
T-Labs Series in Telecommunication Services

Benjamin Bähr

Prototyping of
User Interfaces
for Mobile
Applications

T-Labs Series in Telecommunication Services

Series editors

Sebastian Möller, Berlin, Germany
Axel Küpper, Berlin, Germany
Alexander Raake, Berlin, Germany

More information about this series at http://www.springer.com/series/10013

Benjamin Bähr

Prototyping of User
Interfaces for Mobile
Applications

123

Benjamin Bähr
Quality and Usability Lab (TEL 18)
Technische Universität Berlin
Berlin
Germany

ISSN 2192-2810 ISSN 2192-2829 (electronic)
T-Labs Series in Telecommunication Services
ISBN 978-3-319-53209-7 ISBN 978-3-319-53210-3 (eBook)
DOI 10.1007/978-3-319-53210-3

Library of Congress Control Number: 2016963744

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Acknowledgements

This text presents the results of the research I did for my dissertation. A number of
persons supported me during this work. They shaped me in scientific debates, kept
an open ear to my questions, or strengthened my back when work was tough. They
helped to turn the past years into a time that was instructive, rich of experience, and
overall very enjoyable to me. I do thank them very much.

First of all, there is Sebastian Möller. The commitment with which he supported
me, even when his time was scarce, was exceptional and more I could ask for. He
consulted me in countless meetings, kept replying to my needs in no time, and he
established an atmosphere in his chair that was truly inspiring to me with its
diversity and open-mindedness.

I am truly thankful for the support I received from Michael Rohs. Along with
Sven Kratz, he put my scientific career onto track. Even though Michael left Berlin
early to follow his academic career, he continued to support my research with
regular remote mentoring and numerous meetings in Hannover.

Not less thankful I am for the support of Johann Habakuk Israel. With his
constructive feedback he gave me inspiration and motivation even before I was able
to gain him as a third supervisor. My work gained hugely from his input about the
theory and psychology of sketching.

Further, I want to thank all the colleagues of my chair, the Quality and Usability
Labs. They always showed interest and supported me in my work. I enjoyed an
atmosphere, characterized not by concurrency, but by collegiality and helpfulness.
Needless to say, I am truly happy about much friendship that evolved from my time
at the chair.

Explicitly, I want to thank Irene Hube-Achter and Yasmin Hillebrenner for the
administrative support and for steering my projects through the cliffs of
bureaucracy!

Moreover, I want to thank my colleagues of the Telekom Innovation
Laboratories that provided me with a generous and inspiring working surrounding.

v

I want to thank my fellow researchers of the Rethinking Prototyping research
project that opened my view on the topic of prototyping to a more versatile and
interdisciplinary perspective.

Thanks to my fellow stipendiats of the Prometei Graduate School that helped me
getting into my research topic in the first years of my dissertation.

I want to thank the institutions that helped me in funding my research project,
which are the DFG, the Einstein Stiftung Berlin, and the BMWi funded Software
campus research grant.

Special thanks to Franzi and Rainer of the Berliner Ensemble, for helping me out
with welding and serious metalwork in hard-hardware setup of my tabletop
environment.

I am very thankful to all my friends and my family. They make my life!
I want to thank Alice for accompanying me throughout my dissertation, and

turning this period into a wonderful part of my life.

vi Acknowledgements

Contents

1 Introduction . 1

2 State of Prototyping Mobile Application User-Interfaces 5
2.1 Meaning and Purpose of Prototyping . 5

2.1.1 Definition of Prototyping . 5
2.1.2 Prototype Information Goals . 6
2.1.3 Prototyping Paradigms . 7

2.2 The Paper-Based Prototyping Approach . 9
2.2.1 The Paper-Based Prototyping Session 10
2.2.2 Advantages of the Paper-Based Prototyping Method. 11

2.3 Prototyping of Mobile User Interfaces . 14
2.3.1 Low-Fidelity Prototyping in the Mobile Context. 15
2.3.2 Mixed-Fidelity Prototyping Approaches 17
2.3.3 Influence of the Sketching Media on the Prototyping

Process . 27
2.3.4 Comparison of Mobile Prototyping Approaches 28

2.4 Research Objectives . 32

3 Prototyping Requirements . 37
3.1 Identification of Requirements from Literature Research 38

3.1.1 Requirements Regarding the Prototype Design Process. . . . 38
3.1.2 Requirements Regarding the Prototype Evaluation 41
3.1.3 Requirements Tool Implications on the Prototype’s

Nature . 44
3.2 Assessment of the Requirement with Expert Practitioners 46

3.2.1 Study Objectives . 46
3.2.2 Study Design. 47
3.2.3 Results of Expert Survey. 49

3.3 Discussion of the Results . 56

vii

4 Blended Prototyping—Design and Implementation 59
4.1 Approach and Development . 59

4.1.1 Blended Prototyping Design Paradigms 59
4.1.2 Feedback Driven Development . 60

4.2 Blended Prototyping—System and Process Architecture 61
4.2.1 System Overview . 61
4.2.2 Module 1—The Design Tool . 63
4.2.3 Module 2—The Creation Tool . 71
4.2.4 Module 3—The Testing Tool . 76

4.3 Design Decisions in the System Implementation 78
4.3.1 Implementation of the Design Tool. 78
4.3.2 Implementation of the Creation Tool. 85
4.3.3 Implementation of the Testing Tool 86

4.4 Discussion of the System Implementation 87

5 Comparative Evaluation of Blended Prototyping 93
5.1 Choice of Comparative Prototyping Tools for the Evaluation. 93
5.2 Identifying Performance Indices for the Comparative Evaluation . . 94

5.2.1 Identifying Candidates from the Requirements Catalog. . . . 94
5.2.2 Considering the Type of Evaluation Method. 96
5.2.3 Discussing Assessment Methods for Identified

Requirements . 97
5.3 Conducting the Comparative Study . 107

5.3.1 Study Objectives . 108
5.3.2 Study Design. 108
5.3.3 Study Results . 117

5.4 Conclusions of the Comparative Evaluation 126

6 Conclusion and Future Work . 129
6.1 Conclusion . 129
6.2 Future Work . 134

Appendices. 137

References . 153

viii Contents

Abbreviations

ANOVA Analysis of variances
ATT Measure of attractiveness
AX Axure prototyping software
BP Blended prototyping
CAQ Creativity assessment questionnaire
CSCW Computer supported collaborated work
CSV File format of comma separated values
CV Computer vision
DR Design reviews
DSLR Digital single-lens reflex camera
GPU Graphics processing unit
GUI Graphical user interface
HCI Human computer interaction
HQ-I Measure of hedonic quality—identification
HQ-S Measure of hedonic quality—stimulation
HTTPS Hypertext transfer protocol secure
ICC Intra-class correlation coefficient
JSON Javascript object notation
JVM Java virtual machine
MVC Model view controller design pattern
OTAS Observational teamwork assessment survey
PBP Paper-based prototyping
PQ Measure of pragmatic quality
PT Prototype
RQ Research question
SD Standard deviation
SDK Standard development kit

ix

SE Standard error
UI User interface
URL Uniform resource locator
XML Extensible markup language

x Abbreviations

Chapter 1
Introduction

Since the release of the first iPhone in 2007, mobile devices like smartphones and
tablets are booming. In 2014 sales of smartphones worldwide topped 1.2 billion
units, which was almost 30% higher than 2013.1 This means that in average about
every 6th human being on the planet bought a new device in the last year.

Smartphones give their users the opportunity to install additional software with
apps, which can be comfortably downloaded from centralized app markets. The
most popular of these markets, the iTunes Store that provides apps for Apple’s iOS
devices, was introduced in 2008. Seven years later, by June 25th 2015, the total
number of app downloads from the iTunes Store alone passed the number 100
billion.2

Without a doubt, app development rapidly became a relevant field in the busi-
ness of software development. In comparison to software for the mobile use,
desktop software tends to offer holistic solutions in big software packages. Mobiles
apps are mostly very small pieces of software that are targeted to solve a specific
task. The main reason for this lies in different usage of both types of software:
desktop software is typically used for a longer period of time to fulfill complex
work, whereas mobile software is mostly used in between the daily routines as a
service or to quickly gather a certain piece of information.

For the reason of mobile apps being comparably short in their range of func-
tionality, they are usually developed in rather small teams, most often employed by
smaller companies. Due to a shortage of a number of resources, especially in time
and money, these groups work under a lot of pressure to come up with the killer app
idea: the app providing the service everyone is looking for, in a spectacular design,
and at exactly the right time. Bright shine the shooting-star-success-stories of the

1http://www.usatoday.com/story/tech/2015/03/03/apple-samsung-smartphones/24320385/ (last
accessed 11th April 2016).
2http://www.theverge.com/2015/6/8/8739611/apple-wwdc-2015-stats-update (last accessed 11th
April 2016).

© Springer International Publishing AG 2017
B. Bähr, Prototyping of User Interfaces for Mobile Applications,
T-Labs Series in Telecommunication Services,
DOI 10.1007/978-3-319-53210-3_1

1

http://www.usatoday.com/story/tech/2015/03/03/apple-samsung-smartphones/24320385/
http://www.theverge.com/2015/6/8/8739611/apple-wwdc-2015-stats-update

Instagrams, Evernotes, or WhatsApps in the sky. However, most app development
projects fail. For small startup companies this means a failure of the whole business.

To develop high quality apps it is necessary to test them with users as early and
as often as possible. Of key importance in this context is the user-interface, which
builds the center of interaction between the application and its user. With tests,
design decisions can be evaluated and wrong decisions become apparent at a stage
early enough to be still corrected in the further development. As Szekely [145]
melts it down in a concise advice: “Build an initial version of the interface, and then
test it with users and revise it as many times as you have money and time for”
(p. 76).

The quote in the previous paragraph originates from 1994. This underlines that
the necessity to conduct user tests in software development projects is not new. In
fact, it is much older than the history of mobile app development itself. The pre-
vious two decades of experience with graphical user interface design provides a
new generation of mobile app developers with a profound knowledge base on
processes and tools for a user driven software development.

One of such process models is the Usability Engineering Lifecycle, introduced
by Nielsen [107]. The concept propagates a product development in form of an
iterative refinement, driven by repeated user tests of design ideas with prototypes.

The Usability Engineering Lifecycle, as displayed in Fig. 1.1, is divided into five
phases that are processed sequentially. At the end of the fifth stage, the process is
repeated in a new iteration.

1. Analysis of
Requirements

2. Prototype
Design

3. Prototype
Crea�on

4. User-Tests /
Expert

Evalua�ons

5. Adap�on of
development

Fig. 1.1 Usability engineering lifecycle

2 1 Introduction

A cycle is initiated with the requirements analysis of the current product state,
and the planning of the iteration cycle lying ahead. Followed by that, a prototype is
designed that addresses the identified requirements, in other words, asks the
question about the current product state that are currently most relevant. Now, the
prototype is created and prepared for the testing. Tests can be done in form of
expert evaluations, where domain experts provide feedback about the interface
implementation with specific heuristics. Or the prototype is evaluated in a user-test,
where test users are asked to try out the prototype to generate subjective or
objective usage feedback. The generated feedback is now analyzed and conse-
quences for the further development are drawn and implemented in the prototype.
In the next step, a new iteration is started and the process is repeated for a newly
developed prototype.

The Usability Engineering Lifecycle underlines the importance of prototypes for
the user-centered design of software products. However, its applicability depends
on the existence of prototyping tools that allow for a quick design and imple-
mentation of prototypes. Without tools that allow the implementation of prototypes
with a reasonable low effort, the Usability Engineering Lifecycle cannot be suffi-
ciently applied.

In later product phases, prototypes are usually created with the same tools that
are also used to develop the final product version. However, for earlier design
stages, these tools are too complex and slow. Here principle design decisions are
made, which makes it highly advisable to produce quick prototypes to validate
those ideas. This need is addressed by prototyping tools, which are designed to ease
and accelerate the design and creation of testable prototypes.

Especially in early design stages, where principle design decisions are made,
prototyping tools should be able to integrate all relevant persons into the proto-
typing process. This includes interdisciplinary teams of designers, programmers,
project managers, and others. For the field of designing conventional software user
interfaces for the stationary use, prototyping approaches like the paper-based pro-
totyping are well established, which can be applied in earliest ideation phases
already to leverage a creative group work on an evolving interface idea. As e.g. Sá
et al. point out in [127] and [125], the transformation of such concepts to a pro-
totyping tool that addresses the specific challenges of mobile app development is
not yet sufficiently solved.

This research aims to gain a better understanding about how prototyping systems
can improve the development of mobile applications. It aims to describe, which
aspects of prototyping tools are most relevant for practitioners, and how such
aspects might change in different development stages. Furthermore, it identifies a
demand for improved prototyping systems in early development stages. It discusses
a new approach that was conceived, implemented and tested by the author: The
approach of ‘Blended Prototyping’.

This work is structured as follows: It starts with the description of the current
state of prototyping, both in general and specifically with regard to the prototyping
of mobile applications (Chap. 2: Prototyping—State of the Art). After that, the
concept, execution, and results of an expert survey are described, which was

1 Introduction 3

http://dx.doi.org/10.1007/978-3-319-53210-3_2

conducted to identify requirements for prototyping tools of mobile applications in
different development stages (Chap. 3: Requirements Analysis from an Expert
Survey). I profited from the knowledge gained in this analysis in the development
of the Blended Prototyping platform, which is described in the third chapter of this
text (Chap. 4: Blended Prototyping—Design and Implementation). The use of the
prototyping approach was tested in a comparative evaluation, where Blended
Prototyping as well as two alternative prototyping approaches were used by groups
of test users in early development stage design tasks. How the study was conceived
on the basis of the previously defined requirements, how it was executed, and what
results it produced is described in the fifth chapter of this text (Chap. 5:
Comparative Evaluation of the Blended Prototyping approach). In the final and
sixth chapter conclusions on the results of my research are drawn, its contributions
for research and practice are summarized, and further steps and extensions I
imagine for the Blended Prototyping approach are outlined.

4 1 Introduction

http://dx.doi.org/10.1007/978-3-319-53210-3_3
http://dx.doi.org/10.1007/978-3-319-53210-3_4
http://dx.doi.org/10.1007/978-3-319-53210-3_5

Chapter 2
State of Prototyping Mobile Application
User-Interfaces

This chapter gives an introduction into the scientific discussion and practices of
prototyping mobile application user interfaces. For this, it first takes a more general
perspective on prototyping (Sect. 2.1), where the term prototyping is defined, its
goals are displayed, and different prototyping paradigms are explained. Followed
by that, in Sect. 2.2, a particularly relevant approach for this work is displayed in
more detail: the approach of a paper-based prototyping. After that, in Sect. 2.3, the
text concentrates on prototyping techniques for mobile app user interfaces. Here,
especially mixed-fidelity prototypes and their development in different approaches
are discussed, and an existing gap in the technological concepts and tools is
identified. This motivates the research questions that build the objectives of my
work, which are postulated in the Sect. 2.4 that concludes this chapter.

2.1 Meaning and Purpose of Prototyping

2.1.1 Definition of Prototyping

The term prototyping is widely used, however, the understanding about its meaning
differs widely [162].

Prototype is a mixture of the two Greek works proto (=first) and typos (=im-
pression). Regarding the origin of the word, the term can therefore be understood as
any kind of pre-version of a product that serves the purpose of providing a first
impression about a system, which does not yet exist.

Putting the term into the context of software development, Sommerville [92]
defines a prototype as “an initial version of a software system that is used to
demonstrate concepts, try out design options and generally finds out more about the
problems and its possible solutions”. A similar definition is found by the Institution
of Electrical and Electronics Engineers (IEEE), which consider the process of

© Springer International Publishing AG 2017
B. Bähr, Prototyping of User Interfaces for Mobile Applications,
T-Labs Series in Telecommunication Services,
DOI 10.1007/978-3-319-53210-3_2

5

working with prototypes as “a type of development in which emphasis is placed on
developing prototypes early in the development process to permit early feedback
and analyses in support of the development process” [117].

Developers use prototypes to gain feedback and experience about a not yet fully
built system. The prototyping process does not follow a given set of rules: A
prototype can be employed to explore whatever information is most relevant to the
developer at a given stage. A prototype does not need be polished or finished; it can
be of whatever form, which is able to serve the purpose of gaining feedback about
design decisions. The earlier such decisions are tested, the easier it will be to regard
the generated insights in the further development. This way, prototypes can help to
lower the risk of wasting valuable resources on wrong development paths [67].

As described in his Usability Engineering Lifecycle by Jacob Nielsen [107] the
prototyping process should be done in cycles of iterative refinements. Each of these
refinement cycles produces a new prototype, which is evaluated in user tests or
expert evaluations. In user tests the prototype is presented to an exemplar user of
the targeted software product. User tests can generate general feedback, specific
questions on design implementations, or usage data to identify usability problems in
the tested design. Expert evaluations are considered to be a rather inexpensive
alternative to user tests that provide another view on the prototype. Here, especially
cognitive walkthroughs, heuristic evaluations, or pluralistic walkthroughs are
methods that are capable of delivering usability-problems or design flaws on the
basis of expert judgments [21, 107, 110].

2.1.2 Prototype Information Goals

As prototypes can serve different purposes, different prototyping techniques are
targeted at different design questions. For this reason, Szekely [145] provides a
good overview of prototyping information goals, that help to get a better under-
standing on the purpose behind different prototyping approaches. He highlights four
major development steps, where prototypes are usually applied: in the task analysis,
the user interface design, in feasibility studies, and for the testing in benchmarking
studies.

Software systems are created for a certain general purpose, which is achieved by
supplying its users with a number of different tasks. The general purpose of a
system is usually clear throughout the development, the form and characteristics of
tasks necessary to fulfill this objective needs to be carefully evaluated. The expe-
rience, expectations, and habits of users are diverse, and most of the times deviate
from the initial thoughts of system designers. Therefore the concept of an appli-
cation’s task design and it implementation should be tested with users as often and
early as possible. Here prototypes play a key role in the task analysis of a software
design, to generate profound knowledge about the system’s multiple tasks, and for
their implementation in software functionality.

6 2 State of Prototyping Mobile Application User-Interfaces

A comprehensive knowledge about necessary software tasks is very important,
however, it can only generate real value in the later product, if the software users
are actually able to understand and use the implemented methods. This is deter-
mined to the largest extent by a suitable user interface design of the software
application. A good interface design is not only related to a nice appearance of the
software, but foremost to the way the user finds her way through the different
interface screens, software menus, commands, and other aspects that are important
in controlling software. A well-made interface design should implement a clear
interaction concept, which the user can understand and follow throughout the use of
the application. Moreover, the user interface design shapes the users’ emotions and
attitudes in the software interaction, determining the user experience.

A number of design guidelines are available, that provide a good status quo of
common patterns and approaches. However, experience and good advice can never
guarantee that a user is able to understand the implemented concepts, is not
overloaded with information, and moreover appreciates the design [113]. Here,
prototypes play a key role in investigating user interface approaches with user tests.
Such tests help to gain valuable feedback about the implemented interface design
ideas and provides insights on issues in design approaches early enough, to be still
able to adapt the interface concepts accordingly.

Prototypes do not only serve as a communication tool between developers and
users, they are moreover essential in investigating technical aspects of the planned
software. In feasibility studies prototypes help to make sure that single technical
aspects of the planned software can actually be implemented in the given technical
environment. It is rather the rule than the exception that it software development
projects smaller and bigger issues in the original planning arise, which might for
example derive from an unplanned behavior of employed programming libraries, or
complex interdependencies of different program modules. Here, early tests of the
software’s feasibility, with prototypes that prove certain technical uncertainties, is
very important to discover such issues early enough to be still able to change the
planning.

Even though the resources and performance of computers is steadily growing,
efficiency of the implemented algorithms is always an important aspect.
Inefficiencies can add up, and are oftentimes caused by flaws that grow to big
problems in the long run. To uncover such inefficiencies prototypes are created and
tested in benchmarking studies.

2.1.3 Prototyping Paradigms

The difference of prototyping techniques can be well pointed out in a categorization
along a span that is built by two very different prototyping paradigms. Kordon and
Luqi [82] point out two opposing approaches: the throwaway and the evolutionary
prototyping paradigms.

2.1 Meaning and Purpose of Prototyping 7

Throwaway prototyping focuses on employing prototypes with the one and only
purpose to generate insights about a design idea. The prototype itself looses its
value after the testing, and can be literally speaking thrown away. For not wasting
to many resources in the throwaway prototyping process, mechanisms are available
to reduce the effort to produce testable pre-versions of an idea to a large extent.

On the other hand, evolutionary prototypes are more mature versions of an idea
that is implemented with the same tools, which are as well used in the later product
development. Evolutionary prototypes are reused after the testing, in a way that
they are altered in accordance to the test results and then reused in a new test cycle.

Similar to the development of species, but hopefully quicker, they therefore go
through an evolutionary selection process. Finally, an evolutionary prototype ends
up becoming the product itself. As a matter of fact, the final software product can
even be considered to be an evolutionary prototype for the next software version.

Throwaway prototyping is usually used in rather early design stages, where the
system requirements are still vague and not too much effort should be invested to
evaluate an idea. In contrast to that evolutionary prototyping is used in rather late
development stages, where sufficient insides about principle design decisions exist
and the prototype foremost addresses technical and long-term use issues.

In principle, evolutionary as well as throwaway prototypes could be built with
the same standard development tools as the later product. Software can be imple-
mented in a state where it is not completed, but already presentable. In fact no
software will be programmed without intermediate steps, where the programmer
runs the software to check for instant flaws and crashes. Especially regarding the
design of user-interfaces, modern programming languages offer tools to achieve
comparably fast testable results.

The time where user interfaces were exclusively implemented in writing lines of
codes has passed. Most modern programming technologies allow for a clear sep-
aration of concern between the design of user interfaces and the implementation of
the software functionality. Here, the definition of user-interfaces is handled in
separate files that are used to automatically generate the user-interface in the process
of compilation or at runtime. Modern standard IDEs (Integrated Development
Environments) offer specific interface builders, where the user interface is created
and edited in a graphic environment that provides developers with an instant visual
feedback (compare Fig. 2.1). Such graphical user interface builders resemble
drawing tools in their structure and use, where user controls are positioned on a
stage with computer mouse input, and refined in their properties in according
dialogs.

Compared to the programming of interface designs solely in code, modern GUI
builders are a big advance towards a faster, better designed, and UI-centered
development of software. However, it needs to be regarded, that the functionality of
the software still needs to be implemented in programming code with a consider-
able effort. An effort, which is lost when ideas are discarded and the prototype
needs reprogramming.

Especially in earlier phases of user-interface design, where principle design
questions are yet unclear, the risk of making the wrong decisions is high. Therefore,

8 2 State of Prototyping Mobile Application User-Interfaces

the application of complex high-fidelity IDEs in an evolutionary prototyping
approach risks losing valuable project resources in redesigns. Or even worse, but
nevertheless oftentimes true, due to time and cost pressure, wrong design decisions
are not reverted.

Here, prototyping methods should be applied that allow for a throwaway pro-
totyping fashion, without big investments. Such approaches allow for a rapid
development and test of different prototype ideas.

A well-established and radically throwaway oriented technique is found in the
Paper-Based Prototyping approach. This low-fidelity approach focuses the con-
ception, design, and testing of prototypes on handmade paper sketches. It combines
advantages not only in the speed of the prototype creation, but has strengths in
advantages for the design team and the prototype testing itself.

2.2 The Paper-Based Prototyping Approach

Paper-Based Prototyping (=PBP), as defined by Carolyn Snyder [140] in her work
that became a standard introductory reading to the topic, is “a variation of usability
testing where representative users perform realistic tasks by interacting with a
paper version of the interface that is manipulated by a person “playing computer”,
who doesn’t explain how the interface is intended to work” (p. 4). According to
Snyder, the approach can be used for the prototyping of pretty much every technical
system that has user-computer interface, especially websites, web applications,
stationary software, or those for handheld devices. The methods of PBP supply
techniques for the brainstorming, design, creation, testing, and communication of
user interface ideas.

The benefit of sketching on communication, ideation, and creativity is discussed
in different research domains. To provide a better understanding on how PBP
adapts the advantages of sketching, the section starts with a discussion on the
connection between the process of sketching and creative work (Sect. 2.3.1).
Followed by that, the function and process of the PBP approach is explained
(Sect. 2.3.2), and the key advantages of the approach are displayed (Sect. 2.3.3).

Fig. 2.1 Modern IDEs that provide visual GUI editors (from left to right Apple xCode, Eclipse,
and Microsoft Visual Studio)

2.1 Meaning and Purpose of Prototyping 9

2.2.1 The Paper-Based Prototyping Session

The evaluation of PBP prototypes requires the presence of a number of design team
members that take different roles in the test sessions. Tests of PBP prototypes
should preferably take place in a usability laboratory, where measures are taken to
optimally observe and record the user interaction with a prototype. In the testing
process, the test user is introduced to an idea that is presented to her1 in the form of
paper-sketches. These paper-sketches are laid out in front of the user, with which
she is asked to interact as if she would use real software. Using the software is not
done with computer hardware input, but is simulated with low-tech techniques. For
example, the user could use a pen to point at different points of the user interface
she means to click, or keyboard entries are simply described with spoken words.
A team member plays the role of the computer, which means that she physically
changes the user interface just in the way the presented interface would be
manipulated on the computer. For this physical manipulation the computer can use
whatever helps the purpose. Different interface screens are prepared in form of
different paper sketches, which the computer can swap with another. Dynamic
interface content, like checkboxes or dropdown menus, can be simulated with
prepared snippets that are quickly positioned on the interface screen. The computer
is principally allowed to do whatever serves the purpose of displaying the interface
functionality. However she needs to follow a well-prepared and well-trained script,
so that she does not accidently makes mistakes in the given feedback. This way, the
test user is able to interact with the paper prototype idea just as if it was real
software, gain her personal experience with the idea, and possibly uncover usability
issues. Usually, the user is asked to give think-aloud protocol of her usage, meaning
that she talks about the thoughts, expectations, and actions she has in mind.

The person acting as the computer is not allowed to talk to the user and explain
the measures she takes. She solely acts the role of a real computer, which does not
explain its behavior either. The talking with the user does another team member,
playing the role titled the facilitator.

The facilitator describes the test procedure, presents the user her tasks, and is to
be addressed with questions that might occur. The strict separation of the roles of
the facilitator and the computer helps the user not to get confused about why the
team-member playing the computer cannot be addressed with questions concerning
the software feedback.

A disadvantage of the PBP method is in the high effort that is necessary to record
and later analyze the prototype test sessions. Unlike in on-device tests, where the
user interaction can be tracked automatically to a large extent, sufficient docu-
mentation in a PBP session requires a considerable amount of involvement by the
development team. Recordings should be made on video and audio to allow for a

1Remark on the use of gender-neutral pronouns in this work: I decided to use she as a
gender-neutral pronoun throughout this work. In my personal view, the singular they, oftentimes
used as an alternative, creates confusion reading the text.

10 2 State of Prototyping Mobile Application User-Interfaces

later analysis of the test sessions. Beside that, observers should be employed that
continuously write down their impressions about the test sessions. Such human
observers might be able to capture important events that are not recorded on tape.
Moreover, they give the other team-members involved in the test certainty to
concentrate on their individual tasks.

Apart from being tested with users, paper-based prototypes can be evaluated in
expert reviews, like heuristic evaluations, cognitive walkthroughs, or pluralistic
walkthroughs [21, 107, 110] can be applied. Such usability inspection methods are
not executed with test-users but with usability-experts, who apply an analytical
analysis method to reveal user interface flaws.

2.2.2 Advantages of the Paper-Based Prototyping Method

The PBP approach has advantages for the prototyping process in a number of ways.
As proposed by Snyder [140] can be grouped in advantages for the design team, in
advantages for the development process, and in test-user related psychological
advantages.

1. Advantages for the Design Team

The PBP approach uses a number of advantages that derive from the technique of
sketching. A good introduction into details of the process of sketching, the psy-
chology of the sketcher, and how the technique can promote creative work is found
in the work of Johann Habakuk Israel [71].

Sketching is often referred to as a process of self-communication that is carried
out in a procedure of ex- and internalization [71, 123, 130]. The process helps the
sketcher to transfer internal ideas in her mind to an external media that is accessible
to others. The process leads to a reflection about the externalized content that
supports the further creation and materialization of ideas [54, 56].

As Miller [99] points out, the capacity of the human working memory is very
limited. Sketching provides a mechanism of off-lading, meaning that sketched and
therefore externalized ideas are freed from the scarce resources of the working
memory. Therefore, the sketchers working memory is freed for other workload
connected to the creative ideation process [150].

Consequently, the PBP prototyping approach is addressed to be an uncompli-
cated and time-efficient alternative to the programming of user interfaces with
standard development processes. This helps to produce more prototype results in a
faster fashion, and moreover raises the designers’ acceptance to discard ideas that
proved to be weak [31, 140].

One of the biggest advantages of the PBP approach is the simplicity of its use.
Creating sketches with pen and paper is a technique that does need to be extensively
trained. The look of PBP prototypes does not have to be perfect, in fact, as
described in detail below, rough looking designs oftentimes even perform better in
the tests. As a consequence, team members of any professional training can

2.2 The Paper-Based Prototyping Approach 11

participate in the design discussion. In fact, those members who do not have a
particular expertise in interface design can oftentimes contribute valuable
unorthodox ideas.

As an example, staff members who are involved in customer services will
usually have valuable experience on the user-interfaces of past products, but do
usually not have sufficient skills to participate in software programming focused
user interface discussions. Here, paper-based prototyping helps to provide a com-
mon base, where team members of different professions can meet at eye level to
discuss their product ideas [59, 140].

Even the user herself can be involved into the design process in PBP sessions.
They could be invited into the design sessions, or actively participate in the rede-
sign of prototypes during their test sessions. Due to the simplicity of the design
process, project manager can have an easier look on the developments without
relying on the status support of developers. Moreover, new team-members can be
better introduced and participate in the design work [78, 101, 140].

2. Advantages for the Development Process

Especially in early stages, successful user-interface design requires good ideas and
creativity. Creativity in the design process hugely benefits from a free design
process that does not limit the ideation process with too many restrictions.
Considerations about limitations in the applied software technologies, or database
structures can very easily disturb the creative flow and should therefore rather be
regarded in considerations at later stages in the development process.

Paper is patient; while sketching an idea about an interface idea on paper, no
popups will occur, asking for too much detail or informing the designer that control
Type X cannot be used in conjunction with Layout type Y. Making a sketch is a
native process to sort thoughts and to communicate and develop them with others
[71, 123, 130].

Though very skilled designers seem to do magic with their computer software
skills, the process of developing a visual prototype on paper is much faster than the
process with a computer tool. In fact, to sort their ideas and being able to con-
centrate on the design tool use, many designers even do quick hand-sketches in
parallel to using computer software [31].

When using programming techniques, even very simple prototypes require a
considerable amount of effort. Basic features of the software need to be imple-
mented and data the program processes needs to be drafted and managed. Snyder
[140] estimates about the effort of coding of about 90%, when creating a prototype
with standard programming tools.

The easy way of the PBP approach to design and test prototypes, gives them the
freedom to explore different prototype variants, without risking too much effort to
be wasted. Therefore, they are not forced to discard promising ideas too early and
are more likely to find the best solution. Dow et al. [47] found in a design study
with users that exploring multiple prototype approaches at the same time yields in
improved design results, compared to a sequential prototyping.

12 2 State of Prototyping Mobile Application User-Interfaces

Another advantage of the simplicity of the PBP approach lays in its ability to
support flexibility in the prototype testing. If obvious flaws or shortcomings in the
interface design are found in the process of a test, the prototype can be quickly
adjusted. This can have positive effects, giving the user the immediate impression
that her opinion is relevant to the design process. However, such prototype alter-
ations have to be handled with care. Ending up with numerous altered prototypes
makes a comparative analysis of their usage impossible.

3. Test-User Related Psychological Advantages

Purpose of prototype evaluations is to gain user feedback about the current state of a
user interface design. This feedback is gained from observations and from the users’
written or spoken judgment and comments about the tested prototype. Especially on
the self-reported feedback by the user, paper-based prototypes oftentimes have a
positive effect.

Depending on individual aspects like culture, age, affinity to technology, and
character, some users tend to be shy to give an open feedback on prototypes they
tested. They might want to be polite and respectful towards the work of others and
as a consequence hold back their critic feedback on the approach. Moreover,
especially inexperienced users that face problems in the interaction, tend to search
the cause of their problems rather in themselves than in the presented software. This
reluctance to speak out negative feedback is poisonous to the prototyping process
that specifically aims at uncovering weaknesses in the approach that should be
solved. The more perfect looking and ready-made a prototype appears, the higher is
this reluctance. In contrast to that, rough or even childish looking paper prototypes
can lower the respect of the test user towards the design approach. This helps her to
articulate negative feedback and suggestions more freely [140, 154].

At this point, it needs to be asked, how test users with high affinity towards
computers react to paper software representations. Such users are accustomed to
eloquently use complex software products, and might feel treated like a fool being
presented with a couple of rough paper sketches. Snyder reports that her research
experience does not support these concerns, in the contrary: such expert users
oftentimes understood the benefit of the testing method and appreciated it.

Another important advantage of the PBP approach is that it is based on
hand-sketches, which have an inherent degree of abstraction. Creating a sketch does
not mean reproducing reality in every detail, but is moreover about leaving out
aspects that are of less relevance. This aspect makes sketches a great tool to
communicate ideas in a more targeted way. Schumann et al. [2] observed, that
architects in early design stages prefer to present their ideas to customers in the
form of sketches, rather than photo realistic looking rendered computer models. The
reason for that is their experience that sketches are a better tool to focus the
discussion and feedback of customers to the aspects that are currently most relevant,
whereas a perfect looking version of the design state oftentimes distracts with
unnecessary detail.

2.2 The Paper-Based Prototyping Approach 13

A similar effect is reached with paper sketches in user-interface tests for soft-
ware. For example, if a prototype is primarily meant to find out whether or not users
understand the software menu structure and find all needed methods, it might be a
good idea to roughly sketch a paper-prototype in just one color. This way, since
users will usually understand that the later software product will not look exactly
like the sketched prototype, aspects of the software color design are not part of her
feedback.

This way, prototype designers are provided with a great way to focus their
prototype on the most relevant aspects of the given design stage, and postpone
questions on too much detail.

Diefenbach et al. [44, 45] conducted two different studies, in which they com-
pared how the level of fidelity influenced the result of the prototype testing. The
group tested prototypes of different physical objects, like interactive pillows or
lamps. Their results were similar to the findings regarding low-fidelity sketches in
the software prototyping process: Prototypes reduced in their outward appearance
are not less able to produce valuable feedback for the further design process, but are
better able than final designs to deliver concept feedback.

2.3 Prototyping of Mobile User Interfaces

In the development of mobile apps different issues have to be solved, that play no or
a less prominent role in the development of software for the stationary use. This
regards aspects like unstable network situations, handling different screen-sizes and
—orientations, or a much more strict management of scarce computational
resources. However, the development of stationary software and the development
of mobile apps are in many ways closely related. It should therefore be considered,
how tools for the development of mobile app user interfaces can benefit from the
decades of experience made with prototyping methods for the design of stationary
software.

For the evolutionary prototyping of mobile apps, the standard development
frameworks are very well usable. In fact, since mobile app development tech-
nologies are comparably new in general, technologies for a user-interface focused
design are well established: modern user interface builders are standard for all
platforms, and oftentimes even more advanced concepts like storyboards are pro-
vided, where the flow of the user-interface can be defined and viewed.

The adaption of throwaway approaches like paper-based prototyping has its
limitations in the design and development of mobile applications.

14 2 State of Prototyping Mobile Application User-Interfaces

2.3.1 Low-Fidelity Prototyping in the Mobile Context

As explained above, normally PBP test sessions are held in laboratory environment,
where the observation of test users can be optimally achieved. Related work gives a
lively debate on whether or not such stationary test surroundings can substitute the
evaluation of mobile apps in the mobile context.

In fact, mobile user interfaces have to provide solutions to a whole number of
specific challenges that derive from their mobile use context, that are presented in
detail in the work of Sá et al. in [127] and [125]: Mobile devices have become a
predominant part of our daily life. They are not just used in a focused manner sitting
at a work desk with optimal lighting and seating conditions, but practically
everywhere we go. This myriad of different use contexts produces changing
external conditions of distraction, the mobile user interface has to compensate.
Lighting conditions are a big factor; in bright sunlight the user interface should be
still able to deliver readable screen output, whereas in the darkness of riding a car at
night, a user interface might want to use less bright colours for not to distract its
user. Other oftentimes-occurring sources of distraction are surrounding noise or the
users’ changing movements and postures. Such factors hugely affect the user’s
attention and input precision. Mobile interface need to cope with such factors to
allow its users to control the application, whenever they return their concentration
to it. For this reason, the interface structure and use logic should be much easier to
follow, than this for stationary software. Apart from taking general measures to
meet these challenges, some applications dynamically change appearance in reac-
tion to the users’ surrounding conditions. Typical examples for the latter are apps
for car navigation, which use the device’s brightness sensors to switch its user
interface presentation between a night- and daylight-mode.

The discussion of the advantages and disadvantages of testing software rather in
the laboratory or the field context has been held controversially for several years,
especially since mobile devices grew in importance [106].

A number of different studies are found that did comparative studies about tests
in laboratory as well as in field test conditions to investigate the information gained
from such tests. Here, the terms testing in field conditions and field tests have to be
separated. Field tests are commonly used term in software development, which
describes tests where potential users of the later software product try out an
advanced prototype for a longer period of time [77]. The testing in field conditions
the articles described in the following are referring to, regard software evaluations
that are done in sessions where the test-user experiences the prototype for a limited
amount of time, just like this happens in the laboratory context.

It is remarkable, that though these studies are very similar in their proceeding,
they delivered very different results that lead to contrary conclusions [48, 73, 77,
106].

For example, Kaikkonen et al. [73] conducted an experiment where the same
mobile application was tested in both contexts. Though the authors remark that the
evaluation in the laboratory was limited in simulating the mobile use contexts the

2.3 Prototyping of Mobile User Interfaces 15

app would be usually used in, they describe the necessary effort to conduct user
tests in the wild to be very high. In their conclusion they state that the high effort to
conduct field test and the challenges in logging the user interaction may not be
worthwhile the additional information that is generated about using the interface in
different use contexts.

However, in an equivalent study, Duh et al. [48] came to different results. They
found a higher number of usability problems in the mobile test context, parts of
which they addressed to be of severe importance. Duh et al. identified factors, like
noise level, movement, a lack of privacy, or additional stress and nervousness,
which often lead to usability problems but cannot be simulated in a laboratory
context. As a consequence, Duh et al. underline the necessity to conduct user tests
in the field.

Yet another study by Kjeldskov et al. [77] support the previous findings of
Kaikkonen et al. and opposes these of Duh et al., Kjeldskov et al. describe the
added-value of tests in field conditions to be small. Their findings of usability
problems for both conditions were very similar. Moreover, they underline the risk
that in tests outside of a laboratory singular events are likely to happen, which
cannot be appropriately captured and analysed. In addition to this, they found it
harder to capture the concentration and motivation of users participating in studies
in the field.

Moreover, they underline the risk that tests made outside of a laboratory are hard
to be controlled sufficiently enough, to capture unforeseen events that might affect
the user interaction.

The work of Kjeldskov et al. produced a controversial discussion in the mobile
HCI community. As a direct answer to the beginning sentence Kjeldskov et al.’s
work title “Is it worth the hassle?”, Nielsen et al. [106] published a paper, which
title started with the words “It is worth the hassle!”. In the paper, Nielsen et al.
present findings that contradict the field test sceptic results of Kjeldskov and sup-
port those of Duh et al.

Just like Nielsen et al., findings by Sá et al. [125], Brewster [28] and Consolvo
[35], share the conclusions of Duh et al. that the ability of tests in the field to
uncover a higher total number and more severe usability problems should outweigh
its issues in controlling factors like singular occurrences of disturbing events or
unsteady user focus in the interaction.

The diversity in the results of the different studies might result from factors like
the specific character of the tested app or the events users faced in the different
mobile use contexts. However, it has to be highlighted that not all but at least some
of the studies report that important usability problems were only found in the test in
the field. This should be motivation enough to conduct such tests in the mobile
context.

A common sense in the discussion is found in the perception of the high
complexity of testing prototypes outside the laboratory. However, it needs to be
asked whether better tools should be developed to reduce the hassle, which
Kjeldskov et al. and Nielsen et al. refer to, rather than to discard mobile tests due to
their effort.

16 2 State of Prototyping Mobile Application User-Interfaces

Moreover, the referenced authors share the agreement that both testing
approaches have their own advantages. Therefore tests in the field should not be
seen as a total substitution of tests in the laboratory, but as complementary
approaches.

Low-Fidelity PBP on Mobile Devices

It is possible to test prototypes developed in a conventional PBP proceeding directly
in the mobile context. Paper prototypes employed in device dummies out of wood
or plastics were built, where cardboard sheets that represented the device screen,
were testes in studies by Hendry et al. [59], Sá et al. [124, 125], or Svanaes et al.
[144]. The device dummies used in such studies were carefully constructed to
resemble the originals in size, hardware buttons, and weight.

Test users were followed by design team members to observe and react to the
usage of the prototype. This way, just like in stationary prototype sessions, the users
were able to interact with the prototype by giving touch and gesture commands,
which the team member playing the role of a computer regarded with according
cardboard-screen changes.

Though this testing process is principally implementable, it has a number of
severe limitations. The employed device dummy is not able to reproduce all dif-
ferent effects that occur using real hardware and that can affect the interaction to a
large extent. For example, the surrounding lighting conditions will not influence the
device interaction in the same way. Content on paper can be perfectly read in bright
sunlight, not so a mobile device screen [124, 125].

Moreover, the device input can only be poorly simulated. Whether or not control
was actually targeted by a user’s touch input can only be estimated. Using a
simulated on-screen keyboard out of paper will likely produce no typos. Especially
in mobile use contexts that involve movement of the user, however, such usability
aspects are highly important.

2.3.2 Mixed-Fidelity Prototyping Approaches

Both, low-fidelity as well as high-fidelity prototyping approaches have their
advantages and limitations for a prototype driven design and development process.
Comparing the two approaches shows that they complement each other, meaning
that most aspects that are regarded as weaknesses for the one approach, are con-
sidered as a strength of the other one.

As a bottom line it can be stated that in very late development stages, where the
evolving code base of the product development is of central interest, the application
of an evolutionary prototyping approach with high-fidelity prototypes is advisable
[82, 97]. In contrast to that, in very early stages, where a free collaborative design
towards quickly testable results is key to success, a throwaway approach with
low-fidelity approaches like the Paper-Based prototyping, should be the approach

2.3 Prototyping of Mobile User Interfaces 17

of choice. This conclusions leads to the question on how prototyping should be
performed in the middle phases of the development.

As an answer addressing this question, a number of techniques have been
developed that facilitate a mixed-fidelity prototyping approach for the design and
development of mobile app user interfaces. Such techniques aim to adapt the
advantages of both, the Low- and High-Fidelity approach, and at the same time to
overcome their limitations. Coined by authors like Sá et al. [127], McCurdy et al.
[97], and Coyette et al. [37] the term mixed-fidelity prototypes refers to techniques,
which produce prototypes that run as an application directly on the target device,
but still keep the rough looking appearance of paper prototypes, in displaying the
created sketches directly on the screen. These hand drawn, or hand-drawn looking,
interface prototypes are provided with functionality, so that they are able to react to
the user’s input commands in changing the shown screen on the device.

Displayed on the actual device’s screen, mixed-fidelity prototypes can be used to
examine a bigger number of usability problems than those of a low-fidelity. Factors
like screen related disturbances (i.e. lack of brightness or mirroring) and the user’s
input precision controlling the touch screen occur in the mixed-fidelity prototype
just as in the later app.

Unlike paper prototypes, where a team-member has to act as a computer in
manipulating the prototype in the testing, users can test mixed-fidelity prototypes
autonomously on their devices. In a low-fidelity prototyping session, the member
taking the computer-role has to constantly search for the right screens to put in the
drawer, which gives the interface a tremendous reaction delay. An
observer-role-player always has to have one eye on the devices screen and the other
one on her notepad, writing down her observations, which typically makes her miss
interaction aspects or forget to protocol them. Logging algorithms running on a
device will record the data they are appointed to with higher reliability.

Witnessing the test scenario directly, human observers may be able to recognize
events that could not be reproduced from the post-analysis of video data. For
example, this regards the user’s emotional state, or suggestive forms of commu-
nication she might have with other persons in the test room. However, especially if
applied in a stationary test context, human observers could be employed in tests of
mixed-fidelity prototypes as well.

In a comparative study, Lumsden and Maclean [95] investigated the testing of
low- and mixed-fidelity prototypes in the mobile context. They found, that
mixed-fidelity prototypes were able to identify a generally higher number of
usability problems, as well as to uncover more issues that were rated to be severely
important to the further user interface development, primarily regarding its termi-
nology and usage-paths.

In the following, mixed-fidelity prototyping approaches in three different
application domains are displayed: mixed-fidelity approaches on desktop comput-
ers, on mobile devices, and on interactive surfaces. Each of the descriptions are
segmented in two sections: first examples from the field of research are provided,
then examples of mixed-fidelity prototyping applications in commercially available
tools are displayed.

18 2 State of Prototyping Mobile Application User-Interfaces

2.3.2.1 Mixed-Fidelity Prototyping on Desktop Computers

Examples from Research

Already in 1995 an approach was developed by Landay and Myers, to convey PBP
to desktop computers, in providing a sketch-based user interface design tool named
SILK (Sketch Interfaces Like Krazy) [70, 87–89]. Not surprisingly, since already
developed in the 1990s, the software supported only the development of user
interfaces for a stationary use. However, the concept is pioneering work and could
be easily adapted for the design of mobile applications.

SILK uses a graphical tablet connected to the computer, to allow its users to
digitally sketch interface ideas. Pen-stroke recognition algorithms are implemented
in the software that interprets the sketches for pre-trained strokes to define user
controls. This way, buttons, check boxes, and alike can be quickly defined by the
designer with a simple pen gesture. The other drawn content is kept in the interface
in form of the original sketch.

The user can open two different types of views on the developing prototype:
a sketch view, where a life-view of sketched content is displayed, and a storyboard
view, where connections between the sketches can be defined. To define such
connections, the graphical tablet is used in a stroke-gesture reaching from a pre-
viously recognized button to a target screen. Connections are displayed in the
storyboard view as arrows, providing the designers with an overview of the
interaction flow of the created prototype.

SILK allows the testing of the developed prototype in a prototype player at the
computer. Here, the degree of fidelity the prototype displays can be selected
manually. SILK offers views on the prototype, where the sketch and its intrepreted
version are displayed next to each other. Elemets of the sketch that were not
interpreted are shown in their raw form in the prototype. This way, a mixed-fidelity
prototype design is created.

The makers of SILK already thought about the reusability of the created designs:
Designers were able to export their recognized interface versions to Visual Basic 5
or Common Lisp programming code.

SILK adapted the PBP approach in several ways. Though not made on physical
paper, the user interfaces were created on the basis of sketches. Moreover, giving
the opportunity to test in a low-fidelity view, SILK facilitated the advantages of
rough-sketched looking prototype designs for the testing process.

The storyboard view of SILK did not only allow to define linkage paths, but also
provided designers with an overview of the prototype flow. However, in prototypes
consisting of many screens, the storyboard-view quickly had issues displaying the
whole screen range.

An evaluation of SILK with 12 test-users showed that the technique effectively
supports the design of UIs in early stages, and that the tool also provides an
effective way of communicating design ideas between designers and engineers [89].

In a further development on the basis of SILK, by Newman et al. [105],
developed a new tool named DENIM (Design Environment for navigation and

2.3 Prototyping of Mobile User Interfaces 19

information models). The expression informal was used in tool title, since it was
attributed to develop interfaces that are “designed to support natural, ambiguous
forms of human-computer interaction” [89].

Just like SILK, the DENIM tool was based on the input with stylus input
devices, connected to a stationary computer. Using a newly developed
stylus-interaction library called SATIN [63], the electronic pen in DENIM could be
used with enhanced gesture recognition techniques.

This allowed DENIM to establish a fully zoom-able design stage, where users
could look at their prototype in different forms of perspectives. Each of these
perspectives has its own purpose in organizing and creating the developing inter-
face. In the Detail and Page view, the single pages are in focus with the sketching
of their content and definition of their functionality. The Storyboard view serves to
build connection links between certain user controls and connected pages, whereas
the Site Map view and Overview is used to outline and create the interfaces screen
segmentation.

An evaluation of DENIM with seven professional designers found that the tool
was easy to learn and understand, however not particularly easy to use. However,
Newman et al. point out, that the system’s ease of use will likely improve with
better performing Tablet PCs, than those available in 2003 [105].

Examples in Commercial Applications

Different commercially available approaches for the development of mixed-fidelity
approaches exist. They provide designers and developers of mobile apps and other
computer software, especially websites, with well-developed tools that are very
frequently used in the professional context of user interface design.

Balsamiq

The software Balsamiq [166] concentrates its design process on the ideation phase,
providing a desktop-computer software, where an interface mockup can be quickly
created in the fashion of a usual interface builder. Balsamiq provides 77 different
user controls the designer can position on single interface screens. These 77 dif-
ferent controls include a number of very advanced and interactive widgets that are
well used in modern apps, but are normally too complex to be implemented in early
prototypes.

These include for example maps, dynamic menus or even iTunes like cover
browsers. The library of controls can be extended with templates and own controls
created by the user. Designers can switch between two different views on the
prototype: a sketch skin and a wireframe skin.

The sketch skin provides a sketched look-and-feel, mixed with high-fidelity
components like images or videos (compare Fig. 2.2). The wireframe skin shows a
higher-fidelity view at the design, where lines are straightened and the typical
graphical representations of controls is provided, which designers are used to from
using wireframing stencils.

Balsamiq prototypes are tested directly on the target device. For this Balsamiq
provides a testing infrastructure, where prototypes are made available to the users as

20 2 State of Prototyping Mobile Application User-Interfaces

websites that open up in full-screen. In the testing, the designer can determine
whether a sketch-like or a wireframe-like version of the prototype should be pro-
vided to the test user. The test-platform includes the insertion of questionnaires that
are presented to the test users before or after the tests.

The functional possibilities of Balsamic prototypes are limited to the extent to
simple click-through versions of the user interface, where the press of a control
addresses single path screen changes.

Axure, MockFlow, and Allikes

Other software tools, like Axure [167] or MockFlow [168], provide professional
solutions for the development of user interface prototypes that allow for a higher
degree of functionality. The concept of the approaches is very similar, wherefore the
following descriptions concentrate on the portrait of one of the tools: the software
Axure.

Similar to Balsamiq, prototypes in Axure are designed in interface builder view,
where different screens are created and user-controls on which user controls,
images, and labels are positioned by mouse, to express the user interface design.
Compared to Balsamiq, the number of available user controls is more limited in
Axure. However, the possibilities of Axure to determine more advanced interface
behavior are far more elaborated than those of Balsamiq.

In Axure the actions of user controls can be edited within dialogs that allow the
definition of condition-based rules (compare Fig. 2.3). Here, simple if-then-else
cases can be defined in a graphical editor. These conditions are translated into a
simple Axure-specific programming language, which can be viewed and as well
edited by the designer. This way, skilled designers can enter functional aspects
directly in the form of programming code. In such code, not only the widgets
properties can be accessed. The definition of prototype variables is possible as well
as computing data entered into the prototype, like mathematical calculations or
string operations.

Fig. 2.2 Balsamiq editor in sketch-skin view

2.3 Prototyping of Mobile User Interfaces 21

2.3.2.2 Mixed-Fidelity Prototyping on Mobile Devices

Examples from Research

Sá and Carriço [126, 127] present a prototyping tool that shifts the prototyping of
mobile app user interfaces to mobile devices, while providing the additional
opportunity to edit the prototype data on a stationary computer. The prototype
consists of sketches that can be created directly on the device with a stylus pen, or
be created in form of hand sketches on paper. Physical paper sketches can be
imported either with a scanner connected to the desktop computer software, or by
using the mobile device’s camera.

Hand drawn elements can be replaced with interactive components, letting the
prototype fluently evolve to a higher fidelity. For these interactive components,
linkage paths to other screens or pop-up windows can be defined.

In a prototype player, the tool of Sá and Carriço allow the test of the prototype,
directly on the mobile device. The prototype player offers to switch from the testing
view to a mode, where the prototype data can be edited. This way, interface flaws
can be corrected in the situation of the test. The adjustment possibilities include
both, the editing of the embedded user controls, e.g. by resizing, moving or deleting
it, as well as the editing of the screen image themselves. The tool includes a logging
tool that allows reconstructing after the testing, when and for how long the test
users stayed on which screen. The described evaluation results underline positive
reactions of the involved designers on the ease-of-use of the framework, as well as
its amount of available features. Moreover, test results validated a positive influence
of they prototyping and evaluation framework on the design process [127].

Fig. 2.3 Condition builder in Axure

22 2 State of Prototyping Mobile Application User-Interfaces

Examples in Commercial Applications

Different mobile apps for the mixed-fidelity prototyping of user interfaces on the
mobile device exist. Most prominent examples are the POP App [169] and the
Marvel App [170]. Both apps are very similar in their functionality and distinguish
themselves more in the parallel provided web-interfaces, where prototype data can
be edited on a desktop computer. The following description focuses on the more
advanced capabilities of the Marvel App.

Just like in the idea of Sá and Carriço explained above, the Marvel app allows its
users to design user interface prototypes on the basis of regular paper sketches,
which can be imported in photos with the mobile device’s camera. Now being
available as a digital photo on the device screen, the designer can position active
areas on top of the sketches and link them to other photographed screens (compare
left image in Fig. 2.4). This way click dummies can be created rapidly on the basis
of hand-sketches. Uploaded to the Marvel-App database, the prototype can now be
explored by test-users on their individual devices. Similar to the Pop-App described
above, the functionality of the prototype in the Marvel-App is limited to one-path
screen changes.

Growing rapidly in its supplied functionality since its release in 2014 ago, the
Marvel-App now does not only support the prototyping of mixed-fidelity proto-
types on mobile devices, but progressed its web-application in multiple ways to
enhance the possibilities of prototyping at the computer (compare middle image in
Fig. 2.4). Here, similarly advanced user widgets like in Balsamiq are provided to
design prototypes of an advanced-fidelity. Their look and feel is advanced with
visual transitions to an extent, where the prototypes appearance resembles com-
pletely programmed mobile apps (compare right image in Fig. 2.4). Furthermore,
the Marvel web-application supports remote collaborative design, allowing users at
different computers to simultaneously discuss and edit a prototype. However,
programming of more advanced functional aspects is still not supported.

Fig. 2.4 Marvel mobile App (left), web-application (middle), running high-fi prototype (right)

2.3 Prototyping of Mobile User Interfaces 23

2.3.2.3 Mixed-Fidelity Prototyping on Interactive Surfaces

In his pioneering work, Mark Weiser [159] explored possibilities of using tabletop
computing devices already in the early 1990s. His research generated a great deal of
attention and motivated numerous others to investigate the field. Consequently,
shortly afterwards first concepts on interactive tabletop systems, like the
DigitalDesk [160] or the ActiveDesk [122], were contributed to the scientific
debate.

This opened a new field of research on tabletop systems and interactive surfaces,
which is still vividly explored. International conference like the one on Interactive
Tabletops and Surfaces, which will have its 11th venue in 2016, underline the
increasing relevance of the field in the scientific community.

With progressing technological capabilities to more and more affordable prices,
a big number of different approaches towards this extended interface concept were
created. Klemmer et al. [80] built a prototyping platform that conveys the design
environment to an interactive wall. Their project called ‘The Designers’ Outpost’ is
conceived around a hardware setup that uses a silver screen as the interaction focus,
on which designers can stick PostIt notes to collaboratively compose a website’s
sitemap. Through rear projection and camera techniques the system helps designers
to organize and digitalize their concept and lets them define interdependencies
between the sitemap elements. It additionally supports the designers with elaborated
design history functionality and integrates concepts for a remote collaborative
work.

The digital sitemap overviews generated in this fashion generated digital sitemap
overviews can be imported into the described DENIM system and serve as a
foundation for the further prototypic website development. Therefore the
Designers’ Outpost does not create testable interfaces, but gives designers a helpful
tool in designing first content related concepts. However the interface design pro-
cess itself is not supported.

Comparing different related work on the topic makes clear, that most approaches
aim to facilitate similar advantages of the technology to yield comparable goals.
Oftentimes this regards the enhancement of the interaction by involving physical
objects. Moreover the technologies are widely used to promote collaborative work
and to support the creative process. These three objectives are discussed in the
following.

Advantages from Involving Physical Objects into the Interaction

Already in earliest applications of interactive tabletops, physical objects were
included as a part of the interaction scope. With his DigitalDesk [160], Wellner
developed an overhead projected tabletop system, which included the use of regular
paper sheets in typical office tasks. With the help of the overhead projection, the
setup was able to project digital content onto these paper sheets or the table surface.
Moreover, the approach already implemented ways to record content drawn on the
paper sheets, wherefore the paper was able to serve as an input/output channel to
the computational system.

24 2 State of Prototyping Mobile Application User-Interfaces

Other authors explored the use of three-dimensional objects in the interaction.
Underkoffler and Ishii [151] for example created a tangible tool for urban planning,
embedding physical models of building into the interaction. Piper et al. [116]
explored possibilities of three-dimensional physical input, in using modeling clay in
the design of landscapes in a tabletop-computing environment. Moreover Zufferey
et al. [165] created an interactive surface with physical models of storage shelves,
which was used for the collaborative planning of storage logistics.

Spindler et al. moved the interaction space above the surface of a tabletop
computing system. Their PaperLens [142] system allows users to position and
move cardboard pages above the surface, where upon the according section of a
three dimensional model is projected on it. For example, this allows users to
dynamically browse through a human body in exploring 3D CRT data.

The inclusion of mobile devices into the interaction space of digital table sys-
tems has been widely discussed as well. For example, Wilson and Sarin [161] or
Shen et al. [135] use a tabletop system to help to explore, edit, and share digital
content stored on mobile devices collaboratively.

Advantages in the Promotion of Collaborative Work

Computer tools revolutionized the way of today’s communication. However, when
people are working collaboratively on a project, face-to-face meetings remain
extremely important [114, 120].

Such meetings between team members usually take place at tables, which
support collaborative work between humans in a whole number of ways. Tables had
always been used as a natural surrounding for groups to come together, sit down,
and share a common space. People sitting around a table usually take seating
positions where they can look each other in the eye and are able to use the tabletop
of a large shared workspace. This workspace gives people a natural environment to
manage information in the space of the tabletop. Here for example paper sheets can
be put rather in the middle of the table to be shared with others, however, at the
same time people have a personal space to work on their own thoughts. In contrast
to that, computer devices usually focus on individual control and are less well
applicable group work [18, 131, 134, 164].

Pursuing the promotion of face-to-face discussions, Tandler et al. [148] created a
setup with multiple adjacent touch-screens, which are each controlled by one user.
The screens are connected with another, providing the users with the opportunity to
access digital content in their personal space, but as well to share information with
others by moving it from their own screen to this of a team mate. The DynaWall by
Streitz et al. [143] is another surface system that promotes the exchange in col-
laboration with a big interactive wall. The InteracTable by the same research group,
allows teams to use a shared tabletop environment to collaboratively access and edit
digital content. Similar applications for tabletop-computing environments for group
work were developed, to collaboratively search image databases in TeamSearch
[100], or to conduct shared searches in the web with WebSurface [149].

Putting their attention on the advantages of tabletops to facilitate communica-
tion, Shen et al. [136] employed an interactive tabletop for storytelling between

2.3 Prototyping of Mobile User Interfaces 25

users. Apted et al. [6] developed another interactive table that aims to ease the
showing and talking about pictures in a family context, which specially regarded
needs of elderly people. Using tabletop computers to grant users with special needs
access to computational devices, is as well the main motivation of Battocchi et al.
[17], who created a puzzle game specifically designed to be used with children with
autism spectrum disorders.

Advantages in the Support of Creativity

Being a complex high-level cognitive process, creativity is investigated by
researches in a whole range of scientific disciplines, including psychology, engi-
neering, or human-computer-interaction [30].

James Blinn [24] describes that the creative process happens as a succession of
two phases. In the first phase, fuzzy thoughts are drawn from a state of chaos into
gro form of ordered ideas. In the second phase, these ideas become materialized in a
presentable documented form. Haller et al. [57] remarks that most computer
design-tools target the second of these phases, and sees a need for tools that are
better able to allow chaos and the development of ideas. They see computational
surfaces and tabletops as an ideal platform to develop ideas from a fuzzy version to
a better-structured and concrete form. Ben Shneiderman postulates four design
principles for creativity supporting tools: to support exploratory search, enable
collaboration, provide rich history-keeping, and allow to design with low thresh-
olds, high ceilings, and wide walls [137]. In respect to all of these attributes,
interactive surfaces are privileged in comparison to ordinary computational devices.

Buisine et al. point out [30] that although creativity should be considered as an
individual capability to a large extent, it can promoted, as well as hindered, by the
surrounding working conditions, especially in a group work context. Regenbrecht
et al. [119] underline, that for the work on creative ideas in a team, it is key to
enhance communication and collaboration. As displayed above, these factors are
largely addressed with tabletop-computing systems.

Klemmer [79] and Streitz [143] share the view that ordinary computer tools
often fail to promote creative team work, since they distract the thoughts of its users
too often with alert boxes of lengthy menu dialogs that require their attention.

According to Kelly [75], additional requirements to promote creative work in
teams are to allow members to express their ideas to another both: verbally and
non-verbally. The latter should involve natural techniques of expression with
physical real life objects, such as pen and paper in hand sketches.

Such conditions can be much easier achieved in interactive tabletop systems,
where physical objects can seamlessly embedded into the interaction process, than
in ordinary computer systems. Hilliges et al. [60] show this in a collaborative user
study, were interactive tabletop environments proved to supply improved creative
working conditions.

Different authors developed tabletop-environments that facilitate established
creativity enhancement methods in a teamwork context. A mind-mapping tool was
implemented by Buisine et al. [30], an approach to promote brainstorming pro-
cesses and decision making was developed by Hunter and Maes [68].

26 2 State of Prototyping Mobile Application User-Interfaces

The examples above show that tabletop-systems are frequently applied to pro-
mote both, collaboration and creativeness in different work tasks. A successful
prototyping mobile app user interfaces largely depends on these factors, wherefore
the use of interactive tabletop systems is a promising approach to improve the
process of mixed-fidelity prototyping. Moreover, an embedding of physical objects
into the interaction process of tabletop computing devices is easily achieved and
perceived as a natural form of interaction.

This allows for the seamless use of physical pen and paper sketches, which have
their own advantages for the collaborative design process, as explained in the
following section.

2.3.3 Influence of the Sketching Media on the Prototyping
Process

Most of the computational prototyping systems discussed above allow the devel-
opment of prototypes on the basis of sketches. Some of the presented approaches
use digital tools for the sketching process, yet others let designers create their
sketches using physical pen and paper.

The digital sketching approaches have two main advantages: First, unlike
ordinary paper-pen sketches, digital sketches can be instantly processed digitally,
without further photographing or scanning. Second, digital sketching devices work
well in the recognition of sketched objects or hand-written text. Algorithms
employed in this domain work much better in the analysis of the pen-stroke history,
than in the analysis of a completed picture.

However, the traditional paper pen sketching process has its own advantages that
motivate a careful consideration about the approach of choice in the development of
new technical systems.

First of all, using physical pen and paper for sketches is a native way of
expression. Tablet sketching approaches do their best to adapt this process, how-
ever, they require a certain experience of the user with the system. Cook and Bailey
[36] did an investigation of the physical sketching process and on how well device
based sketching techniques are able to provide a substitution. They interviewed a
number of designers about the topic and observed their working habits in the
sketching process. They found, that physical sketching is still an essential part of
the designers’ daily routines and that designers feel less free working with digital
sketching mechanisms. Similar results were yielded by Newman and Landay [104],
who particularly underlined their observation, that the use of physical paper sket-
ches plays a predominant role in design exploration phases, where designers search
for free mind to develop their ideas and do not want to lose time on unnecessary
details.

Reasons for this preferred use of analog sketching in early design are provided
by Cook and Bailey [36]. They argue that a number of tasks essential to this state of

2.3 Prototyping of Mobile User Interfaces 27

design can be better promoted by the use of pen and paper. Paper is found to be
better able to communicate early design ideas in a collaborative ideation process.

When designers share one device for the sketching process a gatekeeper problem
is created, meaning that solely one designer has the control to edit content. If
multiple devices are used in the process, the sharing of information between groups
of designers is done less fluently and the communication-frequency is reduced.
Moreover, designers are usually faster in doing hand sketches on paper, wherefore
they feel more free to use the physical technique in the context of brainstorming
processes, where the quick development and suggestion of ideas in team work is
essential. In the conclusion of their study, Cook and Bailey give a clear recom-
mendation to facilitate the identified advantages of physical sketching, rather than
to try to substitute them with digital sketching tools.

The advantage in speed of physical tool to create sketches was observed by
Nagai and Noguchi [102] as well. Moreover, they found that paper is better
facilitating a rapid design development, where different design ideas compared
creating quick throwaway design alternatives. Similar observations were made by
Vinod Goel [53], who states that designers generating their ideas quickly with
freehand sketches, rather tend to explore several variations, than to focus on the
refinement of their first designs.

Beyer and Holzblatt [20] underline the advantage of paper to be easily reviewed
collaboratively in the real world environment. Grouping paper sheets to sort
information, or to spread them out on tables or walls to get a better overview on the
matter, are often-used techniques bound to the medium. Of course, computer
designs can be printed out and therefore transferred into the same materiality,
however, this can mean an interruption on the creative flow.

2.3.4 Comparison of Mobile Prototyping Approaches

In order to compare the prototyping approaches displayed above, and established
set of requirements would be useful. However, the above discussion of different
prototyping approaches underlined that the needs addressed by different prototyp-
ing tools are quite heterogeneous. Authors usually limit their discussions on specific
factors that are relevant to their individual work. A systematic approach to develop
a comprehensive set of requirement categories does not exist in related scientific
work, or as an industry standard. A comprehensive taxonomy does not exist, nor
can clear design-guidelines for the development of mobile app UI prototyping tools
be found.

The comparison of low- and high-fidelity prototyping tools above points out that
the requirements the technologies address change at different stages of the product
development cycle: Where low-fidelity approaches are foremost attributed with
advantages is the support of a fast prototype creation in group work, the strengths of
high-fidelity approaches are primarily seen in the support of reusable programming

28 2 State of Prototyping Mobile Application User-Interfaces

code, in tests in the real use-context, or in their ability to regard usability factors in
the tests that derive from the mobile devices’ hardware limitations. As a conse-
quence, the yet to be developed requirements catalog should take the changing
relevance of requirements at different project phases into account.

To allow for a targeted development of new processes and tools for the proto-
typing of mobile user interface prototypes, the development of such a requirements
catalog should be one of the objectives of this work.

In the above discussion of different prototyping approaches, a number of single
requirement-factors are repeatedly regarded. The factors are not evaluated, there-
fore, they cannot be judged in their importance towards each other. However, a
comparison of the tools along these factors points out a gap in existing solutions,
which should be regarded in the development of the new prototyping techniques
addressed in this work.

The scores given in the table above are estimates, made on basis of the dis-
cussion of the approaches in related work, as well as on personal experience with
the tools. They should therefore not be considered as a formally evaluated result,
but serve as an orientation for the following discussion.

As displayed in detail above, the paper-based prototyping approach primarily
has its advantages in providing a quick and easy to learn technique that can be well
applied in interdisciplinary group work sessions. Moreover, it facilitates the
described advantages of a rough looking design that allows for a natural abstraction
of the presented content. The shortcomings of the approach are primarily in its
disability to provide reusable programming code, its disability to implement more
complex functionality in the prototype, its impracticality for large user tests, its
limitations to be applied in the mobile use context, and its disability to give
information about hardware limitations in the testing (compare Sect. 2.3.1).

Diametrically opposed are the strength and weaknesses of standard development
IDE’s, employed for an evolutionary high-fidelity prototyping. Here, reusable code,
the possibility to implement prototypes of advanced complexity, and the regard of
hardware limitations are inherent advantages of the method. User tests in the wild
are possible even at large scales, however, measures have to be taken to distribute
the prototype and log the user interaction with the prototype. Here, beta-test
technologies like TestFlight,2 TestFairy,3 or the HockeyApp4 can be applied. The
major weaknesses of standard development tools lay in those areas, where
paper-based prototyping approaches play out their strength.

The mixed-fidelity approaches, investigated above take a middle position
between these two approaches. First of all, in comparison to standard development
methods, they offer improvements in speed and learnability. In comparison to the
paper-based procedure, they have a privilege in being able to produce prototypes

2www.testflightapp.com (last accessed 11th April 2016).
3www.testfairy.com (last accessed 11th April 2016).
4www.hockeyapp.net (last accessed 11th April 2016).

2.3 Prototyping of Mobile User Interfaces 29

http://www.testflightapp.com
http://www.testfairy.com
http://www.hockeyapp.net

that can be ran on mobile devices and therefore allow the tests of prototypes in the
real use context, easier tests with large groups, and to regard hardware limitations in
the tests as well. However, the described mixed-fidelity prototyping approaches
have their own shortcomings.

SILK and DENIM are approaches that had been released long before the first
iPhone entered market and the impact of mobile devices began to rocket. They are
targeted at the design of websites. However, they could be rather easily adapted for
the development of mobile apps as well. For this reason, the ratings for the
approaches related to tests on mobile platforms in Table 2.1 are put in brackets.
SILK and DENIM allow sketching in their design processes, however, are limited
to sketches done on tablet devices. For the reasons discussed above in Sect. 2.3.3
the sketching on tablets is not able to generate the same advantages as sketching
with paper and pen, like leveraging group work, creativity, and higher speed in
expressing drafts. The technologies allow the generation of Visual Basic user
interface code, which can serve as a basis for functionality enhancements. However,
the techniques themselves are just able to produce single-path click dummies,
where each click on an interactive widget leads to just exactly one target.

Moreover, SILK and DENIM are software tools for desktop computers, which
inherently limit the progress of collaborative work. As pointed out above in the
discussion of advantages of interactive surfaces for the promotion of collaborative
work, different authors underline that regular computer setups weaken the partici-
pation of team members, since the design stage of such systems cannot be accessed
jointly.

This issue is shared by tools like Axure/Balsamiq/Mockflow and alike, which
are also operated on regular desktop computers. However, such professional soft-
ware implements processes to advance the prototype functionality with short code
snippets, without raising the complexity of the tools to an extent, where it is hard to
produce simple prototypes as a beginner user. Unfortunately, the programming
code used in these technologies is usually based on web-script languages, or on a
software specific pseudo-code. For this reason the reusability of the code in the later
product development is very limited.

Compared to SILK, which at least allows including tablet-device sketches in the
design process, mockup software solutions like Axure discard hand sketches
entirely from the design process. Here, user interfaces are created in a manner very
similar to standard user-interface-builders. However, the interfaces are then ren-
dered with a sketch-like looking appearance. For this reason, the approaches adapt
the advantages of paper-based prototyping for the testing, however, its advantages
for the design-process and the design-team that stem from the simple use of
physical paper cannot be exploited.

In contrast to that, mobile apps like the one from Sá and Carriço, POP, or the
MarvelApp, put the physical use of paper into the center of the design process.
Here, paper sketches are physically created and then transferred to the digital space,
simply by photographing them with the mobile device camera. Therefore, such
approaches facilitate the advantages of using physical pen and paper in the design

30 2 State of Prototyping Mobile Application User-Interfaces

T
ab

le
2.
1

E
st
im

at
io
n
on

di
ff
er
en
t
pr
ot
ot
yp

in
g
ap
pr
oa
ch
es

to
m
ee
t
pr
ot
ot
yp

in
g
re
qu

ir
em

en
ts

Pa
pe
r-
ba
se
d
pr
ot
ot
yp

in
g

H
ig
h-
Fi
/I
D
E
s

SI
L
K
/D
E
N
IM

A
xu

re
/B
al
sa
m
iq
/M

oc
kfl

ow
Sá
/P
O
P/
M
ar
ve
l
A
pp

Q
ui
ck

PT
s

+
+
+

−
−
−

+
+
+

+
+
+

+
+
+

G
ro
up

w
or
k

+
+
+

−
−
−

−
−
−

+
+
+

E
as
y
to

le
ar
n

+
+
+

−
−
−

+
+
+

+
+

+
+
+

In
te
rd
is
ci
pl
in
ar
y

+
+
+

−
−

+
+
+

+
+
+

+
+
+

A
bs
tr
ac
tio

n/
ro
ug

h
de
si
gn

+
+
+

−
−

+
+
+

+
+

+
+
+

Ph
ys
ic
al

pe
n
an
d
pa
pe
r

+
+
+

−
−
−

−
−

−
−
−

+
+
+

R
eu
sa
bl
e
co
de

−
−
−

+
+
+

+
+

+
−

C
om

pl
ex

fu
nc
tio

na
lit
y

−
+
+
+

+
+

−

L
ar
ge

sc
al
e
te
st
s
po

ss
ib
le

−
−
−

+
+

(+
+
+)

+
+
+

+
+
+

T
es
ts
in

re
al

us
e
co
nt
ex
t

−
−
−

+
+

(+
+
+)

+
+
+

+
+
+

R
eg
ar
ds

ha
rd
w
ar
e
lim

ita
tio

ns
−
−
−

+
+
+

(+
+)

+
+
+

+
+

2.3 Prototyping of Mobile User Interfaces 31

process, and will likely take profit from the advantages addressed to the paper-based
prototyping approach for the design-team and the design-process. However, a big
disadvantage in the approaches is that the degree of functionality that is imple-
mentable in the prototypes is limited to one-path click dummies. Therefore,
designers using these techniques can quickly come to a point, where the questions
they need to address cannot be transported by the prototype.

A prototyping approach is missing that takes use of the advantages of designing
mobile user interface prototypes on the basis of physical paper sketches, and at the
same time allows for enough functional complexity in the created prototypes, to
stay relevant for more than just the first few iteration cycles. Therefore, the
delivered prototypes should leverage the advantages of a rough looking abstract
design, but as well allow its user to program functionality to whatever necessary
extent. For not wasting the efforts done in the programming, the tool should
moreover provide mechanisms that make the code reusable in the later product
development. This way, the approach should be able to blend the paradigms of a
throwaway and evolutionary prototyping: Facilitating the advantages of throwaway
like design fashion, but at the same time supplying mechanisms for an evolutionary
development of programming code.

Such an approach could be implemented in a similar fashion as the discussed
prototyping apps, using mobile devices to digitalize the apps and specific basic
functionality. However, as discussed above in Sect. 2.3.2.3, interactive surface can
provide big advantages for design tasks in groups that require additional digital
manipulations. As in the work of Klemmer et al. [80], described before, interactive
surfaces can serve as an excellent platform to collaboratively design, explore, and
progress creative tasks. Providing a new prototyping approach in the context of a
tabletop computer environment could therefore implement an extended information
and interaction space that combines the advantages of the physical and digital world
a productive design tool.

2.4 Research Objectives

The research I conducted for my doctorate aims to find processes and tools to
improve the prototyping of mobile applications. As explained above in Sect. 2.3.4,
current research lacks a catalog that displays the understanding of the requirements
that today’s designers and developers address at prototyping systems for mobile
applications. A comprehensive knowledge about such requirements, and how they
change in different development phases, is however necessary for two reasons:
First, to provide a guideline for the implementation of new prototyping techniques.
Second, to create a basis for the systematic evaluation of prototyping tools by
supplying a set of the most relevant reference points an approach should meet.

32 2 State of Prototyping Mobile Application User-Interfaces

Therefore, one goal of my research is to identify and evaluate a catalog that displays
the most important requirements designers and developers of mobile apps address
for prototyping tools in their domain.

As underlined above, in the consideration of prototyping paradigms, their
information goals, and applied techniques, the process of prototyping usually
changes throughout different development stages. Where in early stages throwaway
prototypes are applied to deliver fast testable prototypes that gain a more general
feedback, in late stages evolutionary prototypes are employed, to clarify in-depth
questions on specific user-interface aspects. As a consequence the catalog searched
for in this work should not only point out the requirements, but also point out their
specific relevance at different development stages. This motivates my first research
question:

Research Question 1 (RQ 1):

How can a requirements catalog on prototyping systems for the development of
mobile app UIs be found, that reflects the changing importance of requirements at
different project stages, and serves the following two purposes:

1:1. to provide an orientation to develop new prototyping tools that meet the actual
demands of mobile application developers and designers

1:2. that can serve as a basis for the evaluation of prototyping tools

The development and evaluation of such a catalog is described in the following
chapter. Furthermore, the derived catalog should be employed, to test its applica-
bility for the evaluation of prototyping tools. This translates into my second
research question:

Research Question 2 (RQ 2):

2:1. How can this requirements catalog be applied, to evaluate prototyping tools
with domain experts?

2:2. How can this requirements catalog be applied, to compare the performance of
different prototyping approaches in an application study?

The Question 2.1 is answered in an expert rating of a prototyping approach with
the developed criteria, described in the Sect. 3.2.3. The Question 2.2, on how such
an criteria catalogue can be applied in a comparative performance study of different
prototyping approaches is discussed in Chap. 5 of this work, where a comparative
evaluation of Blended Prototyping with two alternative techniques is discussed.

In the center of this work stands the conceptualization, development, and
evaluation of a new prototyping approach, called Blended Prototyping. Blended
Prototyping should consider the most relevant categories identified in the newly
developed requirement catalog as a design guideline, to fill the gap of existing
mechanisms in early to middle development stages.

2.4 Research Objectives 33

http://dx.doi.org/10.1007/978-3-319-53210-3_3
http://dx.doi.org/10.1007/978-3-319-53210-3_5

Paper-based prototyping is an established approach that proved to be of high
value for the development of early design stage user interface prototypes.
Therefore, the Blended Prototyping approach provides processes and tools that aim
to improve the prototyping process, by taking full advantage of the strengths that
are inherent to the paper-based prototyping concept.

At the same time Blended Prototyping aims to overcome the limitations of the
paper-based procedure, by supplying a mixed-fidelity prototyping approach, where
prototypes are tested directly on the target device. To be valuable for the devel-
opment of more complex prototypes as well, the approach furthermore provides
technologies to blend the paradigms of the throwaway and evolutionary prototyping
processes by supporting the extension of prototype functionality with native pro-
gramming code.

This motivates the third research question:

Research Question 3 (RQ 3):

Is it possible to create a new prototyping approach for mobile UIs, which adapts the
full advantages of the paper-based prototyping approach, and at the same time
adapts advantages of high-fidelity prototyping approaches to produce mixed-fidelity
prototypes? Based on the discussion on prototyping goals above, such a system
should meet the following motives:

– create a platform for interdisciplinary teamwork
– provide an approach that supports creative work
– provide an approach that is easy to learn
– facilitate the advantages of the physical use of pen and paper
– facilitate the advantages of the abstraction that are inherent to paper sketches
– deliver quick prototype results
– blend the paradigms of throwaway and evolutionary prototyping, and allow

reusable programming of extended prototype functionality
– support on-device tests to allow even large-scale user tests in the real use context

that take into account device related usability problems

The motives for the design of a new prototyping approach postulated above are
derived from the discussion about shortcomings of current prototyping approaches
held above in Sect. 2.3.4. The answer to that third research question is given in
Sect. 4.4, after the description of the development and design of the Blended
Prototyping approach.

Followed by that, the success of the Blended Prototyping to improve the pro-
totyping process is evaluated. For this, the most relevant requirements identified in
the catalog are used, to develop metrics for a comparative evaluation of the Blended
Prototyping approach with two well-used prototyping alternatives. This investiga-
tion is motivated by my fourth research question:

34 2 State of Prototyping Mobile Application User-Interfaces

http://dx.doi.org/10.1007/978-3-319-53210-3_4

Research Question 4 (RQ 4):

Is the newly developed Blended Prototyping approach able to improve the proto-
typing process, with regard to the previously identified requirements catalog?

This fourth research question is addressed in the comparative evaluation of
Blended Prototyping that is described in Chap. 5.

2.4 Research Objectives 35

http://dx.doi.org/10.1007/978-3-319-53210-3_5

Chapter 3
Prototyping Requirements

A thorough requirements analysis is the first step of a successful development.
Here, principle design objectives are gained that steer the development efforts into
the right direction. This being said, finding the most relevant requirements for a
development tool is a complex task. Requirements can be gathered from different
sources: Customers ask for specific demands, market studies can help to provide
insights, and experience in the development team contributes to the analysis.
Depending on the product, legal regulations, industry standards, and design
guidelines can provide clarification in more detail.

A methodical approach to generate requirements for development tools that
address the design of mobile UIs is less obvious. As touched before in Chap. 2,
various tools exist that all aim to improve the prototyping process of mobile UIs.
However, the requirements they point out to be relevant differ from one approach to
another. A search for industry standards and documented best practices did not
bring applicable results. Nor was the investigation of related scientific work able to
provide a clear picture. Authors usually discuss requirements that are specifically
related to their personal focus on the topic. A comprehensive taxonomy cannot be
found.

Therefore I decided to address this gap by identifying a set of requirements from
a literature review that was then evaluated in a survey with expert practitioners. As
applied prototyping techniques usually change in the course of the project, I
expected the requirements for prototyping tools to be different in single project
phases as well. For this reason, the requirements were rated with respect to their
importance at different product development phases.

This chapter describes the findings of my search for a set of requirements for
mobile UI prototyping tools, which are rated by domain experts in their importance
for different development stages. Such a catalog cannot only serve as a helpful
design guideline for tool developers, but can moreover help to identify suitable
metrics for the evaluation and comparison of different prototyping approaches. The
chapter documents the identification and description of relevant requirements from

© Springer International Publishing AG 2017
B. Bähr, Prototyping of User Interfaces for Mobile Applications,
T-Labs Series in Telecommunication Services,
DOI 10.1007/978-3-319-53210-3_3

37

http://dx.doi.org/10.1007/978-3-319-53210-3_2

a literature study. It then describes how these results were evaluated with expert
practitioners that work in mobile app design and development projects.

3.1 Identification of Requirements from Literature
Research

As a first step in developing a requirements catalog for mobile user interface
prototyping tools a literature research was conducted, where related articles in the
field of human computer interaction of the last ten years were systematically sur-
veyed. The result of these efforts is summarized in Table 3.1, which lists the
requirement categories with a short description and exemplary references.

The table provides a short description for each of the identified categories.
A detailed description of each of the requirements is given in the following pages.
Grouped into three segments, the table points out requirements regarding the
prototype design process, requirements regarding the prototype evaluation, and
requirements affecting the prototype’s nature.

Related work draws a fragmented picture on requirements of tools for the pro-
totyping of mobile app user interfaces. A comprehensive catalog addressing the
topic cannot be found. Oftentimes, authors who present newly developed proto-
typing tools touch the topic. However, they usually do not refer to or present a
holistic catalog, but present a small number of requirements that they take as
granted without further discussion.

In the search for a comprehensive set of requirements, the last ten year’s pub-
lications of the most relevant conferences to the topic were systematically analyzed
and relevant references were followed. For this, the proceedings of the conferences
CHI, Mobile HCI, CSCW, UIST, EICS, and HCI-Int. were regarded. Not only
references that were targeted at mobile app prototyping were surveyed, but also
texts that generally address the topic of prototyping were considered to draw
general requirement conclusions.

The analysis resulted in a catalog of the 17 requirements that are described in the
following. Exemplar references are included into these descriptions, which docu-
ment the relevance of the single requirements in related work.

3.1.1 Requirements Regarding the Prototype Design Process

Freedom of Creativity and Design

The tool allows designing in a free manner. Questions on accuracy can be post-
poned. Free creative work is promoted.

As Dolenc and Mäkelä [2] put it, we “still today […] need a system in which
freedom of creativity and design is the primary concern”. Being free in the design

38 3 Prototyping Requirements

Table 3.1 List of requirements from the literature study

Requirement Description Exemplar
references

Requirements regarding the prototype design process:

Freedom of creativity
and design

The tool allows designing in a free manner.
Questions on accuracy can be postponed. Free
creative work is promoted

[40, 127,
132]

Getting quick
prototypes

The tool is targeted at delivering applicable
prototypes as quickly as possible

[34, 86, 94,
145]

Independent parallel
development of designs

The tool helps and motivates users, to work on
design alternatives and consider them in the testing

[34, 70,
140]

Collocated group work The tool is well suited to support groups to work
simultaneously at the same place

[62, 91, 94]

Remote group work The tool is well suited to support groups to work
simultaneously at different places

[26, 65, 69]

Requirements regarding the prototype evaluation:

Support of expert
reviews

The tool is well suited to conduct expert reviews [34, 86]

Support of design
reviews

The tool is well suited to conduct design reviews [83, 111]

Tests in the real use
contexts

The tool produces prototypes that can be tested in
the same use contexts, as the later product

[40, 106,
127]

Easy setup and
distribution of user tests

The tool supports in the setup and execution of user
tests and supplies mechanisms to deliver the
prototype to the test users

[62, 95,
106]

Simultaneous tests of
different ideas

The tool allows a comparative test of different
design ideas

[62,95,106]

Tests with a large
number of users

The tool allows tests with large numbers of users,
since test users can do the testing autonomously

[41, 106]

Automated model
based evaluations

The tool supplies mechanisms, which can be used
for automated model based evaluations of the
interface prototype

[5, 72, 115]

Requirements affecting the prototype’ nature:

Use of animations The tool allows the use and definition of dynamic
content and animations in the prototype test

[81, 83]

Advanced functionality
of a prototype

The tool allows to produce prototypes of an
elaborated functionality

[81, 96,
167]

Reusable prototypes The tool makes it possible to reuse the prototype
itself at later stages

[62, 95,
106]

Reusable programming
code

The tool uses programming code that can be reused
later in the development

[83, 95,
106]

Tests on different
platforms

The tool creates prototypes that can be tested across
different platforms, without major adaptions

[39, 139]

3.1 Identification of Requirements from Literature Research 39

processes promotes creative work especially in early stages, where the reconsid-
eration and refinement of ideas is in the focus of the design. The freedom of
creativity and design is therefore a requirement that is related to the ability of a tool
to allow its users to operate freely in their creative processes. This means that the
system does not distract users in the course of their ideation and design processes,
e.g. by forcing them to interact with the system in lengthy dialogs. Users should be
free to decide for themselves, on what time in their creative process they use which
level of accuracy [29, 37].

Coyette [37] revealed in an experimental study that designers highly value a
freedom of design that puts them in a position to be able to smoothly progress from
simpler UI designs to versions of a more advanced level of detail. In other words,
designers should be free to choose the level of fidelity in which they find and
elaborate their UI design. For example, many designers consider hand sketches on
paper as a most effective way to work on first drafts of future UIs [4, 38, 89].

Getting Quick Prototypes

The tool is targeted at delivering testable prototypes as quickly as possible.
The ability of a tool to deliver quick prototype results is essential for its

applicability, especially in early design stages, where “prototypes should be
lightweight and fast to create [… and therefore …] facilitate quick turnaround”
[163]. In their first drafts, interface ideas are uncertain and need quick verification.
The speed of a tool to deliver fast testable results is therefore important to avoid
lengthy developments that might later turn out to be rejected.

In recent years, under the label Rapid Prototyping a big field of approaches has
developed that considers speed as one of its most distinguishing features [2]. They
speed up the prototyping of interfaces by reducing the aspects that are necessary for
the interface definition.

Independent Parallel Development of Designs/Simultaneous
Tests of Different Ideas

The tool helps and motivates users, to work on design alternatives and consider
them in the testing. The tool allows a comparative test of different design ideas.

Especially in early design stages, app ideas are still vague and the best solution
has still to be proven. In this situation, it is a promising approach to develop
alternative ideas, which can then be tested in comparison to another. The more
solutions are tested in parallel, the higher is the likelihood to in fact find the best
suitable interface idea [29].

The ability of a prototyping approach to allow an independent parallel devel-
opment of designs and their testing depends to a large extent on two of the
requirements described above. A free creative work is necessary to find good
alternative ideas; the ability to deliver fast prototypes is needed to keep the
development of multiple ideas affordable. Most often, alternative ideas will regard
specific aspects rather than the interface as a whole. For example, alternative ideas
might exist about the structure of certain menus or the design of certain screens,
whereas other parts of the app are already sufficiently validated. For the

40 3 Prototyping Requirements

development and the testing of different prototype variants it is therefore very
helpful to have the opportunity to create variations of selected isolated parts of the
app.

For the testing of prototypes that involve alternative designs, ways have to be
implemented that allow the setup of different tests designs. This regards questions
like, which kind of prototype variation should be addressed to what kind of
test-user, is a within- or between- subject design more suitable, or should the user
be enabled to choose between different interface alternatives.

Collocated Group Work/Remote Group Work

The tool is well suited to support groups to work simultaneously at the same
place/at different places.

By far most software development projects are done in groups and not by
isolated, independent computer-geeks. As a matter of fact, Sommerville [141]
names communication skills and to be able to work collaboratively in groups as a
key prerequisite for successful software developers. In most software development
projects, ideas and decisions on software design and implementation issues are
developed within groups. Therefore, development tools should support people
working together on an idea [146].

Collaboration between group members can happen both, in person at the same
location, or remotely at different locations. For either way of collaboration facili-
tating technique, it is a major challenge to support the communication and inter-
action between the members of the collaborating group. This does include verbal
and gestural communication as well as considerations on how relevant content can
be shared between the team members. Under the term CSCW (computer supported
collaborative work) the matter is investigated in a big research field in the HCI
community.

3.1.2 Requirements Regarding the Prototype Evaluation

Support of Expert Reviews

The tool is well suited to conduct expert reviews.
Expert reviews are inspection methods, usually conducted by usability experts.

They are analytic techniques that do not involve tests with users, which are com-
paratively lengthy and cost extensive. Hence, expert reviews are delivering faster
results at lower costs as empirical methods like usability tests. For this reasons, the
ability of development tools to support expert reviews is an important requirement
[111].

The most prominent examples of expert reviews are heuristic evaluations and
cognitive walkthroughs. The term heuristic evaluation was coined by Nielsen and
Molich [111] and refers to the systematic review of a user interface by an expert

3.1 Identification of Requirements from Literature Research 41

using a set of design guidelines. Such heuristics serve as a template to uncover
problems users are likely to encounter.

Another important expert review method is the cognitive walkthrough, which
was introduced by Lewis et al. [92]. In a first step, goals are defined users will likely
have in the interaction with the software. Followed by that, the user interface is
systematically analyzed for problems users might encounter following these goals.

Support of Design Reviews

The tool is well suited to conduct design reviews.
The design review, often referred to as software review, is a standard method in

the process of software engineering. Design reviews serve primarily to control
requirements related to the developed software, which were previously defined with
the customer. They serve as a proof of concept and are used to identify the nec-
essary technical means to successfully proceed with the development [23]. They
have an important function as a communication tool between customer and soft-
ware developer, informing the customer about the current status and development
approaches, and giving the software developer the confidence to be on a devel-
opment path that is approved and supported by the customer. Therefore prototyping
approaches should produce prototypes that are applicable in design reviews.

In general, design reviews do not only help to discuss the user interface of
software, but can ensure technical goals, and principles in the software design as
well. As Blanchard [22] underlines, design reviews are a helpful tool at different
design stages of a product. He categorizes the four different types of Design
Reviews (DR) that are run from early to late phases of the software development
lifecycle: Formal DR that is directed toward the final approval of a design con-
figuration, Conceptual DR that is concluding the conceptual design phase,
System DR where first results are checked, and Critical DR that builds the last
evaluation milestone to evaluate the success of the project to meet the requirements.

Easy Setup and Distribution of User Tests

The tool supports the setup and execution of user tests and supplies mechanism to
deliver the prototype to the test users.

After the design of a prototype is finished and its function is described, steps
have to be taken to setup, distribute and conduct user tests. Whether or not these
steps are easily and quickly achieved, depends on the nature and implemented
methods of a prototyping approach.

Leichtenstern and André [91] underline that a prototyping tool should make it
easy to set up and distribute user tests, by providing a strong link between its
design, evaluation, and analysis components. A big difference in this respect exists
between high-fidelity and low-fidelity prototyping approaches [66]. High-fidelity
prototyping approaches usually require higher efforts to produce a runnable version
of a prototype, especially since its functional aspects have to be described entirely.
In comparison to that, low-fidelity prototyping approaches require a minimal effort

42 3 Prototyping Requirements

to produce a testable prototype version, but need substantial work and manpower in
the testing.

In early development stages, where user tests are conducted with a limited
number of users and the extent of the prototypes are limited, low-fidelity methods
play out their strengths in delivering fast testable results. However, the higher the
number of necessary test users, and the more complex the tested prototypes grow,
the more urgent methods for an easy setup and distribution of user tests become
[98].

Tests in the Real Use Contexts

The tool produces prototypes that can be tested in the same use contexts, as the later
product.

As explained in detail above in Chap. 2, in comparison to stationary software,
user interfaces of mobile applications have to deal with a number of specific
challenges. Though the size of mobile devices seems to grow each year, they still
hold a number of hardware limitations. To name a few examples, their network
connection is not stable, their input precision varies, and problems like occlusion
have to be dealt with. Beside that, the interface design of a mobile app has to take
into account a number of different use contexts. Unlike software for stationary use,
mobile apps are not just handled sitting at a desk, but walking on the street, driving
in the subway, standing in the elevator, and in a myriad of other usage scenarios.
Different use contexts bring different specific challenges in the device user inter-
action [127]. Factors that vary hugely lay for example in a changing user input
precision, changing lighting conditions, and different forms of distraction.

Mobile apps very often provide services that are used oftentimes a day, but for a
short time. The quality of such services cannot be simulated in a laboratory setup,
but has to be experienced in the real daily use.

For these reasons, prototype tests of mobile UIs in the real use contexts are
oftentimes required [66, 91]. Whether or not an app should be tested in the wild,
depends on its nature and its development stage. The ability of a prototyping tool to
allow mobile testing can be crucial for a development project [106].

Tests with a Large Number of Users

The tool allows tests with large numbers of users, since test users can do the testing
autonomously.

Depending on the questions that need to be clarified by a prototype, the nec-
essary number of test users varies. Especially when users are tested segmented in
groups, higher numbers of subjects are necessary to measure statistically significant
results. Such tests are particularly relevant in later development stages [41, 106].

Therefore, prototyping tools that address later development stages should pro-
vide mechanisms to conduct tests that include large user numbers with a reasonably
low effort. Prototypes for such tests will be usually run directly on the target devices
and processes for large scale study designs, realizations and analyses are
implemented.

3.1 Identification of Requirements from Literature Research 43

http://dx.doi.org/10.1007/978-3-319-53210-3_2

Automated Model Based Evaluations

The tool supplies mechanisms, which can be used for automated model based
evaluations of the interface prototype.

In model based evaluation methods cognitive architectures like GOMS [32] or
ACT-R [103] are used as models to predict the performance in human computer
interaction. User models are applied to adapt computing systems to the specific user
needs in a way, that they are able to “say the right thing at the right time in the right
way” [51].

Model-based evaluations are to be used before user tests, and can already help to
uncover and solve flaws in the implementation of user interaction. They cannot
make user tests redundant, but can help to reduce the number of iterations for
lengthy and expensive user tests. Therefore, automated model based evaluation can
be a valuable tool in the development of mobile user interfaces [76].

3.1.3 Requirements Tool Implications on the Prototype’s
Nature

Use of Animations

The tool allows the use and definition of dynamic content and animations in the
prototype test.

Animations and dynamic visual components can be important for the user
interface design, not only for the development of mobile games. Such content does
not only play an important role for the outward appearance of the interface, but for
its user interaction as well [74, 157]. Hence, their presence in prototypes should be
considered. In current standard mobile development techniques, like side- or
action-bars, can be used as a standard implementation from code. More customized
animations have to be designed and programmed in a lengthy and complicated
manner [156, 157].

For the development of software for stationary use, different approaches like the
Adobe Director or animation capabilities in Microsoft Silverlight have been
established, with which animations can be easier created and integrated to the
software development process. Some of these techniques have been adapted to
mobile apps [74, 157] that aim to facilitate the advantages of mobile apps in the
animation. However, current standard development tools for mobile software still
lack such capabilities.

Advanced Functionality of a Prototype

The tool allows producing prototypes of an elaborated functionality.
Prototyping is not only important in early design stages, but keeps its relevance

throughout the whole development process [109, 138]. In early and middle design
stages mockups can improve test results with low functionality and a materiality

44 3 Prototyping Requirements

different to the later product [44, 97, 140]. However, in late phases, where the
prototype development is determined by pre-product versions, techniques have to
be applied that allow for a richer and advanced functionality of a prototype.

Such advanced prototype functionality exceeds the definition of advanced visual
content and includes any form of algorithm that enhances the dynamic behavior of a
prototype. Here, to be able to define advanced functionality with the same technical
resources and programing libraries as in the final product development is a clear
advantage. This way, the full capabilities of the applied technologies can be
explored and facilitated. Naturally, prototypes of an advanced functionality require
a high development effort. Therefore, the reusability of the prototype, and espe-
cially of its programming code, is very important for an efficient development
process.

Reusable Prototypes and Reusable Programming Code

The tool allows to create prototypes/uses programming code that can be reused later
in the development.

As explained above in Chap. 2, the reusability of prototypes is a central criterion
in the distinction of prototyping approaches. Where throwaway prototyping
approaches relinquish on using reusable prototypes to achieve faster testable results,
Evolutionary prototyping approaches employ reusable prototypes, which save
development efforts in allowing to alter and build up to an existing prototype, rather
than starting from scratch in each new iteration cycle.

Reusable prototypes grow in relevance in later development stages, where the
effort of reproducing a prototype becomes more and more extensive.

Prototyping tools, especially if applied in later development stages, should
therefore put developers into a position, where they can easily reuse their previous
prototypes in a new iteration cycle [163]. This regards the prototype design, its
programming code, as well as the technical infrastructure, in which it is embedded
[37, 38, 49].

Tests on Different Platforms

The tool creates prototypes that can be tested across different platforms, without
major adaptions.

Most mobile app development projects aim to address more than one target
platform with their product. Usually apps are made available at least for the two
most popular mobile operating systems, Android and iOS. For this reason, there is a
need for prototyping techniques to provide prototypes that can be tested across
different platforms [37, 38, 93].

For low-fidelity prototypes, which are not bound in their testing to a real mobile
device, this requirement might seem unimportant. However, it should be remarked,
that different mobile operating systems follow different user interface design and
interaction concepts. Hence, even in low-fidelity prototypes, it is advisable to adjust
the interface designs to different operating system concepts.

3.1 Identification of Requirements from Literature Research 45

http://dx.doi.org/10.1007/978-3-319-53210-3_2

In high-fidelity approaches, technical requirements have to be solved to make the
prototype executable on the same hardware as the later product. Many technologies
generate prototypes that can be executed as web-apps, universally applicable on all
mobile platforms. Others use so-called pseudo-code that is run inside a container
app, which itself is compiled for different operating systems.

In the next step, in order to judge the importance of the single requirements at
different stages of the development process, the presented requirements list was
evaluated with experts. This evaluation and its results are described in the following
two sections.

3.2 Assessment of the Requirement with Expert
Practitioners

3.2.1 Study Objectives

The experts that participated in the study brought a new viewing angle into the
requirements analysis that me and probably most authors from scientific related
work were lacking: distinct practical experience. In the study, the requirements
catalog generated form literature research was meant to benefit from this experience
in two different ways.

First, the experts were asked to suggest new requirements that might have been
missed before. Second, the experts were requested to rate all single requirements
with respect to their relevance for different development stages, as well as in their
general importance throughout the whole product development process. This data
was later used to identify the most important requirements for early, middle, and
late development stages.

The suitability of a requirement for the desired catalog can be determined from
two characteristics. First, a requirement is obviously relevant if it is ranked gen-
erally high throughout all phases of development. Second, a requirement might be
ranked comparably low in the average over all phases, but at the same time is rated
highly at a specific stage. In that case the aspect remains very relevant for the
catalog to provide an orientation set for those tool developers, who target their
prototyping mechanisms at particular development stages.

At the time of the expert evaluation, the Blended Prototyping platform
(described in detail in Chap. 4) was already implemented in a first version, which
the experts could use to try out and explore the technique on their own. Besides
being asked about the general assessment of requirement categories, the experts
were therefore introduced into the technology, to get familiar with the tool, and
finally to give feedback on the approach. This feedback was given in two ways, first
in an open discussion, and second in a rating of Blended Prototyping in regard to
the requirements that were previously identified. This way, not only valuable
feedback for the further development of the system was generated, but furthermore

46 3 Prototyping Requirements

http://dx.doi.org/10.1007/978-3-319-53210-3_4

the applicability of the catalog was tested, to be used as a basis to judge prototyping
techniques. These study objectives can be translated into the following research
questions:

RQ 1: Which of the suggested categories are generally most important?
RQ 2: What other requirements will experts name?
RQ 3a: Does the relevance of requirements change in different project stages?
RQ 3b: If the relevance changes over time, which requirements are specifically

important in early, middle, and late development phases?
RQ 4: How is the Blended prototyping system judged in general and what are its

biggest advantages and disadvantages?
RQ 5: How easy is it for experts to apply the suggested requirement dimensions

in their rating, and how is the Blended Prototyping system related with
respect to the suggested requirements categories?

3.2.2 Study Design

(1) Participants

A total number of 15 experts participated in the survey (5 female, 10 male). The
experts worked for companies of different sizes, situated in Berlin and Potsdam.
Potential candidates were contacted before the study to answer some general
questions about their person and level of experience. As a prerequisite for the
participation, only experts were invited that worked professionally in app devel-
opment and design projects for at least two years.

Upon being asked to name their responsibility in the development process, the
participants named roles that varied between software developer, designer, user
researcher, and project manager. Maybe unsurprisingly for the Berlin startup
scene, about a half of the responses included more than one role at a time.

As an indicator for the size of the development projects the participants are
involved in, moreover, they were asked to give an estimation of the average number
of users that used their apps. This number varied heavily in the given answers.

Finding experts for the survey was not easy. Beside the search to get in contact
with suitable candidates, it was hard to motivate them to a degree that they were
willing to spend at least two hours after their office hours in a survey. Hardly being
motivated by financial compensations that are affordable to a university project,
candidates had to be motivated by creating interest for the conducted research.

Therefore in preparation I talked to candidates on the phone to introduce them to
the general purpose of my research. I mentioned the existence of a new
self-developed prototyping tool, which participants would get to know and be asked
feedback about. Candidates interested in participation were asked not to do research
on my previous work, but to participate in the survey with no specific preparation.

3.2 Assessment of the Requirement with Expert Practitioners 47

(2) Procedure and Collected Data

For the expert talks two interview methods were considered: a group discussion,
and the personal talk with one expert at a time. Group discussion can develop a
positive momentum, were the participants are inspired by each other in their con-
tributions, but at the same risk that single participants are holding back their
thoughts. I wanted to learn as much about the personal opinion and experience of
the experts as possible, hence I invited them to participated in the survey one at a
time. At the start of each session, the general purpose of the study was explained
and permissions were asked for, to record the necessary video and questionnaire
data. The survey was structured into three parts that are described below. All
sessions were recorded on video for a later analysis of the demo sessions and talks
with the participants. All questionnaires were answered within a computer survey
called Limesurvey [171]. The tool allows the implementation of custom scripts,
which were used to dynamically refer some questions to answers the participants
gave previously. At all phases of the survey the experts were free to ask
content-related questions.

Pre-questionnaire

A first computer supported pre-questionnaire started with questions on demo-
graphics and personal experience in app development and design. Participants were
then asked to write short open texts on how their usual development processes are
structured and which development tools are used at what stages. Followed by that,
the experts were introduced to the requirements that had been identified from
related work.

Now, the participants were asked to rate each requirement with regard to its
importance (5 point scale, ranging from 1, extremely unimportant to 5, extremely
important) at five different project stages (ranging from very early to very late).
Answers were given in a matrix view, containing five data points for each
requirement.

In the following, the experts were asked to suggest additional requirements that
might have been missed in the presented catalog. The next page of the survey then
contained a dynamically generated question, in which the participant was asked to
rate the importance of the requirements she suggested in the same matrix style as
before.

Demo and Free Discussion

On completing the pre-questionnaire, the participant was guided to a separate room,
where the Blended Prototyping platform was set up. Upon an explanation of the
fundamental ideas of the approach, the expert was guided through a participatory
demo on the system usage. The demo followed a fixed step-by-step script, allowing
the experts to control the setup themselves. The experts were free to try out the
system in whatever way they felt like. They concentrated on exploring the system
functionality in setting up small prototypes that they quickly invoked on mobile
devices.

48 3 Prototyping Requirements

Questions and debates about the system were allowed and promoted at any
stage. The demo led to a free discussion, where general feedback on the approach
and its implementation was provided, its applicability to existing prototyping
processes was reflected, and the experts’ opinion on the most important next steps
for the Blended Prototyping approach was given. To allow later analysis, the ses-
sions were recorded in video and audio.

Post-questionnaire

After the debate following the demo session came to an end, a second computer
questionnaire was presented to the experts. Here, the experts were asked to rate the
Blended Prototyping platform on the basis previously identified requirements, both
from literature and from the suggestions of the individual participant. This was done
in a matrix, were the capability of the prototyping approach was to be rated to meet
a certain requirement (values ranging from 1, not at all supported, to 9, very well
supported) at five different development stages (5 point scale, ranging from very
early to very late). Finally, the participants were asked to give free feedback in open
text fields.

(3) State of the Design Tool

The Blended Prototyping platform has been substantially developed further after the
expert reviews. Hence, the platform as described in the following chapter differs in
various aspects to the one used in the two last steps of the expert review. The main
reason for presenting a preliminary version of the platform to the experts was that I
wanted to test it as early as possible, to gain feedback for the further system
development. The implementation of a number of low-tech manipulation tools, of
advances in the tablet control application, and a better performing internal object
communication were implemented after the study. However, the platform was at a
state, in which all concepts of the approach became visible.

3.2.3 Results of Expert Survey

In the following, the results of the expert survey are displayed, structured according
to the research questions formulated above. The most important results were
published before in a HCI-International conference paper [10].

RQ 1: Which of the suggested categories are generally most important?

The experts were specifically asked about the importance of the suggested
requirement dimensions at different design stages. As a measure for the general
importance of a category, its average rating throughout these stages is used. In
Table 3.2, shows the requirements sorted by to their average ratings. The table is
segmented into two areas: the upper area shows all categories that were identified
from literature, the lower area shows the ones newly suggested by the experts. Only

3.2 Assessment of the Requirement with Expert Practitioners 49

those experts who themselves suggested the new requirements gave them a rating.
Therefore, the number of raters who contributed to the average rating of those
dimensions is very small. Moreover, due to the fact that an expert would only
suggest a new dimension that she thinks is important, the newly suggested cate-
gories are naturally rated comparatively high. Hence, the ratings for the new
dimensions cannot be directly compared to those of the ones suggested from
literature.

The categories ranked highest were collocated group work (4.1), getting quick
prototypes (3.8), and reusable programming code (3.8). The three lowest rated
categories are remote group works (2.9), independent parallel development of
designs (2.7), and automated model-based evaluations (2.0).

Due to their ranking below of the middle point of the scale at 3.0, the three
lowest categories might be considered rather unimportant. However, this does not
necessarily mean, that they should be discarded; a closer look at their rating the
single design stages is necessary. A requirement ranked low in average can still be
highly relevant in specific phases and should therefore be preserved in the catalog.

As displayed in the figures on the following pages, means for remote group
works, ranging from very early to very late, are (3.2, 3.2, 3.0, 2.8, 2.4), for

Table 3.2 Generally most important requirements (due to their lower n, means for suggested
categories are marked with an asterisk)

Requirement Mean

Collocated group work 4.1

Getting quick prototypes 3.8

Reusable programming code 3.8

Freedom of creativity and design 3.6

Tests in the real use contexts 3.6

Support of design reviews 3.6

Support of expert reviews 3.5

Easy setup and distribution of user tests 3.3

Simultaneous tests of different ideas 3.2

Tests on different platforms 3.2

Reusable prototypes 3.2

Use of animations 3.2

Tests with a large number of users 3.0

Advanced functionality of a prototype 3.0

Remote group work 2.9

Independent parallel development of designs 2.7

Automated model based evaluations 2.0

(Suggested; n = 2) usability of the tools themselves 5*

(Suggested; n = 1) fun to use the tool 5*

(Suggested; n = 1) compatibility of the tool with different platforms No rating

(Suggested; n = 1) open source availability No rating

(Suggested; n = 1) tutorials and help for the tool No rating

50 3 Prototyping Requirements

independent parallel development of designs (3.1, 3.0, 2.5, 2.4, 2.3), and for au-
tomated model-based evaluations (2.2, 2.0, 2.2, 2.1, 1.5). The sequences show, that
the first two categories are more important in the beginning of the development
process, where they are rated above scale’s middle value of 3.0. For this reason they
should be considered in the catalog.

For the automated model-based evaluations category however, the ratings are in
no phase higher than 2.2. Therefore I decided to discard this category from the
further discussion.

RQ 2: What other requirements will experts name?

The experts suggested a very limited number of new requirements. Only 3 of the 15
participants gave new recommendations and no more than 5 new requirements were
proposed. Usability of the tool itself was the only suggestion that was named by two
different experts. The others, tutorials and help for the tool, fun to use the tool,

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

v.e. e. m. l. v.l.

Simulataneous tests of different ideas (slope = -.72)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

v.e. e. m. l. v.l.

Getting quick prototypes (slope = -.51)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

v.e. e. m. l. v.l.

Freedom of creativiy & design (slope = -.43)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

v.e. e. m. l. v.l.

Ind. parallel development of designs (slope= -.21)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

v.e. e. m. l. v.l.

Remote group work (slope = -.18)

Fig. 3.1 Requirements with increased importance at early stages. (Error-bars ± Std. Error)

3.2 Assessment of the Requirement with Expert Practitioners 51

compatibility of the tool with different platforms, and open source availability of the
tool were just named once.

The ratings for the newly suggested categories can be found in Table 3.2. As
discussed above, due to the limited number of their raters and due to a positive
personal bias towards own suggestions, the ratings for the new items cannot be
compared directly to the ones identified from literature review.

RQ 3a: Does the relevance of requirements change in different project stages?

The results show that the importance of the requirements varies over time in dif-
ferent ways: some requirements lose in importance over time (see Fig. 3.1), others
are equally important throughout the process (see Fig. 3.2), and yet others become
more important towards the end of the development (see Fig. 3.3). The difference
between lowest and highest value is most prominent for the dimensions of the
simultaneous tests of different ideas (Δ2.8), tests with large numbers of users
(Δ2.5), and tests on different platforms (Δ2.3).

As a metric to group the categories accordingly, a linear regression for the
development of each category was calculated. The categories were then sorted in
regard to the slope coefficient of their linear regression.

The slopes calculated in the linear regressions are statistically significant
(p < 0.05) for all but the three categories marked with an asterisk in the following
figures. This concerns two requirements that are categorized to be stable over time:
support of expert reviews (p = 0.454) and reusable prototypes (p = 0.275). For the

1.5

2

2.5

3

3.5

4

4.5

5

v.e. e. m. l. v.l.

Collocated group work (slope = -.06)

1.5

2

2.5

3

3.5

4

4.5

5

v.e. e. m. l. v.l.

* Support of expert reviews (slope = -.05) *

1.5

2

2.5

3

3.5

4

4.5

5

v.e. e. m. l. v.l.

* Reusable prototypes (slope= .09) *

Fig. 3.2 Requirements comparatively stable over time non-significant slopes marked with
asterisks. (Error-bars ± Std. Error)

52 3 Prototyping Requirements

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

v.e. e. m. l. v.l.

Easy setup & distribution of user tests (slope = .24)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

v.e. e. m. l. v.l.

Support of design reviews (slope = .25)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

v.e. e. m. l. v.l.

Use of animations (slope= .36)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

v.e. e. m. l. v.l.

Advanced functionality of a prototype (slope = .42)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

v.e. e. m. l. v.l.

* Tests in the real use contexts (slope = .43) *

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

v.e. e. m. l. v.l.

Reusable programming code (slope = .46)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

v.e. e. m. l. v.l.

Tests with a large numbers of users (slope = .62)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

v.e. e. m. l. v.l.

Tests on different platforms (slope = .63)

Fig. 3.3 Requirements with increased importance at later stages non-significant slopes marked
with asterisks. (Error-bars ± Std. Error)

3.2 Assessment of the Requirement with Expert Practitioners 53

category tests in the real use context the significance of the regression analysis
almost approached significance (p = 0.065). For all other dimension, a statistically
significant linear dependency of the requirements’ importance on the different
development stages was found.

RQ 3b: If relevance changes over time, which requirements are specifically
important in early, middle, and late development phases?

Table 3.3 shows the requirements, sorted in three different ways. To present the
results more clearly, the first two development stages, as well as last two ones, were
aggregated to the scales earlier phases and later phases.

Very highly ranked for earlier stages are the categories getting quick prototypes,
simultaneous tests of different ideas, and freedom of creativity and design. In
contrast to that, the categories reusable programming code, tests on different
platforms, and tests in the real use context are rated highest for the late development
stages.

The list underlines once more the changing relevance of the attributes over time,
as indicated with the different colored highlighting. The only category ranked in the
top 4 categories in all development stages is collocated group work. In the mid-field
of all stages are the rankings for the categories design reviews and expert reviews.

RQ 4: How is the Blended Prototyping system judged in general and what are its
biggest advantages and disadvantages?

Table 3.3 Sorted lists of requirements for ‘earlier’, ‘middle’, and ‘later’ phases

54 3 Prototyping Requirements

In general, the participating experts gave very positive feedback on the Blended
Prototyping approach. They granted the review sessions a very considerable
amount of time, especially in the concluding discussions about the new prototyping
approach. As part of the post-survey, the experts were asked to describe the biggest
advantages and disadvantages of the Blended Prototyping. Here, 13 of the 15
experts regarded the participatory work in groups and 10 saw the deployment and
testing directly on the mobile device as a major advantage of the technique.

Beside that, 12 experts remarked the system’s modularity and its adaptability to
different purposes. About half of the experts regarded the system to be easy to use
(7/15) and underlined the importance to work with paper (8/15). Furthermore, 6
experts wrote that the system is fast, 5 highlighted its ability to be well suited for
interdisciplinary work, and 4 remarked that the system is fancy or that it would
produce a wow effect when used with a customer.

Twice, experts stated that the system motivates to produce reusable code from
day one and that its hardware setup is inexpensive and is based on components that
exist in most offices. In opposition to that, six experts regarded the system setup as a
big disadvantage, stating that the setup is too complex. Furthermore, it was stated by
three experts that coding is required too early. Besides, two experts criticized the
use of mobile devices in the design process and criticized that there would be no
easy definition of widgets by just using pen and paper. As explained above, at the
time the expert reviews took place, the low-tech tools of the design tool described in
Chap. 4 were not yet implemented.

RQ 5: How easy is it for experts to apply the suggested requirement dimensions in
their ratings, and how is the Blended Prototyping system rated with respect
to the suggested requirements categories?

1 2 3 4 5 6 7 8 9 10

collocated group work
getting quick prototypes

tests with a large number of test users
simultaneous tests of different ideas

support of expert reviews
easy setup and distribution of user tests

freedom of creativity and design
tests in the real use contexts

reusable prototypes
reusable programming code

independent parallel development of designs
support of design reviews

remote group work
tests on different platforms

advanced functionality of a prototype
use of animations

Fig. 3.4 Expert ratings of blended prototyping with requirements identified from literature.
(Error-bars ± Std. Error)

3.2 Assessment of the Requirement with Expert Practitioners 55

http://dx.doi.org/10.1007/978-3-319-53210-3_4

In the post-questionnaire the experts were asked to rate Blended Prototyping with
the requirements catalog we identified before from literature, along with those
categories the suggested in addition. Ratings were done on a 10-point scale, ranging
from 1 = “really poorly suited to meet the requirement” to 10 = “really well suited
to meet the requirement”.

The experts had no difficulties in applying the categories. Questions were asked
solely about the requirement ‘automated model based evaluation’, since no such
features are implemented and the experts felt confused about how such automated
evaluations might be included in the design tool. As shown in Fig. 3.4, Blended
Prototyping’s ability to support collocated group work (9.1) and to get quick
prototypes (9.1) were rated best, followed by tests with a large number of users
(8.1). The weakest ratings were given for the categories tests on different platforms
(5.8), advanced functionality of a prototype (5.2), and the use of animations (3.2).

3.3 Discussion of the Results

The expert review was able to confirm 16 out of the 17 requirements found in the
literature review as being important for development tools that address the design of
mobile user interfaces. Since the requirement of automated model-based evaluation
was rated very low both, generally as well as singularly for each development stage,
it was discarded from the requirements collection. The number of additional new
requirements suggested by the experts was limited. The newly suggested require-
ments were mostly related to the usability of the tool itself and its joy of use.

Of course, this does not prove that the created catalog is complete. In fact, an
all-comprehensive catalog might be impossible to find. However, the fact that the
experts did rarely name new requirements does indicate, that the results from
literature did not miss too many obvious factors. This being said however, espe-
cially regarding requirements that may just be important at certain development
phases, there will surely be aspects that might still be worth being added to the
catalog.

Maybe, if asked before the presentation of the requirements set from literature,
the experts had been more motivated to give suggestions. Maybe, the experts felt
too tired after the somewhat lengthy rating of a set of 17 variables, each for five
phases. Explanations are hard to find in retrospective. Possibly, asking the experts
in a focus group would have improved the overall feedback. On the other hand,
such open discussions bear the risk that single participants do not get involved in
the discussion, because they feel too shy to hold up their personal opinion against
others.

The experts had no issues in understanding the suggested categories and to rate
their importance at different development stages. The results highlight the change of
the importance of the individual requirements at different stages of the development
process. They provide three sets of catalogs that collect the most important
requirements for early, middle, and late design stages. Developers of prototyping

56 3 Prototyping Requirements

tools should carefully consider, which development phases they intend to address
with their developments and use such information to concentrate the implementa-
tion of their approaches on the most important aspects. A successful
Swiss-army-knife-approach, applicable in all development situations, does not seem
to be feasible. The requirements catalogs cannot only be used as a reference for the
development of new systems, in addition it can serve as a set of metrics for the
evaluation of prototyping tools.

Besides being asked to rate and add to the requirements catalog, the experts were
introduced to the Blended Prototyping approach and tried out its single modules
themselves. This was done for two reasons: First, to check whether the experts had
problems in applying the requirements to rate a prototyping tool. Second, the
experts were introduced to the system to gain feedback on the strengths and
weaknesses of the approach and to hear their professional opinion about the most
important next development steps.

Generally, the experts gave very positive responses on the system. They saw a
purpose and need for such a system and underlined its suitability for the collabo-
rative work in creative tasks. The ratings of the system were very good, especially
for the phases that the generated catalogs identified to be important for early and
middle development phases, the quick testing of prototypes and the collocated
group work.

However, it must be remarked, that the experts rated the system on a rather
conceptual level. They did not actually use the system in a group to work in a
productive task, but got to know the tool in hello-world examples. Of course, one
could assume that the experts have a good idea on how the approach performs in
actual usage. The results underlined a high potential of the system concept and its
implementations, however, evaluating the system in real user tests are necessary to
draw well-grounded conclusions.

As some experts found joy in tickling and tweaking the system, I was able to
create a valuable list of bugs in the implementation. Beside that, as the result of the
remarks by a number of experts, I decided to extend the design tool with further
functions. This concerned the implementation of low-tech tools to avoid the use of
the high-tech tablet devices in the design process (see Sect. 4.2.2), as well as the
implementation of approaches for the prototyping of animations (see Sect. 6.2).

3.3 Discussion of the Results 57

http://dx.doi.org/10.1007/978-3-319-53210-3_4
http://dx.doi.org/10.1007/978-3-319-53210-3_6

Chapter 4
Blended Prototyping—Design
and Implementation

This chapter describes the idea and motivation of Blended Prototyping, displays its
usage and discusses a selection of design decisions that were made in the system
development. For this, in the first section of this chapter, the development of the
approach is explained, where its principle design paradigms are displayed and the role
of these paradigms in other prototyping approaches is discussed. Followed by that, the
important role of feedback in the development of Blended Prototyping is underlined
and the multiple occasions are highlighted, at which reactions towards the system
could be gained in demonstrations, user tests, interviews, and discussions.

In the Sect. 4.2, the use of the Blended Prototyping environment is presented in
its three modules. The text here concentrates on the perspective of the platform
users and describes all the necessary aspects to understand how the approach is used
in the design and development processes. The most important technical aspects of
the platform implementation are then discussed in concluding Sect. 4.3.

4.1 Approach and Development

4.1.1 Blended Prototyping Design Paradigms

As displayed in the early publications regarding the topic [11, 19], the primary goal of
the concept of Blended Prototyping is to provide development teams with new pro-
cesses and tools that can be used in earliest design stages already, to conduct a
prototype driven development of mobile user interfaces. To get a better understanding
on the specific needs of mobile developers and the conditions they usually have to
cope with, I talked to different professionals from the Berlin startup scene when I
planned and started to implement the first Blended Prototyping approaches. As a
bottom line I learned that app development projects can only be successful, when they
address a specific problem at the right time with a both smart and creative solution. In

© Springer International Publishing AG 2017
B. Bähr, Prototyping of User Interfaces for Mobile Applications,
T-Labs Series in Telecommunication Services,
DOI 10.1007/978-3-319-53210-3_4

59

comparison to the world of desktop computer development projects, where big
companies develop mainly large software solutions, mobile apps are usually created
in businesses with very limited resources in small but effective teams. And though
huge success stories are frequently told, like the ones of Instagram, Endnote, or
WhatsApp, most app development project do not produce success stories.

Blended Prototyping was therefore designed to support app development teams
in their collaborative creative thinking designing and developing mobile user
interface prototypes. The approach aims to put designers in a position, where they
are able to produce prototypes in a collaborative context as quickly and easily as
possible, and that way, are able to progress their user interface ideas on the basis of
iterative tests. At the same time, the approach should allow for the testing of
prototypes directly on mobile devices.

As described detail above in Sect. 2.1.2, paper-based prototyping is an approach
with very similar design objectives, but has its limitations when testing prototypes
in the mobile context. For this reason Blended Prototyping aims to adapt the
advantages of the traditional paper-based approach, but at the same time to deploy
prototypes on mobile devices to enable easy tests in the wild.

As discussed in more detail in [13], Blended Prototyping focuses its design
processes on the use of regular paper. When comparing the use of paper and pen to
digital substitutions like stylus tablets, different authors [14, 20, 104] found that
physical paper allows a faster and more natural interaction in teamwork and brings
benefits in collaborative brainstorming processes.

To establish a seamless transformation of physical paper to digital prototype
data, Blended Prototyping employs an overhead projected tabletop computing
system, where physical and digital content on the paper are blended. Tabletop
computing environments are frequently used to build collaborative systems with
tangible objects, e.g. [142, 151, 165].

To not interfere with the creative teamwork, Blended Prototyping is designed to
be as unobtrusive as possible. It can be used for designing and testing simple
prototypes on the basis of paper sketches as fast as possible. However, additional
programming code can be added to the prototypes, so that the complexity of their
functions can be shaped as complex as needed.

4.1.2 Feedback Driven Development

Blended Prototyping was developed in a number of iterations that improved the
platform in different aspects. Compared to the initial version of the platform that
was described in my diploma theses [7] and student research paper [8] the system
was redeveloped in each component. One major change was the reconsolidation of
the graphic framework used to display the content on the tabletop surface from the
no longer supported and by now buggy Pidoco2D framework to JavaFX, which is
now part of the standard Java SDK. Another important change was in implementing
a different approach for the controls of the cameras. In earlier versions, this was

60 4 Blended Prototyping—Design and Implementation

http://dx.doi.org/10.1007/978-3-319-53210-3_2

done with closed source development kits that were bound to Windows systems.
Now, open source toolkits are used that are usable cross platform, provide a better
image quality, better ways to maintain the programming code, and a better com-
patibility with a whole range of different cameras. Furthermore, the control of the
tabletop-application was totally renewed, from initially being controlled by mouse
input, to a system that uses a combination of physical tangible objects and an app
that is ran on a tablet device. Moreover, a new object structure was implemented,
the communication between servers and clients was shifted from http requests to
full-duplex secure web-sockets.

Some of these changes derived from technical necessity, most others were
triggered by practical application and evaluation of the prototyping platform. In the
development of the Blended Prototyping platform, I aimed to follow the key idea of
prototyping as well as possible, in iteratively progressing ideas on the basis of
insights gained from tests with experts and users.

In the early conceptual stage, the development based on feedback that was given by
colleagues, friends with app development and design background, and eventually
fellow researchers I got to know at scientific conferences. Then, soon after the plat-
form existed as a whole in its initial version, I used the tool two years in a row (2012,
2013) in the context of aworkshopwith 15 years old school kids,who participated in a
one-week introduction to developing mobile apps. Other amateur user feedback was
generated in participating at the “LangeNach derWissenschaften” in 2012, 2013, and
2014, where the Berlin regular public has the chance to get presented the work of
researchers in different facilities throughout the city.

The approach was discussed with professionals from the research community in
different formats. I addressed the communities of the conferences I visited, which
laid in the MobileHCI (Int. Conf. on Mobile Human Computer Interaction), the
CHI (Int. Conf. on Human Factors in Computing Systems), and the DSMB (Design
Modeling Symposium Berlin). Beside that, Blended Prototyping was part of the
interdisciplinary research project ‘Rethinking Prototyping’ that was held as a
cooperation between the University of the Arts and the Technische Unitversität in
Berlin between 2012 and 2015.

Moreover, in 2013 the platform was used for half a year in a project conducted
with the Deutsche Telkom AG, were it was used in four iterations to develop a
prototype for a mobile app to facilitate shared work. Within this context, the
platform was adapted and revised several times.

4.2 Blended Prototyping—System and Process
Architecture

4.2.1 System Overview

As illustrated in Fig. 4.1, the Blended Prototyping platform consists of three
modules that each supports the prototyping process in different phases: from the

4.1 Approach and Development 61

initial design, the creation of the prototype, to the test of a prototype and the
analysis of its results.

In the first module, the Blended Prototyping design tool, techniques are
implemented that support groups of designers in the collaborative work on a pro-
totype design. For this, a custom tabletop-computing environment was built, which
allows designers to come together and discuss and progress their interface design
ideas on the basis of simple paper sketches. The environment is equipped with an
overhead video projector, which provides a bridge between the physical content on
the table surface in form of paper sketches, and the digital content of the evolving
mobile user interface. Within the sketching process, functional descriptions of the
prototype can be defined, which are then highlighted on the table surface to provide
a better overview of the user interface behavior. The design tool was topic of a
publication at the Design Modeling Symposium 2013 [13].

The second module provides the necessary processes, to convert the data gen-
erated in the design tool into a prototype that is runnable on Android devices. Here,
two alternative processes can be chosen: either a fully automated process, where
testable prototype results are generated as quick as possible, or a manual process,
where in a sub-step programming code is generated that can be edited by the
development team to describe behavioral aspects of the prototype in more depth.

The third module includes a number of different tools that build an infrastructure
for conducting and analyzing prototype tests, even with higher numbers of users.
Here, a client-server solution for the setup and distribution of user tests is covered
as well as techniques for the logging and analysis of usage data, created within the
user tests.

The three modules are not necessarily used sequentially. When changes in
previous phases have to be made, this can be done without restarting the whole
process.

Fig. 4.1 Overview—“blended prototyping” platform

62 4 Blended Prototyping—Design and Implementation

4.2.2 Module 1—The Design Tool

4.2.2.1 Tabletop Environment and Basic Design Process

Center of the Blended Prototyping design tool is a regular table, where a design
team can meet to lay out and discuss their design ideas. The table is set up with
technical equipment, which is able to transform the regular table into a tabletop
computing environment. Specifically speaking, a tripod is positioned above the
table surface, on which a video projector, a photo camera, and a video camera are
installed (compare left photo in Fig. 4.2 on following page). These components are
connected to a computer system, which employs the video projector as an output
channel, and the two cameras as input channels for the interaction with the system’s
users.

The design tool is controlled either with a mobile app, which is installed on
tablets that are supplied with the environment, or with the help of physical, tangible
tools. Therefore, for each of the tool’s system functions two alternative solutions are
implemented. I implemented both techniques in the tool for the reason that they are
complementing each other in their advantages and disadvantages. A detailed dis-
cussion of this is found below in Sect. 4.3.1 (3).

Designers use the table as meeting point to discuss their user interface ideas and
to bring them, literarily speaking, onto paper. The design tool puts physical sheets
of paper into the center of the design process. Just as in the regular PBP approach,
designers use these paper sheets to draw their ideas, build collages, or apply
whatever techniques they like. Barcodes printed on the paper sheets, allow the
system to identify and locate the paper at all times (compare right photo in Fig. 4.2
on following page).

Fig. 4.2 System overview (left hardware-setup, right hand-sketching in blended prototyping)

4.2 Blended Prototyping—System and Process Architecture 63

Whenever the designers are satisfied with a sketch, they can use the system to
convert the physical paper sketch into a digital version. For this, the photo camera
of the system is employed. Upon this digitization, the former physical content is
now projected onto the table surface in a digital version. Whenever the designers
feel like it, they can add additional sketches into the digital projections, which are
subsequently added to the digital version as well (compare section below: Process
of sketching in a mixed physical and digital world).

Within the sketches, the designers can define user controls that build the basis for
the dynamic interaction of the user with the later prototype. A range of seven
different user controls (find detailed description below) can be positioned and sized
on top of the drawings. Depending on the control’s nature, additional attributes can
be defined. For example, links for buttons can be defined, that the interface should
follow when the button is pressed. The defined user controls are projected as an
overlay to the sketches on the tabletop surface. Some additional aspects of the user
controls are highlighted on the surface as well. For example, linkage paths of
buttons are displayed as lines connecting the button with the screen it leads to. This
creates a storyboard view that provides a good overview of the developing user
interface (compare section below: Process of defining user controls and interface
functionality).

The design tool aims to be as unobtrusive to the design process as possible.
Users are therefore free to decide at which time they want to use certain system
functions, and at which time they prefer to ignore the system and rather concentrate
on their design ideas. In the beginning of a design session, users will usually
concentrate on their physical sketches, later on, when the interface prototype
becomes more elaborated, the functions of the design tool will be addressed more
frequently.

4.2.2.2 Overview of the Key Interaction Techniques in a Design
Session

Role of the Barcode-Markers

Paper sheets are identified on the tabletop surface with the help of printed barcode
markers. The markers, initially introduced by Rohs et al. [84], are optimized to be
recognized in their exact position and rotation in a camera image. This way, the
computer system is always to recognize which paper sheets are present at which
exact position on the table surface.

Different number spaces encoded in the barcodes represent different types of
screens. Currently, screen designs for smartphone and tablet apps can be used, each
either in portrait or landscape orientation (see Fig. 4.3). In addition to that, zoom
markers are available for both smartphone screen types (the middle two screens in
Fig. 4.3). These screens are views to the same content as its regular siblings, they
do however display the content in a doubled size.

64 4 Blended Prototyping—Design and Implementation

The screens of larger size are used when more space for the drawing is needed,
the smaller screens help to get a better idea of the actual proportions and look of the
interface on the mobile device. Moreover, a larger number of small screens fit on
the table surface at once. Hence, they are more useful to provide an overview of the
user interface as a whole.

Process of Sketching in a Mixed Physical and Digital World

Drawn interface content that is displayed on the paper sheets can be in physical or
digital form. Physical content is created with pen drawings on the paper, or similar
techniques. Digital content is created in the conversion of physical content into the
digital space.

The process of digitizing drawings is controlled by the development team and
can be initiated at any suitable time. For this, either the design tool app, or the
photo-trigger marker is used. Upon the digitization process is started, a photo of the
whole tabletop is taken by the system’s photo camera. Now an algorithm filters out
and corrects the screen images the users wanted to photograph. Now, the paper
sheets a photo has been made of are substituted with blank paper sheets that have
the same printed identification marker. After this, the digital interface version is
projected onto the paper, just where seconds ago the physical content was drawn.

Additional physical content can always be added to the projection of the digital
screen version. In the next digitization step, this new content is isolated from the
screen background and added as new layer to the existing interface sketch. This
way, new drawings seamlessly become part of the evolving screen design. Having
interface content as a digital version has benefits that are common in every image

Fig. 4.3 Different device types: smartphone, smartphone zoom, and tablet

4.2 Blended Prototyping—System and Process Architecture 65

processing software: Content can be copied between the screens, mistakes can be
easily undone, and a history function allows browsing through and restoring pre-
vious screen versions. The process of digitization helps users to focus their work on
paper sheets, where digital and physical interface content is merged. Users are free
to choose when digitization steps should happen; therefore it is them who control
which content should be kept at which design stages. Where the physical world
helps the natural design of ideas, digital content brings its advantages reproduction
and versioning.

The digitization process can be started either with the help of the table control
app, or with the help of the physical take-picture tool. Selecting the camera icon in
the app’s top menu will start the digitization process. Now, two alternative views
can be used to select the screens that the user wants to digitalize. In the first view, a
live view of the tablet’s rear camera is shown with a target area in the middle of the
screen. By catching a screen marker in this area, the screen is selected to be
photographed. To provide the user with a feedback about the selection, the tablet
plays a beep and the selected screens are highlighted with a projection. Screens can
be de-selected by repeating the scanning with the tablet.

Alternative to the scanning process, users can use a second view on the tablet,
which allows them to manually select the screens that shall be photographed. Here
all screens known by the system are shown in a list, where they are presented in
form of a small image that shows their last digital design. Checkboxes on each of
the displayed screens allow the user to select and deselect the screens for the photo
process. The confirmation of the dialog triggers the camera, the sketches are iso-
lated from the camera image, and the newly created digital sketch versions are now
projected on top of the paper screens.

An alternative approach that does not use a tablet device is implemented with the
take-picture cardboard tool. The cardboard comes with a printed camera symbol
and a barcode that allows its identification. When the take-picture tool is put close
to a screen marker on the table, a projection will indicate the selection of that
marker and a three-second-countdown animation is started (compare Fig. 4.4). If
the cardboard is moved away from the marker, the countdown will be aborted; else,
when the countdown comes to its end, the system takes a photo of the surface and
the selected screen is updated.

Process of Defining User Controls and Interface Functionality

User controls are standard interface components that play a key role in the user
interaction. Blended Prototyping supports 7 different types of user controls that are
described in the following list.

(1) Buttons

Buttons are active areas that are used to react to touch commands by the user,
usually to switch to a different interface screen. For this reason, linkage paths can be
specified for a button. A button can be defined as a rectangle with free position and
size. In the running prototype buttons are usually invisible. This is for the reason to

66 4 Blended Prototyping—Design and Implementation

preserve the sketched design of the interface as much as possible to facilitate the
advantages of the sketchy look of an interface described above.

Apart from buttons and gesture listeners all other user controls used in Blended
Prototyping are represented in the same design, as in the later high-fidelity Android
app design. These controls provide visual feedback to the user; for example a
checkbox shows a checkmark when selected, or a textbox may open an
onscreen-keyboard to let the user type in text. This visual control feedback could be
supplied in a sketchy-looking design.

However, since in the design-processes of Blended Prototyping designers can
use whatever tools they like, the pre-defined sketch design can easily diverge with
the design of the actual prototype. Such a clash in the sketch design looks awkward
and tends to confuse a test user in the interaction. As a consequence, designers will
adapt their design to the pre-defined user-controls and are therefore limited in their
free expression. To avoid this, Blended Prototyping uses high-fidelity user controls
for the components of dynamic behavior [11].

(2) Gesture Listener

Mobile devices provide multi-touch screens that allow controlling software not
only with simple touch commands, but with a whole range of single and multi touch
gestures. Such gestures are an important instrument for a diverse and natural
interaction design and should therefore be considered already in user interface
prototypes.

Just like buttons, gesture listeners are defined in the prototype as an invisible
rectangular shape, free in position and size. Gestures can be assigned to such an
area, where upon, just like for the buttons, screens are defined the gesture will lead

Fig. 4.4 Using the photo
taker marker

4.2 Blended Prototyping—System and Process Architecture 67

to. Available gestures are swipe-, scroll-, and zoom- gestures. The gestures can be
either selected from a menu, or demonstrated on the tablet device.

(3) Textboxes

Textboxes are used to allow users to type in text, or to present dynamically gen-
erated text to the user. Textboxes are defined with their position and size and are
presented as a regular native Android textbox in the prototype. When a user touches
a textbox on the screen, a keyboard will open up that is used to enter text.

This way, the user interacts with the textbox, just the way she is used to.

(4) Checkboxes and (5) Radio-Buttons

Checkboxes and radio-buttons are standard user interface components that are used
in selection dialogs. In difference to checkboxes, radio-buttons are defined in a
group that only allow for one possible selection. Hence, when one member of the
radio-button group is selected, all other members of the group are automatically
deselected. In user interfaces checkboxes and radio-buttons are usually presented in
a fixed size. For the Android platform, Google tested different control sizes in user
tests and developed a method that is adjusting the size of the control to the specific
hardware conditions. Blended Prototyping sticks to this idea since it does not want
to encourage designers to contradict such design rules in their prototype and to
eventually end up with a problem in implementing the design in the later software.

Hence, checkboxes and radio-buttons are defined solely by their position. For
radio-buttons an additional grouping parameter must be specified.

(6) Image-Container and (7) Video-Container

Image and video containers are both freely positioned and sized as rectangular
objects in the prototypes. They put developers into a position to easily display
digital imagery in the prototype. This content can be gathered from a resource that
is delivered as a part of the prototype data, or by embedding a link to a resource
present in the Internet. In the running prototype, video containers provide an action
bar, with the common mechanisms to control the playing of the video.

The definition of user controls can be done with two alternative approaches: first,
by using the tabletop control app, and second with the help of low-tech tangible
tools. In the tablet-based approach, in the first step, the screen the user wants to
define the controls for is selected from the drawer bar on left side of the screen.
Now, the latest digital screen version is displayed on the tablet screen. Choosing
from the top menu, the user can position and size the user control on the sketch with
a simple drag gesture. Checkboxes and radio-buttons can only be defined by their
position and not their size.

Long-pressing the controls invokes an onscreen selection dialog, with which the
user can remove a control, or select further dialogs, in which the control-specific
properties can be defined.

The tablet app is connected via a wireless local network with the tabletop
application. It shares all changes in the prototype data with full-duplex enabled

68 4 Blended Prototyping—Design and Implementation

web-socket communication protocols. This way, all changes done on the tablet are
instantly regarded and displayed in the tabletop application as well, and vice versa.

The low-tech positioning and sizing of controls is done with highlighting pens.
In this scenario, different highlighting colors are used to mark the areas in the sketch
that should be interpreted as a certain user control.

Highlighters use well distinguishable colors that are usually not used in the
regular interface design. The process of the highlighter based recognition of user
controls is started by putting a palette tool onto the table, where the colors that
should be used in the recognition process are drawn into reference boxes (see
below: Fig. 4.5, left). This way, the users of the design tool are free to use whatever
colors and pen brands they want to and can select colors that are in enough contrast
to the ones used in their interface design. Moreover, with this approach it is
important to supply a reference point that is exposed to the same lighting conditions
as the color used for referencing the sketches. The highlighting tool was in parts
implemented with the help of the student Francesco Bonadiman, who wrote his
mater thesis at our chair on a related topic [52].

Users can mark hand-drawn controls in the sketches by coloring the relevant
areas with the color they assigned to the corresponding control-type. Just like in the
process applied for the photo taker, the palette-tool is referenced to the closest
screen marker. When the users want to start the user-control interpretation process,
the screen bearing the highlights is positioned close to the marker tool, where upon
an animated countdown is started, on which end the sketch is photographed. Now,
the photo is interpreted with a color recognition algorithm that searches the pho-
tographed sketch for the colors referenced on the palette card. To determine the user
controls in the photographed interface screen, an algorithm calculates the closest
rectangles around the found color spots.

For not to staining the physical sketches with bright colors, semi transparent
sandwich paper is supplied for the markings with highlighting pens. Beside that, the
semi-transparent paper blurs the physical sketch and therefore improves color
recognition result of highlighted areas. For the specification of further

Fig. 4.5 Palette tool (left) and rubber tool (right)

4.2 Blended Prototyping—System and Process Architecture 69

control-specific properties, other tangible marker tools are used. Connections
between buttons and other screens are created with the help of a connector-tool, by
putting the tool between the button and the target screen (compare below Fig. 4.6).
Groupings for radio-buttons are set by default, when they are all photographed at
the same time in a recognition step.

The deletion of user controls is done with the rubber-tool (compare above
Fig. 4.5, right). When a screen is positioned close the rubber tool, a reference to one
of its user controls is shown with a red arrow. When the rubber-tool is moved, this
reference will change accordingly. Like in the tools described above, a countdown
timer determines the deletion of the control. The rubber tool can be applied to the
background sketch of the interface screens as well, which makes the system roll
back the interface sketch to its previous version.

For creating a connection between a button or gesture-listener and a target
screen, the connection-tool is used. When put on the table, a green dot is projected
left of the physical tool onto the table surface. When the cardboard is moved, the
dot is moved accordingly. A connection is defined by positioning the dot above a
button and ate the same time positioning the target screen at the tip of the arrow
printed on the connection-tool (compare Fig. 4.6). Now, a countdown will be
started, upon which end the connection is created.

Another low-fidelity control card is the copy-tool, which copies content from one
screen to another. It contains two trigger areas: a first one for the source and another
and a second one for the target of the copy action. When two screens are identified
in the trigger areas, and are left there until a countdown completion, the content of
the source screen is transferred to the target screen.

Further definitions, which are necessary for the other advanced controls are
cumbersome to achieve with low-tech measures. Links for pictures or videos are

Fig. 4.6 Connection tool

70 4 Blended Prototyping—Design and Implementation

hard to set up without even having a keyboard. And the demonstration-based
definition of gestures is difficult to implement with low-tech tools as well.
I experimented with a number of methods, like supplying a virtual, marker based
keyboard on the table surface, but decided against their integration into the system.
After all, I did not want to implement skill games, but a design tool that is appli-
cable in productive work.

Therefore, users must use the tablet devices to define such controls, or define the
properties manually in editing the generated prototype code.

4.2.3 Module 2—The Creation Tool

As displayed first in a MobileHCI PID-MAD workshop paper [9], two alternative
processes can be used to generate prototypes on the basis of the data previously
generated in the design tool: A fully automated process, where a prototype is
created without further ado with the speed of a button click, or in a semi automated
process, where additional programming code can be added to the prototype in an
intermediate step.

With the automated process, prototypes are created as quickly and easily as
possible. However, prototypes generated in this fashion are limited in their func-
tions to mere click dummies: prototypes that do not provide more than static
interface screen changes, each triggered by a button or gesture listener. This does
not mean at all that such prototypes are useless. Click dummies are a widely used
approach in early design stages, where the benefits in speed to provide quick
testable prototype versions outweigh the ability to regard complex behavioral
aspects. This is why many of the approaches discussed above concentrate their
efforts on supporting the development of click dummies. In addition to that,
designers can use the automated prototype generation feature to try out their pro-
totype ideas, the minute they created it. Just like in the paper-based prototyping
approach, ideas can therefore be quickly tested and adjusted in a prototype, without
being distracted from the collaborative ideation process for too long.

However, as shown in the results of the expert reviews described in Chap. 3
above, the type of questions that are addressed with a prototype do change in the
course of the development process. Though in earlier states prototypes serve the
purpose of simple demo cases to provide general feedback, in later states more
specific questions on more specific prototype aspects will arise, or the experience in
long-term usage tests gets in the focus. For this, a more elaborated functionality
becomes necessary.

In the semi-automated process such elaborated functionality can be regarded in
contributing additional programming to the code. The code used in Blended
Prototyping is written in the programming language Java. This language is native to
the Android, meaning that apps programmed for this platform are developed in that
same language. Using native programming languages brings two major advantages:
First, the same techniques and programming libraries can be used as in the later

4.2 Blended Prototyping—System and Process Architecture 71

http://dx.doi.org/10.1007/978-3-319-53210-3_3

product development, wherefore the possibilities and boundaries of the technique
are the same as in the later software. Second, the use of native code makes it easier
to reuse the efforts invested into the programming code in the product, and hence to
follow an evolutionary prototyping approach. To allow for an easy adding of
programming code, Blended Prototyping generates classes that are custom designed
with a simplified class structure and well marked and commented areas that pro-
grammers can use as an entry point to add programming code.

(1) Using the Automated Process

In the automated process, no additional functionality is described in the course of
the prototype creation process. Therefore, prototypes generated in an automated
manner must be defined completely within the design tool. This means that all user
controls that trigger a swapping of screens (buttons and gesture listeners) have to be
defined before in the design tool.

In the automated prototype generation process this information is used to write
the according event-listeners into the programming code of the prototype. The
automated prototype creation is triggered automatically, whenever the prototype in
the design session is saved. This way, the prototypes can always be tested on the
mobile device present on the table without further ado. If a prototype is saved,
which code has been edited, these changes will be preserved (compare description
below).

(2) Using the Semi-automated Process with Code Editing

The app programming code can be edited to describe more advanced features of the
prototype behavior. Blended Prototyping offers its users easy processes for the code
editing in two different ways: First, to change the code that is run and interpreted in
the app on the mobile device itself, and second, for code that can be run on an
external Java server.

Mechanisms to easily regard server functionality in the prototype are provided
for the reason that most apps do not operate solely on the mobile device, but are
connected to servers that provide data or processing services. This way, the pow-
erful resources of server computers can be used for complex algorithms, data
security is better established, or big data sources can be accessed.

In the following text, the use of the two different ways to use the semi-automated
code-editing functions is explained, first with regard of solely editing app-side
programming code, and second, with the involvement of server method calls as
well.

(2:1) Editing Prototypes Solely on the Client Side

Prototypes for which code is edited on the client side can regard variables and
functions in their processing and connect them to the properties of its user controls.

In the following, the use of the mechanism is described in a simple example
dialog, where an email-address is registered for a newsletter.

72 4 Blended Prototyping—Design and Implementation

The example is built out of the three screens that are displayed in Fig. 4.7. On
the first screen, the screen to the left, a textbox, a button and a checkbox are defined.
The basic idea of the interface is it to offer the user a textbox on the first screen to
enter an email address to receive the newsletter, along with a checkbox with which
the users indicate their agreement on the newsletter’s terms and conditions.
Depending on whether or not the checkbox was checked, the user is supposed to
land on the upper right screen, which is giving a success message, or respectively
on the lower right screen, where the user is informed about the necessity to accept
the terms and conditions. For this, the button on the first screen is connected to both
other screens, and the button labeled ‘back’ on both screens to the right are con-
nected back to the first screen.

Whenever the project is saved in the design tool, the automated prototype cre-
ation process is started. This means that for each screen that was present on the
table, a Java class is generated, where handlers are implemented for the controls the
screen contains. Moreover, the classes are stored in an Eclipse project, so that they
can be comfortably imported into the Eclipse IDE.

In this integrated development environment (IDE), a package with the name of
the prototype will be found that includes a generated class for each of the screens.
The class generated for the first screen will contain a local variable for each control
that was defined for the screen within the design tool. This way, the user controls
can be accessed from the programming code. Moreover, the class for the first screen

Fig. 4.7 Prototype example

4.2 Blended Prototyping—System and Process Architecture 73

in the example will contain a button handler, which is structured in the following
way:

The code fragment above contains two if clauses, one for each of the screens, the
button is linked to. Within each of these clauses, the according Screen object is
instantiated and a method of the interface-object delegateToBase is used with the
screen, to cause a change of the screen that is displayed in the prototype. The
interface-object is automatically generated in the classes. Please find a full printout
of the generated classes for this example attached to this work in Appendix A.

When no changes are made to the conditions of the if clauses, the interface will
follow the default way of linking to the screen that was defined first as a linking
target (in case of the above snippet Screen14).

Changing the interface behavior to regard the validity of the entered Email is
easily done with changes highlighted in yellow color in the following fragment:

74 4 Blended Prototyping—Design and Implementation

For the manual compilation of the prototypes, Blended Prototyping includes a
small desktop computer application named Prototype Creation Manager. With this
software the step of the class creation and the compilation of edited classes to
Dalvik VM specific byte code can be controlled manually. The software also
informs about errors that occur in the process.

If the design work on the prototype is further progressed and a new prototype
version is saved again, a repeated class generation does not simply overwrite the
existing classes, but preserves the added code. For this, in each generated class
areas are marked with ‘//edit code here’ comments, where developers can enter their
additional programming. Such areas are present in each generated block: in each
method, constructor, member description, handler, and so forth.

When the class generator algorithm finds existing classes for the prototype, it
cuts out these comment blocks from each block, and inserts them into the newly
created classes. If a block should be not existent in the new version, e.g. because a
user control was deleted, the old programming block is commented out and pasted
to the end of the new class. This way, valuable programming work cannot be lost
accidentally. For the matter of a good programming practice, developers should
however not write too much code into the generated classes, but refer to classes
they added themselves to the programming package.

(2:2) Editing Prototypes on Client and Server Side

Blended Prototyping includes processes for a simplified embedding of server-side
code in the prototype implementation as well. This is done in two simple steps.

First, a jar file is created that contains the compiled external server classes. The
entry point for the call of the classes needs to follow a public static Object-to-Object
signature. Being the fundamental class type in Java, Object is inherited by all other
possible Java classes.

In the second step, the jar file is copied to the ExternalClasses folder of the
Blended Prototyping server and the contained methods are registered in the pro-
vided dynLink.csv file. Here, the name of the jar file is entered along the method
name and its package path. For each of the registered methods, the Blended
Prototyping test server dynamically generates an path-extension that follows the
following pattern:

createdPath-Extension = Jar-file-name /package path . class name . method name

These URLs are used to address the code running on the server side from the test
app. For this, a method called callExternalServerFunction is used, that is provided
in the interface IF_ScreenToAndroidBase. This interfaces is instantiated in each
generated screen class in the class-variable delegateToBase. Two parameters are
handed to the method: a String containing the URL extension generated by the
server, and an Object that is forwarded as an input to the server method. The
method’s return type is of Object, which represents a direct forwarding of the server
method output.

4.2 Blended Prototyping—System and Process Architecture 75

The mechanism implements an Object-to-Object function mapping, leaving
developers the biggest freedom to exchange whatever object type they like.
However, since the objects are transformed to an ObjectStream to be sent via an
http connection, the applied objects need to implement the interface java.io.
Serializable or java.io.Exernalizable.

The following code fragment shows an example of a server-side method call, in
which an image is searched for faces. The algorithm behind this search might be
very complex and time consuming to calculate on a mobile device, wherefore it is
ran as a server function. In the example, a Bitmap is sent to the server function,
which is checked where upon an array of points shall be returned, containing the
position of recognized faces.

Assuming that the class above is compiled to a jar file named Example.jar, the
client can now use the server method in the following way:

4.2.4 Module 3—The Testing Tool

The Blended Prototyping platform includes a set of tools that support the design
team in the efforts of distributing the prototypes to an audience of testers, to run the
test, and to acquire and analyze data about the prototype usage.

For this support, Blended Prototyping provides a test server, which first, handles
the distribution of prototypes to the test clients, and second, collects the generated
usage data.

76 4 Blended Prototyping—Design and Implementation

After the prototype creation process is finished, the prototype data is stored in a
folder that is accessible by the server. Now the prototype is registered and allocated
to test users. This is done in a simple CSV table, where user credentials can be
determined and allocated to certain prototypes.

The prototypes are tested directly on Android devices. For this, a test user first
has to download a prototype-testing app, which will later host the native prototype.
Within this app, the user enters a username-password combination, where upon the
app will connect to the test-server, to check for prototypes that are available to the
user. The server checks the CSV table described above, and provides the user with a
selection of the prototypes, she is allowed to test. If the user is allocated to solely
one prototype, the app starts that prototype directly. Now, the prototype is started,
nested within the prototype-testing app as a native Android application. This means,
that the compiled prototype code is executed, without actually being a part of the
initially downloaded prototype-player app.

The photograph in Fig. 4.8 shows an example of a prototype running on a
mobile device. The example shows a screen of a navigation app prototype. The
code-snippet on left side of the figure, shows the code edited for the previous
screen, where a destination address for the navigation that was entered in a textbox
is used to generate a bitmap, which is the loaded in the succeeding Screen14. On
this Screen14 the user is provided with a map section that suits her entered desti-
nation address. The widgets are of classes starting with the marker ‘W_’. This is
used in the Blended Prototyping class structure to mark widgets used in the plat-
form, which themselves inherit from native Android-controls. An in-depth docu-
mentation of the class-structure is found in a Javadoc delivered with the platform
programming code.

Whenever the user starts the prototype player app again, the newest version of
the prototype addressed to the user will be downloaded and run without further ado.
This is handy for the test-user, since she does not have to reinstall the app at any
point; and this is handy for the developers, since they can alter the prototype, swap
it with a new version, or allocate the test-user to a different one without the users‘
notice.

If the user touches the screen while the prototype is tested, this interaction is
logged by the app and stored in an internal SQLite database. After the test, these
usage data logs are aggregated and sent to the test server. Here the data is stored in a
CSV file, which allows for an easy import in software solutions to conduct further
statistical analysis. For example, such data could be processed into a video, where
the user’s interaction with the interface is displayed. Or more specific questions
could be answered, such as what average time users stayed on certain screens.

All system components are written in Java, but are compiled for different Virtual
Machines. The server of Blended Prototyping is run in the standard Java Virtual
Machine (JVM), which is available throughout all main system platforms. As
explained above, the prototype data that is interpreted by Blended Prototyping
mobile player, is also written in Java.

4.2 Blended Prototyping—System and Process Architecture 77

The interaction between the Blended Prototyping components for the prototype
generation works by storing the necessary prototype data in a folder accessible by
the server and in editing the CSV table. Therefore it is not necessary to run both
applications on the same machine or at the same time.

The communication and data exchange between the server and client app is
however established via the Internet using HTTPS.

4.3 Design Decisions in the System Implementation

In this section, selected design decisions in the implementation of the Blended
Prototyping system are explained. The description is separated for the system
models. First design decisions in the design tool are explained, followed by that,
aspects of the creation tool, and finally specifics of the testing tool are highlighted.

4.3.1 Implementation of the Design Tool

(1) Hardware Setup of the Tabletop-Computing Environment

The tabletop-computing environment used for the Blended Prototyping design tool
uses the following hardware components: an EPSON THW-5200 video projector, a
Canon E650 DSLR photo camera, a Logitech HD Pro C920 Webcam, different
Android tablet devices (Nexus 7 and Samsung Note 10.1), a regular desktop
computer running the tabletop control software, and a Cisco LinkSys
E4200 WLAN Router to establish a high speed connection with the mobile devices
used in the tabletop context. Beside these electronic components the design tool

Fig. 4.8 Example of a running prototype (left code from the previous screen, right photo of the
prototype running on the device)

78 4 Blended Prototyping—Design and Implementation

uses a big tripod that is able to host projector and cameras above the table surface, a
regular table as a working space, and paper and pens that are used to create the user
interface sketches.

All of the used hardware components are mid-performance off-the-shelf solu-
tions that are available for very reasonable prices. The employed video projector
supplies full-HD resolution at a good brightness level (1800 ANSI), its market price
as for the end of 2015 is about 1000 €. The Canon DSLR is a standard-consumer
camera with an image resolution of 18 megapixels. The standard 18–55 mm
f/3.6-5.6 zoom lenses are used that came in the camera kit package. Currently, the
camera price ranges at about 350 €. The employed desktop computer is a standard
machine with no distinguished performance capabilities in any respect. The
employed webcam is a full-HD standard webcam for about 70 € and the other
hardware used does not need to reach any significant performance either. In sum of
approximately 2000 € should be sufficient to reproduce the setup.

Both cameras and the video projector are assembled on a tripod in a way that
their lenses are targeted at the table surface. That way, the video projector supplies
an output channel, the cameras an input channel to the user. The Android tablets are
connected to the computer system via a shared WLAN and can be used as one of
different alternatives to control the application. The provided smartphone can be
used to test prototypes created in the test sessions immediately.

The supplied paper sheets come with a printed marker, which can be recognized
by the system in the images produced by the system’s cameras. The pens used in
the sketching process should create a clear stroke, which does not necessarily needs
to be very thick. The highlighting pens, used for the marking of user controls,
should have strong colors that are well distinguishable from another.

(2) Software Implementation of the Design Tool

The Blended Prototyping design tool was entirely programmed in Java. Though
Java does have its downsides when it comes to high performance algorithms, two
major advantages of the technology determined my decision. First, programs
written in Java are compatible to an all major operating systems. Java programs are
run in a virtual machine, a sandbox that is installed on the operating system to
provide the Java program with the same conditions in each environment. Therefore,
Blended Prototyping can be principally run on every operating system, be it a Linux
distribution, Windows, or MacOS.

As described in more detail below, for yielding higher performance results, some
third party software packages are used for the camera control and real time image
processing. All these packages are compatible to the major operating systems
named above.

The second and maybe even more important reason for me to use Java as the
core programming language of the Blended Prototyping platform is its popularity.
Java is a standard object oriented programming language and is taught regularly in
schools and colleges. It is obviously very important to employ technologies in the
development of a system that allow others to easily contribute to the work. This

4.3 Design Decisions in the System Implementation 79

way it was comparatively easy for me to introduce student workers into the pro-
gramming code, when I asked them to contribute some additional features.

Beside that, I plan to make the platform available open source. With this I do not
just hope to provide my developments to interested users, but to find developers that
get involved in expanding the platform and in adding new modules. This is far more
likely to happen when the used technologies are popular and easy to use.

The system is currently run on an off-the-shelf standard stationary computer with
no special specifications. Probably, the system would run with a more efficient use
of calculation resources if it had been programmed with a technology closer to the
hardware, like C++. However in Blended Prototyping, highly performance inten-
sive calculations, like the ones that occur in image processing tasks, are done with
the help of the javaCV framework. This technology accesses hardware resources
like the graphic cards GPU to yield higher performance. Therefore, resource issues
have never been a severe topic in the use of Blended Prototyping and the system
runs stable without perceivable lack.

In the programming of the design tool the Model-View-Controller
(MVC) design pattern [118] was applied. The concept argues for a strict separa-
tion of concerns in the programming, by providing separate classes for the data
handled in the software (models), separate classes that provide a view to that data
(views), and separate classes that are used to manipulate and manage the data
(controller).

The implementation of this design pattern provided a better overview of the
created class structure and made it easier to build different views to the same data
basis. The models were moreover implemented in a way that allowed them to be
directly serialized into JSON objects and byte-streams.

In the design tool, the projected screen content is bound to the physical paper
counterpart: When a paper sheet is moved, the projected content follows the paper
screen in its exact position and rotation. To implement an according graphical
representation object, a solution had to be found that allows the organization of
different content in freely positioned and rotated graphical containers.

The implementation of such graphical containers went through a long history of
different approaches, ranging from attempts to adapt principles of Java Swing, to
Java AWT, where upon an open source third party framework called Piccolo2D
was used. That framework however had a couple of bugs in itself and was not
continued to be supported since 2013. Luckily the framework JavaFX developed
vividly in the past 5 years into a well documented, high performing, and stable
version that is since Java 8 even part of the standard Java development kit.
Therefore, the whole graphical backbone of the Blended Prototyping design tool
had been shifted to JavaFX. This technology does not only provide a better per-
formance and easier implementations of dynamic user interface content. Today
JavaFX is moreover a well-known and used technology that will be supported
within the Java Framework in the foreseeable future.

80 4 Blended Prototyping—Design and Implementation

The communication between all the devices used in the design tool is done via a
wireless network, emitted by a router that is part of the hardware setup. All relevant
prototype data is shared in serialized versions of the regarding screen models in
JSON structures. The exchange of the objects is conducted within a communication
through web-sockets. This protocol allows for a full-duplex communication and
steadily refreshed prototyping data on all devices.

The serialization of the models to JSON structures was implemented with the
help of Jackson parsers.1 The implementation of the web-socket communication
was done with the framework Autobahn-WS.2

(3) Choice for Physical-Objects AND Tablets

The Blended Prototyping design tool follows two alternative interaction approaches
to command and control the tabletop-computing environment. These are on the one
hand the table control app that is installed on tablet devices, and on the other hand
low-tech tools, based on paper and other physical content. The reason for the
decision to follow both approaches is, that either of them has its advantages and
disadvantages.

The tablet apps play out their strengths in reliability, precision, and flexibility in
the supported input methods. The sketches opened in the app can be fluently
zoomed so that the positioning and sizing of controls can be done very precisely.
The techniques used to achieve this are well implemented in the Android platform
and well used in many other mobile apps. Moreover, most users will be well used to
the typical interaction commands in mobile applications. Therefore, misinterpre-
tations of the users’ input commands happen rarely. In addition to that, the flexi-
bility of the input methods on mobile devices is immense: Keyboards to enter text
can be used effortlessly, the definition of finger gestures to connect to the prototypes
gesture-listener controls can be demonstrated easily, and the device cameras can be
used to create easy references to the screens on the table.

However, the big downside of the tablets is that they risk disturbing the col-
laborative work at the table. Tablets are not well suited to be used in groups, since
only one user controls them at a time. This user tends to narrowly focus on the
interaction with the app, and stops being part of the collaborative discussion.

In comparison to that, low-tech techniques that are based on paper and cardboard
are more easily used as shared tangible objects in the collaborative group interac-
tion. Users applying such techniques do it in a more open way, allowing others to
participate more easily. However, the input is far more limited when it comes to
precision or flexibility of input methods. With low-tech tools, no keyboard can be
reasonably implemented. Gestures to describe the user control of a gesture-listener
cannot be simply demonstrated, but has to be chosen from lengthy lists.

Overall it has to be regarded, that Blended Prototyping is not a toy, but a tool for
professionals working on a task with a lot of time pressure. This being said, it has to

1https://github.com/FasterXML/jackson (last accessed 11th April 2016).
2http://autobahn.ws/ (last accessed 11th April 2016).

4.3 Design Decisions in the System Implementation 81

https://github.com/FasterXML/jackson
http://autobahn.ws/

be emphasized that all the tools in the process have to work smoothly, without
interrupting the designers from the group discussions and from formulating their
creative thoughts.

A feasible alternative that combines both advantages of the discussed techniques
could be to use large multi-touch tables as a basis for the design tool. However,
such devices are costly and to implement stable interaction techniques for a
multi-user use is far from trivial. Besides, the blending of physical and overhead
projected content could not be transformed to multi-touch screen applications.

(4) Marker Tracking and Image processing

Barcode Markers as a Reference System

In the Blended Prototyping design tools barcode markers are used to identify paper
sheets and to determine their exact position and rotation on the table surface. The
employed barcodes are initially based on previous work by Rohs and Kratz [84],
who used the technique for linking personal mobile devices to tabletop surfaces.

The employed cameras are connected and controlled to the design tool with
techniques, which were selected with respect to their compatibility to other hard-
ware. The webcam is read with the javaCV CvCapture that supports any standard
webcam. The Eos-DSLR is controlled with the use of the open source project
gPhoto2,3 which is a free digital camera control software that currently supports
more than 2100 camera models.

Each of the system’s cameras, as well as the video projector, has its own per-
spective at the surface and applies an individual coordinate-reference system to
process the images. These coordinate-reference systems are created within the
system calibration process.

The calibration is done with the help of barcode markers that are projected at
different locations on the table surface (compare Figs. 4.2 and 4.3 on page 80). The
employed cameras record these markers, where after their presence and position is
recognized in the delivered pictures. Now the position of the markers in all three
coordinate systems is known, a warping system is created that is able to transfer one
position on the table from one device coordinate system to the other (compare [84]).

Coping with Camera Distortion Effects

The cameras employed in the system deliver images that are negatively affected by
two optical effects: perspective and lens distortion. These distortions have to be
dealt with in both, the marker tracking and the digitization process.

Perspective distortion effects are a result from taking images of an object from a
different then perpendicular perspective. In such images, not all objects of the layer

3see: gphoto.sourceforge.net (last accessed 11th April 2016).

82 4 Blended Prototyping—Design and Implementation

http://gphoto.sourceforge.net

have the same distance to the camera lens, so that closer objects are pictured bigger
than such farer away.

In the demonstrative Fig. 4.9, two cameras are aimed at a rectangular object on a
table surface. The camera C-ideal is attached perfectly orthogonally above the table,
whereas the camera C-shifted is tilted away from the. The image results for the two
cameras are displayed in a schematic way on the right side of the figure above.
Where the image of the ideally positioned camera would display the red object as it
is, as a perfect square, the image of the shifted camera would show the red object as
a trapezoid.

In the actual hardware setup of the Blended Prototyping design tool, the shifting
angle is not as extreme as displayed above. However, in practice, the shifting is not
limited to one axis of the Cartesian room coordinates as in the example. Therefore a
perfect square is usually recorded in form of a random quadrangle.

Perspective distortion can be corrected in different ways. If the exact positioning
of the camera in relation to the table surface as well as the exact setup of the camera
lens is known, the perspective distortion could be equalized in geometric trans-
formations. This solution however limits the flexibility of the hardware setup to an
extent that is hardly feasible in the context of the Blended Prototyping tool. Even
small changes in the positioning of the setup will have a severe effect on the quality
of the calculations.

A second way to correct the perspective distortion can be established with a
polygonal shape warping of the photographed objects. If a reference object is put
into a photo that bears perspective distortion, algorithms can be used to stretch and

Fig. 4.9 Perspective distortion—examples for camera positioning (left); schematic distorted
pictures (right)

4.3 Design Decisions in the System Implementation 83

crush the image in a way, that the expected shape of the reference gets restored. The
barcode markers used in the Blended Prototyping design tool can serve the purpose
of such a reference object.

Another source of distortion in the images arises from the imperfect optical
construction of camera lenses. Especially lenses of short focal distance often cope
with barrel distortion effects, where actually straight lines at the image border are
recorded bended outwards on the photo.

Correcting lens distortion is well discussed in the scientific debate and achieves
good results. However, the applied mathematical methods are far more complex,
than the ones discussed above for the correction of perspective distortion effects.

Polynomial based methods are available that aim at estimating the distortion
parameters can be found in the work of Jung et al. [61]. Ahmed and Fang [3]
propose a non-metric method of calibration that finds distortion parameters and
refines them using non-linear optimization; yet others [16, 42] follow
non-polynomial methods founding on logarithmic distortion that are based on the
way, wide angular lenses are constructed. However, each approach requires on
sacrifice: either in accuracy or in processing time. It should be carefully considered,
which of the factors is more important for the specific application scenario [152].

In the Blended Prototyping design tool two image correction scenarios have to
be considered. First, the interpretation of the video signal provided by the webcam
to track the paper sheets present on the table, and second, the transformation of the
photos taken by the DSLR camera for the digitization of the interface sketches.

The tracking of paper sheets runs steadily as a parallel process. If the image
processing time in this context is too slow, the movement of the paper sheets on the
tabletop will not be recognized fast enough to let their connected projection follow
the paper sheets seamlessly. This affects the usage quality heavily; hence, in this
context the fast performance of the processing should be the main motive.

The mixture of distortion effects described above makes their mathematical
correction in the webcam image complex and time extensive. Testing the imple-
mentation of the approaches discussed above slowed the tracking down to an
unbearable extend.

For this reason a rather simple, but very time effective solution was implemented
in Blended Prototyping, which helps to handle both distortion issues at the same
time.

The approach uses a second calibration step after the global calibration described
above, where twelve smaller local calibration systems are projected as a mesh on
the table. For each of these local systems its own warping system is created using
the same technique as for the calculation of the global warper. Since in the local
systems the local distortion effects can be regarded in higher detail than in the
global system, the results of identifying a marker position in a local system is much
improved (Fig. 4.10).

84 4 Blended Prototyping—Design and Implementation

Following this approach, two steps are necessary in determining the exact
position of a marker. First, the approximate position in the global reference system
is calculated. On the basis of this coordinate, the local reference system the marker
is positioned in can be resolved. The application of the according local warping
system to warp the identified marker position will deliver accurate results.

In case of the pictures warped for the digitization process the situation is similar
but for the fact, that not one but four position points, one for each corner of the
sketching area, are calculated. In the photo excerption and correction of the sket-
ched user interface screens, Blended Prototyping uses the marker dimensions as a
reference to determine the four corner points of the arbitrary quadruple that shows
the sketched image in the photo. Now, a graphical transformation method is used to
stretch and crush the quadruple into a perfect rectangular image of the hand sketch.

This proceeding requires a longer processing time, than the simple position and
rotation tracking done for the video signal. However, the digitization process does
not run continuously, but is triggered rather from time to time by the system users.
Waiting a second for the digitization result is therefore less disruptive to the design
process, especially since a paper sheet is swapped with a blank one after the
digitization step anyway.

4.3.2 Implementation of the Creation Tool

The Blended Prototyping creation tool generates prototypes on the basis on data
provided by the design tool. This contains an image file for each of the screens used
in the design tool. Beside that, a JSON file is included that explains all aspects that
were defined in addition to the sketches.

JSON provides standards for structuring information in nested nodes that is well
readable for both, computer algorithms as well as a human observer. The format is a
standard file type used frequently in all modern programming languages. Therefore,
the technology provides an open interface that others who might want to implement
different modules for the prototyping platform can easily connect to. As explained
above, the Blended Prototyping design tool follows the Model-View-Controller
concept to facilitate a consequent separation of object data, the views on this data,

Fig. 4.10 Global (left) and local (right) calibration systems

4.3 Design Decisions in the System Implementation 85

and the management of its manipulation. This concept makes it very easy to export
all relevant object data with a simple serialization with a JSON parser. In the
prototype creation process, Blended Prototyping follows a native programming
approach.

The generated classes are structured in a way that allows even programmers with
little experience to understand the meaning of its components, as well as the
regions, where further code editing should be done. For this, the class solely
contains instances of customized classes that are inheriting from their complex
Android counterpart and create a simplification layer for the programmer.

All available data for a user control is considered in its instantiation automati-
cally. Therefore, all controls are positioned and sized in the correct way,
radio-buttons come in their correct grouping, and marked out handlers are created
for each button.

The generated screen classes inherit from their own customized class as well.
This class establishes all the necessary Android technology to allow the swapping
of the screens inside the app. The swapping itself is done with the simple method
call changeToScreen (Screen..), which expects any form of a Screen object to swap
the interface to. If connections for buttons or gesture listeners were already defined
in the design tool, such Screen objects are automatically generated. Now, the
programmer can simply address the user controls that are present on the screen with
simple getter and setter calls of the screen’s member variables.

The experience made with novice programmers using the class structure to
implement their prototype ideas was promising. This is related to the workshops
that were conducted with school kids, to the programming efforts that were
undermined by the Telekom designer, as well as the design student that employed
the technique in developing a pedillac booking app.

4.3.3 Implementation of the Testing Tool

Generally speaking, all Android applications are written in Java. However, Android
apps have to take into account a number of specific factors that derive from the
mobile devices they are ran on. Therefore, Android includes a number of tech-
nologies that do not occur in normal Java applications but are specific to the
Android environment. Consequently, Android applications are not ran in the
standard Java Virtual Machine (JVM), but are interpreted in an Android specific
Virtual Machine, called Dalvik VM. Binaries compiled for the Dalvik VM are
stored in the Android specific DEX-jar format.

The exchange between the Blended Prototyping components that are involved in
the prototype testing is established in two different ways. Where files between the
prototype generation and the test server are shared via the file system, the exchange
between the test server and the testing app is done via the Internet, using secured
HTTPS connections. Using this well-established protocol opens the system archi-
tecture to further developments and adaptions.

86 4 Blended Prototyping—Design and Implementation

Controlled by two CSV setup files, the test server carries out all necessary tasks
for the evaluation session management, prototype distribution, and user interaction
logging storage. In addition to that it offers standardized ways to invoke server side
prototype functionality.

The planning of user studies is done in simple CSV tables, where user cre-
dentials can be entered and allocated to the prototypes the user is meant to test.
I decided to use CSV files for this task and not to implement a similar system in a
database, because this way, the whole study management is aggregated in a single
file that can be shared and distributed by the development team members, for
example by sending it by Email, or copying it onto an USB stick.

Participants of studies download and install the test client on their Android
device, which will then download prototype binaries from the test server. The test
app captures all the users’ input commands, and the controls the user interacted
with, along with a timestamp. This data is continuously stored in a SQLite database,
held locally by the app on the mobile device.

When the network conditions of the mobile device are stable, this data is
uploaded to the test server for later analysis. A continuous upload of interaction
commands to the server risks the slowdown of the user interaction. User interaction
logging data is stored on the server in serialized SQLite files, as well as in CSV files
that allow for an easier further processing of the data by the users.

4.4 Discussion of the System Implementation

The Blended Prototyping approach is developed as an answer to the third research
question, postulated in Sect. 2.5 above:

RQ 3: Is it possible to create a new prototyping approach for mobile UIs, which
adapts the full advantages of the paper-based prototyping approach, and
at the same time adapts advantages of high-fidelity prototyping approaches
to produce mixed-fidelity prototypes? Such a system should meet the
following motives:

– create a platform for interdisciplinary teamwork
– provide an approach that supports creative work
– provide an approach that is easy to learn
– facilitate the advantages of the physical use of pen and paper
– facilitate the advantages of the abstraction that are inherent to paper sketches
– deliver quick prototype results
– blend the paradigms of throwaway and evolutionary prototyping, and allow

reusable programming of extended prototype functionality
– support on-device tests to allow even large-scale user tests in the real-use

context that take into account device related usability problems.

4.3 Design Decisions in the System Implementation 87

http://dx.doi.org/10.1007/978-3-319-53210-3_2

The concept of Blended Prototyping was developed and transferred into a
working prototyping platform, which can be used to create mixed-fidelity proto-
types in a new process. The approach aims to adapt the advantages that are fre-
quently ascribed to the method paper-based prototyping, and at that same time
allows to create prototypes that are run directly on the target device. For this it
facilitates a new design process, which uses a tabletop computing system to develop
prototypes on the basis of paper-sketches. Within this design process functionality
can be defined for the prototype design, which manifests itself in the definition of
user controls. Moreover, the approach supplies simple-to-use processes that allow
for additional programming of user interface behavior. Since this programming is
done in the programming language that is native to the Android platform, prototype
code created in this fashion can be re-used for further prototype advancements and
in the later programming of the final product itself. This way, the approach blends
the advantages of a throwaway prototyping approach on the basis of paper with the
strength of an evolutionary prototyping approach, that uses the same tools for the
prototyping, as for the later product development.

The Blended Prototyping design process is based on a tabletop-computing
environment that is targeted to create a platform for interdisciplinary teamwork. It
is a common habit to have collaborative discussions at a table, where a group can sit
together, look each other in the eye and directly share information. In a way, tables
are the natural habitat of collocated collaborative work. For this reason, as described
above in Sect. 2.4, many group-work oriented technical applications have been
developed, that use tabletop-computing systems and interactive surfaces as the
center of their human-human-machine interaction. In contrast to this, in the col-
laborative use of desktop computer systems, only one of the users has control over
keyboard and mouse, and holds the power to control the application. As Cook and
Bailey [36] point out, this gatekeeper effect oftentimes results in a lack of moti-
vation at the other team members, who easily feel isolated from the design process.

However, even in computer systems that use technologies like tabletop-computing
systems, an inherent risk exists to disturb the users’ discussion and exchange with
computer interaction tasks that demand too much concentration. For this reason,
Blended Prototyping aims to provide a natural use context that is hosted on a regular
table, where the design is focused on regular pen and paper. Designers are free to
create and discuss their sketches with close to no system interaction, regarding the
system more as a normal table with a bright lamp above it. Each system interaction
step, like the photographing of the sketches, or the definition of controls, is designed
under the premise to be quick to use and not to distract the user too much from the
actual group design process. Moreover, only interaction processes were included in
the design tool, that had a very low error rate. A system that misunderstands the
commands is annoying and will surely interrupt productive processes. Therefore,
high-tech ideas that might be cool but are hard to implement in a solid way, were
always discarded. For example, this concerns experiments with techniques that
establishmulti-touch input on the table surfacewithMicrosoft Kinect spatial cameras.

Distracting the design teams as little as possible in their doing is an important
criterion in the attempt of Blended Prototyping to provide an approach that

88 4 Blended Prototyping—Design and Implementation

http://dx.doi.org/10.1007/978-3-319-53210-3_2

supports creative work. As pointed out above in Sect. 2.4.2, creativity is the result
of complex, high-level cognitive processes that are investigated by a number of
research domains’ [133]. It is much harder to tell what factors facilitate creativity,
than to make clear what factors are likely to hinder the development of creativity.

As Jim Blinn [24] points out, for creativity to happen it is important to have the
ability to create a certain degree of chaos. Such chaos is the basis for sorting out
ideas that are promising to deliver valuable results. It is important for a tool to allow
creative chaos by giving its users the freedom to do and create whatever comes to
mind. For this freedom of design, the physical use of paper and pen is an excellent
basis, users are usually well accustomed to. In contrast to most computer software,
paper will not distract users with error messages, or annoying dialogs that ask for
property specifications. Moreover, paper is well suited to meet the four require-
ments Ben Shneiderman is addressing towards tools that are meant to support
creativity: to support exploratory search, enable collaboration, provide rich his-
tory-keeping, and allow to design with low thresholds, high ceilings, and wide walls
[137].

The design-tool of the Blended Prototyping platform operates an overhead
projected tabletop-computing environment, where regular paper-sheets are used to
create prototypes on the basis of hand-sketches. Therefore, the approach facilitates
the advantages of the physical use of pen and paper. When physical sketches are
converted to a digital version, their content is projected onto paper-screens, where
additional drawings can be added to the sketches. This preserves the advantages of
physical sketching, even after the first digitalization steps. Therefore, the designers
can still benefit from the quickness of hand sketching as well as its improved ability
to communicate ideas to other team members.

As pointed out in Sect. 2.3.2, using hand sketches on paper as the central
instrument of design, the approach aims to facilitate the advantages of the
abstraction that are inherent to paper sketches. This abstraction has its primary
strengths in communicating the idea to other team-members, as well as asking the
most relevant questions in the prototype testing. To adapt these advantages, the
design process of Blended Prototyping is focused on physical hand sketches on
paper.

However, in the running prototype, some elements of the user interface are
substituted with high-fidelity controls. As described above in Sect. 4.2.4 this is the
case for those controls that need to provide users with a visual feedback, like
checkboxes or text fields. The decision not to use prepared sketch-like looking user
interface elements was motivated by the risk, that such predesigned sketch-like
design is likely not to match the sketching style of the rest of the prototype and can
therefore confuse overall prototype design. The situation is different for those user
controls that do not need to provide instant visual feedback, like buttons or gesture
listeners. Here, to preserve the abstract sketch design, invisible active areas are used
rather then high-fidelity presentations of the controls.

The Blended Prototyping is designed to provide an approach that is easy to
learn. In its design-tool the approach focuses on a paper sketched design of user
interfaces, which in itself is very easy to learn, as displayed in detail in portraying

4.4 Discussion of the System Implementation 89

http://dx.doi.org/10.1007/978-3-319-53210-3_2
http://dx.doi.org/10.1007/978-3-319-53210-3_2

the paper-based prototyping approach above in Sect. 2.3.2. Controlling the system
with the tablet device app should not require extensive reading. The app uses
interaction techniques that are widely applied in other mobile apps, like an action
bar to trigger commands, a side-side drawer to switch between different screens, or
touch and drag gestures to position and size controls on the screens. However, the
ordinary tool user will likely have no profound experience in interacting with
physical objects to control a tabletop-computing environment. Therefore, for the
use of the low-fidelity methods, the user will need a short introduction. To give the
users a better orientation using the low-fidelity tools, visual feedback with figures or
texts is provided to the users.

To create prototypes in Blended Prototyping, two alternative processes are
available.

The automatic prototype creation is done without further action of the user.
However, the manual prototype creation process requires the programming of
additional code. Here, specific classes were created to simplify the code editing as
much as possible. Basic Java knowledge should be sufficient to implement basic
prototype behavior.

In the module for the prototype distribution and testing different measures have
been implemented, to simplify the process: User-studies and user access rights can
be handled simply by editing a CSV file and the usage data generated from tests is
automatically stored at the test server in a format that is easy to process in the
further statistical analysis.

The requirement to deliver quick prototype results is regarded in different
aspects of the system design. First, as discussed above in the analysis, as well as in
Sect. 2.4.3, focusing the design process on physical paper sketches yields fast
design results. Second, the prototype creation process is designed under the premise
to deliver fast results. Apart from supplying a process for the automatic creation of
prototypes, the manual editing of code is simplified to an extent where it should be
able to deliver fast results as well. Finally, as described in the previous paragraph,
testing the prototype requires close to no time investment.

As displayed in detail above in Sect. 4.2.3, the developed approach blends the
paradigms of throwaway and evolutionary prototyping, and allows reusable pro-
gramming of extended prototype functionality. When editing code for the prototype,
some techniques that are specific to the Android platform are ignored. This makes
the code editing easier, however, when programming the final product, such
technologies need to be regarded. Apart from that, since the programming is done in
the language native to Android, the programmed code can be reused to a large
extent. Therefore, Blended Prototyping can be used in an evolutionary prototyping
manner. However, at a certain point in time of development process, a switch to the
standard development tools that allow a truly flawless evolutionary prototyping
should be made.

Regarding the last requirement listed in the design objectives, Blended
Prototyping allows on-device tests even with large-scale user tests in the real use
context. As described above in Sect. 4.2.4, the prototypes generated with the
approach are tested directly on the mobile device and a technical infrastructure is

90 4 Blended Prototyping—Design and Implementation

http://dx.doi.org/10.1007/978-3-319-53210-3_2
http://dx.doi.org/10.1007/978-3-319-53210-3_2

deployed that includes processes for the user-management, prototype distribution,
and logging of usage data. Therefore tests with larger numbers of users can be
executed without a considerable effort.

Prototypes developed with this approach can uncover device related usability
problems with respect to most of the external effects pointed out in Sect. 2.4.1.
However, since Blended Prototyping concentrates on creating mixed-fidelity pro-
totypes based on paper sketches, limitations lay in the production of user interfaces
with particularly dynamic content.

The judgment of many points in the analysis above is made on the basis of
comparisons to other approaches and estimations. To verify these considerations,
the system needs to be evaluated. A first feedback to the system concept was
generated in an expert rating, described above in Sect. 3.2.3. An evaluation of the
system performance is done in a comparative user test, which is described in the
following chapter.

4.4 Discussion of the System Implementation 91

http://dx.doi.org/10.1007/978-3-319-53210-3_2
http://dx.doi.org/10.1007/978-3-319-53210-3_3

Chapter 5
Comparative Evaluation of Blended
Prototyping

This chapter displays the comparative evaluation of the Blended Prototyping
approach with two other tools. For this, first the choice of the compared reference
tools is explained. Then, in the second section of this chapter, the most important
performance indices for the comparative study are identified from the catalog
created in Chap. 3, and assessment methods for these indices are discussed.
Followed by that, in the third part of the chapter, the execution of the evaluation and
its results are displayed. In the final and fourth part of the chapter, the results are
further investigated in a short discussion.

5.1 Choice of Comparative Prototyping Tools
for the Evaluation

The performance of a prototyping tool can only be tested and judged in comparison
to other tools. In the choice of suitable reference tools, it should be taken into
account that the selected tools are developed for a similar purpose and application
context. The tools should therefore be targeted to be used in similar development
stages and have comparable design objectives.

As displayed above in Chap. 4, Blended Prototyping was developed under two
general design objectives: (1) to put developers into a position, where they could
yield testable prototypes as early, easily, and fast as possible, and (2) at the same
time be able to form the prototype as complex as needed to answer the exact
questions they have in mind.

Therefore, to evaluate Blended Prototyping, two reference tools were selected
that each specifically addresses one of these two requirements. As described above
in Sect. 2.1.2, the method of PBP is praised for its advantage, to deliver fast
prototypes that can be tested with users without much effort. Further, the ease of
applying the method is often underlined. It focuses the design process to the use of

© Springer International Publishing AG 2017
B. Bähr, Prototyping of User Interfaces for Mobile Applications,
T-Labs Series in Telecommunication Services,
DOI 10.1007/978-3-319-53210-3_5

93

http://dx.doi.org/10.1007/978-3-319-53210-3_3
http://dx.doi.org/10.1007/978-3-319-53210-3_4
http://dx.doi.org/10.1007/978-3-319-53210-3_2

hand sketches, a technique that is applicable for pretty much everyone without
further training. This line of argument is supported by experience made with the
PBP method for many years [140]. Therefore I chose PBP as a reference tool for the
first general design objective of the Blended Prototyping approach.

As for the second goal of the approach, to supply a tool that allows enough
complexity in the prototype to be applicable in later design stages as well, standard
IDEs might seem as appropriate reference tools. Such tools are usually used in the
programming of the later product; consequently, functions of all complexity levels
could be regarded with such tools in the prototype. However, the use of such tools
requires profound programming skills and is too cumbersome in early design
phases, where prototypes of reduced complexity should be produced in a fast
manner. As portrait above in Sect. 4.1.2 the tools currently available that come
closest to the possibilities of the mighty standard IDEs, but at the same time focus
on a fast and easy creation of prototypes, are tools like Axure, Mockflow, or
justInMind. Therefore, to select a reference prototyping tool that fulfills the second
overall design goal of Blended Prototyping I decided to use one of these proto-
typing software tools. In the end, the choice fell to Axure for being a widely used
commercial prototyping and mockup software, which bases its prototype design on
the layout of different single screens that can be connected to one another with
buttons and other controls. Small program snippets can be produced in Axure,
either manually of with the help of dialog builders, with which the complexity of
the prototypes’ function is progressed. This way, the tool allows for more complex
prototypes, but at the same time has a low entrance barrier to be learned and applied
even by novice users. Moreover, unlike Modckflow and justInMind, Axure grants
free software licenses to university research and teaching projects.

5.2 Identifying Performance Indices for the Comparative
Evaluation

5.2.1 Identifying Candidates from the Requirements
Catalog

Above in Chap. 3, a catalog has been developed that ranks the most important
requirements towards mobile app prototyping tools with respect to different
development stages. The catalog points out a set of 16 requirements that were
evaluated with experts, and in addition to that includes 5 supplement requirements
that were suggested by the experts. This catalog can now be used as a basis for the
evaluation of the Blended Prototyping tool, in comparison to the two other
approaches identified in the previous section.

Blended Prototyping provides mechanisms to develop testable prototype designs
as early as possible. At the same time, it offers techniques like the inclusion of
reusable programming code that support the development of more complex

94 5 Comparative Evaluation of Blended Prototyping

http://dx.doi.org/10.1007/978-3-319-53210-3_4
http://dx.doi.org/10.1007/978-3-319-53210-3_3

prototypes as well. This way, the approach primarily addresses early to middle
design stages of app development projects. The search for the most relevant per-
formance indices of the comparative evaluation should therefore consider primarily
those requirements from the catalog that were rated to be most important for these
stages.

Table 5.1 shows a list of the requirements derived in the expert review, sorted by
their mean importance for prototyping tools in very early, early, and middle design
stages. The last five entries of this list display the suggested categories, which mean
value cannot be compared to the above requirements, since few or no experts gave
ratings for the suggested categories.

Ratings were done on a 5-point likert scale, ranging from 1 = “unimportant”,
2 = “rather unimportant”, 3 = “middle important”, 4 = “rather important”, to
5 = “very important”. In the following discussion of most suitable requirements for
the user study, primarily the most important requirements are considered.

The classification in most important and less important requirements for the first
three development stages was done in two-step proceeding. First, I decided to
divide the list into those requirements that ranked 3.3 or better, and those that
ranked 3.1 and lower. The value 3.1 is close to the rating value 3, which indicates a
middle importance of the requirement.

Table 5.1 Requirements with mean relevance for very early to middle phases

Requirement Mean (v.e − middle)

Getting quick prototypes 4.3

Collocated group work 4.2

Freedom of creativity and design 4.1

Simultaneous tests of different ideas 3.9

Support of expert reviews 3.6

Support of design reviews 3.4

Tests in the real use contexts 3.3

Reusable programming code 3.3

Remote group work 3.1

Reusable prototypes 3.1

Easy setup and distribution of user-test 3.1

Independent parallel development of designs 2.9

Use of animations 2.8

Advanced functionality of a prototype 2.7

Tests on different platforms 2.5

Tests with a large number of test users 2.3

Fun factor (n = 1) 5.0

Usability of the tools themselves (n = 2) 5.0

Compatibility of the tool with different platforms (n = 1) N/A

Open source availability (n = 1) N/A

Tutorials and help for the tool (n = 1) N/A

5.2 Identifying Performance Indices for the Comparative Evaluation 95

As a second step, I investigated the list of lower rated categories, to make sure
that it does not contain requirements that might be rated highly in single phases of
regarded timespan. The highest single values were found for the categories reusable
prototypes and easy setup and distribution of user tests, that were both rated 3.4 for
middle development stages. I judged the rating of 3.4 in a single phase to be not
high enough to justify a categorization into the most important requirement
dimensions.

Consequently, the following discussion in Sect. 5.2.3, on whether and how to
apply the most important requirements in the user test, the first eight of the properly
evaluated requirements listed in Table 5.1 are regarded. As for the suggested cat-
egories, which were only rated by a limited number of experts, the categorization
described in the paragraph above cannot be applied. Therefore the application of
each of the five suggested categories is singularly discussed.

5.2.2 Considering the Type of Evaluation Method

The most important requirements for early to middle design stages shown in
Table 5.1, can solely be measured in evaluations that survey the practical appli-
cation of the tools. Especially for the investigation of requirements like the collo-
cated group work or the freedom of creativity and design a tool application study
seems to be the only feasible approach.

Another important factor that has to be taken into account is the timespan
sufficient to the evaluations. Creativity is a complex cognitive process that does not
necessarily work within the flick of a finger. Creative processes in teams tend to
complicate the matter even further. Beside that, the investigation of a prototyping
process cannot ignore the analysis of the prototype outcome and testing. In case of
the PBP approach, where tests sessions involve a lot of manual manipulation by the
design team, a prototype result can only be judged in an observation of the test
session.

To compare the application of different prototyping approaches by teams that
work for a reasonable period of time, a long-term observation of the tool use in
practice is a possible approach. In such a study, a professional mobile app devel-
opment company could be visited that uses the selected prototyping tools in their
design process. The big advantage of this approach is that the design sessions could
be observed throughout multiple iterations that might span weeks or even months.
Taking this evaluation approach into consideration, I asked some of the experts I
got to know during the expert reviews described in Chap. 3. From a couple of them
I received positive replies to try out the Blended Prototyping approach in practice.

However, I decided to conduct a comparative user study, rather than evaluating
the tool in a long-term real application context. The real-work observation has the
big disadvantage of not allowing for the controlling of a number of important
factors. For example I hardly would have had the power to dictate, which members

96 5 Comparative Evaluation of Blended Prototyping

http://dx.doi.org/10.1007/978-3-319-53210-3_3

should work in a team, what prototyping tasks the teams must address, or when and
for how long which tool must to be applied.

These factors however need to be controlled for a clean comparative evaluation
with performance measures. For this reason I decided to conduct a constructed user
study with paid test participants that work in allocated groups, on given tasks, for a
controlled amount of time, with each of the selected prototyping tools. This allowed
for a within-subject evaluation, where each participating group worked sequentially
with each tool.

Long-term practice studies are a good and necessary means to observe the
prototyping process throughout multiple iteration phases. They are without alter-
native when it comes to analyzing the long-term use and succession of different
prototyping techniques throughout the development cycle. For a comparative
evaluation between different prototyping tools with respect to the key performance
indices identified above, however, a constructed user-test is to be preferred.

5.2.3 Discussing Assessment Methods for Identified
Requirements

In the previous text the choice of the surveyed prototyping tools was explained,
important requirements for the comparative evaluation at earlier design stages were
identified, and the decision for a controlled user study as the most suitable evalu-
ation method was described. In the following all requirements that were identified
to be relevant for very early to middle phases are discussed with respect to their
application in the outlined user study approach. This discussion involves the
explanation of methods that can be used to assess tools in accordance to the
requirements. For those requirements that cannot be investigated in the planned
user-study an analysis is conducted on how the surveyed prototyping tools fulfill
the requirements on the basis of objective factors.

The discussion regards all 8 categories that were evaluated to be at least of rather
high importance for very early to middle design stages. Since no comparable ratings
for the relevance of the categories suggested by experts is available, the discussion
furthermore considers each of these requirements as candidates.

1. Getting Quick Prototypes

Many authors in related work concentrate their efforts on the improvement of speed
in single tasks of the prototyping process [1, 15, 154]. The success of such
improvements is measured in comparative user tests, where the time needed to
fulfill a certain interaction task is recorded.

The procedure of task time measurement can be used to investigate the whole
prototyping process as well. However, here one issue needs to be reflected upon:

The time it takes a design team to complete their solution does not solely depend
on the characteristics of the used tool, but on the character of the solution they find

5.2 Identifying Performance Indices for the Comparative Evaluation 97

and produce. More complex or detailed solutions will naturally take more time to be
implemented into a prototype than simpler ones.

It is possible, to exclude creative aspects from a given prototyping task to a large
extent, for example by requesting participants to implement a prototype according
to presented app screenshots. This way, the role of creativity in the solution process
is reduced as far as possible and the prototype results are much easier to compare.

However, this reduction of the creative complexity of the design task makes it
impossible to investigate, to which degree a design tool is able to benefit the
ideation process.

The process of developing an idea into a prototype can be illustrated in three
sequential steps: Getting the idea regards the first step, where an interface idea
comes to a designer’s mind. It is then substantiated in a way, where ways are
explored on how to put the idea into a suitable design. Here, the idea is expressed in
a suitable design, which regards the user interaction within the interface. For this,
usually simple hand sketches are used. Now, the tools of the applied prototyping
approach are used, to transfer the concrete interface idea into the prototype. The
steps of this process are iterative and are not always gone through sequentially. In
the process of putting an idea into reality, oftentimes issues occur that need initial
reconsolidation. When it comes to testing prototyping tools within user tasks, the
first two steps of this process are hard to control. They are highly dependent on the
test subjects’ initial idea and motivation to transfer into a detailed prototype.

As displayed repeatedly in Chap. 2, different authors [31, 86, 138, 140, 154]
point out that tools have a big impact on the ideation and creativity process. Many
tools aim to merge the steps of ideation and production to facilitate an improved
hands-on experience with ideas already in the process of their development. Beside
that, the expert survey described in Chap. 3 identifies the ‘Support of creativity and
design’ as a key requirement that is of high importance for a development tool
especially in early design phases. Therefore, ignoring ideation and creative aspects
of the design process, to receive better comparable time measurements, does not
seem to be the right approach.

Measuring the tools’ ability to deliver quick prototypes should therefore be
based on user tests with design tasks that include creative aspects. Here, the dif-
ferences in the produced prototype results can be used as a performance measure, if
the time granted to the participants for the design task is controlled. This way, the
measurement of the tool’s ability to deliver quick prototypes is expressed in ana-
lyzing the tools’ time efficiency.

Figure 5.1 shows the connection of the two major factors that determine the
prototype result of such a user test. It assumes that the created prototype is
dependent on the individual performance of the test subjects working on the task, as
well as the tool ability. Since the goal of the experiment is to solely measure the
second of these factors, the subjects’ performance should be leveled out. Therefore,
the grouping of teams that perform the study should be done under the premise to
establish a comparable skill level between the participating teams. Besides that, a
within-subject experiment design, where each team tests each of the methods, helps
to balance out the individual effects.

98 5 Comparative Evaluation of Blended Prototyping

http://dx.doi.org/10.1007/978-3-319-53210-3_2
http://dx.doi.org/10.1007/978-3-319-53210-3_3

On the basis of the assumption that the individual team performance can be
balanced out in that way, differences in the prototype result are able to show the
direct influence on the time-efficiency of a prototyping tool. In other words, the
tool’s time-efficiency can be determined from the overall quality of the prototype
result. The assessment of the quality of a prototype is best done with experts with
experience in mobile app design and development. On the basis of their personal
experience they are able to judge the prototypes’ success to fulfill different aspects
of prototype goals. As displayed in Fig. 5.1, the subscales design, imaginativeness,
level of maturity, level of insights, worth of promotion are used to differentiate the
question on the overall prototype quality. The selection of theses subscales is based
on the prototype information goals described above in Sect. 2.1.2. Consequently, in
this proceeding not the quickness but the time efficiency of the prototyping tools is
measured.

For the reason to regard the ideation process in the investigation of the proto-
typing tools’ time-efficiency, the analysis of the user test described in this chapter
will be based on judgments derived from expert ratings.

2. Collocated Group Work

The investigation of the work with the involvement of computer systems is a
complex and distinct field of research. There is a lively debate about the evaluation
of collaborative work in the CSCW (computer supported collaborative work)
community.

On the one hand, the discussion regards objective measures, which are used to
judge the collaborative performance of study groups by an external rater on the
basis of observations. On the other hand, self-reporting instruments are discussed,
which are questionnaires or interview guidelines to generate data on the subjective
opinion of subjects that participated in a group work task.

The objective approaches to assess collaborative work distinguish themselves in
the degree to what the rater has to interpret the observations. Approaches with a low
depth of interpretation reduce the responsibility of the rater to count the occurrences
on specific effects that indicate collaborative interaction. Related work shows a
number of such approaches, however, they usually focus the evaluation of single
aspects of collaborative work. For example, Wallace et al. [155] or Takano [147]

Prototype Result

individual team performance

tool’s ability to deliver fast prototypes

prototype imaginativeness

prototype design

level of maturity

est. level of generated insights

worth of further investment

Fig. 5.1 Measuring the time-efficiency of a prototyping approach on basis of delivered results

5.2 Identifying Performance Indices for the Comparative Evaluation 99

http://dx.doi.org/10.1007/978-3-319-53210-3_2

investigate metrics that are primarily related to aspects of communication,
Hornecker et al. [64] investigate awareness, and Gutwin and Greenberg [55] focus
on the coordination between the collaborators.

In an attempt to combine different subscale criteria to a general assessment
framework, I used a taxonomy by Dickinson and McIntyre [43], which explains
collaborative work as a combination of the different factors named above. The
taxonomy was used to allocate different related work to the factors, which provided
metrics to measure single aspects of collaboration. The result of this work was a
coding-scheme that broke down the investigation of collaborative work to a long
list of countable events.

This scheme was tested and adjusted in four iterations with test raters that
applied the tool in assessing test videos of design sessions. Although the scheme
was iteratively refined, no sufficient consistency between the test ratings could be
yielded. For this reason, I eventually discarded the approach. The last version of the
development can be found as Appendix B.1 attached to this work.

An existing evaluation scheme can be found in a tool called OTAS. The tool is
widely used, though not in the field of human computer interaction but in medical
research. OTAS, an abbreviation for Observational Teamwork Assessment for
Surgery, is an instrument to assess the quality of teamwork in medical surgery.
OTAS follows an approach, where more responsibility is put into the hands of the
coders. Here, they do their ratings in the aggregated categories Team Orientation,
Team Leadership, Communication, Awareness & Monitoring, Feedback Behavior,
Backup Behavior, and Coordination. An OTAS coder is to be trained carefully to
get a profound understanding on the meaning of the single categories. In the actual
ratings, she judges a group work session with solely one value for each of the
subscales. More exact reasons for the single ratings can therefore not be recon-
structed after the assessments.

The OTAS scheme asses team work in nearly the same categories like the
reference model of Dickinson and McIntyre [43], which I used as a basis in my
attempt to create a self made objective coding-scheme (see Appendix B.2). The
metric is well applicable in post-session video analysis and therefore qualifies for an
application in the analysis of the comparative prototype tool evaluation.

Different subjective self-reported measures on teamwork are found in the field of
CSCW research, however, mostly they are targeted at specific collaborative tasks.
Sauppé and Mutlu [129] developed a well adapted questionnaire that can be used to
assess different forms of collaborative work. The approach analyzes collaborative
work with a questionnaire that records in different dimensions, which include
aspects on the interpersonal relationship among the members participating in the
teamwork as well. The result of teamwork can be highly affected by such factors. If
persons who do not like each other at all have to work collaboratively in a team-
work task this oftentimes reduces their motivation, which will reduce the quality of
the generated outcome [129]. In detail, the questionnaire surveys teamwork
(7 items, Cronbach’s alpha = 0.811) and collaborativeness (4 items, Conbach’s
alpha = 0.701), along with factors on the interpersonal relationship between the
team mates, which rapport (24 items, Cronbach’s alpha = 0.920), empathic

100 5 Comparative Evaluation of Blended Prototyping

concern (7 items, Cronbach’s alpha = 0.764), perspective-taking (7 items,
Cronbach’s alpha = 0.820), interpersonal solidarity (14 items, Cronbach’s
alpha = 0.774), and homophily (9 items, Cronbach’s alpha = 0.812).

The questionnaire by Sauppé and Mutlu provides a good approach to measure
the self reported group work in the comparative tool evaluation. Its interpersonal
factors can be used to make sure that interpersonal antipathies do not falsify the
measured prototype outcomes.

3. Freedom of Creativity and Design

To measure the capability of a tool to facilitate freedom of creativity and design in
its work process, an investigation of the idea generation process or an analysis of
the level of creativity in the design outcome could be possible.

As creativity is a high-level cognitive process [30], for the analysis of the
creative process cognitive models would have to be applied that are able to classify
and measure the creative thinking of designers. Such a level of understanding of the
ideation process does not exist [85, 158]. Of course, it could be possible to ask
participants of a design process to protocol their creative thinking in a think-aloud
method. However, as Dorst and Cross [46] point out commonly agreed upon
methods to analyze such protocol data does not exist. Therefore, I discarded the
idea to measure freedom of creativity and design from an analysis of the design
process.

For the analysis of creativity on the basis of the resulted outcome, different
approaches exist. Hilliges et al. [60] analyze the creativeness in the use of a
brainstorming application by counting the number of ideas generated by the users,
as well as the quality of the ideas, rated on subjective judgment. However, the sheer
number of created ideas might not be a well applicable approach for the planned
study. Where it is the goal of a brainstorming process to create as many ideas as
possible, in the prototype development task given in the planned study, the design
teams are asked to implement the ideas in a given task, wherefore a brainstorming
phase happens but is limited in time. A widely used approach by Shah et al. [133]
suggests the measurement of the ideation novelty. This novelty score is calculated
on basis of the number of ideas a certain design group generated as the result of a
creative process, and puts it into relation of the number of occurrences of the same
idea in the work of other groups.

4. Simultaneous Tests of Different Ideas

The simultaneous test of different ideas has different advantages. Parallel tests
provide reference points, both, for the rating of an approach and the interpretation
of the measured performance. Furthermore, e.g. Snyder [140] underlines that the
parallel development and testing of different design alternatives at the same time,
makes it easier for design teams to be ready to discard ideas that do not perform as
well as planned. Moreover, Dow et al. [47] report findings, that developing for
simultaneous tests of different ideas encourages more dissimilar designs and in fact
produces a higher quality prototype outcome. Besides, they found that a simulta-
neous design and test of different prototyping alternatives yielded in increased

5.2 Identifying Performance Indices for the Comparative Evaluation 101

self-efficacy of the development teams, whereas those who tested their prototypes in
a serial way one after another were more likely to get frustrated.

The ability of a tool to promote the simultaneous testing of different ideas
depends on different factors. The speed with which prototypes can be created and
altered is certainly an important factor.

Furthermore, the prototype test processes should enable an easy setup of com-
parative tests. The testing of the factor in a user test as demonstrated by Dow et al.
is possible, who hired experts to provide initial feedback on the different prototype
results tested. In the conceived comparative study this proceeding would prolong
the study execution time to an unacceptable extent.

In the outlined experiment, user groups will have to work under a
time-constraint. This means, that the users will have to take the decision whether to
develop one more advanced idea into a prototype, or to develop different approa-
ches of less complexity. In the tests it will be left open to the participants, which
tactic they like to choose. Explicitly asking users to develop alternative approaches
would reduce the single prototypes functionality, wherefore other metrics like the
time-efficiency are hard to measure.

5. Support of Expert Reviews

Expert reviews, like the cognitive walkthrough or heuristic evaluation, are analyt-
ical inspection methods where domain experts apply a pre-defined systematic to
evaluate a product.

For judging the ability of a tool to support expert reviews, data needs to be
gathered from applying the development tool and its delivered prototypes in expert
reviews. As metrics for the success of the tool, standard usability questionnaires can
be applied, in which the experts can report their experience with the applied pro-
totyping method. An objective figure could be to measure the time needed to
conduct a certain heuristic evaluation. As a measure for the overall success of an
expert review, another important test criteria should regard the number of usability
problems identified by the expert reviews.

As pointed out above in Sect. 5.2.2 I decided to conduct the comparative
evaluation within a user study, where participants fulfill creative prototyping tasks
in teamwork. Furthermore, I decided to request the test participants to conduct a
prototype test session, to provide a basis for the later analysis of the prototype
results. Especially paper-prototypes can hardly be judged without the observation of
their application in a test condition. In addition to this, as a part of evaluating the
prototyping-tools, expert reviews could be conducted to analyze the tools’ perfor-
mance for the support of expert reviews.

However, conducting expert review requires profound skills and planning:
Expert reviews should be well adjusted to the specific application, suiting heuristics
have to be identified, or exemplar person as need to be designed. Furthermore,
performing the expert review has to follow certain sets of strict rules that the experts
applying the methods need to be well aware of.

102 5 Comparative Evaluation of Blended Prototyping

The decision made above in Sect. 5.2.3 not to evaluate the prototyping tools in a
professional surrounding has the consequence that the level of expertise that the test
participants will provide will be limited.

As a consequence of the decision made above in Sect. 5.2.3, not to evaluate the
prototyping tools in the context of a professional company, it is hard to establish the
level of expertise of the participants of the comparative user-study at an expert
level. Paying experts for the participation of long enduring cross tool evaluations
exceeds the financial capabilities of my research funds. Therefore, I discarded the
idea to include expert reviews as a part of the comparative user-study.

However, considering the nature of the identified prototyping methods, a number
of clues regarding their performance in expert reviews can be identified. In expert
reviews, paper-based prototyping will likely have its strength in providing the
design as physical content. Dealing with paper to organize information comes
natural: sheets can be grouped paper piles to segment connected aspects of the user
interface, or they can be pinned and organized on large walls to provide a better
overview of the interface as a whole [86]. A clear disadvantage of the PBP
approach lays in the fact, that the user interface ‘cannot speak for itself’ without the
presence of someone who knows about the interface intentions. Therefore, expert
reviews with paper-based prototypes create more effort, and external experts are not
able to conduct a review on their own.

In contrast to that, a user or an expert uses digital prototypes independently.
Therefore prototypes created by Axure or Blended Prototyping can be explored and
evaluated by experts without the presence of development team members that
explain the prototype. Moreover, since the prototype runs directly on the target
device, expert tests in the wild are made possible that might help to identify
usability problems connected to mobile use contexts.

Axure prototypes can be printed out onto paper, where after they provide the
same materiality of paper prototypes and therefore adapt the described advantages
of a direct physical manipulation. However, in their printed version, Axure pro-
totypes fail to explain their functioning.

Using an overhead projected tabletop setup and physical paper, Blended
Prototyping combines the advantages of the low- and high-fidelity techniques
pointed out above. Here, the overhead-projection of the tabletop computing envi-
ronment is used to highlight functional aspects regarding the paper screens in the
spacious physical world of a table surface. This aspect might play out its strength in
the context of expert reviews as well.

6. Support of Design Reviews

Testing a prototyping tool’s ability to support design reviews can only be tested in
the application of the tool or its results in a design review. As pointed out earlier in
Chap. 3, design reviews are primarily an instrument for the communication
between the supplier and customer of a software development project. Whether or
not such communication works well, is to a large extent dependent on the

5.2 Identifying Performance Indices for the Comparative Evaluation 103

http://dx.doi.org/10.1007/978-3-319-53210-3_3

participants’ subjective perception. Hence, the assessment of this requirement can
only be done with real design review praxis tests and subjective quality
questionnaires.

The choice of the right tool to conduct a design review should not least be
depending on the specific customer. Some customers might feel irritated by the
simplicity and low development effort of a paper prototype, for others, who are
accustomed to the approach, the approach might be well suitable in early design
stages. After all, the use of prototypes in customer relations should always make
clear, which aspects of the prototype are implemented to what extend.

7. Tests in the Real Use Contexts

The requirement, that a prototyping tool should support testing of prototypes in the
real use contexts of the app, does not depend on the design process, but on the
character of the prototype result. Therefore, this requirement is not tested within the
tool-application study discussed in this chapter.

Different authors point out limitations of using the paper-based prototyping
approach in user tests in the field. Problems are mainly experienced in the obser-
vation of the test user and her input commands, wherefore the manipulation of the
presented prototype content cannot be performed appropriately. Beside that, mobile
paper-based tests tend to fail to create a use contexts that is perceived natural by the
test users, when they are followed by a group of observers trying to sneak over their
shoulder on every step that they take. Moreover, long-term prototype studies with
paper-based prototypes are hardly feasible. Such studies are however often very
relevant, since many mobile applications are used as a service: for a limited session
time only, but many times a day.

In contrast to that, Axure produces digital prototypes that can be ran and tested
directly on mobile devices. Therefore, test users can use and explore such proto-
types in the mobile context just by themselves. Even long-term tests can be easily
conducted, where a prototype is used every now and then but for a couple of days.

Unfortunately, Axure provides no mechanisms to automatically track and save
data on the prototype usage. This means that the feedback generated with Axure
prototypes is limited to the subjective reports of users after the testing. Statistical
analysis of quantitative data cannot be conducted. However, it is often of interest
for the designers to learn for example how often users accidently chose wrong paths
in the user interfaces, or how long they stayed on certain screens. The missing of a
logging feature is however not a problem inherent to the prototyping approach, but
is rather a feature that not provided in the current implementation.

Just like Axure, the Blended Prototyping approach produces digital prototypes
that are tested directly on the mobile device. Unlike Axure, however, it implements
a logging functionality that tracks each touch command of a user during a test.
Therefore, the exact interaction of a user with the prototype can be reproduced and
analyzed after the test. Moreover, the approach facilitates mechanisms that put
developers in a position were they can change the prototype assigned to a test user,

104 5 Comparative Evaluation of Blended Prototyping

literally seconds before the testing. This way, changes in the prototype can be
regarded in the testing without the users’ notice.

8. Reusable Programming Code

While the graphical design of user interfaces is nowadays typically created with
interface building tools that use a markup language, the behavior of a software
prototype is determined with programming code. The reusability of programming
code in a prototyping approach can refer to an instant reusability from one iteration
cycle to another, or to a long-term reusability in the programming code of the later
product.

In the planned user test, the reusability of code can hardly be investigated, since
the number of iterations in the prototyping process will be too limited.

The paper-based prototyping approach does not use programming code in a
typical way. In fact, programming languages that are compiled to machine code are
not used, since the ‘machine’ that is used in paper-based prototype tests is actually a
human being. However, in preparation of paper-based tests, written guidelines are
created that help the team member playing the role of the computer to respond
correctly to the possible test user input. Regarding such written scripts as the
programming code of the paper-based prototyping technique, allows for an analysis
about whether or not the programming code of the PBP approach is reusable.

Scripts used for the implementation of PBP tests do not regard each functional
aspect of the prototype equally, but are rather a collection of personal reminder
notes that help with the execution of particularly complicated points in the proto-
type. From one iteration cycle to another, such notes could be easily reused in the
parts that stay valid in the next iteration. However, for two reasons, such notes have
little to no value for the programming of the later product. First, the scripts do not
necessarily describe the interface function entirely, but are rather collections of
personal reminder notes that help with the execution of particularly complicated
points in the prototype. Second, since such scripts do not follow a formal standard,
they are likely to include notes that are incomprehensible for people other than the
author.

In the prototyping tool Axure, behavioral aspects are programmed into the
prototype with short code snippets, the execution of which is linked to specific
interface events like button clicks. Such programming code can be seamlessly
adjusted and reused from one iteration cycle to the other. The situation is different
when Axure code is reused in the later product, since Axure does not use a native
programming language, but a simplified Axure specific programming technique.
Hence, behavioral aspects of Axure prototypes have to be reprogrammed to a large
extent in the production of the product.

As displayed detailed in Sect. 4.2.3, Blended Prototyping uses Java classes to
determine the prototype behavior. Since Java is the native programming language
to the Android platform, code created in the Blended Prototyping process can be
principally directly reused in the programming of Android applications. As dis-
cussed in Sect. 4.2, to simplify the production of fast prototype results, Blended

5.2 Identifying Performance Indices for the Comparative Evaluation 105

http://dx.doi.org/10.1007/978-3-319-53210-3_4
http://dx.doi.org/10.1007/978-3-319-53210-3_4

Prototyping does not cover each Android specific programming mechanism. For
example, specific questions on UI fragments, resource management, or access rights
cannot be explored and solved in the Blended Prototyping process. Apart from that,
however, Blended Prototyping can cover even more complex programming sce-
narios, which might occur in developing the app’s interplay with servers, in apps
that are using the devices’ sensor infrastructure, or to try out and develop even
complex algorithms.

9. Suggested Categories

The requirement of an open source availability of the tool is a bipolar measure that
can be answered with a simple yes or no. The Blended Prototyping approach is not
available open source yet, but is planned to be published under open source licenses
after additional code reviews. As for the paper-based approach no license rights at
all exist for the method. The Axure software is a professional commercial tool
distributed closed source.

The compatibility of the tool with different platforms can be answered easily for
the three tools as well. Axure is available for Microsoft Windows and Apple
Mac OS, but not for Linux operating systems. Blended Prototyping runs inside the
Java VM, which is known for its compatibility with all major operating systems.
Adjustments to hardware drivers for employed cameras might be necessary, how-
ever, as displayed above in Sect. 4.3, the camera control algorithms use
open-source techniques that are available for Linux, Mac OS, and Windows sys-
tems. The paper-based prototyping approach is not bound to a computer, therefore
the requirement of compatibility to different platforms cannot be applied.

Tutorials and help for the tool are supplied for Axure within the software, with
forums on the publisher’s web page, and instructive videos available on YouTube.
Since paper-based prototyping is a common method, there is no official supplier
providing documentation. Nevertheless, detailed descriptions of the method exist
for example in the book of Snyder [140] that was referred to oftentimes in this
work, or in countless online tutorials. Currently, the help and documentation for
Blended Prototyping solely exist in a preliminary state. As a consequence, the
tutorials and help for the tools can currently hardly be compared.

As for the suggested requirement fun to use the tool, I decided to broaden the
scope of the figure and measure the user-experience. The ISO standard 9241-210
defines the user-experience as “a person’s perceptions and responses that result
from the user or anticipated use of a product, system ore service”. Therefore the
figure broadens the focus of the Fun of tool use and includes further criteria that
might be very relevant in using productive creative tools. A positive user experience
is as well capable to promote creative work [50].

The suggested requirements dimensions usability of the tool itself and user-
experience are closely related. Both dimensions are of key importance for the
research field of human computer interaction, are handled in the ISO 9241 standard
and are discussed in detail in countless scientific and practitioner publications.
Melting down the meaning of the terms into one sentence, usability refers to the

106 5 Comparative Evaluation of Blended Prototyping

http://dx.doi.org/10.1007/978-3-319-53210-3_4

ease of use and learnability of a product [108], whereas the user-experience con-
centrates on the emotions and attitudes a user-experiences in the interaction with a
product [112, 113]. For both fields numerous evaluation methods are described. Its
summary goes far beyond the scope of this work.

The metric I decided to use for the assessment of both, the usability and user-
experience of the surveyed tools, is the self reported questionnaire AttrakDiff by
Hassenzahl et al. [58]. The questionnaire combines the self-reported assessment of
usability and user-experience aspects of a tool on the scales pragmatic quality,
hedonic quality (in the subscales identification and stimulation), and attractiveness.
The questionnaire uses a set of 28 semantic differentials that assess different product
properties with antonyms like “good-bad” or “confusing-clear”. The sub scales of
the questionnaire are determined from different sets of these differentials. The
pragmatic quality of AttrakDiff can be translated to a self-reported usability mea-
sure. The hedonic quality, which is further divided into the subscales identification
and stimulation, are related to the perceived user-experience. The subscale attrac-
tiveness gives a summary of the overall quality of the surveyed tool.

5.3 Conducting the Comparative Study

As explained above, the evaluation measures effects that the use of different mobile
app development tools might have on the prototyping process and its results. The
study investigates how test users in groups use the three different prototyping tools
Blended Prototyping, Paper-based Prototyping, and the software Axure to create
prototypes for different creative tasks. To measure effects on factors like collabo-
ration and ideation processes, groups have to be involved in creative teamwork
sessions, where they work freely and independently on the app prototyping tasks.
Establishing a suitable surrounding for this creative group work to develop has to
take into account a number of different aspects. How do the creative tasks need to
be constructed? How much time is necessary, to allow for group ideation sessions
that deliver prototype results? Which prerequisites should the test subjects fulfill
and how should they be grouped in teams?

This section first explains the study design that was used for the comparative
evaluation along with a number of design decisions that were made to produce
creative teamwork prototyping sessions. Then the results of the evaluation are
presented, after which follows a discussion of the study results.

The development state of the Blended Prototyping approach when the user tests
were conducted was as described in Chap. 4, but excluding the low-tech definition
methods for the design-tool. Unfortunately, at that stage they did not provide a high
enough reliability to be used in a productive team scenario. Therefore, the users had
to control the tabletop environment with the described control app, running on a
tablet device.

5.2 Identifying Performance Indices for the Comparative Evaluation 107

http://dx.doi.org/10.1007/978-3-319-53210-3_4

5.3.1 Study Objectives

The main objective of the user study was to compare the performance of the
Blended Prototyping approach with the tools of Paper-Based Prototyping and
Axure. As criteria for the evaluation serve the requirements identified above in
Sect. 5.2. This regards the requirements about the time-efficiency in the prototyping,
collocated group work, freedom of creativity and design, usability, and user-ex-
perience. An extensive discussion on why the following methods to assess these
requirements were selected is found above in Sect. 5.1. To provide a better over-
view, the assessment methods are summarized here.

To include factors of the ideation process into the measurement, the requirement
of time-efficiency in the prototyping is not measured with a stopwatch, but on the
basis on the delivered prototype results. The rating of the results is done by external
experts, which do their rating on the five scales identified above.

The performance index collocated group work is assessed in two different ways.
For a self reported subjective perception of the performed group work the partic-
ipants report on a collaboration questionnaire developed by Sauppé and Mutlu
[129]. In addition to that, as an external measure of the group work the rating
schema OTAS is applied to rate recorded videos of all the study’s productive
prototyping sessions.

The freedom of creativity and design is measured as a part of the same rating of
the created prototype result, which is applied to measure time-efficiency of the
prototyping tools. For the rating of the performance to create free creative design
processes the scales look and inventiveness are used. Implicitly information can be
gained in addition from the measured results for generated insights and the like-
liness for a further investment.

In addition to that, the method introduced by Shah et al. [133] is used to assess
the novelty of prototype results, as an important factor of their ideation effective-
ness. This approach measures the inventiveness of prototype results by comparing
the appearance and scarcity of their features, created for task specific categories.

The usability as well as the user-experience of the tools are both measured with
the AttrakDiff questionnaire. As explained above, the usability is measured with the
questionnaire’s sub scale on pragmatic quality, whereas the user-experience is
investigated with the two sub scales that concern the measured hedonic quality.

5.3.2 Study Design

5.3.2.1 Test-Subject Acquisition, Pre-questionnaires
and Formation of Groups

Test subjects were mainly recruited from the university context. Bulletins were put
up widely across the campuses of the Berlin University of the Arts (UdK Berlin)

108 5 Comparative Evaluation of Blended Prototyping

and the Technical University of Berlin (TU Berlin). In addition to that, an online
test subject database of the former DFG graduate school prometei was used.

Though the use of a specific prototyping tool can have a strong effect on the
prototyping process and outcome, there are other factors to this result as well. To
actually measure the effect of the tool use, other factors with similar effects must be
controlled. One important of such factors is the individual level of skills of the
individuals forming the design group. To control this effect, study applicants went
through a pre-selection process, where their individual capabilities were assessed.
The formation of the groups then used the results from this pre-questionnaire as a
basis for an equalization of the average group capabilities. For the pre-assessment
three questionnaires were used, one containing general questions, a questionnaire to
assess the creative capabilities, and one to get an idea of the basic programming
knowledge of the applicants in the programming language Java.

The questionnaire applied to measure the applicants creative potential was based
on the Creativity Achievement Questionnaire (CAQ) developed by Carson et al.
[33]. The CAQ is a widely used tool in its domain, which is based on self-reporting
experience levels in a collection of 14 different creative domains. However, pretests
of the CAQ with friends and colleagues, for whose creative potential I had previous
experience knowledge, showed that the original question set of the CAQ was not
well applicable for the planned pretests.

The major problem about the standard CAQ laid in the differentiation of the
answer options for each category of creativity. For example the options offered for
the category Music are as follows:

0. I have no training or recognized talent in this area
1. I play one or more musical instruments proficiently
2. I have played wit a recognized orchestra or band
3. I have composed one original piece of music
4. My musical talent has been critiqued in a local publication
5. My composition has been recorded
6. Recordings of my compositions have been sold publicly
7. My compositions have been critiqued in a national publication

This differentiation makes clear that the CAQ addresses the assessment of a
professional creative background. In the conducted user study, however, not
domain experts, but mainly ordinary students were addressed as participants. Such
applicants would rather score between 0 and 2 of the scales, which makes a suitable
differentiation impossible. For this reason, I decided to adjust the scale to a level of
less expertise, as shown below, again for the category Music:

0. I have no training or talent in this area
1. I play music from time to time in my spare time
2. I play music regularly in my spare time
3. I took music lessons (beside school) for a longer period of time
4. I have played music in front of a public audience
5. I already earned money for playing music

5.3 Conducting the Comparative Study 109

6. Music is my profession
7. I earned awards for my music

A repeated test of the questionnaire with the adjusted scales, with same persons
as the first pre-test, delivered much better differentiated results between the sur-
veyed. A second adjustment of the standard CAQ was done with regard to the
applied categories of creativity. In the original CAQ version, these regarded visual
arts (painting, sculpture), Music, Dance, Architectural Design, Creative Writing,
Humor, Inventions, Scientific Discovery, Theater and Film, and Culinary Art. To
these categories I added two new ones, that are closer related to the tasks in the user
study: Application- and web design and Programming. The adapted CAQ used in
the group allocation process will be further referred to as the custom CAQ,
abbreviated with cCAQ.

To acquire previous knowledge about the applicants programming skills, a
custom Java questionnaire was designed and tested. Standardized questionnaires
can be found but are usually for certification purposes, like in the Oracle Java SE
Programmer Certification Program.1 Standard tests that address the assessment of
beginner programming level in Java do not exist. That is why I formulated 10
simple Java questions that assess the familiarity with the Java programming lan-
guage at a very basic level. The questions were iteratively tested and adjusted with
friends and colleagues of different skill levels. All pre-questionnaires are attached to
this work as appendices Appendix B.3.1 to Appendix B.3.3.

Formation of Groups

The cCAQ is a self-reporting instrument that asks for experience levels in different
creativity related domains. It relies on truthful answers and has no means to indicate
cheating. The created Java-questionnaire asks about programming knowledge
questions, however, a clever cheater might easily identify the correct answers with a
short internet search.

Therefore, candidates were informed that the results of the pre-questionnaires
were not deciding about whether or not they were allowed to participate in the
study, but were used as a basis to sort them into different groups. They were further
asked to answer the questions truthfully, to give the answers just by themselves, and
to not search for answers they do not know online or in other sources.

The group members for a test session were chosen on the basis of the
pre-questionnaire results. As a premise, each group was assigned with at least one
member who was rated specifically high for the cCAQ (above 80%), and at least
one different member who was rated specifically high for the Java questionnaire
(above 80%). The fact that three sessions were held in parallel made it easier to
assign applicants to suitable groups at available times.

1https://education.oracle.com (last accessed 11th April 2016).

110 5 Comparative Evaluation of Blended Prototyping

https://education.oracle.com

Participants

All together 36 test subjects participated in the study (16 female, 20 male), aged
26.5 years (SE = 1.07). A majority of the participants were students (27), the others
worked in regular employment. The average score of a group for the cCAQ was
18.14 (SE = 1.15), for the JavaQuest a mean of 5.25 (SE = 0.312) was produced.

As described detailed in the following Sect. 5.3.1.3, the time effort it took the
subjects to participate in the test was approximately 12 h. Due to this long working
time, the participants had to come to the testing facilities at two days. For their high
efforts, the test-subjects were paid the comparatively high compensation of 120 €
for their participation.

5.3.2.2 Test Design

Beside this pre-assessment based group formation, a within-subject study design
was chosen to balance out effects of individual group performance. This means that
each group used all three prototyping tools sequentially, where the order of tool use
was balanced between the groups. The task assigned to a tool-use varied: a group
never worked on the same task twice, the order in which the tasks were given was
randomized. The within-subject study-design is shown in Table 5.2.

For a better understanding of the terms used in the study discussion, the fol-
lowing terms are defined: A cohort is constituted of the groups that participated at
the same time in parallel in the user tests. The term group walkthrough refers to the
complete participation in all three tasks of a single group (a row in the table above).
An assignment includes a certain given task that is to be processed at a specific tool.

5.3.2.3 Testing Process

The testing followed a fixed procedure that guided the participants through an
introductory presentation, the three productive sessions, and a short conclusive

Table 5.2 Schematic study
design

time-slot 1 time-slot 2 time-slot 3

Cohort 1

Group 1 Ax_T1 BP_T3 Pb_T2

Group 2 BP_T3 Pb_T1 Ax_T2

Group 3 Pb_T1 Ax_T2 BP_T3

Cohort 2

Group 1 Ax_T1 Pb_T3 BP_T2

Group 2 BP_T3 Ax_T1 Pb_T2

Group 3 Pb_T1 BP_T2 Ax_T3

…
…

…
…

…
…

5.3 Conducting the Comparative Study 111

questionnaire. As a first step for each cohort, I gave an opening presentation. Here,
a written script was followed to welcome the participants and present them the main
study objectives. Further, I once again explained to them the structure and time slots
of each of the three productive sessions and introduced them to the teams they
would work in. All participants were informed about their personal rights during the
study, about the payment process, and the different ways data was collected in the
study were pointed out. The participants then gave a written agreement to the
study’s terms and its mechanisms to collect and process data. After all occurring
questions had been answered, the members of a design group were asked to come
together for 15 min to get to know each other.

Productive Sessions

After the introductory session, the groups started the tool related productive ses-
sions that were structured in the way pictured in Fig. 5.2. Most of the given
time-values are estimates and marked with a tilde. These phases were shortened or
lengthened, depending on the single situation. E.g. the explanation of the Axure
software took usually longer than this into the paper-based prototyping approach.
No such time adjustments were made for the design task, where an equal task time
was necessary to produce comparable results.

The time a group had to work on a given task was fixed to 90 min. During that
time, initial ideas were found and discussed, put into suitable designs, and devel-
oped into a presentable prototype. However, before the 90 min prototyping session,
time was needed for the introduction of the tool use and a try-out session. After the
prototyping session, time was needed for the test of the prototype and to fill out the
AttrakDiff and Collaboration questionnaires. The total time of one tool-test pro-
cedure added up to approximately 3 h.

Due to the within-subject study design, each group was involved in three design
sessions, which lead to a total time effort of 9 h for each participant. I discarded the
idea to run all three design sessions within a day, since breaks and lunch time would
have added up the span necessary for the participation to 10–11 h. Asking test
subjects to work such a long time can easily result in participants’ tiredness or even
annoyance. Both effects can jeopardize the creative outcome of sessions later in the
day immensely. I therefore decided to stretch the participation to two days. To find
time slots suitable for the participants, the user tests therefore primarily took place

~ 30 mins explanation of the tool, tryout task
5 mins pause

~ 5 mins explanation of the design task
90 mins work on the design task

5 mins pause
~ 20 mins task result presentation
~ 15 mins answering the questionnaires

~ 170 mins sum

Fig. 5.2 Calculation of the
time needed for an assignment

112 5 Comparative Evaluation of Blended Prototyping

at weekends. Concerns about participants showing up at the first, but not at the
second day, luckily proved to be unjustified.

A reduction of the time for one tool-use would have resulted in a reduction of the
time available for the design task. However, shorter time would have led to less
elaborated prototype outcomes, where effects of the prototyping-methods on the
results were hard to differentiate. On the other hand, a much longer time would have
stretched the time needed for the study participation to an extent, where it was
unlikely to find enough test subjects.

For a number of reasons I decided to host up to three test runs in parallel. Each
design tool was set up in a different room, where I, or one of the assisting student
workers, supervised the assignment. This not just saved a lot of time in the overall
implementation of the user study, but made it much easier to put the participants
into suitable groups. All participants were instructed not to talk with members of the
other groups; neither about the tasks and solutions they worked on, nor about the
tools they used.

Explanation of the Tool and Tryout Task

Each productive session started with a phase, where the idea and most important
functions of a prototyping approach were explained to the design groups. When the
team had no further questions about the approach, they were asked to test their
understanding of the tool in applying it in a short non-creative example task, which
was the same for every tool-use. It asked to create a user-interface that consisted out
of three screens. The first of these screens was meant to provide a short user dialog,
the second to have a blue, and third to have a pink background color. The dialog
of the first screen was meant to ask the user to select their gender. In reaction to
the user’s selection, the user interface prototype was meant to switch either to the
second blue, or the third pink screen. The tryout task was completed, when the
group managed to produce a testable prototype that provided the demanded design
and behavior.

In successfully completing the sample task, the test group proved a basic level of
understanding of the prototyping approach. They were able to create different
screens that express certain states of an app idea. Furthermore, they had to deploy
some basic user controls in their prototype, to provide the function for the gender
selection and screen change. The users were free to choose what controls they used
to realize the app.

Explanation of the Design Task

After the design task was successfully completed and all questions regarding the
tool use were answered, the design task was handed out and read to the test group
and all questions regarding its understanding were clarified.

In the case that the design group went through its first productive session, some
additional general aspects were explained. The groups were instructed to produce
an app prototype, which design and function they could freely decide upon. It was
further described to the group, how the later prototype result presentation session
would take place. This regarded the ways the group could intervene in the testing

5.3 Conducting the Comparative Study 113

session, as well as their decision, what kind of stakeholder they want the prototype
to present to.

In addition to that, the design groups were introduced to a group work ideation
method called brainwriting. The method adapts the idea of brainstorming, but lets
the group members write down their initial ideas before they start to discuss it. This
proceeding can help group constellations, where some members feel shy to present
and stand for their ideas. Whether or not the group applied the technique, was
however left open to them.

Work on the Design Task

In the design task, the groups were asked to use a certain tool to generate a testable
app prototype in the given time of 90 min. How they structured their work pro-
cesses, was left open to the single groups, no interventions by the supervisor were
made. If questions regarding the tool use occurred in the design task, the test
supervisor answered them, especially when they blocked the further progress of the
group work. To avoid that time consuming explanations take too much of the
creative group work time, in-depth technical questions were only answered if they
were part of a previously defined catalog. Here, the 24 pages Axure-Core-Training2

was used as a reference, to decide which technical questions were answered in each
prototyping technique. To allow for the later analysis of design task sessions, each
session was recorded on videos.

Task Result Presentation

Following the design task sessions, the prototype results were presented to one of
the supervisors, who did not attend the group’s productive session. At the beginning
of each test, the design team was free to describe to which kind of test-user they
address their prototype testing. As a consequence, an assisting student worker or me
jumped into different roles in testing the prototype. Mostly, we were asked to act as
a regular test-user, some others wanted us to act like a potential investor, a col-
league, or a good friend they consulted.

In which way the design groups then tested their prototype was left open to
them. As discussed in Sect. 2.1, prototypes can serve in many different ways to gain
insights in a whole range of aspects. Following this thought, a prototype can be
understood as a question that is asked by the developer. How clear this question is,
whether or not it leaves room for interpretation, and how focused it is towards a
certain topic, should be carefully decided from one prototype to another since it has
a big effect on the prototype results. Therefore, the prototype test is an important
aspect of the prototyping process as a whole.

2http://d3g1p8ush40lh4.cloudfront.net/Tutorials/v7/AxureCoreTraining.pdf (last accessed 11th
April 2016).

114 5 Comparative Evaluation of Blended Prototyping

http://dx.doi.org/10.1007/978-3-319-53210-3_2
http://d3g1p8ush40lh4.cloudfront.net/Tutorials/v7/AxureCoreTraining.pdf

As mentioned above in Sect. 2.1.2, Snyder [140] describes one big advantage of
paper-based prototypes as their ability to be flexibly adjusted in the course of a test
session. Therefore it was allowed to design groups to adjust their prototype ideas
dynamically within the testing process. For this, all means supported by the pro-
totyping approach were allowed.

When the design group decided, that they did not want to address further
questions to the prototype test session, it was asked about the insights they gained
from the test. Furthermore, the participants were asked to describe which next steps
they would make, if the development of the prototype was to be continued.

Answering the Questionnaire

Following the task result presentation and feedback talks, each member of the
group filled out a copy of the AttrakDiff [58] and the collaboration questionnaire.
The participants were placed far enough apart in the testing room to guarantee that
all questions could be answered confidentially. Granting this privacy was especially
important in our study, since it involved questions regarding the interpersonal
sympathy between the test subjects.

When a design group had finished the use of all three design-tools, an additional
final-questionnaire was handed out to the participants (see Appendix B.5). This
final questionnaire contained questions on the knowledge the test-subjects had
about the prototyping techniques before the participation.

5.3.2.4 Task Design

The study design made it necessary to develop three different tasks, which were
comparable in their scope and necessary effort. They had to be described in a simple
enough way, to be understood by all participants effortlessly. At the same time they
had to address application domains that all participants were familiar with, to avoid
the variation of test results due to a lack of a personal involvement to the topic. All
participants had a university student background. This common personal back-
ground was used as a topic for all tasks, where personas were used that faced a
university-context related problem, the app should provide a solution to.

The task descriptions were written in German language. All tasks included a
certain set of obvious possible features to provide the groups with a starting point
for their ideas. At the same time, the task motivation was written in a form, that was
held general enough to leave room for individual interpretation.

All tasks concluded with the same two sentences that explicitly motivated the
participants to come up with additional ideas, which they could then implement in
the prototype. Furthermore it encouraged the design team to concentrate their efforts
on those aspects that stand out for the app idea, and at the same time leave out
those, which could be considered standards, like login-dialogs. The full text of each
task, in German and English language, is attached to this work in the Appendix B.4.

5.3 Conducting the Comparative Study 115

http://dx.doi.org/10.1007/978-3-319-53210-3_2

5.3.2.5 Recorded Data

Data was gathered before the study in online-questionnaires, which measured the
applicants potential creativity (cCAQ) and basic Java programming knowledge
(begJava). Furthermore, questionnaires were answered by each participant after
each productive prototyping session. Here, the AttrakDiff and collaboration ques-
tionnaire by Sauppé and Mutlu [129] were applied. After a participant finished all
three test conditions, they had to answer a final questionnaire that addressed the
personal experience they might have had with the surveyed tools before
participation.

Videos were recorded for all tryout-, design-, and prototype test-sessions. For
this, each supervisor was equipped with a GoPro action-cam that is equipped with a
very wide angular lens. This lens made it easy to record information about the
applied processes, even in free-hand recordings.

5.3.2.6 Data Acquired in Post Analysis

Judgment by Design Experts

To gain a well-founded external judgment of the prototype results created in the
user-studies, experts with a professional background of at least two years in mobile
user interface development and design were asked to rate the prototype results
created in the test. To establish a profound level of experience and hence quality of
the ratings, as a prerequisite the participating experts needed to have experience
with the design, development, and/or evaluation of mobile user interfaces for at
least two years. A total number of 6 experts participated in the ratings, of whom
nobody knew the Blended Prototyping approach before their participation. They
were compensated financially for their participation with a payment of 20 € per
hour.

Expert ratings were done on the basis of all content that was produced in the
prototyping sessions. First of all this included the videos that were recorded in the
prototype test sessions that followed each design session. In addition to that, all
physical and digital content created in the prototyping process was accessible to the
raters.

The time needed for the judgment of a single prototype result varied strongly, as
the size of the different prototype solutions and the length of the recorded test
videos differed. Giving the raters a basis for a comparative rating between the
prototype solutions, each expert only rated results belonging to one task. The
experts each rated an equal share of prototypes from the three development tool
conditions.

For privacy reasons in treating the data from the user tests, the expert rating did
not take place remotely, but at the facilities of TU-Berlin Quality and Usability-Lab.
For reasons of time efficiency, two or three experts were invited simultaneously to
the sessions. They did however work independently with no interaction with one

116 5 Comparative Evaluation of Blended Prototyping

another. A session began with the explanation of the purpose and proceeding of the
rating session. The structure of the prototype data was explained, and an intro-
duction on how to access the related digital content was given. Followed by that,
the use of the rating scheme was explained and the description on the meaning of
the single rating scales was provided. Throughout the whole rating session, me, or
one of the student assistants was present to answer questions that might occur.

All participating experts were German native speakers, for that reason the rating
scheme was given in German language. The scheme asked for a rating of the
prototype result with regard to 5 aspects: its look (Erscheinungsbild), its inven-
tiveness (Ideenreichtum), its level of maturity (Reifegrad), its insights it would likely
generate for the further development (Erkenntnisse für die weitere Entwicklung),
and its worthiness for a further investment (Würdigkeit für eine weitere Förderung).
Ratings were given on a continuous scale, ranging over 10 cm from extremely bad
(extrem schlecht) to extremely well (extrem gut). Rulers with measures were sup-
plied, for the case that experts wanted to be very precise in their answer.

5.3.3 Study Results

First results of the user study described in the following, were discussed in a chapter
of a book that resulted from a research collaboration between the Universität der
Künste Berlin and Technische Universität Berlin [12]

(1) Control of Disturbing Factors

The measured results in the user studies can be disturbed by different effects, which
risk influencing the measurements in an uncontrollable way. One of these factors is
the effect of the given tasks on the prototype results. An investigation with a
one-way analysis of variances (ANOVA) showed that the given tasks in fact have a
significant effect on the AttrakDiff subscales attractiveness (means: AttT1 = 4.98,
AttT2 = 4.85, AttT3 = 5.51; ANOVA: F (2,105) = 3.331, p = 0.040) and hedonic
quality-identification (means: HQ-IT1 = 4.57, HQ-IT2 = 4.71, HQ-IT3 = 4.95;
ANOVA: F (2,105) = 3.171, p = 0.046). However, since the used tasks were
allocated equally to the three tools, the effect should be balanced out in the
investigation.

As for the interpersonal relation scales, the effect of each sub scale on the
resulting prototype results were measured with a one-way ANOVA. Here, no
severe effects of the interpersonal climate within a team on the team performance in
the task were identified.

(2) Measured Results

Questionnaires on AttrakDiff and Collaboration

Bar charts for the subscales of the AttrakDiff questionnaire display the mean rating
of each of the three tools above in Fig. 5.3. Visual inspection of the charts shows a

5.3 Conducting the Comparative Study 117

comparatively low rating for Axure in all of the subscales. The difference between
the measured means of Blended Prototyping and Paper-Based prototyping do just
differ for the subscales Hedonic Quality-Stimulation and Attractiveness. For the
scales pragmatic quality and hedonic quality-identification the Blended Prototyping
approach just yielded slightly better results.

To investigate the significance of the measured means, data was analyzed using
one-way repeated measures analysis of variances (ANOVA) with the factor tool
having three levels (the experimental groups: Axure, Blended Prototyping, and
PBP). All questionnaire subscales were analyzed separately.

For the subscales pragmatic quality (F (1.711, 59.875) = 9.722, p = 0.000,
ηpart
2 = 0.217, Greenhouse-Geisser corrected) and hedonic quality-stimulation
(F (1.81,63.353) = 9.443, p = 0.000, ηpart

2 = 0.212) post hoc Bonferroni compar-
isons revealed highly significant differences between Blended Prototyping and
Axure (p = 0.001), as well as between Blended Prototyping and PBP (p = 0.002).
The difference between PBP and Axure did not prove to be significant.

For the subscale attractiveness (F (1.683, 58.922) = 6.657, p = 0.004,
ηpart
2 = 0.160), significant differences were found only between Blended
Prototyping and Axure. Differences between the other tools did not prove to be
significant.

Furthermore, a statistical trend was found (F (1.52, 53.467) = 2.973, p = 0.073,
ηpart
2 = 0.078), investigating the differences in the means measured for Blended
Prototyping and Axure.

The second group of bar charts above in Fig. 5.4 shows the mean ratings of the
tools on the subscales of the questionnaire on collaborative work. Here, the results

Fig. 5.3 Boxplots of means for AttrakDiff subscales pragmatic quality (PQ), hedonic quality
identification (HQ-I), hedonic quality stimulation (HQ-S), and attractiveness (ATT). (Error-bars ±
SD) (scale ranges from 1 to 7)

118 5 Comparative Evaluation of Blended Prototyping

draw an inconclusive picture. Again, Axure tends to be rated worse than the other
tools. However, the differences between mean ratings are very small. The values
vary closely around the middle rating of 4. This tendency to the middle indicates
that the used scales were not able to produce a distinctive rating by the test subjects.

As the small differences between the measured means for each subscale, it is no
surprise that a repeated measures ANOVA with the factor tool did not reveal a
statistical trend or significance between the measured means of any subscale.

Rating of Prototype Results by External Experts

The results of the mean expert ratings on the prototype results are displayed above
in the bar charts in Fig. 5.5. For each subscale, a clear gap can be recognized
between the low rated Axure and the both higher rated Blended Prototyping and
Paper-based Prototyping.

The differences between the ratings of prototypes created with Blended
Prototyping, respectively PBP are comparably small. Prototypes developed in PBP
are rated slightly better than those developed in Blended Prototyping in the sub-
scales look (D = 0.391), inventiveness (D = 0.317), and level of maturity
(D = 0.450). For the subscale insights generated the means for Blended
Prototyping and PBP are alike (D = 0.042). For the worth of further investment
(D = 0.742) the results created with the Blended Prototyping approach are rated
moderately higher than for the PBP approach.

Fig. 5.4 Boxplots of means for teamwork and collaborativeness. (Error-bars ± SD) (scale ranges
from 1 to 7)

5.3 Conducting the Comparative Study 119

To investigate the significance of the measured means for these expert ratings,
data was analyzed using a one-way analysis of variances (ANOVA) with the factor
tool having three levels (Axure, Blended Prototyping, and PBP).

For the subscale look (F (2,33) = 7.793, p = 0.002), a Tukey post hoc test
revealed significant differences between the measured means between Axure and
both other tools (AX and BP: p = 0.010; AX and PBP: p = 0.002). The difference
of means between Blended Prototyping (BP) and PBP bears no statistical signifi-
cance or trend (p = 0.854). Similar statistical significance between the measured
means for the tools were revealed in the ANOVAs for the subscales inventiveness
(F (2.33) = 6.726; p = 0.004) and generated insights (F (2,33) = 4.250;
p = 0.023): the measured mean for Axure is significantly lower than those of the
other two tools in their inventiveness (AX and BP: p = 0.012; AX and PBP:
p = 0.005) and their generated insights (AX and BP: p = 0.045; AX and PBP:
p = 0.040).

For the measured means of the subscale maturity (F (2,33) = 1.911; p = 0.164)
no statistical significances or trends were revealed.

For the subscale worthiness of a further investment (F (2,33) = 4.258;
p = 0.023) the ANOVA revealed statistically significant means between the tools
Axure and Blended Prototyping (p = 0.020). ANOVAs comparing the means

Fig. 5.5 Boxplots of means for expert ratings of the prototype results; with subscales: look,
inventiveness, level of maturity, insights generated for the further development, and its worthiness
for a further investment. Scale ranges from 1 (very bad) to 10 (very good); (Error-bars ± SD)

120 5 Comparative Evaluation of Blended Prototyping

between Axure and PBP (p = 0.130) and Blended Prototyping and PBP (p = 0.674)
were not able to show significant contrasts.

Ratings of the Collaborative Behavior Analysis from Video Reviews

The rating with the adapted OTAS schema was conducted for all prototyping
assignments. This judgment of the collaborative behavior during the tool-use was
very time extensive. For this reason, and for a better objectivity of the raters, three
student workers were employed to conduct the video analysis.

All together, 12 * 3 = 36 assignments were created in the course of the user test.
The processing time for each of these assignments was limited to 90 min. Hence, a
total of 36 * 90 min = 3240 min = 54 h of video sources had to be surveyed. The
mean time effort for the judging of video was 110 min, therefore the workload for a
post analysis, where each video was just reviewed once, was already 66 h. For the
reason of this high effort, reviewing the videos more than once was not affordable to
the research project. Three students were involved in the ratings, which each
analyzed 4 group-walkthroughs, which is equal to an amount of 12 prototyping
sessions.

The mean ratings of the sessions for each subscale of the OTAS rating schema,
separated for each tool condition, are displayed in the bar chart in Fig. 5.6. Most
subscales show PBP to be rated best, followed by Blended Prototyping and then
Axure. Two exceptions can be found: for the Awareness & Monitoring, where
Axure is rated higher than Blended Prototyping, and for the Feedback Behavior
where scores for Blended Prototyping and Axure are approximately the same. The
measured means for each subscale are relatively close to each other. A repeated
measure ANOVA with the factor tool was not able to show any statistical signif-
icance or trends for the differences in the measured means for any of the subscales.

As explained above, the correct application of the OTAS schema relies on the
proper training of the employed raters. Before the actual rating sessions, the raters
were carefully introduced into the meaning and application of the OTAS schema
and comparative pre-tests showed well comparable results. However, the actual
rating took a very long time, tiredness and annoyance might have affected the
coders’ ratings in the course of their work. Therefore further analysis was con-
ducted, were the reliability of the subscales was tested. For this, each of the coders
was asked to rate two more videos; one selected from previous ratings of each of the
other coders. The comparison of the ratings therefore included 6 data pairs.

Table 5.3 shows the results of the conducted inter rater agreement analysis
conducted with the intra-class correlation coefficient ICC 1 by Landis and Koch
[90]. As a rule of thumb, inter coder agreement of scales investigated with the ICC
1 should be considered to be poor for an ICC score smaller than 0.2, fair for an ICC
score between 0.2 and 0.4, moderate for an ICC score between 0.4 and 0.6, strong
for an ICC score between 0.6 and 0.8, and almost perfect for an ICC score above
0.8.

It can therefore be stated, that the sub scales backup behavior (0.183) and team
leadership (0.226) yielded an ICC 1 score that documents less than moderate

5.3 Conducting the Comparative Study 121

agreement between the raters. It is therefore likely, that the coders did not shared a
common understanding on how to evaluate a team-process according to the
Backup-Behavior and Team Leadership. Consequently, ratings done on these scales
in the post analysis of the recorded design sessions should not be regarded in
interpreting the tools’ ability to facilitate collaborative work. For the other OTAS
sub scales, an at least moderate agreement is shown in the inter rater agreement
analysis.

Fig. 5.6 Boxplots of means for ratings of group-work behavior in the design sessions; with
subscales: team orientation, team leadership, communication, awareness & monitoring, feedback
behavior, backup behavior, and Coordination; Scales range from 0 (very bad) to 6 (very good);
(Error-bars ± SD)

Table 5.3 Results of investigating the single OTAS scales with ICC 1(ICC 1 scores in normal
writing = poor or fair, in italic and bold = moderate, and in bold = strong inter coder agreemente)

AX_mean BP_mean PB_mean Sig. ICC 1

Team orientation 3.569 3.819 4.347 0.139 0.738
Team leadership 4.125 4.097 4.472 0.255 0.226

Communication 3.597 3.903 4.236 0.266 0.433
Awareness & monitoring 4.153 3.792 4.292 0.35 0.631
Feedback 3.792 3.750 4.069 0.541 0.467
Backup behavior 3.944 3.917 4.333 0.334 0.183

Coordination 3.542 3.736 3.764 0.772 0.547

122 5 Comparative Evaluation of Blended Prototyping

PBP yielded slightly better results than the other two tools in each of the
investigated requirements. Between Blended Prototyping and Axure the contrast is
even less clear. Here, Blended Prototyping scored better for the team orientation,
communication, and coordination. Axure was better rated for awareness & moni-
toring. The results for the measured feedback behavior were very much the same
between Blended Prototyping and Axure.

In summary, no statistically significant results for the ratings of the collaborative
work on the basis of the OTAS rating scheme were found. A trend can be identified
that PBP is rated best for all sub scales, Blended Prototyping is slightly better than
Axure for all scales but the Awareness & Monitoring, where Axure was rated
slightly better than the Blended Prototyping approach.

Rating of the Novelty of Delivered Prototype Results

To measure the novelty index according to Shah and Smith [133], in the first step a
catalog of feature-requirements has to be created for each task. In these catalogs,
task specific functional requirements are collected that solutions are expected to
address (e.g.: Feature for an index-card learning app (T3): Create index-cards). In
the second step, all different implementations for the feature requirement are listed
(e.g.: create card from photo, create card by typing, etc.). On this basis, the novelty
score is calculated for each solution, depending on the regarded implemented
features and their scarcity.

The created catalogs are attached to this work in the appendices X to Y. In
summary, for the first task 10, the second task 14, and the third task 7 functional
requirements were formulated, each addressed to on average 3 different forms of
implementation. The number of functional requirements identified for the single
tasks does not speak for its overall creative complexity. The complexity to find
solutions for the single functional requirements cannot be directly compared
between the tasks.

The novelty score of Shah and Smith allows a weighing of the categories in
accordance to their importance to the task solution. The novelty analysis for this
user-test was conducted without such weights, since it was hard to find a clearly
justified order for the relevance of the identified categories. Hence, all categories for
each task were weighted with equal shares.

The means of the calculated novelty scores for the prototypes created with the
three different tools are displayed above in Fig. 5.7. Differences between the means
are low. Slightly best novelty results were yielded with the Blended Prototyping
tool (mean = 0.361), followed by the PBP tool (mean = 0.303), and finally the
Axure software (mean = 0.286). Consequently, a conducted one-way ANOVA
with the factor tool (F (2, 33) = 1.044; p = 0.364) was not able to show statistical
trends or significances between the measured means.

5.3 Conducting the Comparative Study 123

(3) Implications of the Measured Data for the Identified Performance Indices

Time-Efficiency of the Prototyping

As discussed above, to include the ideation processes into the consideration, the
ability of a tool to deliver prototypes in a time-efficient manner should be assessed
on the basis of the quality of the prototype output, created in a fixed time.
Therefore, the measured ratings of external experts are key to the investigation of
this performance index.

These expert ratings show weaker results for Axure in comparison to the two
other approaches for each of the rated subscales. As displayed in detail above, this
weakness was proven to be statistically significant for nearly all of the scales. The
results therefore show clearly that the Axure tool is in comparison not well suited to
produce prototypes in a time-efficient way.

Comparing the Blended Prototyping and PBP tools shows a less clear picture.
Where the paper-based approach shows slightly better ratings for the look, inven-
tiveness, and maturity level of the delivered solutions, the Blended Prototyping
approach shows a slight strength towards PBP in producing prototypes the experts
would likely follow with further investments. None of the described differences
between PBP and Blended Prototyping showed to be statistically significant.

Which of the sub scales should have a higher impact in the consideration of the
overall prototype quality depends on the specific information goals that are targeted
with the prototype. It may therefore be concluded, that Blended Prototyping has an
advantage over PBP when the design team primarily wants to assess the potential of
an idea to prevail in the development, whereas the PBP approach is better suitable
for evaluating factors like the prototype design or its inventiveness. However, the
results for Blended Prototyping and PBP in the expert ratings are closely rated.

Collocated Group Work

No clear conclusions can be drawn from the measured results regarding the per-
formed group work. For the measured self reported group work performance with

Fig. 5.7 Boxplots of means
for novelty score, judged on
the basis of created
prototypes. (Values vary from
0 low to 1 high; Error-bars ±
SD)

124 5 Comparative Evaluation of Blended Prototyping

the questionnaire by Sauppé and Mutlu [129], no clear differences were shown for
any of the investigated sub scales.

For the analysis of the group work performance, based on the examination of the
recorded prototyping sessions, no significant differences were measured either. An
analysis of the inter-rater agreement in the application of OTAS rating scheme
revealed a very weak consistency in the raters’ judgment for the sub scales team
leadership and backup behavior. Consequently these scales cannot be regarded in
the further analysis.

For the remaining five OTAS sub scales, a trend was identified that PBP is
generally rated higher than the other two tools. Blended Prototyping seems to be
slightly better rated than Axure for the scales team orientation, communication, and
coordination, whereas Axure was rated slightly higher than Blended Prototyping
for the scale Awareness & Monitoring.

Freedom of Creativity and Design

Regarding the assessment of the ability of the tools to support the freedom of
creativity and design in the prototyping process, two sources of measurements were
used: ratings by external experts and the application of a novelty score suggested by
Shah et al. [133].

The most relevant scores from the expert rating for the freedom of creativity and
design are the look of the prototype, its inventiveness and implicitly its generated
insights and qualification for further investments. For all these scales, prototypes
designed with Blended Prototyping and PBP scored significantly higher than those
that were created with Axure. The ratings for PBP were slightly better than those of
Blended Prototyping for the dimensions look of the prototype and its inventiveness.
For the ratings regarding the categories that implicitly indicate the freedom of
creativity and design, Blended Prototyping scored slightly better for further
investment and both tools scored approximately equally for generated insights.

The differences in the measured novelty score were not statistically significant.
However, its results draw a similar picture of the freedom of creativity and design
like the expert ratings. Here prototypes generated with Blended Prototyping are
slightly higher rated than those with PBP, Axure is a yet again delivering the
weakest results.

In summary, the results show clearly, that the support of freedom and creativity
with Axure is weaker than this of PBP and Blended Prototyping. Between PBP and
Blended Prototyping the difference is less clear. However, the slightly better results
in the most important scales rated by experts gives weak indications that PBP might
be better suited to fulfill the freedom of creativity and design requirement than
Blended Prototyping.

Usability and User-Experience

Data related to the usability and user-experience of the surveyed prototyping tools
was measured with the AttrakDiff questionnaire. As displayed by the author of the
questionnaire Marc Hassenzahl and Sarah Diefenbach [128], the scale pragmatic

5.3 Conducting the Comparative Study 125

quality can be used as an indicator for the usability of the surveyed tool.
Furthermore, the user-experience is related to the two sub scales measuring the
hedonic quality of the tool.

As pointed out above, the scores for the pragmatic quality of Blended
Prototyping and PBP were approximately the same. However, both tools scored
significantly higher in the scale than the Axure software. Therefore, regarding the
tools’ usability, advantages of Blended Prototyping and PBP towards Axure can be
documented.

Regarding the user-experience, the sub two scales hedonic quality-identification
(HQ-I) and hedonic quality-stimulation (HQ-S) are to be investigated. For the sub
scale HQ-I the Blended Prototyping scored slightly higher than PBP, which again
scored slightly higher than Axure. Statistical significances could not be shown
between either of the measured values, however, a statistical trend between Blended
Prototyping and Axure was found. For the sub scale of HQ-S, Blended Prototyping
scored significantly higher than both other tools, wherefore it is perceived to pro-
vide novel and interesting functionality or interaction styles that stimulate its users
in pursuing their personal development goals [128]. Regarding the user-experience
of the tools it can therefore be stated, that Blended Prototyping is better able to
provide a positive user-experience, especially with regard to the users’ hedonic
stimulation.

5.4 Conclusions of the Comparative Evaluation

The generated results of comparative evaluation show disadvantages of the Axure
approach towards the PBP and Blended Prototyping tools in all surveyed require-
ments. The PBP approach is usually scored slightly better than the Blended
Prototyping approach, except for a limited number of subscales of the used
assessment methods.

The comparative evaluation measured the application of the compared tools in
productive group work sessions in early ideation stages. Consequently the results
only speak for such early phases, and no direct conclusions can be drawn for later
design stages. However, as highlighted in the discussion of some of the not further
investigated requirements above in Sect. 5.2, the software Axure will most prob-
ably play out its advantages when investigating later development stages, where a
test in mobile context with a higher number of users becomes more relevant.

The Blended Prototyping approach is conceived as transitional approach, which
bridges the gap between available tools for earliest design stages and those that are
applied later in the development. The PBP approach is perfectly applicable in
earliest group work design stages [140], which is underlined by the results of the
comparative evaluation as well. Therefore, it is one of the major goals of Blended
Prototyping to adapt the advantages of the paper-based approach.

126 5 Comparative Evaluation of Blended Prototyping

Consequently, it can be seen as a big success that Blended Prototyping per-
formed so similar to the PBP approach.

Significant advantages of Blended Prototyping towards PBP were measured in
the AttrakDiff subscale hedonic quality-stimulation. This subscale involves factors
that refer to the innovativeness of the tool; therefore it is not astonishing that the
high tech tabletop computing based Blended Prototyping scores higher in this
dimension. Furthermore, Blended Prototyping scored significantly higher in the
expert ratings for the worth of a further investment of the yielded prototype results.
This is an interesting observation which underlines, that the questioned domain
experts consider prototypes that are able to be ran on a mobile device as to be more
valuable to follow than those which are still in a paper state.

An observation that appears to be confusing on first sight can be made looking at
the OTAS team result data regarding the Awareness & Monitoring, where Axure
scored higher than Blended Prototyping. The data is not significant, however the
inter coder reliability for this scale was comparatively high. When the user tests
were conducted, the low-tech design tool methods of Blended Prototyping were at a
state not reliable enough to be used in a productive work scenario. Therefore in the
test, the users had to stick to use a tablet device to control the design tool envi-
ronment. This was likely affecting the awareness & monitoring within the team
since only one user can use the tablet at a time.

Further comparative tests are necessary that investigate the work with the tools
on later design stages. Here, other requirements become more relevant, wherefore
the performance of the Axure software will likely be better than observed in test
results discussed above. Such tests should necessarily involve real user tests in the
field. It will be interesting to see, how the Blended Prototyping approach will
perform at later stages in comparison to Axure. As discussed above in Sect. 4.1
Blended Prototyping addresses a number of challenges to allow for a mixed-fidelity
prototyping in the actual use context.

5.4 Conclusions of the Comparative Evaluation 127

http://dx.doi.org/10.1007/978-3-319-53210-3_4

Chapter 6
Conclusion and Future Work

This concluding chapter summarizes the results of this work and puts them in the
context of the research questions, postulated for this work. It points out the con-
tributions of this work for research and practice, and discusses next steps of a
further evaluation of the developed processes and tools in Blended Prototyping,
regarding its role in later development stages.

Furthermore, the chapter reflects future work that should be addressed to the
topic, which enhances the Blended Prototyping platform in its current state, and
reflects other possible application domains.

6.1 Conclusion

The first research question (RQ 1) on how to develop a catalog of requirements for
prototyping systems for the development of mobile app user interfaces was
addressed in Chap. 3. In a first step to develop such a catalog, requirements dis-
cussed in related work were collected in a literature review that systematically
analyzed related work in the most relevant conferences and journals to the topic.
This first collection was then used in an expert study, where practitioners with a
profound experience in the design and development of mobile apps rated the
importance of the suggested categories for five different design stages. Moreover,
the experts were asked to name additional requirements that could contribute to the
collection yielded from literature.

As a result from this expert evaluation, lists about the most important require-
ments for five different project stages of mobile app development projects were
generated, ranging from very early to very late stages. The expert ratings lead to a
rejection of one of the requirements identified from literature, the automated model
based evaluations that was rated low for each development stage. The resulting
catalog therefore includes 16 requirements that were derived from literature and
rated to be important tool requirements. In addition to this, the catalog covers

© Springer International Publishing AG 2017
B. Bähr, Prototyping of User Interfaces for Mobile Applications,
T-Labs Series in Telecommunication Services,
DOI 10.1007/978-3-319-53210-3_6

129

http://dx.doi.org/10.1007/978-3-319-53210-3_3

additional requirements that were newly suggested by the experts. However, ratings
about the five new dimensions were just given by the experts who suggested them
and were not further evaluated with others. In summary, the catalog consists of 16
requirements that were evaluated with experts, and an appendix of 5 additional
dimensions that display the opinion of single contributors.

The catalog highlights a number of requirements that change in their relevance
throughout the different design and development stages. As a consequence, the top
ranked requirements vary from one stage to the other.

The catalog may not include totally unexpected categories, however, it provides
a systematic view on the requirements of prototyping tools that did not exist yet.
From my point of view, too often such requirements are handled in a matter of fact
way. Most authors in related work that discus the development of new prototyping
tools motivate their work with a limited number of factors, which are more or less
taken as granted. However, basing the selection of requirements on personal
experiences bares the risk to in fact miss certain factors a system development could
benefit from. Here, the prototyping requirements catalog can provide a good ori-
entation point, to gain an idea of aspects that are worth a consideration, with respect
to the design-stages the tool aims to support. As such a landmark, the catalog was
very helpful in the development of the Blended Prototyping approach.

Regarding the second research question (RQ 2), about the applicability of the
requirements catalog in evaluations, application studies were conducted for both,
reviews with experts and in a comparative performance analysis.

As described at the end of Chap. 3, experts used the catalog to rate the concept
of the Blended Prototyping approach. For this, a short description of the single
requirements was sufficient to put the experts into the position to rate the proto-
typing approach on a 10-point likert scale ranging from ‘the requirement is not met
at all’ to ‘the requirement is fully met’. In this proceeding, none of the experts had
further questions about the requirements, or faced difficulties in giving the ratings.

In a further application, the requirements catalog served as a basis to derive
metrics for measuring the performance of different tools in their practical appli-
cation (compare Sect. 5.2). Here, the lists of requirements for early to middle design
stages provided information of the most relevant characteristics for the evaluation,
on which basis metrics were derived to measure the tool performance.

The choice of such metrics has to be made under careful consideration of the
specific test design. As discussed in detail below, not all metrics chosen for the
comparative test described in Chap. 5 delivered meaningful contrasts between the
investigated tools. However, this might question the employed metrics, but not the
performance categories derived from the requirements catalog.

The answer to the third research question (RQ 3), on how to develop a new
mixed-fidelity prototyping approach targeted at a whole list of design objectives, is
discussed in detail in Chap. 4, where conception, design, and implementation of the
Blended Prototyping platform is discussed. An evaluation of the concept was done
with expert ratings, where the requirements catalog developed in the work served as
a set of criteria for the judgments.

130 6 Conclusion and Future Work

http://dx.doi.org/10.1007/978-3-319-53210-3_3
http://dx.doi.org/10.1007/978-3-319-53210-3_5
http://dx.doi.org/10.1007/978-3-319-53210-3_5
http://dx.doi.org/10.1007/978-3-319-53210-3_4

The approach adapts the paper-based prototyping techniques in its design pro-
cess to the largest extent. The advantages of designing ideas on the basis of hand
sketches on physical paper are facilitated. As displayed in detail in Sect. 2.4.3,
pen-and-paper sketching on physical paper can help to a faster and more direct
articulation of ideas, which has positive effects on the creative process and on
teamwork.

In Blended Prototyping, these hand-sketches on paper are done in a
tabletop-computing environment. As displayed in Sect. 2.4.2.3, different related
work praises such interactive surfaces for their abilities to embed physical objects
into the human-computer interaction in a natural manner, to promote collaborative
work in creating a situation where the whole team is involved in the system
interaction, and to leverage creative work. The Blended Prototyping tool is built as
unobtrusive as possible, to focus in its ideation process with paper sketches rather
on the human-human than on the human-computer interaction. The system allows
for a quick generation of mixed-fidelity click-dummy prototypes, and at the same
time offers processes to program advanced prototype functionality in native code.
The approach therefore blends the paradigms of quick throwaway prototyping and
sustained evolutionary prototyping. Blended Prototyping supplies tools for dis-
tributing, testing, and analyzing the developed prototypes directly on the target
devices, wherefore specific usability challenges for the prototype, that derive from
mobile use contexts, can be investigated in user studies.

In a rating of the concept of Blended Prototyping with experts, where the cat-
alogue discussed above was applied, the approach was judged generally positively.
The system is designed to provide a helpful prototyping tool primarily for early to
middle design phases of mobile apps. Especially for the most important require-
ments to these stages, Blended Prototyping was judged with high ratings.
Considering the five most important dimensions for early to middle stages, on a
10-point likert scale ranging from 1 to 10, the approach scored 9.1 for getting quick
prototypes, 9.1 for collocated group work, 7.1 for freedom of creativity and design,
7.6 for simultaneous design of different ideas, and 7.5 for support expert reviews.

Regarding the fourth research question (RQ 4), on whether the Blended
Prototyping approach is able to improve the prototyping process of mobile app user
interfaces in accordance with the identified requirements, an application study
comparing three prototyping tools has been conducted, as described in Chap. 5.
Here, the Blended Prototyping approach was evaluated in direct comparison to the
Paper-Based Prototyping (PBP) approach and the software tool Axure.

As displayed in detail in the introduction to the PBP approach in Sect. 2.3, the
technique is very well suited for the prototyping in early design stages. The limi-
tations of the process to conduct tests in mobile use contexts, which is advisable for
testing mobile app user-interfaces, was not regarded in the study in Chap. 5, since
here the prototype tests took place in a stationary setting. As a consequence, it was
expected that the PBP approach would yield the best results in the experiment.

In contrast to that, the use of Axure in the given study design was likely to
encounter a number of limitations. First, using software that is designed for a
professional application requires a certain level of expertise. Since the study

6.1 Conclusion 131

http://dx.doi.org/10.1007/978-3-319-53210-3_2
http://dx.doi.org/10.1007/978-3-319-53210-3_2
http://dx.doi.org/10.1007/978-3-319-53210-3_5
http://dx.doi.org/10.1007/978-3-319-53210-3_2
http://dx.doi.org/10.1007/978-3-319-53210-3_5

participants in general did not have previous knowledge about using Axure, neg-
ative effects on the prototyping process and its results were expected. However, the
participants received an introductory training where the most important software
functions in order to create click-dummies in Axure were explained. More
advanced functionality that requires more in-depth mechanisms of the Axure
software, were not used in any of the created prototypes.

Second, Axure is a software solution that is used at a stationary computer, from
which problems arise in the collaborative work. The fact, that in group work that
shares a stationary computer not all team members have the same access to the
system control and data, can result in lower participation of those team members
who feel excluded from the design process. This being said, the effect grows with
group size and might be comparably small for groups of three members.

Not all of the applied metrics were equally successful in identifying differences
between the compared prototyping processes. Doubts have to be articulated towards
the ability of the applied methods to investigate the tools’ ability to facilitate
collocated group work. The employed questionnaire produced very similar results
for all tested tools. That was surprising, given the fact that related work attributes
PBP with an especially high capability, and Axure with an especially low capability
to facilitate collaborative work.

The questionnaire regarding collaborative work did contain questions on the
perception of the participants’ interpersonal relations as well. These were important
to consider, since particularly bad interpersonal relations in a group can easily
jeopardize the whole group work process and outcome, regardless of the applied
tools. However, the participants therefore had to fill out a very lengthy question-
naire after each test session, where they were asked about their interpersonal
relations to each of the two other team members. Many situations were witnessed,
where participants reacted annoyed about filling out these lengthy questionnaires.
This annoyance might have affected the participants’ ratings of the questions
regarding collaborative work in that questionnaire as well.

The conducted post-analysis, to gain a judgment of the collaborative work on
basis of the videotaped prototyping processes, was not able to produce significant
results either. Investigating the inter-coder reliability of the ratings showed that the
raters did not have a shared agreement on rating two of the seven rating categories.
Here, a better training of the raters into the rating scheme OTAS might have been
necessary, or the amount of work for the coders might have been too high. For the
remaining categories on collaborative work slightly better results in the tool per-
formance were identified for PBP. However, the contrasts were much too small to
be able to make a meaningful statistical statement.

The other investigated requirements produced more meaningful results. For the
tools’ time-efficiency the study showed statically significant lower results for Axure
in comparison to Blended Prototyping or PBP. The differences in the mean ratings
related to time-efficiency regarding PBP and Blended Prototyping were small.

Investigating the requirement freedom of creativity and design draws a similar
picture. Again, the results of Axure were statically significant lower than these of
the other two, whereas the ratings for Blended Prototyping and PBP were similar.

132 6 Conclusion and Future Work

Here, PBP scored slightly better in expert ratings of the look and inventiveness of
the prototype result, whereas its generated insights and probability for a further
investment were rated slightly better for Blended Prototyping.

Applying the AttracDiff scale pragmatic quality as an indicator for tools us-
ability, both PBP and Blended Prototyping scored equally high and both statically
significant better than Axure. The scales hedonic quality-stimulation (HQ-S) and
hedonic quality-identification (HQ-I) were used to investigate the ability of the tool
to facilitate a positive user experience. For HQ-I the Blended Prototyping scored
slightly higher than PBP, which again scored slightly higher than Axure. Statistical
significances could not be shown between either of the measured values, however, a
statistical trend between Blended Prototyping and Axure was found. For the sub
scale of HQ-S, Blended Prototyping scored significantly higher than both other
tools, which means that Blended Prototyping is perceived to provide functionality
or interaction styles of higher novelty or interest.

In summary, the comparative user-test therefore shows that PBP and Blended
Prototyping are better suited to be applied for group work of early design stages.
The results support the assumption that Axure performs comparably weak in the
tested conditions. The differences between Blended Prototyping and PBP are small
for each recorded measurement. This shows the success of Blended Prototyping to
in fact adapt the advantages of the PBP approach!

The results of the comparative application study described above evaluate the
tools is specific conditions that did not allow the investigation of all relevant
requirements dimensions. The applicable of a tool to be used in design reviews or
expert reviews are important requirements that were not tested in the experiment.
These should be investigated in further studies that are targeted at exactly these
factors.

Moreover, the ability of the prototypes to support tests in the real use contexts
was not investigated in the study, since the prototype tests were held in a stationary
context. Investigating this requirement will most probable lead to results where the
PBP approach reveals weaknesses. Here, the capabilities of Blended Prototyping
and Axure are interesting to compare.

Another key advantage of Blended Prototyping did not find consideration in the
test either: the programming with reusable code. Here, comparative evaluations
with the ordinary standard development tools and Axure should investigate, whe-
ther the processes in Blended Prototyping are in fact able to simplify the pro-
gramming of more advanced prototype functionality.

Moreover, it will be interesting to investigate a real-life application of Blended
Prototyping, where the platform is actively used for a longer period of time in the
daily business of a design agency.

An important aspect of the Blended Prototyping approach is to support of
trans-disciplinary groups. In the user-study described above, participants were
recruited on the basis of their performance in pre-tests regarding their creative
capabilities in programming skills. However, most of the recruited participants were
still involved in their university studies and their practical expertise was limited.
Therefore, it will be interesting to investigate, whether the application of Blended

6.1 Conclusion 133

Prototyping with full-expert users will be able to deliver comparably positive results
in facilitating a collaborative and creative work process.

In summary, this work builds two main contributions that are valuable for
research, as well as the development of mobile apps in practice. First, it presents a
successfully evaluated catalogue of requirements for mobile app prototyping tools
that are ranked in their relevance at different development stages. This catalogue
provides a good orientation point for the conception of new prototyping approaches
and identifies metrics for a comparative performance evaluation of alternative
techniques.

Second, it presents the new prototyping technique Blended Prototyping, which
was successfully evaluated in a user-test where its performance was compared with
the PBP approach and the software tool Axure. The evaluation showed, that in early
design stages Blended-Prototyping performs generally better than the software tool
Axure. Moreover the approach is able to adapt the advantages of the
Paper-Based-Prototyping concepts, which is shown in the very similar test per-
formances of the two techniques.

6.2 Future Work

Multiple ideas exist, on how to extend the Blended Prototyping system to improve
the prototyping process of mobile app user interfaces in additional aspects.

The requirements catalogue identified in this work includes factors that are not
yet supported in the approach. The cross platform support of the prototypes could
be established by mapping data created in the design sessions not to Java-classes,
but to classes of a web technology like Javascript, which is supported by all mobile
platforms. However, the use of web-technologies has two downsides. First, it
requires the re-programming of the prototype code in the development of the final
product. Second, web-technologies do not offer the same capabilities and pro-
gramming libraries as native technologies.

Moreover, Blended Prototyping does not support remote collaborative work.
The infrastructure of a full-duplex synchronization of the systems data via
web-sockets is already established, since the technology is currently used for the
communication between the design tool computer and the mobile control clients.
This technology could be extended to produce a setup, where multiple design tables
are used in a creative process at different locations. Here, different related work
exists [25, 27, 121] that addresses the issue of handling and organizing tangible
objects in a collaborative remote work context.

Another yet unfulfilled requirement is the use of animations. Animations can
play a key role in the design of mobile user interfaces, not just in the development
of mobile games. However, the definition of animations requires extensive pro-
gramming that is hard to realize in a rapid prototyping context. Addressing this
context, first versions of alternative approaches are already implemented on how to
define animations in the described tabletop design tool. Two of these address

134 6 Conclusion and Future Work

animation design with gestures on mobile tablet devices, which are inspired by the
new AutoDesk tool Draco [74]. Another approach adapts the ideas of
Walther-Franks et al. [156] of a full-embodied definition of animations.

Moreover, other ways should be explored to allow the definition of as much
functional complexity as possible in the design tool, without overwhelming the
simplicity of the current approach. For this, more user-controls could be included to
extent the current definition space. Here, the prototyping tool Balsamiq gives an
impressive example by supporting a set of 77 different user controls.

Even more functional aspects could be implemented by extending the Blended
Prototyping technology with codeless-programming techniques. This way, easy
rule-based behavior could be defined directly in the design tool. Block based visual
programming approaches like the MIT-Scratch [96], or its adaption Google Blockly
[172], can provide excellent starting points.

The Blended Prototyping platform will be made publicly accessible under an
open source license. In the design of the system, clear and open standards were
implemented where data is transferred from one module to the other. Therefore, it is
easy to substitute single modules with different implementations, and still take
advantage of other aspects of the platform. This way, the system development could
be proceeded by others, who find valuable applications of the system in research or
practice.

As a follow-up research project to the topic I currently plan a similar application
for the collaborative interdisciplinary design of Internet of Things
(IoT) applications. Such applications usually run as a combination of mobile
devices that access distributed sensors. Here, an extension of the tabletop design
tool could serve as a good platform to explore the meaning and capabilities of
different sensor elements, and combine them in conjunction with a mobile app to
new hardware/software prototypes. Software prototypes could be built in a similar
fashion as described in this work, hardware prototypes could be built out of pro-
grammable Arduino microcontrollers and modularized sensor frameworks like
grove sensors1 or Google Beacons.2

As technical systems developed fast in the past, they will develop fast in the
future. Though, in a recent Nature article, M. Mitchell Waldrop claims an end of the
long time valid Moore’s Law approaching [153], mobile and ubiquitous devices are
very likely to become more and more part of our daily life in the future. Be it the
Internet of Things or the advent of the wearable’s, the design of user interfaces,
where the complex systems of the human mind is interacting with complex com-
puter systems, will always stay a big challenge.

As a consequence, the prototyping of user-interfaces will be a relevant topic in
the future, as it is today. Furthermore, sketching, or similar techniques of expres-
sion, which can help designers to seamlessly express themselves, will always be of

1http://www.seeedstudio.com/wiki/Grove_System.
2https://developers.google.com/beacons/.

6.2 Future Work 135

http://www.seeedstudio.com/wiki/Grove_System
https://developers.google.com/beacons/

interest for the conception of creation and ideation tools. Similar fields of expres-
sion might be found in speech, gestures, or even brain-computer interfaces.

Prototyping can teach us to be brave, to communicate what we have in mind, and
to open up ideas that might not yet be perfect. Of course, opening up always risks to
suggest something stupid; but many who suggested something great, were looked
upon first in skepticism and bewilderment.

136 6 Conclusion and Future Work

Appendices

Appendix A
Email-Subscribe Code Example

package baehrben.developments.subscribeDialog;

import

baehrben.developments.ttsmippsAndroid.classStructure.IF_ScreenToAndroidBase;

import baehrben.developments.ttsmippsAndroid.classStructure.TTSMIPPS_Screen;

import baehrben.developments.ttsmippsAndroid.classStructure.W_Button;

import baehrben.developments.ttsmippsAndroid.classStructure.W_TextBox;

import android.content.Context;

import android.util.Log;

public class Screen11 extends TTSMIPS_Screen {

 final static String imagePath = “Screen11.png”;
 final static String prototypeName = “subscribeDialog”;

 W_Button scBg_11_btn_1;
 W_TextBox scBg_11_tb_1;
 IF_ScreenToAndroidBase delegateToBase;

© Springer International Publishing AG 2017
B. Bähr, Prototyping of User Interfaces for Mobile Applications,
T-Labs Series in Telecommunication Services,
DOI 10.1007/978-3-319-53210-3

137

public void handle_btnScr11_1() {

 // Edit code here (start)
if (emailIsValid()) {

 Screen14 targetScreen = new Screen14();

 delegateToBase.changeToScreen(targetScreen);
}
else {

 Screen13 targetScreen = new Screen13();

 delegateToBase.changeToScreen(targetScreen);
 }

 // Edit code here (end)

 }
}
 // TODO: emailIsValid()
}

138 Appendices

Appendix B.1
Discarded Collaboration Coding Schema

alle 5 Minuten den Fragebogen ausfüllen: Codierung:
0 1 2 3 4

allgemein in welcher Form haben die Gruppenmitglieder
gearbeitet? jeder für sich gemeinsam

Communica on
Haben sich die Gruppenmitglieder in gleichem
Umfang am Gespräch beteiligt?

eine Person
dominierte
komple

eine außen vor;
andere

unausgewogen

eine außen vor;
andere

ausgewogen

ja, sehr gleiche
Beteiligung

Wie häufig wurden Demonstra vpronomen
verwendet? (z.B. das hier, dieser, dort)

gar nicht 1-2x 3-5x >5x

In welcher Frequenz haben die Gruppenmitglieder
Augenkontakt gehabt? (bzw. sich angeschaut)

gar nicht . . . permanent

Awareness (nega v) Wie häufig haben sich die Gruppenmitlgieder
gegensei g unterbrochen (im Gespräch/ bei der
Ausführung einer Ak on) und damit das laufende
Gespräch/ die Ak on abgebrochen

gar nicht 1x 2-3x >3x

Wurden vorher getroffene Absprachen oder
Abläufe neu disku ert oder unabgesprochen
verändert?

gar nicht 1x 2-3x >3x

Haben sich die Gruppenmitglieder bei der
Ausführung der Aufgabe unabsichtlich gegensei g
behindert? (z.B. die Sicht blockiert)

gar nicht 1x 2-3x >3x

Wie o haben die Gruppenmitglieder sich
gegensei g nach ihrem Vorhaben oder
vergangenen Ak vitäten befragt? (z.B. "was tust du
gerade?", "wofür ist das?", "warum hast du das so
gemacht?")

gar nicht 1x 2-3x >3x

wurden Informa onen wiederholt besprochen/
nachgefragt?

gar nicht 1x 2-3x >3x

Awareness (posi v) Haben die Gruppenmitglieder in konstruk ver
Weise parallel an einer (Teil-) Aufgabe gearbeitet,
ohne sich vorher abzusprechen?

nein ja

Haben sich die Gruppenmitglieder ohne Absprache
Objekte herübergereicht (z.B. S e, Papier)

nein ja

Haben sich die Gruppenmitglieder bei ihrer
Tä gkeit gegensei g ohne Absprache ergänzt (z.B
einer bedient die Maus, der andere die Tastatur;
einer hält das Papier fest, der andere legt an)

nein ja

Awarness work Wurden eigene Ak onen laut kommen ert, um
den Gruppenmitgliedern das eigene Vorgehen
deutlich zu machen?

nein . . . permanent

Coordina on wurden Ak onen ungewollt von verschiedenen
Gruppenmitgliedern doppelt ausgeführt?

nein ja

Wurde die Bearbeitung der Aufgabe aufgehalten,
dadurch, dass gleiche Ressourcen parallel genutzt
wurden?

nein ja

Sind die Gruppenmitglieder während der
Bearbeitung unabsichtlich gegeneinander (oder
beinahe gegeneinander) gestoßen? (z.B. beim
Greifen nach Material; Verändern der eigenen
Posi on)

gar nicht 1x 2-3x >3x

Waren alle Gruppenmitglieder gleichmäßig in die
Zusammenarbeit eingebunden? nein ja

Besonderheiten /
Kommentar

Appendices 139

Appendix B.2
Applied OTAS-Coding Schema

Kategorie Erklärung

Team orientation Die Einstellung der Teammitglieder gegenüber einander und der
gemeinsamen Aufgabe. Bereitschaft sich zu engagieren und die
Teamziele ernst zu nehmen

Team leadership Eine oder unterschiedliche Personen achten darauf, dass die
Bearbeitung strukturiert abläuft und zum Ziel führt

Communication Kommunikation untereinander (verbal, durch Körpersprache) zur
erfolgreichen Bearbeitung der Aufgabe

Awareness and
monitoring

Die Teammitglieder wissen jeweils, was die anderen gerade machen
bzw. vorhaben

Feedback Feedback zur Bearbeitung der Aufgabe wird gegeben oder erfragt.
Feedback wird angenommen

Backup behavior Die Teammitglieder unterstützen sich gegenseitig, wenn der andere
gerade nicht weiter weiß oder Fehler macht

Coordination Die Arbeit verläuft zeitlich sinnvoll und geht Hand in Hand
Es entstehen keine Cooperation-Breakdowns (Zugriff auf gleiche
Ressourcen, Behinderung der Arbeit der Gruppenmitglieder)

140 Appendices

Appendix B.3.1
Pre-questionnaire—General Questions

Appendices 141

Appendix B.3.2
Custom Creativity Assessment Questionnaire

142 Appendices

Appendices 143

144 Appendices

Appendices 145

Appendix B.3.3
Pre-questionnaire—Java-Questions

146 Appendices

Appendix B.4
Task-Descriptions for User-Study

Task 1:

Karl studiert im dritten Semester Maschinenbau. Er lebt ein typisches
Studentenleben, ist ein engagierter Student und fühlt sich trotzdem oft zeitlich unter
Druck gesetzt. Insbesondere in den Zeiten vor Prüfungen und Abgaben steigt ihm
die Arbeit über den Kopf. Blickt Karl auf einen Monat zurück, weiß er oft nicht
genau, wie er seine Zeit genutzt hat. Er hat die Sorge, sich seine Zeit nicht effektiv
genug einzuteilen.

Helfen Sie Karl in dem Sie eine App entwerfen, mit der Karl seinen Zeitaufwand
besser bewerten und planen kann.

Task 2:

Lisa studiert im vierten Semester Informatik. Sie studiert gerne und engagiert,
besucht allerdings häufig Kurse, in denen sie Aufgaben in Gruppenarbeit bearbeiten

Appendices 147

muss. Oft kennt Lisa ihre Mit-Studenten im Kurs nur wenig, so dass die
Gruppenzusammensetzung recht willkürlich verläuft…

Oft hat Lisa die Erfahrung gemacht, dass nicht alle Gruppenmitglieder gleich
engagiert mitarbeiten, oder sich in ihren Fähigkeiten stark unterscheiden. Arbeitet
Lisa in einer ungünstigenGruppen-Konstellation, ist ihr persönlicher Arbeitsaufwand
in der Gruppenarbeit sehr hoch und die abgegebenen Ergebnisse der Arbeit sind
trotzdem nicht so gut, wie sich Lisa dies wünschen würde.

Helfen Sie Lisa und anderen Studenten indem Sie eine App entwerfen, in der
sich Studenten registrieren und in Profilen verwalten können. In den Profilen
könnten individuelle Fähigkeiten der Studenten wiedergegeben, Kursbesuche und
Erfahrungen berichtet werden. Vielleicht könnte eine solche App auch helfen,
spontane Arbeitsgruppen zu bilden.

Task 3:

Maria studiert im siebten Semester Elektrotechnik. Sie studiert gerne und
engagiert, was sich auch in Ihren Leistungen wiederspiegelt. Vor den Prüfungen
erstellt Maria zahlreiche Karteikarten, in denen sie Faktenwissen sammelt, welches
sie für die Prüfung auswendig parat haben muss. Marias großer Alptraum ist es,
Ihre wertvolle Kartensammlung vor einer Prüfung zu verlieren. Außerdem würde
Maria gerne ihre wertvollen Fakten-Sammlungen mit anderen Studenten teilen,
diskutieren und abgleichen.

Entwerft eine App, die Maria und ihren Mitstudenten hierbei helfen könnte!

148 Appendices

Appendix B.5
Final Questionnaire

Appendices 149

Appendix B.6
Categories for Assessing the Solutions’ Ideation
Ideation-Categories TASK 1:

Kategorie Implementierte Idee

Rückblick auf
vergangene Zeit

Darstellung Tortendiagramm

Balkendiagramm

Kennzahlen (Anzahl Termine, Summe der
Stunden)

Optimale
Zeiteinteilung

von der App vorgegeben

Bewertung der
vergangenen Zeit

Infotext der App

Smileys

Vorschläge für die Zukunft

fehlende Zeiten durch Kalendereinträge oder Informationen aus
anderen Apps ergänzen

wird als eigene Kategorie “ungenutzte Zeit”
bewertet

Planung der Zeit Darstellung Kalender

Liste

Matrix (Eisenhower Schema)

Zeitstrahl des Tagesablaufs

Termine Eintragen Zuordnung der Termine zu vorgegebenen
Kategorien

Zuordnung zu eigenen Kategorien

Aktiviäten bei Beginn eintragen und Zeit stoppen

Einteilung des geplanten Gesamtzeitaufwands vor
Deadlines

Prioritäten Prioritäten für Termine angeben

Planungshilfe Warnung bei Konfliktterminen

Warnung bei einseitiger Zeitplanung (zu viel in
einer Kategorie)

Einhalten von
Terminen

Reminder vor Deadline

Nachträgliche Abfrage ob Termine eingehalten
wurden

Anpassung auf den
Nutzer

intelligente Einteilung der Zeiten durch das System

150 Appendices

Ideation-Categories TASK 2:

Kategorie Implementierte Idee

Gruppenfunktionen Gruppentreffen App ermöglicht spontane Gruppentreffen

App ermöglicht regelmäßige Gruppentreffen

einmaliges Gruppentreffen

Gruppe
finden/gründen

Möglichkeit vorhanden, bestehende Gruppen zu finden
und beizutreten

Personensuche erweiterte Personensuche (filtern nach Studiengang,
Fähigkeiten, Zeit,…)

passende
Gruppenmitglieder
finden

Vorschläge zu passenden Gruppenmitgliedern durch die
App… anhand von Fähigkeiten/ Eigenschaften

Vorschläge zu passenden Gruppenmitgliedern durch die
App… anhand von Terminmöglichkeiten

Warnung bei Personen mit negativen Eigenschaften

Interaktion mit
Gruppenmitgliedern

private Nachrichten

Gruppenchat/Forum

Dateien hochladen

Abstimmungen

Skypekonferenz

Interaktion mit dem Dozent

Gruppenaufgaben To-Do Liste mit Verantwortungszuweisung

Deadlines

Verwaltung der
Gruppen

Veknüpfung der Gruppen mit Unikursen

Gruppentreffen werden im Kalender angezeigt

Unikurse Übersicht Übersicht der Unikurse integriert

Abgabe Abgaben von Arbeiten durch die App möglich

persönliche
Fähigkeiten/
Vorlieben

Selbsteinschätzung belegte Kurse/Fachkenntnisse/Sprachkenntnisse

Fähigkeiten, Erfahrungen

Softskills, Eigenschaften

Schwächen

Gruppenpräferenz präferierte Gruppengröße

bevorzugte Rolle in der Gruppe

bevorzugtes Gruppentreffen (online/ offline)

Eingabemöglichkeit freie Texteingabe

mit Skala (z.B. Sterne, 1–5, …)

Checkboxen

Schieberegler

Bewertung anderer Möglichkeit die Eigenschaften anderer Nutzer zu
bewerten

zeitliche
Verfügbarkeit

Eintragen eigene Verfügbarkeit im Profil eintragen

feste Termine in die Gruppe eintragen

flexibel in der Gruppe vorschlagen (abstimmen)

Appendices 151

Ideation-Categories TASK 3:

Kategorie Implementierte Idee

Karteikarten erstellen Karteikarten eintippen

Karteikarten abfotografieren

Karteikarten anderer Nutzer in eigene Sammlung integrieren

einseitig/zweiseitig einseitig

zweiseitig

lernen Abfrage möglich (Rückseite duch Klick, o.ä.)

vorlesen lassen

Antwort eintippen, System vergleicht mit Lösung

Reihenfolge zufällige Reihenfolge möglich

von der App anhand des Lernstatus generiert
(Karteikartensystem)

Lernstatus Nutzereingabe ob Antwort gewusst oder nicht

Karteikarten markiert/kommentiert werden

Auswertung Überblick über Lernstatus

Prognose des weiteren Lernaufwands

Interaktion mit
Freunden

Karteikarten mit bestimmten Personen teilen (freigeben)

automatischer Zugriff auf die Sammlungen aller Nutzer

Karteikarten kommentieren/diskutieren

Karteikarten/Sammungen bewerten

Chat

152 Appendices

References

1. Adelmann R, Langheinrich M (2009) SPARK rapid prototyping environment—mobile
phone development made easy. In Intelligent interactive assistance and mobile multimedia
computing, vol 225–237. Springer, Berlin. Retrieved from doi:10.1007/978-3-642-10263-
9_20

2. Dolenc A, Mäkelä I (1996) Rapid prototyping from a computer scientist’s point of view.
Rapid Prototyping J 2(2):18–25. doi:10.1108/13552549610128198

3. Ahmed M, Farag A (2005) Nonmetric calibration of camera lens distortion: differential
methods and robust estimation. IEEE Trans Image Proc 14(8):1215–1230

4. Alvarado C, Davis R (2004) SketchREAD: a multi-domain sketch recognition engine. In:
Proceedings of the 17th annual ACM symposium on user interface software and
technology, ACM, pp 23–32. doi:10.1145/1029632.1029637

5. Amant RS, Horton TE, Ritter FE (2007) Model-based evaluation of expert cell phone menu
interaction. ACM Trans Comput-Hum Interact 14(1):1. doi:10.1145/1229855.1229856

6. Apted T, Kay J, Quigley A (2006) Tabletop sharing of digital photographs for the elderly.
In: Proceedings of the SIGCHI conference on human factors in computing systems, ACM,
pp 781–790

7. Bähr B (2010) A surface-augmented paper-prototyping system for mobil applications.
Diplomarbeit, Technische Universität Berlin, Berlin

8. Bähr B (2011) Early design stage interface prototypes on mobile devices. Studienarbeit;
Technische Universität Berlin

9. Bähr B (2013) Rapid creation of sketch-based native android prototypes with blended
prototyping. Mobile HCI 2013—workshop on prototyping to support the interaction
designing in mobile application development (PID-MAD 2013)

10. Bähr B (2015) Towards a requirements catalogue for prototyping tools of mobile user
interfaces. In: Marcus A (ed) Design, user experience, and usability: users and interactions.
Springer International Publishing, Berlin, pp 495–507. Retrieved 12 April 2016 from http://
link.springer.com/chapter/10.1007/978-3-319-20898-5_48

11. Bähr B, Kratz S, Rohs M (2010) A tabletop system for supporting paper prototyping of
mobile interfaces. “PaperComp” workshop, UbiComp 2010 Copenhagen, Denmark. ACM

12. Bähr B, Möller S (2016) Blended prototyping. In: Gengnagel C, Nagy E, Stark R
(eds) Rethink! prototyping. Springer International Publishing, Berlin, pp 129–160.
Retrieved 24 Feb 2016 from http://link.springer.com/chapter/10.1007/978-3-319-24439-
6_9

13. Bähr B, Neumann S (2013) Blended prototyping design for mobile applications. In:
Rethinking prototyping: proceedings of the design modelling symposium Berlin 2013.
epubl, pp 68–80

14. Bailey BP, Biehl JT, Cook DJ, Metcalf HE (2008) Adapting paper prototyping for
designing user interfaces for multiple display environments. Pers Ubiquit Comput 12
(3):269–277. doi:10.1007/s00779-007-0147-2

© Springer International Publishing AG 2017
B. Bähr, Prototyping of User Interfaces for Mobile Applications,
T-Labs Series in Telecommunication Services,
DOI 10.1007/978-3-319-53210-3

153

http://dx.doi.org/10.1007/978-3-642-10263-9_20
http://dx.doi.org/10.1007/978-3-642-10263-9_20
http://dx.doi.org/10.1108/13552549610128198
http://dx.doi.org/10.1145/1029632.1029637
http://dx.doi.org/10.1145/1229855.1229856
http://link.springer.com/chapter/10.1007/978-3-319-20898-5_48
http://link.springer.com/chapter/10.1007/978-3-319-20898-5_48
http://link.springer.com/chapter/10.1007/978-3-319-24439-6_9
http://link.springer.com/chapter/10.1007/978-3-319-24439-6_9
http://dx.doi.org/10.1007/s00779-007-0147-2

15. Ballagas R, Memon F, Reiners R, Borchers J (2007) iStuff mobile: rapidly prototyping new
mobile phone interfaces for ubiquitous computing. In: Proceedings of the SIGCHI
conference on human factors in computing systems, ACM, pp 1107–1116. doi:10.1145/
1240624.1240793

16. Basu A, Licardie S (1993) Modeling fish-eye lenses. In: Proceedings of the 1993 IEEE/RSJ
international conference on intelligent robots and systems ’93, IROS ’93, vol 3, pp 1822–
1828

17. Battocchi A, Pianesi F, Tomasini D et al (2009) Collaborative puzzle game: a tabletop
interactive game for fostering collaboration in children with autism spectrum disorders
(ASD). In: Proceedings of the ACM international conference on interactive tabletops and
surfaces, ACM, pp 197–204. doi:10.1145/1731903.1731940

18. Bederson B, Grosjean J, Meyer J (2004) Toolkit design for interactive structured graphics.
IEEE Trans Softw Eng 30(8):535–546

19. Bähr B (2012) Thoughts on blended prototpying. In: Prototype! physical, virtual hybrid,
smart tackling new challenges in design and engineering. Form + Zweck, pp 88–100

20. Beyer H, Holtzblatt K (1997) Contextual design: defining customer-centered systems
(interactive technologies). Morgan Kaufmann, Burlington

21. Bias RG (1994) The pluralistic usability walkthrough: coordinated empathies. In: Usability
inspection methods. Wiley, Hoboken, pp 63–76. Retrieved 10 Feb 2016 from http://dl.acm.
org/citation.cfm?id=189211

22. Blanchard BS (2012) System engineering management. Wiley, Hoboken
23. Blanchard BS, Fabrycky WJ (2013) Systems engineering and analysis. Pearson Education

Limited, Upper Saddle River
24. Blinn JF (1990) The ultimate design tool. IEEE Comput Graph Appl 10(6):90–92
25. Bonanni L, Vaucelle C, Lieberman J, Zuckerman O (2006) PlayPals: tangible interfaces for

remote communication and play. In: CHI’06 extended abstracts on human factors in
computing systems, ACM, pp 574–579. Retrieved 12 Feb 2016 from http://dl.acm.org/
citation.cfm?id=1125572

26. Borchers J, Ringel M, Tyler J, Fox A (2002) Stanford interactive workspaces: a framework
for physical and graphical user interface prototyping. IEEE Wireless Commun 9(6):64–69.
doi:10.1109/MWC.2002.1160083

27. Brave S, Ishii H, Dahley A (1998) Tangible interfaces for remote collaboration and
communication. In: Proceedings of the 1998 ACM conference on computer supported
cooperative work, ACM, pp 169–178. doi:10.1145/289444.289491

28. Brewster S (2002) Overcoming the lack of screen space on mobile computers. Pers Ubiquit
Comput 6(3):188–205

29. Buchenau M, Suri JF (2000) Experience prototyping. In: Proceedings of the 3rd conference
on designing interactive systems: processes, practices, methods, and techniques, ACM,
pp 424–433. doi:10.1145/347642.347802

30. Buisine S, Besacier G, Najm M, Aoussat A, Vernier F (2007) Computer-supported
creativity: evaluation of a tabletop mind-map application. In: Proceedings of the 7th
international conference on engineering psychology and cognitive ergonomics. Springer,
Berlin, pp 22–31

31. Buxton B (2007) Sketching user experiences: getting the design right and the right design.
Morgan Kaufmann, Burlington

32. Card S, Newell A, Moran T (1983) The psychology of human-computer interaction.
L. Erlbaum Associates Inc. Retrieved 7 Dec 2015 from http://portal.acm.org/citation.cfm?
id=578027

33. Carson SH, Peterson JB, Higgins DM (2005) Reliability, validity, and factor structure of the
creative achievement questionnaire. Creativity Res J 17(1):37–50. doi:10.1207/
s15326934crj1701_4

154 References

http://dx.doi.org/10.1145/1240624.1240793
http://dx.doi.org/10.1145/1240624.1240793
http://dx.doi.org/10.1145/1731903.1731940
http://dl.acm.org/citation.cfm?id=189211
http://dl.acm.org/citation.cfm?id=189211
http://dl.acm.org/citation.cfm?id=1125572
http://dl.acm.org/citation.cfm?id=1125572
http://dx.doi.org/10.1109/MWC.2002.1160083
http://dx.doi.org/10.1145/289444.289491
http://dx.doi.org/10.1145/347642.347802
http://portal.acm.org/citation.cfm?id=578027
http://portal.acm.org/citation.cfm?id=578027
http://dx.doi.org/10.1207/s15326934crj1701_4
http://dx.doi.org/10.1207/s15326934crj1701_4

34. Cherubini M, Venolia G, DeLine R, Ko AJ (2007) Let’s go to the whiteboard: how and
why software developers use drawings. In: Proceedings of the SIGCHI conference on
human factors in computing systems, ACM, pp 557–566. doi:10.1145/1240624.1240714

35. Consolvo S, Walker M (2003) Using the experience sampling method to evaluate ubicomp
applications. IEEE Pervasive Comput 2(2):24–31

36. Cook DJ, Bailey BP (2005) Designers’ use of paper and the implications for informal tools.
In: OZCHI ’05, pp 1–10. Retrieved 2 June 2014 from http://dl.acm.org/citation.cfm?id=
1108368.1108402

37. Coyette A, Kieffer S, Vanderdonckt J (2007) Multi-fidelity prototyping of user interfaces.
In: Baranauskas C, Palanque P, Abascal J, Barbosa SDJ (eds) Human-computer interaction
—INTERACT 2007. Springer, Berlin, pp 150–164. Retrieved 4 Sept 2013 from doi:10.
1007/978-3-540-74796-3_16

38. Coyette A, Vanderdonckt J (2005) A sketching tool for designing anyuser, anyplatform,
anywhere user interfaces. In: Costabile MF, Paternò F (eds) Human-computer interaction—
INTERACT 2005. Springer, Berlin, pp 550–564. Retrieved 4 Sept 2013 from doi:10.1007/
11555261_45

39. Dalmasso I, Datta SK, Bonnet C, Nikaein N (2013) Survey, comparison and evaluation of
cross platform mobile application development tools. In: Wireless communications and
mobile computing conference (IWCMC), 2013 9th international, pp 323–328. doi:10.1109/
IWCMC.2013.6583580

40. Davis RC, Saponas TS, Shilman M, Landay JA (2007) SketchWizard: wizard of Oz
prototyping of pen-based user interfaces. In: Proceedings of the 20th annual ACM
symposium on user interface software and technology, ACM, pp 119–128. doi:10.1145/
1294211.1294233

41. Derboven J, De Roeck D, Verstraete M, Geerts D, Schneider-Barnes J, Luyten K (2010)
Comparing user interaction with low and high fidelity prototypes of tabletop surfaces. In:
Proceedings of the 6th Nordic conference on human-computer interaction: extending
boundaries, ACM, pp 148–157. doi:10.1145/1868914.1868935

42. Devernay F, Faugeras O (2001) Straight lines have to be straight: automatic calibration and
removal of distortion from scenes of structured environments. Mach Vis Appl 13(1):14–24

43. Dickinson TL, McIntyre RM (1997) A conceptual framework for teamwork measurement.
Team Perform Assess Measur 19–43

44. Diefenbach S, Chien WC, Lenz E, Hassenzahl M (2013) Prototypen auf dem Prüfstand.
Bedeutsamkeit der Repräsentationsform im Rahmen der Konzeptevaluation. i-com
Zeitschrift für interaktive und kooperative Medien 12(1):53–63

45. Diefenbach S, Hassenzahl M, Eckoldt K, Laschke M (2010) The impact of concept (re)
presentation on users’ evaluation and perception. In: Proceedings of the 6th Nordic
conference on human-computer interaction: extending boundaries, ACM, pp 631–634.
doi:10.1145/1868914.1868991

46. Dorst K, Cross N (1995) Protocol analysis as a research technique for analysing design
activity. In: Design engineering technical conferences, pp 563–570

47. Dow SP, Glassco A, Kass J, Schwarz M, Schwartz DL, Klemmer SR (2010) Parallel
prototyping leads to better design results, more divergence, and increased self-efficacy.
ACM Trans Comput-Hum Interact 17(4):18:1–18:24. doi:10.1145/1879831.1879836

48. Henry Duh, Gerald Tan, and Vivian Chen (2006) Usability evaluation for mobile device: a
comparison of laboratory and field tests. In: MobileHCI ’06: proceedings of the 8th
conference on human-computer interaction with mobile devices and services. ACM Press,
pp 181–186. Retrieved from doi:10.1145/1152215.1152254

49. Ferrise F, Bordegoni M, Lizaranzu J (2010) Product design review application based on a
vision-sound-haptic interface. In: Nordahl R, Serafin S, Fontana F, Brewster S (eds) Haptic
and audio interaction design. Springer, Berlin, pp 169–178. Retrieved 7 Dec 2015 from
doi:10.1007/978-3-642-15841-4_18

References 155

http://dx.doi.org/10.1145/1240624.1240714
http://dl.acm.org/citation.cfm?id=1108368.1108402
http://dl.acm.org/citation.cfm?id=1108368.1108402
http://dx.doi.org/10.1007/978-3-540-74796-3_16
http://dx.doi.org/10.1007/978-3-540-74796-3_16
http://dx.doi.org/10.1007/11555261_45
http://dx.doi.org/10.1007/11555261_45
http://dx.doi.org/10.1109/IWCMC.2013.6583580
http://dx.doi.org/10.1109/IWCMC.2013.6583580
http://dx.doi.org/10.1145/1294211.1294233
http://dx.doi.org/10.1145/1294211.1294233
http://dx.doi.org/10.1145/1868914.1868935
http://dx.doi.org/10.1145/1868914.1868991
http://dx.doi.org/10.1145/1879831.1879836
http://dx.doi.org/10.1145/1152215.1152254
http://dx.doi.org/10.1007/978-3-642-15841-4_18

50. Filipowicz A (2006) From positive affect to creativity: the surprising role of surprise.
Creativity Res J 18(2):141–152. doi:10.1207/s15326934crj1802_2

51. Fischer G (2001) User modeling in human-computer interaction. User Model User-Adap
Interact 11(1–2):65–86. doi:10.1023/A:1011145532042

52. Bonadiman F (2016) Enhancing the interaction space of a tabletop computing system to
design paper prototypes for mobile applications

53. Goel V (1995) Sketches of thought (Bradford Books). The MIT Press, Cambridge
54. Görner R (1973) Ergebnisse und Probleme aus empirischen psychologischen

Untersuchungen der Konstrukteurstätigkeit. In: Vortrag zum 8. Symposium “Methoden
und Mittel zur Rationalisierung der Konstruktionsarbeit”. Dresden, TU Dresden, Sektion
Elektrotechnologie und Feingerätetechnik

55. Gutwin C, Greenberg S (2000) The mechanics of collaboration: developing low cost
usability evaluation methods for shared workspaces. In: Proceedings of the 9th IEEE
international workshops on enabling technologies: infrastructure for collaborative enter-
prises, IEEE Computer Society, pp 98–103. Retrieved 30 Apr 2015 from http://dl.acm.org/
citation.cfm?id=647068.715651

56. Hacker W (1999) Konstruktives Entwickeln als Tätigkeit: Versuch einer Reinterpretation
des Entwurfsdenkens (design problem solving). Sprache & Kognition 18(3–4):88–97

57. Haller M, Brandl P, Leithinger D, Leitner J, Seifried T, Billinghurst M (2006) Shared
design space: sketching ideas using digital pens and a large augmented tabletop setup. In:
Pan Z, Cheok A, Haller M, Lau RWH, Saito H, Liang R (eds) Advances in artificial reality
and tele-existence. Springer, Berlin, pp 185–196. Retrieved 24 Jan 2014 from doi:10.1007/
11941354_20

58. Hassenzahl M, Burmester M, Koller F (2003) AttrakDiff: Ein Fragebogen zur Messung
wahrgenommener hedonischer und pragmatischer Qualität. In: Szwillus G, Ziegler J
(eds) Mensch & Computer 2003. Vieweg+Teubner Verlag, pp 187–196. Retrieved 18 May
2015 from doi:10.1007/978-3-322-80058-9_19

59. Hendry DG, Mackenzie S, Kurth A, Spielberg F, Larkin J (2005) Evaluating paper
prototypes on the street. In: CHI ’05 extended abstracts on human factors in computing
systems, ACM, pp 1447–1450

60. Hilliges O, Terrenghi L, Boring S, Kim D, Richter H, Butz A (2007) Designing for
collaborative creative problem solving. In: Proceedings of the 6th ACM SIGCHI
conference on creativity and cognition, ACM, pp 137–146. doi:10.1145/1254960.
1254980

61. Jung HG, Lee YH, Yoon PJ, Kim J (2010) Radial distortion refinement by inverse
mapping-based extrapolation

62. Holzmann C, Vogler M (2012) Building interactive prototypes of mobile user interfaces
with a digital pen. In: Proceedings of the 10th Asia pacific conference on computer-human
interaction, ACM, pp 159–168. doi:10.1145/2350046.2350080

63. Hong JI, Landay JA (2000) SATIN: a toolkit for informal ink-based applications. In:
Proceedings of the 13th annual ACM symposium on user interface software and
technology, ACM, pp 63–72

64. Hornecker E, Marshall P, Dalton NS, Rogers Y (2008) Collaboration and interference:
awareness with mice or touch input. In: Proceedings of the 2008 ACM conference on
computer supported cooperative work, ACM, pp 167–176. doi:10.1145/1460563.1460589

65. Horst W (2011) Supportive tools for collaborative prototyping. In: Nordes 0, 4. Retrieved 2
June 2014 from http://www.nordes.org/opj/index.php/n13/article/view/147

66. Hosseini-Khayat A, Seyed T, Burns C, Maurer F (2011) Low-fidelity prototyping of
gesture-based applications. In: Proceedings of the 3rd ACM SIGCHI symposium on
engineering interactive computing systems, ACM, pp 289–294. doi:10.1145/1996461.
1996538

67. Houde S, Hill C (1997) What do prototypes prototype? In Handbook of human-computer
interaction, 2nd edn. North-Holland, pp 367–382

156 References

http://dx.doi.org/10.1207/s15326934crj1802_2
http://dx.doi.org/10.1023/A:1011145532042
http://dl.acm.org/citation.cfm?id=647068.715651
http://dl.acm.org/citation.cfm?id=647068.715651
http://dx.doi.org/10.1007/11941354_20
http://dx.doi.org/10.1007/11941354_20
http://dx.doi.org/10.1007/978-3-322-80058-9_19
http://dx.doi.org/10.1145/1254960.1254980
http://dx.doi.org/10.1145/1254960.1254980
http://dx.doi.org/10.1145/2350046.2350080
http://dx.doi.org/10.1145/1460563.1460589
http://www.nordes.org/opj/index.php/n13/article/view/147
http://dx.doi.org/10.1145/1996461.1996538
http://dx.doi.org/10.1145/1996461.1996538

68. Hunter S, Maes P (2008) WordPlay: a table-top interface for collaborative brainstorming
and decision making. In: Proceedings of IEEE tabletops and interactive surfaces, pp 2–5

69. Hupfer S, Cheng LT, Ross S, Patterson J (2004) Introducing collaboration into an
application development environment. In: Proceedings of the 2004 ACM conference on
computer supported cooperative work, ACM, pp 21–24. doi:10.1145/1031607.1031611

70. Landay JA, Myers BA (2009) Just draw it! Programming by sketching storyboards
71. Israel JH (2010) Hybride Interaktionstechniken des immersiven Skizzierens in frühen

Phasen der Produktentwicklung. Retrieved from doi:10.14279/depositonce-2490
72. John B, Vera A, Matessa M, Freed M, Remington R (2002) Automating CPM-GOMS. In:

Proceedings of the SIGCHI conference on human factors in computing systems, ACM,
pp 147–154. doi:10.1145/503376.503404

73. Kaikkonen A, Kallio T, Kekäläinen A, Kankainen A, Cankar M (2005) Usability testing of
mobile applications: a comparison between laboratory and field testing. J Usability Stud 1
(1):4–16

74. Kazi RH, Chevalier F, Grossman T, Zhao S, Fitzmaurice G (2014) Draco: bringing life to
illustrations. In: CHI ’14 extended abstracts on human factors in computing systems, ACM,
pp 579–582. doi:10.1145/2559206.2574769

75. Kelley T (2002) The art of innovation. Profile Business, City
76. Kieras D (2003) The human-computer interaction handbook. In: Jacko JA, Sears A (eds) L.

Erlbaum Associates Inc., Hillsdale, pp 1139–1151. Retrieved 7 Dec 2015 from http://dl.
acm.org/citation.cfm?id=772072.772143

77. Kjeldskov J, Skov MB, Als BS, Høegh RT (2004) Is it worth the hassle? Exploring the
added value of evaluating the usability of context-aware mobile systems in the field. In:
Mobile human-computer interaction—MobileHCI 2004. Springer, Berlin, pp 529–535.
Retrieved from doi:10.1007/978-3-540-28637-0_6

78. Klemmer S, Newman M, Farrell R, Meza R, Landay JA (2000) A tangible difference:
participatory design studies informing a designers’ outpost. In: Workshop on shared
environments to support face-to-face collaboration. Retrieved from http://dub.washington.
edu:2007/projects/outpost/CSCWWorkshopSubmission.pdf

79. Klemmer SR, Everitt KM, Landay JA (2008) Integrating physical and digital interactions
on walls for fluid design collaboration. Hum Comput Inter 23(2):138–213. doi:10.1080/
07370020802016399

80. Klemmer SR, Newman MW, Farrell R, Bilezikjian M, Landay JA (2001) The designers’
outpost: a tangible interface for collaborative web site. In: Proceedings of the 14th annual
ACM symposium on User interface software and technology, ACM, pp 1–10. doi:10.1145/
502348.502350

81. Koivisto EMI, Suomela R (2007) Using prototypes in early pervasive game development.
In: Proceedings of the 2007 ACM SIGGRAPH symposium on Video games, ACM,
pp 149–156. doi:10.1145/1274940.1274969

82. Kordon F, Luqi A (2002) An introduction to rapid system prototyping. IEEE Trans Softw
Eng 28(9):817–821

83. Korhonen H, Paavilainen J, Saarenpää H (2009) Expert review method in game
evaluations: comparison of two playability heuristic sets. In: Proceedings of the 13th
international MindTrek conference: everyday life in the ubiquitous era, ACM, pp 74–81.
doi:10.1145/1621841.1621856

84. Kratz S, Rohs M (2009) Unobtrusive tabletops: linking personal devices with regular tables
85. Kulkarni SV (1998) Survey of creativity models. Technical report ASU/DAL/IG/98-1,

Arizona State University
86. Landay JA (1996) SILK: sketching interfaces like krazy. In: Conference companion on

human factors in computing systems, ACM, pp 398–399. doi:10.1145/257089.257396
87. Landay JA, Myers BA (1995) Interactive sketching for the early stages of user interface

design. In: Proceedings of the SIGCHI conference on human factors in computing systems,
ACM Press/Addison-Wesley Publishing Co., pp 43–50

References 157

http://dx.doi.org/10.1145/1031607.1031611
http://dx.doi.org/10.14279/depositonce-2490
http://dx.doi.org/10.1145/503376.503404
http://dx.doi.org/10.1145/2559206.2574769
http://dl.acm.org/citation.cfm?id=772072.772143
http://dl.acm.org/citation.cfm?id=772072.772143
http://dx.doi.org/10.1007/978-3-540-28637-0_6
http://dub.washington.edu:2007/projects/outpost/CSCWWorkshopSubmission.pdf
http://dub.washington.edu:2007/projects/outpost/CSCWWorkshopSubmission.pdf
http://dx.doi.org/10.1080/07370020802016399
http://dx.doi.org/10.1080/07370020802016399
http://dx.doi.org/10.1145/502348.502350
http://dx.doi.org/10.1145/502348.502350
http://dx.doi.org/10.1145/1274940.1274969
http://dx.doi.org/10.1145/1621841.1621856
http://dx.doi.org/10.1145/257089.257396

88. Landay JA, Myers BA (1996) Sketching storyboards to illustrate interface behaviors. In:
Conference companion on human factors in computing systems: common ground, ACM,
pp 193–194

89. Landay JA, Myers BA (2001) Sketching interfaces: toward more human interface design.
Computer 34(3):56–64

90. Richard Landis J, Koch GG (1977) The measurement of observer agreement for categorical
data. Biometrics 33(1):159–174. doi:10.2307/2529310

91. Leichtenstern K, André E (2010) MoPeDT: features and evaluation of a user-centred
prototyping tool. In: Proceedings of the 2nd ACM SIGCHI symposium on engineering
interactive computing systems, ACM, pp 93–102. doi:10.1145/1822018.1822033

92. Lewis C, Polson PG, Wharton C, Rieman J (1990) Testing a walkthrough methodology for
theory-based design of walk-up-and-use interfaces. In: Proceedings of the SIGCHI
conference on human factors in computing systems, ACM, pp 235–242. doi:10.1145/
97243.97279

93. Lin J, Landay JA (2008) Employing patterns and layers for early-stage design and
prototyping of cross-device user interfaces. In: Proceedings of the SIGCHI conference on
human factors in computing systems, ACM, pp 1313–1322. doi:10.1145/1357054.1357260

94. Lin J, Newman MW, Hong JI, Landay JA (2000) DENIM: finding a tighter fit between
tools and practice for web site design. In: Proceedings of the SIGCHI conference on human
factors in computing systems, ACM, pp 510–517. doi:10.1145/332040.332486

95. Lumsden J, MacLean R (2008) A comparison of pseudo-paper and paper prototyping
methods for mobile evaluations. In: Meersman R, Tari Z, Herrero P (eds) On the move to
meaningful internet systems: OTM 2008 workshops. Springer, Berlin, pp 538–547.
Retrieved July 23, 2013 from http://link.springer.com/chapter/10.1007/978-3-540-88875-
8_77

96. Maloney J, Resnick M, Rusk N, Silverman B, Eastmond E (2010) The scratch
programming language and environment. Trans Comput Educ 10(4):1–15

97. McCurdy M, Connors C, Pyrzak G, Kanefsky B, Vera A (2006) Breaking the fidelity
barrier: an examination of our current characterization of prototypes and an example of a
mixed-fidelity success. In: Proceedings of the SIGCHI conference on human factors in
computing systems, ACM, pp 1233–1242. doi:10.1145/1124772.1124959

98. McGee-Lennon MR, Ramsay A, McGookin D, Gray P (2009) User evaluation of OIDE: a
rapid prototyping platform for multimodal interaction. In: Proceedings of the 1st
ACM SIGCHI symposium on engineering interactive computing systems, ACM,
pp 237–242. doi:10.1145/1570433.1570476

99. Miller GA (1956) The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychol Rev 63(2):81–97. doi:10.1037/h0043158

100. Morris MR, Paepcke A, Winograd T (2006) TeamSearch: comparing techniques for
co-present collaborative search of digital media. In: Proceedings of the first IEEE
international workshop on horizontal interactive human-computer systems, IEEE Computer
Society, pp 97–104

101. Muller MJ (1991) PICTIVE—an exploration in participatory design. In: CHI ’91
proceedings of the SIGCHI conference on human factors in computing systems. ACM,
New York, pp 225–231. Retrieved from http://dl.acm.org/citation.cfm?id=108896

102. Nagai Y, Noguchi H (2002) How designers transform keywords into visual images. In:
Proceedings of the 4th conference on creativity & cognition, ACM, pp 118–125

103. Newell A (1994) Unified theories of cognition. Harvard University Press
104. Newman MW, Landay JA (2000) Sitemaps, storyboards, and specifications: a sketch of

Web site design practice. In: Proceedings of the 3rd conference on designing interactive
systems: processes, practices, methods, and techniques, ACM, pp 263–274

105. Newman MW, Lin J, Hong JI, Landay JA (2003) DENIM: an informal web site design tool
inspired by observations of practice. Hum Comput Interact 18(3):259–324

158 References

http://dx.doi.org/10.2307/2529310
http://dx.doi.org/10.1145/1822018.1822033
http://dx.doi.org/10.1145/97243.97279
http://dx.doi.org/10.1145/97243.97279
http://dx.doi.org/10.1145/1357054.1357260
http://dx.doi.org/10.1145/332040.332486
http://link.springer.com/chapter/10.1007/978-3-540-88875-8_77
http://link.springer.com/chapter/10.1007/978-3-540-88875-8_77
http://dx.doi.org/10.1145/1124772.1124959
http://dx.doi.org/10.1145/1570433.1570476
http://dx.doi.org/10.1037/h0043158
http://dl.acm.org/citation.cfm?id=108896

106. Nielsen CM, Overgaard M, Pedersen MB, Stage J, Stenild S (2006) It’s worth the hassle!:
the added value of evaluating the usability of mobile systems in the field. In: NordiCHI ’06,
ACM, pp 272–280

107. Nielsen J (1992) The usability engineering life cycle. Computer 25(3):12–22
108. Nielsen J (1993) Usability engineering. Morgan Kaufmann
109. Nielsen J (1993) Iterative user-interface design. Computer 26(11):32–41
110. Nielsen J (1994) Usability inspection methods. In: Conference companion on Human

factors in computing systems, ACM, pp 413–414. Retrieved 10 Feb 2016 from http://dl.
acm.org/citation.cfm?id=260531

111. Nielsen J, Molich R (1990) Heuristic evaluation of user interfaces. In: Proceedings of the
SIGCHI conference on human factors in computing systems, ACM, pp 249–256. doi:http://
doi.org/10.1145/97243.97281

112. Norman D (1988) The psychology of everyday things. Basic Books
113. Norman D (2002) The design of everyday things. Basic Books
114. Olson G, Olson J (2000) Distance matters. Hum Comput Inter 15(2):139–178
115. Paterno F (2000) Model-based design and evaluation of interactive applications. Springer,

Berlin
116. Piper B, Ratti C, Ishii H (2002) Illuminating clay: a 3-D tangible interface for landscape

analysis. In: Proceedings of the SIGCHI conference on Human factors in computing
systems: changing our world, changing ourselves, ACM, pp 355–362

117. Radatz J (1997) The IEEE standard dictionary of electrical and electronics terms. IEEE
Standards Office

118. Reenskaug W, Reenskaug T, Lehne OA (1995) Working with objects: OORAM software
engineering method. JA Majors, Greenwich

119. Regenbrecht H, Haller M, Hauber J, Billinghurst M (2006) Carpeno: interfacing remote
collaborative virtual environments with table-top interaction. Virtual Real 10(2):95–107

120. Rekimoto J (1997) Pick-and-drop: a direct manipulation technique for multiple computer
environments. In: Proceedings of the 10th annual ACM symposium on user interface
software and technology, ACM, pp 31–39

121. Richter J, Thomas BH, Sugimoto M, Inami M (2007) Remote active tangible interactions.
In: Proceedings of the 1st international conference on Tangible and embedded interaction,
ACM, pp 39–42. doi:10.1145/1226969.1226977

122. Riesenbach R (1994) The Ontario telepresence project. In: Conference companion on
human factors in computing systems, ACM, pp 173–176

123. Sachse P (2002) Idea materialis: Entwurfsdenken und Darstellungshandeln: über die
allmähliche Verfertigung der Gedanken beim Skizzieren und Modellieren. Logos-Verlag

124. de Sá M, Carriço L (2006) Low-fi prototyping for mobile devices. In: CHI ’06 extended
abstracts on human factors in computing systems, ACM, pp 694–699. 10.1145/1125451.
1125592

125. de Sá M, Carriço L (2008) Lessons from early stages design of mobile applications. In:
Proceedings of the 10th international conference on human computer interaction with
mobile devices and services, ACM, pp 127–136. doi:10.1145/1409240.1409255

126. de SáM, Carriço L (2009) A mobile tool for in-situ prototyping. In: Proceedings of the 11th
international conference on human-computer interaction with mobile devices and services,
ACM, pp 20:1–20:4. doi:10.1145/1613858.1613884

127. de Sá M, Carriço L, Duarte L, Reis T (2008) A mixed-fidelity prototyping tool for mobile
devices. In: Proceedings of the working conference on advanced visual interfaces, ACM,
pp 225–232. doi:10.1145/1385569.1385606

128. Diefenbach S, Hassenzahl M (2011). Handbuch zur Fun-ni toolbox: user experience
evaluation auf drei Ebenen. Retrieved 22 Dec 2015 from http://fun-ni.org/wp-content/
uploads/Diefenbach+Hassenzahl_2010_HandbuchFun-niToolbox.pdf

References 159

http://dl.acm.org/citation.cfm?id=260531
http://dl.acm.org/citation.cfm?id=260531
http://dx.doi.org/10.1145/97243.97281
http://dx.doi.org/10.1145/97243.97281
http://dx.doi.org/10.1145/1226969.1226977
http://dx.doi.org/10.1145/1125451.1125592
http://dx.doi.org/10.1145/1125451.1125592
http://dx.doi.org/10.1145/1409240.1409255
http://dx.doi.org/10.1145/1613858.1613884
http://dx.doi.org/10.1145/1385569.1385606
http://fun-ni.org/wp-content/uploads/Diefenbach+Hassenzahl_2010_HandbuchFun-niToolbox.pdf
http://fun-ni.org/wp-content/uploads/Diefenbach+Hassenzahl_2010_HandbuchFun-niToolbox.pdf

129. Sauppé A, Mutlu B (2014) How social cues shape task coordination and communication.
In: Proceedings of the 17th ACM conference on computer supported cooperative work &
social computing, ACM, pp 97–108. doi:10.1145/2531602.2531610

130. Schön DA (1983) The reflective practitioner: how professionals think in action. Basic
Books

131. Scott SD, Sheelagh M, Carpendale T, Inkpen KM (2004) Territoriality in collaborative
tabletop workspaces. In: Proceedings of the 2004 ACM conference on computer supported
cooperative work, ACM, pp 294–303

132. Segura VCVB, Barbosa SDJ (2013) UISKEI++: multi-device wizard of oz prototyping. In:
Proceedings of the 5th ACM SIGCHI symposium on engineering interactive computing
systems, ACM, pp 171–174. doi:10.1145/2480296.2480337

133. Shah JJ, Smith SM, Vargas-Hernandez N (2003) Metrics for measuring ideation
effectiveness. Des Stud 24(2):111–134. doi:10.1016/S0142-694X(02)00034-0

134. Carpendale S, Miede A, Isenberg T et al (2010) Collaborative interaction on large tabletop
displays

135. Shen C, Everitt K, Ryall K (2003) UbiTable: Impromptu face-to-face collaboration on
horizontal interactive surfaces. In: UbiComp 2003: ubiquitous computing, pp 281–288.
Retrieved from http://www.springerlink.com/content/uv4dwaye8dpjxck8

136. Shen C, Lesh NB, Vernier F, Forlines C, Frost J (2002) Sharing and building digital group
histories. In: Proceedings of the 2002 ACM conference on computer supported cooperative
work, ACM, pp 324–333

137. Shneiderman B (2007) Creativity support tools: accelerating discovery and innovation.
Commun ACM 50(12):20–32. doi:10.1145/1323688.1323689

138. Shneiderman B, Plaisant C, Cohen M, Jacobs S (2013) Designing the user interface:
Pearson New International Edition: strategies for effective human-computer interaction.
Addison Wesley

139. Smutny P (2012) Mobile development tools and cross-platform solutions. In: 13th
international carpathian control conference (ICCC), pp 653–656. doi:10.1109/
CarpathianCC.2012.6228727

140. Snyder C (2003) Paper prototyping: the fast and easy way to design and refine user
interfaces (The Morgan Kaufmann Series in Interactive Technologies). Morgan Kaufmann

141. Sommerville I (2010) Software engineering. Addison Wesley, Harlow
142. Spindler M, Stellmach S, Dachselt R (2009) PaperLens: advanced magic lens interaction

above the tabletop. In: Proceedings of the ACM international conference on interactive
tabletops and surfaces, ACM, pp 69–76

143. Streitz NA, Geißler J, Holmer T et al (1999) i-LAND: an interactive landscape for creativity
and innovation. In: Proceedings of the SIGCHI conference on human factors in computing
systems: the CHI is the limit, ACM, pp 120–127

144. Svanaes D, Seland G (2004) Putting the users center stage: role playing and low-fi
prototyping enable end users to design mobile systems. In: Proceedings of the SIGCHI
conference on human factors in computing systems, ACM, pp 479–486. doi:10.1145/
985692.985753

145. Szekely P (1994) User interface prototyping: tools and techniques. ICSE workshop on
SE-HCI, 76–92. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
41.6764

146. Szekely P (1995) User interface prototyping: tools and techniques. In: Software engineering
and human-computer interaction lecture notes in computer science. Springer, Berlin, pp 76–
92. Retrieved from http://link.springer.com/chapter/10.1007/BFb0035808

147. Takano K, Shibata H, Omura K, Ichino J, Hashiyama T, Tano S (2012) Do tablets really
support discussion?: comparison between paper, tablet, and laptop PC used as discussion
tools. In: Proceedings of the 24th Australian computer-human interaction conference,
ACM, pp 562–571. doi:10.1145/2414536.2414623

160 References

http://dx.doi.org/10.1145/2531602.2531610
http://dx.doi.org/10.1145/2480296.2480337
http://dx.doi.org/10.1016/S0142-694X(02)00034-0
http://www.springerlink.com/content/uv4dwaye8dpjxck8
http://dx.doi.org/10.1145/1323688.1323689
http://dx.doi.org/10.1109/CarpathianCC.2012.6228727
http://dx.doi.org/10.1109/CarpathianCC.2012.6228727
http://dx.doi.org/10.1145/985692.985753
http://dx.doi.org/10.1145/985692.985753
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.6764
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.6764
http://link.springer.com/chapter/10.1007/BFb0035808
http://dx.doi.org/10.1145/2414536.2414623

148. Tandler P, Prante T, Müller-Tomfelde C, Streitz N, Steinmetz R (2001) Connectables:
dynamic coupling of displays for the flexible creation of shared workspaces. In:
Proceedings of the 14th annual ACM symposium on User interface software and
technology, ACM, pp 11–20

149. Tuddenham P, Davies I, Robinson P (2009) WebSurface: an interface for co-located
collaborative information gathering. In: Proceedings of the ACM international conference
on interactive tabletops and surfaces, ACM, pp 181–188

150. Tversky B, Suwa M, Agrawala M et al (2003) Sketches for design and design of sketches.
In: Human behaviour in design. Springer, Berlin, pp 79–86. Retrieved 12 Apr 2016 from
http://link.springer.com/chapter/10.1007/978-3-662-07811-2_9

151. Underkoffler J, Ishii H (1999) Urp: a luminous-tangible workbench for urban planning and
design. In: Proceedings of the SIGCHI conference on Human factors in computing systems:
the CHI is the limit, ACM, pp 386–393

152. de Villiers JP, Wilhelm Leuschner F, Geldenhuys R (2008) Centi-pixel accurate real-time
inverse distortion correction

153. Mitchell Waldrop M (2016) The chips are down for Moore’s law. Nature 530(7589):144–
147. doi:10.1038/530144a

154. Walker M, Takayama L, Landay JA (2002) High-fidelity or low-fidelity, paper or
computer? Choosing attributes when testing web prototypes. In: Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, vol 46, No. 5, pp 661–665. doi:10.1177/
154193120204600513

155. Wallace JR, Scott SD, Stutz T, Enns T, Inkpen K (2009) Investigating teamwork and
taskwork in single- and multi-display groupware systems. Pers Ubiquit Comput 13(8):569–
581. doi:10.1007/s00779-009-0241-8

156. Walther-Franks B, Herrlich M, Karrer T et al (2012) Dragimation: direct manipulation
keyframe timing for performance-based animation. In: Proceedings of graphics interface
2012, Canadian Information Processing Society, pp 101–108. Retrieved 27 July 2013 from
http://dl.acm.org/citation.cfm?id=2305276.2305294

157. Wang D, Shen L, Wang H (2012) A collaborative sketch animation creation system on
mobile devices. In: Proceedings of the ACM 2012 conference on computer supported
cooperative work companion, ACM, pp 239–242. doi:10.1145/2141512.2141587

158. Ward TB, Smith SM, Finke RA (1999) Creative cognition. Retrieved 9 Feb 2016 from
http://psycnet.apa.org/psycinfo/1998-08125-010

159. Weiser M (1995) The computer for the 21st century. In: Baecker RM, Grudin J,
Buxton WAS, Greenberg S (eds) Human-computer interaction. Morgan Kaufmann
Publishers Inc., pp 933–940

160. Wellner P (1993) Interacting with paper on the DigitalDesk. Commun ACM 36(7):87–96
161. Wilson AD, Sarin R (2007) BlueTable: connecting wireless mobile devices on interactive

surfaces using vision-based handshaking. In: Proceedings of graphics interface 2007, ACM,
pp 119–125

162. Wilson J, Rosenberg D (1988) Rapid prototyping for user interface design. In: Helander J
(ed) Handbook for human-computer interaction. Elsevier Science Publishers, pp 859–875

163. Wong YY (1992) Rough and ready prototypes: lessons from graphic design. In: Posters and
short talks of the 1992 SIGCHI conference on human factors in computing systems, ACM,
pp 83–84. doi:10.1145/1125021.1125094

164. Wu M, Balakrishnan R (2003) Multi-finger and whole hand gestural interaction techniques
for multi-user tabletop displays. In: Proceedings of the 16th annual ACM symposium on
user interface software and technology, ACM, pp 193–202. doi:10.1145/964696.964718

165. Zufferey G, Jermann P, Lucchi A, Dillenbourg P (2009) TinkerSheets: using paper forms to
control and visualize tangible simulations. In: Proceedings of the 3rd international
conference on tangible and embedded interaction, ACM, pp 377–384

166. Balsamiq (2014) Rapid, effective, and fun wireframing software. Retrieved 3 June 2014
from http://www.balsamiq.com

References 161

http://link.springer.com/chapter/10.1007/978-3-662-07811-2_9
http://dx.doi.org/10.1038/530144a
http://dx.doi.org/10.1177/154193120204600513
http://dx.doi.org/10.1177/154193120204600513
http://dx.doi.org/10.1007/s00779-009-0241-8
http://dl.acm.org/citation.cfm?id=2305276.2305294
http://dx.doi.org/10.1145/2141512.2141587
http://psycnet.apa.org/psycinfo/1998-08125-010
http://dx.doi.org/10.1145/1125021.1125094
http://dx.doi.org/10.1145/964696.964718
http://www.balsamiq.com

167. Axure (2014) Interactive wireframe software & mockup tool. Retrieved 3 June 2014 from
http://www.axure.com/

168. MockFlow (2014) Super-easy wireframing. Retrieved 3 June 2014 from http://www.
mockflow.com/

169. POPAPP|POP—Prototyping on Paper (2014) POPAPP. Retrieved 28 May 2014 from
https://popapp.in/

170. Add to cart interaction (2016) Marvel prototyping. Retrieved 10 Feb 2016 from https://
marvelapp.com/2c67b1g?emb=1&exp=1

171. LimeSurvey (2014) The free and open source survey software tool! Retrieved 3 June 2014
from http://www.limesurvey.org/en/

172. Blockly (2016) Google developers. Retrieved 12 Feb 2016 from https://developers.google.
com/blockly/

162 References

http://www.axure.com/
http://www.mockflow.com/
http://www.mockflow.com/
https://popapp.in/
https://marvelapp.com/2c67b1g?emb=1&exp=1
https://marvelapp.com/2c67b1g?emb=1&exp=1
http://www.limesurvey.org/en/
https://developers.google.com/blockly/
https://developers.google.com/blockly/

	Acknowledgements
	Contents
	Abbreviations
	1 Introduction
	2 State of Prototyping Mobile Application User-Interfaces
	2.1 Meaning and Purpose of Prototyping
	2.1.1 Definition of Prototyping
	2.1.2 Prototype Information Goals
	2.1.3 Prototyping Paradigms

	2.2 The Paper-Based Prototyping Approach
	2.2.1 The Paper-Based Prototyping Session
	2.2.2 Advantages of the Paper-Based Prototyping Method

	2.3 Prototyping of Mobile User Interfaces
	2.3.1 Low-Fidelity Prototyping in the Mobile Context
	2.3.2 Mixed-Fidelity Prototyping Approaches
	2.3.2.1 Mixed-Fidelity Prototyping on Desktop Computers
	2.3.2.2 Mixed-Fidelity Prototyping on Mobile Devices
	2.3.2.3 Mixed-Fidelity Prototyping on Interactive Surfaces

	2.3.3 Influence of the Sketching Media on the Prototyping Process
	2.3.4 Comparison of Mobile Prototyping Approaches

	2.4 Research Objectives

	3 Prototyping Requirements
	3.1 Identification of Requirements from Literature Research
	3.1.1 Requirements Regarding the Prototype Design Process
	3.1.2 Requirements Regarding the Prototype Evaluation
	3.1.3 Requirements Tool Implications on the Prototype’s Nature

	3.2 Assessment of the Requirement with Expert Practitioners
	3.2.1 Study Objectives
	3.2.2 Study Design
	3.2.3 Results of Expert Survey

	3.3 Discussion of the Results

	4 Blended Prototyping—Design and Implementation
	4.1 Approach and Development
	4.1.1 Blended Prototyping Design Paradigms
	4.1.2 Feedback Driven Development

	4.2 Blended Prototyping—System and Process Architecture
	4.2.1 System Overview
	4.2.2 Module 1—The Design Tool
	4.2.2.1 Tabletop Environment and Basic Design Process
	4.2.2.2 Overview of the Key Interaction Techniques in a Design Session

	4.2.3 Module 2—The Creation Tool
	4.2.4 Module 3—The Testing Tool

	4.3 Design Decisions in the System Implementation
	4.3.1 Implementation of the Design Tool
	4.3.2 Implementation of the Creation Tool
	4.3.3 Implementation of the Testing Tool

	4.4 Discussion of the System Implementation

	5 Comparative Evaluation of Blended Prototyping
	5.1 Choice of Comparative Prototyping Tools for the Evaluation
	5.2 Identifying Performance Indices for the Comparative Evaluation
	5.2.1 Identifying Candidates from the Requirements Catalog
	5.2.2 Considering the Type of Evaluation Method
	5.2.3 Discussing Assessment Methods for Identified Requirements

	5.3 Conducting the Comparative Study
	5.3.1 Study Objectives
	5.3.2 Study Design
	5.3.2.1 Test-Subject Acquisition, Pre-questionnaires and Formation of Groups
	5.3.2.2 Test Design
	5.3.2.3 Testing Process
	5.3.2.4 Task Design
	5.3.2.5 Recorded Data
	5.3.2.6 Data Acquired in Post Analysis

	5.3.3 Study Results

	5.4 Conclusions of the Comparative Evaluation

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Appendices
	Appendix A: Email-Subscribe Code Example
	Appendix B.1: Discarded Collaboration Coding Schema
	Appendix B.2: Applied OTAS-Coding Schema
	Appendix B.2: Applied OTAS-Coding Schema
	Appendix B.3.1: Pre-questionnaire—General Questions
	Appendix B.3.2: Custom Creativity Assessment Questionnaire
	Appendix B.3.3: Pre-questionnaire—Java-Questions
	Appendix B.4: Task-Descriptions for User-Study
	Appendix B.5: Final Questionnaire
	Appendix B.6: Categories for Assessing the Solutions’ Ideation
	References

