O 0NN W~

29.

Python How to Program, 1/e
Table of Contents

. Introduction to Computers, Internet and the World Wide Web.
. Introduction to Python Programming.
. Control Structures.
. Functions.
. Tuples, Lists, and Dictionaries.
. Introduction to the Common Gateway Interface (CGI).
. Object-Based Programming: Classes and Data Abstraction.
. Object-Oriented Programming: Inheritance and Polymorphism.
. Operator Overloading.
. Graphical User Interface Components: Part 1.
. Graphical User Interface Components: Part 2.
. Exception Handling.
. Strings Manipulation and Regular Expressions.
. File Processing and Serialization.
. Extensible Markup Language (XML).
. Python XML Processing.
. Python Database Application Programming Interface (DB-API).
. Process Management.
. Multithreading.
. Networking.
. Security.
. Data Structures.
. Case Study: Multi-Tier Online Bookstore.
. Multimedia.
. Accessibility.
. Bonus: Introduction to XHMTL: Part I.
. Bonus: Introduction to XHTML: Part II.
. Bonus: Cascading Style Sheets™ (CSS).
Bonus: Introduction to PHP.

Appendix A. Operator Precedence Chart.
Appendix B. ASCII Character Set.

Appendix C. Number Systems.

Appendix D. Python Development Environments.
Appendix E. Python 2.2 Resources.

Appendix F. Career Opportunities.

Appendix G. Unicode®.

rh'lﬂ oL S y @ n A

oa
THO HOW TO & x.a
= Contnol Sraucruniy i
= Fimcmons i
= Lts awn Toriin
= e nomazes
Euid P
» opuEs
__ = XHTML=/C35™
= LGl
® Coasary
® Coagy Armeesutis
® Coaas CusTosnzenom
® et WrTaNCE
» M 100 Chvrmpinms
= Gl Towts
& Prrsion Mios Weorm
= Srams MassyLanon
® Riguiis Eurmd puons
= Fut Poocissing
= SEmikgRTon

” (PSP)
DEITEL 5=

DEITEL

=N DEITEL) 5., o

é pythonhtpl_01.fm Pagel Monday, December 10, 2001 12:13 PM

"

Introduction to
Computers, Internet and
World Wide Web

Objectives

* To understand basic computer concepts.

 To become familiar with different types of
programming languages.

* To become familiar with the history of the Python
programming language.

 To preview the remaining chapters of the book.

Things are always at their best in their beginning.

Blaise Pascal

High thoughts must have high language.

Aristophanes

Our lifeisfrittered away by detail ...Smplify, simplify.

Henry David Thoreau

Construction

é pythonhtpl_01.fm Page2 Monday, December 10, 2001 12:13 PM

A

.

2 Intfroduction to Computers, Internet and World Wide Web Chapter 1

Outline

1.1 Introduction

1.2 What Is a Computer?

1.3 Computer Organization

1.4 Evolution of Operating Systems

1.5 Personal Computing, Distributed Computing and Client/Server
Computing

1.6 Machine Languages, Assembly Languages and High-Level
Languages

1.7 Structured Programming

1.8 Object-Oriented Programming

1.9 Hardware Trends

1.10 History of the Internet and World Wide Web

1.11 World Wide Web Consortium (W3C)

1.12 Extensible Markup Language (XML)

1.13 Open-Source Software Revolution

1.14 History of Python

1.15 Python Modules

1.16 General Notes about Python and This Book

1.17 Tour of the Book

1.18 Internet and World Wide Web Resources

Summary ¢ Terminology ¢ Self-Review Exercises » Answers to Self-Review Exercises « Exercises

1.1 Introduction

Welcome to Python! We have worked hard to create what we hope will be an informative
and entertaining learning experience for you. The manner in which we approached thistop-
ic created a book that is unique among Python textbooks for many reasons. For instance,
we introduce early in the text the use of Python with the Common Gateway Interface (CGI)
for programming Web-based applications. We do this so that we can demonstrate a variety
of dynamic, Web-based applicationsin the remainder of the book. Thistext also introduces
arange of topics, including object-oriented programming (OOP), the Python database ap-
plication programming interface (DB-API), graphics, the Extensible Markup Language
(XML), security and an appendix on Web accessibility that addresses programming and
technologies relevant to people with impairments. Whether you are a novice or an experi-
enced programmer, there is much here to inform, entertain and challenge you.

Python How to Program is designed to be appropriate for readers at al levels, from
practicing programmers to individuals with little or no programming experience. How can
one book appeal to both novices and skilled programmers? The core of this book empha
sizes achieving program clarity through proven techniques of structured programming and

%

*

é pythonhtpl_01.fm Page 3 Monday, December 10, 2001 12:13 PM

A

.

Chapter 1 Introduction to Computers, Internet and World Wide Web 3

object-based programming. Nonprogrammers learn basic skills that underlie good pro-
gramming; experienced programmers receive a rigorous explanation of the language and
may improve their programming styles. To aid beginning programmers, we have written
this text in a clear and straightforward manner, with abundant illustrations. Perhaps most
importantly, the book presents hundreds of complete working Python programs and shows
the outputs produced when those programs are run on a computer. We cal this our Live-
Code™ approach. All of the book’ s examples are available on the CD-ROM that accom-
panies this book and on our Web site, www.deitel . com.

Most people are at |east somewhat familiar with the exciting capabilities of computers.
Using this textbook, you will learn how to command computers to exercise those capabil-
ities. It is software (i.e., the instructions you write to command the computer to perform
actions and make decisions) that controls computers (often referred to as hardware).

Computer use isincreasing in amost every field. In an era of steadily rising costs, the
expense of owning acomputer has been decreasing dramatically due to rapid developments
in both hardware and software technology. Computers that filled large rooms and cost mil-
lions of dollars 25 to 30 years ago now are inscribed on the surfaces of silicon chips smaller
than afingernail and that cost perhaps afew dollars each. Silicon is one of the most abun-
dant materials on the earth—it is an ingredient in common sand. Silicon-chip technology
has made computing so economical that hundreds of millions of general-purpose com-
putersarein useworldwide, hel ping peoplein business, industry, government and their per-
sonal lives. Given the current rate of technological development, this number could easily
double over the next few years.

In beginning to study this text, you are starting on a challenging and rewarding educa-
tional path. Asyou proceed, if you would like to communicate with us, please send us e-mail
at deitel@deitel.com or browse our World Wide Web sites at www.deitel.com,
www.prenhall.com/deitel and www.InformIT.com/deitel. We hope you
enjoy learning Python with Python How to Program.

1.2 What Is a Computer?

A computer isadevice capable of performing computations and making logical decisions at
speeds millions and even hillions of times faster than those of human beings. For example,
many of today’s personal computers can perform hundreds of millions—even billions—of
additions per second. A person operating a desk calculator might require decades to com-
plete the same number of calculations that a powerful personal computer can performin one
second. (Pointsto ponder: How would you know whether the person added the numberscor-
rectly? How would you know whether the computer added the numbers correctly?) Today’s
fastest supercomputers can perform hundreds of billions of additions per second—about as
many calculations as hundreds of thousands of people could perform in one year! Trillion-
instruction-per-second computers are aready functioning in research laboratories!

Computers process data under the control of sets of instructions called computer pro-
grams. These programs guide computers through orderly sets of actions that are specified
by individuals known as computer programmers.

A computer is composed of various devices (such as the keyboard, screen, mouse, disks,
memory, CD-ROM and processing units) known as hardware. The programs that run on a
computer are referred to as software. Hardware costs have been declining dramaticaly in
recent years, to the point that personal computers have become acommodity. Software-devel-

%

4

*

é pythonhtpl_01.fm Page4 Monday, December 10, 2001 12:13 PM

A

.

4 Introduction to Computers, Internet and World Wide Web Chapter 1

opment costs, however, have been rising steadily, as programmers devel op ever more pow-
erful and complex applications without being able to improve significantly the technol ogy of
software development. In this book, you will learn proven software-development methods
that can reduce software-devel opment costs—top-down, stepwise refinement, functionaliza-
tion and object-oriented programming. Object-oriented programming iswidely believed to be
the significant breakthrough that can greetly enhance programmer productivity.

1.3 Computer Organization

Virtually every computer, regardless of differences in physical appearance, can be envi-
sioned as being divided into six logical units, or sections:

1. Input unit. This“receiving” section of the computer obtains information (data and
computer programs) from variousinput devices. Theinput unit then placesthisin-
formation at the disposal of the other unitsto facilitate the processing of the infor-
mation. Today, most users enter information into computers via keyboards and
mouse devices. Other input devices include microphones (for speaking to the
computer), scanners (for scanning images) and digital cameras and video cameras
(for taking photographs and making videos).

2. Output unit. This “shipping” section of the computer takes information that the
computer has processed and placesit on various output devices, making the infor-
mation available for use outside the computer. Computers can output information
in various ways, including displaying the output on screens, playing it on audio/
video devices, printing it on paper or using the output to control other devices.

3. Memory unit. This is the rapid-access, relatively low-capacity “warehouse” sec-
tion of the computer, which facilitates the temporary storage of data. The memory
unit retainsinformation that has been entered through the input unit, enabling that
information to be immediately available for processing. In addition, the unit re-
tains processed information until that information can be transmitted to output de-
vices. Often, the memory unit is called either memory or primary memory—
random access memory (RAM) is an example of primary memory. Primary mem-
ory isusually volatile, which meansthat it is erased when the machine is powered
off.

4. Arithmetic and logic unit (ALU). The ALU isthe “manufacturing” section of the
computer. It is responsible for the performance of calculations such as addition,
subtraction, multiplication and division. It aso contains decision mechanisms, a-
lowing the computer to perform such tasks as determining whether two items
stored in memory are equal.

5. Central processing unit (CPU). The CPU servesasthe “administrative” section of
the computer. Thisis the computer’s coordinator, responsible for supervising the
operation of the other sections. The CPU alerts the input unit when information
should be read into the memory unit, instructs the ALU about when to use infor-
mation from the memory unit in cal culations and tell s the output unit when to send
information from the memory unit to certain output devices.

6. Secondary storage unit. This unit is the long-term, high-capacity “warehousing”
section of the computer. Secondary storage devices, such as hard drives and disks,

%

4

*

é pythonhtpl_01.fm Page5 Monday, December 10, 2001 12:13 PM

A

.

Chapter 1 Introduction to Computers, Internet and World Wide Web 5

normally hold programs or datathat other units are not actively using; the computer
then can retrieve this information when it is needed—nhours, days, months or even
yearslater. Information in secondary storage takes much longer to accessthan does
information in primary memory. However, the price per unit of secondary storage
is much less than the price per unit of primary memory. Secondary storage is usu-
aly nonvolatile—it retains information even when the computer is off.

1.4 Evolution of Operating Systems

Early computers were capable of performing only one job or task at atime. In this mode of
computer operation, often called single-user batch processing, the computer runs one pro-
gram at a time and processes data in groups called batches. Users of these early systems
typically submitted their jobs to a computer center on decks of punched cards. Often, hours
or even days elapsed before results were returned to the users' desks.

To make computer use more convenient, software systems called operating systems
were developed. Early operating systems oversaw and managed computers' transitions
between jobs. By minimizing the time it took for a computer operator to switch from one
job to another, the operating system increased the total amount of work, or throughput,
computers could process in a given time period.

As computers became more powerful, single-user batch processing becameinefficient,
because computers spent a great deal of time waiting for slow input/output devicesto com-
plete their tasks. Developers then looked to multiprogramming techniques, which enabled
many tasks to share the resources of the computer to achieve better utilization. Multipro-
gramming involvesthe “simultaneous’ operation of many jobs on acomputer that splitsits
resources among those jobs. However, users of early multiprogramming operating systems
till submitted jobs on decks of punched cards and waited hours or days for results.

In the 1960s, several industry and university groups pioneered timesharing operating
systems. Timesharing is a special type of multiprogramming that allows users to access a
computer through terminals (devices with keyboards and screens). Dozens or even hun-
dreds of people can use atimesharing computer system at once. It isimportant to note that
the computer does not actually run al the users’ requests simultaneously. Rather, it per-
forms a small portion of one user’s job and moves on to service the next user. However,
because the computer does this so quickly, it can provide service to each user several times
per second. This gives users programs the appearance of running simultaneously. Time-
sharing offers mgjor advantages over previous computing systems in that users receive
prompt responses to requests, instead of waiting long periods to obtain results.

The UNIX operating system, which is now widely used for advanced computing, origi-
nated as an experimental timesharing operating system. Dennis Ritchie and Ken Thompson
developed UNIX at Bell Laboratories beginning in the late 1960s and devel oped C asthe pro-
gramming language in which they wrote it. They freely distributed the source code to other
programmers who wanted to use, modify and extend it. A large community of UNIX users
quickly developed. The operating system and the world of the C language grew as UNIX
users contributed their own programs and tools. Through a collaborative effort among
numerous researchers and developers, UNIX became a powerful and flexible operating
system able to handle amost any type of task that a user required. Many versions of UNIX
have evolved, including today’s phenomenaly popular, open-source, Linux operating
system.

%

4

*

é pythonhtpl_01.fm Page6 Monday, December 10, 2001 12:13 PM

A

.

6 Introduction to Computers, Internet and World Wide Web Chapter 1

1.5 Personal Computing, Distributed Computing and Client/
Server Computing

In 1977, Apple Computer popularized the phenomenon of personal computing. Initialy, it
was a hobbyist’s dream. However, the price of computers soon dropped so far that large
numbers of people could buy them for personal or business use. In 1981, IBM, the world’'s
largest computer vendor, introduced the IBM Personal Computer. Personal computing rap-
idly became legitimate in business, industry and government organizations.

The computersfirst pioneered by Apple and IBM were “ stand-alone” units—people did
their work on their own machines and transported disks back and forth to share information.
(This process was often called “sneakernet.”) Although early personal computers were not
powerful enough to timeshare several users, the machines could be linked together into com-
puter networks, either over telephone lines or vialocal area networ ks (LANS) within an orga-
nization. These networks led to the distributed computing phenomenon, in which an
organization's computing is distributed over networks to the sites at which the work of the
organization is performed, instead of being performed only at acentral computer installation.
Personal computers were powerful enough to handle both the computing requirements of
individual users and the basic tasksinvolved in the electronic transfer of information between
computers. N-tier applications split up an application over numerous distributed computers.
For example, athree-tier application might have a user interface on one computer, business-
logic processing on a second and a database on a third; all interact as the application runs.

Today's most advanced personal computers are as powerful as the million-dollar
machines of just two decades ago. High-powered desktop machines—called worksta-
tions—provide individual users with enormous capabilities. Information is easily shared
across computer networks, in which computers called servers store programs and data that
can be used by client computers distributed throughout the network. This type of configu-
ration gave rise to the term client/server computing. Today’s popular operating systems,
suchas UNIX, Solaris, MacOS, Windows 2000, Windows X P and Linux, provide the kinds
of capabilities discussed in this section.

1.6 Machine Languages, Assembly Languages and High-Level
Languages

Programmers write instructions in various programming languages, some directly under-
standable by computers and others that require intermediate translation steps. Although
hundreds of computer languages are in use today, the diverse offerings can be divided into
three general types:

1. Machine languages
2. Assembly languages
3. High-level languages

Any computer can understand only its own machine language directly. Asthe “natural
language” of a particular computer, machine language is defined by the computer’s hard-
ware design. Machine languages generally consist of streams of numbers (ultimately
reduced to 1sand 0s) that instruct computers how to perform their most elementary opera-
tions. Machine languages are machine-dependent, which means that a particular machine
language can be used on only one type of computer. The following section of a machine-

%

—

é pythonhtpl_01.fm Page 7 Monday, December 10, 2001 12:13 PM

A

.

Chapter 1 Introduction to Computers, Internet and World Wide Web 7

language program, which adds overtime pay to base pay and stores the result in gross pay,
demonstrates the incomprehensibility of machine language to the human reader.

+1300042774
+1400593419
+1200274027

Asthe popularity of computersincreased, machine-language programming proved to be
excessively slow, tedious and error prone. Instead of using the strings of numbers that com-
puters could directly understand, programmers began using English-like abbreviationsto rep-
resent the elementary operations of the computer. These abbreviations formed the basis of
assembly languages. Trandlator programs called assemblers convert assembly language pro-
grams to machine language at computer speeds. The following section of an assembly-lan-
guage program aso adds overtime pay to base pay and stores the result in gross pay, but
presents the steps more clearly to human readers than does its machine-language equivalent:

LOAD BASEPAY
ADD OVERPAY
STORE GROSSPAY

Such codeis clearer to humans but incomprehensible to computers until trandated into ma-
chine language.

Although computer useincreased rapidly with the advent of assembly languages, these
languages still required many instructions to accomplish even the simplest tasks. To speed
up the programming process, high-level languages, in which single statements accomplish
substantial tasks, were developed. Translation programs called compilers convert high-
level-language programs into machine language. High-level languages enable program-
mers to write instructions that look almost like everyday English and contain common
mathematical notations. A payroll program written in ahigh-level language might contain
astatement such as

grossPay = basePay + overTimePay

Obvioudly, programmers prefer high-level languages to either machine languages or as-
sembly languages. C, C++, C# (pronounced “C sharp”), Java, Visual Basic, Perl and Py-
thon are among the most popular high-level languages.

Compiling a high-level language program into machine language can require a consid-
erable amount of time. This problem was solved by the devel opment of interpreter programs
that can execute high-level 1anguage programs directly, bypassing the compilation step, and
interpreterscan start running aprogram immediately without “ suffering” acompilation delay.
Although programsthat are already compiled execute faster than interpreted programs, inter-
preters are popular in program-development environments. In these environments, devel-
opers change programs frequently as they add new features and correct errors. Once a
program is fully devel oped, a compiled version can be produced so that the program runs at
maximum efficiency. As we will see throughout this book, interpreted languages—Ilike
Python—are particularly popular for implementing World Wide Web applications.

1.7 Structured Programming

During the 1960s, many large software-development efforts encountered severe difficul-
ties. Development typically ran behind schedule, costs often greatly exceeded budgets and

%

4

*

é pythonhtpl_01.fm Page 8 Monday, December 10, 2001 12:13 PM

A

.

8 Introduction to Computers, Internet and World Wide Web Chapter 1

the finished products were unreliable. People began to realize that software development
was afar more complex activity than they had imagined. Research activity, intended to ad-
dress these issues, resulted in the evolution of structured programming—a disciplined ap-
proach to the creation of programsthat are clear, demonstrably correct and easy to modify.

One of the more tangible results of this research was the development of the Pascal
programming language in 1971. Pascal, named after the seventeenth-century mathemati-
cian and philosopher Blaise Pascal, was designed for teaching structured programming in
academic environments and rapidly became the preferred introductory programming lan-
guage in most universities. Unfortunately, because the language lacked many features
needed to makeit useful in commercial, industrial and government applications, it was not
widely accepted in these environments. By contrast, C, which also arose from research on
structured programming, did not have the limitations of Pascal, and became extremely
popular.

The Ada programming language was developed under the sponsorship of the United
States Department of Defense (DOD) during the 1970s and early 1980s. Hundreds of pro-
gramming languages were being used to produce DOD’s massive command-and-control
software systems. DOD wanted a single language that would meet its needs. Pascal was
chosen as a base, but the final Ada language is quite different from Pascal. The language
was named after Lady Ada Lovelace, daughter of the poet Lord Byron. Lady Lovelaceis
generally credited with writing the world’ s first computer program, in the early 1800s (for
the Analytical Engine mechanical computing device designed by Charles Babbage). One
important capability of Ada is multitasking, which alows programmers to specify that
many activities are to occur in paralel. As we will see in Chapters 18-19, Python offers
process management and multithreading—two capabilities that enable programs to specify
that various activities are to proceed in paralldl.

1.8 Object-Oriented Programming

One of the authors, HMD, remembers the great frustration felt in the 1960s by software-
development organizations, especialy those developing large-scale projects. During the
summers of his undergraduate years, HM D had the privilege of working at aleading com-
puter vendor on the teams developing time-sharing, virtual-memory operating systems. It
was a great experience for a college student, but, in the summer of 1967, reality setin. The
company “decommitted” from producing as a commercia product the particular system
that hundreds of people had been working on for several years. It was difficult to get this
software right. Software is* complex stuff.”

As the benefits of structured programming (and the related disciplines of structured
systems analysisand design) wererealized in the 1970s, improved software technology did
begin to appear. However, it was not until the technology of object-oriented programming
became widely used in the 1980s and 1990s that software developers finaly felt they had
the necessary tools to improve the software-devel opment process dramatically.

Actually, object technology dates back to at least the mid-1960s, but no broad-based
programming language incorporated the technology until C++. Although not strictly an
object-oriented language, C++ absorbed the capabilities of C and incorporated Simula's
ability to create and manipulate objects. C++ was never intended for widespread use
beyond the research laboratories at AT& T, but grass-roots support rapidly developed for
the hybrid language.

%

4

*

é pythonhtpl_01.fm Page9 Monday, December 10, 2001 12:13 PM

A

.

Chapter 1 Introduction to Computers, Internet and World Wide Web 9

What are objects, and why are they special ? Object technology is a packaging scheme
that facilitates the creation of meaningful software units. These units are large and focused
on particular applications areas. There are date objects, time objects, paycheck objects,
invoice objects, audio objects, video objects, file objects, record objects and so on. In fact,
almost any noun can be reasonably represented as a software object. Objects have proper-
ties (i.e., attributes, such as color, size and weight) and perform actions (i.e., behaviors,
such as moving, sleeping or drawing). Classes represent groups of related objects. For
example, al cars belong to the “car” class, even though individual cars vary in make,
model, color and options packages. A class specifies the general format of its objects; the
properties and actions available to an object depend on its class.

Weliveinaworld of objects. Just look around you—there are cars, planes, people, ani-
mals, buildings, traffic lights, elevators and so on. Before object-oriented languages
appeared, procedural programming languages (such as Fortran, Pascal, BASIC and C)
focused on actions (verbs) rather than things or objects (nouns). We live in a world of
objects, but earlier programming languages forced individuals to program primarily with
verbs. This paradigm shift made program writing a bit awkward. However, with the advent
of popular object-oriented languages, such as C++, Java, C# and Python, programmers can
program in an object-oriented manner that reflects the way in which they perceive the
world. This process, which seems more natural than procedural programming, has resulted
in significant productivity gains.

One of the key problems with procedural programming is that the program units cre-
ated do not mirror real-world entities effectively and therefore are not particularly reusable.
Programmers often write and rewrite similar software for various projects. Thiswastes pre-
cious time and money as people repeatedly “reinvent the wheel.” With object technology,
properly designed software entities (called objects) can be reused on future projects. Using
libraries of reusable componentry can greatly reduce the amount of effort required toimple-
ment certain kinds of systems (as compared to the effort that would be required to reinvent
these capabilities in new projects).

Some organizations report that software reusability is not, in fact, the key benefit of
object-oriented programming. Rather, they indicate that object-oriented programming
tendsto produce software that is more understandabl e because it is better organized and has
fewer maintenance requirements. As much as 80 percent of software costs are not associ-
ated with the original efforts to develop the software, but instead are related to the con-
tinued evolution and maintenance of that software throughout its lifetime. Object
orientation allows programmersto abstract the detail s of software and focuson the“ big pic-
ture.” Rather than worrying about minute details, the programmer can focus on the behav-
iors and interactions of objects. A roadmap that showed every tree, house and driveway
would be difficult, if not impossible, to read. When such details are removed and only the
essential information (roads) remains, the map becomes easier to understand. In the same
way, a program that is divided into objects is easy to understand, modify and update
because it hides much of the detail. It is clear that object-oriented programming will be the
key programming methodology for at least the next decade.

1.9 Hardware Trends

Every year, people generally expect to pay at least alittle more for most products and ser-
vices. The opposite has been the casein the computer and communicationsfields, especial-

%

4

*

é pythonhtpl_01.fm Page 10 Monday, December 10, 2001 12:13 PM

A

10 Introduction to Computers, Internet and World Wide Web Chapter 1

ly with regard to the costs of hardware supporting these technologies. For many decades,
and continuing into the foreseeabl e future, hardware costs havefalen rapidly, if not precip-
itously. Every year or two, the capacities of computers approximately double.! Thisis es-
pecialy true in relation to the amount of memory that computers have for programs, the
amount of secondary storage (such as disk storage) computers have to hold programs and
dataover longer periods of timeand their processor speeds—the speeds at which computers
execute their programs (i.e., do their work). Similar improvements have occurred in the
communications field, in which costs have plummeted as enormous demand for bandwidth
(i.e., information-carrying capacity of communication lines) has attracted tremendous com-
petition. We know of no other fields in which technology moves so quickly and costs fall
so rapidly. Such phenomenal improvement in the computing and communications fieldsis
truly fostering the so-called Information Revolution.

When computer use exploded in the 1960s and 1970s, many people discussed the dra-
matic improvements in human productivity that computing and communications would
cause. However, these improvements did not materialize. Organizations were spending
vast sums of capital on computers and employing them effectively, but without fully real-
izing the expected productivity gains. The invention of microprocessor chip technology
and its wide deployment in the late 1970s and 1980s laid the groundwork for the produc-
tivity improvements that individuals and businesses have achieved in recent years.

1.10 History of the Internet and World Wide Web

In the late 1960s, one of the authors (HMD) was a graduate student at MIT. Hisresearch at
MIT’s Project Mac (now the Laboratory for Computer Science—the home of the World
Wide Web Consortium) was funded by ARPA—the Advanced Research Projects Agency
of the Department of Defense. ARPA sponsored a conference at which several dozen
ARPA-funded graduate students were brought together at the University of Illinois at Ur-
bana-Champaign to meet and share ideas. During this conference, ARPA rolled out the
blueprints for networking the main computer systems of approximately a dozen ARPA-
funded universities and research ingtitutions. The computers were to be connected with
communications lines operating at a then-stunning 56 Kbps (1 Kbpsis equal to 1,024 bits
per second), at atime when most people (of the few who had access to networking technol -
ogies) were connecting over telephone lines to computers at a rate of 110 bits per second.
HMD vividly recalstheexcitement at that conference. Researchersat Harvard talked about
communicating with the Univac 1108 “supercomputer,” which was located across the
country at the University of Utah, to handle calculations related to their computer graphics
research. Many other intriguing possibilities were discussed. Academic research was about
to take a giant leap forward. Shortly after this conference, ARPA proceeded to implement
what quickly became called the ARPAnNet, the grandparent of today’s Internet.

Things worked out differently from the original plan. Although the ARPAnet did
enable researchersto network their computers, its chief benefit proved to be the capability
for quick and easy communication viawhat came to be known as electronic mail (e-mail).
Thisistrue even on today’ s Internet, with e-mail, instant messaging and file transfer facil-
itating communications among hundreds of millions of people worldwide.

1. Thisofteniscalled Moore's Law.

%

4

*

é pythonhtpl_01.fm Page 11 Monday, December 10, 2001 12:13 PM

A

Chapter 1 Introduction to Computers, Internet and World Wide Web 11

The network was designed to operate without centralized control. This meant that, if a
portion of the network should fail, the remaining working portions would still be able to
route data packets from senders to receivers over alternative paths.

The protocal (i.e., set of rules) for communicating over the ARPAnet became known
as the Transmission Control Protocol (TCP). TCP ensured that messages were properly
routed from sender to receiver and that those messages arrived intact.

In paralel with the early evolution of the Internet, organizations worldwide were
implementing their own networksto facilitate both intra-organization (i.e., within the orga-
nization) and inter-organization (i.e., between organizations) communication. A huge
variety of networking hardware and software appeared. One challenge was to enable these
diverse products to communicate with each other. ARPA accomplished this by developing
the Internet Protocol (1P), which created a true “ network of networks,” the current archi-
tecture of the Internet. The combined set of protocolsis now commonly called TCP/IP.

Initially, use of the Internet was limited to universities and research institutions; later,
the military adopted the technology. Eventually, the government decided to allow accessto
the Internet for commercial purposes. When this decision was made, there was resentment
among the research and military communities—it was felt that response times would
become poor as “the Net” became saturated with so many users.

In fact, the opposite has occurred. Businesses rapidly realized that, by making effective
use of the Internet, they could refine their operations and offer new and better services to
their clients. Companies started spending vast amounts of money to develop and enhance
their Internet presence. This generated fierce competition among communications carriers
and hardware and software suppliers to meet the increased infrastructure demand. The
result is that bandwidth on the Internet has increased tremendously, while hardware costs
have plummeted. It iswidely believed that the Internet played a significant rolein the eco-
nomic growth that many industrialized nations experienced over the last decade.

The World Wide Web (WMW) allows computer users to locate and view multimedia-
based documents (i.e., documents with text, graphics, animations, audios and/or videos)
on almost any subject. Even though the Internet was developed more than three decades
ago, the introduction of the World Wide Web was a relatively recent event. In 1989, Tim
Berners-Lee of CERN (the European Organization for Nuclear Research) began to
develop atechnology for sharing information via hyperlinked text documents. Basing the
new language on the well-established Standard Generalized Markup Language
(SGML)—astandard for business data interchange—Berners-L ee called hisinvention the
HyperText Markup Language (HTML). He also wrote communication protocols to form
the backbone of his new hypertext information system, which he referred to as the World
Wide Web.

Historianswill surely list the Internet and the World Wide Web among the most impor-
tant and profound creations of humankind. In the past, most computer applications ran on
“stand-alone” computers (computers that were not connected to one another). Today’s
applications can be written to communicate among the world's hundreds of millions of
computers. The Internet and World Wide Web merge computing and communications
technologies, expediting and simplifying our work. They make information instantly and
conveniently accessible to large numbers of people. They enable individuals and small
businesses to achieve worldwide exposure. They are profoundly changing the way we do
business and conduct our personal lives. People can search for the best prices on virtually

%

*

é pythonhtpl_01.fm Page 12 Monday, December 10, 2001 12:13 PM

A

.

12 Introduction to Computers, Internet and World Wide Web Chapter 1

any product or service. Special-interest communities can stay in touch with one another.
Researchers can be made instantly aware of the latest breakthroughs worldwide.

We have written two books for academic courses that convey fundamental principles
of computing in the context of Internet and World Wide Web programming—I nternet and
World Wide Web How to Program: Second Edition and e-Business and e-Commerce How
to Program.

1.11 World Wide Web Consortium (W3C)

In October 1994, Tim Berners-Lee founded an organization, called the World Wide Web
Consortium (W3C), that is devoted to devel oping nonproprietary, interoperable technolo-
gies for the World Wide Web. One of the W3C's primary goasisto make the Web univer-
sally accessible—regardless of disabilities, language or culture.

The W3C is also a standardization organization and is comprised of three hosts—the
Massachusetts Institute of Technology (MIT), France's INRIA (Institut National de
Recherche en Informatique et Automatique) and Keio University of Japan—and over 400
members, including Deitel & Associates, Inc. Members provide the primary financing for
the W3C and help provide the strategic direction of the Consortium. To learn more about
the W3C, visit www.w3 .org.

Web technol ogies standardized by the W3C are called Recommendations. Current W3C
Recommendations include Extensible HyperText Markup Language (XHTML™), Cas-
cading Style Sheets (CSS™) and the Extensible Markup Language (XML). Recommenda-
tions are not actua software products, but documents that specify therole, syntax and rules
of a technology. Before becoming a W3C Recommendation, a document passes through
three major phases: Working Draft—which, asits name implies, specifies an evolving draft;
Candidate Recommendation—a stable version of the document that industry can begin to
implement; and Proposed Recommendation—a Candidate Recommendation that is consid-
ered mature (i.e., has been implemented and tested over a period of time) and is ready to be
considered for W3C Recommendation status. For detailed information about the W3C Rec-
ommendation track, see“6.2 The W3C Recommendation track” at

www.w3.org/Consortium/Process/Process-19991111/
process.html#RecsCR

1.12 Extensible Markup Language (XML)

As the popularity of the Web exploded, HTML’s limitations became apparent. HTML's
lack of extensibility (the ability to change or add features) frustrated devel opers, and itsam-
biguous definition allowed erroneous HTML to proliferate. In response to these problems,
the W3C added limited extensibility to HTML. Thiswas, however, only atemporary solu-
tion—the need for a standardized, fully extensible and structurally strict language was ap-
parent. As a result, XML was developed by the W3C. XML combines the power and
extensibility of its parent language, Standard Generalized M arkup Language (SGML), with
the simplicity that the Web community demands. At the same time, the W3C began devel-
oping XML-based standards for style sheets and advanced hyperlinking. Extensible
Sylesheet Language (XSL) incorporates elements of both Cascading Style Sheets (CSS),
which is used to format HTML documents and Document Style and Semantics Specifica-
tion Language (DSSSL), which is used to format SGML documents. Similarly, the Exten-

%

4

*

é pythonhtpl_01.fm Page 13 Monday, December 10, 2001 12:13 PM

A

.

Chapter 1 Introduction to Computers, Internet and World Wide Web 13

sible Linking Language (XLink) combines ideas from HyTime and the Text Encoding
Initiative (TEI), to provide extensible linking of resources.

Data independence, the separation of content from its presentation, is the essential
characteristic of XML. Because an XML document describes data, any application con-
ceivably can process an XML document. Recognizing this, software developers are inte-
grating XML into their applications to improve Web functionality and interoperability.
XML’s flexibility and power make it perfect for the middle tier of client/server systems,
which must interact with a wide variety of clients. Much of the processing that was once
limited to server computers now can be performed by client computers, because XML’s
semantic and structural information enablesit to be manipulated by any application that can
processtext. This reduces server loads and network traffic, resulting in a faster, more effi-
cient Web.

XML isnot limited to Web applications. Increasingly, XML isbeing employed in data-
bases—the structure of an XML document enables it to be integrated easily with database
applications. As applications become more Web enabled, it seems likely that XML will
become the universal technology for data representation. All applications employing XML
would be able to communicate, provided that they could understand each other’'s XML
markup, or vocabulary.

Smple Object Access Protocol (SOAP) is atechnology for the distribution of objects
(marked up as XML) over the Internet. Developed primarily by Microsoft and Develop-
Mentor, SOAP provides a framework for expressing application semantics, encoding that
data and packaging it in modules. SOAP hasthree parts: The envel ope, which describesthe
content and intended recipient of a SOAP message; the SOAP encoding rules, which are
XM L-based; and the SOAP Remote Procedure Call (RPC) representation for commanding
other computers to perform a task. SOAP is supported by many platforms, because of its
foundationsin XML and HTTP. We discuss XML in Chapter 15, Extensible Markup Lan-
guage (XML) and in Chapter 16, XML Processing.

1.13 Open-Source Software Revolution

When the source code of aprogram isfreely available to any devel oper to modify, to redis-
tribute and to use as a basis for other software, it is called open-source software.? In con-
trast, closed-source software restricts other developers from creating software programs
whose source code is based on closed-source programs.

The concept of open-source technologiesis not new. The devel opment of open-source
technologies was an important factor in the growth of modern computing in 1960s. Specif-
ically, the United States government funded what became today’ s Internet and encouraged
computer scientists to develop technologies that could facilitate distributed computing on
various computer platforms. 3 Out of these efforts came technol ogies such asthe protocols
used to communicate over today’s Internet. After the Internet was established, closed-
source technologies and software became the norm in the software industry, and open-
source fell from popular use in the 1980s and early 1990s. In response to the “closed”

2. The Open Source Initiative’s definition includes nine requirements to which software must com-
ply before it is considered “open source.” To view the entire definition, visit <www.open-
source.org/docs/definition.html>.

3. <www.opensource.org>.

%

—

é pythonhtpl_01.fm Page 14 Monday, December 10, 2001 12:13 PM

A

.

14 Introduction to Computers, Internet and World Wide Web Chapter 1

nature of most commercial software and programmers’ frustrationswith the lack of respon-
siveness from closed-source vendors, open-source software, regained popularity. Today,
Python is part of a growing open-source software community, which includes the Linux
operating system, the Perl scripting language, the Apache Web server and hundreds of
other software projects.

Some peoplein the computer industry equate open-source with “free” software. In most
cases, thisistrue. However, “free” in the context of open-source software isthought of most
appropriately as “freedom”—the freedom for any developer to modify source code, to
exchanges ideas, to participate in the software-development process and to develop new
software programs based on existing open-source software. Most open-source software is
copyrighted and licenses are associated with the use of the software. Open-source licenses
vary in their terms; someimpose few restrictions (e.g., the Artistic license®), whereas others
require many restrictions on the manner in which the software may be modified and used.
Usudly, either anindividual developer or an organization maintainsthe software copyrights.
Toview anexampleof alicense, visitwww.python.org/2.2/license.html toread
the Python agreement.

Typically, the source code for open-source products is available for download over the
Internet. This enables developersto learn from, validate and modify the source code to meet
their own needs. With a community of developers, more people review the code so issues
such as performance and security problems are detected and resolved faster than they
would be in closed-source software development. Additionally, a larger community of
developers can contribute more features. Often, code fixes are available within hours, and
new versions of open-source software are available more frequently than are versions of
closed-source software. Open-source licenses often require that developers publish any
enhancements they make so that the open-source community can continue to evolve those
products. For example, Python devel opers participate in the comp . Lang . python hews-
group to exchange ideas regarding the development of Python. Python devel opers also can
document and submit their modifications to the Python Software Foundation through
Python Enhancement Proposals (PEPS), which enables the Python group to evaluate the
proposed changes and incorporate the ones they choose in future releases.”

Many companies, (e.g., IBM, Red Hat and Sun) support open-source developers and
projects. Sometimes companies take open-source applications and sell them commercially
(this depends on software licensing). For-profit companies a so provide services such as sup-
port, custom-made software and training. Devel opers can offer their services as consultants
or trainers to businesses implementing the software. For more information about open-
source software, visit the Open Source Initiative' s Web site at www . opensource.org.

1.14 History of Python

Python began in late 1989. At that time, Guido van Rossum, a researcher at the National
Research Institute for Mathematics and Computer Science in Amsterdam (CWI), needed a
high-level scripting language to accomplish administrative tasks for his research group’s

<www.opensource.org/licenses/artistic-license.html>.
<www.python.org>.
<www-106.ibm.com/developerworks/opensource/library/license.ht-
ml?dwzone=opensource>.

o0 A

%

*

é pythonhtpl_01.fm Page 15 Monday, December 10, 2001 12:13 PM

A

.

Chapter 1 Introduction to Computers, Internet and World Wide Web 15

Amoeba distributed operating system. To create this new language, he drew heavily from
All Basic Code (ABC)—a high-level teaching language—for syntax, and from Modula-3, a
systems programming language, for error-handling techniques. However, one major short-
coming of ABC wasits lack of extensibility; the language was not open to improvements
or extensions. So, van Rossum decided to create a language that combined many of the el-
ements he liked from existing languages, but one that could be extended through classes
and programming interfaces. He named this language Python, after the popular comic
troupe Monty Python.

Sinceits public releasein early 1991, a growing community of Python developers and
users have improved it to create a mature and well-supported programming language.
Python has been used to develop avariety of applications, from creating online e-mail pro-
grams to controlling underwater vehicles, configuring operating systems and creating ani-
mated films. In 2001, the core Python development team moved to Digital Creations, the
creators of Zope—a Web application server written in Python. It is expected that Python
will continue to grow and expand into new programming realms.

1.15 Python Modules

Python isamodularly extensiblelanguage; it can incorporate new modules (reusabl e pieces
of software). These new modules, which can be written by any Python devel oper, extend
Python’ s capabilities. The primary distribution center for Python source code, modules and
documentation isthe Python Web site—www . python . org—with plansto develop asite
dedicated solely to maintaining Python modules.

1.16 General Notes about Python and This Book

Python was designed so that novice and experienced programmers could learn and under-
stand the language quickly and use it with ease. Unlike its predecessors, Python was de-
signed to be portable and extensible. Python's syntax and design promote good
programming practices and tend to produce surprisingly rapid devel opment times without
sacrificing program scalability and maintenance.

Python is simple enough to be used by beginning programmers, but powerful enough
to attract professionals. Python How to Programintroduces programming conceptsthrough
abundant, complete, working examples and discussions. As we progress, we begin to
explore more complex topics by creating practical applications. Throughout the book, we
emphasize good programming practices and portability tips and explain how to avoid
commMmonN programming errors.

Python is one of the most highly portable programming languages in existence. Orig-
inaly, it was implemented on UNIX, but has since spread to many other platforms,
including Microsoft Windows and Apple Mac OS X. Python programs often can be ported
from one operating system to another without any change and still execute properly.

1.17 Tour of the Book

In this section, we take atour of the subjects introduced in Python How to Program. Some
chapters end with an Internet and World Wide Web Resources section, which lists resourc-
es that provide additional information on Python programming.

%

—

é pythonhtpl_01.fm Page 16 Monday, December 10, 2001 12:13 PM

A

.

16 Introduction to Computers, Internet and World Wide Web Chapter 1

Chapter 1—Introduction to Computers, the I nternet and the World Wide Web

In this chapter, we discuss what computers are, how they work and how they are pro-
grammed. The chapter introduces structured programming and explains why this set of
techniques has fostered arevolution in the way programs are written. A brief history of the
development of programming languages—from machine languages, to assembly languag-
es to high-level languages—is included. We present some historical information about
computers and computer programming and introductory information about the Internet and
the World Wide Web. We discuss the origins of the Python programming language and
overview the concepts introduced in the remaining chapters of the book.

Chapter 2—Introduction to Python Programming

Chapter 2 introduces a typical Python programming environment and the basic syntax for
writing Python programs. We discuss how to run Python from the command line. In addition
totheinterpreter, Python can execute statementsin aninteractive modein which Python state-
ments can be typed and executed. Throughout the chapter and the book, we include several
interactive sessions to highlight and illustrate various subtle programming points. In this
chapter, we discuss variables and introduce arithmetic, assignment, equality, relational and
string operators. We introduce decision-making and arithmetic operations. Stringsare abasic
and powerful built-in data type. We introduce some standard output-formatting techniques.
We discuss the concept of objects and variables. Objects are containers for values and vari-
ables are names that reference objects. Our Python programs use syntax coloring to highlight
keywords, comments and regular program text. After studying this chapter, readers will un-
derstand how to write smple but complete Python programs.

Chapter 3—Control Structures

This chapter introduces algorithms (procedures) for solving problems. It explains the impor-
tance of using control structures effectively in producing programs that are understandable,
debuggable, maintainable and more likely to work properly on thefirst try. The chapter intro-
duces sdlection structures (if, if/else and if/elif/else) and repetition structures
(while and for). It examinesrepetition in detail and compares counter-controlled and sen-
tinel-controlled loops. We explain the technique of top-down, stepwise refinement whichis
critical to the production of properly structured programs and the creation of the popular pro-
gram design aid, pseudocode. The chapter examples and case studies demonstrate how quick-
ly and easily pseudocode algorithms can be converted to working Python code. The chapter
contains an explanation of break and continue—statements that ater the flow of con-
trol. We show how to use the logical operators and, or and not to enable programs to
make sophisticated decisions. The chapter includes several interactive sessions that dem-
onstrate how to create a £or structure and how to avoid several common programming er-
rors that arise in structured programming. The chapter concludes with a summary of
structured programming. The techniques presented in Chapter 3 are applicablefor effective
use of control structuresin any programming language, not just Python. This chapter helps
the student devel op good programming habits in preparation for dealing with the more sub-
stantial programming tasks in the remainder of the text.

Chapter 4—Functions
Chapter 4 discusses the design and construction of functions. Python’ sfunction-related ca-
pabilities include built-in functions, programmer-defined functions and recursion. The

%

—

é pythonhtpl_01.fm Page 17 Monday, December 10, 2001 12:13 PM

A

.

Chapter 1 Introduction to Computers, Internet and World Wide Web 17

techniques presented in Chapter 4 are essential for creating properly structured programs—
especially the larger programs and software that system programmers and application pro-
grammers are likely to develop in real-world applications. The “divide and conquer” strat-
egy is presented as an effective means for solving complex problems by dividing them into
simpler interacting components. We begin by introducing modules as containers for groups
of useful functions. We introduce modulemath and discuss the many mathematics-related
functions the modul e contains. Students enjoy the treatment of random numbers and simu-
lation, and they are entertained by a study of the dice game, craps, which makes el egant use
of control structures. The chapter illustrates how to solve aFibonacci and factorial problem
using a programming technique called recursion in which a function calls itself. Scope
rules are discussed in the context of an example that examines local and global variables.
The chapter also discusses the various ways a program can import a module and its ele-
ments and how the import statement affects the program’ s namespace. Python functions
can specify default arguments and keyword arguments. We discuss both ways of passing
information to functions and illustrate some common programming errorsin an interactive
session. The exercises present traditional mathematics and computer-science problems, in-
cluding how to solve the famous Towers of Hanoi problem using recursion. Another exer-
cise asks the reader to display the prime numbers from 2—100.

Chapter 5—Lists, Tuplesand Dictionaries

This chapter presents a detailed introduction to three high-level Python datatypes: lists, tu-
plesand dictionaries. These datatypes enable Python programmers to accomplish complex
tasks through minimal lines of code. Strings, lists and tuples are all sequences—adatatype
that can be manipulated through indexing and “ dlicing.” We discuss how to create, access
and manipul ate sequences and present an exampl e that creates a histogram from a sequence
of values. We consider the different wayslistsand tuples are used in Python programs. Dic-
tionaries are “mappable’ types—keys are stored with (or mapped to) their associated val-
ues. We discuss how to create, initialize and manipulate dictionaries in an example that
stores student grades. We introduce methods—functions that perform the operations of ob-
jects, such aslistsand dictionaries—and how to use methodsto access, sort and search data.
These methods easily perform algorithmic tasks that normally require abundant lines of
code in other languages. We consider immutable sequences—which cannot be altered—
and mutabl e sequences—which can be altered. An important and perhaps unexpected “ side
effect” occurs when passing mutable sequences to functions—we present an example to
show the ramifications of this side effect. The exercises at the end of the chapter address
elementary sorting and searching algorithms and other programming techniques.

Chapter 6—I ntroduction to the Common Gateway | nterface (CGlI)

Chapter 6 illustrates a protocol for interactions between applications (CGI programs or
scripts) and Web servers. The chapter introduces the Hyper Text Transfer Protocol (HTTP),
which isafundamental component in the communication of data between aWeb server and
aWeb browser. We explain how aclient computer connects to a server computer to request
information over the Internet and how a Web server runs a CGI program then sends are-
sponse to the client. The most common data sent from a Web server to aWeb browser isa
Web page—adocument that is formatted with the Extensible Hyper Text Markup Language
(XHTML). In this chapter, we learn how to create simple CGI scripts. We also show how
to send user input from a browser to a CGI script with an example that displays a person’s

%

—

é pythonhtpl_01.fm Page 18 Monday, December 10, 2001 12:13 PM

A

%

18 Introduction to Computers, Internet and World Wide Web Chapter 1

namein a Web browser. We then focus on how to send user input to a CGI script by using
an XHTML form to pass data between the client and the CGI program on the server. We
demonstrate how to use module egi to process form data. The chapter contains descrip-
tions of various HTTP headers used with CGI. We conclude by integrating the CGl mate-
rial into aWeb portal case study that allows the user to log in to afictional travel Web site
and to view information about special offers.

Chapter 7—Object-Based Programming

In this chapter, we begin our discussion of object-based programming. The chapter repre-
sents awonderful opportunity for teaching data abstraction the “right way”—through the
Python language that was designed from the ground up to be object-oriented. In recent
years, data abstraction has become an important topic in introductory computing courses.
We discuss how to implement a time abstract data type with a class and how to initialize
and access data members of the class. Unlike other languages, Python does not permit pro-
grammers to prohibit attribute access. In this and the next two chapters, we discuss several
access-control techniques. We introduce “private” attributes aswell as get and set methods
that control access to data. All objects and classes have attributesin common, and we dis-
cuss their names and values. We discuss default constructors and expand our example fur-
ther. We aso introduce the raise statement for indicating errors. Classes can contain
class attributes—data that are created once and used by all instances of the class. We also
discussan example of composition, in which instances contain referencesto other instances
as data members. The chapter concludes with a discussion of software reusability. The
more mathematically inclined reader will enjoy the exercise on creating class Rational
(for rational numbers).

Chapter 8—Customizing Classes

This chapter discusses the several methods Python provides for customizing the behavior
of aclass. These methods extend the access-control mechanism introduced in the previous
chapter. Perhaps the most powerful of the customization techniques is operator overload-
ing, which enables the programmer to tell the Python interpreter how to use existing oper-
ators with objects of new types. Python already knows how to use these operators with
objects of built-in types such asintegers, listsand strings. But suppose we create anew Ra -
tional class—what would the plus sign (+) denote when used between Rational ob-
jects? In this chapter, the programmer will learn how to “overload” the plus sign so that,
when it is written between two Rational objects in an expression, the interpreter will
generate a method call to an “operator method” that “adds’ the two Rational objects.
The chapter discusses the fundamentals of operator overloading, restrictions in operator
overloading, overloading unary and binary operators and converting between types. The
chapter also discusses how to customize aclass so it containslist- or dictionary-like behav-
iors. The more mathematically inclined student will enjoy creating class Polynomial.

Chapter 9—Object-Oriented Programming: Inheritance

This chapter introduces one of the most fundamental capabilities of object-oriented pro-
gramming languages: inheritance. Inheritance is a form of software reusability in which
new classes are developed quickly and easily by absorbing the capabilities of existing class-
es and adding appropriate new capabilities. The chapter discusses the notions of base class-
es and derived classes, direct-base classes, indirect-base classes, constructors and

%

—

é pythonhtpl_01.fm Page 19 Monday, December 10, 2001 12:13 PM

A

Chapter 1 Introduction to Computers, Internet and World Wide Web 19

destructors in base classes and derived classes, and software engineering with inheritance.
This chapter compares various object-oriented relationships, such as inheritance and com-
position. Inheritance leads to programming techniques that highlight one of Python’s most
powerful built-in features—polymor phism. When many classes are related through inher-
itance to acommon base class, each derived-class object may be treated as a base-class in-
stance. Thisenables programs to be written in ageneral manner independent of the specific
types of the derived-class objects. New kinds of objects can be handled by the same pro-
gram, thus making systems more extensible. This style of programming is commonly used
to implement today’s popular graphical user interfaces (GUIs). The chapter concludes
with a discussion of the new object-oriented programming techniques available in Python
version 2.2.

Chapter 10—Graphical User I nterface Components: Part 1

Chapter 10 introduces Tkinter, amodulethat provides a Python interface to the popular
Tool Command Language/Tool Kit (Tcl/Tk) graphical-user-interface (GUI) toolkit. The
chapter begins with a detailed overview of the Tkinter module. Using Tkinter, the
programmer can create graphical programs quickly and easily. Weiillustrate several basic
Tkinter components—Label, Button, Entry, Checkbutton and Radio-
button. We discuss the concept of event-handling that is central to GUI programming
and present examples that show how to handle mouse and keyboard events in GUI appli-
cations. We conclude the chapter with a more in-depth examination of the pack, grid
and place Tk layout managers. The exercises ask the reader to use the concepts presented
in the chapter to create practical applications, such asaprogram that allowsthe user to con-
vert temperature values between scales. Another exercise asks the reader to create a GUI
calculator. After completing this chapter, the reader should be able to understand most
Tkinter applications.

Chapter 11—Graphical User I nterface Components: Part 2

Chapter 11 discusses additional GUI-programming topics. We introduce module Pmw,
which extends the basic Tk GUI widget set. We show how to create menus, popup menus,
scrolled text boxes and windows. The examples demonstrate copying text from one win-
dow to another, allowing the user to select and display images, changing the text font and
changing the background color of awindow. Of particular interest is the 35-line program
that allows the user to draw pictures on a Canvas component with a mouse. The chapter
concludes with a discussion of alternative GUI toolkits available to the Python program-
mer, including pyGTK, pyOpenGL and wxWindows. One of the chapter exercises asks
the reader to enhance the temperature-conversion example from the previous chapter. A
second exercise asks the reader to create asimple program that draws ashape on the screen.
In another exercise, the reader fillsthe shape with a color selected from menu. Many exam-
ples throughout the remainder of the book use the GUI techniques shown in Chapters 10
and 11. After completing Chapters 10 and 11, the reader will be prepared to write the GUI
portions of programsthat perform database operations, networking tasks and simple games.

Chapter 12—Exception Handling
This chapter enablesthe programmer to write programsthat are more robust, more fault tol-
erant and more appropriate for business-critical and mission-critical environments. We be-

%

—

é pythonhtpl_01.fm Page 20 Monday, December 10, 2001 12:13 PM

A

.

20 Intfroduction to Compuiters, Internet and World Wide Web Chapter 1

gin the chapter with an explanation of exception-handling techniques. We then discuss
when exception handling is appropriate and introduce the basi cs of exception handling with
try/except/else statementsin an example that gracefully handlesthe fatal logic error
of dividing by zero. The programmer can raise exceptions specifically using the raise
statement; we discuss the syntax of this statement and demonstrate its use. The chapter ex-
plains how to extract information from exceptions and how and when to raise exceptions.
Weexplain the £inally statement and provide adetailed explanation of when and where
exceptions are caught in programs. In Python, exceptions are classes. We discuss how ex-
ceptions relate to classes by examining the exception hierarchy and how to create custom
exceptions. The chapter concludes with an example that takes advantage of the capabilities
of module traceback to examine the nature and contents of Python exceptions.

Chapter 13—String Manipulation and Regular Expressions

This chapter explores how to manipulate string appearance, order and contents. Strings
form the basis of most Python output. The chapter discussion includes methods count,
find and index, which search strings for substrings. Method sp1it breaksastring into
alist of strings. Method replace replaces a substring of a string with another substring.
These methods provide basic text manipulation capabilities, but programmers often require
more powerful pattern-based text manipulation. The re regular-expression module pro-
vides pattern-based text manipulation in Python. Regular-expression processing can be a
complex subject, with many pitfalls. We present several sectionsthat range from basic reg-
ular expressions to more substantial topics. We point out the most common programming
mistakes and include examples that highlight how these mistakes occur and how to avoid
them. The sections discuss the common functions and classes of module re and the com-
mon regular-expression metacharacters and sequences. We demonstrate grouping, which
enables programmers to retrieve information from regular-expression processing results.
Python regular expressions can be compiled to improve regular-expression processing per-
formance, so we discuss when it is appropriate to do this. The exercises ask the reader to
explore common applications of regular expressions.

Chapter 14—File Processing and Serialization

In this chapter, we discuss the techniques for processing sequential-access and random-ac-
cess text files. The chapter overviews the data hierarchy among bits, bytes, fields, records
and files. Next, Python’s ssimple view of files and filehandles is presented. Sequential-ac-
cessfilesare discussed using programs that show how to open and closefiles, how to store
data sequentialy in afile and how to read data sequentially from afile. The examples use
the string-formatting techniques from the previous chapter to output data read from afile.
We include a more substantial program that simulates a credit-inquiry program that re-
trieves data from a sequential-access file and formats the output based on data obtained
from the file. One feature of the chapter is the discussion of how the print statement can
redirect text to an arbitrary file, including the standard error file to which programs display
error messages. Our discussion of random-access files uses module shelve, which pro-
videsadictionary-like interface to random-accessfiles. We use shelve to create afilefor
random access and to read and write datato ashelve file. Weinclude alarger transaction-
processing programming example that employs the techniques discussed in the chapter.
One benefit of Python’s high-level data types and modules is that programs can serialize

%

*

é pythonhtpl_01.fm Page 21 Monday, December 10, 2001 12:13 PM

A

.

Chapter 1 Introduction to Computers, Internet and World Wide Web 21

(saveto disk) arbitrary Python objects. We present an examplethat usesmodule cPickle
to store a Python dictionary to disk for later use.

Chapter 15—Extensible Markup Language (XML)

XML isalanguagefor creating markup languages. Unlike HTML, which formatsinforma-
tion for display, XML structures information. It does not have afixed set of tagsasHTML
does, but instead enables the document author to create new ones. This chapter provides a
brief overview of parsers, which are programsthat process XML documents and their data,
and the requirements for awell-formed document (i.e., adocument that is syntactically cor-
rect). We a so introduce namespaces, which differentiate elements with the same name, and
Document Type Definition (DTD) files and schema files, which provide a structural defini-
tion for an XML document by specifying the type, order, number and attributes of the ele-
mentsin an XML document. By defining an XML document’ s structure, aDTD or Schema
reduces the validation and error-checking work of the application using the document. This
chapter provides an introduction to an extremely popular XM L-related technol ogy—called
the Extensible Stylesheet Language (XSL)—for transforming XML documents into other
document formats such as XHTML. This chapter provides an overview of XML ; Chapter
16 discusses XML processing in Python.

Chapter 16—XML Processing

In this chapter, we discuss how Python XML processing and manipulation can be accom-
plished simply and powerfully using standard and third-party modules. This chapter over-
views several ways to process XML documents. The W3C Document Object Model
(DOM)—an Application Programming Interface (API) for XML that is platform and lan-
guage neutral—is discussed. The DOM API provides astandard set of interfaces (i.e., meth-
ods, objects, etc.) for manipulating an XML document’s contents. XML documents are
hierarchically structured, thus, the DOM represents XML documents as tree structures. Us-
ing DOM, programs can modify the content, structure and formatting of documents dynam-
icaly. We also present an dternative to DOM called the Smple API for XML (SAX). Unlike
DOM, which builds atree structurein memory, SAX calls specific methods when start tags,
end tags, attributes, etc., are encountered in a document. For this reason, SAX is often re-
ferred to as an event-based API. Python XML support is available through modules
xml .dom. ext (DOM) and xm1 . sax (SAX). Inthe chapter, we use 4Quite (devel oped by
FourThought, Inc.) and PyXML—two collections of Python XML modules. The mgjor fea-
ture of thischapter isacase study that uses XML to implement aWeb-based message forum.

Chapter 17—Database Application Programming I nterface (DB-API)

This chapter enables programs to query and manipulate databases. Most substantial busi-
ness and Web applications are based on database management systems (DBMS). To sup-
port DBMS applications, Python offers the database application programming interface
(DB-API). This chapter uses Sructured Query Language (SQL) to query and manipulate
Relational Database Management Systems (RDBMS), specifically aMySQL database. To
interface with a MySQL database, Python uses module MysQLdb. This chapter contains
three examples. The first isa CGI program that displays information about authors, based
on criteria provided by the user. The second creates a GUI program that allows the user to
enter an SQL query, then displaysthe results of the query. The third exampleisamore sub-
stantial GUI program that enables the user to maintain alist of contacts. The user can add,

%

—

é pythonhtpl_01.fm Page 22 Monday, December 10, 2001 12:13 PM

A

%

22 Intfroduction to Compuiters, Internet and World Wide Web Chapter 1

remove, update and find contacts in the database. The exercises ask the reader to modify
these programs to provide more functionality, such as verifying that the database does not
contain identical entries.

Chapter 18—Process Management

In this chapter, we discuss concurrency. Most programming languages provide a smple set
of control structures that enable programmers to perform one action at atime and proceed to
the next action after the previous one is finished. Such control structures do not allow most
programming languagesto perform concurrent actions. Thekind of concurrency that comput-
ers perform today normally isimplemented as operating-system primitives available only to
highly experienced systems programmers. Python makes concurrency primitives available to
application programmers. We show how to usethe £ork command, which createsanew pro-
cess, and the exec and sy stem commands, which execute separate programs. Techniques
for controlling input and output with the popen command are demonstrated and explained.
Some of these commands are available on the Unix platform only, so we point this out when
appropriate. We & so explore Python’ s cross-platform capabilities through examplesthat per-
form specific tasks based on the operating system on which the program is executing. Wedis-
cuss methods for communi cating between processes, including pipesand signals. The signal-
handling exampl es demonstrate how to discover when a user triesto interrupt a program and
how to specify an action that the program takes when such an event occurs.

Chapter 19—Multithreading

This chapter introduces threads, which are “light-weight processes.” They often are more
efficient than full-fledged processes created as aresult of commands like fork presented
in the previous chapter. We examine basi ¢ threading concepts, including the various states
in which athread can exist throughout its life. We discuss how to include threads in a pro-
gram by subclassing threading. Thread and overriding method run. The latter half
of the chapter contains examples that address the classic producer/consumer relationship.
We develop several solutionsto this problem and introduce the concept of thread synchro-
nization and resource allocation. We introduce threading control primitives, such as locks,
condition variables, semaphores and events. The final solution uses module Queue to pro-
tect access to shared data stored in a queue. The examples demonstrate the hazards of
threaded programs and show how to avoid these hazards. Our solution also demonstrates
the value of writing classes for reuse. We reuse our producer and consumer classes to ac-
cess various synchronized and unsynchronized data types. After completing this chapter,
the reader will have many of the tools necessary to write substantial, extensible and profes-
sional programsin Python.

Chapter 20—Networking

In this chapter, we explore applications that can communicate over computer networks. A
major benefit of a high-level language like Python isthat potentially complex topics can be
presented and discussed easily through small, working examples. We discuss basic net-
working concepts and present two examples—a CGI program that displays a chosen Web
page in a browser and a GUI example that displays page content (e.g., XHTML) in atext
area. We also discuss client-server communication over sockets. The programsin this sec-
tion demonstrate how to send and receive messages over the network, using connectionless
and connection-based protocols. A key feature of the chapter is the live-code implementa-

%

—

é pythonhtpl_01.fm Page 23 Monday, December 10, 2001 12:13 PM

A

.

Chapter 1 Intfroduction to Computers, Internet and World Wide Web 23

tion of a collaborative client/server Tic-Tac-Toe game in which two clients play Tic-Tac-
Toe by interacting with amultithreaded server that maintainsthe state of the game. As part
of the exercises, readers will write programs that send and receive messages and files. We
ask the reader to modify the Tic-Tac-Toe game to determine when a player wins the game.

Chapter 21—Security

This chapter discusses Web programming security issues. Web programming allows the
rapid creation of powerful applications, but it a so exposes computersto outside attack. We
focus on defensive programming techniques that help the programmer prevent security
problems by using certain techniques and tools. One of those toolsis encryption. We pro-
vide an example of encryption and decryption with module rotor, which acts as a substi-
tution cipher. Another tool is module sha, which is used to hash values. A third tool is
Python's restricted-access (rexec) module, which creates a restricted environment in
which untrusted code can execute without damaging the local computer. This chapter ex-
amines technologies, such as Public Key Cryptography, Secure Socket Layer (S9L), digital
signatures, digital certificates, digital steganography and biometrics, which provide net-
work security. Other types of network security, such as firewalls and antivirus programs,
are also covered, and common security threats including cryptanalytic attacks, viruses,
worms and Trojan horses are discussed.

Chapter 22—Data Structures

Chapter 22 explores the techniques used to create and manipul ate standard data structuresin
Python. Although high-level data types are built into Python, we believe the reader will ben-
efit from this conceptual and programmatic examination of common data structures. The
chapter begins with adiscussion of self-referentia structures and proceeds with a discussion
of how to create and maintain various data structures, including linked lists, queues (or wait-
ing lines), stacks and binary trees. We reuse the linked-list class to implement queues and
stacks, so that the code for the inherited class is minimized and emphasisis placed on code
reuse. The binary tree class contains methods for pre-, in- and post-order traversals. For each
type of data structure, we present complete, working programs and show sample outputs.

Chapter 23—Case Study: Multi-Tier Online Bookstore

This chapter implements an online bookstore that uses MySQL, XML and XSLT to send
Web pagesto different clients. We begin the chapter with an introduction to an HTTP-ses-
sion framework that maintains client information over several pages. The client informa:
tion is “pickled” (serialized) on the server’s computer, to be used by the server at a later
time. Wethen discuss WML, amarkup language used by wirel ess clientsto pass documents
over the Web. Although we demonstrate the application with XHTML, XHTML Basic and
WML clients, we designed the bookstore to be extensible, so new client types can be added
easily. The Python CGI programs do not change, but the programmer can modify the book-
store to service new clients by simply creating new XML and XSLT documents for those
clients. The bookstore program determines the client type and sends the appropriate datato
the client. This chapter encompasses many topics from the previous chapters in the book
and illustrates a major strength of Python—its ability to integrate several technologies
quickly and easily. The topics covered include file processing, serialization (module
cPickle), CGIl form processing (module cgi), database access (module My SQLdb),
XML DOM manipulation and XSLT processing (the 4Suite set of modules.)

%

—

é pythonhtpl_01.fm Page 24 Monday, December 10, 2001 12:13 PM

A

24 Introduction to Computers, Internet and World Wide Web Chapter 1

Chapter 24—Multimedia

This chapter presents Python’ s capabilities for making computer applications come dive.
It is remarkable that students in entry-level programming courses will be writing Python
applications with al these capabilities. Some exciting multimedia applicationsinclude Py-
OpenGL, amodule that binds Python to OpenGL API to create colorful, interactive graph-
ics; Alice, an environment for creating and manipulating 3D graphica worldsin an object-
oriented manner; and Pygame, a large collection of Python modules for creating cross-
platform, multimedia applications, such as interactive games. In our PyOpenGL examples,
we create rotating objects and three-dimensional shapes. In the Alice example, we create a
graphical game version of a popular riddle. The world we create contains afox, a chicken
and aplant. The goal isto move all three objects across ariver, without leaving a predator-
prey pair aoneat any onetime. Our first Pygame example combines Tkinter and Pyg-
ame to create a GUI compact disc player. The second example illustrates how to play an
MPEG movie. The final Pygame example creates a video game where the user steers a
spaceship through an asteroid field to gather energy cells. We discuss many graphics pro-
gram pitfalls and techniques in the context of this example. With many other programming
languages, these projects would be too complex or detailed to present in abook such asthis.
However, Python's high-level nature, simple syntax and ample modules enable us to
present these exciting examples all in the same chapter!

Chapter 25—Python Server Pages (PSP)

Inthischapter, we create dynamic Web content using familiar Extensible Hyper Text Markup
Language (XHTML) syntax and Python scripts. We discuss both sides of aclient-server re-
lationship. The tools used in this chapter include Apache and Webware for Python—a suite
of softwarefor writing dynamic Web content. An explanation of Python servletsis presented
at the beginning of this chapter. In addition to illustrating how PSP handles Python’ sunique
indentation style, our examplesillustrate scriptlets, actions and directives. The exercises ask
the reader to modify these examples by adding database connections to PSP.

Appendix A—Operator Precedence Chart
This appendix contains the Python operator precedence chart.

Appendix B—ASCI | Character Set
Appendix B contains atable of the 128 ASCII alphanumeric symbols.

Appendix C—Number Systems
Appendix C explainsthe binary, octal, decimal and hexadecimal number systems. We also
cover how to convert between bases and perform arithmetic operations in each base.

Appendix D—Python Development Environments
This appendix presents a brief overview of several Python Development environments, in-
cluding IDLE.

Appendix E—Career Resources

This appendix provides resources related to careers in Python and related technologies. The
Internet presents valuable resources and services for job seekers and employers. Automatic
search features allow empl oyeesto scan the Web for open positions. Employersaso can find
job candidates using the Internet. This reduces the amount of time spent preparing and re-

%

—

é pythonhtpl_01.fm Page 25 Monday, December 10, 2001 12:13 PM

A

Chapter 1 Introduction to Computers, Internet and World Wide Web 25

viewing resumes, and can minimize travel expensesfor distance recruiting and interviewing.
In this chapter, we explore career services on the Web from the perspectives of job seekers
and employers. Weintroduce comprehensive job sites, industry-specific sites (including sites
geared specifically for Python programmers) and contracting opportunities, as well as addi-
tional resources and career services designed to meet the needs of avariety of individuals.

Appendix F—Unicode®

This appendix introduces the Unicode Standard, an encoding scheme that assigns unique
numeric valuesto the characters of most of theworld’ slanguages. It includes a Python pro-
gram that uses Unicode encoding to print awelcome message in 10 different languages.

Appendices G and H—I ntroduction to Hyper Text Markup Language 4: 1 & 2 (on CD)
These appendices provide an introduction to HTML—the HyperText Markup Language.
HTML is a markup language for describing the elements of an HTML document (Web
page) so that abrowser, such as Microsoft’ s Internet Explorer, can render (i.e., display) that
page. These appendices are included for our readers who do not know HTML. Some key
topics covered in Appendix G include incorporating text and images in an HTML docu-
ment, linking to other HTML documents on the Web, incorporating specia characters
(such as copyright and trademark symbols) into an HTML document and separating parts
of an HTML document with horizontal rules. In Appendix H, we discuss more substantial
HTML elements and features. We demonstrate how to present information in lists and ta-
bles. We discuss how to collect information from people browsing a site. We explain how
to useinternal linking and image maps to make Web pages easier to navigate. We also dis-
cuss how to use frames to display multiple documents in the browser window.

Appendices | and J—Introduction to XHTML: Part 1 & 2

In these appendices, we introduce the Extensible Hyper Text Markup Language (XHTML).
XHTML isaW3C technology designed to replace HTML as the primary means of describ-
ing Web content. As an XML -based language, XHTML is more robust and extensible than
HTML. XHTML incorporates most of HTML 4's elements and attributes—the focus of
these appendices. Appendix | introduces the XHTML and write many simple Web pages.
We introduce basic XHTML tags and attributes. A key issue when using XHTML isthe
separation of the presentation of a document (i.e., how the document is rendered on the
screen by a browser) from the structure of that document. Appendix J continues our XHT-
ML discussion with more substantial XHTML elements and features. We demonstrate how
to present information in lists and tables and discuss how to collect information from peo-
ple browsing a site. We explain internal linking and image maps—techniques that make
Web pages easier to navigate. We show how to use frames to make attractive Web sites.

Appendix K—Cascading Style Sheets™ (CSS)

Appendix K discusses how document authors can control how the browser renders a Web
page. In earlier versions of XHTML, Web browsers controlled the appearance (i.e., the ren-
dering) of every Web page. For example, if a document author placed an hi (i.e, alarge
heading) element in adocument, the browser rendered the element in its own manner, which
was often different than the way other Web browserswould render the same document. Cas-
cading Style Sheets (CSS) technology allows document authors to specify the styles of their
page elements (spacing, margins, etc.) separately from the structure of their documents (sec-

%

—

é pythonhtpl_01.fm Page 26 Monday, December 10, 2001 12:13 PM

A

i

26 Introduction to Computers, Internet and World Wide Web Chapter 1

tion headers, body text, links, etc.). This separation of structure from content allows greater
manageability and makes changing the style of the document easier and faster.

Appendix L—Accessibility

This appendix discusses how to design accessible Web sites. Currently, the World Wide
Web presents challenges to people with various disabilities. Multimedia-rich Web sites
hinder text readersand other programs designed to help people with visual impairments, and
the increasing amount of audio on the Web is inaccessible to people with hearing impair-
ments. To rectify this situation, the federal government has issued severa key legislation
that address Web accessibility. For example, the Americanswith Disabilities Act (ADA) pro-
hibits discrimination on the basis of adisability. The W3C started the Web Accessibility Ini-
tiative (WAI), which provides guidelines describing how to make Web sites accessible to
peoplewith variousimpairments. This chapter provides a description of these methods, such
asuse of the <header s> tag to make tables more accessibleto pagereaders, useof thealt
atribute of the tag to describe images, and the proper use of XHTML and related
technologiesto ensure that a page can be viewed on any type of display or reader. VoiceXML
also can increase accessibility with speech synthesis and recognition.

Appendix M—HTML/XHTML Special Characters (on CD)
This appendix provides many commonly used HTML/XHTML special characters, called
character entity references.

Appendix N—HTML/XHTML Colors (on CD)
This appendix lists commonly used HTML/XHTML color names and their corresponding
hexadecimal values.

Appendix O—Additional Python 2.2 Features

This book was published as the release of Python 2.2 was impending. We integrated many
Python 2.2 features throughout the book. However, there were afew features that we were
unable to insert in the text. We assembled these additional features into Appendix O. As
you read each chapter, peak ahead to Appendix O for additional discussions and live-code
examples.

Resources on Our Web Site

Our Web site, www . deitel . com, provides anumber of Python-related resourcesto help
you install and configure Python on your Windows or UNIX/Linux systems. The resources
include Installing Python, Installing the Apache Web Server, Installing MySQL, Installing
Database Application Programming Interface (DB-API) modules, Installing Webware for
Python and Installing Third-Party Modules.

Weéll, thereyou haveit! We have worked hard to create thisbook and its optional inter-
active multimedia Cyber Classroom. The book is loaded with hundreds of working, Live-
Code™ examples, programming tips, self-review exercises and answers, challenging exer-
cises and projects and numerous study aids to help you master the material. The technolo-
gies we introduce will help you write Web-based applications quickly and effectively. As
you read the book, if something is not clear, or if you find an error, please write to us at
deitel@deitel.com. We will respond promptly, and we will post corrections and
clarifications at www.deitel.com.

%

—

é pythonhtpl_01.fm Page 27 Monday, December 10, 2001 12:13 PM

A

Chapter 1 Introduction to Computers, Internet and World Wide Web 27

Prentice Hall maintains www .prenhall.com/deitel—a Web site dedicated to
our Prentice Hall textbooks, multimedia packages and Web-based training products. The
site contains “Companion Web Sites’ for each of our books that include frequently asked
questions (FAQs), downloads, errata, updates, self-test questions and other resources.

Deitel & Associates, Inc., contributes aweekly column to the popular Informl T news-
letter, currently subscribed to by more than 800,000 IT professionals worldwide. For opt-
in registration, visit www . InformIT. com.

Deitel & Associates, Inc. also offersafree, opt-in newdetter that includes commentary
onindustry trends and developments, links to articles and resources from published books
and upcoming publications, information on future publications, product-rel ease schedules
and more. For opt-in registration, visit www.deitel.com.

You are about to start on a challenging and rewarding path. We hope you enjoy
learning with Python How to Program as much as we enjoyed writing it!

1.18 Internet and World Wide Web Resources

www.python.org

Thissiteisthefirst place to ook for information about Python. The Python home page provides up-
to-date news, a FAQ, and a collection of links to Python resources on the Internet including Python
software, tutorials, user groups and demos.

WWW. ZOpe.com

WWW. ZOope.org

Zopeisan extensible, open-source Web application server written in Python. It was created by Digital
Creations—the company where the Python development team resides.

www.activestate.com

ActiveState creates open-source tools for programmers. The company provides a Python distribution
called ActivePython and Komodo, an open-source Integrated Development Environment (IDE) for
many languages, including Python, XML, Tcl and PHP. ActiveState supplies Python tools for Win-
dows and a collection of Python programs called the Python Cookbook.

homepage.ntlworld.com/tibsnjoan/python.html
This page contains many links to people and groups that develop and use Python.

www.ddj.com/topics/pythonurl/
Dr. Dobb’s Journal, a programming publication, maintains alist of Python links at this site.

SUMMARY

[Note: Because this Section 1.17 is primarily a summary of the rest of the book, we do not provide
summary bullets for that section.]

« Software controls computers (often referred to as hardware).

» A computer is a device capable of performing computations and making logical decisions at
speeds millions, even hillions, of times faster than human beings can.

» Computers process data under the control of sets of instructions called computer programs. These
computer programs guide the computer through orderly sets of actions specified by people called
computer programmers.

» The various devices that comprise a computer system (such as the keyboard, screen, disks, mem-
ory and processing units) are referred to as hardware.

» The computer programs that run on acomputer are referred to as software.

%

—

é pythonhtpl_01.fm Page 28 Monday, December 10, 2001 12:13 PM

28

Introduction to Computers, Internet and World Wide Web Chapter 1

Theinput unitisthe“receiving” section of the computer. It obtainsinformation (data and comput-
er programs) from various input devices and places this information at the disposal of the other
units so that the information may be processed.

The output unit is the “shipping” section of the computer. It takes information processed by the
computer and places it on output devices to make it available for use outside the computer.

Thememory unit istherapid access, relatively low-capacity “warehouse” section of the computer.
It retains information that has been entered through the input unit so that the information may be
made immediately available for processing when it is needed and retains information that has a -
ready been processed until that information can be placed on output devices by the output unit.

The arithmetic and logic unit (ALU) isthe “manufacturing” section of the computer. It is respon-
siblefor performing cal culations such as addition, subtraction, multiplication and division and for
making decisions.

The central processing unit (CPU) is the “administrative” section of the computer. It is the com-
puter’s coordinator and is responsible for supervising the operation of the other sections.

The secondary storage unit isthelong-term, high-capacity “warehousing” section of the computer.
Programs or data not being used by the other units are normally placed on secondary storage de-
vices (such as disks) until they are needed, possibly hours, days, months or even years later.

Early computers were capable of performing only onejob or task at atime. Thisform of computer
operation often is called single-user batch processing.

Software systems called operating systems were devel oped to help make it more convenient to use
computers. Early operating systems managed the smooth transition between jobs and minimized
thetime it took for computer operators to switch between jobs.

Multiprogramming involves the “simultaneous’ operation of many jobs on the computer—the
computer shares its resources among the jobs competing for its attention.

Timesharing is a special case of multiprogramming in which dozens or even hundreds of users
share a computer through terminals. The computer runs a small portion of one user’s job, then
moves on to service the next user. The computer does this so quickly that it might provide service
to each user several times per second, so programs appear to run simultaneously.

An advantage of timesharing isthat the user receives almost immediate responsesto requestsrath-
er than having to wait long periods for results, as with previous modes of computing.

In 1977, Apple Computer popularized the phenomenon of personal computing.

In 1981, IBM introduced the IBM Personal Computer, legitimizing personal computing in busi-
ness, industry and government organizations.

Although early personal computers were not powerful enough to timeshare several users, these
machines could be linked together in computer networks, sometimes over telephone lines and
sometimes in local area networks (LANS) within an organization. This led to the phenomenon of
distributed computing, in which an organization's computing is distributed over networks to the
sites at which the real work of the organization is performed.

Today, information is shared easily across computer networks, where some computers called file
servers offer acommon store of programs and data that may be used by client computers distrib-
uted throughout the network—hence the term client/server computing.

Computer languages may be divided into three general types: machine languages, assembly lan-
guages and high-level languages.

Any computer can directly understand only its own machine language. M achine languages gener-
aly consist of strings of numbers (ultimately reduced to 1s and 0s) that instruct computers to per-
form their most elementary operations one at atime. Machine languages are machine dependent.

%

é pythonhtpl_01.fm Page 29 Monday, December 10, 2001 12:13 PM

A

Chapter 1 Intfroduction to Computers, Internet and World Wide Web 29

English-like abbreviations formed the basis of assembly languages. Trandator programs called as-
semblers convert assembly-language programs to machine language at computer speeds.

Compilers translate high-level language programs into machine-language programs. High-level
languages (like Python) contain English words and conventional mathematical notations.

Interpreter programs directly execute high-level language programs without the need for first com-
piling those programs into machine language.

Although compiled programs execute much faster than interpreted programs, interpreters are pop-
ular in program-devel opment environments in which programs are recompiled frequently as new
features are added and errorsare corrected. Interpreters are also popular for devel oping Web-based
applications.

Objects are essentially reusabl e software components that model itemsin therea world. Modular,
object-oriented design and implementation approaches make software-devel opment groups more
productive than is possible with previous popular programming techniques. Object-oriented pro-
grams are often easier to understand, correct and modify than programs developed with earlier
methodol ogies.

FORTRAN (FORmula TRANSlator) was devel oped by IBM Corporation between 1954 and 1957
for scientific and engineering applications that require complex mathematical computations.
COBOL (COmmon Business Oriented Language) was developed in 1959 by a group of computer
manufacturers and government and industrial computer users. COBOL is used primarily for com-
mercial applications that require precise and efficient manipulation of large amounts of data

C evolved from two previouslanguages, BCPL and B, asalanguage for writing operating-systems
software and compilers.

Both BCPL and B were “typeless’ languages—every dataitem occupied one “word” in memory
and the burden of typing variables fell on the shoulders of the programmer. The C language was
evolved from B by Dennis Ritchie at Bell Laboratories.

Pascal was designed at about the same time as C. It was created by Professor Nicklaus Wirth and
was intended for academic use.

Structured programming is a disciplined approach to writing programs that are clearer than un-
structured programs, easier to test and debug and easier to modify.

The Ada language was developed under the sponsorship of the United States Department of De-
fense (DOD) during the 1970s and early 1980s. One important capability of Adais called multi-
tasking; this allows programmers to specify that many activities are to occur in paralldl.

Most high-level languages generally alow the programmer to write programs that perform only
one activity at atime. Python, through techniques called process management and multithreading,
enables programmers to write programs with parallel activities.

Objects are essentially reusable software components that model itemsin the rea world.

Object technology dates back at least to the mid-1960s. The C++ programming language, devel -
oped at AT&T by Bjarne Stroustrup in the early 1980s, is based C and Simula 67.

In the early 1990s, researchers at Sun Microsystems® developed a purely object-oriented lan-
guage called Java.

Inthelate 1960's, the Advanced Research Projects Agency of the Department of Defense (ARPA)
rolled out the blueprints for networking the main computer systems of about a dozen ARPA-fund-
ed universities and research ingtitutions. ARPA proceeded to implement what quickly became
called the ARPAnNet, the grandparent of today’s Internet.

Qriginally designed to connect the main computer systems of about adozen universities and research
organizations, the Internet today is accessible by hundreds of millions of computers worldwide.

%

—

é pythonhtpl_01.fm Page 30 Monday, December 10, 2001 12:13 PM

30

Introduction to Computers, Internet and World Wide Web Chapter 1

One of ARPA's primary goals for the network was to allow multiple usersto send and receivein-
formation at the same time over the same communications paths (such as phone lines). The net-
work operated with a technique called packet switching (still in wide use today), in which digital
data are sent in small packages called packets. The packets contain data, address information, er-
ror-control information and sequencing information. The address information routes the packets
of datato their destination. The sequencing information hel ps reassembl e the packets (which—be-
cause of complex routing mechanisms—can actually arrive out of order) into their original order
for presentation to the recipients.

The protocol for communicating over the ARPAnNet became known as TCP—Transmission Con-
trol Protocol. TCP ensured that messages were routed properly from sender to receiver and that
those messages arrived intact.

Bandwidth is the information-carrying capacity of communications lines.

In 1990, Tim Berners-Lee of CERN (the European Laboratory for Particle Physics) developed the
World Wide Web and several communication protocols that form its backbone.

The Web allows computer users to locate and view multimedia-intensive documents over the In-
ternet.

Browsersview HTML (Hypertext Markup Language) documents on the World Wide Web.

Pythonisamodular extensible language; Python can incorporate new modules (reusabl e pieces of
software).

The primary distribution center for Python source code, modul es and documentation is the Python
Web site—www . py thon . org—with plansto devel op a site dedicated solely to maintaining Py-
thon modules.

Python is portable, practica and extensible.

TERMINOLOGY

Ada hardware platform
ALU high-level language
arithmetic and logic unit (ALU) input unit

assembler input/output (1/0)
assembly language interpreter

batch processing Java

C machine dependent
C++ machine independent
central processing unit (CPU) machine language
clarity memory

client memory unit
client/server computing multiprocessor
COBOL multiprogramming
computer multitasking
computer program object-oriented programming
computer programmer output unit

data Pascal

distributed computing Python

file server personal computer
FORTRAN portability

function primary memory
functionalization programming language
hardware run aprogram

ﬂ%

é pythonhtpl_01.fm Page 31 Monday, December 10, 2001 12:13 PM

Chapter 1

Introduction to Computers, Internet and World Wide Web 31

screen terminal

software timesharing

software reusability top-down, stepwise refinement
stored program trandator program

structured programming UNIX

supercomputer workstation

task

SELF-REVIEW EXERCISES

11 Fill
a)
b)
©)
d)
€)
f)
9

h)
i)

)

in the blanks in each of the following statements:

The company that popularized the phenomenon of personal computing was

The computer that made personal computing | egitimate in business and industry was the
Computers process data under the control of sets of instructions called computer

The six key logical units of the computer are the

andthe .
Python can |ncorporate new (reusable pieces of software), which can be
written by any Python devel oper.
Thethree classes of languages discussed in the chapter are , and

The programs that trandate high-level language programs into machine language are

caled .

C iswidely known as the devel opment language of the operating system.

In 2001, the core Python development team moved to Digital Creations, the creators of
—aWeb application server written in Python.

The Department of Defense developed the Ada language with a capability called
, Which allows programmers to specify activities that can proceed in paralldl.

1.2 State whether each of the following istrue or false. If false, explain why.

a)

b)
0)

d)
e

f)
9
h)

i)
)

Hardware refers to the instructions that command computers to perform actions and
make decisions.

The re regular-expression module provides pattern-based text manipulation in Python.
The ALU provides temporary storage for data that has been entered through the input
unit.

Software systems called batches manage the transition between jobs.

Assemblers convert high-level language programs to assembly language at computer
speeds.

Interpreter programs compile high-level language programsinto machine language faster
than compilers.

Structured programming is a disciplined approach to writing programs that are clear and
easy to modify.

Unlike other programming languages, Python is non-extensible.

Objects are reusabl e software components that model itemsin the real world.

Several Canvas components include Label, Button, Entry, Checkbutton and
Radiobutton.

ANSWERS TO SELF-REVIEW EXERCISES

11 a) Apple. b) IBM Personal Computer. ¢) programs. d) input unit, output unit, memory unit,
arithmetic and logic unit (ALU), central processing unit (CPU), secondary storage unit. €) modules.

.

ﬂ%

*

é pythonhtpl_01.fm Page 32 Monday, December 10, 2001 12:13 PM

*

%

32 Intfroduction to Compuiters, Internet and World Wide Web Chapter 1

f) machine languages, assembly languages, high-level languages. g) compilers. h) UNIX. i) Zope.
j) multitasking.

1.2 a) False. Software refers to the instructions that control computers, also referred to as hard-
ware. Hardware refers to the computer’s devices. b) True. ¢) False. The memory unit provides tem-
porary storage for data that have been entered through the input unit. The arithmetic and logic unit
(ALU) performs the calculations and contains the decision mechanisms of the computer. d) False.
Software systems called operating systems manage the transition between jobs; in single-user batch
processing, the computer runs a single program at a time while processing datain batches. €) False.
Assemblers convert assembly-language programs to machine language at computer speeds. f) False.
Interpreter programs can directly execute high-level language programs without compiling them into
machine language. g) True. h) False. Unlike other programming languages, Python is extensible.
i) True. j) False. Severd Tkinter componentsinclude Label, Button, Entry, Checkbutton
and Radiobutton.

EXERCISES

1.3 Categorize each of the following items as either hardware or software:
a) CPU.
b) ALU.
c) Input unit.

d) A word-processor program.
e) Python modules.

14 Translator programs, such as assemblers and compilers, convert programsfrom one language
(referred to as the source language) to another language (referred to as the object language). Deter-
mine which of the following statements are true and which are fal se:

a) A compiler translates high-level language programs into object language.

b) An assembler trandates source-language programs into machine-language programs.

¢) A compiler converts source-language programs into object-language programs.

d) High-level languages are generally machine dependent.

€) A machine-language program requires trandation before it can be run on a computer.

15 Fill in the blanks in each of the following statements:

a) Python can provide information about itself, atechnique called .

b) A computer program that converts assembly-language programs to machine language
programsis called

c) Thelogica unit of the computer that receives information from outside the computer for
use by the computer is called .

d) Theprocess of instructing the computer to solve specific problemsiscalled

€) Threehigh-level Python datatypes are: and

f) is the logical unit of the computer that sends information that has already
been processed by the computer to various devices so that the information may be used
outside the computer.

g) Thegeneral namefor aprogram that converts programswritten in acertain computer lan-
guage into machine language is

1.6 Fill in the blanks in each of the following statements:
a) isthelogical unit of the computer that retains information.
b) isthelogical unit of the computer that makes logical decisions.
¢) Thecommonly used abbreviation for the computer's control unitis
d) Thelevel of computer language most convenient to the programmer for writing programs
quickly and easily is
€) are “mappable”’ types—keys are stored with their associated values.

%

—

\ {%)
| pythonhtpl_01.fm Page 33 Monday, December 10, 2001 12:13 PM

Chapter 1

1.7

18

f)

9

Intfroduction to Computers, Internet and World Wide Web 33

The only language that a computer can understand directly is called that computer's

The isthe logical unit of the computer that coordinates the activities of all
the other logical units.

What do each of the following acronyms stand for:

a)
b)
©)
d)
e
f)
9)
h)
i)
)

W3C.
XML.
DB-API.
CGl.
XHTML.
TCP/IP.
PSP.
Tcl/Tk.
SSL.
HMD.

State whether each of the following istrue or false. If false, explain your answer.

a)

b)

0)

Inheritance isaform of software reusability in which new classes are developed quickly
and easily by absorbing the capabilities of existing classes and adding appropriate new
capabilities.

Pmw isamodule that provides an interface to the popular Tcl/Tk graphical-user-interface
toolkit.

Like other high-level languages, Python is generally considered to be machine-indepen-
dent.

—

é pythonhtpl_02.fm Page 34 Wednesday, December 12, 2001 12:12 PM

"

Introduction to Python
Programming

Objectives

» Tounderstand atypical Python program-devel opment
environment.

 To write simple computer programs in Python.

» To use simple input and output statements.

» To become familiar with fundamental data types.

* To use arithmetic operators.

To understand the precedence of arithmetic operators.

To write simple decision-making statements.
High thoughts must have high language.
Aristophanes

Our lifeisfrittered away by detail ...Smplify, simplify.
Henry Thoreau

My object all sublime

| shall achieve in time.

W.S. Gilbert

Construction

é pythonhtpl_02.fm Page 35 Wednesday, December 12, 2001 12:12 PM

A

.

%

Chapter 2 Intfroduction to Python Programming 35

Outline

2.1 Introduction

2.2 First Program in Python: Printing a Line of Text

2.3 Modifying our First Python Program
2.3.1 Displaying a Single Line of Text with Multiple Statements
2.3.2 Displaying Multiple Lines of Text with a Single Statement

2.4 Another Python Program: Adding Integers

2.5 Memory Concepts

2.6 Arithmetic

2.7 String Formatting

2.8 Decision Making: Equality and Relational Operators

2.9 Indentation

2.10 Thinking About Objects: Introduction to Object Technology

Summary ¢ Terminology ¢ Self-Review Exercises » Answers to Self-Review Exercises ¢ Exercises

2.1 Introduction

Python facilitates a disciplined approach to computer-program design. In this first pro-
gramming chapter, we introduce Python programming and present several examples that
illustrate important features of the language. To understand each example, we analyze the
code one statement at atime. After presenting basic concepts in this chapter, we examine
the structured programming approach in Chapters 3-5. At the same time that we explore
introductory Python topics, we also begin our discussion of object-oriented program-
ming—the key programming methodology presented throughout this text. For this reason,
we conclude this chapter with Section 2.10, Thinking About Objects.

2.2 First Program in Python: Printing a Line of Text!

We begin by considering a simple program that prints a line of text. Figure 2.1 illustrates
the program and its screen outpuit.

print
Welcome to Python!

Fig. 2.1 Text-printing program.

1. Theresourcesfor this book, including step-by-step instructions for installing Python on Windows
and Unix/Linux platforms, are posted at www.deitel .com.

%

*

é pythonhtpl_02.fm Page 36 Wednesday, December 12, 2001 12:12 PM

A

.

36 Infroduction to Python Programming Chapter 2

Thisprogram illustrates severa important features of the Python language. L et us con-
sider each line of the program. Each program we present in this book has line humbers
included for the reader’ s convenience; line numbersare not part of actual Python programs.
Line 4 does the “real work” of the program, namely displaying the phrase Welcome to
Python! on the screen. However, let us consider each linein order.

Lines 1-2 begin with the pound symbol (#), which indicates that the remainder of each
line is a comment. Programmers insert comments to document programs and to improve
program readability. Comments also help other programmers read and understand your
program. Comments do not cause the computer to perform any action when the programis
run—Python ignores comments. We begin every program with a comment indicating the
figure number and the file name in which that program is stored (line 1). We can place any
text we choose in comments. All of the Python programs for this book are included on the
enclosed CD and also are available free for download at www.deitel.com.

A comment that begins with # is called a single-line comment, because the comment
terminates at the end of the current line. A # comment also can begin in the middle of aline
and continue until the end of that line. Such a comment typically documents the Python
code that appears at the beginning of that line. Unlike other programming languages,
Python does not have a separate symbol for a multiple-line comment, so each line of mul-
tiple-line comment must start with the # symbol. The comment text “Printing a line
of text in Python.” describesthe purpose of the program (line 2).

Good Programming Practice 2.1

@ Place abundant comments throughout a program. Comments help other programmers un-

derstand the program, assist in debugging a program (i.e., discovering and removing errors
in a program) and list useful information. Comments also help you understand your pro-
grams when you revisit the code for modifications or updates.

Good Programming Practice 2.2
@ Every program should begin with a comment describing the purpose of the program.

Line 3 is simply a blank line. Programmers use blank lines and space characters to
make programs easier to read. Together, blank lines, space charactersand tab charactersare
known as white space. (Space characters and tabs are known specifically as white-space
characters.) Blank lines are ignored by Python.

Good Programming Practice 2.3
@ Use blank lines to enhance program readability.

The Python print command (line 4) instructs the computer to display the string of
characters contai ned between the quotation marks. A string isasequence of characters con-
tained inside double quotes. Theentirelineis called a statement. In some programming lan-
guages, like C++ and Java, statements must end with a semicolon. In Python, most
statements simply end when the lines on which they are written end. When the statement
on line 4 executes, it displays the message Welcome to Python! on the screen. Note
that the double quotes that delineate the string do not appear in the output.

Output (i.e., displaying information) and input (i.e., receiving information) in Python
are accomplished with streams of characters. When the preceding statement executes, it

ﬂ%

—

é pythonhtpl_02.fm Page 37 Wednesday, December 12, 2001 12:12 PM

A

.

Chapter 2 Intfroduction to Python Programming 37

sends the stream of charactersWelcome to Python! tothe standard output stream. The
standard output stream is the channel through which an application presentsinformation to
the user—this information typically is displayed on the screen, but may be printed on a
printer, written to a file, etc. It may even be spoken or issued to braille devices, so users
with visua impairments can receive the outputs.

Python statements can be executed two ways. The firgt is by typing statements into an
editor to create a program and saving the file with a . py extension (asin Fig. 2.1). Python
filestypically endwith . py, although other extensions (e.g., . pyw on Windows) can be used.
To use the Python interpreter to execute (run) the program in thefile, type

python file.py

a the DOS or Unix shell command line, in which file. py is the name of the Python file.
The shell command lineisatext “terminal” inwhich the user can type commandsthat cause
the computer system to respond. [Note: To invoke Python, the system path variable must
be set properly to include the py thon executable—afile containing the Python interpreter
program that can be run. The resources for this book—posted at our Web site www . dei -
tel.com—includeinstructions on how to set the appropriate system path variable.]

When the Python interpreter runs a program stored in the file, the interpreter starts at
the first line of the file and executes statements until the end of the file. The output box in
Fig. 2.1 contains the results of the Python interpreter running £1g02 01.py.

The second way to execute Python statementsis interactively. Typing

python

at the shell command line runs the Python interpreter in interactive mode. With this mode,
the programmer types statements directly to the interpreter, which executes these state-
ments one at atime.

¢ In interactive mode, Python statements are entered and inter preted one at a time. This mode
often is useful when debugging a program.

) When the Python interpreter isinvoked on afile, the interpreter exits after the last statement
in the file executes. However, invoking the interpreter on a file using the -1 flag (for exam-
ple, python -i file.py) causestheinterpreter to enter interactive mode after executing
the statements in the file. Thisis useful when debugging a program.

Figure 2.2 shows Python 2.2 running in interactive mode on Windows. The first three
lines display information about the version of Python being used (2.2b2 means*“version 2.2
beta 2"). The fourth line contains the Python prompt (>>>). When a programmer types a
statement at the Python prompt and presses the Enter key (sometimes labeled the Return
key), the interpreter executes the statement.

The print statement on the fifth line of Fig. 2.2 displays the text Welcome to
Python! to the screen (note, again, that the double quotes delineating the screen do not
print). After printing the text to the screen, the interpreter waitsfor the user to enter the next
statement. We exit interactive mode by typing the Ctrl-Z end-of-file character (on
Microsoft Windows systems) and pressing the Enter key. Figure 2.3 lists the keyboard
combinations for the end-of-file character for various computer systems.

%

—

\ {%)
| pythonhtpl_02.fm Page 38 Wednesday, December 12, 2001 12:12 PM

A

.

%

38 Infroduction to Python Programming Chapter 2

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32

Type "help", "copyright", "credits" or "license" for more
information.

>>> print "Welcome to Python!"

Welcome to Python!

>>> 2z

Fig. 2.2 Interactive mode. (Python interpreter software Copyright © 2001 Python
Software Foundation.)

2.3 Modifying our First Python Program

This section continues our introduction to Python programming with two examples that
modify Fig. 2.1 to display text on one line using multiple statements and to display text on
several lines using a single statement.

2.3.1 Displaying a Single Line of Text with Multiple Statements

Welcome to Python! can be printed in several ways. For example, Fig. 2.4 uses two
print statements (lines 4-5), yet produces the same output as the program in Fig. 2.1.
Most of the program isidentical to that of Fig. 2.1, so we discuss only the changes here.

Line4 displaysthestring "Welcome". Normally, after theprint statement displays
its string, Python begins a new line—subsequent outputs are displayed on the line or lines
that follow theprint statement’s string. However, the comma(,) at theend of line 4 tells
Python not to begin anew line but instead to add a space after the string; thus, the next string
the program displays (line 5) appears on the same line asthe string "Welcome".

Computer system Keyboard combination

UNIX/Linux systems Ctrl-D (on aline by itself)

DOS/Windows Ctrl-Z (sometimes followed by pressing Enter)
Macintosh Citrl-D

Fig. 2.3 End-of-file key combinations for various popular computer systems.

1

2

3

4 print ,
5 print

Welcome to Python!

Fig. 2.4 Printing one line using several print statements.

ﬂ%

*

é pythonhtpl_02.fm Page 39 Wednesday, December 12, 2001 12:12 PM

A

.

Chapter 2 Intfroduction to Python Programming 39

2.3.2 Displaying Multiple Lines of Text with a Single Statement

A single statement can display multiple linesusing newline characters. Newline characters
are “special characters’ that position the screen cursor to the beginning of the next line.
Figure 2.5 outputs four lines of text, using newline characters to determine when to begin
each new line.

Most of the program isidentical to those of Fig. 2.1 and Fig. 2.4, so we discuss only
the changes here. Line 4 displays four separate lines of text to the screen. Normally, the
charactersin a string display exactly as they appear in the double quotes. Notice, however,
that the two characters \ and n (which appear three times in line 4) do not appear in the
output. Python offers special characters that perform certain tasks, such as backspace and
carriage return. A special character is formed by combining the backdlash (\) character,
aso called the escape character, with aletter. When a backslash existsin a string of char-
acters, the backslash and the character immediately following the backslash form an escape
sequence. An exampl e of an escape sequenceis \n, which represents the newline character.
Each occurrence of the \n escape sequence causes the screen cursor that controlswhere the
next character will appear to move to the beginning of the next line. To print ablank line,
simply place two newline characters back-to-back. Figure 2.6 lists other common escape
sequences.

print

Welcome
to

Python!

Fig. 2.5 Printing multiple lines using a single print statement.

Escape Sequence Description

\n Newline. Move the screen cursor to the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Move the screen cursor to the beginning of the cur-
rent line; do not advance to the next line.

\b Backspace. Move the screen cursor back one space.

\a Alert. Sound the system bell.

\\ Backdash. Print a backslash character.

\" Double quote. Print a double quote character.

\! Single quote. Print asingle quote character.

Fig. 2.6 Escape sequences.

%

—

é pythonhtpl_02.fm Page 40 Wednesday, December 12, 2001 12:12 PM

A

.

%

40 Infroduction to Python Programming Chapter 2

2.4 Another Python Program: Adding Integers

Our next program inputs two integers (whole numbers, like —22, 7 and 1024) typed by a
user at the keyboard, computes the sum of the values and displays the result. This program
invokes Python functions raw_input and int to obtain the two integers. Again, the pro-
gram usesthe print statement to display the sum of theintegers. Figure 2.7 contains the
program and its output.

Lines 1-2 contain commentsthat state the figure number, file name and the purpose of
the program. Line 5 calls Python' s built-in function raw_input to request user input. A
built-in function isa piece of code provided by Python that performsatask. Thetask is per-
formed by calling the function—writing the function name, followed by parentheses (()).
After performing itstask, afunction may return avalue that representsthe result of thetask.
We study functions in depth in Chapter 4, where we mention many other built-in functions
and show how programmers can create their own programmer-defined functions.

Pythonfunction raw _input takestheargument, "Enter first integer:\n"
that requests user input. An argument is avalue that a function accepts and usesto perform
its task. In this case, function raw_input accepts the “ prompt” argument (that requests
user input) and displays that prompt to the screen. In response to viewing this prompt, the
user enters a number and presses the Enter key—this sends the number to function
raw_input intheform of astring.

The result of raw_input (a string containing the characters typed by the user) is
assigned to variable integer1 using the assignment symbol, =. In Python, variables are
more specifically referred to as objects. An object resides in the computer’s memory and
contains information used by the program. The term object normally impliesthat attributes
(data) and behaviors (methods) are associated with the object. The object’ s methods use the
attributes to perform tasks. A variable name (e.g., integerl) consists of letters, digits
and underscores (_) and does not begin with a digit. Python is case sensitive—uppercase
and lowercase letters are different, so a1 and A1 aredifferent variables. An object can have
multiple names, called identifiers. Each identifier (or variable name) references (pointsto)
the object (or variable) in memory. The statement in line 5 is normally read as “Variable
integerl is assigned the value returned by raw input("Enter first
integer:\n").” The actual meaning of such aline, however, is “integerl refer-
encesthevaluereturned by raw _input ("Enter first integer:\n").”

1

2

3

4

5 integerl = raw input()
6 integerl = int(integerl)

7

8 integer2 = raw_ input()
9 integer2 = int(integer2)

10

11 sum = integerl + integer2

12

13 print , sum

Fig. 2.7 Addition program. (Part 1 of 2.)

%

—

é pythonhtpl_02.fm Page 41 Wednesday, December 12, 2001 12:12 PM

A

.

Chapter 2 Intfroduction to Python Programming 41

Enter first integer:

45

Enter second integer:
72

Sum is 117

Fig. 2.7 Addition program. (Part 2 of 2.)

Good Programming Practice 2.4

@ Choosing meaningful variable names helps a program to be “ self-documenting,” i.e, it is
easier to understand the program simply by reading it, rather than having to read manuals
Or USe excessive comments.

Good Programming Practice 2.5

@ Avoid identifiers that begin with underscores and double underscores, because the Python
interpreter or other Python code may reserve those charactersfor internal use. This prevents
names you choose from being confused with names the interpreter chooses.

In addition to a name and value, each object has a type. An object’s type identifies the
kind of information (e.g., integer, string, etc.) stored in the object. Integers are whole numbers
that encompass negative numbers (—14), zero (0) and positive numbers (6). In languages like
C++ and Java, the programmer must declare (state) the object type before using the object in
the program. However, Python uses dynamic typing, which means that Python determinesan
object’ stype during program execution. For example, if object a isinitialized to 2, then the
object is of type “integer” (because the number 2 is an integer). Similarly, if object b isini-
tialized to "Python™", then the object is of type “string.” Function raw_input returns
values of type “string,” so the object referenced by integer1 (line5) is of type “string.”

To perform integer addition on the value referenced by integer1, the program must
convert the string value to an integer value. Python function int (line 6) converts a string
or anumber to an integer value and returns the new value. If we do not obtain an integer
valuefor variable integer1, wewill not achieve the desired results—the program would
combine the two strings instead of adding two integers. Figure 2.8 demonstrates this with
an interactive session.

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>> valuel = raw input("Enter an integer: ")
Enter an integer: 2
>>> value2 = raw input("Enter an integer: ")

Enter an integer: 4
>>> print valuel + value2
24

Fig. 2.8 Adding values from raw_input (incorrectly) without converting to
integers (the result should be 6).

ﬂ%

*

é pythonhtpl_02.fm Page 42 Wednesday, December 12, 2001 12:12 PM

A

.

42 Infroduction to Python Programming Chapter 2

The assignment statement (line 11 of Fig. 2.7) calculates the sum of the variables
integerl and integer2 and assigns the result to variable sum, using the assignment
symbol =. The statement is read as, “sum references the value of integerl +
integer2.” Most calculations are performed through assignment statements.

The + symbol is an operator—a special symbol that performs a specific operation. In
this case, the + operator performs addition. The + operator is called a binary operator,
because it has two operands (values) on which it performs its operation. In this example,
the operands are integerl and integer2. [Note: In Python, the = symbol is not an
operator. Rather, it isreferred to as the assignment symbol.]

—a- Common Programming Error 2.1
ﬁ Trying to access a variable that has not been given avalueisarun-timeerror.

Good Programming Practice 2.6

@ Place spaces on either side of a binary operator or symbol. This helpsthe operator or symbol
stand out, making the program more readable.

Line 13 displays the string "Sum is" followed by the numerical value of variable
sum. |tems we want to output are separated by commas (,). Note that this print state-
ment outputs values of different types, namely astring and an integer.

Calculations also can be performed in output statements. We could have combined the
statementsin lines 11 and 13 into the statement

print , integerl + integer2

thus eliminating the need for variable sum. Y ou should make such combinations only if
you feel it makes your programs clearer.

2.5 Memory Concepts

Variable names such as integerl, integer2 and sum actually correspond to Python
objects. Every object has atype, asize, a value and a location in the computer’s memory.
A program cannot change an object’ stype or location. Some object types permit program-
mers to change the object’ s value. We discuss these types beginning in Chapter 5, Tuples,
Lists and Dictionaries.

When the addition program in Fig. 2.7, executes the statement

integerl = raw_input()

Python first creates an object to hold the user-entered string and places the object into a
memory location. The = assignment symbol then binds (associates) the name integerl
with the newly created object. Suppose the user enters 45 at the raw_input prompt. Py-
thon places the string "45" into memory at a starting location to which the name
integerl isbound, as shown in Fig. 2.9. When the statement

integerl = int(integerl)

executes, function int creates a new object to store the integer value 45. Thisinteger ob-
ject begins at a new memory location and Python binds the name integer1l to this new
memory location (Fig. 2.10). Variable integer1 no longer refersto the memory location
that contains the string value "45".

ﬂ%

—

Q2
| é pythonhtpl_02.fm Page 43 Wednesday, December 12, 2001 12:12 PM

A

.

Chapter 2 Intfroduction to Python Programming 43

integerl —» RAIS1E

Fig. 2.9 Memory location showing value of a variable and the name bound to
the value.

Il45ll

integerl —» 45

Fig. 2.10 Memory location showing the name and value of a variable.

Returning to our addition program, when the statements

integer2 = raw_input()
integer2 = int(integer2)

execute, suppose the user entersthe string "72". After the program converts this value to
the integer value 72 and places the value into a memory location to which integer2 is
bound, memory appearsasin Fig. 2.11. Note that the locations of these objects are not nec-
essarily adjacent in memory.

Once the program has obtained values for integerl and integer2, the program
adds these values and assigns the sum to variable sum. After the statement

sum = integerl + integer2

performs the addition, memory appearsasin Fig. 2.12. Notethat thevaluesof integerl
and integer2 appear exactly as they did before they were used in the calculation of
sum. These values were used, but not modified, as the computer performed the calcula-
tion. Thus, when avalueisread out of a memory location, the value is not changed.

integerl —» 45

integer2 —» 72

Fig. 2.11 Memory locations after values for two variables have been input.

ﬂ%

*

\ {%)
| pythonhtpl_02.fm Page 44 Wednesday, December 12, 2001 12:12 PM

44 Infroduction to Python Programming Chapter 2
integerl —» 45
integer2 —» 72
sum——» 117

Fig. 2.12 Memory locations after a calculation.

Figure 2.13 demonstrates that each Python object hasalocation, atype and avalue and
that these object properties are accessed through an object’ s name. This program is iden-
tical to the program in Fig. 2.7, except that we have added statements that display the
memory location, type and value for each object at various pointsin the program.

1

2

3

4

5 integerl = raw_input()

6 print , 1d(integerl), type(integerl), integerl
7 integerl = int(integerl)

8 print , 1d(integerl), type(integerl), integerl
9

10 integer2 = raw_input()

11 print , 1d(integer2), type(integer2), integer2
12 integer2 = int(integer2)

13 print , id(integer2), type(integer2), integer2
14

15 sum = integerl + integer2

16 print , id(sum), type(sum), sum

Enter first integer:

5

integerl: 7956744 <type 'str's> 5
integerl: 7637688 <type 'int'> 5
Enter second integer:

27

integer2: 7776368 <type 'str's> 27
integer2: 7637352 <type 'int'> 27
sum: 7637436 <type 'int'> 32

Fig. 2.13 Object’s location, type and value.

- 4~ ~¢e

é pythonhtpl_02.fm Page 45 Wednesday, December 12, 2001 12:12 PM

A

.

Chapter 2 Intfroduction to Python Programming 45

Line 6 prints integerl’s location, type and value after the call to raw_input.
Python function id returnstheinterpreter’ srepresentation of the variable’ slocation. Func-
tion type returns the type of the variable. We print these values again (line 8), after con-
verting the string vaeluein integer1 to an integer value. Notice that both the type and the
location of variable integer1 change as aresult of the statement

integerl = int(integerl)

The change underscores the fact that a program cannot change a variabl€’ s type. Instead,
the statement causes Python to create a new integer value in a new location and assigns the
name integer1 to thislocation. The location to which integer1 previoudly referred
isno longer accessible. The remainder of the program printsthe location type and value for
variables integer2 and sum in a similar manner.

2.6 Arithmetic

Many programs perform arithmetic calculations. Figure 2.14 summarizes the arithmetic
operators. Note the use of various specia symbols not used in algebra. The asterisk (*) in-
dicates multiplication and the percent sign (%) is the modulus operator that we discuss
shortly. The arithmetic operatorsin Fig. 2.14 are binary operators, (i.e., operators that take
two operands). For example, the expression integerl + integer2 containsthe binary
operator + and the two operands integerl and integer2.

Python is an evolving language, and as such, some of its features change over time.
Starting with Python 2.2, the behavior of the / division operator will begin to change from
“floor division” to “true division.” Floor division (sometimes called integer division),
divides the numerator by the denominator and returns the highest integer value that is not
greater than the result. For example, dividing 7 by 4 with floor division yields 1 and
dividing 17 by 5 with floor division yields 3. Note that any fractional part in floor division
issimply discarded (i.e., truncated)—no rounding occurs. True division yields the precise
floating-point (i.e., numberswith adecimal point such as 7.0, 0.0975 and 100.12345) result
of dividing the numerator by the denominator. For example, dividing 7 by 4 with true divi-
sionyields 1.75.

Python Arithmetic Algebraic Python
operation operator expression expression
Addition + f+7 £+
Subtraction - p-c p - ¢
Multiplication * bm b *m
Exponentiation ** XY X ** y
Division / Ivor X . x/y
// (newinPython22) ~ X/YOry orx=y x /]y
Modulus % rmods r% s

Fig. 2.14 Arithmetic operators.

%

—

é pythonhtpl_02.fm Page 46 Wednesday, December 12, 2001 12:12 PM

A

.

46 Infroduction to Python Programming Chapter 2

In prior versions, Python contained only one operator for division—the / operator.
The behavior (i.e., floor or true division) of the operator is determined by the type of the
operands. If the operands are both integers, the operator performs floor division. If one or
both of the operands are floating-point numbers, the operator performs true division.

The language designers and many programmers disliked the ambiguity of the / oper-
ator and decided to create two operators for version 2.2—onefor each type of division. The
/ operator performs true division and the // operator performs floor division. However,
this decision could introduce errorsinto programs that use older versions of Python. There-
fore, the designers came up with acompromise: Starting with Python 2.2 all future 2.x ver-
sionswill include two operators, but if a program author wants to use the new behavior, the
programmer must state their intention explicitly with the statement

from _ future import division

After Python seesthis statement, the / operator performstrue division and the / / operator
performsfloor division. Theinteractive sessionin Fig. 2.15 demonstrates floor division and
true division.

We first evaluate the expression 3 / 4. This expression evaluates to the value 0,
because the default behavior of the / operator with integer operands isfloor division. The
expression 3.0 / 4.0 evaluatesto 0.75. In this case, we use floating-point operands,
so the / operator performs true division. The expressions3 // 4 and 3.0 // 4.0
evaluate to 0 and 0. 0, respectively, because the // operator aways performs floor divi-
sion, regardless of the types of the operands. Then, in line 13 of the interactive session, we
change the behavior of the / operator with the special import statement. In effect, this
statement turns on the true division behavior for operator /. Now the expression 3 / 4
evauatesto 0.75. [Note: In thistext, we use only the default 2.2 behavior for the / oper-
ator, namely floor division for integers (lines 56 of Fig. 2.15) and true division for
floating-point numbers (lines 7-8 of Fig. 2.15).]

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>> 3 / 4 # floor division (default behavior)
0

>>> 3.0 / 4.0 # true division (floating-point operands)
0.75

>>> 3 // 4 # floor division (only behavior)

0

>>> 3.0 // 4.0 # floating-point floor division
0.0

>>> from future import division

>>> 3 / 4 # true division (new behavior)

0.75

>>> 3.0 / 4.0 # true division (same as before)
0.75

Fig. 2.15 Difference in behavior of the / operator.

%

—

é pythonhtpl_02.fm Page 47 Wednesday, December 12, 2001 12:12 PM

A

.

Chapter 2 Intfroduction to Python Programming 47

@ In Python version 3.0 (due to be released no sooner than 2003), the / operator can perform

only true division. After the release of version 3.0, programmer s need to update applications
to compensate for the new behavior. For more information on this future change, see
python.sourceforge.net/peps/pep-0238.html

Python provides the modulus operator (%), which yields the remainder after integer
division. The expression x % y yields the remainder after x isdivided by y. Thus, 7 % 4
yields3 and 17 % 5 yields 2. Thisoperator is most commonly used with integer operands,
but also can be used with other arithmetic types. In later chapters, we discuss many inter-
esting applications of the modulus operator, such as determining whether one number is a
multiple of another. (A special case of thisisdetermining whether anumber isodd or even.)
[Note: The modulus operator can be used with both integer and floating-point numbers.]

Arithmetic expressions in Python must be entered into the computer in straight-line
form. Thus, expressions such as“a divided by b” must be written asa / b, so that all con-
stants, variables and operators appear in a straight line. The algebraic notation

a
b

is generally not acceptable to compilers or interpreters, although some special-purpose
software packages do exist that support more natural notation for complex mathematical
EXpressions.

Parentheses are used in Python expressions in much the same manner as in algebraic
expressions. For example, to multiply a times the quantity b + ¢, we write

a* (b + ¢c)

Python applies the operators in arithmetic expressions in a precise sequence deter-
mined by thefollowing rules of operator precedence, which are generally the same asthose
followed in algebra:

1. Expressionscontained within pairsof parentheses are evaluated first. Thus, paren-
theses may force the order of evaluation to occur in any sequence desired by the
programmer. Parentheses are said to be at the “highest level of precedence.” In
cases of nested, or embedded, parentheses, the operators in the innermost pair of
parentheses are applied first.

2. Exponentiation operations are applied next. If an expression contains several ex-
ponentiation operations, operators are applied from right to left.

3. Multiplication, division and modulus operations are applied next. If an expression
contains several multiplication, division and modulus operations, operators are
applied from left to right. Multiplication, division and modulus are said to be on
the same level of precedence.

4. Addition and subtraction operations are applied last. If an expression contains sev-
eral addition and subtraction operations, operators are applied from |eft to right.
Addition and subtraction also have the same level of precedence.

%

—

é pythonhtpl_02.fm Page 48 Wednesday, December 12, 2001 12:12 PM

A

%

48 Infroduction to Python Programming Chapter 2

Not all expressions with severa pairs of parentheses contain nested parentheses. For
example, the expression

a* (b+c)+c* (d+ e)

does not contain nested parentheses. Rather, the parentheses in this expression are said to
be “on the same level.”

When we say that certain operators are applied from left to right, we are referring to
the associativity of the operators. For example, in the expression

a+b +c

the addition operators (+) associate from left to right. We will see that some operators as-
sociate from right to left.

Figure 2.16 summarizes these rules of operator precedence. This table will be
expanded as additional Python operators are introduced. A complete precedence chart is
included in the appendices.

Now let us consider several expressionsin light of the rules of operator precedence.
Each example lists an algebraic expression and its Python equivalent. The following is an
example of an arithmetic mean (average) of five terms:

Algebra: m=2atb¥ctdte
5

Python: m=(a+b+c+d+e) /5

The parentheses are required because division has higher precedence than addition
and, hence, the division will be applied first. The entire quantity (a+b+c+d +e) is
to bedivided by 5. If the parentheses are erroneously omitted, we obtaina + b + ¢ + d +
e / 5, which evaluates incorrectly as

a+b+c+d+S
5

The following is an example of the equation of a straight line;
Algebra: y =mx+b

Python: y

No parentheses are required. The multiplication is applied first, because multiplication has
ahigher precedence than addition.

The following example contains modulus (%), multiplication, division, addition and
subtraction operations:

m* x + b

Algebra Z = pro%g+w/x—y

Python: z = p *

r +

ONONONCY

%

—

é pythonhtpl_02.fm Page49 Wednesday, December 12, 2001 12:12 PM

A

.

%

Chapter 2 Intfroduction to Python Programming 49
Operator(s) Operation(s) Order of Evaluation (Precedence)
() Parentheses Evaluated first. If the parentheses are nested, the

expression in theinnermost pair is evaluated first. If
there are several pairs of parentheses “on the same
level” (i.e., not nested), they are evaluated |eft to right.

*k Exponentiation Evaluated second. If there are several, they are evalu-
ated right to left.
* /[/] % Multiplication Evaluated third. If there are several, they are evaluated
Division left toright. [Note: The // operator isnew in version
Modulus 2.2]
+ - Addition Evaluated last. If there are several, they are evaluated
Subtraction left to right.

Fig. 2.16 Precedence of arithmetic operators.

The circled numbers under the statement indicate the order in which Python applies the
operators. The multiplication, modulus and division are evaluated first, in left-to-right or-
der (i.e., they associate from left to right) because they have higher precedence than ad-
dition and subtraction. The addition and subtraction are applied next. These are aso
applied left to right. Once the expression has been evaluated, Python assignsthe result to
variable z.

To develop a better understanding of the rules of operator precedence, consider how a
second-degree polynomial is eval uated:

a * x ** 2 4+ b * x + c
The circled numbers under the statement indicate the order in which Python applies the op-
erators.

Suppose variables a, b, ¢ and x are initiadized as follows. a =2,b =3, ¢ =7 and
x = 5. Figure 2.17 illustrates the order in which the operators are applied in the preceding
second-degree polynomial.

The preceding assignment statement can be parenthesized with unnecessary paren-
theses, for clarity, as

y=(a* (x**2))+ (b*x) +c

Good Programming Practice 2.7

Asinalgebra, it is acceptable to place unnecessary parenthesesin an expression to make the
expression clearer. These parentheses are called redundant parentheses. Redundant paren-
theses are commonly used to group subexpressionsin a large expression to make that expres-
sion clearer. Breaking a large statement into a sequence of shorter, smpler statements also
promotes clarity.

ﬂ%

*

é pythonhtpl_02.fm Page50 Wednesday, December 12, 2001 12:12 PM

A

.

50 Infroduction to Python Programming Chapter 2

Sep 1. Yy 2 * 5 %% 2 + 3 x5 4+ 7

5 ** 2 ig (Exponentiation)

Step 2. y =2 * 25 + 3 5 + 7

2 * 25 is (Leftmost multiplication)
Sep 3. y =50 + 3 *5 + 7

3 * 5 is (Multiplication before addition)

Sep 4. y = 50 + 15 + 7

50 + 15 is [65] (Leftmost addition)
Sep 5. y = 65 + 7

65 + 7 is (Last addition)
Step 6. y = 72 (Python assigns 72 to y)

Fig. 2.17 Order in which a second-degree polynomial is evaluated.

2.7 String Formatting

Now that we have investigated numeric values, let us turn our attention to strings. Unlike
some other popular programming languages, Python provides stringsasabuilt-in datatype,
thereby enabling Python programs to perform powerful text-based operations easily. We
have already |earned how to create astring by placing text inside double quotes ("). Python
strings can be created in avariety of other ways, as Fig. 2.18 demonstrates.

Line 4 creates a string with the familiar double-quote character (). If we want such a
string to print double quotes to the screen, we must use the escape sequence for the double-
quote character (\ "), rather than the double-quote character itself.

Strings also can be created using the single-quote character (*) as shown in line 5. If
we want to use the double-quote character inside a string created with single quotes, we do
not need to use the escape character. Similarly, if we want to use a single-quote character
inside a string created with double quotes, we do not need to use the escape sequence (line
7). However, if we want to use the single-quote character inside a string created with single
quotes (line 6), we must use the escape sequence (\).

ﬂ%

*

\ {%)
pythonhtpl_02.fm Page 51 Wednesday, December 12, 2001 12:12 PM

A

%

Chapter 2 Intfroduction to Python Programming 51
1

2

3

4 print

5 print

6 print

7 print

8 print

9
10 print

This is a string with "double quotes."

This is another string with "double quotes."
This is a string with 'single quotes.'

This
This

is another string with 'single quotes.'
string has "double quotes" and 'single quotes'.

You can even do multiple lines.

This

string also has "double" and 'single' quotes.

Fig. 2.18 Creating Python strings.

Python also supports triple-quoted strings (lines 8-10). Triple-quoted strings are

useful for programs that output strings with special characters, such as quote characters.
Single- or double-quote characters inside a triple-quoted string do not need to use the
escape sequence. Triple-quoted strings also are used for large blocks of text, becausetriple-
quoted strings can span multiple lines. We use triple-quoted strings in this book when we
write programs that output large blocks of text for the Web.

Python strings support simple, but powerful, output formatting. We can create strings

that format output in several ways:

1. Rounding floating-point values to an indicated number of decimal places.
Representing floating-point numbersin exponential notation.

Aligning a column of humberswith decimal points appearing one above the other.
Right-justifying and left-justifying outputs.

Inserting characters or strings at precise locationsin aline of output.

o M~ DN

6. Displaying al types of datawith fixed-size field widths and precision.

The program in Fig. 2.19 demonstrates basic string-formatting capabilities.

1

2

3

4 integerValue =

5 print , integerValue

6 print % integerValue

7 print % integerValue
8

Fig. 2.19 String-formatting operator %. (Part 1 of 2.)

ﬂ%

*

é pythonhtpl_02.fm Page 52 Wednesday, December 12, 2001 12:12 PM

52 Infroduction to Python Programming Chapter 2

9 floatValue =

10 print , floatValue

11 print % floatValue

12 print % floatValue

13

14 print % integerValue

15 print % integerValue

16

17 stringValue =

18 print % integerValue
19 print % floatValue
20 print

21 print % (stringValue, stringValue)

Integer 4237
Decimal integer 4237
Hexadecimal integer 108d

Float 123456.789
Default float 123456.789000
Default exponential 1.234568e+005

Right justify integer (4237)
Left justify \integer (4237)

Force eight digits in integer 00004237

Five digits after decimal in float 123456.78900
Fifteen and five characters allowed in string:
(String formatti) (Strin)

Fig. 2.19 String-formatting operator %. (Part 2 of 2.)

Lines 4—7 demonstrate how to represent integersin a string. Line 5 displays the value
of variable integerVvalue without string formatting. The % formatting operator inserts
thevalue of avariablein astring (line 6). The valueto theleft of the operator isastring that
contains one or more conversion specifiers—place holders for values in the string. Each
conversion specifier begins with a percent sign (%)—not to be confused with the % format-
ting operator—and ends with a conversion-specifier symbol. Conversion-specifier symbol
d indicates that we want to place an integer within the current string at the specified point.
Figure 2.20 lists severa conversion-specifier symbols for use in string formatting. [Note:
See Appendix C, Number Systems, for a discussion of numeric terminology in Fig. 2.20.]

Conversion Specifier Symbol Meaning

c Single character (i.e., astring of length one) or the integer rep-
resentation of an ASCII character.

s String or avalue to be converted to a string.

Fig. 2.20 String-formatting characters. (Part 1 of 2.)

ﬂ%

ﬁ

é pythonhtpl_02.fm Page 53 Wednesday, December 12, 2001 12:12 PM

A

.

Chapter 2 Intfroduction to Python Programming 53

Conversion Specifier Symbol Meaning

Signed decimal integer.
Unsigned decimal integer.

o Unsigned octal integer.

x Unsigned hexadecimal integer (with hexadecimal digits a
through £ in lowercase letters).

X Unsigned hexadecimal integer (with hexadecimal digits A
through F in uppercase |etters).

£ Floating-point number.

e, E Floating-point number (using scientific notation).

g,G Floating-point number (using least-significant digits).

Fig. 2.20 String-formatting characters. (Part 2 of 2.)

The value to the right of the % formatting operator specifies what replaces the place-
holders in the strings. In line 6, we specify the value integervalue to replace the $d
placeholder in the string. Line 7 inserts the hexadecimal representation of the value
assigned to variable integerVvalue into the string.

Lines 9-12 demonstrate how to insert floating-point values in a string. The £ conver-
sion specifier acts as a place holder for afloating-point value (line 11). To theright of the
% formatting operator, we use variable floatValue asthe value to be displayed. The e
conversion specifier acts asaplace holder for afloating-point value in exponential notation.
Exponential notation isthe computer equivalent of scientific notation used in mathematics.
For example, the value 150.4582 is represented in scientific notation as 1.504582 X
102 and is represented in exponential notation as 1.504582E+002 by the computer.
This notation indicates that 1.504582 is multiplied by 10 raised to the second power
(E+002). The E stands for “exponent.”

Lines 1415 demonstrate string formatting with field widths. A field width is the min-
imum size of afield in which avalue is printed. If the field width is larger than the value
being printed, the datais normally right-justified within thefield. To usefield widths, place
an integer representing the field width between the percent sign and the conversion-speci-
fier symbol. Line 14 right-justifies the value of variable integerValue in afield width
of size eight. To left-justify a value, specify a negative integer as the field width (line 15).

Lines 17-21 demonstrate string formatting with precision. Precision has different
meaning for different data types. When used with integer conversion specifiers, precision
indicates the minimum number of digits to be printed. If the printed value contains fewer
digits than the specified precision, zeros are prefixed to the printed value until the tota
number of digitsiseguivalent to the precision. To use precision, place adecimal point (.) fol-
lowed by an integer representing the precision between the percent sign and the conversion
specifier. Line 18 printsthevalue of variable integervalue with eight digits of precision.

When precision is used with a floating-point conversion specifier, the precision isthe
number of digits to appear after the decimal point. Line 19 prints the value of variable
floatVvalue with five digits of precision.

%

*

é pythonhtpl_02.fm Page 54 Wednesday, December 12, 2001 12:12 PM

A

.

54 Infroduction to Python Programming Chapter 2

When used with a string-conversion specifier, the precision is the maximum number
of characters to be written from the string. Line 21 prints the vaue of variable
stringValue twice—once with a precision of fifteen and once with a precision of five.
Notice that the conversion specifications are contained within parentheses. When the string
to the left of the % formatting operator contains more than one conversion specifier, the
value to the right of the operator must be a comma-separated sequence of values. This
sequence is contained within parentheses and must have the same number of values as the
string has conversion specifiers. Python constructs the string from left to right by matching
a placeholder with the next value specified between parentheses and replacing the format-
ting character with that value.

Python strings support even more powerful string-formatting capabilities through
string methods, which we discussin detail in Chapter 13, Strings Manipul ation and Regular
Expressions.

2.8 Decision Making: Equality and Relational Operators

This section introduces a simple version of Python's i £ structure that allows a program to
make adecision based on the truth or falsity of some condition. If the conditionis met, (i.e.,
the condition istrue), the statement in the body of the i £ structure is executed. If the con-
dition is not met (i.e., the condition is false), the body statement does not execute. We will
see an example shortly.

Conditionsin i £ structures can be formed with the equality operators and relational
operators summarized in Fig. 2.21. Therelational operatorsall have the same level of pre-
cedence and associate from left to right. All equality operators have the same level of pre-
cedence, which is lower than the precedence of the relational operators. The equality
operators also associate from left to right.

Standard algebraic Python equality Example
equality operator or or relational of Python Meaning of
relational operator operator condition Python condition

Relational operators

> > X >y x isgreater thany

< < X<y x islessthany

> >= X >= x isgreater than or equal toy
< <= X <=y x islessthan or equal toy
Equality operators

= == X ==y xisequal toy

1=, <> x = v, xisnot equa toy

Fig. 2.21 Equality and relational operators.

%

—

Q2
| é pythonhtpl_02.fm Page 55 Wednesday, December 12, 2001 12:12 PM

%

Chapter 2 Intfroduction to Python Programming 55

Common Programming Error 2.2

A syntax error occurs if any of the operators ==, !=, >= and <= appears with spaces be-
tween its pair of symbols.

Common Programming Error 2.3

Reversing the order of the pair of operatorsin any of the operators ! =, <>, >= and <= (by
writing themas =!, ><, => and =<, respectively) isa syntax error.

Common Programming Error 2.4

Confusing the equality operator == with the assignment symbol = is an error. The equality
operator should be read “is equal to” and the assignment symbol should be read “ gets,”
“ gets the value of” or “is assigned the value of.” Some people prefer to read the equality
operator as" double equals.” In Python, the assignment symbol causes a syntax error when
used in a conditional statement.

oy s

The following example uses six i £ structures to compare two user-entered numbers.
If the condition in any of these i £ structures is true, the assignment statement associated
with that i £ structure executes. The user inputs two values, and the program converts the
input values to integers and assigns them to variables number1 and number2. Then, the
program compares the numbers and displays the results of the comparisons. Figure 2.22
shows the program and sampl e executions.

1

2

3

4

5 print

6 print

7

8

9 numberl = raw_input()
10 numberl = int(numberl)
11

12

13 number2
14 number2

raw_input ()
int (number2)

15

16 if numberl == number2:

17 print % (numberl, number2)

18

19 if numberl != number2:

20 print % (numberl, number2)
21

22 if numberl < number2:

23 print % (numberl, number2)
24

25 if numberl > number2:

26 print % (numberl, number2)
27

Fig. 2.22 Equality and relational operators used to determine logical relationships.
(Part 1 of 2.)

ﬂ%

é pythonhtpl_02.fm Page 56 Wednesday, December 12, 2001 12:12 PM

56 Infroduction to Python Programming Chapter 2

28 if numberl <= number2:

29 print % (numberl, number2)
30

31 if numberl >= number2:

32 print % (numberl, number2)

Enter two integers, and I will tell you
the relationships they satisfy.

Please enter first integer: 37

Please enter second integer: 42

37 is not equal to 42

37 is less than 42

37 is less than or equal to 42

Enter two integers, and I will tell you
the relationships they satisfy.

Please enter first integer: 7

Please enter second integer: 7

7 is equal to 7

7 is less than or equal to 7

7 is greater than or equal to 7

Enter two integers, and I will tell you
the relationships they satisfy.

Please enter first integer: 54

Please enter second integer: 17

54 is not equal to 17

54 is greater than 17

54 is greater than or equal to 17

Fig. 2.22 Equality and relational operators used to determine logical relationships.
(Part 2 of 2.)

The program uses Python functionsraw_input and int to input two integers (lines
8-14). First avalueisobtained for variablenumber1, then avalueis obtained for variable
number2.

The if structure in lines 16—17 compares the values of variables numberl and
number?2 to test for equality. If the values are equal, the statement displays a line of text
indicating that the numbers are equal (line 17). If the conditions are met in one or more of
the i £ structures starting at lines 19, 22, 25, 28 and 31, the corresponding print statement
displaysaline of text.

Each i £ structure consists of the word i £, the condition to be tested and a colon (:).
An if structure also contains a body (called a suite). Notice that each i £ structure in
Fig. 2.22 hasasingle statement in its body and that each body isindented. Some languages,
like C++, Javaand C# use braces, { }, to denotethe body of i £ structures; Python requires
indentation for this purpose. We discuss indentation in the next section.

.
4~ ¢

\ {%)
| pythonhtpl_02.fm Page 57 Wednesday, December 12, 2001 12:12 PM

Chapter 2 Intfroduction to Python Programming 57

—a— Common Programming Error 2.5
Failuretoinsertacolon(:) inan if structureisa syntax error.

—— Common Programming Error 2.6
Failureto indent the body of an i £ structureisa syntax error.

Good Programming Practice 2.8

g Set a convention for the size of indent you prefer, then apply that convention uniformly. The
tab key may createindents, but tab stops may vary. We recommend using three spacesto form
alevel of indent.

In Python, syntax evaluation is dependent on white space; thus, the inconsi stent use of
white space can cause syntax errors. For instance, splitting a statement over multiplelinescan
result in asyntax error. If astatement islong, the statement can be spread over multiplelines
using the \ line-continuation character. Some Pythoninterpretersuse ™ . . . " to denoteacon-
tinuing line. Theinteractive session in Fig. 2.23 demongtrates the line-continuation character.

Good Programming Practice 2.9

@ A lengthy statement may be spread over several lineswith the \ continuation character. If a
single statement must be split across lines, choose breaking points that make sense, such as
after acommain a print statement or after an operator in a lengthy expression.

Figure 2.24 showsthe precedence of the operatorsintroduced in this chapter. The oper-
ators are shown from top to bottom in decreasing order of precedence. Notice that all these
operators, except exponentiation, associate from left to right.

% Refer to the operator-precedence chart when writing expressions containing many opera-
tors. Confirm that the operators in the expression are performed in the order you expect. If
you are uncertain about the order of evaluation in a complex expression, break the expres-
sion into smaller statements or use parentheses to force the order, exactly as you would do
in an algebraic expression. Be sure to observe that some operators, such as exponentiation
(**), associate fromright to left rather than from left to right.

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more informa-
tion.
>>> print 1 +
File "<string>", line 1
print 1 +

SyntaxError: invalid syntax
>>> print 1 + \

coo &

3

>>>

Fig. 2.23 Llne-continuation (\) character.

ﬂ%

\ {%)
| pythonhtpl_02.fm Page 58 Wednesday, December 12, 2001 12:12 PM

A

.

58 Infroduction to Python Programming Chapter 2
Operators Associativity Type
() left to right parentheses
* % right to left exponential
* / // % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== 1= <> left to right equality

Fig. 2.24 Precedence and associativity of operators discussed so far.

2.9 Indentation

Python uses indentation to delimit (distinguish) sections of code. Other programming lan-
guages often use braces to delimit sections of code. A suite is a section of code that corre-
sponds to the body of a control structure. We study blocks in the next chapter. The Python
programmer chooses the number of spaces to indent a suite or block, and the number of
spaces must remain consistent for each statement in the suite or block. Python recognizes
new suites or blocks when there is a change in the number of indented spaces.

Common Programming Error 2.7

@ If a single section of code contains lines of code that are not uniformly indented, the Python
interpreter reads those lines as belonging to other sections, causing syntax or logic errors.

Figure 2.25 contains amodified version of the code in Fig. 2.22 to illustrate improper
indentation. Lines 21-22 show the improper indentation of an i £ statement. Even though
the program does not produce an error, it skips an equality operator. The

if numberl != number2:
statement (line 21) executes only if the 1 £ numberl == number2: statement (line 16)
executes. In this case, the i £ statement in line 21 never executes, because two equal num-

berswill never be unequal (i.e., 2 will never unequal 2). Thus, the output of Fig. 2.25 does
not statethat 1 is not equal to 2 asit should.

e

1

2

3

4

5 print

6 print

7

8

9 numberl = raw_input()
0 numberl = int(numberl)
1

Fig. 2.25 1if statements used to show improper indentation. (Part 1 of 2.)

ﬂ%

—

\ {%)
| pythonhtpl_02.fm Page 59 Wednesday, December 12, 2001 12:12 PM

Chapter 2

Intfroduction to Python Programming 59

13 number2
14 number2

raw_input (
int (number2)

15

16 if numberl == number2:
17 print

18

19

20

21 if numberl != number2:
22 print

23

24 if numberl < number2:
25 print

26

27 if numberl > number2:
28 print

29

30 if numberl <= number2:
31 print

32

33 if numberl >= number2:
34 print

% (numberl, number2)

% (numberl, number2)

% (numberl, number2)

%

(numberl, number2)

% (numberl, number2)

% (numberl, number2)

Enter two integers, and I will tell you
the relationships they satisfy.

Please enter first integer:
Please enter second integer:
1l is less than 2

1l is less than or equal to 2

1

2

Fig. 2.25 1if statements used to show improper indentation. (Part 2 of 2.)

% To avoid subtle errors, ensure consistent and proper indentation within a Python program.

2.10 Thinking About Objects: Introduction to Object

Technology

In each of the first six chapters, we concentrate on the “conventional” methodology of
structured programming, because the objects we will build will be composed in part of
structured-program pieces. Now we begin our early introduction to object orientation. In
this section, we will see that object orientation is anatural way of thinking about the world

and of writing computer programs.

We begin our introduction to object orientation with some key concepts and termi-
nology. First, look around you in the real world. Everywhere you look you see them—
objects!—people, animals, plants, cars, planes, buildings, computers, etc. Humansthink in
terms of objects. We have the marvelous ability of abstraction that enables us to view

ﬂ%

é pythonhtpl_02.fm Page 60 Wednesday, December 12, 2001 12:12 PM

A

.

60 Infroduction to Python Programming Chapter 2

images on acomputer screen as objects such as people, planes, trees and mountains, rather
than as individua dots of color. We can, if we wish, think in terms of beaches rather than
grains of sand, forests rather than trees and buildings rather than bricks.

We might beinclined to divide objectsinto two categories—animate objects and inan-
imate objects. Animate objectsare “alive” in some sense. They move around and do things.
Inanimate objects, like towels, seem not to do much at al. They just “sit around.” All these
objects, however, do have some things in common. They all have attributes, like size,
shape, color and weight, and they all exhibit behaviors (e.g., aball rolls, bounces, inflates
and deflates; a baby cries, sleeps, crawls, walks and blinks; a car accelerates, brakes and
turns; atowel absorbs water).

Humans learn about objects by studying their attributes and observing their behaviors.
Different objects can have similar attributes and can exhibit similar behaviors. Compari-
sons can be made, for example, between babies and adults and between humans and chim-
panzees. Cars, trucks, little red wagons and roller skates have much in common.

Object-oriented programming (OOP) models real -world objects using software coun-
terparts. It takes advantage of class relationships, where objects of a certain class—such as
a class of vehicles—have the same characteristics. It takes advantage of inheritance rela
tionships, and even multiple inheritance relationships, where newly created classes of
objects are derived by absorbing characteristics of existing classes and adding unique char-
acteristics of their own. An object of class”convertible” certainly has the characteristics of
the more general class “automobile,” but a convertible' s roof goes up and down.

Object-oriented programming gives us a more natural and intuitive way to view the
programming process, by modeling real-world objects, their attributes and their behaviors.
OOP also models communications between objects. Just as people send messages to one
another (e.g., a sergeant commanding a soldier to stand at attention), objects communicate
Via messages.

OOP encapsulates data (attributes) and functions (behavior) into packages called
objects; the data and functions of an object are intimately tied together. Objects have the
property of information hiding. This means that, although objects may know how to com-
muni cate with one another, objects normally are not allowed to know how other objectsare
implemented—implementation details are hidden within the objects themselves. Surely it
ispossibleto drive a car effectively without knowing the details of how engines, transmis-
sionsand exhaust systemswork internally. Wewill seewhy information hiding isso crucial
to good software engineering.

In C and other procedural programming languages, programming tends to be action-
oriented; in Python, programming is object-oriented (ideally). The function is the unit of
programming in procedural programming. I n object-oriented programming, the unit of pro-
gramming isthe classfrom which objects are eventually instantiated (afancy term for “cre-
ated”). Python classes contain functions (that implement class behaviors) and data (that
implements class attributes).

Procedural programmers concentrate on writing functions. Groups of actions that per-
form some task are formed into functions, and functions are grouped to form programs.
Datais certainly important in procedural programming, but the view isthat data exists pri-
marily in support of the actions that functions perform. The verbsin a system specification
help the procedural programmer determine the set of functions that will work together to
implement the system.

%

—

é pythonhtpl_02.fm Page 61 Wednesday, December 12, 2001 12:12 PM

A

.

Chapter 2 Intfroduction to Python Programming 61

Object-oriented programmers concentrate on creating their own user-defined types
called classes. Each class contains both data and the set of functions that manipulate the
data. The data components of aclass are called data members or attributes. The functional
components of aclass are called methods (or member functionsin other object-oriented lan-
guages). The focus of attention in object-oriented programming is on classes rather than
functions. The nounsin a system specification help the object-oriented programmer deter-
mine the set of classes that will be used to create the instances that will work together to
implement the system.

Classes are to objects as blueprints are to houses. We can build many houses from one
blueprint, and we can create many objects from one class. Classes can aso have relation-
ships with other classes. For example, in an object-oriented design of a bank, the Bank -
Teller class needs to relate to the Customer class. These relationships are called
associations.

We will see that, when software is packaged as classes, these classes can be reused in
future software systems. Groups of related classes are often packaged as reusable compo-
nents or modules. Just as real-estate brokers tell their clients that the three most important
factors affecting the price of real estate are “location, location and location,” we believe the
three most important factors affecting the future of software development are “reuse, reuse
and reuse.”

Indeed, with object technology, we will build most future software by combining “ stan-
dardized, interchangeable parts’ called components. This book will teach you how to “ craft
valuable classes’ for reuse, reuse and reuse. Each new classyou create will have the potential
to become a valuable software asset that you and other programmers can use to speed and
enhance the quality of future software-development efforts. Thisis an exciting possibility.

In this chapter, we have introduced many important features of Python, including
printing data on the screen, inputting data from the keyboard, performing calculations and
making decisions. In Chapter 3, Control Structures, we build on these techniques as we
introduce structured programming. We will study how to specify and vary the order in
which statements are executed—thisorder is called flow of control. Also, weintroduced the
basic concepts and terminology of object orientation. In Chapters 7-9, we expand our dis-
cussion on object-oriented programming.

SUMMARY

» Programmers insert comments to document programs and to improve program readability. Com-
ments also help other programmers read and understand your program. In Python, comments are
denoted by the pound symbol (#).

* A comment that begins with # is called a single-line comment, because the comment terminates
at the end of the current line.

» Comments do not cause the computer to perform any action when the program is run. Python ig-
nores comments.

» Programmers use blank lines and space characters to make programs easier to read. Together,
blank lines, space characters and tab characters are known as white space. (Space characters and
tabs are known specifically as white-space characters.)

 Blank lines are ignored by Python.

» Thestandard output stream is the channel by which information presented to the user by an appli-
cation—thisinformation typically is displayed on the screen, but may be printed on aprinter, writ-

%

*

é pythonhtpl_02.fm Page 62 Wednesday, December 12, 2001 12:12 PM

62 Infroduction to Python Programming Chapter 2

ten to a file, etc. It may even be spoken or issued to braille devices, so users with visual
impai rments can receive the outputs.

» Theprint statement instructs the computer to display the string of characters contained between
the quotation marks. A string is a Python data type that contains a sequence of characters.

* A print statement normally sends anewline character to the screen. After anewline character is
sent, the next string displayed on the screen appears on the line below the previous string. Howev-
er, acomma(,) tells Python not to send the newline character to the screen. Instead, Python adds
a space after the string, and the next string printed to the screen appears on the same line.

» Output (i.e., displaying information) and input (i.e., receiving information) in Python are accom-
plished with streams of characters.

 Python files typically end with . py, athough other extensions (e.g., . pyw on Windows) can be
used.

» When the Python interpreter executes a program, the interpreter starts at the first line of the file
and executes statements until the end of thefile.

» The backslash (\) is an escape character. It indicates that a “special” character is to be output.
When abackdash is encountered in astring of characters, the next character is combined with the
backslash to form an escape sequence.

» Theescape sequence \n means newline. Each occurrence of a \n (newline) escape sequence caus-
es the screen cursor to position to the beginning of the next line.

» A built-in function is a piece of code provided by Python that performs a task. The task is per-
formed when the function isinvoked or called. After performing its task, afunction may return a
value that represents the end result of the task.

* In Python, variables are more specifically referred to as objects. An object resides in the comput-
er'smemory and containsinformation used by the program. The term object normally impliesthat
atributes (data) and behaviors (methods) are associated with the object. The object’ s methods use
the attributes to perform tasks.

* A variable name consists of letters, digits and underscores (_) and does not begin with a digit.

 Pythonis case sensitive—uppercase and lowercase |etters are different, so al and A1 aredifferent
variables.

» An object can have multiple names, called identifiers. Each identifier (or variable name) referenc-
es (points to) the object (or variable) in memory.

» Each object has atype. An object’s type identifies the kind of information (e.g., integer, string,
etc.) stored in the object.

* In Python, every object has atype, asize, avalue and alocation.

» Function type returnsthe type of an object. Function id returns a number that represents the ob-
ject’ s location.

* Inlanguageslike C++ and Java, the programmer must declare the object type before using the ob-
ject in the program. In Python, the type of an object is determined automatically, as the program
executes. This approach is called dynamic typing.

 Binary operators take two operands. Examples of binary operators are + and -.

 Starting with Python version 2.2, the behavior of the / division operator will change from “floor
division” to “truedivision.”

* Floor division (sometimes called integer division), dividesthe numerator by the denominator and

returns the highest integer value that is not greater than the result. Any fractional part in floor di-
vision is simply discarded (i.e., truncated)—no rounding occurs.

%

é pythonhtpl_02.fm Page 63 Wednesday, December 12, 2001 12:12 PM

Chapter 2 Intfroduction to Python Programming 63

Truedivisionyiddsthe precisefloating-point result of dividing the numerator by the denominator.

The behavior (i.e., floor or true division) of the / operator is determined by the type of the oper-
ands. If the operands are both integers, the operator performs floor division. If one or both of the
operands are floating-point numbers, the operator perform true division.

The // operator performsfloor division.

Programmers can change the behavior of the / operator to perform true division with the statement
from future importdivision.

In Python version 3.0, the only behavior of the / operator will betrue division. After therelease
of version 3.0, al programs are expected to have been updated to compensate for the new be-
havior.

Python provides the modul us operator (%), which yields the remainder after integer division. The
expression x % y yields the remainder after x isdivided by y. Thus, 7 % 4 yields3 and 17 % 5
yields 2. This operator is most commonly used with integer operands, but also can be used with
other arithmetic types.

The modulus operator can be used with both integer and floating-point numbers.

Arithmetic expressions in Python must be entered into the computer in straight-line form. Thus,
expressions such as“a divided by b” must bewritten asa / b, so that al constants, variables and
operators appear in astraight line.

Parentheses are used in Python expressions in much the same manner asin algebraic expressions.
For example, to multiply a times the quantity b + ¢, wewritea * (b + c).

Python applies operators in arithmetic expressions in a precise sequence determined by the rules
of operator precedence, which are generally the same as those followed in a gebra

When we say that certain operators are applied from left to right, we are referring to the associa-
tivity of the operators.

Python provides strings as a built-in data type and can perform powerful text-based operations.

Strings can be created using the single-quote (') and double-quote characters (). Python also sup-
ports triple-quoted strings. Triple-quoted strings are useful for programs that output strings with
quote characters or large blocks of text. Single- or double-quote characters inside a triple-quoted
string do not need to use the escape sequence, and triple-quoted strings can span multiple lines.

A field width isthe minimum size of afield in which avalueis printed. If the field width islarger
than that needed by the value being printed, the datanormally is right-justified within thefield. To
usefield widths, place an integer representing the field width between the percent sign and the con-
version-specifier symbol.

Precision has different meaning for different data types. When used with integer conversion spec-
ifiers, precision indicates the minimum number of digitsto be printed. If the printed value contains
fewer digitsthan the specified precision, zeros are prefixed to the printed value until the total num-
ber of digitsisequivalent to the precision.

When used with a floating-point conversion specifier, the precision is the number of digits to ap-
pear to the right of the decimal point.

When used with a string-conversion specifier, the precision isthe maximum number of characters
to be written from the string.

Exponentia notation isthe computer equival ent of scientific notation used in mathematics. For ex-
ample, the value 150.4582 is represented in scientific notation as1.504582 X 102 andisrep-
resented in exponentia notation as 1.504582E+002 by the computer. This notation indicates
that 1.504582 ismultiplied by 10 raised to the second power (E+002). The E stands for “ex-
ponent.”

%

é pythonhtpl_02.fm Page 64 Wednesday, December 12, 2001 12:12 PM

A

64 Infroduction to Python Programming Chapter 2

* An if structure allows a program to make a decision based on the truth or falsity of a condition.
If the conditionistrue, (i.e., the condition is met), the statement in the body of the i £ structureis
executed. If the condition is not met, the body statement is not executed.

» Conditionsin i £ structures can be formed with equality relational operators. The relational oper-
aorsall have the same level of precedence and associate from |eft to right. The equality operators
both have the same level of precedence, which islower than the precedence of the relational op-
erators. The equality operators also associate from left to right.

» Each if gtructure consists of theword i £, the condition to be tested and acolon (:). An i £ struc-
ture also contains a body (called a suite).

 Python uses indentation to delimit (distinguish) sections of code. Other programming languages
often use braces to delimit sections of code. A suite is a section of code that corresponds to the
body of acontrol structure. We study blocks in the next chapter.

* The Python programmer chooses the number of spaces to indent a suite or block, and the number
of spaces must remain consistent for each statement in the suite or block.

 Splitting a statement over two lines can also cause a syntax error. If a statement islong, the state-
ment can be spread over multiple lines using the \ line-continuation character.

» Object-oriented programming (OOP) models real-world objects with software counterparts. It
takes advantage of class relationships where objects of a certain class—such as a class of vehi-
cles—have the same characteristics.

» OOP takes advantage of inheritance relationships, and even multiple-inheritance relationships,
where newly created classes of objects are derived by absorbing characteristics of existing classes
and adding unique characteristics of their own.

 Object-oriented programming gives us a more natural and intuitive way to view the programming
process, namely, by modeling real-world objects, their attributes and their behaviors. OOP aso
models communication between objects.

» OOP encapsulates data (attributes) and functions (behavior) into packages called objects; the data
and functions of an object are intimately tied together.

» Objectshavethe property of information hiding. Although objects may know how to communicate
with one another across well-defined interfaces, objects normally are not allowed to know how
other objects are implemented—implementation details are hidden within the objects themselves.

* In Python, programming can be object-oriented. I n object-oriented programming, the unit of pro-
gramming is the class from which instances are eventually created. Python classes contain meth-
ods (that implement class behaviors) and data (that implements class attributes).

» Object-oriented programmers create their own user-defined types called classes and components.
Each class contains both data and the set of functions that manipulate the data. The data compo-
nents of a class are called data members or attributes.

» Thefunctional components of a class are called methods (or member functions, in some other ob-
ject-oriented languages).
» Thefocus of attention in object-oriented programming is on classes rather than on functions. The

nouns in a system specification help the object-oriented programmer determine the set of classes
that will be used to create the instances that will work together to implement the system.

TERMINOLOGY

abstraction arithmetic operator
aert escape sequence (\a) assignment statement
argument assignment symbol (=)

%

—

é pythonhtpl_02.fm Page 65 Wednesday, December 12, 2001 12:12 PM

Chapter 2 Intfroduction to Python Programming 65
association memory location

associativity method

associativity of operators modeling

asterisk (*) modulus

atribute modulus operator (%)

backslash (\) escape sequence multiple inheritance

backspace (\b) newline character (\n)

behavior object

binary operator object orientation

block OOP (object-oriented programming)
built-in function operand

calculation operator overloading

calling afunction
carriage return (\r)
case sensitive

class
comma-separated list
comment

component

condition

conversion specifier
data member
debugging

design

dynamic typing
embedded parentheses
encapsulation
equality operators
escape character
escape sequence
execute

exponential notation
exponentiation

field width
floating-point division
floor division

flow of control
function

id function
identifier

indentation
information hiding
inheritance

instance

int function

integer division

left justify
|eft-to-right evaluation
member function
memory

operator precedence
overloading

percent sign (%)
polynomial
precedence
precision

procedural programming language

pseudocode

. py extension

.pyw extension
raw_input function
readability

redundant parentheses
relational operator
reused class

right justify

scientific notation
screen output
second-degree polynomial
self-documentation
single-line comment
single quote

software asset
standard output stream
statement

stream of characters
string of characters
string type

structured programming
suite

system path variable
triple-quoted string
true division

truncate

type

type function
user-defined type
variable

ﬂ%

é pythonhtpl_02.fm Page 66 Wednesday, December 12, 2001 12:12 PM

A

.

66 Infroduction to Python Programming Chapter 2

SELF-REVIEW EXERCISES

2.1 Fill in the blanks in each of the following:

a The statement instructs the computer to display information on the screen.

b) A is aPython data type that contains a sequence of characters.

c) are simply names that reference objects.

d) The is the modulus operator.

€) are used to document a program and improve its readability.

f) Each if structure consists of the word , the to be tested, a
anda .

g) The function converts non-integer values to integer values.

h) A Python statement can be spread over multiple lines using the

i) Arithmetic expressions enclosed in are evaluated first.

i) Anobject’'s describes the information stored in the object.

2.2 State whether each of the following istrue or false. If false, explain why.
a) ThePython functionget input requestsinput from the user.
b) A valid Python arithmetic expression with no parentheses is evaluated left to right.
¢) Thefollowing areinvalid variable names: 3g, 87 and 2h.
d) Theoperator ! = isan example of arelational operator.
e) A variable name identifies the kind of information stored in the object.
f) In Python, the programmer must declare the object type before using the object in the
program.
g) If parentheses are nested, the expression in theinnermost pair is evaluated first.
h) Python treats the variable names, al and A1, asthe same variable.
i) The backslash character is called an escape sequence.
j) Therelational operators all have the same level of precedence and evaluate | eft to right.

ANSWERS TO SELF-REVIEW EXERCISES

2.1 a) print. b) string. c) Identifiers. d) percent sign (%). €) Comments. f) i £, condition, colon
(), body/suite. g) int. h) line-continuation character (\). i) parentheses. j) type.

2.2 a) False. The Python function raw_input getsinput from the user. b) False. Python arith-
metic expressions are evaluated according to the rules of operator precedence and associativity—not
left to right. c) True. d) False. The operator ! = is an example of an equality operator. €) Fase. An
object type identifies the kind of information stored in the object. f) False. In Python, the object type
is determined as the program executes. g) True. h) False. Python is case sensitive, so a1 and A1 are
different variables. i) False. The backdash is called an escape character. j) True.

EXERCISES

2.3 State the order of evaluation of the operatorsin each of the following Python statements and
show the value of x after each statement is performed.
a)x=7+3 **6 /2 -1
b)x =2 %2 +2*2-2/2
e)x=(3*9* (3 4+ (9*3/(3))))

2.4 Write a program that requests the user to enter two numbers and prints the sum, product, dif-
ference and quotient of the two numbers.

25 Write a program that reads in the radius of a circle and prints the circle’ s diameter, circum-
ference and area. Use the constant value 3.14159 for wt. Do these calculations in output statements.

ﬂ%

*

é pythonhtpl_02.fm Page 67 Wednesday, December 12, 2001 12:12 PM

Chapter 2 Intfroduction to Python Programming 67

2.6 Write a program that prints a box, an oval, an arrow and a diamond, as shown:

*khkkkkkkkk * k% * *

* * * * * %% * *

* * * * *kkk*k * *

* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *

* * * * * * *
*hkkkhkkkkk * %% * *

2.7 Write a program that reads in two integers and determines and prints whether the first isa
multiple of the second. (Hint: Use the modulus operator.)

2.8 Give abrief answer to each of the following “object think” questions:

a) Why doesthistext chooseto discuss structured programming in detail before proceeding
with an in-depth treatment of object-oriented programming?

b) What aspects of an object need to be determined before an object-oriented program can
be built?

¢) How isinheritance exhibited by human beings?

d) What kinds of messages do people send to one another?

€) Objects send messages to one ancther across well-defined interfaces. What interfaces
does a car radio (object) present to its user (a person object)?

é pythonhtpl_03.fm Page 68 Saturday, December 8, 2001 9:34 AM

"

Control Structures

Objectives

To understand basi ¢ problem-solving techniques.
To develop algorithms through the process of top-
down, stepwise refinement.

Tousetheif, if/lelse and if/elif/else
structures to select appropriate actions.
Tousethewhile and for repetition structuresto
execute statements in a program repeatedly.

To understand counter-controlled and sentinel-
controlled repetition.

To use augmented assignment symbols and logical
operators.

To usethebreak and continue program control
Statements.

Let’s all move one place on.
Lewis Carrall

The wheel is come full circle.
William Shakespeare, King Lear
Who can control his fate?
William Shakespeare, Othello
The used key is always bright.
Benjamin Franklin

i

Under
Construction

é pythonhtpl_03.fm Page 69 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 3 Control Structures 69

Outline

3.1 Introduction

3.2 Algorithms

3.3 Pseudocode

3.4 Control Structures

3.5 if Selection Structure

3.6 if/else and if/elif/else Selection Structures

3.7 while Repetition Structure

3.8 Formulating Algorithms: Case Study 1 (Counter-Controlled
Repetition)

3.9 Formulating Algorithms with Top-Down, Stepwise Refinement: Case
Study 2 (Sentinel-Controlled Repetition)

3.10 Formulating Algorithms with Top-Down, Stepwise Refinement: Case
Study 3 (Nested Control Structures)

3.11 Augmented Assignment Symbols

3.12 Essentials of Counter-Controlled Repetition
3.13 for Repetition Structure

3.14 Using the for Repetition Structure

3.15 break and continue Statements

3.16 Logical Operators

3.17 Structured-Programming Summary

Summary ¢ Terminology ¢ Self-Review Exercises » Answers to Self-Review Exercises

3.1 Introduction

Before writing a program to solve a particular problem, it is essential to have a thorough
understanding of the problem and a carefully planned approach to solving the problem.
When writing a program, it is equally essential to understand the types of building blocks
that are available and to use proven program-construction principles. In this chapter, we
discuss these issues in our presentation of the theory and principles of structured program-
ming. The techniques that you learn are applicable to most high-level languages, including
Python. When we begin our treatment of object-oriented programming in Chapter 7, we use
the control structures presented in this chapter to build and manipulate objects.

3.2 Algorithms

Any computing problem can be solved by executing a series of actionsin aspecified order.
An algorithmis a procedure for solving a problem in terms of

1. actionsto be executed and
2. the order in which these actions are to be executed.

%

*

é pythonhtpl_03.fm Page 70 Saturday, December 8, 2001 9:34 AM

A

.

70 Control Structures Chapter 3

The following example demonstrates that specifying the order in which the actions are to
be executed isimportant.

Consider the “rise-and-shine” algorithm followed by one junior executive for getting
out of bed and going to work: (1) Get out of bed, (2) take off pajamas, (3) take a shower,
(4) get dressed, (5) eat breakfast, (6) carpool to work. This routine gets the executive to
work to make critical decisions.

Suppose that the same steps are performed in a dlightly different order: (1) Get out of
bed, (2) take off pajamas, (3) get dressed, (4) take a shower, (5) eat breakfast, (6) carpool
towork. In this case, our junior executive shows up for work soaking wet.

Specifying the order in which statements are to be executed in a computer program is
caled program control. In this chapter, weinvestigate Python’ s program-control capabilities.

3.3 Pseudocode

Pseudocode is an artificial and informal language that helps programmers develop algo-
rithms. Pseudocode consists of descriptions of executable statements—those that are exe-
cuted when the program has been converted from pseudocode to Python. The pseudocode
we present here is useful for developing algorithms that will be converted to Python pro-
grams. Pseudocode is similar to everyday English; it is convenient and user-friendly, al-
though it is not an actual computer programming language.

Pseudocode programs are not executed on computers. Rather, pseudocode helps the
programmer “plan” a program before attempting to write it in a programming language,
such as Python. In this chapter, we provide several examples of how pseudocode can be
used effectively in devel oping Python programs.

Pseudocode oftenisused to “ think out” a programduring the program design process. Then
the pseudocode programis converted to Python.

The style of pseudocode we present consists purely of characters, so programmers can
conveniently type pseudocode programs using a text-editor program. This way, a computer
can display a fresh copy of a pseudocode program on demand. A carefully prepared
pseudocode program can be converted easily to a corresponding Python program. In many
cases, thisis done simply by replacing pseudocode statements with their Python equivalents.

3.4 Control Structures

Normally, statementsin aprogram are executed in the order in which they are written. This
iscalled sequential execution. V arious Python statements enabl e the programmer to specify
that the next statement to be executed may be other than the next one in sequence. Thisis
called transfer of control. Transfer of control is achieved with Python control structures.
This section discusses the background of control structure development and the specific
tools Python uses to transfer control in a program.

During the 1960s, it became clear that the indiscriminate use of control transfers
caused the difficulty experienced by software-development groups. The finger of blame
was pointed at the goto statement (used in several programming languages, including C
and Basic), which alows a programmer to specify a transfer of control to one of a wide
range of possible destinations in a program. The notion of so-called structured program-
ming became almost synonymous with “goto elimination.”

%

—

é pythonhtpl_03.fm Page 71 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 3 Control Structures 71

The research of Bohm and Jacopi ni' demonstrated that programs could be written
without any goto statements. The challenge, then became for programmers to alter their
programming stylesto “ goto-less programming.” When programmers began to take struc-
tured programming seriously beginning in the 1970s, the notion of structured programming
became almost synonymous with goto elimination. Since then, the results have been
impressive, as software development groups have reported reduced development times,
more frequent on-time delivery of systems and more frequent within-budget completion of
software projects. Structured programming has enabled these improvements because struc-
tured programs are clearer, easier to debug and modify and more likely to be bug-free in
the first place.

Bohm and Jacopini’ swork demonstrated that all programs could be written in terms of
three control structures—namely, the sequence structure, the selection structure and the
repetition structure. The sequence structureisbuilt into Python. Unless directed otherwise,
the computer executes Python statements sequentially. The flowchart segment of Fig. 3.1
illustrates a typical sequence structure in which two calculations are performed sequen-
tidly. A flowchart isatool that provides graphical representation of an algorithm or a por-
tion of an agorithm.

Flowcharts are drawn using certain special-purpose symbols, such as rectangles, dia-
monds, ovals and small circles; these symbols are connected by arrows called flowlines,
which indicate the order in which the actions of the algorithm execute. Like pseudocode,
flowcharts aid in the development and representation of algorithms. Although most pro-
grammers prefer pseudocode, flowcharts illustrate clearly how control structures operate.
The reader should carefully compare the pseudocode and flowchart representations of each
control structure.

The flowchart segment for the sequence structure in Fig. 3.1 uses the rectangle
symbol, called the action symboal, to indicate an action, (e.g., calculation or an input/output
operation). The flowlines in the figure indicate the order in which the actions are to be
performed—Tfirst, grade isadded to total, then 1 isadded to counter. Python alows
us to have as many actions as we want in a sequence structure—anywhere a single action
may be placed, we can place severa actionsin sequence.

!

add grade to total total = total + grade

'

add 1 to counter counter = counter + 1

'

@)

Fig. 3.1 Sequence structure flowchart.

1. Bohm, C., and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two
Formation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336-371.

%

—

é pythonhtpl_03.fm Page 72 Saturday, December 8, 2001 9:34 AM

A

.

72 Control Structures Chapter 3

In aflowchart that represents a complete algorithm, an oval symbol containing the word
“Begin” representsthe start of the flowchart; an oval symbol containing theword “End” rep-
resents the end of the flowchart. When drawing a portion of an algorithm, asin Fig. 3.1, the
ova symbols are omitted in favor of small circle symbols, also called connector symbols.

Perhaps the most important flowchart symbol is the diamond symbol, aso called the
decision symbol, which indicates a decision isto be made. We discuss the diamond symbol
inthe next section. The pseudocode we present hereisuseful for developing algorithmsthat
will be converted to structured Python programs.

Python provides three types of selection structures. if, if/else and if/elif/
else. Wediscuss each of these in this chapter. The i £ selection structure either performs
(selects) an action if a condition (predicate) is true or skips the action if the condition is
false. The i £/else selection structure performs an action if acondition istrue or performs
adifferent action if the conditionisfalse. The i £/elif/else selection structure performs
one of many different actions, depending on the truth or falsity of several conditions.

The i £ selection structure is a single-selection structure because it selects or ignores a
single action. The i f/else selection structure is a double-selection structure because it
selects between two different actions. The 1 £/elif/else selection structureisamultiple-
selection structure because it selects the action to perform from many different actions.

Python provides two types of repetition structures: while and for. The if, elif,
else,while and for structures are Python keywords. These keywords are reserved by
the language to implement various Python features, such as control structures. Keywords
cannot be used as identifiers (i.e., variable names). Figure 3.2 lists all Python keywords.?

—a- Common Programming Error 3.1
@ Using a keyword as an identifier isa syntax error.

Inall, Python has only the six control structures: the sequence structure, three types of
selection structures and two types of repetition structures. Each Python program is formed
by combining as many control structures as is appropriate for the algorithm the program
implements. Aswith the sequence structure shown in Fig. 3.1, wewill seethat each control
structureis flowcharted with two small circle symbols, one at the entry point to the control
structure and one at the exit point.

Python keywords

and continue else for import not raise
assert def except from in or return
break del exec global is pass try
class elif finally 1if lambda print while

Fig. 3.2 Python keywords.

2. Python 2.3 will introduce the keyword yield among others. Visit the Python Web site
(www.python.org) to view atentative list of such keywords, and avoid using them as identifi-
ers.

%

—

é pythonhtpl_03.fm Page 73 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 3 Control Structures 73

These single-entry/single-exit control structures make it easy to build programs. The
control structures are attached to one another by connecting the exit point of one control
structure to the entry point of the next. This is similar to the way a child stacks building
blocks; hence, the term control-structure stacking. Control-structure nesting also connects
control structures; we discuss this technique later in the chapter.

Any Python program can be constructed from six different types of control structures (se-
quence, if, iflelse, ifleliflelse, while and for) combined in two ways (control-
structure stacking and control-structur e nesting).

3.5 1if Selection Structure

Selection structures choose among alternative courses of action. For example, suppose that
the passing grade on an examination is 60. Then the pseudocode statement

If student’s grade is greater than or egqual to 60
Print “ Passed”

determines whether the condition “ student’ s grade is greater than or equal to 60" istrue or
false. If the condition istrue, then “Passed” is printed, and the next pseudocode statement
inorder is“ performed.” (Remember that pseudocode is not area programming language.)
If the condition isfalse, the print statement isignored, and the next pseudocode statement
is performed. Note that the second line of this selection structure is indented. Such inden-
tation is optiona (for pseudocode), but it is highly recommended because indentation em-
phasizes the inherent hierarchy of structured programs. When we convert pseudocode into
Python code, indentation is required.
The preceding pseudocode if statement may be written in Python as

if grade >=
print

Notice that the Python code corresponds closely to the pseudocode. This similarity is the
reason that pseudocode is auseful program development tool. The statement in the body of
the 1 £ structure outputs the character string "Passed™.

The flowchart of Fig. 3.3 illustrates the single-selection i £ structure and the diamond
symbol. The decision symbol contains an expression, such as a condition, that can be either
true or false. The diamond has two flowlines emerging from it: One indicates the direction
to follow when the expression in the symbol is true; the other indicates the direction to
follow when the expression is false. We learned, in Chapter 2, Introduction to Python Pro-
gramming, that decisions can be based on conditions containing relational or equality oper-
ators. Actually, a decision can be based on any expression. For instance, if an expression
evaluatesto zero, itistreated asfalse, and if an expression evaluatesto nonzero, it istreated
astrue.

Note that the i £ structure is a single-entry/single-exit structure. We will soon learn
that the flowcharts for the remaining control structures also contain (besides small circle
symbolsand flowlines) rectangle symbolsthat indicate the actionsto be performed and dia-
mond symbols that indicate decisions to be made. This type of flowchart emphasizes the
action/decision model of programming.

%

—

\ {%)
| pythonhtpl_03.fm Page 74 Saturday, December 8, 2001 9:34 AM

A

.

74 Control Structures Chapter 3

true

——[print “Passed”

grade >= 60

Fig. 3.3 i f single-selection structure flowchart.

We can envision six bins, each containing control structures of oneof the six types. These
control structuresare empty—nothing iswritten in therectanglesor in thediamonds. The pro-
grammer’ stask, then, isassembling aprogram from as many of each type of control structure
as the algorithm demands, combining those control structures in only two possible ways
(stacking or nesting), then filling in the actions and decisions in a manner appropriate for the
algorithm. Wewill discussthe variety of waysin which actions and decisions may bewritten.

3.6 if/else and if/elif/else Selection Structures

The i £ selection structure performs a specified action only when the condition istrue; oth-
erwise, the action is skipped. The i f/else selection structure allows the programmer to
specify that a different action is to be performed when a condition is true from an action
when a condition is false. For example, the pseudocode statement

If student’s grade is greater than or equal to 60
Print “ Passed”

else
Print “ Failed”

prints Passed if the student’s grade is greater than or equal to 60 and prints Failed if the
student’s grade is less than 60. In either case, after printing occurs, the next pseudocode
statement in sequence is “performed.” Note that the body of the else isindented. The in-
dented body of acontrol structureis called a suite. Remember that indentation conventions
you choose should be applied uniformly throughout programs. It isimperative for Python
when it is executing code, and programsthat do not obey uniform spacing conventions also
are difficult to read.

Good Programming Practice 3.1

@ If there are several levels of indentation, each suite must be indented. Different suites at the
samelevel do not haveto be indented by the same amount, but doing so isgood programming
practice.

The preceding pseudocode if/el se structure can be written in Python as

if grade >=
print
else:
print

ﬁ%

*

Q2
| é pythonhtpl_03.fm Page 75 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 3 Control Structures 75

Common Programming Error 3.2

@ Failuretoindent all statementsthat belong to an i £ suite or an else suiteresultsinasyn-
tax error.

Theflowchart of Fig. 3.4 illustratesthe flow of control inthe i £/e1se structure. Once
again, note that (besides small circles and arrows) the symbols in the flowchart are rectan-
gles (for actions) and diamonds (for decisions). We continue to emphasize this action/deci-
sion model of computing. Imagine again a bin containing empty double-selection
structures. The programmer’ sjob isto assembl e these selection structures (by stacking and
nesting) with other control structures required by the algorithm and to fill in the rectangles
and diamonds with actions and decisions appropriate to the algorithm being implemented.

Nested iflelse structures test for multiple cases by placing if/else selection
structures inside other if/else selection structures. For example, the following
pseudocode statement prints A for exam grades greater than or equal to 90, B for grades 80—
89, ¢ for grades 70-79, D for grades 60-69 and F for all other grades.

If student’s grade is greater than or equal to 90

Print“ A”
else
If student’s grade is greater than or equal to 80
Print“B”
else
If student’s grade is greater than or equal to 70
Print“ C”
else
If student’s grade is greater than or equal to 60
Print“ D”
else
Print“F”
false true

grade >= 60

y !{
print “Failed” print “Passed”

Fig. 3.4 if/else double-selection structure flowchart.

ﬂ%

—

\ {%)
| pythonhtpl_03.fm Page 76 Saturday, December 8, 2001 9:34 AM

A

.

76 Control Structures Chapter 3

This pseudocode can be written in Python as

if grade >=

print
else:
if grade >=
print
else:
if grade >=
print
else:
if grade >=
print
else:
print

If grade is greater than or equal to 90, the first four conditions are met, but only the
print statement after the first test executes. After that print executes, the else part of
the “outer” i f/else statement skips.

Performance Tip 3.1

S Anested i f/else structureisfaster than a series of single-selection i £ structures because

“2"] the testing of conditions terminates after one of the conditions is satisfied.

Performance Tip 3.2

e Inanested i f/else structure, place the conditionsthat are more likely to be true at the be-
=22 ginning of the nested 1 f/e1se structure. This enables the nested i £/else structureto run
faster and exit earlier than an equivalent i f/else structure in which infrequent cases ap-

pear first.

Many Python programmers prefer to write the preceding i £ structure as

if grade >=
print

elif grade >=
print

elif grade >=
print

elif grade >=
print

else:
print

thusreplacing the double-selection i £/else structure with the multiple-selection 1 £/e1i £/
else structure. The two forms are equivalent. The latter form is popular because it avoids
the deep indentation of the code to the right. Such indentation often leaves little room on a
line, forcing linesto be split over multiple lines and decreasing program readability.

Each elif can have one or more actions. The flowchart in Fig. 3.5 shows the general
if/elif/else multiple-selection structure. The flowchart indicates that, after an i £ or
elif statement executes, control immediately exitsthe i £/eli £f/else structure. Again,
note that (besides small circles and arrows) the flowchart contains rectangle symbols and
diamond symbols. Imagine that the programmer has access to a deep bin of empty if/
elif/else structures—as many as the programmer might need to stack and nest with

ﬁ%

*

\ {%)
pythonhtpl_03.fm Page 77 Saturday, December 8, 2001 9:34 AM

Chapter 3 Control Structures 77

O

if statementw

false
y

fi 1if . -
istelif conditon b 1€ ,.lcase b action(s)
statement

false

\

last elif . -
aste-i condition z L case z action(s)
statementg\ £

false

else v _
statementgﬂ default clacnon(s)]
=
O

Fig. 3.5 if/elif/else multiple-selection structure.

other control structures to form a structured implementation of an algorithm’s flow of con-
trol. The rectangles and diamonds are then filled with actions and decisions appropriate to
the algorithm.

The else statement of the i f/eli f/else structureisoptional. However, most pro-
grammers include an else statement at the end of a series of eli £ statementsto handle
any condition that does not match the conditions specified in the eli £ statements. We call
the condition handled by the else statement the default condition. If an i £/elif£ struc-
ture specifies an else statement, it must be the last statement in the structure.

Good Programming Practice 3.2

@ Provide a default conditionin i £/e11 £ structures. Conditions not explicitly testedin an 1 £/
elif structure without a default condition are ignored. Including a default condition focus-
es the programmer on the need to process exceptional conditions.

A suite can be placed anywherein a program that a single statement can be placed.

The if selection structure can contain several statements in its body (suite), and all
these statements must be indented. Thefollowing exampleincludesasuiteintheelse part
of an i £/else structure that contains two statements. A suite that contains more than one
statement is sometimes called a compound statement.

- 4~ 4

é pythonhtpl_03.fm Page 78 Saturday, December 8, 2001 9:34 AM

A

%

78 Control Structures Chapter 3

if grade >=
print
else:
print
print

In this case, if grade islessthan 60, the program executes both statements in the body of
the else and prints

Failed.
You must take this course again.

Notice that both statements of the else suite are indented. If the statement
print

was not indented, the statement executes regardless of whether the grade is less than 60 or
not. Thisisan example of alogic error.

A programmer can introduce two major types of errors into a program: syntax errors
and logic errors. A syntax error violates the rules of the programming language. Examples
of syntax errorsinclude using a keyword as an identifier or forgetting the colon (:) after an
if statement. The interpreter catches a syntax error and displays an error message.

A logic error causes the program to produce unexpected results and may not be caught
by the interpreter. A fatal logic error causes a program to fail and terminate prematurely.
For fatal errors, Python prints an error message caled a traceback and exits. A nonfatal
logic error alows a program to continue executing, but produces incorrect results.

Common Programming Error 3.3

@ Forgetting to indent all the statementsin a suite can lead to syntax or logic errorsin a pro-
gram.

Theinteractive session in Fig. 3.6 attemptsto divide two user-entered values and dem-
onstrates one syntax error and two logic errors. The syntax error is contained in the line

print valuel +

The + operator needs a right-hand operand, so the interpreter indicates a syntax error.
Thefirst logic error is contained in the line

print valuel + value2

Theintention of thislineisto print the sum of the two user-entered integer values. How-
ever, the strings were not converted to integers, thus the statement does not produce the de-
sired result. Instead, the statement produces the concatenation of the two strings—formed
by linking the two stringstogether. Notice that the interpreter does not display any messag-
es because the statement is legal.

The second logic error occursin the line

print int(valuel) / int(value2)

The program does not check whether the second user-entered value is 0, so the program
attempts to divide by zero. Dividing by zero isafatal logic error.

%

*

\ {%)
| pythonhtpl_03.fm Page 79 Saturday, December 8, 2001 9:34 AM

Chapter 3 Control Structures 79

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>> valuel = raw input("Enter a number: ")
Enter a number: 3
>>> value2 = raw_input("Enter a number: ")

Enter a number: 0
>>> print valuel +
File "<stdin>", line 1
print valuel +

SyntaxError: invalid syntax
>>> print valuel + value2
30
>>> print int(valuel) / int(value2)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero

Fig. 3.6 Syntax and logic errors.

—a- Common Programming Error 3.4
@ An attempt to divide by zero causes a fatal logic error.

Just as multiple statements can be placed anywhere a single statement can be placed,
it is possible to have no statements at al, (i.e., empty statements). The empty statement is
represented by placing keyword pass where a statement normally resides (Fig. 3.7).

Common Programming Error 3.5

@ All control structures must contain at least one statement. A control structure that contains
no statements causes a syntax error.

3.7 while Repetition Structure

A repetition structure allows the programmer to specify that a program should repeat an
action while some condition remains true. The pseudocode statement

While there are more items on my shopping list
Purchase next item and cross it off my list

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32

Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>> 1if 1 < 2:

000 pass

Fig. 3.7 Keyword pass.

é pythonhtpl_03.fm Page 80 Saturday, December 8, 2001 9:34 AM

A

.

80 Control Structures Chapter 3

describes the repetition that occurs during a shopping trip. The condition, “there are more
items on my shopping list” is either true or false. If it istrue, the program performs the ac-
tion “ Purchase next item and crossit off my list.” Thisaction is performed repeatedly while
the condition remains true.

The statement(s) contained in the while repetition structure congtitute the body (suite) of
the while. The while structure body can consist of a single statement or multiple statements.
Eventually, the condition should evaluate to false (in the above example, when the last item
on the shopping list has been purchased and crossed off the list). At this point, the repetition
terminates, and the program executes the first statement after the repetition structure.

—a- Common Programming Error 3.6

é Alogicerror, called aninfinite loop (the repetition structure never terminates), occurswhen
an action that causes the condition in the while structure to become false is missing from
the body of a while Structure.

—a- Common Programming Error 3.7

é Soelling the keyword whi 1 e with an uppercase w, asin Wwhile (remember that Pythonisa
case-sensitive language), is a syntax error. All of Python's reserved keywords, such as
while, if, elif and else, contain only lowercase |etters.

Asan example of awhile structure, consider a program segment designed to find the
first power of 2 larger than 1000. Suppose variable product has been created and initial-
ized to 2. When the following while repetition structure finishes executing, product will
contain the desired answer:

product =

while product <= :
product = * product

At the start of the while structure, product is2. Thevariable product is multi-
plied by 2, successively taking onthevalues 4, 8, 16, 32, 64, 128, 256, 512 and 1024. When
the value of product equals 1024, thewhile structure condition, product <= 1000,
evaduatesto false. Thisterminatesthe repetition—thefinal value of product is1024. Pro-
gram execution continues with the next statement after the while structure.

Theflowchart of Fig. 3.8 illustratestheflow of control inthewhile structurethat cor-
respondsto the preceding while structure. Once again, notethat (besides small circlesand
arrows) the flowchart contains a rectangle symbol and a diamond symbol.

7.

product <= 1000 product = 2 * product

O

Fig. 3.8 while repetition structure flowchart.

ﬂ%

—

\ {%)
| pythonhtpl_03.fm Page 81 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 3 Control Structures 81

Imagine abin of empty while structuresthat can be stacked and nested with other con-
trol structures to implement an algorithm'’s flow of control. The empty rectangles and dia-
monds are then filled in with appropriate actions and decisions. The flowchart shows the
repetition. The flowline emerging from the rectangle wraps back to the decision that istested
each time through the loop until the decision becomes false. Then, thewhi le structure exits
and control passesto the next statement in the program.

3.8 Formulating Algorithms: Case Study 1
(Counter-Controlled Repetition)

Toillustrate how algorithmsare developed, we solve severa variations of aclass-averaging
problem. Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0 —100) for this quiz
are available. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem requests each of the grades, performsthe averaging cal-
culation and prints the result.

Using pseudocode, we list the actions to be executed and specify the order in which
these actions should be executed. We use counter-controlled repetition to input the grades
one at atime. This technique uses a variable called a counter to control the number of
times a set of statements executes. Repetition terminates when the counter exceeds 10. In
this section, we present a pseudocode algorithm (Fig. 3.9) and the corresponding program
(Fig. 3.10). In the next section, we show how to devel op pseudocode algorithms. Counter-
controlled repetition often is called definite repetition because the number of repetitionsis
known before the loop begins executing.

Note the references in the algorithm to the variables total and counter. In the program
of Fig. 3.10, the variable total (line 5) accumulates the sum of a series of values, while
the variable counter counts—in this case, it counts the number of user-entered grades.
Variables that store totals normally are initialized to zero.

Set total to zero
Set grade counter to one

While grade counter isless than or equal to ten
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

Fig. 3.9 Pseudocode algorithm that uses counter-controlled repetition to solve
the class-average problem.

ﬂ%

*

é pythonhtpl_03.fm Page 82 Saturday, December 8, 2001 9:34 AM

82 Control Structures Chapter 3
1

2

3

4

5 total =

6 gradeCounter =

7

8

9 while gradeCounter <= 8
10 grade = raw_input()
11 grade = int(grade)
12 total = total + grade
13 gradeCounter = gradeCounter +
14
15
16 average = total /
17 print , average

Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

Fig. 3.10 Counter-controlled repetition used to solve class-average problem.

Good Programming Practice 3.3

@ Initialize counters and totals.

Lines 5-6 are assignment statementsthat initialize total to 0 and gradeCounter
to 1. Line 9 indicates that the while structure should continue as long as grade-
Counter’svaueislessthan or equal to 10.

Lines 10-11 correspond to the pseudocode statement Input the next grade. Function
raw_input displaysthe prompt “Enter grade:” onthe screen and accepts user input.
Line 11 converts the user-entered string to an integer.

Next, the program updates total with the new grade entered by the user—line 12
adds grade to the previous value of total and assignsthe result to total.

Then, the program increments the variable gradeCounter to indicate that a grade
has been processed. Line 13 increments gradeCounter by one, allowing the condition
inthewhile structure to evaluate to false and terminate the loop.

Line 16 executes after the while structure terminates and assigns the results of the
average calculation to variable average. Line 17 displaysthe string "Class average
is", followed by a space (inserted by print), followed by the value of variable
average.

4~ —

é pythonhtpl_03.fm Page 83 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 3 Control Structures 83

Note that the averaging cal culation in the program produces an integer result. Actually,
the sum of the grades in this example is 817, which, when divided by 10, yields 81.7—a
number with a decimal point. We discuss how to deal with floating-point numbers in the
next section.

In Fig. 3.10, if line 16 used gradeCounter rather than 10 for the calculation, the
output for this program would display anincorrect value, 74, becausegradeCounter con-
tainsthevalues 11, after thetermination of thewhile loop. Fig. 3.11 usesan interactive ses-
sion to demonstrate the value of gradeCounter after thewhile loop iterates ten times.

3.9 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 2 (Sentinel-Controlled Repetition)

Let us generalize the class-average problem. Consider the following problem:

Devel op a class-averaging program that processes an arbitrary number of grades each time
the program is executed.

In the first class-average example, the program knows the number of grades (10) to be en-
tered by the user. In this example, no indication is given of how many grades will be en-
tered. The program processes an arbitrary number of grades. How can the program
determine when to stop the input of grades? How will it know when to calculate and print
the class average?

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, adummy value or a flag value) to indicate “end of data entry.” The
user inputs grades until al legitimate grades have been entered. The user then inputs the
sentinel valueto indicate that the last grade has been entered. Sentinel-controlled repetition
often is called indefinite repetition because the number of repetitionsis not known before
the start of the loop.

Clearly, the sentinel value must be chosen so that it cannot be confused with an accept-
ableinput value. Asgradeson aquiz normally are nonnegative integers, —1 isan acceptable
sentingl value for this problem. Thus, executing the class-average program might process
astream of inputs such as 95, 96, 75, 74, 89 and —1. The program then computes and prints
the class average for the grades 95, 96, 75, 74 and 89.

—- Common Programming Error 3.8
@ Choosing a sentinel value that is a legitimate data value resultsin alogic error.

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more informa-
tion.
>>> gradeCounter = 1
>>> while gradeCounter <= 10:

gradeCounter = gradeCounter + 1

>>> print gradeCounter
11

Fig. 3.11 Counter value used after termination of counter-controlled loop.

ﬂ%

—

é pythonhtpl_03.fm Page 84 Saturday, December 8, 2001 9:34 AM

*

.

84 Control Structures Chapter 3

We approach the class-average program with a technique called top-down, stepwise
refinement, which is essential to the development of well-structured programs. We begin
with a pseudocode representation of the top:

Determine the class average for the quiz

Thetop isasingle statement that conveysthe overall function of the program. Assuch, the
top is, in effect, a complete representation of a program. Unfortunately, the top (asin this
case) rarely conveys a sufficient amount of detail from which to write the Python program.
So we now begin the refinement process. We divide the top into a series of smaller tasks
and list these in the order in which they need to be performed. Thisresultsin the following
first refinement:

Initialize variables
Input, sum and count the quiz grades
Calculate and print the class average

In this case, the sequence control structure is used—the steps listed are executed succes-
sively.

Each refinement, as well asthe top itself, is a complete specification of the algorithm; only
the level of detail varies.

Many programs can be divided logically into three phases: An initialization phasewhichini-
ﬁ“ tializesthe program variables; a processing phase which inputs data val ues and adjusts pro-
gram variables accordingly; and a termination phase which calculates and prints the final
results.

The preceding Software Engineering Observation often is al you need for the first
refinement in the top-down process. To proceed to the next level of refinement (i.e., the
second refinement), we commit to specific variables. The program needsto maintain arun-
ning total of the numbers, a count of how many numbers have been processed, a variable
that contains the value of each grade and a variable that contains the calculated average.
The pseudocode statement

Initialize variables
can berefined as follows:

Initialize total to zero
Initialize counter to zero

The pseudocode statement
Input, sum and count the quiz grades

requires a repetition structure (i.e., aloop) that successively inputs each grade. We do not
know how many grades will be entered, so we use sentinel-controlled repetition. The user
inputs legitimate grades successively. After the last legitimate grade has been entered, the
user inputs the sentinel value. The program tests for the sentinel value after each grade is
input and terminates the loop when it has been entered. The second refinement of the pre-
ceding pseudocode statement is

ﬂ%

—

W2

A

.

‘ pythonhtpl_03.fm Page 85 Saturday, December 8, 2001 9:34 AM

Chapter 3 Control Structures 85

Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

The pseudocode statement
Calculate and print the class average
can be refined as follows:

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “ No grades were entered”

Notice that we are testing for the possibility of division by zero—a fatal logic error which,
if undetected, causes the program to fail (often called bombing or crashing). The complete
second refinement of the pseudocode for the class average problem is shown in Fig. 3.12.

Good Programming Practice 3.4

When performing division by an expression whose value could be zero, explicitly test for this
caseand handleit appropriately in your program (such asby printing an error message) rather
than allowing the fatal error to occur. In chapter 12, we discuss how to write programs that
recognize such errors and take appropriate action. This is known as exception handling.

InFig. 3.9 and Fig. 3.12, we included some blank lines in the pseudocode to improve
the readability of the pseudocode. The blank lines separate these statements into their var-
ious phases.

Initialize total to zero
Initialize counter to zero

Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “ No grades were entered”

Fig. 3.12 Pseudocode algorithm that uses sentinel-controlled repetition to solve
the class-average problem.

%

—

é pythonhtpl_03.fm Page 86 Saturday, December 8, 2001 9:34 AM

86 Control Structures

Chapter 3

The pseudocode algorithm in Fig. 3.12 solves the more genera class-averaging
problem. This algorithm was developed after two refinements; sometimes more refine-

ments are necessary.

The programmer terminates thetop-down, stepwiserefinement processwhen the pseudocode
algorithm is specified in sufficient detail for the programmer to convert the pseudocode to

Python. After this step, implementing the Python program normally is straightforward.

Figure 3.13 shows the Python program and a sample execution. Although each grade
isaninteger, the averaging calculation islikely to produce a number with adecimal point,
(i.e., areal number). The integer data type cannot represent real numbers. The program
uses the floating-point data type to handle numbers with decimal points and introduces
function £loat, which forces the averaging calculation to produce a floating-point

numeric result.

total =
gradeCounter =

CoOoO~NOUA~WNE

grade = raw_ input(
10 grade = int(grade)

12 while grade !=

k3 total = total + grade

14 gradeCounter = gradeCounter +

15 grade = raw_input()
16 grade = int(grade)

17

18

19 if gradeCounter !=

20 average = float(total) / gradeCounter
21 print , average

22 else:

23 print

Enter grade, -1 to end: 75
Enter grade, -1 to end: 94
Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 70
Enter grade, -1 to end: 64
Enter grade, -1 to end: 83
Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Class average is 82.5

Fig. 3.13 Sentinel-controlled repetition used to solve class-average problem.

ﬂ%

ﬁ

é pythonhtpl_03.fm Page 87 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 3 Control Structures 87

In this example, we see that control structures can be stacked on top of one another (in
sequence) just as a child stacks building blocks. The while structure (lines 12-16) is
immediately followed by an i f/else structure (lines 19-23) in sequence. Much of the
codein thisprogram isidentical to the codein Fig. 3.10, so in this section, we will concen-
trate on the new features and issues.

Line 6 initidlizes the variable gradeCounter to 0, because no grades have been
entered. To keep an accurate record of the number of grades entered, variable grade-
Counter isincremented only when a grade value is entered.

Good Programming Practice 3.5

@ In a sentinel-controlled loop, the prompts requesting data entry should explicitly remind the
user of the sentinel value.

Study the difference between the program logic for sentinel-controlled repetition in
Fig. 3.13 and counter-controlled repetition in Fig. 3.10. In counter-controlled repetition,
the program reads a value from the user during each pass of the while structure, for a
specified number of passes. In sentinel-controlled repetition, the program reads one value
(lines 9-10) before the program reaches the while structure. This value determines
whether the program’ s flow of control should enter the body of thewhile structure. If the
while structure condition is false (i.e., the user has aready typed the sentinel), the pro-
gram does not execute the while loop (no grades were entered). On the other hand, if the
condition istrue, the program executesthe while loop and processes the value entered by
the user (i.e., adds the grade to total). After processing the grade, the program
requests the user to enter another grade. After executing the last (indented) line of the
while loop (line 16), execution continues with the next test of the while structure con-
dition, using the new value just entered by the user to determine whether the while struc-
ture's body should execute again. Notice that the program requests the next value before
evauating thewhile structure. Thisallowsfor determining whether the value just entered
by the user is the sentinel value before processing the value (i.e., adding it to total). If
the value entered isthe sentinel value, the while structure terminates, and the value is not
added to total.

Lines 9-10 and 15-16 contain identical lines of code. In Section 3.15, we introduce
programming constructs that help the programmer avoid repeating code.

Averages do not aways evaluate to integer values. Often, an average is a value that
containsafractional part, such as 7.2 or -93.5. These values arereferred to asfloating-point
numbers.

The calculation total / gradeCounter resultsin an integer, because total and
counter containinteger values. Dividing two integersresultsininteger division, inwhich
any fractiona part of the calculation is discarded (i.e., truncated). The calculation is per-
formed first, the fractional part is discarded before assigning the result to average. To
produce afloating-point calculation with integer values, convert one (or both) of the values
to afloating-point value with function £1oat. Recall that functions are pieces of code that
accomplish atask; in line 20, function £1loat converts the integer value of variable sum
to afloating-point value. The calculation now consists of afloating-point value divided by
theinteger gradeCounter.

The Python interpreter knows how to evaluate expressions in which the data types of
the operands are identical. To ensure that the operands are of the same type, the interpreter

%

—

é pythonhtpl_03.fm Page 88 Saturday, December 8, 2001 9:34 AM

A

.

88 Control Structures Chapter 3

performs an operation called promotion (also called implicit conversion) on selected oper-
ands. For example, in an expression containing integer and floating-point data, integer
operands are promoted to floating point. In our example, the value of gradeCounter is
promoted to afloating-point number. Then, the calculation is performed, and the result of
the floating-point division is assigned to variable average.

—a- Common Programming Error 3.9

Assuming that all floating-point numbersare precise can lead to incorrect results. Most com-
puters approxi mate floating-point numbers.

Despitethe fact that floating-point numbers are not precise, they have numerous appli-
cations. For example, when we speak of a“normal” body temperature of 98.6, we do not
need to be precise to alarge number of digits. When we view the temperature on a ther-
mometer and read it as 98.6, it may actually be 98.5999473210643. The point here is that
calling this number simply 98.6 is adequate for most applications.

Another way floating-point numbers develop is through division. When we divide 10
by 3, the result is 3.3333333..., with the sequence of 3srepeating infinitely. The computer
allocates a fixed amount of space to hold such a value, so the stored floating-point value
only can be an approximation.

3.10 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 3 (Nested Control Structures)

Let us work another complete problem. We once again formulate the algorithm using

pseudocode and top-down, stepwise refinement and we develop a corresponding Python

program. Consider the following problem statement:
A college offers a course that prepares students for the state licensing exam for real estate
brokers. Last year, several of the students who completed this course took the licensing
examination. Naturally, the college wants to know how well its students did on the exam. You
have been asked to write a program to summarize the results. You have been given a list of
these 10 students. Next to each name is written a 1 if the student passed the examand a 2 if
the student failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e,, a 1 or a 2). Display the message “ Enter result” on the
screen each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students who passed
and the number of students who failed.

4. If morethan 8 students passed the exam, print the message “ Raise tuition.”
After reading the problem statement carefully, we make the following observations
about the problem:
1. The program must process 10 test results. A counter-controlled loop will be used.

2. Each test result is anumber—either a1 or a 2. Each time the program reads a test
result, the program must determine if the number isa 1 or a2. Wetest foralin
our algorithm. If the number isnot a1, we assumethat itisa2. (An exercise at the
end of the chapter considers the consequences of this assumption.)

ﬂ%

—

Q2
| é pythonhtpl_03.fm Page 89 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 3 Control Structures 89

3. Two countersare used—oneto count the number of studentswho passed the exam
and one to count the number of students who failed the exam.

4. After the program has processed all the results, it must decide if more than eight
students passed the exam.

Let us proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Analyze exam results and decide if tuition should be raised

Once again, it isimportant to emphasize that the top is acomplete representation of the pro-
gram, but several refinementsarelikely to be needed before the pseudocode can evolve nat-
urally into a Python program. Our first refinement is

Initialize variables
Input the ten exam grades and count passes and failures
Print a summary of the exam results and decide if tuition should be raised

Here, too, even though we have a compl ete representation of the entire program, further re-
finement is necessary. We now commit to specific variables. We need counters to record
the passes and failures, a counter to control the looping process and a variable to store the
user input. The pseudocode statement

Initialize variables
can berefined as follows:

Initialize passes to zero
Initialize failures to zero
Initialize student counter to one

Notice that only the counters for the number of passes, number of failures and number of
students are initialized. The pseudocode statement

Input the ten exam grades and count passes and failures

requires aloop that successively inputstheresult of each exam. Hereit isknown in advance
that there are precisely ten exam results, so counter-controlled looping is appropriate. In-
sidetheloop (i.e., nested within the loop), a double-selection structure determines whether
each exam result is a pass or afailure and increments the appropriate counter accordingly.
The refinement of the preceding pseudocode statement is

While student counter is lessthan or equal to ten
[nput the next exam result

If the student passed
Add one to passes
else
Add one to failures

Add one to student counter

Notice the use of blank linesto set off the If/el se control structureto improve program read-
ability. The pseudocode statement

Print a summary of the exam results and decide if tuition should be raised

ﬂ%

—

W2

2 é;
‘ pythonhtpl_03.fm Page 90 Saturday, December 8, 2001 9:34 AM

90 Control Structures Chapter 3

may be refined as follows:

—

Print the number of passes
Print the number of failures

If more than eight students passed
Print “ Raise tuition”

The complete second refinement appearsin Fig. 3.14. Notice that the pseudocode al so uses
blank lines to set off the while structure for program readability.

This pseudocode is now sufficiently refined for conversion to Python. Figure 3.15
shows the Python program and two sample executions.

Initialize passes to zero
Initialize failures to zero
Initialize student counter to one

While student counter islessthan or equal to ten
Input the next exam result

If the student passed
Add one to passes
else
Add one to failures

Add one to student counter

Print the number of passes
Print the number of failures

If more than eight students passed
Print “ Raise tuition”

Fig. 3.14 Pseudocode for examination-results problem.

1

2

3

4

5 passes =

6 failures =

7 studentCounter =

8

9

10 while studentCounter <= :
11 result = raw_input()
12 result = int(result)

Fig. 3.15 Examination-results problem. (Part 1 of 2.)

- 4~ -~

.

é pythonhtpl_03.fm Page 91 Saturday, December 8, 2001 9:34 AM

Chapter 3 Control Structures 91

14 if result == 1:

15 passes = passes +

16 else:

17 failures = failures +

19 studentCounter = studentCounter +

22 print , passes
23 print , failures

25 if passes >
26 print

Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Passed 9

Failed 1

Raise tuition

FRRPREPRENMNRBRRPRPR

Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Enter result (l=pass,2=fail):
Passed 6

Failed 4

NHRENMNRERHERODNDR

Fig. 3.15 Examination-results problem. (Part 2 of 2.)

Note that line 14 uses the equality operator (==) to test whether the value of variable
result equals 1. Be careful not to confuse the equality operator with the assignment
symbol (=). Such confusion can cause syntax or logic errorsin Python.

—a- Common Programming Error 3.10
@ Using the = symbol for equality in a conditional statement isa syntax error.

4~ ~¢e

é pythonhtpl_03.fm Page 92 Saturday, December 8, 2001 9:34 AM
92 Control Structures Chapter 3

Common Programming Error 3.11
@ Using operator == for assignmentisalogic error.

—

Experience has shown that the most difficult part of solving a problem on a computer is de-
= veloping an algorithmfor the solution. Once a correct algorithm has been specified, the pro-
cess of producing a working Python program from the algorithm normally is
straightforward.

AN

kJ X Many experienced programmers write programs without ever using program-devel opment
sﬁ— tools like pseudocode. These programmers feel that their ultimate goal is to solve the prob-
lemonacomputer and that writing pseudocode mer ely delays the production of final outputs.
Although this may work for simple and familiar problems, it can lead to serious errors and
delays on large, complex projects.

3.11 Augmented Assignment Symbols

Python provides several augmented assignment symbols for abbreviating assignment ex-
pressions. For example, the statement

c=c¢c+ 3
can be abbreviated with the augmented addition assignment symbol += as
c += 3

The += symbol adds the value of the expression on the right of the += sign to the value of
the variable on the left of the sign and storesthe result in the variable on the left of the sign.
Any statement of the form

variable = variable operator expression
where operator isabinary operator, suchas +, -, **, *, /, or %, can be written in the form
variable operator= expression

A statement that uses an augmented assignment symbol is called an augmented assignment
statement. Figure 3.16 shows the augmented arithmetic assignment symbols.

Assighment Sample
symbol expression Explanation Assigns

Assumec =3, d =5, e=4, £ =2, g=6, h =12
+= c += 7 c=c+ 7 10toc
-= d -= 4 d=4d - 4 1tod

Fig. 3.16 Augmented arithmetic assignment symbols. (Part 1 of 2.)

4~ —

.

Q2
| é pythonhtpl_03.fm Page 93 Saturday, December 8, 2001 9:34 AM

A

.

%

Chapter 3 Control Structures 93
Assignment Sample
symbol expression Explanation Assigns
*= e *= 5 e =¢e *5 20toe
* ok £ **= 3 £ =f ** 3 8tof
/= g /=3 g=9/3 2tog
%= h %= 9 h=h%29 3toh

Fig. 3.16 Augmented arithmetic assignment symbols. (Part 2 of 2.)

@ Augmented assignment symbols were introduced in Python version 2.0. Attempting to use an
augmented assignment symbol with an earlier version of Python isa syntax error.

Common Programming Error 3.12

@ Attempting to use an augmented assignment before the variable to the I eft of the assignment
symbol has been initialized isan error.

3.12 Essentials of Counter-Controlled Repetition
Counter-controlled repetition requires the following:

1. the name of a control variable (or loop counter),

2. theinitial value of the control variable,

3. the amount of increment (or decrement) by which the control variableis modified
each time through the loop (also known as each iteration of the loop), and

4. the condition that tests for the final value of the control variable (i.e., whether
looping should continue).

Consider the simple program in Fig. 3.17, which printsthe numbersfrom0to 9. Line
4 names the control variable (counter) and setsit to aninitial value of 0. Line 8 in the
while structure increments the loop counter by 1 for each iteration of the loop. The loop-
continuation condition in the while structure tests for whether the value of the control
variable is less than 10. The loop terminates when the control variable is greater than or
equal to 10 (i.e., counter becomes 10).

counter =

while counter <
print counter
counter +=

O~NOOTAWNE

Fig. 3.17 Counter-controlled repetition. (Part 1 of 2.)

ﬂ%

—

\ {%)
| pythonhtpl_03.fm Page 94 Saturday, December 8, 2001 9:34 AM

A

.

94 Control Structures Chapter 3

WoJoauld WM EO

Fig. 3.17 Counter-controlled repetition. (Part 2 of 2.)

Common Programming Error 3.13

@ Because floating-point values may be approximate, controlling the counting of loops with
floating-point variables may result in imprecise counter values and inaccurate tests for ter-
mination. Programs should control counting loops with integer values.

Good Programming Practice 3.6
g Put a blank line before and after each control structureto makeit stand out in the program.

Good Programming Practice 3.7

g Too many levels of nesting can make a program difficult to understand. Asa general rule, try
to avoid using more than three levels of indentation.

Good Programming Practice 3.8

g Inserting a blank line above and below each control structure, and indenting the body of each
control structure, give programs a two-dimensional appearance that enhances readability.

3.13 for Repetition Structure

The for repetition structure handles all the details of counter-controlled repetition. Toillus-
trate the power of £or, let usrewrite the program of Fig. 3.17. Figure 3.18 shows the resullt.

The program operates as follows. When the for structure begins executing, function
range creates a sequence of values in the range 0-9 (Fig. 3.19). The first value in this
sequenceis assigned to variable counter, and the body of the for structure (line 6) exe-
cutes. For each subsequent value in the sequence, the value is assigned to variable
counter, and the body of the for structure executes. This process continues until all
values in the sequence have been processed.

Fig. 3.19 shows the sequence returned by function range. This sequenceis a Python
list containing integers in the range 0-9. Note that values in a list are enclosed in square
brackets (e.g., [1) and separated by commas. Listsare covered in detail in Chapter 5, Lists,
Tuplesand Dictionaries.

Notice that the last value of the sequence returned by function range is one less than
the argument passed to the function. If the programmer incorrectly wrote

for counter in range () :
print counter

then the loop executes nine times. Thisis acommon logic error called an off-by-one error.

ﬂ%

*

é pythonhtpl_03.fm Page 95 Saturday, December 8, 2001 9:34 AM

Chapter 3 Control Structures 95

1

2

3

4

5 for counter in range() :
6 print counter
0

1

2

3

4

5

6

7

8

9

Fig. 3.18 Counter-controlled repetition with the for structure.

Function range can take one, two or three arguments. If we pass one argument to the
function (asin Fig. 3.19), that argument, called end, is one greater than the upper bound
(highest value) of the sequence. In this case, range returns a sequence in the range:

0-(end-1)

If we pass two arguments, the first argument, called start, isthe lower bound—the
lowest value in the returned sequence—and the second argument is end. In this case,
range returns a sequence in the range:

(start)-(end-1)

If we pass three arguments, the first two arguments are start and end, respectively,
and the third argument, called increment, is the increment value. The sequence pro-
duced by acall to range with an increment value progressesfrom start to end in mul-
tiples of the increment value. If increment is positive, the last value in the sequenceis
the largest multiple less than end. The following three calls to range produce the same
seguence asin Fig. 3.19.

range ()
range(0,)
range(0, p)

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on

win32
Type "help", "copyright", "credits" or "license" for more informa-

tion.
>>> range(10)
[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Fig. 3.19 Function range.

4~ —

\ {%)
pythonhtpl_03.fm Page 96 Saturday, December 8, 2001 9:34 AM

96 Control Structures Chapter 3

Common Programming Error 3.14

@ Forgetting that thefirst value of the sequencereturned by function range, if no lower bound
isprovided, is zero can lead to an off-by-one logic error.

Common Programming Error 3.15

@ Forgetting that the last value of the sequence returned by function range is one less than
the value of the function’s end argument can lead to an off-by-onelogic error.

Theincrement value of range aso can be negative. Inthis case, it isadecrement and
the sequence produced progresses downwards from start to end in multiples of the
increment value. The last value in the sequence is the smallest multiple greater than end
(Fig. 3.20).

The sequence used in a for structure does not have to be generated using the range
function. The general format of the for structureis

for element in sequence:
statement(s)

where sequenceisaset of items (sequencesare explained in detail in Chapter 5). At thefirst
iteration of the loop, variable element is assigned the first item in the sequence and state-
ment is executed. At each subsequent iteration of the loop, variable element is assigned the
next item in the sequence before the execution of statement. Once the loop has been exe-
cuted once for each item in the sequence, the loop terminates. In most cases, the £or struc-
ture can be represented by an equivalent while structure, asin

initialization

while loopContinuationTest:
statement(s)
increment

where the initialization expression initializes the loop’s control variable, loopContinua-
tionTest is the loop-continuation condition and increment increments the control variable.

—s—- Common Programming Error 3.16
@ Creating a for structure that contains no body statementsis a syntax error.

If the sequence part of the for structure is empty (i.e., the sequence contains no
values), the program does not perform the body of the £or structure. Instead, execution
proceeds with the statement following the £or structure.

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32

Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>> range(10, 0, -1)

[i0, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Fig. 3.20 Function range with a third value.

ﬂ%

—

\ {%)
| pythonhtpl_03.fm Page 97 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 3 Control Structures 97

Programs frequently display the control variable (element) or useit in calculations in
the loop body. However, thisuse is not required. It is common to use the control variable
for controlling repetition while never mentioning it in the body of the for structure.

Good Programming Practice 3.9

@ Avoid changing the value of the control variable in the body of a for loop, because this
practice can cause subtle logic errors.

The flowchart of the for structure is similar to that of the while structure.
Figure 3.21 illustrates the flowchart of the following £or statement

for x in y:
print x

The flowchart shows the initialization and the update processes. Note that update occurs
each time after the program performsthe body statement. Besides small circlesand arrows,
the flowchart contains only rectangle symbols and a diamond symbol. The programmer
fills the rectangles and diamonds with actions and decisions appropriate to the algorithm.

3.14 Using the for Repetition Structure

The following examples show techniques for varying the control variable (loop counter) in
a for structure. In each case, we write the appropriate £or header. Note the change in the
third argument to range for loops that decrement the control variable.

a) Vary thecontrol variable from 1 to 100 inincrements of 1.
for counter in range(1,) :
b) Vary thecontrol variable from 100 to 1 inincrements of —1 (decrements of 1).

for counter in range (r 0,) :

Establish initial
value of control x = firstitem iny
variable

-

Y

Determine if final true
more items to . x = next
variable has been process print = [feminy
processed
false Body of loop (this Update the con-
v may be many trol variable
O statements) (Python does this

automatically)

Fig. 3.21 for repetition structure flowchart.

ﬁ%

—

é pythonhtpl_03.fm Page 98 Saturday, December 8, 2001 9:34 AM

A

%

98 Control Structures Chapter 3

c) Vary thecontrol variable from 7 to 77 in steps of 7.
for counter in range(7, ’) :

d) Vary thecontrol variable from 20 to 2 in steps of - 2.
for counter in range (, 1,) :

e) Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14,
17, 20.

for counter in range(2, ,)

f) Vary the control variable over the following sequence of values: 99, 88, 77, 66,
55,44,33,22,11, 0.

for counter in range(’ ’):

The next two examples provide simple applications of the £or structure. The program
in Fig. 3.22 usesthe for structure to sum all the even integersfrom 2 to 100.

The next example computes compound interest using the £or structure. Consider the
following problem statement:

A person invests $1000 in a savings account yielding 5 percent interest. Assuming that all
interest is left on deposit in the account, calculate and print the amount of money in the
account at the end of each year for 10 years. Use the following formula for determining
these amounts:

a=p(l+r)"
where

pistheorigina amount invested (i.e., the principd),

r isthe annual interest rate,

n isthe number of years and

a isthe amount on deposit at the end of the nth year.

Thisproblem involves aloop that performs the indicated calculation for each of the 10
years the money remains on deposit. Figure 3.23 shows the solution. The for structure
executes the body of the loop 10 times, incrementing a control variable (year) from 1 to
10. In this example, the algebraic expression (1 + r)"iswrittenas (1 + rate) ** year,
wherevariable rate representsr and variable year represents n.

sum =

for number in range(2, ’):
sum += number

CoO~NOOUA~AWNE

print , sum

Sum is 2550

Fig. 3.22 Summation with for.

%

*

é pythonhtpl_03.fm Page 99 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 3 Control Structures 99
1
2
3
4 principal =
5 rate =
6
7 print %
8
9 for year in range(1,) :
10 amount = principal * (+ rate) ** year
11 print % (year, amount)
Year Amount on deposit
1 1050.00
2 1102.50
3 1157.63
4 1215.51
5 1276.28
6 1340.10
7 1407.10
8 1477 .46
9 1551.33
10 1628.89

Fig. 3.23 for structure used to calculate compound interest.

The output statement before the £or loop (line 7) and the output statement in the for
loop (line 11) combineto print the values of the variables year and amount with the for-
matting specified by the % formatting operator specifications. The characters %44 specify
that the year column is printed with afield width of four (i.e., the valueis printed with at
least four character positions). If the value to be output is fewer than four character posi-
tionswide, thevaueisright justified in the field by default. If the value to be output ismore
than four character positions wide, the field width is extended to accommodate the entire
value.

Thecharacters%21. 2 £ indicatethat variable amount is printed asafloat-point value
(specified with the character £) with adecimal point. The column has atotal field width of
21 character positions and two digits of precision to the right of the decimal point; the total
field width includes the decimal point and the two digitstoitsright, hence 18 of the 21 posi-
tions appear to the left of the decimal point.

Notice that the variables amount, principal and rate are floating point values.
Wedid thisfor simplicity, because we are dealing with fractional parts of dollars and thus
need atype that allows decimal pointsin its values. Unfortunately, this can cause trouble.
Here is an example of what can go wrong when using floating point values to represent
dollar amounts (assuming that dollar amounts are displayed with two digits to the right of
the decimal point): Two dollar amounts stored in the machine could be 14.234 (which
would normally be rounded to 14.23 for display purposes) and 18.673 (which would nor-
mally be rounded to 18.67 for display purposes). When these amounts are added, they pro-
duce the internal sum 32.907, which would normally be rounded to 32.91 for display
purposes. Thus, your printout could appear as

%

*

\ {%)
| pythonhtpl_03.fm Page 100 Saturday, December 8, 2001 9:34 AM

A

.

%

100 Control Structures Chapter 3

but a person adding the individual numbers as printed would expect the sum to be 32.90.
Y ou have been warned!

Good Programming Practice 3.10

@ Be careful when using floating-point values to perform monetary cal culations. Rounding er-
rors may lead to undesired results.

Note that the body of the for structure containsthecalculation1. 0 + rate (line 10).
In fact, this calculation produces the same result each time through the loop, so repeating
the calculation is wasteful. A better solution would be to define a variable (e.g., final-
Rate that referencesthevalueof 1. 0 + rate before the start of the £for structure. Then,
replace the calculation 1. 0 + rate (line 10) with variable finalRate.

Performance Tip 3.3
__:ﬁ Avoid placing expressions whose values do not change inside loops.

3.15 break and continue Statements

Python offersthe break and con tinue statements, which alter the flow of control. The
break statement, when executed in a while or for structure, causes immediate exit
from that structure. Program execution continueswith thefirst statement after the structure.
Figure 3.24 demonstratesthe break statement in a for repetition structure. When the i £
structure detectsthat x equals 5, it executesthebreak statement. Thisterminatesthe for
statement and the program continueswith theprint statement (line 11). The loop outputs
four numbers.

Figure 3.25 is a modified version of Fig. 3.13, the class-average program illustrating
sentinel-controlled repetition. This version eliminates the repeated code found in the orig-
inal program. Line 9 introduces an infinite while loop. The condition of thewhile loop
never evaluates to false because 1 is awaystrue. Lines 10-11 prompt the user for a grade
and convert the input to an integer. If the grade is the sentinel value, —1, the program exits
the loop (line 16).

e

1

2

3

4 for x in range(1,)
5

6 if x ==

7 break

8

9 print x,

0

1 print , X

Fig. 3.24 break statement used in a for structure. (Part 1 of 2.)

ﬂ%

—

\ {%)
pythonhtpl_03.fm Page 101 Saturday, December 8, 2001 9:34 AM

Chapter 3 Control Structures 101

12 3 4
Broke out of loop at x = 5

Fig. 3.24 break statement used in a for structure. (Part 2 of 2.)

1

2

3

4

5

6 total =

7 gradeCounter =

8

9 while

10 grade = raw_input()
11 grade = int(grade)

12

13

14 if grade ==

15 break

16

17 total += grade

18 gradeCounter +=

19

20

21 if gradeCounter !=

22 average = float(total) / gradeCounter
23 print , average
24 else:

25 print

Enter grade, -1 to end: 75
Enter grade, -1 to end: 94
Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 70
Enter grade, -1 to end: 64
Enter grade, -1 to end: 83
Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Class average is 82.5

Fig. 3.25 break statement used to eliminate code repetition.

The continue statement, when executed in awhile or a for structure, skips the
remaining statements in the body of that structure and proceeds with the next iteration of
theloop. In while structures, the loop-continuation test is evaluated immediately after the
execution of the continue statement. In the for structure, the control variable is
assigned the next value in the sequence (if the sequence contains more values). Earlier, we
stated that thewhi 1e structure usually can represent the £or structure. The one exception
occurs when the increment expression in the while structure follows the continue

ﬂ%

ﬁ

é pythonhtpl_03.fm Page 102 Saturday, December 8, 2001 9:34 AM

A

.

%

102 Control Structures Chapter 3

statement. In this case, the increment is not executed before the repetition-continuation
condition is tested, and the while does not execute in the same manner as the for.
Figure 3.26 usesthe continue statement in a for structure to skip the output statement
in the structure and begin the next iteration of the loop.

Good Programming Practice 3.11

Some programmer s feel that break and continue violate structured programming. Be-
cause the effects of these statements can be achieved by structured programming techniques
we discuss, these programmers do not use break and continue.

3.16 Logical Operators

So far, we have studied simple conditions, such ascounter <= 10, total > 1000 and
number != sentinelValue. We have expressed these conditionsin terms of the rela-
tional operators >, <, >= and <= and the equality operators == and ! =. Each decision tested
precisely one condition. To test multiple conditionswhile making adecision, we performed
these tests in separate statements or in nested i £ or i f/else structures.

Python provides logical operators that are used to form more complex conditions by
combining simple conditions. The logical operators are and (logical AND), or (logical
OR) and not (logical NOT, also called logical negation). We now consider examples of
each of these operators.

Suppose we wish to ensure that two conditions are both true before we choose a certain
path of execution. In this case, we can use the logical and operator as follows:

if gender == and age >=
seniorFemales +=

This i £ statement containstwo simple conditions. The condition gender == "Female"
is evaluated here to determine whether a person is afemale. The condition age >= 65 is
evaluated to determine whether a person isasenior citizen. The simple condition to the | eft
of the and operator is evaluated first, because the precedence of == is higher than the pre-
cedence of and. If necessary, the simple condition to the right of the and operator iseval-
uated next, because the precedence of >= is higher than the precedence of and (aswe will
discuss shortly, the right side of alogical AND expression is evaluated only if the left side
istrue). The i £ statement then considers the combined condition:

e

1

2

3

4 for x in range(1,) :
5

6 if x ==

7 continue
8

9 print x,

0

1 print

Fig. 3.26 continue statement used in a £or structure. (Part 1 of 2.)

ﬂ%

—

é pythonhtpl_03.fm Page 103 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 3 Control Structures 103

12346789 10
Used continue to skip printing the value 5

Fig. 3.26 continue statement used in a £or structure. (Part 2 of 2.)

gender == and age >=

Thisconditionistrueonly if both of the simple conditions aretrue. Finaly, if this combined
condition isindeed true, then the count of seniorFemales isincremented by 1. If either
or both of the simple conditions are fal se, then the program skips the incrementing and pro-
ceeds to the statement following the i £. The preceding combined condition can be made
more readable by adding redundant parentheses

(gender ==) and (age >=)

The table of Fig. 3.27 summarizesthe and operator. The table showsall four possible
combinations of false and true vaues for expressionl and expression2. Such
tables are often called truth tables.

Python evaluates to false or true all expressions that include relational operators and
equality operators. A simple condition (e.g., age >= 65) that is false evaluates to the
integer value 0; a simple condition that is true evaluates to the integer value 1. A Python
expression that evaluatesto the value 0 isfal se; a Python expression that eval uatesto anon-
zero integer valueistrue. Theinteractive session of Fig. 3.28 demonstrates these concepts.

Lines 5-10 of the interactive session demonstrate that the value O isfalse. Lines 11-18
show that any non-zero integer value is true. The simple condition in line 19 evaluates to
true (line 20). The combined conditionsin lines 21 and 23 demonstrate the return values of
the and operator. If a combined condition evaluates to false (line 21), the and operator
returns the first value which evaluated to false (line 22). Conversely, if the combined con-
dition evaluates to true (line 23), the and operator returns the last value in the condition
(line 24).

Now let us consider the or (logical OR) operator. Suppose we wish to ensure at some
point in a program that either one or both of two conditions are true before we choose a
certain path of execution. In this case, we use the or operator, asin the following program
segment:

if semesterAverage >= or finalExam >=
print
expressionl expression2 expressionl and expression2
false fase false
false true false
true fase false
true true true

Fig. 3.27 Truth table for the and (logical AND) operator.

%

*

é pythonhtpl_03.fm Page 104 Saturday, December 8, 2001 9:34 AM

104 Control Structures Chapter 3

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on

win32
Type "help", "copyright", "credits" or "license" for more informa-
tion.
>>> if 0:
. print "0 is true"
.. else:

oo print "0 is false"
0 is false
>>> if 1:
oo print "non-zero is true"
non-zero is true
>>> 1if -1:
oo print "non-zero is true"

non-zero is true
>>> print 2 < 3

1

>>> print 0 and 1
0

>>> print 1 and 3
3

Fig. 3.28 Truth values.

This preceding condition also contains two simple conditions. The simple condition
semesterAverage >= 90 is evauated to determine whether the student deserves an
“A” in the course because of asolid performance throughout the semester. The simple con-
dition finalExam >= 90 is evaluated to determine whether the student deservesan “A”
in the course because of an outstanding performance on the final exam. The i £ statement
then considers the combined condition

semesterAverage >= or finalExam >=

and awards the student an “A” if either one or both of the ssmple conditions are true. Note
that the message Student grade is A isnot printed when both of the simple conditions
arefalse. Fig. 3.29 isatruth table for the logical OR operator (orx).

expressionl expression2 expressionl or expression2
false false false

false true true

true false true

true true true

Fig. 3.29 Truth table for the or (logical OR) operator.

%

ﬁ

é pythonhtpl_03.fm Page 105 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 3 Control Structures 105

If acombined condition evaluatesto true, the oxr operator returns the first valuewhich
evaluated to true. Conversely, if the combined condition evaluates to false, the or operator
returns the last value in the condition.

The and operator has a higher precedence than the or operator. Both operators asso-
ciate from left to right. An expression containing and or or operatorsis evauated until its
truth or falsity is known. This is called short circuit evaluation. Thus, evauation of the
expression

gender == and age >=

will stop immediately if gender isnot equal to "Female" (i.e., the entire expression is
false), but continueif gender isequal to "Female" (i.e., the entire expression could still
be true, if the condition age >= 65 istrue).

e In expressions using operator and, if the separate conditions are independent of one anoth-
“="] er, make the condition that is more likely to be false the left-most condition. In expressions
using operator or, make the condition that is more likely to be true the left-most condition.

This approach can reduce a program’ s execution time.

Python provides the not (logical negation) operator to enable a programmer to
“reverse’ the meaning of a condition. Unlike the and and or operators, which combine
two conditions (binary operators), thelogical negation operator has asingle condition asan
operand (i.e., not is a unary operator). The logical negation operator is placed before a
condition when we are interested in choosing a path of execution if the origina condition
(without the logical negation operator) isfalse, such asin the following program segment:

if not grade == sentinelValue:
print , grade

Figure 3.30isatruth tablefor the logical negation operator. In many cases, the programmer
can avoid using logical negation by expressing the condition differently with an appropriate
relational or equality operator. For example, the preceding statement can also be written as
follows:

if grade != sentinelValue:
print , grade

Thisflexibility can often help aprogrammer expressaconditionin amore* natural” or con-
venient manner.

expression not expression
false true
true false

Fig. 3.30 Truth table for operator not (logical negation).

%

—

é pythonhtpl_03.fm Page 106 Saturday, December 8, 2001 9:34 AM

A

.

106 Control Structures Chapter 3

Figure 3.31 showsthe precedence and associativity of the Python operatorsintroduced
to this point. The operators are shown from top to bottom, in decreasing order of prece-
dence.

3.17 Structured-Programming Summary

Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design their programs. The field of computer programming is
younger than architecture, and our collective wisdom is considerably sparser. We have
learned that structured programming produces programs that are easier than unstructured
programsto understand and hence are easier to test, debug, modify, and even prove correct
in a mathematical sense.

Figure 3.32 summarizes Python's control structures. Small circles are used in the
figure to indicate the single entry point and the single exit point of each structure. Con-
necting individual flowchart symbols arbitrarily can lead to unstructured programs. There-
fore, the programming profession has chosen to combine flowchart symbols to form a
limited set of control structures and to build structured programs by properly combining
control structures in only two simple ways.

For simplicity, single-entry/single-exit control structures are used—there is one way
to enter and one way to exit each control structure. Connecting control structures in
sequence to form structured programs is simple—the exit point of one control structure is
connected to the entry point of the next control structure, so that control structures are
simply placed one after another in a program; we have called this “control-structure
stacking.” The rulesfor forming structured programs also allow for control structuresto be
nested.

Figure 3.33 shows the rules for forming properly structured programs. The rules
assume that the rectangle flowchart symbol may be used to indicate any action, including
input and output. The rules also assume that we begin with the simplest flowchart
(Fig. 3.34).

Operators Associativity Type

() left to right parentheses

* % right to left exponentiation
* /% left to right multiplicative
+ left to right additive

< <= > >= left to right relational

== I= <> left to right equality

and left to right logical AND
or left to right logica OR
not right to left logica NOT

Fig. 3.31 Operator precedence and associativity.

%

—

Q72
| é pythonhtpl_03.fm Page 107 Saturday, December 8, 2001 9:34 AM

Chapter 3 Control Structures 107

o
c =)
S © o
5 3 2
o B o
Q_ =
o 3 @
o - Y] [
g | = o
3 W
[N
DJ -
ok
8o
g0
2]
(%]
22
—~ Q
i
(2]
-2
c O— O o
(o] =
= =
U -
3]
Q9 =R
[7] L)
(2] m'_,a
2 29
[e) — O
= -H O
03 =
S0 LE
7D ZE =
W E ~
- <
Ly
O— —O

T
|
B

Fig. 3.32 Single-entry/single-exit sequence, selection and repetition structures.

Rules for Forming Structured Programs

1) Begin with the so called simplest flowchart (Fig. 3.34).
2) Any rectangle (action) can be replaced by two rectangles (actions) in sequence.

Fig. 3.33 Rules for forming structured programs. (Part 1 of 2.)

ﬂ%

\ {%)
| pythonhtpl_03.fm Page 108 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 3

108 Control Structures

Rules for Forming Structured Programs

3) Any rectangle (action) can be replaced by any control structure (sequence, i £, if/else,
if/elif/else, while or for).

4) Rules2and 3 can be applied as often as you like and in any order.

Fig. 3.33 Rules for forming structured programs. (Part 2 of 2.)

G,

\

qj

D

Fig. 3.34 Simplest flowchart.

Applying the rules of Fig. 3.33 aways results in a structured flowchart with a neat,
building-block appearance. For example, repeatedly applying rule 2 to the smplest flowchart
results in a structured flowchart containing many rectangles in sequence (Fig. 3.35). Notice
that rule 2 generates a stack of control structures, so let us call rule 2 the stacking rule.

Rule 3 is called the nesting rule. Repeatedly applying rule 3 to the simplest flowchart
results in a flowchart with neatly nested control structures. For example, in Fig. 3.36, the
rectangle in the simplest flowchart is first replaced with a double-selection (if/else)
structure. Then rule 3 isapplied again to both of the rectanglesin the double-selection struc-
ture, replacing each of these rectangles with double-selection structures. The dashed boxes
around each of the double-selection structures represent the rectangles that were replaced.

-
D

Fig. 3.35 Applying (repeatedly) rule 2 of Fig. 3.33 to the simplest flowchart.

4~ —

é pythonhtpl_03.fm Page 109 Saturday, December 8, 2001 9:34 AM

A

Chapter 3 Control Structures 109

Rue3 -~

Fig. 3.36 Applying rule 3 of Fig. 3.35 to the simplest flowchart.

Rule 4 generates larger, more involved and more deeply nested structures. The flow-
charts that emerge from applying the rules in Fig. 3.33 constitute the set of all possible
structured flowcharts and hence the set of all possible structured programs.

The beauty of the structured approach is that we use only six simple single-entry/
single-exit pieces, and we assemble them in only two simple ways. Figure 3.37 shows the
kinds of stacked building blocks that emerge from applying rule 2 and the kinds of nested
building blocks that emerge from applying rule 3. The figure also shows the kind of over-
lapped building blocks that cannot appear in structured flowcharts (because of the elimina-
tion of the goto statement).

If the rules in Fig. 3.33 are followed, an unstructured flowchart (such as that in
Fig. 3.38) cannot be created. If you are uncertain of whether a particular flowchart is struc-
tured, apply the rules of Fig. 3.33 in reverse to try to reduce the flowchart to the simplest
flowchart. If the flowchart is reducible to the simplest flowchart, the original flowchart is
structured; otherwise, it is not.

ﬂ%

4

*

\ {%)
| pythonhtpl_03.fm Page 110 Saturday, December 8, 2001 9:34 AM

110 Control Structures Chapter 3

Nested building blocks Nested building blocks

[|
]

0L

Overlapping building blocks
(Ilegal in structured programs)

Fig. 3.37 Stacked, nested and overlapped building blocks.

C o~

Fig. 3.38 Unstructured flowchart.

Structured programming promotes simplicity. Bohm and Jacopini have given us the
result that only three forms of control are needed:

e Seguence
e Selection
¢ Repetition

Sequenceistrivial. Selection isimplemented in one of three ways:
e if structure (single selection)
¢ if/else structure (double selection)
e ifl/elif/else structure (multiple selection)

Infact, itisstraightforward to provethat the simple i £ structureis sufficient to provide any
form of selection—everything that can be done with the i £/else structure and the i £/
elif/else structure can be implemented by combining i £ structures (although perhaps
not as clearly and efficiently).

Repetition isimplemented in one of two ways:

e while Structure
. for structure

.

4~ —

é pythonhtpl_03.fm Page 111 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 3 Control Structures 111

It is straightforward to prove that the while structureis sufficient to provide any form of
repetition. Everything that can be done with the for structure can be donewiththewhile
structure (although perhaps not as smoothly).

Combining these results illustrates that any form of control ever needed in a Python
program can be expressed in terms of the following:

e sequence
e if structure (selection)
¢ while structure (repetition)

Also, these control structures can be combined in only two ways—stacking and nesting. In-
deed, structured programming promotes simplicity.

In this chapter, we discussed how to compose programs from control structures con-
taining actions and decisions. In Chapter 4, Functions, we introduce another program-
structuring unit, called the function. We learn to compose large programs by combining
functions that, in turn, are composed of control structures. We also discuss how functions
promote software reusability. In Chapter 7, Object-Oriented Programming, we introduce
Python's other program-structuring unit, called the class. We then create objects from
classes and proceed with our treatment of object-oriented programming (OOP).

SUMMARY

» Any computing problem can be solved by executing a series of actions in a specified order. An
agorithm solves problems in terms of the actions to be executed and the order in which these ac-
tions are executed.

* Specifying the order in which statements executein acomputer program is called program control.

» Pseudocode is an artificial and informal language that helps programmers develop algorithms.
Pseudocode is similar to everyday English; it is convenient and user-friendly, although it is not an
actual computer programming language.

A carefully prepared pseudocode program can be converted easily to a corresponding Python pro-
gram. In many cases, this is done simply by replacing pseudocode statements with their Python
equivalents.

* Normally, statements in a program execute successively in the order in which they appear. Thisis
called sequential execution. Various Python statements enabl e the programmer to specify that the
next statement to be executed may be other than the next one in sequence. Thisis called transfer
of control.

» The goto statement allows a programmer to specify atransfer of control to one of awide range
of possible destinationsin a program.

» The research of Bohm and Jacopini demonstrated that programs could be written without any
goto statements. The challenge of the erabecame for programmersto shift their stylesto“goto-
less programming.”

» Bohm and Jacopini demonstrated that all programs could be written in terms of only three control
structures—the sequence, selection and repetition structures.

» The sequence structure is built into Python. Unless directed otherwise, the computer executes Py-
thon statements sequentially.

» A flowchart is a graphical representation of an agorithm or of a portion of an algorithm. Flow-
charts are drawn using certain special-purpose symbols, such as rectangles, diamonds, ovals and
small circles; these symbols are connected by arrows called flowlines.

%

—

é pythonhtpl_03.fm Page 112 Saturday, December 8, 2001 9:34 AM

112 Control Structures Chapter 3

« Like pseudocode, flowcharts aid in the development and representation of algorithms. Although
most programmers prefer pseudocode, flowcharts nicely illustrate how control structures operate.

» Therectangle symbol, also called the action symbol, indicates an action, including a calculation or
an input/output operation. Python allows for as many actions as necessary in a sequence structure.

* Perhapsthe most important flowchart symbol isthe diamond symbol, also called the decision sym-
bol, which indicates a decision isto be performed.

 Python provides three types of selection structures: i £, if/else and if/elif/else.

» The if selection structure either performs (selects) an action if a condition (predicate) is true or
skips the action if the condition isfalse.

» The if/else selection structure performs an action if a condition is true or performs a different
action if the condition isfase.

» Theif/elif/else selection structure performsone of many different actions, depending on the
validity of several conditions.

» Theif selection structureis asingle-selection structure—it selects or ignores asingle action. The
if/else selection structure is a double-selection structure—it selects between two different ac-
tions. The i f/elif/else selection structure is a multiple-selection structure—it selects from
many possible actions.

* Python provides two types of repetition structures: while and for.

e Thewordsif,elif, else,while and for arePython keywords. These keywordsare reserved
by the language to implement various Python features, such as control structures. Keywords can-
not be used asidentifiers (e.g., variable names).

» Python has six control structures: sequence, three types of selection and two types of repetition.
Each Python program is formed by combining as many control structures of each typeasis appro-
priate for the algorithm the program implements.

» Single-entry/single-exit control structures make it easy to build programs—the control structures
are attached to one another by connecting the exit point of one control structure to the entry point
of the next. Thisissimilar to the way achild stacks building blocks; hence, the term control -struc-
ture stacking.

* Indentation emphasizes the inherent structure of structured programs and, unlike in most other
programming languages, is actualy required in Python.

* Nested i f/else structurestest for multiple cases by placing i f/else selection structuresinside
other i f/else selection structures.

* Nested if/else structures and the multiple-selection if/elif/else structure are equivaent.
The latter form is popular because it avoids deep indentation of the code. Such indentation often
leaves little room on aline, forcing lines to be split over multiple lines and decreasing program
readability.

» The else block of the i f/elif/else structure is optional. However, most programmers in-
clude an else block at the end of aseries of elif blocksto handle any condition that does not
match the conditions specified in the elif statements. If an if/elif statement specifies an
else block, the else block must be the last block in the statement.

» The if selection structure can contain several statementsin the body of an i £ statement, and all
these statements must be indented. A set of statements contained within an indented code block is
called a suite.

» A fatal logic error causes a program to fail and terminate prematurely. For fatal errors, Python
prints an error message called a traceback and exits. A nonfatal logic error alows a program to
continue executing, but might produce incorrect results.

4~ —

é pythonhtpl_03.fm Page 113 Saturday, December 8, 2001 9:34 AM

Chapter 3 Control Structures 113

« Just as multiple statements can be placed anywhere a single statement can be placed, it is possible
to have no statements at dl, (i.e., empty statements). The empty statement is represented by plac-
ing keyword pass where a statement normally resides.

* A repetition structure allows the programmer to specify that a program should repeat an action
while some condition remains true.

 Counter-controlled repetition uses a variable called a counter to control the number of times a set
of statements executes. Counter-controlled repetition often is called definite repetition because the
number of repetitions must be known before the loop begins executing.

» A sentinel value (also called asigna value, adummy vaue or aflag value) indicates “ end of data
entry.” Sentinel-controlled repetition often is called indefinite repetition because the number of
repetitions is not known before the start of the loop.

* In top-down, stepwise refinement, which is essential to the development of well-structured pro-
grams, thetop is asingle statement that conveysthe overall function of the program. As such, the
top s, in effect, acomplete representation of aprogram. Thus, it is necessary to divide (refine) the
top into a series of smaller tasks and list these in the order in which they need to be performed.

* Floating-point numbers contain adecimal point, asin 7.2 or —-93.5.

« Dividing two integersresults in integer division, in which any fractional part of the calculation is
discarded (i.e., truncated).

» To produce afloating-point cal culation with integer values, convert one (or both) of the valuesto
afloating-point value with function £1oat.

» ThePython interpreter evaluates expressionsin which the data types of the operands areidentical.
To ensure that the operands are of the same type, the interpreter performs an operation called pro-
motion (also called implicit conversion) on sel ected operands.

« Python provides several augmented assignment symbols for abbreviating assignment expressions
run together.

» Any statement of the form variable = variable operator expression where operator is a binary
operator, suchas +, -, **, * / and %, can bewrittenintheform variable operator= expression.

» Function range can take one, two or three arguments. If we pass one argument to the function,
that argument, called end, is one greater than the upper bound (highest value) of the sequence.

* If we passtwo arguments, the first argument, called start, isthelower bound—thelowest value
in the returned sequence—and the second argument is end.

* If we passthree arguments, thefirst two argumentsare start and end, respectively, and thethird
argument, called increment, istheincrement value. The sequence produced by acall to range
with an increment value progresses from start to end in multiples of the increment vaue. If
increment ispodtive, the last value in the sequenceis the largest multiple less than end.

» The increment value of range also can be negative. In this case, it is a decrement and the se-
quence produced progresses downwards from start to end in multiples of the increment value.
The last value in the sequence is the smallest multiple greater than end.

* Thebreak statement, when executed in awhile or for structure, causes immediate exit from
that structure. Program execution continues with the first statement after the structure.

* The continue statement, when executed in awhile or a for structure, skips the remaining
statements in the body of that structure and proceeds with the next iteration of the loop.

 Python provides logical operators that form more complex conditions by combining simple con-
ditions. Thelogica operatorsare and (logical AND), or (logica OR) andnot (logical NOT, aso
called logical negation).

4~ —

é pythonhtpl_03.fm Page 114 Saturday, December 8, 2001 9:34 AM

114 Control Structures Chapter 3

» Python evaluates to false or true all expressions that include relational operators and equality op-
erators. A simple condition (e.g., age >= 65) that isfase evaluates to the integer value 0; a
simple condition that is true evaluates to the integer value 1. A Python expression that evaluates
to the value O is false; a Python expression that evaluates to a non-zero integer value is true.

« If acombined condition evaluatesto false, the and operator returnsthefirst value which evaluated
to false. Conversely, if the combined condition evaluates to true, the and operator returns the last
value in the condition.

* If acombined condition evaluates to true, the or operator returns the first value which evaluated
to true. Conversdly, if the combined condition evaluates to false, the or operator returns the | ast
vaue in the condition.

» The and operator has a higher precedence than the or operator. Both operators associate from left
to right. An expression containing and or or operators is evaluated until its truth or falsity is
known. Thisis called short circuit evaluation.

» Thenot (logica negation) operator enables a programmer to “reverse” the meaning of a condi-
tion. Unlikethe and and or operators, which combine two conditions (binary operators), the log-
ical negation operator has a single condition as an operand (i.e., not isaunary operator).

TERMINOLOGY
action/decision model of programming function

action symbol
agorithm
and (logica AND) operator

augmented addition assignment symbol

augmented assignment statement
augmented assignment symbol
break statement

compound statement
connector symbols
continue statement

control structure
control-structure nesting
control-structure stacking
counter

counter-controlled repetition
decision symbol

default condition

definite repetition
double-selection structure
diamond symbol

dummy value

empty statement

end argument of range function
exception handling

fatal logic error

first refinement

flag value

float function

flowchart

for repetition structure

goto elimination

goto statement

if selection structure
if/elif/else seection structure
if/else selection structure
implicit conversion
increment argument of range function
increment value

indefinite repetition
initialization phase

int function

keyword

list

logic error

logical negation

logical operator
|oop-continuation test

lower bound
multiple-selection structure
nested i £/else structure
nesting

nesting rule

nonfatal logic error

not (logica NOT) operator
off-by-one error

or (logical OR) operator
oval symbol

pass keyword

procedure

processing phase

%

ﬁ

é pythonhtpl_03.fm Page 115 Saturday, December 8, 2001 9:34 AM

Chapter 3

program control
promotion

pseudocode

range function
rectangle symbol
repetition structure
second refinement
selection structure
sentinel value
sequence

sequence structure
sequential execution
short-circuit evaluation
signal value

simple condition
single-entry/single-exit control structure

SELF-REVIEW EXERCISES

Control Structures

single-selection structure
small circle symbol

stacking rule

start argument of range function
structured programming

suite

termination phase

top-down, stepwise refinement
total

traceback

transfer of control

truth table

unary operator

upper bound

whi le repetition structure

3.1 Fill in the blanks in each of the following statements:

a) Theif/elifl/else Structureisa

structure.

b) Thewordsif and else are examples of reserved words called Python

¢) Sentinel-controlled repetition is called

not known before the loop begins executing.
d) Theaugmented assignment symbol *= performs

e) Function

creates a sequence of integers.

f) A procedure for solving a problem is called a(n)

g) Thekeyword

represents an empty statement.

h) A set of statements within an indented code block in Pythoniscaled a
i) All programs can be written in terms of three control structures, namely,

and

A isagraphical representation of an algorithm.

3.2 State whether each of the following istrue or false. If false, explain why.
a) Pseudocode is asimple programming language.

b) Theif selection structure performs an indicated action when the condition istrue.

c) Theif/else selection structure isasingle-selection structure.
d) A fatal logic error causes a program to execute and produce incorrect results.

€) A repetition structure performs the statements in its body while some condition remains

true.

f) Function £loat convertsits argument to afloating-point value.

g) Theexponentiation operator * * associates |eft to right.

h) Function call range (1, 10) returnsthe sequence 1 to 10, inclusive.
i) Sentinel-controlled repetition uses a counter variable to control the number of times a set

of instructions executes.

i) Thesymbol = testsfor equality.

ANSWERS TO SELF-REVIEW EXERCISES

3.1 a) multiple-selection. b) keywords. c) indefinite repetition. d) multiplication. €) range.
f) algorithm. g) pass. h) suite. i) the sequence structure, the selection structure, the repetition struc-

ture. j) flowchart.

ﬂ%

115

because the number of repetitionsis

é pythonhtpl_03.fm Page 116 Saturday, December 8, 2001 9:34 AM

116 Control Structures Chapter 3

3.2 a) False. Pseudocode is an artificial and informal language that hel ps programmers develop
agorithms. b) True. ¢) False. The i £/else sdection structure is adouble-selection structure—it se-
lects between two different actions. d) False. A fatal logic error causes a program to terminate.
e) True. f) True. g) False. The exponentiation operator associatesfrom right to left. h) False. Function
call range (1, 10) returnsthe sequence 1-9, inclusive. i) False. Counter-controlled repetition uses
acounter variable to control the number of repetitions; sentinel-control repetition waits for a sentinel
valueto stop repetition. j) False. The operator == tests for equality; the symbol = is for assignment.

EXERCISES

3.3 Drivers are concerned with the mileage obtained by their automobiles. One driver has kept
track of several tankfuls of gasoline by recording miles driven and gallons used for each tankful. De-
velop aPython program that prompts the user to input the milesdriven and gallons used for each tank-
ful. The program should calculate and display the miles per gallon obtained for each tankful. After
processing dl input information, the program should calculate and print the combined miles per gal-
lon obtained for all tankful (= total miles driven divide by total gallons used).

Enter the gallons used (-1 to end): 12.8

Enter the miles driven: 287

The miles / gallon for this tank was 22.421875
Enter the gallons used (-1 to end): 10.3

Enter the miles driven: 200

The miles / gallon for this tank was 19.417475
Enter the gallons used (-1 to end): 5

Enter the miles driven: 120

The miles / gallon for this tank was 24.000000
Enter the gallons used (-1 to end): -1

The overall average miles/gallon was 21.601423

3.4 A palindrome is a number or atext phrase that reads the same backwards or forwards. For
example, each of the following five-digit integersis a palindrome: 12321, 55555, 45554 and 11611.
Write a program that reads in a five-digit integer and determines whether it is a palindrome. (Hint:
Use the division and modulus operators to separate the number into itsindividual digits.)

3.5 Input an integer containing Os and 1s (i.e., a “binary” integer) and print its decimal equiva-
lent. Appendix C, Number Systems, discussesthe binary number system. (Hint: Use the modulus and
division operators to pick off the “binary” number’s digits one at atime from right to left. Just asin
the decimal number system, where the rightmost digit has the positiona value 1 and the next digit
leftward hasthe positional value 10, then 100, then 1000, etc., in the binary number system, the right-
most digit has a positional value 1, the next digit leftward has the positional value 2, then 4, then 8,
etc. Thus, the decimal number 234 can beinterpreted as2* 100 + 3* 10+ 4 * 1. The decimal equiv-
aent of binary 1101is1*8+1*4+0*2+1* 1)

3.6 Thefactorial of anonnegativeinteger niswritten n! (pronounced “nfactorial”) and isdefined
asfollows:

n=n-(n-1)-(n-2)-...-1 (for valuesof ngreater than or equal to 1)
and

nl=1 (forn=0).
For example, 5! =5 -4 -3 -2 -1, which is 120. Factorias increase in size very rapidly. What isthe
largest factorial that your program can calculate before leading to an overflow error?

a) Write aprogram that reads a nonnegative integer and computes and printsits factorial .

%

é pythonhtpl_03.fm Page 117 Saturday, December 8, 2001 9:34 AM

® Ok K Ok K Ok K Ok K Ok~

Chapter 3 Control Structures 117

b) Writeaprogram that estimatesthe value of the mathematical constant e by using the for-
mula [Note: Y our program can stop after summing 10 terms.]
= 1 + 1 + 1 +

= + = = =

1 20 3

c) Writeaprogram that computesthe value of €* by using the formula[Note: Y our program
can stop after summing 10 terms.]

2 3
=1+ X4 Xy
1 2 3

3.7 Write a program that prints the following patterns separately, one below the other each pat-
tern separated from the next by one blank line. Use £or loopsto generate the patterns. All asterisks
(*) should be printed by a single statement of the form

print '*',

(which causes the asterisks to print side by side separated by a space). (Hint: The last two patterns
require that each line begin with an appropriate number of blanks.) Extra credit: Combine your code
from the four separate problems into a single program that prints all four patterns side by side by
making clever use of nested for loops. For all parts of this program—minimize the numbers of

asterisks and spaces and the number of statements that print these characters.

2

* Ok Ok Ok X F X ¥ F

(D)

® Ok K Ok K Ok X * ¥ 2
* Ok K Ok K Ok F *
L N N B B
* % F O ¥ F
* % * * ¥
* ¥ ¥ *
* * ¥
* ¥
* Ok K Ok ¥ F Ok ¥ F N~
E R R
EENE B
LN B
EE N
* O ¥ *
* % ¥
* %~
* % ¥
* * ¥ *
* ¥ * * F
R N
* Ok Ok OF Ok ¥ F
L
EIE N I K I
® Ok K Ok K K K F K *
* *
* ¥ ¥
* % ¥ ¥
* ¥ * F ¥
EEE I R
* ¥ F F ¥ F ¥
* ¥ Ok Ok ¥ F F ¥
* % Ok O F F X ¥ F

3.8 (Pythagorean Triples) A right triangle can have sides that are all integers. The set of three
integer values for the sides of aright triangle is called a Pythagorean triple. These three sides must
satisfy the relationship that the sum of the squares of two of the sides is equa to the square of the
hypotenuse. Find all Pythagorean triplesfor sidel, side2 and hypotenuse all nolarger than 20.
Use atriple-nested for-loop that tries all possibilities. Thisis an example of “brute force” comput-
ing. You will learn in more advanced computer science courses that there are many interesting prob-
lems for which there is no known agorithmic approach other than sheer brute force.

* Ok K Ok ¥ ¥ R ¥ F ¥

ﬁ

é Pythonhtpl_04.fm Page 118 Saturday, December 8, 2001 9:34 AM

"

Functions

Objectives

* To understand how to construct programs modularly
from small pieces called functions.

* To create new functions.

* To understand the mechanisms of exchanging
information between functions.

* To introduce simulation techniques using random
number generation.

 To understand how the visibility of identifiersis
limited to specific regions of programs.

* To understand how to write and use recursive
functions, i.e., functions that call themselves.

* Tointroduce default and keyword arguments.

Form ever follows function.

Louis Henri Sullivan

E pluribus unum.

(One composed of many.)

Virgil

O! call back yesterday, bid time return.

William Shakespeare

Richard I1

When you call me that, smile.

Owen Wister

Under
Construction

- 4~ =

é Pythonhtpl_04.fm Page 119 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 4 Functions 119

Outline

4.1 Introduction
4.2 Program Components in Python
4.3 Functions
4.4 Module math Functions
4.5 Function Definitions
4.6 Random-Number Generation
4.7 Example: A Game of Chance
4.8 Scope Rules
4.9 Keyword import and Namespaces
4.9.1 Importing one or more modules
4.9.2 Importing identifiers from a module
4.9.3 Binding names for modules and module identifiers
4.10 Recursion
4.11 Example Using Recursion: The Fibonacci Series
4.12 Recursion vs. Iteration
4.13 Default Arguments
4.14 Keyword Arguments

Summary ¢ Terminology ¢ Self-Review Exercises » Answer's to Self-Review Exercises ¢ Exercises

4.1 Introduction

Most computer programs that solve rea-world problems are larger than the programs pre-
sented in the previous chapters. Experience has shown that the best way to develop and
maintain a large program is to construct it from smaller pieces or components, each of
which is more manageable than the original program. This technique is called divide and
conquer. This chapter describes many features of the Python language that facilitate the de-
sign, implementation, operation and maintenance of large programs.

4.2 Program Components in Python

Program components in Python are called functions, classes, modules and packages. Typi-
cally, Python programs are written by combining programmer-defined (programmer-creat-
ed) functions and classes with functions or classes aready available in existing Python
modules. A moduleis afile that contains definitions of functions and classes. Many mod-
ules can be grouped together into a collection, called a package. In this chapter, we concen-
trate on functions and we introduce modules and packages; we discuss classes in detail in
Chapter 7, Object-Based Programing.

Programmers can define functions to perform specific tasks that execute at various
pointsin aprogram. These functions are referred to as programmer-defined functions. The

%

—

é Pythonhtpl_04.fm Page 120 Saturday, December 8, 2001 9:34 AM

A

.

120 Functions Chapter 4

actual statements defining the function are written only once, but may be called upon “to
do their job” from many points throughout a program. Thus functions are a fundamental
unit of software reuse in Python because functions allow us to reuse program code.

Python modules provide functions that perform such common tasks as mathematical
calculations, string manipulations, character manipulations, Web programming, graphics
programming and many other operations. These functions simplify the programmer’s
work, because the programmer does not have to write new functions to perform common
tasks. A collection of modules, the standard library, is provided as part of the core Python
language. These modules arelocated in thelibrary directory of the Python installation (e.g.,
fusr/lib/python2.2 or /usr/local/lib/python2.2 on Unix/Linux; \Python\Lib or
\Python22\Lib on Windows).

Just as a module groups related definitions, a package groups related modules. The
package as a whole providestools to help the programmer accomplish ageneral task (e.g.,
graphics or audio programming). Each module in the package defines classes, functions or
datathat perform specific, related tasks (e.g., creating colors, processing . wav filesand the
like). Thistext introduces many available Python packages, but creating a robust package
is a software engineering exercise beyond the scope of the text.

Good Programming Practice 4.1
@ Familiarize yourself with the collection of functions and classesin the core Python modul es.

Avoid “ reinventing the wheel” . When possible, use standard library module functions in-
stead of writing new functions. This reduces program development time and increases reli-
ability, because you are using well-designed, well-tested code.

@ Using the functions in the core Python modules usually makes programs more portable.

e Do not try to rewrite existing modul e functions to make them mor e efficient. These functions
=2 are written to performwell.

A function is invoked (i.e., made to perform its designated task) by a function call.
The function call specifies the function name and provides information (as arguments)
that the called function needsto perform its job. A common analogy for thisis the hierar-
chical form of management. A boss (the calling function or caller) requests aworker (the
called function) to perform atask and return (i.e., report back) the results after performing
the task. The boss function is unaware of how the worker function performs its designated
tasks. The worker might call other worker functions, yet the boss is unaware of this deci-
sion. We will discuss how “hiding” implementation details promotes good software engi-
neering. Figure4.1 shows the boss function communicating with worker functions
workerl, worker2 and worker3 in a hierarchica manner. Note that worker1 acts
as a boss function to worker4 and worker5. The boss function when calling
workerl need not know about worker1l’srelationship withworker4 and worker5.
Rel ati onships among functions might not always be a hierarchical structure likethe onein
thisfigure.

%

—

é Pythonhtpl_04.fm Page 121 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 4 Functions 121
boss
|
workerl worker2 worker3
/ \
worker4 worker5

Fig. 4.1 Hierarchical boss-function/worker-function relationship.

4.3 Functions

Functions allow the programmer to modularize aprogram. All variables created in function
definitions are local variables—they are known only to the function in which they are de-
clared. Most functions have alist of parameters (which are also local variables) that pro-
vide the means for communicating information between functions.

There are several motivations for “functionalizing” a program. The divide-and-conquer
approach makes program development more manageable. Another motivation is software
reusability—using existing functions as building blocks for creating new programs. Software
reusability is a magjor benefit of object-oriented programming as we will see in Chapter 7,
Object-Based Programming, Chapter 8, Customizing Classes, and Chapter 9, Object-Based
Programming: Inheritance. With good function naming and definition, programs can be cre-
ated from standardized functions that accomplish specific tasks, rather than having to write
customized code for every task. A third motivation is to avoid repeating code in a program.
Packaging code as a function allows the code to be executed in severa locations just by
calling the function rather than rewriting it in every instance it is used.

ﬁ Each function should be limited to performing a single, well-defined task, and the function
name should effectively express that task. This promotes softwar e reusability.

smaller functions.

4.4 Module math Functions

A module contains function definitions and other elements (e.g., class definitions) that per-
form related tasks. The math module contains functions that allow programmers to per-
form certain mathematical caculations. We use various math module functions to
introduce the concept of functions and modules. Throughout thistext, we discuss many oth-
er functions in the core Python modules.

Generally, functions are invoked by writing the name of the function, followed by a
left parenthesis, followed by the argument (or acomma-separated list of arguments) being

%

*

é Pythonhtpl_04.fm Page 122 Saturday, December 8, 2001 9:34 AM

A

.

122 Functions Chapter 4

passed to the function, followed by aright parenthesis. To use afunction that is defined in
amodule, a program must import the module, using keyword import. After the module
has been imported, the program can invoke functions in that module, using the modul€e's
name, adot (.) and the function call (i.e., moduleName. functionName ()). Theinteractive
session in Fig. 4.2 demonstrates how to print the square root of 900 using the math
module.

When the line

print math.sqrt()

executes, thema th modul€’ sfunction sqrt calculates the square root of the number con-
tained in the parentheses (e.g., 900). The number 900 isthe argument of themath.sqrt
function. The function returns (i.e., gives back as a result) the floating-point value 30.0,
which is displayed on the screen.

When the line

print math.sqrt()

executes, the function call generates an error, aso called an exception, because function
sqgrt cannot handle a negative argument. The interpreter displays information about this
error to the screen. Exceptions and exception handling are discussed in Chapter 12, Excep-
tion Handling.

Common Programming Error 4.1

@ Failure to import the ma th module when using ma th module functionsis a runtime error.
A program must import each module before using its functions and variables.

—- Common Programming Error 4.2

When a moduleisimported viaan impor t statement, forgetting to prefix one of itsfunctions
with the module name isa runtime error.

Function arguments can be values, variables or expressions. If c1 =13.0,d=3.0
and £ = 4.0, then the statement

print math.sqrt(cl + 4 * £)

calculates and prints the squareroot of 13.0 + 3.0 * 4.0 = 25.0, (namely, 5.0) . Some
other math module functions are summarized in Fig. 4.3. (Note: Some results are rounded.)

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more informa-
tion.
>>> import math
>>> print math.sqgrt(900)
30.0
>>> print math.sqrt(-900)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: math domain error

Fig. 4.2 Function sgrt of module math.

%

—

é Pythonhtpl_04.fm Page 123 Saturday, December 8, 2001 9:34 AM

A

Chapter 4

Method

acos(X)

asin(X)

atan(X)

ceil(X)

cos(X)

exp(X)

fabs(X)

floor(X)

fmod(X, Yy)

hypot(X, Yy)

log(X)

logl0(X)

pow(X, Y)

sin(X)

sgqrt(X)

tan(X)

Description

Trigonometric arc cosine of x
(result in radians)

Trigonometric arc sine of x
(result in radians)

Trigonometric arc tangent of x
(result in radians)

Rounds x to the smallest integer
not less than x

Trigonometric cosine of x
(xinradians)

Exponential function e*

Absolute value of x

Rounds x to the largest integer not
greater than x

Remainder of x/y asafloating
point number

hypotenuse of atrianglewith sides
of length x and y: sqrt(X + y?)
Natural logarithm of x (base €)

Logarithm of x (base 10)
X raised to power y (xY)
trigonometric sine of x
(xinradians)

square root of x

trigonometric tangent of x
(xinradians)

Functions

Example

acos(1.0)is0.0
asin(0.0)is0.0
atan(0.0)is0.0

ceil(9.2)is10.0
ceil(-9.8)is-9.0

cos(0.0)is1.0

exp(1.0)is2.71828
exp(2.0)iS7.38906

fabs(5.1)is5.1
fabs(-5.1)is5.1

floor(9.2)is9.0
floor(-9.8)is-10.0

fmod (9.8, 4.0) is1.8

hypot (3.0, 4.0) is5.0

log(2.718282) is1.0
log(7.389056) is2.0

logl0(10.0) is1.0
log10(100.0) is2.0

pow(2.0,7.0)is128.0
pow(9.0, .5)is3.0

sin(0.0)is0.0

sqrt (900.0) iS30.0
sqrt(9.0)is3.0

tan(0.0)is0.0

123

Fig. 4.3 math module functions.

4.5 Function Definitions
Each program we have presented thus far has consisted of a series of statements that some-

how programmers write customized functions.

ﬂ%

times called predefined Python functions to accomplish the program’s tasks. We refer to
these statements as the main portion of the program for the duration of the book, to differ-
entiate it from the part of the program that contains function definitions. We now discuss

*

é Pythonhtpl_04.fm Page 124 Saturday, December 8, 2001 9:34 AM

A

.

124 Functions Chapter 4

In programs containing many functions, the main portion of the program should be imple-
mented as a group of calls to functions that perform the bulk of the program’s work.

Consider aprogram, with a user-defined function square, that calculates the squares
of theintegersfrom 1 to 10 (Fig. 4.4). Functions must be defined before they are used.

Good Programming Practice 4.2

@ Place a blank line between function definitions to separate the functions and enhance pro-
gramreadability.

Line 9 of the main program invokes function square (defined at lines 5-6) with the
statement

print square(x),

Function square receives a copy of x in the parameter y.> Then square calculates
y * y (line 6). Theresult is returned to the statement that invoked square. The function
call (line 9) evaluates to the value returned by the function. This valueis displayed by the
print statement. The value of x is not changed by the function call. This processis re-
peated 10 times using the £or repetition structure.

The format of afunction definition is

def function-name(parameter-list) :
statements

where function-name is any valid identifier, and parameter-list is a comma-separated list of
parameter names received by function-name. If afunction does not receive any values, the pa-
rameter list is empty, but the parentheses are still required. The indented statements that fol-
low ade £ statement form the function body. The function body is referred to as a block.

1

2

3

4

5 def square(y):

6 return y * y

he

8 for x in range(1,) :
9 print square(x),
10

11 print

14 9 16 25 36 49 64 81 100

Fig. 4.4 Programmer-defined function.

1. Actualy, y receives areference to x, but y behaves as if it were a copy of x’s value. Thisisthe
concept of pass-by-object-reference, which we introduce in Chapter 5, Lists, Tuples and Dictio-
naries.

ﬂ%

—

| é Pythonhtpl_04.fm Page 125 Saturday, December 8, 2001 9:34 AM

Chapter 4 Functions 125

Common Programming Error 4.3
@ Failureto placeacolon (:) after a function’s parameter list isa syntax error.

Common Programming Error 4.4

@ The pair of parentheses () in a function call is a Python operator. It causes the function to

be called. The function is not invoked if the parentheses are missing from a function call.
Normally, control passes through the statement. If a print statement includes a function
call without parentheses, it displays the memory location of the function. If the user intends
to assign the result of a function call to a variable, a function call without parentheses binds
the function itself to the variable.

—s—- Common Programming Error 4.5
Failure to indent the body of a function isa syntax error.

Good Programming Practice 4.3

’g It is not advisable to use identical names for the arguments passed to a function and the cor-
responding parameters in the function definition.

Good Programming Practice 4.4

g Choosing meaningful function names and meaningful parameter names ensures program
readability and reduces the amount of comments. Writing programs this way creates “ self-
commenting code.”

% If possible, a function should fit in an editor window. Regardless of the length of a function,
it should perform one task well. Small functions promote software reusability.

% Updating a function is easier than updating repeated code throughout a program.

Programs should bewritten as collections of small functions. This makes programs easier to
write, debug, maintain and modify.

L‘/ Afunction requiring alarge number of parameters might be performing too many tasks. Con-
f’ sider dividing the function into smaller functionsthat perform separate tasks. The function’s
def statement should fit on onelineg, if possible.

When afunction completesitstask, the function returns control to the caller. There are
three waysto return control to the point from which afunction wasinvoked. If the function
does not return a result explicitly, control is returned either when the last indented line is
reached or upon execution of the statement

return

In either case, the function returns None, a Python vaue that represents null—indicating
that no value has been declared—and evaluates to false in conditional expressions.

ﬂ%

—

\ {%)
Pythonhtpl_04.fm Page 126 Saturday, December 8, 2001 9:34 AM

%

126 Functions Chapter 4

If the function does return aresult, the statement
return EXpression

returns the value of expression to the caller.

Our second example (Fig. 4.5) uses a programmer-defined function, maximum-
Value. Thisfunction isindependent of the type of its arguments. We use function max -
imumValue to determine and return the largest of threeintegers, the largest of three floats
and the largest of three strings.

Line 15 combines two function calls—raw_input and int—into one statement. In
this case, function raw_input reads a value from the user, then the result is passed to
function int as an argument. The call to function maximumvalue (line 20) passes the
three integers to the programmer-defined function (lines 4-13). The return statement in
maximumValue (line 13) returns the largest integer value to the main program. The
print statement (line 20) displays the returned value. The same function aso returns the
maximum float (line 26) and the maximum string (line 32).

1

2

3

4 def maximumValue(x, y, z):

D maximum = x

6

7 if y > maximum:

8 maximum = y

9

10 if z > maximum:

11 maximum = z

12

13 return maximum

14

15 a = int(raw_input())
16 b = int(raw_input())
17 e = int(raw_input())
18

19

20 print , maximumValue(a, b, c)
21 print

22

23 d = float(raw_input())
24 e = float(raw_input())
25 £ = float(raw_input())
26 print , maximumValue(4, e, f)
27 print

28

29 g = raw_input()

30 h = raw_input()

31 i = raw_input()

32 print , maximumValue(g, h, i)

Fig. 4.5 Programmer-defined maximum function. (Part 1 of 2.)

ﬂ%

é Pythonhtpl_04.fm Page 127 Saturday, December 8, 2001 9:34 AM

A

%

Chapter 4 Functions 127

Enter first integer: 27
Enter second integer: 12
Enter third integer: 36
Maximum integer is: 36

Enter first float: 12.3
Enter second float: 45.6
Enter third float: 9.03
Maximum float is: 45.6

Enter first string: hello

Enter second string: programming
Enter third string: goodbye
Maximum string is: programming

Fig. 4.5 Programmer-defined maximum function. (Part 2 of 2.)

4.6 Random-Number Generation

We now take a brief diversion into a popular programming application—simulation and
game playing—to illustrate most of the control structures we have studied. In this and the
next section, we develop a game-playing program that incorporates multiple functions.

Thereissomething in the air of agambling casino that invigorates every type of person
from the high-rollers at the plush mahogany-and-felt craps tables to the quarter-poppers at
the one-armed bandits. It is the element of chance, the possibility that luck will convert a
pocketful of money into amountain of wealth, iswhat drives scores of people to gambling
casinos. The element of chance can be introduced into computer applications through
module random.

Function random. randrange generates an integer in therange of itsfirst argument
upto, but not including, its second argument. If randrange truly produces integers at
random, every number in that range has an equal chance (or probability) of being chosen
each timethe functionis called.

Figure 4.6 displays the results of 20 rolls of a six-sided die to demonstrate module
random. Function call random. randrange (1, 7) producesintegersintherange 1-6.

1

2

3

4 import random

S

6 for i in range(1,) :

7 print % (random.randrange(1,)).
8

9 if 1 % ==

10 print

Fig. 4.6 Random integers produced by random.randrange (1, 7). (Partl

of 2.)

ﬂ%

*

Q72
| é Pythonhtpl_04.fm Page 128 Saturday, December 8, 2001 9:34 AM

%

Fig. 4.6

128 Functions

AN wuwym

of 2.)

DWW

B o Www

P U ww

NS BN

Chapter 4

Random integers produced by random.randrange (1, 7). (Part2

To show that these numbers occur with approximately equal likelihood, let us simulate
6000 rolls of adie (Fig. 4.7). Each integer from 1 to 6 should appear approximately 1000

10 frequency5
11 frequency6

times.

1

2

3

4 import random
5

6 frequencyl =
7 frequency2 =
8 frequency3 =
9 frequency4 =

12

13 for roll in range(1,) :
14 face = random.randrange(1,
15

16 if face ==

17 frequencyl +=

18 elif face == 2:

19 frequency2 +=

20 elif face == 3:

21 frequency3 +=

22 elif face == 4:

23 frequency4 +=

24 elif face == 5:

25 frequency5 +=

26 elif face == 6:

27 frequency6 +=

28 else:

29 print

30

31 print %

32 print % frequencyl
33 print % frequency2
34 print % frequency3
35 print % frequency4
36 print % frequency5
37 print % frequency6
Fig. 4.7 Rolling a six-sided die 6000 times. (Part 1 of 2.)

ﬂ%

\ {%)
Pythonhtpl_04.fm Page 129 Saturday, December 8, 2001 9:34 AM

A

%

Chapter 4 Functions 129
Face Frequency

1 946

2 1003

3 1035

4 1012

5 987

6 1017

Fig. 4.7 Rolling a six-sided die 6000 times. (Part 2 of 2.)

As the program output shows, function random. randrange simulates the rolling
of asix-sided die. Note that program execution should not reach the el se condition (lines
28-29) provided in the i f/elif/else structure, but we provide the condition for good
practice.

Provide a default else caseinan i£/elif/else to catch errors even if you absolutely
are certain that the program contains no bugs!

8

4.7 Example: A Game of Chance

One of the most popular games of chanceisadice gameknown as* craps,” whichis played
in casinos and back alleysthroughout the world. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain 1, 2, 3, 4, 5 and 6 spots.
After the dice have come to rest, the sum of the spots on the two upward faces is calculated.
If thesumis 7 or 11 on the first throw, the player wins. If the sumis 2, 3 or 12 on the first
throw (called “ craps”), the player loses (i.e., the “ house” wins). If thesumis4, 5, 6, 8, 9 or
10 on thefirst throw, then that sum becomes the player’s“ point.” To win, you must continue
rolling the dice until you “ make your point.” The player loses by rolling a 7 before making
the point.

The program in Fig. 4.8 simulates the game of craps and shows severa sample executions.

1

2

3

4 import random

5

6 def rollDice():

7 diel = random.randrange(1,)
8 die2 = random.randrange(1,)
9 workSum = diel + die2

10 print % (diel, die2, workSum)
11

12 return workSum

13

14 sum = rollDice()

15

Fig. 4.8 Game of craps. (Part 1 of 2.)

ﬂ%

*

\ {%)
Pythonhtpl_04.fm Page 130 Saturday, December 8, 2001 9:34 AM

130 Functions Chapter 4
16 if sum == or sum == 8
17 gameStatus =
18 elif sum == or sum == or sum ==
19 gameStatus =
20 else:
21 gameStatus =
22 myPoint = sum
23 print , myPoint
24
25 while gameStatus ==
26 sum = rollDice()
27
28 if sum == myPoint:
29 gameStatus =
30 elif sum == 7:
31 gameStatus =
32
33 if gameStatus ==
34 print
35 else:
36 print

Player rolled 2 + 5 = 7
Player wins

Player rolled 1 + 2 = 3
Player loses

Player rolled 1 + 5 = 6
Point is 6

Player rolled 1 + 6 = 7
Player loses

Player rolled 5 + 4 = 9
Point is 9

Player rolled 4 + 4 = 8
Player rolled =
Player rolled 5 + 4 = 9
Player wins

N
+
w
I
u

Fig. 4.8 Game of craps. (Part 2 of 2.)

Notice that the player must roll two dice on each roll. Function rollDice simulates
rolling the dice (lines 6-12). Function rol11Dice isdefined once, but itiscalled from two
placesin the program (lines 14 and 26). The function takes no arguments, so the parameter
listisempty. Function rol1Dice printsand returnsthe sum of thetwo dice (lines 10-12).

4~ ~¢e

é Pythonhtpl_04.fm Page 131 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 4 Functions 131

The game is reasonably involved. The player could win or lose on the first roll or on
any subsequent roll. The variable gameStatus keeps track of the win/loss status. Vari-
able gameStatus is one of the strings "WON", "LOST" or "CONTINUE". When the
player wins the game, gameStatus isset to "WON" (lines 17 and 29). When the player
loses the game, gameStatus is set to "LOST" (lines 19 and 31). Otherwise,
gameStatus iSset to "CONTINUE", allowing the dice to berolled again (line 21).

If the gameiswon or lost after thefirst roll, the body of thewhile structure (lines 25—
31) isskipped, because gameStatus isnot equal to "CONTINUE" (line 25). Instead, the
program proceeds to the i £/else structure (lines 33-36), which prints "Player wins™"
if gameStatus equals "WON", but "Player loses" if gameStatus eguals
"L,OST".

If the gameisnot won or lost after thefirst roll, the value of sum isassigned to variable
myPoint (line22). Execution proceedswith thewhile structure, because gameStatus
equals "CONTINUE". During each iteration of thewhile loop, rol1lDice isinvoked to
produce a new sum (line 26). If sum matchesmyPoint, gameStatus is set to "WON™"
(lines 28-29), the while test fails (line 25), the if/else structure prints "Player
wins" (lines 33-34) and execution terminates. If sum is equd to 7, gameStatus isset
to "LosT" (lines 30-31), the while test fails (line 25), the i f/else statement prints
"Player loses" (lines 35-36) and execution terminates. Otherwise, the while loop
continues executing.

Note the use of the various program-control mechanisms discussed earlier. The craps
program uses one programmer-defined function—rollDice—and thewhile, i f/else
and if/elif/else structures. The program uses both stacked control structures (the i £/
elif/else inlines 16-23 and thewhile in lines 25-31) and nested control structures
(theif/elif inlines28-31isnested insidethewhile inlines25-31).

4.8 Scope Rules?

Until now, we have not discussed how a Python program stores and retrieves avariable's
value. It appearsthat the valueissimply “there” when the program needsit. In fact, Python
has strict rules that describe how and when a variable' s value can be accessed. These rules
are described in terms of namespaces and scopes. In this section, we discuss how
namespaces and scopes affect a program’ s execution.

We use an example to explain these concepts. Assume that afunction contains the fol-
lowing line of code:

print x

Before a value can be printed to the screen, Python must first find the identifier named x
and determine the value associated with that identifier. Namespaces store information
about an identifier and the value to which it is bound. Python defines three namespaces—
local, global and built-in. When a program attempts to access an identifier’ s value, Python
searches the namespaces in a certain order—Ilocal, global and built-in namespaces—to see
whether and where the identifier exists.

2. Nested scopes are not discussed in thistext. Nested scopes are a complex topic and were optional
in Python 2.1 but are mandatory in Python 2.2. Information about nested scopes can be found in
PEP 227 @ www.python.org/peps/pep-0227 .html.

%

—

é Pythonhtpl_04.fm Page 132 Saturday, December 8, 2001 9:34 AM

A

i

132 Functions Chapter 4

The first namespace that Python searches is the local namespace, which stores bind-
ings created in ablock. Function bodies are blocks, so all function parametersand any iden-
tifiers the function creates are stored in the function’ s local namespace. Each function has
a unique local namespace—one function cannot access the local hamespace of another
function. In the example above, Python first searches the function’ slocal namespacefor an
identifier named x. If the function’ slocal namespace contains such an identifier, the func-
tion prints the value of x to the screen. If the function’s local namespace does not contain
anidentifier named x (e.g., the function does not define any parameters or create any iden-
tifiers named x), Python searches the next outer namespace—the global namespace (some-
times called the modul e namespace).

The global namespace contains the bindings for al identifiers, function names and
class names defined within amodule or file. Each module or file's globa namespace con-
tains an identifier called name that states the module's name (e.g., "math" or
"random"). When a Python interpreter session starts or when the Python interpreter
begins executing a program stored in afile, thevalueof _ name is"™ main ".In
the example above, Python searches for an identifier named x in the global namespace. If
the global namespace contains the identifier (i.e., the identifier was bound to the global
namespace before the function was called), Python stops searching for the identifier and the
function prints the value of x to the screen. If the global namespace does not contain an
identifier named x, Python searches the next outer namespace—the built-in namespace.

The built-in namespace contains identifiers that correspond to many Python functions
and error messages. For example, functions raw_input, int and range belong to the
built-in namespace. Python creates the built-in namespace when the interpreter starts, and
programs normally do not modify the namespace (e.g., by adding an identifier to the
namespace). In the example above, the built-in namespace does not contain an identifier
named x, so Python stops searching and prints an error message stating that the identifier
could not be found.

Anidentifier' s scope describesthe region of a program that can access the identifier's
value. If anidentifier is defined in the local namespace (e.g., in afunction), all statements
in the block may accessthat identifier. Statements that reside outside the block (e.g., in the
main portion of a program or in another function) cannot access the identifier. Once the
code block terminates (e.g., after areturn statement), all identifiersin that block’s local
namespace “go out of scope” and are inaccessible.

If an identifier is defined in the global namespace, the identifier has global scope. A
global identifier isknown to all code that executes, from the point at which the identifier is
created until the end of the file. Furthermore, if certain criteria are met, functions may
access global identifiers. We discuss this issue momentarily. Identifiers contained in built-
in namespaces may be accessed by codein programs, modules or functions.

One pitfall that can arise in a program that uses functionsis called shadowing. When
afunction creates a local identifier with the same name as an identifier in the module or
built-in namespaces, the local identifier shadows the global or built-in identifier. A logic
error can occur if the programmer references the local variable when meaning to reference
the global or built-in identifier.

Common Programming Error 4.6

@ Shadowing an identifier in the module or built-in namespace with an identifier in the local
namespace may result in alogic error.

%

—

é Pythonhtpl_04.fm Page 133 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 4 Functions 133

Good Programming Practice 4.5

@ Avoid variable names that shadow names in outer scopes. This can be accomplished by
avoiding the use of an identifier with the same name as an identifier in the built-in namespace
and by avoiding the use of duplicate identifiersin a program.

Python provides a way for programmers to determine what identifiers are available
from the current namespace. Built-in function dir returns a list of these identifiers.
Figure 4.9 shows the namespace that Python creates when starting an interactive session.
Cdling function dir tells us that the current namespace contains three identifiers:
__builtins , doc_ and_name . Thenext command inthesession printsthe
valuefor identifier name , to demonstrate that thisvalueis __main__ for an inter-
active session. The subsequent command printsthe value for identifier builtins .
Notice that we get back a vaue indicating that this identifier is bound to a module. This
indicates that the identifier — builtins _ can be used to refer to the module
__builtin_ .Weexplorethisfurther in Section 4.9. The next command in the interac-
tive session creates a new identifier x and binds it to the value 3. Calling function dir
again revealsthat identifier x has been added to the session’ s namespace.

The interactive session in Fig. 4.9 only hints at a Python program’s powerful ability
to provide information about the identifiers in a program (or interactive session). Thisis
called introspection. Python provides many other introspective capabilities, including func-
tionsglobals and locals that return additional information about the global and local
namespaces, respectively.

Although functions help make a program easier to debug, scoping issues can introduce
subtle errors into a program if the developer is not careful. The program in Fig. 4.10 dem-
onstrates these issues, using global and local variables. Line 4 creates variable x with the
value 1. Thisvariableresidesin the globa namespacefor the program and has global scope.
In other words, variable x can be accessed and changed by any code that appears after line
4. This global variable is shadowed in any function that creates alocal variable named x.
In the main program, line 22 prints the value of variable x (i.e., 1). Lines 24-25 assign the
value 7 to variable x and print its new value.

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32

Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>> dir ()

[' builtins ', ' doc_ ', ' name ']

>>> print name

__main_

>>> print builtins

<module ' builtin ' (built-in)>

>>> x = 3 # bind new identifier to global namespace
>>> dir ()

[' builtins ', ' doc_ ', ' name ', 'x']

Fig. 4.9 Functiondir.

%

—

Q2
| é Pythonhtpl_04.fm Page 134 Saturday, December 8, 2001 9:34 AM

134 Functions Chapter 4
1
2
3
4 X =
S
6
7 def a():
8 X =
9
10 print : X,
11 X +=
12 print , X,
k3
14
15 def b():
16 global x
17
18 print ;X
19 X *=
20 print , X,
21
22 print ;X
23
24 X =
25 print , X
26
27 al()
28 b()
29 al()
30 b()
31
32 print o o3

global x is 1
global x is 7

local x in a is 25 after entering
local x in a is 26 before exiting

o o

global x is 7 on entering b
global x is 70 on exiting b

local x in a is 25 after entering
local x in a is 26 before exiting

o o

global x is 70 on entering b
global x is 700 on exiting b

global x is 700
Fig. 4.10 Scopes and keyword global.

The program defines two functions that neither receive nor return any arguments.
Function a (lines 7-12) declares alocal variable x and initializesit to 25. Then, function a
prints local variable x, increments it and prints it again (lines 10-12). Each time the pro-

ﬂ%

é Pythonhtpl_04.fm Page 135 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 4 Functions 135

gram invokes the function, function a recreates local variable x and initializes the variable
to 25, then incrementsiit to 26.

Function b (lines 15-20) does not declare any variables. Instead, line 16 designates x
as having global scope with keyword global. Therefore, when function b refers to vari-
able x, Python searches the globa namespace for identifier x. When the program first
invokes function b (line 28), the program prints the value of the global variable (7), multi-
plies the value by 10 and prints the value of the global variable (70) again before exiting
the function. The second time the program invokes function b (line 30), the globa variable
containsthe modified value, 70. Finally, line 32 printsthe global variable x in the main pro-
gram again (700) to show that function b has modified the value of this variable.

4.9 Keyword import and Namespaces

We have discussed how to import a module and use the functions defined in that module.
In this section, we explore how importing amodul e affects aprogram’ s namespace and dis-
cuss various ways to import modules into a program.

4.9.1 Importing one or more modules

Consider a program that needs to perform one of the specialized mathematical operations
defined in module ma th. The program must first import the module with the line

import math

The code that imports the module now has a reference to the math module in its
namespace. After the import statement, the program may access any identifiers defined
inthemath module.

The interactive session in Fig. 4.11 demonstrates how an import statement affects
the session’s namespace and how a program can access identifiers defined in a modul€e’ s
namespace. The first lineimports thema th module. The next line then callsfunction dir,
to demonstrate that the identifier math has been inserted in the session’s namespace. As
the subsequent print statement shows, the identifier is bound to an object that represents
themath module. If we passidentifier math to function dir, thefunction returnsalist of
al theidentifiersinthemath module's nam&space.3[Note: Earlier versions of Python may
output different results for dir () .]

The next command in the session invokes function sqrt. To access an identifier in
themath modul€ s namespace, we must use the dot (.) access operator. The line

math.sqrt()

first accesses (with the dot access operator) function sqrt defined in themath module's
namespace. The line then invokes (with the parentheses operator) the sqrt function, pass-
ing an argument of 9. 0.

If a program needs to import several modules, the program can include a separate
import statement for each module. A program can aso import multiple modulesin one
statement, by separating the module names with commas. Each imported module is added
to the program’ s namespace as demonstrated in the interactive session of Fig. 4.12.

3. Actualy, function dir returnsalist of attributesfor the object passed as an argument. In the case of amodule,
thisinformation amountsto alist of al identifiers (e.g., functions and data) defined in the module.

%

—

é Pythonhtpl_04.fm Page 136 Saturday, December 8, 2001 9:34 AM

136 Functions Chapter 4

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32

Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>> import math

>>> dir()

[' builtins ', ' doc ', ' name ', 'math']

>>> print math

<module 'math' (built-in)>

>>> dir(math)

[' doc ', ' name ', 'acos', 'asin', 'atan', 'atan2', 'ceil',

'cos', 'cosh','e', 'exp', 'fabs', 'floor', 'fmod', 'frexp', 'hy-

pot', 'ldexp', 'log', 'logl0', 'modf', 'pi', 'pow', 'sin', 'sinh',

'sgrt', 'tan', 'tanh']

>>> math.sqrt(9.0)

3.0

Fig. 4.11 Importing a module.

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32

Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>> import math, random

>>> dir()

[' builtins ', ' doc ', ' name ', 'math', 'random']

Fig. 4.12 Importing more than one module.

4.9.2 Importing identifiers from a module

In the previous example, we discussed how to access an identifier defined in another mod-
ule’ s namespace. To access that identifier, the programmer must use the dot (.) access op-
erator. Sometimes, aprogram uses only one or afew identifiers from amodule. In thiscase,
it may be useful to import only those identifiers the program needs. Python provides the
from/import statement to import one or moreidentifiers from amodule directly into the
program’ s namespace.

The interactive session in Fig. 4.13 imports the sqrt function directly into the ses-
sion’s namespace. When the interpreter executes the line

from math import sqrt

the interpreter creates areferenceto functionmath. sqrt and places the reference direct-
ly into the session’s namespace. Now, we can call the function directly without using the
dot operator. Just as a program can import multiple modules in one statement, a program
can import multiple identifiers from amodule in one statement. Theline

from math import sin, cos, tan

importsmath functions sin, cos and tan directly into the session’s namespace. After
the import statement, acall to function dir revealsreferencesto each of these functions.

%

é Pythonhtpl_04.fm Page 137 Saturday, December 8, 2001 9:34 AM

Chapter 4 Functions 137

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32

Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>> from math import sqrt

>>> dir()

[' builtins ', ' doc ', ' name ', 'sqrt']

>>> sqgrt(9.0)

3.0

>>> from math import sin, cos, tan

>>> dir ()

[' builtins ', ' doc ', ' name ', 'cos', 'sin', 'sqrt',
'tan']

Fig. 4.13 Importing an identifier from a module.

The interactive session in Fig. 4.14 demonstrates that a program aso may import all
identifiers defined in amodule. The statement

from math import *

imports all identifiers that do not start with an underscore from themath module into the
interactive session’s namespace. Now the programmer can invoke any of the functions
from the math module, without accessing the function through the dot access operator.
However, importing amodul €’ sidentifiersin thisway can lead to serious errorsand is con-
sidered a dangerous programming practice. Consider a situation in which a program had
defined an identifier named e and assigned it the string value "e™. After executing the pre-
ceding import statement, identifier e is bound to the mathematical floating-point con-
stant e, and the previous value for e is no longer accessible. In general, a program should
never import al identifiers from amodule in thisway.

%‘ In general, avoid importing all identifiersfromamodul e into the namespace of another mod-
ule. This method of importing a module should be used only for modules provided by trusted
sources, whose documentation explicitly states that such a statement may be used to import
the module.

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32

Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>> from math import *

>>> dir()

[' builtins ', ' doc ', ' name ', 'acos', 'asin', 'atan',
'atan2', 'ceil', 'cos', 'cosh', 'e', 'exp', 'fabs', 'floor',
'fmod', 'frexp', 'hypot', 'ldexp','log', 'logl0', 'modf', 'pi',
'pow', 'sin', 'sinh', 'sqgrt', 'tan', 'tanh']

Fig. 4.14 Importing all identifiers from a module.

%

é Pythonhtpl_04.fm Page 138 Saturday, December 8, 2001 9:34 AM

A

138 Functions Chapter 4

4.9.3 Binding names for modules and module identifiers

We have already seen how aprogram canimport amodule or specific identifiersfrom amod-

ule. Python’ s syntax givesthe programmer considerable control over how the import state-

ment affects a program’s namespace. In this section, we discuss this control in more detail

and explain further how the programmer can customize the references to imported elements.
The statement

import random

imports the random module and places a reference to the module named random in the
namespace. In the interactive session in Fig. 4.15, the statement

import random as randomModule

also imports the random module, but the as clause of the statement allows the program-
mer to specify the name of the reference to the module. In this case, we create areference
named randomModule. Now, if we want to access the random module, we use refer-
ence randomModule.

A program can also use an import/as statement to specify a name for an identifier
that the program imports from amodule. Theline

from math import sqrt as squareRoot

imports the sqrt function from module math and creates a reference to the function
named squareRoot. The programmer may now invoke the function with this reference.

Typically, module authors use import/as statements, because the imported element
may define namesthat conflict with identifiers already defined by the author’s module. With
the import/as statement, the module author can specify a new name for the imported ele-
ments and thereby avoid the naming conflict. Programmers also use the import/as state-
ment for convenience. A programmer may use the statement to rename a particularly long
identifier that the program uses extensively. The programmer specifies a shorter name for the
identifier, thus increasing readability and decreasing the amount of typing.

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32

Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>> import random as randomModule

>>> dir ()

[' builtins ', ' doc ', ' name ', 'randomModule']
>>> randomModule.randrange(1, 7)
1

>>> from math import sgrt as squareRoot
>>> dir()

[' builtins ', ' doc ', ' name ', 'randomModule',6 'square-
Root']

>>> squareRoot(9.0)

3.0

Fig. 4.15 Specifying names for imported elements.

%

—

é Pythonhtpl_04.fm Page 139 Saturday, December 8, 2001 9:34 AM

A

Chapter 4 Functions 139

Python's capabilities for importing elements into a program supports component-
based programming. The programmer should choose syntax Python appropriate for each
situation, keeping in mind that the goal of component-based programming isto create pro-
grams that are easier to construct and maintain.

4.10 Recursion

The programs we have discussed thus far generally are structured as functions that call one
another in a disciplined, hierarchical manner. For some problems, however, it is useful to
have functions call themselves. A recursive function isafunction that callsitself, either di-
rectly or indirectly (through another function). Recursion is an important topic discussed at
length in upper-level computer-science courses. In this section and the next, we present
simple examples of recursion.

We first consider recursion conceptually and then illustrate several recursive func-
tions. Recursive problem-solving approaches have a number of elements in common. A
recursive function is called to solve a problem. The function actually knows how to solve
only the simplest case(s), or so-called base case(s). If the function is not called with abase
case, the function divides the problem into two conceptual pieces—a piecethat thefunction
knows how to solve (abase case) and a piece that the function does not know how to solve.
To make recursion feasible, the latter piece must resemble the original problem, but be a
dlightly simpler or dightly smaller version of the original problem. Because this new
problem looks like the original problem, the function invokes (calls) afresh copy of itself
to go to work on the smaller problem; thisisreferred to asarecursive call andisaso called
the recursion step. The recursion step normally includes the keyword return, because
thisresult will be combined with the portion of the problem the function knew how to solve
to form aresult that will be passed back to the original caller.

The recursion step executes while the original call to the function is still open (i.e.,
whileit has not finished executing). The recursion step can result in many more such recur-
sive calls, asthe function divides each new subproblem into two conceptual pieces. For the
recursion eventually to terminate, the sequence of smaller and smaller problems must con-
verge on abase case. At that point, the function recognizes the base case and returnsaresult
to the previous copy of the function, and a sequence of returns ensues up the line until the
origina function call eventualy returns the fina result to the caller. This process sounds
exotic when compared with the conventional problem solving techniques we have used to
thispoint. As an example of these concepts at work, let uswrite arecursive program to per-
form a popular mathematical calculation.

The factorial of a nonnegative integer n, written n! (and pronounced “n factorid”), is
the product

n-(n-1)-(n-2)-...-1
with 1! equal to 1, and 0! equal to 1. For example, 5! istheproduct5-4-3-2 -1, whichis
equal to 120.
The factorial of an integer, number, greater than or equal to 0 can be calculated iter-
atively (nonrecursively) using for, asfollows:

factorial =

for counter in range(1, number +) :
factorial *= counter

%

—

é Pythonhtpl_04.fm Page 140 Saturday, December 8, 2001 9:34 AM

140 Functions Chapter 4

A recursive definition of the factorial function is obtained by observing the following
relationship:

n=n-(n-1)!
For example, 5! isclearly equal to 5* 4!, asis shown by the following equations:

51=5.4.3.2-1
51=5.(4-3-2-1)
51=5-(4)

The evaluation of 5! would proceed as shown in Fig. 4.16. Figure 4.16 (&) shows how
the succession of recursive calls proceeds until 1! evaluates to 1, which terminates the
recursion. Figure 4.16 (b) shows the values returned from each recursive call to its caller
until the final valueis calculated and returned.

Figure 4.17 uses recursion to calculate and print the factorials of the integers from 0
to 10. The recursive function factorial (lines 5-10) first tests to determine whether a
terminating conditionistrue (line 7)—if number islessthan or equal to 1 (the base case),
factorial returns i, no further recursion is necessary and the function terminates. Oth-
erwise, if number is greater than 1, line 10 expresses the problem as the product of
number and arecursivecall to factorial evaluating thefactorial of number - 1. Note
that factorial (number - 1) is a simpler version of the origina calculation,
factorial (number).

Common Programming Error 4.7

@ Either omitting the base case or writing the recursion step incorrectly so that it does not con-
verge on the base case will cause infinite recursion, eventually exhausting memory. Thisis
analogous to the problem of an infinite loop in an iterative (nonrecursive) solution.

El El Final value = 120

41 =4*6 =24 is returned

5l=5*24 =120 is returned

1 returned

(a) Procession of recursive calls (b) Values returned from each recursive call

Fig. 4.16 Recursive evaluation of 5!.

4~ —

.

é Pythonhtpl_04.fm Page 141 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 4 Functions 141
1
2
3
4
5 def factorial(number):
6
7 if number <=
8 return
9 else:
10 return number * factorial(number -)
11
12 for i in range() :
13 print % (i, factorial(i))
0! =1
1! = 1
2! = 2
31 =6
41 = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

Fig. 4.17 Recursive function used to calculate factorials.

4.11 Example Using Recursion: The Fibonacci Series

The Fibonacci series
0,1123,5,8,13 21, ...

beginswith 0 and 1 and has the property that each subsequent Fibonacci number isthe sum
of the previous two Fibonacci numbers.

The series occurs in nature, in particular, describing a spiral. The ratio of successive
Fibonacci numbers converges on a constant value of 1.618.... Thisnumber, too, repeatedly
occursin nature and has been called the golden ratio, or the golden mean. Humans tend to
find the golden mean aesthetically pleasing. Architects often design windows, rooms, and
buildings whose length and width are in the ratio of the golden mean. Postcards often are
designed with a golden-mean length/width ratio.

The Fibonacci series can be defined recursively as follows:

fibonacci(0)=0
fibonacci(1)=1
fibonacci(n) = fibonacci(n—1) + fibonacci(n—2)

Note that there are two base cases for the Fibonacci cal culation—fibonacci(0) is defined to
be 0 and fibonacci(1) isdefined to be 1. The program of Fig. 4.18 cal culates theith Fibonac-
ci number recursively, using function £ibonacci (lines 4-14). Notice that Fibonacci
numbers increase rapidly. Each output box shows a separate execution of the program.

ﬂ%

—

Q72
| é Pythonhtpl_04.fm Page 142 Saturday, December 8, 2001 9:34 AM

142 Functions Chapter 4
1
2
3
4 def fibonacci(n):
5
6 if n <
7 print
8
9 if n == or n ==
10 return n
11 else:
12
k3
14 return fibonacci(n -) + fibonacci(n -)
5
16 number = int(raw_input())
17 result = fibonacci(number)
18 print % (number, result)

Enter an integer: 0
Fibonacci(0) = 0

Enter an integer: 1
Fibonacci(l) =1

Enter an integer: 2
Fibonacci(2) =1

Enter an integer: 3
Fibonacci(3) = 2

Enter an integer: 4
Fibonacci (4) = 3

Enter an integer: 6
Fibonacci (6) = 8

Enter an integer: 10
Fibonacci (10) = 55

Fig. 4.18 Recursively generating Fibonacci numbers. (Part 1 of 2.)

- 4~ ~¢e

é Pythonhtpl_04.fm Page 143 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 4 Functions 143

Enter an integer: 20
Fibonacci (20) = 6765

Fig. 4.18 Recursively generating Fibonacci numbers. (Part 2 of 2.)

Theinitial call to £ibonacci (line17) isnot arecursive call, but all subsequent calls
to fibonacci performed from the body of fibonacci are recursive. Each time
fibonacci isinvoked, it tests for the base case—n equa to O or 1. If this condition is
true, fibonacci returnsn (line 10). Interestingly, if n isgreater than 1, therecursion step
generatestwo recursive calls (line 14), each of which isasimpler problem than the original
call to fibonacci. Figure4.19illustrates fibonacci evauating £ibonacci (3).

A word of caution isin order about recursive programs like the one we use hereto gen-
erate Fibonacci numbers. Each invocation of the £ibonaceci function that doesnot match
one of the base cases (i.e., 0 or 1) resultsin two more recursive callsto £ibonacci. This
set of recursive calls rapidly gets out of hand. Calculating the Fibonacci value of 20 using
the programin Fig. 4.18 requires 21,891 callsto the £ ibonacci function; calculating the
Fibonacci value of 30 requires 2,692,537 callsto the £ibonacci function.

Asyou try to calculate larger Fibonacci values, you will notice that each consecutive
Fibonacci number resultsin a substantial increase in calculation time and number of calls
to the fibonacci function. For example, the Fibonacci value of 31 requires 4,356,617
cals, and the Fibonacci value of 32 requires 7,049,155 calls. Asyou can see, the number
of callsto fibonacci is increasing quickly—2,692,538 additional calls between Fibonacci
values of 31 and 32. This difference in number of calls made between Fibonacci values of
31 and 32 is more than 1.5 times the number of calls for Fibonacci values between 30 and
31. Computer scientists refer to this as exponential complexity. Problems of this nature
humble even the world’ s most powerful computers! In thefield of complexity theory, com-
puter scientists study how hard algorithms work to complete their tasks. Complexity issues
are discussed in detail in the upper-level computer-science course generally called “Algo-
rithms’ or “Complexity.”

Fibonacci(3)

|

return | Fibonacci(2)

+ |Fibonaceci(1)

return | Fibonacci(1)| + |Fibonacci(0) return 1
| Y
—— 1 [1
return 1 return 0

Fig. 4.19 Recursive call to function £ibonacci.

%

—

é Pythonhtpl_04.fm Page 144 Saturday, December 8, 2001 9:34 AM

A

.

144 Functions Chapter 4

g@ Avoid Fibonacci-stylerecursive programsthat result in an exponential “ explosion” of calls.

4.12 Recursion vs. lteration

In the previous sections, we studied two functions that can be implemented either recur-
sively or iteratively. In this section, we compare the two approaches and discuss why the
programmer might choose one approach over the other in a particular situation.

Both iteration and recursion are based on acontrol structure: Iteration uses arepetition
structure (such as for and while); recursion uses a selection structure (such as i £ and
if/else). Both iteration and recursion involve repetition: Iteration explicitly uses arep-
etition structure; recursion achievesrepetition through repeated function calls. Iteration and
recursion both involve a termination test: Iteration terminates when the loop-continuation
condition fails; recursion terminates when abase caseis recognized. Iteration with counter-
controlled repetition and recursion each gradually approach termination: Iteration keeps
modifying a counter until the counter assumes a value that makes the loop-continuation
condition fail; recursion keeps producing simpler versions of the origina problem until the
base case is reached. Both iteration and recursion can occur infinitely: An infinite loop
occurs with iteration if the loop-continuation test never becomes false; infinite recursion
occurs if the recursion step does not reduce the problem each time in a manner that con-
verges on the base case.

Recursion has many negatives. It repeatedly invokes the mechanism and, conse-
quently, the overhead of function calls. This repetition can be expensive in both processor
time and memory space. Each recursive call causes another copy of the function (actually
only the function’s variables) to be created; this set of copies can consume considerable
memory. Iteration normally occurs within a function, so the overhead of repeated function
calls and extra memory assignment is omitted. So why choose recursion?

g' Any problem that can be solved recursively can also be solved iteratively (nonrecursively).

A recursive approach normally is preferred over an iterative approach when the recursive
approach more naturally mirrors the problem and resultsin a programthat is easier to un-
derstand and debug. Often, a recursive approach can be implemented with few lines of code
when a corresponding iterative approach may take large amounts of code. Another reason
to choose a recursive solution is that an iterative solution may not be apparent.

e Avoid using recursion in performance situations. Recursive calls take time and consume ad-
=2 ditional memory.
Common Programming Error 4.8

@ Accidentally having a function that solves a non-recursive algorithmcall itself, either direct-
ly or indirectly (through another function), isalogic error.

Let us reconsider some observations that we make repeatedly throughout the book.
Good software engineering is important. High performance is important. Unfortunately,
these goals are often at odds with one another. Good software engineering is key to
making more manageable the task of devel oping the larger and more complex software sys-

%

*

\ {%)
Pythonhtpl_04.fm Page 145 Saturday, December 8, 2001 9:34 AM

A

.

%

Chapter 4 Functions 145

tems. High performancein these systemsiskey to realizing the systems of the future, which
will place ever-greater computing demands on hardware. Where do functions fit in here?

Functionalizing programs in a neat, hierarchical manner promotes good software engi-
neering, but it hasa price.

Performance Tip 4.4

e A heavily functionalized program—as compared with a monolithic (i.e., one-piece) program

=22 without functions—makes potentially large numbers of function calls, and these consume ex-

ecution time and memory space on a computer’s processor(s). But monolithic programs are
difficult to program, test, debug and maintain.

So functionalize programs judiciously, always keeping in mind the delicate balance
between performance and good software engineering.

4.13 Default Arguments

Function calls may commonly pass a particular value of an argument. When defining a
function, the programmer can specify an argument as adefault argument, and the program-
mer can provide a default value for that argument. Default arguments are a convenience;
they alow the programmer to specify fewer arguments when calling a function. When a
default argument isomitted in afunction call, the interpreter inserts the default value of that
argument and passes the argument in the call.

Default arguments must appear to the right of any non-default arguments in a func-
tion’s parameter list. When calling a function with two or more default arguments, if an
omitted argument is not the rightmost argument in the argument list, all arguments to the
right of that argument also must be omitted.

Figure 4.20 demonstrates using default arguments in cal culating the volume of a box.
The function definition for boxVolume in line 5 specifies that al three arguments have
been given default values of 1. Note that default values should be defined only in the func-
tion's def statement.

1

2

3

4

5 def boxVolume(length = 1, width = 1, height =) :
6 return length * width * height

7

8 print , boxVolume ()

9 print

10 print , boxVolume ()

11 print

12 print , boxVolume (,)
13 print

14 print , boxVolume (P)

Fig. 4.20 Default arguments. (Part 1 of 2.)

ﬂ%

—

\ {%)
| Pythonhtpl_04.fm Page 146 Saturday, December 8, 2001 9:34 AM

A

.

%

146 Functions Chapter 4

The default box volume is: 1

The volume of a box with length 10,
width 1 and height 1 is: 10

The volume of a box with length 10,
width 5 and height 1 is: 50

The volume of a box with length 10,
width 5 and height 2 is: 100

Fig. 4.20 Default arguments. (Part 2 of 2.)

The first call to boxVolume (line 8) specifies no arguments and thus uses all three
default values. The second call (line 10) passes a 1ength argument and thus uses default
valuesfor thewidth and height arguments. Thethird call (line 12) passes arguments for
length and width and thus uses a default value for the height argument. The last call
(line 14) passes argumentsfor Length, width and height, thususing no default values.

Good Programming Practice 4.6

@ Using default arguments can simplify writing function calls. However, some programmers
feel that explicitly specifying all arguments makes programs easier to read.

Common Programming Error 4.9

@ Default arguments must be the rightmost (trailing) arguments.Omitting an argument other
than a rightmost argument is a syntax error.

4.14 Keyword Arguments

The programmer can specify that a function receives one or more keyword arguments. The
function definition assigns a default value to each keyword. A function may use a default
value for a keyword or a function call may assign a new value to the keyword using the
format keyword = value. When using keyword arguments, the position of argumentsin
the function cal is not required to match the position of the corresponding parametersin
the function definition. Figure 4.21 demonstrates using keyword arguments in a Python
program that displays information about a requested Web site.

=

1

2

3

4 def generateWebsite(name, url = p

5 Flash = , CGI =):

6 print , hame, , url
7

8 if Flash ==

9 print

0

Fig. 4.21 Keyword parameters. (Part 1 of 2.)

ﬁ%

*

é Pythonhtpl_04.fm Page 147 Saturday, December 8, 2001 9:34 AM

A

.

Chapter 4 Functions 147
11 if CGI ==
12 print
13 print
14
15 generateWebsite ()
16
17 generateWebsite (, Flash = ,
18 url =)
19
20 generateWebsite(CGI = , nhame =)

Generating site requested by Deitel using url www.deitel.com
CGI scripts are enabled

Generating site requested by Deitel using url www.deitel.com/new
Flash is enabled

CGI scripts are enabled

Generating site requested by Prentice Hall using url www.deitel.com

Fig. 4.21 Keyword parameters. (Part 2 of 2.)

Function generateWebsite takes four arguments. The keyword argument names
url, Flash and CGI are assigned the default values "www.deitel.com", "no" and
nyes", respectively (lines4-5). Thefunction identifieswho is requesting the Web siteand
displays a message if the Web site is Flash- or CGI-enabled (lines 6-13).

The function cal in line 15 passes one argument, a value for name, to function
generateWebsite. The function uses the default values given in the definition for the
other parameters.

The function call in lines 17-18 passes three arguments to generateWebsite.
Variable name again hasthevalue "Deitel™. The call also assignsthe value "yes™ to
keyword argument Flash and "www.deitel.com/new" to keyword argument url.
Thisfunction call illustrates that the order of keyword arguments is more flexible than that
of regular argumentsin an ordinary function call. The Python interpreter matches the value
"Deitel" with variable name by its position in the function call. The Python interpreter
matches the values passed to url and Flash by their keyword argument names rather
than by their positionsin the function call. The value of name must come first in any call
togenerateWebsite if it isnot referenced by specifying avaluefor name in the argu-
ment list. Line 20 demonstrates that any function argument can be referenced as akeyword
evenif it has no default value.

The interactive session of Fig. 4.22 demonstrates common errors when mixing non-
keyword and keyword arguments. Function call test (numberl = "two", "Name")
causes an error, because the non-keyword argument is placed after the keyword argument.
Function call test (numberl = "three") isincorrect, because function test expects
one non-keyword argument.

—a- Common Programming Error 4.10
@ Misplacing or omitting the value for a non-keyword argument in a function call isan error.

%

*

é Pythonhtpl_04.fm

Page 148 Saturday, December 8, 2001 9:34 AM

148 Functions Chapter 4

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more informa-
tion.
>>> def test(name, numberl = "one", number2 = "two"):
50 pass
>>> test(numberl = "two", "Name")
SyntaxError: non-keyword arg after keyword arg
>>> test(numberl = "three")
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: test() takes at least 1 non-keyword argument (0 given)

Fig. 4.22 Errors with keyword arguments.

SUMMARY

Constructing alarge program from smaller components, each of which is more manageable than
the original program, is atechnique called divide and conquer.

Componentsin Python are called functions, classes, modules and packages.

Python programs typically are written by combining new functions and classes the programmer
writes with “ pre-packaged” functions or classes available in numerous Python modules.

The programmer can write programmer-defined functions to define specific tasks that could be
used at many pointsin a program.

A module defines related classes, functions and data. A package groups related modules. The
package as awhole provides tools to help the programmer accomplish a general task.

A function isinvoked (i.e., made to perform its designated task) by afunction call.

Thefunction call specifiesthe function name and provides information (as acomma-separated list
of arguments) that the called function needs to do itsjob.

All variables created in function definitions arelocal variables—they are known only in the func-
tion in which they are created.

Most functions have a list of parameters that provide the means for communicating information
between functions. A function’s parameters are also loca variables.

The divide-and-conquer approach makes program devel opment more managesble.

Another motivation for using the divide-and-conquer approach is software reusability—using ex-
isting functions as building blocks to create new programs.

A third motivation for using the divide-and-conquer approach isto avoid repeating code in apro-
gram. Packaging code as afunction alows the code to be executed from several locationsin apro-
gram simply by calling the function.

Themath module functions allow the programmer to perform certain common mathematical cal-
culations.

Functions normally are called by writing the name of the function, followed by aleft parenthesis,
followed by the argument (or acomma-separated list of arguments) of the function, followed by a
right parenthesis.

To useafunction that is defined in amodule, aprogram has to import the module, using keyword
import. After the module has been imported, the program can access a function or avariablein
the module, using the module name, adot (.) and the function or variable name.

%

ﬁ

é Pythonhtpl_04.fm Page 149 Saturday, December 8, 2001 9:34 AM

Chapter 4 Functions 149

* Functions are defined with keyword de £.

» Theindented statements that follow a de £ statement form the function body. The function body
also isreferred to as a block.

» There arethree waysto return control to the point at which afunction wasinvoked. If the function
does not return aresult, control is returned simply when the last indented line is reached, or upon
executing return. If the function does return aresult, the statement return expressionre-
turnsthe value of expression tothecaller.

» None isaPython valuethat represents null— indicating that no val ue has been declared—and that
evaluatesto false in conditional expressions.

» The element of chance can beintroduced into computer applications using module random.

» Function randrange generates an integer in the range of its first argument to, but not including,
its second argument. If randrange truly produces integers at random, every number between
the first argument and the second argument has an equal chance (or probability) of being chosen
each time the function is called.

 Python has strict rules that describe how and when avariable' svalue can be accessed. Theserules
are described in terms of namespaces and scopes.

» Namespaces store information about an identifier and the value to which it is bound.

« Python defines three namespaces; when a program attempts to access an identifier’ svalue, Python
searches the namespaces in a specific order to see whether and where the identifier exists.

» Thelocal namespace stores bindings created in ablock. All function parametersand any identifiers
the function creates are stored in the function’s local namespace.

» The global (or module) namespace contains the bindings for all identifiers, function names and
class names defined in afile or module.

» Each module’s global namespace contains an identifier called name that provides the name
for that module. When a Python interpreter session is started or when the Python interpreter isin-
voked on aprogram stored in afile, thevalueof name is" main_ ™.

 The built-in namespace contains identifiers that correspond to many Python functions and errors.
Python creates the built-in namespace when the interpreter starts, and programs normally do not
modify the namespace (e.g., by adding an identifier to the namespace).

» Anidentifier' s scope describes the region of a program that can access the identifier’s value.

« If anidentifier isdefinedin theloca namespace (e.g., of afunction), that identifier haslocal scope.
Once the code block terminates (e.g., when afunction returns), al identifiersin that block’ slocal
namespace “go out of scope” and no longer can be accessed.

« If anidentifier is defined in the global namespace, the identifier has global scope. A global iden-
tifier isknown to all code that executes within that module, from the point at which the identifier
is created until the end of thefile.

* When afunction creates a local identifier with the same name as an identifier in the module or
built-in namespaces, the local identifier is said to shadow the global or built-in identifier. The pro-
grammer canintroduce alogic error into the program if the programmer refersto thelocal variable,
but intends to refer to the global or built-in identifier.

» A recursivefunction isafunction that callsitself, either directly or indirectly.

» A recursive function actualy knows how to solve only the simplest case(s) or so-caled base
case(s) of aproblem.

* If arecursivefunctionisnot called with abase case, the function divides the problem into two con-
ceptual pieces: A piecethat the function knows how to do (base case), and a piecethat the function
does not know how to do.

4~ —

é Pythonhtpl_04.fm Page 150 Saturday, December 8, 2001 9:34 AM

150 Functions Chapter 4

A recursive function invokes a fresh copy of itself to go to work on asmaller version of the prob-
lem; this procedure isreferred to as arecursive call and is also called the recursion step.

» Both iteration and recursion are based on a control structure: Iteration uses a repetition structure;
recursion uses a selection structure.

» Bothiteration and recursion also involve repetition: Iteration explicitly uses arepetition structure;
recursion achieves repetition through repeated function calls.

* lteration and recursion both involve atermination test: Iteration terminates when the loop-contin-
uation condition fails; recursion terminates when a base case is recognized.

« Iteration with counter-controlled repetition and recursion both gradually approach termination: It-
eration keeps modifying a counter until the counter assumes a value that makes the loop-continu-
ation condition fail; recursion keeps producing simpler versions of the original problem until the
base caseis reached.

* lteration and recursion can both occur infinitely: Aninfinite loop occurs with iteration if the loop-
continuation test never becomes false; infinite recursion occurs if the recursion step does not re-
duce the problem each time in a manner that converges on the base case.

 Recursion repeatedly invokes the mechanism and, consequently, the overhead of function calls.
This can be expensivein both processor time and memory space. lteration normally occurs within
afunction, so the overhead of repeated function calls and extra memory assignment is omitted.

» Some function calls commonly pass a particular value of an argument. The programmer can spec-
ify that such an argument is a default argument, and the programmer can provide a default value
for that argument. When a default argument is omitted in afunction call, the interpreter automat-
ically inserts the default value of that argument and passes the argument in the call.

 Default arguments must be the rightmost (trailing) argumentsin afunction’s parameter list. When
calling afunction with two or more default arguments, if an omitted argument is not the rightmost
argument in the argument list, all argumentsto the right of that argument also must be omitted.

» The programmer can specify that afunction receives one or more keyword arguments. The func-
tion definition can assign avalueto akeyword argument. Either afunction may adefault valuefor
akeyword argument or afunction call may assign anew valueto the keyword argument, using the
format keyword = value.

TERMINOLOGY

acos function fabs function
asin function factorial

atan function Fibonacci series
base case floor function
built-in namespace fmod function
__builtins function

calling function function argument
ceil function function body
commearseparated list of arguments function call

cos function function definition
def statement function name
default argument function parameter
dir function global keyword
divide and conquer global namespace
dot (.) operator global variable
exp function globals function
expression hypot function

4~ —

é Pythonhtpl_04.fm Page 151 Saturday, December 8, 2001 9:34 AM

A

%

Chapter 4 Functions 151
identifier __hame__
import keyword package
iterative function parameter list
keyword argument probability
local namespace random module
local variable randrange function
locals function recursion
log function recursive function
logl0 function return keyword
" main " scope
main program sin function
math module sqgrt function
module tan function
module namespace
SELF-REVIEW EXERCISES
4.1 Fill in the blanks in each of the following statements.
a) Constructing alarge program from smaller componentsis called .
b) Components in Python are caled , , and

¢) “Pre-packaged” functions or classes are availablein Python .
d) The module functions allow programmers to perform common mathemati-
cal calculations.

€) Theindented statements that follow a statement form afunction body.

f) The in afunction call isthe operator that causes the function to be called.
g) The module introduces the element of chance into Python programs.

h) A program can obtain the name of its module through identifier .

i) During code execution, three namespaces can be accessed: , and

j) A recursive function converges on the

4.2 State whether each of the following istrue or false. If false, explain why.

a) All variables declared in afunction are globa to the program containing the function.

b) An import statement must be included for every module function used in a program.

¢) Function £mod returns the floating-point remainder of its two arguments.

d) Thekeyword return displaysthe result of afunction.

€) A function’s parameter list isacomma-separated list containing the names of the param-
etersreceived by the function when it is called.

f) Function call random.randrange (1, 7) producesarandom integer in the range
1to 7, inclusive.

0) Anidentifier's scopeis the portion of the program in which the identifier has meaning.

h) Every call to arecursive functionisarecursive call.

i) Omitting the base case in arecursive function can lead to “infinite’ recursion.

i) A recursive function may call itself indirectly.

ANSWERS TO SELF-REVIEW EXERCISES

4.1 a) divide and conquer. b) functions, classes, modules, packages. ¢) modules. d) math.
€) def. f) pair of parentheses. g) random. h) name . i)the loca namespace, the global
namespace, the built-in namespace. j) base case.

ﬂ%

—

é Pythonhtpl_04.fm Page 152 Saturday, December 8, 2001 9:34 AM

152 Functions Chapter 4

4.2 a) Fase. All variables declared in afunction are local—known only in the function in which
they are defined. b) False. Functionsincluded inthe ~ builtin _ module do not need to beim-
ported. ¢) True. d) False. Keyword return passescontrol and optionally, the value of an expression,
back to the point from which the function was called. €) True. f) False. Function call random. ran-
drange (1, 7) produces arandom integer in the range from 1 to 6, inclusive. g) True. h) False.
Theinitial call to the recursive function is not recursive. i) True. j) True.

EXERCISES

4.3 Implement the following function £ahrenheit to return the Fahrenheit equivalent of a
Celsius temperature.

9
==C+
F 5C 32
Use this function to write a program that prints a chart showing the Fahrenheit equivaents of all Cel-
sius temperatures 0-100 degrees. Use one position of precision to the right of the decimal point for
the results. Print the outputs in a neat tabular format that minimizes the number of lines of output
while remaining readable.

4.4 Aninteger greater than Lissaid to beprimeif itisdivisibleby only 1 and itself. For example,
2, 3, 5and 7 are prime numbers, but 4, 6, 8 and 9 are not.
a) Writeafunction that determines whether a number is prime.
b) Usethisfunction in aprogram that determines and prints all the prime numbers between
2 and 1,000.
c) Initialy, you might think that n/2 isthe upper limit for which you must test to see whether
anumber is prime, but you need go only as high as the square root of n. Rewrite the pro-
gram and run it both ways to show that you get the same resullt.

4.5 An integer number is said to be a perfect number if the sum of its factors, including 1 (but
not the number itself), is equal to the number. For example, 6 is a perfect number, because 6 =1 + 2
+ 3. Writeafunction per fect that determines whether parameter number isaperfect number. Use
this function in a program that determines and prints all the perfect numbers between 1 and 1000.
Print the factors of each perfect number to confirm that the number isindeed perfect. Challenge the
power of your computer by testing numbers much larger than 1000.

4.6 Computers are playing an increasing role in education. The use of computersin educationis
referred to as computer-assisted instruction (CAl). Write a program that will help an elementary
school student learn multiplication. Use the random module to produce two positive one-digit inte-
gers. The program should then display a question, such as

How much is 6 times 77?

The student then typesthe answer. Next, the program checksthe student’ sanswer. If it iscorrect, print
the string "Very good! " on the screen and ask another multiplication question. If the answer is
wrong, display "No. Please try again. " and let thestudent try the same question again repeat-
edly until the student finally gets it right. A separate function should be used to generate each new
question. This method should be called once when the program begins execution and each time the
user answers the question correctly. (Hint: To convert the numbers for the problem into strings for
the question, use function str. For example, str (7) returns"7".)

4.7 Write aprogram that playsthe game of “ guessthe number” asfollows: Y our program choos-
es the number to be guessed by selecting an integer at random in the range 1 to 1000. The program
then displays

%

é Pythonhtpl_04.fm Page 153 Saturday, December 8, 2001 9:34 AM

A

Chapter 4 Functions 153

I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.

The player then types afirst guess. The program responds with one of the following:

1. Excellent! You guessed the number!
Would you like to play again (y or n)?

2. Too low. Try again.

3. Too high. Try again.

If the player's guess is incorrect, your program should loop until the player finally gets the number
right. Your program should keep telling the player Too high or Too 1ow to help the player “zero
in” on the correct answer. After agame ends, the program should prompt the user to enter "y " to play
again or "n" to exit the game.

4.8 (Towers of Hanoi) Every budding computer scientist must grapple with certain classic prob-
lems. The Towers of Hanoi (see Fig. 4.23) is one of the most famous of these. Legend hasiit that, in
atemplein the Far East, priests are attempting to move a stack of disks from one peg to another. The
initial stack had 64 disks threaded onto one peg and arranged from bottom to top by decreasing size.
The priests are attempting to move the stack from this peg to a second peg, under the constraints that
exactly one disk is moved at atime and that at no time may alarger disk be placed above a smaller
disk. A third peg is available for holding disks temporarily. Supposedly, the world will end when the
priests complete their task, so there islittle incentive for usto facilitate their efforts.

Let us assume that the priests are attempting to move the disks from peg 1 to peg 3. We wish to
develop an algorithm that will print the precise sequence of peg-to-peg disk transfers.

If we were to approach this problem with conventional methods, we would rapidly find our-
selves hopelessly knotted up in managing the disks. Instead, if we attack the problem with recursion
in mind, it immediately becomes tractable. Moving n disks can be viewed in terms of moving only n
- 1 disks (hence, the recursion), as follows:

a) Moven - 1disksfrom peg 1 to peg 2, using peg 3 as atemporary holding area.
b) Movethelast disk (the largest) from peg 1 to peg 3.
¢) Movethen - 1 disksfrom peg 2 to peg 3, using peg 1 as atemporary holding area.

The process ends when the last task involves moving n = 1 disk, i.e, the base case. Thisis
accomplished trivially by moving the disk without the need for atemporary holding area.

Write a program to solve the Towers of Hanoi problem. Use a recursive function with four
parameters:
@) The number of disksto be moved
b) The peg on which these disks are initially threaded
¢) The pegto which this stack of disksisto be moved
d) The peg to be used as atemporary holding area

Your program should print the precise instructions it will take to move the disks from the start-
ing peg to the destination peg. For example, to move a stack of three disks from peg 1 to peg 3, your
program should print the following series of moves:

1 — 3 (This means move one disk from peg 1 to peg 3.)
152
352
1-3
21
2—3
1-3

%

*

WA é;
‘ Pythonhtpl_04.fm Page 154 Saturday, December 8, 2001 9:34 AM

154 Functions Chapter 4

Fig. 4.23 The Towers of Hanoi for the case with 4 disks.

é pythonhtpl_05.fm Page 155 Saturday, December 8, 2001 9:35 AM

"

i

Lists, Tuples and
Dictionaries

Objectives

* To understand Python sequences.

* Tointroduce the list, tuple and dictionary data types.

» To understand how to create, initialize and refer to
individual elements of lists, tuplesand dictionaries.

* To understand the use of lists to sort and search
sequences of values.

 To be able to passlists to functions.

 Tointroduce list and dictionary methods.

* To create and manipul ate multiple-subscript lists and
tuples.

With sobs and tears he sorted out

Those of the largest size ...

Lewis Carroll

Attempt the end, and never stand to doubt;

Nothing's so hard, but search will find it out.

Robert Herrick

Now go, write it before themin a table,

and noteit in a book.

Isaiah 30:8

‘Tisin my memory lock’d,

And you yourself shall keep the key of it.

William Shakespeare

Construction

é pythonhtpl_05.fm Page 156 Saturday, December 8, 2001 9:35 AM

A

.

156 Lists, Tuples and Dictionaries Chapter 5

Outline

5.1 Introduction
5.2 Sequences
5.3 Creating Sequences
5.4 Using Lists and Tuples
5.4.1 Using Lists
5.4.2 Using Tuples
5.4.3 Sequence Unpacking
5.4.4 Sequence Slicing
5.5 Dictionaries
5.6 List and Dictionary Methods
5.7 =References and Reference Parameters
5.8 Passing Lists to Functions
5.9 Sorting and Searching Lists
5.10 Multiple-Subscripted Sequences

Summary ¢ Terminology ¢ Self-Review Exercises « Answers to Self-Review Exercises « Exercises

5.1 Introduction

This chapter introduces Python’ s data-handling capabilities that use data structures. Data
structures hold and organize information (data). Many types of data structures exist, and
each type has features appropriate for certain tasks. Sequences, often called arraysin other
languages, are data structures that store (usually) related data items. Python supports three
basic sequence datatypes: the string, the list and the tuple. Mappings, often called associa
tive arrays or hashes in other languages, are data structures that store data in key-value
pairs. Python supports one mapping data type: the dictionary. This chapter discusses Py-
thon’ s sequence and mapping types in the context of several examples. Chapter 22, Data
Structures, introduces some high-level data structures (linked lists, queues, stacks and
trees) that extend Python’s basic data types.

5.2 Sequences

A sequenceis aseries of contiguous vauesthat often are related. We already have encoun-
tered sequencesin several programs: Python strings are sequences, asis the value returned
by function range—a Python built-in function that returns a list of integers. In this sec-
tion, we discuss sequencesin detail and explain how to refer to a particular element, or lo-
cation, in the sequence.

Figure 5.1 illustrates sequence ¢, which contains 12 integer elements. Any element
may be referenced by writing the sequence name followed by the element’s position
number in square brackets ([1). Thefirst element in every sequence is the zer oth element.
Thus, in sequence c, the first elementisc [0 1, the second elementisc [1 1, the sixth
element of sequencec isc [5 1.1n general, the ith element of sequencecisc[i - 11].

%

*

é pythonhtpl_05.fm Page 157 Saturday, December 8, 2001 9:35 AM

A

Chapter 5 Lists, Tuples and Dictionaries 157

Name of sequence (c)

c[01 -45 cl -12]
cl[11 6 cl -11]
cl 21 0 cl -10]
cl 31 72 cl -9 1
cl 41 1543 cl[-8 1
cl 51 -89 cl -7 1
cl 61 0 cl -6 1
cl 71 62 cl -5 1]
cl 81 -3 cl -4 1]
cl[91 1 cl -3 1
cl[10] 6453 cl -21
cl 11] 78 cl[-11

Position number of the
element within sequence ¢

Fig. 5.1 Sequence with elements and indices.

Sequences also can be accessed from the end. The last elementisc [-1 1, the second to
last elementisc [-2] and the ith-from-the-endisc [-1 1. Sequences follow the same
naming conventions as variables.

The position number more formally is called a subscript (or an index), which must be
an integer or an integer expression. If a program uses an integer expression as a subscript,
Python evaluates the expression to determine the index. For example, if variable a equals
5 and variable b equals 6, then the statement

print c[a + b]

printsthevalueof ¢ [11]. Integer expressions used as subscripts can be useful for iterat-
ing over asequencein aloop.

Python lists and dictionaries are mutable—they can be atered. For example, if
sequence c in Fig. 5.1 were mutable, the statement

cl 1 =

modifies the value of element 11 by assinging it a new vaue of 0 to replace the original
valueof 78.

ﬂ%

*

é pythonhtpl_05.fm Page 158 Saturday, December 8, 2001 9:35 AM

A

.

158 Lists, Tuples and Dictionaries Chapter 5

On the other hand, some types of sequences are immutable—they cannot be atered
(e.g., by changing element values). Python strings and tuples are immutabl e sequences. For
example, if the sequence ¢ were immutable, the statement

cl 1 =

would beillegal. Let us examine sequence c in detail. The sequence name is c. Thelength
of the sequence is determined by the function call 1en (¢). It is useful to know a se-
guence’ slength, because referring to an element outside the sequence resultsin an “ out-of -
range” error. Most of the errorsdiscussed in this chapter can be caught as exceptions. [Note:
We discuss exceptions in Chapter 12, Exception Handling.]

Sequence ¢ contains 12 elements, namely e[01,c¢[11, ...,c[11 1. Therange of
elements also can be referenced by ¢[-12 1,¢[-11 1, ..., c[-1 1. In this example,
c[0] containsthevalue -45,c[11 containsthevalue6, c[-9 1 containsthe value
72 and c [-2] containsthe value 6453. To calculate the sum of the values contained in
the first three elements of sequence ¢ and assign the result to variable sum, we would write

sum = c[1 + cl 1 + cl]

To divide the value of the seventh element of sequence ¢ by 2 and assign the result to the
variable x, we would write

x =cl[1/

Common Programming Error 5.1

@ It isimportant to note the difference between the* seventh element of the sequence” and “ se-

guence element seven.” Sequence subscripts begin at 0, thus the “ seventh element of the se-
quence” has a subscript of 6. On the other hand, “ sequence element seven” references
subscript 7 (i.e., ¢ [7 1), which is the eighth element of the sequence. This confusion often
leadsto “ off-by-one” errors.

¢ In other programming languages that do not allow negative subscripts, if a negative sub-
script isaccidentally calculated, a run-timeerror occurs. In Python, such an accidental neg-
ative subscript could cause a non-fatal logic error, with the program running to completion
and producing invalid results.

The pair of square brackets enclosing the subscript of a sequence is a Python operator.
Figure 5.2 shows the precedence and associativity of the operators introduced to this point
inthetext. They are shown from top to bottom in decreasing order of precedence, with their
associativity and types.

5.3 Creating Sequences

Different Python sequences (strings, lists and tuples) require different syntax. We illustrat-
ed how Python strings are created by placing the text of the string within quotes. To create
an empty string, use a statement like

aString =

Note that we could have used single quotes (*) or triple quotes (""" or ' ' ') to create the
string.

%

—

é pythonhtpl_05.fm Page 159 Saturday, December 8, 2001 9:35 AM

A

.

Chapter 5 Lists, Tuples and Dictionaries 159
Operators Associativity Type
0 left to right parentheses
[1 |eft to right subscript
| eft to right member access
* ok right to left exponentiation
* [/ /] % |eft to right multiplicative
+ - |eft to right additive
< <= > >= |eft to right relationa
== 1= <> left to right equality

Fig. 5.2 Precedence and associativity of the operators discussed so far.

To create an empty list, use a statement like
aList = []

To create a list that contains a sequence of values, separate the values by commas inside
square brackets ([1)

aList = [’ ’]
To create an empty tuple, use the statement
aTuple = ()

To create a tuple that contains a sequence of values, ssmply separate the values with com-
mas.

aTuple = 1, ’

Creating atuple is sometimes referred to as packing a tuple. Tuples also can be created by
surrounding the comma-separated list of tuple values with optional parentheses. It is the
commas that create tuples, not the parentheses.

aTuple = (1, 2,)
When creating a one-element tuple—called a singleton—use a statement like
aSingleton = 1,

Notice that a comma (,) follows the value. The comma identifies the variable—
aSingleton—asatuple. If the commawere omitted, asingleton would simply con-
tain the integer value 1.

5.4 Using Lists and Tuples

Listsand tuplesboth contain sequences of values. For example, alist or atuple may contain
the sequence of integersfrom 1to 5

ﬂ%

*

\ {%)
| pythonhtpl_05.fm Page 160 Saturday, December 8, 2001 9:35 AM

A

.

160 Lists, Tuples and Dictionaries Chapter 5

alist = [1, 2, 3, 4, 1
aTuple = (1, 2, 3, 4,)

In practice, however, Python programmers distinguish between the two data types to rep-
resent different kinds of sequences, based on the context of the program. In the next sub-
sections, we discuss the situations for which lists and tuples are best suited.

5.4.1 Using Lists

Although lists are not restricted to homogeneous data types (i.e., values of the same data
type), Python programmers typically use lists to store sequences of homogeneous values.
For example, either a list may store a sequence of integers that represent test scores or a
sequence of strings representing employee names. In general, aprogram uses alist to store
homogeneous values for the purpose of looping over these values and performing the same
operation on each value. Usually, the length of the list is not predetermined and may vary
over the course of the program. The program in Fig. 5.3 demonstrates how to create, aug-
ment and retrieve vaues from alist.

1

2

3

4 aList = []

5

6

7 for number in range(1,) :

8 aList += [number]

9

10 print , aList
11

12

13 print

14

15 for item in alist:

16 print item,

17

18 print

19

20

21 print

22 print

23

24 for i in range(len(aList)):

25 print % (i, aList[i])
26

27

28 print

29 print , aList
30 aList[] =

31 aListl 1 =

32 print , aList

Fig. 5.3 List of homogeneous values. (Part 1 of 2.)

ﬂ%

—

é pythonhtpl_05.fm Page 161 Saturday, December 8, 2001 9:35 AM

A

.

Chapter 5 Lists, Tuples and Dictionaries 161

The value of alList is: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Accessing values by iteration:
12345678910

Accessing values by index:
Subscript Value

0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10

Modifying a list wvalue...
Value of alList before modification: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Value of alList after modification: [-100, 2, 3, 4, 5, 6, 7, 19, 9, 10]

Fig. 5.3 List of homogeneous values. (Part 2 of 2.)

Line 4 createsempty list, aList. Lines7-8 usea for loop toinsert thevalues 1, ...,
10into aList, using the += augmented assignment statement. When the value to the left
of the += statement is a sequence, the value to the right of the statement also must be a
sequence. Thus, line 8 places square brackets around the value to be added to the list. Line
10 prints variable aList. Python displays the list as a comma-separated sequence of
values inside square brackets. Variable aList represents a typical Python list—a
sequence containing homogeneous data.

Lines 13-18 demonstrate the most common way of accessing a list’s elements. The
for structure actually iterates over a sequence

for item in aList:

The for structure (lines 15-16) starts with the first element in the sequence, assigns the
value of thefirst element to the control variable (i tem) and executes the body of the for
loop (i.e., prints the value of the control variable). The loop then proceeds to the next ele-
ment in the sequence and performs the same operations. Thus, lines 15-16 print each ele-
ment of aList.

List elements also can be accessed through their corresponding indices. Lines 21-25
access each element in aList in thismanner. The function call in line 24

range(len(aList))

returns a sequence that containsthevalues o, ..., len (aList) - 1. This sequence con-
tains al possible element positions for aList. The £or loop iterates through this se-
quence and, for each element position, prints the position and the value stored at that
position.

%

*

é pythonhtpl_05.fm Page 162 Saturday, December 8, 2001 9:35 AM

A

162 Lists, Tuples and Dictionaries

Lines 30—31 modify some of the list’s elements. To modify the value of a particular
element, we assign a new value to that element. Line 30 changesthe value of the list’sfirst
element from 0 to -100; line 31 changes the vaue of the list’s third-from-the-end element

from 8 to 19.

If the program attempts to access a nonexistent index (e.g., index 13) in aList, the
program exits and Python displays an out-of-range error message. The interactive session

Chapter 5

in Fig. 5.4 demonstrates the results of accessing an out-of-range list element.

Common Programming Error 5.2

ﬁ Referring to an element outside the sequenceisan error.

% When looping through a segquence, the positive sequence subscript should be less than the
total number of elements in the sequence (i.e., the subscript should not be larger than the
length of the sequence); whereas, the negative sequence subscript should be equal to or
greater than the negation of the total number of elements in the sequence. Make sure the

|oop-terminating condition prevents accessing elements outside this range.

Generally, a program does not concern itself with the length of alist, but simply iter-
ates over thelist and performs an operation for each element in the list. Figure 5.5 demon-
strates one practical application of using lists in such a manner—creating a histogram (a

bar graph of frequencies) from a collection of data

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on

win32

Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>> alList = [1]

>>> print alList[13]

Traceback (most recent call last):
File "<stdin>", line 1, in ?

IndexError: list index out of range

Fig. 5.4 Out-of-range error.

1

2

3

4 walues = []

5

6

7 print

8

9 for i in range() :

10 newValue = int(raw_input(
11 values += [newValue]
12

% (i +

)

)

Fig. 5.5 Histogram created from a list of values. (Part 1 of 2.)

- 4~

*

é pythonhtpl_05.fm Page 163 Saturday, December 8, 2001 9:35 AM

Chapter 5 Lists, Tuples and Dictionaries 163
13
14 print
15 print % 5 ’)
16
17 for i in range(len(values)):
18 print % (i, valuesl[i 1, * values[1])

Enter 10 integers:
Enter integer 1: 19

Enter integer 2: 3
Enter integer 3: 15
Enter integer 4: 7
Enter integer 5: 11
Enter integer 6: 9
Enter integer 7: 13
Enter integer 8: 5
Enter integer 9: 17
Enter integer 10: 1

Creating a histogram from values:

Element Value Histogram
0 19 khkkhkkkkkkkkkkkkkkkk
1 3 kkk
2 15 hkkkkkkkkkkkkhk
3 7 kkkkkkk
4 11 kkkkkkkkkkk
5 9 kkkkkkkkk
6 13 kkkkkkkkkkkkk
7 5 kkkkk
8 17 kkkkkkkkkkkkkkhkk
9 1 *

Fig. 5.5 Histogram created from a list of values. (Part 2 of 2.)

The program creates an empty list called values (line 4). Lines 7-11 input 10 inte-
gers from the user and insert those integersinto the list. Lines 14-18 create the histogram.
For each element in the list, the program prints the element’ sindex and value and a string
that contains the same number of asterisks (*) as the value. The expression

* values[i]

uses the multiplication operator (*) to create a string with the number of asterisks specified
by values[il.

5.4.2 Using Tuples

Whereas lists typically store sequences of homogeneous data, tuples typicaly store se-
quences of heterogeneous data—this is a convention, not arule, that Python programmers
follow. Each dataitem in atuple provides a part of the total information represented by the
tuple. For example, a tuple can represent a student in a class. The tuple could contain the
student’ s name (represented as a string) and age (represented as an integer). Or, atuple can
represent the time of day, using three parts—the hour, minute and second. Although all

%

é pythonhtpl_05.fm Page 164 Saturday, December 8, 2001 9:35 AM

A

.

%

164 Lists, Tuples and Dictionaries Chapter 5

these values might be represented as integers, each integer has its own meaning, and the
full representation of the time is obtained only by taking all three values together. The
length of the tuple (i.e., its number of dataitems) is predetermined and cannot change dur-
ing a program’ s execution.

By convention, each data item in the tuple represents a unique portion of the overall
data. Therefore, a program usually does not iterate over atuple, but accesses the parts of
the tuple the program needs to perform its task. Figure 5.6 demonstrates how to create and
access atuple using thisidiom.

Lines 5-7 ask the user to enter three integers that represent the hour, minutes and sec-
onds, respectively. Line 9 creates atuple called currentTime to store the user-entered
values. Lines 14-16 print the number of seconds that have passed since midnight. We per-
form a different operation (i.e., multiply each value by a different factor) for each value in
the tuple; therefore, the program accesses each value by itsindex.

Astuples are immutable, Python provides error handling that notifies users when they
attempt to modify tuples. For example, if the program attempts to change the first element
in currentTime to contain the value O,

currentTime [1 =
the program exits and Python displays a runtime error

Traceback (most recent call last):
File "fig05 06.py", line 18, in ?
currentTime[0] = 0
TypeError: object doesn't support item assignment

toindicate that the program illegally attempted to change the value of theimmutable tuple.

1

2

3

4

5 hour = int(raw_input())

6 minute = int(raw_input())

7 second = int(raw_input())

8

9 currentTime = hour, minute, second

10

11 print , currentTime
12

13

14 print "The number of seconds since midnight is", \
15 (currentTime[1 * + currentTime [1 * +
16 currentTime [1)

Enter hour: 9

Enter minute: 16

Enter second: 1

The value of currentTime is: (9, 16, 1)

The number of seconds since midnight is 33361

Fig. 5.6 Tuples created and accessed.

%

—

é pythonhtpl_05.fm Page 165 Saturday, December 8, 2001 9:35 AM

A

Chapter 5 Lists, Tuples and Dictionaries 165

Note that the use of listsand tuplesintroduced in Section 5.4.1 and Section 5.4.2 isnot
arule, but rather a convention that Python programmers follow. Python does not limit the
data type stored in lists and tuples (i.e., they can contain homogeneous or heterogeneous
data). The primary difference between lists and tuples is that lists are mutable whereas
tuples are immutable.

5.4.3 Sequence Unpacking
Recall that creating atuple with

aTuple

or

(’ ’)

is called packing atuple, because the values are “ packed into” the tuple. Tuples and other
sequences al so can be unpacked—the values stored in the sequence are assigned to various
identifiers. Unpacking is a useful programming shortcut for assigning values to multiple
variablesin asingle statement. The program in Fig. 5.7 demonstrates the results of unpack-
ing strings, lists and tuples.

Lines 57 create a string, a list and a tuple, each containing three elements. Sequences
are unpacked with an assignment statement. The assignment statement in line 11 unpacksthe
elementsin variable astring and assigns each element to a variable. The first element is
assignedtovariable first, thesecondto variable second and thethirdtovariable third.
Line 12 prints the variables to confirm that the string unpacked properly. Lines 14-20 per-
form similar operations for the elementsin variablesaList and aTuple. When unpacking
asequence, the number of variable namesto the left of the = symbol should equal the number
of elements in the sequence to the right of the symbol; otherwise, a runtime error occurs.
Notice that when unpacking a sequence, parentheses or brackets are optional to the left of the
= symbol because there usually are no precedence issues.

aTuple

1

2

3

4

5 aString =

6 aList = [1, 2, 1

7 aTuple = ’ ’

8

9

10 print

11 first, second, third = aString

12 print , first, second, third
13

14 print

15 first, second, third = alist

16 print , first, second, third
17

Fig. 5.7 Unpacking strings, lists and tuples. (Part 1 of 2.)

- 4~

.

—

\ {%)
pythonhtpl_05.fm Page 166 Saturday, December 8, 2001 9:35 AM

A

.

%

166 Lists, Tuples and Dictionaries Chapter 5
18 print
19 first, second, third = aTuple
20 print , first, second, third
21
22
23 X =
24 y =]
25
26 print s (x, v)
27 x, y =y, X
28 print % (x, v)

Unpacking string...
String values: a b c

Unpacking list...
List values: 1 2 3

Unpacking tuple...
Tuple values: a A 1

Before swapping: x = 3, y = 4
After swapping: x = 4, y = 3

Fig. 5.7 Unpacking strings, lists and tuples. (Part 2 of 2.)

Lines 22—28 demonstrate one benefit of sequence packing and unpacking—swapping
the value of two variables. Lines 23-24 create two variables x and y, with the values 3 and
4, respectively. Line 27

X, Y=Y, X

swaps the values assigned to each variable. Python swaps the value by first packing the
right-hand side of the statement into a tuple (e.g., (4, 3)), then unpacking that tuple to
variables x and y, respectively. Thus, the value assigned to variable x is how assigned to
variable y, and the value assigned to variable y is now assigned to variable x.

5.4.4 Sequence Slicing

We have discussed how to create sequences and access them through the [1 operator (to
access one element) or a £or statement (to access all the elementsiteratively). Sometimes,
aprogram may need to access a series of sequential values(e.g., the characters of aperson’s
last namein astring that storesthe person’ sfull name). For these cases, Python allows pro-
gramsto slice a sequence.

Figure 5.8 demonstrates Python sequence-slicing capabilities. The program createsthree
sequences—a string, atuple and alist. The program prompts the user to enter a starting and
ending index, creates the specified dice for each sequence and prints the dice to the screen.

1
2
3

Fig. 5.8 Sequence slices. (Part 1 of 3.)

ﬂ%

*

\ {%)
| pythonhtpl_05.fm Page 167 Saturday, December 8, 2001 9:35 AM

Chapter 5 Lists, Tuples and Dictionaries 167
4

5 sliceString =

6 sliceTuple = (1, 2, 3, 4, 5, 6, 7, 8, 9,)
7 slicelList = [5 5 ’ ' ’

8 A I I I]

9
10
11 print , sliceString
12 print , sSliceTuple
13 print , sSlicelist
14 print
15
16
17 start = int(raw_input())
18 end = int(raw_input())
19
20
21 print , start, , end, s\
22 sliceString[start:end]
23
24 print , start, , end, s\
25 sliceTuple[start:end]
26
27 print , start, , end, s\
28 sliceList[start:end]

sliceString: abcdefghij

sliceTuple: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

slicelList: [rr, 'rzr*, 'xrr1', 'Iv', 'v', 'vi‘', 'vIir', 'vIiIiIi',
TIX!', le]

Enter start: 3
Enter end: 3

sliceString[3 : 3 1]
sliceTuple[3 : 3]
sliceList[3 : 3 1]

()
[1

sliceString: abcdefghij

sliceTuple: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

slicelist: [rr+, 'rr*, 'xrix*, '1v', 'v+, 'vi', 'vir', 'viii',
lIxI' |x|]

Enter start: -4
Enter end: -1

sliceString[-4 : -1 1] = ghi
sliceTuplel[-4 : -1 1 = (7, 8, 9)
slicelList[-4 : -1] = [*VII', 'VIII', 'IX']

Fig. 5.8 Sequence slices. (Part 2 of 3.)

- 4~ ~¢e

é pythonhtpl_05.fm Page 168 Saturday, December 8, 2001 9:35 AM

168 Lists, Tuples and Dictionaries Chapter 5

sliceString: abcdefghij

sliceTuple: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

slicelList: [r+, *'xrr*', 'r1r1', 'IV', 'v', 'VvI1i', 'vir‘', 'viIirt',
IIXI' le]

Enter start: 0
Enter end: 10

sliceString[0 : 10] = abcdefghij
sliceTuple[O : 10 1] = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
sliceList[0 : 10] = [r+, 'I1r', '1rI11', 'IV', 'Vv', 'vIi', 'viIi',

'VIITI', 'IX', 'X']

Fig. 5.8 Sequence slices. (Part 3 of 3.)

Lines 5-18 create the three sequences and request the user to specify a beginning and
ending index for the slice. Lines 21-28 print the specified slice for each sequence. A dlice
issimply a new sequence, created from an existing sequence. The expression in line 22

sliceString[start:end]

creates (slices) anew sequencefromvariable s1iceString. Thisnew sequence contains
thevaluesstored atindicessliceString[start],...,sliceStringlend-11].
In general, to obtain from sequence aslice of theith element through the jth element, inclu-
sive, use the expression

sequencel i:j +1 1]

Figure 5.8 includes three sampl e outputs from the program. The first sample creates a
slice from indices 0 to 10 (e.g., the entire sequence). Recall that the first element in every
sequence is the zeroth element. The sequence created from this slice is equivalent to the
sequence created with the expression

sequencel : 1

This expression creates a new sequence that is a copy of the origina sequence. The above
expression is eguivalent to the following expressions:

sequencel 0 : len(sequence) 1
sequencel : len(Sequence) 1
sequencel 0 :]

The syntax for sequence slicing provides a useful shortcut for selecting a portion of an
existing sequence. A program can use sequence slicing to create a copy of a list when
passing the list to afunction. We discuss thisissue in Section 5.7 and 5.8.

Note that negative slices cannot access the last element of alist directly (i.e.,slice-
Stringl[-4 : -1]1 = ghi) becausedlicesapply to points between elements. With neg-
ative dlices, the last point between elements is the point between elements with indices -2
and -1.

4~ 4

\ {%)
pythonhtpl_05.fm Page 169 Saturday, December 8, 2001 9:35 AM

A

.

%

Chapter 5 Lists, Tuples and Dictionaries 169

5.5 Dictionaries
In addition to lists and tuples, Python supports another powerful data type, called the dic-
tionary. Dictionaries (called hashes or associative arrays in other languages) are mapping
constructs consisting of key-value pairs. Dictionaries can be thought of as unordered col-
lections of values where each value is referenced through its corresponding key. For exam-
ple, adictionary might store phone numbers that can be referenced by a person’s name.
The statement

emptyDictionary = {}
creates an empty dictionary. Notice that curly braces ({ }) denote dictionaries. Toinitialize
key-value pairs for adictionary, use the statement

dictionary = { : . : }
Each key-value pair is of the form

key : value
A comma separates each key-value pair. Dictionary keys must be immutable values, such
as strings, numbers or tuples. Dictionary values can be of any Python data type.
—s- Common Programming Error 5.3
@ Using alist or adictionary for a dictionary key is an syntax error.

Figure 5.9 demonstrates how to create, initialize, access and manipulate simple dictio-
naries. Lines 5-6 create and print an empty dictionary. Line 9 createsadictionary grades
and initializes the dictionary to contain four key-value pairs. The keys are strings that con-
tain student names, and the integer values represent the students' grades. Line 10 printsthe
valueassigned to variable grades. Observethat the application displaysgrades in adif-
ferent order than the declaration; thisis because a dictionary is an unordered collection of
key-value pairs. Also, notice in the output that the dictionary keys appear in single quotes,
because Python displays strings in single quotes.

1

2

3

4

5 emptyDictionary = {}

6 print , emptyDictionary
7

8

9 grades = { : , : , : , : }
10 print , grades

11

12

13 print , grades| 1

14 gradesl 1 =

15 print , grades|[]

Fig. 5.9 Dictionaries created, accessed and modified. (Part 1 of 2.)

ﬂ%

—

é pythonhtpl_05.fm Page 170 Saturday, December 8, 2001 9:35 AM

A

.

170 Lists, Tuples and Dictionaries Chapter 5
16
17
18 gradeslI 1 =
19 print
20 print grades
21
22
23 del grades| 1
24 print

25 print grades

The value of emptyDictionary is: {}
All grades: {'Edwin': 89, 'John': 87, 'Steve': 76, 'Laura': 92}

Steve's current grade: 76
Steve's new grade: 90

Dictionary grades after modification:
{'Edwin': 89, 'Michael': 93, 'John': 87, 'Steve': 90, 'Laura': 92}

Dictionary grades after deletion:
{'Edwin': 89, 'Michael': 93, 'Steve': 90, 'Laura': 92}

Fig. 5.9 Dictionaries created, accessed and modified. (Part 2 of 2.)

Line 13 accesses a particular dictionary value, using the [] operator. Dictionary
values are accessed with the expression

dictionaryName[key 1

Inline 13, the dictionaryNameisgrades and the keyisthe string "Steve". Thisexpres-
sion evaluates to the value stored in the dictionary at key "Steve™, namely, 76. Line 14
assignsanew value, 90, tothekey "steve™". Dictionary values are modified using syntax
similar to that of modifying lists. Line 15 printsthe result of changing the dictionary value.

Line 18 inserts a new key-value pair into the dictionary. Although this statement
resembles the syntax for modifying an existing dictionary value, it inserts anew key-value
pair because Michael isanew key. The statement

dictionaryName[key 1 = value

modifies the value associated with key, if the dictionary already contains that key. Other-
wise, the statement inserts the key-value pair into the dictionary.

When adding a key-value pair to a dictionary, mis-typing the key could be a source of inad-
vertent errors.

Lines 19-20 print the results of adding a new key-value pair to the dictionary. The
order in which the key-value pairs are printed is entirely arbitrary (remember that a dictio-
nary is an unordered collection of key-value pairs).

%

—

é pythonhtpl_05.fm Page 171 Saturday, December 8, 2001 9:35 AM

A

.

Chapter 5 Lists, Tuples and Dictionaries 171

The expression dictionaryName[key 1 can lead to subtle programming errors. If this
expression appears on the left-hand side of an assignment statement and the dictionary does
not contain the key, the assignment statement inserts the key-value pair into the dictionary.
However, if the expression appearsto the right of an assignment statement (or any statement
that simply attempts to access the value stored at the specified key), then the statement
causes the program to exit and to display an error message, because the program is trying
to access a honexistent key.

—s- Common Programming Error 5.4
ﬁ Attempting to access a honexistent dictionary key isa “ key error” , aruntime error.

Line 23 deletes an entry from the dictionary. The statement
del dictionaryName[key 1

removes the specified key and its value from the dictionary. If the specified key does not
exist in the dictionary, then the above statement causes the program to exit and to display
an error message. Again, this is because the program is accessing a nonexistent key. This
runtime error can be caught through exception handling, which we discuss in Chapter 12.

Dictionaries are powerful data types that help programmers accomplish sophisticated
tasks. Many Python modules provide data types similar to dictionariesthat facilitate access
and manipulation of more complex data. In the next section, we explore the dictionary’s
capabilities further.

5.6 List and Dictionary Methods

We have seen how sequences and dictionaries enable programmersto accomplish high-lev-
€l datamanipulation, such asstoring and retrieving data. We now introduce anew program-
ming concept, the method, to extend data-manipulation capabilities.

As discussed in Chapter 2, Introduction to Python Programming, al Python data types
contain at least three properties: avalue, atype and alocation. Some Python data types (e.g.,
strings, lists and dictionaries) also contain methods. A method is afunction that performsthe
behaviors (tasks) of an object. In this section, we discusslist and dictionary methods, we dis-
cuss string methods in Chapter 13, Strings Manipulation and Regular Expressions.

List methods implement several behaviors, such as appending a value to the end of a
list or determining the index of a particular element in the list. The program of Fig. 5.10
appends items to the end of alist, using alist method. The program asks the user to enter
the names of Shakespearean plays and appendsthe namesto alist. Line 4 creates an empty
list, playList, to store the names of the plays entered by the user. The for structure
(lines 8-10) uses list method append to append items to the end of variableplayList
Method append takes as an argument the new element to insert at the end of thelist. To
invoke thelist method, specify the name of thelist, followed by the dot (.) access operator,
followed by the method call (i.e., method name and necessary arguments). Lines 14-15
define another £for loop that prints the names of the user-entered Shakespearean plays.
Notice that line 15 uses the - formatting character to left align the names.

Figure 5.10 demonstrates how a data type's methods provide away for programmers to
create applications that perform useful data-manipulation tasks. Figure 5.11 uses another list
method to perform a more typical data-manipulation task—counting the number of times a

%

4

*

\ {%)
| pythonhtpl_05.fm Page 172 Saturday, December 8, 2001 9:35 AM

172 Lists, Tuples and Dictionaries Chapter 5
1
2
3
4 playList = []
5
6 print
7
8 for i in range() :
9 playName = raw_input (S (i +))
10 playList.append(playName)
11
12 print
13
14 for i in range(len(playList)):
15 print % (i + 1, playList[i])

Enter your 5 favorite Shakespearean plays.

Play 1l: Richard III
Play 2: Henry V
Play 3: Twelfth Night
Play 4: Hamlet
Play 5: King Lear
Subscript Value
1 Richard III
2 Henry V
3 Twelfth Night
4 Hamlet
5 King Lear

Fig. 5.10 Appending items to a list.

particular value occursin alist. Lines 47 create alist (responses) that contains severa
values between 1-10. Lines 11-12 contain a for loop that callslist method count to return
theamount of timesan element appearsin alist. Method count takesasan argument avaue
of any data type. If the list contains no elements with the specified value, method count
returns 0. Lines 11-12 print the frequency of each valueinthelit.

1

2

3

4 responses = [1, 2, 6, 4, 8, 5, 9, 7, 8, ’
5 I I I I I I I I ’ I
6 I I 4 I I I r I I I

7 o 6, 7, 5, 6, 4, 8, 6, 8, 1
8

9 print

10

11 for i in range(1,) :

12 print % (i, responses.count(i))

Fig. 5.11 List method count. (Part 1 of 2.)

ﬂ%

é pythonhtpl_05.fm Page 173 Saturday, December 8, 2001 9:35 AM

Chapter 5
Rating Frequency
1 2
2 2
3 2
4 2
5 5
6 11
7 5
8 7
9 1
10 3

Lists, Tuples and Dictionaries 173

Fig. 5.11 List method count. (Part 2 of 2.)

Lists provide several other useful methods. Figure 5.12 summarizes these methods.
Throughout the text, we create programs that invoke list methods to accomplish tasks.

Method

append (item)
count (element)
extend (newList)
index (element)

insert (index, item)
pop ([index])

remove (element)
reverse ()

sort ([compare-function])

Purpose

Insertsitem at the end of thelist.
Returns the number of occurrences of element in the list.
I nserts the el ements of newList at the end of the list.

Returns the index of the first occurrence of element in thelist.
If elementisnot inthelist,avalueError exception occurs.
[Note: We discuss exceptions in Chapter 12, Exception
Handling.]

Insertsitem at position index.

Parameter index is optional. If this method is called without
arguments, it removes and returns the last element in the list.
If parameter index is specified, this method removes and
returns the element at position index.

Removes the first occurrence of el ement from thelist. If ele-
mentisnot in thelist, avalueError exception occurs.

Reversesthe contents of thelist in place (rather than creating a
reversed copy).

Sorts the content of thelist in place. The optional parameter
compare-function is afunction that specifies the compare cri-
teria. The compare-function takes any two elements of the list
(x and y) and returns -1 if x should appear beforey, 0 if the
ordersof x and y do not matter and 1 if x should appear after y.
[Note: We discuss sorting in Section 5.9.]

Fig. 5.12 List methods.

%

é pythonhtpl_05.fm Page 174 Saturday, December 8, 2001 9:35 AM

174 Lists, Tuples and Dictionaries Chapter 5

The dictionary data type also provides many methods that enable the programmer to
manipul ate the stored data. Figure 5.13 demonstrates three dictionary methods. Lines 4-7
create the dictionary monthsDictionary that represents the months of the year. Line
10 uses dictionary method i tems to print the dictionary’ s key-value pairs to the screen.
The method returns alist of tuples, where each tuple contains a key-value pair.

1

2

3

4 monthsDictionary = { : 5 : 7 g '
5 : ’ ’ 7 7
6 I I : I
7 o }

8

9 print

10 print monthsDictionary.items ()

11

12 print

13 print monthsDictionary.keys ()

14

15 print

16 print monthsDictionary.values()

17

18 print

19

20 for key in monthsDictionary.keys() :

21 print , key, , monthsDictionary[key 1]

The dictionary items are:

[(1, 'January'), (2, 'February'), (3, 'March'), (4, 'April'), (5,
'May'), (6, '"June'), (7, 'July'), (8, 'August'), (9, 'September'), (10,
'October'), (11, 'November'), (12, 'December')]

The dictionary keys are:
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

The dictionary values are:
['January', 'February', 'March', 'April', 'May', 'June', 'July', 'Au-
gust', 'September', 'October', 'November', 'December']

Using a for loop to get dictiomary items:

monthsDictionary[1 1 = January
monthsDictionary[2] = February
monthsDictionary[3 1 = March
monthsDictionary[4] = April
monthsDictionary[5] = May
monthsDictionary[6] = June
monthsDictionary[7 1 = July
monthsDictionary[8] = August
monthsDictionary[9] = September
monthsDictionary[10] = October
monthsDictionary[11] = November
monthsDictionary[12] = December

Fig. 5.13 Dictionary methods items, keys and values.

- 4~ ~¢e

é pythonhtpl_05.fm Page 175 Saturday, December 8, 2001 9:35 AM

Chapter 5

Dictionary method key s (line 13) returns an unordered list of the dictionary’s keys.
Similarly, dictionary method values (line 16) returnsan unordered list of thedictionary’s
values. Lines 20-21 demonstrate acommon use of dictionary method keys. The for loop
iterates over the dictionary keys. Each key is assigned to control variable key. Line 21
prints both the key and the value associated with that key. Figure 5.14 summarizesthe dic-

tionary methods.

Method

clear ()

copy ()

get (key [, returnValue])

has_key (key)

items ()
keys ()
popitem()

setdefault (key [, dummyValue])

update (newDictionary)
values ()

iterkeys()
iteritems ()

itervalues()

Lists, Tuples and Dictionaries 175

Description

Deletes all items from the dictionary.

Creates and returns a shallow copy of the dictionary (the
elementsin the new dictionary are referencesto the ele-
mentsin the original dictionary).

Returns the value associated with key. If keyisnot in the
dictionary and if returnValue is specified, returnsthe
specified value. If returnValue is not specified, returns
None.

Returns 1 if key isinthedictionary; returns 0 if key is not
in the dictionary.

Returns alist of tuplesthat are key-value pairs.
Returnsalist of keysin the dictionary.

Removes and returns an arbitrary key-value pair as a
tuple of two elements. If dictionary is empty, aKey -
Error exception occurs. [Note: We discuss exceptions
in Chapter 12, Exception Handling.] This method is use-
ful for accessing an element (i.e., print the key-value
pair) before removing it from the dictionary.

Behaves similarly to method get. If key isnot inthe dic-
tionary and dummyValue is specified, inserts the key and

the specified value into dictionary. If dummyValueis not

specified, value isNone.

Adds all key-value pairs from newDictionary to the cur-
rent dictionary and overrides the values for keys that
aready exist.

Returns alist of valuesin the dictionary.

Returns an iterator of dictionary keys. [Note: We discuss
iteratorsin Appendix O, Additional Python 2.2 Features.]
Returns an iterator of key-value pairs. [Note: We discuss
iteratorsin Appendix O, Additional Python 2.2 Features.]

Returns an iterator of dictionary values. [Note: We dis-
cussiteratorsin Appendix O, Additional Python 2.2
Features.]

Fig. 5.14 Dictionary methods.

.

%

—

é pythonhtpl_05.fm Page 176 Saturday, December 8, 2001 9:35 AM

A

176 Lists, Tuples and Dictionaries Chapter 5

Dictionary method copy returnsanew dictionary that isashallow copy of the original
dictionary. In ashalow copy, the elementsin the new dictionary are references to the ele-
mentsin the original dictionary.

The interactive session in Fig. 5.15 demonstrates the difference between shallow and
deep copies. Wefirst create dictionary, which contains one value—alist of numbers.
We then invoke dictionary method copy to create a shallow copy of dictionary, and
we assign the copy to variable shallowCopy. The values stored for key "1istKey™" in
both dictionaries reference the same object. To underscore this fact, we insert the value 4
at the end of the list stored in dictionary. We then print the value of variables dic-
tionary and shallowCopy. Noticethat thelist has been changed in both copies of the
dictionary. This is a consequence of doing a shallow copy, which does not create a fully
independent copy of the original dictionary.

Sometimes, a shallow copy is sufficient for a program, especialy if the dictionaries
contain no references to other Python abjects (i.e., they contain only literal numeric values
or immutable values). However, sometimesiit is necessary to create a copy—called a deep
copy—that is independent of the origina dictionary. To create a deep copy, Python pro-
vides module copy. The remainder of the interactive session in Fig. 5.15 creates a deep
copy of variadble dictionary. Wefirstimport function deepcopy from module copy.
Wethen call deepcopy and passdictionary asan argument. The function call returns
adeep copy of dictionary, and we assign the copy to variable deepCopy. The vaue
associated with deepCopy ["1istKey" 1 isnow independent of the value associated
with that key in variables dictionary and shallowCopy. To demonstrate this fact,
we append a new value to dictionary’s list and print the values for dictionary,
shallowCopy and deepCopy.

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32

Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>> dictionary = { "listKey" : [1, 2, 31 }

>>> shallowCopy = dictionary.copy () # make a shallow copy
>>> dictionary["listKey"].append(4)

>>> print dictionary

{'listRey': [1, 2, 3, 41}

>>> print shallowCopy

{'listkey': [1, 2, 3, 4]}

>>> from copy import deepcopy

>>> deepCopy = deepcopy(dictionary) # make a deep copy
>>> dictionary["listKey"].append(5)

>>> print dictionary

{'listRey': [1, 2, 3, 4, 51}

>>> print shallowCopy

{'listKey': [1, 2, 3, 4, 51}

>>> print deepCopy

{'listKey': [1, 2, 3, 4]}

Fig. 5.15 Difference between a shallow copy and a deep copy.

%

—

é pythonhtpl_05.fm Page 177 Saturday, December 8, 2001 9:35 AM

A

.

Chapter 5 Lists, Tuples and Dictionaries 177

Shallow and deep copies reflect how Python handles references (i.e., names of
objects). The programmer should exercise caution when dealing with references to objects
like lists and dictionaries, because changing an object affects the value of al the namesthat
refer to that object. In the next two sections, we discuss how passing a reference to afunc-
tion affects an object’ s value.

deepCopyList = originalList][:] does a deep copy which means that the deep-
CopyListisadeepcopyoftheoriginalList.

5.7 References and Reference Parameters

To perform tasks, functions require certain input values, which the main program or func-
tions have (or know). The main program (e.g., a program that simulates a calculator) may
ask users for input, and those input values are sent, in turn, to functions (e.g., add, sub-
tract). Thevalues, or arguments, haveto be passed to the functionsthrough acertain pro-
tocol. In many programming languages, the two ways to pass arguments to functions are
pass-by-value and pass-by-reference. When an argument is passed by value, a copy of the
argument’ s value is made and passed to the called function.

% With pass-by-value, changes to the called function’s copy do not affect the original vari-
able' svaluein the calling code. This prevents accidental side effects that can hinder the de-
velopment of correct and reliable softwar e systems.

With pass-by-reference, the caller allows the called function to accessthe caller’ s data
directly and to modify that data. Pass-by-reference can improve performance by elimi-
nating the overhead of copying large amounts of data. However, pass-by-reference can
weaken security, because the called function can access the caller’ s data

Unlike many other languages, Python does not alow programmers to choose between
pass-by-val ue and pass-by-reference when passing arguments. Python arguments are always
passed by object reference—the function receives references to the values passed as argu-
ments. In practice, pass-by-object-reference can be thought of as a combination of pass-by-
value and pass-by-reference. If afunction receives areference to amutable object (e.g., adic-
tionary or alist), the function can modify the origina value of the object. It isasif the object
had been passed by reference. If afunction receives areference to an immutabl e object (e.g.,
a number, a string or a tuple, whose elements are immutable values), the function cannot
modify the original object directly. It isasif the object had been passed by value.

As aways, it isimportant for the programmer to be aware of when an object may be
modified by the functionto whichit is passed. Remembering the preceding rules and under-
standing how Python treats references to objects is essential to creating large and sophisti-
cated Python systems.

5.8 Passing Lists to Functions

In this section, we discuss references further by examining what happens when a program
passes a list to afunction. The results we discover hold true for other mutable Python ob-
jects, such asdictionaries. To passalist argument to afunction, specify the name of thelist
without square brackets. For example, if list hourlyTemperatures hasbeen created as

%

—

\ {%)
| pythonhtpl_05.fm Page 178 Saturday, December 8, 2001 9:35 AM

%

178 Lists, Tuples and Dictionaries Chapter 5

hourlyTemperatures = [’ ' 1
the function call
modifyList(hourlyTemperatures)

passeslist hourlyTemperatures to functionmodi fyList.

Although entire lists can be changed by a function, individual list elements that are
numeric or immutable sequence data types cannot be changed. To passalist element to a
function, use the subscripted name of the list element as an argument in the function call.

The program of Fig. 5.16 demonstrates the difference between passing an entire list and
passing alist element. Line 12 creates variable aList. The for loop at lines 17-18 prints
theitemsof thelist. Line 20invokesfunctionmodi fyList and passesthefunction variable
aList. FunctionmodifyList (lines4—7) multiplies each element by 2. To illustrate that
aList’selementsaremodified, the for loop at lines 24-25 displaysthelist elementsagain.
Asthe output shows, the elements of aList were modified by modifyList.

1

2

3

4 def modifyList(aList):

5

6 for i in range(len(aList)):

7 aList[i] *=

8

9 def modifyElement(element):

10 element *=

11

12 aList = [1, 2, 3, 4,]

13

14 print

15 print

16

17 for item in aList:

18 print item,

19

20 modifyList(aList)

21

22 print

23

24 for item in aList:

25) print item,

26

27 print

28 print , aList[]
29 modifyElement(aListl[1)

30 print , aListl[1
31

32 print

33 print , aList[2:4 1]
34 modifyList(aList[2:4 1)

35 print , aList[2:4 1]

Fig. 5.16 Passing lists and individual list elements to methods. (Part 1 of 2.)

ﬂ%

é pythonhtpl_05.fm Page 179 Saturday, December 8, 2001 9:35 AM

A

.

Chapter 5 Lists, Tuples and Dictionaries 179

Effects of passing entire list:
The values of the original list are:
12345

The values of the modified list are:
2 46 810

Effects of passing list element:
aList[3] before modifyElement: 8
aList[3] after modifyElement: 8

Effects of passing slices of list:
aList[2:4] before modifyList: [6, 8]
aList[2:4] after modifyList: [6, 8]

Fig. 5.16 Passing lists and individual list elements to methods. (Part 2 of 2.)

Lines 27-30 demonstrate passing a list element (aList[3 1, which contains a
number, recall that numbers areimmutable) to afunction. The program first printsthevalue
of aList[3 1, whichis8. Then, the program callsfunctionmodi fyElement (lines9—
10) passing to parameter element the value 8. Function modi fyElement multiplies
element by 2. When the function terminates, the local variable element is destroyed.
Thevalue of theoriginal element, aList [3 1, inthelistisnot modified becausethevalue
of aList [3] isimmutable. Thus, when control is returned to the main portion of the
program, the unmodified value of aList [3 1 isprinted.

Slicing creates anew sequence; therefore, when aprogram passes adice to afunction,
the original sequenceisnot affected. Line 33 printsthesliceaList [2:4 1 to the screen.
Line 34 callsfunctionmodi fyList and passesaList [2:4 1. Line 35 printsthe result
of calling function modi £yList—demonstrating that the original list was not modified.

Notice that function modi fyList iterates through itslist by accessing the elements
using the square bracket operator. If the function contained the code

for item in aList:
item *=

the list would remain unchanged, because the function would modify the value of local
variable i tem and not the value stored at a particular index in the list.

5.9 Sorting and Searching Lists

Sorting data (i.e., placing the datainto a particular order, such as ascending or descending)
isacommon computing application. For instance, a bank sorts checks by account number
to prepare individual monthly bank statements. Telephone companies sort accounts by last
names and, within that, by first names, to simplify the search for phone numbers. Almost
all organizations sort data—in many cases, massive amounts of data. Sorting dataisan in-
triguing problem that has attracted some of the most intense research effortsin the field of
computer science. In this section, we discuss how to sort alist using list method sort.
Figure 5.17 sortsthe values of the 10-element list aLi st (line4) into ascending order.
Lines 8-9 print the list items. Line 11 calls list method sort—this method sorts the ele-

%

*

é pythonhtpl_05.fm Page 180 Saturday, December 8, 2001 9:35 AM

A

.

180 Lists, Tuples and Dictionaries Chapter 5

ments of aList in ascending order. The remainder of the program prints the results of
sorting the list.

Much research has been performed in the area of list-sorting algorithms, resulting in
the design of many algorithms. Some of these algorithms are simple to express and pro-
gram, but are inefficient. Other algorithms are complex and sophisticated, but provide
increased performance. The exercises at the end of this chapter investigate a well-known
sorting algorithm.

e Sometimes, the simplest algorithms perform poorly. Their virtue is that they are easy to
"I write, test and debug. Sometimes complex algorithms are needed to realize maximum per-
formance.

Often, programmers work with large amounts of data stored in lists. It might be neces-
sary to determine whether alist contains a value that matches a certain key value. The pro-
cess of locating a particular element value in alist is called searching.

The program in Fig. 5.18 searches alist for avalue. Line 5 creates list aL.ist, which
contains the even numbers between 0 and 198, inclusive. Line 7 then retrieves the search
key from the user and assigns the value to variable searchKey. Keyword in tests
whether list aList contains the user-entered search key (line 9). If the list contains the
value stored in variable searchKey, the expression (line 9) evaluates to true; otherwise,
the expression evaluates to false.

1

2

3

4 aList = [7 ’ ’ ’ ’ ’ ’ ’ ’ 1
5

6 print

7

8 for item in aList:
9 print item,

10

11 aList.sort()

12

13 print

14

15 for item in aList:
16 print item,

17

18 print

Data items in original order
2 6 4 8 10 12 89 68 45 37

Data items after sorting
2 4 6 8 10 12 37 45 68 89

Fig. 5.17 Sorting a list.

—

é pythonhtpl_05.fm Page 181 Saturday, December 8, 2001 9:35 AM

A

.

Chapter 5 Lists, Tuples and Dictionaries 181
1

2

3

4

5 aList = range(0, g)

6

7 searchKey = int(raw_input())
8

9 if searchKey in alList:

10 print , alist.index(searchKey)

11 else:

12 print

Enter integer search key: 36
Found at index: 18

Enter integer search key: 37
Value not found

Fig. 5.18 Searching a list for an integer.

If the list contains the search key, line 10 invokes list method index to obtain the
index of the search key. List method index takes a search key as a parameter, searches
through the list and returns the index of the first list value that matches the search key. If
the list does not contain any value that matches the search key, the program displays an
error message. [Note: Figure 5.18 searches aList twice (lines 9-10), which, for large
sequences, can result in poor performance. To improve performance, the program can use
list method index and trap the exception that occursif the argument isnot in the list. We
discuss exception-handling techniques in Chapter 12.]

Aswith sorting, a great deal of research has been devoted to the task of searching. In
the exercises at the end of this chapter, we explore some of the more sophisticated ways of
searching alist.

5.10 Multiple-Subscripted Sequences

Sequences can contain elements that are also sequences (i.e., lists and tuples). Such se-
guences have multiple subscripts. A common use of multiple-subscripted sequences is to
represent tables of values consisting of information arranged in rows and columns. Toiden-
tify a particular table element, we must specify two subscripts—by convention, the first
identifies the element’ s row, the second the element’s column.

Sequences that require two subscripts to identify a particular element are called
double-subscripted sequences or two-dimensional sequences. Note that multiple-sub-
scripted sequences can have more than two subscripts. Python does not support multiple-
subscripted sequences directly, but allows programmers to specify single-subscripted
tuples and lists whose elements are also single-subscripted tuples and lists, thus achieving
the same effect. Figure 5.19 illustrates a double-subscripted sequence, a, containing three
rows and four columns (i.e., a 3-by-4 sequence). In general, a sequence with mrows and n
columnsis called an m-by-n sequence.

%

*

\ {%)
pythonhtpl_05.fm Page 182 Saturday, December 8, 2001 9:35 AM

A

.

%

182 Lists, Tuples and Dictionaries Chapter 5
Column 0 Column 1 Column 2 Column 3
Row 0 a[0] [0] al[0] [1] al[0] [2] al[0] [3]
Row 1 al[l] [0] al[l] [1] all] [2] al[l] [3]
Row 2 a[2] [0] a[2] [1] al2] [2] a[2] [3]

L Column subscript

Row subscript

Sequence name

Fig. 5.19 Double-subscripted sequence with three rows and four columns.

Every element in sequence a isidentified in Fig. 5.19 by an element name of the form
al[i1 71, aisthename of the sequence, and i and j are the subscripts that uniquely
identify the row and column of each element in a. Notice that the names of the elementsin
thefirst row all have 0 asthefirst subscript; the names of the elementsin the fourth column
all have 3 as the second subscript.

Multiple-subscripted sequences can be initialized during creation in much the same
way asasingle-subscripted sequence. A double-subscripted list with two rowsand columns
could be created with

b=[0T0121., 21,1013 411

The values are grouped by row—the first row isthefirst element in thelist, and the second
row isthe second element inthelist. So, 1 and 2 initializeb[01 [0] andb[0]1[11,
and 3 and 4 initidlizeb[11[0]1 andb[11 [11.Multiple-subscripted sequences are
maintained as sequences of sequences. The statement

c= (1, 2), (3,4, 5))

creates atuple ¢ with row 0 containing two elements (1 and 2) and row 1 containing three
elements (3, 4 and 5). Python allows multiple-subscripted sequences to have rows of dif-
ferent lengths.

Figure 5.20 demonstrates creating and initializing double-subscripted sequences and
using nested £or structures to traverse the sequences (i.e., manipulate every element of the
sequence).

tablel
table2

(1,2, (3,), (4,5, 6))

OOUAWNBE

Fig. 5.20 Tables created using lists of lists and tuples of tuples. (Part 1 of 2.)

ﬂ%

*

é pythonhtpl_05.fm Page 183 Saturday, December 8, 2001 9:35 AM

A

.

Chapter 5 Lists, Tuples and Dictionaries 183
7 print

8

9 for row in tablel:
10
11 for item in row:
12 print item,
13
14 print
15
16 print
17
18 for row in table2:
19
20 for item in row:
21 print item,
22
23 print

Values in tablel by row are
123
456

Values in table2 by row are
12

3

456

Fig. 5.20 Tables created using lists of lists and tuples of tuples. (Part 2 of 2.)

The program declares two sequences. Line 4 creates the multiple-subscript list
tablel and provides six valuesin two sublists (i.e., two lists-within-lists). The first sub-
list (row) of the sequence contains the values 1, 2 and 3; the second sublist contains the
values 4, 5 and 6.

Line 5 creates multiple-subscript tuple table2 and provides six values in three sub-
tuples (i.e., tuples-within-tuples). The first subtuple (row) contains two elements with
values 1 and 2, respectively. The second subtuple contains one element with value 3. The
third subtuple contains three elements with values 4, 5 and 6. Lines 9-14 use anested for
structure to output the rows of list tablel. The outer £or structure iterates over the rows
inthelist. Theinner for structureiterates over each column in the row. The remainder of
the program prints the values for variable table2 in asimilar manner.

The program in Fig. 5.20 demonstrates one case in awhich a £or structure is useful
for manipulating a multiple-subscripted sequence. Many other common sequence mani pu-
lations use for repetition structures. For example, the following £or structure setsall the
elementsin the third row of sequence a in Fig. 5.19 to O:

for column in range(len(al 1)):
al][column] =

We specified the third row; thus, the first subscript is always 2 (0 isthefirst row and 1 is
the second row). The for structure varies only the second subscript (i.e., the column sub-
script). The preceding for structure is equivalent to the assignment statements

ﬂ%

*

\ {%)
| pythonhtpl_05.fm Page 184 Saturday, December 8, 2001 9:35 AM

A

.

%

184 Lists, Tuples and Dictionaries Chapter 5

al
al
al
al

—_ e
—r———
—_ e e

The following nested £or structure determinesthe total of all the elementsin sequence a:
total =

for row in a:
for column in row:
total += column

The for structure total s the elements of the sequence onerow at atime. Theouter for struc-
ture iterates over the rowsin the table so that the elements of each row may be totaled by the
inner for structure. The total isdisplayed when the nested for structure terminates.

The program in Fig. 5.21 performs several other common sequence manipulations on
the 3-by-4 list grades. Each row of the list represents a student, and each column repre-
sents a grade on one of the four exams the students took during the semester. The list
manipulations are performed by four functions. Function printGrades (lines 5-25)
printsthe datastored in list grades in atabular format. Function minimum (lines 28-38)
determines the lowest grade of any student for the semester. Function maximum (lines 41—
51) determinesthe highest grade of any student for the semester. Function average (lines
54-60) determines a particular student’s semester average. Notice that line 55 initializes
total to 0. 0, so the function returns a floating-point value.

1

2

3

4

5 def printGrades(grades):

6 students = len(grades)

7 exams = len(grades|[1)
8

9

10 print

11 print 7

12

13 for i in range(exams):

14 print % i,

15

16 print

17

18

19 for i in range(students):
20 print % i,
21

22 for j in range(exams):
23 print grades[i 1[j 1, '
24

25 print

Fig. 5.21 Double-scripted tuples. (Part 1 of 3.)

ﬁ%

*

%
| é pythonhtpl_05.fm Page 185 Saturday, December 8, 2001 9:35 AM

Chapter 5 Lists, Tuples and Dictionaries

185

28 def minimum(grades):
29 lowScore =

31 for studentExams in grades:
33 for score in studentExams:

35 if score < lowScore:
36 lowScore = score

38 return lowScore

41 def maximum(grades):

42 highScore =

44 for studentExams in grades:
46 for score in studentExams:

48 if score > highScore:
49 highScore = score

51 return highScore
54 def average(setOfGrades):
55 total =

57 for grade in setOfGrades:
58 total += grade

60 return total / len(setOfGrades)

64 grades = [[' ' ’

68 printGrades(grades)

69 print , minimum(grades)
70 print , maximum(grades)

71 print

74 for i in range(len(grades)):
15 print , i, , average(grades[i]

)

Fig. 5.21 Double-scripted tuples. (Part 2 of 3.)

- 4~

é pythonhtpl_05.fm Page 186 Saturday, December 8, 2001 9:35 AM

186 Lists, Tuples and Dictionaries Chapter 5

The list is:

[0l [1] [2] I[3]
grades [0] 77 68 86 73
grades [1] 96 87 89 81
grades [2] 70 90 86 81

Lowest grade: 68
Highest grade: 96

Average for student 0 is 76.0
Average for student 1 is 88.25
Average for student 2 is 81.75

Fig. 5.21 Double-scripted tuples. (Part 3 of 3.)

FunctionprintGrades usesthelist grades and variables students (number of
rowsinthelist) and exams (number of columnsin thelist). The function loops through list
grades, using nested for structures to print out the grades in tabular format. The outer
for structure (lines 19-25) iteratesover i (i.e., the row subscript), theinner £or structure
(lines 22—23) over 5 (i.e., the column subscript).

Functions minimum and maximum loop through list grades, using nested for
structures. Function minimum compares each grade to variable lowScore. If agradeis
less than lowScore, lowScore is set to that grade (line 36). When execution of the
nested structure is complete, lowScore contains the smallest grade in the double-sub-
scripted list. Function maximum works similarly to function minimum.

Function average takes one argument—a single-subscripted list of test results for a
particular student. When line 75 invokes average, theargumentisgrades [i 1, which
specifies that a particular row of the double-subscripted list grades is to be passed to
average. For example, the argument grades [1 1 representsthe four values (asingle-
subscripted list of grades) stored in the second row of the double-subscripted list grades.
Remember that, in Python, a double-subscripted list is alist with elements that are single-
subscripted lists. Function average calculates the sum of the list elements, divides the
total by the number of test results and returns the floating-point result.

In the above example, we demonstrated how to use double-subscripted lists. However,
when we need to compute pure numerical problems (i.e., multi-dimensional arrays), the
basi ¢ Python language cannot handle them efficiently. In this case, apackage called Numpy
should be used. The NumPy (numerical python) package contains modules that handle
arrays, and it provides multi-dimensional array objectsfor efficient computation. For more
information on NumPy, Visit sourceforge.net/projects/numpy.

Chapters 2-5 introduced the basi c-programming techniques of Python. In Chapter 6,
Introduction to the Common Gateway Interface (CGI), we will use these techniques to
design Web-based applications. In Chapters 7-9, we will introduce object-oriented pro-
gramming techniques that will alow us to build complex applications in the latter half of
the book.

4~ 4

é pythonhtpl_05.fm Page 187 Saturday, December 8, 2001 9:35 AM

Chapter 5 Lists, Tuples and Dictionaries 187

SUMMARY

Data structures hold and organize information (data).

Sequences, often called arraysin other languages, are data structures that store related dataitems.
Python supports three basic sequence data types: a string, alist and atuple.

A sequence element may be referenced by writing the sequence name followed by the element’s
position number in square brackets ([1). The first element in a sequence is the zeroth element.

Sequences can be accessed from the end of the sequence by using negative subscripts.

The position number more formally is called a subscript (or an index), which must be an integer
or an integer expression. If aprogram uses an integer expression as a subscript, Python evaluates
the expression to determine the location of the subscript.

Some types of sequences are immutable—the sequence cannot be altered (e.g., by changing the
value of one of its elements). Python strings and tuples are immutable sequences.

Some sequences are mutable—the sequence can be atered. Python lists are mutable sequences.
The length of the sequenceis determined by the function call 1en (sequence) .
To create an empty string, use the empty quotes(i.e., "", "' ,mnuw wun gr v 11 vir)

To create an empty list, use empty square brackets (i.e., [1). To create alist that contains a se-
quence of values, separate the values with commas, and place the values inside square brackets.

To create an empty tuple, use the empty parentheses (i.e., ()). To create a tuple that contains a
sequence of values, simply separate the values with commas. Tuples aso can be created by sur-
rounding the tuple values with parentheses; however, the parentheses are optional .

Creating atuple is sometimes referred to as packing a tuple.
When creating a one-element tuple—called a singleton—write the value, followed by acommal(,).

In practice, Python programmers distinguish between tuples and lists to represent different kinds
of sequences, based on the context of the program.

Although lists are not restricted to homogeneous data types, Python programmers typically use
lists to store sequences of homogeneous va ues—values of the same datatype. In general, a pro-
gram uses alist to store homogeneous values for the purpose of 10oping over these values and per-
forming the same operation on each value. Usually, the length of thelist is not predetermined and
may vary over the course of the program.

The += augmented assignment statement can insert avaue in alist. When the value to the left of
the += symbol is a sequence, the value to the right of the symbol must be a sequence a so.

The for/in structure iterates over a sequence. The for structure starts with the first element in
the sequence, assigns the value of the first element to the control variable and executes the body
of the for structure. Then, the for structure proceeds to the next element in the sequence and
performs the same operations.

If a program attempts to access a nonexistent index, the program exits and displays an “out-of -
range” error message. This error can be caught as an exception.

Tuples store sequences of heterogeneous data. Each data piece in a tuple represents a part of the
total information represented by the tuple. Usually, the length of the tuple is predetermined and
does not change over the course of aprogram’ s execution. A program usually does not iterate over
a sequence, but accesses the parts of the tuple the program needs to perform its task.

If aprogram attempts to modify atuple, the program exits and displays an error message.

Sequences can be unpacked—the values stored in the sequence are assigned to various identifiers.
Unpacking is auseful programming shortcut for assigning values to multiple variablesin asingle
statement.

%

é pythonhtpl_05.fm Page 188 Saturday, December 8, 2001 9:35 AM

A

188 Lists, Tuples and Dictionaries Chapter 5

* When unpacking a sequence, the number of variable names to the left of the = symbol must equal
the number of elements in the sequence to the right of the symbol.

 Python provides the dicing capability to obtain contiguous regions of a sequence.

» To obtain a dice of the ith element through the jth element, inclusive, use the expression se-
quencel[i:j +11].

» Thedictionary isamapping construct that consists of key-value pairs. Dictionaries (called hashes
or associative arrays in other languages), can be thought of as unordered collections of values
where each valueis accessed through its corresponding key.

 To create an empty dictionary, use empty curly braces (i.e., {3}).

» To create a dictionary with values, use a commarseparated sequence of key-value pairs, inside
curly braces. Each key-value pair is of the form key : value.

* Python dictionary keys must beimmutable values, like strings, numbers or tuples, whose elements
areimmutable. Dictionary values can be of any Python data type.

* Dictionary values are accessed with the expression dictionaryName[key].

» Toinsert anew key-value pair in adictionary, use the statement dictionaryName[key] = value.

* The statement dictionaryName[key 1 = value modifies the val ue associated with key, if the dictio-
nary aready containsthat key. Otherwise, the statement insertsthekey-value pair into the dictionary.

» Accessing a non-existent dictionary key causes the program to exit and to display a “key error”
message.

» A method performs the behaviors (tasks) of an object.

» Toinvoke an object’s method, specify the name of the object, followed by the dot (.) access op-
erator, followed by the method invocation.

 List method append adds an items to the end of alist.

 List method count takes a value as an argument and returns the number of dementsin the list

that have that value. If the list contains no elements with the specified value, method count re-
turns 0.

* Dictionary method i tems returnsalist of tuples, where each tuple contains akey-value pair. Dic-
tionary method keys returns an unordered list of the dictionary’ skeys. Dictionary method val -
ues returns an unordered list of the dictionary’ s values.

« Dictionary method copy returnsanew dictionary that is ashallow copy of theorigina dictionary.
In ashalow copy, the elementsin the new dictionary are referencesto the elementsin the original
dictionary.

* If the programmer wantsto create a copy—called adeep copy—that isindependent of the original
dictionary, Python provides module copy. Function copy . deepcopy returns adeep copy of it
argument.

 In many programming languages, the two ways to pass arguments to functions are pass-by-value
and pass-by-reference (also caled pass-by-value and pass-by-reference).

» When an argument is passed by value, a copy of the argument’s value is made and passed to the
called function.

« With by reference, the caller allows the called function to access the caller’s data directly and to
modify that data.

 Unlikemany other languages, Python does not alow programmersto choose between pass-by-val -
ue and pass-by-reference to pass arguments. Python arguments are alway's passed by object refer-
ence—the function receives references to the vaues passed as arguments. In practice, pass-by-
object-reference can be thought of as a combination of pass-by-value and pass-by-reference.

%

—

é pythonhtpl_05.fm Page 189 Saturday, December 8, 2001 9:35 AM

Chapter 5 Lists, Tuples and Dictionaries 189

« If afunction receives areference to amutable object (e.g., adictionary or alist), the function can
modify the original value of the object. It isasif the object had been passed by reference.

« If afunction receives areference to an immutabl e object (e.g., a number, astring or atuple whose
elements are immutabl e values), the function cannot modify the original object directly. It isasif
the object had been passed by value.

» To passalist argument to afunction, specify the name of the list without square brackets.

* Although entire lists can be changed by afunction, individual list elements that are numeric and
immutable sequence data types cannot be changed. To pass a list element to a function, use the
subscripted name of the list element as an argument in the function call.

« Slicing creates anew sequence; therefore, when aprogram passes adiceto afunction, the original
sequenceis not affected.

 Sorting datais the process of placing datainto aparticular order.
» By default, list method sort sorts the elements of alist in ascending order.

» Some sorting algorithms are simple to express and program, but are inefficient. Other algorithms
are complex and sophisticated, but provide increased performance.

 Often, programmers work with large amounts of data stored in lists. It might be necessary to de-
termine whether alist contains a value that matches a certain key value. The process of locating a
particular element valuein alist is called searching.

» Keyword in tests whether a sequence contains a particular value.

* List method index takes a search key as a parameter, searches through the list and returns the
index of the first list value that matches the search key. If the list does not contain any value that
matches the search key, the program displays an error message.

 Sequences can contain elementsthat are al so sequences. Such sequences have multiple subscripts.
A common use of multiple-subscripted sequencesisto represent tables of values consisting of in-
formation arranged in rows and columns.

» To identify a particular table element, we must specify two subscripts—by convention, the first
identifies the element’ s row, the second identifies the e ement’s column.

» Sequences that require two subscriptsto identify aparticular element are called double-subscript-
ed sequences or two-dimensional sequences.

* Python does not support multiple-subscripted sequences directly, but allows programmersto spec-
ify single-subscripted tuples and lists whose elements are also single-subscripted tuples and lists,
thus achieving the same effect.

A segquence with mrows and n columnsis called an m-by-n sequence. It is more commonly know
as two-dimensional sequence.

» The name of every element in a multiple-subscripted sequenceisof theformal i1 [7 1, where
a isthe name of the sequence, and i and j are the subscripts that uniquely identify the row and
column of each element in the sequence.

» To compute pure numerical problems (i.e., multi-dimensiona arrays), use package NumPy (nu-
merical Python). This package contains modulesthat handle arrays and provides multi-dimension-
a array objects for efficient computation.

TERMINOLOGY

append method of list bracket operator ([1)
array clear method of dictionary
associative array column

%

é pythonhtpl_05.fm Page 190 Saturday, December 8, 2001 9:35 AM

A

.

190 Lists, Tuples and Dictionaries

commad(,)

copy method of dictionary
count list method

data structure

deep copy of adictionary
dictionary

dictionary method
double-subscripted sequence
dot access operator (.)

element

empty curly braces {}

empty dictionary

empty list

empty parentheses ()

empty quotes

empty square brackets [1]
empty string

empty tuple

for structure

get method of dictionary

hash

has_key method of dictionary
heterogeneous data (in tuples)
histogram

homogeneous data (in lists)
immutable sequence

in keyword

index

in-place sorting

index method of list

items method of dictionary
iteritems method of dictionary
iterkeys method of dictionary
itervalues method of dictionary
keys method of dictionary

key value

key-value pair

length (sequence)

list

list method

SELF-REVIEW EXERCISES

m-by-n sequence

mapping construct

method

method invocation
multiple-subscripted sequence
mutable sequence

name (sequence)

NumPy package (numerical Python)
one-element tuple (singleton)
out-of-range error message
packed

packing atuple
pass-by-object-reference
pass-by-reference
pass-by-value

popitem method of dictionary
position number

row

search

search key

sequence

sequence dicing

sequence unpacking
setdefault method of dictionary
shallow copy of adictionary
singleton

dlice a sequence

dicing operator ([:1)

sort

sort list method

subscript

table

tuple

two-dimensiona sequence
update method of dictionary
unpacked sequence

value (sequence)

values dictionary method
zeroth element

5.1 Fill in the blanks in each of the following statements:

a) are“associative arrays’ that consist of pairs.
b) Thelast element in a sequence can always be accessed with subscript
c) Statement creates asingleton aTuple.

d) Function returns the length of a sequence.

€) Selecting a portion of a sequence with the operator [:] iscalled

f) Dictionary method returns alist of key-value pairs.

ﬂ%

Chapter 5

*

é pythonhtpl_05.fm Page 191 Saturday, December 8, 2001 9:35 AM

Chapter 5 Lists, Tuples and Dictionaries 191
g) When an argument is passed , acopy of the argument’s value is made and

passed to the called method.
h) Use the expression to obtain the ith element through the jth element of list

sequence, inclusive.
i) A sequencewith mrows and n columnsis called an .
j) List method returns the number of times a specified element occursin alist.

5.2 State whether each of the following istrue or false. If false, explain why.

a) A sequence beginsat subscript 1.

b) Strings and tuples are mutable sequences.

c) Each key-value pair in adictionary hasthe form key : value.

d) Usingatupleasadictionary key isan error.

e) Dictionary vaues are accessed with the dot operator.

f) Method insert adds one e ement to the end of alist.

g) The += statement appendsitemsinto lists.

h) List method sort sortsthe elements of alist in place.

i) If list method search finds alist vaue that matches the search key, it returns the sub-
script of the list value.

i) Unlikeother languages, Python does not allow the programmer to choose whether to pass
each argument pass-by-value or pass-by-reference.

ANSWERS TO SELF-REVIEW EXERCISES

51 a) Dictionaries, key-vaue. b) -1. c) aTuple = 1,.d) len. €) slicing. f) i tems. g) pass-by-
value h) sequence[i:3j + 1].i) m-by-n sequence. j) count.

5.2 a) False. The first eement in every sequence has subscript 0. b) False. Strings and tuples are
immutabl e sequences—their values cannot be altered. ¢) True. d) False. Dictionary keys must beim-
mutable data types, such as tuples. €) False. Dictionary values are accessed with the expression dic-
tionaryName[key 1. f) Fase. Method append adds one element to the end of a list. g) True.
h) True. i) Fase. If list method index finds a list value that matches the search key, it returns the
subscript of thelist value. j) True.

EXERCISES

5.3 Usealist to solvethe following problem: Read in 20 numbers. As each number isread, print
it only if it is not aduplicate of a number already read.

5.4 Use alist of lists to solve the following problem. A company has four salespeople (1 to 4)
who sell five different products (1 to 5). Once aday, each salesperson passesin adip for each differ-
ent type of product sold. Each slip contains:

a) The salesperson number.

b) The product number.

¢) Thenumber of that product sold that day.

Thus, each salesperson passes in between 0 and 5 sales slips per day. Assume that the information
from al of the slipsfor last month is available. Write a program that will read all thisinformation for
last month’s sales and summarize the total sales by salesperson by product. All totads should be
stored in list sales. After processing all the information for last month, display the results in tabu-
lar format, with each of the columns representing a particular salesperson and each of the rows rep-
resenting a particular product. Cross-total each row to get the total sales of each product for last
month; cross-total each column to get the total sales by salesperson for last month. Your tabular
printout should include these cross-totals to the right of the totaled rows and at the bottom of the
totaled columns.

%

—

é pythonhtpl_05.fm Page 192 Saturday, December 8, 2001 9:35 AM

A

192 Lists, Tuples and Dictionaries Chapter 5

55 (The Seve of Eratosthenes) A primeinteger isany integer greater than 1 that isevenly divis-
ibleonly by itself and 1. The Sieve of Eratosthenesis a method of finding prime numbers. It operates
asfollows:

a) Createalist with al elementsinitialized to 1 (true). List elements with prime subscripts
will remain 1. All other list elements will eventually be set to zero.

b) Starting with list element 2, every time a list element is found whose value is 1, loop
through the remainder of the list and set to zero every element whose subscript is amul-
tiple of the subscript for the element with value 1. For list subscript 2, all elements be-
yond 2 in the list that are multiples of 2 will be set to zero (subscripts 4, 6, 8, 10, etc.);
for list subscript 3, all elements beyond 3 in the list that are multiples of 3 will be set to
zero (subscripts 6, 9, 12, 15, etc.); and so on.

When this process is complete, the list elements that are still set to 1 indicate that the subscript isa
prime number. These subscripts can then be printed. Write a program that uses a list of 1000 ele-
ments to determine and print the prime numbers between 2 and 999. Ignore element 0 of thellist.

5.6 (Bubble Sort) Sorting data (i.e. placing data into some particular order, such as ascending or
descending) is one of the most important computing applications. Python lists provide a sor t meth-
od. In this exercise, readers implement their own sorting function, using the bubble-sort method. In
the bubble sort (or sinking sort), the smaller values gradually “bubble”’ their way upward to the top of
thelist like air bubbles rising in water, while the larger values sink to the bottom of the list. The pro-
cessthat compares each adjacent pair of elementsin alist in turn and swapsthe elementsif the second
edement islessthan thefirst element is called a pass. The technique makes several passes through the
list. On each pass, successive pairs of elements are compared. If apair isinincreasing order, bubble
sort leaves the values as they are. If apair isin decreasing order, their values are swapped in thelist.
After thefirst pass, the largest value is guaranteed to sink to the highest index of alist. After the sec-
ond pass, the second largest value is guaranteed to sink to the second highest index of alist, and so
on. Write a program that uses function bubbleSort to sort theitemsin alist.

5.7 (Binary Search) When alist is sorted, a high-speed binary search technique can find itemsin
the list quickly. The binary search algorithm eliminates from consideration one-half of the elements
in the list being searched after each comparison. The algorithm locates the middle element of the list
and compares it with the search key. If they are equd, the search key is found, and the subscript of
that element is returned. Otherwise, the problem is reduced to searching one haf of the list. If the
search key islessthan the middle element of thelist, the first haf of thelist is searched. If the search
key is not the middle element in the specified piece of the original list, the algorithm is repeated on
one-quarter of the original list. The search continues until the search key is equal to the middle ele-
ment of the smaller list or until the smaller list consists of one element that is not equal to the search
key (i.e. the search key is not found.)

Even in aworgt-case scenario, searching alist of 1024 elements will take only 10 comparisons
during a binary search. Repeatedly dividing 1024 by 2 (because after each comparison we are able to
diminate from the consideration half the list) yields the values 512, 256, 128, 64, 32, 16, 8, 4, 2 and 1.
The number 1024 (210) is divided by 2 only ten times to get the value 1. Dividing by 2 is equivaent to

one comparison in the binary-search algorithm. A list of 1,048,576 (22°) elements takes a maximum of
20 comparisons to find the key. A list of one billion elements takes a maximum of 30 comparisons to
find the key. The maximum number of comparisons needed for the binary search of any sorted list can
be determined by finding the first power of 2 greater than or equal to the number of elementsin thelist.

Write a program that implements function binarySearch, which takes a sorted list and a
search key as arguments. The function should return the index of the list value that matches the
search key (or -1, if the search key is not found).

5.8 Create adictionary of 20 random valuesin the range 1-99. Determine whether there are any
duplicate values in the dictionary. (Hint: you many want to sort the list first.)

%

—

é pythonhtpl_06.fm Page 193 Saturday, December 8, 2001 1:27 PM

"

Introduction to the
Common Gateway
Interface (CGl)

Objectives

* Tounderstand the Common Gateway Interface (CGI)
protocol.

* To understand the Hypertext Transfer Protocol
(HTTP).

» To implement CGI scripts.

e Touse XHTML formsto send information to CGI
scripts.

 To understand and parse query strings.

» To use module cgi to processinformation from
XHTML forms.

Thisis the common air that bathes the globe.

Walt Whitman

Thelongest part of the journey is said to bethe passing of the

gate.

Marcus Terentius Varro

Railway termini...areour gatesto the gloriousand unknown. 1

Throug)rg them we pass ougtJ into advengtJure and sunshine, to Co n St r u Ctl o n

them, alas! we return.

E. M. Forster

There comes atime in a man’s life when to get where he has

to go—if there are no doors or windows—he walks through

awall.
Bernard Maamud

o 4~ =

é pythonhtpl_06.fm Page 194 Saturday, December 8, 2001 1:27 PM

A

.

194 Introduction to the Commmon Gateway Interface (CGl) Chapter 6

Outline

6.1 Introduction

6.2 Client and Web Server Interaction
6.2.1 System Architecture
6.2.2 Accessing Web Servers
6.2.3 HTTP Transactions

6.3 Simple CGI Script

6.4 Sending Input to a CGI Script

6.5 Using XHTML Forms to Send Input and Using Module cgi to Retrieve
Form Data

6.6 Using cgi .FieldStorage to Read Input
6.7 Other HTTP Headers

6.8 Example: Interactive Portal

6.9 Internet and World Wide Web Resources

Summary ¢ Terminology ¢ Self-Review Exercises « Answers to Self-Review Exercises « Exercises

6.1 Introduction

The Common Gateway Interface (CGI) describes a set of protocols through which appli-
cations (commonly called CGI programs or CGI scripts) interact with Web servers and
indirectly with Web browsers (e.g., client applications). A Web server is a specialized
software application that responds to client application requests by providing resources
(e.g. Web pages). CGI protocols often generate Web content dynamically. A Web pageis
dynamic if a program on the Web server generates that page’s content each time a user
reguests the page. For example, aform in a Web page could request that a user enter a zip
code. When the user types and submits the zip code, the Web server can use a CGI pro-
gram to create a page that displays information about the weather in that client’s region.
In contrast, static Web page content never changes unless the Web devel opers edit the doc-
ument.

CGl is “common” because it is not specific to any operating system (e.g., Linux or
Windows), to any programming language or to any Web server software. CGI can be used
with virtually any programming or scripting language, such as C, Perl and Python. In this
chapter, we explain how Web clients and serversinteract. We introduce the basics of CGI
and use Python to write CGI scripts.

The CGI protocol was developed in 1993 by the National Center for Supercomputing
Applications (NCSA—www.ncsa.uiuc.edu), for use with its HTTPd Web server.
NCSA developed CGI to be asimpletool to produce dynamic Web content. The simplicity
of CGlI resulted in its widespread use and in its adoption as an unofficial worldwide pro-
tocol. CGIl was quickly incorporated into additional Web servers, such as Microsoft
Internet Information Services (11S) and Apache (www . apache.org).

%

*

é pythonhtpl_06.fm Page 195 Saturday, December 8, 2001 1:27 PM

A

.

Chapter 6 Infroduction to the Common Gateway Interface (CGl) 195

6.2 Client and Web Server Interaction

In this section, we discuss the interactions between a Web server and a client application.
A Web page, in its simplest form, is either a Hypertext Markup Language (HTML) docu-
ment or an Extensible Hypertext Markup Language (XHTML) document. (In this chapter,
we use XHTML.) An XHTML document is a plain-text file that contains markup, or tags,
which describe how the document should be displayed by aWeb browser. For example, the
XHTML markup

<title>My Web Page</title>

indicates that the text between the opening <title>tag and theclosing </title>tagis
the Web page’ stitle. The browser rendersthe text between these tags in a specific manner.

XHTML requires syntactically correct documents—markup must follow specific rules.
For example, XHTML tags must be in al lowercase letters and all opening tags must have
corresponding closing tags. We discuss XHTML in detail in Appendix | and Appendix J.

Each Web page has a unique Uniform Resource Locator (URL) associated with it—an
address of sorts. The URL containsinformation that directs a browser to the resource (most
often aWeb page) the user wishes to access. For example, consider the URL

http://www.deitel.com/books/downloads.html

The first part of the address, http: //, indicates that the resource is to be obtained using
the Hypertext Transfer Protocol (HTTP). During this interaction, the Web server and the
client communicate using the platform-independent HTTP, a protocol for transferring re-
quests and files over the Internet (e.g., between Web servers and Web browsers).
Section 6.2.3 discussesHTTP.

The next section of the URL—www . deitel.com—is the hosthame of the server,
whichisthe name of the server computer, the host, on which theresourceresides. A domain
name system (DNS) server translates the hostname (www . deitel. com) into an Internet
Protocol (IP) address(e.g., 207.60.134.230) that identifies the server computer (just
as atelephone number uniquely identifies a particular phone line). This translation opera-
tion is a DNS lookup. A DNS server maintains a database of hostnames and their corre-
sponding | P addresses.

The remainder of the URL specifies the requested resource—/books/down-
loads.html. This portion of the URL specifies both the name of the resource (down -
loads.html—an HTML/XHTML document) and its path (/books). The Web server
maps the URL to afile (or other resource, such asa CGIl program) on the server, or to another
resource on the server’ s network. The Web server then returns the requested document to the
client. The path represents a directory in the Web server’ sfile system. It also is possible that
the resourceis created dynamically and does not reside anywhere on the server computer. In
this case, the URL uses the hostname to locate the correct server, and the server uses the path
and resource information to locate (or create) the resource to respond to the client’ s request.
Aswe will see, URLs aso can provide input to a CGI program residing on a server.

6.2.1 System Architecture

A Web server often is part of a multi-tier application, sometimes referred to as an n-tier
application. Multi-tier applications divide functionality into separate tiers (i.e., logical

%

—

é pythonhtpl_06.fm Page 196 Saturday, December 8, 2001 1:27 PM

A

.

196 Introduction to the Commmon Gateway Interface (CGl) Chapter 6

groupings of functionality). Tiers can be located on a single computer or on multiple com-
puters. Figure 6.1 presents the basic structure of athree-tier application.

Theinformation tier (also called the data tier or the bottomtier) maintains data for the
application. This tier typically stores data in a relational database management system
(RDBMS). We discuss relational database management systems in further detail in
Chapter 17, Database Application Programming Interface (DB-API). For example, aretail
store may have a database for product information, such as descriptions, prices and quan-
tities in stock. The same database also may contain customer information, such as user
names, billing addresses and credit-card numbers.

The middle tier implements business logic and presentation logic to control interac-
tions between application clients and application data. The middle tier acts as an interme-
diary between data in the information tier and the application clients. The middle-tier
controller logic processes client requests from the client tier (e.g., a request to view a
product catalog) and retrieves data from the database. The middle-tier presentation logic
then processes data from the information tier and presents the content to the client.

Businesslogic in the middle tier enforces business rules and ensures that data are reli-
able before updating the database or presenting data to a client. Business rules dictate how
clients can and cannot access application data and how applications process data.

Themiddletier also implementsthe application’ s presentation logic. Web applications
typically present information to clients as XHTML documents (older applications present
information as HTML). Many Web applications present information to wireless clients as
Wireless Markup Language (WML) documents. We discuss WML in detail in Chapter 23,
Case Study: Online Bookstore.

The client tier, or top tier, is the application’s user interface. Users interact with the
application through the user interface. This causes the client to interact with the middle tier
to make requests and to retrieve data from the information tier. The client then displays to
the user the data retrieved from the middle tier.

6.2.2 Accessing Web Servers

To request documents from Web servers, users must know the machine names (called host-
names) on which Web server software resides. Users can regquest documents from local
Web servers (i.e, those that reside on users' machines) or remote Web servers (i.e., those
that reside on different machines).

Client Tier Middle Tier Information Tier
Application
——— |
1
= =
- Database

Fig. 6.1 Three-tier application model.

%

—

é pythonhtpl_06.fm Page 197 Saturday, December 8, 2001 1:27 PM

A

.

Chapter 6 Infroduction to the Common Gateway Interface (CGl) 197

We can request document from local Web servers through the machine name or
through localhost—a hostname that references the loca machine. We use local-
host in thisbook. To determine the machine name in Windows 98, right-click Network
Neighborhood, and select Properties from the context menu to display the Network
dialog. Inthe Network dialog, click the Identification tab. The computer name displays
in the Computer name: field. Click Cancel to close the Network dialog. In Windows
2000, right click My Network Places and select Properties from the context menu to
display the Network and Dialup Connections explorer. In the explorer, click Net-
work ldentification. The Full Computer Name: field in the System Properties
window displays the computer name. To determine the machine name on most Linux
machines, simply type the command hostname at a shell prompt.

A client also can access aserver by specifying the server’ s domain name or | P address
(e.g., inaWeb browser's Address field). A domain name represents a group of hosts on
the Internet; it combines with a hostname (such as www—a common hostname for Web
servers) and a top-level domain (TLD) to form a fully qualified hostname, which provides
auser-friendly way to identify asite on the Internet. In afully qualified hostname, the TLD
often describes the type of organization that owns the domain name. For example, the com
TLD usually refersto acommercial business, whereasthe org TLD usually refersto anon-
profit organization. In addition, each country hasits own TLD, such as en for China, et
for Ethiopia, om for Oman and us for the United States.

6.2.3 HTTP Transactions

Before exploring how CGI operates, it is necessary to have a basic understanding of net-
working and the World Wide Web. In this section, we discuss the technical aspects of how
abrowser interactswith aWeb server to display aWeb page and we examine the Hypertext
Transfer Protocol (HTTP). We also explore HTTP's components that enable clients and
serversto interact and exchange information uniformly and predictably.

An HTTPrequest often posts datato a server-side form handler that processesthe data.
For example, when a user participatesin a Web-based survey, the Web server receives the
information specified in the XHTML form as part of the request.

When a user enters a URL, the client has to request that resource. The two most
common HTTP request types (also known as request methods) are get and post. These
request types retrieve resources from a Web server and send client form data to a Web
server. A get request sends form content as part of the URL. For example, in the URL

www . SOmesite. com/search?query=value

the information following the ? (query=value) indicates the user-specified input. For ex-
ample, if the user performs a search on “Massachusetts,” the last part of the URL would be
?query=Massachusetts. Most Web servers limit get request query strings to 1024
characters. If the query string exceeds this limit, the post request must be used. The data
sentin apost request is not part of the URL and cannot be seen by the user. Formsthat con-
tain many fields are submitted most often by post requests. Sensitive form fields, such as
passwords, usualy are sent using this request type.

To make the request, the browser sends an HTTP request message to the server (step
1, Fig. 6.2). HTTP hastwo request types, get and post. The get request (initssimplest form)
followstheformat: GET /books/downloads.html HTTP/1.1. Theword GETisan

%

—

\ {%)
| pythonhtpl_06.fm Page 198 Saturday, December 8, 2001 1:27 PM

A

.

198 Introduction to the Commmon Gateway Interface (CGl) Chapter 6
Web server
Client —
—
—
o}
@ The client sends @After it receives the
the get request request, the Web server
to the Web server. searches through its

system for the resource.

Fig. 6.2 Client interacting with server and Web server. Step 1: The request, GET
/books/downloads.html HTTP/1.1.

Web server

Client —
———1| The serverresponds to
w —| therequest with an
appropriate message,
along with the resource
contfents.

Fig. 6.2 Client interacting with server and Web server. Step 2: The HTTP response,
HTTP/1.1 200 OK.

HTTP method indicating that the client is requesting aresource. The next part of the request
providesthe name (downloads . html) and path (/books/) of the resource (an HTML/
XHTML document). Thefinal part of the request providesthe protocol’ s name and version
number (HTTP/1.1).

Servers that understand HTTP version 1.1 trandlate this request and respond (step 2,
Fig. 6.2). The server responds with alineindicating the HTTP version, followed by a status
code that consists of anumeric code and phrase describing the status of the transaction. For
example,

HTTP/1.1 200 OK
indicates success, while
HTTP/1.1 404 Not found

informs the client that the requested resource was not found on the server in the location
specified by the URL.

Browsers often cache (save on alocal disk) Web pages for quick reloading, to reduce
the amount of datathat the browser needsto download. However, browserstypically do not
cache server responses to post requests, because subsequent post requests may not contain
the same information. For example, several users who participate in a Web-based survey

ﬂ%

*

é pythonhtpl_06.fm Page 199 Saturday, December 8, 2001 1:27 PM

A

.

Chapter 6 Introduction to the Common Gateway Interface (CGlI) 199

may request the same Web page. Each user’s response changes the overall results of the
survey, thus the data on the Web server is changed.

On the other hand, Web browsers cache server responses to get requests. With a Web-
based search engine, a get request normally supplies the search engine with search criteria
specified in an XHTML form. The search engine then performs the search and returns the
results as a Web page. These pages are cached in the event that the user performs the same
search again.

The server normally sends one or more HTTP headers, which provide additional infor-
mation about the data sent in response to the request. In this case, the server is sending an
HTML/XHTML text document, so the HTTP header reads

Content-type: text/html

This information is known as the MIME (Multipurpose Internet Mail Extensions) type of
the content. MIME isan Internet standard that specifies how messages should be formatted

and clients use the content type to determine how to represent the content to the user. Each
type of data sent hasaMIME type associated with it that hel ps the browser determine how
to process the data it receives. For example, the MIME type text/plain indicates that
the dataistext that should be displayed without attempting to interpret any of the content
asHTML or XHTML markup. Similarly, the MIME type image/gi £ indicates that the
content is a GIF (Graphics Interchange Format) image. When thisMIME typeisreceived
by the browser, it attemptsto display theimage. For more information on MIME, visit

www.nacs.uci.edu/indiv/ehood/MIME/MIME.html

The header (or set of headers) is followed by a blank line (a carriage return, line feed or
combination of both) which indicates to the client that the server is finished sending HTTP
headers. The server then sends the text in the requested HTML/XHTML document (down -
loads.html). The connection terminates when the transfer of the resource completes. The
client-side browser interprets the text it receives and displays (or renders) the results.

This section examined how a simple HTTP transaction is performed between a Web-
browser application on the client side (e.g., Microsoft Internet Explorer or Netscape Com-
municator) and a Web-server application on the server side (e.g., Apacheor I1S). Next, we
introduce CGI programming.

6.3 Simple CGI Script

Two typesof scripting are used in Web-based applications: server-side and client-side. CGI

scripts are an example of server-side scripts because they run on the server. Programmers
have greater control over Web page content when using server-side scripts, because server-
side scripts can manipulate databases and other server resources. An example of client-side
scripting is JavaScript. Client-side scripts can access the browser’s features, manipulate
browser documents, validate user input and much more.

Scripts executed on the server usualy generate custom responses for clients. For
example, a client might connect to an airline’s Web server and request a list of al flights
from Boston to San Antonio between September 19th and November 5th. The server que-
ries the database, dynamically generates XHTML content containing the flight list and
sends the XHTML to the client. This technology allows clients to obtain the most current
flight information from the database by connecting to an airline’s Web server.

%

—

é pythonhtpl_06.fm Page 200 Saturday, December 8, 2001 1:27 PM

A

.

200 Introduction to the Common Gateway Interface (CGl) Chapter 6

Server-side scripting languages have a wider range of programmatic capabilities than
their client-side equivalents. For example, server-side scripts can access the server’s file
directory structure, whereas client-side scripts cannot access the client’s file directory
structure.

Server-side scripts also have access to server-side software that extends server func-
tionality. These pieces of software are called COM components for Microsoft Web servers
and modules for Apache Web servers. Components and modules range from programming
language support to counting the number of times a Web page has been visited (known as
the number of hits).

Server-side scripts are not visible to the client; only the content the server deliversisvisible
totheclient.

Aslong as afile on the server remains unchanged, its associated URL will display the
same content in clients' browsers each time the file is accessed. For the content in the file
to change (e.g., to include new links or the latest company news), someone must alter the
file manually (probably with a text editor or Web-page design software) then load the
changed file back onto the server.

Manually changing Web pagesis not feasible for those who want to create interesting
and dynamic Web pages. For example, if you want your Web page always to display the
current date or weather, the page would require continuous updating.

The examplesin this chapter rely heavily upon XHTML and Cascading Style Sheets
(CSS). CSSallows document authorsto specify the presentation of elementson aWeb page
(spacing, margins, etc.) separately from the structure of the document (section headers,
body text, links, etc.). Readers not familiar with these technologies will want to read
Appendix | and Appendix J, which describe XHTML in detail and Appendix K, Cascading
Style Sheets, which introduces CSS.

Figure 6.3 illustrates the full program listing for our first CGI script. Line 1

is adirective (sometimes called the pound-bang or sh-bang) that specifies the location of
the Python interpreter on the server. Thisdirective must bethefirst lineina CGlI script. The
examples in this chapter are for Window users. For UNIX or Linux-based machines, the
directive typically is one of the following:

depending on the location of the Python interpreter. [Note: If you do not know where the
Python interpreter resides, contact the server administrator.]

Common Programming Error 6.1

@ Forgetting to put thedirective (#!) inthefirst line of a CGI scriptisan error if the Web serv-
er running the script does not understand the . py filename extension.

Line 5 imports module time. This module obtains the current time on the Web
server and displaysit in the user’s browser. Lines 7-17 define function printHeader.
Thisfunction takes argument title, which correspondsto thetitle of the Web page. Line

%

—

Q72
| é pythonhtpl_06.fm Page 201 Saturday, December 8, 2001 1:27 PM

A

%

Chapter 6 Introduction to the Common Gateway Interface (CGlI) 201
1

2

3

4

5 import time

6

7 def printHeader(title):

8 print

9
10
11
12
13
14
15
16
17 % title
18
19 printHeader ()
20 print time.ctime(time.time())
21 print

/3 Cumrent date and time - Microzoft Internet Explorer

J File Edit ‘“iew Favorites Toolz Help |

J GBack + = -) at | Q) Search (3 Favorites =
| Addhess &1 hitp.//localhost/cgibin/figD6_03.py =l @GOHUMS”
=

Tue Cct 30 12:16:07 2001
[
|@ Done ’_’_ (2 Local intranst i

Fig. 6.3 CGil script displaying the date and time.

8 printsthe HTTP header. Notice that line 9 is blank, which denotes the end of the HTTP
headers. The line that follows the last HTTP header must be a blank line, otherwise Web
browsers cannot render the content properly. Lines 10-14 print the XML declaration, doc-
ument type declaration and opening <html> tag. For more information on XML, see
Chapter 15. Lines 15-17 contain the XHTML document header and title and begin the
XHTML document body.

—- Common Programming Error 6.2
@ Failureto place a blank line after an HTTP header isan error.

Line 19 begins the main portion of the program by calling function printHeader
and passing an argument that represents the title of the Web page. Line 20 calls two func-
tions in module time to print the current time. Function time. time returns a floating-
point value that represents the number of seconds since midnight, January 1, 1970 (called

ﬂ%

*

é pythonhtpl_06.fm Page 202 Saturday, December 8, 2001 1:27 PM

A

202 Introduction to the Common Gateway Interface (CGl) Chapter 6

the epoch). Function time. ctime takes as an argument the number of seconds since the
epoch and returns a human-readable string that represents the current time. We conclude
the program by printing the XHTML body and document closing tags. For a complete list
of functionsin module time, visit

www.python.org/doc/current/lib/module-time.html

Note that the program consists almost entirely of print statements. Until now, the
output of print has always displayed on the screen. However, technically speaking, the
default target for print is standard output—an information stream presented to the user
by an application. Typically, standard output is displayed on the screen, but it may be sent
to a printer, written to a file, etc. When a Python program executes as a CGl script, the
server redirects the standard output to the client Web browser. The browser interprets the
headers and tags as if they were part of anormal server response to an XHTML document
request.

Executing the program requires a properly configured server. [Note: In this book, we
use the Apache Web server. For information on obtaining and configuring Apache, refer to
our Python Web resources at www.deitel.com.] Once a server is available, the Web
server site administrator specifieswhere CGI scripts can reside and what names are allowed
for them. In our example, we place the Python filein the Web server’ segi -bin directory.
For UNIX and Linux users, it also is necessary to set the permissions before executing the
program. For example, UNIX and Linux command

chmod 755 f£ig06 02.py

givesthe client the permission to read and execute £1g06 02 .py.
Assuming that the server is on the local computer, execute the program by typing

http://localhost/cgi-bin/fig06 02.py

inthebrowser’sAddress or Location field. If the server resides on adifferent computer,
replace localhost with the server’s hostname or |P address. [Note: The |P address of
localhost isadways127.0.0.1.] Requesting the document causes the server to exe-
cute the program and return the results.

Figure 6.4 illustrates the process of calling a CGI script. First, the client requests the
resource named £ig06 02 .py from the server, just as the client requested down-
loads.html in the previous example (Step 1). If the server has not been configured to
handle CGI scripts, it might return the Python code as text to the client.

A properly configured Web server, however, recognizes that certain resources need to
be processed differently. For example, when the resourceisa CGl script, the script must be
executed by the Web server. A resource usually is designated as a CGlI script in one of two
ways—either it has a special filename extension (such as . cgi or .py), oritislocated in
a specific directory (often egi-bin). In addition, the server administrator must grant
explicit permission for remote access and CGI-script execution.

The server recognizes that the resource is a Python script and invokes Python to exe-
cute the script (Step 2). The program executes, and the text sent to standard output is
returned to the Web server (Step 3). Finally, the Web server prints an additional lineto the
output that indicates the status of the HTTP transaction (such asHTTP/1.1 200 OK, for
success) and sends the whole body of text to the client (Step 4).

%

—

N2
| é pythonhtpl_06.fm Page 203 Saturday, December 8, 2001 1:27 PM

Chapter 6 Introduction to the Common Gateway Interface (CGlI) 203

Web server CGl Python application

Client

@ The getrequest is sent @ After it receives the
from the client to the request, the Web
Web server. server searches

through its system of
resources.

Fig. 6.4 Step 1: The GET request, GET /cgi-bin/£fig06 02.py HTTP/
1.1. (Partlof4.)

Web server CGl Python application

I

> -

Client

The CGl script is run, creating
the output to be sent back to
the client.

Fig. 6.4 Step 2: The Web server starts the CGl script. (Part 2 of 4.)

Web server CGl

B

The output produced from
the script is sent back to the
Web server

Python application

Client

A

Fig. 6.4 Step 3: The output of the script is sent to the Web server. (Part 3 of 4.)

%

\ {%)
| pythonhtpl_06.fm Page 204 Saturday, December 8, 2001 1:27 PM

A

.

%

204 Introduction to the Commmon Gateway Interface (CGl) Chapter 6

Web server CGl Python application

L

The server responds to the
request with an appropriate
message along with the
results of the CGl script.

Client

Fig. 6.4 Step 4: The HTTP response, HTTP/1.1 200 OK. (Part 4 of 4.)

The browser on the client side then processes the XHTML output and displays the
results. It isimportant to note that the browser does not know about the work the server has
done to execute the CGI script and return XHTML output. As far as the browser is con-
cerned, it is requesting a resource like any other and receiving a response like any other.
The client computer is not required to have a Python interpreter installed, because the script
executes on the server. The client simply receives and processes the script’s output.

We now consider amoreinvolved CGI program. Figure 6.5 organizesall CGI environ-
ment variables and their corresponding valuesin an XHTML table, which isthen displayed
in aWeb browser. Environment variables contain information about the execution environ-
ment in which script is being run. Such information includes the current user name and the
name of the operating system. A CGI program uses environment variables to obtain infor-
mation about the client (e.g., the client’s | P address, operating system type, browser type,
etc.) or to obtain information passed from the client to the CGI program.

Line6 importsmodule egi. Thismodule provides severa CGl-related capabilities,
including text-formatting, form-processing and URL parsing. In this example, we use
module cgi to format XHTML text; in later examples, we use module cgi to process
XHTML forms.

1

2

3

4

5 import os
6 import cgi
7

8 def printHeader(title):
9 print
10

11

12

13

14

15

16

Fig. 6.5 CGl program to display environment variables. (Part 1 of 2.)

ﬁ%

*

Q72
| é pythonhtpl_06.fm Page 205 Saturday, December 8, 2001 1:27 PM

Chapter 6 Introduction to the Common Gateway Interface (CGlI) 205
17
18 % title
19

20 rowNumber =
21 backgroundColor =

22
23 printHeader ()
24 print
25
26
27 for item in os.environ.keys():
28 rowNumber +=
29
30 if rowNumber % == 08
31 backgroundColor =
32 else:
33 backgroundColor =
34
35 print
36 % (backgroundColor,
37 cgi.escape(item), cgi.escape(os.environ[item]))
38
39 print
3} Environment Variables - Microsoft Internet Explorer
J File Edit View Favorites Tools Help
J A Back + =) - @ ﬁ | @Search @Favorites @History | %v =3
JAddress I@ http: fflocalhost fogi-bingfigoa_05. py
EEMOTE_ADDER 127.0.0.1
ZEEVEE_MNAWE ary. deitel com
HTTP COMNMNECZTION Eeep-Alive
HITP_USER_AGEMNT Mozllaid. 0 (compatible; MESIE 5.5, Windows NT 5.0)
TWINDIR CVWINITT
imagelsif, imagefz-zhitmap, image/ipeg, magepipes,
HTTP_ACCEPT ap?a\]gic'ilf)nh:fl.ms—excel,papphacgatiiifr%lswjrgd, I:]gp]igcationfpdﬂ **
REQUEST_URI fegi-binfiglé_05.py
SYSTEMEOOT CVWINITT
QUEERY_STEING
SERVEE_PRCTOCOL HITP/1.1
HTTP HOET locathost
REQUEST_METHCOD GET
SERVER. SIGNATURE f@pﬁ%?%i%pacheﬂ.BQO Zerver at arj. dettel com Port El
|@ Daone ’_’_ (2 Local intranet 4

Fig. 6.5 CGl program to display environment variables. (Part 2 of 2.)

Lines 8-18 define function printHeader, which is identical to the function we
defined in the previous example. The main program prints an XHTML table that contains
the environment variables (lines 24-39). The os. environ data member holds al the
environment variables (line 27). This datamember acts like a dictionary; therefore, we can
accessitskeysviathe keys method and itsvaluesviathe [1 operator. Lines 30—33 set the

ﬂ%

é pythonhtpl_06.fm Page 206 Saturday, December 8, 2001 1:27 PM

A

.

%

206 Introduction to the Commmon Gateway Interface (CGl) Chapter 6

background color for each row. For each environment variable, lines 35-37 create a new
row in the table containing that key and the corresponding value.

Notethat line 37 callsfunction cgi . escape and passes as values each environment
variable name and value. This function takes a string and returns a properly formatted
XHTML string. Proper formatting means that special XHTML characters, such asthe less-
than and greater-than signs (< and >), are “escaped.” For example, function escape
returns a string where “<” isreplaced by “&1t;”, “>” isreplaced by “>” and “&” is
replaced by “&”. The replacement signifies that the browser should display a char-
acter instead of treating the character as markup. After we have printed al the environment
variables, we close the table, body and html tags (line 39).

6.4 Sending Input to a CGlI Script

Y ou have seen one example of aCGl script processing preset environment variables. We now
use an environment variable to supply data (e.g., client’s name, search-engine query, etc.) to
aCGl script. This section presents the environment variable QUERY STRING that provides
such amechanism. The QUERY STRING variable contains extrainformation that is append-
edtoaURL inaGET request, following a question mark (?). For example, the URL

www . SOmesite. com/cgi-bin/script.py?state=California

causes the Web browser to request aresource from www . somesite. com. Theresource uses
a CGlI stript (egi-bin/script.py) to execute. The information following the ?
(state=California) isassigned by the Web server to the QUERY STRING environ-
ment variable. Note that the question mark is not part of the resource requested, nor is it
part of the query string; it serves asa delimiter (or separator) between the resource and the
query string.

Figure 6.6 shows a simple example of a CGI script that reads and responds to data
passed through the QUERY STRING environment variable. The CGI script reading the
string needs to know how to interpret the formatted data. In the example, the query string
contains a series of name-value pairs separated by ampersands (&), asin

country=USA&state=California&city=Sacramento

Each name-value pair consists of aname (e.g., country) and avalue (e.g., USA), delim-
ited by an equal sign.

In line 24 of Fig. 6.6, we assign the value of environment-variable QUERY STRING
to variable query. Line 26 then tests to determine whether query isempty. If so, ames-
sage printsinstructing the user to add a query string to the URL. We also provide alink to
aURL that includes a sample query string. Note that query-string data may also be speci-
fied as part of ahypertext link in a Web page.

import os
import cgi

U WNE

Fig. 6.6 Reading input from QUERY STRING. (Part 1 of 3.)

%

—

W2

'ﬁ%

2 {%}
‘ pythonhtpl_06.fm Page 207 Saturday, December 8, 2001 1:27 PM

Chapter 6 Introduction to the Common Gateway Interface (CGlI)

207

7

8 def printHeader(title):

print

% title

20 printHeader ()
21 print

23 query = os.environ| 1

25 if len(query) == 0:

print

31 else:

print
% cgi.escape(query)
pairs = cgi.parse gs(query)

for key, value in pairs.items():
print %\
(key, value)

40 print

/3 QUERY_STRING example - Microsoft Internet Explorer 10l =|
J File Edit View Favorites Tools Help |

J 4= Eack ~ = - @ ﬁ | @Search @Favorites @History | %v »
JAddress I@ http:/ flocalhostcgi-bin/figls_06.py j 6o

|

Name/Value Pairs

Please add some name-value pairs to the TEL above. Or try %

E
|@ http: filocalhost fogi-bingfigla_06. py?name=VYeronicafage=23 ’_’_ E Local intranet 4

Fig. 6.6

Reading input from QUERY STRING. (Part 2 of 3.)

%

N2
| é pythonhtpl_06.fm Page 208 Saturday, December 8, 2001 1:27 PM

A

.

208 Introduction to the Common Gateway Interface (CGl) Chapter 6

3 QUERY_STRING example - Microsoft Internet Explorer =] 3]

J File Edit Wiew Favorites Tools Help

J A Back + = - @ ﬁ | @Search @Favnrites @H\stnry | %v >

J Address I@ httpf flocalhost fegi-binifighé _06.py?name=Veronicaikage=23 j @GU

=

Name/Value Pairs
The query string is wame=eronicakage=23"
You set 'age' to value ['23']

Tou et 'name' to value ["Veronica']

-]
|&] pore [[B Localintranet v
3 QUERY_STRING example - Microsoft Internet Explorer = | EIIEI

J File Edit Wiew Favorites Tools Help |

J R Back v o v @ ﬁ | @Search @Favurites @H\stury | %v »

J Address I@ http: {lacalhast frgi-bingfigOs_06 . py?name=archibaldiage=2 j @GD

El

Name/Value Pairs
The query string is wame=Archibalddeags=2"
Tou set 'age' to value ['2']

Tou set 'name' to value ['Archibald']

|@ Done ,7 ’7 B

Local intranet

Fig. 6.6 Reading input from QUERY STRING. (Part 3 of 3.)

If the query string isnot empty, the value of the query string (lines 31-32) prints. Func-
tion cgi.parse gs parses (i.e., “splits-up”) the query string (line 33). This function
takes as an argument a query string and returns a dictionary of name-value pairs contained
inthe query string. Lines 35-37 contain a £or loop to print the names and values contained
indictionary pairs.

6.5 Using XHTML Forms to Send Input and Using Module cgi to
Retrieve Form Data

If Web page users had to type all the information that the page required into the page’ sURL
every timethe user wanted to access the page, Web surfing would be quite alaborious task.
XHTML provides formson Web pages that provide a more intuitive way for usersto input
information to CGI scripts.

The <form> and </form> tags surround an XHTML form. The <form> tag typi-
cally takes two attributes. The first attribute is action, which specifies the operation to
perform when the user submits the form. For our purposes, the operation usually will beto
call aCGl script to process the form data. The second attribute isme thod, which is either
get or post. In this section, we show examples using both methods. An XHTML form may

ﬂ%

*

é pythonhtpl_06.fm Page 209 Saturday, December 8, 2001 1:27 PM

A

.

Chapter 6 Introduction to the Common Gateway Interface (CGlI) 209

contain any number of elements. Figure 6.7 givesabrief description of severa possibleele-
ments to include.

Figure 6.8 demonstrates a basic XHTML form that uses the HTTP get method. Lines
21-26 output the form. Notice that the method attribute is get and the action attribute
is £ig06_08.py (i.e, the script calls itself to handle the form data once they are sub-
mitted—thisis called a postback).

The form contains two input fields. The first is a single-line text field (type =
"text") with the name word (line 23). The second displays a button, labeled Submit
word, to submit the form data (line 24).

The first time the script executes, QUERY STRING should contain no value (unless
the user has specifically appended a query string to the URL). However, once the user
enters a word into the word text field and clicks the Submit word button, the script is
called again. Thistime, the QUERY STRING environment variable contains the name of
the text-input field (word) and the user-entered value. For example, if the user enters the
word python and clicks the Submit word button, QUERY STRING would contain the
value "word=python".

type attribute

Tag hame (for <input> tags) Description
<input> button A standard push button.
checkbox Displays a checkbox that can be checked (true) or
unchecked (false).
file Displaysatext field and button so the user can specify a

fileto upload to a Web server. The button displays afile
dialog that allows the user to select afile.

hidden Hides datainformation from clients so that hidden form
data can be used only by the form handler on the server.

image The same as submi t, but displays an image rather
than a button.

password Like text, but each character typed appears as an
asterisk (*) to hide the input (for security).

radio Radio buttons are similar to checkboxes, except that

only oneradio button in agroup of radio buttons can be
selected at atime.

reset A button that resets form fields to their default values.

submit A push button that submits form data according to the
form'saction.

text Provides single-linetext field for text input. This
attribute is the default input type.

<select> Drop-down menu or selection box. When used with the
<option> tag, <select> specifiesitemsto select.

<textarea> Multiline areain which text can be input or displayed.

Fig. 6.7 XHTML form elements.

%

—

W2

ﬁ%

2 é;
‘ pythonhtpl_06.fm Page 210 Saturday, December 8, 2001 1:27 PM

210 Introduction to the Common Gateway Interface (CGl)
1
2
3
4
5 import cgi
6
7 def printHeader(title):
8 print
9
10
11
12
13
14
15
16
17 % title
18
19 printHeader ()
20 print
21
22
23
24
25
26
27
28 pairs = cgi.parse()
29
30 if pairs.has key() :
31 print
32
33 % cgi.escape(pairs| 10 1)
34
35 print
3 using "get’ with forms - Microsoft Internet Explorer : =l
J File Edit View Favorites Tools Help |
J 4= Eack ~ = - @ ﬁ | @Search @Favorites @History | %v >
JAddress I@ http: fflocalhost fegi-bingfigoe_08, py j @Go
_ =
Enter one of vour favorite words here:
Erogramming language
=
|@ Daone ’_’_ (2 Local intranet 4
Fig. 6.8 get used with an XHTML form. (Part 1 of 2.)

%

Q72
| é pythonhtpl_06.fm Page 211 Saturday, December 8, 2001 1:27 PM

A

.

%

Chapter 6 Infroduction to the Common Gateway Interface (CGl) 211

/3 using 'get’ with forms - Microsoft Internet Explorer =] 5|

JFiIe Edt Wiew Favorites Tools Help |

J A Back + =p - @ ﬁ ‘ @Search @Favorites @Histnry | @v »

Jnddress I@ http: jflocalhosticgi-bingfigl6_08. pyPword=Python+programming+Hanguage j @GD

=
Enter one of vour faverite words here:
I Submit word |
Tour word is: Python programming language
-]
‘@ Done l_ l_ Local intranet 4

Fig. 6.8 get used with an XHTML form. (Part 2 of 2.)

Line 28 uses function cgi . parse to parse the form data. This function is similar to
function cgi.parse gs, except that cgi . parse parses the data from standard input
(as opposed to the query string) and returns the name-value pairsin a dictionary.

Thus, during the second execution of the script, when the query string is parsed, line
28 assignsthereturned dictionary to variablepairs. If dictionary pairs containsthe key
"word", the user has submitted at |east one word and the program prints the word(s) to the
browser. The words are passed to function cgi . escape in case the input includes some
special characters (such as <, > or aspace). Lines 31-33 use CSSto display theresult. CSS
is discussed in Appendix K, Cascading Style Sheets (CSS). In Fig. 6.8, we see that the
spaces in the address bar are replace by plus signs because Web browsers URL-encode
XHTML-form data they send, which means that spaces are turned into plus signs and that
certain other symbols (such asthe apostrophe) aretrandated into their ASCI I valuein hexa
decimal and preceded with a percent sign.

Using get with an XHTML form passes data to the CGI script in the same way that we
saw in Fig. 6.6—through environment variables. Another way that CGI scripts interact
with serversisviastandard input and the post method. For comparison purposes, let us now
reimplement the application of Fig. 6.8 using post. Notice that the code in the two figures
isvirtually identical. The XHTML form indicates that we are now using the post method
to submit the form data (line 21).

1

2

3

4

5 import cgi
6

7 def printHeader(title):
8 print

9

10

11

12

13

Fig. 6.9 post used with an XHTML form. (Part 1 of 2.)

ﬂ%

—

Q72
| é pythonhtpl_06.fm Page 212 Saturday, December 8, 2001 1:27 PM

212 Introduction to the Commmon Gateway Interface (CGl) Chapter 6
14
S
16
17 % title
18
19 printHeader ()
20 print
21
22
23
24
25
26
27
28 pairs = cgi.parse()
29
30 if pairs.has key() :
31 print
32 \
33 % cgi.escape(pairs| 10 1)
34
35 print
J Using cgi.FieldStorage with form: =l J Using cgi.FieldStorage with form: =l
J File Edit View Favorites Tools Help |ﬁ J File Edit View Favorites Tools Help |
J W Back v = - @ ﬁ | @Search > J A Back + =) - @ ﬁ | @Search >
JAddress I@ http: fflocalhost fogi-bingfigoa_09,py j @Go JAddress I@ http: fflocalhost fegi-bingfigoe_09. py j @Go
= =
Enter one of vour favorite words here: Enter one of vour favorite words here:
W Submitword l— Submitword |
Tour word 12: technology
= =
|@ Daone ’_’_ (2 Local intranet 4 |@ Daone ’_’_ (2 Local intranet 4

Fig. 6.9 post used with an XHTML form. (Part 2 of 2.)

The post method sends data to a CGlI script via standard input. The data are encoded
just asin QUERY STRING (that is, with name-value pairs connected by equals signs and
ampersands), but the QUERY STRING environment variable is not set. Instead, the post
method sets the environment variable CONTENT LENGTH, to indicate the number of char-
acters of datathat were sent (or posted). A benefit of the post method is that the number of
characters of data can vary in size.

Although methods get and post are similar, some important differences exist. A get
request sends form content as part of the URL. A post request posts form content to the end
of an HTTP request. Another difference is the manner in which browsers process
responses. Browsers often cache (save on disk) Web pages, so that when the Web page is
reguested a second time, the browser need not download the page again, but can load the
page from the cache. This process speeds up the user’s browsing experience by reducing
the amount of data downloaded to view a Web page. Browsers do not cache the server

4~ —

\ {%)
| pythonhtpl_06.fm Page 213 Saturday, December 8, 2001 1:27 PM

A

.

%

Chapter 6 Introduction to the Common Gateway Interface (CGlI) 213

responses to post requests, however, because subsequent post requests might not contain
the same information.

This method of handling responses is different from that of handling get requests.
When aWeb-based search engineisused, aget request normally suppliesthe search engine
with the information specified in the XHTML form. The search engine then performs the
search and returns the results as a Web page.

Most Web serverslimit get request query stringsto 1024 characters. If a query string exceeds
= this limit, use the post request.

% Formsthat contain many fields are submitted most often using a post request. Sensitive form
fields, such as passwords, usually are sent using post request.

6.6 Using cgi.FieldStorage to Read Input

Figure 6.10 reimplements the example from Fig. 6.9 to take advantage of a high-level data
abstraction provided by module cgi. Line 28 creates an object of class
cgi.FieldStorage. [Note: Classes are discussed in Chapter 7, Object-Based Pro-
gramming.] In our example, the high-level data type (or class) is caled
cgi.FieldStorage and resemblesthe dictionary returned by the parsing function.

import cgi

def printHeader(title):
print

OCoO~NOUITAWNBE

17 % title

19 printHeader ()
20 print

Fig. 6.10 cgi.FieldStorage used with an XHTML form. (Part 1 of 2.)

ﬂ%

—

Q72
| é pythonhtpl_06.fm Page 214 Saturday, December 8, 2001 1:27 PM

A

.

%

214 Introduction to the Commmon Gateway Interface (CGl) Chapter 6

28 form = cgi.FieldStorage()

29
30 if form.has key():
31 print
32 \
33 % cgi.escape(forml[1.value)
34
35 print
3 Using cgi.FieldStorage with forms. = |E||1| 3 Using cgi.FieldStorage with forms. = |EI|1|
J File Edit Wiew Favorites Tools Help |ﬁ J File Edit View Favorites Tools Help |
J A Back + =) - @ ﬁ | @Search i J A Back + =) - @ ﬁ | @Search i
JAddress I@ http:/ flocalhostcgi-bin/figle_10.py j @60 JAddress I@ http:/ flocalhostcgi-bin/figle_10.py j @60
. =l _ 5|
Enter one of your favorite words here: Enter one of vour favorite words here:
= — 0
Your word is: CGI
= =
E Done ’_’_ (28 Local intranet v |@ Done ’_’_ (2E Local intranst v

Fig. 6.10 cgi.FieldStorage used with an XHTML form. (Part 2 of 2.)

Line 30 callsdictionary method has key and passes £ orm, to determine whether the
dictionary contains the key "word". If so, the user has entered a word, and the program
prints the word to the browser (lines 31-33). Note that, to access the value of any key in a
cgi.FieldStorage object, we must access the value attribute of the key’'s corre-
sponding value.

6.7 Other HTTP Headers

We mentioned at the close of Section 6.2.3 that there are alternatives to the standard HTTP
header

Content-type: text/html

For example,
print

prints the Content - type header with the text/plain content type. If the con-
tent-type Of apageis specified as text/plain, the page is processed as plain text
instead of asan HTML or XHTML document.

In addition to HTTP header Content-type, a CGI script can supply other HTTP
headers. In most cases, the server passes these extra headers to the client untouched. For
example, the following Re £fresh header redirects the client to a new location after a spec-
ified amount of time:

Refresh: "5; URL = http://www.deitel.com/newpage.html"

ﬂ%

*

é pythonhtpl_06.fm Page 215 Saturday, December 8, 2001 1:27 PM

A

%

Chapter 6 Infroduction to the Common Gateway Interface (CGl) 215

Five seconds after the Web browser receivesthis header, the browser regquests the resource
at the specified URL. Alternatively, the Refresh header can omit the URL, in which case
it refreshes the current page at the given time interval.

The CGI protocol indicates that certain types of headers output by a CGI script are to
be handled by the server, rather than be passed directly to the client. Thefirst of theseisthe
Location header. Like the Refresh header, Location redirects the client to a new
location:

Location: http://www.deitel.com/newpage.html

If used with arelative URL (e.g., Location: /newpage.html), theLocation head-
er indicates to the server that the redirection isto be performed on the server side, without
sending the Location header back to the client. In this case, it appears to the user as if
the browser originally requested that resource. When a Python script usesthe Location
header, the Content - type header is not necessary because the new resource hasits own
content type.

The CGI specification also includes a Sta tus header, which tellsthe server to output
astatus-header line (e.g., HTTP/1.1 200 OK). Normally, the server sends the appropriate
status line to the client (adding, for example, the 200 OK status code in most cases). How-
ever, CGI allowsyou to change the response statusiif you so desire. For example, sending a

Status: 204 No Response

header indicates that, although the request was successful, the browser should continue to
display the same page. This header might be useful if you want to alow users to submit
forms without moving to a new page.

We now have covered the fundamental s of the CGI protocol. To review, the CGI pro-
tocol alows scripts to interact with serversin three basic ways:

1. through the output of headers and content to the client via standard output;

2. by the server’s setting of environment variables (including the URL-encoded
QUERY STRING) whose values are available within the script (viaos . envi-
ron); and

3. through posted, URL-encoded data that the server sends to the script’s standard
input.

6.8 Example: Interactive Portal

Figure6.11 and Fig. 6.12 show the implementation of a simple interactive portal (login
page) for the fictional Bug2Bug Travel Web site. The example queriesthe client for aname
and password, then displays information based on data entered. For simplicity, the example
does not encrypt the data sent to the server.

Figure 6.11 displays the opening page. It is a static XHTML document containing a
form that posts data to the £ig06_12.py CGI script (line 14). The form contains one
field to collect theclient’ sname (line 17) and oneto collect the member password (line 20).
To make this XHTML file available from an Apache server, place £ig06 11.html in
the root directory of the Apache server (e.g., Apache Group\Apache\htdocs). For
more information on Apache servers, visit www . apache. org.

%

—

W2

l @é
‘ pythonhtpl_06.fm Page 216 Saturday, December 8, 2001 1:27 PM

216 Introduction to the Common Gateway Interface (CGl) Chapter 6
1 <?xml version = encoding = ?>

2 <!DOCTYPE html PUBLIC

3

4 >

©

6

7

8 <html xmlns = >

9 <head><title>Enter here</title></head>
10
11 <body>
12 <hl>Welcome to Bug2Bug Travel</hl>
13
14 <form method = action = >
15
16 <p>Please enter your name:

17 <input type = name = />

18
19 Members, please enter the password:

20 <input type = name = />

21 </p>
22
23 <p style = >
24 Note that password is not encrypted.

25 <input type = />
26 </p>
27
28 </form>
29 </body>

30 </html>

J Enter here - Microsoft Internet Explorer =] 3]
J File Edit ‘Wiew Faworites Tools Help |

J 4= Back -~ = - @ ﬁ | @Saarch @Favorites @History | >
J Address I@ hitkpef flocalhostfigoa_11. heml j @Go

Z

Welcome to Bug2Bug Travel

Please enter your natne:

IJuIie Fughy

Members, please enter the password

Note that password is not encrypted.

Subrnit Query k

|@ Dane l_l_ (B Local intranet

[
4

Fig. 6.11 Interactive portal to create a password-protected Web page.

Figure 6.12 is the CGlI script that processes the data received from the client. Line 20
retrievestheform datain acgi . FieldStorage instance and assigns the result to local

- 4~ ~¢e

Q72
| é pythonhtpl_06.fm Page 217 Saturday, December 8, 2001 1:27 PM

A

Chapter 6 Infroduction to the Common Gateway Interface (CGl) 217

variable form. The i £ structurethat beginsin line 22 testswhether £orm containsthe key
"name". If form does not contain that key, the user has not entered a name, and we
print aLocation HTTP header (line 23) to redirect the user to the XHTML filewhere
the user can enter aname (£1g06 11.html). Thedocument £ig06 11.html iScon-
tained in the Web server’ s main document root (asindicated by the / that precedesthe page
name). The effect of line 23 is that clients who try to access £ig06 12 .py directly,
without going through the login procedure, must enter through the portal.

import cgi

def printHeader(title):

CoOo~NOOOR~AWNE

17 % title
19 form = cgi.FieldStorage()

21 if not form.has key()
22 print

23 else:

24 printHeader (

25 print

26 print

~

% form|[1 .value

29 if not form.has key():
30 print

32 elif forml[1 .value
33 print

36 else:
37 print

42 print

Fig. 6.12 Interactive portal handler. (Part 1 of 2.)

ﬂ%

—

W2

2 é;
‘ pythonhtpl_06.fm Page 218 Saturday, December 8, 2001 1:27 PM

218 Introduction to the Common Gateway Interface (CGl) Chapter 6

/3 Bug2Bug Travel - Microsoft Internet Explorer =10l x|

J Fle Edit ‘iew Favorites Tools Help

J A Back + mp - @ ﬁ | @Search @Favmntes @Histnry | »
| Address [@] hitp:/localhostegi-binfigoe_t2.py x| P
[

Welcome, Julie Rugby!
Here are our weekly specials:
» Boston to Tatwan for $300

Became a mamber today for more great deals!

|@ Done ’_I_ (5 Local intranet v

/3 Bug2Bug Travel - Microsoft Internet Explorer =10l x|

J Fle Edit ‘iew Favorites Tools Help

J A Back + mp - @ ﬁ | @Search [Favorites @Histnry | >

| Address [@] hitp:/localhostegi-binfigoe_t2.py x| P

=l

Welcome, Julie Rugby!
Here are our weekly specials:
» Boston to Tatwan for $300

Sorry, you have entered the wrong password, If you have the
carrect password, enter it to see mare specials.

[
|@ Daone ’_I_ (5 Local intranet v

j Bug2Bug Travel - Microsoft Internet Explorer 1Ol x|

J A Back - =) - @ ﬁ | @Search @Favontes @History | >

Jnddress I@ http: [flocalhost /cgi-bingfighe_12.py j @Go

Bl

J File Edit VYiew Favorites Tools Help

Welcome, Julie Rugby!

Here are our weekly specials:

s Boston to Tatwan for $300

Current specials just for members:

s San Diego to Hong Fong for 250

El
|@ Done ’_I_ (B Local intranet v

Fig. 6.12 Interactive portal handler. (Part 2 of 2.)

é pythonhtpl_06.fm Page 219 Saturday, December 8, 2001 1:27 PM

A

Chapter 6 Introduction to the Common Gateway Interface (CGlI) 219

If auser has entered a name, we print a greeting that includes the user’ s name and the
weekly specials (lines 26-28). Line 30 tests whether the user entered a password. I the user
has not entered a password, we invite the user to become amember (line 31). If the user has
entered a password, line 32 determines whether the password is equal to the string
"Coast2Coast". If true, we print the member specialsto the browser. Note that the pass-
word, weekly specials and member specials are hard-coded (i.e., their values are supplied
in the code). If the user-entered password does not equal "Coast2Coast™, the applica-
tion requests the user to enter avalid password (lines 36-38).

e In response to each CGI request, a Web server executes a CGI program to create the re-

=) sponse to the client. This process often takes more time than returning a static document.

When implementing a Web site, define content that does not change frequently as static con-

tent. This practice allows the Web server to respond to clients more quickly than if only CGI
scripting were used.

6.9 Internet and World Wide Web Resources

www.w3.0org/CGI

The World Wide Web Consortium page on CGl is concerned with security issuesinvolving the Com-
mon Gateway Interface. This page provides links to CGI specifications, as indicated by the National
Center for Supercomputing Applications (NCSA).

www.nacs.uci.edu/indiv/ehood/MIME/MIME.html
Thisdocument provideslinksto MIME RFCs (Reguest for Comments), MIME related RFCs and oth-
er MIME-related information.

www . speakeasy.org/~cgires
Thisisa collection of tutorials and scripts related to CGl.

www.fastcgi.com
Thisisthe home page of fast CGl—an extension to CGl that for high performance I nternet applications

bel-epa.com/pyapache
This site is the resource center for PyApache. PyApache isamodule that embeds the Python in-
terpreter into the Apache server.

www .modpython.org
Thisis the home page of mod_python. Modulemod_python is another module that embeds the

Python interpreter within the Apache server. This module lets scripts run much faster than traditional
CGl scripts.

SUMMARY

» The Common Gateway Interface (CGI) describes a set of protocols through which applications
(commonly called CGI programs or CGI scripts) can interact with Web servers and (indirectly)
with clients.

» The content of dynamic Web pages does not require modification by programmers, however the
content of static Web pages requires modification by programmers.

» The Common Gateway Interface is“common” in the sense that it is not specific to any particular
operating system (such as Linux or Windows) or to any one programming language.

» HTTP describes a set of methods and headers that allow clients and servers to interact and ex-
change information in a uniform and predictable way.

%

—

é pythonhtpl_06.fm Page 220 Saturday, December 8, 2001 1:27 PM

220 Introduction to the Common Gateway Interface (CGl) Chapter 6

A Web pagein its simplest form is nothing more than an XHTML (Extensible Hypertext Markup
Language) document. An XHTML document isjust aplain-text file containing markings (markup,
or tags) that describeto aWeb browser how to display and format the information inthe document.

Hypertext information creates links to different pages or to other portions of the same page.

Any XHTML file availablefor viewing over the Internet hasa URL (Universal Resource L ocator)
associated with it. The URL contains information that directs a browser to the resource that the
user wishes to access.

The hostname is the name of the computer where a resource (such as an XHTML document) re-
sides. The hostname is trandated into an | P address, which identifies the server on the Internet.

To request aresource, the browser first sends an HT TP request message to the server. The server
responds with aline indicating the HTTP version, followed by a numeric code and a phrase de-
scribing the status of the transaction.

The server normally sends one or more HTTP headers, which provide additional information
about the data being sent. The header or set of headersisfollowed by ablank line, which indicates
that the server has finished sending HTTP headers.

Oncethe server sendsthe contents of the requested resource, the connection isterminated. Thecli-
ent-side browser processes the XHTML it receives and displays the results.

get isan HTTP method that indicates that the client wishes to obtain a resource.

The function time.ctime, when caled with time.time (), returns a string value such as
Wed Jul 18 10:54:57 2001.

Redirecting output means sending output to somewhere other than the standard output, which is
normally the screen.

Just as standard input refersto the standard method of input into a program (usually the keyboard),
standard output refers to the standard method of output from a program (usually the screen).

If aserver is not configured to handle CGlI scripts, the server may return the Python program as
text to display in aWeb browser.

A properly configured Web server will recognizea CGlI script and executeit. A resourceisusualy
designated as a CGl script in one of two ways: Either it has a specific filename extension or it is
located in aspecific directory. The server administrator must explicitly give permission for remote
clientsto access and execute CGlI scripts.

When the server recognizes that the resource requested is a Python script, the server invokes Py-
thon to execute the script. The Python program executes and the Web server sends the output to
the client as the response to the request.

With a CGI script, we must explicitly include the Content-type header, whereas, with an
XHTML document, the header would be added by the Web server.

The CGI protocol for output to be sent to a Web browser consists of printing to standard output
the Content - type header, ablank line and the data (XHTML, plain text, etc.) to be output.
Module egi provides functions that simplify the creation of CGI scripts. Among other things,
cgi includes aset of functionsto aid in dynamic XHTML generation.

The os.environ dictionary contains the names and values of all the environment variables.
CGl-enabled Web servers set environment variables that provide information about both the serv-
er’'sand the client’s script-execution environment.

The environment variable QUERY STRING provides a mechanism that enables programmers to
supply any type of datato CGI scripts. The QUERY STRING variable contains extrainformation
that is appended to a URL, following a question mark (?). The question mark is not part of the
resource requested or of the query string. It smply serves as a delimiter.

%

é pythonhtpl_06.fm Page 221 Saturday, December 8, 2001 1:27 PM

Chapter 6 Introduction to the Common Gateway Interface (CGlI) 221

» Dataput into aquery string can be structured in avariety of ways, provided that the CGI script that
reads the string knows how to interpret the formatted data.

» Forms provide another way for usersto input information that is sent to a CGI script.

* The <form> and </ form> tags surround an XHTML form.

» The<form> tag generally takestwo attributes. Thefirst attributeisaction, which specifiesthe
action to take when the user submits the form. The second attribute isme thod, which iseither get
or post.

» Using get with an XHTML form causes data to be passed to the CGI script through environment
varisble QUERY STRING, which is set by the server.

» Web browsers URL-encode XHTML-form data that they send. This means that spaces are turned
into plus signs and that certain other symbols (such as the apostrophe) are translated into their
ASCII valuein hexadecima and preceded with a percent sign.

» A CGlI script can supply HTTP headersin addition to Content - type. In most cases, the server
passes these extra headers to the client untouched.

» TheLocation header redirectstheclient to anew location. If used with arelative URL, the Lo -
cation header indicatesto the server that the redirection isto be performed without sending the
Location header back to the client.

» The CGI specification also includes a status header, which informs the server to output a cor-
responding status header line. Normally, the server adds the appropriate status line to the output
sent to the client. However, CGI alows users to change the response status.

TERMINOLOGY

#1 directive get method

? in query string HTTP header
127.0.0.11Paddress hidden attribute value (type)
action dtribute HTML (Hypertext Markup Language)
button atribute HTTP (Hypertext Transfer Protocol)
protocol HTTP method

CSS (Cascading Style Sheet) HTTP transaction

CGI (Common Gateway Interface) image attribute value (type)

CGI environment variable image/gif MIME type

.cgi fileextension input HTML eement

cgi module IP (Internet Protocol) address

CGl Script localhost

cgi module Location HTTP header
cgi.escape function method of XHTML form
cgi.FieldStorage object MIME (Multipurpose Internet Mail Extensions)
cgi.parse function os.environ data member
cgi.parse gs function password attribute value (type)
cgi-bin directory .py file extension

checkbox attribute value (type) post method

CONTENT LENGTH portal

Content-type HTTP header pound-bang directive

domain name system (DNS) QUERY STRING environment variable
dynamic Web content radio attribute value (type)
environment variable redirect

file attribute value (type) Refresh HTTP header

form XHTML dement (<form>..</form>) relative URL

4~ —

é pythonhtpl_06.fm Page 222 Saturday, December 8, 2001 1:27 PM

222 Introduction to the Common Gateway Interface (CGl) Chapter 6
reset attribute value (type) time. time function

select XHTML element (form) title XHTML element

sh-bang directive (#1!) (<titles>..</title>)
static Web content URL (Universal Resource Locator)
Status HTTP header value attribute of

submi t attribute value (type) cgi.FieldStorage object
text attribute value (type) virtual URL

text/html MIME type document root

text/txt MIME type XHTML (Extensible Hypertext
textarea XHTML dement Markup Language)

time module XHTML form

time.ctime function XHTML tag

SELF-REVIEW EXERCISES

6.1 Fill in the blanks in each of the following statements:

a)
b)

©)
d)

e

f)
)

h)
i)
)

CGl isan acronym for .
HTTP describes aset of and that allow clientsand serverstoin-
teract.
Thetrandation of ahostnameinto an IP address normally is performed by a
The , which is part of the HTTP header sent with every type of data, hel ps
the browser determl ne how to process the data it receives.

are reserved memory locations that an operating systems maintains to keep
track of system information.
Function takes a string and returns a properly formatted XHTML string.
Variable contains extra information that is appended to a URL in a get re-
quest, following a question mark.
The default target for print is
The data member contains all the environment variables.
XHTML alow usersto input information to a CGI script.

6.2 State whether each of the following istrue or false. If false, explain why.

a)
b)

0)
d)

€)
f)
9
h)

i)
)

The CGlI protocol is not specific to any particular operating system or programming lan-
guage.

Function time . ctime returnsafloating-point value that represents the number of sec-
onds since the epoch.

Thefirst directive of a CGI script provides the location of the Python interpreter.

The forward dash character acts as adelimiter between the resource and the query string
inaURL.

CGl scripts are executed on the client’ s machine.

Thestatus: 204 No Response header indicates that a request to the server failed.
Redirection sends output to somewhere other than the screen.

The action attribute of the form element specifies the action to take when the user
submits the form.

A post request posts form contents to the end of an HTTP request.

Form data can be stored in an object of classcgi . FormStorage.

ANSWERS TO SELF REVIEW EXERCISES

6.1 a) Common Gateway Interface. b) methods, headers. ¢) domain name server (DNS). d) MIME
type. €) Environment variables. f) cgi.escape. () QUERY STRING. h)standard output.
i) os.environ.j) forms.

ﬂ%

\ {%)
| pythonhtpl_06.fm Page 223 Saturday, December 8, 2001 1:27 PM

Chapter 6 Introduction to the Common Gateway Interface (CGlI) 223

6.2 a) True. b) False. Function ctime. time takes a floating-point value that represents the
number of seconds since the epoch as an argument and returns a human-readable string representing
the current time. ¢) True. d) False. A question mark acts as a delimiter between the resource and the
query string in aURL. €) False. The server executes CGI scripts. f) False. The Status: 204 No
Response header indicates that, although the request was successful, the browser should continue
to display the same page. g) True. h) True. i) True. j) False. Form data can be stored in an object of
classcgi.FieldStorage

EXERCISES
6.3 Write a CGI script that prints the squares of the integers from 1 to 10 on separate lines.

6.4 Modify your solution to Exercise 6.3 to display its output in an XHTML table. The left col-
umn should be the number, and the right column should be the square of that number.

6.5 Writea CGl script that receives asinput three numbersfrom the client and returns astatement
indicating whether the three numbers could represent an equilateral triangle (all three sides are the
same length), an isosceles triangle (two sides are the same length) or aright triangle (the square of
onesideisequal to the sum of the squares of the other two sides).

6.6 Write asoothsayer CGI program that allowsthe user to submit a question. When the question
is submitted, the server should display arandom response from alist of vague answers.

6.7 You are provided with a portal page (see the code and output bel ow) where people can buy
products. Write the CGI script to enable thisinteractive portal. The user should specify how many of
each item to buy. Thetotal cost of the items purchased should be displayed to the user.

1

2

3

4

5

6 <html>

7 <head>

8 <title>Buy Something</title>

9 </head>

10

11 <body>

12 <hl>Clearance!</hl>

13 <p>Please enter how many of each product you would like to
14 order into the box in the right-hand column.</p>
15

16 <form method = action =

17 >
18

19 <table width = border = >

20 <tr>

21 <th>Product Name</th>

22 <th>Description</th>

23 <th>Price</th>

24 <th>0Order</th>

25 </tr>

26

ﬂ%

W2

2 é;
‘ pythonhtpl_06.fm Page 224 Saturday, December 8, 2001 1:27 PM

224 Introduction to the Common Gateway Interface (CGl) Chapter 6
27 <tr>
28 <td>CD</td>
29 <td>Buy this really cool CD</td>
30 <td>$12.00</td>
31 <td><input type = name = /></td>
32 </tr>
33
34 <tr>
35 <td>Book</td>
36 <td>Buy this really cool book</td>
37 <td>$19.99</td>
38 <td><input type = name = /></td>
39 </tr>
40
41 <tr>
42 <td>Airplane</td>
43 <td>Buy this really cool airplane</td>
44 <td>$1,000,000</td>
45 <td><input type = name = /></td>
46 </tr>
47 </table>
48
49 <input type = value = >
50 </ form>
51 </body>

52 </html>

/3 Buy Something - Microsoft Internet Explorer =]
J File Edit View Favorites Tools Help |

J A Back + =) - @ ﬁ | @Search @Favorites @History | %v E‘% »

| ddress [&] ttpflocalhostjex0e_o7.htri | @
=
Clearance!
Please enter how many of each product you would like to order mto the box m the
right-hand column.
|Product Name | Description | Price | Order
D Buy this really cool CD ($12.00 ||
|Book |Buy this really cool book |$l9.99 ||
(Airplane Buy this really cool airplane |$1,000,000 |
| subimit |

[
|@ Daone ’_’_ (2 Local intranet 4

6.8 Writea CGl script for a TV show survey. List five TV shows, let the survey participant rank
the TV showswith numbersfrom 1 (least favorite) to 5 (most favorite). Display the participant's most
favorite TV show.

4~ ~¢e

é pythonhtpl_07.fm Page 225 Saturday, December 8, 2001 2:29 PM

"

Object-Based
Programming

Objectives

* To understand the software-engineering concepts of
“encapsulation” and “data hiding.”

* To understand the notions of data abstraction and
abstract datatypes (ADTS).

* To create Python ADTSs, namely classes.

 To understand how to create, use and destroy objects
of aclass.

* To control accessto object attributes and methods.

* To begin to appreciate the value of object orientation.

My object all sublime

| shall achievein time.

W. S. Gilbert

Isit aworld to hide virtuesin?

William Shakespeare, Twelfth Night

Your public servants serve you right.

Adlai Stevenson C 1
Classes struggle, some classes triumph, others are o n St r u Ctl o n
eliminated.
Mao Zedong

This above all: to thine own self be true.
William Shakespeare, Hamlet

o 4~ =

é pythonhtpl_07.fm Page 226 Saturday, December 8, 2001 2:29 PM

A

.

226 Object-Based Programming Chapter 7

Outline

7.1 Introduction
7.2 Implementing a Time Abstract Data Type with a Class
7.3 Special Attributes
7.4 Controlling Access to Attributes
7.4.1 Getand Set Methods
7.4.2 Private Attributes
7.5 Using Default Arguments With Constructors
7.6 Destructors
7.7 Class Attributes
7.8 Composition: Object References as Members of Classes
7.9 Data Abstraction and Information Hiding
7.10 Software Reusability

Summary ¢ Terminology ¢ Self-Review Exercises » Answers to Self-Review Exercises ¢ Exercises

7.1 Introduction

Now we begin our deeper study of object orientation. Through our discussion of Python
programsin Chapters 2—6, we have already encountered many basic concepts (i.e., “object
think”) and terminology (i.e., “ object speak”). Let us briefly overview some key concepts
and terminology of object orientation. Object-oriented programming (OOP) encapsulates
(i.e., wraps) data (attributes) and functions (behaviors) into components called classes. The
data and functions of aclass are intimately tied together. A classislike a blueprint. Using
a blueprint, a builder can build a house. Using a class, a programmer can create an object
(also called an instance). One blueprint can be reused many times to make many houses.
One class can be reused many times to make many objects of the same class. Classes have
aproperty called information hiding. This means that, although objects may know how to
communicate with one another across well-defined interfaces, one object normally should
not be alowed to know how another object is implemented—implementation details are
hidden within the objects themselves. Surely it is possible to drive a car effectively without
knowing the details of how engines, transmissions and exhaust systems work internally.
We will see why information hiding is crucial to good software engineering.

In C and other procedural programming languages, programming tends to be action-
oriented; in Python, programming can be object-oriented. In procedural programming, the
unit of programming is the function. In object-oriented programming, the unit of program-
ming is the class from which objects eventually are instantiated (i.e., created).

Procedural programmers concentrate on writing functions. Groups of actions that per-
form some task are formed into functions, and functions are grouped to form programs.
Data certainly isimportant in procedural programming, but the view isthat data exists pri-
marily in support of the actions that functions perform. The verbs in a system specifica-
tion—a document that describes the services an application should provide—help the

%

*

é pythonhtpl_07.fm Page 227 Saturday, December 8, 2001 2:29 PM

A

.

Chapter 7 Object-Based Programming 227

procedural programmer determinethe set of functions that will work together to implement
the system.

Object-oriented programmers concentrate on creating their own user-defined types,
called classes. Classes are also referred to as programmer-defined types. Each class con-
tains data and the set of functions that manipulate the data. The data components of a class
are called attributes (or data members). The functional components of a class are called
methods (or member functions, in other object-oriented languages). The focus of attention
in object-oriented programming is on classes rather than on functions. The nouns in a
system specification help the object-oriented programmer determine the set of classes that
will be used to create the objects that will work together to implement the system.

A central theme of this book is “ reuse, reuse, reuse.” We will carefully discuss a number of
techniquesfor “ polishing” classesto encouragereuse. Wefocuson* crafting valuable class-
es’ and creating valuable “ software assets.”

7.2 Implementing a Time Abstract Data Type with a Class

Classes enable programmers to model objectsthat have data (represented as attributes) and
behaviors—or operations—(represented as methods). Methods are invoked in response to
messages sent to objects. A message corresponds to a method call sent from one object to
another.

Classes simplify programming because the clients (or users of the class) need to be
concerned only with the operations encapsulated or embedded in the object—the object
interface. Such operations usually are designed to be client-oriented rather than implemen-
tation-oriented. Clients do not need to be concerned with a class's implementation
(although clients, of course, want correct and efficient implementations). When an imple-
mentation changes, implementation-dependent code must change accordingly. Hiding the
implementation eliminates the possibility of other program parts becoming dependent on
the details of the class implementation.

Often, classes do not have to be created “from scratch.” Rather, they may be derived
from other classesthat provide attributes and behaviorsthe new classes can use—or classes
can include objects of other classes as members. Such software reuse can greatly enhance
programmer productivity. Deriving new classes from existing classesis called inheritance
and is discussed in detail in Chapter 9, Object-Oriented Programming: Inheritance.

Figure 7.1 containsasimple definition for class Time. The class contains information
that describes the time of day and contains methods for printing the time in two formats.
The class maintains the time internally in a 24-hour format (i.e., military time), but allows
the client to display the time in either 24-hour format or in “standard” (AM, PM) format.
Later in this section, we present a program (Fig. 7.2) that demonstrates how to create an
object of class Time.

Keyword class (line 4) begins a class definition. The keyword is followed by the
name of the class (Time), which isfollowed by acolon (:). Thelinethat contains keyword
class and the class nameiscaled the class' s header. The body of the classis an indented
code block (lines 5-37) that contains methods and attributes that belong to the class. Class
names usually follow the same naming conventions as variable names, except that the first
word of the class nameis capitalized.

%

—

Q72
| é pythonhtpl_07.fm Page 228 Saturday, December 8, 2001 2:29 PM

%

228 Object-Based Programming Chapter 7
1
2
3
4 class Time:
5
6
7 def init (self):
8
9
10 self.hour =
11 self.minute =
12 self.second =
k3
14 def printMilitary(self):
5
16
17 print % \
18 (self.hour, self.minute, self.second),
19
20 def printStandard(self):
21
22
23 standardTime =
24
25) if self.hour == or self.hour ==
26 standardTime +=
27 else:
28 standardTime += % (self.hour %
29
30 standardTime += % (self.minute, self.second)
31
32 if self.hour < :
33 standardTime +=
34 else:
35 standardTime +=
36
37 print standardTime,
Fig. 7.1 Time class—contains attributes and methods for storing and displaying

)
)

Line 5 contains the class' s optional documentation string—a string that describes the
class. If aclass contains a documentation string, the string must appear in the line or lines
following the class header. A user can view aclass' s documentation string by executing the

time of day.

Common Programming Error 7.1

Common Programming Error 7.2

Failureto include a colon at the end of a class definition header is a syntax error.

following statement

Failure to indent the body of a classis a syntax error.

ﬂ%

\ {%)
| pythonhtpl_07.fm Page 229 Saturday, December 8, 2001 2:29 PM

A

.

Chapter 7 Object-Based Programming 229

print ClassName. doc

Modules, methods and functions also may specify a documentation string.
Good Programming Practice 7.1
@ Include documentation strings, where appropriate, to enhance program clarity.

Good Programming Practice 7.2

@ By convention, docstrings are triple-quoted strings. This convention allows the class author
to expand a program’ s documentation (e.g., by adding several more lines) without having to
change the quote style.

Line 7 beginsthe definition for special method init |, theconstructor method of
the class. A constructor is a special method that executes each time an object of aclassis
created. The constructor (method _ init) initializes the attributes of the object and
returns None. Python classes may define several other special methods, identified by
leading and trailing double-underscores () inthename. We discuss many of these special
methods in Chapter 8, Customizing Classes.

—s- Common Programming Error 7.3
@ Returning a value other than None from a constructor is a fatal, runtime error.

Ensure that objects are initialized before client code invokes those objects’ methods. Do not
rely on client code to initialize objects properly.

Good Programming Practice 7.3

When appropriate (almost always), provide a constructor to ensure that every object isini-
tialized with meaningful values.

All methods, including constructors, must specify at least one parameter. This param-
eter represents the object of the class for which the method is called. This parameter often
isreferred to asthe classinstance object. Thisterm can be confusing, so we refer to the first
argument of any method as the object reference argument, or simply the object reference.
Methods must use the object reference to access attributes and other methods that belong
to the class. By convention, the object reference argument iscalled self.

Common Programming Error 7.4

@ Failure to specify an object reference (usually called sel £) asthefirst parameter in a meth-
od definition causes fatal logic errors when the method isinvoked at runtime.

Good Programming Practice 7.4

@ Namethefirst parameter of all methods se1 £. This naming convention hel ps ensure confor -
mity across Python programs written by different programmers.

Each object hasitsown namespacethat containsthe object’ s methods and attributes. The
class's congructor starts with an empty object (sel£) and adds attributes to the object’s
namespace. For example, the constructor for class Time (lines 7-12) adds three attributes
(hour,minute and second) to the new object’ snamespace. Line 10 bindsttribute hour
to the object’ s namespace and initializes the attribute’ s val ue to 0. Once an attribute has been
added to an object’ s namespace, a client that uses the object may access the attribute’ s value.

ﬂ%

—

é pythonhtpl_07.fm Page 230 Saturday, December 8, 2001 2:29 PM

%

230 Object-Based Programming Chapter 7

Class Time aso defines methods printMilitary and printStandard. Notice
that methods can specify adocstring, in the line or lines following the method header. In this
example, each method specifies one parameter (sel £) that refersto the object of the classfor
which the method isinvoked. Each method accessesthe object’ s attributes through parameter
self. Method printMilitary (lines14-18) printsthetimein military (24-hour) format.
Method printStandard (lines 20-37) printsthe timein standard (12-hour) format.

Once aclass has been defined, programs can create objects of that class. Many objects
of aclass can exist and programmers can create objects as necessary. This is one reason
why Python is said to be an extensible language. The program in Fig. 7.2 creates an object
of class Time, defined in Fig. 7.1. We first import the class definition from file
Timel.py—thefilethat containsthe class definition. Line 4 imports the definitionin the
same way a program would import any element from a module.

1

2

3

4 from Timel import Time

5

6 timel = Time()

7

8

9 print

10 print , timel.hour

11 print , timel.minute

12 print , timel.second

13

14

15 print ’
16 timel.printMilitary ()

17

18 print 7
19 timel.printStandard()

20

21

22 print

23 timel.hour =

24 print ,

25 timel.printMilitary ()

The attributes of timel are:
timel.hour: 0

timel.minute: 0
timel.second: 0

Calling method printMilitary: 00:00:00
Calling method printStandard: 12:00:00 AM

Changing timel's hour attribute...
Calling method printMilitary after alteration: 25:00:00

Fig. 7.2 Creating an object.

%

é pythonhtpl_07.fm Page 231 Saturday, December 8, 2001 2:29 PM

A

.

Chapter 7 Object-Based Programming 231

One of the fundamental principles of good software engineering isthat a client should
not need to know how a class is implemented to use that class. Python's use of modules
facilitates this data abstraction—the program in Fig. 7.2 simply imports the Time defini-
tion and uses class Time without knowing how the class isimplemented.

Clients of a class do nost need access to the class's sour ce code to use the class.

To create an object of class Time, simply “call” the class name asif it were afunction
(line 6). This call invokes the constructor for class Time. Even though the class definition
stipulates that the constructor (__init) takes one argument, line 6 does not pass any
argumentsto the constructor. Python insertsthe first (object reference) argument into every
method call, including a class's constructor call. The constructor initializes the object’s
attributes. Once the constructor exits, Python assigns the newly created object to timel.

Client code must access an object’ s attributes through areference to that object. Lines
10-12 demonstrate how a program can access an object’s attributes through the dot (.)
access operator. The name of the object appears to the left of the dot, and the attribute
appears to the right of the dot. The output demonstrates the initial values that the con-
structor assigned to attributes hour, minute and second.

Client code can access an object’ smethodsin asimilar manner. Line 16 callstimel’s
printMilitary method. Notice again that the method call passes no arguments, even
though the method definition specifies one parameter called sel £. Python passes arefer-
ence to timel in the printMilitary cal, so the method may access the object’s
attributes.

Line 23 modifies the vaue assigned to attribute t imel . hour. The output from lines
24-25 shows a problem that often arises when aclient indiscriminately accesses an object’s
data. The meaning of attribute hour isunclear, because that data member now has avalue
of 25. We say that the data member isin aninconsistent state (it containsan invalid value).
Some other programming languages provide ways to prevent a client from accessing an
object’s data. Python, on the other hand, does not provide such strict programming con-
structs. Later in this chapter, we discuss the various ways Python programmers ensure that
an object’ sdataremainsin a consistent state.

—— Common Programming Error 7.5
@ Directly accessing an object’ s attributes may cause the data to enter an inconsistent state.

7.3 Special Attributes

Classes and objects of classes both have specia attributes that can be manipulated. These
attributes, which Python creates when aclassis defined or when an object of aclassis cre-
ated, provide information about the class or object of a class to which they belong.
Figure 7.3 lists the specia attributes that all classes contain. The interactive session in
Fig. 7.4 prints the value of each of these attributes for class Time.

Additionaly, al objects of classes have attributes in common. Figure 7.5 lists these
attributes, and the interactive session in Fig. 7.6 prints the attributes’ values for an object
of class Time. Notice that objects can accessthe doc and module_ attributes
that belong to the object’ s class.

%

—

é pythonhtpl_07.fm Page 232 Saturday, December 8, 2001 2:29 PM

232 Object-Based Programming Chapter 7
Attribute Description
__bases A tuplethat contains base classes from which the class directly inher-

its. If the class does not inherit from other classes, the tuple is empty.
[Note: We discuss base classes and inheritance in Chapter 9, Object-
Oriented Programming: Inheritance]

__dict__ A dictionary that corresponds to the class's namespace. Each key-
value pair represents an identifier and its value in the namespace.

__doc___ A class's docstring. If the class does not specify adocstring, the value
iSNone.

__module A string that contains the module (file) name in which the classis
defined.

__name___ A string that contains the class's name.

Fig. 7.3 Special attributes of a class.

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32

Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>>

>>> from Timel import Time

>>> print Time. bases

()

>>> print Time. dict

{'printMilitary': <function printMilitary at 0x0079BF80>,

' module ': 'Timel', ' doc ': 'Time abstract data type (ADT)
definition', ' init ': <function init at 0x0077ABO00>,
'printStandard': <function printStandard at 0x00769990>}

>>>

>>> print Time. doc

Time abstract data type (ADT) definition
>>> print Time. module

Timel

>>> print Time. name

Time

Fig. 7.4 Special attributes of a class.

Attribute Description
__class__ A reference to the class from which the object was instantiated.
__dict__ A dictionary that corresponds to the object’s namespace. Each key-

value pair represents an identifier and its value in the namespace.

Fig. 7.5 Special attributes of an object of a class.

4~ ~¢e

é pythonhtpl_07.fm Page 233 Saturday, December 8, 2001 2:29 PM

A

.

Chapter 7 Object-Based Programming 233

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32

Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>>

>>> from Timel import Time

>>> timel = Time()

>>> print timel. class

Timel.Time

>>> print timel. dict

{'second': 0, 'minute': 0, 'hour': 0}

>>> print timel. doc

Time abstract data type (ADT) definition

>>> print timel. module

Timel

Fig. 7.6 Special attributes of an object.

These attributes contribute to Python’s strong introspection capabilities (i.e., Python's
ability to provideinformation about itself). Many programmers use these capabilitiesto create
advanced, dynamic and flexible applications. In this text, we use these capabilities mostly to
explore how Python works and to further our understanding of programming concepts.

7.4 Controlling Access to Attributes

Inthis chapter we already have discussed how clients can access an object’ s attributes directly
and how this practice can place an object’ s datain an inconsistent state. Most object-oriented
programming languages allow an object to prevent its clientsfrom accessing the object’ sdata
directly. However, in Python, the programmer uses attri bute naming conventionsto hide data
from clients. In this section, we discuss the advantages and disadvantages of this practice.

7.4.1 Get and Set Methods

Although a client can access an object’s data directly (and perhaps cause the data to enter
an inconsistent state), aprogrammer can design classes to encourage correct use. Onetech-
niqueisfor the class to provide access methods through which the data of the class can be
read and written in a carefully controlled manner.

Predicate methods are read-only access methods that test the validity of a condition.
An example of apredicate method is an i sEmpty method for a container class—a class
capable of holding many objects. A program calls i sEmpty before reading another item
from the container object. An isFull predicate method tests a container object to deter-
mine whether it has additional space in which a program can place an item. Some appro-
priate predicate methods for our Time class might be i sAM and i sPM.

When a class defines access methods, a client should access an object’ s attributes only
through those access methods. A typica manipulation might be the adjustment of a cus-
tomer’s bank-account balance (e.g., an attribute of an object of class BankAccount) by
amethod computeInterest.

Classes often provide methods that alow clientsto set (write) or get (read) the values of
attributes. Although these methods need not be called set and get, they often are, by conven-

%

—

é pythonhtpl_07.fm Page 234 Saturday, December 8, 2001 2:29 PM

A

.

%

234 Object-Based Programming Chapter 7

tion. More specifically, amethod that setsdatamember interestRate typically would be
named setInterestRate, and amethod that getsthe interestRate typicaly would
be named getInterestRate. Gat methodsalso are caled “ query” methods.

It may seem that providing both set and get capabilities provides no benefit over
accessing the attributes directly, but there isa subtle difference. A get method seemsto allow
clientsto read the dataat will, but the get method can control the formatting of the data. A set
method can—and most likely should—scrutinize attempts to modify the value of the
attribute. This ensures that the new value is appropriate for that dataitem. For example, a set
method can reject the following values: the value 37 asthe date, anegativevalue asaperson’s
body weight and the value 185 on an exam (when the grade range is 0-100).

Controlling access, especially write access, to attributes through access methods helps en-
sure data integrity.

¢ Data integrity is not automatic, even if the programmer provides access methods—the pro-
grammer must provide for validity checking.

A class's set methods sometimes return values that indicate attempts were made to
assign invalid data to an object of the class. Clients of the class then test the return values
of set methods to determine whether the object it is manipulating is a valid object and to
take appropriate actions if the object is not valid. Alternatively, a set method may specify
that an error message—called an exception—~be sent (“raised”) to the client when the client
attemptsto assign an invalid value to an attribute. Raising exceptionsis atopic we explore
in detail in Chapter 12, Exception Handling. Exceptions are the preferred technique for
handling invalid attribute values in Python.

Good Programming Practice 7.5

@ Methods that set the values of data should verify that the intended new values are proper. If
they are not, the set methods should indicate that an error has occurred.

Accessing data through set and get methods not only protects the data fromassuming invalid
values, but also insulates clients of the class from the representation of the data. Thus, if the
representation of the data changes (typically to reduce the amount of storage required or to
improve performance), only the method bodies need to change—the clients need not change
aslong as the interface provided by the methods remains the same.

Figure 7.7—Time2 . py—definesamodified Time classthat uses access methods to
protect access to the data stored in the class.

class Time:

U WNE

Fig. 7.7 Access methods defined for class Time. (Part 1 of 3.)

ﬂ%

—

%
| é pythonhtpl_07.fm Page 235 Saturday, December 8, 2001 2:29 PM

%

Chapter 7 Object-Based Programming 235
7 def init (self):
8
9
10 self. hour =
11 self. minute =
12 self. second =
13
14 def setTime(self, hour, minute, second):
15
16
17 self.setHour (hour)
18 self.setMinute(minute)
19 self.setSecond(second)
20
21 def setHour(self, hour):
22
23
24 if <= hour <
25 self. hour = hour
26 else:
27 raise ValueError, % hour
28
29 def setMinute(self, minute):
30
31
32 if <= minute < 8
33 self. minute = minute
34 else:
35 raise ValueError, % minute
36
37 def setSecond(self, second):
38
39
40 if <= second < :
41 self. second = second
42 else:
43 raise ValueError, % second
44
45 def getHour(self):
46
47
48 return self. hour
49
50 def getMinute(self):
Gill
52
53 return self. minute
54
519 def getSecond(self):
56
57
58 return self. second
59
Fig. 7.7 Access methods defined for class Time. (Part 2 of 3.)

ﬂ%

\ {%)
| pythonhtpl_07.fm Page 236 Saturday, December 8, 2001 2:29 PM

A

236 Object-Based Programming Chapter 7
60 def printMilitary(self):
61
62
63 print % \
64 (self. hour, self. minute, self. second),
65
66 def printStandard(self):
67
68
69 standardTime =
70
71 if self. hour == or self. hour ==
72 standardTime +=
73 else:
74 standardTime += % (self. hour %)
75
76 standardTime += % (self. minute, self. second)
77
78 if self. hour <
79 standardTime +=
80 else:
81 standardTime +=
82
83 print standardTime,

Fig. 7.7 Access methods defined for class Time. (Part 3 of 3.)

Notice that the constructor creates attributes with single leading underscores () in
lines 10—12. Attribute names that begin with a single underscore have no specia meaning
inthe syntax of the Python languageitself. However, the single leading underscoreisacon-
vention among Python programmers who use the class. When a class author creates an
attribute with a single leading underscore, the author does not want users of the class to
access the attribute directly. If a program requires access to the attributes, the class author
provides some other means for doing so. In this case, we provide access methods through
which clients should manipulate the data.

Good Programming Practice 7.6

@ An attribute with a single leading under scor e conveys infor mation about a class' sinterface.

Clients of a class that defines such attributes should access and modify the attributes’ values
only through the access methods that the class provides. Failing to do so often causes unex-
pected errorsto occur during program execution.

Python’s classes and modularity encourage programs to be implementation independent.
When the implementation of a class used by implementati on-independent code changes, that
code need not be modified.

Method setTime (lines 14-19) is the set method that clients should use to set all
valuesin an object’ stime. This method receives as arguments values for attributes hour,
_minute and _second. Methods setHour (lines 21-27), setMinute (lines 29-35)
and setSecond (lines 37-43) are set methods for the individual attributes. These
methods provide more flexibility to clients that modify the time.

ﬁ%

*

é pythonhtpl_07.fm Page 237 Saturday, December 8, 2001 2:29 PM

A

%

Chapter 7 Object-Based Programming 237

Not all methods need to serve as part of a class s interface. Some methods serve as utility
methodsto other methods of the class and are not intended to be used by clients of the class.

—a- Common Programming Error 7.6

When inside a method, forgetting to use the object reference (often called sel £) to access
another method defined by the object’ s classis either afatal runtime error or alogic error.
The logic error occurs when the global namespace contains a function with the same name
as one of the class’'s methods. In this case, forgetting to access the method name through the
object reference actually calls the global function.

The comparison expressions in lines 24, 32 and 40 demonstrate Python’ s comparison
“chaining” syntax that enables programmers to write comparison expressions in familiar,
arithmetic terms. Chained comparison expressions can be re-written with syntax familiar
from other languages, using an appropriate and or or operation. For example, the state-
ment in line 24 also could be written as

hour >= and hour <

e Chained comparison expressions can be more efficient than their non-chained equivalents,
=] hecause each termin the chained comparison expression is evaluated only once.

Method setHour (lines 21-27) changes an object’'s hour attribute. The method
checks whether the value passed as a parameter isin the range 0-23, inclusive. If the hour
is valid, the method updates attribute _hour with the new value. Otherwise, the method
raises an exception, to indicate that the client has attempted to place the object’ sdatain an
inconsistent state. An exception is aPython object that indicates a special event (most often
an error) has occurred. For example, when a program attempts to access a nonexistent dic-
tionary key, Python raises an exception.

When an exception israised a program either can catch the exception and handleit; or
the exception can go uncaught, in which case the program prints an error message and ter-
minates immediately. Catching and handling an exception enables a program to recognize
and potentialy fix errors that might otherwise cause a program to terminate. For example,
a client that uses class Time can catch an exception and detect that the program has
attempted to place datain an inconsistent state (i.e., set an invalid time). Catching and han-
dling exceptions is a broad topic that we discuss in detail in Chapter 12, Exception Han-
dling. For now, we discuss only how to raise an exception to indicate invalid data
assignments and prevent data corruption.

The statement in line 27 uses keyword raise to raise an exception. The keyword
raise isfollowed by the name of the exception, a comma and a value that the exception
object stores as an attribute. When Python executes a raise statement, an exception is
raised; if the exception is not caught, Python prints an error message that contains the name
of the exception and the exception’s attribute value, as shownin Fig. 7.8.

The remaining methods—setMinute (lines29-35) and setSecond (lines 3743)
change attributes minute and second, respectively. Each method ensures that the
values remain in the range 0-59, inclusive. If the values are invalid, the methods raise
exceptions and specify appropriate error-message arguments.

%

—

é pythonhtpl_07.fm Page 238 Saturday, December 8, 2001 2:29 PM

238 Object-Based Programming Chapter 7

Python 2.2b2 (#26, Nov. 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more informa-
tion.
>>>
>>> raise ValueError, "This is an error message"
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: This is an error message

Fig. 7.8 Raising an exception.

Lines 45-58 contain the get methods for class Time. Clients use these methods

(getHour, getMinute and getSecond) toretrieve thevalues of an attributes _hour,

_minute and _second, respectively. The remainder of the class definition does not
differ from the previous definition we presented.

If a class provides access methods for its data, clients should use only access methodsto re-
trieve/modify data. This“ agreement” between class and client helps maintain datain a con-
sistent state.

/=y The class designer need not provide set or get methods for each data item; these capabilities
ﬁ“ should be provided only when appropriate. If the service is appropriate for clients, that ser-
vice should be provided in the class' s interface.

Every method that modifies the data of an object should ensure that the data remainsin a
consistent state.

Figure 7.9 contains adriver for modified class Time. A driver isaprogram that tests
a class's interface. Lines 46 import class Time from module Time2 and create an
object of the class. Lines 9-12 call methodsprintMilitary and printStandard to
display the initial time values of the object.

1

2

3

4 from Time2 import Time

5

6 timel = Time ()

b

8

9 print ,
10 timel.printMilitary ()

11 print ,

12 timel.printStandard()

Fig. 7.9 Access methods called to change data. (Part 1 of 2.)

4~ —

é pythonhtpl_07.fm Page 239 Saturday, December 8, 2001 2:29 PM

Chapter 7 Object-Based Programming 239
13
14
15 timel.setTime (, ,)
16 print p
17 timel.printMilitary()
18 print ,
19 timel.printStandard()
20
21 timel.setHour ()
22 timel.setMinute ()
23 timel.setSecond()
24 print
25 timel.printMilitary ()
26 print ’
27 timel.printStandard()

The initial military time is 00:00:00
The initial standard time is 12:00:00 AM

Military time after setTime is 13:27:06
Standard time after setTime is 1:27:06 PM

Military time after setHour, setMinute, setSecond is 04:03:34
Standard time after setHour, setMinute, setSecond is 4:03:34 AM

Fig. 7.9 Access methods called to change data. (Part 2 of 2.)

Line 15 calls timel’s method setTime, passing values that correspond to 1:27:06

PM, to change the object’ stime values. Lines 16-19 call the appropriate methods to display
the formatted times. The interactive session in Fig. 7.10 creates an object of class Time and
callsmethod setTime to attempt to place the object’ sdatain an inconsistent state. Each call
to method setTime contains an invalid value, and each call resultsin an error message.

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more informa-
tion.

>>>
>>> from Time2 import Time
>>> timel = Time()

>>>

>>> timel.setHour(30)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "Time2.py", line 27, in setHour
raise ValueError, "Invalid hour wvalue: %d" % hour
ValueError: Invalid hour value: 30

(continued top of next page)

Fig. 7.10 set method called with invalid values. (Part 1 of 2.)

ﬂ%

é pythonhtpl_07.fm Page 240 Saturday, December 8, 2001 2:29 PM

A

240 Object-Based Programming Chapter 7

(continued from previous page)

>>>
>>> timel.setMinute(99)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "Time2.py", line 35, in setMinute
raise ValueError, "Invalid minute value: %d" % minute
ValueError: Invalid minute value: 99
>>>
>>> timel.setSecond(-99)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "Time2.py", line 43, in setSecond
raise ValueError, "Invalid second value: %d" % second
ValueError: Invalid second value: -99

Fig. 7.10 set method called with invalid values. (Part 2 of 2.)

7.4.2 Private Attributes

In programming languages such as C++ and Java, a class may state explicitly which at-
tributes or methods may be accessed by clients of the class. These attributes or methods are
said to be public. Attributes and methods that may not be accessed by clients of the class
are said to be private.

In Python, an object’ s attributes may always be accessed—there is no way to prevent
other code from accessing the data. However, Python does provide away to prevent indis-
criminate access to data. Suppose we want to create an object of class Time and to prevent
the following assignment statement

timel.hour =

To prevent such access, we prefix the name of the attribute with two underscore char-
acters (__). When Python encounters an attribute name that begins with two underscores,
the interpreter performs name mangling on the attribute, to prevent indiscriminate access
to the data. Name mangling changes the name of an attribute by including information
about the class to which the attribute belongs. For example, if the Time constructor con-
tained the line

self. hour =

Python creates an attribute called Time hour, instead of an attribute called hour.
Figure 7.11 contains an exampleinwhich we defineaclassPrivateClass that contains
one public attribute publicData (line 10) and one private attribute _ privateData
(line 11). Theinteractive session that follows (Fig. 7.12) demonstrates how to accessan ob-
ject’s data.

First, in Fig. 7.12, we import the class from module Private and create an object
caled private. The statement

print private.publicData

%

*

é pythonhtpl_07.fm Page 241 Saturday, December 8, 2001 2:29 PM

Chapter 7 Object-Based Programming 241
1

2

3

4 class PrivateClass:

5

6

7 def init (self):

8

9
10 self.publichata =
11 self. privateData =

Fig. 7.11 Class PrivateClass with private data.

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more informa-
tion.
>>>
>>> from Private import PrivateClass
>>> private = PrivateClass()
>>> print private.publicData
public
>>> print private. privateData
Traceback (most recent call last):
File "<stdin>", line 1, in ?
AttributeError: PrivateClass instance has no attribute

' privateData'

>>>

>>> print private. PrivateClass privateData
private

>>> private. PrivateClass_privateData = "modified"
>>> print private. PrivateClass privateData
modified

Fig. 7.12 Private data accessed.

behaves as expected—Python prints the value of the public attribute. When we write the
Statement

print private. privateData

Python prints an error message which explains that class PrivateClass does not con-
tainan attributecalled privateData. We prefixed our attribute namewith double un-
derscores, so Python changed the name of the attribute in the class definition.

However, we can still access the data, because we know that Python renames attribute
__privateDatatoattribute PrivateClass privateData. Therefore, theline

print private. PrivateClass privateData

successfully prints the value assigned to the private attribute. The final two statements in
the session demonstrate that private data may be modified in the same way as public data.

%

é pythonhtpl_07.fm Page 242 Saturday, December 8, 2001 2:29 PM

A

.

%

242 Object-Based Programming Chapter 7

However, accessing and modifying private attributes in this manner violates the data en-
capsulation the class author intended. A client should never perform such a manipulation,
but instead should use any access methods the class provides.

Make private any data that the client should not access.

Python programmers use private attributes for different reasons. Some programmers
use private attributes to avoid common scoping problems that may arise in inheritance hier-
archies. [Note: We discuss inheritance in Chapter 9, Object-Oriented Programming: I nher-
itance.] Other programmers use private attributes for data or methods the client should
never access. These attributes or methods are essential to the inner workings of the class,
but are not part of the class sinterface. For example, aclass author might designate a utility
method by prepending the method name with two underscores. In this chapter, we use pri-
vate attributes to demonstrate access methods and to introduce a basic data integrity tech-
nigue. In the next chapter, we discuss other ways to ensure data integrity. The techniques
we discuss in the next chapter allow programmers to use public access syntax but also to
take advantage of the dataintegrity provided by access methods. This practice enables pro-
grammersto add dataintegrity to aproject asthe project growsand matures, without having
to change the interface on which the project’s clients have come to rely.

7.5 Using Default Arguments With Constructors

Thus far, the client has supplied all the values that the constructor for class Time needed
to initialize a new object. However, constructors can define default arguments that specify
initial values for an object’s attributes, if the client does not specify an argument at con-
struction time. Constructors also can define keyword arguments that enable the client to
specify values for only certain, named arguments. Figure 7.13—Time3 . py—defines a
modified version of class Time that redefinesthe Time constructor to include the default
value O for each argument. Providing a default constructor guarantees that objects will be
initialized to consistent states, even if no values are provided in constructor calls. Program-
mer-supplied constructors that default all their arguments (or explicitly require no argu-
ments) are also called default constructors (i.e., constructors that can be invoked with no
arguments.)

e

1

2

3

4 class Time:

5

6

7 def init (self, hour = 0, minute = 0, second =):
8

9

0 self.setTime(hour, minute, second)
1

Fig. 7.13 Default constructor defined for class Time. (Part 1 of 3.)

%

—

%
| é pythonhtpl_07.fm Page 243 Saturday, December 8, 2001 2:29 PM

Chapter 7 Object-Based Programming 243
12 def setTime(self, hour, minute, second):
13
14
15 self.setHour (hour)

16 self.setMinute(minute)

17 self.setSecond(second)

18

19 def setHour(self, hour):

20

21

22 if <= hour <

23 self. hour = hour

24 else:

25 raise ValueError, % hour
26

27 def setMinute(self, minute):
28

29

30 if <= minute < :

31 self. minute = minute
32 else:

33 raise ValueError, % minute
34

35 def setSecond(self, second):
36

37

38 if <= second < :

39 self. second = second
40 else:

41 raise ValueError, % second
42

43 def getHour(self):

44

45

46 return self. hour

47

48 def getMinute(self):

49

50

51 return self. minute

52

53 def getSecond(self):

54

55

56 return self. second

57

58 def printMilitary(self):

59

60

61 print % \
62 (self. hour, self. minute, self. second),
63

Fig. 7.13 Default constructor defined for class Time. (Part 2 of 3.)

- 4~

é pythonhtpl_07.fm Page 244 Saturday, December 8, 2001 2:29 PM

*

.

244 Object-Based Programming Chapter 7
64 def printStandard(self):
65
66
67 standardTime =
68
69 if self. hour == or self. hour ==
70 standardTime +=
71 else:
72 standardTime += % (self. hour %)
73
74 standardTime += % (self. minute, self. second)
75
76 if self._ hour <
7 standardTime +=
78 else:
79 standardTime +=
80
81 print standardTime,

Fig. 7.13 Default constructor defined for class Time. (Part 3 of 3.)

In this example, the constructor invokes method setTime with the values passed to
the constructor (or the default values). The class uses private attributes to store data. As
with the previous definition of Time, setTime uses the class's other methods, which
ensure that the value supplied for __ hour is in the range 0-23 and that the values for
__minute and ___second are each in the range 0-59. If a value is out of range, the
appropriate method raises an exception (thisis an example of ensuring that a data member
remainsin a consistent state).

The Time constructor could have included the same statements as method setTime.
This may be dlightly more efficient because the extra call to setTime is eliminated.
Coding the Time constructor and method setTime identically, however, makes main-
taining this class more difficult. If the implementation of method setTime changes, the
implementation of the Time constructor should change accordingly. Instead, any changes
to the implementation of setTime need to be made only once, because the Time con-
structor calls setTime directly. Thisreducesthe likelihood of a programming error when
altering the implementation.

/=4y |f amethod of a classalready providesall or part of the functionality required by a construc-
ﬁ’ tor (or other method) of the class, call that method from the constructor (or other method).
This simplifies the maintenance of the code and reduces the likelihood of an error if theim-
plementation of the code is modified. Asa general rule: Avoid repeating code.

Figure 7.14 initializes four objects of class Time (defined in Fig. 7.13)—one with all
three arguments defaulted in the constructor call, one with one argument specified, one with
two arguments specified and one with three arguments specified. The values of each object’s
attributes after initialization are displayed by caling printTimeValues (lines 6-10).

If no constructor isdefined for aclass, theinterpreter creates adefault constructor (i.e.,
one that can be called with no arguments). However, the constructor that Python provides

ﬂ%

*

\ {%)
| pythonhtpl_07.fm Page 245 Saturday, December 8, 2001 2:29 PM

Chapter 7 Object-Based Programming 245

does not perform any initialization, so, when an object is created, the object is not guaran-
teed to bein a consistent state.

1

2

3

4 from Time3 import Time

©

6 def printTimeValues(timeToPrint):
7 timeToPrint.printMilitary ()
8 print

9 timeToPrint.printStandard()
10 print

11

12 timel = Time()

13 time2 = Time()

14 time3 = Time(5)

15 time4 = Time(, ,)

16

17 print

18

19 print

20 printTimeValues(timel)

21

22 print

23 printTimeValues(time2)

24

25 print

26 printTimeValues(time3)

27

28 print

29 printTimeValues(time4)

Constructed with:

all arguments defaulted:
00:00:00
12:00:00 AM

hour specified; minute and second defaulted:
02:00:00
2:00:00 AM

hour and minute specified; second defaulted:
21:34:00

9:34:00 PM

hour, minute and second specified:

12:25:42
12:25:42 PM

Fig. 7.14 Objects created with default constructor.

- 4~ ~¢e

é pythonhtpl_07.fm Page 246 Saturday, December 8, 2001 2:29 PM

A

%

246 Object-Based Programming Chapter 7

7.6 Destructors

A constructor is a method that initializes a newly created object. Conversely, a destructor
executes when an object is destroyed (e.g., after no more references to the object exist). A
class can define aspecial method called del that executeswhen the |ast reference to
an object is deleted or goes out of scopél._ The method itself does not actually destroy the
object—it performs termination housekeeping before the interpreter reclaims the object’s
memory, so that memory may be reused. A destructor normally specifies no parameters
other than sel £ and returns None.

We have not defined method ~ del for the classes presented to this point. In pro-
gramming languages such as C++, destructors often allocate and recycle memory. Python
handles most of theseissues for the programmer, so del normally isnot included in
the class definition. Occasionally, a class defines _del to close anetwork or a date-
base connection before destroying an object. We discuss these issues throughout the text,
as appropriate. In the next section, we define method del for aclass, to maintain a
count of all objects of the class that have been created.

7.7 Class Attributes

Each object of a class has copies of all the attributes created in the constructor. In certain
cases, only one copy of an attribute should be shared by all objects of aclass. A class at-
tribute is used for thisreason. A class attribute represents “ class-wide” information (i.e., a
property of the class, not of a specific object of the class).

We now consider a video-game example to justify the need for class-wide data. Sup-
posethat we have avideo gamewith Martiansand other space creatures. EachMartian
tends to be brave and willing to attack other space creatures when the Martian isaware
that there are at least four other Martianspresent. If there are fewer than fiveMartians
present, each Martian becomescowardly. For thisreason, each Martian must know the
martianCount. We could endow each object of classMartian withmartianCount
as an attribute. However, if we do this, then every Martian would have a separate copy
of the attribute, and, each time we create aMartian, we would have to update attribute
martianCount in every Martian. The redundant copies waste space, and updating
those copiesistime-consuming. Instead, we createmartianCount asaclassattribute so
that martianCount isclasswide data. Each Martian can seethemartianCount as
if it were an attribute of that Martian, but Python maintains only one copy of themar -
tianCount attribute to save space. Thistechnique also saves time; because thereis only
one copy, we do not have to increment separate copies of mar tianCount for each object
of classMartian.

__—-ﬁ When a single copy of the data will suffice, use class attributes to save storage.

1. Actudly, therearesomecasesinwhich __del doesnot executeimmediately after the last ref-
erenceto an object isdeleted. However, in most cases, it is safe to assume that the method executes
when expected. Seewww . python.org/doc/current/ref/customization.html for
more information.

%

—

\ {%)
| pythonhtpl_07.fm Page 247 Saturday, December 8, 2001 2:29 PM

A

.

%

Chapter 7 Object-Based Programming 247

Although class attributes may seem like global variables, each class attribute resides
in the namespace of the class in which it is created. Class attributes should be initialized
once (and only once) in the class definition. A class's class attributes can be accessed
through any object of that class. A class's class attributes also exist even when no object of
that class exists. To access a class attribute when no object of the class exists, prefix the
class name, followed by a period, to the name of the attribute.

A class s class attributes can be used even if no objects of that class have been instantiated.

Class Employee (Fig. 7.15) demonstrates how to define a class attribute that main-
tains a count of the number of objects of the class that have been instantiated. The class
atribute count isinitialized to 0 in the class definition (line 7). Notice that the creation of
class attribute count appears in the body of the class definition, not inside amethod. The
statement hasthe effect of defining anew variable named count, with value 0, and adding
that variable to class Employee’s namespace.

1

2

8

4 class Employee:

5

6

7 count =

8

9 def init (self, first, last):

10

11

12 self.firstName = first

13 self.lastName = last

14

15 Employee.count +=

16

17 print \
18 % (self.lastName, self.firstName)
19

20 def _ del_ (self):

21

22

23 Employee.count -=

24

25) print \
26 % (self.lastName, self.firstName)

Fig. 7.15 Class attributes—class Employee.

1
2
3

Fig. 7.16 Class attributes—£i1g07 16.py. (Part1 of 2.)

ﬂ%

—

é pythonhtpl_07.fm Page 248 Saturday, December 8, 2001 2:29 PM

248 Object-Based Programming Chapter 7

from EmployeeWithClassAttribute import Employee

print s\
Employee.count

employeel = Employee (7)

employee2 = Employee (5)

employee3 = employeel

print .\

employeel.count

del employeel
del employee2
del employee3

21
22 print r\
23 Employee.count

Number of employees before instantiation is 0
Employee constructor for Baker, Susan
Employee constructor for Jones, Robert
Number of employees after instantiation is 2
Employee destructor for Jones, Robert
Employee destructor for Baker, Susan

Number of employees after deletion is 0

Fig. 7.16 Class attributes—£ig07 16.py. (Part 2 of 2.)

Figure 7.16 access Employee’s class attribute. Class attribute count maintains a
count of the number of existing objects of class Employee and can be accessed whether
or not objects of class Employee exist. If no objects of the class exist, a program can ref-
erence count through the classname (line 7). Lines 10-11 create two Employee objects.
When each Employee object is created, its constructor is called. In the output, notice that
creating identifier employee3 (line 12) does not create anew object of class Employee
and therefore does not call Employee’s constructor. The statement simply binds a new
name to the object created in line 18, so that employee3 and employeel refer to the
same object. Lines 18-20 use keyword del to delete all referencesto the two Employee
objects. Method del for the object created in line 10 does not execute until the last
reference to that object isdeleted in line 20.

7.8 Composition: Object References as Members of Classes

Until now, we have defined classes whose objects have attributes of basic types. Some-
times, a programmer needs objects whose attributes are themsel ves references to objects of
other classes. For example, an object of classAlarmClock heedsto know whenitis sup-
posed to sound its alarm, so why not include an object of class Time as a member of the
object of classAlarmClock? Such a capability is called composition.

4~ —

\ {%)
| pythonhtpl_07.fm Page 249 Saturday, December 8, 2001 2:29 PM

Chapter 7 Object-Based Programming 249

%Oneform of software reusability is composition, in which a class has references to objects of
other classes as members.

If a class has as a member a reference to an object of another class, making that member
object publicly accessible does not violate the encapsulation and hiding of that member ob-
ject’s private members.

Figure 7.17 usesaclassDate (Fig. 7.17) amodified class Employee (Fig. 7.18) and
to demonstrate references to objects as members of other objects. Class Employee con-
tains attributes firstName, lastName, birthDate and hireDate. Attributes
birthDate and hireDate areobjectsof classDate, which containsattributesmonth,
day andyear. Theprogram (Fig. 7.19) instantiates an object of classEmployee andini-
tializes and displaysits attributes.

1

2

3

4 class Date:

5

6

7

8 daysPerMonth = [

9 I A A I I I r I I I’ I I]
10

11 def init (self, month, day, year):

12

13

14 if < month <= :

15 self.month = month

16 else:

17 raise ValueError, % month
18

19 if year >=

20 self.year = year

21 else:

22 raise ValueError, % year
23

24 self.day = self.checkDay(day)

25

26 print '

27 self.display ()

28

29 def del (self):

30

31

32 print ,
33 self.display ()

34

Fig. 7.17 Member objects—Date.py. (Part 1 of 2.)

4~ —

Q72
| é pythonhtpl_07.fm Page 250 Saturday, December 8, 2001 2:29 PM

%

250 Object-Based Programming Chapter 7
35) def display(self):
36
37
38 print % (self.month, self.day, self.year)
39
40 def checkDay(self, testDay):
41
42
43
44 if < testDay <= Date.daysPerMonth|[self.month]:
45 return testDay
46 elif self.month == and testDay == and \
47 (self.year % == or
48 self.year % I= and self.year % ==)
49 return testDay
50 else:
51 raise ValueError, % \
52 (testDay, self.month)

Fig. 7.17 Member objects—Date.py. (Part 2 of 2.)

In Fig. 7.18, the Employee constructor (lines 9-20) takes nine arguments—self£,
firstName, lastName, birthMonth, birthDay, birthYear, hireMonth
hireDay and hireYear—and creates objects of class Date from the last six argu-
ments. Arguments birthMonth, birthDay and birthYear are passed to object
birthDate’s constructor, and arguments hireMonth, hireDay and hireYear are
passed to object hireDate’s constructor. Class Date and class Employee each define
method _ del to print a message when an object of class Date or an object of class
Employee isdestroyed, respectively.

1

2

3

4 from Date import Date

©

6 class Employee:

7

8

9 def init (self, firstName, lastName, birthMonth,

10 birthDay, birthYear, hireMonth, hireDay, hireYear):
11

12

13 self.birthDate = Date(birthMonth, birthDay, birthYear)
14 self.hireDate = Date(hireMonth, hireDay, hireYear)
15

16 self.lastName = lastName

17 self.firstName = firstName

18

19 print \

20 % (self.lastName, self.firstName)

Fig. 7.18 Member objects—EmployeeComposition.py. (Part 1 of 2.)

ﬂ%

Q72
| é pythonhtpl_07.fm Page 251 Saturday, December 8, 2001 2:29 PM

Chapter 7 Object-Based Programming 251
21
22 def del (self):
23
24
25 print
26 % (self.lastName, self.firstName)
27
28 def display(self):
29
30
31 print % (self.lastName, self.firstName)
32 print ,
33 self.hireDate.display ()
34 print ,
35 self.birthDate.display ()

Fig. 7.18 Member objects—EmployeeComposition.py. (Part2 of 2.)

1

2

3

4 from Date import Date

5 from EmployeeComposition import Employee
6

7 employee = Employee (’ r 7y ’
8 print

9

10 employee.display ()

11 print

Date constructor: 7/24/1949
Date constructor: 3/12/1988
Employee constructor: Jones, Bob

Jones, Bob
Hired: 3/12/1988
Birth date: 7/24/1949

Employee object about to be destroyed: Jones, Bob
Date object about to be destroyed: 3/12/1988
Date object about to be destroyed: 7/24/1949

Fig. 7.19 Member objects—fig07 19.py.

7.9 Data Abstraction and Information Hiding

Aswe pointed out at the beginning of this chapter, classesnormally hide the details of their
implementation from their clients. Thisis caled information hiding. As an example of in-

formation hiding, let us consider a data structure called a stack.

Students can think of a stack as analogous to a pile of dishes. When adish is placed on
thepile, itisaways placed at thetop (referred to as pushing the dish onto the stack). Similarly,
when adish is removed from the pileg, it is always removed from the top (referred to as pop-

ﬂ%

é pythonhtpl_07.fm Page 252 Saturday, December 8, 2001 2:29 PM

A

252 Object-Based Programming Chapter 7

ping the dish off the stack). Stacks are known aslast-in, first-out (LIFO) data structures—the
last item pushed (inserted) on the stack isthe first item popped (removed) from the stack.

Stacks can easily be implemented with lists, and in fact, Python lists contain methods
that programers can use to make lists “act” like stacks. (We aso implement our own class
Stack in Chapter 22, Data Structures.) A client of astack class need not be concerned with
the stack’ s implementation. The client knows only that when data items are placed in the
stack, these items will be recalled in last-in, first-out order. The client cares about what
functionality a stack offers, but not about how that functionality isimplemented. This con-
cept is referred to as data abstraction. Although programmers might know the details of a
class's implementation, they should not write code that depends on these details. This
enables a particular class (such as one that implements a stack and its operations, push and
pop) to be replaced with another version without affecting the rest of the system. Aslong
asthe services of the classdo not change (i.e., every method still has the same name, returns
the same type of value and defines the same parameter list in the new class definition), the
rest of the system is not affected.

Thejob of ahigh-level languageisto create aview convenient for programmersto use.
There is no single accepted standard view—that is one reason why there are so many pro-
gramming languages. Object-oriented programming in Python presents yet another view.

Most programming languages emphasize actions. In these languages, data exists to
support the actions that programs must take. Datais “lessinteresting” than actions. Datais
“crude.” Only afew built-in data types exist, and it is difficult for programmers to create
their own data types. The object-oriented style of programming in Python elevates the
importance of data. The primary activities of object-oriented programming in Python isthe
creation of datatypes (i.e., classes) and the expression of the interactions among objects of
those data types. To create languages that emphasize data, the programming-languages
community needed to formalize some notions about data. The formalization we consider
here isthe notion of abstract data types (ADTS). ADTsreceive as much attention today as
structured programming did decades earlier. AD TS, however, do not replace structured pro-
gramming. Rather, they provide an additional formalization to improve the program-devel-
opment process.

Consider the built-in integer type, which most people would associate with an integer in
mathematics. Rather, theinteger typeisan abstract representation of an integer. Unlike math-
ematical integers, computer integers are fixed in size. For example, the integer type on some
computersislimited approximately to the range —2 billion to +2 billion. If the result of a cal-
culation fallsoutside thisrange, an error occurs, and the computer respondsin some machine-
dependent manner. It might, for example, “quietly” produce anincorrect result. Mathematical
integers do not have this problem. Therefore, the notion of a computer integer is only an
approximation of the notion of area-world integer. The sameistrue of the floating-point type
and other built-in types.

We have taken the notion of the integer type for granted until this point, but we now
consider it from a new perspective. Types like integer, floating-points, strings and others
are al examples of abstract data types. These types are representations of real-world
notions to some satisfactory level of precision within a computer system.

An ADT actualy captures two notions: A data representation and the operations that
can be performed on that data. For example, in Python, an integer contains an integer value
(data) and provides addition, subtraction, multiplication, division and modulus operations;

%

—

é pythonhtpl_07.fm Page 253 Saturday, December 8, 2001 2:29 PM

A

.

Chapter 7 Object-Based Programming 253

however, division by zero is undefined. Python programmers use classes to implement
abstract data types.

Programmers can create types through the use of the class mechanism. These new types can
be designed so that they are as convenient to use as the built-in types. This marks Python as
an extensible language. Although the language is easy to extend via new types, the program-
mer cannot alter the base language itself.

Another abstract data type we discuss is a queue, which is similar to a“waiting line.”
Computer systems use many queues internally. A queue offers well-understood behavior
toitsclients: Clients placeitemsin agueue one at atime viaan engueue operation, then get
those items back one at atime via a dequeue operation. A gueue returns items in first-in,
first-out (FIFO) order, which means that the first item inserted in a queue is the first item
removed. Conceptually, a queue can become infinitely long, but real queues are finite.

The queue hides an interna data representation that keeps track of the items currently
waiting in line, and it offers a set of operationsto its clients (enqueue and dequeue). The cli-
ents are not concerned about the implementation of the queue—clients simply depend upon
the queueto operate“ as advertised.” When aclient enqueues anitem, the queue should accept
that item and place it in some kind of internal FIFO data structure. Similarly, when the client
wants the next item from the front of the queue, the queue should remove the item from its
internal representation and deliver the item in FIFO order (i.e., the item that has been in the
queue the longest should be the next one returned by the next dequeue operation).

The queue ADT guarantees the integrity of its internal data structure. Clients cannot
mani pul ate this data structure directly—only the queue ADT has access to itsinternal data.
Clients are able to perform only allowable operations on the data representation; the ADT
rejects operationsthat itsinterface does not provide. This could mean issuing an error mes-
sage, terminating execution, raising an exception (as discussed in Chapter 12, Exception
Handling) or simply ignoring the operation request.

7.10 Software Reusability

Python programmers concentrate both on crafting new classes and on reusing classes from
the standard library, which contains hundreds of predefined classes. Devel opers construct
software by combining programmer-defined classes with well-defined, carefully tested,
well-documented, portable and widely available standard library classes. Thiskind of soft-
ware reusability speeds the development of powerful, high-quality software. Rapid appli-
cations development (RAD) is of great interest today.

The standard library enables Python developers to build applications faster by reusing
preexisting, extensively tested classes. In addition to reducing devel opment time, standard
library classes also improve programmers’ abilities to debug and maintain applications,
because proven software components are being used. For programmers to take advantage
of the standard library’s classes, they must familiarize themselves with the standard
library’ srich set of capabilities.

In this chapter, we discussed how to define a class and to create objects of the class.
When a new object is created, the class constructor initializes the new object’ s attributes.
We discussed several ways to initialize and modify attributes—default constructors, set
methods and raising exceptions for invalid attribute values. We also discussed data integ-

%

—

é pythonhtpl_07.fm Page 254 Saturday, December 8, 2001 2:29 PM

A

.

254 Object-Based Programming Chapter 7

rity, how all object attributes may be accessed directly by the client, how the single leading
underscore (_) indicates that clients should not access attributes and how the double
leading underscore (__) mangles an attribute’'s name to prevent casual attribute access.
Python’s direct attribute access encourages rapid application development and facilitates
dynamic introspection; however, direct access is often insufficient for large-scale software
projects. In the next chapter, we discuss how class authors can ensure data integrity, while
till taking advantage of direct access syntax. This dataintegrity functionality can be added
to the class without changing the interface the client uses to access an object’s data. This
promotes both the safe, modular programming techniques and rapid development practices
that Python programmers desire.

SUMMARY
* Object-oriented programming (OOP) encapsulates (i.e., wraps) data (attributes) and functions (be-
haviors) into components call ed classes. The dataand functionsof aclassareintimately tied together.

» A classislikeablueprint. Using ablueprint, abuilder can build ahouse. Using aclass, aprogram-
mer can create an object (also called an instance).

* Classes have aproperty called information hiding. Although objects may know how to communi-
cate with one another across well-defined interfaces, one object normally should not be allowed
to know how another object isimplemented—implementation details are hidden within the objects
themselves.

* Inprocedura programming, the unit of programming is the function. In object-oriented program-
ming, the unit of programming is the class from which objects eventually are instantiated.

» Procedura programmers concentrate on writing functions. The verbs in a system specification
help the procedural programmer determine the set of functions that will work together to imple-
ment the system.

 Object-oriented programmers concentrate on creating their own user-defined types, called classes.
The nouns in a system specification help the object-oriented programmer determine the set of
classes that will be used to create the objects that will work together to implement the system.

 Classes smplify programming because the clients need to be concerned only with the operations
encapsulated or embedded in the object—the object interface.

» Keyword class begins a class definition. The keyword is followed by the name of the class,
which is followed by a colon (:). The line that contains keyword class and the class name is
called the class s header.

» The body of the class is an indented code block that contains methods and attributes that belong
tothe class.

» A class's optional documentation string describes the class. If a class contains a documentation
string, the string must appear in the line or lines following the class header.

* Method init isthe constructor method of aclass. A constructor is a special method that
executes each time an object of aclassis created. The constructor initializes the attributes of the
object and returns None.

 All methods, including constructors, must specify at least one parameter—the object reference.
This parameter represents the object of the class for which the method is called. M ethods must use
the object reference to access attributes and other methods that belong to the class.

» By convention, the object reference argument is called sel€£.

» Each object has its own namespace that contains the object’s methods and attributes. The class's
constructor starts with an empty object (sel £) and adds attributes to the object’ s namespace.

%

—

é pythonhtpl_07.fm Page 255 Saturday, December 8, 2001 2:29 PM

%

Chapter 7 Object-Based Programming 255

Once aclass has been defined, programs can create objects of that class. Programmers can create
objects as necessary. Thisis one reason why Python is said to be an extensible language.

One of the fundamental principles of good software engineering is that a client should not need to
know how a class is implemented to use that class. Python's use of modules facilitates this data
abstraction—a program can import a class definition and use the class without knowing how the
classisimplemented.

To createan object of aclass, simply “call” the classnameasif it wereafunction. Thiscall invokes
the constructor for the class.

Classes and objects of classes both have special attributes that can be manipulated. These at-
tributes, which Python creates when aclassis defined or when an object of aclassis created, pro-
vide information about the class or object of a class to which they belong.

Directly accessing an object’s data can leave the datain an inconsistent state.

Most object-oriented programming languages allow an object to prevent its clients from accessing
the object’ sdata directly. However, in Python, the programmer uses attribute naming conventions
to hide data from clients.

Although a client can access an object’s data directly (and perhaps cause the data to enter an in-
consistent state), a programmer can design classes to encourage correct use. One technique isfor
the class to provide access methods through which the data of the class can be read and written in
acarefully controlled manner.

Predicate methods are read-only access methods that test the validity of a condition.

When a class defines access methods, a client should access an object’s attributes only through
those access methods.

Classes often provide methods that allow clients to set or get the values of attributes. Although
these methods need not be called set and get, they often are. Get methods also are called “query”
methods.

A get method can control the formatting of the data. A set method can—and most likely should—
scrutinize attempts to modify the value of the attribute. This ensures that the new value is appro-
priate for that dataitem.

A set method may specify that an error message—called an exception—be raised to the client
when the client attempts to assign an invalid value to an attribute.

When aclassauthor creates an attribute with a single leading underscore, the author does not want
users of the class to access the attribute directly. If a program requires access to the attributes, the
class author provides some other means for doing so.

Python comparisons may be chained. The chaining syntax that enables programmersto write com-
parison expressionsin familiar, arithmetic terms.

When an exception israised a program either can catch the exception and handle it; or the exception
can go uncaught, in which case the program prints an error message and terminates immediately.

The keyword raise isfollowed by the name of the exception, a comma and a value that the ex-
ception object stores as an attribute. When Python executes araise statement, an exception is
raised. If the exception is not caught, Python prints an error message that contains the name of the
exception and the exception’s attribute value.

In programming languages such as C++ and Java, a class may state explicitly which attributes or
methods may be accessed by clients of the class. These attributes or methods are said to be public.
Attributes and methods that may not be accessed by clients of the class are said to be private.

To prevent indiscriminate attribute access, prefix the name of the attribute with two underscore
characters ().

%

é pythonhtpl_07.fm Page 256 Saturday, December 8, 2001 2:29 PM

256 Object-Based Programming Chapter 7

When Python encounters an attribute name that begins with two underscores, the interpreter per-
forms name mangling on the attribute, to prevent indiscriminate access to the data. Name man-
gling changes the name of an attribute by including information about the class to which the
atribute belongs.

Constructors can define default arguments that specify initia values for an object’s attributes, if
the client does not specify an argument at construction time.

Constructors can define keyword arguments that enable the client to specify values for only cer-
tain, named arguments.

Programmer-supplied constructors that default all their arguments (or explicitly require no argu-
ments) are also caled default constructors

If no constructor is defined for a class, the interpreter creates a default constructor. However, the
constructor that Python provides does not perform any initialization, so, when an object is created,
the object is not guaranteed to be in a consistent state.

A destructor executes when an object is destroyed (e.g., after no more references to the object
exist).

A class can define a special method called del that executes when the last reference to an
object is deleted or goes out of scope. A destructor normally specifies no parameters other than
self and returns None.

A class attribute represents “ class-wide” information (i.e., a property of the class, not of a specific
object of the class).

Although class attributes may seem like global variables, each class attribute resides in the
namespace of the classin whichiit is created. Class attributes should be initialized once (and only
once) in the class definition.

A class sclass attributes can be accessed through any object of that class. A class sclass attributes
aso exist even when no object of that class exists. To access a class attribute when no object of
the class exists, prefix the class name, followed by a period, to the name of the attribute.

Sometimes, a programmer needs objects whose attributes are themsel ves references to objects of
other classes. Such a capahility is called composition.

Stacks are known as last-in, first-out (LIFO) data structures—the last item pushed (inserted) on
the stack isthe first item popped (removed) from the stack.

Typeslikeinteger, floating-points, strings and othersare all examples of abstract datatypes. These
types are representations of real-world notions to some satisfactory level of precision within a
computer system.

An ADT actualy captures two notions: A data representation and the operations that can be per-
formed on that data. Python programmers use classes to implement abstract data types.

A queue, isa“waiting line.” A queue offers well-understood behavior to its clients: Clients place
items in a queue one at a time via an enqueue operation, then get those items back one at atime
viaadequeue operation.

A queuereturnsitemsin first-in, first-out (FIFO) order, which meansthat thefirst iteminserted in
aqueue isthefirst item removed.

Python programmers concentrate both on crafting new classes and on reusing classes from the
standard library. Thiskind of software reusability speeds the devel opment of powerful, high-qual-
ity software.

The standard library enables Python devel opersto build applicationsfaster by reusing preexisting,
extensively tested classes. In addition to reducing development time, standard library classes also
improve programmers’ abilitiesto deb

%

é pythonhtpl_07.fm Page 257 Saturday, December 8, 2001 2:29 PM

A

Chapter 7

TERMINOLOGY

abstract datatype (ADT)
access method

atribute
__bases__ dtribute of aclass
behavior
built-in data type

class keyword

__class__ attribute of an object
class body
class instance object

classlibrary
class scope

composition
consistent state

constructor

container class
data abstraction
data member
datatype
datavalidation
__del_ method
del keyword
dequeue
destructor
__dict__ attribute of aclass
__dict__ attribute of an object
__doc___ atribute of aclass
double underscore (_)
encapsulation

enqueue
extensible language
firstin, first out (FIFO)

SELF-REVIEW EXERCISES

7.1

Object-Based Programming

get access method

incongistent state

information hiding

__init method
instantiate

interface

last in, first out (LIFO)
member function

method

module

__module__ attribute of aclass
__name___ attribute of aclass
name mangling

object

object-oriented programming (OOP)
popping off a stack

predicate method

private

public

pushing onto a stack

queue

rapid application development (RAD)
reference

self

set access method

single underscore (_)

software reuse

stack

structured programming
termination housekeeping
user-defined type

utility method

Fill in the blanks in each of the following statements:

a)
b)
0)

d)

e)
f)
9
h)
i)
)

Object-oriented programming

data and functionsinto

Method is called the constructor.

Classes enable programmers to model objectsthat have
members) and behaviors (represented as)
A class's methods are often referred to as

ming languages.

A method tests the truth or falsity of acondition.
A isavariable shared by all objects of aclass.
are known as last-in, first-out data structures.

A user of an object isreferredto asa

Python performs name mangling on attributes that begin with
Describing the functionality of a class independent of its implementation is called

ﬂ%

257

(represented as data

in other object-oriented program-

underscore(s).

*

é pythonhtpl_07.fm Page 258 Saturday, December 8, 2001 2:29 PM

258 Object-Based Programming Chapter 7

7.2 State whether each of the following istrue or false. If false, explain why.
a) Object-oriented programming languages do not use functions to perform actions.
b) The parameter self must bethefirst itemin amethod' s argument list.
¢) Theclass constructor returns an object of the class.
d) Programmer-defined and built-in modul es are imported in the same way.
€) Constructors may specify keyword arguments and default arguments.
f) An attribute that begins with a single underscore is a private attribute.
0) Thedestructor is called when the keyword del is used on an object.
h) A shared class attribute should be initialized in the constructor.
i) When invoking an object’ s method, a program does not need to pass a value that corre-
sponds to the object reference parameter.
j) Everyclassshouldhavea del method to reclaim an object’s memory.

ANSWERS TO SELF-REVIEW EXERCISES

7.1 a) encapsulates, classes. b) init .) attributes, methods. d) member functions.
e) predicate. f) class attribute. g) Stacks. h) client. i) two. j) data abstraction.

7.2 a) False. Object-oriented programmers use methods, or functions, as components of classes.
b) False. The first parameter in a method’s argument must be an object of the class, which is called
self by convention. ¢) False. The class constructor initializes an object of the class and implicitly
returnsNone. d) True. €) True. f) False. An attribute that beginswith asingle underscore conveysthe
convention that a client of a class should not access the attribute directly. g) False. A destructor exe-
cutes when the last reference to an object is destroyed. h) False. A shared class attribute should be
initialized exactly once, at class scope, outside the class smethods. i) True. j) False. The programmer
isnot required towritea__del method for aclass.

EXERCISES

7.3 Create aclass called Complex for performing arithmetic with complex numbers. Write a
driver program to test your class.
Complex numbers have the form

realPart + imaginaryPart * i

where i is

J-1

Use floating-point numbers to represent the data of the class. Provide a constructor that enables an
object of this classto beinitiaized when it is created. The constructor should contain default values
in case no initializers are provided. Provide methods for each of the following:

a) Addingtwo ComplexNumbers: Therea partsare added to form therea part of there-
sult, and the imaginary parts are added to form the imaginary part of the result.

b) Subtracting two ComplexNumbers: The red part of the right operand is subtracted
from thereal part of the left operand to form thereal part of the result, and theimaginary
part of the right operand is subtracted from the imaginary part of the |eft operand to form
the imaginary part of the result.

¢) Printing ComplexNumbersin the form (a, b), where a isthereal part and b isthe
imaginary part.

7.4 Create aclass called RationalNumber for performing arithmetic with fractions. Write a
driver program to test your class.

%

é pythonhtpl_07.fm Page 259 Saturday, December 8, 2001 2:29 PM

Chapter 7 Object-Based Programming 259

Use integer variables to represent the data of the class—the numerator and the denominator.
Provide a constructor that enables an object of this class to be initialized when it is declared. The
constructor should contain default values, in case no initializers are provided, and should store the
fraction in reduced form (i.e., the fraction

2
4

would be stored in the object as 1 in the numerator and 2 in the denominator). Provide methods for
each of the following:

a) Adding two RationalNumbers. The result should be stored in reduced form.

b) Subtracting two RationalNumbers. The result should be stored in reduced form.

¢) Multiplying two RationalNumbers. The result should be stored in reduced form.

d) Dividing two RationalNumbers. Theresult should be stored in reduced form.

€) Printing RationalNumbersin the form a/b, where a is the numerator and b is the

denominator.
f) Printing RationalNumbersin floating-point format.

7.5 Modify the Time classof Fig. 7.13toincludea t i ck method that incrementsthetime stored
in aTime object by one second. The Time object should always remain in a consistent state. Write
adriver program that tests the tick method. Be sure to test the following cases:

a) Incrementing into the next minute.

b) Incrementing into the next hour.

¢) Incrementing into the next day (i.e., 23:59:59 to 0:00:00).

7.6 Create a class Rectangle. The class has attributes 1ength and __ width, each of
which defaultsto 1. It has methods that calculate the perimeter and the area of therectangle. It
has set and get methods for both length and _ width. The set methods should verify that
__lengthand __ width are each floating-point numberslarger than 0.0 and less than 20.0. Write
adriver program to test the class.

7.7 Create amore sophisticated Rec tangle classthan the oneyou created in Exercise 7.6. This
class stores only the x-y coordinates of the upper left-hand and lower right-hand corners of the rect-
angle. The constructor calls aset function that accepts two tuples of coordinates and verifiesthat each
of these isin the first quadrant, with no single x or y coordinate larger than 20.0. Methods cal culate
the length, width, perimeter and area. The length is the larger of the two dimensions. In-
cludeapredicate method i sSquare that determineswhether therectangleisasquare. Writeadriver
program to test the class.

7.8 Create a class TicTacToe that will enable you to write a complete program to play the
game of tic-tac-toe. The class contains a 3-by-3 double-subscripted list of letters. The constructor
should initialize the empty board to all zeros. Allow two human players. Wherever the first player
moves, place an "X" in the specified square; place an "o wherever the second player moves. Each
move must be to an empty square. After each move, determine whether the game has been won and
whether the gameisadraw. [Note: If you feel ambitious, modify your program so that the computer
makes the moves for one of the players automatically. Also, allow the player to choose whether to go
first or second.]

é pythonhtpl_08.fm Page 260 Monday, December 10, 2001 6:49 PM

"

Customizing Classes

Objectives

To understand how to write special methods that
customize a class.
To be able to represent an object as a string.

To use special methods to customize attribute access.

To understand how to redefine (overload) operatorsto
work with new classes.

To learn when to, and when not to, overload operators.

To learn how to overload sequence operations.
To learn how to overload mapping operations.
To study interesting, customized classes.

The whole difference between construction and creation is
exactly this: that a thing constructed can only be loved after

it is constructed; but a thing created isloved beforeit exists.

Gilbert Keith Chesterton, Preface to Dickens, Pickwick
Papers

Thedieis cast.

Julius Caesar

Our doctor would never really operate unless it was
necessary. Hewas just that way. If he didn’t need the money,
he wouldn’t lay a hand on you.

Herb Shriner

Under
Construction

é pythonhtpl_08.fm Page 261 Monday, December 10, 2001 6:49 PM

Chapter 8 Customizing Classes 261

Outline

8.1 Introduction

8.2 Customizing String Representation: Method str
8.3 Customizing Attribute Access

8.4 Operator Overloading

8.5 Restrictions on Operator Overloading

8.6 Overloading Unary Operators

8.7 Overloading Binary Operators

8.8 Overloading Built-in Functions

8.9 Converting Between Types

8.10 Case Study: A Rational Class

8.11 Overloading Sequence Operations

8.12 Case Study: A SingleList Class

8.13 Overloading Mapping Operations

8.14 Case Study: A SimpleDictionary Class

Summary ¢ Terminology ¢ Self-Review Exercises » Answers to Self-Review Exercises ¢ Exercises

8.1 Introduction

In Chapter 7, we introduced the basics of Python classes and the notion of abstract data
types(ADTSs). Wediscussed how methods _ init and del executewhenan ob-
ject is created and destroyed, respectively. These methods are two examples of the many
special methods that a class may define. A special method is a method that has a special
meaning in Python; the Python interpreter calls one of an object’s specia methods when
the client performs a certain operation on the object. For example, when a client creates an
object of aclass, Python invokesthe init special method of that class.

A class author implements special methods to customize the behavior of the class. The
purpose of customization is to provide the clients of a class with a simple notation for
mani pul ating obj ects of the class. For example, in Chapter 7, manipulations on objects were
accomplished by sending messages (in the form of method calls) to the objects. This
method-call notation is cumbersome for certain kinds of classes, especially mathematical
classes. For such classes, it would be nice to use Python’s rich set of built-in operators and
statements to manipulate objects. In this chapter, we show how to define special methods
that enable Python's operators to work with objects—a process called operator over-
loading. It is straightforward and natural to extend Python with these new capabilities.
Operator overloading also requires great care, because, when overloading ismisused, it can
make a program difficult to understand.

Operator + hasmultiple purposesin Python, for example, integer addition and string con-
catenation. Thisisan example of operator overloading. The Python language itself overloads
operators + and *, among others. These operators perform differently to suit the context in
integer arithmetic, floating-point arithmetic, string manipulation and other operations.

%

—

é pythonhtpl_08.fm Page 262 Monday, December 10, 2001 6:49 PM

A

.

%

262 Customizing Classes Chapter 8

Python enables the programmer to overload most operators to be sensitive to the con-
text in which they are used. The interpreter takes the appropriate action based on the
manner in which the operator is used. Some operators are overloaded frequently, especially
operators like + and -. The job performed by overloaded operators also can be performed
by explicit method calls, but operator notation is often clearer.

In this chapter, we discuss when to use operator overloading and when not to use it.
We show how to overload operators, and we present complete programs using overloaded
operators.

Customization provides other benefits, as well. A class may define special methods
that cause an object of the class to behave like alist or like a dictionary. A class also may
define special methods to control how a client accesses object attributes through the dot
access operator. In this chapter, we introduce the appropriate special methods and create
classes that implement them.

8.2 Customizing String Representation: Method str

Python is able to output the built-in data types with the print statement. What if a pro-
grammer wants to define a class whose objects also can be output with the print state-
ment? A Python class can define special method _ str |, to provide an informal (i.e.,
human-readable) string representation of an object of the class. If a client program of the
class contains the statement

print objectOfClass

Python callstheobject’'s str method and outputs the string returned by that method.
Figure 8.1 demonstrates how to define special method _str to handle data of a user-
defined telephone number class called PhoneNumber. This program assumes telephone
numbers are input correctly.

1

2

3

4 class PhoneNumber:

5

6

7 def _ init_ (self, number):

8

9

10 self.areaCode = number[1:4]
11 self.exchange = number[6:9]
12 self.line = number| 8 1
13

14 def str (self):

15

16

17 return % \

18 (self.areaCode, self.exchange, self.line)
19

Fig. 8.1 String representation—special method str . (Part1of 2))

ﬂ%

—

é pythonhtpl_08.fm Page 263 Monday, December 10, 2001 6:49 PM

A

.

Chapter 8 Customizing Classes 263

20 def test():

21

22

23 newNumber = raw_input (

24)
25

26 phone = PhoneNumber (newNumber)
27 print ,

28 print phone

29

30 if name ==

31 test ()

Enter phone number in the form (123) 456-7890:
(800) 555-1234
The phone number is: (800) 555-1234

Fig. 8.1 String representation—special method str . (Part2 of 2))

Method init (lines 7-12) acceptsastring in the form ™ (xxx) xxx-xxxx",
where each x in the string is a digit in the phone number. The method slices the string and
stores the pieces of the phone number as attributes.

Method str__ (lines14-18) isaspecia method that constructs and returns a string
representation of an object of class PhoneNumber. When the interpreter encounters the
statement

print phone
in line 28, the interpreter executes the statement
print phone. str ()

When a program passes a PhoneNumber object to built-in function str or when a pro-
gram uses a PhoneNumber object with the % string-formetting operator (e.g., "%s" %
phone), Python also callsmethod str

—9- Common Programming Error 8.1
@ Returning a non-string value frommethod str isafatal, runtime error.

Function test, (lines 20-28) requests a phone number from the user, creates a new
PhoneNumber object, and prints the string representation of the object. Recall that when a
module runs as a stand-alone program (i.e., the user invokes the Python interpreter on the
module), Python assignsthevalue ® main " to the namespace’ s name (stored in built-
invariable ~ name). Line 31 callsfunction test, if PhoneNumber . py is executed
as a stand-alone program. This practice of defining a driver function and testing a modul€'s
namespace to execute the function is employed by many Python modules. The benefit of this
practice is that a module author can define different behaviors for the module, based on the
context in which the module is used. If another program imports the module, the value of
__name___ Wwill bethe module name (e.g., "PhoneNumber"), and the test function does

ﬂ%

—

é pythonhtpl_08.fm Page 264 Monday, December 10, 2001 6:49 PM

A

.

264 Customizing Classes Chapter 8

not execute. If the module is executed as a stand-alone program, thevalue of _ name _ is
" main__ ", and the test function executes. In Chapters 10 and 11, we create graphical
programs that use test functions to display the graphical components we define.

Good Programming Practice 8.1

@ Provide test functions for modules you create, when necessary. These functions help ensure
that the module works correctly, and they provide additional information to clients of the
class by demonstrating the ways in which a modul€’ s operations may be performed.

8.3 Customizing Attribute Access

In the previous chapter, we discussed two techniques for a client to access an object’s at-
tributes. The client can access the attributes directly (through the dot access operator), or
the class author can give the attributes special names to signify that a client should access
the attributes through access methods. In this section, we discuss another technique—de-
fining special methods that customize the behavior of direct attribute access.

Python providesthree special methods (Fig. 8.2) that a class can define to control how
the dot access operator behaves on objects of the class. This technique of redefining an
operator’ sbehavior is called “ operator overloading,” atopic we discussin detail in the next
severa sections. Overloading the dot access operator combines the two attribute access
techniques we discussed in the previous chapter—aclient may access the attributes directly
(i.e., through the dot access operator), but doing so actually executes code that performsthe
operations of access methods.

Figure 8.3 contains a modified definition of class Time, the class we used to explore
attribute access in the previous chapter. The new definition uses special methods
__getattr and setattr to control how a client accesses and modifies an
object’ s attributes.

Lines 7-13 contain a default constructor for class Time. The constructor simply
assigns the argument values to the new object’ s attributes. If a class defines special method
__setattr__, Python calls this method every time a program makes an assignment to
an object’s attribute through the dot operator. Therefore, the statement in line 11 actually
resultsin the call

self. setattr (, hour)
Method Description
__delattr Executes when a client deletes an attribute (e.g.,
del anObject.attribute)
__getattr Executes when a client accesses an attribute name that cannot be

located inthe object’'s dict__ attribute (e.g.,
anObject.unfoundName)

__setattr Executes when aclient assigns a value to an object’s attribute (e.g.,
anObject.attribute = value)

Fig. 8.2 Attribute access customization methods.

ﬂ%

—

N2
| é pythonhtpl_08.fm Page 265 Monday, December 10, 2001 6:49 PM

Chapter 8 Customizing Classes 265
1

2

3

4 class Time:

5

6

7 def init (self, hour = 0, minute = 0, second =)
8

9
10
11 self.hour = hour
12 self.minute = minute
k3 self.second = second
14
15 def setattr (self, name, value):
16
17
18 if name ==
19
20 if <= value <
21 self. dict [1 = value
22 else:
23 raise ValueError, % value
24
25) elif name == or name ==
26
27 if <= value <
28 self. dict_ [+ name] = value
29 else:
30 raise ValueError, % \
31 (name, value)
32
33 else:
34 self. dict [name] = value
35
36 def getattr (self, name):
37
38
39 if name == :
40 return self. hour
41 elif name == s
42 return self. minute
43 elif name == :
44 return self. second
45 else:
46 raise AttributeError, name
47
48 def str (self):
49
50
Bl
52 return %\
53 (self. hour, self. minute, self. second)

Fig. 8.3 Customized attribute access—class Time. (Part 1 of 2.)

4~ ~¢e

é pythonhtpl_08.fm Page 266 Monday, December 10, 2001 6:49 PM

A

266 Customizing Classes Chapter 8

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>>
>>> from TimeAccess import Time
>>> timel = Time(4, 27, 19)
>>> print timel
04:27:19
>>> print timel.hour, timel.minute, timel.second
4 27 19
>>> timel.hour = 16
>>> print timel
16:27:19
>>> timel.second = 90
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "TimeAccess.py", line 30, in setattr
raise ValueError, "Invalid %s value: %d" % \
ValueError: Invalid second value: 90

Fig. 8.3 Customized attribute access—class Time. (Part 2 of 2.)

Method setattr (lines 15-34) contains the error-checking code needed to
maintain the object’s datain a consistent state. The method accepts three arguments—the
object reference (sel £), the name of the attribute to set and the value to be assigned to the
attribute. Line 18 tests whether the attribute to be set is named "hour". If so, lines 2023
determine whether the specified value falls within the appropriate range. If the valueisin
the appropriate range, line 21 assigns the value to attribute _hour by accessing the appro-
priate key-value pair in the object’'s dict attribute; otherwise, lines 2223 raise an
exception to indicate an invaid value.

It isimportant that method setattr usesanobject's dict attribute to
set an object’ s attributes. If line 21 contained the statement

self. hour = value

method setattr _ would execute again, with the arguments " _hour" and value,
resulting ininfiniterecursion. Assigning avaluethroughtheobject's diect__ attribute,
however, doesnotinvokemethod setattr _, but simply insertsthe appropriate key—
valuepair inthe object’'s dict .

Common Programming Error 8.2

@ Inmethod setattr ,assigning avalueto an object’s attribute through the dot access
operator resultsininfinite recursion. Usetheobject’'s dict instead.

Lines 25-31 of method _ setattr perform similar tests for when the client
attempts to assign a value to attributes minute or second. If the specified value falls
within the appropriate range, the method assigns the value to the object’s attribute (either
_minute or _second). If the client attempts to assign a value to an attribute other than
hour, minute Or second, line 33 assigns the value to the specified attribute name, to
preserve Python’s default behavior for adding attributes to an object.

%

*

é pythonhtpl_08.fm Page 267 Monday, December 10, 2001 6:49 PM

A

.

Chapter 8 Customizing Classes 267

—- Common Programming Error 8.3

Assigning a value to an object’ s attribute, but mistakenly typing the wrong name for that at-
tribute is a logic error. Python adds a new attribute to the object’s namespace with the in-
correct name.

Lines 3646 contain the definition for method _ getattr . When a client pro-
gram contains the expression

timel.attribute

as an rvalue (i.e, the right-hand value in an operator expression), Python first looks in
timel’'s dict _ attribute for the attribute name. If the attribute name is in
__dict__, Python simply returns the attribute’ s value. If the attribute nameis not in the
object's dict__, Python generates the call

timel. getattr (attribute)

where at tribute isthe name of the attribute that the client is attempting to access. The
method tests for whether the client is attempting to accesshour, minute oOr second and,
if so, returns the value of the appropriate attribute. Otherwise the method raises an excep-
tion (line 46).

The getattr definition for every class should raise the At tributeError excep-
=tion if the attribute name cannot be found, to preserve Python’ s default behavior for locating
nonexistent attributes.

The interactive session that follows the class definition in Fig. 8.3 demonstrates the
benefit of defining special methods getattr and setattr . Theclient pro-
gram can access the attributes of an object of class Time in atransparent manner, through
the dot access operator. The interface to class Time appears identical to the interface we
presented in the first definition of the classin Chapter 7, but it has the advantage of main-
taining data in a consistent state. In Chapter 9, Inheritance, we discuss a similar tech-
nigue—called properties—that enables class authors to specify a method that executes
when a client attempts to access or modify a particular attribute.

ﬁ Designers of large systems that require strict accesstodata shoulduse getattr and

___setattr _ toensure data integrity. Developers of large systems that use Python 2.2
can use properties, a more efficient technique to take advantage of the syntax allowed by
__getattr and_ setattr .

8.4 Operator Overloading

Operators provide programmers with a concise notation for expressing manipulations of
objects of built-in types. Programmers can also use operators with objects of a class. Al-
though Python does not allow new operators to be created, it does allow most existing op-
erators to be overloaded such that, when these operators are used with objects of a
programmer-defined type, the operators have meaning appropriate to the new types.

%

—

\ {%)
pythonhtpl_08.fm Page 268 Monday, December 10, 2001 6:49 PM

A

.

268 Customizing Classes Chapter 8

EOperator overloading contributes to Python’s extensibility, one of the language' s most ap-
pealing qualities.
Good Programming Practice 8.2

@ Use operator overloading when it makes a program clearer than accomplishing the same op-
erations with explicit method calls.

Good Programming Practice 8.3

@ Avoid excessive or inconsi stent use of operator overloading; overloaded operators can make
a program cryptic and difficult to read.

Although operator overloading may sound like an exotic capability, most program-
mersimplicitly use overloaded operatorsregularly. For example, the addition operator (+)
operates quite differently onintegers, floating-point numbers and strings. But addition nev-
erthelessworksfinewith variables of these types and other built-in types, because the addi-
tion operator (+) has been overloaded in the Python language itself.

Operators are overloaded by writing a method definition as you normally would, except
that the method name corresponds to the Python special method for that operator. For
example, themethod name__add __ overloads the addition operator (+). To use an operator
on an object of aclass, the class must overload (i.e., define aspecial method for) that operator.

Overloading is most appropriate for mathematical classes. These often require that a
substantial set of operators be overloaded to ensure consistency with the way these mathe-
matical classesare handled in the real world. For example, it would be unusual to overload,
for rational numbers, only addition, because other arithmetic operators also are used com-
monly with rational numbers.

Python is an operator-rich language. Python programmers who understand the
meaning and context of each operator are likely to make reasonable choices when it comes
to overloading operators for new classes.

Operator overloading provides the same concise expressions for user-defined classes
that Python provides with itsrich collection of operators for built-in types. However, oper-
ator overloading is not automatic; the programmer must write operator overloading
methods to perform the desired operations.

Extreme misuses of overloading are possible, such as overloading operator + to per-
form subtraction-like operations or overloading operator - to perform multiplication-like
operations. Such non-intuitive uses of overloading make a program extremely difficult to
comprehend and should be avoided.

Good Programming Practice 8.4

@ Overload operators to perform the same function or similar functions on objects as the op-
erators perform on objects of built-in types. Avoid nonintuitive uses of operators.

8.5 Restrictions on Operator Overloading

Most Python operators and augmented assignment symbols can be overloaded.! These are
shownin Fig. 8.4.

1. Two operators cannot be overloaded: {} and Lambda. [Note: 1ambda isakeyword that supports
functional programming—a technique that is beyond the scope of this book.]

ﬂ%

—

é pythonhtpl_08.fm Page 269 Monday, December 10, 2001 6:49 PM

Chapter 8 Customizing Classes 269

Common operators and augmented assignment statements that can be overloaded

+ - * *%* / // % <<
>> & ~ ~ < > <=
>= == 1= += -= * = * %= /=
//= %= <<= >>= &= = = [1
() . N in

Fig. 8.4 Operators and augmented assignment statements that can be
overloaded.

The precedence of an operator cannot be changed by overloading. However, paren-
theses can be used to force the order of evaluation of overloaded operatorsin an expression.
The associativity of an operator cannot be changed by overloading.

It is not possible to change the “arity” of an operator (i.e., the number of operands an
operator takes)—overloaded unary operators remain unary operators, and overloaded
binary operators remain binary operators. Operators + and - each have both unary and
binary versions; these unary and binary versions can be overloaded separately, using dif-
ferent method names. It is not possible to create new operators; only existing operators can
be overloaded.

Common Programming Error 8.4

@ Attempting to change the “ arity” of an operator via operator overloading causes a fatal
runtime error when the overloaded operator’ s method executes.

The meaning of how an operator works on objects of built-in types cannot be changed
by operator overloading. The programmer cannot, for example, change the meaning of how
+ adds two integers. Operator overloading works only with objects of user-defined classes
or with amixture of an object of a user-defined class and an object of abuilt-in type.

Overloading abinary mathematical operator (e.g., +, -, *) automatically overloadsthe
operator’s corresponding augmented assignment statement. For example, overloading an
addition operator to allow statements like

object2 = object2 + objectl

impliesthat the += augmented assignment statement also is overloaded to allow statements
such as

object2 += objectl

Although (in this case) the programmer does not have to define a method to overload the
+= assignment statement, such behavior also can be achieved by defining the method ex-
plicitly for that class.

Performance Tip 8.1

i Sometimes it is preferable to overload an augmented assignment version of an operator to
=22 performthe operation "in place” (i.e., without using extra memory by creating a new object).

4~ —

é pythonhtpl_08.fm Page 270 Monday, December 10, 2001 6:49 PM

A

.

270 Customizing Classes Chapter 8

8.6 Overloading Unary Operators

A unary operator for aclassis overloaded as a method that takes only the object reference
argument (self). When overloading a unary operator (such as ~) as a method, if
objectl isan object of class Class, when the interpreter encounters the expression

~objectl
the interpreter generates the call

objectl. invert ()

The operand objectl is the object for which the Class method _ invert isin-
voked. Figure 8.5 lists the unary operators and their corresponding special methods.

8.7 Overloading Binary Operators

A binary operator or statement for a classis overloaded as a method with two arguments:
self and other. Later in this chapter, we will overload the + operator to indicate addi-
tion of two objects of class Rational. When overloading binary operator +, if y and z
are objects of class Rational, theny + z istreated asif y. add_ (z) had been
written, invokingthe _add _ method. If y isnot an object of classRational, but z is
an object of class Rational, theny + z istreated asif z. radd (y) had been
written. The method isnamed _ radd__, because the object for which the method exe-
cutes appearsto theright of the operator. Usually, overloaded binary operator methods cre-
ate and return new objects of their corresponding class.

When overloading assignment statement += asaRational method that acceptstwo
arguments, if y and z are objects of class Rational, then y += z is treated as if
y. iadd__ (z) had been written, invoking the _iadd method. The method is
named iadd , because the method performs its operations “in-place” (i.e., the
method uses no extramemory to perform its behavior). Usually, this means that the method
performs any necessary cal culations on the object reference argument (sel £), then returns
the updated reference. Figure 8.6 lists the binary operators and assignment statements and
their corresponding special methods.

What happens if we evaluate the expression y + z or the statement y += z, and only
y isan object of classRational?In both cases, z must be coerced (i.e., converted) to an
object of classRational, before the appropriate operator overloading method executes.
We cover coercion and the special methodsthat provide coercion behavior in Section 8.9.

Unary operator Special method
- __neg

+ __pos___

~ __invert

Fig. 8.5 Unary operators and their corresponding special methods.

%

—

\ {%)
| pythonhtpl_08.fm Page 271 Monday, December 10, 2001 6:49 PM

Chapter 8 Customizing Classes 271

Binary operator/

statement Special method

+ _add_, radd

- __sub , rsub

* _ mul , rmul

/ __div__, rdiv_, truediv__ (for Python 2.2),
__rtruediv__ (for Python 2.2)

// _ _floordiv_, rfloordiv__ (for Pythonversion 2.2)

% _mod_ , rmod

** __pPOw__, rpow_

<< _1lshift , rlshift

>> __rshift , rrshift

& _and , rand

* __xor_ _, rxor
_or , ror

+= __iadd

-= __isub

*= __imul

/= __didiv_, itruediv__ (for Python version 2.2)

//= __ifloordiv__ (for Pythonversion 2.2)

%= __imod

* k= __ipow

<<= __ilshift

>>= __irshift

&= __iand

*= __ixor

= __dor

== _eq_

I+, <> __ne

> gt

< 1t

>= __ge

<= le

Fig. 8.6 Binary operators and their corresponding special methods.

8.8 Overloading Built-in Functions

A class also may define special methods that execute when certain built-in functions are
called on an object of the class. For example, we may define special method __abs__ for

4~ —

é pythonhtpl_08.fm Page 272 Monday, December 10, 2001 6:49 PM

A

.

272 Customizing Classes Chapter 8

classRational, to execute when a program cals abs (rationalObject) to com-
pute the absolute value of an object of that class. Thetablein Fig. 8.7 containsalist of com-
mon built-in functions and the corresponding special methods that the class may define.

8.9 Converting Between Types

Most programs process information of a variety of types. Sometimes al the operations
“stay within atype.” For example, adding (concatenating) a string to a string produces a
string. But, it is often necessary to convert or coerce data of onetypeto data of another type.
This can happen in assignments and in calculations. The interpreter knows how to perform
certain conversionsamong built-in types. Programmers can force conversions among built-
in types by calling the appropriate Python function, such as int or float.

But what about user-defined classes? The interpreter cannot know how to convert
among user-defined classes and built-in types. The programmer must specify how such
conversions are to occur with special methods that override the appropriate Python func-
tions. For example, a class can define special method ~ int that overloads the
behavior of the call int (anobject) to return an integer representation of the object.
The table in Fig. 8.8 lists the special methods that a class may define to implement type
coercion. Each specia method has a corresponding built-in function.

Built-in Function Description Special method

abs (Xx) Returns the absolute value of x. __abs

divmod (X, Yy) Returns atuple that contains the integer __divmod
and remainder components of X % Y.

len(Xx) Returns the length of x (x should be a __len
sequence).

pow (X y[,7) Returnstheresult of X. Withthreeargu- ~ __PowW__
ments, returns (x) % z.

repr(X) Returns aformal string representationof X~ repr
(i.e., astring from which object x can be
replicated).

Fig. 8.7 Common built-in functions and their corresponding special methods.

Method Description

___coerce Converts two values to the same type.

___complex_ Converts object to complex number type.

__float Converts object to floating-point number type.
hex Converts object to hexidecima string type.

Fig. 8.8 @ Coercion methods. (Part 1 of 2.)

ﬂ%

—

é pythonhtpl_08.fm Page 273 Monday, December 10, 2001 6:49 PM

A

.

%

Chapter 8 Customizing Classes 273
Method Description
__int Converts object to integer number type.
__long Converts object to long integer number type.
__oct Converts object to octal string type.
str Converts object to string type. Also used to obtain informal string rep-

resentation of object (i.e., astring that simply describes object).

Fig. 8.8 Coercion methods. (Part 2 of 2.)

8.10 Case Study: A Rational Class

Figure 8.9 illustrates a Rational class. The class uses overloaded numerical operators,
built-in functions and statements to manipulate rational numbers. A rational number is a
fraction represented as a numerator (top) and a denominator (bottom). A rational number
can be positive, negative or zero. ClassRational’sinterface includes adefault construc-
tor, string representation method, overloaded abs function, equality operators and several
mathematical operators. The class also defines one method simpli £y that reducesthera
tional number. Reducing arational number isthe process of dividing the numerator and de-
nominator by their greatest common divisor, to express the rational number in “simplest
terms.” Thefile defines a ged function, used by classRational to compute the greatest
common divisor of two values.

In the class definition (Fig. 8.9), lines 4-12 define function ged, which computes the
greatest common divisor of two values. ClassRational usesthisfunction to simplify the
rational number.

The Rational constructor (lines 17—-30) takes two arguments—top and bot tom—
that default to 1. If the client attempts to create an object of class Rational with denomi-
nator O, the constructor raises an exception (ZeroDivisionError) to indicate an error
(lines21-22). zeroDivisionError isthe name of an exception object that Python places
in the built-in namespace when the interpreter begins. We discuss this exception and others
(e.g.,, IndexErrror, KeyError, €lc.) in Chapter 12, Exception Handling. Lines 25-26
assign the object’ s numerator and denominator as the absolute value of the arguments passed
to the constructor. Lines 27-28 compute and assign the object’ s sign to attribute sign. Line
30 calsmethod simpli £y, to reduce the rational number to its simplest form.

=

1

2

3

4 def ged(x, v):
5

6

7 while y:

8 zZ = X

9 X =y

0 Yy =2%Yy

Fig. 8.9 Operator overloading—Rational.py. (Part 1 of 4.)

ﬂ%

*

Q72
| é pythonhtpl_08.fm Page 274 Monday, December 10, 2001 6:49 PM

274 Customizing Classes Chapter 8

12 return x

14 class Rational:

17 def init (self, top = 1, bottom =) :

21 if bottom ==
22 raise ZeroDivisionError,

25 self.numerator = abs(top)

26 self.denominator = abs(bottom)

27 self.sign = (top * bottom) / (self.numerator *
28 self.denominator)

30 self.simplify ()

33 def simplify(self):

36 common = gcd(self.numerator, self.denominator)
37 self.numerator /= common
38 self.denominator /= common

41 def neg (self):

44 return Rational(-self.sign * self.numerator,
45 self.denominator)

48 def add (self, other):

51 return Rational (

52 self.sign * self.numerator * other.denominator +
53 other.sign * other.numerator * self.denominator,
54 self.denominator * other.denominator)

56 def sub (self, other):

59 return self + (-other)

61 def mul (self, other):

Fig. 8.9 Operator overloading—Rational.py. (Part 2 of 4.)

4~ ~¢e

Q2
| é pythonhtpl_08.fm Page 275 Monday, December 10, 2001 6:49 PM

%

Chapter 8 Customizing Classes

275

114
115
116

return Rational (self.numerator * other.numerator,
self.sign * self.denominator *
other.sign * other.denominator)

def div_ (self, other):

return Rational(self.numerator * other.denominator,
self.sign * self.denominator *
other.sign * other.numerator)

def truediv_ (self, other):

return self. div__ (other)

def eq (self, other):

return (self - other).numerator ==

def 1t (self, other):

return (self - other).sign <

def gt (self, other):

return (self - other).sign >

def le (self, other):

return (self < other) or (self == other)

def ge (self, other):

return (self > other) or (self == other)
def _ ne (self, other):
return not (self == other)

def abs (self):

return Rational (self.numerator, self.denominator)

Fig. 8.9

Operator overloading—Rational .py. (Part 3 of 4.)

ﬂ%

Q72
| é pythonhtpl_08.fm Page 276 Monday, December 10, 2001 6:49 PM

276 Customizing Classes Chapter 8
117
118 def str (self):
119
120
121
122 if self.sign == :
123 signString =
124 else:
125 signString =
126
127 if self.numerator ==
128 return
129 elif self.denominator ==
130 return % (signString, self.numerator)
131 else:
132 return %\
133 (signString, self.numerator, self.denominator)
134
135
136 def int (self):
137
138
139 return self.sign * divmod(self.numerator,
140 self.denominator) [1
141
142 def float (self):
143
144
145 return self.sign * float(self.numerator) / self.denominator
146
147 def coerce (self, other):
148
149
150 if type(other) == type() :
151 return (self, Rational(other))
152 else:
153 return None

Fig. 8.9 Operator overloading—Rational.py. (Part 4 of 4.)

1

2

3

4 from RationalNumber import Rational
5

6

7 ratiomall = Rational()

8 rational2 = Rational (0)
9 rational3 = Rational(0)
10

11

12 print , ratiomnall

Fig. 8.10 Operator overloading—£ig08 10.py. (Part1of 2.)

- 4~ 4

\ {%)
| pythonhtpl_08.fm Page 277 Monday, December 10, 2001 6:49 PM

Chapter 8 Customizing Classes 277
13 print , rational2
14 print , rational3
15 print
16
17
18 print ratiomnall, , rational2, , rationall / rational2
19 print rational3, , rational2, , rational3 - rational2
20 print ratiomnal2, , rational3, , ratiomnall, s\
21 rational2 * rational3 - rationall
22
23
24 rationall += rational2 * rational3
25 print , rationall
26 print
27
28
29 print rationall, , ratiomal2, , rationall <= rational2
30 print ratiomall, , rational3, , rationall > rational3
31 print
32
33
34 print , rational3, , abs(rational3)
35 print
36
37
38 print ratiomnal2, , int(rational2)
39 print ratiomnal2, , float(rational2)
40 print rational2, , rational2 +

rationall: 1
rational2: 1/3
rational3: -1/2

1/ 1/3 =3
-1/2 - 1/3 = -5/6
1/3 * -1/2 - 1 = -7/6

rationall after adding rational2 * rational3: 5/6

5/6 <= 1/3 : 0
5/6 > -1/2 : 1

The absolute value of -1/2 is: 1/2
1/3 as an integer is: 0

1/3 as a float is: 0.333333333333
1/3 + 1 = 4/3

Fig. 8.10 Operator overloading—£ig08 10.py. (Part2 of 2.)

Method simplify (lines 33—38) reduces an object of classRational. The method
first callsfunction ged to determine the greatest common divisor of the object’ s numerator
and denominator (line 36). The method then uses the greatest common divisor to simplify
the rational object (lines 37-38).

4~ ~¢e

é pythonhtpl_08.fm Page 278 Monday, December 10, 2001 6:49 PM

A

.

278 Customizing Classes Chapter 8

Method neg (lines41-45) overloadsthe unary negation operator. If rational
isan object of classRational, when the interpreter encounters the expression

-rational
the interpreter generates method call
rational. neg ()

which simply creates anew object of classRational with the negated sign of theoriginal
object.

Method add__ (lines 48-54) overloads the addition operator. This method takes
two arguments—the object reference (sel£), and a reference to another object of class
Rational.lf rationall and rational2 aretwo objectsof classRational, when
the interpreter encounters the expression

rationall + rational2
the interpreter generates method call
rationall. add (ratiomnal2)

This method creates and returns a new object of classRational that representsthe results
of adding self to other. The numerator of thisnew value is computed with the expression

self.sign * self.numerator * other.denominator +
other.sign * other.numerator * self.denominator

and the denominator is computed with the expression
self.denominator * other.denominator

Method sub (lines 56-59) overloads the binary subtraction operator. This
method usesthe overloaded + and - operatorsto create and return the results of subtracting
the method’ s second argument from the method’ s first argument.

Method mul (lines 61-66) overloads the binary multiplication operator. This
method creates and returns a new object of classRational that representsthe product of
the method’ s two arguments.

Method div__ (lines 68—73) overloads the binary division operator / and creates
and returns a new object of class Rational that represents the results of dividing the
method’ stwo arguments. Method truediv__ (lines75-79) overloadsthe binary divi-
sion operator / for Python versions 2.2 and greater that use floating-point division. This
method simply calls method div__, because the / operator should perform the same
operation, regardless of the Python version. [Note: See Chapter 2, Introduction to Python
Programming, for more information on the difference in the / operator between Python
versions.]

Method eq (lines 82-85) overloads the binary equality operator (==). If
rationall and rational2 aretwo objects of class Rational, when the interpreter
encounters the expression

rationall == rational2

%

—

é pythonhtpl_08.fm Page 279 Monday, December 10, 2001 6:49 PM

A

.

Chapter 8 Customizing Classes 279

the interpreter generates method call
rationall. eq (ratiomnal2)

This method subtracts the two objects and determines whether the numerator of the result
is0. Rational objectsare reduced to their simplest form when created; therefore, we do
not need to reduce the method' s argument val ues before testing whether they are equal.

Method 1t (lines 87-90) overloads the binary less-than operator (<). This
method subtracts its second argument from its first argument and tests whether the sign of
theresult islessthan 0. Method _ gt (lines 92-95) overloads the binary grester-than
operator (>). Thismethod subtractsits second argument from its first and tests whether the
sign of theresult is greater than O.

Methods 1e (lines97-100), ge (lines102-105) and _ne (lines107-
110) overload the <=, >= and inequality operators (!= and <>) for objects of class
Rational. These methods use the overloaded equality (==), greater-than (>) and less-
than (<) operatorsto performs their operations.

Lines 113-116 define special method abs__ to overload the functionality of the
built-in abs function. If rational isan object of classRational, whentheinterpreter
encounters the expression

abs(rational)
the interpreter generates the method call
rational. abs ()

This method creates a new object of class Rational using the values of the numerator
and denominator of the object reference argument (recall that the constructor stores these
values as positive integers).

Lines118-133 definemethod __ str sothat clientsmay usetheprint statement
or built-in function str to display information about an object of classRational. If the
object’snumeratorisO, _str__ returnsthe string representation of integer value0; if the
object’s denominator is1, str__ returns the string representation of the object’s sign
and numerator. Otherwise, the method returns the string representation of the object’ ssign,
followed by the string representation of the object’ s numerator, followed by "/, followed
by the string representation of the object’s denominator.

Lines 136153 define special methodsfor coercion behavior. Method int (lines
136-140) executes when a client invokes built-in function int on an object of class
Rational. The method calls built-in function divmod to compute the integer division
and remainder components of dividing the numerator by the denominator. The method
returns the first element in the tuple returned from divmod, which represents the integer
division component. Method _ float__ (lines 142-145) executes when aclient invokes
built-in function £loat on an object of class Rational. The method multiplies the
object’s sign (-1 or 1) by the result of dividing the numerator by the denominator and
ensures a floating-point return value by call function £1oat on the numerator.

Method coerce (lines 147-153) executes when a client calls built-in function
coerce 0On an object of classRational and another object or when the client performs
so-called “ mixed-mode” arithmetic. An example of mixed-mode arithmetic isthe statement

rational +

%

—

é pythonhtpl_08.fm Page 280 Monday, December 10, 2001 6:49 PM

A

.

280 Customizing Classes Chapter 8

which attempts to add an integer to an object of classRational. Thisstatement resultsin
the method call

rational. add (rational. coerce_ ())

Special method coerce_ should contain code that converts the object and the other
type to the same type and should return a tuple that contains the two converted values.
Method coerce for classRational convertsonly integer values. Line 150 deter-
mines whether the type of the method's second argument is an integer. If so, the method
returns a tuple that contains the object reference argument and a new object of class Ra -
tional, created by passing the integer argument to Rational’s constructor. Python ex-
pects special method coerce to return None if a coercion of the two types is not
possible; therefore, line 153 returns None if the method’ s argument is not an integer.

The driver program (Fig. 8.10) creates objects of classRational—rationall is
initialized by default to 1/1, rational2 isinitialized to 10/30 and rational3, which
isinitialized to -7/14. The Rational constructor calls method simpli £y to reduce the
specified numerator and denominator. Thus, rational2 represents the value 1/3, and
rational3 representsthe value-1/2.

The driver program outputs each of the constructed objects of classRational, using
the print statement. Lines 17-21 demonstrate the results of using overloaded arithmetic
operators /, - and *. Lines 24-26 demonstrate that overloading the + addition operator
implicitly overloads the += assignment statement. The program uses the += augmented
assignment statement to add to rationall the product of rational2 * rational3,
then prints the results. The driver then prints the results of comparing the objects of class
Rational through the overloaded comparison operators (lines 29-31). Line 34 printsthe
absolute value of object rational3. Lines 38-40 testsRational’scoercion capability
by printing the integer representation (invoking method _ int_) and the floating-point
representation (invoking method float) and by adding an object of class
Rational and aninteger (invoking method coerce).

8.11 Overloading Sequence Operations

We have seen how to use special methodsto define aclassthat behaveslike anumeric type.
A class also can define several special methods to implement sequence operations, provid-
ing a list-based interface to its clients. An object of the class can provide accessto its ele-
ments through subscripts and dlices, can be passed to function 1en to determineitslength
and can support the operators and provide the methods that lists support. The table in
Fig. 8.11 contains some methods that a sequence class should provide. In the next section,
we define several of these methods for a list-based class that contains only unique values.

Method Description
add, _ radd , Overloads addition operator for concatenating sequences
_dadd (e.g., sequencel + sequence2)

Fig. 8.11 Sequence methods. (Part 1 of 2.)

%

—

é pythonhtpl_08.fm Page 281 Monday, December 10, 2001 6:49 PM

A

.

Chapter 8 Customizing Classes 281
Method Description
append Called to append an element to a mutable sequence
(eg., sequence.append (element))
__contains Called to test for membership
(eg., element in sequence)
count Called to determine number of occurrences of element ina
mutable sequence (e.9., sequence.count (element))
__delitem Called to delete an item from a mutabl e sequence
(eg., del sequence[index])
__getitem Called for subscript access (e.g., sequence [index])
index Called to obtain index of first occurrence of an element in a
mutable sequence (e.9., sequence. index (element))
insert Called to insert an element at a given index in amutable
sequence (9., sequence.insert (index, element))
__len Called for length of sequence (e.g., Llen (sequence))
_ mul , rmul , Overloads multiplication operator for repeating sequences
_imul (eg., sequence * 3)
pop Called to remove an e ement from a mutable sequence

(eg., sequence.pop())
remove Called to removefirst occurrence of avalue from amutable
sequence (e.9., sequence.remove ())
reverse Called to reverse a mutable sequencein place
(eg., sequence.reverse())
__setitem Called for assignment to a mutable sequence
(eg., sequence[index] = value)
sort Called to sort amutable sequence in place
(eg., sequence.sort())

Fig. 8.11 Sequence methods. (Part 2 of 2.)

8.12 Case Study: A SingleList Class

We now present an example of aclassthat “wraps’ (contains) alist to illustrate how to de-
fine severa specia methods to create a class that behaves like a sequence. Thelist alows
clients to insert only new (unique) values in the list and allows the list to be displayed in
tabular form. This example will sharpen your appreciation of data abstraction. Y ou will
probably want to suggest enhancements to this example. Class development is an interest-
ing, creative and intellectually challenging activity—always with the goal of “crafting
valuable classes.”

The program of Fig. 8.12 demonstrates class SingleList and its overloaded oper-
ators, statements and other special methods. First we walk through the driver program
(Fig. 8.13). Then we consider the class definition and each of the class' s methods.

%

*

N2
| é pythonhtpl_08.fm Page 282 Monday, December 10, 2001 6:49 PM

%

282 Customizing Classes Chapter 8

class SingleList:

def init (self, initialList = None):

CoOo~NOURAWNE

self. 1list = []

12 if initialList:
14 for value in initialList:
16 if value not in self. list:

17 self. list.append(value)

20 def _ str (self):

23 tempString =
24 i=

27 for i in range(len(self)):
28 tempString += % self. 1list[i]

30 if (i +) %
31 tempString +=

33 if 1 % 1=
34 tempString +=

36 return tempString

39 def len (self):

42 return len(self. 1list)

44 def getitem (self, index):

a7 return self. 1list[index]

49 def _ setitem (self, index, value):

Fig. 8.12 SingleList classwith operatoroverloading—SingleList.py. (Part
lof2)

ﬂ%

W2

'ﬁ%

l @é
‘ pythonhtpl_08.fm Page 283 Monday, December 10, 2001 6:49 PM

Chapter 8 Customizing Classes 283
52 if value in self. 1list:
53 raise ValueError, \
54 % str(value)
55
56 self. 1list[index] = value
57
58
59 def eq (self, other):
60
61
62 if len(self) != len(other):
63 return
64
65 for i in range(0, len(self)):
66
67 if self. 1list[i 1 != other. 1list[i]:
68 return
69
70 return
71
72 def _ ne (self, other):
73
74
75 return not (self == other)
Fig. 8.12 SingleList classwith operatoroverloading—SingleList.py. (Part
20f2)
1
2
3
4 from NewList import SingleList
5
6 def getIntegers():
7 size = int(raw_input ())
8
9 returnList = []
10
11 for i in range(size):
12 returnList.append (
13 int (raw_input(S (i +)
14
15 return returnList
16
17
18 print
19 integersl = SingleList(getIntegers())
20
21 print
22 integers2 = SingleList(getIntegers())
23
Fig. 8.13 SingleList class with operator overloading—£ig08 13.py. (Partl

of 3.)

%

Q72
| é pythonhtpl_08.fm Page 284 Monday, December 10, 2001 6:49 PM

284 Customizing Classes Chapter 8
24
25 print "\nSize of list integersl is", len(integersl)
26 print , integersl
27
28
29 print "\nSize of list integers2 is", len(integers2)
30 print , integers2
31
32
33 print
34
35 if integersl != integers2:
36 print
37
38 print
39
40 if integersl == integers2:
41 print
42
43 print "integersl[0] is", integersl[0]
44 print
45 integersl| 1 =
46 print , integersl

Creating integersl...

Integer
Integer
Creating integers2...
List size: 10

List size: 8
Integer 1: 1
Integer 2: 2
Integer 3: 3
Integer 4: 4
Integer 5: 5
Integer 6: 6

7: 7

8: 8

Integer 1: 9

Integer 2: 10
Integer 3: 11
Integer 4: 12
Integer 5: 13
Integer 6: 14
Integer 7: 15
Integer 8: 16
Integer 9: 17
Integer 10: 18

Size of list integersl is 8

List:
1 2 3 4
5 6 7 8

Fig. 8.13 SingleList classwith operator overloading—£ig08 13 .py. (Part2
of 3.)

- 4~ ~¢e

é pythonhtpl_08.fm Page 285 Monday, December 10, 2001 6:49 PM

A

.

Chapter 8 Customizing Classes 285

Size of list integers2 is 10

List:
9 10 11 12
13 14 15 16
17 18
Evaluating: integersl != integers2

They are not equal

Evaluating: integersl == integers2

integersl[0] is 1

Assigning 0 to integersl[0]

integersl:
0 2 3 4
5 6 7 8

Fig. 8.13 SingleList class with operator overloading—£ig08 13.py. (Part3
of 3.)

The program (Fig. 8.13) begins by creating two objects of class SingleList (lines
18-22). Thisclass s constructor takes alist asan argument. To create thislist, we call func-
tion getIntegers (lines 6-15). This function prompts the user to enter integers and
returns alist of these integers. Lines 25-26 use overloaded Python function 1en to deter-
minethesizeof integers1 and usetheprint statement (which implicitly calls method
__str_) toconfirm that the list elements were initialized correctly by the constructor.

Next, lines 29-30 output the size and contents of integers2.

Lines 3541 test the overloaded equality operator (==) and inequality operator (! =) by

first evaluating the condition

integersl != integers2

The program prints a message if the two objects are not equal (line 36). Similarly, line 41

prints amessage if the two objects are identical.

Line 43 uses the overloaded subscript operator to refer to integers1[0 1. This
subscripted nameisused asanrvalueto print thevaluein integersl [0 1. Line45 uses
integersl|[0] asanlvalueon theleft side of an assignment statement to assign a new

value, 0, to element 0 of integersl.

Now that we have seen how this program operates, let us wak through the class's
method definitions (Fig. 8.12). Lines 6-17 define the constructor for the class. The con-
structor initializes attribute 1ist to be the empty list. If the user specified a value for
parameter initialList, the constructor inserts all unique elements from initial-

Listinto_list.

Lines 20-36 define method __str _ for representing objects of class Integer-
List asastring. This method builds a string (tempString) by iterating over the ele-
mentsin the list and formatting the elementsin tabular format, with four elementsin each

row. Line 36 returns the formatted string.

Lines 39-42 define method Ien , which overrides the Python len function.

When the interpreter encounters the expression

%

*

é pythonhtpl_08.fm Page 286 Monday, December 10, 2001 6:49 PM

A

.

286 Customizing Classes Chapter 8

len(integersl)
in the driver program, the interpreter generates the call
integersl. len ()

This method simply returns the length of attribute 1ist.
Lines 44-56 define two overloaded subscript operators for the class. When the inter-
preter encounters the expression

integersl|[1

in the driver program, the interpreter invokes the appropriate method by generating the call
integersl. getitem ()

to return the value of element 0 (e.g., line 43 in the driver program), or the call
integersl. setitem (0, value)

to set thevalue of alist element (e.g., line 45 in the driver program). Whenthe [] operator
isusedin an rvalue expression, method getitem iscalled; whenthe []1 operator is
used in an Ivalue expression, method ~ setitem iscalled.

Method getitem (lines44-47) simply returnsthe value of the appropriate ele-
ment. Method setitem (lines 49-56) first ascertains whether the list already con-
tains the new element. If the list contains the new element, the method raises an exception;
otherwise, the method sets the new value. Because SingleList methods manipulate a
basic list, any out-of-range errors that apply to regular list data types apply to our Sin-
gleList type.

Lines59-70 definethe overloaded equality operator (==) for the class. When theinter-
preter encounters the expression

integersl == integers2
theinterpreter invokesthe eq method by generating the call
integersl. eq (integers2)

The eq method immediately returns 0 if the length of thelistsare different (lines 62—
63). Otherwise, the method compares each pair of elements (lines 65-68). If they are all the
same, the method returns 1 (line 70). Thefirst pair of elementsto differ causes the method
to return 0 immediately (line 68). Line 72—75 define method = ne for testing whether
two NewLists are unequal. The method simply uses the overloaded == operator to deter-
mine whether the two objects are unequal .

Class singleList defines only some of the methods suggested for sequences in
Fig. 8.11. The exercises contain instructions for implementing some of the remaining
methods.

8.13 Overloading Mapping Operations

Python defines several special methods to provide a mapping-based interface to its clients.
An object of a class that implements these methods can provide access to its elements
through subscripts, can be passed to function 1en to determine the object’ slength (i.e., the

%

—

é pythonhtpl_08.fm Page 287 Monday, December 10, 2001 6:49 PM

A

.

Chapter 8 Customizing Classes 287

number of key—value pairs) and can support the methods that dictionaries support. The ta-
blein Fig. 8.14 contains some methods that a mapping class should provide. I nthe next sec-
tion, we show an example of a class that defines many of these methods, to provide a
dictionary interface to abasic object.

8.14 Case Study: A SimpleDictionary Class

Recall that an object of a class has a namespace that contains identifiers and their values.
Attribute dict containsthisinformation for each object. We can take advantage of
this fact to provide a dictionary interface to every object of a class. Figure 8.15 demon-
strates class SimpleDictionary, which defines special methods to implement map-
ping behaviors of the class.

Method Description
clear Called to remove all items from mapping
(e.g., mapping.clear())
__contains Called to test for membership; should return same value as method

has key (0., key in mapping)
[Note: Thisis new for Python 2.2 dictionaries.]

copy Called to return a shallow copy of mapping
(e.g., mapping.copy())

__delitem Called to delete an item from mapping
(e.g.,del mapping[key 1)

get Called to obtain the value of akey in mapping
(e.g., mapping.get (key))

__getitem Called for subscript access through key
(e.g., mapping[key 1)

has key Called to determine if mapping contains a key
(e.g., mapping.has_key(key))

items Called to obtain alist of key-value pairsin mapping
(e.g., mapping.items())

keys Called to obtain alist of keysin mapping
(e.g., mapping.keys())

__len Called for length of mapping
(e.g., len(mapping))

_ setitem Called for insertion or assignment through key
(e.g., mapping[key] = value)

values Called to return alist of valuesin mapping
(e.g., mapping.values())

update Called to insert items from another mapping

(e.g., mapping.update (otherMapping))

Fig. 8.14 Mapping methods.

ﬂ%

—

W2

'ﬁ%

l @é
‘ pythonhtpl_08.fm Page 288 Monday, December 10, 2001 6:49 PM

288 Customizing Classes Chapter 8

class SimpleDictionary:

def getitem (self, key):

CoOoO~NOUA~WNE

11 return self. dict [key]

13 def setitem (self, key, value):

16 self. dict [key 1 = value

18 def delitem (self, key):

21 del self. dict [key]
23 def str (self):
26 return str(self. dict)

29 def keys(self):

32 return self. dict .keys()

34 def values(self):

37 return self. dict .values()

39 def items(self):

42 return self. dict .items()

Fig. 8.15 Mapping interface—class SimpleDictionary.

from NewDictionary import SimpleDictionary

~NOoO U WNE

simple = SimpleDictionary ()

Fig. 8.16 Mapping interface—£ig08 16.py.

%

é pythonhtpl_08.fm Page 289 Monday, December 10, 2001 6:49 PM

A

.

Chapter 8 Customizing Classes 289
8 print , simple
9

10

11 simplel 1
12 simplel 1
13 simplel 1

14 print , simple

15

16 del simplel 1

17 print , simple
18

19

20 print , simple.keys ()

21 print , simple.values|()

22 print , simple.items ()

The empty dictiomary: {}

The dictionary after adding values: {1: 'one', 2: 'two', 3: 'three'}
The dictionary after removing a value: {2: 'two', 3: 'three'}
Dictionary keys: [2, 3]

Dictionary values: ['two', 'three']

Dictionary items: [(2, 'two'), (3, 'three')l

Fig. 8.16 Mapping interface—£ig08 16.py.

Each method in the class (Fig. 8.15) smply calsthe appropriate method for the object’s
__dict__ atribute. Method getitem (lines8-11) acceptsakey argument that con-
tains the key value to retrieve from the dictionary. Line 11 smply uses the [1 operator to
retrieve the specified key from theobject's dict . Method setitem (lines13—
16) accepts as arguments a key and a value. The method simply inserts or updates the key-
valuepairintheobject's dict .Method delitem (lines18-21) executeswhen
the client uses keyword del to remove a key-value pair from the dictionary. The method
simply removes the key-value pair from the object’'s dict . Method str (lines
23-26) returnsastring representation of an object of classSimpleDictionary by passing
the object's dict to built-in function str. Methods keys (lines 29-32), values
(lines 34-37) and items (lines 39—42) each return their appropriate vaue by calling the
corresponding method on theobject’'s dict .

The driver program (Fig. 8.16) creates one object of classSimpleDictionary and
uses the print statement to output the object’s value (lines 7-8). Lines 11-13 add new
values to the object with the [1 operator, invoking method simple. setitem .
Line 16 uses keyword del to delete an element from the object, invoking method
object. delitem . Lines 20-22 call methods keys, values and items, toO
print the key-value pairs that the object stores.

In this chapter, we introduced the concept of class customization, wherein a class
defines certain special methods to provide a syntax-based interface. These specia methods
perform awide variety of tasksin Python, including string representation, attribute access,
operator overloading and subscript access. We discussed the methods that provide each of
these behaviors, and implemented three case studies that demonstrated how these methods
can be used. In the next chapter, we discussinheritance, afeature that allows programmers

%

*

é pythonhtpl_08.fm Page 290 Monday, December 10, 2001 6:49 PM

A

290 Customizing Classes Chapter 8

to define new classesthat take advantage of the attributes and behaviors of existing classes.
This ability is a key advantage of object-oriented programming, because it lets program-
mers focus only on the new behaviors a class should exhibit. For example, the technique
we employed in this chapter of implementing a dictionary interface by calling the methods
of an object’s underlying dict__ attribute leads to some amount of redundant code.
With inheritance, we can define aclassthat “re-uses’ the behaviors of the standard dictio-
nary type, without having to define every mapping method explicitly.

SUMMARY

» A specia method is a method that has a special meaning in Python; the Python interpreter calls
one of an object’ s special methods when the client performs a certain operation on the object.

* A classauthor implements special methods to customize the behavior of the class. The purpose of
customization is to provide the clients of a class with a simple notation for manipul ating objects
of the class.

» Operator overloading consists of defining special methods to describe how operators behave with
objects of programmer-defined types.

 Python enables programmersto overload most operators to be sensitive to the context in which they
are used. Theinterpreter takes the action appropriate for the manner in which the operator is used.

* A Python class can define special method str_, to provide an informal (i.e., human-read-
able) string representation of an object of the class. This method executes when a client uses an
object with the print statement, the % string formatting operator or built-in function str.

* Python provides three special methods— getattr , setattr and
__delattr —that aclasscandefineto control how the dot access operator behaves on objects
of the class.

* If aclassdefines special method ~ setattr , Python callsthis method every time a program
makes an assignment to an object’s attribute through the dot operator.

* Assigning a value through the object's dict attribute does not invoke method
__setattr , but simply inserts the appropriate key—value pair inthe object’'s dict .

» When aclient program accesses an object attribute as an rvalue, Python first looksin the object’s
__dict__ attributefor the attribute name. If the attribute nameisnotin __ dict_ , Pythonin-
vokesthe object’'s getattr method.

* The getattr _ definition for every classshould raisethe At tributeError exception if
the attribute name cannot be found, to preserve Python's default behavior for looking up nonex-
istent attributes.

« Although Python does not allow new operatorsto be created, it does allow most existing operators
to be overloaded so that, when these operators are used with objects of a programmer-defined type,
the operators have meaning appropriate to the new types.

 Operators are overloaded by writing a method definition as you normally would, except that the
method name corresponds to the Python special method for that operator. To use an operator on
an object of aclass, the class must overload (i.e., define a special method for) that operator.

 Operator overloading is not automatic; the programmer must write operator-overloading methods
to perform the desired operations.

» The precedence of an operator cannot be changed by overloading.

« It isnot possible to change the “arity” of an operator (i.e., the number of operands an operator
takes): Overloaded unary operators remain unary operators; overloaded binary operators remain
binary operators.

%

—

é pythonhtpl_08.fm Page 291 Monday, December 10, 2001 6:49 PM

Chapter 8 Customizing Classes 291

» The meaning of how an operator works on objects of built-in types cannot be changed by operator
overloading. Operator overloading works only with objects of user-defined classes or with amix-
ture of an object of auser-defined class and an object of a built-in type.

 Overloading abinary mathematical operator automatically overloadsthe operator’ s corresponding
augmented assignment statement, although the programmer can overload the augmented assign-
ment statement explicitly.

» A unary operator for aclass is overloaded as a method that takes only the object reference argu-
ment (self£).

A binary operator or statement for a classis overloaded as a method with two arguments: self,
and other.

* A class aso may define special methods that execute when certain built-in functions are called on
an object of theclass.

» Theinterpreter knows how to perform certain conversions among built-in types. Programmers can
force conversions among built-in types by calling the appropriate function, such asint or £loat.

» The programmer must specify how conversions among user-defined classes and built-in types are
to occur. Such conversions can be performed with specia methods that override the appropriate
Python functions.

* Method truediv__ overloads the binary division operator / for Python versions 2.2 and
greater that use floating-point division.

* Method coerce executeswhen aclient cals built-in function coerce on an object of class
Rational and another object or when the client performs so-called “ mixed-mode” arithmetic.

» Specia method coerce should contain code that converts the reference object and the other
typeto the sametype and should return atuple that containsthe two converted values. Python expects
special method coerce toreturn None if acoercion of the two typesis not possible.

« A classaso can define several special methodsto implement sequence operations, providing alist-
based interface to its clients.

» When aprogram accesses an element of a sequence- or dictionary-like object asan rvalue, the ob-
ject’'s getitem method executes. When a program assigns a vaue to an element of a se-
quence- or dictionary-like object, theobject’'s setitem method executes.

* Python defines several special methods to provide a mapping-based interface to its clients.

TERMINOLOGY

__abs__ method (overloads built-in count

function abs) __delattr _ method (overloads
__add__ method (overloads operator +) attribute deletion)
__and___ method (overloads operator &) __delitem _ method (overloads
“arity” sequence/mapping el ement deletion)
append __div_ method (overloads operator /)
binary operator __divmod___ method (overloads built-in
clear function divmod)

coerce _ method (overloads
coercion behavior)
__complex__ method (overloads
built-in function complex)
__contains__ method (overloads
operator in)
copy

__float__ method (overloads built-in
function £1loat)

___floordiv__ method (overloads
operator //)

get

__getattr__ method (overloads
attribute retrieval)

%

é pythonhtpl_08.fm Page 292 Monday, December 10, 2001 6:49 PM

292 Customizing Classes Chapter 8

—

__getitem method (overloads __radd__ method (overloads
sequence/mapping element retrieval) right-hand addition)
has_key __rand__ method (overloads
__hex_ method (overloads built-in right-hand bitwise AND)
function hex) __rdiv__ method (overloads
__iadd__ method (overloads symbol +=) right-hand division)
__iand__ method (overloads symbol &=) remove
__idiv__ method (overloads symbol /=) __repr___method (formal
__ifloordiv__ method (overloads string representation)
symbol / /=) reverse
__ilshift _ method (overloads __rfloordiv__ method (overloads
symbol <<=) right-hand floor division)
__imod__ method (overloads symbol %=) __rlshift method (overloads
__imul _ method (overloads symbol *=) right-hand | eft-shift)
index __rmod__ method (overloads
insert right-hand modulus)
__int__ method (overloads built-in __rmul _ method (overloads
function int) right-hand multiplication)
__invert__ method (overloadsoperator ~) _ ror__ method (overloads right-hand
__ior _ method (overloads symbol | =) bitwise OR)
__ipow__ method (overloads symbol **=) __rpow__ method (overloads
__irshift _ method (overloads right-hand exponentiation)
symbol >>=) __rshift method (overloads operator >>)
__isub_ method (overloads symbol -=) __rrshift method (overloads
items right-hand right-shift)
__ixor _ method (overloads symbol *=) __rsub___ method (overloads
keys right-hand subtraction)
__len__ method (overloads built-in __rxor___ method (overloads
function len) right-hand bitwise exclusive OR)
__long__ method (overloads built-in ___setattr__ method (overloads
function long) attribute assignment)
__1shift__ method (overloads operator <<) _ setitem method (overloads
__mod___ method (overloads operator %) sequence/mapping element assignment)
__mul__ method (overloads operator *) sort
__neg___ method (overloads operator -) special method
__oct__ method (overloads built-in __str___method (informal string
function oct) string representation)
operator overloading __sub___method (overloads operator -)
__or__method (overloads operator |) unary operator
pop update
__pos___method (overloads operator +) values
__pow___method (overloads operator **) __xor___method (overloads operator *)

SELF-REVIEW EXERCISES

8.1 Fill in the blanks in each of the following statements:
a) Specia methods , and customize attribute access
through the dot access operator.
b) Supposea andb areinteger variables and a program calculatesthe sum a + b. Now sup-
pose ¢ and 4 are string variables and a program performs the concatenation ¢ + 4. The

4~ —

é pythonhtpl_08.fm Page 293 Monday, December 10, 2001 6:49 PM

Chapter 8 Customizing Classes 293

two + operators here are clearly being used for different purposes. Thisis an example of

¢) Themethod name overloads the + operator.

d) The , and of an operator cannot be changed by over-
loading.

€) Theprint statement implicitly invokes specia method .

f) Special method coerce should return if no coercion can be made.

g) Specia method ne overloadsthe .

h) Specia method customizes the behavior of built-in function abs.

i) Specia method overloads the exponentiation operator .

j) Specia methods , and control attribute access

through the [1 subscript operators for list- and dictionary-like types.

8.2 State whether each of the following istrue or false. If false, explain why.

a) Customization is accomplished by implementing special methods.

b) Python allows the programmer to create new operators to overload.

¢) Overloading a mathematical operator implicitly overloads its augmented assignment
counterpart.

d) User-defined objects can use Python's implicit operator overloading to get the expected
results.

€) A classmay overload the operation of the = assignment symbol.

f) Unary operators can be overloaded to accept two operands.

g) Operator overloading cannot change how an operator works with built-in types.

h) Comparison operators can be overloaded.

i) Subtraction can be overloaded with either special method neg or _ sub

j) A class must define special methods to provide a dictionary-like interface.

ANSWERS TO SELF-REVIEW EXERCISES

8.1 d) getattr , setattr , delattr . b)operator overloading.
C) __add__.d) precedence, associativity, “arity.” €) str_ . f) None. g) ! = and <> inequality
operators.h) abs .i) pow ,** j) getitem , setitem , delitem .

8.2 a) True. b) False. Python prohibits the programmer from creating new operators. c) True.
d) Fase. To use an operator or a statement on objects, that operator or statement must be overloaded.
€) False. The assignment symbol cannot be overloaded. f) False. Unary operators can be overloaded,
but the number of operands an operator takes cannot be changed. g) True. h) True. i) Fase. Subtrac-
tion can be overloaded only with __sub__; the unary operator - can be overloaded with method
__mneg__.j)False. A class may define special methods to provide a dictionary-like interface, but
may also use inheritance.

EXERCISES

8.3 Thedefinitionfor class SimpleDictionary inFig. 8.15 doesnot include al the methods
suggested for providing adictionary interface. Review thelist of mapping methodsin Fig. 8.14, and
modify the definition for class SimpleDictionary to include definitions for methods clear,
copy, get, has_key and update. Each method of class SimpleDictionary should cal at-
tribute _ dict_ ’scorresponding method, passing any necessary arguments. Review the descrip-
tion of dictionary methods in Section 5.6—the corresponding methods of class
SimpleDictionary should specify the same arguments and should return the same value.

8.4 Implement methods append, count, index, insert, pop, remove, reverse and
sort for class SingleList. Review the description of list methods in Section 5.6—the corre-

%

—

é pythonhtpl_08.fm Page 294 Monday, December 10, 2001 6:49 PM

294 Customizing Classes Chapter 8

sponding SingleList methods should specify the same arguments and should return the same val -
ue. Any new method that modifies the list should ensure that only unique values are inserted. The
method should raise an exception if the client attempts to insert an existing value. Also, implement
methods delitem and _ contains to enable clients to delete list elements with key-
word del or perform membership tests with keyword in.

8.5 Review theRational classdefinition (Fig. 8.9) and driver (Fig. 8.10). What happenswhen
Python executes the following statement?

X = + Rational(3,)

Special methods__radd_ , rsub__ and so on overload the mathematical operatorsfor a
user-defined class when an object of that class is used as the right-hand value of an operator. For
each operator overloaded in Fig. 8.9 (i.e., operators +, -, *, / and / /), add a corresponding method
for overloading the operator when aRational appearsto theright of that operator.

8.6 As class Rational is currently implemented, the client may modify the attributes (i.e.,
sign,numerator and denominator) and placethedatain aninconsistent state. Modify the def-
inition for class Rational from Exercise 8.5 to include method ~ setitem . If aclient at-
tempts to change the numerator or denominator of an object of class Rational, setitem
determines whether the change affects the sign of the object. If so, the method changes the object’s
sign and sets the numerator or denominator as the absolute value of the client-specified value. The
method also should call method simpli fy to reducethe object. Beware: If setitem assigns
avalueto an attribute through the dot access operator, Pythoninvokes setitem again, result-
ing in infinite recursion. Make sure the method makes assignments through the object’'s dict
attribute instead. [Note: Methods ~_ init and simplify aso must be updated to use the ob-
ject’'s diet_,toavoidinfiniterecursion].

8.7 Consider a class Complex that Smulates the built-in complex data type. The class enables
operations on so-called complex numbers. These are numbers of the form realPart + imagi-
naryPart * i, wherei hasthevalue

S

a) Modify the class to enable output of complex numbersin the form (realPart, imaginary-
Parti), through the overloaded ~ str__ method.

b) Overload the multiplication operator to enable multiplication of two complex numbers as
in algebra, using the equation
(a, bi) * (¢, di) = (a*c - b*d, (a*d + b*c)i)

¢) Overload the == operator to allow comparisons of complex numbers. [Note: (a, bi) is
equal to (¢, di) ifaisequa toc andb isequal to d.]

e

1

2

3

4 class Complex:

5

6

7 def init (self, real = 0, imaginary =):
8

9

0 self.realPart = real

1 self.imaginaryPart = imaginary

%

\ {%)
pythonhtpl_08.fm Page 295 Monday, December 10, 2001 6:49 PM

Chapter 8

Customizing Classes 295

13 def add_ (self, other):

real = self.realPart + other.realPart
imaginary = self.imaginaryPart + other.imaginaryPart

return Complex(real, imaginary)

22 def sub (self, other):

real = self.realPart - other.realPart
imaginary = self.imaginaryPart - other.imaginaryPart

return Complex(real, imaginary)

8.8 Develop classPolynomial. Theinternal representation of aPolynomial isadictionary
of terms. Each term is akey—value pair that contains an exponent and a coefficient. The term

2x4

has the coefficient 2 and the exponent 4. For simplicity, assume the polynomial contains only nonne-
gative exponents. Develop the class with a dictionary-based interface for accessing terms that
includes the following elements:

a)
b)

0)
d)

e)

f)

The class' s constructor accepts adictionary of exponent : coefficient pairs.

Coefficient valuesin aPolynomial are accessed by exponent keys

(eg., polynomial [exponent] = coefficient). If a polynomia does not
have a coefficient for a specified exponent, the expression
polynomial[exponent] evauatestoO.

Thelength of aPolynomial isthe value of its highest exponent.

Define method _ str for representing a Polynomial as a string with terms of the
form cx.

Include an overloaded addition operator (+) to add two Polynomials.

Include an overloaded subtraction operator (-) to subtract two Polynomials.

ﬁ

é pythonhtpl_09.fm Page 296 Friday, December 14, 2001 2:01 PM

"

Object-Oriented
Programming:
|Inheritance

Objectives

* To create new classes by inheriting from existing
classes.

* To understand how inheritance promotes software
reusability.

 To understand the notions of base class and derived
class.

* To understand the concept of polymorphism.

* To learn about classes that inherit from base-class
obj ect .

Say not you know another entirely, till you have divided an

inheritance with him.

Johann Kasper Lavater

This method is to define as the number of a classthe class of

all classes similar to the given class.

Bertrand Russell

A deck of cards was built like the purest of hierarchies, with C H

every card a master to those below it, a lackey to those above 0 n Stru Ct| 0 n
it.

Ely Culbertson

Good asitistoinherit alibrary, it is better to collect one.
Augustine Birrell

Save base authority from others' books.

William Shakespeare, Love's Labours L ost

- 4~ =

é pythonhtpl_09.fm Page 297 Friday, December 14, 2001 2:01 PM

Chapter 9 Object-Oriented Programming: Inheritance 297

Outline

9.1 Introduction
9.2 Inheritance: Base Classes and Derived Classes
9.3 Creating Base Classes and Derived Classes
9.4 Overriding Base-Class Methods in a Derived Class
9.5 Software Engineering with Inheritance
9.6 Composition vs. Inheritance
9.7 “Uses A” and “Knows A” Relationships
9.8 Case Study: Point, Circle, Cylinder
9.9 Abstract Base Classes and Concrete Classes
9.10 Case Study: Inheriting Interface and Implementation
9.11 Polymorphism
9.12 Classes and Python 2.2
9.12.1 Static Methods
9.12.2 Inheriting from Built-in Types
9.12.3 _ _getattribute__ Method
9.12.4 __ sl ots__ Class Attribute
9.12.5 Properties

Summary ¢ Terminology ¢ Self-Review Exercises » Answers to Self-Review Exercises ¢ Exercises

9.1 Introduction

In this chapter we discuss inheritance—one of the most important capabilities of object-
oriented programming. Inheritance is a form of software reusability in which new classes
are created from existing classes by absorbing their attributes and behaviors, and overriding
or embellishing these with capabilities the new classes require. Software reusability saves
time in program development. It encourages programmers to reuse proven and debugged
high-quality software, thus reducing problems after asystem becomes functional. These are
exciting possibilities.

When creating a new class, instead of writing completely new attributes and methods,
the programmer can designate that the new classis to inherit the attributes and methods of
a previously defined base class. The new class is referred to as a derived class. Each
derived class itself can be a base class for some future derived class. With single inherit-
ance, a class is derived from one base class. With multiple inheritance, a derived class
inherits from several base classes. Single inheritance is straightforward—we show several
examples that should enable the reader to become proficient quickly. Multiple inheritance
is beyond the scope this edition—we do not show a live-code example and issue a strong
caution urging the reader to pursue further study before using this powerful capability.
Appendix O, Additional Python 2.2 Features, describes new Python 2.2 featuresthat enable
the programmer to exercise more control over program execution when using multiple
inheritance in a more manner.

4~ 4

é pythonhtpl_09.fm Page 298 Friday, December 14, 2001 2:01 PM

A

.

298 Object-Oriented Programming: Inheritance Chapter 9

A derived class can add attributes and methods of its own, so an object of a derived
class can be larger than object of that derived-class's base class. A derived class is more
specific than its base class and represents a smaller set of objects. With single inheritance,
the derived class starts out essentially the same asthe base class. The real strength of inher-
itance comes from the ability to define in the derived class additions, replacements or
refinements for the features inherited from the base class.

With inheritance, every object of a derived class also may be treated as an object of
that derived class's base class. We can take advantage of this “derived-class-object-is-a
base-class-object” relationship to perform some interesting manipulations. For example,
we can thread a wide variety of different objects related through inheritance into a list
where each element of the list is treated as a base-class object. This alows a variety of
objects to be processed in ageneral way. Aswe will see, this capability—called polymor-
phism—is a key thrust of object-oriented programming (OOP).

With polymorphism, it is possible to design and implement systems that are more
easily extensible. Programs can be written to process generically—as base-class objects—
objectsof all existing classesin ahierarchy. Classesthat do not exist during program devel-
opment can be added with little or no modification to the generic part of the program—as
long asthose classes are part of the hierarchy that is being processed generically. The only
parts of a program that need modification are those parts that require direct knowledge of
the particular class that is added to the hierarchy. Polymorphism enables us to write pro-
gramsin ageneral fashion to handle many existing and yet-to-be-specified related classes.
Inheritance and polymorphism are effective techniques for managing software complexity.

Experience in building software systemsindicates that significant portions of the code
deal with closely related special cases. It becomes difficult in such systems to see the “big
picture” because the designer and the programmer become preoccupied with the special
cases. Object-oriented programming provides several ways of “seeing the forest through
the trees’—a process called abstraction.

We distinguish between “is-a” relationships and “ has-a” relationships. “Is @’ is
inheritance. In an “isa’ relationship, an object of a derived-class type may also be treated
as an object of the base-classtype. “Hasa” iscomposition (seeFig. 7.18). Ina“hasa’ rela-
tionship, an object has references to one or more objects of other classes as members.

A derived class can access the attributes and methods of its base class. One problem
with inheritance is that a derived class can inherit method implementations that it does not
need to have or should expressly not have. When a base-class method implementation is
inappropriate for a derived class, that method can be overridden (i.e., redefined) in the
derived class with an appropriate implementation.

Perhaps most exciting isthe notion that new classes can inherit from classesin existing
classlibraries. Organizationsdevelop their own classlibraries and use other libraries avail -
able worldwide. Eventually, softwarewill be constructed predominantly from standardized
reusable components just as hardware is often constructed today. Thiswill help to meet the
challenges of developing the ever more powerful software we will need in the future.

9.2 Inheritance: Base Classes and Derived Classes

Often an object of one classreally “isan” object of another class aswell. A rectangle cer-
tainly is a quadrilateral (as are a square, a paralelogram and a trapezoid). Thus, class
Rect angl e can be said to inherit from class Quadri | at er al . In this context, class

%

—

é pythonhtpl_09.fm Page 299 Friday, December 14, 2001 2:01 PM

A

.

Chapter 9 Object-Oriented Programming: Inheritance 299

Quadri | at er al isabaseclassand classRect angl e isaderived class. A rectangleis
a specific type of quadrilateral, but it isincorrect to claim that a quadrilateral is a rectangle
(the quadrilateral could, for example, be a parallelogram). Figure 9.1 shows several simple
inheritance examples.

Other object-oriented programming languages such as Smalltalk and Java use different
terminology: In inheritance, the base class is called the superclass and the derived classis
called the subclass. Because inheritance normally produces derived classes with more fea
tures than their base classes, the terms superclass and subclass can be confusing; we avoid
these terms.

Inheritance formstree-like hierarchical structures. A base class existsin a hierarchical
relationship with its derived classes. A class can certainly exist by itself, but it is when a
class is used with the mechanism of inheritance that the class becomes either a base class
that supplies attributes and behaviors to other classes or a derived class that inherits
attributes and behaviors.

Let us develop asimple inheritance hierarchy (Fig. 9.2). A typical university commu-
nity has thousands of people who are community members. These people consist of
employees, students and alumni. Employees are either faculty members or staff members.
Faculty members are either administrators (such as deans and department chairpersons) or
teaching faculty. This yields the inheritance hierarchy shown in Fig. 9.2. Note that some
administrators also teach classes, so we have used multiple inheritance to form class
Adni ni st rat or Teacher . Because students often work for their universities, and
because employees often take courses, it would also be reasonable to use multiple inherit-
anceto create aclass called Enpl oyeeSt udent .

Another inheritance hierarchy is the Shape hierarchy of Fig. 9.3. A common obser-
vation among students learning object-oriented programming is that there are abundant
examples of hierarchiesin the real world. It isjust that these students are not accustomed
to categorizing the real world in this manner, so it takes some adjustment in their thinking.

Base class Derived classes
St udent Gr aduat eSt udent
Under gr aduat eSt udent
Shape Crcle
Tri angl e
Rect angl e
Loan Car Loan

Honmel npr ovenent Loan
Mor t gageLoan

Enpl oyee Facul t yMenber
St af f Menber
Account Checki ngAccount

Savi ngsAccount

Fig. 9.1 Inheritance examples.

%

—

é pythonhtpl_09.fm Page 300 Friday, December 14, 2001 2:01 PM

A

.

300 Object-Oriented Programming: Inheritance Chapter 9

Conmuni t yMenber

N

Enpl oyee St udent Al utmus (single inheritance)
Facul ty St af f (singleinheritance)
Admi ni strator Teacher (singleinheritance)

~, 7

Admi ni strat or Teacher (multipleinheritance)

Fig. 9.2 Inheritance hierarchy for university community members.

Shape

/\

TwoDi mensi onal Shape Thr eeDi nensi onal Shape

Circle Square Triangle Sphere Cube Tet rahedr on

Fig. 9.3 Shape class hierarchy.

Let us consider the syntax for indicating inheritance. To specify that class Two-
Di mensi onal Shape is derived from class Shape, class TwoDi nmensi onal Shape
typically would be defined as follows:

cl ass TwoDi nensi onal Shape(Shape):

With inheritance, al attributes and methods of the base class are inherited as attributes and
methods of the derived class.

A base class may be either a direct base class of a derived class or an indirect base
class of a derived class. A direct base class of a derived class is explicitly listed inside
parentheses (()) when the derived classis defined. An indirect base classis not explicitly
listed when the derived classis defined; rather, the indirect base classisinherited from two
or more levels up the class hierarchy. In Fig. 9.3, class Ci r ¢l e has a direct base class
TwoDi nensi onal Shape and an indirect base class Shape. Although the class defini-
tion for class Ci r cl e would list only class TwoDi mensi onal Shape as a base class,
class G r cl e would inherit all the attributes and methods of class TwoDi nensi onal -
Shape and of class Shape.

Itispossibleto treat base-class objects and derived-class objects similarly; that common-
ality isexpressed in the attributes and behaviors of the base class. Objectsof any classderived
with inheritance from a common base class can all be treated as objects of that base class. In
Section 9.10, we consider an example in which we can take advantage of this relationship.

ﬂ%

*

\ {q%)
| pythonhtpl_09.fm Page 301 Friday, December 14, 2001 2:01 PM

A

.

%

Chapter 9 Object-Oriented Programming: Inheritance 301

9.3 Creating Base Classes and Derived Classes

This section creates an inheritance hierarchy and instantiates objectsfrom the classesin that
hierarchy. Python provides two built-in functions—i ssubcl ass and i si nst ance—
that enable us to determine whether one class is derived from another class and whether a
value isan object of a particular class or of a subclass of that class. We discuss these func-
tionsin Fig. 9.4 that demonstrates how to derive one class from another class and that un-
derscoresthe fact that a derived-class object “isa’ base-class object. In Fig. 9.4, lines6-13
show a Poi nt class and constructor definition. Lines 15-28 show a Ci r ¢l e class and
method definitions. Lines 30-52 contain adriver program.We offer this hierarchy as an ex-
ample of so-called structural inheritance. Although it may not appear to be anatural series
of “is-a’ relationships (i.e., many readerswill be uncomfortablewith any claim that acircle
isapoint), the fact that we derive Ci r cl e from Poi nt makesaCi rcl e aPoi nt ina
mechanical sense. Wefind that this example hel ps the student understand the mechanics of
inheritance. Later in the chapter, we present a natural example of inheritance.

i mport math

cl ass Point:

CoO~NOOO~WNPE

def __init__(self, xValue = 0, yValue = 0):

xVal ue
yVal ue

12 sel f.x
13 self.y

15 <class Circle(Point):

18 def __init__(self, x =0, y =0, radiusVal ue =):

22 Point.__init__(self, x, y)
23 self.radius = float(radiusVal ue)

25 def area(self):
28 return math.pi * self.radius **

33 print , Point. bases
34 print , CGircle.__bases__

Fig. 9.4 Derived class inheriting from a base class. (Part 1 of 2.)

ﬂ%

—

é pythonhtpl_09.fm Page 302 Friday, December 14, 2001 2:01 PM

302 Object-Oriented Programming: Inheritance Chapter 9

35

36

37 print ;o\

38 i ssubclass(Crcle, Point)

39 print , issubclass(Point, Circle)
40

41 point = Point(,)

42 circle = Gircle(, ,)

43

44

45 print , isinstance(circle, Point)
46 print , isinstance(point, Circle)
47

48

49 print , point.__dict__

50 print , circle. dict_

Sl

52 print , circle.area()

Poi nt bases: ()
Circle bases: (<class __main__.Point at 0x00767250>,)

Circle is a subclass of Point: 1
Point is a subclass of Circle: O

circle is a Point object: 1
point is a Circle object: 0

poi nt nenbers:
{'"y': 50, '"x': 30}
circle nmenbers:
{"y': 89, '"x': 120, 'radius': 2.7000000000000002}

Area of circle: 22.9022104447
Fig. 9.4 Derived class inheriting from a base class. (Part 2 of 2.)

The constructor for class Poi nt (lines 9-13) takes two arguments that correspond to
the point’s x- and y-coordinates. Class Ci r cl e (lines 15-28) inherits from class Poi nt .
The parentheses (()) inthe first line of the class definition indicate inheritance. The name
of the base class (Poi nt) is placed inside the parentheses. Class G r cl e inherits all
attributes of class Poi nt . This means that class Ci r cl e contains the Poi nt members
(i.e,x andy) aswell asthe G r cl e members.

A derived class inherits the methods defined in its base class, including the base-class
constructor. Often, the derived class overrides the base-class constructor by defining a
derived-class__i ni t __ method. A derived class overrides a base-class method when the
derived class defines a method with the same name as a base-class method. The overridden
derived-class constructor usually calls the base-class constructor, to initialize base-class
attributes before initializing derived-class attributes. Line 22 in the Ci r cl e constructor
calls the base-class constructor through an unbound method call. Until now, we have
invoked only bound method calls. A bound method call isinvoked by accessing the method

4~ —

.
® o

é pythonhtpl_09.fm Page 303 Friday, December 14, 2001 2:01 PM

A

.

Chapter 9 Object-Oriented Programming: Inheritance 303

name through an object (e.g., anCbj ect . met hod()). We have seen that Python inserts
the object-reference argument for bound method calls. An unbound method call isinvoked
by accessing the method through its class hame and specifically passing an object refer-
ence. For example, line 22 callsmethod Poi nt. __init__ and passessel f (an object
of classCi r cl e) asthe object reference. The unbound method call also passes the values
for x and y so the Poi nt constructor can initialize the Poi nt attributes for the object of
class G r cl e. We explore method overriding and bound and unbound method calls fur-
ther in the next section. After the base-class constructor terminates, control returns to the
Gi r cl e constructor so it can perform any G r ¢l e-specific initialization. Line 23 adds a
new attribute—r adi us—to G r ¢l e’s hamespace.

Aderived class (like any class) is not required to define a constructor. If a derived class does
not define a constructor, the class s base-class constructor executes when the client creates
a new object of the class.

Common Programming Error 9.1

@ If a derived class' s overridden constructor needs to invoke the base-class constructor to ini-

tialize base-class members, the derived-class constructor must invoke the base-class con-
structor explicitly. Failure to call the base-class constructor from a derived class often isa
logic error.

Common Programming Error 9.2

@ Failure to specify an object reference as the first argument to an unbound method call is a
logic error.

Lines 25-28 define method ar ea for class Gi r ¢l e. This method demonstrates how
the derived class can define new methods to extend the functionality of the base class. In
this example, derived class Ci r ¢l e provides extra functionality that computes the area of
an object of classCi r cl e.

The driver program in Fig. 9.4 first prints the value of each class's __bases
attribute (lines 33-34). Recal from Chapter 7 that each class contains specia attributes,
including__bases__, whichisatuplethat containsreferencesto each of the class sbase
classes. Notice from the output that Poi nt. __bases__ is an empty tuple, because
Poi nt does not inherit from any other class. However, Ci rcl e. __bases__ isatuple
that contains one value—a reference to base-class Poi nt . Lines 37-39 call built-in func-
tioni ssubcl ass to demonstrate that Ci r cl e isasubclass of Poi nt , but that Poi nt
isnot asubclassof Ci r ¢l e. Functioni ssubcl ass takestwo argumentsthat are classes
and returnstrueif the first argument is a class that inherits from the second argument (or if
the first argument is the same class as the second argument).

Lines41-42 create poi nt asareferenceto an object of classPoi nt andcircl e as
a reference to an object of class G r cl e. Lines 4546 demonstrate built-in function
i si nst ance. This function takes two arguments—an object and a class. If the object
argument is an object of the type specified by the class argument, or if the object argument
isan object of aderived class of the type specified by the class argument, functioni si n-
st ance returns 1. Otherwise, the function returns 0. The two calls to function i si n-
st ance demonstrate that a derived classis an object of its base class (e.g., ci rcl eisa
Poi nt), but the reverseis not true (e.g., poi nt isnotaCi rcl e).

%

—

é pythonhtpl_09.fm Page 304 Friday, December 14, 2001 2:01 PM

A

.

304 Object-Oriented Programming: Inheritance Chapter 9

Common Programming Error 9.3

@ Treating a base-class object as a derived-class object can cause runtime errors. A program
terminates if the program attempts to call a derived-class method from a base-class object
and the base class does not define that method.

Lines49-50 printthe__di ct __ attributepoi nt andci r cl e, respectively. Notice
from the output that ci rcl e’s___di ct __ contains attributes x and y, initialized in the
base-class constructor. Line 52 calls ci rcl e method area, to demonstrate class
G r cl e’sextended functionality.

In this section, we demonstrated the mechanics of defining base and derived classes
and discussed bound and unbound methods. This material establishes the foundation we
need for our deeper treatment of object-oriented programming with inheritance in the
remainder of this chapter.

9.4 Overriding Base-Class Methods in a Derived Class

A derived class can override a base-class method by supplying a new version of that meth-
od with the same name. When that method is mentioned by name in the derived class, the
derived-classversionisselected. The name of the base class may be used to accessthe base-
class version from the derived class by passing the derived-class object in an unbound call
to the base-class's method.

—— Common Programming Error 9.4

When a base-class method is overridden in a derived class, it is common to have the derived-
class version call the base-class version and perform some additional work. Not using the
base-class name to reference (i.e., prepending the base-class name and a dot to) the base-
classmethod causesinfinite recursion, because the derived-class method actually callsitself.
This eventually will cause the system to exhaust memory—a fatal error.

Consider a simplified class Enpl oyee. It stores the employee's fi r st Nanme and
| ast Nare. This information is common to all employees, including classes derived from
class Enpl oyee. From class Enpl oyee, now derive classes Hour | yWor ker , Pi ece-
Wor ker , Boss and Comi ssi onWbr ker . The Hour | yWor ker gets paid by the hour,
with “time-and-a-half” for overtime hours in excess of 40 hours per week. The Pi ece-
Wor ker getspaid afixed rate per item produced—for simplicity, assume this person makes
only one type of item, so the data members are number of items produced and rate per item.
TheBoss getsafixed wage per week. The Conmi ssi onWor ker getsasmall fixed weekly
base salary plus a fixed percentage of that person’s gross sales for the week. For simplicity,
this and the next section present only class Enpl oyee and derived classHour | yWor ker .
In Section 9.10, we present a case study that addresses the entire hierarchy.

Our next example appearsin Fig. 9.5. Lines 4-16 show the Enpl oyee class defini-
tion and Enpl oyee methods. Lines 1840 show the Hour | yWor ker class definition
and Hour | yWor ker method definitions. Lines 42-49 show a driver program for the
Enpl oyee/Hour | yWor ker inheritance hierarchy that creates an object of class
Hour | yWor ker and invokes its __str__ method implicitly, then explicitly with a
bound method call, then explicitly with an unbound method call.

The Enpl oyee class definition consists of two attributes (f i r st Name and | ast -
Nane) andtwomethods(__init___and__str__). Theconstructor receives two argu-
ments and assigns their valuesto f i r st Name and | ast Nane. Class Hour | yWor ker

ﬂ%

—

N2
| é pythonhtpl_09.fm Page 305 Friday, December 14, 2001 2:01 PM

A

%

Chapter 9 Object-Oriented Programming: Inheritance

inherits from class Enpl oyee. The members of Hour | yWor ker include attributes

hours andwage andmethods __init__,getPay and _str_ .

cl ass Enpl oyee:

def __init__(self, first, last):

CoOo~NOOO~AWNE

10 self.firstName = first
11 sel f.last Nane = | ast

13 def __str__(self):

16 return % (self.firstNane, self.l|astNane)

18 class Hourl yWrker(Enpl oyee):

21 def __init__(self, first, last, initHours, initWge):

25 Enpl oyee. _init__(self, first, last)
26 self.hours = float(initHours)
27 sel f.wage = float(initWage)

29 def getPay(self):

32 return self.hours * self.wage

34 def __str__(self):

37 print

39 return
40 (Enployee.__str__(self), self.getPay())

43 hourly = Hourl yWrker (, , ,)

46 print

47 print hourly

48 print hourly.__str_ ()

49 print HourlyWsrker.__str_ (hourly)

Fig. 9.5 Overriding base-class methods in a derived class. (Part 1 of 2.)

ﬂ%

*

é pythonhtpl_09.fm Page 306 Friday, December 14, 2001 2:01 PM

A

306 Object-Oriented Programming: Inheritance Chapter 9

Calling __str__ several ways...

Hour | yWorker. __str__ is executing
Bob Smith is an hourly worker wth pay of $400.00
Hour | yWorker. __str__ is executing
Bob Smith is an hourly worker with pay of $400.00
Hour |l yWorker. _str___ is executing
Bob Smith is an hourly worker with pay of $400.00

Fig. 9.5 Overriding base-class methods in a derived class. (Part 2 of 2.)

The Hour | yWor ker constructor uses an unbound method call to pass the strings
first andl ast tothe Enpl oyee constructor so the base-class attributes can be initial-
ized, theninitializes attributes hour s and wage. Method get Pay uses attributeshour s
and wage to calculate the salary of the Hour | yWor ker .

Hour | yWor ker method __str___ overrides the Enpl oyee __str__ method.
Often, base-class methods are overridden in aderived class to provide more functionality.
The overridden method sometimes calls the base-class version of the method to perform
part of the new task. In this example, the derived-class __str __ method calls the base-
class__str__ method (with an unbound method call on line 40) to output the employee's
name. The derived-class__str__ method a so outputs the employee’ s pay.

The driver program invokes an hourly object's st r__ method in three different
ways. Line 47 smply usesthe object inapri nt statement, which implicitly invokes the
object’'s__str__ method. Line48 makesan explicit, bound call totheobject’'s__str
method. Line 49 makes an unbound call to class Hour | yWor ker’s __str__ method
and passes hour | y asthe object reference argument.

9.5 Software Engineering with Inheritance

We can use inheritance to customi ze existing software. Weinherit the attributes and behav-
iors of an existing class, then add attributes and behaviors (or override base-class behav-
iors) to customize the class to meet our needs. It can be difficult for students to appreciate
the problems faced by designers and implementors on large-scal e software projects. People
experienced on such projects will invariably state that a key to improving the software de-
velopment process is software reuse. Object-oriented programming in general, and Python
in particular, certainly do this.

The availability of substantial and useful modules delivers the maximum benefits of
software reuse through inheritance. Asinterest in Python grows, interest in creating useful
modules also grows. Just as shrink-wrapped software produced by independent software
vendors became an explosive growth industry with the arrival of the personal computer, so,
too, is the creation and distribution of class libraries. Application designers build their
applications with these libraries, and library designers are being rewarded by having their
libraries wrapped with the applications.

Creating a derived class does not affect its base class's source code; the integrity of a base
classis preserved by inheritance.

%

*

é pythonhtpl_09.fm Page 307 Friday, December 14, 2001 2:01 PM

A

%

Chapter 9 Object-Oriented Programming: Inheritance 307

A base class specifies commonality—all classes derived from a base class inherit the
capabilities of that base class. In the object-oriented design process, the designer looks for
commonality and “factors it out” to form desirable base classes. Derived classes are then
customized beyond the capabilities inherited from the base class.

In an object-oriented system, classes often are closely related. “ Factor out” common attributes
and behaviors and place these in a base class. Then use inheritance to form derived classes.

Just as the designer of non-object-oriented systems seeks to avoid unnecessary prolifer-
ation of functions, the designer of object-oriented systems should avoid unnecessary prolifer-
ation of classes. Such a proliferation of classes creates management problems and can hinder
software reusability, simply because it is more difficult for a potential reuser of a class to
locate that classin alarge collection. The trade-off is to create fewer classes, each providing
substantial additional functionality, but such classes might be too rich for certain users.

i If classes produced through inheritance are larger than they need to be, memory and pro-
=2 cessing resources may be wasted. Inherit fromthe class “ closest” to what you need.

Note that reading a set of derived-class definitions can be confusing because inherited
members are not shown, but they are nevertheless present in the derived classes. A similar
problem can exist in the documentation of derived classes.

A derived class contains the attributes and behaviors of its base class. A derived class can
also contain additional attributes and behaviors.

ﬁ Modifications to a base class do not require derived classes to change as long as the inter-
faces to the base class remain unchanged.

9.6 Composition vs. Inheritance

We have discussed is-a relationships, which are supported by inheritance. We have also
discussed has-a relationships (and seen an example in Chapter 7, Object-Based Program-
ming) in which a class may have referencesto other classes as members. "hassuch relation-
ships create new classes by composition of existing classes. For example, given the classes
Enpl oyee, BirthDate and Tel ephoneNunber, it is improper to say that an
Enpl oyee isaBi rt hDat e or that an Enpl oyee isa Tel ephoneNunber . But it is
certainly appropriate to say that an Enpl oyee hasaBi r t hDat e and that an Enpl oyee
hasa Tel ephoneNunber .

g: ly Programmodificationsto aclassthat isamember of another classdo not requirethe enclos-
—=ing class to change as long as the interface to the member class remains unchanged.

9.7 “Uses A” and “Knows A” Relationships

Inheritance and composition each encourage software reuse by creating new classes that
have much in common with existing classes. There are other ways to use the services of

%

—

\ {%)
| pythonhtpl_09.fm Page 308 Friday, December 14, 2001 2:01 PM

A

.

%

308 Object-Oriented Programming: Inheritance Chapter 9

classes. Although a person object isnot a car and a person object does not contain acar, a
person object certainly usesa car. A program uses an object simply by calling a method of
that object through a reference.

An object can be aware of another object. Knowledge networks frequently have such
relationships. One object can contain a reference to another object to be aware of that
object. In this case, one object is said to have a knows a relationship with the other object;
thisis sometimes called an association.

9.8 Case Study: Point, Circle, Cylinder

Consider a more substantial example using a point, circle, cylinder structural-inheritance
hierarchy. First we develop and use class Poi nt (Fig. 9.6). Then we present an example
inwhich we derive classCi r cl e from classPoi nt (Fig. 9.7). Finally, we present an ex-
amplein which we derive class Cyl i nder fromclassCi rcl e (Fig. 9.8).

Figure 9.6 shows class Poi nt . The constructor (lines 7—11) takes two arguments that
correspond to the x- and y-coordinates of thepoint. Method __str__ (lines13-16) creates
a string representation of an object of class Poi nt . The driver program in function mai n
(lines 19-30) creates an object of class poi nt, printsitsx and y attributes, changes the
value of its attributes and prints the changed poi nt object.

1

2

3

4 class Point:

5]

6

7 def __init__(self, xValue = 0, yValue = 0):
8

9

10 sel f.x = xVal ue

11 self.y = yVal ue

12

13 def __str__ (self):

14

15

16 return % (self.x, self.y)
17

18

19 def main():

20 poi nt = Poi nt (,)

21

22

23 print , point.x

24 print , point.y

25

26

27 point.x =

28 point.y =

29

30 print , point

Fig. 9.6 Class Poi nt —Poi nt Modul e. py. (Part 1 of 2.)

ﬁ%

—

N2
| é pythonhtpl_09.fm Page 309 Friday, December 14, 2001 2:01 PM

Chapter 9 Object-Oriented Programming: Inheritance 309
31
32 if __name__ ==
33 mai n()

X coordinate is: 72
Y coordinate is: 115
The new | ocation of point is: (10, 10)

Fig. 9.6 Class Poi nt —Poi nt Modul e. py. (Part 2 of 2.)

Figure 9.7 demonstrates class Ci r cl e, which inherits from class Poi nt (Fig. 9.6).

Lines 7-26 show the Ci r cl e class definition, and lines 2945 contain the driver program
for classCi r cl e. Note that, because class G r ¢l e inherits from class Poi nt , theinter-
faceto Ci r ¢l e includesthe Poi nt methods aswell asthe Ci r cl e method ar ea.

OCoO~NOUTAWNBE

i mport math
from Poi nt Modul e i nport Poi nt

class Circle(Point):
def __init__(self, x =0, y =0, radiusValue =):
Point. _init__(self, x, y)
self.radius = float(radiusVal ue)
def area(self):
return math. pi * self.radius **

def __str__ (self):

return % \
(Point.__str_ (self), self.radius)

def main():
circle = Grecl g , ,)
print , circle.x
print , circle.y
print , circle.radius

Fig.9.7 ClassCircl e—GCi rcl eModul e. py. (Part 1 of 2.)

.

%

ﬂ%

*

é pythonhtpl_09.fm Page 310 Friday, December 14, 2001 2:01 PM

A

.

310 Object-Oriented Programming: Inheritance Chapter 9
36
37
38 circle.radius =
39 circle.x =
40 circle.y =
41
42 print , circle
43 print %circle.area()
44
45 print , Point. _str__(circle)
46
47 if __nane__ ==
48 mai n()

X coordinate is: 37
Y coordi nate is: 43
Radius is: 2.5

The new | ocation and radius of circle are: Center = (2, 2) Radius =

4. 250000
The area of circle is: 56.75

circle printed as a Point is: (2, 2)

Fig.9.7 ClassCi rcl e—Circl eMbdul e. py. (Part 2 of 2))

Thedriver program creates an object of classCi r cl e, then prints the attributes of the
object. The driver program then changes the values of the object’s attributes and prints the
changed object. Line 43 callsci r cl e method ar ea to display the object’s area. Finally,
line 45 callsPoi nt method __str___ asan unbound method and passesci r cl e asthe
object reference. This call printsthe object of class G r ¢l e as an object of class Poi nt ,
demonstrating how a derived-class object can be used as a base-class object.

Our last example reuses the Poi nt and Ci r cl e class definitions from Fig. 9.6 and
Fig. 9.7. Lines 8-32 show the Cyl i nder class definition, and lines 35-61 are the driver
program for classCyl i nder . Notethat classCyl i nder inheritsfromclassCi r cl e, so
theinterfaceto Cyl i nder includesthe Ci r cl e methods and Poi nt methodsaswell as
the Cyl i nder methods ar ea (overridden from Ci r cl e) and vol une. Note that the
Cyl i nder constructor invokes the constructor for its direct base class Ci r ¢l e, but not
itsindirect base class Poi nt . Each derived-class constructor isresponsible only for calling
the constructors of that class'simmediate base class.

The driver program creates an object of class Cyl i nder (line 38), then prints the
values of the object’ s attributes (lines 41-44). The driver program then changes the values
of the height, radius and coordinates of the cylinder (lines 47-49) and outputs the results of
the changes (lines 50-51). Finally, the program makes unbound method callsto the Poi nt
andCGircl e ___str__ methods (lines 57 and 61) to print the object of classCyl i nder
as an object of classes Poi nt and Ci r cl e, respectively.

This example nicely demonstrates inheritance. The reader should now be confident
with the basics of inheritance. In the remainder of the chapter, we show how to program
with inheritance hierarchies in ageneral manner.

%

*

W2

A

.

%

2
| é pythonhtpl_09.fm Page 311 Friday, December 14, 2001 2:01 PM

Chapter 9 Object-Oriented Programming: Inheritance 311
1
2
3
4 inport math
5 from Poi nt Modul e i nport Poi nt
6 fromCGircleMdule inport Circle
7
8 <class Cylinder(Circle):
9
10
11 def __init__(self, x, y, radius, height):
12
13
14 Crcle. __init__(self, x, y, radius)
15 sel f. hei ght = float(height)
16
17 def area(self):
18
19
20 return * Circle.area(self) +\
21 * math.pi * self.radius * self.height
22
23 def volune(self):
24
25
26 return Circle.area(self) * height
27
28 def __str__(self):
29
30
31 return % \
32 (Grcle.__str__(self), self.height)
33
34
35 def nmmin():
36
37
38 cylinder = Cylinder(, , ,)
39
40
41 print , cylinder.x
42 print , cylinder.y
43 print , cylinder.radius
44 print , cylinder. height
45
46
a7 cylinder. height =
48 cylinder.radius =
49 cylinder.x, cylinder.y = 2,
50 print ,
51 cyl i nder
52
53 print % cyl i nder. area()

Fig. 9.8 Class Cyl i nder —Cyl i nder Mbdul e. py. (Part 1 of 2.)

%

*

é pythonhtpl_09.fm Page 312 Friday, December 14, 2001 2:01 PM

A

.

312 Object-Oriented Programming: Inheritance Chapter 9
54
55
56 print ;o\
57 Point.__str__(cylinder)
58
59
60 print o\
61 Circle.__str__(cylinder)
62
63 if __name__ ==
64 mai n()

X coordinate is: 12
Y coordinate is: 23
Radi us is: 2.5
Height is: 5.7

The new points, radius and hei ght of cylinder are: Center = (2, 2)
Radi us = 4.250000; Height = 10.000000

The area of cylinder is: 380.53

cylinder printed as a Point is: (2, 2)

cylinder printed as a Circle is: Center = (2, 2) Radius = 4.250000

Fig. 9.8 Class Cyl i nder —Cyl i nder Mbdul e. py. (Part 2 of 2.)

9.9 Abstract Base Classes and Concrete Classes

When we think of a class as a type, we assume that objects of that type will be created.
However, there are cases in which it is useful to define classes for which the programmer
never intends to create any objects. Such classes are called abstract classes. Because these
are used as base classesin inheritance situations, we normally refer to them as abstract base
classes.

We do not create objects of abstract classes. The sole purpose of an abstract classisto
provide an appropriate base class from which classes may inherit interface and possibly
implementation. Classes from which objects can be created are called concrete classes.

We could have an abstract base class TwoDi mensi onal Shape and derive concrete
classes, suchas Squar e, G rcl e and Tr i angl e. We could also have an abstract base
class Thr eeDi mensi onal Shape and derive concrete classes such as Cube, Spher e
and Cyl i nder . Abstract base classes are too generic to define real objects; we need to be
more specific before we can think of creating objects. That iswhat concrete classes do; they
provide the specifics that make it reasonable to create objects.

A hierarchy need not contain any abstract classes; but, aswe will see, many good object-
oriented systems have class hierarchies headed by an abstract base class. In some cases,
abstract classes constitute the top few levels of the hierarchy. A good example of thisisa
shape hierarchy. The hierarchy could be headed by abstract base class Shape. On the next
level down, we can havetwo more abstract base classes, namely TwoDi nensi onal Shape
and Thr eeDi nensi onal Shape. The next level down would start defining concrete

%

*

é pythonhtpl_09.fm Page 313 Friday, December 14, 2001 2:01 PM

A

.

Chapter 9 Object-Oriented Programming: Inheritance 313

classesfor two-dimensional shapes such as circles and squares and concrete classes for three-
dimensional shapes such as spheres and cubes.

9.10 Case Study: Inheriting Interface and Implementation

Our next example reexamines the Enpl oyee hierarchy introduced in Section 9.4. This
time, weimplement the entire class hierarchy, heading it with abstract base class Enpl oy-
ee. The derived classes of Enpl oyee are Boss, who gets paid a fixed weekly salary re-
gardless of the number of hours worked; Commi ssi onWér ker , who gets a flat base
sdary plus a percentage of sales; Pi eceWbr ker , who gets paid by the number of items
produced; and Hour | yWér ker , who gets paid by the hour and receives “time-and-a-hal f”
overtime pay for hours worked in excess of 40 hours.

Each concrete Enpl oyee classdefines method ear ni ngs. Anear ni ngs method
call certainly applies generically to all employees. However, the earnings calculation for
each employee differs based on the class of the employee. These classes are all derived
from the base class Enpl oyee, so each derived class provides appropriate implementa-
tions of ear ni ngs. To calculate any employee’s earnings, the program simply invokes
the ear ni ngs method on that employee’s object.

Let us now consider the example (Fig. 9.9). We begin with class Enpl oyee (lines 4—
35). The methods include a constructor that takes the first name and last name as arguments;
an__str__ method; autility method checkPosi ti ve that ensures an attribute is ini-
tidized with a positive value and an abstract method ear ni ngs. Method ear ni ngs
smply raises a Not | npl enent edEr r or exception when caled. [Note: We discuss
exceptions in Chapter 12, Exception Handling.] Why does ear ni ngs raise an exception?
The answer isthat it does not make sense to provide an implementation of this method in the
Enpl oyee class. We cannot calculate the earnings for a generic employee—we first must
know the type of employeeto perform aproper earnings calculation. By raising an exception
inthebody of the method, we ensure that each classthat inheritsfrom Enpl oyee must over-
ride method ear ni ngs with a more specific definition. The programmer never intends to
call thismethod on an object of abstract base class Enpl oyee. If aderived class neglectsto
override ear ni ngs with an appropriate definition, the abstract method in the base class
raises an exception when the program attempts to call ear ni ngs from the derived class.
Similar to ear ni ngs, the Enpl oyee constructor raises an exception if aprogram attempts
to create an object of the abstract base class. Lines 11-13 determine whether sel f is an
object of classEnpl oyee and, if so, raise an appropriate exception.

ClassBoss (lines 37-54) derivesfrom classEnpl oyee. TheBoss’s methodsinclude
a congructor (lines 40-44), the overridden ear ni ngs method (lines 46-49) and an
__str__ method (lines51-54). The constructor (method __i nit __) takesafirst name, a
last name and a weekly sdlary as arguments and passes the first and last names to the
Enpl oyee constructor toinitidizethef i r st Nane and | ast Narme members of the base-
class part of the derived-class object. Method ear ni ngs performsthe Boss-specific earn-
ingscalculations. Method _ str __ createsastring with thetype and name of the employee.

Class Commi ssi onWor ker (lines 56-77) derives from class Enpl oyee. The
methods include a constructor (lines 59-66), the overridden ear ni ngs method (lines 68—
71)andan__str__ method (lines 73-77). The constructor takesafirst name, alast name,
asdary, acommission and a quantity of items sold as arguments and passes the first and
last names to the Enpl oyee constructor. Method ear ni ngs performs the

%

—

Q2
| é pythonhtpl_09.fm Page 314 Friday, December 14, 2001 2:01 PM

%

314 Object-Oriented Programming: Inheritance Chapter 9

Conmi ssi onWbr ker -specific earnings calculations. Method __str__ createsastring
with the type and name of the employee.

cl ass Enpl oyee:

def __init__(self, first, last):

CoOo~NOOO~AWNE

11 if self.__class__ == Enpl oyee:
12 rai se Notlnpl enentedError, \

15 self.firstName = first
16 sel f.last Nane = | ast

18 def __str__(self):

21 return % (self.firstNane, self.l|astNane)

23 def _checkPositive(self, value):

26 if value <

27 rai se ValueError, \

28 % val ue
29 el se:

30 return val ue

32 def earnings(self):

35 rai se Notl npl enent edError,

37 class Boss(Enployee):

40 def __init__(self, first, last, salary):

43 Enpl oyee. _init__(self, first, last)

44 sel f.weeklySalary = self._checkPositive(float(salary))

46 def earnings(self):

49 return self.weeklySal ary

Fig. 9.9 Abstract class-based hierarchy. (Part 1 of 3.)

ﬂ%

N2
| é pythonhtpl_09.fm Page 315 Friday, December 14, 2001 2:01 PM

Chapter 9 Object-Oriented Programming: Inheritance 315

51 def __str__(self):

54 return % (, Enployee.__str__(self))

56 class Conmmi ssi onWor ker (Enpl oyee):

59 def __init__(self, first, last, salary, conmission, quantity):

63 Enpl oyee. _init__(self, first, last)

64 self.salary = self._checkPositive(float(salary))

65 sel f.commi ssion = self._checkPositive(float(comm ssion))
66 sel f.quantity = self._checkPositive(quantity)

68 def earnings(self):

71 return self.salary + self.commssion * self.quantity
73 def __str__(self):

76 return % (,

77 Enpl oyee. __str__(self))

79 class PieceWrker(Enployee):

82 def __init__(self, first, last, wage, quantity):

86 Enpl oyee. _init__(self, first, last)
87 sel f. wagePer Pi ece = self._checkPositive(float(wage))
88 self.quantity = self._checkPositive(quantity)

90 def earnings(self):

93 return self.quantity * self.wagePerPi ece

95 def __str__ (self):

98 return % (,
99 Enpl oyee. __str__(self))

100

101 cl ass Hourl yWor ker (Enmpl oyee):

102

Fig. 9.9 Abstract class-based hierarchy. (Part 2 of 3.)

- 4~

*

\ {q%)
| pythonhtpl_09.fm Page 316 Friday, December 14, 2001 2:01 PM

316 Object-Oriented Programming: Inheritance Chapter 9

103

104 def __init__(self, first, last, wage, hours):

105

106

107

108 Empl oyee. _init__(self, first, last)

109 sel f.wage = self._checkPositive(float(wage))
110 sel f. hours = self._checkPositive(float(hours))
111

112 def earnings(self):

113

114

115 if self.hours <= :

116 return sel f.wage * self.hours

117 el se:

118 return * self.wage + (self.hours -) *\
119 sel f.wage *

120

121 def __str__(self):

122

123

124 return % (,

125 Enpl oyee. __str__(self))

126

127

128

129

130 enployees = [Boss(, ,),

131 Conmi ssi onWor ker (, , , ,),
132 Pi eceWr ker (, , ,),
133 Hour | yWor ker (, , ,)]
134

135

136 for enployee in enployees:

137 print % (enpl oyee, enpl oyee. earnings())

Boss: John Smith earned $800. 00
Commi ssi on Worker: Sue Jones earned $650. 00
Pi ece Wrker: Bob Lewi s earned $500. 00
Hourly Worker: Karen Price earned $550.00

Fig. 9.9 Abstract class-based hierarchy. (Part 3 of 3.)

Class Pi eceWor ker (lines 79-99) derives from class Enpl oyee. The methods
include a constructor (lines 82—88), the overridden ear ni ngs method (lines 90-93), and
an__str__ method (lines 95-99). The constructor takes a first name, alast name, awage
per piece and aquantity of items produced as arguments and passes thefirst and last names
tothe Enpl oyee constructor. Method ear ni ngs performsthe Pi eceWbr ker -specific
earnings calculations. Method __ st r __ method creates a string with the type and name
of the employee.

.
® o

4~ —

é pythonhtpl_09.fm Page 317 Friday, December 14, 2001 2:01 PM

A

.

Chapter 9 Object-Oriented Programming: Inheritance 317

ClassHour | yWor ker (lines 101-125) derives from class Enpl oyee. The methods
include a constructor (lines 104—-110), the overridden ear ni ngs method (lines 112-119),
andan__str__ method (lines 121-125). The constructor takes afirst name, alast name,
awage and the number of hours worked as arguments and passes the first and last names
to the Enpl oyee constructor. Method ear ni ngs performs the Hour | yWor ker -spe-
cific earnings calculations.

Thedriver programisshowninlines127-137. We create alist of four concrete objects
of class Enpl oyee—an object of classBoss, an object of class Cormi ssi onWor ker,
an object of classPi eceWor ker and an object of classHour | yWor ker . Lines 136-137
iterate over the list of objects of class Enpl oyee and call method ear ni ngs for each
object in the list. This technique—generically processing a list of objects of various
classes—is possible because of Python’ sinherent polymor phic behavior, atopic we discuss
in the next section.

9.11 Polymorphism

Python enables polymor phism—the ability for objects of different classesrelated by inher-
itance to respond differently to the same message (i.e., method call). The same message
sent to many different types of objects takes on “many forms’—hence the term polymor-
phism. If, for example, class Rect angl e isderived from class Quadri | at er al , then
aRect angl e isa more specific version of aQuadri | at er al . An operation (such as
calculating the perimeter or the area) that can be performed on an object of classQuadr i -

| at er al aso can be performed on an object of class Rect angl e. Python isinherently
polymorphic because the language is “dynamically typed.” This means that Python deter-
mines at runtime whether an object defines a method or contains an attribute. If so, Python
calls the appropriate method or accesses the appropriate attribute. Also, Python’s dynamic
typing enables programs to perform generic processing on objects of classes that are not
related by inheritance. If the objectsin alist al provide the same operations (e.g., al the
objects define a certain method), then a program can process a list of those objects generi-
cally. The term polymorphism normally refers to the behavior of objects of classes related
by inheritance, so we discuss polymorphic behavior in the context of class hierarchiesin
which all the classes in the hierarchy provide a common interface.

Consider the following example using the Enpl oyee base class and Hour | y-
Wor ker derived class of Fig. 9.9. Our Enpl oyee base class and Hour | yWor ker
derived class each define their own __str__ methods. Caling the __str__ method
through an Enpl oyee reference invokes Enpl oyee. str_ | and caling the
__str__ method through an Hourl yWor ker reference invokes Hourl y-
Worker. _str__ . The baseclass __str__ method also is available to the derived
class. Tocall thebase-class __str__ method for a derived-class object, the method must
be called explicitly asfollows

Enpl oyee. __str__(hourlyReference)

This specifies that the base-class __str__ should be caled explicitly, using hour | y-
Ref er ence asthe object reference argument.

Through polymorphism, one method cal can cause different actions to occur
depending on the class of the object receiving the call. This gives the programmer tremen-
dous expressive capability.

%

—

é pythonhtpl_09.fm Page 318 Friday, December 14, 2001 2:01 PM

A

.

318 Object-Oriented Programming: Inheritance Chapter 9

%V\ﬂth polymorphism, the programmer can deal in generalities and let the execution-time en-

vironment concern itself with the specifics. The programmer can command a wide variety of
objects to behave in manners appropriate to those objects without even knowing the types of
those objects.

%Polymorphism promotes extensibility: Software written to invoke polymorphic behavior is

written independently of the types of the objects to which messages are sent. Thus, new types
of objects that can respond to existing messages can be added into such a system without
modifying the base system.

%An abstract class defines an interface for the various members of a class hierarchy. The ab-
stract class contains methods that will be defined in the derived classes. All methods in the
hierarchy can use this same interface through polymor phism.

Let us consider applications of polymorphism. A screen manager needsto display many
objects of different classes, including new types that will be added to the system even after
the screen manager iswritten. The system may need to display various shapes (i.e., base class
isShape) such assquares, circles, triangles, rectangles, points, linesand the like (each shape
classis derived from the base class Shape). The screen manager uses base-class references
(to Shape) to manage al the objects to be displayed. To draw any object (regardless of the
level at which that object appears in the inheritance hierarchy), the screen manager simply
sendsadr awmessageto the object. Method dr awhas been overridden in each of thederived
classes. Each object of class Shape knows how to draw itself. The screen manager does not
haveto worry about what type each object is or whether the object is of atype the screen man-
ager has seen before—the screen manager smply tells each object to dr awitself.

Polymorphismis particularly effective for implementing layered software systems. In
operating systems, for example, each type of physical device may operate differently from
the others. Regardless of this, commandsto read or write datafrom and to devices can have
a certain uniformity. The write message sent to a device-driver object needs to be inter-
preted specifically in the context of that device driver and how that device driver manipu-
lates devices of a specific type. However, thewrite call itself isreally no different from the
write to any other device in the system—it simply places some number of bytes from
memory onto that device. An object-oriented operating system might use an abstract base
class to provide an interface appropriate for al device drivers. Then, through inheritance
from that abstract base class, derived classesare formed that all operate similarly. The capa-
bilities (i.e., the interface) offered by the device drivers are provided as methods in the
abstract base class. Implementations of these methods are provided in the derived classes
that correspond to the specific types of device drivers.

With polymorphic programming, aprogram might walk through a container, such asa
list of objectsfrom variouslevelsof aclasshierarchy. For example, alist of objects of class
TwoDi nensi onal Shape could contain objects from the derived classes Squar e,
Crcle, Triangl e, Rect angl e, Li ne, etc. Sending a message to draw each object
inthelist would, using polymorphism, draw the correct picture on the screen. Thisexample
of polymorphic programming highlights the benefits of a naturally polymorphic language
like Python, for building large, layered systems.

%

—

é pythonhtpl_09.fm Page 319 Friday, December 14, 2001 2:01 PM

A

Chapter 9 Object-Oriented Programming: Inheritance 319

9.12 Classes and Python 2.2

In versions of Python before 2.2, classes and types were two distinct programming ele-
ments. The differences between types and classes contradicts the notion that classes are
programmer-defined types. Many Python programmers, as well as the developers of the
language a so disliked the limitations of this needless difference between classes and types.
For example, because types are not classes, programmers cannot inherit from built-in types
to take advantage of Python’s high-level data manipulation capabilities provided by lists,
dictionaries and other objects.

Beginning with Python 2.2, the nature and behavior of classes will change, to remove
the difference between types and classes. In all future 2.x releases, a programmer can dis-
tinguish between two kinds of classes—so-called “classic” classesthat behave in the same
manner as the classes presented earlier in this chapter and the two preceding chapters, and
“new” classes that exhibit new behavior. Python 2.2 provides type obj ect to define new
classes. Any class that directly or indirectly inherits from obj ect exhibits all the behav-
iors defined for a new class, which include many advanced object-oriented features. The
remainder of this section overviews some of these features in the context of live-code
examples.

9.12.1 Static Methods

In Python 2.2 all classes (not only classesthat inherit fromobj ect) can define static meth-
ods. A static method can be called by a client of the class, even if no objects of the class
exist. Typicaly, astatic method isa utility method of aclassthat does not require an object
of the class to execute. Figure 9.10 contains an example in which we redefine class Em
pl oyee to provideinformation about the employee’ sworking conditions. In thisexample,
employeeswork in a small office—only 10 employees can work in the office comfortably.
If more than 10 employees are working in the office, it becomes too crowded and the em-
ployees are uncomfortable. Class Enpl oyee maintains a class attribute nunber O -
Enpl oyees that stores the number of objects of class Enpl oyee that have been
instantiated. The class also defines static method i sCr owded, which determines whether
the employees are working in overcrowded conditions.

Lines 4-58 contain the class Enpl oyee definition. The class defines two class
attributes—nunber O Enpl oyees, which isthe number of objects of class Enpl oyee
that have been created; and max Enpl oyees, the maximum number of employeesthat can
work in the office comfortably.

Method i sCr owded (lines 10-13) returns true if the number of existing objects of
class Enpl oyee isgreater than the maximum number of employees that can work in the
office comfortably. The method accesses class attributes nunmber Of Enpl oyees and
max Enpl oyees through the class name (Enpl oyee). Line 16 specifies that method
i sCrowded is a static method for class Enpl oyee. A class designates a method as
static by passing the method’ s name to built-in function st at i cnet hod and binding a
name to the value returned from the function call. Static methods differ from regular
methods because, when a program calls a static method, Python does not pass the object-
reference argument to the method. Therefore, a static method does not specify sel f as
the first argument. This allows a static method to be called even if no objects of the class
exist.

%

—

2
| é pythonhtpl_09.fm Page 320 Friday, December 14, 2001 2:01 PM

320 Object-Oriented Programming: Inheritance Chapter 9

cl ass Enpl oyee:

number O Enpl oyees =
maxEnpl oyees =

CoOoO~NOUA~AWNE

10 def isCrowded():
k3] return Enpl oyee. nunber O Enpl oyees > Enpl oyee. maxEnpl oyees

16 i sCromded = staticnethod(isCrowded)

18 def __init__(self, firstNane, |astNane):
21 self.first = firstNane

22 sel f.last = | astNane

23 Enpl oyee. nunber Of Enpl oyees +=

25 def __del __(self):

28 Enpl oyee. nunber O Enpl oyees - =

30 def __str__(self):
33 return % (self.first, self.last)

36 def main():

37 answers = [,]

39 enpl oyeeli st = []

42 print ,

43 print answers[Enpl oyee.isCrowded()]
45 print

48 for i in range(:
49 enpl oyeeli st. append(Enpl oyee(, +str(i)))

52 print)
53 print answers[enployeeList[i].isCrowded()]

Fig. 9.10 Static methods—class Enpl oyee. (Part 1 of 2.)

- 4~ 4

.

é pythonhtpl_09.fm Page 321 Friday, December 14, 2001 2:01 PM

A

.

Chapter 9 Object-Oriented Programming: Inheritance 321
54
55 print
56 del enpl oyeeli st |]
By
58 print , answers[Enpl oyee.isCrowded()]
59
60 if _ _name__ ==
61 mai n()

Enpl oyees are crowded? No

(9]

Creating 11 objects of
Enpl oyees are crowded?
Enpl oyees are crowded?
Enpl oyees are crowded?
Enpl oyees are crowded?
Enpl oyees are crowded?
Enpl oyees are crowded?
Enpl oyees are crowded?
Enpl oyees are crowded?
Enpl oyees are crowded?
Enpl oyees are crowded?
Enpl oyees are crowded?

| ass Enpl oyee. ..

~666656565656568

Renovi ng one enpl oyee. ..
Enpl oyees are crowded? No

Fig. 9.10 Static methods—class Enpl oyee. (Part 2 of 2.)

Method __init__ (lines 18-23) takes two arguments that correspond to the
employee sfirst and last name. The method also increments the value of Enpl oyee class
attribute nunber Of Enpl oyees. Method __del __ (lines 25-28) decrementsthe value
of Enpl oyee class attribute nunber O Enpl oyees. Method __str__ (lines 30-33)
simply returns a string that contains the employee’sfirst and last name.

Static methods can be called either by using the class name in which the method is
defined or by using the name of an object of that class. Function mai n (lines 36-58) dem-
onstrates the ways in which aclient program can call a static method. Variable answer s
(line 37) isalist that contains the possible answers (" Yes" or " No") to the question, “Are
the employees crowded?’ Line 43 calls static method i sCr owded using the class hame
(Enpl oyee). The method returns 0, because no objects of the class have been created.
Lines48-53 contain af or loop that creates 11 objects of class Enpl oyee and adds each
object to list enpl oyeelLi st. For each object, the program calls static method
i sCr owded using the newest object of that class. The program prints” Yes" in response
to the eleventh call to i sCr owded, because the number of existing Enpl oyees (class
attribute nuber OF Enpl oyees) is greater than the maximum number that can work in
the office comfortably (class attribute maxEnpl oyees). Line 56 deletes one of the
objectsfrom enpl oyeeli st , whichinvokesthat object’s destructor. Line 58 calls static
method i sCr owded once more to demonstrate that the number of employees has dropped
to an acceptable level.

%

*

é pythonhtpl_09.fm Page 322 Friday, December 14, 2001 2:01 PM

A

.

322 Object-Oriented Programming: Inheritance Chapter 9

Static methods are crucial in languages like Java which require the programmer to
place all program code in a class definition. In these languages, programmers often define
classes that contain only static utility methods. Clients of the class can then call the static
utility methods, much in the same way the Python programs invoke functions defined in a
module. In Python, static methods enable programmersto define a classinterface more pre-
cisely. When amethod of a class does not require an object of the class to perform its task,
the programmer designates that method as static.

9.12.2 Inheriting from Built-in Types

The goal of the new class behavior is to remove the separation that existed between Python
types and classes before version 2.2. Thetype-class unification enables programmersto de-
fine aderived classthat inherits from one of Python’ sbuilt-in types(e.g., integer, string and
list) in the same manner that a derived class inherits from any base class. In Python 2.2, the
interpreter places a reference to each typeinthe bui I ti n__ namespace. Figure 9.11
lists common built-in type names from which a programmer-defined class can inherit. A
programmer-defined class inherits from a built-in type by placing the type's name in the
class's base-class list.

Figure 9.12 redefines class Si ngl eLi st —from Section 8.12—a list that contains
only unique values. The previous definition of Si ngl eLi st (Chapter 8) defined every
method for class Si ngl eLi st that should be exposed to the client. In this example,
Si ngl eLi st inherits from base-class | i st and overrides only those methods that
should provide customized behaviorsin class Si ngl eLi st . The class inherits the other
methods of base-class | i st, so the programmer does not need to define the remaining
I i st methods to include them as part of the new class's interface.

Class Si ngl eLi st (Fig. 9.12) inherits from base-class | i st by placing the name
I'i st inthe parentheses that follow the class name. Every built-in type (except obj ect)
inheritsfrom obj ect , so classes that inherit from built-in types (including Si ngl eLi st)

Type name Python data type

conpl ex complex number

di ct dictionary

file file

f | oat floating point

i nt integer

list list

| ong long integer

obj ect base object (Note: Inherit from obj ect to createa“new” class.)
str string

tuple tuple

uni code unicode string (Note: see Appendix F for information on Unicode.)

Fig. 9.11 Built-in type names in Python 2.2.

%

—

Q2
| é pythonhtpl_09.fm Page 323 Friday, December 14, 2001 2:01 PM

A

.

%

Chapter 9 Object-Oriented Programming: Inheritance 323

display the behaviors of “new” classes. This definition for class Si ngl eLi st differsfrom
our previous definition, because this definition does not maintain as an attribute an internal
list of values. Si ngl eLi st isal i st, soall methods of the class can treat the object ref-
erence asal i st object—an extra attribute is not necessary. Class Si ngl eLi st’s con-
structor (lines 7-14) first calls the base-class constructor, to initialize the list. If the client
passes an initial list value to the class's constructor, line 14 cdls Si ngl eLi st method
nmer ge (discussed shortly) to add unique vaues from the list argument to the empty list ini-
tialized by the base-class constructor.

class SingleList(list):

def __init__(self, initialList = None):

CoOo~NOOO~AWNE

11 list.__init__(self)
13 if initiallList:
14 self.nerge(initiallList)

17 def _raiselfNotUnique(self, value):

21 if value in self:
22 rai se ValueError, \
23 % val ue

26 def __ setitem (self, subscript, value):

31 sel f. _raisel f Not Uni que(val ue)

33 return list._ _setitem_ (self, subscript, value)

36 def __add__(self, other):

39 return SingleList(list.__add__(self, other))

Fig. 9.12 Inheriting from built-in type | i st —class Si ngl eLi st . (Part 1 of 3.)

ﬂ%

—

W2

2
| é pythonhtpl_09.fm Page 324 Friday, December 14, 2001 2:01 PM

324 Object-Oriented Programming: Inheritance Chapter 9

41 def __radd__(self, otherList):

44 return SingleList(list.__add__(other, self))

46 def __iadd__(self, other):

50 for value in other:
51 sel f. append(val ue)

53 return self

55 def _ mul__(self, value):

59 rai se Val ueError,

65 def insert(self, subscript, value):

70 sel f. _rai sel f Not Uni que(val ue)
72 return list.insert(self, subscript, value)

74 def append(self, value):

79 sel f. _rai sel f Not Uni que(val ue)
81 return |ist.append(self, value)

83 def extend(self, other):

87 for value in other:
88 sel f. append(val ue)

91 def nerge(self, other):

Fig. 9.12 Inheriting from built-in type | i st —class Si ngl eLi st . (Part 2 of 3.)

- 4~ 4

Q2
| é pythonhtpl_09.fm Page 325 Friday, December 14, 2001 2:01 PM

A

.

%

Chapter 9 Object-Oriented Programming: Inheritance 325
94
95 for value in other:
96
97 if value not in self:
98 Iist.append(self, value)

Fig. 9.12 Inheriting from built-in type | i St —class Si ngl eLi st . (Part 3 of 3.)

Lines 17-23 define utility method _r ai sel f Not Uni que. This method takes as an
argument a potential value to add to the list and raises an exception if the list already con-
tainsthevalue. All Si ngl eLi st methodsthat add new elementsto alist first call method
_rai sel f Not Uni que, to ensure that the client inserts only unique values in the list.
Typically, aclient program contains code that detects the exception, to determine whether
the value was inserted successfully. [Note: We discuss how to detect exceptions in
Chapter 12, Exception Handling.]

Method __setitem _ (lines26-33) executeswhen aclient assignsavaueto a par-
ticular index. The method first callsutility method _r ai sel f Not Uni que with thevalue
to insert. If the value aready isin thelist, the utility method raises an exception, method
__setitem _terminates and the value is not added to thelist. If the utility method does
not raise an exception, line33 calls__setitem _ inthebase class, which either assigns
the value at the specified index or, if the index is out-of-bounds, raises an exception.

1

2

3

4 from NewLi st inport SingleList

5)

6 duplicates = [1, 2, 2, 3, 4, 3, 6,]

7 print , duplicates

8

9 single = SingleList(duplicates)
10 print , single
11 print , len(single)

12

13

14 print % si ngl e. count (
15 print % si ngl e. count ()
16 print , single.index()
17

18 if in single:

19 print
20
21

22 singl e. append()
23 single += []

24 single.insert(3,)

25 single.extend(| , , 1)

26 single.merge(| . 2, 1)

27 print , single

Fig. 9.13 Inheriting from built-in type | i st —f i g09_13. py.

ﬂ%

*

é pythonhtpl_09.fm Page 326 Friday, December 14, 2001 2:01 PM

326 Object-Oriented Programming: Inheritance

.

Chapter 9
28
29
30 popVal ue = single.pop()
31 print , popVal ue, , single
32 single.append(popVal ue)
33 print , popVal ue, single
34
35
36 print , single[1:4]

List with duplicates is: [1, 2, 2, 3, 4, 3, 6, 9]
Singl eList, created fromduplicates, is: [1, 2, 3, 4, 6, 9]
The length of the list is: 6

The value 2 appears 1 tines in |ist
The value 5 appears O tines in |ist
The index of 9 in the list is: 5
The value 4 was found in |ist

The list, after adding elenents is: [1, 2, 3, 'hello', 4, 6, 9, 10, 20,
-1, -2, -3, 100]

Rermoved 100 fromlist: [1, 2, 3, '"hello', 4, 6, 9, 10, 20, -1, -2, -3]

Added 100 back to end of list: [1, 2, 3, "hello', 4, 6, 9, 10, 20, -1,
-2, -3, 100]

The value of single[1:4] is: [2, 3, "hello']

Fig. 9.13 Inheriting from built-in type | i st —f i g09_13. py.

Lines 3644 overload the + operator for addition whenaSi ngl eLi st appearstothe
left or right of the operator. Methods __add___and __radd___ each return a new object
of class Si ngl eLi st thatisinitialized with the elements of the two arguments passed to
either method. This operation has the same effect as merging two lists into one list of
unique values. Lines 46-53 overload the augmented assignment += symbol. The method
performs its operation in-place (i.e., on the object reference itself). For each value in the
right-hand operand, method __i add__ calls Si ngl eLi st method append, which
either insertsanew vaue at theend of thelist or if thelist already containsthat value, raises
an exception. Python expects an overloaded, augmented-assignment method to return an
object of the class for which the method is defined, so line 53 returns the augmented object
reference. Lines 5562 overload the multiplication operation (i.e., list repetition) for
objects of class Si ngl eLi st . By definition, aSi ngl eLi st cannot contain more than
one occurrence of any value, somethod __mul __ raisesan exception if the client attempts
such an operation. Line 62 binds the names for methods __r mul __ (right multiplication)
and __imul __ (augmented assignment multiplication) to the method defined for
__mul __; when clients invoke these operations, the corresponding methods also raise
exceptions.

Lines 65-88 define methodsi nsert , append and ext end for adding values to a
list. Methods insert and append first invoke utility method
_rai sel f Not Uni que—to prevent the client from adding duplicate valuesto the list—

%

*

é pythonhtpl_09.fm Page 327 Friday, December 14, 2001 2:01 PM

A

i

Chapter 9 Object-Oriented Programming: Inheritance 327

beforeinvoking the base-class version of the corresponding method. Method ext end uses
method append to add elements from another list to the reference object.

Method rrer ge (lines 91-98) provides clients the ability to merge a Si ngl eLi st
with another list that possibly contains duplicate values. Method ner ge providesthe same
behavior that base-class| i st provideswith method ext end. However, method ext end
in the derived class raises an exception if the client attempts to extend the Si ngl eLi st
with alist that would insert duplicate values in the Si ngl eLi st . By providing method
ner ge, wegiveclientsaway to extendaSi ngl eLi st without raising an exception. The
method adds only unique values to the Si ngl eLi st, by caling | i st. append for
every unique vaue in the client-supplied list.

The driver program of Fig. 9.13 uses both Si ngl eLi st -specific functionality and
functionality inherited from base-class | i st . Lines 67 create and print list dupl i -
cat es, which contains duplicate values. Line 9 creates an object of class Si ngl eLi st ,
which passes dupl i cat es to the constructor. The new object—si ngl e—of class
Si ngl eLi st contains one of each of the valuesfrom list dupl i cat es. The remainder
of the driver program demonstrates Si ngl eLi st 'scapabilities. Line 10 printssi ngl e,
which implicitly invokes the object’s base-class __str__ method. Line 11 passes
si ngl e tofunction| en, which callsthe object'sbase-class __ | en__ method to deter-
mine the number of elementsin thelist.

Lines 14-16 call si ngl e’smethods count andi ndex to determine whether cer-
tain elementsexist in the list and to locate an element in thelist, respectively. Line 18 uses
keyword i n, which implicitly invokesthe base-class__cont ai ns___ method, to deter-
mine whether the list contains the integer element 4. Lines 2225 call overridden Si n-
gl eLi st methods to add elements to the list. Line 22 calls method append to add an
element to thelist. Line 23 appends an element with symbol +=, which implicitly invokes
the object’'s __i add__ method. Line 24 cals method i nsert to insert the element
"hel | 0" atindex 3. Line 25 calls method ext end to add elements from another list to
si ngl e. All these methods add unique elements to the list; if one of the method calls
attempted to add a duplicate value to the list, the method would raise an exception (as
shown in Fig. 9.14). The call to method ner ge in line 26 merges the valuesin si ngl e
with values from another list. Notice, from the output, that the effect of call in line 26 is
to add only the integer element 100, because this element is the only value that si ngl e
did not yet contain.

Lines 30-33 of Fig. 9.13 remove an element from the list, add the element back in to
the list and print the results. These statements demonstrate that the client can remove a
value from the list, using base-class method pop, and that reinserting the removed value
does not raise an exception. Line 36 demonstratesthat class Si ngl eLi st inheritsslicing
capabilities from base-class| i st . This underscores the benefit of inheritance-based soft-
ware reuse. |n the previous definition of class Si ngl eLi st , we would have had to pro-
gram this capability explicitly. In this version, we simply inherit the capability from the
base class.

9.12.3 getattribute__ Method

In Chapter 8, Customizing Classes, we discussed method _get attr __, which executes
when a client attempts to access an object attribute and that attribute name is not in the ob-
jects__dict___,the_ dict__ of theobject'sclassorthe di ct __ of theclass'sdi-

%

—

é pythonhtpl_09.fm Page 328 Friday, December 14, 2001 2:01 PM

328 Object-Oriented Programming: Inheritance Chapter 9

Pyt hon 2. 2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on w n32
Type "hel p*, "copyright", "credits" or "license" for nore information.
>>>

>>> from NewLi st inport SinglelList

>>> single = SingleList([1, 2, 3])

>>>
>>> singl e. append(1)
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
File "NewList.py", line 79, in append
sel f. _rai sel f Not Uni que(val ue)
File "NewLi st.py", line 22, in _raiselfNot Uni que

rai se ValueError, \
Val ueError: List already contains value 1

>>>
>>> single += [2]
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
File "NewList.py", line 51, in __iadd__
sel f . append(val ue)
File "NewLi st.py", line 79, in append
sel f. _rai sel f Not Uni que(val ue)
File "NewLi st.py", line 22, in _raiselfNot Uni que

rai se Val ueError, \
Val ueError: List already contains value 2

>>>
>>> single.insert(0, 1)
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
File "NewList.py", line 70, in insert
sel f. _rai sel f Not Uni que(val ue)
File "NewLi st.py", line 22, in _raiselfNot Uni que

rai se Val ueError, \

Val ueError: List already contains value 1
>>>

>>> single.extend([3, 4])

|

Traceback (nost recent call last):
File "<stdin>", line 1, in ?
File "NewLi st.py", line 88, in extend
sel f. append(val ue)
File "NewLi st.py", line 79, in append
sel f. _rai sel f Not Uni que(val ue)
File "NewLi st.py", line 22, in _raiselfNot Uni que

rai se Val uekError, \
Val ueError: List already contains value 3

Fig. 9.14 Class Si ngl eLi st —inserting non-unique values.

rect and indirect base classes. Classes that inherit from base-class obj ect aso can define
method __getattri bute__, which executesfor every attribute access. Figure 9.15 con-
tainsasimple example. We define class Denost r at eAccess (lines4-29), which inherits
from base-class obj ect and provides both __getattr__and __getattribute_
methods. The constructor creates one attribute—val ue—and initializesit to 1.

4~ 4

\ {%)
| pythonhtpl_09.fm Page 329 Friday, December 14, 2001 2:01 PM

A

.

%

Chapter 9 Object-Oriented Programming: Inheritance 329

Method __getattri bute__ (lines13-19) executes every time the client attempts
to access an object’ s attribute through the dot (.) access operator. The method printsaline
indicating that the method is executing and aline that displays the name of the attribute that
the client is attempting to access. Line 19 returns the result of calling base-class method
__getattribute , passng the specified attribute name. Method
__getattribute__ inaderived classmust cal the base-class version of the method to
retrieve an attribute’ s value, because attempting to access the attribute’ s value through the
object's__dict__ wouldresultinanother call to _getattri bute .

Common Programming Error 9.5

@ To ensure proper attribute access, a derived-class version of method
__getattribute__ should call the base-class version of the method. Attempting to re-
turn the attribute’s value by accessing the object’s__di ct __ causesinfinite recursion.

Lines 21-29 definemethod __get at t r __, which performs the same behavior asin
“classic” classes, namely, the method executes when the client attempts to access an
attribute that the object's __di ct __ does not contain. The method displays output that
indicates the method is executing and provides the name of the attribute that the client
attempted to access (lines 24-26). Lines 28-29 raise an exception to preserve Python’s
default behavior of raising an exception when a client accesses a nonexistent attribute.

1
2
3
4 cl ass DenonstrateAccess(object):
5
6
7 def __init__(self):
8
9
10
11 sel f.val ue =
12
k3 def __getattribute__(self, name):
14
15
16 pri nt
17 print , hane
18
19 return object.__getattribute__(self, nane)
20
21 def _ getattr__ (self, nane):
22
23
24 pri nt
25 print
26 name
27
28 rai se AttributeError, \
29 % name
Fig.9.15 _ getattribute__ method and attribute access. (Part 1 of 2).

ﬁ%

—

é pythonhtpl_09.fm Page 330 Friday, December 14, 2001 2:01 PM

A

.

330 Object-Oriented Programming: Inheritance Chapter 9

Pyt hon 2. 2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on w n32
Type "hel p*, "copyright", "credits" or "license" for nore information.

>>>
>>> from fig09_15 inmport DenonstrateAccess
>>> access = DenonstrateAccess()
>>>
>>> access. val ue
__getattribute__ executing...
Client attenpt to access attribute: val ue
1
>>>
>>> access. noval ue
__getattribute__ executing...
Client attenpt to access attribute: noval ue
__getattr__ executing...
Client attenpt to access non-existent attribute: noval ue

Traceback (nost recent call last):
File "<stdin>", line 1, in ?
File "fig09_15.py", line 28, in _ getattr__

raise AttributeError, "Object has no attribute %" \
AttributeError: Object has no attribute noval ue

Fig.9.15 _ getattribute__ method and attribute access. (Part 1 of 2).

The interactive session in the output box for Fig. 9.15 demonstrates when methods
__getattribute_ and __getattr__ execute. We first create an object of class
Denonst r at eAccess, then access attribute val ue, using the dot access operator. The
output indicates that method __get attri but e executesin response to the attribute
access; Python displays the return value (1) in the interactive session. Next, the program
accesses attribute noval ue, anonexistent attribute. Method __getattri bute__ exe
cutes first, because the method executes every time the client attempts to access an
attribute. When the base-class version of the method determines that the object does not
contain a noval ue attribute, method __get attr__ executes. The method raises an
exception to indicate that the client has accessed a nonexistent attribute.

9.124 sl ots__ Class Attribute

Python’ s dynamism enables programmers to write applications that can change as they ex-
ecute. Often, thisisuseful for software development purposes. For example, during the de-
velopment cycle, a graphical-application programmer might create software that enables
the programmer to change the application’s appearance (i.e., some of the application’s
code) without terminating the application. This technique also is valuable for applications
like Web servers that must continue executing for long periods of time, but that may need
to change periodically to incorporate new features. Dynamism also has drawbacks—usual -
ly dynamic applications or applications programmed in a dynamic language exhibit poorer
performance than do their non-dynamic counterparts.

One side-effect of Python’s dynamic nature is that a program can add attributes to an
object’ s namespace after the object has been created. This practice sometimes can lead to
unexpected results. For example, the programmer could incorrectly type an attribute name

%

*

Q2
| é pythonhtpl_09.fm Page 331 Friday, December 14, 2001 2:01 PM

A

.

%

Chapter 9 Object-Oriented Programming: Inheritance 331

in an assignment statement. Rather than printing an error, such an assignment statement
simply binds a new attribute name and value to the object, and the program continues exe-
cuting. Python 2.2 allows new classes to definea sl ot s___ attribute listing the only
attributes that objects of the class are allowed to have. Figure 9.16 presents two simplified
definitions of a point—classes Poi nt W t hout Sl ot s and Poi nt Wt hSl ot s. A pro-
gram can add attributes to objects of class Poi nt Wt hout Sl ot s, but cannot add
attributes to objects of class Poi nt Wt hSl ot s.

1
2
3
4 class Point Wt hout Sl ot s:
5 "
6
7 def __init__(self, xValue = , yValue =):
8
9
10
11 self.x = float(xVal ue)
12 self.y = float(yVal ue)
13
14 class PointWthSlots(object):
15 "
16
17
18 _slots__ = ,]
19
20 def __init__(self, xValue = , yValue =):
21
22
23
24 self.x = float(xVal ue)
25 self.y = float(yVal ue)
26
27
28 def main():
29 noSl ots = Poi nt Wt hout Sl ot s()
30 slots = PointWthSlots()
31
32 for point in [noSlots, slots]:
33 print , point.__class__
34
35 print , point.x
36 newval ue = float(raw_i nput ())
37 pri nt
38
39
40
41 poi nt. X = newval ue
42
43
44 print , point.x
Fig.9.16 __ sl ot s__ attribute—specifying object attributes.

ﬂ%

*

é pythonhtpl_09.fm Page 332 Friday, December 14, 2001 2:01 PM

A

.

332 Object-Oriented Programming: Inheritance Chapter 9
45
46 if __nane_ ==
a7 mai n()

Processing an object of class _ main__.PointWthoutSlots
The current value of point.x is: 0.0

Enter new x coordinate: 1.0

Attenpting to set new x-coordi nate val ue. ..

The new value of point.x is: 0.0

Processi ng an object of class <class '__main__.PointWthSlots'>
The current value of point.x is: 0.0

Enter new x coordinate: 1.0

Attenpting to set new x-coordinate val ue. ..

Traceback (nost recent call last):
File "Slots. py", line 47, in ?
mai n()
File "Slots.py", line 41, in main

poi nt. X = newval ue
AttributeError: 'PointWthSlots' object has no attribute 'X

Fig.9.16 __ sl ots__ attribute—specifying object attributes.

The Poi nt Wt hout Sl ot's definition (lines 4-12) simply defines a constructor
(lines 7-12) that initializes the point’s x- and y-coordinates. Class Poi nt Wt hSl ot s
(lines 14-25) inherits from base-class obj ect , and defines an attribute __sl ots__—a
list of attribute names that objects of the class may contain. When a new class defines the
__slots__ attribute, objects of the class can assign values only to attributes whose
names appear inthe __ sl ot s___list. If aclient attempts to assign a value to an attribute
whose name does not appear in__ sl ot s__, Python raises an exception.

If a new class defines attribute sl ot s__, but the class's constructor does not initialize
theattributes’ values, PythonassignsNone toeach attributein __sl ot s___ when an object
of the classis created.

itsown __sl ots__ attribute. The derived-class __sl ot s__ contains only the allowed
derived-class attribute names, but clients still can set values for attributes specified by the
derived class sdirect and indirect bases classes.

The driver program (lines 28-44) demonstrates the difference between an object of a
classthat defines sl ot s__ and an object of aclassthat doesnot define__sl ots__.
Lines29-30 assign create objects of classesPoi nt W t hout Sl ot s and Poi nt sW't h-
Sl ot s, respectively. The f or loop in lines 32—44 iterates over each object and attempts
to replace the value of the object’s x attribute with a user-supplied value, obtained in line
36. Line 41 contains alogic error—the program intends to modify the value of the object’s
X attribute, but mistakenly creates an attribute called X and assigns the user-entered value

%

*

é pythonhtpl_09.fm Page 333 Friday, December 14, 2001 2:01 PM

A

.

i

Chapter 9 Object-Oriented Programming: Inheritance 333

to the new attribute. For objects of class Poi nt W t hout Sl ot s (e.g., object noSI ot s),
line 41 executes without raising an exception, and line 44 prints the unchanged value of
attribute x . For objects of classPoi nt Wt hSl ot s (e.g., sl ot s), line41 raisesan excep-
tion, because the object’'s sl ot s___ attribute does not contain the name " X" .

The examplein Fig. 9.16 demonstrates one benefit of definingthe sl ot s attribute
for new classes, namely preventing accidental attribute creation. Programs that use new
classes aso gain performance benefits, because Python knows in advance that programs
cannot add new attributesto an object; therefore, Python can store and manipulate the objects
in amore efficient manner. A disadvantageof __ sl ot s___isthat experienced Python pro-
grammers sometimes expect the ability to add object attributes dynamically. Defining
__slots__ caninhibit programmers’ abilitiesto create dynamic applications quickly.

9.12.5 Properties

Python’s new classes can contain properties that describe object attributes. A program ac-
cesses an object’ s properties using object-attribute syntax. However, a class definition cre-
ates a property by specifying up to four components—a get method that executes when a
program accesses the property’ s value, a set method that executes when a program sets the
property’ svalue, a del ete method that executes when a program del etesthe value (e.g., with
keyword del) and adocstring that describes the property. The get, set and delete methods
can perform the tasks that maintain an object’s data in a consistent state. Thus, properties
provide an additional way for programmers to control access to an object’ s data.

Figure 9.17 redefines class Ti me—the class previoudly used to demonstrate attribute
access—to contain attributes hour , m nut e and second as properties. The constructor
(lines 7-12) creates private attributes __hour, __mi nute and __second. Typicaly,
classes that use properties define their attributes to be private, to hide the data from clients
of the class. The clients of the class then access the public properties of that class, which
get and set the values of the private attributes.

Method del et eVal ue (lines 20-23) raises an exception to prevent a client from
deleting an attribute. We use this method to create properties that the client cannot delete.
Each property (hour , mi nut e and second) defines corresponding get and set methods.
Each get method takes only the object reference as an argument and returns the property’s
value. Each set method takes two arguments—the object-reference argument and the new
value for the property. Lines 25-32 define the set method (set Hour) for the hour prop-
erty. If the new value is within the appropriate range, the method assigns the new value to
the property; otherwise, the method raises an exception. Method get Hour (lines 34-37)
isthe hour property’s get method, which simply returns the value of the corresponding
private attribute (__hour).

class Time(object):

U WNBE

Fig. 9.17 Properties—class Ti me. (Part 1 of 3).

%

—

2
| é pythonhtpl_09.fm Page 334 Friday, December 14, 2001 2:01 PM

%

334

Object-Oriented Programming: Inheritance

Chapter 9@

def __init__(self, hourValue, mnuteValue, secondVal ue):

sel f.__hour = hourVal ue

self.__mnute = m nuteVal ue

sel f.__second = secondVal ue
def __str__ (self):

return % \

(self.__hour, self. mnute, self._second)

def del eteVal ue(self):

rai se TypeError,

def setHour(self, value):

i f <= val ue <
self.__hour = val ue
el se:
rai se ValueError, \

def getHour(self):
return self.__hour

hour = property(getHour, setHour, del eteVal ue,

def setM nute(self, value):

i f <= val ue <
self.__minute = val ue
el se:
rai se ValueError, \

def getM nute(self):
return self._ mnute

m nute = property(getMnute, setM nute, del eteVal ue,

% val ue

% val ue

Fig. 9.17 Properties—class Ti me. (Part 1 of 3).

ﬂ%

é pythonhtpl_09.fm Page 335 Friday, December 14, 2001 2:01 PM

Chapter 9 Object-Oriented Programming: Inheritance 335

59 def set Second(self, value):

62 i f <= val ue <

63 sel f.__second = val ue

64 el se:

65 rai se Val ueError, \

66 % val ue

68 def get Second(self):

71 return self.__second

74 second = property(getSecond, setSecond, del eteVal ue,)

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on win32

Type "hel p*, "copyright", "credits" or "license" for nore information
>>>

>>> from Ti meProperty inport Tine

>>>

>>> timel = Time(5, 27, 19)
>>> print tinel

05: 27: 19
>>> print tinel.hour, tinmel.mnute, timel.second
5 27 19
>>>
>>> tinel. hour, tinel.mnute, tinel.second = 16, 1, 59
>>> print tinmel
16: 01: 59
>>>
>>> tinel. hour = 25
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
File "TimeProperty. py", line 31, in setHour

rai se Val ueError, \
Val ueError: hour (25) nust be in range 0-23, inclusive

>>>
>>> timel. mnute = -3
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
File "TimeProperty.py", line 48, in setMnute

rai se Val uekError, \
Val ueError: minute (-3) nmust be in range 0-59, inclusive

>>>
>>> tjinel. second = 99
Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
File "Ti meProperty.py", line 65, in setSecond

rai se Val uekError, \
Val ueError: second (99) nust be in range 0-59, inclusive

Fig. 9.17 Properties—class Ti me. (Part 1 of 3).

- 4~ 4

é pythonhtpl_09.fm Page 336 Friday, December 14, 2001 2:01 PM

A

.

336 Object-Oriented Programming: Inheritance Chapter 9

Built-in function pr oper t y (line 40) takes as arguments a get method, a set method,
a delete method and a docstring and returns a property for the class. Line 40 creates the
hour property by passing to function pr operty methods get Hour , set Hour and
del et eVal ue andthestring " hour " . Clients access properties, using the dot (.) access
operator. When the client uses a property as an rvalue, the property’ s get method executes.
When the client uses the property as an Ivalue, the property’s set method executes. When
the client deletes the property with keyword del , the property’s delete method executes.
The remainder of the class definition (lines 42—74) defines get and set methods for proper-
tiesm nut e (created inline 57) and second (created in line 74).

Function pr oper t y does not require that the caller pass all four arguments. Instead, the
caller can pass values for keyword arguments f get , f set , f del and doc to specify the
property’ s get, set and del ete methods and the docstring, repsectively.

Theinteractive sessionin Fig. 9.17 highlightsthe benefits of properties. A client of the
class can access an object’ s attributes, using the dot access operator, but the class author
also can ensure data integrity. Properties have added advantages over implementing
methods __setattr__, getattr__ and _delattr__. For example, class
authors can state explicitly the attributes for which the client may use the dot access nota-
tion. Additionally, the class author can write separate get, set and delete methods for each
attribute, rather than using i f /el se logic to determine which attribute to access.

In this chapter, we discussed the mechanics of inheritance and how inheritance pro-
motes software reuse and dataabstraction. We discussed two examples of inheritance—one
example of structural inheritance and one example of a class hierarchy headed by an
abstract base class. We also introduced new object-oriented-programming features avail -
able in Python 2.2. We continued our discussion of data integrity by presenting proper-
ties—a feature that alows clients of the class to access data with the dot access operator
and allows classes to maintain private datain a consistent state. Data hiding and datainteg-
rity are fundamental object-oriented software design principles. Thetopicsdiscussed in this
and the previous two chapters provide a solid foundation for programmers who want to
build large, industrial-strength software systems in Python.

SUMMARY

* Inheritanceisaform of software reusability in which new classes are created from existing classes
by absorbing their attributes and behaviors and then overriding or embellishing these with capa-
bilities the new classes require.

» When creating a new class, instead of writing completely new attributes and methods, the pro-
grammer can designate that the new classis to inherit the attributes and methods of a previously
defined base class.

* Theclass that inherits from a base class is referred to as a derived class. Each derived class itself
becomes a candidate to be a base class for some future derived class.

» With singleinheritance, aclassis derived from one base class.

» With multipleinheritance, a derived classinherits from multiple (possibly unrelated) base classes.
Multiple inheritance can be complex and error prone.

» Theredl strength of inheritance comes from the ability to define in the derived class additions, re-
placements or refinements for the features inherited from the base class.

%

—

é pythonhtpl_09.fm Page 337 Friday, December 14, 2001 2:01 PM

A

Chapter 9 Object-Oriented Programming: Inheritance 337

With inheritance, every object of aderived class also may be treated as an object of that derived
class's base class. However, the converse is not true—base-class objects are not objects of that
base class's derived classes.

With polymorphism, it is possible to design and implement systems that are more easily extensi-
ble. Programs can be written to process generically—as base-class objects—objects of all existing
classesin ahierarchy.

Polymorphism enables us to write programsin ageneral fashion to handle awide variety of exist-
ing and yet-to-be-specified related classes.

Object-oriented programming provides several ways of “seeing the forest through the trees’—a
process called abstraction.

“Isa’ isinheritance. Inan“is-a’ relationship, an object of a derived-classtype may a so betreated
as an object of the base-class type.

“Has &’ iscomposition. In a“has-a’ relationship, an object has references to one or more objects
of other classes as members.

A derived class can access the attributes and methods of its base class. When a base-class member
implementation isinappropriate for aderived class, that member can be overridden (i.e., replaced)
in the derived class with an appropriate implementation.

Inheritance formstree-like hierarchical structures. A base classexistsin ahierarchical relationship
with its derived classes.

Functioni ssubcl ass takestwo arguments that are classes and returnstrue if the first argument
isaclass that inherits from the second argument (or if the first argument is the same class as the
second argument)

Python provides a built-in function—i si nst ance—that determines whether an object isan ob-
ject of agiven class or of asubclass of that class.

Parentheses, () , in thefirst line of the class definition indicates inheritance. The name of the base
class (or base classes) is placed inside the parentheses.

A direct base class of aderived classis explicitly listed inside parentheses when the derived class
is defined.

An indirect base classis not explicitly listed when the derived classis defined; rather the indirect
base classisinherited from two or more levels up the class hierarchy.

Toinitialize an object of aderived class, the derived-class constructor must call the base-class con-
structor.

A bound method call is invoked by accessing the method name through an object. Python auto-
matically inserts the object reference argument for bound method calls.

An unbound method call isinvoked by accessing the method through its class name then specifi-
cally passing an object.

Aclass's__bases__ attributeisatuplethat containsreferencesto each of the class' sbase classes.

A derived class can override a base-class method by supplying anew version of that method with
the same name. When that method is mentioned by name in the derived class, the derived-class
version is automatically selected.

A base class specifies commonality. In the object-oriented design process, the designer |ooks for
commonality and “factorsit out” to form base classes. Derived classes are then customized beyond
the capabilitiesinherited from the base class.

A program uses an object if the program simply calls a method of that object through a reference.
An object is said to have a knows a relationship with a second object if the first object is aware of
(i.e., has areference to) the second object. Thisis sometimes called an association.

%

—

é pythonhtpl_09.fm Page 338 Friday, December 14, 2001 2:01 PM

338 Object-Oriented Programming: Inheritance Chapter 9

» There are casesin which it is useful to define classes for which the programmer never intends to
create any objects. Such classes are called abstract classes.

» The sole purpose of an abstract class is to provide an appropriate base class from which classes
may inherit interface and possibly implementation. Classes from which objects can be created are
called concrete classes.

 Python does not provide away to designate an abstract class. However, the programmer can im-
plement an abstract class by raising an exceptionintheclasss__i nit __ method.

» Pythonisinherently polymorphic because the language is dynamically typed. This means that Py-
thon determines at runtime whether an object defines a method or contains an attribute and, if so,
calls the appropriate method or accesses the appropriate attribute.

« Using polymorphism, one method call can cause different actions to occur depending on the class
of the object receiving the call. This gives the programmer tremendous expressive capability.

 Beginning with Python 2.2, the nature and behavior of classeswill change. In all future 2.x rel eas-
es, aprogrammer can distinguish between two kinds of classes: “classic” classesand “new” class-
es. In Python 3.0, all classeswill behave like “new” classes.

 Python 2.2 provides type obj ect for defining “new” classes. Any class that inherits from ob-
j ect exhibits the new-class behaviors.

» “New” classes can define static methods. A static method can be called by a client of the class,
even if no objects of the class exist.

A classdesignates amethod as static by passing the method’ snameto built-in functionst at i c-
met hod and binding a name to the value returned from the function call.

 Static methods differ from regular methods in that when a program calls a static method, Python
does not pass the object reference argument to the method. Therefore, a static method does not
specify sel f asthefirst argument.

» Thegoa of the new class behavior isto remove the dichotomy that existed between Python types
and classesbefore version 2.2. Themost practical use of thistype-class unification isthat program-
mers now can inherit from Python’s built-in types.

 Classes that inherit from base-class obj ect aso can define method __getattri bute__,
which executes for every attribute access.

* Method __getattribute__ inaderived class must cal the base-class version of the method
to retrieve an object’ s attribute; otherwise, infinite recursion occurs.

» Python 2.2 allows “new” classesto definea___ sl ot s__ attribute listing the attributes that ob-
jects of the class are alowed to have.

* Whena“new” classdefinesthe sl ot s___ attribute, objects of the class can assign values only
to attributes whose names appear inthe __sl ot s___ list. If aclient attempts to assign a value to
an attribute whose name does not appear in__sl ot s__, Python raises an exception.

» ““New” classes can contain properties that describe object attributes. A program accesses an ob-
ject’ s propertiesin the same manner as accessing the object’ s attributes.

* A classdefinition creates a property by specifying four components—aget method, a set method,
a delete method and a docstring that describes the property. The get, set and delete methods can
perform any tasks necessary for maintaining datain a consistent state.

* Classes that use properties most often define their attributes to be private, to hide the data from
clients of the class. The clients of the class then access the public properties of that class, which
get and set the values of the private attributes.

* Built-in function pr oper t y takes as arguments a get method, a set method, a delete method and
adocstring and returns a property for the class.

%

é pythonhtpl_09.fm Page 339 Friday, December 14, 2001 2:01 PM

A

Chapter 9 Object-Oriented Programming: Inheritance

TERMINOLOGY

__bases__ attribute of aclass
__getattribute__ method
__slots__ attribute of aclass
“has-a” relationship

“is-a’ relationship

“knows-a’ relationship
“uses-a’ relationship

abstract class

abstract method

abstraction

association

base class

bound method call

classlibrary

conpl ex type

composition

concrete class

derived class

di ct type

direct base class

extensible

filetype

fl oat type

indirect base class

inherit

inheritance

SELF-REVIEW EXERCISES

i nt type

i si nst ance function

i ssubcl ass function
l'ist type

| ong type

multiple inheritance

Not | npl enment edEr r or exception
obj ect baseclass

obj ect type

overriding a method
polymorphism

property

property function
reusability

single inheritance
standardized reusable components
static method

stati cnet hod function
str type

structural inheritance
subclass

superclass

tupl e type

unbound method call

uni code type

9.1 Fill in the blanks in each of the following:
a) With , aclassisderived from several base classes.

b) In other object-oriented programming languages, like Java, the base class is called the

and the derived classis the

¢) A has-arelationship creates new classes by

of existing classes.

d) When an object has aknows a relationship with another object, thisis an

e) A baseclassexistsina

f) in the first line of a class definition are used to indicate inheritance.

relationship with its derived classes.

g) An isinherited from two or more levels up the class hierarchy.

h) A base class specifies
pabilities of that base class.

i) are classes for which the programmer never intends to create objects.

339

—all classes derived from a base class inherit the ca-

A method does not require an object of the class to perform its operation.

9.2 State whether each of the following istrue or false. If false, explain why.
a) Thederived classinherits al the attributes and methods of its base class.

b) A derived class must define a constructor that calls the base class's constructor.

¢) All base classes of aderived class are explicitly listed inside parentheses when the de-

rived classis defined.

d) Tousean object of another class, a class must inherit from that class.

ﬂ%

*

é pythonhtpl_09.fm Page 340 Friday, December 14, 2001 2:01 PM

A

340 Object-Oriented Programming: Inheritance Chapter 9

€) A derived class uses only the base-class methods that it overrides.

f) A derived class s constructor can invoke the base class's constructor through an unbound
method call.

g) Thename of the base class can be used to access the base class version of an overridden
method from the derived class.

h) Placing acomma-separated list of base classesinside parenthesesin aclass definitionin-
dicates multiple inheritance.

i) Polymorphism enables multiple inheritance.

j) Python does not implement polymorphism.

ANSWERS TO SELF-REVIEW EXERCISES

9.1 a) multiple inheritance. b) superclass, subclass. c) composition. d) association.
€) hierarchical. f) Parentheses. g) indirect base class. h) commonality. i) Abstract classes. j) static.

9.2 a) True. b) False. If aderived class does not define aconstructor, Python callsthe base class's
constructor. c) False. Only the direct base classes of a derived class are explicitly listed. d) False. A
program uses an object of another class by importing the class and creating the object or using com-
position to define a class that contains a reference to an object of that class. €) False. A derived class
has access to al of its base class's methods. f) True. g) True. h) True. i) False. Polymorphism is the
ability for objects of different classes related by inheritance to respond differently to the same mes-
sage. j) Fase. Python isinherently polymorphic becauseit is dynamically typed.

EXERCISES

9.3 Study the inheritance hierarchy of Fig. 9.2. For each class, indicate some common attributes
and behaviors consistent with the hierarchy. Add some other classes (e.g., Under gr aduat e St u-
dent , G aduat eSt udent , Fr eshman, Sophonor e, Juni or, Seni or, etc.) to enrich the hi-
erarchy.

9.4 Consider theclassBi cycl e. Given your knowledge of some common components of bicy-
cles, show aclass hierarchy in which the class Bi cycl e inherits from other classes, which, in turn,
inherit from yet other classes. Discuss the creation of various objects of classBi cycl e. Discussin-
heritance from class Bi cycl e for other closely related derived classes.

9.5 Many programs written with inheritance could be solved with composition instead, and vice
versa. Discuss the relative merits of these approaches in the context of the Poi nt, Ci rcl e, Cyl -
i nder class hierarchy in this chapter. Rewrite the classes in Figs. 8.6-8.8 (and the supporting pro-
grams) to use composition rather than inheritance. After you do this, reassess the relative merits of
the two approaches both for the Poi nt , G r cl e, Cyl i nder problem and for object-oriented pro-
gramsin general.

9.6 Write an inheritance hierarchy for class Quadri | at eral , Tr apezoi d, Paral | el o-
gram Rect angl e and Squar e. Use Quadri | at er al asthebase class of the hierarchy. Make
the hierarchy as deep (i.e., asmany levels) as possible. Thedataof Quadri | at er al should bethe
(X, y) coordinate pairs for the four endpoints of the Quadr i | at er al . Write adriver program that
creates and displays objects of each of these classes.

9.7 Write afunction that prints a class hierarchy. The function should take one argument that is
an object of a class. The function should determine the class of that object and all direct and indirect
base classes of the object. [Note: For simplicity, assume each class in the hierarchy uses only single
inheritance.] The function prints each class name on a separate line. The first line contains the top-
most classin the hierarchy, and each level in the hierarchy isindented by three spaces. For example,
the output for the function, when passed an object of class Cyl i nder from Fig. 9.8, should be:

%

—

\ {q%)
| pythonhtpl_09.fm Page 341 Friday, December 14, 2001 2:01 PM

A

Chapter 9 Object-Oriented Programming: Inheritance 341

Poi nt
Crcle
Cyli nder

9.8 Create a class Dat e that has data members for the day, the month and the year. Modify the
payroll system of Fig.9.9 to add data members bi rt hDat e (an object of class Dat e) and
depar t nent Code (a number) to class Enpl oyee. Assume this payroll is processed once per
month. Then, asyour program cal cul ates the payroll for each Enpl oyee, add a$100.00 bonusto the
person’s payroll amount if thisis the month in which the Enpl oyee’s birthday occurs.

*

é pythonhtpl_10.fm Page 342 Friday, December 14, 2001 2:02 PM

"

i

Graphical User Interface
Components: Part 1

Objectives

* To understand the design principles of graphical user
interfaces.

» Tousethe Tki nt er module to build graphical user
interfaces.

* To create and manipulate labels, text fields, buttons,
check boxes and radio buttons.

* Tolearn to use mouse events and keyboard events.

 To understand and use layout managers.

... the wisest prophets make sure of the event first.

Horace Walpole

Do you think | can listen all day to such stuff?

Lewis Carrall

Fpoeak the affirmative; emphasize your choice by utter

ignoring of all that you reject.

Ralph Waldo Emerson

You pays your money and you takes your choice.

Punch

Guessif you can, choose if you dare.

Pierre Corneille

All hope abandon, ye who enter herel

Dante Alighieri

Exit, pursued by a bear.

William Shakespeare

Construction

é pythonhtpl_10.fm Page 343 Friday, December 14, 2001 2:02 PM

A

.

Chapter 10 Graphical User Interface Components: Part 1 343

Outline

10.1 Introduction
10.2 TKi nt er Overview
10.3 Simple TKi nt er Example: Label Component
10.4 Event Handling Model
10.5 Entry Component
10.6 Butt on Component
10.7 Checkbut t on and Radi obut t on Components
10.8 Mouse Event Handling
10.9 Keyboard Event Handling
10.10 Layout Managers
10.10.1 Pack
10.102 G'id
10.10.3 Pl ace
10.11 Card Shuffling and Dealing Simulation
10.12 Internet and World Wide Web Resources

Summary ¢ Terminology ¢ Self-Review Exercises » Answers to Self-Review Exercises ¢ Exercises

10.1 Introduction

A graphical user interface (GUI) allows a user to interact with a program. A GUI (pro-
nounced “GOO-eE") gives a program a distinctive “look” and “feel.” Providing different
programswith aconsistent set of intuitiveinterface components provides userswith abasic
level of familiarity with GUI programs before they ever use them. In turn, this reduces the
time usersrequireto learn programs and increases their ability to use the programsin apro-
ductive manner.

:J]m-
& >3 Open...
oy

ES

Consistent user interfaces enable usersto learn new applications faster.

GUIs are built from GUI components (called widgets—shorthand for window gad-
gets). A GUI component is an object with which auser interacts viaamouse or akeyboard.
Figure 10.1 contains an example of a GUI, an Internet Explorer window with some of its
GUI components labeled. There is a menu bar containing such menus as File, Edit and
View. Below the menu bar isaset of buttons (e.g., Back, Search, and History), each of
which has a defined task in Internet Explorer. Below the buttonsis atext field in which a
user can type aWeb site address. To the left of thetext field isalabel (i.e., Address) that
indicates the purpose of the text field. The menus, buttons, text fields and labels are part of
the Internet Explorer GUI. These components enable a user to interact with the Internet
Explorer program by just pointing with a mouse and clicking an element.

%

*

Q2
| é pythonhtpl_10.fm Page 344 Friday, December 14, 2001 2:02 PM

344 Graphical User Interface Components: Part 1 Chapter 10

Button Label Menu Menu bar Text field

3 Deitel & Associates, Inc. - Microsnft Internet Explores: - |EI|1|
Wiews Favorites Tools Help ﬁ
Y 7 -
J i Back v+ = - @ ﬁ | @Search @Favorites @History | %v E‘% -

JAddress I@ hitkp: f e, deitel comy j @GD

E
Java™, C, C++, Visual Basic®, Object Technology, and Internet and Waorld Wids W
- W OneSite Seminars Delivered Warldwide {Contact Us For on-site seminars on any progi

deitelldeitel . com
978.579.9911
& ASSOCIATES INC. 490E Boston Post Road, Suite 200, Sudbury, MA 01776

4 |
&7 ’_ ’_ |4 tnternet v

Fig. 10.1 GUI componentsin an Internet Explorer window.

Python programmers can construct GUIs by using the Tool Command Language
(TCL) program and its graphic interface development tool, Tool Kit (TK). (Information
about this scripting language and its components can be found at www. scri p-
ti cs. com) Figure 10.2 lists several common GUI componentsfound in Tk. This chapter
and the next discuss these and other GUI components in detail.

Component Description

Frane Serves as a container for other components.

Label Displays uneditable text or icons.

Entry Accepts user input from the keyboard, or displays information. A sin-
gle-lineinput area

Text Accepts user input from the keyboard, or displaysinformation. A
multiple-line input area.

But t on Triggers an event when clicked.

Checkbut t on Selection component that is either chosen or not chosen.

Radi obutt on Selection component that allows the user to choose only one option.
Menu Displaysalist of items from which the user can select.

Canvas Displays text, images, lines or shapes.

Scal e Allows the user to select from arange of integers using a dider.

Li st box Displays alist of text options.

Menubut t on Displays popup or pull-down menu.

Scrol | bar Displays ascrollbar for canvases, text fields and lists.

Fig. 10.2 GUI components.

ﬂ%

\ {%)
| pythonhtpl_10.fm Page 345 Friday, December 14, 2001 2:02 PM

A

.

Chapter 10 Graphical User Interface Components: Part 1 345

10.2 TKki nt er Overview

TheTki nt er module oftenisused to program GUIsin Python becauseit is Python’ s stan-
dard GUI package—it comes packaged with the Python program.? (Other GUI packages
aso are available for use with Python, but for thistext, we use Tki nt er). The Tki nt er
library provides an objected-oriented interface to the Tk GUI toolkit. As an object-oriented
layer on top of Tk/TCL, each Tk GUI component in the Tki nt er module is a class that
inherits from class W dget (Fig. 10.3). All W dget -derived classes have common at-
tributes and behaviors.

A GUI consists of atop-level (or, parent) component that can contain other GUI com-
ponents. The componentsthat are contained in the parent are children of the top-level com-
ponent, and each child may contain other children. The concept of parent-child components

-~ Frane
. Label
W dget - = abe
] Entry
] Text
- But t on

- Checkbutton

- Radi obutt on

- Menu
] Canvas
] Scal e
I~ Li st box

Key

:| Subclass name =~ Scrol | bar
e [emton

Fig. 10.3 W dget subclasses.

1. The Tki nt er module is portable across many platforms. Some platforms, however,
need to have Tcl/Tk and Tki nt er installed. The Deitel & Associates, Inc. Web site,
www. dei t el . com containsinstallation instructions for various platforms.

ﬁ%

—

\ {q%)
| pythonhtpl_10.fm Page 346 Friday, December 14, 2001 2:02 PM

A

.

346 Graphical User Interface Components: Part 1 Chapter 10

should not be confused with the relationship between a base class and a derived class. A
program builds a GUI from the top-level component by creating new components and
placing each new component in the parent component.

Each programin this chapter implementsa GUI by inheriting from W dget ' ssubclass
Fr ame. In our programs, Fr ame will serve as the top-level component to which children
are added to extend the GUI’s functionality. This inheritance enables the reuse of compo-
nents in other GUI programs and promotes object-orientation.

@ The Tki nt er module can design graphical user interfaces for Unix, Macintosh and Win-
dows platforms.

10.3 Simple Tki nt er Example: Label Component

Labels display text or images that provide instructions or other information in graphical
user interfaces. Figure 10.4 demonstrates class Label —the Tki nt er class that repre-
sents alabel component.

1

2

3

4 from Tkinter inport *

o

6 class Label Deno(Frane):

7

8

9 def __init__(self):
10
11
12 Frame. __init__(self)
13
14
15 sel f. pack(expand = , fill =)
16 self.master.title()

17

18 sel f.Label 1 = Label (self, text =)
19
20
21 sel f. Label 1. pack()
22
23 sel f. Label 2 = Label (self,
24 text =)
25
26
27 sel f. Label 2. pack(side =)

28

29

30 sel f. Label 3 = Label (self, bitmap =)
31 sel f. Label 3. pack(side =)

32

Fig. 10.4 Label s demonstration. (Part 1 of 2.)

ﬂ%

—

é pythonhtpl_10.fm Page 347 Friday, December 14, 2001 2:02 PM

A

.

Chapter 10 Graphical User Interface Components: Part 1 347

33 def main():

34 Label Deno() . mai nl oop()
35

36 if __nane__ ==

37 mai n()

Label with text Label with text

|.|n5|‘ =10 x

Labelz with text and a bitmap %
Labels with text and a bitmap %

Fig. 10.4 Label s demonstration. (Part 2 of 2.)

Line 4 imports Tki nt er class definitions and predefined values, or constants. In
Chapter 4, Functions, we discussed how to import all elements from amodule

frommodul e inport *

This statement allows us to write less code because specific definitions do not need to be
accessed through the modul€' s name. However, importing all definitions can cause errors.
For example, if wei nmport * from amodule that definesafunction| en, this new defini-
tion overrides the definition for Python function | en. If thisis the case, a program cannot
determine the length of a sequence. As a safeguard, only use i nport * from modules
(e.g., TKi nt er) that explicitly state that ani nport * statement may be used.

Class Label Deno (lines 6-31) defines the GUI for our program. This class inherits
from class Fr ane and serves as the parent container for three Label components. The
entire GUI is constructed when a client creates a Label Denop object and the class's
__init__ method (lines 9-31) executes. Line 12 callsthe base class Fr anre constructor,
which creates a top-level component for the entire application and initializes the Fr ane.

Once acomponent has been created and initialized, the component must be placed into
its parent container (e.g., the top-level component created by the call to the base class con-
structor). Method pack (line 15) and its keyword arguments specify how and where the
component should be placed in its parent. Each parent component has a certain amount of
space into which child components can be placed, and each child has an origina default
size. When method pack executes, alayout manager determines the size and location of
the child component, based on the available space in the parent container. We discuss
layout managersin detail in Section 10.10.1.

The keyword argument values for method pack influence the size of the component.
Keyword argument f i | | specifies how much space the component occupies, beyond its
default size. Possiblevaluesfor fi | | are X (all available horizontal space), Y (all available
vertical space), BOTH (both vertical and horizontal available space) and NONE (the default
value—occupies no additiona space). Once al child components have been placed in their
parent, the parent may still have available space. Keyword argument expand specifies
whether achild component should occupy any extra spacein its parent component (i.e., any
space not yet occupied by other components). The keyword takes a value of either YES
(expand to occupy extra space) or NO (do not expand to occupy extra space). TheLabel -
Denp object occupies al available space provided by its parent (top-level) component
because optionsexpand andfi | | are set to YES and BOTH, respectively (line 15).

ﬂ%

—

é pythonhtpl_10.fm Page 348 Friday, December 14, 2001 2:02 PM

A

.

348 Graphical User Interface Components: Part 1 Chapter 10

ew

NI |f no options are set, method pack usesis default settings to places componentsin a GUI. If

' a programmer desiresto alter the position of a component, the programmer changes the key-
word arguments.

Good Programming Practice 10.1

@ Before using a GUI class, read the Python online documentation to learn the methods and
options of the class to under stand its capabilities.

Every child component has an attribute called mast er that references the child's
parent component. Line 16 accesses the Label Deno’s parent (top-level) component and
calsmethod ti t | e to change thetitle of the GUI to Labels, which then appearsin the
GUI title bar.

Line 18 createsalLabel object. Each GUI component’s class constructor takes afirst
argument that corresponds to the new object’ s parent. In this case, sel f isthefirst argu-
ment, indicating that the Label isa child of the Label Deno component. The value of
keyword argument t ext indicates the contents of the Label component. Method pack
(line 21) inserts Label 1 into the GUI, using the default settings. By default, Label 1
occupies the top of the window.

Lines 23-24 create a second Label component. Line 27 calls method pack and
passes avalue for keyword argument si de, which describes where the new component is
placed. Value LEFT indicates that Label 2 appears against the left side of the window.
Other possible values for the si de option are BOTTOM Rl GHT and TOP (the default set-
ting). These options aso determine the placing and sizing of child components when the
parent container resizes. Figure 10.4 displays the resulting arrangement after the window
sizeincreases. As specified by the side option, | abel 1 remainsat thetop of the container,
whilel abel 2 and| abel 3 stay at theleft side of the container. Section 10.10.1 discusses
different settings for method pack and the effects of resizing parent containers.

A Label scan display animage when a programmer specifies valuesfor the keyword
argument bi t map. For example, a value of " war ni ng" (line 30) displays a warning
bitmap imageon | abel 3. Figure 10.5 lists other valuesfor bi t map that are available

Bitmap Image Name Image Bitmap Image Name Image
error @ hour gl ass

. 3
gray75 info ﬁ
gray50 qguest head

Fig. 10.5 Bitmap images available. (Part 1 of 2.)

ﬂ%

—

é pythonhtpl_10.fm Page 349 Friday, December 14, 2001 2:02 PM

A

.

Chapter 10 Graphical User Interface Components: Part 1 349

Bitmap Image Name Image Bitmap Image Name Image

gray25 guestion

grayl2 war ni ng

¢

Fig. 10.5 Bitmap images available. (Part 2 of 2.)

In addition to using existing bitmap images, programmers can create images to insert
inaGUI by using keyword argument i mage. Notethat ahierarchy exists betweeni mage,
bi t map andt ext keyword arguments (in that order). For example, if an image optionis
specified, any bi t map or t ext options are ignored. Similarly, if bi t map and t ext
options both are specified, thet ext option isignored. Label options follow a precedence
hierarchy—the value of the option with the highest precedence appears on the GUI, and
other labels are ignored. Labels with the highest precedence arei nage, nextisbi t map,
and the lowest precedenceist ext .

Thethird label component, Label 3, hasthesi de option set to LEFT (line 31). This
setting left-justifies the label against Label 2, not against the edge of the GUI.
Section 10.10.1 offers for more information about how the pack method arranges compo-
nentsina GUI.

Lines 33-37 introduce a convention common to many GUI programs. Lines 3637 test
whether the namespaceis” __nmai n__" and calls function mai n if the condition is true
(i.e., theinterpreter has been invoked on the file) and false if the file has been imported as
amodule. Function mai n executes if the program is run by itself, rather than imported as
amodule for use in another program.

Function mai n creates a Label Deno object and calsits mai nl oop method (line
34). Method mai nl oop startsthel abel Deno GUI. The method redraws the GUI when
necessary (e.g., when the user changes the size of the GUI) and sends events to the appro-
priate components. [Note: We discuss eventsin Section 10.4.] Method nai nl oop termi-
nates when the user destroys (closes) the GUI.

10.4 Event Handling Model

GUIs are event driven—GUI components generate events (actions) when users of the pro-
grams interact with the GUIs. Some common interactions include moving a mouse, click-
ing a mouse button, typing in a text field, selecting an item from a menu and closing a
window. When a user interaction occurs, an event is sent to the program. GUI event infor-
mation is stored in an object of a class Event . An event-driven program is asynchro-
nous—the program does not know when events will occur.

To process a GUI event, a program must bind an event to a graphical component and
implement an event handler (or callback). A program binds, or associates, an event with a
graphical component and specifies an action to perform. An event handler is a method that
isinvoked in response to an associated event.

%

—

\ {%)
pythonhtpl_10.fm Page 350 Friday, December 14, 2001 2:02 PM

A

.

%

350 Graphical User Interface Components: Part 1 Chapter 10

When an event occurs, the GUI component with which the user interacted determines
whether an event handler has been specified for the event. If an event handler has been
specified, the event handler associated with the event executes. For example, a “rollover”
event occurs when the user moves the mouse over a component. A program might require
that the appearance of alabel changes (e.g., by changing the background color of the label)
when arollover event occurs. In this case, the programmer defines a method that changes
the label’ s appearance and bindsthe rollover event to the method. When the user movesthe
mouse over the label, the method executes.

10.5 Ent r y Component

Ent r y components are areas in which users can enter text or programmers can display a
line of text. This section demonstrates entry componentsin a program. When the user types
text into an Ent r y component and presses the Enter key, a<Ret ur n> event occurs. If an
event handler is bound to that event for the Ent r y component, the event is processed. In
our example, the <Ret ur n> event signals that the user has finished entering text in the
Ent ry. Figure 10.6 defines class Ent r yDeno, which creates and manipulates four En-
t ry text fields. When auser pressesthe Enter key in the active field, the program displays
thefield’ stext. The program containstwo Fr ame objects, each of which containstwo En-
t ry components.

1

2

3

4 from Tkinter inmport *

5 fromtkMessageBox inport *

6

7 class EntryDenmo(Frane):

8

9

10 def __init__(self):

11

12

13 Frame. __init__(self)

14 sel f. pack(expand = , fill =)

15 sel f.master.title()
16 sel f. mast er. geonmet ry()

17

18 self.framel = Frame(self)

19 sel f. framel. pack(pady = 5)

20

21 self.textl = Entry(self.framel, nane =)
22

23

24 sel f.text1. bi nd(, self.showContents)
25 sel f.text1l. pack(side = , padx =)

26

27 self.text2 = Entry(self.framel, nane =)
28

Fig. 10.6 ENtry components and event binding demonstration. (Part 1 of 3.)

ﬂ%

—

2
| é pythonhtpl_10.fm Page 351 Friday, December 14, 2001 2:02 PM

Chapter 10 Graphical User Interface Components: Part 1 351
29
30 self.text2.insert(,)
31 sel f.text2. bi nd(, self.showContents)
32 sel f.text2. pack(side = , =)
33
34 self.frame2 = Frame(self)
35 sel f.frame2. pack(pady = 5)
36
37 self.text3 = Entry(self.frame2, nane =)
38 self.text3.insert(,)
39
40
41 self.text3.config(state =)
42 sel f.text 3. bi nd(, self.showContents)
43 sel f.text3. pack(side = , =)
44
45
46 self.text4 = Entry(self.frame2, nane = ,
a7 show =
48 self.text4.insert(,)
49 sel f.text4. bi nd(, self.showContents)
50 sel f.text4. pack(side = , =)
51
52 def showContents(self, event):
53
54
55
56 theName = event.w dget.w nfo_name()
57
58
59 theContents = event.w dget. get ()
60 showi nf o(, theNane + + theContents)
61
62 def main():
63 Ent r yDeno() . mai nl oop()
64
65 if __nane__ ==
66 mai n()

=10l x|

Testing Entry Componenkts

|heid T

|Enter text here

|Uneditable text field [

=10l x|

[vessage S

@ textl: hello

Fig. 10.6 ENtry components and event binding demonstration. (Part 2 of 3.)

%

ﬂ%

\ {q%)
| pythonhtpl_10.fm Page 352 Friday, December 14, 2001 2:02 PM

A

.

352 Graphical User Interface Components: Part 1 Chapter 10

Testing Entry Componenkts = |EI|1| i Message 1'

|hell0 |Enter text herd I @ X
textz: Enter text here

|Uneditable text field e —

===

Testing Entry Components

|hell0 |Enter text here

|Uneditable text field | [

Testing Entry Componenkts = |EI|1| : Message ll

|hell0 |Enter text here
@ texkd: Hidden ket
|Uneditable text field e — 1 7

Fig. 10.6 Ent r y components and event binding demonstration. (Part 3 of 3.)

Line 5 imports the class definitions and constants from module t kMessageBox.
Modulet kMessageBox contains functions that display dialogs, which present messages
to users.

ClassEntryDenp’s __i nit __ method calls the base class constructor, packs the
Ent r yDenp and titles the program (lines 13-15). Method geonet ry configures the
length and width of the top-level component in pixels (line 16). Line 18 creates the first
Fr ame component, f r anel. The pack method call (line 19) introduces another option,
pady, which specifiesthe amount of empty vertical space betweenf r anel and other GUI
components in the parent container. Similarly, option padx, used later in the program,
specifies the amount of empty horizontal space between components.

Lines 21 create Ent ry component t ext 1. Option nane assignsanameto Entry.
We assign a name so the event handler can use that name to identify the component in
which an event has occurred.

(New]
B|f anameis not specified by the programmer, Tki nt er assigns each component a unique
4931 name. To obtain the full name of a component, pass the component object to function st r .

Method bi nd (line 24) associates a <Ret ur n> event with component t ext 1. A
<Ret ur n> event occurs when the user presses the Enter key. Method bi nd takes two
arguments. The first argument is the type of the event (the event format), and the second
argument is the name of the method to bind to that event. In this example, method show-
Cont ent s executeswhen a<Ret ur n> event occursint ext 1.

Lines 30—32 create and pack Ent r y component t ext 2. Method i nser t writestext
in the Ent r y component (line 30). Method i nsert takes two arguments—a position at
which text isto be inserted and a string that contains the text to insert. Passing a value of

ﬂ%

*

é pythonhtpl_10.fm Page 353 Friday, December 14, 2001 2:02 PM

A

.

Chapter 10 Graphical User Interface Components: Part 1 353

| NSERT asthefirst argument causesthe text to be inserted at the cursor’s current position.
Text also can be inserted at the end of an Ent r y component. For example, the call

i nsert(, text)

appendst ext tothe end of text already displayed in the component.
A program also can delete text from an Ent r y component with method del et e. The
call

delete(start, finish)

removes all text in an Ent ry component intherange st art tofi ni sh. If ENDisthe
second argument, the method removes text up to the end of the text area. Thefirst position
inan Ent ry component is position O; therefore, del et e(0, END) removes all text in
an Ent r y component.

Lines 34-35 creates and packs the second Fr ane component, f r ane2. The program
packs the Fr anes one below the other to create two rows into which the Ent rys are
inserted. The program inserts Ent ry componentst ext 1 andt ext 2 infranel, while
text 3 andt ext 4 arepackedintof r ane2.

Lines 4143 create and pack t ext 3 in the same way as thefirst two Ent r ys. Inthis
case, the component is bound to the <Ret ur n> event (line 42). In this example, we dem-
onstrate disabling t ext 3 with method conf i g. Method conf i g alowsthe user to con-
figure a component by specifying keyword-value pairs (line 41). Specifying the value
DI SABLED for option st at e disables the Ent r y component, preventing the user from
editing its text. As a result, t ext 3 cannot generate a <Ret ur n> event. Disabling an
Ent ry can be useful to a program that wants to display text but does not want the user to
edit that text.

Lines 46-50 create and pack Ent r y component t ext 4 in the same way as the first
three Ent r ys. This component enables the user to enter confidential information. Option
show specifies a character that will be displayed in the text box instead of the user-entered
text (line 47). In this example, asterisks (*) appear in place of the default text, " Hi dden
text". Asterisks also appear in place of any text that the user typesinto the Ent r y com-
ponent.

Method showCont ent s (lines 52-60) is the event handler for each <Ret ur n>
event generated in the Ent r y components. In Python, most event handlers take as arefer-
enceto anEvent object asan argument; an Event object can have various attributes. The
component that generated the event is obtained from the object’s wi dget attribute (i.e.,
event . wi dget). In our program, event . wi dget refers to one of the four Ent ry
components whose <Ret ur n> event is bound to method showCont ent s.

Common Programming Error 10.1

@ Failure to bind an event handler to an event type for a particular GUI component resultsin
no events being handled for that component for that event type.

W dget methodwi nf o_nane (line 56) returnsthe name of the component. Ent ry
method get (line 59) returns the contents of the Ent ry. The event handler uses both
return values to construct a message to display to the user. Thet kMessageBox function
showi nf o (line 60) displays a dialog box labeled " Message" that contains the name
and contents of the Ent r y that generated the event. The screenshots that appear at the end

%

—

\ {q%)
| pythonhtpl_10.fm Page 354 Friday, December 14, 2001 2:02 PM

A

.

%

354 Graphical User Interface Components: Part 1 Chapter 10

of Fig.10.6 demonstrate what happens when each Entry component receives the
<Ent er > event.

10.6 Butt on Component

A buttonisa GUI component that generates an event when it is selected. Buttons facilitate
and simplify the selection of events by allowing users to select the appropriate button to
execute an action, instead of manually typing commands. Buttons are created with class
But t on, which inherits from class W dget . The text or image appearing on a But t on
component isabutton label. A GUI can display many But t ons, but, typically, each button
should have a unique button label.

35, [Filel]
2 New
»3Open...

Having more than one But t on with the same label results in ambiguity. Provide a unique
label for each button.

Figure 10.7 creates two But t onsand demonstratesthat But t ons, like Label s, can
display both images and text.

1

2

3

4 from Tkinter inport *

5 fromtkMessageBox inport *

6

7 class Plai nAndFancy(Frane):

8

9

10 def __init__(self):

11

12

13 Frame. __init__(self)

14 sel f. pack(expand = , fill =)

15 self.master.title()

16

17

18 sel f.plainButton = Button(self, text = ,
19 command = sel f. pressedPl ain)
20 sel f. pl ai nBut t on. bi nd(, self.rolloverEnter)
21 sel f. pl ai nBut t on. bi nd(, self.rolloverLeave)
22 sel f. pl ai nBut ton. pack(side = , padx = 5, pady = 5)
23

24

25 sel f. nyl mage = Photol mage(file =

26 sel f.fancyButton = Button(self, inmage = self.nyl nmage,
27 command = sel f. pressedFancy)

28 sel f. fancyButton. bi nd(, self.rolloverEnter)
29 sel f. fancyButton. bi nd(, self.rolloverLeave)
30 sel f. fancyButton. pack(side = , padx = 5, pady = 5)
31

Fig. 10.7 But t ons demonstration. (Part 1 of 2.)

ﬂ%

—

Q2
| é pythonhtpl_10.fm Page 355 Friday, December 14, 2001 2:02 PM

A

.

Chapter 10 Graphical User Interface Components: Part 1 355
32 def pressedPlain(self):
33 showi nf o(,)
34
35 def pressedFancy(self):
36 showi nf o(,)
37
38 def rolloverEnter(self, event):
39 event.w dget.config(relief =)
40
41 def rolloverLeave(self, event):
42 event.w dget.config(relief =)
43
44 def main():
45 Pl ai nAndFancy() . nmai nl oop()
46
47 if __nane__ ==
48 mai n()

=10l x|

Flain Button | @ [

i Message ﬂ
[outtons SUSI=TST| I cuizons SST=TEY

@ ‘fou pressed: Plain Button
@ I Flain Button @

3 b
x

" outtons “SSI=TET| I c.izone SST=IEY

@ ‘fou pressed: Fancy Button

Flain Button | @\ Flain Button |

Fig. 10.7 But t ons demonstration. (Part 2 of 2.)

Lines 18-19 createaBut t on called pl ai nBut t on. Optiont ext setsthe button’s
label. Keyword argument conmand specifies the event handler that executes when a user
selects the button. In our example, pl ai nBut t on’slabel is" Pl ai nButt on", and its
event handler ismethod pr essedPl ai n.

Lines 20-21 bind methods r ol | over Ent er and rol | over Leave to pl ai n-
Butt on events <Ent er > and <Leave> events, respectively. The <Ent er > event
occurs when the user places the mouse cursor over the button; the <Leave> event occurs
when the user removes the mouse cursor from the button. Section 10.8 discusses mouse
eventsin detail.

Many Tki nt er components, including But t ons, can display images by specifying
i mage arguments to their constructors or their conf i g methods. The image to display
must be an object of a Tki nt er classthat loads an image file. One such classis Phot o-
I mage, which supports three image formats—Graphics Interchange Format (GIF), Joint

ﬂ%

*

é pythonhtpl_10.fm Page 356 Friday, December 14, 2001 2:02 PM

A

.

356 Graphical User Interface Components: Part 1 Chapter 10

Photographic Experts Group (JPEG) and Portable Greymap Format (PGM). File names
for each of these types typicaly end with . gi f, . j pg (or . j peg) or . pgm(or . ppm,
respectively. An additional image class is class Bi t mapl nage, which supports the
Bitmap (BMP) image format (. bnp). Line 25 creates a Phot ol mage object. File
| ogoti ny. gi f containstheimageto load and store in the Phot ol nage object. (This
file resides in the same directory as the program.) The program assigns the newly created
Phot ol mage object to reference my | mage.

Lines 2627 create f ancyButton with i nage attribute nyl nage. As with
Label s, thei mage attribute takes precedence over t ext and bi t map attributes, and if
text or bitmap are specified, they are ignored.

The event handler for f ancyButt on is pressedFancy. Note that methods
pr essedPl ai n (lines32-33) and pr essedFancy (lines 35-36) do not takean Event
object as an argument. Thisis because But t on callbacks do not take Event objects as
arguments. Without an Event object, a callback cannot determine for which component
the event occurred; therefore, it isimportant to specify a separate callback method for each
But t on, to ensure that the calling component can be identified. Methods pr essed-
Pl ai n and pr essedFancy createthe" Message" dialog boxes, which notify users of
the buttons that generated the events.

Good Programming Practice 10.2

@ Defining a separate callback method for each But t on avoids confusion, ensuresdesired be-
havior and makes debugging a GUI easier.

Methods rol | over Ent er (lines 38-39) and rol | over Leave (lines 41-42)
create arollover effect for their respective events. A rollover effect changes the appearance
of a component. Both methods change the relief of the component—how the component
appears in relation to its surrounding components—for which the event occurred. M ethod
rol | over Ent er sets the component’srel i ef option to GROOVE; method r ol | -
over Leave setsr el i ef to RAI SED

10.7 Checkbut t on and Radi obut t on Components

Tki nt er defines two GUI components—Checkbutt on and Radi obut t on—that
have on/off or true/false values. Classes Checkbut t on and Radi obut t on are sub-
classes of W dget . Although they take the same values, class Checkbut t on and class
Radi obut t on are used for different situations. We first discuss class Checkbut t on.

A checkbox isasmall white square that either is blank or contains acheckmark. When
acheckbox is selected, ablack checkmark appearsin the box. There are no restrictions on
how checkboxes are used—any number of boxes can be selected at atime. The text that
appears alongside a checkbox is referred to as the checkbox label.

Figure 10.8 uses two Checkbut t on objects to modify the font style of the text dis-
played in an Ent r y component. When selected, one Checkbut t on appliesabold style,
and the other applies an itdic style. If both are selected, the style of the font is bold and
italic. Initially, the Checkbut t onsare not selected.

%

—

Q2
| é pythonhtpl_10.fm Page 357 Friday, December 14, 2001 2:02 PM

Chapter 10 Graphical User Interface Components: Part 1 357

1

2

3)

4 from Tkinter inport *

5|

6 class CheckFont(Frame):

7

8

9 def __init__(self):

10

11

12 Frame. __init__(self)

13 sel f. pack(expand = , fill =)

14 sel f.master.title()

15

16 self.framel = Frame(self)

17 sel f. framel. pack()

18

19 self.text = Entry(self.franel, width = ,
20 font =

21 self.text.insert(,)
22 sel f.text.pack(padx = 5, pady =)

23

24 self.frame2 = Frame(self)

25 sel f. frame2. pack()

26

27

28 sel f. bol dOn = Bool eanVar ()

29

30

31 sel f.checkBol d = Checkbutton(self.frane2, text = ,
32 vari able = self.bol dOn, command = sel f.changeFont)
33 sel f. checkBol d. pack(side = , padx = 5, pady =)
34

35

36 self.italicOn = Bool eanVar ()

37

38

39 sel f.checkltalic = Checkbutton(self.franme2,
40 text = , variable = self.italicOn,
41 command = sel f. changeFont)

42 sel f.checkltalic. pack(side = , padx = 5, pady = 5)
43

44 def changeFont (self):

45

46

a7 desi redFont =

48

49 if self.boldOn.get():

50 desiredFont +=

51

52 if self.italicOn.get():

53 desi redFont +=

Fig. 10.8 Checkbut t ons font style selection. (Part 1 of 2.)

- 4~ 4

\ {q%)
| pythonhtpl_10.fm Page 358 Friday, December 14, 2001 2:02 PM

A

.

358 Graphical User Interface Components: Part 1 Chapter 10
54
55 sel f.text.config(font = desiredFont)
56
57 def nmin():
58 CheckFont (). mai nl oop()
59
60 if _ _name__ ==
61 mai n()
Checkbutton Demo 10l =| Checkbutton Demo 10l =|
lJVatch the font style change |Watch the font style change
[~ Bald [Italic I_\%Bold I~ Italic
Checkbutton Demo 10l =| Checkbutton Demo 10l =|
Watch the font style change |Watch the font style change
" Bold F%nanc WV Bold M Italic

Fig. 10.8 Checkbut t ons font style selection. (Part 2 of 2.)

Lines 19-20 create an Ent r y component named t ext . The inserted text, " V.t ch
the font styl e change" (line21), hasfont style" Ari al 10". Thef ont attribute
indicates the font of the Ent r y component. One way of representing afont is by using a
string containing the font name, size and style. It is possible to specify no font style, in addi-
tion to specifying multiple font styles. The online Introduction to Tkinter

www. pyt honwar e. cont | i brary/tkinter/introduction/x444-
fonts. htm

includes a discussion of available fonts and font styles.

Bool eanVar objects, bol dOn (line28) and i t al i cOn (line 36), are Tki nt er
integer variablesthat have values of either O or 1. Theoptionvar i abl e requiresan object
of the Tki nt er Vari abl e class. Tki nt er providesthe Var i abl e classfrom which
Bool eanVar inherits. The Vari abl e class acts as a container for Python variables.
Various Tki nt er classesuse Var i abl e objectsto maintain information about a partic-
ular component. For example, the CheckBut t on class uses a Bool eanVar object to
store the state—checked or unchecked—of the button. Our program creates and passes
Bool eanVar references to the CheckBut t on constructors, so the event handlers can
determine whether the user has selected one or both of the buttons.

Lines31-32 createaCheckbut t on calledcheckBol d. Thet ext optionindicates
that the text, " Bol d", appears next to the checkbox to provide information about the pur-
pose of the checkbox. The conmand attribute of aCheckbut t on component isthe event
handler that executes when a user selects or de-selects the button. In this case, we specify
method changeFont as the event handler. The component’svar i abl e option passes
the Bool eanVar object that the component uses to maintain its state information. When
a user clicks the CheckBut t on, two things happen—its Bool eanVar vaue changes
from0 to 1, or 1 to 0, and the event handler changeFont executes. Lines 3840 create
checkltal i c,aCheckButt on object that behaves similarly to object checkBol d.

ﬂ%

*

é pythonhtpl_10.fm Page 359 Friday, December 14, 2001 2:02 PM

A

.

Chapter 10 Graphical User Interface Components: Part 1 359

Method changeFont (lines44-55) initializes string desi r edFont totheorigina
"Arial 10" font. Method get (of classBool eanVar) returnsthe variable'svaue. If a
user selects checkBol d, the program appends " bol d" to desi r edFont (line 50).
The process repeats for checkl talic, usingitalicOn. Likewise, if a user selects
checkl tal i c,theprogram appendsthestring” i t al i ¢c" todesi r edFont (line53).
Each string begins with a space so that when the style is appended to the font, a space is
included (e.g.," Ari al 10italic"). Themethodthencallsconfi gtochanget ext’s
fonttodesi r edFont .

Radio buttons, created with class Radi obut t on, resemble checkboxes because they
have two states—selected and not selected (also called deselected). Unlike checkboxes,
radio buttons represent a set of mutually exclusive options—only one radio button in a
group can be selected at atime. Selecting a different radio button in the group forces all
other radio buttons in the group to be deselected.

q%{%’ Use Radi oBut t onswhen the user should choose only one option in a group.
B

N

Use CheckBoxeswhen the user should be able to choose multiple options in a group.

Figure 10.9 issimilar to the program in Fig. 10.8 in that the user can alter the font style
of an Ent r y’ stext. However, this example permits only asingle font style in the group to
be selected at atime, using radio buttons.

1

2

3

4 from Tkinter inport *

S

6 class Radi oFont(Frane):

7

8

9 def __init__(self):

10

11

12 Frame. __init__ (self)

13 sel f. pack(expand = , fill =)
14 self.master.title()
15

16 self.framel = Franme(self)

17 sel f. framel. pack()

18

19 self.text = Entry(self.franel, width = ,
20 font =

21 self.text.insert(,)
22 sel f.text.pack(padx = 5, pady =)

23

Fig. 10.9 Radi obut t onsselecting font styles. (Part 1 of 2.)

ﬂ%

—

2
| é pythonhtpl_10.fm Page 360 Friday, December 14, 2001 2:02 PM

360 Graphical User Interface Components: Part 1 Chapter 10
24 self.frame2 = Franme(self)
25 sel f. frame2. pack()
26
27 font Sel ections = | , , ,
28]
29 sel f.chosenFont = StringVar()
30
31
32 sel f. chosenFont . set(font Sel ecti ons| 1)
33
34
35 for style in fontSel ections:
36 aButton = Radiobutton(self.frame2, text = style,
37 variabl e = self.chosenFont, value = style,
38 conmand = sel f. changeFont)
39 aBut t on. pack(side , padx = 5, pady =)
40
41 def changeFont (self):
42
43
44 desi redFont =
45
46 i f self.chosenFont.get() ==
47 desi redFont +=
48 elif self.chosenFont.get() ==
49 desi redFont +=
50 elif self.chosenFont.get() ==
51 desi redFont +=
52
53 sel f.text.config(font = desiredFont)
54
55 def nmin():
56 Radi oFont () . mai nl oop()
57
58 if __name__ ==
59 mai n()

Radiobutton Demo =10]x] Radiobutton Demo =l

lJVatch the font style change

@ Plan ¢ Bold © Italic " Bold/ltalic

|Watch the font style change

 Plain %Bold © talic Bold/ltalic

Radiobutton Demo ;IQILI

Radiobutton Demo ;IQILI

Watch the font style change

" Plan ¢ Bold %Italic Bold/talic

|Watch the font style change

© Plan - Bold Italic %Boldx’ltalic

Sequence f ont Sel ect i ons (lines 27-28) lists severd font styles. Lines 29-32
defineaSt ri ngVar object,chosenFont ,and set stheinitial valueto the default style,
"Pl ai n". Like Bool eanVar, St ri ngVar is a subclass of Tki nt er class Vari -
abl e, andit actsasacontainer for astring variable. Unlike our Check But t onsexample,

Fig. 10.9 Radi obut t onsselecting font styles. (Part 2 of 2.)

ﬂ%

é pythonhtpl_10.fm Page 361 Friday, December 14, 2001 2:02 PM

A

.

Chapter 10 Graphical User Interface Components: Part 1 361

which uses a Bool eanVar to track a button’s state, a grouping of Radi oBut t onsin
Fig. 10.9 usea St ri ngVar to store the value (i.e., name) of the selected button. Groups
of RadioButtons modify the same Variable object. To define mutually exclusive groups of
RadioButtons, programmers must assign one V ariable object to each group. When a user
selects agiven radio button, the selected radio button modifiesthe assigned V ariabl e object
and class the appropriate event handler. Our event handler (changeFont) retrieves the
value of the group’s St r i ngVar object to determine the selected button.

Lines 35-39 create and pack a Radi obut t on component for each st yl e in the
font Sel ecti onslis—"Pl ain","Bol d","lItalic" and"Bol d/Italic".The
f or loop assigns a st yl e to each button’'st ext and val ue options—the option that
determines the button’s name. Option t ext indicates the text to be displayed next to the
Radi obutt on component. Attribute vari abl e associates StringVar object
chosenFont with each Radi obutt on component, and option comrand registers
method changeFont as the event handler for each button. When the user clicks a
Radi obut t on, the string contained in the St r i ngVar object is changed to contain the
button’ s value, and method changeFont executes.

Method changeFont (lines 41-53) initializes string desi r edFont to " Ari al
10". If a Radi obutton is selected, changeFont appends the desired style to
desi r edFont . Method get obtainsthe current value of chosenFont . Inthisexample,
changeFont usesani f/el i f structure to emphasize that, unlike Checkbut t ons,
only one Radi obut t on (using the same variable) may be selected at atime.

10.8 Mouse Event Handling

This section demonstrates how programs handle mouse events—events that occur as are-
sult of user interaction with a mouse. Figure 10.10 summarizes several common mouse
event formats and Fig. 10.11 demonstrates how a GUI program can handle them. All
Tki nt er events are described by strings following the pattern <modifier-type-detail>.
Thetype (for instance, But t on and Ret ur n) specifiesthekind of event. The prefix Dou-

bl e isan example of amodifier while the specific mouse button is a detail.

Event format Description

<But t onPr ess- n> Mouse button n has been sel ected while the mouse pointer is
over the component. n may be 1 (lft button), 2 (middle button)
or 3 (right button). (e.g., <ButtonPress-1>).

<But t on- n>, <n> Shorthand notations for <But t onPr ess- n>.

<But t onRel ease- n> Mouse button n has been released.

<Bn- Mot i on> Mouse is moved with button n held down.

<Prefix- Butt on- n> Mouse button n has been Prefix clicked over the component.
Prefix may be Doubl e or Tri pl e.

<Enter> Mouse pointer has entered the component.

<Leave> Mouse pointer has exited the component.

Fig. 10.10 Mouse event formats.

%

—

Q2
| é pythonhtpl_10.fm Page 362 Friday, December 14, 2001 2:02 PM

%

362 Graphical User Interface Components: Part 1 Chapter 10
1
2
3
4 from Tkinter inport *
5|
6 class Muselocation(Frane):
7
8
9 def __init__(self):
10
11
12 Frame. __init__(self)
13 sel f. pack(expand = , fill =)
14 sel f.master.title()
15 sel f. naster. geonet ry()
16
17 sel f. nousePosition StringVar ()
18 sel f. nousePosi tion. set ()
19 sel f. posi ti onLabel Label (self,
20 textvariabl e sel f. mousePosition)
21 sel f. posi tionLabel . pack(side =)
22
23
24 sel f. bi nd(, self.buttonPressed)
25 sel f. bi nd(, self.buttonRel eased)
26 sel f. bi nd(, self.enteredW ndow)
27 sel f. bi nd(, self.exitedWndow)
28 sel f. bi nd(, sel f.mouseDr agged)
29
30 def buttonPressed(self, event):
31
32
33 sel f. nousePosition. set (+ str(event.x) +
34 + str(event.y) +)
35
36 def buttonRel eased(self, event):
37
38
39 sel f. nousePosi tion. set (+ str(event.x) +
40 + str(event.y) +)
41
42 def enteredWndow(self, event):
43
44
45 sel f. nousePosi tion. set ()
46
a7 def exitedW ndow self, event):
48
49
50 sel f. nousePosition. set ()
51

Fig. 10.11 Mouse events demonstration. (Part 1 of 2.)

ﬂ%

Q2
| é pythonhtpl_10.fm Page 363 Friday, December 14, 2001 2:02 PM

A

.

Chapter 10 Graphical User Interface Components: Part 1 363
52 def nouseDragged(self, event):
58
54
55 sel f. nousePosi tion. set (+ str(event.x) +
56 + str(event.y) +)
57
58 def main():
59 MouselLocat i on() . mai nl oop()
60
61 if __nane__ ==
62 mai n()

S-S Ml oermonstrating Mouse B 1ol
I3
Mouse outside window Mouse in window

Demonstrating Mouse E = |EI|1| Demonstrating Mouse E = |EI|1|

by
by

Pressed at [69, 24] Dragged at [203, 55]

Demonstrating Mouse E (=]]

Releazed at [236, 55]

Fig. 10.11 Mouse events demonstration. (Part 2 of 2.)

Lines17-18 createa St r i ngVar object nousePosi ti on and initializesitsvalue
to " Mouse out si de wi ndow'. Lines 19-21 create and pack Label positi on-
Label witht ext vari abl e optionnousePosi ti on.Optiont ext vari abl e asso-
ciates the text displayed by a Label component with a St ri ngVar object. Option
t ext vari abl e must be associated with a Tki nt er Vari abl e object. (Note that in
Fig. 10.4 we demonstrated the Label component’s text option which is associated with a
Python variable.) When the string value of the object—in this case nbusePosi t i on—
changes, the text of the label, posi ti onLabel , is updated.

Lines 24-28 bind a few common mouse events to the window. An event is generated
when the left mouse button is selected or rel eased while the mouse pointer isin the window,
when the mouse pointer enters or leaves the window or when the mouse is moved with the
|eft button pressed.

When a <Button-1> event or a <ButtonRel ease- 1> event is generated,
method but t onPr essed (lines 30-34) or method but t onRel eased (lines 36-40),
respectively, calls method set to change the value of variable nousePosi ti on to
inform the user of the event. A mouse event’s Event object contains the x- and y-coordi-

ﬂ%

*

é pythonhtpl_10.fm Page 364 Friday, December 14, 2001 2:02 PM

A

.

%

364 Graphical User Interface Components: Part 1 Chapter 10

nates, stored in the x and y attributes of the Event object, that describe where the event
occurred.

When a mouse pointer enters the application area, method ent er edW ndow (lines
42-45) executes. When a mouse pointer exits the application area, method exi t ed-
W ndow (lines 47-50) executes. As the screen captures demonstrate, each method prints
an appropriate message indicating whether the mouse is over or not over the MouselLo-
cat i on object. The methods modify thevaluein St r i ngVar object mousePosi ti on
to update the Label ’stext.

Event handler nrouseDr agged (lines 52-56) is triggered under different circum-
stances than event handlers but t onPr essed and but t onRel eased. There are two
conditions which must be met beforea<B1- Mot i on> event istriggered: button B1 must
be pressed and the mouse must be moving. Once these requirements are met, the <B1-
Mot i on> event isfired at aratethat is defined by the operating system. In other words, on
0n one operating system, dragging a mouse to the right might trigger 50 <B1- Mot i on>
events, while on adifferent operating system the rate might be much lower. For each <B1-
Mot i on> event, method mouseDr agged displays the events and the coordinates from
which the event originated.

A mouse may have one, two, or three buttons. A program may need to take different
actions, depending on which button the user has pressed. Figure 10.12 contains a program
that demonstrates how to distinguish between different mouse buttons.

1

2

3

4 from Tkinter inmport *

5

6 class MuseDetail s(Frame):

7

8

9 def __init__(self):

10

11

12 Frame. __init__(self)

13 sel f. pack(expand = , fill =)

14 self.master.title()
15 sel f. mast er. geomet ry()

16

17

18 sel f. nousePosition = StringVar()

19 posi tionLabel = Label (self,

20 textvariable = sel f.nousePosition)

21 sel f. nousePosi tion. set ()
22 posi tionLabel . pack(side =)

23

24

25 sel f. bi nd(, self.leftdick)
26 sel f. bi nd(, self.centerdick)
27 sel f. bi nd(, self.rightCick)
28

Fig. 10.12 Mouse button differentiation. (Part 1 of 2.)

ﬂ%

—

2
| é pythonhtpl_10.fm Page 365 Friday, December 14, 2001 2:02 PM

Chapter 10 Graphical User Interface Components: Part 1 365

29 def leftdick(self, event):
30
31
32 sel f. showPosi tion(event.x, event.y)
33 self.master.title()
34
35 def centerClick(self, event):
36
37
38 sel f. showPosi ti on(event.x, event.y)
39 self.master.title()
40
41 def rightdick(self, event):
42
43
44 sel f.showPositi on(event.x, event.y)
45 sel f.master.title()
46
a7 def showPosition(self, x, y):
48
49
50 sel f. nousePosi tion. set (+ str(x) + +
51 str(y) +)
52
53 def main():
54 MouseDet ai | s() . mai nl oop()
55
56 if __nane__ ==
57 mai n()
Clicked with left mouse button =l Clicked with center mouse bukkol =l
I3
I3
Pressed at [43, 28] Preszed at [171, 70]

Clicked with right mouse button 10l =|

Pressed at [322,120 %

Fig. 10.12 Mouse button differentiation. (Part 2 of 2.)

Figure 10.12 issimilar to Fig. 10.11 except that lines 25-27 bind methodsto eventsfor
different mouse buttons by changing the number in the event format (<But t on-n>). When
the user presses a button while the mouse pointer isinside the window, the window’ s title

4~ 4

\ {q%)
| pythonhtpl_10.fm Page 366 Friday, December 14, 2001 2:02 PM

A

366

Graphical User Interface Components: Part 1 Chapter 10

changes to indicate which button was pressed. Each event handler calls method s howPo-
si ti on (lines47-51), which displays the coordinates of the mouse event.

10.9 Keyboard Event Handling

This section presents binding event handlers to keyboard events. These events are generat-
ed when keyboard keys are pressed and relea