Name Midterm Quiz Solutions GTidk

CS 4290/6290: High-Performance Computer Architecture
Spring 2004
Midterm Quiz

This is a closed-book exam. There are 6 problems on this quiz and the maximum total
number of pointsis40. Write your answers in the space provided. Use the extra pages for
scratch space is needed.

Problem 1. [3 points] Amdahl’s Law

For each of the following statements, indicate whether it istrue or false:
For an overall speedup of 2, the new execution time must be 50% or less of the old execution time.
FALSE A) A speedup of 40 on 40% of the program will result in an overall speedup of at least 2.
The new overall execution timeis 60% +40%/40=61% of the old.
FALSE B) A speedup of 20 on 50% of the program will result in an overall speedup of at least 2.

The new overall execution time is 50% +50%/20=52.5% of the old.
TRUE  C) A speedup of 10 on 60% of the program will result in an overall speedup of at least 2.

The new overall execution time is 40% +60%/10=46% of the old.
Problem 2. [3 points] Processor Performance Equation

For each of the following statements, indicate whether it istrue or false:
Execution time = clock cycletime* CPI * IC

FALSE A) Program execution time increases when the clock rate increases
Clock rateistheinverse of clock cycletime.

TRUE B) Program execution time increases when the CPI increases

TRUE C) Program execution time increases when the instruction count (1C) increases

Problem 3. [4 points] Register Renaming
For each of the following statements, indicate whether it istrue or false:

FALSE A) Register renami n%nelimi nates stalls due to name dependences through memory
Register renaming renamesregisters. It does not affect dependencesthrough memory.

TRUE B) Register renaming eliminates stalls due to output (WAW) dependences on registers
Output dependences are name dependences and areremoved by register renaming.

TRUE C) Register renaming eliminates stalls due to anti (WAR) dependences on registers
Anti-dependences ar e name dependences and are removed by register renaming.

FALSE D) Register renaming eliminates stalls due to flow (RAW) dependences on registers
Flow dependences ar e true (not name) dependences and ar e not removed by register renaming.
Problem 4. [3 points] Pipelining
For each of the following statements, indicate whether it istrue or false:

FALSE A) Splitting the shortest stage of afivesta%e pipeline will result in ahigher clock rate.
Thelongest stagein the pipeline determinesthe clock rate.

TRUE B) With single-issue, in-order execution, and the classical five-stage pipeline with no

bypassing, WAW hazards never cause any “bubbles’ (stalls) in the pipeline.
All writes occur in-order in the WB stage of the pipeline, so there are no WAW hazards. )
FALSE C) With a single-issue, in-order execution, and the classical five-stage pipeline with

bypassing, RAW hazards never cause any “bubbles’ (stalls) in the pipeline.

Even with bypassing, there can <till be a RAW hazard from a memory load to a dependent
instruction immediately after the load. Thisis because the loaded value is available at the end of the

MEM stage, but it needed at the beginning of the EXE stagein the same cycle.
Page 1 of 3



Name Midterm Quiz Solutions GTid#

Problem 5. [20 points] Tomasulo’s Algorithm

A processor uses Tomasulo’'s agorithm in its floating-point unit. The processor has one
CDB, but can issue two instructions per cycle. The figure shows the current state of the
processor, at the very end of a clock cycle. The adder is not doing anything, but the
multiplier has just finished an operation. A new cycle begins now.

Instruction Status Register
Instruction Issue Execute Wr. Result Status
MUL FO, F1, F2 Yes Yes V; Qi
ADD F1, FO, F3 Yes FO Nield
ADD F2, F3, F2 Yes Yes F1 Add1
ADD F3, F1, F4 Yes F2 Add?2
ADD FO, F1, F2 F3 8. Add3
F4 43
Reservation Stations F5 12
Name Busy Op \4 Vi Q; Qx F6 3.75
Addl VYes ADD 20 Wl Fr___0.01
Add2 Yes ADD 20 75
Add3 Ne Yes ADD 43 Add1l
Mull Yes Vel 25 7S
Mul2 No

A) [8 points] What will happen in this new cycle when the processor tries to issue the
next two instructions? Update the figure to reflect the resulting state of the processor. If
one or both of the two instructions can not issue in this cycle, briefly explain why it/they
can not issue.

Thefirst add (ADD F3, F1, F4) can issue and the updatesto the figure for this part are shown in red.

The second add (ADD FO,F1,F2) can not issue because thereis no more available reservation stations
for adds.

B) [5 points] The multiplier and the adder are both free to begin a new computation in
this cycle. Which instructions can begin to execute in the adder and which in the
multiplier? Update the figure to reflect the resulting state after beginning execution for
these instructions.

Theonly instruction that can begin execution (both of its source operand fields have values) is Add2,

which can executein the adder. The multiplier hasalready executed the only multiply available and
becomesidle. The updatesto thefigurefor thispart are shown in blue.

C) [7 points] What is going to be broadcast on the CDB in this cycle? Update the
figure to reflect the state after the broadcast and the resulting actions are compl ete.

Page 2 of 3



Name Midterm Quiz Solutions GTid#

Problem 6. [7 points] Branch Prediction

A single-issue, statically-scheduled, deeply pipelined processor is executing a program.
During the entire program run, the processor retires (commits) a total of 1,000,000
instructions. With a perfect BTB (which correctly predicts both the target and the
direction every time), there would be no stalls in the pipeline and the program would
complete in exactly one millisecond. However, the BTB is not perfect. Of the 1,000,000
dynamic instructions, 200,000 are branches. Only 170,000 of those are BTB hits (the
BTB has an entry for them). Of the 170,000 BTB hits, 150,000 are correctly predicted,
while for the other 20,000 the BTB incorrectly predicts the direction, target, or both. Of
the 30,000 BTB misses (those branches that the BTB did not have an entry for), 10,000
are not taken and 20,000 are taken. The BTB is the processor’s only means of predicting
branches, there are no delay slots, and the processor makes no attempt to correct a
mispredicted branch until the branch goes through the last stage of the pipeline. At the
end of that last pipeline stage the correct direction and target are known and, if needed, in
the next cycle the fetch restarts from the first instruction that should execute after the
branch. With the imperfect BTB, the overall execution time of the program is 1.8
milliseconds. How many stages are there in the processor’ s pipeline? Show your work.

Of the branches that hit (have an entry) in the BTB, only the 20,000 that are mispredicted will need
recovery. When a branch misses (does not have an entry) in the BTB, the processor behaveslikeit is
not a branch and keeps fetching on. This means that the 10,000 branches that missin the BTB but
are not taken are not a problem, but the 20,000 that missin the BTB and are taken requirerecovery.
This gives us a total of 40,000 branches that require recovery. Note that there are no non-branch
instructionsthat hit in the BTB: entriesin the BTB are allocated only for branches and the only way
for an instruction to hit in the BTB isto match the addressin a BTB entry; for an instruction to hit
in the BTB, there had to have been a branch with the same address.

With no stallsand no branch recoveries (the ideal case) the processor executes 1,000,000 instructions
in 1ms. Because ideally this processor executesone instruction per cycle, the cycletimeis 1ns. Note: if
we take into account the time it takes to “ramp up” the pipeline which is N stages long in the
beginning, there are actually 1,000,000+N-1 cycles in 1ms. However, N is always way smaller than
1,000,000, so we can safely neglect the N-1 part without changing the end result.

Now there are at least two ways to solve the problem. The easier way is to note that 1.8 ms is
1,800,000 cycles, so our 40,000 recoveries have resulted in 800,000 extra cycles. Then each recovery
took 800,000/40,000=20 cycles. The more difficult way is to use the processor performance equation.
The “Real” execution time ETrey IS 1.8ms, the “Ideal” execution time ET,4e 1S IMs. Instruction
count and clock cycle time is the same in both cases, but the “Real” CPI and the “ldeal” CPI differ.
Thus, ETrea!/ ET4ea=CPI rea/ CPl gea. We know that CPl4eq 1S 1 and that ETrea/ ET gea 1S 1.8, SO
CPI rey is 1.8. On all instructions except branches that need recovery CPI ey is 1, but on branches
that need recovery thisCPI is1 (for the branch itself) plustherecovery penalty P. We have:

CPI reg=1*<Fraction of instrsthat do not cause recovery> + (1+P)<Fraction of instructionsthat cause recovery>
CPI rex=1*(960,000/1,000,000)+(1+P)* (40,000/1,000,000)=1* 0.96+(1+P)* 0.04=1+P*0.04

1.8=1+P*0.04

P=(1.8-1)/0.04=0.8/0.04=20

Each time a branch needs recovery, 20 cycles are lost. From the text of the problem, branch recovery is done
only after the branch exitsthe Nth (last) stage of the pipeline. Look at the cyclein which the branch isin the last
stage of the pipeline. All stages they have “bad” instructions, except the Nth (last) stage which has the branch
itself. In the next cycle we start fetching correct instructions, so we lost N-1 cycles due to the recovery-causing
branch. Now we know that N-1=20 cycles, so the pipeline has 21 stages. To convince your self that the penalty is
one cycle less than the full pipeline length, try an example with a short (e.g. 2-stage) pipeline. Thislast step isa
bit tricky, so no pointswer e taken off for not doing it. In other words, 20 istreated asa correct answer.

Page 3 of 3



	CS 4290/6290: High-Performance Computer Architecture
	Spring 2004
	Midterm Quiz
	Problem 1. [3 points] Amdahl’s Law
	Problem 2. [3 points] Processor Performance Equation
	Problem 3. [4 points] Register Renaming
	Problem 4. [3 points] Pipelining
	Problem 5. [20 points] Tomasulo’s Algorithm
	 Problem 6. [7 points] Branch Prediction


