 2, 3], 4.5)

(1.0, 3.0, "No")

>>>

Wrapping C Functions
By wrapping functions, you can use C code files, without changing them. Every time you feel the need to include a

C source code file in your Python project, it is necessary to create a special module that wraps its functions, and to
include a reference to the file in the pyt hon15. dsp.

The next example wraps the functions stored in the cf unct i ons. c file.

Listing 6.2 File: cfunctions. c

#i ncl ude <stdi o. h>

voi d display_info(char *user, char *domain, char *country) {

if (country == "USA")
printf("%@s\n", user, donmain);
el se
printf("%@s. ¥%\n", user, domain, country);
}
int calc_year (int f_year, int myear, int |_year) {
int result;
result = ((l __year + myear + f_year) / 3);
return result;
}

Listing 6.3 File: wr apper nodul e. c

1: #include "Python.h"
2:

o0 hw

7.
8:
9:
10:
11:
12:
13:

14.
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34.
35:
36:
37:
38:

extern void display_info(char *, char *, char *);
extern int calc_year(int, int, int);

static PyCbject *wapper _display_ info(PyCbject *self, PyObject *args,
Py(Qbj ect *kwar gs)

{
char *user = "None";
char *domain = "None";
char *country = "None";
static char *keywords[] = {"user","domain","country", NULL};
if (!PyArg ParseTupl eAndKeywords(args, kwargs, "|sss", keywords,
&user, &domain, &country)){
return NULL;
}
di splay i nfo(user, donmmin, country);
return Py Buildval ue("");
}
static PyObj ect *w apper _cal c_year (PyQbject *self, Py(Qbject *args) {
int f _year, myear, | _year, result;
if (!PyArg_ParseTuple(args, "iii", & year, &myear, & year)) {
return NULL;
}
result = calc_year(f_year, myear, | _year);
return Py Buildvalue("i", result);
}

stati c PyMet hodDef wrappernethods[] = {
{"display_info", wapper_display_ info, METH VARARGS| METH KEYWORDS},
{"calc_year", wapper_cal c_year, NMETH VARARGS},
{NULL, NULL}

b

void initwapper() {
Py_I ni t Modul e("w apper™, w apper net hods);

}

Lines 3 and 4: Identify which functions are external to this file.

Line 11: Creates a dictionary of keywords to be accepted by the function.

Line 13: PyAr g_Par seTupl eAndKeywor ds() parses the Python-level parameters by accepting a third
"PyQbj ect *" parameter.

Line 31: The METH_VARARGS| METH KEYWORDS clause makes it clear that keyword elements are expected.

Next, you can see a small interaction with this program. The first function builds an email address based on the

information provided. The other one calculates the average age of a family of three people based on the number of
years that are passed to the function.

Python 1.5.2 (#0, May 30 2000, 00:56:46) [MSC 32 bit (Intel)] on w n32
Copyright 1991-1995 Stichting Mat hemati sch Centrum Anst erdam

>>> | nport wrapper

>>> wr apper . di spl ay_i nfo("andre2530", "aol . cont, "br")

andr e2530@uol . com br

>>> wr apper.cal c_year (10, 30, 35)

25

>>>

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=127

Web Development > Python Developer's Handbook > 7. Objects Interfacing and See All Titles

Distribution

< BACK Make Note | Bookmark CONTINUE >

Chapter 7. Objects Interfacing and Distribution

This is an EX parrot!

This chapter provides information that explains how to interface objects from different applications
using Python. First, it demonstrates the techniques to control both external objects from Python and
Python objects from external programs. Later, it lists the Python projects currently being developed in
this area of study.

<BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=129
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A36%3A36+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=129&now=5%2F31%2F2002+4%3A36%3A36+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=129

Web Development > Python Developer's Handbook > 7. Objects Interfacing and See All Titles
Distribution > Object Interfacing and Distribution

< BACK Make Note | Bookmark CONTINUE >

Object Interfacing and Distribution

Python has very comprehensive support for object interfacing and distributing technologies. It is
particularly well integrated with the Windows platform; its programs can interact with COM and
DCOM services.

The wi n32comPython extensions developed by Mark Hammond can be used to interface Python to
Microsoft's COM and ActiveX architectures. This package, which is part of the PythonWin
distribution, enables Python to be used in Active Server Pages, or as a COM controller that can
exchange information with other COM-aware applications, such as Microsoft Word and Visual Basic.

Object-oriented design and programming is specifically beneficial in distributed environments where
the encapsulation and subsequent independence of objects enable distribution of an application over a
network.

The possibilities of heterogeneous machine architectures, physically distant locations, and independent
component failures make it difficult to program distributed object systems.

A number of distributed-processing environments, such as OMG's CORBA and Microsoft's DCOM,
have been developed to attempt to hide these problems from programmers, reducing the complexity of
their task. Besides the most famous object models, an international standard known as the Reference
Model for Open Distributed Processing (RM-ODP) is currently being developed.

Python is one of the languages supported by Xerox PARC's ILU (Inter-Language Unification), which is
a free CORBA-compatible distributed object system. To this date, many distributed applications
systems have been developed in Python using this technology.

The Hector project at the University of Queensland, Australia, also uses Python.

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=130
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A36%3A48+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=130&now=5%2F31%2F2002+4%3A36%3A48+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=130

Index terms contained in this section

distributing

objects
interfacing

objects
objects
interfacing and distributing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 7. Objects Interfacing and See All Titles
Distribution > Interfacing Objects

< BACK Make Note | Bookmark CONTINUE >

Interfacing Objects

Currently, one of the biggest problems with both COM and DCOM architectures is that they are
supported only by Windows systems. However, most operating systems have their own native way of
connecting systems together at a remote procedure call level. At the time of this writing, there are some
unconfirmed rumors that Microsoft is planning to create an interface to the Windows operating system
using the XML-RPC protocol. This development would bring a whole new world to the Windows
applications by increasing their connectivity with all the other platforms. Note that Microsoft has
already produced a similar protocol called SOAP.

The COM-based technologies are the focus of Microsoft's development plans for Windows, ranging
from operating systems and languages to messaging and databases. Nowadays, new COM-based
technologies are found in a lot of places inside your Windows system, such as the ActiveX controls and
VBScript processing. OLEDB, for example, is the successor to ODBC. ODBC gives access to
relational databases, whereas OLEDB provides a more versatile level of access, so that the same API
can be used to retrieve data from all kinds of sources, ranging from flat text files, through Excel
spreadsheets, up to ODBC databases.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

distributing
objects
interfacing
objects
objects
interfacing and distributing

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=131
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A36%3A56+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=131&now=5%2F31%2F2002+4%3A36%3A56+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=131

Web Development > Python Developer's Handbook > 7. Objects Interfacing and See All Titles
Distribution > Introduction to COM Objects

< BACK Make Note | Bookmark CONTINUE >

Introduction to COM Objects

Let's learn a little about what is behind the Microsoft Common Object Model (COM) technology
before seeing how you can use it along with Python.

COM is the most widely used component software model in the world. It provides a rich set of
integrated services, a wide choice of easy-to-use tools, and a large set of available applications. COM
underlies a large majority of the new code developed for Windows and Windows NT operating
systems, whether created by Microsoft or by others.

COM consists of a well-defined, mature, stable, and freely available specification, as well as a
reference implementation, which has been widely tested and adopted worldwide. It provides the richest
set of existing services for applications today, as well as the largest set of development tools available
for any component or object model on the market. Of course, Windows is the only Operating System in
which you can be assured of finding COM, which makes us think that COM doesn't appear to be a
standard because it doesn't provide cross-platform solutions.

The COM Specification

COM is a specification and a set of services that enables you to create modular, object-oriented,
customizable and upgradable, distributed applications using a number of languages. You can even use
components that you already have written in other languages.

The COM specification describes the standards that you need to follow in order to create interoperable
COM components. This standard describes what COM objects should look like and how they should
behave. The specification is backed up by a set of services, or APls. The COM library provides these
services, which are part of the operating system for Win32 platforms, and available as a separate
package for other operating systems.

COM components can be packaged as EXE or DLL files—COM provides the communication
mechanism to enable components in different modules to talk to each other. They are true objects in the
usual sense—they have identity, state, and behavior. COM components that implement a common
interface can be treated polymorphically, enabling easy customization and upgrades of your
applications.

COM components link with each other dynamically, and COM defines standard ways of locating

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=132
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A37%3A04+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=132&now=5%2F31%2F2002+4%3A37%3A04+PM

components and identifying their functionality, so individual components are swappable without
having to recompile the entire application.

COM provides a communication mechanism that enables components to interact across a network.
More importantly, COM provides location transparency to applications (if desired) that enables them to
be written without regard to the location of their components. The components can be moved without
requiring any changes to the application.

COM is a binary standard. Any language that can cope with the binary standard can create or use COM
objects. The number of languages and tools that support COM increases every day. C, C++, Java,
JScript, Visual Basic, VBScript, Delphi, and PowerBuilder form just part of that growing list, which
means that any one of these languages can easily interoperate with Python. Keep in mind that COM is a
standard for interaction between programs—an Object Request Broker service.

COM is the object model that underlies most of the Microsoft technologies; here are a few of those
COM applications:

. ActiveX uses COM to provide controls.

. OLE uses COM to combine documents.

. OLEDB and ADO use COM for data access.
« DirectX uses COM for graphics.

Any COM-aware program is able to interact with other COM-aware programs. One program can even
execute commands of the other. The program that executes the method call is called the COM server,
and the program that calls the object method is called the COM client. Because COM is a Microsoft
product, most applications for Windows can act as COM servers or clients.

Python's support for the COM technology is included in the Python for Windows (PythonWin)
extensions.

COM Interfaces

The COM technology is very broad and complex. Basically, it enables objects to be shared among
many applications, without applications knowing the implementation details of the objects. Objects that
implement the COM technology can communicate with each other without the need for knowing the
others'details.

COM components do business with interfaces. An interface defines functionality, but not
implementation. Objects must handle the implementation. COM objects are small pieces of self-

contained software that interact with other applications by exposing well-defined, language-
independent interfaces.

COM is an object model that relies heavily on interfaces. These interfaces are entirely separate from
their implementations. Although COM defines the interfaces, its model doesn't provide the interface's
implementation. Each object's class has the task of defining the implementations. The interfaces can be
standard ones that other objects also expose, or they can be special ones that are particular to that
object. A unique ID, called an IID (Interface ID), identifies each interface. I1Ds use Universally Unique
Identifiers (UUID). UUID is a format used for many COM IDs to allocate a unique identification string
for objects. Many tools can generate unique UUIDs. As you will see later in this chapter, Python's
pythoncom module has a function called Cr eat eGui d() that generates UUID strings.

In order to create an object, COM locates the required class and creates an instance of it. The concept
of COM classes is identical to the other Python classes. Additionally, each COM class needs to
implement two identifiers: Class ID (_r eg_cl si d_), which is another UUID, and Program ID
(_reg_progi d_), which is a identification string that must be easier to remember than the Class ID.
This string is not guaranteed to be unique. In order to create an object, the programmer must specify
either the pr ogi d, orthe cl si d.

All interfaces are derived from the | Unknown interface. Therefore, they support its methods. The
| Unknown interface is the base of all COMinterfaces. This interface contains only three methods:

. AddRef () and Rel ease() are used for managing COM lifetimes, which are based on
reference counts.

. Querylnterface() isused for obtaining a reference to one of the other interfaces that the

object exposes. In other words, interfaces are obtained by using the
| Unknown: : Queryl nt erface() method.

| Stream | St orage, and | Propert yPage are examples of standard interfaces defined by
COM. They define file-like operations, file system-like semantics, and how a control exposes a
property page, respectively. Besides the standard interfaces, COM also enables you to define your own
custom interfaces by using an Interface Definition Language (IDL).

The | Di spat ch interface enables any COM objects to be used from a scripting environment. This

interface was designed explicitly for languages that cannot use normal COM interfaces. The objects
that implement this interface are known as automation objects because they expose a programmable
interface that can be manipulated by another program. This interface exposes dynamic object models
whose methods and properties can be determined at runtime. Basically, this interface is used whenever
you are handling an object whose interface is not known at compile time, or if there is no compile time
at all.

Note

Note for CORBA programmers: IDispatch is equivalent to the interface repository and dynamic
invocation interface that are standard parts of CORBA.

To access a method or a property of an object, you can use either late or early binding. All the
examples that you see in this book use late bindings because the Python interpreter doesn't know what
the object interfaces look like. It doesn't know which are the methods and properties that compound the
object. It just makes the calls dynamically, according to the function names that you provide.

Late bindings use the | Di spat ch interface to determine the object model at runtime. Python function
wi n32com cl i ent. Di spat ch() provides this runtime facility. Most examples in this chapter use
the | Di spat ch interface. However, the wi n32com cl i ent . Di spat ch() function hides many

implementation details from us. Internally, Python converts the names into IDs using the internal
function Get | DsOf Nanes() . Then, this ID is passed as an argument to the | nvoke() function.

You can try to improve the performance of your program by calling the | nvoke() function directly.

Usually, the performance gets better when names are not resolved at runtime. Just be careful to provide
the right ID. If you implement this way, an early binding operation is executed.

For the early bindings, we have the concept of Type Libraries, wherein the object model is exposed at
compile time. In this kind of implementation, you don't call the methods and properties directly. The
Cet | DsOF Nanes() method gets an ID for the method or property that you want to use, and the

| nvoke() method makes the call.

For example, a function call would be invoked as

id = Getl DsOF Nanes(" Your Met hodCal | ")
| nvoke(id, DI SPATCH METHCD)

And a property would be collected as

Id = Getl DsOf Nanes(" Qbj ect Property")
| nvoke(id, DI SPATCH PROP_GET)

Usually, you don't have to worry about this kind of implementation. You just say

Your Qbj ect . Your Met hodCal | ()

and

Your (bj ect. Qbj ect Property

In order to implicitly call the | nvoke() method without causing data type problems, the
| Di spat ch interface assumes the data type VARI ANT for all variables. That's because late bindings
do not know the specific types of the parameters, whereas early bindings do.

Late bindings do not know about parameters passed by reference, so no parameters are passed by
reference. However, early bindings accept parameters passed by reference, and return them as tuples.

COM objects can be implemented as | nPr oc objects, which are implemented as DLLs. These objects

are loaded into the calling process providing that best performance because no marshalling is required.
Of course, for most objects, some marshaling will be needed to marshal Python parameters into a form
that can be passed to the COM object.

The other option is to implement COM objects as LocalServer/ RemoteServer objects. This kind of
object is implemented as a standalone EXE, which is safer than the first option because of process

isolation.

COM can also be used to decide which implementation should be used. If both types of implementation
are available, the caller interface is able to decide which option is the best one to choose.

The Windows Registry

All the information concerning a COMobject, such as the mapping between its progid and clsid, is

stored in the Windows Registry. The Windows Registry also stores the name of the DLL file of an
| nPr oc object, and the name of the EXE Local Ser ver object. Object security, threading models,

and many other details are also stored there.

Check the following link for more details about the COM specification:

Microsoft— Common Object Model

http://www.microsoft.com/com/resources/specs.asp

ADO

ActiveX Data Objects (ADO) is an automation-based interface for accessing data. This technology uses
the OLE DB interface to access an extensive range of data sources, including but not limited to data
provided by the ODBC.

Microsoft Remote Data Service (RDS) is a component of ADO that provides fast and efficient data
frameworks for applications hosted in Microsoft Internet Explorer. RDS uses data-aware ActiveX
controls to provide data access programming to Web developers, who need to build distributed, data-
intensive applications for use over networks. RDS is based on a client/server, distributed technology
that works over HTTP, HTTPS (HTTP over Secure Sockets layer), and DCOM application protocols.

ActiveX

An ActiveX control is an OLE control that can live inside an HTML page; it can be simple Window
objects, such as buttons, text boxes, or scrollbars. It also can be quite complicated, for example, a bar
chart graph display can be an ActiveX control. An entire spreadsheet can also be a single control. Each
ActiveX control has properties and reacts to external events. Its properties can be modified to change
its appearance. For example, its containing program can set color and fonts. External events such as a
mouse click or keyboard input can cause a control's event handler to execute. Note that the ActiveX
technology is another Windows only thing, and not really any use in a cross platform environment.

Microsoft's Web browser, Internet Explorer, is ActiveX-aware, meaning that Web application
developers can package ActiveX components to create more dynamic content in their Web pages.

ActiveX controls use COM technologies to provide interoperability with other types of COM
components and services. ActiveX controls provide a number of enhancements specifically designed to
facilitate distribution of components over high-latency networks and to integrate controls into Web
browsers. These enhancements include features such as incremental rendering and code signing, which
enables users to identify the authors of controls before allowing them to execute.

< BACK Make Note | Bookmark CONTINUE >

http://www.microsoft.com/com/resources/specs.asp
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=132

Index terms contained in this section

accessing
methods and properties

objects
ActiveX control

ActiveX Data Objects (ADOs) 2nd
AddRef() method

application program interfaces (APIs)
Common Object Model (COM)

applications
improving performance

automation objects
bindings
early
Type Libraries 2nd

late
IDispatch interface

browsers
Internet Explorer

control
ActiveX
distributing
objects
Common Object Model (COM) 2nd 3rd 4th 5th 6th
functions
GetlIDsOfNames() 2nd

Invoke()
win32.com.client.Dispatch()

funcyionsO

(@]
GetlDsOfNames() function 2nd
identifiers

Interface (1ID)

Universally Unique (UUID)
IDispatch interface 2nd
IDO

o
improving

performance, programs
InProc object
Interface Identifiers (11Ds)

interfaces
application program (API)
Common Object Model (COM)

Common Object Model (COM) 2nd 3rd
IDispatch 2nd

IPropertyPage

IStorage

IStream

IUnknown 2nd

interfacing
objects
Common Object Model (COM) 2nd 3rd 4th 5th 6th

Internet
browsers
Internet Explorer

Internet Explorer
Invoke() function
IPropertyPage interface
IStorage interface
IStream interface
IUnknown interface 2nd
late bindings

IDispatch interface
libraries

Type
LocalServer object

methods
accessing

objects
AddRef()

IlUnknown interface 2nd
Querylnterface()
Release()

methodsO
@)

Microsoft Remote Data Service (RDS)
models

objects
accessing methods and properties

ActiveX Data (ADO) 2nd
automation
InProc

interfacing and distributing
Common Object Model (COM) 2nd 3rd 4th 5th 6th

LocalServer
performance
applications
improving
programs

improving performance
properties
accessing

objects
Querylinterface() method

RDSO

(o]
Registry

Common Object Model (COM) object storage
Release() method
Remote Data Service (RDS)
services

Microsoft Remote Data (RDS)
software

improving performance
speed

applications

improving

storage

Common Object Model (COM) objects, Windows Registry
Type Libraries
Universally Unique Identifiers (UUIDs)
UUIDO

o
win32.com.client.Dispatch() function
Windows

Registry

Common Object Model (COM) object storage

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 7. Objects Interfacing and Distribution > See All Titles
Implementing COM Objects in Python

<BACK Make Note | Bookmark CONTINUE >

Implementing COM Objects in Python

In order to implement COM objects in the Python version of Windows, you need a set of extensions developed
by Mark Hammond and Greg Stein. Part of the w n32compackage, these extensions enable you to do
everything that is COM-related, including writing COM clients and COM servers.

The following link takes you to the download page of these extensions:

http://www.python.org/download/download windows.html

All the Win32 extensions (including the COM extensions) are part of the w n32al | installation package. This
package also installs the Pyt honW n IDE in your machine.

The latest version of this whole package is located at the win32all home page. Search for the w n32al | . exe
file:

http://www.python.org/windows/win32all/

You can also go directly to Mark Hammond's starship home page, which might have more recent beta releases
of this package:

http://starship.python.net/crew/mhammond/

After installing the package in your machine, take a look at the r eadne. ht mfile, which is stored at the
wi n32comdirectory.

COM support for Python is compounded of the core PythonCOM module, which supports the C++ code, and
the other modules that implement helper code in Python. The whole package is known aswi n32com

The wi n32comPackage

The wi n32comsupport is standalone, as it does not require PythonWin. The wi n32compackage itself does
not provide any functionality. Some of the modules contained in this package are

win32com.pythoncom— Provides core C++ support for COM objects and exposes COM object
methods, such as Quer yl nt erface() and | nvoke(), justasthe C++ API does. Note that

all the reference counting is automatically done for you. Programmers rarely access this module

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=133
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A37%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=133&now=5%2F31%2F2002+4%3A37%3A13+PM
http://www.python.org/download/download_windows.html
http://www.python.org/windows/win32all/
http://starship.python.net/crew/mhammond/

directly. Instead, they usually use the wi n32comwrapper classes and functions written in
Python to provide a nice, programmable interface.

win32com.client— Provides support for COM clients (for example, using Python to start
Microsoft Excel and create a spreadsheet). The COM client support enables Python to manipulate
other COM obijects via their exposed interfaces. All client-side | Unknown-derived objects,

including | Di spat ch, are supported.

win32com.server— Provides support for COM servers (for example, creating and registering a
COM server object in Python and using a language such as Visual Basic or Delphi to access the
Python objects). The COM server support enables Python to create COM servers, which can be
manipulated by another COM client. All server-side | Unknown-derived objects are supported.

win32com.axscript— This is the ActiveX Scripting implementation for Python.
win32com.axdebug— This is the Active Debugging implementation for Python.

win32com.mapi— Provides utilities for working with MAPI and the Microsoft Exchange
Server.

Talking to Windows Applications

The COM technology has been part of the Windows world for a long time. The COM genealogy can be traced
back to DDE (Dynamic Data Exchange). DDE was the first device for transferring data between various
applications in a multi-tasking computer. After some time, DDE was expanded to Object Linking and
Embedding (OLE)—note that COM was invented as part of OLE. The creation of the Visual Basic Extensions
(VBXs) enhanced the OLE technology for visual components, originating a new standard called OLEZ2, which
was based on top of COM. Soon, the OLE2 technology became more integrated with COM, which is a general-
purpose mechanism. Nowadays, COM is mostly known, in part, because of the ActiveX technology.

Professional applications such as Microsoft Office and the Netscape browser enable you to control their objects
using COM. Therefore, programs written in Python can be easily used to control those applications.

COM passes string objects as Unicode characters. Before using these objects in Python, it's necessary to convert
them to strings. The Python-2.0 Unicode string type is not the same as the string type, but it is easy to convert
between the two.

PythonWin comes with a basic COM browser (Python Object browser). This program helps you to identify the
current objects in your system that implement COM interfaces.

To run the browser, select it from the PythonWin Tools menu, or double-click on the file
w n32com cl i ent\ conbr owse. py.

Note that there are other COM browsers available, such as the one that comes with the Microsoft Visual C++.

If you study the file \ pyt hon\wi n32com servers\i nt erp. py, whichis installed as part of your

PythonWin distribution, you will learn how to implement a very simple COM server. This server exposes the
Python interpreter by providing a COM object that handles both the exec and eval methods. Before using

this object, register it by running the module from Python.exe. Then, from Visual Basic, use
CreateObject(‘Python.Interpreter') to initialize the object, and you can start calling the methods.

Word and Excel

Let's quit talking and get to some practicing. Our objective here is to open and manipulate Microsoft
applications from Python.

The first thing that you need to do is to import the COM client and dispatch the right object. In the next
example, a variable is assigned a reference to an Excel application:

>>> jnport w n32com cli ent
>>> x| = win32comclient. D spatch("Excel.Application")

The following does the same thing, but this time the reference is to a Word application.

>>> wd = wi n32comclient. D spatch("Wrd. Application")

Excel . Appl i cati onandWr d. Appl i cati on are the Program IDs (progid), which are the names of the

objects for which you want to create an instance. Internally, these objects have a Class ID (clsid) that uniquely
registers them in the Windows Registry. The matching table between progids and clsids is stored in the
Windows Registry and the matching is performed by the COM mechanism.

It is not an easy job to identify an application progid, or to find out object methods and attributes. You can use
COM browsers to see what applications have COM interfaces in your system.

For the Microsoft Products, you can take a look at the documentation; it is a good source of information.
Not necessarily every COM object implements the same interface. However, there are similarities.

For example, if the previous assignments have just created the objects and you want to make them visible, you
have to type

>>> x| .Visible

1 # Sets the visible property for the Excel application
>>> wd. Vi si bl e 1 #

Sets the visible property for the Wird application

To close both programs and release the memory, you need to say

>>> x|

>>> wd

None
None

or, you could use

>>> del

x|, wd

These were simple examples of implementing COM clients in Python. Next, we will see how to implement a
Python COM server by creating a Python interface that exposes an object. The next block of code registers the
interface in the Windows Registry.

Note that every new COM object that you create must have a unique clsid, but you don't have to worry about it.
The complex algorithm that works behind the scenes is ready to generate a unique identification, as shown here:

>>> jnport pythoncom
>>> print pythoncom CreateGuid()

Your COM server is defined next. You have to execute the program in order to make the COM object available
in the system. Store it on a file, and double-click on it.

1.
2
3:
4:
5-
6
7
8

9:
10:

12:

cl ass TaxApplication:

| f

__hane__ ==

_public _methods = ['PAtax']
_reg_progid_ = "Tax. Application"
_reg_clsid_ = "{D2DEBG6E1- 3C6D- 11D4- 804E- 0050041A5111}"

def PAtax(self, amount, tax=0.07):
return anount + (anount * tax)

__main__':
print "Registering COM server"

i mport wi n32com server.register

wi n32com server. regi st er. UseComrandLi ne(TaxAppl i cati on)

Line 2: Exposes the method to be exported.

Line 3: Defines the name that the COM client application must use to connect to the object.

Line 4: Defines the unique Class ID (cl si d) used by the object.
Line 12: Registers the TaxAppl i cat i on class.

In order to test the program, we need to have an external COM client. Let's use the Visual Basic for
Applications Editor, which is present in both Excel and Word.

Open your Microsoft application, type ALT+F8 in the Macro dialog box, and select the option that creates a
macro. Now, you need to type the following block of code:

Sub Tax()

Set TaxApplication = CreateCbject("Tax. Application")
newanount = TaxApplication. PAt ax(100)

MsgBox newanount

Set TaxApplication = Nothing

End Sub

Now, if you press F5, Visual Basic should display a message box showing the result of our simple tax
operation, which, in our case, is 107.

To unregister your COM object you can either pass the argument - - unr egi st er when calling your script, or
you can use the following line of code inside your Python program:

>>> W n32com server.regi ster. Unregi sterC asses(TaxApplication)

A very comprehensive example of using Microsoft Word and Excel is stored in the t est MSOF f i ce. py file,
which is part of your PythonWin distribution. It's worth checking out!!!

Word

The following code implements a simple wrapper for the Microsoft Word Application. To test it you need to
create a Word document and replace its path in the code. The program will open this file, replace the first
occurrence of the string " #nanme#" within the file, add a small bit of text to the end of the line, and print the

file.

I mport wi n32com cl i ent

Fal se =

True =
wdLi ne

0

-1

5

cl ass Wor dApp:

def

def

def

def

def

def

wor ddoc

wor ddoc.
wor ddoc.
wor ddoc.
wor ddoc.
wor ddoc.

If you type in the name of the object's attribute that accesses the Di spat ch method, you get as a result, the

_init__(self):
sel f.app = win32comclient. Di spatch("Wrd. Application")

open(sel f, docunent file):

sel f. app. Docunent s. Open(docunent _file)

repl ace(sel f, source_sel ection, new text):

sel f. app. Sel ecti on. HoneKey(Uni t =wdLi ne)

sel f. app. Sel ecti on. Fi nd. Text = source_sel ection
sel f. app. Sel ecti on. Fi nd. Execut e()

sel f. app. Sel ecti on. TypeText (Text =new _t ext)
addt ext (sel f, new_text):

sel f. app. Sel ecti on. EndKey(Uni t =wdLi ne)

sel f. app. Sel ecti on. TypeText (Text =new_t ext)
printdoc(sel f):

sel f.app. Application.PrintQut()

cl ose(self):

sel f. app. Acti veDocunent . C ose(SaveChanges =Fal se)

= Wor dApp()

open(r"s:\ tenplate. doc")

repl ace("#nanme#", "Andre Lessa")
addtext (" What do you want to learn ?")
printdoc()

cl ose

COM object name:

>>> wor ddoc. app
<COMbj ect Wbord. Application. >

This object is an example of a dynamic dispatch object. The provided name indicates that the object is a generic
COM object, and affirms that Python doesn't know anything about it, except the name that you used to create it.

All the information about this object is built dynamically.

Besides dynamic dispatches, you can also use static dispatches, which involve the generation of a . py file that
contains support for the specific COM object. In CORBA speak, this is called stub generation, or IDL

compilation.

In order to generate the Python files that support a specific COM object, you need to execute
wi n32com cl i ent\ makepy. py. A list of Type Libraries will be displayed. Select one (for example,

‘Microsoft Word 8.0 Object Library') and click OK. You can also call the makepy.py program directly from the
command prompt by typing makepy. py "M crosoft Wrd 8.0 Cbject Library".

Now, Python knows exactly how to handle the interfaces before invoking the COM object. Although, you can't
see any differences, you can check that Python really knows something else now by querying the COM object:

>>> | nport w n32com cli ent

>>> wd=wi n32com cl i ent. Di spat ch("Wrd. Appl i cation")

>>> wd

<wi n32com gen_py. M crosoft Wrd 8.0 Object Library. Application>

Note that Python knows the explicit type of the object now.
All the compiled information is stored in a file in the wi n32coni gen_ py directory. You probably won't
understand the filename because it is encoded. Actually, you don't need to use this file at all. All the interface

information is made available viawi n32com cl i ent . Di spat ch and
wi n32com cl i ent. const ants.

If you really need to identify the name of the module that was generated, you can use the
wi n32com cl i ent . gencache module. This module has two functions: Get Mbdul eFor CLSI Dand

Get Modul eFor Pr ogl Dthat return Python module objects you can use in your code.

makepy. py also automatically installs all generated constants from a library of types in an object called
wi n32com cl i ents. const ant s. After creating the object, all the constants become available to you.

In the previous example, we had to initialize the constant wdLi ne, because the constants were not available.
Now, after running makepy. py, you can replace the line

sel f. app. Sel ecti on. EndKey(Uni t =wdLi ne)

with

sel f. app. Sel ecti on. EndKey(Uni t =wi n32com cl i ents. const ants. wdLi ne)

and remove the initialization line

wdLine = 5

The next example uses the wdW ndowSt at eMaxi m ze constant to maximize Microsoft Word:

>>> w. WndowSt ate = wi n32com cli ent. const ants. wdW ndowSt at eMaxi m ze

Excel

Next, we'll see how to create COM clients using Microsoft Excel. The principle is very simple. Actually, it is
the same one used previously for wrapping Microsoft Word, as it is demonstrated in the following example.

>>> jnport w n32com cli ent
>>> excel app = wi n32comclient. D spatch("Excel.Application")
>>> excel app.Visible =1

Note that we have to change the Vi si bl e property in order to see the Excel application. The default behavior
is to hide the application window because it saves processor cycles. However, the object is available to any
COM client that asks for it.

As you can see in the example, Excel's progid is Excel . Appl i cati on.

After you create the Excel object, you are able to call its methods and set its properties. Keep in mind that the
Excel Object Model has the following hierarchy: Application, WorkBook, Sheet, Range, and Cell.

Let's play a little with Excel. The following statements write to the workbook:

>>> excel app. Range("Al: C1"). Val ue
>>> excel app. Range(" A2: A2") . Val ue

"Hel |l 0", "Python", "World"
' SPAM SPAM SPAM '

Note that you can also use tuples to transport values:

>>> excel app. Range("Al: C1").Value = ("Hello', 'Python', "Wrld')

To print a selected area, you need to use the Pri nt Qut () method:

>>> excel app. Range(" Al: C1") . Print Qut ()

What about entering date and time information? The following examples will show you how to set the
Date/Time format for Excel cells.

First, call Excel's time function:

>>> excel app. Cel I s(4, 3).Value = "=Now()"
>>> excel app. Col ums("C") . EntireCol um. AutoFit ()

The Aut oFi t () function is required in order to display the information, instead of showing " #######" .

Now, use Python to set the time you want:

>>> jnport tinme, pythoncom

>>> excel app. Cel I s(4,1). Val ue = pythoncom MakeTi ne(tine.tine())
>>> excel app. Range(" Ad4: A4") . Nunber Format = "d/ miyy h: mit

>>> excel app. Col ums("A: C") . EntireCol um. AutoFit ()

Note that the Cel | s() structure works like a numeric array. That means that instead of using Excel's notation
of letters and numbers, you need to think of the spreadsheet as a numeric matrix.

Visual Basic

In order to implement a COM object using Python you need to implement a Python class that exposes the
functionality to be exported. It is also necessary to assign two special attributes to this class, as required by the
Python COM implementation.

The first attribute is the Class ID (_r eg_cl si d_). This attribute must contain a UUID, which can be
generated by calling the pyt honcom Cr eat eGui d() function. The other attribute is a friendly string that
you will use to call the COM object (_reg_pr ogi d_), as follows:

cl ass COMCal cServer:
_reg_clsid_ = "'{ Cr6BEA61-3B39-11D4- 8A7C- 444553546170}

_reg_progid_ = ' COMCALCSERVER. VERSI ON1'
_public methods = ['"mul',"div',"add ,'sub']

Other interesting attributes are

« _public_met hods—A list of all method names that you want to publicly expose to remote COM
clients.

. _public_attrs—Alistof all attribute names to be exposed to remote COM clients.

. _readonly_attrs—A list of all attributes that can be accessed, but not set. This list should be a
subset of the list exposed by _public_attrs.

After creating the class, you need to register your COM object. The general technique is to run the module that
implements the COM object as a script, in order to register the object:

if _name__ =="'_main_'

i nport w n32com server.register
wi n32com server. regi st er. UseConmandLi ne(COMCal cSer ver)

Notice that you need to inform the class object, and not a class instance. After the UseCommandLi ne()
function has been successfully executed, the following message is returned by the Python interpreter:

Regi st ered: COMCALCSERVER. VERSI ON1

When you have your COM object up and running, any automation-capable language, such as Python, Visual
Basic, Delphi, or Perl, can use it.

The following example is a complete program that implements a calculator. First, you need to collect the unique
IDs for your class:

Python 1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on wi n32
Copyright 1991-1995 Stichting Mathemati sch Centrum Anst erdam

>>> jnport pythoncom

>>> print pythoncom CreateCuid()

<iid:{C7/6BEA60- 3B39- 11D4- 8A7C- 444553546170} >

After informing the new cl si d valueto the reg_cl si d_ attribute, we have the following program:

File: contal cserver. py

cl ass COMCal cServer:

_reg_clsid_ = "'{Cr6BEA61- 3B39- 11D4- 8A7C- 444553546170}
_reg_progid_ = "'COMCALCSERVER. VERSI ON1'
public methods = ["mul',"div',"add' ,'sub']

def nmul (self, argl, arg2):
return argl * arg2
def div(self, argl, arg2):
return argl / arg2
def add(self, argl, arg2):
return argl + arg2
def sub(self, argl, arg2):
return argl - arg2

if _nanme_ =="'_main__

i nport w n32com server.register
W n32com server.regi ster. UseComandLi ne(COMCal cSer ver)

Make sure that all methods are included inthe _publ i ¢c_net hods_. Otherwise, the program will fail. Now,
go to the DOS prompt and execute the program to register the COM object:

C.\ pyt hon>c: \ progr a~1\ pyt hon\ pyt hon contal cserver. py
Regi st ered: COMCALCSERVER. VERSI ON1

To create the Visual Basic COM client, you need to create a Visual Basic Form that contains all the
implementation details (see Figure 7.1).

Figure 7.1. A design for creating the Visual Basic Form.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/133#7.html

maﬁﬂwamammammmommrﬂmlmmm =18 x|

"E; i 'ﬁl#lﬂ thRMa sy e MESERAEB 0o £ 4800 3600
] O mmiﬂ

| —T | LIE |
By el S BFproject] (Cakdadoen vb)
el | i LA ot e 1 -’-_—‘g'“:m =

:::::::::::::::::::::::Eumd!|::::::: Aamcoa)
| | ‘ez AT A

B e P el

S e e T T o]

Iy | B A AL | | x|
o = I e T Progeites -Foml BJ
'_||E| B el o e e I IFurmlme ;l
g
‘m
Risburnsfsets the et diplyyedin o
hfect’s bl b e beskres 1 clrioct’s

|
Most of the time, the initialization steps are stored in the Form_Load section in order to be executed when the
application starts:

Dim COMCal cServer as bj ect
Set COMCal cServer = CreateObj ect (" COMCALCSERVER. VERSI ON1")

Remember to always deallocate the objects before exiting the application. It's good practice to do it in the
Form_Unload section:

Set COMCal cServer = Not hi ng

Publ i ¢ COMCal cServer As (bject

Private Sub Form Unl oad(Cancel As Integer)
Set COMCal cServer = Not hi ng

End Sub

Sub I nit COMCal cServer ()
Set COMCal cServer = CreateQbject (" COMCALCSERVER. VERSI ON1")
Exit Sub

End Sub

Private Sub Commandl Cick()
Dmresult As Double
result = COMCal cServer. Mul (Val (Text1), Val (Text2))
MsgBox Textl & "*" & Text2 & "=" & Str(result)
End Sub
Private Sub Command2_C i ck()
Dmresult As Double
result = COMCal cServer.Div(Val (Textl), Val (Text2))
MsgBox Textl & "/" & Text2 & "=" & Str(result)
End Sub
Private Sub Command3_dC i ck()
Dmresult As Double
result = COMCal cServer. Add(Val (Text1l), Val (Text?2))
MsgBox Textl & "+" & Text2 & "=" & Str(result)
End Sub
Private Sub Command4_d i ck()
Dimresult As Double
result = COMCal cServer. Sub(Val (Text1), Val (Text2))

MsgBox Textl & "-" & Text2 & "=" & Str(result)
End Sub
Private Sub Form Load()

Textl = 0

Text2 = 0

Commandl. Caption = "Ml "

Command2. Caption = "Di v"

Command3. Capti on = "Add"

Command4. Capti on = " Sub"

| ni t COMCal cSer ver
End Sub

While executing the application (see Figure 7.2), your Visual Basic application will be talking to the Python
COM object behind the scenes.

Figure 7.2. A Visual Basic executable running.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/133#8.html

il
|10

D
|5.5

Add

Sub

Calculadora _I

10%5.5= Bh

The next example is based on the previous one. This one implements a callback function. The VB program calls
a Python function that clearly manipulates the Visual Basic Form object.

You need to add or replace the following functions in the Visual Basic code:

Sub I nit COMCal cServer ()
Set COMCal cServer = CreateQbject (" COMCALCSERVER. VERSI ON2")
Exit Sub

End Sub

Private Sub Form Load()

Textl = 0
Text2 = 0
Commandl. Caption = "Ml "
Command2. Caption = "D v"
Command3. Capti on = "Add"
Command4. Capti on = " Sub"

I ni t COMCal cSer ver
COMCal cServer . updat ecapti on Me
End Sub

The following new function must be created in the Python code, too. The VB function call uses the keyword Me
to send a reference of the For mobject to Python's updat ecapt i on() method:

def updat ecaption(self, object):

Form = wi n32com cl i ent. Di spat ch(obj ect)
Form Caption = "Python COM Routine is Active"

The following code is a full replacement to be used with this example. Remember to create a new
_reg_cl si d_ forthis new example.

File: contal cserver?2. py

cl ass COMCal cServer:

_reg_clsid_ = "'{ C7/6BEA64-3B39-11D4-8A7C- 444553546170}
_reg_progi d_ = ' COMCALCSERVER. VERSI ON2'
_public _nmethods_ = ['"mul',"div',"add ,'sub', 'updatecaption']

def nmul (self, argl, arg2):
return argl * arg2
def div(self, argl, arg2):
return argl / arg2
def add(self, argl, arg2):
return argl + arg2
def sub(self, argl, arg2):
return argl - arg2
def updatecaption(self, object):
i mport wi n32com cli ent
Form = wi n32com cl i ent. Di spat ch(obj ect)
Form Caption = "Python COM Routine is Active"

if nane_ =="'_ nmain__
i mport w n32com server.register
wi n32com server. regi ster. UseConmandLi ne(COMCal cSer ver)

The result of running this example is shown in Figure 7.3.

Figure 7.3. Python/Visual Basic callback implementation.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/133#9.html

i Python COM Routine is Active
Pl
5
Diw
&
Add
Calculadora _I
L
A+6=11

Every script that defines a COM class can be used to unregister the class, too. Python automatically knows that,
when you pass the argument - - unr egi st er to the script, you want to remove all the references to this class

from the Windows Registry.

C.\ pyt hon>pyt hon contal cserver 2. py --unregister
Unr egi st ered: COMCALCSERVER. VERSI ON2

Handling Numbers and Strings

Whenever you have a Python method as part of a COM server interface that returns a number or a string, as
shown in the next few lines of code:

def Get Nunber (self):
return 25

def GetString(self, nane):
return 'Your nane is %' % nane

The COM client written in Visual Basic must handle the methods as follows

Di m num as Vari ant

num = Server . Get Nunber

Dimstr as Vari ant

str = Server.GetString("Andre")
MsgBox str

Python and Unicode do not really work well together in the current version of Python. All strings that come
from COM will actually be Unicode objects rather than string objects. In order to make the previous code work
in a COM environment, the last line of the Get St ri ng() method must become

return 'Your nane is %' % str(nane)

The conversion of the "name" to "st r (nane) " forces the Unicode object into a native Python string object.
In Python-2.0, if the win32com stuff starts using native Python Unicode strings, the st r () call will cause the
Unicode string to be reencoded in UTF8.

Handling Lists and Tuples

When you have a Python method as part of a COM server interface that returns a list or a tuple, as illustrated in
the next example:

def GetlList(self):
return [1, 2, 3, 4]

The COM client written in Visual Basic must handle the method as follows:

Dimarry as Vari ant

arry = Server. Get Li st
Debug. Print UBound(arry)
For Each itemin arry
Debug. Print item

Next

Delphi
Using Delphi to implement a COM client is very similar to using Visual Basic. First, you need to register the

COM class. The following code is similar to the one used for the Visual Basic example.

File: contal cserver. py

cl ass COMCal cServer:
_reg_clsid_="'{ C76BEA61-3B39- 11D4- 8A7C- 444553546170} '

_reg_progid_ = ' COMCALCSERVER. VERSI ON1'
_public methods = ['"mul',"div',"add ,'sub']
def nmul (self, argl, arg2):

return argl * arg2
def div(self, argl, arg2):

return argl / arg2
def add(self, argl, arg2):

return argl + arg2
def sub(self, argl, arg2):

return argl - arg2

if _nane_ =="'_ nmain__
i nport w n32com server.register
W n32com server.regi ster. UseComandLi ne(COMCal cSer ver)

Now, you need to create a Delphi form to support all the COM client activities (see Figure 7.4).

Figure 7.4. Delphi design: A form with three Edit boxes and four buttons.

 |Edit1 ORI = 1711721 B
:IE'jitz Ll Button2 |00
N < 177 (a1 < S S

[Edia DO DRSS
e Biand |

unit Cal cform
i nterface
uses

W ndows, Messages, SysUtils, O asses, Gaphics, Controls, Forns, Di alogs,
StdCtrls, OLEAuto;

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/133#13.html

type
TForml = cl ass(TForm
Buttonl: TButton;

Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;

Button2: TButton;

Button3: TButton,

Button4: TButton,

procedure FornCreate(Sender: TQbject);
procedure Buttonld ick(Sender: TCObject);
procedure Buttond4d ick(Sender: TCObject);
procedure Button3d ick(Sender: TObject);
procedure Button2d ick(Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

Forml: TFor ml;
COMCal cServer: Vari ant;
I mpl ement ati on

{ $R *.DFM

procedure TForml. For nCr eat e(Sender: TObj ect);
begi n
try
COMCal cSer ver
Forml. Caption :

Creat ed e(bj ect (' COMCALCSERVER. VERSI ON1') ;
"Python COM Routine is Active';

Editl.text := X
Edit2.text := :
Edit3.text :="";
Buttonl. Nane := 'nmul"';
Button2. Nanme := "div';
Button3. Nane : = 'add';
Button4. Nane : = 'sub';

except
MessageDl g(' An error has happened!', ntError, [nbCK], 0);
Appl i cati on. Ter m nat e;
end;
end;

procedure TForml. Buttonld i ck(Sender: TCObject);
var tnplfloat, tnp2float : Real;

tnp3string : String;

begi n
tnplfloat := StrToFl oat(Editl.text);
tnmp2float := StrToFl oat (Edit2.text);
tnmp3string := FloatToStr(COMCal cServer. mul (tnplfl oat, tnp2float));
Edit3.text := tnp3string;
end;

procedure TForml. Button2Cd i ck(Sender: TCObject);
var tnplfloat, tnp2float : Real;
tnp3string : String;

begi n
tnmplfloat := StrToFl oat (Edit1l.text);
tmp2float := StrToFl oat (Edit2.text);
tnmp3string := FloatToStr(COMCal cServer. div(tnplfloat, tnp2float));
Edit3.text := tnp3string;
end;

procedure TForml. Button3Cd i ck(Sender: TCObject);
var tnplfloat, tnp2float : Real;
tnmp3string : String;

begi n
tnmplfloat := StrToFl oat (Edit1l.text);
tnmp2float := StrToFl oat (Edit2.text);
tnmp3string := Float ToStr(COMCal cServer. add(tnplfloat, tnp2float));
Edit3.text := tnp3string;
end,

procedure TForml. Button4d i ck(Sender: TCObject);
var tnplfloat, tnp2float : Real;
tnmp3string : String;

begi n
tnplfloat := StrToFl oat(Editl.text);
tnp2float := StrToFl oat (Edit2.text);
tmp3string := Float ToStr(COMCal cServer. sub(tnplfloat, tnp2float));
Edit3.text := tnp3string;
end;
end.

After compiling and running the application, you should see the interface shown in Figure 7.5.

Figure 7.5. Delphi Calculator Application.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/133#14.html

1. Python COM Routine is Active
10 rriul
20 div
Lo
il sub
< BACK Make Note | Bookmark

Index terms contained in this section

public attrs() attribute
public methods() attribute
readonly attrs() attribute

applications
Excel
opening and manipulating from Python 2nd 3rd 4th 5th 6th

transferring data between
win32all
win32com 2nd 3rd
Word
opening and manipulating from Python 2nd 3rd 4th 5th 6th
attributes

public_attrs()
public methods()

readonly attrs()

AutoFit() function
calculator object

source code 2nd 3rd 4th 5th 6th
Cells() function
changing

Visible property
clients

Common Object Model (COM)

CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=133

creating clients, Excel 2nd 3rd
importing
closing
Excel and Word
code
calculator object 2nd 3rd 4th 5th 6th

creating
Common Object Model (COM) clients
Excel 2nd 3rd
Python interfaces to expose objects 2nd
data
transferring between applications
Date/Time format
setting 2nd
Delphi programming language
implementing Common Object Model (COM) objects 2nd
disabling
registration
Common Object Model (COM) objects
Dispatch method
dispatches
static
distributing
objects

dynamic dispatch object
editing

Visible property
Excel

opening and manipulating from Python 2nd 3rd 4th 5th 6th
exiting

Excel and Word
exposing

objects, creating Python interfaces 2nd
finding

generated modules

formats
Date/Time

setting 2nd
functions

AutoFit()

Cells()
Pythoncom.CreateGuid()

generating
modules

identifying
Hammond, Mark
handling
numbers 2nd
strings 2nd
identifying

generated modules
implementing
objects

Python Common Object Model (COM) server 2nd
wrappers
Word 2nd
importing
Common Object Model (COM) client
interfacing
objects

librariesO
(o]
makepy.py module
methods
Dispatch
PrintOut()

models

modifying
Visible property
modules
generated
identifyin
makepy.py
win32.com.client.gencache
modulesO
(o]
numbers
handling 2nd
objects
calculator
source code 2nd 3rd 4th 5th 6th
dynamic dispatch
exposing, creating Python interfaces 2nd

interfacing and distributing

PrintOut() method
programming languages
Delphi
implementing Common Object Model (COM) objects 2nd
Visual Basic (VB)
implementing Common Object Model (COM) objects 2nd 3rd 4th 5th
programs
Excel
opening and manipulating from Python 2nd 3rd 4th 5th 6th
transferring data between
win32all
win32com 2nd 3rd
Word
opening and manipulating from Python 2nd 3rd 4th 5th

[©)]
-

t

properties

Visible

changing

Pythoncom.CreateGuid() function
quitting

Excel and Word
searching

generated modules

servers
Python Common Object Model (COM)
implementing 2nd
setting
Data/Time format 2nd

software
Excel
opening and manipulating from Python 2nd 3rd 4th 5th 6th

transferring data between

win32all

win32com 2nd 3rd

Word

opening and manipulating from Python 2nd 3rd 4th 5th 6th

source code

calculator object 2nd 3rd 4th 5th 6th
static dispatches
Stein, Greg
strings

handling 2nd

testing
Python interfaces 2nd
wrappers
Word
transferring
data between applications
transporting
values
tuples
tuples
transporting values
turning off
registration
Common Object Model (COM) objects
unregistering
Common Object Model (COM) objects
values
transporting
tuples
Visible property
changing
Visual Basic (VB) programming language
implementing Common Object Model (COM) objects 2nd 3rd 4th 5th
win32.com.client.gencache module
win32all package

win32com package 2nd 3rd
Windows

transferring data between applications
Word

opening and manipulating from Python 2nd 3rd 4th 5th 6th
wrappers

Word

implementing 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 7. Objects Interfacing and See All Titles
Distribution > Distributing Objects with Python

< BACK Make Note | Bookmark CONTINUE >

Distributing Objects with Python

There are some other packages that enable you to talk to other programs on platforms without COM
support. As for the object distribution models, Python has many projects currently being developed.

The Inter-Language Unification system (ILU) is a free and stable multi-language object interface
system.

The Object Request Broker is the mechanism that lets objects transparently make requests to—and
receive from—other objects located locally or remotely. The ORB component is also commonly
referred to as CORBA, which stands for Common Object Request Broker Architecture. omniORBpy is
an almost complete implementation of the current Python CORBA mapping.

Fnorb is an Object Request Broker (ORB) that is compliant with the CORBA 2.0 specification from the
Object Management Group (OMG). Fnorb implements a single language mapping from OMG IDL to
Python. This implementation is excellent for those who want to learn CORBA. Another project worth
mentioning is the ORBIt-python project, which a binding for ORBIt, the CORBA orb used by GNOME
and some other projects.

DCOM is the COM technology that distributes objects between different machines on the network. It
defines a protocol that enables software components to communicate directly over a network in a
reliable, secure, and efficient manner.

The Object Management Facility (OMF) is an object-oriented middleware environment for the process
automation area. Even though it doesn't contain any Python code, it is heavily tested using Python
scripts. The object model used by OMF is similar to other distributed object systems, such as OMG's
CORBA and Xerox's ILU. OMF is implemented in C++, with APIs for other languages, including
Python. It is said that the Python API was primarily created for writing test programs, but it has since
been used to write various tools for application development and runtime management.

Hector is a distributed object system developed at the University of Queensland, Australia. It is written
almost entirely in Python. Hector attempts to provide application objects with a consistent
environment, regardless of their physical location, through a series of transparencies.

Inter-Language Unification (ILU)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=134
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A37%3A48+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=134&now=5%2F31%2F2002+4%3A37%3A48+PM

The Inter-Language Unification system (ILU) is a free and stable multi-language object interface
system, whose interfaces hide implementation distinctions between different languages, address spaces,
and operating system types. ILU can be used to build multilingual, object-oriented class libraries with
well-specified, language-independent interfaces. It can also be used to implement distributed systems
and to define and document interfaces between the modules of nondistributed programs. ILU interfaces
can be specified in either the OMG's CORBA Interface Definition Language (OMG IDL) or ILU's
Interface Specification Language (ISL).

ILU is primarily about interfaces between modules of program structure. Each module encapsulates the
part of a program that has high adhesion internally and low connection to other parts of the program.
The main goal of ILU is to create object-oriented interfaces that can communicate with those modules.
ILU does all the translating and communicating necessary to use all kinds of modules in a single
program. Its mechanism optimizes calls across module interfaces to involve only what it is necessary
for the calling and called modules to interact. The notion of a module should not be confused with the
independent concept of a program instance, which is translated as a combination of code and data
running in one memory image, such as the UNIX processes.

ILU standardizes many of the issues involved in providing proper inter-module independence, such as
memory management and error detection and recovery strategies. ILU also includes an implementation
of the Object Management Group's CORBA Internet Inter-Orb Protocol (110P), and can be used to
write CORBA services or clients, as well. ILU provides a standard notation to write its
interfaces—ISL, which stands for Interface Specification Language. ISL is a declarative language,
which can be processed by computer programs that enables you to define exceptions, constants, object
and non-object types. Next, you have a sample of what ISL looks like:

| NTERFACE Cal cMachi ne;
EXCEPTI ON Di vi deByZer o;
TYPE Cal cul ator = OBJECT
METHODS
SetValue (v : REAL),
Get Val ue () : REAL,
Divide (v : REAL) RAI SES Divi deByZero END
END;

ILU provides a program, i s| scan, which can be used to check the syntax of an ISL specification,
parse the specification, and summarize it to standard output.

After you've defined an interface, you then need to supply an implementation of your module, which
can be done in any language supported by ILU.

The program pyt hon- st ubber is used to read an ISL file, and generate all the Python code that is
required to support the ISL interface. One of the files generated is' | nt er f ace. py', which
contains the definitions of all the Python types for that interface:

% pyt hon- st ubber Cal cMachi ne. i sl

client stubs for interface "Cal cMachi ne" to Cal cMachi ne. py ...

server stubs for interface " CalcMachine " to Cal cMachi ne__skel . py ...
%

To provide an implementation of your interface, subclass the generated Python class for the Calculator
class:

Cal cul atorl npl . py
I nport Cal cMachi ne, Cal cMachi ne__ skel
cl ass Cal cul ator (Cal cMachi ne__skel . Cal cul ator):
def __init__ (self):
self.value = 0.0
def SetVal ue (self, val ue):
sel f.val ue = val ue
def GetVal ue (self):
return self.val ue
def Divide (self, value):
try:
sel f.value = self.value / val ue
except ZeroDi visionError:
rai se Cal cMachi ne. D vi deByZero

Each instance of a Cal cul at or | npl . Cal cul at or object inherits from
Cal cMachi ne__skel . Cal cul at or, which in turn inherits from
Cal cMachi ne. Cal cul at or. Each has an instance variable called value, which maintains a

running total of the accumulator for that instance. We can create an instance of a
Cal cMachi ne. Cal cul at or object by simply calling Cal cul at or | npl . Cal cul at or ().

A very simple program to demonstrate the use of the Cal cMachi ne module is listed next. To run this
program, you have to type the command pyt hon di vi de. py <NUVMBER TO DI VI DE>.

File: divide.py
i nport Cal cMachi ne, Calculatorlnpl, sys, string

def main (argv):
calc = Cal culatorl npl. Cal cul ator ()
i f not calc:
error("Error creating the cal cul ator")
cal c. Set Val ue (10.0)
di visor = string.atof(argv[1])
cal c. Di vi de(di vi sor)
print "the division result is", calc. GetVal ue()
sys. exit(0)
mai n(sys. argv)

This program would be compiled and run as follows:

% pyt hon divide.py 5.0
the division result is 2.0
%

ILU also supports the use of the interface definition language OMG IDL, defined by the Object
Management Group (OMG) for its Common Object Request Broker Architecture (CORBA). That kind
of support allows more programmers to easily use ILU because OMG's IDL uses a syntax similar to
C++. However, because CORBA doesn't implement some of the concepts found in ILU, programmers
can't implement all types of ILU interface using OMG IDL.

ILU is available for free at

ftp://ftp.parc.xerox.com/pub/ilu/ilu.html

Using ILU with Python: A Tutorial

ftp://parcftp.parc.xerox.com/pub/ilu/misc/tutpython.html

CORBA Binding and Implementation

The Object Request Broker (ORB) is the mechanism that lets objects transparently make requests
to—and receive from—other objects located locally or remotely. The ORB is the middleware that
establishes the client/server relationship between objects.

ftp://ftp.parc.xerox.com/pub/ilu/ilu.html
ftp://parcftp.parc.xerox.com/pub/ilu/misc/tutpython.html

Using an ORB, a client object can transparently invoke a method on a server object, which can be on
the same machine or across a network. The ORB intercepts the call and is responsible for finding an
object that can implement the request, pass it the parameters, invoke its method, and return the results.
The client does not have to be aware of where the object is located, its programming language, its
operating system, or any other system aspects that are not part of an object's interface. The client is not
aware of the mechanisms used to communicate with, activate, or store the server objects. The ORB
serves as the foundation for building distributed object applications. Note that CORBA can short circuit
requests to objects in the same address space, as ILU and COM can, if the implementation supports
this.

The ORB component, or CORBA, is a set of specifications defining the ways software objects should
work together in a distributed environment. The organization that drives the specifications, the Object
Management Group (OMG), has hundreds of members representing a major portion of the software
industry. The members work together to propose, review, and finally adopt a set of specifications to
enable software objects to be developed independently and yet work together in a harmonic fashion.

The fundamental piece of CORBA is the ORB, or Object Request Broker. The ORB can be viewed like
a channel carrying objects between the clients (those that consume the objects) and the servers (those
that produce the objects). The consumers are provided with object interfaces, which are defined using a
language called the Interface Definition Language. The detailed implementation of the objects by the
producers is totally shielded from the consumers. The ORB is usually just a library that the program
links to that marshals object requests. The promised benefits of making the software objects from
different vendors publicly known made those vendors highly endorse OMG's specifications.

At the most basic level, CORBA is a standard for distributed objects. CORBA enables an application to
request that an operation be performed by a distributed object and that the results of the operation be
returned to the application making the request. The application communicates with the distributed
object performing the operation. This is basic client/server functionality, in which a client issues a
request to a server, and the server responds to the client. Data can pass from the client to the server and
Is associated with a particular operation on a particular object. Data is then returned to the client in the
form of a response. Note that just like COM/DCOM, CORBA can be used to access objects that are
local to the process, machine, or non-local.

DCOM is a Microsoft-specific distribution solution, whereas CORBA products are available from
more than 20 different vendors, and they support Microsoft and non-Microsoft operating systems.
CORBA is an excellent mechanism to bridge between Microsoft desktops and UNIX servers.

There is no explicit need to choose between DCOM and CORBA. Distributed applications can be
developed using both CORBA and DCOM. For example, a client application might be developed to
access a set of OLE automation objects, and OLE automation objects might in turn access CORBA
Objects running on a non-Microsoft platform such a UNIX. The OMG has defined a COM/CORBA
interworking specification that standardizes this sort of bridging.

Note

Python can be used to create wrappers between COM and CORBA systems.

CORBA is more mature than DCOM,; it has existed since 1990, and commercial implementations have
been available since 1992. DCOM wasn't available in beta form until 1996. Also, a large number of
different companies have developed CORBA ORBs. This level of competition increases the robustness
of CORBA solutions on the whole. It also ensures compatibility—a vendor's CORBA ORB is of much
greater value if it can talk to a competitor's ORBs.

One of the advantages of DCOM over CORBA is the fact that DCOM is well suited to front-end
application development. If entire distributed application runs under Microsoft platforms, DCOM
might be a good choice. DCOM can also be used with CORBA. Of course, using DCOM will lock you
into Win32 in the future, which might not be a good thing even if you are using Win32 at the moment.

The CORBA distributed object system is becoming an important standard in developing industrial-
strength client/server and Web applications. It is also used as an IPC layer between a number of
components in both the Gnome and KDE desktop environments for UNIX.

In the current development phase of the CORBA binding for Python, the OMG board of directors has
adopted the specification, and the finalization task force has completed its report. After approval, this
report will become an available specification. ormi ORBpy is an almost complete implementation of

the current Python/CORBA mapping. It is currently in beta, but is very stable.

More information about the ormi Or bpy interface, which is provided by omniORB, can be found at

http://www.uk.research.att.com/omniORB/omniORB.html

Other interesting links for you include
CORBA IDL Parser—by Sam Rushing

http://www.nightmare.com/software.html

This parser uses Aaron Watters' kwPar si ng parser-generator package to construct a
CORBA IDL parser in Python.

Object Management Group

http://www.uk.research.att.com/omniORB/omniORB.html
http://www.nightmare.com/software.html

Common Object Request Broker Architecture 2.0
OMG TC Document 96.03.04, July 1995

http://www.omg.org/docs/ptc/96-03-04.ps

Python Distributed Objects Special Interest Group

http://www.python.org/sigs/do-sig/

Fnorb

Fnorb is written in Python and its framework supports only Python. The implementation provided by
this object-model helps you to learn more about CORBA systems.

Fnorb is an object request broker (ORB) compliant with the CORBA 2.0 specification from the Object
Management Group (OMG). Fnorb implements a single language mapping from OMG IDL to Python.
Because of the interpreted and interactive nature of Python, and the simplicity of the mapping (as
compared to mappings with C++ and Java), Fnorb is ideally suited as a tool for the rapid prototyping,
testing, and scripting of CORBA systems and architectures.

The pair Python/Fnorb is ideal for prototyping complex CORBA architectures, for using as a scripting
tool, and for building test harnesses for all your CORBA development projects.

The combination of Python and Fnorb provides the existing CORBA community with a much needed
tool for rapid prototyping and scripting, and gives those new to CORBA a great way to learn the
fundamental concepts without being swamped by the intricacies of a "heavyweight" language mapping.

Like ILU from Xerox PARC, Fnorb gives the Python programmer access to the wonderful world of
CORBA. It supports all CORBA 2.0 data types (including Any's) and provides a full implementation of
I[1OP. Unlike ILU, Fnorb is Python and CORBA/IDL-specific, which makes it simple, lightweight, and
easy to install and use.

Using Fnorb, you no longer have to use other languages to write CORBA clients and servers—you can
use Python now. This makes Fnorb ideal for prototyping complex CORBA architectures, for use as a
scripting tool, and for building test harnesses for all your CORBA development projects.

The Python language mapping used by Fnorb is based on a specification document being prepared by
members of the DO-SIG (Distributed Objects - Special Interest Group). One goal of Fnorb is to enable
the Python community to experiment with the mapping before attempting to set it in stone via the
OMG standardization process.

http://www.omg.org/docs/ptc/96-03-04.ps
http://www.python.org/sigs/do-sig/

Fnorb is being developed at the CRC for Distributed Systems Technology based at the University of
Queensland in Brisbane, Australia. Fnorb is released under a free for non-commercial use license.
Another license must be acquired to use it commercially.

Official Fnorb home page

http://www.fnorb.org/

Jeff Rush's Fnorb Web page

http://starship.python.net/crew/jrush/Enorb/

Provides Fnorb tips, techniques, and Linux RPMs for Fnorb.
DCOM

DCOM is Microsoft's way of distributing objects between different machines on the network. DCOM,
or Distributed Common Object Model, defines the specifications that an object must obey to
interoperate with other objects using Microsoft distributing architecture.

The core of DCOM is the Common Object Model, defined and refined from the earlier Object Link and
Embedding implementation. Started naively as a way to enable documents to be embedded or linked
into another document, OLE has completely reinvented itself.

The Common Object Model (COM) lays the foundation for objects to gain knowledge about, and to
make use of, each other; thus they can engage in so-called component-based computing. DCOM
extends the capability to include the constituent objects on other machines connected through the
network.

The Distributed Common Object Model (DCOM) is a protocol that enables software components to
communicate directly over a network in a reliable, secure, and efficient manner. Previously called
Network OLE, DCOM is designed for use across multiple network transports, including Internet
protocols such as HTTP. DCOM is based on the Open Software Foundation's DCE-RPC spec and will
work with both Java applets and ActiveX components through its use of the (COM).

DCOM enables objects to be remote from their caller, and it handles all marshalling across machines
and necessary security. Configuration tools enable an administrator to configure objects so that neither
the object nor the caller needs any changes.

The following Microsoft article takes you to the download page of the DCOM configuration tool
(dcontnf g. exe), which was not included on the Windows 98 2nd Edition CD:

http://www.fnorb.org/
http://starship.python.net/crew/jrush/Fnorb/

http://support.microsoft.com/support/kb/articles/Q253/3/11.ASP

Sometimes, code changes can be used to explicitly control the source of objects.
OMF

Object Management Facility (OMF) is an object-oriented middleware environment for the process
automation area. It is used as the middleware foundation for several ABB [the ABB Industrial Systems
AB (Sweden)] control system applications. Although it doesn't contain any Python code, it is heavily
tested using Python scripts.

OMF includes the all-important features of an object request broker. A type definition language defines
the interface and provides mappings to multiple programming languages. Objects can be distributed
transparently on heterogeneous platforms. Furthermore, services for naming, type management,
messaging, and persistence are available. OMF contains features particularly for real-time distributed
control, such as high-speed communication, asynchronous messaging, message prioritization, and
support for different bus protocols.

OMF is a distributed object system specifically designed for the process control industry. The object
model is similar to other distributed object systems, such as OMG's CORBA and Xerox's ILU. What
makes OMF different from these is its interaction model. The OMF interaction model specifies that,
after finding a set of objects, OMF has to select what methods to call (for each object) and what
attributes to get or set. It also has to choose when to perform the operation (at request, at event,
periodically). After all this is done, OMF sends a single request for all objects.

OMF is implemented in C++, with APIs for other languages, including Python. Created for writing test
programs, Python API has since then been used to write various tools (testing tools, development tools,
and maintenance tools) to aid in application development and runtime management.

The OMF API for Python is implemented in two layers: The lower layer is written using a slightly
modified version of Jack Jensen's modulator tool, whereas the higher layer is completely written in
Python. On top of this API there are a few utility classes, such as the OMF agent, in which the agent
lets the user treat OMF objects as local Python objects with attributes and methods, as follows:

from OVFagent inport Agent

Connect to an object in the network
ai = Agent('All1.1")

Get the Anal og Input's val ue

This wll actually result in an RPC
val ue = ai.VALUE

http://support.microsoft.com/support/kb/articles/Q253/3/11.ASP

The Agent code is surprisingly small, but results in a drastically higher abstraction layer than the bare
OMF API. This is a rather simple class because of Python's dynamic typing.

Using Python in a Distributed Object System—~by Daniel Larsson

http://www.python.org/workshops/1996-06/papers/d.larsson-dist-objs.html

Hector

Hector is a distributed object system written almost entirely in Python, taking advantage of the
language's many features.

This specification provides a communication transparency layer enabling negotiation of
communication protocol qualities, comprehensive support services for application objects, and novel
interaction architecture. Its framework sits above other distributed environments, providing open
negotiation and interoperability of communication protocols, high level description of component
services and their requirements, a rich set of support services for objects and an interaction framework
which enables the description of workflow-like interactions between autonomous objects.

Hector attempts to provide application objects with a consistent environment, regardless of their
physical location, through a series of transparencies. Designed with the goal of supporting a dynamic,
global system of distributed objects, it embraces diversity through extensibility. Specifically, it
supports the following features while maintaining transparent usage of object services:

. Multiple parties in high-level interaction bindings
. Multiple object implementation languages

« Multiple interaction models

. Multiple transport protocols

Hector is structured as four layered components representing decreasing levels of abstraction. These
layers are the Object, Language, Encapsulation (or Kernel), and Communication layers.

The initial language layer supports Python. Python Language Binding is available by default because
the visible kernel classes are actually written in Python, making the wrapper classes very simple.

Hector: Distributed Objects in Python—by David Arnold, Andy Bond, Martin Chilvers,
and Richard Taylor

http://www.python.org/workshops/1996-06/papers/d.larsson-dist-objs.html

http://www.python.org/workshops/1996-06/papers/d.arnold/paper.html

Elvin Has Left the Building: A Publish/Subscribe Notification Service with Quenching

< BACK Make Note | Bookmark

Index terms contained in this section

applications

Common Object Request Broker Architecture (COBRA) 2nd 3rd 4th

Distributed Common Object Model (DCOM) 2nd 3rd 4th
Enorb 2nd 3rd

Hector 2nd 3rd

Inter-Language Unification (ILU) system 2nd 3rd 4th
islscan

Object Management Facility (OMF) 2nd

Object Request Broker (ORB) 2nd 3rd 4th

OmniORBpy 2nd

ORBiIt-python project

python-stubber

COBRAO
(o]
Common Object Model (COM)
Common Object Request Broker Architecture (COBRA) 2nd 3rd 4th
DCOMO
O
Distributed Common Object Model (DCOM) 2nd 3rd 4th
distributing

Fnorb 2nd 3rd
Hector 2nd 3rd

ILU systemO
@)

Inter-Language Unification (ILU) system 2nd 3rd 4th
interfacing

islscan

models
Common Object (COM)

Object Management Facility (OMF) 2nd
Object Request Broker (ORB) 2nd 3rd 4th
objects

CONTINUE >

http://www.python.org/workshops/1996-06/papers/d.arnold/paper.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=134

OMFO

(]
OmniORBpy 2nd
ORBiIt-python project
ORBO

o)

programs
Common Object Request Broker Architecture (COBRA) 2nd 3rd 4th

Distributed Common Object Model (DCOM) 2nd 3rd 4th
Enorb 2nd 3rd
Hector 2nd 3rd
Inter-Language Unification (ILU) system 2nd 3rd 4th
islscan
Object Management Facility (OMF) 2nd
Object Request Broker (ORB) 2nd 3rd 4th
OmniORBpy 2nd
ORBit-python project
python-stubber
python-stubber

software
Common Object Request Broker Architecture (COBRA) 2nd 3rd 4th

Distributed Common Object Model (DCOM) 2nd 3rd 4th
Enorb 2nd 3rd

Hector 2nd 3rd

Inter-Language Unification (ILU) system 2nd 3rd 4th
islscan

Object Management Facility (OMF) 2nd

Object Request Broker (ORB) 2nd 3rd 4th

OmniORBpy 2nd

ORBit-python project

python-stubber

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 7. Objects Interfacing and See All Titles
Distribution > Summary

< BACK Make Note | Bookmark CONTINUE >

Summary

This chapter explains how to use Python to interface objects from different applications on a single
machine, and across networks through distributed systems. Python has very comprehensive support for
object interfacing and distributing technologies.

COM is the most widely used component software model in the world when it comes to object
interfacing. COM provides a rich set of integrated services, a wide choice of easy-to-use tools, and a
large set of available applications.

The COM genealogy can be traced back to DDE (Dynamic Data Exchange). DDE was the first device
for transferring data between various applications in Windows. After some time, DDE was expanded to
Object Linking and Embedding (OLE). The creation of the Visual Basic Extensions (VBXs) enhanced
the OLE technology for visual components, originating a new standard called OLE2. Soon, the OLE2
technology became COM, which is a general-purpose mechanism.

Many technologies, currently in the market, are COM-based. For example, we have ActiveX, OLE,
OLEDB, ADO, and DirectX.

The entire set of information that belongs to a COM object is stored in the Windows Registry.

In order to implement COM interfaces with Python, you need to install the wi n32comPython
extensions developed by Mark Hammond. These extensions are part of the PythonWin installation.

The COM support for Python is made of the Pyt honCOMmodule, which supports the C++ code, and
other modules that implement helper code in Python. Known as w n32comi', this package provides

support for COM client and COM server interfaces. The access to objects'methods and properties can
be either by late or early binding.

PythonWin also comes with a COM browser (Python Object browser). This program helps you identify
the objects currently running on your system that offer COM interfaces.

Many kinds of software and languages, such as, Microsoft Word, Excel, Visual Basic, and Delphi
provide ways to interoperate with COM objects. Therefore, as you can see in the examples of this
chapter, it is very easy to "talk" to these objects.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=135
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A38%3A01+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=135&now=5%2F31%2F2002+4%3A38%3A01+PM

In order to implement COM object using Python, you must design a Python class that exposes the
functionality to be exported. This class must carry some special attributes that will uniquely identify the
COM interface in your system. After elaborating the class, you need to register it. The operation is
simple: It simply saves the class information in your Windows Registry. The option to unregister
classes is also available.

Python can handle its many different types of objects across COM interfacing transactions perfectly
well. Numbers, strings, core objects, lists, and tuples have implementations that handle their exposure
to the interfaces.

Python has many projects currently being developed for object distribution models.

The Inter-Language Unification system (ILU) is a free and stable multi-language object interface
system.

The Object Request Broker lets objects transparently make requests to—and receive from—other
objects located locally or remotely. The ORB component is also commonly referred to as CORBA
(Common Object Request Broker Architecture). omniORBpy is an almost complete implementation of
the current Python/CORBA mapping.

Fnorb is an Object Request Broker (ORB) compliant with the CORBA 2.0 specification from the
Object Management Group (OMG). Fnorb implements a single language mapping from OMG IDL to
Python. This implementation is excellent for those who want to learn CORBA.

DCOM is the COM technology that distributes objects between different machines on the network. It
defines a protocol that enables software components to communicate directly over a network in a
reliable, secure, and efficient manner.

The Object Management Facility (OMF) is an object-oriented middleware environment for the process
automation area. Even though it doesn't contain any Python code, it is heavily tested using Python
scripts. The object model used by OMF is similar to other distributed object systems, such as OMG's
CORBA and Xerox's ILU. OMF is implemented in C++, with APIs for other languages, including
Python. Python API was originally designed for writing test programs, but has since been used to write
various tools to aid in application development and runtime management.

Hector is a distributed object system developed at the University of Queensland, Australia. It is written
almost entirely in Python. Hector attempts to provide application objects with a consistent
environment, regardless of their physical location, through a series of transparencies.

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

distributing
objects 2nd 3rd
interfacing
objects 2nd 3rd
objects
interfacing and distributing 2nd 3rd

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=135

Web Development > Python Developer's Handbook > 7. Objects Interfacing and Distribution > Code See All Titles
Examples

<BACK Make Note | Bookmark CONTINUE >

Code Examples
Parking Lot (File parkinglot.py)

This example generates a Python COM server that exposes a parking lot object. The example uses a Visual Basic
graphical interface to manipulate the vehicles of this parking lot. Each vehicle is a Python Object that is also
defined as a Python COM Server object.

The first thing to do is to generate two clsids: one for each object.

>>> jnport pythoncom

>>> print pythoncom CreateCui d()
BD2CB7C0- 3BB9- 11D4- 804E- 0050041A5111
>>> print pythoncom CreateCuid()
BD2CB7Cl1- 3BB9- 11D4- 804E- 0050041A5111

Now, we take these ids and use them to create a module.

Listing 7.1 parkinglot.py

1. # File: parkinglot.py

2:

3: from w n32com server. exception inport Exception

4. inport wi n32com server. uti l

5:

6: class ParkingServer:

7: _reg_clsid_ ="'{ BD2CB7C0- 3BB9- 11D4- 804E- 0050041A5111}
8: _reg_progid_= 'Python. Parki ngServer'

9: _public_nethods_ = ['ParkVehicle', 'UnparkVehicle',
10: " Get Vehicl esCount', 'ldentifyVehicle',
11: " Get LocationLi st']
12:
13: def __init__ (self):
14: sel f.Vehicles = [Vehicle()]
15:
16: def ParkVehicle(self, floor=1, nodel="", |icense="", color=""):
17: Vehi cl eToPark = Vehi cl e()

18: Vehi cl eToPar k. fl oor = fl oor

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=136
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A38%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=136&now=5%2F31%2F2002+4%3A38%3A10+PM

19:
20:
21:
22.
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:

43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54
55:
56:
57:
58:
59:
60:
61:
62:
63:
64.
65:

Vehi cl eToPar k. nodel = str(nodel)
Vehi cl eToPark. license = str(license)
Vehi cl eToPark. col or = str(color)
sel f. Vehi cl es. append(Vehi cl eToPar k)

def Unpar kVehi cl e(sel f,index):
del sel f. Vehicl es[index]

def IdentifyVehicle(self, index):
return wi n32com server. util.wap(self. Vehicl es[index])

def GetlLocationList(self):
return map(l anbda x: x. Get Location(), self. Vehicles)

def Get Vehi cl esCount (sel f):
return |l en(sel f.Vehicl es)

cl ass Vehi cl e:

_reg_clsid_ = "'{ BD2CB7Cl- 3BB9- 11D4- 804E- 0050041A5111}
_reg_progid_ = '"Python. Vehicle'

_public_nethods_ = ['GetLocation']

_public_attrs_ = ["floor',"nodel"','license','color']

def __init__ (self, floor=1, nodel = 'Dodge Neon',

| icense = 'LKS-92020', color = 'Red'):
self.floor = fl oor
sel f. nodel = node
self.license = |license
sel f.color = color

def GetLocation(self):
return 'The % % license % is on the % floor' %}
(self.color, self.nodel, self.license, self.floor)

def Regi sterd asses():
print "Registering COM servers..!
i mport wi n32com server.register

wi n32com server. regi ster. UseCommandLi ne(Par ki ngSer ver)
print "ParkingServer C ass registered."

wi n32com server. regi ster. UseCommandLi ne(Vehi cl e)
print "Vehicle Cass registered.”

def UnRegi sterC asses():
print "Unregistering COM server.."
i nport w n32com server.register

66: w n32com server.regi ster. Unregi sterC asses(Par ki ngServer)

67: print "ParkingServer C ass unregistered.”
68:

69: wi n32com server.regi ster. Unregi sterC asses(Vehi cl e)
70: print "Vehicle O ass unregistered.”

71:

72: if __nane__=='"_ main__':

73: i nport sys

74: if "-unregister” in sys.argv:

75: UnRegi st er asses()

76: el se:

77: Regi st er Cl asses()

Lines 9-11: List of methods to be exported to the COM interface.

Line 13: Initializes parking with one vehicle [object].

Lines 20-21: As COM interfaces use Unicode objects, it is necessary to convert the objects to string.
Line 28: Wraps the Python Object before sending it to the COM client.

Line 31: Calls the appropriate Get Locat i on() method f or each Vehi cl e object in the Python Li st . Then,
it returns a whole new list of strings.

Line 33: Counts the number of vehicles in the parking lot.

Line 52: Registers both COM servers.

Line 62: Unregisters both servers. (Unregistering them is necessary to clean up the Windows Registry.)
Line 72: Automatically registers the classes when the module is executed as a script.

Line 74: If the user calls the script at the command prompt passing the - unr egi st er argument, the
UnRegi st er O asses() methods are executed.

When you have the module stored in the file, you can double-click on the file to execute it, or you can go to a
DOS prompt and manually call it to register the server:

C.\ python parkinglot.py

Regi steri ng COM server ...

Par ki ngServer C ass registered.
Vehi cl e C ass regi stered.

Listing 7.2 implements the Visual Basic 5 project that provides the client interface for our Python COM server. It

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/136#3.html

is the code for the main form.

Listing 7.2 frmMain.frm

1: Option Explicit
2: Public ParkingServer As (bject
3: Public newehicle As (bj ect
4. Private Sub cndPark_Cick()
5: Set newvehicle = Create(bj ect (" Pyt hon. Vehi cl e")
6: newehicle.floor =1
7: newVehi cl e. nodel = ""
8: newvehicle.license = ""
9: newvehi cl e. Color = ""
10: | f frmnvehicl e. Modi fyl nfo(newehi cl e) Then
11: Par ki ngSer ver . Par kVehi cl e newehi cl e. fl oor, newVehi cl e. nodel
newVehi cl e. |l i cense, newehi cl e. Col or
12: Ref r eshVehi cl esLi st
13: End If
14: Set newVehi cl e = Not hi ng
15: End Sub
16:
17: Private Sub CndUnpark_dick()
18: Di m Car Spot As | nt eger
19: Di m Vehicl e As (bj ect
20: | f Vehicles.Listlndex = -1 Then
21: Exit Sub
22: El se
23: Car Spot = Vehi cl es. Li st | ndex
24 Par ki ngSer ver . Unpar kVehi cl e Car Spot
25: Ref r eshVehi cl esLi st
26: End If
27: End Sub
28:
29: Private Sub cndUpdate_dick()
30: Di m Car Spot As Integer, Vehicle As bject
31: | f Vehicles.Listlndex = -1 Then
32: Exit Sub
33: El se
34: Car Spot = Vehi cl es. Li st | ndex
35: Set Vehicle = ParkingServer.|dentifyVehicl e(Car Spot)
36: | f frnVehicle.Mdifylnfo(Vehicle) Then RefreshVehicl esLi st
37: End If
38: End Sub
39:
40: Private Sub cndlnitializeServer_Cick()
41: | f Par ki ngServer |s Nothing Then
42: On Error GoTo cndinitializeServer Cick CreationError

43: Set Parki ngServer = CreateQbject("Python. ParkingServer")

44:
45;
46:
47:
48:
49:
50:
51:
52:
53:
54.
55:
56:
57
58:
59:
60:
61:
62:
63:
64.
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:

75:
76:
77:
78:
79:
80:
81:
82:

83:
84.
85:
86:
87
88:
89:

On Error GoTo O

| bl St atus. Caption = "The Parki ngServer is up and running.."

cndlnitializeServer. Caption = "&Stop Server”
Vehi cl es. Visi ble = True
cndPar k. Vi si bl e = True
CndUpdat e. Vi si bl e = True
CndUnpar k. Vi si bl e = True
Label 2. Visible = True
| bvehi cl es_nunber. Visi ble = True
Ref r eshVehi cl esLi st
Vehicl es. Listlndex =0
Vehi cl es. Set Focus
Exit Sub
El se
Vehi cl es. Vi si bl e = Fal se
cndPar k. Vi si bl e = Fal se
CndUpdat e. Vi si bl e = Fal se
CrdUnpar k. Vi si bl e = Fal se
| bvehi cl es_nunber. Vi si bl e = Fal se
Label 2. Vi si bl e = Fal se
Set Par ki ngServer = Not hi ng
cndlinitializeServer.Caption = "&Start Server"

| bl St atus. Caption = "The Parki ngServer is not running."

Exit Sub
End If
cnmdlnitializeServer _Click CreationError

MsgBox "An error has happened while initializing the ParkingServer."

End Sub

Public Sub RefreshVehicl esLi st ()
Di m Vehi cl esLi st As Variant, VehicleslnList As Variant,
hi ghl i ghted As | nt eger

| bvehi cl es_nunber. Capti on = Par ki ngSer ver . Get Vehi cl esCount

hi ghl i ght ed = Vehi cl es. Li st ndex
Vehi cl es. Cl ear
Vehi cl esLi st = Par ki ngServer. Get Locati onLi st
For Each Vehicl eslnList In VehiclesLi st
Vehi cl es. Addl t em Vehi cl esl nLi st
Next Vehi cl esl nLi st

| f highlighted < Vehicles. ListCount Then Vehi cl es. Li st ndex

hi ghl i ght ed
Vehi cl es. Set Focus
End Sub

Private Sub Form Load()
Vehi cl es. Visi bl e = Fal se
cndPar k. Vi si bl e = Fal se
CndUpdat e. Vi si bl e = Fal se

90: CndUnpar k. Vi si bl e = Fal se

91: Label 2. Vi si bl e = Fal se
92: | bl St atus. Caption = "The Parki ngServer is not running."
93: End Sub

Lines 2-3: The Python COM Obijects are declared as Obj ect s at the Form level.
Line 14: Releases the Vehi cl e object from the memory.

Line 20: Check whether the list is empty.

Line 35: Calls the Python | dent i f yVehi cl e() method, which returns a Vehicle Object according to the
indexing position (spot) provided as the function argument.

Line 76: Stores the index associated to the selected vehicle.

Line 78: Python sends a list of strings that becomes an array-type Variant.

Lines 82-83: Returns the focus to the last selected list item.

Listing 7.3 is used by the project's form, which enables you to type each vehicle's data.

Listing 7.3 frmVehicle.frm

1: Public Function Mdifylnfo(VehicleToMdify As Object) As Bool ean
2: txt_floor. Text = Str(VehicleToMdify.fl oor)
3: t xt _nodel . Text = Vehi cl eToModi fy. nodel

4: txt _license. Text = VehicleToMdify.license
5: txt _col or. Text = Vehi cl eToModi fy. Col or

6: Show 1

7: Vehi cl eToModi fy. fl oor = Val (txt_floor. Text)
8: Vehi cl eToModi fy. nodel = txt_nodel . Text

9: Vehi cl eToModi fy. license = txt_I|icense. Text
10: Vehi cl eToModi fy. Col or = txt_col or. Text

11: Modi fylnfo = True

12: End Function
13:
14: Private Sub Fornkxit_ dick()
15: Me. Visible = Fal se
16: End Sub

Lines 2-5: The public attributes of the Vehicle Object, publi c_attrs_, are transported to the form objects.

Lines 14-16: If you close the window, the values are not transported back to the form. You must click on the OK
button, which hides the form and brings the control back to the Modi f yl nf o()) function.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/136#4.html

When you execute this project, you have an easy-to-use interface that connects to the COM servers and accesses
all the public methods that are implemented (see Figure 7.6).

Figure 7.6. Parking lot demonstration.

The ParkingServer iz up and running... 3 vehicl
The Red Dodge Meon license LES-32020 15 on the 1 floor Park
The Yellow Wi Baatls icense <CS 2022 iz on the 1 llaor
The Blue Ford Ezcoit lcense BAYSTS8 is on the 1 floor

Unpark
Update Info
Stop Sener

w. Vehicle Information [H=Ed |

Floot |

Model IFmd Ezcort

License |BAY575B

Eolor Iﬁreen

E

If you have problems trying to connect to the server, check whether you have registered the class from the Python
console.

<BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/136#5.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=136

Index terms contained in this section

code

parking lot object 2nd
objects

parking lot

source code 2nd

parking lot object

source code 2nd
source code

parking lot object 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 8. Working with Databases See All Titles

< BACK Make Note | Bookmark CONTINUE >

Chapter 8. Working with Databases

Nudge, nudge. Wink, wink. Say no more!

Sometimes, the machine's memory is not enough, and we need to store data somewhere else. That is
what this chapter talks about—it shows all the database options that Python has available. For those
who still don't know anything about databases, this chapter briefly explains how they work, and it also
lists and explains the basic SQL statements that you need to know.

<BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=138
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A38%3A23+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=138&now=5%2F31%2F2002+4%3A38%3A23+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=138

Web Development > Python Developer's Handbook > 8. Working with Databases > See All Titles
Working with Databases

< BACK Make Note | Bookmark CONTINUE >

Working with Databases

For simplicity, let's say that databases are summarized as the place where you store and update data.
Python is able to connect to a wide variety of databases.

The simplest solution to handle databases in Python is to use plain text files. A tiny variation of this
method is to store the information in binary format.

The next possible solution is to use the indexing mechanism provided by the dom-like modules. This
mechanism provides better performance than our first option because it automatically organizes the
data. It works by implementing dictionary structures that are used to store information. This option
enables you to encode Python objects, and efficiently archive them in indexed files without having to
go through the details of parsing and unparsing the information.

For this reason, object serialization and persistence storing are also present in this chapter. Both
concepts are very helpful when it comes to storing information. Their roles are to translate Python
objects to strings before archiving them to the file system or before transferring them to another
process.

The last solution is to use "real" databases'systems by importing third-party database extension
modules, such as the native Python interfaces to MySQL, Oracle, and Sybase database systems.

If your database doesn't have a native interface to Python, don't worry. Python also offers ODBC
extensions that will enable you to connect to any database that supports ODBC, and as you know,
almost all database servers have ODBC drivers available nowadays.

In the worst-case scenario, many client/server database systems provide C libraries that connect to their
databases. If you are a dedicated hacker, you can create extension modules that talk to these C libraries
connecting to the database.

For more information about using databases versus Python, check Python's Web site at the following
URL:

http://www.python.org/topics/database/

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=139
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A38%3A32+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=139&now=5%2F31%2F2002+4%3A38%3A32+PM
http://www.python.org/topics/database/

<BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

databases

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=139

Web Development > Python Developer's Handbook > 8. Working with Databases > Flat See All Titles
Databases

< BACK Make Note | Bookmark CONTINUE >

Flat Databases

The simplest way to store any kind of information in Python is using flat files. You just need to use the
open function that we already studied in Chapter 2, "Language Review." Two options are available:

You can either store the information as simple text or as binary data.

Text Data

The next example is a straightforward case of using flat files to store and to retrieve information. First
we try to read from the file. If the file doesn't exist, it is created, and the information provided by the
user is saved on it.

filename = "nyflatfile. txt"
try:
file = open(filenane, "r")
data = file.read()
file.close()
print data
except | Oerror:
data = raw_input ("Enter data to save:")
file = open(filenane,"w")
file.wite(data)
file.close()

Binary Data—The st ruct Module

The st ruct module is largely used to manipulate code of platform-independent binary files. It is a
good choice for handling small files. For large files, you should consider using the ar r ay module.

Binary data files are much less likely to be platform independent. Also, it is easier to extend a text file
format without breaking compatibility.

The st r uct module works by converting data between Python and binary data structures, which

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=140
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A38%3A39+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=140&now=5%2F31%2F2002+4%3A38%3A39+PM

normally interact using functions written in C.

This module implements only three functions: pack, unpack, and cal csi ze.

. pack— Takes the list of values and returns a binary object based on the f or mat stri ng
provided.

bi nobj ect = pack (formatstring, valuel, value2, value3, .)

. unpack— Returns a Python tuple containing the original values. It uses the f or mat stri ng
to translate the st r i ng.

pyt hont upl e = unpack (formatstring, string)

. cal csi ze— Provides the size in bytes of the structure matching the format string.

no_of bytes = cal csize(formatstring)

The next example packs the values (1, 2, 3) into binary format based on the format string " i hb",
and later converts them back to the original values.

>>> jnport struct

>>> puffer = struct. pack("ihb", 1,2, 3)
>>> print repr(buffer)

*\ 001\ 000\ 000\ 000\ 002\ 000\ 003'

>>> print struct.unpack('ihb', buffer)
(1,2,3)

Note that the binary data is represented as a Python string.

The next example is based on a binary file that stores three different objects. The first one is the
author's initial, the second one is the number of bytes used by an article written by the author, and the

last object is the article itself.

>>> | nport struct

>>> data = open(' nybinaryfile.dat').read()

>>> start, stop = 0, struct.calcsize('cl")

>>> aut hor, num bytes = struct.unpack('cl', data[start:stop])
>>> start, stop = stop, start + struct.calcsize('B *num byt es)
>>> pytes = struct.unpack(' B *num bytes, data[start:stop])

The next table shows the list of formatting units that can be used by this module.

Table 8.1. Formatting Units Used by the st ruct Module

Format C Type Python Type
b signed char Integer

B unsigned char Integer

o char String of length 1
d double Float

f float Float

h short Integer

H unsigned short Integer

i int Integer

I unsigned int Integer

I long Integer

L unsigned long Integer

p char(] String

P void * Integer

S char[] String

X pad byte No value

Are you looking for more information about handling binary data? Check out the file npst r uct -
980726. zi p at the following address:

http://www.nightmare.com/software.html

Sam Rushing has created an extension module useful for parsing and unparsing binary data structures.

http://www.nightmare.com/software.html

It is similar to the standard st r uct module, but with a few extra features (bit-fields, user-function-

fields, byte order specification, and so on), and a different API that is more convenient for streamed
and context-sensitive formats like network protocol packets, image, and sound files.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

array module
b format

B format
binary data 2nd
c format
d format
data

binary 2nd
databases

flat 2nd

f format
flat databases 2nd

formats
data, struct module

h format

H format

i format

| format

| format

L format

modules
array
struct 2nd

p format

P format

Rushing, Sam

s format

struct module 2nd

x format

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=140

Web Development > Python Developer's Handbook > 8. Working with Databases > DBM See All Titles
(Database Managers) Databases

< BACK Make Note | Bookmark CONTINUE >

DBM (Database Managers) Databases

Now, let's look at this other mechanism for storing data. The next modules store data in dbm-style format.
This format specifies a simple disk-based storage facility that handles data in a way equivalent to
dictionaries. The objects are manipulated by using unique key strings. Each of these modules is an
interface to a specific library.

dbm gdbm and dbhash are database modules that are part of the standard Python distribution.

Also included with the standard Python distribution is the anydbmmodule, which is a generic interface
to all the dbm-like modules. It uses the modules that are installed.

The dbhash module provides a function that offers a dom-style interface to access the BSD database
library.

All these modules have some behavior in common. For example, to open the files, the following syntax is
used by all of them.

dbhandl e = open(filenane [, flag [, node]])

Where, filename is the database filename; flag can have one of the following values: r (read-only access),
w (read/write access), ¢ (create the database), n (force the creation of a new database); and mode specifies
the file access mode (specific for UNIX systems).

The following operations are supported:

dbhandl e[key] = val ue # Set the value of a given key entry
val ue = dbhandl e[key] # Get the value of a given key entry
dbhandl e. has_key(key) # Test whether a key exists
dbhandl e. keys() # Returns a list of the current keys avail abl e
del dbhandl e[key] # Delete a key
#

dbhandl e. cl ose() Close the file

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=141
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A38%3A47+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=141&now=5%2F31%2F2002+4%3A38%3A47+PM

For all these dom-like modules, the keys and the values to be stored must be of type string. Later, you will
see a module called shel ve with a behavior similar to these dom-like modules. However, it stores

persistent objects.

Each module provides its own exception, which is called nodul enane. error.

>>> jnport anydbm
>>> try:
dbhandl e = anydbm open("datafile","r")
except anydbm error:
print "Error while opening file"

Error while opening file
>>>

This is a simplified database system based on key/value pairs. Depending on the module and the system,
it uses one or two files to store the data (for example, both gdbmand bsddb use a single file).

The disadvantage of this kind of implementation is that it is not portable. The storage format is specific to
a particular hardware platform and operating system. Also, it is not designed for large volumes of data.
The smaller the file, the better the performance. This is caused by the original specification, which wanted
information to be accessed in a single system call. After some interactions, the data file gets very
fragmented, full of data holes, which drives the performance to very low indexes. Of course, they are very
efficient when you do lots of reads and almost no writes.

If you have a data file but you don't know which database you used to create it, take a look at the
whi chdb module.

The whi chdb module provides a function that guesses which dbmmodule (dbm gdbm or dbhash)
should be used to open a specific database. However, using the anydbmmodule should take care of
guessing the format for you.

Another important fact you must know is concerning the storage size limitation of each key/value pair,

which is also known as bucket size. The dbmmaodule accepts between 1K and 2K of data. However, both
gdbmand bsddb don't have any limitation at all.

dbmModule

The dbmmodule is a database interface that implements a simple UNIX dbmlibrary access method. dbm

objects behave similar to dictionaries in which keys and values must contain string objects. This module
allows strings, which can encode any Python object, to be archived in indexed files. dbmis the original

implementation of the DBM toolkit. The main function of this module opens a dbmdatabase and returns a
dbmobject that behaves similar to a dictionary.

>>> jnport dbm

>>> dbhandl e = dbm open("datafile", "c")
>>> dbhandl e["animal "] = "parrot"

>>> dbhandl e["country"] = "Spain"

>>> dbhandl e. cl ose()

>>>

>>> dbhandl e = dbm open("datafile ", "r")

>>> for key in dbhandle. keys():
print dbhandl e[key]

par r ot

Spai n

>>> db. cl ose()

gdbmModule

The gdbmmodule is similar to the dbmmodule. However, their files are incompatible. This module
provides a GNU/ FSF reinterpretation of the GNU dbmlibrary. This module supports multi-user
application, it is faster than the dbmmaodule (the performance gets better when the number of records
increases), and it was already ported to a larger number of platforms.

Check out the GNU Web site for more details:

http://www.gnu.org/software/gdbm/gdbm.html

>>> j nport gdbm
>>> key = raw_i nput ("key: ")
>>> data = raw_i nput ("val ue: ")
>>> dbhandl e = gdbm open(" DATABASE", "wW")
>>> whi |l e not (dbhandl e. has_key(key)):
dbhandl e[key] =val ue
key = raw_i nput ("key: ")
data = raw_i nput ("value: ")

>>> dbhandl e. cl ose()

http://www.gnu.org/software/gdbm/gdbm.html

The gdbmmodule implements the following additional methods:

dbhandl e. firstkey()

Returns the first key in the database.

dbhandl e. next key(key)

Returns the next key located after the provided key.

dbhandl e. r eor gani ze()

Reorganizes the database by eliminating unused disk space that is created when deletions occur.

dbhandl e. sync()

Synchronizes the database file by writing unsaved data to the disk.

If you append " f " to the f | ag clause in the open statement, Python opens the database in fast mode.
This means that data is not automatically saved to disk. You must call the sync method in order to save
all the unwritten information to disk. This is done to improve performance.

bsddb Module

The bsddb module is part of the standard Python distribution. In addition to the dictionary-like behavior,

this module also supports B-trees (which allows traversing the keys in sorted order), extended linear
hashing, and fixed- and variable-length records. Although this module has the more complex
implementation, this is the fastest dom-like module.

The bsddb module provides an interface to access routines from the Berkeley db library, a C library of

database access methods copyrighted by Sleepycat Software. This library provides full transactional
support, database recovery, online backups, and separate access to locking, logging, and shared-memory
caching subsystems.

More information about the Ber kel ey DB package can be found at http://www.sleepycat.com.

The bsddb module implements the following open interfaces:

dbhandl e = hashopen(filenane [, flag [, node]])

Handles hash format files.

dbhandl e = btopen(filenane [, flag [, node]])

Handles btree format files.

dbhandl e = rnopen(filenane [, flag [, node]])

Handles record-based files.

Along with the previous interfaces, this module also provides the following additional methods—these
methods are used to move a cursor across the database.

cursor = dbhandl e.set | ocation(key)

Moves the cursor to the location indicated by the key and assigns the location's value to the cur sor
variable.

cursor = dbhandle.first()

http://www.sleepycat.com/

Moves the cursor to the first element and assigns its value to the cur sor variable.

cursor = dbhandl e. next ()

Moves the cursor to the next element and assigns its value to the cur sor variable.

cursor = dbhandl e. previ ous()

Sets the cursor to the previous element and assigns its value to the cursor variable.

cursor = dbhandl e.last()

Moves the cursor to the last element and assigns its value to the cursor variable.

dbhandl e. sync()

Synchronizes the database file by writing unsaved data to the disk.

These methods are not supported by the hash format databases.

Although the standard Python distribution installs the bsddb module on Windows machines, there is
another interesting Win32 port of the bsddb module, which was created by Sam Rushing. For more
information, check out http://www.nightmare.com/software.html .

dbhash Module

The dbhash module provides a "clean™ open interface to the Berkeley DB hash database. Note that the
bsddb module must be installed before trying to call dbhash because the bsddb module is used to
open the databases.

The syntax to open the hash database is the same as the one used by the other dbm-like modules.

http://www.nightmare.com/software.html

dbhandl e = open(filenane [, flag [, node]])

This module provides the following additional methods:

dbhandl e. first ()

Returns the first element.

dbhandl e. | ast ()

Returns the last element.

dbhandl e. next (key)

Returns the next element after the key element.

dbhandl e. previ ous(key)

Returns the previous element before the key element.

dbhandl e. sync()

Synchronizes the database file by writing unsaved data to the disk.

Let's look at an example:

>>> j nport dbhash
>>> key = raw_i nput ("key: ")

>>> data = raw_i nput ("val ue: ")
>>> dbhandl e = dbhash. open(" DATABASE", "W'")
>>> whi |l e not (dbhandl e. has_key(key)):
... dbhandl| e[key] =val ue
key = raw_i nput ("key: ")
data = raw_i nput ("val ue: ")

>>> dbhandl e. cl ose()

anydbmModule

The anydbmmodule opens (or creates) a database using the best implementation available. It searches
within the available databases using the following order: Berkeley bsddb, gdbm and dbm It only
loads the dumbdbmmodule when none of the others are available. Actually, the module doesn't know
what database packages are installed and available—it just tries to use them.

>>> jnport anydbm
>>> def opendat abase(fil enane, flag):

try:

dbhandl e = anydbm open(fil enane, fl ag)
except :

raise "Error opening file " + anydbm error
return dbhandl e

>>> dbhandl e = opendat abase(" nydata","c")

dumbdbmModule
The dunmbdbmmodule is a simple, portable, and slow dom-style database implemented entirely in pure
Python. It shouldn't be used for development because it is slow, inefficient, and inconsistent. The only

case acceptable for using this module is when no other module is available.

whi chdb Module

The whi chdb module tries to identify which database was used to create a given file. This module
implements a function of the same name. The syntax is

dbt ype = whi chdb(fil enane)

This function returns the module name (for example, gdbm) when the format is identified.

The function returns an empty string if the format is not identified. Note that databases created using the

dunbdbmmodule were not supported by this module prior to Python 2.0.

The function returns None if the file doesn't exist or if it can't be opened.

I mport whi chdb
dbt ype = whi chdb. whi chdb("fil enane")

I f dbtype:
handler = _inport_ (result)

dbhandl e = handl er.open("filenane","r")

print dbhandl e. keys()
i f dbtype = "":

print "I cannot recognize this file "

I f dbtype = None:

print "An error happened while reading this file"

Note

You shouldn't need to use this module. anydbmuses whi chdb to work out what module to use to

open a database.

<BACK Make Note | Bookmark

CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=141

Index terms contained in this section

anydbm module 2nd
bsddb module 2nd 3rd 4th
bucket size
c value
data

saving to disk

hash
opening
identifying
databases:dumbdbm module
dbhash module 2nd 3rd
dbm module

disks
saving data to

dumbdbm module
databases

exceptions
modules

finding
databases
gdbm module 2nd 3rd 4th 5th
hash databases
opening
interfaces
open

key/value pairs
bucket size

methods
sync

mode value
modules

anydbm 2nd
bsddb 2nd 3rd 4th

dbhash 2nd 3rd
dbm
dumbdbm
databa
exceptions
gdbm 2nd 3rd 4th 5th
shelve
whichdb 2nd
n value

open interface
opening

hash databases
r value
saving

data to disk

searching
databases

shelve module
sync method

syntax
identifying databases

opening hash databases
values

ode

3|O

§|_1 |3

W va]ue
whichdb module 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 8. Working with Databases > Object Serialization See All Titles
and Persistent Storage

< BACK Make Note | Bookmark CONTINUE >

Object Serialization and Persistent Storage

These other modules provide persistent storage of arbitrary Python objects. Whenever you need to save objects whose
value is not a simple st ri ng (such as None, integer, long integer, float, conplex, tuple,

list, dictionary, code object, andso on), you need to serialize the object before sending it to a file.
Both pi ckl e and shel ve modules save serializable objects to a file.

By using these persistent storage modules, Python objects can be stored in relational database systems. These modules
abstract and hide the underlying database interfaces, such as the Sybase module and the Python Database API.

Included in the standard Python distribution, the pi ckl e module can convert Python objects to and from a string
representation.

The cPi ckl e module is a faster implementation of the pi ckl e module.

The copy_r eg module extends the capabilities of the pi ckl e and cpi ckl e modules by registering support
functions.

The mar shal module is an alternate method to implement Python object serialization. It allows you to read/write

information in a platform independent binary format and convert data to/from character strings (the module only
supports the simple built-in types). Basically, it is just another way to do byt e st r eamconversions by using

serialized Python objects. This module is used to serialize the compiled bytecode for Python modules.

This module should be used for simple objects only. Use the pi ckl e module to implement persistent objects in
general.

Persistent Storage of Python Objects in Relational Databases is a paper by Joel Shprentz presented at the Sixth Python
Conference. For more information, check out http://www.python.org/workshops/1997-10/proceedings/shprentz.html.

pi ckl e Module

The pi ckl e module serializes the contents of an object into a stream of bytes. Optionally, it can save the serialized
object into a file object. It is slower than the mar shal module.

>>> jnport pickle

>>> |istob] =[1,2,3,4]

>>> filehandl e = open(filenanme, 'wW)
>>> pi ckl e. dunp(fil ehandle, |istobj)
>>> filehandl e = open(filenanme, 'r')

\%

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=142
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A38%3A56+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=142&now=5%2F31%2F2002+4%3A38%3A56+PM
http://www.python.org/workshops/1997-10/proceedings/shprentz.html

>>> | i stobj = pickle.load(filehandle)

The next functions are the ones implemented by the pickle module.

pi ckl e. dunp(object, filenane [, bin])

This function serializes and saves an object into a file. The bi n argument specifies that the information must be saved
as binary data. This function is the same as the following:

p = pickle.Pickler(filenane)
p. dunp(obj ect)

If an unsupported object type is serialized, a Pi ckl i ngExcept i on is raised.

pi ckl e. dunps(object [, bin])

This function has the same behavior of dunp. The difference is that this one returns the serialized object.

pi ckl e.load(file)

Restores a serialized object from a file. This function is the same as the following:

object = pickle.Unpickler(file).load()

The next example serializes the information and converts it back again.

>>> jnport pickle

>>> value = ("parrot", (1,2,3))
>>> data = pickle.dunps(val ue)
>>> print pickle.loads(data)
("parrot™, (1,2,3))

cPi ckl e Module

This module implements the same functions that the pi ckl e module does. The difference is that cPi ckl e is much
faster because it doesn't support subclassing of the Pi ckl er and Unpi ckl er objects. See the next example code. It
uses the fastest pickle module available on the system.

try:
i nport cPickle
pi ckle = cPickle
except | nportError:
i nport pickle

copy_reg Module

This module registers new types to be used with the pi ckl e module. It extends the capabilities of the pi ckl e and
cPi ckl e modules by supporting the serialization of new object types defined in C extension modules.

The next example corrects the fact that the standard pi ckl e implementation cannot handle Python code objects. It
registers a code object handler by using two functions:

. dunpdat a— Takes the code object and returns a tuple that can only contain simple data types.

. | oaddat a— Processes the tuple.

i nport copy_reg, pickle, marshal, types

def | oaddat a(data):
return marshal . | oads(dat a)

def dunpdat a(code):
return | oaddata, (marshal.dunps(code),)

copy_reg. pi ckl e(types. CodeType, dunpdata, | oaddata)

script = """

x =1

while x < 10:
print x
X =x -1

code = conpile(script, "<string>", "exec")
codeobj = pickle.dunps(code)

exec pickle.l oads(codeobj)

Note

Note that starting at Python 2.0, the copy- r eg module can't be used to register pickle support for classes anymore.
It can only be used to register pickle support for extension types. You will get a TypeEr r or exception from the
pi ckl e() function whenever you try to pass a class to the function.

mar shal Module

This module is only used to serialize simple data objects because class instances and recursive references in lists,
tuples, and dictionaries are not supported. It works similar to pi ckl e and shel ve.

This module implements the following functions:

mar shal . dunp(val ue, fil enane)

Writes the value in the opened filename.

mar shal . | oad(fil enane)

Returns the next readable value from file.

mar shal . dunps(val ue)

Only returns the string.

mar shal . | oads(string)

Returns the next readable value from st ri ng.

Errors in the value manipulation will raise a Val ueEr r or exception.

>>> jnport marshal
>>> value = ("spant, [1,2,3,4])

>>> data = marshal . dunps(val ue)

>>> print repr(data)

" (\ 002\ 000\ 000\ 000s\ 004\ 000\ 000\ 000spani \ 004\ 000\ OO0\ 000i \ 001\ OO0\ OO0\ 000i \ 002\ 0
00\ 000\ 000i \ 003\ 000\ 000\ 000i \ 004\ 000\ 000\ 000

>>> print marshal .| oads(data)

("spamt', [1,2,3,4])

The next example handles code objects by storing precompiled Python code.

I mport mar shal

script = """
x =1
while x < 10:
print x
X =x -1
code = conpile(script, "<script>", "exec")
codeobj = marshal . dunps(code)

exec marshal .| oads(codeobj)

shel ve Module

The shel ve module is also part of the standard Python distribution. Built on top of the pi ckl e and anydbm
modules, it behaves similar to a persistent dictionary whose values can be arbitrary Python objects.

The shel ve module offers persistent object storage capability to Python by using dictionary objects. Both keys and
values can use any data type, as long as the pi ckl e module can handle it.

i nport shel ve
key = raw_i nput ("key: ")
data = raw_i nput ("val ue: ")
dbhandl e = shel ve. open(" DATABASE", "W")
whi | e not (dbhandl e. has_key(key)):
dbhandl e[key] =dat a
key = raw_i nput ("key: ")
data = raw_i nput ("val ue: ")
dbhandl e. cl ose()

The shel ve module implements a shelf object which supports persistent objects that must be serializable using the

pickle module. In other words, a shelf is a dbm (or gdbm) file that stores pickled Python objects. It stores dictionary
structures (pickled objects) on disks. For that purpose, it uses dbm-like databases, such as dbm or gdbm. The file it

produces is, consequently, a BINARY file. Therefore, the file's format is specific to the database manager used in the
process.

To open a shelve file, the following function is available:

shel ve. open(fil enane)

The file is created when the filename does not exist. The following methods and operations are also supported:

dbhandl e[key] = val ue
val ue = dbhandl e[key]
dbhandl e. has_key(key)
dbhandl e. keys()

del dbhandl e[key]
dbhandl e. cl ose()

Set the value of a given key entry

Get the value of a given key entry

Test whether a key exists

Returns a list of the current keys avail able
Del ete a key

Close the file

Next, | present a simple example of the shel ve module using the following:

>>> jnmport shel ve

>>> dbhandl e = shel ve. open("datafile", "c")
>>> dbhandl e["animal "] = "parrot”
>>> dbhandl e["country"] = "Spain"

>>> dbhandl e["weekdays"] =5
>>> dbhandl e. cl ose()
>>>
>>> dbhandl e = shel ve. open("datafile ", "r")
>>> for key in dbhandle. keys():
pri nt dbhandl e[key]
parr ot
Spai n
5
>>> db. cl ose()

Locking

As a matter of fact, even though modules such as gdbmand bsddb perform locking, shelves don't implement locking

facilities. This means that many users can read the files at the same time. However, only one user can update the file at
a given moment. An easy way to handle the situation is by locking the file while writing to it. A routine like this must
be implemented because it is not part of the standard distribution.

More Sources of Information

PyVersant

PyVersant is a simple Python wrapper for the Versant commercial OODBMS. By using PyVersant in the Python
command prompt, you can interactively find objects, look at their values, change those values, and write the object
back to the database, among other things. More information is provided at the following site:

http://starship.python.net/crew/jmenzel/

Details about Versant OODBMS are shown at the following site:

http://www.versant.com/

Z0DB

The Zope Object Database is a persistent-object system that provides transparent transactional object persistence to
Python applications. For more information, check out the following site:

http://www.zope.org/Members/michel/HowTos/ZODB-How-To

ZODB is a powerful object database system that can be used with or without Zope. As a database, it offers many
features. Note that ZODB uses other database libraries for the actual storage.

More information about Zope can be found in Chapter 11, "Web Development."

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

copy reg module
pickle support

registering
copy reg module

cPickle module 2nd
databases
object serialization 2nd
Zope Object (ZODB)
files
shelve
opening
locking
shelves
marshal module 2nd
modules
copy reg
pickle support
copy re
cPickle 2nd

http://starship.python.net/crew/jmenzel/
http://www.versant.com/
http://www.zope.org/Members/michel/HowTos/ZODB-How-To
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=142

marshal 2nd
pickle 2nd 3rd
shelve 2nd 3rd
object serialization
databases 2nd
objects
serializable, saving 2nd 3rd
opening
shelve files
persistent storage
databases 2nd
Persistent Storage of Python Objects in Relational Databases

pickle module 2nd 3rd
pickle support

copy reg module
saving

serializable objects 2nd 3rd
serializable objects

saving 2nd 3rd
serilization

objects

databases 2nd

shelve files

opening
shelve module 2nd 3rd

Shprentz, Joel
storage
persistent
databases 2nd

Zope Object Database (ZODB)

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 8. Working with Databases > The See All Titles
ODBC Module

< BACK Make Note | Bookmark CONTINUE >

The ODBC Module

ODBC (Open Database Connectivity) is a standard interface created by Microsoft; hence, it is fully
supported by the Windows platform. It provides access to almost every database. Currently, the ODBC
implements the ANSI standard SQL3.

To configure the ODBC settings for a database in your Windows system, you must use the ODBC Data
Source Administrator, which is located at the Windows Control Panel.

The two major advantages of choosing to code an application to the ODBC API are as follows:
. Portable Data Access Code— The ODBC API is available on all major databases.

. Dynamic Data Binding— This allows the user or the system administrator to easily configure
an application to use any ODBC compliant data source. This is perhaps the single biggest
advantage of coding an application to the ODBC API. Dynamic binding allows the end user to
pick a data source—that is, an SQL Server—and use it for all data applications without having
to worry about recompiling the application. The ODBC module implements the Python DB API,
so you can get this level of abstraction at the DB API level. Also, you don't explicitly recompile
Python code.

EShop kindly donated the ODBC module to the public domain. This module is included in the

PythonWin distribution. For more details, check out the site at
http://www.python.org/windows/win32/odbc.html.

The next example shows how you can open a ODBC connection using Python.

I nport dbi, odbc
try:
connecti on = odbc. odbc(' DSN=nydat abase; Ul D=nyl ogi n;
PASSWORD=nypasswor d')
cursor = connection. cursor ()
cursor.execute('select nane, email from USERS')
whil e 1:
record = cursor.fetchone()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=143
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A39%3A05+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=143&now=5%2F31%2F2002+4%3A39%3A05+PM
http://www.python.org/windows/win32/odbc.html

I f not record: break
print record
connecti on. cl ose()
except NameError, e:
print 'NaneError: ', e

Three ways (at least) to access ODBC from Python on the Windows platform are as follows:
. DB APIl— Python Database API
. calldll— Sam Rushing's calldll module
. DAO— Microsoft Data Access Objects
ODBC Example for Windows Platforms
The first thing you need is to create a DSN for your database in the ODBC Data Source Administrator.

The PythonWin distribution comes with an odbc module, which by the way is very stable. However, it
IS no longer going to be improved. This odbc module works along with the dbi module. Both files
conform to the Version 1.0 of the Python Database API, providing a minimum implementation.

The whole ODBC functionality is made up of two extension files:

« odbc. pyd— The odbc module itself
. dbi . pyd— The database independence utilities module

The dbi module must be imported before you import the odbc module.

i nport dbi, odbc, pprint

connection = odbc. odbc(' DSN=nydat abase; Ul D=nyuser ; PAD=nypassword')
cursor = connection. cursor ()

cursor. execut e(' SELECT nane, email FROM USERS')

data = nycursor.fetchall ()

cursor. cl ose()

connecti on. cl ose()

pprint. pprint(data)

[("andre',' andre@ebemani a.combr'), ('renata', None)]

Let's see some of the functions and attributes exposed by the odbc connection and cursor objects.

fetchall () # fetches all the rows
f et chone() # fetches only one row
f et chmany(n) # fetches n nunber of rows

mycur sor. arraysi ze# nunber of rows fetched.
mycur sor. descri ption# structure of the cursor

mycur sor . execut e() supports DML and DDL. However, it doesn't support prepared statements.

The dbi module handles both date and time formats. All date results are returned as dbi date objects.

>>> pprint. pprint(data)
[("coll, <DbiDate object at 12e4b34>)]
>>> dat eobj = data[0][1]
>>> dat eobj
<Dbi Dat e object at 12e4b34>
>>> | nt (dat eobj)
984046200
>>> str(dat eobj)
"Fri Jun 02 00: 00: 00 2000’

The next command shows the preferred way to pass date values back to the ODBC driver because this is
the standard ODBC syntax for embedding dates in SQL strings.

mycur sor . execut e(" UPDATE t abl ename SET col umnane={d ' 1999-04-15"}")

nmx ODBC

nx ODBC is an extension package created by Marc-André Lemburg that exposes interfaces to ODBC

2.0 database drivers. This package implements the standard Database APl. Among other things, it
supports more than one database per process and it has preconfigured scripts for MySQL, Oracle,

Informix, and more. This package exposes an odbc module for both Windows and UNIX. One of the

most important differences between this module and the one that comes in the PythonWin distribution
might be that this one supports prepared statements, hence, you can separate the SQL structure from the
actual values. The engine parses a statement once, creates a handle for it. After that, you just need to
pass the correct parameters that should be used for each interaction.

This package also possess an enhanced set of date and time types for moving data between both

Windows and UNIX systems. You can blame the mxDat eTi nme package for that. The nxDat eTi e
package might become part of the nk ODBC package in the near future. Check it out at

http://starship.python.net/crew/lemburg/mxODBC.html

cal Il dl|

You can also use the cal | dl | package, developed by Sam Rushing, to call the functions that are part

of the Microsoft ODBC DLL. One problem with using this DLL is that it doesn't have any similarity to
the Python DB API. Another problem is that if you call the ODBC functions with the wrong
arguments, your program might fail. The function calls have a low-level interface that doesn't handle
exceptions as nicely as Python does. For more information, check out
http://www.nightmare.com/software.html.

Caution

This is one of the most dangerous ways to access databases. cal | dl | removes almost all the
safety Python gives you.

uni xODBC

uni xODBC s a complete, free/open, ODBC solution for UNIX/Linux. The uni x ODBC Project goals
are to develop and promote uni x ODBC to be the definitive standard for ODBC on the Linux platform.
This is to include GUI support for KDE. For more information, check out http://www.unixODBC.org.

Other Interesting ODBC Web Pages

The next few links introduce some interesting material that you can use to understand and use ODBC
techniques.

ODBC Hints—by John Dell'Aquila

http://starship.python.net/crew/lemburg/mxODBC.html
http://www.nightmare.com/software.html
http://www.unixodbc.org/

http://www.python.org/windows/OdbcHints.html

Full ODBC manual

http://www.solidtech.com/developer/documentation.html

< BACK Make Note | Bookmark

Index terms contained in this section

accessing
databases
calldll package

applications
calldll 2nd

mxDateTime
mxODBC 2nd
calldil
calldll package

connections
Open Database Connectivity (ODBC)

opening
databases
accessing
calldll package

Open Database Connectivity (ODBC) module 2nd 3rd
dbi module 2nd

EShop
Open Database Connectivity (ODBC) module

Lemburg, Marc-Andr[as]e
modules

dbi 2nd

odbc

Open Database Connectivity (ODBC) 2nd 3rd
mxDateTime package
mxODBC package 2nd
odbc module
Open Database Connectivity (ODBC) module 2nd 3rd
opening

connections

Open Database Connectivity (ODBC)

CONTINUE >

http://www.python.org/windows/OdbcHints.html
http://www.solidtech.com/developer/documentation.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=143

packagesO
@)

programs
calldll 2nd

mxDateTime
mxODBC 2nd
Rushing, Sam

software
calldll 2nd

mxDateTime
mxODBC 2nd

Windows
odbc module

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 8. Working with Databases > ADO See All Titles
(ActiveX Data Objects)

< BACK Make Note | Bookmark CONTINUE >

ADO (ActiveX Data Objects)

ActiveX Data Objects (ADO) is an Automation-based interface technology for accessing data. ADO uses
the OLE DB interface to access a broad range of data sources, including but not limited to data provided
via ODBC.

Although ODBC seems to be the standard in the market, ADO offers significant benefits. ADO is a rich
and fully featured object model (see Chapter 7, "Objects Interfacing and Distribution,” for details). The

library name in which ADO lives is called ADODB. The ADO object model gives you fantastic
flexibility.

Users of RDO (Remote Data Objects) and DAO should have no problem moving to ADO because the
overall design of ADO comes from Microsoft's experience in developing those interfaces.

Microsoft's Remote Data Service (RDS) is a component of ADO that provides fast and efficient data
connectivity and the data-publishing framework for applications hosted in Microsoft Internet Explorer. It
Is based on a client/server distributed technology that works over HTTP, HTTPS (HTTP over Secure
Sockets layer), and DCOM application protocols. Using data-aware ActiveX controls, RDS provides data
access programming in the style of Microsoft Visual Basic to Web developers who need to build
distributed, data-intensive applications for use over corporate intranets and the Internet. The use of ADO
ties your application to Win32, whereas using the Python DB API does not.

After you have created the Connect i on object, you need to open a database connection by assigning a
string value to the Qpen method. This string can be the name of a DSN (Data Source Name) or a
complete connection string.

>>> jnport w n32com cli ent

>>> adoConn = wi n32com client. D spatch(' ADODB. Connecti on')

>>> adoConn. Qpen(' data sour ce=nySQL.Server;"')

>>> adoRS = adoConn. Execute ('truncate table tnp_table')

>>> args = "34, 25"

>>> del adoRS

>>> adoRS = adoConn. Execute ('insert into tnp_table values (' +args+')"')
>>> args = "11,12"

>>> del adoRS

>>> adoRS = adoConn. Execute ('insert into tnp_table values (' +args+')"')

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=144
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A39%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=144&now=5%2F31%2F2002+4%3A39%3A13+PM

>>> del adoRS
>>> (adoRS, success) = adoConn. Execute ('Select cl, c2 fromtnp_table')
>>> whi |l e not adoRS. ECF:
vl _a = adoRS. Fields('cl'). Val ue
vl b = adoRS. Fi elds('c2'). Val ue
print vl _a, vl b
adoRS. MbveNext ()
34 25
11 12
>>> adoRS. MoveFirst ()
>>> (adoRS, success) = adoConn. Execute (' Select c1, c2 fromtnp_table')
>>> print vl _a, vl _b
34 25

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

ActiveX Data Objects (ADOS)

connections
databases
opening
DAO

databases
ActiveX Data Objects (ADOSs)

opening connections

objects
ActiveX Data (ADQO)

Remote Data (RDO)

Remote Data (RDS)
opening

connections

databases

RDOO

6]
RDSO

6]
Remote Data Objects (RDOs)
Remote Data Service (RDS)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=144

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 8. Working with Databases > Using SQL See All Titles

< BACK Make Note | Bookmark CONTINUE >

Using SQL

SQL stands for Structured Query Language. It was developed in the mid-1970s by IBM Research to serve
as an English interface query language to the System R relational database prototype.

SQL consists of a list of powerful and flexible commands that are used to manipulate information collected
in tables, by operating and controlling sets of records at a time.

. SQL is an interactive query language for ad hoc database queries.
. SQL is a database programming language.

. SQL is a data definition and data administration language.

. SQL is the language of networked database servers.

« SQL helps protect the data in a multi-user networked environment.

Nowadays, SQL servers are the dominant model for creating client/server applications. The most important
tendency among database servers of any size is the revelation of SQL as the choice for the manipulation,
definition, and control of data.

SQL has been an ISO standard for a long time. It is a powerful language for databases that adhered to the
relational model.

The relational model clearly separates the physical aspects of data from their logical implementation. It
frees you from being concerned with the details of how data is stored and makes the access to data purely
logical.

By using SQL statements, you just need to specify the tables, columns, and row qualifiers to get to any data
item.

SQL Mini-Tutorial

The idea behind this mini-tutorial is to teach you how to change and query the database. Of course, this
book does not cover everything. It should give you a brief understanding of the concepts and basic usage of
SQL statements. If it becomes necessary to delve deeper in this topic, the last heading of this section
contains a list of Web sites that have some beneficial and complete SQL tutorials.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=145
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A39%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=145&now=5%2F31%2F2002+4%3A39%3A21+PM

Selecting the Information

In a relational database, data is stored in tables. In our example, we have the USERS Table. | D, NAME,
EMAI L, and AGE are the columns of this table.

Table 8.2. USERS

ID NAME EMAIL AGE
1 Andre alessa@bebemania.com.br 25
2 Renata rtaveira@bebemania.com.br 30
3 Cleber clessa@bebemania.com.br 45
4 Beth beth@alugueaqui.com.br 40

Now, say that you want to know the EMAI L and the AGE of each user. You have to use the SELECT
statement as follows:

SELECT EMAI L, AGE
FROM USERS

The following list is the result of your query:

ENAI L AGE
al essa@ebenani a. com br 25
rtavei ra@ebenani a. com br 30
cl essa@ebenani a. com br 45
bet h@l ugueaqui . com br 40

Let me explain to you what you have done: you asked to see all the rows from the USERS table, filtering
only the EMAI L and AGE columns. Note that column names and table names do not have spaces—they
must be entered as just one word. The general syntax for a SELECT statement (when selecting all the rows

from a table) is

SELECT Col uml1Nanme, Col um2Namne,
FROM Tabl eNane

Note

This basic syntax doesn't filter which rows are selected or do anything else interesting.

You can use the asterisk symbol in order to retrieve all the columns from a table without typing every
column name:

SELECT * FROM Tabl eNane;

Relational Operators

Six important relational operators exist in SQL, and after introducing them, we'll see how they're used:

= Equal

<> Not Equal

< Less Than

> Greater Than

<= Less Than or Equal To
>= Greater Than or Equal To

The WHERE clause of a SELECT statement specifies which rows of a table must be selected. For example,
let's determine which users are 25 years old.

SELECT NAME
FROM USERS
VWHERE AGE = 25;

The resultset is as follows:

NANVE
Andr e

Joins

Good database design suggests that each table in a database must contain data of only one single entity.
Detailed information can be acquired by joining tables according to their primary and foreign keys. For
example, we will create Table 8.3.

Table 8.3. NATI ONALI TY

ID ORIGIN
1 Greek
2 Spain
6 USA

8 Brazil

Let's discuss the concept of keys. A primary key is a column or set of columns that uniquely identifies the
rest of the data in any given row. For example, in the USERS table, the | D column uniquely identifies each

row.

A foreign key is a column in a table that is a primary key of another table. It means that any data in a
foreign key column must exist in the other table where that column is the primary key. For example, in the
NATI ONALI TY table, the column | Dis a foreign key to the primary key of the USERS table, which is the

| Dcolumn.

The purpose of these keys is to associate data across tables, eliminating data redundancy in the tables—this
is the power of relational databases.

To find the names of the user whose name comes from Spain, use the following query:

SELECT USERS. NAME

FROM USERS, NATI ONALI TY

VWHERE USERS. I D = NATI ONALITY. I D
AND NATI ONALI TY. ORIFG N = " Spai n"

The resultset is as follows:

NAME
Renat a

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/145#6.html

Using Aggregate Functions

I will present five important aggregation functions: SUM AVG MAX, M N, and COUNT. They are
called aggregation functions because they summarize the results of a query, rather than listing all the rows.

. SUM) — Returns the total value of a given column, based on the selected rows.
. AV) — Returns the average value of the given column.

« MAX() — Returns the highest value in the given column.

« M N() — Returns the lowest value in the given column.

« COUNT(*) — Returns the number of rows that satisfy the WHERE clause.

Let's look at some examples:

SELECT SUM AGE), AVG(AGE)
FROM USERS

The resultset is as follows:

SUM AVG

135 33. 75
SELECT COUNT(*)
FROM USERS
WHERE AGE > 30

The resultset is as follows:

COUNT(*)
2

Sometimes, when you are working with aggregation functions, the gr oup by clause might be required.

For instance, let's say that you need to list the average age by username from your USERS table. The
following SELECT statement can be used to group the resultset of your query.

SELECT NAME, AVG(AGE)
FROM USERS
GROUP BY NAME

Adding Data

To insert rows in a table, use the following syntax:

| NSERT | NTO <TABLE NAME> [(<COLUMN1 NAME>, <CCOLUMNZ2 NAME>, .)]
VALUES (<VALUE1>, <VALUE2>, .);

Note

In order to not use the column name part of your statement (because it's optional), in most cases, you
need to provide values for all the columns of your table.

For example

| NSERT | NTO USERS (I D, NAME, EMAIL, ACGE) VALUES (5, "Bruno",
"bruno@l ugueaqui . com br", 17)

Deleting Data

Let's delete a row from a table.

DELETE FROM USERS
VWHERE NAME = "(eber"”

If more than one row exists in which NAME = " Cl eber ", the other row will be deleted too. Using the
primary key is a good way to uniquely identify a row for deletion.

To delete all the rows from the table, type the following:

DELETE FROM USERS

Updating Data

Let's update the age of one user.

UPDATE USERS
SET AGE = 18
VHERE NAME = " Bruno"

This statement sets Bruno's age to 18. If we had more than one Bruno in our database, we would have to
include more conditions in the WHERE clause. It is also possible to update multiple columns at the same

time—you just need to separate the attribution statements with commas.

UPDATE USERS
SET AGE = 18, EMAIL = "bruno@ebemani a.com br"
VWHERE NAME = "Bruno” AND ID = 5

Cool SQL Language Web Pages

The Introduction to Structured Query Language site can be found at
http://w3.0ne.net/~jhoffman/sqltut.htm.

Several links to SQL material can be found at http://www.lessaworld.com/links basics_sql.html.

Post gr eSQL Databases

Post gr eSQL is a free (open-source) SQL database. It is a sophisticated Object-Relational database
system derived from Postgres4.2. It conforms to (most of) ANSI SQL and offers many interesting
capabilities, including subselects, transactions, and user-defined types and functions. It is the most
advanced open-source database available anywhere.

http://w3.one.net/~jhoffman/sqltut.htm
http://www.lessaworld.com/links_basics_sql.html

Commercial Support is also available. For details, check out its Web site at http://www.postgresgl.org.

pg Module

The pg module was written by D'Arcy J.M. Cain in order to provide an interface to the Post gr e SQL
database system. It embeds the Post gr e SQL query library allowing easy use of its powerful features from
a Python script. This module is available for download at http://www.druid.net/pygresql.

The pg module exposes its own DB API interface specification, as you can see next.

>>> | nport pg
>>> for rs in pg.DB(' dbnane'). query(' SELECT * FROM USERS'). dictresult():

print rs

Note

At the time of this chapter was written, it was announced that the latest version of pygr esql began
supporting the Python DB API 2.0.

My SQL Modules

My SQL is a true multiuser, multithreaded SQL database server. It is a client/server implementation that
consists of a server daemon nmysqgl d and many different client programs and libraries. My SQL is very fast

for performing queries, but can slow down if lots of updates are being performed. Also, it doesn't have
transaction support. For more information, check out http://www.mysqgl.com.

MySQLdb Module

You need to get and build the My SQLdb module before using it. Check out
http://dustman.net/andy/python/MySQLdb.

>>> jnport MySQLdb
>>> connection = MySQ.db. connect (host ="spani, db="client", port=3316, \
user="al essa", passwd="1020erw")

http://www.postgresql.org/
http://www.druid.net/pygresql
http://www.mysql.com/
http://dustman.net/andy/python/MySQLdb

>>> con = connection. cursor ()

>>> sql _statenent = "SELECT * FROM USERS WHERE ACGE > 21"
>>> con. execut e(sql _statenent)

>>> result_set = con.fetchall ()

>>> connecti on. cl ose()

Python Interface for MySQL

This interface was designed by Joseph Skinner and modified by Joerg Senekowitsch. For more information,
check out http://www.mysqgl.com/Contrib/MySQLmodule-1.4.tar.gz.

The GadFl y SQL Module

The GadFl y SQL module is a SQL database engine written entirely in Python by Aaron Watters in
compliance with the Python Database API. It uses fewer system resources than Post gr eSQ_, and its

speed is comparable to Microsoft Access. However, it doesn't have the performance of commercial
software (such as Oracle). This module is easily used by client/server applications because it includes
TCP/IP support.

This module entirely fits in a small file, so it doesn't leave huge footprints.

Because it only supports a small subset of the SQL language, it offers excellent code for those who want to
learn more about SQL parsing engines and client/server communications. For more information, check out
http://www.chordate.com/gadfly.html.

Met aKi t Database Engine

Met aKi t isa C++ library for storage, transport, and manipulation of structured objects and collections.
The next examples show how the Met aKi t database engine does on-the-fly restructuring:

Example 1

>>> | nmport M4py

>>> dbhandl e = Mk4py. Storage(' datafile.nk', 1)

>>> wor kspace = dbhandl e. getas(' users[nane: S,email:S]")

>>> wor kspace. append(nanme=" Andre', enmai | = al essa@ebenani a. com br')
>>> wor kspace. append(nane=' Renata', enmai | =' rtavei ra@ebenani a. com br"')
>>> dbhandl e. comm t ()

http://www.mysql.com/Contrib/MySQLmodule-1.4.tar.gz
http://www.chordate.com/gadfly.html

Example 2

>>> j nport M4py

>>> dbhandl e = Mk4py. Storage(' datafile.nk', 1)

>>> wor kspace = dbhandl e. getas(' users[nane: S,email: S, age:1]")
>>> for user in workspace:

.print user.nane

.user.age = input('age: ')

>>> dbhandl e. comm t ()
>>> for user in workspace.sort():
>>> print user.nane, user.enmil, user.age

If you run these two examples in order, you'll have restructured on-the-fly. It will be instant, regardless of
the number of rows. If for any reason the transaction is not completed, neither will the restructure be. For
more information, check out their Web site at http://www.equi4.com/metakit/python.html.

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

aggregate functions
relational databases
Cain, DO
Arcy J.M.
clauses
group by
WHERE
database engines
MetaKit
databases
PostgreSQL
relationalO
@)

engines
database
MetaKit

foreign key
functions
aggregate

http://www.equi4.com/metakit/python.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=145

relational databases
GadFly SQL module
group by clause
IBM Research
Structured Query Language (SQL)
joins
tables
relational databases

keys
foreign

primary
MetaKit database engine

modules
GadFly SQL
MySQL

pg 2nd
MySOL module

pg module 2nd
PostgreSQL databases

primary key
programming languages

redundancy
tables
relational databasesO
o]
SELECT statement
WHERE clause
statements
SELECT
WHERE clause

tables
joins
relational databases

redundancy
WHERE clause

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 8. Working with Databases > Python DB API See All Titles

< BACK Make Note | Bookmark CONTINUE >

Python DB API

The quest to provide a standard way to interface to database systems drove a group of people to develop Python
Database API. The Python DB API is maintained by the Database Special Interest Group (DB-SIG). For more
information, check out their Web site at http://www.python.org/sigs/db-sig/.

The following list shows all the database modules that currently implement the Python DB API specification
proposed by the DB-SIG. This means that after you understand the API, you will be able to handle, in a similar way,
all the databases that are manipulated by the following modules:

. GadFly— A simple relational database system implemented in Python based on the SQL Structured Query
Language, including a DB-API compliant interface. Maintained by Aaron Watters.

http://www.chordate.com/gadfly.html

. Informix— Currently maintained by Stephen J. Turner.

http://starship.python.net/crew/sturner/informixdb.html

« Informix (Kinfxdb)— A completely new Informix module, called Ki nf xdb. Maintained by Alexander
Kuznetsov.

http://thor.prohosting.com/~alexan/

. Interbase (Kinterbasdb)— An interface for Interbase 4.0 and 5.0. Maintained by Alexander Kuznetsov.

http://thor.prohosting.com/~alexan/Kinterbasdb/

. MySQL— A My SQL module that is thread-safe and aims for compatibility with the 2.0 DB-API. It requires a
newer version of MySQL, version 3.22.19 or higher.

http://dustman.net/andy/python/MySOLdb/

. mxODBC— The nx ODBC package provides a nearly 100% Python DB API compliant interface to databases

that are accessible via the ODBC API. Many databases include ODBC libraries, so this might be the only
module you need. Maintained by M. A. Lemburg.

http://starship.python.net/crew/lemburg/mxODBC.html

. ODBC— This module is currently available in the PythonWin distribution. It's public domain code, but
unfortunately has no designated support person(s). The best option for support is to ask questions on

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=146
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A39%3A30+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=146&now=5%2F31%2F2002+4%3A39%3A30+PM
http://www.python.org/sigs/db-sig/
http://www.chordate.com/gadfly.html
http://starship.python.net/crew/sturner/informixdb.html
http://thor.prohosting.com/~alexan/
http://thor.prohosting.com/~alexan/Kinterbasdb/
http://dustman.net/andy/python/MySQLdb/
http://starship.python.net/crew/lemburg/mxODBC.html

comp.lang.python newsgroups, where other PythonWin users can answer them.

http://www.python.org/windows/win32/odbc.html

. DCOracle— An open source interface to Oracle from Digital Creations.

http://www.zope.org/Products/DCOracle/

. Sybase— Maintained by Peter Godman.

http://starship.python.net/crew/pgodman/

This is the information available at the time this book was written. For an updated list of modules, check out
http://www.python.org/topics/database/modules.html.

DB-API Specification v2.0

The following specification is available online at http://www.python.org/topics/database/Database API-2.0.html.

Comments and questions about this specification can be directed to the SIG for Database Interfacing with Python at
the email address db-sig@python.org.

For more information on database interfacing with Python and available packages, see the Database Topics Guide at
http://www.python.org.

This document describes the Python Database API Specification 2.0. The previous version 1.0 is still available online
at the Python Web site as a reference. Package writers are encouraged to use this version of the specification as the
basis for new interfaces.

This API has been defined to encourage similarity between the Python modules that are used to access databases. By
doing this, we hope to achieve a consistency leading to more easily understood modules, code that is generally more
portable across databases, and a broader reach of database connectivity from Python.

The interface specification consists of several sections:
. Module Interface
. Connection Objects
. Cursor Objects
. Type Objects and Constructors
. Implementation Hints

. Major Changes from 1.0 to 2.0

http://www.python.org/windows/win32/odbc.html
http://www.zope.org/Products/DCOracle/
http://starship.python.net/crew/pgodman/
http://www.python.org/topics/database/modules.html
http://www.python.org/topics/database/DatabaseAPI-2.0.html
mailto:db-sig@python.org
http://www.python.org/

Module Interface

Access to the database is made available through connection objects. The module must provide the following
constructor for these:

connect (par anet er s..) —Fhis is a constructor for creating a connection to the database. Returns
a Connection Object. It takes a number of parameters that are database dependent.!

These module globals must be defined:

api | evel —Fhis string constant states the supported DB API level. Currently only the strings '1.0'
and '2.0" are allowed.

If not given, a Database API 1.0 level interface should be assumed.

t hr eadsaf et y—This integer constant states the level of thread safety that the interface supports.
Possible values are

0—Threads cannot share the module.

1—Threads can share the module, but not connections.
2—Threads can share the module and connections.
3—Threads can share the module, connections, and cursors.

Sharing in the previous context means that two threads can use a resource without wrapping it using a
mutex semaphore to implement resource locking. Note that you cannot always make external resources
thread safe by managing access using a mutex: The resource might rely on global variables or other
external sources that are beyond your control.

par anst yl e—Fhis string constant states the type of parameter marker formatting expected by the
interface. Possible values are as follows:2

" qmar k' = Question mark style, e.g. '.VWHERE nane=?"
"nuneric' = Nuneric, positional style, e.g. '.WHERE nanme=:1'
" nanmed' = Naned style, e.g. '.VWHERE nane=: nane'

"format'
"pyformat’

ANSI C printf format codes, e.g. '.VWHERE nane=%'
Pyt hon extended format codes, e.g. '.VWHERE nanme=% nane) s’

The module should make all error information available through these exceptions or subclasses thereof:

Warning— This exception is raised for important warnings such as data truncations while inserting,
and so on. It must be a subclass of the Python StandardError (defined in the module exceptions).

Error— This exception is the base class of all other error exceptions. You can use this to catch all
errors with one single 'except'statement. Warnings are not considered errors and thus should not use
this