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Nomenclature

Following notations are used throughout this book.

A∗ A conjugated and transposed
AT A transposed
A+ Moore–Penrose pseudo-inverse of matrix A
A⊥ Orthonormal basis for the null space of A
spec(A) set of eigenvalues for a square matrix A
Ker(A) null space of matrix A
diag(λi) diagonal n× n matrix built from λi, i = 1 · · · n
In n× n identity matrix
R set of real numbers
C set of complex numbers
i

√−1
|c| magnitude of the complex number c
ẋ time derivation (ẋ = dx/dt)
s Laplace variable
LQG linear-quadratic-Gaussian
LFT linear fractional transformation

Fl(P,K)
lower linear fractional transformation of
P and K

Pwi→zi(s) the transfer from wi to zi in the plant P (s)
∥G(s)∥2 H2 norm of the stable system G(s)
∥G(s)∥∞ H∞ norm of the stable system G(s)
σmin(C) minimal singular value of the complex matrix C
σmax(C) maximal singular value of the complex matrix C

G(s): =

[
A B

C D

]
shorthand for G(s) = C(sI −A)−1B +D



Introduction

The first objective of this book is to provide a general solution to the inverse H∞
and H2 optimal control problems and to show how such a solution can be used to
design controllers in a reverse engineering approach. Given an initial controller and a
given plant, the solution to the inverse H∞/H2 optimal control problem is a standard
H∞ control problem, that is the two input ports–two output ports standard problem
commonly used in the H∞ design framework, whose unique H∞ or H2 optimal
controller is the given controller. This solution will be called the cross standard form
(CSF). The reverse engineering approach consists of applying the CSF to a given
controller in order to set up a standard control problem that can be completed to
handle H2 or H∞ frequency-domain specifications. It will be shown that such an
approach is quite attractive to mix various control design methods and to cope with
various kinds of control specifications. Thus, reverse engineering is a suitable
alternative to multi-objective control design that is still an open problem.

The second objective, which is strongly linked to the first objective, concerns the
observer-based realization of controllers for implementation purposes. Full-order H∞
unstructured controllers are well-known to raise implementation problems such as:

– How the controller states can be initialized.

– How various controllers designed at various operating conditions can be
switched or gain-scheduled; and so on.

When the model of a plant is described by a state space representation where the states
have a physical meaning (and physical units: this is in particular the case in the field of
mechanical engineering where the plant state vector is composed of the displacements
along the various degrees of freedom and their time derivatives), an observer-based
controller has a physical structure. Its state is an estimate of the plant state and has
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the same physical units. All the gains (state-feedback gains and state-estimator gains)
have also a physical unit. This can reduce implementation problems in a significant
way. It will be shown how an observer-based realization of a given controller for a
given plant can be computed and implemented. Then, the link between observer-based
realization and reverse engineering is straightforward: the observer-based realization
of a controller allows a simple solution to the inverse optimal control problem to be
proposed.

The third objective of this book concerns reverse engineering for mechanical
systems and initial controllers designed to meet basic performance specifications,
that is a prescribed second-order behavior for each degree of freedom and dynamic
decoupling of degrees of freedom. The CSF, although a general solution to the
inverse H∞ optimal control problem, leads to a standard problem where the
closed-loop performance index cannot be always directly compared with other
performance indexes. To solve this problem, a new standard H∞ problem weighting
the acceleration sensitivity function is proposed as a starting point for the reverse
engineering approach.

These three objectives are described in detail in Chapters 1–3. In Chapter 1, we
present the procedure to compute the observer-based realization of a given controller
and a given model. The application of this procedure to a very simple model of a
launcher is proposed to illustrate the importance of observer-based controllers for
gain-scheduling, controller switching, state and disturbance monitoring, and
reference input tracking. In Chapter 2, the CSF is presented and also applied to the
same academic example: a low-order controller is improved to fulfill a template on
its frequency-domain response and to recover stability margins once the actuator
dynamics is taken into account. Chapter 3 discusses reverse engineering for the
particular class of mechanical systems. The extension of these results to the
discrete-time case is given in the appendix. Concluding remarks and future works are
proposed in the last chapter.

In the three chapters, academic applications are proposed to illustrate the various
basic principles. These applications have been chosen for their pedagogic contents:
demo files and embedded Matlab® functions can be downloaded from
http://personnel.isae.fr/daniel-alazard/matlab-packages. Readers can run these
illustrations on their personnel computer. More complex and more realistic
applications related to this book are referenced for the reader who wishes to go
further. The reader is also advised to read first the preliminary methodological
example proposed in Appendix 1 to better understand the motivations of this
book.
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This book is aimed mainly for postgraduate students and control designers with a
solid background in automatic control, mainly in:

– state-space representation of multivariable systems;

– linear–quadratic–gaussian (LQG), H2 and H∞ syntheses.



1

Observer-based Realization of a Given
Controller

1.1. Introduction

Observer-based controllers (for instance, Linear Quadratic Gaussian (LQG)
controllers) are quite interesting for different practical reasons and from the
implementation point of view. Probably the key advantage of these controller
structures lies in the fact that the controller states are meaningful variables as
estimates of the physical plant states. It follows that the controller states can be used
to monitor (online or offline) the performance of the system. Such a meaningful state
also allows us to initialize the state of the controller or to update the controller state
during control mode switching. Note that this simple property does not hold for
general controllers with state-space description:

{
ẋK = AKxK +BKy
u = CKxK +DKy.

[1.1]

Another well-appreciated advantage comes from the ease of implementation of
observer-based controllers. In addition to the plant data, only two static gains (the
state-feedback and the state-estimator) define the entire controller dynamics. In
return, this facilitates the construction of gain-scheduled or interpolated controllers.
Indeed, assuming the plant model is available in real time, observer-based controllers
will only require the storage of these two static gains of lower dimensions instead of
the huge set of numerical data in [1.1] to update the controller dynamics at each
sample of time. Note that if we are using an interpolating procedure to update the
controller dynamics, the general representation in [1.1] is highly questionable from
an implementation viewpoint and in many cases will lead to an insuperable
computational effort. This was in our opinion a major impediment for a widespread
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use of modern control techniques, such as H∞ and µ syntheses in realistic
applications and particularly for problems necessitating the real-time adjustment of
the controller gains. These approaches produce high-order controllers expressed
under a meaningless state-space realization. Note also that this last point is relevant if
a controller reduction has been performed after the design.

To overcome this problem a general procedure is proposed in this chapter to
compute an observer-based realizations for an arbitrary given controller and a given
plant (for both continuous and discrete time cases). Independently of the solver used
for the control design, such a procedure allows us to provide a realization with a
meaningful state vector. In [ALA 01] and [CUM 04], it is shown that observer-based
realization are also convenient to isolate high level-tuning parameters
(potentiometers) in a complex control law. As the observer-based realization exploits
the model of the plant, we can also guess that such a realization is very convenient to
update the controller to a change in the model or to build a parameter-dependent
controller K(s, θ) from a parameter-dependent model G(s, θ).

Among other potential advantages of observer-based realization, we would like to
point out the possibility to handle actuator saturation constraints by exploiting this
information into the prediction equation. Since this matter is not covered in this book,
the reader is referred to [TAR 97] and references therein for more details. More
theoretical discussions on the implementation of gain-scheduled controllers which
use the plant nonlinearity model are given in [LAW 95] and [KAM 95].

The practical solution to handle non-stationary problems (such as the launch
vehicle control design during atmospheric flight) or nonlinear problems consists of
designing a family of controllers at various flight instants or various flight conditions
and then in interpolating (gain-scheduling) these various controllers. It is well-known
that the non-stationary behavior of interpolated control laws depends strongly on the
controller realizations that are interpolated. Observer-based realizations are very
attractive from the gain scheduling point of view [STI 99, PEL 00]. The main reason
is that the controller states are consistent and have physical units if the model upon
which the observer-based realization is built has physical states. Then,
observer-based realizations of given controllers is a good alternative to provide
gain-scheduled controllers.

In this chapter, we briefly recall central ideas behind the Youla parametrization
and show how it can be used to find the state-estimator-state-feedback structure of an
arbitrary controller associated with a given plant. Then, some illustrative examples,
with the associated Matlab® sequence, are proposed to highlight the interest of
observer-based structures to solve practical problems: gain-scheduling, controller
switching, state and disturbance monitoring and reference input tracking.
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e = 0 −

εy

Plant

Youla parameter

State feedback

State estimator

+B

A

D

C
ẋ x yu �

+−
+ + +

Kf

Kc

Q(s)

	x	̇x
+

B

A

D

C
u �

+
	y

Figure 1.1. Observer-based structure and Youla parametrization

1.2. Principle

Consider the stabilizable and detectable nth-order plant G0(s) (m inputs and p
outputs) with a minimal state-space realization:

{
ẋ = Ax+Bu,
y = Cx+Du

also noted:
[
ẋ

y

]
=

[
A B

C D

] [
x

u

]
. [1.2]

The so-called Youla parametrization of all stabilizing controllers built on the
general observer-based structure is depicted in Figure 1.1, where Kc, Kf and Q(s)
are the state-feedback gain, the state-estimator gain and the Youla parameter,
respectively. The controller K(s) associated with this structure is easily shown to
have the following state-space description:

 �̇x = A�x+Bu+Kf (y − C�x−Du)
˙xQ = AQxQ +BQ(y − C�x−Du)
u = −Kc�x+ CQxQ +DQ(y − C�x−Du)

[1.3]

where AQ, BQ, CQ and DQ are the four matrices of the state-space representation
of Q(s) associated with the state variable xQ. Hereafter, �x denotes an estimate of
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the plant state x. Such a state-space realization can also be seen as the lower Linear
Fractional Transformation (LFT) of Y (s) and Q(s) where Y (s) is defined by:

 �̇x
u
εy

 =

A−BKc −KfC +KfDKc Kf B −KfD

−Kc 0 Im
−C +DKc Ip −D

 �x
y
e

 . [1.4]

That is:

K(s) = Fl(Y (s), Q(s)). [1.5]

The principle of the Youla parametrization of all the controllers stabilizing the
plant G0 is based on the fact that the closed-loop transfer function between the input
e and the innovation εy = y − C�x − Du is null (see [LUE 71], for instance). As a
consequence, changing Q(s) leads to various controllers but the closed-loop transfer
function remains unaffected. It is readily shown that this closed-loop transfer function
can be represented by the state-space form [1.6] involving the estimation error εx =
x− �x: ẋ

˙xQ

ε̇x

 =

A−BKc BCQ BKc +BDQC
0 AQ BQC
0 0 A−KfC

 x
xQ

εx

+

B
0
0

 e

εy =
[
0 0 C

]  x
xQ

εx

 [1.6]

From this representation, the separation principle appears clearly and can be stated in
the following terms:

– the closed-loop eigenvalues can be separated into n state-feedback eigenvalues
(spec(A − BKc)), n state-estimator eigenvalues (spec(A − KfC)) and the Youla
parameter eigenvalues (spec(AQ)),

– the state-estimator eigenvalues and the Youla parameter eigenvalues are
uncontrollable by e;

– the state-feedback eigenvalues and the Youla parameter eigenvalues are
unobservable from εy . The transfer function from e to εy always vanishes.

Thus, the closed-loop system is stable if and only if matrices (A − BKc),
(A − KfC) and AQ are Hurwitz (all the eigenvalues lie in the open left half plane).
Then, changing Q(s) by any stable transfer allows us to parametrize the set of all
controllers stabilizing the plant G0(s).
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Now let us consider a stabilizing nK th-order controller K0(s) with minimal
state-space realization:

{
˙xK = AKxK +BKy

u = CKxK +DKy
,

[1.7a]

[1.7b]

the objective is to find its Youla parametrization associated with the plant realization
(equation [1.2]), that is the set of parameters {Kc, Kf , Q(s)} such that the
state-space realization (1.3) is a minimal observer-based realization of K0(s). The
minimality of the observer-based realization developed in this chapter must be
emphasized by comparison with the more general parametrization proposed in
[BOY 91] and [ZHO 96], for instance. The Youla parametrization of the controller
proposed in these references is based on a co-prime factorization of the plant and
leads to a realization whose order could be 2n+ nK and where the minimality is not
guaranteed.

In the sequel, the following notations will be used:

Jm = (Im −DKD)−1 and Jp = (Ip −DDK)−1, [1.8]

with the following properties:

– JmDK = DKJp, JpD = DJm,

– Im +DKDJm = Jm, Ip + JpDDK = Jp.

We first express the controller state equation [1.7a] as an Luenberger observer of
the variable z = Tx. So, we will denote:

xK = �z [1.9]

According to Luenberger’s formulation [LUE 71], this problem can be stated as the
search of:

T ∈ RnK×n, F ∈ RnK×nK , G ∈ RnK×p,

such that

�̇z = F �z +G(y −Du) + TBu [1.10]
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is an (asymptotic) observer of the variable z, that is z− �z vanishes as t goes to infinity
with an estimation dynamics given by F . Luenberger has shown that the constraints:

TA− FT = GC, and F stable, [1.11]

ensure that this holds true. Then, with the output equation [1.7b], the state-space
representation of the controller reads:

{ �̇z =
(
F + (TB −GD)CK

)�z + (
G(Ip −DDK) + TBDK

)
y (a)

u = CK�z +DKy (b)
. [1.12]

The structure of the controller is then depicted in Figure 1.2.

+
yu

+

(A, B, C,D)
Plant

CK

DK

e = 0

D
+

−

	̇z 	z
+

TB

F

G �+
+

Figure 1.2. Controller structure as an observer of z = Tx

With [1.9], the identification of [1.12] and [1.7a] leads to the algebraic relations:

G = (BK − TBDK)Jp.

F = AK + (BKD − TB)JmCK .

[1.13]

[1.14]

These equations with [1.11] guarantee that we are dealing with an observer-based
controller. Note that the stability of F (equation [1.11]) is secured whenever the
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original controller [1.7a] is stabilizing. Indeed from [1.2] and [1.12], a closed-loop
state-space realization reads:

[
ẋ�̇z
]
=

[
A+BJmDKC BJmCK

GC + TBJmDKC F + TBJmCK

] [
x�z
]
. [1.15]

Let us consider the change of state coordinates involving the estimation error εz =
z − �z:

[
x�z
]
= M

[
x
εz

]
with M =

[
In 0
T −InK

]
and M−1 = M. [1.16]

The new state-space realization highlights the separation principle:

[
ẋ
ε̇z

]
=

[
A+BJm(DKC + CKT ) −BJmCK

0 F

] [
x
εz

]
. [1.17]

So the set of n + nK closed-loop eigenvalues include the nK eigenvalues of F .
Therefore, F , that is the estimation dynamics, is stable if the initial controller is
stabilizing.

Substituting F and G from [1.14] and [1.13] in the first relation [1.11], we get:

(AK +BKDJmCK)T − T (A+BJmDKC)− TBJmCKT +BKJpC = 0.

[1.18]
So, the problem is reduced to solve in T the generalized non-symmetric and

rectangular Riccati equation [1.18] and, in the following, to compute F and G using
[1.14] and [1.13], respectively.

Equation [1.18] can also be reformulated as:

[−T I]Acl

[
I
T

]
= 0, [1.19]

where the characteristic matrix Acl associated with the Riccati equation [1.18] is
nothing else than the closed-loop system matrix:

Acl :=

[
A+BJmDKC BJmCK

BKJpC AK +BKDJmCK

]
. [1.20]
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The Riccati equation [1.18] can then be solved by standard invariant subspace
techniques that consist of:

– finding an n-dimensional invariant subspace S: = Range(U) of the closed-loop
system matrix Acl, that is

AclU = UΛ. [1.21]

This subspace is associated with a set of n eigenvalues, spec(Λ), among the n+nK

eigenvalues of Acl. Such subspaces are easily computed using Schur factorizations or
eigenvalue decompositions of the matrix Acl. See [GOL 96] for more details:

– Partitioning the vectors U which span this subspace conformably to the
partitioning in [1.20]:

U =

[
U1

U2

]
, U1 ∈ Rn×n. [1.22]

– Computing the solution:

T = U2U
−1
1 . [1.23]

Narasimhamurthi and Wu [NAR 77] have shown that the existence of a solution
T satisfying [1.18] is guaranteed whenever the eigenvalues of the Hamiltonian matrix
Acl are distinct. In proposition 1.2, a necessary condition is given for the existence of a
solution T . In the general case, however, there are finitely many admissible subspaces
S and thus many solutions. Each solution corresponds to a particular choice of n
eigenvalues among the set of closed-loop eigenvalues of Acl.

Then, given an nth-order plant and an nK th-order controller, we can compute the
linear combination TnK×nx of the plant states which is estimated by the controller
state. An analogous result is also discussed by Bender and Fowell [BEN 86].

The reader can download from: http://personnel.isae.fr/daniel-alazard
/matlab-packages a toolbox (bib_obr) with an interactive Matlab® function
cor2tfg to compute the matrices T , F and G from a given controller K0(s) and a
given plant G0(s) (the help of this function can be found in section A4.1,
Appendix 4).
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1.3. A first illustration

The model of a launcher between the angle of attack α and the thruster deflection
δ can be roughly approximated by the second-order transfer function (i.e. n = 2):

G0(s) =
1

s2 − 1

or the state-space realization (x = [α α̇]T): α̇
α̈

α

 =

 0 1 0
1 0 1

1 0 0

α
α̇

δ

. [1.24]

Let us consider the following first-order stabilizing controller (nK = 1) connected
to the plant with positive feedback (see Figure 1.3):

K0(s) =
−23s− 32

s+ 12
.

A state-space realization of this controller reads:

[
˙xK

δ

]
=

[−12 4

61 −23

] [
xK

α

]
. [1.25]

K0(s)

G0(s)
+0

u y+

Figure 1.3. Positive feedback connection of plant G0(s) and controller K0(s)

The closed-loop dynamic matrix (equation [1.20]) reads in this case:

Acl =

 0 1 0
−22 0 61
4 0 −12


and exhibits one real eigenvalue (−10) and two complex auto-conjugate eigenvalues
(−1 ± i). To solve in T the Riccati equation [1.19], we have to choose a
two-dimensional subspace of Acl associated with two among three closed-loop
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eigenvalues. It is recommended to select auto-conjugate pairs of eigenvalues to find a
real solution T (see also remark 1.4), that is −1 ± i. Then the following Matlab®

sequence allows us to determine the solution T = [0.3279 − 0.0328] and matrices G
and F using equations [1.13] and [1.14] (note that in this example D = 0 then
Jm = Im and Jp = Ip):

>> G0= s s ( [ 0 1 ; 1 0 ] , [ 0 ; 1 ] , [ 1 0 ] , 0 ) ;
>> K0= s s (−12 ,4 ,61 ,−23) ;
>> CL= f e e d b a c k ( G0,−K0) ;
>> ACL=CL . a

ACL =
0 1 0

−22 0 61
4 0 −12

>> [U,D]= e i g (ACL)

U =
0 .0976 −0.3996 − 0 .3996 i −0.3996 + 0 .3996 i

−0.9759 0 .7992 0 .7992
0 .1952 −0.1572 − 0 .1310 i −0.1572 + 0 .1310 i

D =
−10.0000 0 0

0 −1.0000 + 1 .0000 i 0
0 0 −1.0000 − 1 .0000 i

>> T=U( 3 , 2 : 3 ) * inv (U( 1 : 2 , 2 : 3 ) )

T =
0 .3279 −0.0328

>> G=K0 . b−T*G0 . b*K0 . d

G =
3 .2459

>> F=K0 . a +(K0 . b*G0 . d−T*G0 . b ) *K0 . c

F =
−10.0000

To illustrate relation [1.9] that is: xk is an estimate of the plant variable z = Tx
associated with the estimation dynamics F , the response to initial conditions on plant
states x(t = 0) = [1 − 1]T are depicted in Figures 1.4 and 1.5:

– Figure 1.4 plots the launcher output α and allows us to appreciate the response
time of the closed-loop system: it takes approximately 4 s to bring back the output
to 0.
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– Figure 1.5 plots the controller state xK = �z, the combination of launcher state
z = Tx and the estimation error εz = z − �z = Tx − xK . It is quite obvious that
estimation dynamics (here F = −10 rad/s) is quite fast with respect to the closed-loop
system response time: the estimation error goes back to zero in less than half a second.

Such figures (Figures 1.4 and 1.5) can be easily obtained with the Matlab®

sequence:

[ y , t , x ]= i n i t i a l (CL , [ 1 −1 0 ] , 6 ) ;
f i g u r e
p l o t ( t , y , ’k−’ , ’ LineWidth ’ , 2 ) ;
x l a b e l ( ’ Time ( s ) ’ ) ;
y l a b e l ( ’ Outpu t y ( rd ) ’ ) ;
f i g u r e
p l o t ( t , x ( : , 1 : 2 ) *T ’ , ’k−’ , ’ LineWidth ’ , 2 ) ;
hold on
p l o t ( t , x ( : , 3 ) , ’ k−−’ , ’ LineWidth ’ , 2 ) ;
p l o t ( t , x ( : , 1 : 2 ) *T’−x ( : , 3 ) , ’g−’ , ’ LineWidth ’ , 2 )
x l a b e l ( ’ Time ( s ) ’ ) ;
y l a b e l ( ’ C o n t r o l l e r s t a t e x_K and Tx ’ ) ;
l egend ( ’Tx ’ , ’x_K ’ , ’Tx−x_K ’ ) ;

0 1 2 3 4 5 6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

O
u
tp
u
t
y
(r
d
)

Figure 1.4. Response of output α to initial conditions on launcher states

We can also use the interactive function cor2tfg to find T , F and G:

>> [ T , F ,G]= c o r 2 t f g ( G0 , K0)

This command line opens two graphics windows (see Figures 1.6):

– the map of closed-loop eigenvalues (marked with ×) where the plant open-loop
dynamics (marked with +) are also marked,
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Figure 1.5. Responses of the controller state xK , z = Tx and the estimation
error εz = Tx−XK to initial conditions on launcher states

– a dialog box for the user to assign the current closed-loop eigenvalue.

Answering yes in the dialog box leads to the following result:

S e l e c t i o n i s comple t ed

T =
0 .3279 −0.0328

F =
−10.0000

G =
3 .2459

1.4. Augmented-order controllers

In this section, we consider the problem where nK ≥ n and find a state-feedback
gain Kc, a state-estimator gain Kf and a dynamic Youla parameter Q(s) with order
nK − n, such that the observer-based controller structure in Figure 1.1 is equivalent
to the original controller [1.7a]. We will assume that T has been computed by the
previous technique according to an admissible choice of n eigenvalues among the
n + nK closed-loop eigenvalues. In the following, F and G can be computed from
[1.14] and [1.13].
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Figure 1.6. Closed-loop eigenvalues map and dialog box opened by
function cor2tfg

Let us consider the Schur decomposition of Acl used to solve in T the Riccati
equation [1.18]:

Acl =

[
U1 U3

U2 U4

] [
Λ ∗
0 ΛF

] [
U∗
1 U∗

2

U∗
3 U∗

4

]
, [1.26]
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where
[
U1 U3

U2 U4

]
is a unitary (n + nK) × (n + nK)) matrix with U1 ∈ Cn×n, U2 ∈

CnK×n, U3 ∈ Cn×nK and U4 ∈ CnK×nK .

From equations [1.15] and [1.17], we can write:

[
A+BJm(DKC + CKT ) −BJmCK

0 F

]
=

[
In 0
T −InK

]
Acl

[
In 0
T −InK

]
. [1.27]

As T = U2U
−1
1 , substituting [1.26] in [1.27] we can derive1:

F = V ΛFV −1 with V = U2U
−1
1 U3 − U4 . [1.28]

ΛF is an nK ×nK upper triangular matrix that can be decomposed by blocks with
block sizes nK − n and n. The adequate decomposition of V and V −1 allows us to
write:

F = [V1 V2]

[
ΛF
11 ΛF

12

0 ΛF
22

] [
W1

W2

]
[1.29]

with

V = [ V1����
nK−n

V2����
n

] and V −1 =

[
W1

W2

] }nK − n
}n . [1.30]

Let us perform the change of variable:

�z =
[
V1 V2

] [w1

w2

]
[1.31]

in equations [1.10] and [1.11] and introduce the notations:

[ 'G1'G2

]
=

[
W1

W2

]
G;

['T1'T2

]
=

[
W1

W2

]
T. [1.32]

1 Because
[
U1 U3

U2 U4

]
is a unitary, it can be shown that U∗

4 = U4 − U2U
−1
1 U3 and U∗

3 +

U∗
4U2U

−1
1 = 0
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Equations [1.10] and [1.11] then become:

{
ẇ1 = (F11w1 +(F12w2 +'G1(y −Du) +'T1Bu (a)
ẇ2 = (F22w2 +'G2(y −Du) +'T2Bu (b)

[1.33]

and {'T1A −(F11
'T1 −(F12

'T2 = 'G1C (a)'T2A −(F22
'T2 = 'G2C. (b)

[1.34]

Now, we will assume that the Schur decomposition has been performed in such a
way that 'T2 = W2T is non-singular (in proposition 1.3, a necessary condition for T
to be full column rank is given) and we perform the second change of variable:

w2 = 'T2�x. [1.35]

From equations [1.33b] and [1.34b], we can derive:

�̇x = A�x+Bu+'T2

−1'G2(y − C�x−Du). [1.36]

Now using [1.34a] and [1.35] to substitute (F12w2 into equation [1.33a], we get:

ẇ1 = (F11(w1 −'T1�x) + 'G1(y − C�x−Du) +'T1(A�x+Bu). [1.37]

Pre-multiplying equation [1.36] by 'T1, subtracting it from equation [1.37] and
using the last change of variable:

w1 −'T1�x = xQ, [1.38]

we obtain:

˙xQ = (F11xQ + ('G1 −'T1
'T2

−1'G2)(y − C�x−Du). [1.39]

From [1.9], [1.31], [1.35] and [1.38], we can easily derive the global linear
transformation between the controller original state xK and the new states �x and xQ:

xK = �z = [V1 T ]

[
xQ�x

]
. [1.40]
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Then, the controller output equation [1.7b] can be expressed as:

u = CKT �x+ CKV1xQ +DKy [1.41]

or

u = Jm [(CKT +DKC)�x+ CKV1xQ +DK(y − C�x−Du)]. [1.42]

The identification of the set of equations [1.36], [1.39] and [1.42] with equation
[1.3] provides all the parameters for the observer-based controller structure shown in
Figure 1.1:

Kf = 'T2

−1'G2 = (W2T )
−1W2G.

Kc = −Jm(CKT +DKC).

AQ = (F11 = W1FV1.

BQ = 'G1 −'T1
'T2

−1'G2 = W1[InK×nK − T (W2T )
−1W2]G.

CQ = JmCKV1.

DQ = JmDK .

[1.43]

[1.44]

[1.45]

[1.46]

[1.47]

[1.48]

REMARK 1.1.– If nK = n , then T is square and decomposition [1.29] of F is such
that V2 = In×n and V1 is empty. Then equations [1.43]–[1.48] become:

Kf = T−1G = (T−1BK −BDK)Jp.

Kc = −Jm(CKT +DKC).

Q(s) = DQ = JmDK .

[1.49]

[1.50]

[1.51]

This result then specializes to those of [BEN 85].

1.5. Discussion

There is a combinatory of solutions according to the choice of the partition of
the closed-loop eigenvalues: first, in the computation of matrix T, and second in the
decomposition of matrix F . Hereafter, some rules are proposed to reduce the number
of admissible choices.
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PROPOSITION 1.1.– The n eigenvalues chosen for the computation of the solution T
of the Riccati equation [1.18] are the n state-feedback eigenvalues of the equivalent
observer-based controller, i.e. spec(A−BKc).

PROOF: From [1.20], [1.21] and [1.22], we have:

[
A+BJmDKC BJmCK

BKJpC AK +BKDJmCK

] [
In×n

T

]
=

[
In×n

T

]
U1ΛU

−1
1 , [1.52]

the first row of this matrix equality reads:

A+BJm(DKC + CKT ) = U1ΛU
−1
1 , [1.53]

and using [1.44], we have:

A−BKc = U1ΛU
−1
1 . [1.54]

So, the eigenvalues of Λ are the eigenvalues of A−BKc.

As a consequence, the nK remaining eigenvalues are the Luenberger observer
eigenvalues (i.e. spec(F ), see also equation [1.17]), which are shared, in [1.29],
between the nK − n Youla parameter eigenvalues (i.e. spec(AQ)) and the n
state-estimator eigenvalues (i.e. spec(A−KfC)).

From the set of equations ([1.20], [1.21] and [1.26]), it becomes:

[
A+BJmDKC BJmCK

BKJpC AK +BKDJmCK

] [
U1

U2

]
=

[
U1

U2

]
Λ, [1.55]

and a necessary condition on the choice of the subspace S is given for the existence
of a solution T (i.e. for U1 to be invertible).

PROPOSITION 1.2.– Consider U1 and U2 associated with an n-dimensional
invariant subspace S of Acl. If there is an uncontrollable plant eigenvalue which is
not in spec(Acl|S) then U1 is singular. In other words,

if ∃ λ /∈ spec(Λ) / λ is (A,B) uncontrollable, then U1 is singular [1.56]
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PROOF– Consider the (A,B)-pair and let λ denote an uncontrollable eigenvalue with
associated left-eigenvector u. That is,

uT[A− λI | B] = 0, [1.57]

then premultiplying [1.55] by [uT 0], we get:

uT[(A+BJmDKC)U1 +BJmCKU2] = uTU1Λ. [1.58]

From [1.57] and [1.58] it follows that:

uTU1(Λ− λI) = 0. [1.59]

So, if λ /∈ spec(Λ) then uTU1 = 0, that is U1 is singular.

A dual necessary condition for T to be full column rank (i.e. for U2 to be full
column-rank) can be stated as follows.

PROPOSITION 1.3.– Consider U1 and U2 associated with an n-dimensional
invariant subspace S of Acl. If there is an unobservable plant eigenvalue in
spec(Acl|S), then U2 is column rank deficient. In other words,

if ∃ λ ∈ spec(Λ) / λ is (A,C) unobservable,
then U2 is column rank deficient.

[1.60]

PROOF.– Omitted for brevity, see proposition 1.2.

Propositions 1.2 and 1.3 are quite useful when an observer-based realization for
H∞ or µ controllers must be computed from the standard problem augmented with
input and output frequency weights (see [ALA 99] for more details).

REMARK 1.2.– Among all the admissible choices, the only restriction which can
reduce the set of solutions is that complex auto-conjugate pairs of eigenvalues
cannot be separated if a state-space representation with real coefficients is required.
Note that such a choice is not always possible. For instance, consider the plant
G0(s) = 1/s and the controller K0(s) = 2/(s + 2), then the computation of the
state-feedback-state-estimator form leads to Q = 0, Kc = 1 + i (or 1 − i) and
Kf = 1 − i (respectively 1 + i). Although the gains Kc and Kf are complex, the
transfer function of the controller has real coefficients. It can easily be shown that, for
a minimal plant (without uncontrollable or unobservable eigenvalues):

– if n (plant order) is even, then a real solution always exists;
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– if n is odd, then a real solution T exits if the number of real eigenvalues in
spec(Acl) is at least equal to one and a real parametrization (Kc, Kf , Q(s)) exits (in
the case, nK > n) if the number of real eigenvalues in spec(Acl) is at least equal to
two.

For non-minimal plant, the rule is a little bit more complex. Let nC and nO be
the numbers of plant uncontrollable and unobservable eigenvalues, respectively (the
controller is assumed to be minimal). Then:

– if n− nC is even, then a real solution T always exists;

– if n−nC is odd, then a real solution T exits if the number of real and controllable
eigenvalues in spec(Acl) is at least equal to one,

– in addition, a real parametrization (Kc, Kf , Q(s)) exits (in the case nK > n),
if the number of real, observable and controllable eigenvalues in spec(Acl) is at least
equal to rem(n − nC , 2) + rem(n − nO, 2) + rem(nK − n, 2), where rem(X,Y ) is
the remainder after the division of X by Y .

The following selection rules have also proved useful in practical applications of
the method (see also section 1.12):

– assign the fastest eigenvalues to spec(AQ) in such a way that the Youla parameter
acts as a direct feedthrough in the controller;

– assign to spec(A−BKc) the n closed-loop eigenvalues which are the “nearest”
from the n plant eigenvalues in order to respect the dynamic behavior of the physical
plant and reduce the state-feedback gains;

– assign fast closed-loop eigenvalues to spec(A − KfC) to have an efficient
state-estimator.

1.6. In brief

The procedure to compute the observer-based realization and the dynamic Youla
parameter for a given nK th-order controller associated with an nth-order plant (nK ≥
n) can be summarized as follows:

– compute the closed-loop matrix Acl (equations [1.20] and [1.8]) and split up the
n+ nK eigenvalues of Acl into three auto-conjugate sets:

- n eigenvalues to be assigned to state-feedback dynamics spec(A−BKc),

- nK − n eigenvalues to be assigned to the Youla parameter dynamics
spec(AQ),

- n eigenvalues to be assigned to state-estimator dynamics spec(A−KfC);
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– compute a Schur or a diagonal decomposition of Acl (equation [1.26]) such that
the eigenvalues are ordered on the diagonal according to the previous choice; that is,
spec(Λ) = spec(A−BKc) and spec(ΛF ) = spec(AQ) ∪ spec(A−KfC);

– compute T , F and G with equations [1.23], [1.14], [1.13],

– compute V , V1, V2, W1, W2 with equations [1.28], [1.30];

– compute the sought parameters Kc, Kf , AQ, BQ, CQ and DQ using
[1.43]–[1.48] and [1.8].

The reader will find an interactive Matlab® function named cor2obr (in the
toolbox bib_obr) to compute the observer-based realization for a given controller
and a given plant at: http://personnel.isae.fr/daniel-alazard/matlab-packages. A demo
file called demo_obr.m illustrates how to use this function to compute an
observer-based realization of the 16th-order controller designed in the demo #3 of the
Mu-Analysis and Synthesis Toolbox.

The help of the function cor2obr.m is given in section A4.2, Appendix 4.
Section A4.3 gives the help of the reciprocal function obr2cor, that is:
Kss=obr2cor(G0,Kc,Kf,Q) allows the state-space realization of a controller
(equation [1.3]) to be computed from its observer-based parametrization (Kc,Kf,Q)
associated with a given plant G0.

1.7. Reduced-order controllers case

In the case nK < n (i.e. dim(z) < dim(x)), the observer-based structure shown
in Figure 1.1 is no longer valid. But an interesting alternative can be derived using a
reduced-order estimator.

It is interesting to point out the case where [TT CT] is a rank n matrix (i.e. p +
nK ≥ n). Then, a reduced observer-based realization involving an estimate �x of the
plant state x can be obtained by a linear combination of the controller state �z and the
plant output y (see [LUE 71]):

�x = H1�z +H2(y −Du), [1.61]

with the constraint:

H1T +H2C = In. [1.62]
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Figure 1.7. Reduced-order observer-based realization of the controller

Then, the separation principle still holds and a Youla parametrization (with a static
parameter DQ) built on such a reduced-order estimator reads: �̇z = F �z +G(y −Du) + TBu (a)�x = H1�z +H2(y −Du) (b)

u = −Kc�x+DQ(y − C�x−Du). (c)
[1.63]

{
TA− FT = GC

H1T +H2C = In.
[1.64]

The structure of the controller is then depicted in Figure 1.7. The state-space
representation of the controller K0(s) between y − Du and u (the plant direct
feedthrough matrix D acts in negative feedback on the controller) also reads:[ �̇z
u

]
=

[
F − TB(Kc +DQC)H1 G+ TB(DQ − (Kc +DQC)H2)

−(Kc +DQC)H1 DQ − (Kc +DQC)H2

] [ �z
y −Du

]
. [1.65]

As previously described, it can easily be shown that the closed-loop eigenvalues,
with a controller defined by equations [1.63] and [1.64], are distributed between the
n state-feedback eigenvalues (spec(A − BKc)) and the nK estimator eigenvalues
(spec(F )). Equations [1.18], [1.14] and [1.13] which respectively provide T , F and
G are still valid. The problem is therefore reduced to compute Kc, H1, H2 and DQ

such that (from the identification of [1.63b] and [1.63c] with [1.12b] rewritten as
u = JmCk�x+ JmDK(y −Du)):JmCK = −(Kc +DQC)H1 (a)

JmDK = −(Kc +DQC)H2 +DQ (b)
H1T +H2C = In. (c)

[1.66]
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It is easily deduced that:

Kc = −Jm(CKT +DKC). [1.67]

This is equation [1.44], established in the augmented-order controller case.

To compute H1, H2 and DQ, the following situations can be considered:

– if
[
T
C

]−1

exists (which implies that nK + p = n) then:

[ H1����
nK

H2����
p

] =

[
T
C

]−1

[1.68]

and [
T
C

]
[H1 H2] =

[
TH1 TH2

CH1 CH2

]
=

[
InK

0
0 Ip

]
. [1.69]

Hence, relationships [1.66] hold true for any DQ and we can choose:

DQ = 0 [1.70]

without loss of generality. This case is illustrated at the end of section 1.8.1.

– if nK > n − p, then there are several solutions (H1 and H2) satisfying [1.66],
we can choose, for example, the least norm solution (in order to reduce the control
gains) using the pseudo-inverse of matrix [TT CT]:

{
H1 = [TTT + CTC]−1TT

H2 = [TTT + CTC]−1CT . [1.71]

Then, from [1.66]:

DQ = (JmDK +KCH2)(Ip − CH2)
−1) .

If nK < n− p, it can only be stated that, in open-loop, the controller state �z is an
estimate of the linear combination T of the plant state x, that is the estimation error
εz = Tx− �z tends to 0 with the following dynamics:

ε̇z = (AK + (BKD − TB)JmCK)εz [1.72]
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In this case (nK < n− p), the only way round consists of performing a reduction
of the plant until the previous situation is applicable. The controller is then interpreted
as an observer-based controller associated with the reduced model of the plant.

In section 1.8, the interest of observer-based realizations of a given controller is
highlighted through three examples: plant state monitoring, controller switching and
smooth gain scheduling on an academic second-order model of a launcher.

1.8. Illustrations

Let us consider again the model of a launcher between the angle of attack α and
the thruster deflection δ (see section 1.3):

G0(s) =
1

s2 − 1

associated with the state-space realization: α̇
α̈

α

 =

 0 1 0
1 0 1

1 0 0

α
α̇

δ

. [1.73]

Let us consider the following stabilizing controller (positive feedback):

K1(s) = −s2 + 27s+ 26

s2 + 7s+ 18
.

A state-space realization (companion form2) of this controller reads: ẋ1

ẋ2

δ

 =

 0 −18 1
1 −7 0

−20 132 −1

x1

x2

α

. [1.74]

In this example, the closed-loop dynamics reveals multiple eigenvalues:

spec(Acl) = {−2, −2, −2, −1}.

Then, there exists two admissible choices to solve in T the Riccati equation [1.18].
The choice spec(A − BKc) = {−1, −2} and the application of the procedure
provide the following parametrization:

Kc = [3 3]; Kf = [4 5]T; Q = −1.

2 Such a vertical companion form can easily be obtained using the Matlab® macro-function
canon.
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Then, the observer-based realization of K1(s) (equation [1.3]) reads: ˙̂α
˙̂
α̇

δ

 =

−4 1 4
−6 −3 4

−2 −3 −1

 α̂
ˆ̇α

α

 [1.75]

associated with the estimated state vector x̂ = [α̂, ˆ̇α]T.

The corresponding Matlab® sequence using functions cor2obr and obr2cor is:

G0= s s ( [ 0 1 ; 1 0 ] , [ 0 ; 1 ] , [ 1 0 ] , 0 ) ;
c o r = t f (−[1 27 2 6 ] , [ 1 7 1 8 ] ) ;
K1=canon ( cor , ’ companion ’ ) ;
[ Kc , Kf ,Q]= c o r 2 o b r ( G0 , c o r ) % o t h e r s y n t a x : OBdata= c o r 2 o b r ( G0 , c o r ) ,
K1ob= o b r 2 c o r ( G0 , Kc , Kf ,Q) % K1ob=OBdata . obr

A Matlab® demo file demo_section_1_8.m for the following illustrations is also
available at: http://personnel.isae.fr/daniel-alazard/matlab-packages.

1.8.1. Illustration 1: plant state monitoring

Figures 1.8 and 1.9 illustrate the closed-loop state responses (launcher and
controller states) to initial conditions on launcher states (α(t = 0) = 1 rad and
α̇(t = 0) = −1 rad/s). Figure 1.8 is obtained when the first controller realization
(equation [1.74]) is used, while Figure 1.9 is obtained with the observer-based
realization (equation [1.75]). For both simulations the launcher state responses are
the same because the initial conditions are the same and the input–output behavior of
the controller is independent of its realization. But, we can see in Figure 1.8 that
there is no straightforward relation between controller states and launcher states (α
and α̇), while Figure 1.9 highlights that (after the transient response of the
state-estimator) the controller states of the observer-based realization are a good
estimate of launcher states and can be used to monitor launcher states for offline or
online analysis (for failure diagnosis purposes, for instance). As the plant state are
meaningful variables (α (rad) and α̇ (rad/s)), we can also conclude that the
state-feedback gain Kc has a physical unit: Kc = [3 rad/rad 3 s], while the
dimension of the various components of realization [1.74] is not defined.

1.8.1.1. Reduced-order controller case

Let us consider the first-order controller K0(s) = −23s− 32/s+ 12 introduced
in section 1.3. The following Matlab® sequence illustrates the result of section 1.7:
that is, the way to monitor launcher states from the measurement α and the single
controller state xK (defined in equation[1.25]). This sequence follows the sequence
presented in page 11 (section 1.3) and provides responses presented in Figure 1.10:
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responses of the angle of attack α and its estimate �α are the same because α is
measured but the response of the estimated angle of attack rate �̇α converges to the
launcher state α̇ with the estimation dynamics (here F = −10 rad/s), that is in less
than half a second.
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Figure 1.8. Responses to initial conditions on launcher states – companion
realization of K1(s) (equation [1.74])
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Figure 1.9. Responses to initial conditions on launcher states –
observer-based realization of K1(s) (equation [1.75])
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H1H2= inv ( [ T ; G0 . c ] ) ;
H1=H1H2 ( : , 1 ) ;
H2=H1H2 ( : , 2 ) ;
x h a t =x ( : , 3 ) *H1’+ y*H2 ’ ;
f i g u r e p l o t ( t , x ( : , 1 ) , ’k−’ , ’ LineWidth ’ , 1 )
hold on p l o t ( t , x ( : , 2 ) , ’g−’ , ’ LineWidth ’ , 2 )
p l o t ( t , x h a t ( : , 1 ) , ’ k−−’ , ’ LineWidth ’ , 2 )
p l o t ( t , x h a t ( : , 2 ) , ’ g−−’ , ’ LineWidth ’ , 2 )
x l a b e l ( ’ Time ( s ) ’ ) ; y l a b e l ( ’Rd − Rd / s ’ ) ;
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Figure 1.10. Responses to initial conditions on launcher states with first-order
controller K0(s)

1.8.2. Illustration 2: controller switching

Let us consider a second stabilizing controller:

K2(s) = − 1667s+ 2753

s2 + 27s+ 353

and let us assume that the control law must switch from controller K1 to controller
K2 at time t = 5 s. This new controller increases closed-loop dynamic performances
required, for instance, during the final flight phase. Indeed, the closed-loop dynamics
is now:

spec(Acl) = {−3, −4, −10 + 10 i, −10− 10 i}.
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Note that the structure of this new controller K2 is quite different from the previous
structure (the direct feed through term is null in K2). An observer-based
parametrization for K2(s) reads3:

Kc = [13 7]; Kf = [20 201]T; Q = 0.

The companion realization of this controller provided by Matlab® macro-function
canon reads:

 ẋ1

ẋ2

δ

 =

 0 −353 1
1 −27 0

−1667 42260 0

x1

x2

α

. [1.76]
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Figure 1.11. Responses to initial conditions and switch from K1(s) to K2(s)
at time t = 5 s – companion realizations of Ki(s)

The state vector initialization of the second controller K2 with the value of the state
vector of the first controller at the switch time (5 s) can create an undesirable transient
response (see Figure 1.11 when vertical companion realizations are used for K1 and
K2). The meaningful state of the observer-based realizations of both controllers allows
us to initialize correctly the second controller and so allows the transient response
on the attitude α(t) to be reduced in a significant way (see Figure 1.12). Of course
the best improvement can be seen on the response of the control signal δ (thruster

3 This observer-based parametrization assigns the two real closed-loop eigenvalues (i.e. −3
and −4) to the state-feedback dynamics.
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deflection) depicted in Figure 1.13 (for companion form switching) and Figure 1.14
(for observer-based form switching): the transient peak value at the switching time is
considerably reduced when observer-based realizations are used.
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Figure 1.12. Responses to initial conditions and switch from K1(s) to K2(s)
at time t = 5 s – observer-based realizations of Ki(s)
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Figure 1.13. Responses of the control signal δ to initial conditions and switch
from K1(s) to K2(s) at time t = 5 s – companion realizations of Ki(s)
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Figure 1.14. Responses of the control signal δ to initial conditions and switch
from K1(s) to K2(s) at time t = 5 s – observer-based realizations of Ki(s)

1.8.3. Illustration 3: smooth gain scheduling

Now, let us assume that we wish to interpolate the controller from K1 to K2 over
5 s (starting from t = 0). The linear interpolation of the four state-space matrices of
companion realizations provides a non-stationary controller K(s, t) whose frequency
response w.r.t. time t is depicted in Figure 1.15. We can note that this response is
non-monotonous at low frequency and we can also easily check that the controller
K(s, t) does not stabilize the plant G0(s) for all t between 0.1 and 4.6. For instance, at
t = 2.5 s the current controller K(s, t = 2.5 s) is defined by the companion realization
(i.e. mean values of state-space matrices defined in [1.74] and [1.76]):

 ẋ1

ẋ2

δ

 =

 0 −185.5 1
1 −17 0

−843.5 21190 −0.5

x1

x2

α

. [1.77]

That is: K(s, t = 2.5 s) = −0.5(s+ 1712)(s− 7.9)/s2 + 17s + 185.5, which does
not stabilize G0(s).

The interpolation of the four state-space matrices of observer-based realizations of
K1 and K2 provides a smoother interpolation (see Figure 1.16). We can also check
that this new interpolated controller stabilizes G0(s) for all time t ∈ [0, 5 s].
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Figure 1.15. K(s, t): singular value w.r.t time

10
−1 10

0 10
1 10

2 10
3

0

2

4

0

5

10

15

20

25

30

35

Pulsation (rad/s)

Time (s)

S
in

g
u

la
r

va
lu

e
(d

B
)

Figure 1.16. Kobserver−based(s, t): singular value w.r.t time
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1.9. Reference inputs in observer-based realizations

1.9.1. General results

Let us consider one more time the observer-based control depicted in Figure 1.1.
AQ, BQ, CQ and DQ are the four of the state-space matrices of Q(s) (order nQ)
associated with the state variable xQ. Let us assume that the signal e(t) is no longer
null but is defined by:

e(t) = Hr(t) [1.78]

where r(t) is the reference input signal with l components and Hm×l is a static feed
forward matrix. The objective is now to compute the state-space realization of the two
degrees of freedom (2 dof) controller between the controller inputs [yT rT]T and the
controller output u.

From Figure 1.1, we can easily derive:

u = −Kc�x+ CQxQ +DQy −DQC�x−DQDu+ e.

Let J+
m be defined4 by J+

m = (Im +DQD)−1 , then the output equation of the 2 dof
controller reads:

u = Cobr

[ �x
xQ

]
+Dobr

[
y
r

]

with

Cobr = −J+
m[Kc +DQC − CQ].

Dobr = J+
m[DQ H].

[1.79]

[1.80]

From Figure 1.1, we can also derive:

�̇x = (A−KfC)�x+Kfy + (B −KfD)u. [1.81]

˙xQ = −BQC�x+AQxQ +BQy −BQDu. [1.82]

4 This notation is used to refer to equation [1.8] previously defined. Indeed, if DQ is the result
of equation [1.48] then it can easily be shown that J+

m = J−1
m = Im −DKD.
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Then the observer-based realization of the 2 dof controller reads:

 �̇x
˙xQ

u

 =

[
Aobr Bobr

Cobr Dobr

]
�x
xQ

y
r

 [1.83]

with

Aobr =

[
A−KfC 0
−BQC AQ

]
+

[
B −KfD
−BQD

]
Cobr.

Bobr =

[
Kf 0
BQ 0

]
+

[
B −KfD
−BQD

]
Dobr.

[1.84]

[1.85]

In a more general context, it is also possible to take into account an additional

input matrix M =

[
M1n×m

M2nQ×m

]
between e = Hr and

[ �̇x
˙xQ

]
, that is the input matrix

Bobr becomes:

Bobr =

[
Kf M1H
BQ M2H

]
+

[
B −KfD
−BQD

]
Dobr.

In Franklin and Johnson [FRA 81], it is shown that the matrix M allows us to assign
n + nQ transmission zeros in the closed-loop transfer between the reference input r
and the plant output y. The case M = 0 corresponds to the particular case where
these n + nQ transmission zeros are assigned to the state estimation dynamics
(spec(A − KfC)) and the Youla parameter dynamics spec(AQ). These poles/zeros
cancellations express that these dynamics are uncontrollable from e (see section 1.2).
Therefore, considering a controller K0(s) previously designed to meet some
disturbance rejection specifications or some dynamics (eigenvalues) assignment
specifications, it is possible to shape the response to the reference input (without any
alteration of previous loop properties) using an observer-based realization of this
controller where the state-feedback dynamics (spec(A− BKc)) has been judiciously
chosen. Indeed, the response of the plant to reference input depends only on this
state-feedback dynamics: if spec(A − BKc) is fast and correctly damped, this
response will also be fast and damped. Of course, such a choice is antagonistic with
the choice proposed at the end of section 1.5 where it was proposed to assign fast
closed-loop eigenvalues to spec(A − KfC) to have an efficient state-estimator.
These considerations are explained in section 1.9.2. The toolbox bib_obr also (see
http://personnel.isae.fr/daniel-alazard/matlab-packages) includes a Matlab® function
obr2cor2ddl to compute the state-space matrices of the two dof controller defined
in equation [1.83] (the help of this function can be found in section A4.4, Appendix
4).
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From a practical point of view, the observer-based realization allows us to take
into account an equilibrium state vector xe and the associated equilibrium input ue

as reference inputs. We have just to choose e = ue + Kcxe according to the control
structure depicted in Figure 1.17. That is to say, the applied control signal is u =
ue + Kc(xe − �x). xe and ue can be provided by an outer loop (guidance loop) and
must satisfy:

ẋe = 0 = Axe +Bue.

(A, B, C,D)
Plant

+B

A

D

C
	̇x 	x 	y�

+
Kc

Kf

+
+

+

+ −

Q(s)

+ u+
+

ue

xe −+ 	x
Figure 1.17. Observer-based controller with equilibrium state xe and input ue

as reference inputs

NOTE.– In the Single-Input Single-Output (SISO) case, if the plant exhibits one
integrator, that is: A is rank deficient, it is always possible to choose xe ∈ Ker(A) in
such a way that ue = 0. Otherwise, A−1 exists, then xe = −A−1Bue and
u = (Im − KcA

−1B)ue − Kc�x. If r(t) in [1.78] corresponds to ue, then
H = (Im −KcA

−1B).

Because of the property of the observer-based structure, we can guarantee that, in
steady state and if the closed-loop is stable:

x(t → ∞) = �x(t → ∞) = xe and u(t → ∞) = ue .

1.9.2. Illustration

Let us consider again the model G0(s) of a launcher between the angle of attack
(α) and the thrust deflection (δ) defined by equation [1.73]. Let us consider now a
third controller defined by:

K3(s) = − 50s+ 70

s2 + 10s+ 50
. [1.86]
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The closed-loop dynamics of K3(s) in positive feedback with G0 (see Figure 1.18) is
composed of two pairs of auto-conjugate eigenvalues. The first is slow (0.703 rad/s),
the second is fast (6.36 rad/s):

E i g e n v a l u e Damping Frequency ( r a d / s )

−4.38e−001 + 5 . 4 9 e−001 i 6 . 2 4 e−001 7 . 0 3 e−001
−4.38e−001 − 5 . 4 9 e−001 i 6 . 2 4 e−001 7 . 0 3 e−001
−4.56 e +000 + 4 . 4 4 e +000 i 7 . 1 7 e−001 6 . 3 6 e +000
−4.56 e +000 − 4 . 4 4 e +000 i 7 . 1 7 e−001 6 . 3 6 e +000

The reference input r(t) is plugged into the loop through the static-feedforward
gain H according to Figure 1.18 (positive feedback). In such a classical feedback
loop, H is computed to have a unit steady-state gain (DC gain) between r and y, that
is H = 0.4.

yur
H

K3(s)

G0(s)+

+

Figure 1.18. Positive feedback connection of plant G0(s) and controller
K3(s) with reference input r(t) and static-feedforward H

The response of y = α(t) to a square signal on r(t) = αref (t) (i.e. a reference
input on the angle of attack) and to initial conditions on launcher states (α(t = 0) =
1 rad and α̇(t = 0) = −1 rad/s) is depicted in Figure 1.19. This response exhibits a
large settling time and is obviously governed by the slow dynamics.

Considering the observer-based realization depicted in Figure 1.17, the reference
equilibrium state is xe = [αref 0]T and the equilibrium condition Axe + Bue = 0
allows the associated equilibrium input ue to be computed: ue = −αref . The classical
feedback loop requires the computation of H (dependent on the controller K3(s)) and
the observer-based implementation requires the computation of ue (independent of
the controller) which is quite equivalent. But keeping in mind that such a control law
can be the inner loop of an outer guidance loop, the observer-based implementation is
very interesting to track more complex reference state trajectories (for instance with a
profile on the angle of attack rate ˙αref ).

There are two solutions in the computation of the observer-based realization:

– it is possible to assign the slow dynamics (0.703 rad/s) to the state-feedback
dynamics. Then the observer-based parametrization reads:

Kc = [1.4937 0.8762]; Kf = [9.1238 41.5123]T and Q = 0.
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Figure 1.19. Time-domain responses of classical loop (see Figure 1.18)
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Figure 1.20. Time-domain responses using observed-based realization (slow
dynamics (0.703 rad/s) is assigned to spec(A−BKc))

The response for the same reference input profile and the same initial conditions
is depicted in Figure 1.20. Performances are very close to the previous response
(Figure 1.19). Of course, the estimation of the angle of attack is very good as the state
estimation dynamics is fast (see the zoom around t = 0 in Figure 1.21: the transient
response α− �α is very short.).
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Figure 1.21. Time-domain responses using observed-based realization (slow
dynamics (0.703 rad/s) is assigned to spec(A−BKc)) – zoom around t = 0

– it is possible to assign the fast dynamics (6.36 rad/s) to the state-feedback
dynamics. Then the observer-based parametrization reads:

Kc = [41.5123 9.1238]; Kf = [0.8762 1.4937]T and Q = 0.

The response is then depicted in Figure 1.22: the reference input tracking performance
is now very good (once the transient response due to initial estimation error, longer
than in the previous case, is finished).

This simple example show that there are some interesting alternatives, based on the
observer-based realization of the controller, in the way to plug the reference input in a
servo-loop.

1.10. Disturbance monitoring and rejection

1.10.1. General results

In section 1.7, the reduced-order observer-based structure was presented. An
interesting application consists of increasing the plant model with a model of external
disturbances in an augmented model Ga(s). This way and while the order of the
augmented model Ga is lower or equal to nK (controller order) + p (number of
measurements), the state of the controller and the measurements can be used to
monitor external disturbances. In this section, a low-frequency disturbance d(t) on
the input of the nominal plant G0(s) is considered (see Figure 1.23). Without loss of
generality, the following assumption are made:
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Figure 1.22. Time-domain responses using observed-based realization (fast
dynamics (6.36 rad/s) is assigned to spec(A−BKc))

– the direct feed through D of G0(s) is assumed to be null: D = 0 in equation
[1.2];

– G0(s) is assumed to be a single input plant: m = 1;

– nK + p = n+ 1.

The input disturbance is modeled as the output of a first-order system with a
dynamics λ < 0 and an unknown initial condition d(0):

d(t) = d(0)eλt ⇒ ḋ(t) = λd(t). [1.87]

Thus, the augmented model Ga(s) (order n + 1) considered to compute the
observer-based realization of the controller reads:

 ẋ

ḋ

y

 =

 A B B
0n×1 λ 0

C 0 0

x
d

u

 =

[
Aa Ba

Ca 0

]x
d

u

.
It is also assumed that λ is chosen in such a way that the pair (Aa, Ca) is observable.
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Applying the procedure described in section 1.7 (more particularly equations
[1.18], [1.14], [1.13], [1.67], [1.68] and [1.70]), the observer-based parametrization
on the augmented model Ga(s) of the given controller K0(s) can be determined:

F(nK×nK), G(nK×p), Ta = [T(nk×n) Td(nk×1)], Kca = [Kc(1×n)
Kd],

H1a =

[
H1(n×nK )

H1d(1×nK )

]
, H2a =

[
H2(n×p)

H2d(1×p)

]
, DQ = 0(1×p)

such that:

TaAa −GCa = FTa and [H1a H2a ]

[
Ta

Ca

]
= In+1.

The development of these two equations leads to:

TA−GC = FT [1.88]

TB = (F − λInK )Td [1.89]

H1T +H2C = In [1.90]

H1dT +H2dC = 0(1×n) [1.91]

H1Td = 0(n×1) [1.92]

H1dTd = 1. [1.93]

The augmented estimated state vector reads:

�x = H1�z +H2y [1.94]�d = H1d�z +H2dy [1.95]

and can be used to monitor the disturbance through �d.

It can easily be shown that the state-feedback dynamics reads:

spec(Aa −BaKca) = spec
([

A−BKc B −BKd

0 λ

])
= spec(A−BKc) ∪ λ
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and that this dynamics (and so the closed-loop dynamics) is independent of the gain
Kd. The applied control signal is u = e−Kc�x−Kd

�d. Thus, choosing Kd = 1 tends to
cancel the input disturbance d (once the steady state of the estimator is reached) and
such a tuning does not perturb the closed-loop dynamics. Although the closed-loop
dynamics does not change, the controller is no longer the same. It can be shown that
the tuning Kd = 1 leads to a new controller Kd(s) with one eigenvalue assigned to λ,
that is (from [1.65] considering that D = 0 and DQ = 0):

λ ∈ spec (F − TaBaKcaH1a).

PROOF.– Let AKd
be the new controller state matrix:

AKd
= F − TaBaKcaH1a [1.96]

= F − [T Td]

[
B
0

]
[Kc 1]

[
H1

H1d

]
[1.97]

= F − TB(KcH1 +H1d) [1.98]

= F − (F − λInK
)Td(KcH1 +H1d) with [1.89] [1.99]

= (F − λInK )(InK − Td(KcH1 +H1d)) + λInK. [1.100]

Then:

AKd
Td = (F − λInK )(Td − Td(KcH1Td +H1dTd)) + λTd

= (F − λInK
)(Td − Td(0 + 1)) + λTd with [1.92] and [1.93]

= λTd.

Thus, Td is a right eigenvector of AKd
associated with the eigenvalue λ.

A quite interesting case is λ = 0, which can be used to model a constant input
disturbance (input bias). Then, to reject this constant disturbance, the new controller
exhibits an integrator. Such a behavior is well-known from a practical point of view.
Thus, given an initial stabilizing controller K0(s) and a model G0(s), it is possible to
design a new controller Kd(s) with an integral term to reject a constant input
disturbance. The closed-loop dynamics obtained with Kd(s) is the same as the
dynamics obtained with K0(s) and thus is stable. That is detailed in the following
illustration.
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1.10.2. Illustration

The model G0(s) = 1/(s2 − 1) of the launcher and the controller
K3(s) = −(50s+ 70)/(s2 + 10s+ 50) are still considered for this application. The
external disturbance d(t) acts on the plant input according to Figure 1.23. For
simulation analyzes, the signal d(t) is a bias (0.2 rad) with a small time-domain drift
(−0.002 rad/s), that is:

d(t) = 0.2(1− 0.01 t) (rad).

yur
H

K3(s)

G0(s)

d

+
+ +

Figure 1.23. Positive feedback connection of plant G0(s) and controller
K3(s) with reference input r(t), static-feedforward H and input

disturbance d(t)

Considering the servo-loop of Figure 1.23 (with H = 0.4, see section 1.9.2), the
response of y = α(t) to a square signal on r(t) = αref (t) (i.e. a reference input on
the angle of attack), to initial conditions on launcher states (α(t = 0) = 1 rad and
α̇(t = 0) = −1 rad/s) and to the input disturbance d(t) is depicted in Figure 1.24.
This response, in comparison with Figure 1.19 (without disturbance), exhibits a large
steady-state error obviously due to the input disturbance d(t).

The model of the disturbance is an unknown constant bias, that is λ = 0 in equation
[1.87] and the augmented model Ga(s) = D+Ca(sI−Aa)

−1Ba associated with the
augmented state vector xa = [α α̇ d]T reads:

α̇
α̈

ḋ

α

 =


0 1 0 0
1 0 1 1
0 0 0 0

1 0 0 0



α
α̇
d

δ

.
The observer-based realization (Ta, F and G) of the second-order controller K3(s)
on the third-order augmented model Ga(s) is then computed using the function
cor2tfg (see section A4.1, Appendix 4) choosing to assign the fast dynamics
(6.36 rad/s) to the state-feedback dynamics. The parameters Kca , H1a and H2a

(DQ = 0) are then computed using formulas [1.67] and [1.68]. The observer-based
controller is then implemented according to Figure 1.25 where the augmented
reference state is xea = [αref 0 0]T and the corresponding equilibrium input is
ue = −αref .
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Figure 1.24. Time-domain responses of classical loop (see Figure 1.23)
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Figure 1.25. Observer-based controller on the augmented model
Ga(s) = D + Ca(sI −Aa)

−1Ba with equilibrium state xea and input ue as
reference inputs

Figure 1.26 illustrates the time-domain responses of the reference input αref(t),
the input disturbance d(t), the plant output y(t) = α(t) and the disturbance estimation
�xa(3) = �d. Although the steady-error on y(t) is still not satisfactory, we can note that
the disturbance estimation is correct and converges to the actual input disturbance
d(t) according to the estimation dynamics (here 0.703 rad/s). Such an analysis can be
performed using the following Matlab® sequence5:

5 The reader is advised to use a SIMULINK file based on Figure 1.25 to perform such analyzes.
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Figure 1.26. Time-domain responses using observed-based realization (fast
dynamics (6.36 rad/s) is assigned to spec(Aa −BaKca))

>> % I l l u s t r a t i o n : E x t e r n a l d i s t u r b a n c e m o n i t o r i n g and r e j e c t i o n :
>> G0= s s ( [ 0 1 ; 1 0 ] , [ 0 ; 1 ] , [ 1 0 ] , 0 ) ; % Nominal p l a n t
>> G0d=G0*[1 1 ] ; % P l a n t wi th i n p u t d i s t u r b a n c e
>> % Time−domain r e s p o n s e o f e x t e r n a l s i g n a l s :
>> Time = [ 0 : 0 . 1 : 5 0 ] ;
>> U= z e r o s ( s i z e ( Time ) ) ;
>> U( [ 1 : 1 0 0 201:300 4 0 1 : 5 0 0 ] ) =1;
>> U( [ 1 0 1 : 2 0 0 3 0 1 : 4 0 0 ] ) =−1; % R e f e r e n c e i n p u t s i g n a l
>> Dis = [ 0 . 2 : − 0 . 1 / 5 0 0 : 0 . 1 ] ; % A c t u a l d i s t u r b a n c e
>> % I n i t i a l c o n t r o l l e r :
>> K3=− t f ( [ 5 0 7 0 ] , [ 1 10 5 0 ] ) ;
>> [A, B , C ,D]= s s d a t a ( G0) ;
>> % Augmented model wi th an unknown b i a s on t h e i n p u t :
>> Ga= s s ( [A B ; z e r o s ( 1 , 3 ) ] , [ B ; 0 ] , [ C 0 ] ,D) ;
>> K3ss= s s ( K3) ;
>> % Computing t h e o b s e r v e r−based r e a l i z a t i o n
>> [ Ta , F ,G]= c o r 2 t f g ( Ga , K3ss ) ; % A f f e c t t h e slow dynamics t o F ! !
>> damp ( F ) % E s t i m a t i o n dynamics

E i g e n v a l u e Damping Freq . ( r a d / s )

−4.38e−01 + 5 . 4 9 e−01 i 6 . 2 4 e−01 7 . 0 3 e−01
−4.38e−01 − 5 . 4 9 e−01 i 6 . 2 4 e−01 7 . 0 3 e−01

>> H1H2= inv ( [ Ta ; Ga . c ] ) ;
>> H1a=H1H2 ( : , 1 : 2 ) ; H2a=H1H2 ( : , 3 ) ;
>> Jm= inv ( eye ( s i z e ( Ga . b , 2 ) )−K3ss . d*Ga . d ) ;
>> Kca=−Jm *( K3ss . c *Ta+K3ss . d*Ga . c ) ;
>> DQ=0;
>> damp ( Ga . a−Ga . b*Kca ) % Augmented s t a t e −f e e d b a c k dynamics
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E i g e n v a l u e Damping Freq . ( r a d / s )

−4.56 e +00 + 4 . 4 4 e +00 i 7 . 1 7 e−01 6 . 3 6 e +00
−4.56 e +00 − 4 . 4 4 e +00 i 7 . 1 7 e−01 6 . 3 6 e +00

0 . 0 0 e +00 −1.00 e +00 0 . 0 0 e +00

>> % 2 d . o . f : o b s e r v e r−based c o n t r o l l e r w i th t h e d i s t u r b a n c e e s t i m a t i o n
>> % on t h e second o u t p u t :
>> Kbar= s s ( F−Ta*Ga . b * ( Kca+DQ*Ga . c ) *H1a , . . .

[G+Ta*Ga . b * (DQ−(Kca+DQ*Ga . c ) *H2a ) Ta*Ga . b ] , . . .
[−(Kca+DQ*Ga . c ) *H1a ; H1a ( 3 , : ) ] , . . .
[DQ−(Kca+DQ*Ga . c ) *H2a 1 ; H2a ( 3 , : ) 0 ] ) ;

>> Kobs= f e e d b a c k ( Kbar , Ga . d , 1 , 1 ) ;
>> % Taking i n t o a c c o u n t t h e r e f e r e n c e i n p u t : e=u_e+K_c* x_e :
>> Kobs=Kobs *[1 0 ; 0 Kca ( 1 ) −1];
>> % Closed−l oop sys tem :
>> BF= c o n n e c t ( append ( G0d , Kobs ) , [ 2 2 ; 3 1 ] , [ 1 4 ] , [ 1 3 ] ) ;
>> [ y , t , x ]= l s i m ( BF , [ Dis ’ U’ ] , Time , [ 1 −1 0 0 ] ) ;
>> f i g u r e
>> p l o t ( t , y ( : , 1 ) , ’k−’ , ’ LineWidth ’ , 2 )
>> hold on
>> p l o t ( t , U, ’ k : ’ , ’ LineWidth ’ , 2 )
>> p l o t ( t , Dis , ’k−. ’ , ’ LineWidth ’ , 2 )
>> p l o t ( t , y ( : , 2 ) , ’k−−’ , ’ LineWidth ’ , 2 )
>> x l a b e l ( ’ Time ( s ) ’ ) ;
>> y l a b e l ( ’Rd ’ ) ;
>> [LEGH1 , OBJH1]= l egend ( ’ a n g l e o f a t t a c k : \ a l p h a ’ , . . .

’ r e f e r e n c e i n p u t \ a l p h a _ { r e f } ’ , ’ i n p u t d i s t u r b a n c e ’ , . . .
’ d i s t u r b a n c e e s t i m a t i o n ’ ) ;

To reject the disturbance, the gain on �d is set to 1. That is, Kca(3) = 1. The
new time-domain responses are then depicted in Figure 1.27. It can be noted that
after a transient response due to the estimation dynamics, the input reference tracking
and the disturbance rejection are correct. The integral term in the new controller and
the closed-loop dynamics, exactly assigned to the initial one, are highlighted by the
following complementary Matlab® sequence:

>> % D i s t u r b a n c e r e j e c t i o n :
>> Kca ( 3 ) =1;
>> Kbar= s s ( F−Ta*Ga . b * ( Kca+DQ*Ga . c ) *H1a , . . .

[G+Ta*Ga . b * (DQ−(Kca+DQ*Ga . c ) *H2a ) Ta*Ga . b ] , . . .
[−(Kca+DQ*Ga . c ) *H1a ; H1a ( 3 , : ) ] , . . .
[DQ−(Kca+DQ*Ga . c ) *H2a 1 ; H2a ( 3 , : ) 0 ] ) ;

>> Kobs= f e e d b a c k ( Kbar , Ga . d , 1 , 1 ) ;
>> % Taking i n t o a c c o u n t r e f e r e n c e i n p u t : e=u_e+K_c* x_e :
>> Kobs=Kobs *[1 0 ; 0 Kca ( 1 ) −1];
>> % I n t e g r a l e f f e c t :
>> zpk ( Kobs ( 1 , 1 ) )
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Zero / p o l e / g a i n :
−50 ( s ^2 + s + 0 . 4 )
−−−−−−−−−−−−−−−−−−−

s ( s +10)

>> % Closed−l oop sys tem :
>> BF= c o n n e c t ( append ( G0d , Kobs ) , [ 2 2 ; 3 1 ] , [ 1 4 ] , [ 1 3 ] ) ;
>> % But c l o s e d loop e i g e n v a l u e s a r e t h e same :
>> damp ( BF)

E i g e n v a l u e Damping Freq . ( r a d / s )

−4.38e−01 + 5 . 4 9 e−01 i 6 . 2 4 e−01 7 . 0 3 e−01
−4.38e−01 − 5 . 4 9 e−01 i 6 . 2 4 e−01 7 . 0 3 e−01
−4.56 e +00 + 4 . 4 4 e +00 i 7 . 1 7 e−01 6 . 3 6 e +00
−4.56 e +00 − 4 . 4 4 e +00 i 7 . 1 7 e−01 6 . 3 6 e +00
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Figure 1.27. Time-domain responses using observed-based realization (fast
dynamics (6.36 rad/s) is assigned to spec(Aa −BaKca)) with Kc(3) = 1

(integral effect)

1.11. Minimal parametric description of a linear system

Observer-based realization of a given system can be used to find a representation
with a minimal number of parameters (descriptive coefficients). Indeed, in the general
case of a nth-order system G(s) with m inputs and p outputs (with n ≥ m and
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n ≥ p), the minimal number of parameters required to describe this system is n(m+
p) + pm while an arbitrary state-space representation involves n2 + n(m+ p) + pm
parameters (i.e. the number of coefficients in matrices A, B, C and D). G(s) can be
seen as an observer-based controller on a p inputs – m outputs fictitious canonical
plant Gcanon(s): Gcanon(s) is chosen as a set of n integrators in series connection
where:

– the inputs of the first p integrators are connected to the p inputs;

– the outputs of the last m integrators are connected to the m outputs.

Gcanon(s) is described in Figure 1.28 and its state-space representation (equation
[1.101]) involves only 0 and 1.

ẋ =

[
0(n−1)×1 In−1

0 01×(n−1)

]
x+

[
0(n−p)×p

Ip

]
u = Acx+Bcu [1.101]

y =
[
Im 0m×(n−m)

]
x+ 0m×pu = Ccx+Dcu.

u1

xn+2−p

1
s

xnẋn +
+

up

up−1

1
s

xn−1 1
s

1
s

x1x2
y1

ym

y2

xm

Figure 1.28. Canonical model Gcanon(s) for a n-order, m inputs and
p-outputs system G(s) (n ≥ m and n ≥ p)

Then, G(s) is entirely defined by the state-feedback gain Kc (p× n coefficients),
the state-estimator gain Kf (n × m coefficients) and the static Youla parameter DQ

(p × m coefficients) according to the structure depicted in Figures 1.29 and 1.30. If
G(s) represents a reduced nth-order controller to be designed using fixed-order
synthesis solvers now available [GAH 11, GUM 09], such a minimal parametric
description can be useful to reduce the number of decision variables in the
optimization process. The structure depicted in Figure 1.30 can then be used to
simplify the problem as the design of a static gain, structured according to Kc, Kf

and Dq .
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Figure 1.29. Canonical observer-based representation of G(s) between its m
inputs uG and its p outputs yG

uGyG

	x	̇x
�


Ac 0n×m −Bc In Bc

0p×n 0p×m −Ip 0p×n Ip

In 0n×m 0n×p 0n×n 0n×p

−Cc Im Dc 0m×n −Dc

−Cc Im Dc 0m×n −Dc


 Kc

Kf

DQ


Figure 1.30. Observer-based LFT representation of G(s) between its m inputs
uG and its p outputs yG as an observer-based structure on the model (Ac, Bc,

Cc, and Dc) (defined by equation [1.101], for instance)

The toolbox bib_obr6 includes a Matlab® function obcanon to compute such a
minimal parametric representation for a given system G(s) (the help of this function
can be found in section A4.5, Appendix 4).

6 See http://personnel.isae.fr/daniel-alazard/matlab-packages.
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1.12. Selection of the observer-based realization

Section 1.5 highlighted the combinatory set of solutions in the computation of the
observer-based realization of a given controller and a given plant. The solution only
depends:

– on the way the n+nK closed-loop eigenvalues are split between the nK

eigenvalues of the Luenberger observer dynamics (spec(F )) and the n remaining
eigenvalues assigned to the control dynamics;

– and second (if nK > n), on the way the nK eigenvalues of F are split between
the n eigenvalues of the state-estimator dynamics (spec(A−KfC)) and the nK − n
eigenvalues of the Youla parameter dynamics (spec(AQ)).

The Matlab® functions cor2tfg and cor2obr are interactive functions to help
the user to manage these eigenvalue assignments using a graphic interface. Remark
1.2 gives some recommendations in the assignment strategies based on practical
considerations which were embedded in Matlab® functions detailed in the following
two sections.

1.12.1. Luenberger observer dynamics assignment

In order to respect the dynamic behavior of the physical plant and reduce the
state-feedback gains, it is recommended to assign to the control dynamics the n
closed-loop eigenvalues which are the “nearest” from the n plant eigenvalues. The
remaining nK closed-loop eigenvalues are then assigned to the Luenberger observer
dynamics (spec(F )). Such a systematic assignment can easily be done tracking the n
plant eigenvalues from the open-loop to the closed-loop and using a root locus-like
procedure. With this objective in mind, such a procedure must increment a single
loop gain k acting on all the m control channels from 0 to 1 with small steps (see
Figure 1.31) and isolate at each step the n eigenvalues starting from the n plant
(G0(s)) eigenvalues in a least-squares sense. The Matlab® function cor2tfga in the
toolbox bib_obr computes the matrices T , F and G from a given controller K0(s)
and a given plant G0(s) using such an iterative search and taking care:

– to manage bifurcations which may occur on such a root locus in order to find a
real parametrization if possible (see remark 1.2);

– to assign together auto-conjugate pairs of eigenvalues;

– to ensure that plant uncontrollable eigenvalues are not assigned to Luenberger
observer dynamics.
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Figure 1.31. Closed-loop with a loop gain on the m control signals varying
from 0 (open-loop) to 1 (nominal closed-loop)

Contrary to the function cor2tfg, this function cor2tfga is completely autonomous
and does not require the intervention of the user. The help of this function can be
found in section A4.6 (Appendix 4).

1.12.2. State-estimator dynamics assignment

In the case nK > n, it can also be recommended to assign the nK − n fastest
eigenvalues of F to the Youla parameter dynamics spec(AQ) in such a way that the
Youla parameter Q(s) acts as a direct feedthrough in the controller and can be
eventually reduced a posteriori. In the same spirit of the function cor2tfga, the
function cor2obra was created to implement such a rule and to provide (by itself) an
observer-based parametrization that is: the state-feedback gain Kc, the
state-estimator gain Kf and the Youla parameter Q(s) of a given controller K0(s)
for a given plant G0(s).

Note that the solution proposed by the function cor2obra can be analyzed using
the function obrmap from the dynamics assignment point of view: this function plots
in the (s or z) complex plane the state-feedback dynamics, the state-estimation
dynamics and the Youla parameter dynamics for a given observer-based
parametrization relative to a given plant. Open-loop plant and controller dynamics
are also plotted to appreciate the closed-loop behavior.

The help of these functions, included in the toolbox bib_obr, can be found in
sections A4.7 and A4.8 (Appendix 4).

The file named demo_obr.m also illustrates how to use these functions to compute
an observer-based realization of the 16th-order controller designed in the demo #3 of
the Mu-Analysis and Synthesis Toolbox.
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1.13. Conclusions

In this chapter, a procedure to compute a minimal observer-based realization of
an arbitrary controller was proposed. This technique is based on the resolution of a
generalized non-symmetric Riccati equation. Necessary conditions were given for the
solvability of this equation in terms of observability and controllability properties of
the plant. The interest of observer-based realization for gain scheduling, controller
switching, state and disturbance monitoring and reference input tracking was
highlighted on a very simple example. Demo files are available for readers who wish
to practice.

Further work is still needed to exploit the multiplicity of choices in the
distribution of the closed-loop eigenvalues between the state-feedback eigenvalues,
the state-estimator eigenvalues and the Youla parameter eigenvalues. This problem is
particularly important to smoothly interpolate or schedule a family of state-feedback
gains and state-estimator gains for practical problems requiring some
gain-scheduling strategy. The usefulness of these controller structures to handle input
saturation constraints also deserves further development.

The reader will find in Voinot et al. [VOI 03] an application of this technique to
implement gain-scheduled controllers for the attitude control of a launcher. In
Alazard and Apkarian [ALA 07], the observer-based realization of an aircraft flight
control law is used to monitor on-line the disturbance (gust). For this application, the
on-board model used to compute the observer-based realization includes a model of
the disturbance.

The capability of observer-based structures to monitor plant states or disturbances
opens a new possibility to update a given initial controller according to the actual
plant behavior and allows some links with adaptive approaches to be imagined. This
capability to mix various approaches is the main objective of the reverse engineering
presented in this book.
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2

Cross Standard Form and Reverse
Engineering

2.1. Introduction

In most practical applications, the control design problem can be expressed in the
following terms: is it possible to improve a given controller (often, a simple
low-order controller designed upon a particular know-how or good sense rules) to
meet additional H2 or H∞ specifications? or in other terms: is it possible to take into
account a given controller (which meets some closed-loop specifications) in a
standard H2 and H∞ control problem? To address this reverse engineering problem,
the notion of the Cross Standard Form (CSF) is introduced in this section for a given
nth-order plant and an arbitrary given stabilizing nK th-order controller [DEL 06].
The CSF can be seen as a solution for both inverse H∞- and H2-optimal control
problems, that is: the CSF is a standard augmented problem whose unique H∞- or
H2-optimal controller is an arbitrary given controller. The CSF is directly defined by
the four state-space matrices of the plant, the four state-space matrices of the given
controller and the solution T of the general non-symmetric Riccati equation [1.18]
introduced in Chapter 1 to compute the observer-based realization of a given
controller for a given plant. The CSF can be applied to full-order, low-order or
augmented-order controllers.

The interest for inverse optimal control problems motivates many works
[KAL 64, MOL 73, FUJ 87, LEN 88, FUJ 88, SEB 01]. The practical interest of such
solutions lies in the possibility to mix various approaches or take into account
different kinds of specifications [SUG 87, SUG 98, SHI 97]. In the particular case of
the H∞-optimal control problem, the various contributions address restrictive cases:
the state-feedback controller in [FUJ 88], a single-output controller and specific
sensitivity problem in [LEN 88]. But a solution for the general case (multi-input
multi-output, dynamic output feedback of arbitrary order) has never been stated. This
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general case is addressed in [SEB 01]: for a given weight system W (s), a given
controller K(s) and a given positive scalar γ, the problem is to find all the plants
G(s) such that ∥Fl(Fl(W,G),K)∥∞ < γ (see Figure 2.1). Note that the problem
considered in this section is different since the plant G(s) (i.e. the lower right-hand
transfer matrix of the standard augmented plant P = Fl(W,G)) is given and
corresponds to the model of the plant between the control input u and the measured
output y.

P

w

u

z

y
W =

 W11 W12 W13

W21 0 I
W31 I 0



G

K

Figure 2.1. Block diagram of standard plant P , weight function W , model G
and controller K

Convex optimization [BOY 91] seems also an attractive approach to take into
account a given controller and additional H2 or H∞ constraints. But such an
approach needs a Youla parametrization of the controller and so is limited to
full-order (observer-based) controllers. Furthermore, this approach leads to very high
order controllers. More recently, CSF is used to initialize a Model Predictive Control
(MPC) design procedure in [HAR 11]. Authors of this reference are at the origin of
the term “reverse engineering” that has been adopted in this book.

In section 2.2, the CSF is defined as a solution to H2 and H∞ inverse optimal
control problems, for an nth-order Linear Time Invariant (LTI) system and an
nK th-order stabilizing LTI controller. In section 2.3, an analytical expression of a
CSF is proposed for low-order controllers (nK ≤ n) and the existence of such a CSF
is discussed. It will be shown that the unique optimal controller provided by
full-order H∞ controller (convex) solvers is non-minimal and is equivalent to the
given low-order controller from the input-output behavior. Today, new H∞ synthesis
solvers allow fixed-structure, and so reduced-order, controllers to be directly
designed [APK 06, GAH 11, ARZ 11, GUM 09, GAB 10, GAB 12]. Thus, the
inverse optimal H∞ control problem for reduced-order controller is now solved. In
section 2.4, the CSF is extended for augmented-order controllers (nK > n) and so
encompasses previous results presented in [ALA 04]. Finally, the second-order
model of a launcher is used in section 2.5 to highlight the way to use CSF in order to
take into account an initial low-order controller and a frequency-domain
specification. It will be also shown how a basic initial controller fitting a prescribed
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dominant dynamics can be augmented with a phase lead term to cope with a too slow
actuator dynamics.

2.2. Definitions

The general standard plant between exogenous input w, control input u, controlled
output z and measurement output y is denoted as:

P (s) =

[
Pzw(s) Pzu(s)
Pyw(s) Pyu(s)

]
,

with the corresponding state space realization:

P (s): =

Ap B1 B2

C1 D11 D12

C2 D21 D22

. [2.1]

Let us consider again the plant G0(s) defined in [1.2] and the stabilizing initial
controller K0(s) defined in [1.7].

DEFINITION 2.1.– Inverse H2-optimal problem
Find a standard plant P (s) such that:

– Pyu(s) = G0(s);

– K0 stabilizes P (s);

– K0(s) = argminK(s) ∥Fl(P (s),K(s))∥2;

(namely: K0(s) minimizes ∥Fl(P (s),K(s))∥2).

DEFINITION 2.2.– Inverse H∞-optimal problem
Find a standard plant P (s) such that:

– Pyu(s) = G0(s);

– K0 stabilizes P (s);

– K0(s) = argminK(s) ∥Fl(P (s),K(s))∥∞.

DEFINITION 2.3.– Cross Standard Form
If the standard plant P (s) is such that the four conditions:

– C1: Pyu(s) = G0(s);

– C2: K0 stabilizes P (s);
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– C3: Fl(P (s),K0(s)) = 0;

– C4: K0 is the unique solution of the optimal H2 or H∞ problem P (s),

are met, then P (s) is called the Cross Standard Form (CSF) associated with the system
G0(s) and the controller K0(s) and will be denoted PCSF (s) in the sequel.

By construction, the CSF solves the inverse H2-optimal problem and the inverse
H∞-optimal problem. Note that the uniqueness condition C4 is relevant in our context
since we are looking for an H2 or H∞ design to recopy a given controller.

2.3. Low-order controller case (nK ≤ n)

The following proposition provides a general analytical characterization of the
CSF.

PROPOSITION 2.1.– For a given stabilizable and detectable nth-order system G0(s)
(equation [1.2]) and a given stabilizing nK th-order controller K0(s) with nK < n
(equation [1.7]), a CSF reads:

PCSF (s) :=

 A T#BK −BDK B

−CKT −DKC DKDDK −DK Im −DKD
C Ip −DDK D

 , [2.2]

where T is the solution of the generalized Riccati equation [1.18] and where T# is a
right inverse1 of T (such that TT# = InK

).

PROOF.– From [2.2], it is obvious that conditions C1 and C2 are met. A state-space
realization of Fl(PCSF ,K0) associated with state vector [xT, xT

K ]T reads:

A+BJmDKC BJmCK T#BK

BKJpC AK +BKDJmCK BK

−CKT CK 0

,
where Jm and Jp are defined in [1.8]. Let us consider the change of state coordinates
(already defined in equation [1.16]):

M = M−1 =

[
In 0
T −InK

]
, [2.3]

1 See also proposition 2.2.
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where T is a solution of [1.18] and TT# = InK. The new state space realization of
Fl(PCSF ,K0) reads:

A+BJm(DKC + CKT ) −BJmCK T#BK

0 AK + (BKD − TB)JmCK 0

0 −CK 0

. [2.4]

So the n+ nK (stable) close-loop eigenvalues are composed of:

– n eigenvalues of A + BJm(DKC + CKT ), which are unobservable by the
controlled output z of PCSF ,

– nK eigenvalues of AK +(BKD−TB)JmCK , which are uncontrollable by the
exogenous input w of PCSF .

Thus, condition C3 is met:

Fl(PCSF (s),K0(s)) = 0.

In the next section, it is shown that it is always possible to find a right-inverse T#

of T such that the uniqueness condition C4 is met and that ends the proof.

The general block-diagram representation of PCSF is depicted in Figure 2.2. We
can note that the CSF is a one-block problem and can be seen as a combination of
a Output Estimation (OE) problem and a Disturbance Feed-forward (DF) problem
[ZHO 96]. So, if both cross transfers (Pzu(s) and Pyw(s)) are minimum phase (no
zero in the closed right half plane), then both H2 and H∞ syntheses converge toward
the same H∞ performance index (γ) [ZHO 92]. But for the standard problem PCSF ,
we can state that γ = 0 and that both syntheses are exactly equal.

+

w

u

z

y

D

DK

B

T#BK

In

s

A

C

CKTDK

+

−

−

−

+

+

+

+ ++

+

Figure 2.2. Block diagram of Cross Standard Form PCSF (s) (case nK ≤ n)
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2.3.1. Uniqueness condition

The uniqueness condition (C4) can be proved considering the H2-optimal
controller of PCSF : first, to vanish the direct feed-trough between exogenous inputs
and controlled outputs in PCSF , a simple change of variable (u ← u − DKy) is
performed to transform PCSF into the problem PCSF (s):A+BJmDKC T#BK BJm

−CKT 0 Im
JpC Ip DJm

, [2.5]

and thus:

Fl(PCSF ,K) = Fl(PCSF ,K −DK),

argmin
K

∥Fl(PCSF ,K)∥ = argmin
K

∥Fl(PCSF ,K)∥+DK .

In [DOY 89] and [ZHO 96], it is demonstrated that a standard problem P has a
unique H2-optimal controller if and only if P is a regular problem. That is, in our
case, if cross transfers:

Pzu(s): =

[
A+BJmDKC BJm

−CKT Im

]
and Pyw(s): =

[
A+BJmDKC T#BK

JpC Ip

]
have no invariant zeros on the jω axis. It is clear that the n zeros of Pzu(s) are the
n eigenvalues of ϕzu = A + BJm(DKC + CKT ) (ϕzu is the dynamic matrix of
P−1
zu (s)) and, considering [2.4], belong to the set of n + nK closed-loop eigenvalues

and thus are stable by assumption. So, Pzu(s) has no zeros on the jω axis.

The problem of the zeros of Pyw(s) is more complex: the n zeros of Pyw(s) are
the n eigenvalues of ϕyw = A + BJmDKC − T#BKJpC (ϕyw is the dynamic
matrix of P−1

yw (s)). Then, pre-multiplying ϕyw by N = [T# T⊥], post-multiplying
by N−1 = [TT T⊥]T and using [1.18], it comes:

N−1ϕywN =

[
AK + (BKD − TB)JmCK 0

⋆ T⊥T
(A+BJmDKC − T#BKJpC)T⊥

]
.

The n zeros of Pyw(s) are therefore composed of:

– nK eigenvalues of AK + (BKD − TB)JmCK . Considering [2.4], these
eigenvalues belong to the set of n + nK closed-loop eigenvalues and thus are stable
by assumption;

– n−nK eigenvalues of φ(T#) = T⊥T
(A+BJmDKC−T#BKJpC)T⊥ whose

location in the complex plane is discussed in the following proposition.
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PROPOSITION 2.2.– It is always possible to find a right-inverse T# of T such that
all the n − nK eigenvalues of φ(T#) (and thus all the n zeros of the cross transfer
Pyw) are not on the jω axis.

PROOF.– The set of right-inverse matrices of T can be parametrized in the following
way:

T# = T+ + T⊥X,

where X is an (n− nK)× nK matrix of free parameters. Then:

φ(T#) = φ(X) = T⊥T
(A+BJmDKC)T⊥ −XBKJpCT⊥. [2.6]

So, X allows the n − nK eigenvalues of φ to be assigned in the s-plane. The
computation of X is in fact an eigenvalue assignment problem by a state-feedback
XT on the pair (T⊥T

(A+BJmDKC)TT⊥, (BKJpCT⊥)T).

So, the proposition 2.2 allows us to state that Pzu(s) has no zeros on the jω axis.
Thus, PCSF (s) is regular and K0(s) is the unique solution of the H2-optimal problem
PCSF .

As Fl(PCSF ,K0) = 0, all controllers solution of the H∞-optimal problem are
also solutions of the H2-optimal problem. Thus, K0(s) is also the unique solution of
the H∞-optimal problem PCSF .

2.3.2. Existence of a CSF

PROPOSITION 2.3.– The non-existence of a full-row rank matrix T solution of the
generalized non-symmetric Riccati equation [1.18] implies the non-existence of a CSF
for G0(s) and K0(s).

PROOF.– Let us assume that a regular CSF exists for the strictly proper stabilizing
controller K0(s)−DK and for the stabilizable and detectable modified system G0(s)
(such a change of variable is not restrictive):

G0(s) :=

[
A+BJmDKC BJm

JpC DJm

]
.
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Then, it is shown in [DOY 89] that the unique solution �KH2 of the corresponding
H2-optimal problem involves a state-feedback gain Kc and a state-estimator gain Kf

(according to the structure depicted in Figure 1.1 with Q(s) = 0). The nth-order
state-space realization of such a controller associated with the state vector �x reads:

�KH2 : =

[
A+BJmDKC −BJmKc −KfJpC +KfDJmKc Kf

−Kc 0

]
. [2.7]

As the solution is unique: �KH2
(s) = K0(s) − DK . Thus, the state-space

realization [2.7] is non-minimal if nK < n. Thus, a projection matrix SnK×n

(full-row rank) exits such that: xK = S�x and

S(A+BJmDKC −BJmKc −KfJpC +KfDJmKc) = AKS

SKf = BK

−Kc = CKS.

Thus, S solves the following equation:

S(A+BJmDKC) + SBJmCKS −BKJpC − (AK +BKDJmCK)S = 0. [2.8]

This equation is exactly the same as the Riccati equation [1.18] in T . Thus, if T
(or S) does not exist, then the CSF for given G0(s) and K0(s) −DK (or G0(s) and
K0(s)) does not exist.

REMARK 2.1.– Proposition 2.3 highlights that the controller �K(s) provided by H2

or H∞ design on PCSF is non-minimal. It can be shown that the n−nK non-minimal
dynamics in �K(s) are assigned to the eigenvalues of φ(X) (equation [2.6]) and thus
can be assigned by a suitable choice of X (see example in section 2.5).

Thus, the unique optimal H∞ controller is non-minimal but is equivalent to the
initial controller K0(s) from the input–output behavior. Note that K0 can be
recovered from the full-order H2 controller �KH2 or the full-order H∞ controller
�KH∞ computing a minimal realization (Matlab® function minreal). Since the
reduced-order controller K0 is the global optimal of the CSF H∞ problem, it can be
directly designed using fixed-structure H∞ synthesis (hinfstruct, for instance).
This will be illustrated in section 2.5.
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2.4. Augmented-order controller case (nK > n)

In the case nK > n, the CSF is directly defined from the three parameters Kc, Kf

and Q(s) of the observer-based realization of K0(s) (see Figure 2.3 and see [ALA 04]
for the proof). These parameters can be computed using the procedure presented in
section 1.6.

+B

A

D

C
ẋ x yu

�
+

Q(s)

Kf

w
+
+

z

Kc

−

+ + ++

Figure 2.3. Block diagram of Cross Standard Form PCSF (case nK > n)

The state-space representation of this CSF reads:

PCSF (z): =


A 0 Kf B
0 AQ BQ 0

Kc −CQ −DQ Im
C 0 Ip D

. [2.9]

2.5. Illustration

2.5.1. Solving the inverse H∞-optimal control problem

The results of this chapter are illustrated on the launcher example G0(s) presented
in section 1.8. Let us consider the system described in equation [1.73] and the initial
controller (also used in section 1.3):

K0(s) =
−23s− 32

s+ 12
= −23

s+ 1.391

s+ 12
: =

[−12 4

61 −23

]
.
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The only real solution T of [1.18] reads:

T = [0.32787− 0.032787].

Let us choose T# = T+, then the CSF (equation [2.2]) reads:

PCSF : =


0 1 12.079 0
1 0 21.792 1

3 26 23 1
1 0 1 0

.

It is easy to check that the optimal H∞ controller reads:

K∞(s) = −23
(s+ 1.391)(s+ 2.079)

(s+ 12)(s+ 2.079)
.

The corresponding Matlab® sequence using function cor2tfga2 is:

>> G0= s s ( [ 0 1 ; 1 0 ] , [ 0 ; 1 ] , [ 1 0 ] , 0 ) ;
>> K0= s s (−12 ,4 ,61 ,−23) ;
>> T= c o r 2 t f g a ( G0 , K0) ;
>> Tm1=pinv ( T ) ;
>> [ a , b , c , d ]= s s d a t a ( G0 ) ;
>> [AK, BK, CK,DK]= s s d a t a ( K0 ) ;
>> CSF= s s ( a , [ Tm1*BK−b*DK b ] ,[ −CK*T−DK* c ; c ] , . . .

[−DK+DK*d*DK, eye ( s i z e ( d , 2 ) )−DK*d ; eye ( s i z e ( d , 1 ) )−d*DK d ] ) ;
>> K= h i n f s y n ( CSF , 1 , 1 ) ;
>> zpk (K)

Zero / p o l e / g a i n :
−23 ( s + 1 . 3 9 1 ) ( s + 2 . 0 7 9 )
−−−−−−−−−−−−−−−−−−−−−−−

( s +12) ( s + 2 . 0 7 9 )

Furthermore, equation [2.6] reads:

φ(X) = −2.0792− 0.39801X and φ(246.02294) = −100.

2 See http://personnel.isae.fr/daniel-alazard/matlab-packages



Cross Standard Form and Reverse Engineering 63

Then, the choice:

T# = T+ + 246.0229T⊥ = [27.5 244.5]T

leads to a new PCSF and a new optimal H∞ controller:

K∞(s) = −23
(s+ 1.391)(s+ 100)

(s+ 12)(s+ 100)
.

From the previous Matlab® sequence, the corresponding command lines read:

>> Nt= n u l l ( T ) ;
>> AA=Nt ’ * ( a+b*DK* c ) ’* Nt ;
>> BB=Nt ’* c ’*BK’ ;
>> X= p l a c e (AA, BB, [ −100] ) ;X=X’ ;
>> Tm1=pinv ( T ) +Nt*X;
>> CSF= s s ( a , [ Tm1*BK−b*DK b ] ,[ −CK*T−DK* c ; c ] , . . .

[−DK+DK*d*DK, eye ( s i z e ( d , 2 ) )−DK*d ; eye ( s i z e ( d , 1 ) )−d*DK d ] ) ;
>> K= h i n f s y n ( CSF , 1 , 1 ) ;
>> zpk (K)

Zero / p o l e / g a i n :
−23 ( s + 1 . 3 9 1 ) ( s +100)
−−−−−−−−−−−−−−−−−−−−−

( s +100) ( s +12)

>> zpk ( m i n r e a l (K) )

1 s t a t e removed .

Zero / p o l e / g a i n :
−23 ( s + 1 . 3 9 1 )
−−−−−−−−−−−−−

( s +12)

In both designs, K∞ is not minimal and K∞ = K0.

Note that the reduced (first) order and minimal controller K0(s) can be directly
recovered using fixed-structure H∞ synthesis:

>> o r d e r 1 = l t i b l o c k . s s ( ’ o r d e r 1 ’ , 1 , 1 , 1 ) ;
>> CL= l f t ( CSF , o r d e r 1 ) ;
>> [ CLopt , gam]= h i n f s t r u c t (CL) ;
F i n a l : Peak g a i n = 3 . 7 6 e−13, I t e r a t i o n s = 81
>> K=CLopt . B locks . o r d e r 1 ;
>> zpk (K)

Zero / p o l e / g a i n :
−23 ( s + 1 . 3 9 1 )
−−−−−−−−−−−−−

( s +12)
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2.5.2. Improving K0 with frequency-domain specification

In fact, K0 has been designed to assign the dominant closed-loop eigenvalues to
−1± i. Indeed:

poles of
1

1−K0(s)G0(s)
= {−1 + i, −1− i, −10}.

The magnitude of the frequency-domain response of K0(s) is plotted in
Figure 2.4 (black solid line). Now, let us assume the controller must have a
second-order roll-off behavior beyond 10 rad/s and must fulfill the low-pass template
also depicted in Figure 2.4 (gray patch). Such a specification can be formulated to
attenuate launcher flexible modes that are not taken into account in the design model
G0(s).
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Figure 2.4. Frequency-domain responses (magnitude) of K0(s) (black solid
line), KW (s) (dashed line), KA,W (s) (gray solid line) and template

(gray patch)

This specification can be handled, in the H∞ framework, in weighting the
closed-loop transfer from a disturbance on the plant output (measurement noise) to
the plant input3 u. It is obvious that, in the standard problem associated with the CSF
(see Figure 2.2), the plant output y is directly linked to the exogenous input w and the

3 Such a transfer reads: K(Im −KG)−1 (with positive feedback).
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plant input u is directly linked to the controlled output z. Then, in order to take into
account this frequency-domain specification, we can augment this standard problem
with a noise w′ acting on the measurement y and weighted by a second-order
high-pass filter (in order to get a −40 dB/dec roll-off behavior). The augmented CSF
PCSF,W (s) is then depicted in Figure 2.5. The high-pass filter W (s) is in fact a
second-order derivative filter whose poles (−1000√

2
(1 ± i)) are introduced for reasons

of properness. The gain g allows the roll-off cut-off frequency to be adjusted and is
tuned by a try and error procedure. The tuning g = 0.02 provides a fourth-order
H∞-optimal controller KW (s) whose frequency response is depicted in Figure 2.4
(dashed line). The template is now fulfilled and we can check that the closed-loop
dominant dynamics is assigned to the nominal values −1 ± i.
Indeed:

poles of
1

1−KW (s)G0(s)
= {−1± i, −9.7947, −14.272± 12.985 i, −4.86 105}.
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Figure 2.5. Augmented Cross Standard Form PCSF,W (s) to take into account
roll-off specification (with T# = [27.5 244.5]T )

From the previous Matlab® sequence (see page 63), the corresponding command
lines read:

>> CSF_W= s s ( a , [ 0 * b Tm1*BK−b*DK b ] ,[ −CK*T−DK* c ; c ] , . . .
[ 0 −DK+DK*d*DK, eye ( s i z e ( d , 2 ) )−DK*d ; 1 eye ( s i z e ( d , 1 ) )−d*DK d ] ) ;

>> W= t f ( [ 1 0 0 ] , [ 1 / 1 0 0 0 0 0 0 s q r t ( 2 ) /1000 1 ] ) ;
>> [K_W, c l , gam]= h i n f s y n (CSF_W* append ( 0 . 0 2 *W, 1 , 1 ) , 1 , 1 ) ;
>> % Closed loop e i g e n v a l u e s :
>> damp ( f e e d b a c k ( G0 ,K_W, 1 ) )
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E i g e n v a l u e Damping Freq . ( r a d / s )

−1.00 e +00 + 1 . 0 0 e +00 i 7 . 0 7 e−01 1 . 4 1 e +00
−1.00 e +00 − 1 . 0 0 e +00 i 7 . 0 7 e−01 1 . 4 1 e +00
−9.79 e +00 1 . 0 0 e +00 9 . 7 9 e +00
−1.43 e +01 + 1 . 2 9 e +01 i 7 . 4 1 e−01 1 . 9 2 e +01
−1.43 e +01 − 1 . 2 9 e +01 i 7 . 4 1 e−01 1 . 9 2 e +01
−4.86 e +05 1 . 0 0 e +00 4 . 8 6 e +05

2.5.3. Improving K0 with phase lead

In this section, the objective is to assign the plant main dynamics to the prescribed
values −1± i taking into account the actuator dynamics A(s) modeled by a first-order
system:

A(s) =
5

s+ 5
: =

[−5 5

1 0

]
.

While it is easy to design a first-order controller K0(s) to assign the second-order
dynamics of the nominal plant model G0(s), it could be more delicate to obtain the
same result on the more representative model of the plant including its avionics
GA(s) = G0(s)A(s). This is particularly the case when this avionics, here A(s), has
a bandwidth (5 rad/s) a little bit too slow with respect to the required closed-loop
dynamics (

√
2 rad/s). Indeed, the closed-loop eigenvalues do not any more meet the

specifications:

poles of
1

1−K0(s)G0(s)A(s)
= {−0.78± 1.59 i,−2.45,−13}. [2.10]

The damping ratio of the dominant mode is now lower than 0.5 and the Nichols
plot of −K0(s)G0(s)A(s), depicted in Figure 2.7, reveals a too weak phase margin
(23.9 deg), in comparison with the nominal Nichols plot of −K0(s)G0(s). To work
around this problem, the controller must include a phase lead. Such a controller can be
easily designed, without any additional tuning parameters, using the CSF augmented
by the actuator dynamics A(s) on the control input u according to Figure 2.6.

u y

zw

PCSF (s)
A(s)

Figure 2.6. H∞ standard problem PA(s): Cross Standard Form PCSF

augmented with actuator dynamics A(s)
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Figure 2.7. Nichols plots of −K0(s)G0(s) (gray solid line),
−K0(s)G0(s)A(s) (dashed line) and −KA(s)G0(s)A(s) (black solid line)

The full-order H∞ design on the problem PA(s) provides a third order controller
with a very fast pole (<−105 rad/s), which can be removed (reduced). The
second-order controller KA(s) thus obtained allows the required assignment for
the plant dominant dynamics and a good phase margin (43.4 deg) to be recovered.
The phase lead of controller KA(s) is highlighted on the Nichols plot of
−KA(s)G0(s)A(s), depicted in Figure 2.7. From the previous Matlab® sequence
(see page 63), the corresponding command lines to illustrate such a design are as
follows:

>> Adyn= t f ( [ 5 ] , [ 1 5 ] ) ;
>> CSF_A=CSF* append ( 1 , Adyn ) ;
>> [K_A, c l , gam]= h i n f s y n ( CSF_A , 1 , 1 ) ;
>> zpk (K_A)

Zero / p o l e / g a i n :
−403009219.7038 ( s + 1 . 3 8 2 ) ( s +5)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
( s +8 .64 e05 ) ( s + 9 9 . 7 4 ) ( s + 1 2 . 2 6 )

>> K_A= r e d _ f a s t (K_A,−1000) ;
>> zpk (K_A)
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Zero / p o l e / g a i n :
−466.4811 ( s + 1 . 3 8 2 ) ( s + 5 . 0 0 1 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

( s + 9 9 . 7 4 ) ( s + 1 2 . 2 6 )

>> damp ( f e e d b a c k ( G0*Adyn , K_A, 1 ) )

E i g e n v a l u e Damping Freq . ( r a d / s )

−1.00 e +00 + 1 . 0 0 e +00 i 7 . 0 7 e−01 1 . 4 1 e +00
−1.00 e +00 − 1 . 0 0 e +00 i 7 . 0 7 e−01 1 . 4 1 e +00
−5.00 e +00 1 . 0 0 e +00 5 . 0 0 e +00
−1.00 e +01 1 . 0 0 e +00 1 . 0 0 e +01
−1.00 e +02 1 . 0 0 e +00 1 . 0 0 e +02

The reduction of the full-order H∞ controller involves a Matlab® reduction
function red_fast.m of the library bib1, which can be also download at:
http://personnel.isae.fr/daniel-alazard/matlab-packages.

This function removes, in the modal realization of the controller, all the stable
eigenvalues located in the complex plane on the left hand of a prescribed negative real
value. The steady-state gain of the controller is preserved.

From the previous design, it can easily be seen that the phase lead introduced in
the controller KA(s) increases significantly the magnitude of the controller
high-frequency response (more exactly: limω→∞ |Ka(jω)| = 466.48). A more
challenging problem is to assign the plant main dynamics to the prescribed values
−1 ± i taking into account the actuator dynamics A(s) and the roll-off template
(depicted in Figure 2.4, gray patch) on the frequency-domain response of the
controller.

Such a problem can be solved mixing the previous H∞ standard problems
PCSF,W and PA(s) into a new H∞ standard problem PA,W (s) according to
Figure 2.8. Note that in PA,W (s), the control signal of the augmented plant model
GA(s) = G0(s)A(s) is weighted in the controlled output z by the first-order actuator
dynamics A(s). Thus, in order to obtain the required −40 dB/dec roll-off behavior,
the weight W (s) must be now a third-order high-pass filter. Following the procedure
proposed in section 2.5.2, this filter is a third-order derivator with a tunable gain g:

W (s) = g
s3

(s/1000 + 1)(s2/10002 + s/1000 + 1)
with: g = 0.01.
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Figure 2.8. H∞ standard problem PA,W (s): PCSF with frequency weight
W (s) and actuator dynamics A(s)

Then, the full-order H∞ design on the problem PA,W (s) provides a sixth-order
controller with two fast poles (< −1000 rad/s), which can be removed (reduced).
The fourth-order controller KA,W (s) thus obtained allows the required assignment
for the plant dominant dynamics and a good phase margin (33 deg) to be satisfied.
The frequency-domain response of the controller KA,W (s) is plotted in Figure 2.4
(gray solid line): the template is still fulfilled.

From the Matlab® sequence proposed at the end of the section 2.5.2 (see page 65),
the command lines corresponding to this design are :

>> W=0.01* t f ( [ 1 0 0 0 ] , conv ( [ 1 / 1 0 0 0 1 ] , [ 1 / 1 0 0 0 0 0 0 1 /1000 1 ] ) ) ;
>> A= t f ( [ 5 ] , [ 1 5 ] ) ;
>> CSF_AW=CSF_W* append (W, 1 ,A) ;
>> [K_AW, c l , gam]= h i n f s y n (CSF_AW, 1 , 1 ) ;
>> K_AW= r e d _ f a s t (K_AW,−1000) ;
>> % Closed loop e i g e n v a l u e s :
>> damp ( f e e d b a c k ( G0*A,K_AW, 1 ) )

E i g e n v a l u e Damping Freq . ( r a d / s )

−1.00 e +00 + 1 . 0 0 e +00 i 7 . 0 7 e−01 1 . 4 1 e +00
−1.00 e +00 − 1 . 0 0 e +00 i 7 . 0 7 e−01 1 . 4 1 e +00
−5.00 e +00 1 . 0 0 e +00 5 . 0 0 e +00
−9.98 e +00 + 2 . 0 7 e +00 i 9 . 7 9 e−01 1 . 0 2 e +01
−9.98 e +00 − 2 . 0 7 e +00 i 9 . 7 9 e−01 1 . 0 2 e +01
−5.70 e +00 + 1 . 0 6 e +01 i 4 . 7 2 e−01 1 . 2 1 e +01
−5.70 e +00 − 1 . 0 6 e +01 i 4 . 7 2 e−01 1 . 2 1 e +01

2.6. Pseudo-cross standard form

2.6.1. A reference model tracking problem

In this section, the augmented problem PPCSF (s) depicted in Figure 2.9 is
considered as a possible candidate CSF for the plant G0(s) and the initial controller
K0(s).
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u

w z
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+

y
G0(s)

K0(s)

G0(s)+
+

++

Figure 2.9. Pseudo-Cross Standard Form: PPCSF (s)

Such a control problem is in fact a reference model tracking problem where the
reference model is the nominal closed-loop plant. It is clear that such a standard
control problem satisfies the conditions C1, C2 and C3 of the CSF definition 2.3.
But there are still some problems with the condition C4:

– such a problem is not a regular H2 control problem since, for the quite general
case of a strictly proper plant G0, matrices D12 and D21 (in [2.1]) do not have
full-column rank and full-row rank, respectively. Then, the H2 design will fail on
such a standard problem;

– the order of PPCSF (s) is 2n + nK while the order of PCSF proposed in
Figures 2.2 or 2.3 is max(n, nK). Thus, full-order H∞ design on PPCSF (s) will
provide a (2n + nK)th-order controller. Such a controller will recopy the initial
controller K0(s) in a frequency range (see Figure 2.10) but will require a reduction to
remove fast dynamics introduced by the full-order solver and to approximate K0(s).
Of course, a fixed-structure H∞ synthesis can be used on PPCSF (s), looking for
an optimal reduced nK th-order controller, to solve the inverse H∞-optimal control
problem. This is illustrated in the following section.

2.6.2. Illustration

The following Matlab® sequence considers again the plant G0(s) =
1

s2−1 and the
initial controller K0(s) = −23 s+1.391

s+12 (see section 2.5) and highlights the results of
full-order and reduced-order H∞ designs on the pseudo-Cross Standard Form
PPCSF (s). The frequency-domain responses of the full-order H∞ controller and the
initial controller K0(s) are plotted in Figure 2.10. The reduction of the full-order H∞
controller involves the Matlab® reduction function red_fast.m of the library bib1.
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Figure 2.10. Bode responses of initial controller K0 (solid line) and full-order
H∞-optimal control on PPCSF (s) (dashed line)

>> G0= s s ( [ 0 1 ; 1 0 ] , [ 0 ; 1 ] , [ 1 0 ] , 0 ) ;
>> K0= s s (−12 ,4 ,61 ,−23) ;
>> CLref= f e e d b a c k ( G0 , K0 , 1 ) ;
>> PCSF=[1 −1;0 1]* append ( CLref , G0) *[1 0 ; 1 1 ] ;
>> % F u l l−o r d e r H i n f t y d e s i g n :
>> [ Kinf , CL ,GAM]= h i n f s y n ( PCSF , 1 , 1 ) ;
>> damp ( Kinf )

E i g e n v a l u e Damping Freq . ( r a d / s )

−1.20 e +01 1 . 0 0 e +00 1 . 2 0 e +01
−4.05 e +03 + 4 . 0 5 e +03 i 7 . 0 7 e−01 5 . 7 2 e +03
−4.05 e +03 − 4 . 0 5 e +03 i 7 . 0 7 e−01 5 . 7 2 e +03
−4.05 e +03 + 4 . 0 5 e +03 i 7 . 0 7 e−01 5 . 7 3 e +03
−4.05 e +03 − 4 . 0 5 e +03 i 7 . 0 7 e−01 5 . 7 3 e +03

>> f i g u r e
>> bode ( K0)
>> hold on
>> bode ( Kinf )
>> Kr= r e d _ f a s t ( Kinf ,−1000) ;
>> zpk ( Kr )
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Zero / p o l e / g a i n :
−23 ( s + 1 . 3 9 1 )
−−−−−−−−−−−−−

( s +12)

>> % Reduced o r d e r d e s i g n :
>> o r d e r 1 = l t i b l o c k . s s ( ’ o r d e r 1 ’ , 1 , 1 , 1 ) ;
>> CL= l f t ( PCSF , o r d e r 1 ) ;
>> [ CLopt , gam]= h i n f s t r u c t (CL) ;

F i n a l : Peak g a i n = 8 . 4 7 e−13, I t e r a t i o n s = 60

>> Kred=CLopt . B locks . o r d e r 1 ;
>> zpk ( Kred )

Zero / p o l e / g a i n :
−23 ( s + 1 . 3 9 1 )
−−−−−−−−−−−−−

( s +12)

2.6.3. Comment

The main interest of the pure CSF PCSF (s) depicted in Figures 2.2 or 2.3 in
comparison with the pseudo-Cross Standard Form of Figure 2.9 is that the plant input
u and output y are directly linked to the controlled output z and the exogenous input
w, respectively. In addition to regularize the standard H2 or H∞ problem, it allows
additional specifications, for instance a roll-off specification (as was illustrated in
section 2.5.2) to be easily taken into account. That is one of the main objectives of
the reverse engineering approach. The reader could try to design a controller meeting
the frequency domain template depicted in Figure 2.4 from the pseudo-CSF
PPCSF (s): this is not at all an easy task.

2.7. Conclusions

The CSF has been presented here as a particular solution of the inverse optimal
control problem. The CSF can be used to mix various synthesis techniques in order to
satisfy a multiobjective problem. Indeed, the general idea is to design a first controller
to meet some specifications, mainly performance specifications. Then, the CSF is
applied on this first solution to initialize a standard problem that will be completed
to handle frequency-domain or parametric robustness specifications. This heuristic
approach is very interesting when the control law designer wants to:

– take into account a first controller based on a priori know-how and physical
considerations;
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– have access to a modern optimal control framework to manage
frequency-domain robustness specifications and the trade-offs between these
various specifications.

A multiobjective control design procedure based on the CSF is proposed in
[ALA 04] and illustrated on a academic mixed-sensibility (two channels) control
problem. Realistic applications of this approach in the field of aeronautics (flight
control law design) are described in [ALA 02] and [ALA 06]. In this latter reference,
an initial aircraft control law is improved to reduce loads due to turbulence while
preserving the flying qualities provided by the initial controller. The CSF for the
discrete-time controller and the plant is detailed in section A2.3 (Appendix 2). In
[VOI 03], discrete-time CSF is used to meet stability margins taking into account
launcher flexible modes from an initial controller designed to meet disturbance
rejection specifications.
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3

Reverse Engineering for
Mechanical Systems

3.1. Introduction

In Chapter 2, the cross standard form (CSF) was presented as a reverse
engineering tool to set up a standard H∞ problem from a given plant and a given
initial controller. This problem was then augmented to take into account frequency
domain specifications. In the illustration presented in section 2.5.2, the objective was
to shape the given controller to satisfy a roll-off behavior. The efficiency of such an
approach to manage various type of specifications (for instance, eigenvalue
assignment and frequency-domain specifications in section 2.5.2 or quadratic
performance index and frequency-domain specification on the launcher problem in
[VOI 03]) and to tune trade-off between these specifications is quite attractive.

But some problems are still open: the value of the closed loop H∞ norm (γ) of
the augmented problem has no physical meaning and cannot be used as an indicator
of the distance to the objective. In the example presented in section 2.5.2, the value of
γ = ∥Fl(PCSF,W (s),KW (s))∥∞ was 188: from this value, it is not possible to state
that it is good or bad, or if the corresponding design meets more or less the template
presented in Figure 2.4. One reason is that the exogenous signal w of such a problem
(see Figure 2.5) is not an actual disturbance signal acting on the plant but a signal
acting simultaneously on the input u, the state derivative ẋ and the output y of the
plant. In the same way, the control output z is a combination of the input u, the state
x and the output y.

Another open question is the choice of the right-inverse T# in the standard
problem (Figure 2.5). The proposition 2.2 allows us to calculate T# in order to
assign the non-minimal pole/zero pairs to prescribed values (−100 in the illustration
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presented section 2.5.2) in the H∞ controller solution of the pure CSF problem
(PCSF ). But it can be easily verified that the solution of the augmented problem
(Figure 2.5) depends on this choice. The only recommendation we can suggest to the
reader is to choose T# such that the non-minimal pole/zero pairs dynamics is far
from the closed-loop dynamics in the left-half plane.

In this chapter, a new reverse engineering scheme is proposed to encounter these
problems but this new scheme is restricted to H∞ reverse engineering for a particular
class of systems and initial controllers. This is the general class of mechanical systems
and the initial controller is a static state-feedback designed to assign the dynamics of
each (dof) to a prescribed second order dynamics and to decouple each of them from
the others.

3.2. Context

During primary phases of projects, system characteristics and specifications evolve
significantly. Analysis and control design methods that can easily be updated when the
specifications or characteristics are modified could be very useful engineering tools.
In the general case of mechanical systems, performance specifications often consist of
desired pulsations, damping ratios and dof decoupling. To meet such specifications,
an H∞ standard problem based on the acceleration sensitivity function is proposed as
a basic scheme. This standard problem can be used to analyze or design control laws
taking into account new dynamic elements (actuators dynamics, navigation filter, etc.)
or additional specifications (roll off).

This new approach is thus an alternative to the CSF presented in Chapter 2 but
its importance is that the H∞ performance index γ is optimal for the specific value�γ = 1 and the distance to this value is a useful indicator of the distance to objectives
when additional specifications are added. The drawback of this approach is that the
uniqueness of the optimal solution of the basic problem is no longer guaranteed, while
the interest of the CSF lies in the fact that the solution of the basic problem is unique
and thus it is guaranteed that the current solution when specifications are added is
attracted by the initial controller used to build the CSF. Note also that the CSF is
very general and can be applied to any kind of initial controller (static, dynamic, full,
reduced or augmented-order, output or state feedback).

In section 3.3, the general mechanical system model, specifications and the initial
state-feedback controller are presented. Section 3.4 details H∞ design based on the
acceleration sensitivity function and its illustration which is based on the academic
example used in section 2.5. In section 3.5, the uniqueness of the solution is
discussed through an H2/H∞ problem where the basic H∞ problem is augmented
with an H2 channel between the acceleration disturbance and the control signal. Such
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a channel is commonly introduced to minimized consumption. In section 3.6, the
overall methodology is applied to design the lateral flight control law of an aircraft.

3.3. Model, specifications and initial controller

This chapter concerns multi-variable mechanical systems commonly described by
the generalized second-order differential equation [JUN 90, MEI 80]:

Mq̈ +Dq̇ +Kq = Fu [3.1]

where q ∈ Rn is the vector of the n dofs, M, D, K are, respectively, the n× n mass,
damping and stiffness matrices. u ∈ Rm is the vector of the m control signals and F
is the n×m input matrix. It is assumed that each dof is actuated, that is: m ≥ n and
F is full row rank (right-invertible).

Considering the state vector x =
[
qT q̇T

]T
, a state-space realization of [3.1] reads:

ẋ =

[
0 In

−M−1K −M−1D

]
x+

[
0

M−1F

]
u = Ax+Bu [3.2]

For such systems, the basic performance specification is often expressed as
follows:

– each dof qi must have a second-order dynamic behavior characterized by a
pulsation ωi and a damping ratio ξi;

– dynamic decoupling between dof is required.

For instance, in the field of flight control, flying qualities are expressed in terms of
pulsations and damping ratios that are required for the rigid modes (short-term mode,
Dutch-roll mode, etc.) and yaw/roll decoupling [ALA 02]. For spacecraft formation
flying, decoupling and second-order behavior for each of the three relative attitudes
of a spacecraft with respect to one another are commonly specified [GAU 06]. If such
specifications do not concern the vector q used to derive equation [3.1] but the vector
of controlled variables η, such that q = Tη where T is regular, then the following
developments can be applied to the new second-order system:

TTMT η̈ + TTDT η̇ + TTKTη = TTFu [3.3]
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In the earliest phase of development of such a mechanical system, it is also often
assumed that each dof position qi and rate q̇i are measured. Then, the direct inspection
of equation [3.1] allows a control law to be derived:

u = F#
(
[K−Mdiag(ω2

i )]q + [D−Mdiag(2ξiωi)]q̇
)

[3.4]

= K0 xwith: [3.5]

K0 = F#[K−Mdiag(ω2
i )D−Mdiag(2ξiωi)] [3.6]

F# is a right-inverse of F, such that FF# = In. F# is, in fact, the control allocation
matrix and describes the way forces and torques (calculated to control q) are
distributed on the set of actuators. A simple solution consists of selecting the minimal
length solution, that is F# = F+ = FT(FFT)−1. This design is based on the
general second-order differential system of equation [3.1] and mechanical
“know-how”. The resulting closed-loop second-order equation reads:

M
[
q̈ + diag(2ξiωi)q̇ + diag(ω2

i )q
]
= 0 [3.7]

This equation highlights that desired dynamic behavior is met: if a disturbance acts on
the dof qi, then qi(t) converges toward 0 with the specified dynamics and is decoupled
from the other dof (i.e. qj(t) = 0, ∀j ̸= i, ∀t).

During more advanced phases of the project development, it could be interesting to
take into account new details and characteristics of the system; for instance: actuators
and sensor dynamics, new actuator and sensor configurations, a navigation filter to
estimate qi and q̇i, parametric uncertainties, etc. From the analysis point of view, tools
and methods allowing us to analyze whether specifications are still met when these
new elements are considered might be useful. From the synthesis point of view, tools
and methods to take into account new components and/or additional specifications to
improve the control design are also required.

Control law design methods (Linear Quadratic (LQ), eigenstructure assignment,
H∞ design, etc.) can be used to develop such tools in a more or less suitable way. In
any case the first step to be performed is to recover the basic control law proposed in
equation [3.4] using a candidate approach. Eigenstructure assignment is a very useful
approach to easily handle decoupling [TIS 96, CHA 89, MAG 02]. LQ design using
the implicit model reference approach [HIC 96] also allows such kinds of
specifications to be handled. In Appendix A3.1 and A3.2, it is shown how the control
law [3.4] can be recovered using these approaches. These approaches are restricted to
state-feedback design and are not suitable to handle either new frequency domain
specifications or a new model augmented with actuator dynamics. Extending these
approaches to static or dynamic output feedback leads to the introduction of
additional tuning parameters.
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Modern optimal control techniques [ZHO 96] (H∞ synthesis, µ-synthesis,
µ-analysis, mixed H2/H∞, etc.) based on the well-known augmented standard
problem offer a very interesting general framework: the block diagram description of
the standard problem allows us to easily include new dynamics. This standard
problem can be augmented by the Linear Fractional Transformation (LFT)
representation of parametric uncertainties for analysis purpose (µ-analysis) or
synthesis purpose (µ-synthesis). It can also be augmented by an LFT representation
of measured varying parameters to perform Linear Parameter Varying (LPV) design
[APK 95]. Singular values (or structured singular value) of the frequency response of
Fl(P,K) provide a sufficient condition for the frequency domain specifications to be
reached or indicate how far a given controller is from these specifications. Classical
H∞ approaches such as Mixed-Sensitivity or Loop Shaping can very easily handle
frequency domain specifications but are not appropriate to handle dynamic
decoupling [SUZ 06]. These approaches do not allow us to recover the solution of
equation [3.4] without the use of complex frequency-domain weighting matrices with
non-null cross-coupling terms. The standard problem proposed in section 3.4 allows
us to obtain this nominal solution and involves very simple frequency weighting
functions directly defined by the specifications in terms of pulsation and damping
ratio for each dof.

3.4. H∞ design based on the acceleration sensitivity function

3.4.1. General results

The proposed H∞ design in fact weights the acceleration sensitivity function
according to Figure 3.2. The disturbance w acts on the acceleration vector q̈ and the
controlled output z weighs the acceleration with the diagonal weighting matrix:

Wq =



s2+2ξ1ω1+ω2
1

s2 0 · · · · · · 0

0
. . . 0

...
... 0

s2+2ξiωi+ω2
i

s2 0
...

... 0
. . . 0

0 · · · · · · 0
s2+2ξnωn+ω2

n

s2


[3.8]

Wq is the inverse of the desired acceleration sensitivity function obtained with the
system of equation [3.1] and the control law of equation [3.4]. For a dof i, the desired
acceleration sensitivity function is depicted in Figure 3.1 and specifies that
low-frequency disturbances on the acceleration must be perfectly rejected while
high-frequency disturbances (beyond the bandwidth ωi of this dof) are not at all
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rejected. Note also that in the field of aerospace vehicle control, most of the
perturbations are expressed as disturbing forces or torques acting on the input of
the plant. Thus, Wq can also be defined as a function of the magnitude of the
disturbance, the rejection ratio required on the position q and the gain M−1.
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Figure 3.1. Desired disturbance rejection profile on the acceleration W−1
q

The multi-variable weight Wq is diagonal and depends only on the specifications
ωi, ξi; i = 1...n and not on the system dynamic parameters M, K, D and F. It can be
easily shown [FEZ 08] that classical input or output sensitivity functions, commonly
used by the mixed sensitivity approach, are non-diagonal and depend on the system
dynamic parameters.
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Figure 3.2. H∞ standard problem PASF (s) weighting the acceleration
sensibility function
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The standard problem PASF (s) presented in Figure 3.2 is not minimal. H∞
solvers fail on such a problem because Tw→z has inobservable eigenvalues on the
imaginary axis (more particularly at 0). To overcome this difficulty, the synthesis is
performed on the minimal realization shown in Figure 3.3. Thus, a minimal state
space representation of the standard problem reads:

PASF (s) =


0n In 0n 0n×m

−M−1K −M−1D In M−1F

Mdiag(ω2
i )−K Mdiag(2ξiωi)−D In F

In 0n 0n 0n×m

0n In 0n 0n

 [3.9]

and shows a unitary direct feedthrough between w and z. Therefore,

∀K, ∥Fl(PASF ,K)∥∞ ≥ 1

but the nominal control law of equation [3.6] is a (global) optimal solution for this
problem: ∥Fl(PASF ,K0))∥∞ = 1.
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Figure 3.3. Minimal representation of the H∞ standard problem PASF (s)
presented in Figure 3.2

Indeed, the state space representation of Fl(PASF ,K0) reads:

Fl(PASF ,K0) =

 0n In 0n
−diag(ω2

i ) −diag(2ξiωi) In
0n 0n In

 = In [3.10]
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In general, the solution to the H∞ control problem is not unique and there is no
possibility to ensure that the solution K∞ provided by a H∞ solver will coincide with
K0. It means that the frequency response of Fl(PASF ,K∞) can be below 1 (0 dB)
for some frequencies. From a practical point of view, H∞ solvers provide a controller
whose order is equal to the standard problem order (i.e. 2n). In fact, the poles of this
controller are very fast and this controller can be reduced to its DC gain. We can also
use fixed-structure H∞ synthesis to specify a static controller in the design process.

3.4.2. Illustration

Let us consider one more time the academic example presented in sections 2.5 and
1.8 where:

G0(s) =
1

s2 − 1
≡

 0 1 0
1 0 1

1 0 0

 [3.11]

The controller K0(s) =
−23s−32

s+12 was in fact designed to assign the launcher dynamics
to −1 ± i, that is the closed-loop dominant dynamics corresponds to a second-order
with a pulsation ω =

√
2 (rad/s) and a damping ratio ξ =

√
2/2. Thus, the desired

acceleration sensitivity function reads:

W−1
q (s) =

s2

s2 + 2s+ 2

and the corresponding H∞ standard problem P0(s) weighting the acceleration
sensitivity function is depicted in Figure 3.4 (SIMULINK file format).
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Figure 3.4. H∞ standard problem P0(s) (weighting the acceleration
sensibility function) associated with plant G0(s) and controller K0(s)

(file std_asf_1.mdl)
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The direct application of equation [3.6] gives:

K0 = [−3 − 2]

Such a static output (or state) feedback allows the template on the closed-loop
acceleration sensitivity function to be met and saturated at any frequency ω. Indeed:

|Fl(P0(jω), [−3 − 2])| = 1 ∀ ω

The following Matlab® sequence shows the solutions provided by various H∞
solvers:

>> [ a , b , c , d ]= l inmod ( ’ s t d _ a s f _ 1 ’ ) ;
>> s t d = m i n r e a l ( s s ( a , b , c , d ) ) ;
2 s t a t e s removed .
>> K0=[−3 −2];
>> CL_0= l f t ( std , K0 ) ;
>> f i g u r e
>> sigma ( CL_0 ) % ==> t h e t e m p l a t e i s s a t u r a t e d f o r a l l f r e q u e n c i e s !
>> hold on
>> % R i c c a t i based Hinf o p t i m a l c o n t r o l l e r :
>> [ Kinf , CL_1 , gam]= h i n f s y n ( std , 2 , 1 ) ;
>> K_r ic = d c g a i n ( Kinf ) % C o n t r o l l e r r e d u c t i o n

K_r ic =

−3.0000 −4.9999

>> CL_r ic = l f t ( std , K_r i c ) ;
>> norm ( CL_ric , ’ i n f ’ ) % R e d u c t i o n i s OK !

ans =

1 .0000

>> sigma ( CL_r ic ) ; % ==> i n a f r e q u e n c y−domain band ; t h e c l o s e d−l oop
>> % c o n t r o l sys tem i s more p e r f o r m a n t t h a n t h e s p e c i f i c a t i o n !
>> % LMI based Hinf o p t i m a l c o n t r o l l e r :
>> [ Kinf , CL_1 , gam]= h i n f s y n ( std , 2 , 1 , ’METHOD’ , ’ lmi ’ ) ;
>> K_lmi= d c g a i n ( Kinf ) % C o n t r o l l e r r e d u c t i o n : ve ry c l o s e t o K0

K_lmi =

−3.0019 −2.0055

>> CL_lmi= l f t ( std , K_lmi ) ;
>> norm ( CL_lmi , ’ i n f ’ ) % R e d u c t i o n i s OK !

ans =

1

>> sigma ( CL_lmi ) ; % ==> t h e s p e c i f i c a t i o n i s s a t u r a t e d f o r a l l
>> % f r e q u e n c i e s
>> % S t r u c t u r e d s t a t i c c o n t r o l d e s i g n wi th HINFSTRUCT :
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>> K s t a t = l t i b l o c k . g a i n ( ’ K s t a t ’ , 1 , 2 ) ;
>> CL_K= l f t ( std , K s t a t ) ;
>> [CL , gam]= h i n f s t r u c t (CL_K) ;
F i n a l : Peak g a i n = 1 , I t e r a t i o n s = 1
>> K _ s t r u c t = s s (CL . Blocks . K s t a t )

d =
u1 u2

y1 −3 −3

S t a t i c g a i n .
>> sigma ( s s (CL) ) ; % ==> i n a f r e q u e n c y−domain band ; t h e c l o s e d−l oop
>> % sys tem i s more p e r f o r m a n t t h a n t h e s p e c i f i c a t i o n !
>> % HINSTRUCT wi th a hand−made i n i t i a l i z a t i o n :
>> K s t a t = l t i b l o c k . g a i n ( ’ K s t a t ’ , [ −0.01 −0.01]) ;
>> CL_K= l f t ( std , K s t a t ) ;
>> [CL , gam]= h i n f s t r u c t (CL_K) ;
F i n a l : Peak g a i n = 1 , I t e r a t i o n s = 3
>> K _ s t r u c t = s s (CL . Blocks . K s t a t ) % ==> q u i t e t h e same t h a n p r e v i o u s one .

d =
u1 u2

y1 −3.03 −2.984

S t a t i c g a i n .
>> % ==> Thus , r e v e r s e e n g i n e e r i n g i s q u i t e i n t e r e s t i n g t o i n i t i a l i z e
>> % c o r r e c t l y t h e c o n t r o l l e r i n HINFSTRUCT :
>> K s t a t = l t i b l o c k . g a i n ( ’ K s t a t ’ ,K0 ) ;
>> CL_K= l f t ( std , K s t a t ) ;
>> [CL , gam]= h i n f s t r u c t (CL_K) ;
F i n a l : Peak g a i n = 1 , I t e r a t i o n s = 1
>> K _ s t r u c t = s s (CL . Blocks . K s t a t ) % ==> K0 i s r e c o v e r e d !

d =
u1 u2

y1 −3 −2

S t a t i c g a i n .
>> % A good t r i c k t o s a t u r a t e t h e t e m p l a t e f o r a l l f r e q u e n c i e s
>> % ( and t h e n r e c o v e r K0 ) i s t o min imize t h e maximum of t h e H i n f t y
>> % norms of CL_K and 1 /CL_K ( t h a t works f o r any i n i t i l i z a t i o n s
>> % e x c e p t [0 0 ] ) :
>> K s t a t = l t i b l o c k . g a i n ( ’ K s t a t ’ , [ −0.01 −0.01]) ;
>> CL_K= l f t ( std , K s t a t ) ;
>> [CL , gam]= h i n f s t r u c t ( b l k d i a g (CL_K , 1 / CL_K) )
F i n a l : Peak g a i n = 1 , I t e r a t i o n s = 19
>> K _ s t r u c t = s s (CL . Blocks . K s t a t ) % ==> K0 i s r e c o v e r e d !

d =
u1 u2

y1 −3 −2

S t a t i c g a i n .
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This sequence leads to the following conclusions:

– the reduction of full-order H∞ controllers (provided by Riccati-based or Linear
Matrix Inequalities (LMI)-based solvers) to their DC gains does not affect the
closed-loop performance;

– the static controller KRic = �KRic(0) provided by the Riccati-based solver does
not saturate the template in a frequency band (see Figure 3.5). That is, in this frequency
band, the closed-loop disturbance rejection is better than the specification;

– the static controller �KLMI(0) provided by the LMI-based solver is very closed
to K0 and so saturates the template at any frequency. Therefore, it is possible to
recover the nominal static state-feedback K0 from the DC gain of the full-order
controller provided by the LMI solver proposed in the Matlab® function hinfsyn,
that is detailed in a more general way in Appendix A3.3

– the static controller Kstruct provided by the structured H∞ controller solver,
when no initialization is provided, does not converge to K0 and so does not saturate
the template. If the design is initialized with K0, then Kstruct = K0. This shows that
K0 is at least a local minimum for the problem P0(s). From a methodological point of
view, it is worth to mentioning that structured H∞ controller solvers are very efficient
(that will be shown in the next illustrations of this chapter) but the initialization is a
key element that cannot be done randomly. In that sense, reverse engineering can be
very useful to provide a well-conditioned initialization;
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– a good alternative to recover K0, from an arbitrary initialization, consists of
finding the static controller �Kstruct such that:

�Kstruct = argmin
K

max(∥Fl(P0(s),K)∥∞, ∥Fl(P0(s),K)−1∥∞)

3.4.3. Analysis on an augmented model

The H∞ standard problem weighting the acceleration sensitivity function can be
augmented with actuator dynamics A(s), sensors dynamics and navigation filter N(s)
(see Figure 3.6) to analyze the degradation of performance in terms of acceleration
disturbances rejection of the nominal (initial) controller.
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Figure 3.6. Analysis of the initial controller K0(s) on a
more representative model

3.4.4. Illustration

Following the illustration proposed in section 3.4.2, let us consider the standard
problems P1(s) and P2(s) depicted in Figures 3.7 and 3.8. P1(s) is the problem
P0(s) based on the acceleration sensitivity function (see Figure 3.4) augmented with
the actuator dynamics A(s) = 5

s+5 on the control signal u. P2(s) is like P1(s) but
only the position q is measured. The objective is to analyze the performance of the
initial controller K0(s) = −23s−32

s+12 when actuator dynamics A(s) is taken into
account.

Table 3.1 highlights the degradation of the performance index γ:
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Figure 3.7. H∞ standard problem P1(s) (file std_asf_2.mdl)

y(1)

2

z

1

y_dot

1

s

y

1

s

Wq

s +2s+22

s2

A(s)

5

s+5
u

2

w

1

Figure 3.8. H∞ standard problem P2(s) (file std_asf_3.mdl)

– γ increases from 1 to 1.2 (which is quite acceptable) when the dynamic position
feedback K0(s) is considered instead of the static state-feedback K0 on the nominal
standard problem P0(s);

– γ increases up to 1.7 and 2.2 (which is not acceptable) for the static feedback
K0 and the dynamic position feedback K0(0) cases, respectively, when the actuator
dynamics A(s) is taken into account. This degradation can also be interpreted on
the closed-loop dynamics that do not meet any more the required assignment (see
section 2.5.3, equation [2.10]).

∥Fl(P0(s),K0)∥∞ = 1

∥Fl(P0(s), [K0(s) 0])∥∞ = 1.2

∥Fl(P1(s),K0)∥∞ = 1.7

∥Fl(P2(s),K0(s)∥∞ = 2.2

Table 3.1. Performance indexes (γ)

3.4.5. Synthesis on an augmented model

Of course, it is possible to submit to a H∞ solver the augmented standard problem
to find a state or output feedback dynamic controller. This new controller is expected
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to provide a better performance index γ, that is a better disturbance rejection. More
generally, one can consider standard problems depicted:

– in Figure 3.9 where the objective is to take into account actuators dynamics A(s)
in the design of the state-feedback;

– in Figure 3.10 where it also assumed that only the position q is measured (output
feedback design).
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Figure 3.9. Augmented plant with actuators dynamics
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Output feedback will refer to the case where only q is measured and
state-feedback where q and q̇ are measured. Output feedback controllers can be
designed using the same methodology on the augmented plant of Figure 3.10. Note
that in the output feedback case and/or when actuator dynamics is taken into account,
optimal controllers become dynamic and cannot be reduced to static gains anymore.

One of the main interests of the standard problem based on the acceleration
sensitivity function is to have a weighting system Wq(s) that is independent of the
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used measures (and used control inputs). Most of H∞ standard problems are based
on the plant input–output behavior (mixed sensitivity, loop shaping) and they have a
weighting system that depends on the used measures. In other words, taking into
account that a new measure is available requires redefining the weighting system.
This is no longer the case with the acceleration sensitivity-based standard problem.
From a methodological point of view, it simplifies consequently the design or the
update of the controller to a new measurement configuration which is discussed in
the following illustration.

Regarding the interest of a recent fixed-structure H∞ synthesis w.r.t. to classical
full-order synthesis, it will be also highlighted that:

– it is better, from the performance index point of view, to design directly a reduced
order controller than to reduce a full-order controller where very fast dynamics
commonly appear and can raise implementation problems. This assumes the designer
is able to specify the correct order (or even better, the correct structure) of the
controller. In the academic illustrations proposed in this chapter, such a task is easy
but could be more delicate for some applications;

– the initialization of the controller in structured H∞ synthesis is a very
determinant success factor. In that sense, a priori knowledge of an initial controller
K0 can be very useful for the initialization. This is also one of the main concerns of
the reverse engineering approach developed in this chapter.

Although these two recommendations are illustrated with academic examples,
they are quite complex to be kept in mind by the designer faced with more realistic
applications.

3.4.6. Illustration

The standard problems P1(s) and P2(s) depicted in Figures 3.7 and 3.8 are
submitted to the various H∞ design solvers in the following Matlab® sequences.

3.4.6.1. Sequence on the standard problem P1(s)

>> [ a , b , c , d ]= l inmod ( ’ s t d _ a s f _ 2 ’ ) ;
>> s t d = m i n r e a l ( s s ( a , b , c , d ) ) ;

2 s t a t e s removed .
>> [ Kinf , CL_1 , gam]= h i n f s y n ( std , 2 , 1 ) ;
>> gam

gam =
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1 .0010

>> damp ( Kinf )

E i g e n v a l u e Damping Freq . ( r a d / s )

−1.00 e +00 1 . 0 0 e +00 1 . 0 0 e +00
−1.82 e +05 1 . 0 0 e +00 1 . 8 2 e +05
−9.06 e +05 1 . 0 0 e +00 9 . 0 6 e +05

>> K i n f r = r e d _ f a s t ( Kinf ,−1 e5 ) ;
>> norm ( l f t ( std , K i n f r ) , ’ i n f ’ )
ans =

1 .4813

Comments:

– the full-order H∞ design provides a third-order controller with a very good
performance index;

– this controller shows two very fast poles (< −105 (rad/s)). The reduction of
these poles degrades significantly the performance index.

>> o r d e r 1 = l t i b l o c k . s s ( ’ o r d e r 1 ’ , 1 , 1 , 2 ) ;
>> CL= l f t ( std , o r d e r 1 ) ;
>> [ CLopt , gam]= h i n f s t r u c t (CL) ;
F i n a l : Peak g a i n = 1 , I t e r a t i o n s = 61

Comment:

– the first-order H∞ design provides directly a reduced order controller with a
very good performance index (better than the performance index of the full-order
design that is assumed to provide the global optimum; such a result is due to numerical
aspects).

3.4.6.2. Sequence on the standard problem P2(s)

>> [ a , b , c , d ]= l inmod ( ’ s t d _ a s f _ 3 ’ ) ;
>> s t d = m i n r e a l ( s s ( a , b , c , d ) ) ;
2 s t a t e s removed .
>> [ Kinf , CL_1 , gam]= h i n f s y n ( std , 1 , 1 ) ;
>> gam

gam =

1.0004

>> damp ( Kinf )
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E i g e n v a l u e Damping Freq . ( r a d / s )

−1.07 e +04 + 1 . 0 3 e +04 i 7 . 2 0 e−01 1 . 4 9 e +04
−1.07 e +04 − 1 . 0 3 e +04 i 7 . 2 0 e−01 1 . 4 9 e +04
−7.57 e +08 1 . 0 0 e +00 7 . 5 7 e +08

>> K i n f r = r e d _ f a s t ( Kinf ,−1 e5 ) ;
>> norm ( l f t ( std , K i n f r ) , ’ i n f ’ )

ans =

1 .0003

Comments:

– in the case of the position output feedback, the reduction of the full-order
controller has no consequence on the performance index;

– the weighting filter Wq(s) works in the state-feedback or output feedback cases;
its tuning is independent of the measurement vector;

– due to the required phase lead, and the pseudo-derivation of the position to have
an estimate of the velocity, the controller order on such a problem must be at least
equal to two. This will be used in the next sequence to specify the order for the
fixed-structure controller design.

>> o r d e r 2 = l t i b l o c k . s s ( ’ o r d e r 2 ’ , 2 , 1 , 1 ) ;
>> CL= l f t ( std , o r d e r 2 ) ;
>> [ CLopt , gam]= h i n f s t r u c t (CL) ;
F i n a l : Peak g a i n = 1 . 4 , I t e r a t i o n s = 59

S p e c t r a l r a d i u s 4 . 5 2 e +04 i s c l o s e t o bound 5 e +04
>> K i n i t =K0* t f ( [ 1 / 5 0 1 ] , [ 1 / 5 0 1 ] ) ;
>> norm ( l f t ( std , K i n i t ) , ’ i n f ’ )

ans =

2 .2027

>> o r d e r 2 = l t i b l o c k . s s ( ’ o r d e r 2 ’ , K i n i t ) ;
>> CL= l f t ( std , o r d e r 2 ) ;
>> [ CLopt , gam]= h i n f s t r u c t (CL) ;
F i n a l : Peak g a i n = 1 , I t e r a t i o n s = 101
>> K _ s t r u c t = s s ( CLopt . B locks . o r d e r 2 ) ;
>> zpk ( K _ s t r u c t )

Zero / p o l e / g a i n :
−911627.4437 ( s + 5 . 0 0 4 ) ( s + 1 . 4 9 9 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

( s ^2 + 1735 s + 2 . 28 1 e06 )
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Comments:
– the design of a second-order controller, without any initialization, leads to γ =

1.4 that is not very good in comparison to full-order design;

– the initialization of the design with K0(s)
s+50
s+50 , that is K0(s) (first-order) in

series connection with a pole/zero cancellation allows the design to improve very
efficiently the performance index, from 2.2 (this value was already calculated in
Table 3.1) to the optimal value �γ = 1.

3.4.7. Taking into account a roll-off specification

The previous illustration has shown that H∞ design provides controllers with an
important phase lead to optimize the disturbance rejection. Such controllers have also
a high-pass behavior with a too high magnitude in high frequencies that could be a
drawback from the actuator health point of view.

A controller roll-off behavior can be handled using a weight W2(s) on the control
signal u according to the new augmented standard plant depicted in Figure 3.11. W2(s)
is a high-pass filter weighting u in high frequencies. Gains F and M−1 are introduced
in order so that new controlled output z2 can be compared with controlled output
z1 (assuming that actuator dynamics A(s) has a unitary DC gain). The way W2(s)
can be tuned is illustrated on the control of a Reusable Launch Vehicle (RLV) during
atmospheric re-entry in [FEZ 07].

This way of handling the roll-off specification is in fact a result of the first H∞
approaches based on full order synthesis. The frequency-domain constraint on the
controller open-loop frequency response was indirectly taken into account weighting
closed-loop sensitivity functions (the most well-known is certainly K(I +KG)−1 in
the mixed-sensitivity approach based on the fact that, in the roll-off frequency range,
|K(jω)G(jω)| << |K(jω)|). Today, fixed-structure H∞ synthesis allows us to
handle several performance indexes associated with several standard problems
(models) involving the same controller. Considering a two channels H∞ standard
problem defined by two performance indexes Jc1(K)= ∥Fl(Pc1(s),K)∥∞ and
Jc2(K) = ∥Fl(Pc2(s),K)∥∞ associated with two elementary standard problems
Pc1(s) and Pc2(s), it is possible to design the controller �K stabilizing
Fl(Pc1(s), �K(s)) and Fl(Pc2(s), �K(s)) such that:

�K = argmin
K

max(∥Fl(Pc1(s),K)∥∞, ∥Fl(Pc2(s),K)∥∞)



Reverse Engineering for Mechanical Systems 95

qq̇q̈u

w

y = x

+
+

−
+

+
+

1
s

1
s

diag(s2+2ξiωis+ω2
i )

s2

Wq(s)

W2(s)

z1

z2

Roll-off
weigh

A(s) F M−1

D

K

F M−1

Figure 3.11. Augmented plant will roll-off criterion based on W2

high-pass filter

This specific feature is very interesting to take into account a roll-off specification:

– let us consider an elementary standard problem Pc1(s) for performance
achievement, that is to say: if Jc1(K) = ∥Fl(Pc1(s),K)∥∞ ≤ 1 then, the controller
K(s) is efficient. Then, the template B(s) on the open-loop controller frequency
response (as it is defined, for instance, in Figure 2.4) can be handled taking into
account the second problem Jc2(K) = ∥B(s)−1K(s)∥∞. Indeed, if Jc2(K) ≤ 1,
then σmax(K(jω)) ≤ |B(jω)| ∀ ω, that is to say: the controller K(s) satisfies the
template B(s);

– such a two H∞ channels design guarantees the stability of the controller K(s).
Strong stabilization, that is the stabilization of the closed-loop plant with a stable
controller, is a property commonly required for the implementation purpose [FEI 11].

The two channels are summarized in Figure 3.12. The second channel is just the
series connection of the controller with the inverse of the template. Note that this
channel can also be expressed using a Linear Fractional Representation (LFR):

B(s)−1K(s) = Fl(Pc2(s),K(s)) with: Pc2(s) =

[
0 B(s)−1

Im 0

]

In such an approach, it is recommended to normalize to one the required
performance indexes of the various elementary problems. That is the case when the
performance is managed using a standard problem based on an acceleration
sensitivity function (Pc1(s) = PASF (s)) but it is not the case using the CSF
PCSF (s) presented in Chapter 2.
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w1 z1

z2w2
K(s)

K(s)

B(s)−1

Pc1(s)

Figure 3.12. A two channel H∞ problem to handle strong stabilization with a
template B(s) on the open-loop frequency response of the

controller K(s)

3.4.8. Illustration

The problem P2(s) depicted in Figure 3.8 is reconsidered together with the
frequency domain template depicted in Figure 2.4 to be met by the controller
frequency response. The solution obtained using fixed-structure H∞ synthesis can
thus be compared with the solution KA,W (s) obtained in section 2.5.3 using the
CSF-based approach.

The template depicted in Figure 2.4 can be bounded by the following low-pass
filter:

B(s) = 100
s2/10002 +

√
2s/1000 + 1

s2/102 +
√
2s/10 + 1

Then, the following Matlab® sequence shows how the two channels H∞ problem
can be solved, defined by:

– ∥Fl(P2(s),K(s))∥∞ ≤ 1 (i.e template on the acceleration sensitivity function
to satisfy the disturbance rejection performance),

– ∥B(s)−1K(s)∥∞ ≤ 1 (i.e template on controller frequency response to satisfy
the required roll-off behavior).

>> [ a , b , c , d ]= l inmod ( ’ s t d _ a s f _ 3 ’ ) ;
>> s t d = m i n r e a l ( s s ( a , b , c , d ) ) ;
2 s t a t e s removed .
>> Templa te =100* t f ( [ 1 / 1 0 0 0 ^ 2 s q r t ( 2 ) /1000 1 ] , [ 1 / 1 0 0 s q r t ( 2 ) / 1 0 1 ] ) ;
>> K_4th= l t i b l o c k . s s ( ’ o r d e r 4 ’ , 4 , 1 , 1 ) ;
>> pb_1= l f t ( std , K_4th ) ;
>> pb_2 =1/ Templa te * K_4th ;
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>> [CL , gam]= h i n f s t r u c t ( b l k d i a g ( pb_1 , pb_2 ) ) ;
F i n a l : Peak g a i n = 1 . 4 2 , I t e r a t i o n s = 120
>> K _ s t r u c t = s s (CL . Blocks . o r d e r 4 ) ;
>> damp ( l f t ( std , K _ s t r u c t ) )

E i g e n v a l u e Damping Freq . ( r a d / s )

−1.02 e +00 + 1 . 0 0 e +00 i 7 . 1 2 e−01 1 . 4 3 e +00
−1.02 e +00 − 1 . 0 0 e +00 i 7 . 1 2 e−01 1 . 4 3 e +00
−4.49 e +00 1 . 0 0 e +00 4 . 4 9 e +00
−3.13 e +00 + 1 . 0 0 e +01 i 2 . 9 9 e−01 1 . 0 5 e +01
−3.13 e +00 − 1 . 0 0 e +01 i 2 . 9 9 e−01 1 . 0 5 e +01
−1.39 e +01 + 1 . 0 5 e +01 i 7 . 9 9 e−01 1 . 7 4 e +01
−1.39 e +01 − 1 . 0 5 e +01 i 7 . 9 9 e−01 1 . 7 4 e +01

Comments:

– following the recommendation of the previous illustration and due to the
second-order roll-off specification, a fourth order is now required for this problem
and specified in the design procedure. Note that no initialization is provided. It can
be easily checked that the performance index (γ = 1.42) does not depend on the
initialization in this case. It can be explained by the additional constraint (here the
roll-off specification) that reduces the number of local minima in the optimization
problem;

– let Kstruct(s) be the fourth order controller provided by this design. The
value γ = 1.42 of the performance index shows that specifications are not met
completely. That can also be interpreted on the frequency-domain responses of
W−1

q (s)Fl(P2(s),Kstruct(s)), that is the (unweighted) closed-loop acceleration
sensitivity function, and Kstruct(s) presented in Figure 3.13. The templates W−1

q (s)
and B(s) and the responses obtained with the controller KA,W (s) designed in section
2.5.3 using the CSF are also plotted for comparison: from the required roll-off point of
view, the controller KA,W (s) provides better results but from the disturbance rejection
point of view, Kstruct is better. This value (γ = 1.42) indicates also that the trade-off
between the phase lead and roll-off behaviors in the controller to be designed is very
delicate.

– note also that the dominant closed-loop dynamics is correctly assigned with
Kstruct.

The main interest of the acceleration sensitivity function approach is to set up the
H∞ problem directly from the specifications (the pulsation ω and the damping ratio
ξ of the dominant dynamics, the template specified on the frequency response of the
controller) without any other tuning parameters.
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Figure 3.13. a) Frequency-domain responses of acceleration sensitivity
functions W−1

q (s)Fl(P2(s),Kstruct(s)) (solid) and
W−1

q (s)Fl(P2(s),KA,W (s)) (dashed) and template W−1
q (s) (patch).

b) Frequency-domain responses of Kstruct(s) (solid) and KA,W (s) (dashed)
and template B(s) (patch)

3.4.9. Taking into account an integral term

Although it ensures good closed-loop disturbance rejection, the previous
methodology does not ensure: (1) a robust reference input tracking or (2) a perfect
rejection on the position q of an acceleration disturbance step w. When a null
steady-state error on the response of the position q to a step reference input qref is
required, a very well-known solution consists of adding an integral action in the
control law when the open-loop plant has no integral term. Such a solution ensures a
null steady error in spite of uncertainties on the plant parameters (F, M, D, K) as
long as these uncertainties do not destabilize the closed-loop system. When a perfect
rejection on the position q of an acceleration disturbance step w is required, the
controller must have at least one integrator, independently of the plant properties
(except a plant with a derivative behavior). That is why the problem (2) is more
general than the problem (1) and why it is recommended to specify the integral
action of the controller as a disturbance rejection problem. Note also that such
requirements cannot be directly taken into account in classical mixed-sensitivity or
loop shaping H∞ approaches where a regularization is required to set up a detectable
and/or stabilizable standard problem. This regularization often consists of changing
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the integral weight 1/s by a pseudo-integral weight 1/(s + ϵ) and is not completely
satisfactory from a methodological point of view since the resulting controller
depends on the regularization parameter ϵ and finally does not exhibit a pure integral
action. To overcome this problem, it is recommended to impose the integrator in the
controller structure.

With these considerations in mind, the basic control problem depicted in
Figure 3.2 can be augmented with an integral term according to Figure 3.14 or its
minimal representation proposed in Figure 3.15. This new standard problem PASF,

∫
involves new tuning parameters λi i = 1, · · ·n (for each dof) corresponding to the
pulsation below which the integral action must be effective and n new measurements
corresponding to the integral of the position.
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Figure 3.14. H∞ standard problem PASF,
∫ based on the acceleration

sensitivity function augmented with integrators
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Figure 3.15. Minimal realization of standard problem depicted in Figure 3.14
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Note that the reference input qref does not appear in this pure disturbance
rejection standard problem. The reference input qref and the additional integrators
are taken into account in the implementation of the optimal controller according to
Figure 3.16 where K∞(s) is the optimal (3n × m) H∞ controller designed on the
standard problem PASF,

∫ . In this way, the controller structure with an explicit
integrator is taken into account in the standard problem. Note also that the minimal
problem in Figure 3.15 is completely stabilizable and detectable.

q

q̇

u

qref

1
s

K∞(s)

−
+

Figure 3.16. Implementation of the controller H∞(s) with reference input and
integral term

3.4.10. Illustration

The previous example G0 = 1
s2−1 is considered again to design a output

feedback (only the position q is measured) with an integral action according to the
H∞ standard problem P3(s) depicted in Figure 3.17. A first-order controller
Kstruct(s) is designed using an LMI-based H∞ solver and a reduction (from order 3
to 1). This controller is then implemented according to Figure 3.18. Step responses of
the output y(t) to the disturbance w and to the reference input qref are depicted in
Figure 3.19 (solid lines). One can check that the disturbance rejection and the
reference input tracking are perfect in steady state. The responses obtained with the
initial controller K0(s) = − 23s+32

s+12 are also plotted (dashed lines) for comparison,
that is step responses of G0/(1 − K0G0) and −K0G0/(1 − K0G0). The
corresponding Matlab® sequence is given below:

>> [ a , b , c , d ]= l inmod ( ’ s t d _ a s f _ 4 ’ ) ;
>> s t d = m i n r e a l ( s s ( a , b , c , d ) ) ;
3 s t a t e s removed .
>> [ Kinf , CL_1 , gam]= h i n f s y n ( std , 2 , 1 , ’METHOD’ , ’ lmi ’ ) ;
>> K _ s t r u c t = r e d _ f a s t ( Kinf ,−1 e4 ) ;
>> CL_lmi= l f t ( std , K _ s t r u c t ) ;
>> norm ( CL_lmi , ’ i n f ’ ) % R e d u c t i o n i s OK !

ans =

1 .0011
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>> [ aa , bb , cc , dd ]= l inmod ( ’ s t d _ a s f _ b f ’ ) ;
>> CL= s s ( aa , bb , cc , dd ) ;
>> % Response t o d i s t u r b a n c e :
>> f i g u r e
>> s t e p (CL ( 1 , 1 ) , 1 0 )
>> hold on
>> s t e p ( f e e d b a c k ( G0,−K0) , 1 0 ) ;
>> % Response t o r e f e r e n c e i n p u t :
>> f i g u r e
>> s t e p (CL ( 1 , 2 ) , 1 0 )
>> hold on
>> s t e p ( f e e d b a c k ( G0*(−K0) , 1 ) , 1 0 )
>> damp (CL)

E i g e n v a l u e Damping Freq . ( r a d / s )

−9.88e−01 1 . 0 0 e +00 9 . 8 8 e−01
−1.04 e +00 + 9 . 6 6 e−01 i 7 . 3 4 e−01 1 . 4 2 e +00
−1.04 e +00 − 9 . 6 6 e−01 i 7 . 3 4 e−01 1 . 4 2 e +00
−2.81 e +03 1 . 0 0 e +00 2 . 8 1 e +03

Note also that the dominant closed-loop dynamics is correctly assigned.
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Figure 3.17. H∞ standard problem P3(s) (file std_asf_4.mdl)

REMARK 3.1.– To design a reduced-order controller (a first order for this
application), it is recommended to design it directly using fixed-structure H∞
synthesis rather than to design a full-order controller and then to reduce it. A
possible Matlab® sequence reads (from the previous one):

K_1th= l t i b l o c k . s s ( ’ o r d e r 1 ’ , 1 , 1 , 2 ) ;
pb_1= l f t ( std , K_1th ) ;
[CL , gam]= h i n f s t r u c t ( pb_1 ) ;
K _ s t r u c t = s s (CL . Blocks . o r d e r 1 ) ;
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Figure 3.18. Closed-loop system Gcl(s) with integral term, reference input
qref and disturbance w (file std_asf_bf.mdl)
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Figure 3.19. a) Step response of Gcl(s) from w (solid) and step response of
G0/(1−K0G0) (dashed). b) Step response of Gcl(s) from qref (solid) and

step responses of −K0G0/(1−K0G0) (dashed)

3.5. Mixed H2/H∞ design based on the acceleration sensitivity function

In this section, the basic acceleration sensitivity problem P (s) is augmented by
an H2 channel between the acceleration disturbance w and the control signal u
(Figure 3.20). Such a channel is commonly introduced to minimize consumption. In
other words, among all static state-feedback fitting the template on the acceleration
sensitivity function, we seek the one that minimizes the energy consumption. The
literal solution of this H2/H∞ problem was derived in the very simple case of a one
dof mechanical system (see also [ALA 08]). Different cases can be considered
according to the shape of the weighted open-loop acceleration sensitivity function.
Such a literal solution could also be interesting to evaluate conservatism of numerical
solvers proposed to solve such a H2/H∞ problem. Although the one dof case could
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seem very simple, it allows us to isolate some typical behaviors and to derive
conditions for the nominal solution K0 to be the optimal solution of the H2/H∞
problem. These conditions are also recovered in the multi-variable case. The
multi-variable case, when the specification is to improve the acceleration disturbance
rejection ratio over the whole frequency range, is also investigated using the
parametrization of all stabilizing state-feedback (see [GAD 06] and Appendix A3.3).
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Figure 3.20. H2/H∞ standard problem Pm(s) for acceleration sensitivity
control and energy minimization

From equation [3.10], one can state that: ∀ ω, σmax(Fl(P (jω),K0) = 1, that
is the closed-loop acceleration sensitivity frequency-domain response saturates the
template 1/Wq(s) for all frequencies. Note that it is possible to find some other
optimal static or dynamic stabilizing controllers K(s) such that
∥Fl(P (s),K(s))∥∞ = 1 but also such that the template is not saturated for some
frequency ω. We want to isolate the static state-feedback that minimizes the H2 norm
of the transfer between the disturbance w and z2 = u.
PROBLEM 3.1.– Considering the standard problem depicted in Figure 3.20, find a
stabilizing static state-feedback controller �K such that:

– ∥Fl(Pm(s), �K)w→z1∥∞ = 1;

– �K = argminK ∥Fl(Pm(s),K)w→z2∥2.

The various cases, according to the shape of the weighted open-loop acceleration
sensitivity function, are reported in section 3.5.2 and illustrated on a one dof
mechanical system.

3.5.1. The one degree of freedom case

In this section, the mixed H2/H∞ problem 3.1 is considered and applied to a one
dof mechanical system. The optimal state-feedback gain is calculated analytically.
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Only the first-order optimality conditions (necessary conditions) are derived to
characterize an “admissible solution” but graphical analyses allow us to confirm that
the admissible local optimum is also a global minimum. This solution is compared
with numerical solution provided by mixed H2/H∞ synthesis in Matlab® (see
section 3.5.3).

In the one dof case, all matrices F, M, D and K become scalar and will be denoted
f , m, k and d, respectively. Without loss of generality we can assume that f = 1. We
will also assume that m > 0 but k and d can be positive or negative (stable or unstable
second-order system). The specifications ξ1 and ω1 are also assumed to be positive.
Then, the acceleration sensitivity function has to fit the template defined by 1/W (s)
with:

W (s) =
s2 + 2ξ1ω1s+ ω2

1

s2

and equation [3.9] becomes:

P (s) :=


q̇
q̈

z1
q
q̇

 =


0 1 0 0

−k/m −d/m 1 1/m

−k/m+ ω2
1 −d/m+ 2ξ1ω1 1 1/m

1 0 0 0
0 1 0 0



q
q̇

w

u

 [3.12]

Then, the open loop transfer from w to z1 reads:

Pw→z1(s) =
s2 + 2ξ1ω1s+ ω2

1

s2 + d/ms+ k/m
[3.13]

Let us consider the static state-feedback control law u = kpq + kdq̇ = [kp kd]x,
then the closed-loop transfer from w to z1 reads:

Fl(P (s), [kp kd]) = Fl(Pm(s), [kp kd])w→z1 =
s2 + 2ξ1ω1s+ ω2

1

s2 + d−kd

m s+
k−kp

m

and the closed-loop transfer from w and u (or the output z2 of the problem Pm(s)
depicted in Figure 3.20) reads:

Fl(Pm(s), [kp kd])w→z2 =
kds+ kp

s2 + d−kd

m s+
k−kp

m
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Then, we can derive the objective function J(kp, kv) and constraints as functions of
the two decision variables kp and kv and the problem parameters m, k, d, ω1 and ξ1.

3.5.1.1. Constraints
– Stability: obviously the closed-loop system is internally stable if and only if:

kp < k [3.14]

and kd < d [3.15]

– ∥Fl(P (s), [kp kd])∥∞ = ∥Fl(Pm(s), [kp kd])w→z1∥∞ = 1: this constraint
leads to (once the previous stability constraint is satisfied):

|Fl(P (jω), [kp kd])| ≤ 1, ∀ ω

⇐⇒
***** ω2

1 − ω2 + j2ξ1ω1ω
k−kp

m − ω2 + j d−kd

m ω

***** ≤ 1, ∀ ω

⇐⇒ (
ω2
1 − ω2

)2
+ 4ξ21ω

2
1ω

2 ≤
(
k − kp
m

− ω2

)2

+

(
d− kd
m

)2

ω2, ∀ ω

⇐⇒ ω2

[
−2ω2

1 + 2
k − kp
m

+ 4ξ21ω
2
1 −

(
d− kd
m

)2
]
+ ω4

1

−
(
k − kp
m

)2

≤ 0, ∀ ω [3.16]

⇐⇒ |k − kp|
m

≥ ω2
1 , and [3.17]

−2ω2
1 + 2

k − kp
m

+ 4ξ21ω
2
1 −

(
d− kd
m

)2

≤ 0, [3.18]

Constraints [3.14], [3.15], [3.17] and [3.18] can be gathered into two following
constraints:

kp ≤ k −mω2
1 [3.19]

and kd ≤ d−m
√
4ξ21ω

2
1 − 2ω2

1 + 2
k−kp

m [3.20]

Note that this set of constraints defines a non-convex domain in the (kp, kv)-plane.
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Considering that Pw→z1(s) = Fl(P (s), [0 0]), the magnitude |Pw→z1(jω)| can
be compared to 1 (0dB) through the sign of:

φ(ω2) = ω2

[
−2ω2

1 + 2
k

m
+ 4ξ21ω

2
1 −

d2

m2

]
+ ω4

1 −
k2

m2
, [3.21]

that is:

|Pw→z1(jω)| ≤ 1 ⇐⇒ φ(ω2) ≤ 0 [3.22]

3.5.1.2. Objective function

A state space realization of Fl(Pm(s), [kp kd])w→z2 reads:

Fl(Pm(s), [kp kd])w→z2 : =

 0 1 0
(kp − k)/m (kd − d)/m 1

kp kd 0


Therefore, using a Lyapunov equation [ZHO 96], we can calculate the objective

function:

J(kp, kv) = ∥Fl(Pm(s), [kp kd])w→z2∥22 = m
2(d−kd)

(
k2d +

m
k−kp

k2p

)
[3.23]

3.5.2. First-order optimality conditions

The Valentine extension of the Kuhn and Tucker approach [BOY 03] can be used
to solve this optimization problem with inequality constraints. Using this approach,
the Lagrange function involves squared slack variables v1 and v2 (associated with the
two inequality constraints) [3.19] and [3.20] in addition to the two classical Lagrange
multipliers λ1 and λ2. This Lagrange function reads in this case:

L(kp, kd, λ1, λ2, v1, v2) =
m

2(d− kd)

(
k2d +

m

k − kp
k2p

)
[3.24]

+ λ1(kp − k +mω2
1 + v21)

+ λ2

(
kd − d+m

√
4ξ21ω

2
1 − 2ω2

1 + 2
k − kp
m

+ v22

)
.
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Then, the six First-Order Conditions (FOCs) read:

∂L(...)
∂kp

=
m2(2k − kp)kp

2(d− kd)(k − kp)2
+ λ1 − λ2

1√
4ξ21ω

2
1 − 2ω2

1 + 2
k−kp

m

= 0 [3.25]

∂L(...)
∂kd

=
m

(
(2d− kd)(k − kp)kd +mk2p

)
2(d− kd)2(k − kp)

+ λ2 = 0 [3.26]

∂L(...)
∂λ1

= kp − k +mω2
1 + v21 = 0 [3.27]

∂L(...)
∂λ2

= kd − d+m

√
4ξ21ω

2
1 − 2ω2

1 + 2
k − kp
m

+ v22 = 0 [3.28]

∂L(...)
∂v1

= 2λ1v1 = 0 [3.29]

∂L(...)
∂v2

= 2λ2v2 = 0 [3.30]

Two last FOCs allow us to manage the saturation of inequality constraints:

– if λi = 0, (inequality constraint i is not saturated), then v2i must be positive,

– if λi ≥ 0 (inequality constraint i is saturated), then vi = 0,

and four cases must be investigated: (1) no saturated constraint, (2) one constraint is
saturated (× 2) and (3) all constraints are saturated.

In each case, the conditions for the solution to be admissible as a local optimum
are interpreted on the frequency response of the open-loop transfer Pw→z1(s) of the
standard problem P between w and z1, that is the weighted acceleration sensibility
function defined by equation [3.13].

3.5.2.1. Case #1: no saturated constraints: λ1 = λ2 = 0

Three sub-cases appear solving FOCs [3.25–3.28]:

– k ≥ 0 and d ≥ 0, then �kp = 0 and �kd = 0 ;
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– k ≥ 0 and d < 0 (unstable open-loop system), then �kp = 0 and �kd = 2d ;

– k < 0 (unstable open-loop system), then �kp = 2 k and�kd = d−√
d2 − 4mk (that works if d ≥ 0 or d < 0).

In the three sub-cases, the conditions for v21 ≥ 0 and v22 ≥ 0 read:

|k|
m

≥ ω2
1 [3.31]

d2

m2
− 4ξ21ω

2
1 + 2ω2

1 −
2k

m
≥ 0 [3.32]

PROPOSITION 3.1.– This solution is admissible (i.e. constraints [3.31] and [3.32]
are met) if and only if:

|Pw→z1(jω)| ≤ 1, ∀ω [3.33]

PROOF.–

|Pw→z1(jω)| ≤ 1, ∀ω ⇐⇒ φ(ω2) ≤ 0, ∀ω (from [3.22])

⇐⇒ −2ω2
1 + 2

k

m
+ 4ξ21ω

2
1 −

d2

m2
≤ 0

and ω4
1 ≤ k2

m2
(from [3.21])

⇐⇒ [3.31] and [3.32]

– Practical interpretation: This result is quite obvious: if the open-loop system
meets the H∞ constraint, then the best solution (from the consumption reduction point
of view) is the well-known minimum energy solution, that is:

– u = 0 if the open-loop system is stable;

– u ̸= 0 if the open-loop system is unstable and the optimal solution u =

[ �kp �kd]x assigns the unstable poles to stable poles symmetric w.r.t. the imaginary
axis. Then, the frequency-response of the open-loop and the closed-loop, (between w
and z1) are the same and so the H∞ constraint is met in closed-loop, although u ̸= 0.
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3.5.2.2. Case #2: only the first constraint is saturated: v1 = λ2 = 0

Then, from FOC [3.27]:

�kp = k −mω2
1 [3.34]

From FOC [3.26], we can derive:

ω2
1 k

2
d − 2 dω2

1 kd − (k −mω2
1)

2 = 0 [3.35]

The only stabilizing solution is:

�kd = d−
√

d2 +
(

k−mω2
1

ω1

)2

[3.36]

Note that this solution is independent of the parameter ξ1.

PROPOSITION 3.2.– Solutions [3.34] and [3.36] admissible if and only if:

|Pw→z1(jω1)| < 1 and |Pw→z1(0)| ≥ 1 [3.37]

PROOF.– Reporting [3.34] in FOC [3.28]:

kd − d+ 2ξ1 ω1 m+ v22 = 0 [3.38]

then, the condition v22 > 0 reads:

d2 +

(
k −mω2

1

ω1

)2

> 4ξ21 ω
2
1 m

2

⇐⇒ d2

m2
− 4ξ21 ω

2
1 + ω2

1 +
k2

m2 ω2
1

− 2
k

m
> 0

⇐⇒ ω2
1

(
−2ω2

1 + 2
k

m
+ 4ξ21 ω

2
1 −

d2

m2

)
+ ω4

1 −
k2

m2
< 0 [3.39]

⇐⇒ (from [3.21] φ(ω2
1) < 0 ⇐⇒ |Pw→z1(jω1)| < 1
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From FOC [3.25], the condition λ1 ≥ 0 reads:

λ1 = − m2(mω2
1 + k)(k −mω2

1)

2

√
d2 +

(
k−mω2

1

ω1

)2

(k − kp)2
≥ 0

⇐⇒ m2 ω4
1 − k2 ≥ 0

⇐⇒ (from [3.21]) φ(0) ≥ 1 ⇐⇒ |Pw→z1(0)| ≥ 1

– Practical interpretation: In this case, the condition |Pw→z1(0)| ≥ 1 means that
the disturbance rejection ratio on the steady-state (DC) gain of the acceleration
sensitivity function must be increased in closed-loop w.r.t. the open-loop
(the disturbance rejection performance must be increased in low frequency). While
the condition |Pw→z1(jω1)| < 1 means that for pulsations approximately ω1, the
open-loop disturbance rejection performance is better than the specification 1/Wq

introduced in the standard problem P (s) (see Figure 3.2). That is illustrated in the
following numerical example.

– Numerical illustration: Let us consider the following numerical application:

m = 10 kg, d = 100Ns/m, k = 10N/m, ω1 = 2 rad/s, ξ1 = 0.5 [3.40]

The frequency-domain response (magnitude plot) of Pw→z1(s) is depicted in
Figure 3.21 (solid grey line). Thus, conditions [3.37] are met and the admissible
solution (equations [3.34] and [3.36]) reads:

�kp = −30N/m, �kd = −1.1187Ns/m and J( �kp, �kd) = 11.2

The closed-loop frequency-domain response |Fl(P (jω), [ �kp �kd])| is also
depicted in Figure 3.21 (solid black line): we can notice that the specification is met:

|Fl(P (jω), [ �kp �kv])| ≤ 1 ∀ω

But the optimal control (from the energy minimum point of view) acts only in low
frequency and recovers the open-loop behavior in the frequency range (around ω1 and
toward infinity) where the open-loop rejection performance is good enough (and better
than the rejection performance prescribed by 1/Wq(s) =

s2

s2+2ξ1 ω1 s+ω2
1

).

The Second-Order Condition (SOC) (i.e. the Hessian ▽2J( �kp, �kd) is positive) is
not detailed. This SOC is required to conclude that this admissible solution is a local
minimum (due to the non-convexity of constraints and the objective function) but
the 3D plot presented in Figure 3.22, allows us to conclude that (for this numerical
application) this admissible solution is also a global minimum.
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Figure 3.21. Open-loop |Pw→z1(jω)| and closed-loop |Fl(P (ω), [ �kp �kd])|
frequency-domain responses of the H∞ performance channel (case #2)
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3.5.2.3. Case #3: only the second constraint is saturated: v2 = λ1 = 0

From FOC [3.28], �kd can be expressed as a function of kp:

�kd = d−m

√
4ξ21 ω

2
1 − 2ω2

1 + 2
(

k−kp

m

)
. [3.41]
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Then, reporting this equation in FOC [3.25] allows us to express λ2 as a function
of kp:

λ2 =
m(2k − kp)kp
2(k − kp)2

. [3.42]

Substituting kd and λ2 by equations [3.41] and [3.42] in FOC [3.26] allows us
to find an equation in kp. After some (tedious) developments, �kp is solution of the
third-order polynomial equation:

P3(kp) = 3mk3p + (4m2 ω2
1 + d2 − 11mk − 8m2 ξ21 ω

2
1) k

2
p [3.43]

+ (10mk2 + 16m2 k ξ21 ω
2
1 − 8m2 k ω2

1 − 2k d2) kp

+ (k2 d2 + 2m2 k2 ω2
1 − 4m2 k2 ξ21 ω

2
1 − 2mk3) = 0.

The condition λ2 ≥ 0 reads (from [3.42]): (2k − kp)kp ≥ 0.

The condition v21 > 0 reads (from [3.27]): kp < k −mω2
1 .

That is: |k|/m > ω2
1 or |Pw→z1(0)| < 1 and

– 0 ≤ kp < k −mω2
1 if k ≥ 0;

– 2 k ≤ kp < k −mω2
1 if k < 0.

Then, a sufficient condition for [3.43] to have a solution in kp ∈ [0, k −mω2
1 [

(respectively [2k, k −mω2
1 [) for k > 0 (respectively k < 0) is:

|Pw→z1(jω)| ≥ 1, for ω → ∞ and |Pw→z1(j
ω1√

1 + 4ξ21
)| < 1 [3.44]

PROOF.– (in the case k > 0): Considering that 0 ≤ kp ≤ k −mω2
1 , we can evaluate

the polynomial P3(kp) for extremal values 0 and k −mω2
1 :

P3(0) = k2m2(2ω2
1 − 2

k

m
− 4ξ1ω

2
1 +

d2

m2
)

= −k2m2φ(ω2)|ω→∞ (from: [3.21])

P3(k −mω2
1) = m2k2ω2

1 + 4ξ21m
2k2ω2

1 − 2m3kω4
1 +m4ω6

1 − 8ξ21m
4ω6

1 + d2m2ω4
1

= m4ω4
1

(
k2

ω2
1m

2
(1 + 4ξ21)− 2

k

m
+ ω2

1 − 8ξ21ω
2
1 +

d2

m2

)
= m4ω4

1

(
2ω2

1 − 2
k

m
− 4ξ1ω

2
1 +

d2

m2
+

1 + 4ξ21
ω2
1

(
k2

m2
− ω4

1)

)
= −m4ω2

1(1 + 4ξ21)φ

(
ω2
1

1 + 4ξ21

)
(from: [3.21])
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If φ(ω2)|ω→∞ and φ
(

ω2
1

1+4ξ21

)
have opposite sign, then P3(0) and P3(k −mω2

1)

have opposite sign and P3(kp) = 0 has a solution in [0, k −mω2
1 [. Since φ(0) < 0

(|Pw→z1(0)| < 1), a sufficient condition reads:

φ

(
ω2
1

1 + 4ξ21

)
< 0 ⇐⇒ |Pw→z1(j

ω1√
1 + 4ξ21

)| < 1 and

φ(ω2)|ω→∞ ≥ 0 ⇐⇒ |Pw→z1(jω)| ≥ 1, for ω → ∞

Considering:

– the general form of Pw→z1(s) given in [3.13],

– limω→∞ |Pw→z1(jω)| = 1,

– |k|/m ≥ ω2
1 (in this case),

we can state the following proposition for this special case:

PROPOSITION 3.3.– The solution �kp of equation [3.43] in [0, k − mω2
1 ]

(respectively [2 k, k −mω2
1 ]) if k ≥ 0 (respectively k < 0) and the corresponding�kd (given by equation [3.41]) is an admissible solution if:

|Pw→z1(jω)| ≥ 1, ∀ω ≥
√

k
m and |Pw→z1(jω)| ≤ 1, ∀ω ≤ ω1√

1+4ξ21
. [3.45]

– Practical interpretation: In this case, the first part of the condition [3.45] means
that the disturbance rejection ratio must be increased in high-frequency and the second
part means that the low-frequency response of the open-loop acceleration sensitivity
function meets the specification 1/Wq . This is illustrated in the following numerical
example.

– Numerical illustration: Let us consider the following numerical application
(unstable open-loop system):

m = 10 kg, d = −1Ns/m, k = 10N/m, ω1 = 0.2 rad/s, ξ1 = 0.7 [3.46]

The frequency-domain response (magnitude plot) of Pw→z1(s) is depicted in
Figure 3.23 (solid grey line). Thus, conditions [3.45] are met and the optimal solution
reads:

�kp = 2.781N/m, �kd = −13.01Ns/m and J( �kp, �kd) = 74.9
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Figure 3.23. Open-loop |Pw→z1(jω)| and closed-loop |Fl(P (jω), [ �kp �kd])|
frequency-domain responses of the H∞ performance channel (case #3)

The closed-loop frequency-domain response |Fl(P (jω), [ �kp �kd])| is also
depicted in Figure 3.23 (solid black line): we can notice that the specification is met:

|Fl(P (jω), [ �kp �kv])| ≤ 1 ∀ω

But the optimal (from the energy minimum point of view) control acts mainly in
high frequency and (what is not intuitive) degrades lightly the open-loop rejection
performance in the low-frequency response.

As in the previous case, Figures 3.24 and 3.25 (zoom) allow us to conclude that
(for this numerical application) this admissible solution is also a global minimum.

3.5.2.4. Case #4: both constraints [3.19] and [3.20] are saturated: v1 = v2 = 0

From FOCs [3.27] and [3.28],

�kp = k −mω2
1 , [3.47]

�kd = d− 2mξ1ω1 , [3.48]

and we can recognize the nominal solution K0 (equation [3.6]) for the one dof case
(with F = 1).
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Then, FOC [3.26] and [3.25] leads to:

λ2 =
(4m2ξ21ω

2
1 − d2)ω2

1 − (k −mω2
1)

2

8mξ21ω
4
1
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and

λ1 =
λ2

2ξ1ω1
+m

ω4
1 − k2

m2

4ξ1ω5
1

λ2 can be also expressed under the form:

λ2 = m
ω2
1(−2ω2

1 + 2 k
m + 4ξ21ω

2
1 − d2

m2 ) + ω4
1 − k2

m2

8ξ21ω
4
1

or using [3.21]:

λ2 =
m

8ξ21ω
4
1

φ(ω2
1)

Then, λ1 can be also expressed under the form:

λ1 =
m

16ξ31ω
5
1

φ(ω2
1) +

m

4ξ1ω5
1

φ(0) =
m(1 + 4ξ21)

16ξ31ω
5
1

φ

(
ω2
1

1 + 4ξ21

)

Then, using [3.22], λ1 ≥ 0 and λ2 ≥ 0 if and only if:

|Pw→z1(jω1)| ≥ 1 and |Pw→z1(j
ω1√

1 + 4ξ21
)| ≥ 1

From a practical point of view, the sufficient condition stated in the following
proposition is worth mentioning:

PROPOSITION 3.4.– The solution K0 = [ �kp �kd] (given by equations [3.47] and
[3.48]) is an admissible solution if:

|Pw→z1(jω)| ≥ 1 ∀ω . [3.49]

Note that this condition is not a necessary condition. Indeed, the following
numerical values m = 1 kg, k = 1N/m, d = 0, ξ1 = 0.5 and ω1 = 7 rad/s (or
m = 10 kg, k = 10N/m, d = 1Ns/m, ξ1 = 0.7 and ω1 = 0.9 rad/s) do not meet this
condition while the solution is admissible. It can be shown that the magnitude of
s2+7s+49

s2+1 |s=jω is a few lower than 1 (0 dB) for ω > 7.44 rad/s. But such a case is
quite marginal and without practical interest.
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– Practical interpretation: This case is certainly the most interesting since, in
practical problems, the performance specification consists of improving disturbance
rejection ratio for all frequencies, that is the frequency response of the open-loop
acceleration sensitivity function is greater that the specification |1/Wq (jω)| for all
frequencies ω. Then, the nominal solution K0 is the optimal solution (from the
minimum energy point of view) and just saturates the H∞ constraint, that is
|Fl(P (jω),K0)| = 1, ∀ω. This is illustrated in the following numerical example.

– Numerical illustration: Let us consider the following numerical application:

m = 10 kg, d = 1Ns/m, k = 10N/m, ω1 = 2 rad/s, ξ1 = 0.7 [3.50]

The frequency-domain response (magnitude plot) of Pw→z1(s) is depicted in
Figure 3.26 (solid grey line). Thus, conditions [3.49] are met and the optimal solution
reads:

�kp = −30N/m, �kd = −27Ns/m and J( �kp, �kd) = 170.4

The closed-loop frequency-domain response |Fl(P (jω), [ �kp �kd])| is also
depicted in Figure 3.26 (solid black line): we can note that the specification is met:

|Fl(P (jω), [ �kp �kv])| ≤ 1 ∀ω

and that the H∞ constraint is saturated for all frequencies.
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Figure 3.26. Open-loop |Pw→z1(jω)| and closed-loop |Fl(P (jω), [ �kp �kd])|
frequency-domain responses of the H∞ performance channel (case # 4)
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As in the previous case, Figures 3.27 allows us to conclude that, for this numerical

application, this solution is also a global minimum.

A general function h2hinfsol.m that aggregates these analytical results is
available at http://personnel.isae.fr/daniel-alazard/matlab-packages. The usage of this
function is given in Appendix A4.9.

3.5.3. Numerical solution using Matlab®

The previous analytical development could seem a little bit tedious to solve a pair
of proportional derivative gains for a simple second-order system. It is interesting to
remark that such a solution cannot be easily recovered using numerical solvers.

REMARK 3.2.– Full-order solvers produce a dynamic controller with order equal to
the plant order (2). It can be shown that the controller dynamics is very fast and so
the controller can be reduced to its DC gain without any performance degradation (on
both H2 and H∞ performance indexes).

Indeed, the MATLAB sequence required to solve this H2/H∞ problem using
embedded macro-function hinfmix [GAH 94] is (once m, d, k, xi, w are
defined):

P= s s ( [ 0 1;−k /m −d /m] , [ 0 0 ; 1 1 /m ] , . . .
[−k /m+w*w −d /m+2* x i *w; 0 0 ; 1 0 ; 0 1 ] , [ 1 1 /m; 0 1 ; 0 0 ; 0 0 ] ) ;

[ gopt , h2i2 , kmix ]= h i n f m i x ( pck ( P . a , P . b , P . c , P . d ) , [ 1 2 1 ] , [ 1 . 0 0 1 100 0 1 ] ) ;
[ ak , bk , ck , dk ]= unpck ( kmix ) ; kmix= s s ( ak , bk , ck , dk ) ; % sys tem m a t r i x t o s s
Kopt= d c g a i n ( kmix ) ; % The c o n t r o l l e r i s r e d u c e d t o i t s DC g a i n .
CL1= l f t ( P , Kopt ) ; % Compute t h e c l o s e d−l oop sys tem
norm ( CL1 ( 2 , 1 ) ) ^2 % Value o f t h e o b j e c t i v e f u n c t i o n
norm ( CL1 ( 1 , 1 ) , ’ i n f ’ ) % Check t h e H_ \ i n f t y c o n s t r a i n t
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Analytical hinfmix hifoo
Case # 2 (equation [3.40]) 11.2 13.3 14.4
Case # 3 (equation [3.46]) 74.9 98.0 152
Case # 4 (equation [3.50]) 170.35 319 234

Table 3.2. Comparison of objective function values J(kp, kd) obtained
with analytical and numerical solutions

The solution obtained by such a numerical approach (based on LMI) on various
cases studied in section 3.5.2 is shown in Table 3.2 and compared (from the objective
function point of view) with the exact and literal solution. The table also presents
the results that are obtained using hifoo. Hifoo [ARZ 11, GUM 09] allows a static
controller to be designed directly (without a posteriori reduction) on such an H2/H∞
problem according to the following sequence (once hifoo is installed in the user
working directory):

P1=P ( [ 1 3 4 ] , [ 1 2 ] ) ; % H i n f t y 3x2 s t a n d a r d problem
P2=P ( [ 2 3 4 ] , [ 1 2 ] ) ; % H2 3x2 s t a n d a r d problem
input . U1=1; input . U2=2; o u t p u t . Y1=1; o u t p u t . Y2=[2 3 ] ;
s e t ( P1 , ’ Inpu tGroup ’ , input , ’ OutputGroup ’ , o u t p u t ) ;
s e t ( P2 , ’ Inpu tGroup ’ , input , ’ OutputGroup ’ , o u t p u t ) ;
K= h i f o o ( { P1 , P2 } , 0 , s s ( [ 0 0 ] ) , ’ h t ’ , [ 1 . 0 1 , 1 0 0 0 ] ) ;

% The H _ i n f t y c o n s t r a i n t i s r e l a x e d t o 1 . 0 1 ( i n s t e a d o f 1 ) ,
% The H2 i n d e x t o be o p t i m i z e d i s c o n s t r a i n e d t o be < 1000 .

CL2= l f t ( P ,K. d ) ; % Compute t h e c l o s e d−l oop sys tem
norm ( CL2 ( 2 , 1 ) ) ^2 % Value o f t h e o b j e c t i v e f u n c t i o n
norm ( CL3 ( 1 , 1 ) , ’ i n f ’ ) % Check t h e H_ \ i n f t y c o n s t r a i n t .

REMARK 3.3.– In order to have a stable result, an initial guess ([0 0]) is provided to
hifoo; otherwise, the solution depends on the current run and is not reproducible.

We can see that the solution provided by numerical solvers is always suboptimal,
mainly in case #4 which is more important from a practical point of view (full
frequency-range disturbance rejection): this very simple H2/H∞ problem is still an
open benchmark for numerical solvers.

Note that in case #4, the optimal solution can be recovered using the full-order
LMI-based H∞ solver (forgetting the H2 channel) and a reduction of the controller to
its DC gain, exactly as was done in section 3.4.2. This is illustrated by the following
MATLAB sequence:
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>> [ k i n f , CL4 , gam]= h i n f s y n ( P ( [ 1 3 4 ] , [ 1 2 ] ) , 2 , 1 , ’METHOD’ , ’ lmi ’ ) ;
>> k i n f = d c g a i n ( k i n f ) % The c o n t r o l l e r i s r e d u c e d t o i t s DC g a i n .

k i n f =

−30.0001 −27.0010

>> CL3= l f t ( P , k i n f ) ; % Compute t h e c l o s e d−l oop sys tem
>> norm ( CL3 ( 2 , 1 ) ) ^2 % Value o f t h e o b j e c t i v e f u n c t i o n

ans =

170 .3608

>> norm ( CL3 ( 1 , 1 ) , ’ i n f ’ ) % Check t h e H_ \ i n f t y c o n s t r a i n t

ans =

1

This solution is very close to the optimum. Such a behavior works also in the
multi-variable case (see illustration in section 3.6) and can be explained using the
parameterization of all stabilizing state-feedbacks and LMI solvers. This is detailed
in Appendix A3.3. Note that the nominal state-feedback gain K0 defined in equation
[3.6] is optimal (from the H2 performance index point of view) only in case #4. That
is why in this case (full frequency-range disturbance rejection), although the H2

channel is not taken into account, hinflmi recovers the optimal solution K0. More
sophisticated solvers like hinfmix explore the set of parameterized controllers
around the central controller but miss the optimal solution.

The reader can download from http://personnel.isae.fr/daniel-alazard
/matlab-packages a Matlab® script file demo_section_3_5_3.m to run these various
numerical analyses.

3.5.4. Multi-variable case

The literal development in the previous section was possible because, in the one
dof case, the H∞ constraint on a single input single output (SISO) second-order
system can be analytically expressed. For multi-variable systems, this is no longer
the case, but propositions 3.1–3.4 on the frequency response of the weighted
open-loop acceleration sensitivity function can be applied using the notion of
minimal and maximal singular value (σmin and σmax). For instance, case #4, where
the rejection performance must be increased for all frequencies, will be characterized
by the following proposition in the multi-variable case.
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PROPOSITION 3.5.– The solution K0 (equation [3.6]) is an admissible solution for
problem 3.1 if:

σmin(Pw→z1(jω)) ≥ 1 ∀ω [3.51]

This proposition will not be proved in this book. It is more important to know how
such a solution K0 can be recovered using numerical tools. Indeed, when the standard
problem P (s) is augmented by additional specifications, it is important for the current
design to be attracted by a unique solution (K0) and not by a set of solutions that can
be very different and could introduce some discontinuities in the trade-off tuning or
several local minima.

The illustration proposed in the next section shows that the main conclusions
obtained in this chapter in the one dof case are still valid in the multi-variable case:

– Mixed H2/H∞ solvers failed to find the optimal solution and so the problem is
still open.

– In case #4, full-order LMI-based H∞ solver can be used to find the optimal
state-feedback.

– The standard problem based on the acceleration sensitivity function can be
augmented with actuator dynamics (for instance) and additional H∞ specifications
(roll-off) to design a reduced-order dynamic controller. Then the low-frequency
behavior allows the performance specified through parameters ξi and ωi to be
recovered.

3.6. Aircraft lateral flight control design

3.6.1. Model and specifications

Let us consider the lateral flight model of a civil aircraft:



β̇
ṗ
ṙ

ϕ̇

ny

p
r
ϕ


=



−0.140 0.053 −0.999 0.047 0 0
−2.461 −0.992 0.262 0 0.404 0.260
1.595 −0.041 −0.267 0 0. −0.680
0 1.000 0.053 0 0 0

0.0433 −0.0003 0.0016 0 0.0001 −0.0075
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0




β
p
r
ϕ

dp
dr

, [3.52]



122 Reverse Engineering in Control Design

where:

– β is the side slip (yaw) angle, p is the roll rate, r is the yaw rate and ϕ is the bank
(roll) angle (x = [β p r ϕ]T );

– dp is the aileron deflection and dr is the rudder deflection (u = [dp dr]T );

– ny is the lateral load factor (acceleration) (y = [ny p r ϕ]T ).

The specifications are:

– yaw/roll decoupling;

– second-order behavior on yaw axis defined by ωy = 3 rad/s and ξy = 0.7;

– second-order behavior on roll axis defined by ωr = 3 rad/s and ξr = 0.7.

First, it can be noted that this model is not described under the generalized
second-order form (equation [3.1]). To address the yaw/roll decoupling, the vector q
of the two dof of interest must be defined by q = [β ϕ]T . So, it is required to
perform a transformation in order to define a new state variable&x = [qT q̇T ]T = [β ϕ β̇ ϕ̇]T , that is:

&x =


1 0 0 0
0 0 0 1

−0.140 0.053 −0.999 0.047
0 1.000 0.053 0

x

Note that such a transformation is not always possible. Indeed, if there is a direct
term between u and q̇ in the original representation, then it is not possible to represent
the system with a second-order form in q (equation [3.1]).

Let us denote:{ &̇x = &A&x+ &Bu

y = &C&x+ &Du,

this state space realization. Then, we can choose M = I2 and represent the model by
the second-order form:

q̈ +Dq̇ +Kq = Fu

where K = − &A(3:4, 1:2), D = − &A(3:4, 3:4) and F = &B(3:4, 1:2) (where A(i:j, k:l)
is the submatrix of A consisted of rows i to j and columns k–l).
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Figure 3.28. The acceleration sensitivity problem PA/C(s)
(without weigh Wq(s))
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Figure 3.29. The H∞ standard problem P (s) on the acceleration sensitivity
function weighted by Wq(s) (left) and the H2/H∞ standard problem

Pm(s) (right)

3.6.2. Basic H2/H∞ control problem

Then, the acceleration sensitivity problem PA/C(s) with output feedback is
depicted in Figure 3.28. Figure 3.29 details:

– The H∞ problem P (s) (on the left) based on PA/C(s) and the weight Wq(s).
Wq(s) is directly expressed from the yaw and roll dynamics specifications.

– The H2/H∞ problem Pm(s) (on the right) including an additional H2 channel
between w and z2 = u. That is:

PROBLEM 3.2.– Considering the standard problems depicted in Figure 3.29, find a
stabilizing static output-feedback �Ky such that:

– ∥Fl(Pm(s), �Ky)w→z1∥∞ = ∥Fl(P (s), �Ky)∥∞ = 1;

– �Ky = argminKy ∥Fl(Pm(s),Ky)w→z2∥2.
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The minimal state-space realization of the problem Pm(s) reads:

Pm(s) :=


02 I2
−K −D

02
I2

02
F

diag([ω2
y ω2

r ])−K diag([2ξyωy 2ξrωr])−D I2 F
02×4 02 I2&C 02 &D

 .

The nominal state-feedback gain [3.6] is:

K0 = F−1[K− diag([ω2
y ω2

r ]) D− diag([2ξyωy 2ξrωr])]

K0 =

[
11.9797 −22.6902 3.8309 −8.0726
−10.8114 0.6819 −5.5711 0.1769

]

and the corresponding output feedback reads:

Ky0 = K0( &C + &DK0)
−1 =

[
95.6160 −7.8506 −0.3694 −21.9936
−83.8187 −0.1351 2.1687 −0.0327

]
.

The frequency-domain response (singular values) of the weighted open-loop
acceleration sensitivity function is depicted in Figure 3.30 (solid grey line) and
highlights that the condition of proposition 3.5 is met. The acceleration disturbance
rejection must be increased on the whole frequency range. Therefore, we can guess
that the static output feedback Ky0 is the optimal solution, that is
Ky0 = minKy ∥Fl(Pm(s),Ky)w→z2∥2 and Ky0 saturates the H∞ constraint
∥Fl(P (s),Ky)∥∞ ≤ 1. Indeed, the frequency response of Fl(P (s),Ky0) is also
depicted in Figure 3.30 (solid black line) and highlights that
σmax(Fl(P (jω),Ky0)) = σmin(Fl(P (jω),Ky0)) = 1 (0 dB), ∀ω.

The solution provided by hinfmix (on problem 3.1) is denoted by Ky1. Exactly
like in the one dof case, Ky1 is, in fact, the DC-gain of the dynamic full-order
controller provided by hinfmix and it can be checked that such a drastic reduction
has no consequence on H∞ and H2 indexes. The static output feedback provided by
hifoo is denoted by Ky2. Of course, the two solutions Ky1 and Ky2 meet the H∞
constraint (∥Fl(P,Ky)∥∞ ≤ 1). The values of the H2 performances are summarized
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in Table 3.3. We can see that hinfmix and hifoo always provide a suboptimal
solution. Indeed, the frequency response of Fl(P (s),Ky1) is also depicted in
Figure 3.30 (dashed black line) and highlights that this output feedback is more
performant than the specification in low frequency, at the price of the degradation of
the H2 performance. The solution provided by hifoo depends on the initialization
and can be, of course, improved using Ky0 as an initial guess.
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Figure 3.30. Singular value of the open-loop transfer Pmw→z1
and

closed-loop transfer Fl(P (s),Ky)

Ky Ky0 (nominal) Ky1 (hinfmix) Ky1 (hifoo)
J(Ky) 4.85 6.47 24.4

Table 3.3. Comparison of performance indexes:
J(Ky) = ∥Fl(Pm(s),Ky)w→z2∥2 obtained with analytical and

numerical solutions

Note that, exactly like in the one dof case, the nominal static output feedback Ky0

can be recovered on the pure H∞ problem P (s) (that is forgetting the H2 channel)
using:

– hinflmi and the DC gain of the obtained full-order controller;

– hinfstruct with Ky0 as an initial guess.

From a methodological point of view, it is worth mentioning that fixed-structured
H∞ controller solvers are very efficient for designing directly a static controller but
the initialization is a key element which cannot be done randomly. In that sense,



126 Reverse Engineering in Control Design

reverse engineering can be very useful to provide a well-conditioned initialization, in
particular when the basic problem P (s) will be augmented by additional
specifications or new dynamic subsystems (see the next section).

3.6.3. Augmented H∞ control problem

Following what was proposed in section 3.4.3, actuators are now taken into
account. It is assumed that the actuator can be modeled by a second-order transfer
function with a bandwidth of 10 rad/s and a damping ratio of 0.7 on both the ailerons
and rudder servo-mechanisms:

A(s) =
100

s2 + 14s+ 100
.

The new model PA/C,A(s) of the aircraft and the new standard problem PA(s)
weighting the acceleration sensitivity function are depicted in Figure 3.31.
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s2+2ξyωys+ω2
y
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Wq(s)

A(s)

A(s)

dp

dr PA/C,A(s)

Figure 3.31. The model PA/C,A(s) taking into account actuator dynamics
A(s) and the H∞ standard problem PA(s) on the acceleration sensitivity

function weighted by Wq(s)

Note that the frequency gap between actuator bandwidth (10 rad/s) and the
closed-loop bandwidth required on the yaw and roll servo-loops (ωy = ωr = 3 rad/s)
is not wide enough to neglect actuator dynamics in the control design. Indeed,
Figure 3.32 represents the step responses of:

– Fl(PA/C(s), 02×4), that is the open-loop acceleration sensitivity function
between w and q̈: we can note strong oscillations and dynamic couplings between
yaw and roll.
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Figure 3.32. Step responses of the acceleration sensitivity function of the A/C
in open-loop and closed-loop on a static output feedback

– Fl(PA/C(s),Ky0): the nominal control law Ky0 allows us to damp the
oscillations and to decouple perfectly the roll and the yaw considering the aircraft
model without actuators.

– Fl(PA/C,A(s),Ky0): the previous performance is completely degraded when
the actuator dynamics is taken into account. Indeed:

∥Fl(PA/C,A(s),Ky0)∥∞ = 15.85

that is the disturbance rejection index of the nominal static output feedback Ky0 on the
model augmented with actuator dynamics is very poor and far from the specification.

3.6.3.1. Design tacking account actuator dynamics

To improve the closed-loop disturbance rejection ratio, a second-order controller
can be designed on the H∞ standard problem PA(s) using a fixed-structure H∞ solver
hinfstruct. To guarantee the yaw/roll decoupling (with an error less than 1%) and
the template Wq(s)

−1 is met independently on the roll and yaw channels, the problem
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which is actually solved is a multichannel H∞ problem: find a stabilizing output
feedback Ky,dyn1(s) such that:

Ky,dyn1(s) = arg min
K2nd(s)

max
(∥Fl(PA/C,A(s),K2nd(s))(1, 1)∥∞,

∥Fl(PA/C,A(s),K2nd(s))(2, 2)∥∞,
∥100Fl(PA/C,A(s),K2nd(s))(1, 2)∥∞,
∥100Fl(PA/C,A(s),K2nd(s))(2, 1)∥∞

)
,

where K2nd(s) is in the set of second-order (2× 4) controllers.

The obtained H∞ performance index is 1.64 and highlights that the specifications
are almost met (in comparison with the value 15.85 obtained with Ky0). Indeed, the
step response of Fl(PA/C,A(s),Ky,dyn1

(s)) is presented in Figure 3.33 (dashed
black line): the roll/yaw decoupling is quite good and oscillations are correctly
damped. But the frequency response of such a controller (Ky,dyn1(s)), presented in
Figure 3.34 (dashed black line), reveals high magnitude in high frequency (mainly
around 80 rad/s). Such a behavior can be critical for actuator health.
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3.6.3.2. Design tacking account a roll-off specification

To reduce the magnitude of the control law in high frequencies, a roll-off behavior
is specified throughout the template:

B(s) =
s+ 1000

0.1s+ 1

on the controller frequency-domain response. This template is represented in
Figure 3.34 (solid grey line).

To meet this new specification, the proposed controller structure Kstruc(s)
consists of the previous (2 × 4) K2nd(s) controller in a series of two single-input
single-output filters Kdp(s) and Kdr(s) on the ailerons and the rudder, respectively,
according to Figure 3.35.
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dp
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p
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Figure 3.35. Control law structure Kstruc(s)

The problem is thus to find a stabilizing output feedback Ky,dyn2(s) such that:

Ky,dyn2(s) = arg min
Kstuct(s)

max
(∥Fl(PA/C,A(s),Kstruct(s))(1, 1)∥∞,

∥Fl(PA/C,A(s),Kstruct(s))(2, 2)∥∞,
∥100Fl(PA/C,A(s),Kstruct(s))(1, 2)∥∞,
∥100Fl(PA/C,A(s),Kstruct(s))(2, 1)∥∞,))))[B(s) 0

0 B(s)

]
Kstruct(s)

))))
∞

)
.

The obtained H∞ performance index is 1.42 and highlights that the specifications
are actually met. Indeed, the step response of Fl(PA/C,A(s),Ky,dyn2(s)) is presented
in Figure 3.33 (solid black line): the roll/yaw decoupling is quite good, oscillations
are correctly damped and undershoots on the response diagonal terms are smaller than
the ones obtained with controller Ky,dyn1(s). The response is quite close to the one
obtained with the nominal output feedback Ky0 on the plant PA/C without actuator
dynamics (see Figure 3.32). The frequency response of the controller (Ky,dyn2(s)) is
presented in Figure 3.34 (solid black line) and highlights that the template is almost
fit according to the obtained value of the H∞ performance.

The reader can download from http://personnel.isae.fr/daniel-alazard/
matlab-packages a Matlab® script file demo_section_3_6.m to run all the
numerical analyses presented in this section.

3.7. Conclusions

This chapter presented a new H∞ control problem based on the acceleration
sensitivity function for general mechanical systems. This scheme allows us to take
into account directly basic specifications in terms of degrees-of-freedom decoupling
and prescribed dynamics. It was shown how a nominal state-feedback meeting these
specifications can be recovered using standard H∞ synthesis numerical solvers and
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how this scheme can be used to design an improved controller to face a weak actuator
dynamics while taking into account roll-off and strong stabilization specifications.
One of its main advantages is certainly the very simple way to take into account
specifications in the weighting system which is independent of the available
measurements. Such properties were illustrated on a very simple example and on a
multi-variable example: the design a lateral flight control law for an aircraft with
yaw-roll decoupling specification. The reader could find in [LOQ 12] an application
of this approach to the design of a three-axis attitude control system for a highly
flexible earth-observation spacecraft.

The academic one degree-of-freedom mechanical system was particularly
detailed to derive, analytically, the state-feedback meeting the acceleration
disturbance rejection template while minimizing an H2 performance index on the
consumption. This very simple example allows us also to highlight that today there
are no numerical tools to solve correctly this problem which is still open. Various
cases were identified according to the frequency response of the open-loop
acceleration sensitivity function w.r.t. the template. The optimal state-feedback can
be recovered only when the specification requires us to increase the disturbance
rejection on the whole frequency range.

The various illustrations show also the interest of recent numerical solvers for
fixed-structure controller H∞ synthesis to provide directly a low-order controller.
Reverse engineering, that is the a priori knowledge on the controller, could be very
promising to initialize such solvers which are sensitive to the initial guess.
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Conclusions and Perspectives

The objective of this book was to give a first insight into the field of reverse
engineering for control design. The motivation is to fill the gap between the panel
of modern optimal control tools available today and their practical application with
a critical approach. On a simple control design problem, if control synthesis tools
are not able to provide a simple controller that could be designed by an experienced
control engineer, then such tools are not satisfactory from a methodological point
of view and some works have to be performed to demonstrate that these tools can
reproduce simple solutions before demonstrating their capabilities to solve more
complex problems where practical approaches are limited. This way of thinking is
required to facilitate the transfer of new control design techniques in the practical
world. With these considerations in mind, this book has focused on how to take into
account a given initial controller in the general H∞ and H2 synthesis framework.
Classical H∞ synthesis approaches (for instance, mixed-sensitivity approach) are
based on a weighting system acting on the input and output signals of the plant.
We think that such an approach is very limited and cannot be used to provide a
simple good-sense solution. One of a the reasons is that they are based on convex
optimization algorithms that produce full-order controllers. There is, of course, the
guarantee to find the global optimum but at the price of conservative relaxations or
sufficient conditions and an over-parameterized controller. The way to manage all
controller tuning parameters (or decision variables) is very complex and could lead to
a marginal solution when full-order H∞ control is applied to a simple problem (the
example proposed in Appendix 1 was quite illustrative of this problem). To overcome
these problems and to develop control schemes allowing an initial controller to be
taken into account, the H∞ control schemes proposed in this book take advantage of
the internal structure of the plant and use a weighting system acting:

– directly on the state equation in the case of the so-called cross standard form. The
cross standard form is a general solution to the inverse H∞ and H2 optimal control
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problems. Some illustrations were proposed to highlight how a given initial control
can be improved to face new frequency-domain specifications or system updates, like
the actuator and sensor dynamics.

– directly on the acceleration for the particular case of mechanical systems.
The acceleration sensitivity function-based H∞ control scheme allows us to
handle directly the basic specifications in terms of degrees-of-freedom decoupling
and prescribed dynamics. The weighting function is independent of the used
measurements. In the same spirit of the cross standard form, the standard problem,
based on the acceleration sensitivity function, can be used and augmented to take
into account additional specifications in order to develop a complete methodology
that can be adapted for practical control design problems in the field of mechanical
systems.

The cross standard form is based on the observer-based realization of a given
controller and a given plant. This topic was analyzed in detail in Chapter 1 because it
gives practical tools to understand controller internal state variables and to implement
this controller with additional objectives: plant state and disturbance monitoring,
gain scheduling and input reference tracking when the initial controller was designed
on a pure disturbance rejection problem. Indeed, a servo-loop system has to satisfy
several objectives. The first objective that comes to mind is the reference input
tracking, but we think that disturbance rejection is a more challenging objective
because disturbance is an unknown signal whereas the reference input is a known
signal and it is always possible to add a feedforward controller to improve the
response to a reference input. The observer-based controller, as highlighted in the
illustrations of section 1.9, is quite useful to plug judiciously the reference input into
the feedback loop.

It was also shown that the recent fixed-structure H∞ synthesis methods overcome
the methodological problems encountered with full-order approaches. In that sense,
they are powerful tools with narrow links with the reverse engineering approach
proposed in this book, for instance in the initialization (initial guess) required in the
design procedure of fixed-structure controllers. Such an initialization cannot be done
randomly so that the approach will be fully satisfactory from a methodological point
of view.

Although fixed-structure H∞ control design is quite advantageous, there are still
some open problems:

– more particularly in the field of H2/H∞ control design: the proposed
benchmark in section 3.5.3 was very simple and quite illustrative;
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– more generally, one of the most important challenges for future research is
certainly the development of tools that are able to identify the appropriate control
structure when the practical engineering know-how fails to propose an initial
controller due to the complexity of the problem.
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Appendix 1

A Preliminary Methodological Example

The objective of this preliminary example is to highlight the methodological
short-comings of the classical full-order H∞ synthesis approach in comparison
with classical engineering approach and the importance of recent fixed-structure
H∞ synthesis approaches [GAH 11, ARZ 11, GUM 09] to encounter these
short-comings.

Let us consider the quite simple mechanical system shown in Figure A1.1. A
pneumatic cylinder can apply a force u on a mass m through a flexible transmission
characterized by a stiffness k and a viscous friction coefficient d.

u
k

d m

y

O x

Figure A1.1. A simple mechanical system

Numerical application: m = 1 (Kg), d = 0.01 (Ns/m), k = 1 (N/m).

In the above figure, y is the position of the mass relative to the rest position along
the cylinder axis (0, x). The objective is to servo-loop the output y to a reference input
r with the specifications:

S1: servo-loop bandwidth ωbd = 10 rad/s,

S2: static error on the step response ϵ∞ ≤= 0.01.
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The model G(s) between the input u and the output y reads: G(s) = 1
ms2+ds+k .

The numerical application leads to:

G(s) =
1

s2 + 0.01s+ 1
,

that is a poorly damped second-order system.

The specifications can be easily handled using a weight function W1(s) on the
output sensitivity function S (K(s)) = (I +G(s)K(s))−1. Considering:

W1(s) =
s+ 10

s+ 0.1
,

the frequency-domain response (magnitude) of the template 1/W1(s) to be satisfied
by the output sensitivity function S is shown in Figure A1.3 (solid grey line) and
highlights a −40 dB magnitude in low frequency to meet specification S2 and a 0 dB
magnitude beyond the pulsation 10 rad/s according to specification S1.

The standard H∞ problem P1(s) to minimize ∥W1(s)S (K(s)) ∥∞ is shown in
Figure A1.2.

w1 = r

y

z

G(s)
+

−

W1(s)

u

Figure A1.2. Standard H∞ problem P1(s) /
Fl(P1,K) = W1/(1 +GK) = W1S(K)

The direct application of the full-order H∞ synthesis (Matlab® function hinfsyn)
provides a third-order controller K1(s) and the performance index:

γ1 = ∥Fl(P1(s),K1(s)∥∞ = 1.0004.

This value is very close to one and we can conclude that the obtained sensitivity
function satisfies the template 1/W1(s). Indeed, the frequency-domain response of
1/(1 + G(s)K1(s)), shown in Figure A1.3 (dashed black line), is superposed on the
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template. Therefore, the specifications are satisfied. But an in-depth analysis of
controller K1(s):

K1(s) =
100(s2 + 0.01s+ 1)

10s+ 1

1

(8.3112 10−11s2 + 1.3040 10−5s+ 1.0106)

reveals that K1(s) cancels the poles of the plant G(s) with a pair of auto-conjugate
zeros. In other words, the behavior of the controller on a wide frequency range reads:

K1(s) ≈ 100

10s+ 1
G−1(s).

It is well-known that the inversion of the model G(s) in the controller must be
avoided. Otherwise, the servo-loop system will be very sensitive to uncertainties on
parameters m, d and k or, even, it will not reject external disturbances. Indeed, the
impulse response of y to a plant input disturbance d (G/(1 + GK1)), presented in
Figure A1.4, reveals strong oscillations at the plant natural frequency 1 rad/s.
Therefore, controller K1(s) does not at all reject external disturbances and we can
conclude that K1(s) is not a servo-loop controller.

Classical control engineering allows us to state that a basic proportional-derivative
(PD) controller:

K2(s) = Kp +
Kds

1 + τs

is quite efficient to meet the specifications. The three parameters Kp, Kd and τ can be
easily tuned considering the following constraints:

– KpG(0) ≥ (1/ϵ∞ − 1) to satisfy S2, where G(0) is the DC gain of G(s), for
instance Kp = 100N/m;

– Kd must be high enough to damp the closed-loop dynamics that is governed by
the characteristic polynomial s2 + (d + Kd)s + (k + Kp) (if τ = 0), for instance
Kv = 15Ns/m,

– 1/τ ≫ ωbd, for instance τ = 0.001 s.

Then:

K2(s) =
15.1s+ 100

0.001s+ 1
.
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Note that the H∞ performance of K2(s) on the initial H∞ problem P1(s) is very
close to the optimal value:

γ2 = ∥Fl(P1(s),K2(s))∥∞ = 1.0643.

The frequency-domain response of the output sensitivity function 1/(1 + GK2)
and the impulse response of G/(1 +GK2) are also shown in Figures A1.3 and A1.4,
respectively:

– The output sensitivity function obtained with K2(s) reveals that, between 0.1
and 10 rad/s, the performance is better than the template 1/W1(s) and there is a notch
around the plant natural frequency. Indeed, the output disturbance rejection is naturally
efficient around the resonance frequency located inside the control bandwidth.

– The controller K2 is efficient to reject input disturbances (Figure A1.4).
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Figure A1.3. Frequency-domain responses of output sensitivity functions and
template 1/W1(s)

The problems encountered with controller K1(s) are, in fact, due to the over
parameterization of the controller required to convexify the optimization problem
and to find the global optimum (using Matlab® function hinfsyn, for instance).
Fixing the structure of the controller to a first-order controller overcomes all these
problems. Today, fixed-structure H∞ synthesis tools are available and it can be easy
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to check that, on the initial problem P1(s), functions hinfstruct and hifoo
provide first-order controllers K3(s) and K4(s), respectively:

K3(s) =
17.2615s+ 98.7862

1.317 10−4s+ 1
and γ3 = ∥Fl(P1(s),K3(s))∥∞ = 1.0023,

K3(s) =
18.1946s+ 102.7

7.880 10−4s+ 1
and γ4 = ∥Fl(P1(s),K4(s))∥∞ = 1.014 .
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Figure A1.4. Impulse responses y(t) to an input disturbance d(t)

Both controllers have a very good performance index and have the same properties
as the controller K2(s), particularly regarding the input disturbance rejection. Thus,
although these solvers only guarantee to converge to a local minimum, they provide
a quite efficient solution while the global optimum provided by full-order H∞ solver
converges to a marginal solution. Note also that looking for a suboptimal full-order
controller does not solve this problem: the pole/zeros cancelation is still present even
for a suboptimal controller.

The way to manage all the decision variables in the full-order H∞ synthesis to
avoid such a marginal solution is quite complex and requires us to express additional
specifications that were implicit using the classical engineering background. In the
proposed example, the reader could argue that the full-order H∞ designs have found
the optimal solution for the given performance index (here
minK ∥W1(s)S(K(s))∥∞) and that it is not quite fair to evaluate the solution in
response to an input disturbance since such a disturbance was not taken into account
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in the H∞ problem P1(s). Considering the problem P2(s) shown in Figure A1.5
where the input disturbance d is taken into account through the weight W2, the
full-order H∞ design allows the pole/zero cancellation to be avoided more or less
according to the weight W2. The problem is: how W2(s) can be tuned to find a good
trade-off? What is the specification on the transfer from the input disturbance to the
servo-loop error? This specification is implicit using a classical PD control because
there is a direct relationship between the reference input tracking performance S and
the input disturbance rejection performance −SG. This relationship is
S + SGK = I and depends on the unknown controller K. So an a priori knowledge
of K is required to specify a pertinent shape for W2. This is one of the first
arguments to develop reverse engineering approaches.

w1 = r

y

z

G(s)
+

−

W1(s)W2(s)

u +
+

d
w2

Figure A1.5. Standard H∞ problem
P2(s) / Fl(P2(s),K(s)) = [W1S W1SGW2]

An other important drawback is the adaptation of the method based on the output
sensitivity function S when a new measurement is available; here, the velocity ẏ.
Considering the problem P3(s) depicted in Figure A1.6 as the direct adaptation of the
problem P1(s) with two measurements y and ẏ, it can be easy to check that hinfsyn
produce a 1× 2 third-order controller that reads:

U = K1(s)Y + 0Ẏ.

w1 = r

y

z

u

G(s)

ẏ
0.01

1
s

+
+

−
+ +

−

W1(s)

1
s

Figure A1.6. Standard H∞ problem P3(s): position sensitivity function with
two measurements

That is, the second measurement ẏ is not used. In fact, while it is obvious that
a pair of PD gains is sufficient to meet the specifications on the position sensitivity
function, the adaptation of the H∞ control problem P1(s) to the two outputs plant
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requires a 2 × 2 weighting function W1(s). This weight must take into account that
the velocity is the time derivative of the position and is not at all easy to be expressed.
Note that imposing a static controller in fixed-structure H∞ synthesis (hinfstruct
or \hifoo) allows us to find that a pair of gains can easily meet the specifications on
the problem P3(s).

The reader could also argue that this example is too simple to highlight the
importance of optimal H∞ control design, but from a practical point of view, control
engineers need to be confident of a new synthesis method and for this purpose, they
must understand how this method can provide a well-known solution before
providing a better solution. So, there is an actual need to develop new H∞ control
methods to link classical engineering approaches and optimal approaches. Thus,
when the classical engineering approach fails to find a good tuning due to the
problem of complexity, such a new method can provide some solutions in which we
can be confident.

The reader can upload, from the web page:
http://personnel.isae.fr/daniel-alazard/matlab-packages,
a Matlab® script file demo_appendix_1.m to run all the numerical analyses presented
in this appendix.
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Discrete-time Case

Techniques presented in Chapters 1 and 2 in the continuous-time case are now
extended to the discrete-time case (proofs are omitted for brevity).

The discrete-time plant G(z) (order n) is defined as:

{
x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k)

[A2.1]

The discrete-time controller K0(z) (order nK) is defined as:

{
xK(k + 1) = AKxK(k) +BKy(k)
u(k) = CKxK(k) +DKu(k)

[A2.2]

Two classical implementation structures of discrete-time observer-based
controllers can be used: the predictor and the estimator structures.

A2.1. Discrete-time predictor form

The predictor form is described by:

�x(k/k) = A�x(k/k − 1) +Bu(k) Prediction�x(k + 1/k) = �x(k/k) +Kf (y(k)− C�x(k/k − 1)−Du(k)) Correction
u(k + 1) = −Kc�x(k + 1/k) Control

[A2.3]

This case is analogous to the continuous-time case. The construction procedure is,
therefore, the same. It provides the parameters Kp

c , Kp
f , Ap

Q, Bp
Q, Cp

Q and Dp
Q of the
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Youla parameterization associated with the predictor form whose state-space
representation reads:


�x(k + 1/k) = A�x(k/k − 1) +Bu(k) +Kp

f (y(k)− C�x(k/k − 1)−Du(k))

xQ(k + 1) = Ap
QxQ(k) +Bp

Q(y(k)− C�x(k/k − 1)−Du(k))

u(k) = −Kp
c �x(k/k − 1) + Cp

QxQ(k) +Dp
Q(y(k)− C�x(k/k − 1)−Du(k))

[A2.4]

A2.2. Discrete-time estimator form

The estimator structure of an observer-based controller is now described as:����
�x(k + 1/k) = A�x(k/k) +Bu(k) Prediction�x(k + 1/k + 1) = �x(k + 1/k) +Kf (y(k + 1)

−C�x(k + 1/k)−Du(k + 1)) Correction
u(k + 1) = −Kc�x(k + 1/k + 1) Control

[A2.5]

In contrast to the previous case, this discrete-time estimator controller exhibits a
direct feed-through between y(k) and u(k) but the separation principle still holds:
the closed-loop transfer function between the reference input and the innovation
y(k) − C�x(k/k − 1) −Du(k) is zero and the closed-loop poles can be split into the
closed-loop state-feedback poles (spec(A−BKc)), which are unobservable from the
innovation, and the closed-loop state-estimator poles (spec(A(I − KfC))), which
are uncontrollable by the reference input. The Youla parameterization associated with
this structure is depicted in Figure A2.1 and reads:

����
�x(k + 1/k) = A�x(k/k − 1) +Bu(k) +AKf (y(k)− C�x(k/k − 1)−Du(k))
xQ(k + 1) = AQxQ(k) +BQ(y(k)− C�x(k/k − 1)−Du(k))
u(k) = −Kc�x(k/k − 1) + CQxQ(k)

+(DQ −KcKf )(y(k)− C�x(k/k − 1)−Du(k))

[A2.6]

We know from sections 1.4 and A2.1 how to compute all the parameters (Kp
c ,

Kp
f , Ap

Q, Bp
Q, Cp

Q and Dp
Q) of the predictor form and the corresponding Youla

parameterization, from a given controller (AK , BK , CK , DK) and a given plant
(A, B, C, D). As a result, the parameters (Kc, Kf , AQ, BQ, CQ and DQ) of the
equivalent estimator form can be obtained by direct identification of the
representations [A2.4] and [A2.6]. This yields:

Kc = Kp
c , Kf = A−1Kp

f ,

AQ = Ap
Q, BQ = Bp

Q, CQ = Cp
Q, DQ = Dp

Q +Kp
cK

p
f

[A2.7]
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Figure A2.1. The discrete-time Youla parameterization using state estimator
structure (where �xk = �x(k/k − 1))

A2.3. Discrete-time cross standard form

In the case of a low-order controller (nK ≤ n), the general expression for the CSF
(equation [2.2]) is valid for the discrete-time case.

In the case of the augmented-order controller (nK ≥ n), it is possible to define the
CSF associated with an estimator form of the controller [A2.6], This CSF reads:

PCSF (z): =


A 0 AKf B
0 AQ BQ 0

Kc −CQ −DQ +KcKf Im
C 0 Ip D

 [A2.8]

The block diagram associated with this CSF is depicted in Figure A2.2.
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Nominal State-feedback for
Mechanical Systems

Let us consider multi-variable mechanical systems described by the generalized
second-order differential equation:

Mq̈ +Dq̇ +Kq = Fu. [A3.1]

The following proofs are restricted to the case where F is a square and invertible.
Let F−1 be its inverse and F−T = (F−1)T = (FT)−1.

A3.1. Recovering control law [3.4] using linear-quadratic approach

Consider the state vector x =
[
qT q̇T

]T
and the following state-space

representation of a generalized second-order system as defined in equation [A3.1].

ẋ =

[
0 In

−M−1K −M−1D

]
x+

[
0

M−1F

]
u = Ax+Bu [A3.2]

Let Ad be the desired closed-loop dynamic matrix filling specifications, that is
each degree of freedom qi must have a second-order dynamics behavior defined by a
pulsation ωi and a damping ratio ξi and must be two-by-two decoupled:

Ad =

[
0 In

−diag(ωi) −diag(2ξiωi)

]
. [A3.3]
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Using the implicit reference model approach, let us define J as follows:

J =

∫ +∞

0

(ẋ−Adx)
T(ẋ−Adx)dt [A3.4]

=

∫ +∞

0

xT (A−Ad)
T(A−Ad)� �� �
Q

x+ uT BTB� �� �
R

u+ 2xT (A−Ad)
TB� �� �

N

u dt

The solution minimizing J is the control law u = −Kc x with Kc = R−1(BTPc+
NT) and Pc is the positive solution of equation [A3.5].

Pc(A−BR−1NT) + (A−BR−1NT)Pc − PcBR−1BTPc +Q−NR−1NT = 0.

[A3.5]

Considering:

A−Ad =

[
0n 0n

−M−1K+ diag(ω2
i ) −M−1D+ diag(2ξiωi)

]

R =
[
0 FTM−T

] [ 0
M−1F

]
= FTM−TM−1F

R−1 = F−1MMTF−T

NT = BT(A−Ad)

=
[
FTM−T(−M−1K+ diag(ω2

i )) F
TM−T(−M−1D+ diag(2ξiωi))

]
.

It can easily be shown that:

NR−1NT = (A−Ad)
T(A−Ad) = Q. [A3.6]

Using [A3.6], it is obvious that Pc = 0 is the solution of equation [A3.5]. As a
result, the solution is:

Kc = R−1NT = −F−1
[
K−Mdiag(ω2

i ) D−Mdiag(2ξiωi)
]
= K0. [A3.7]

This solution is identical to the solution given by mechanical approach equation
[3.4].
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A3.2. Recovering control law [3.4] using eigenstructure assignment

To adapt the classical eigenstructure assignment [MAG 02] approaches to this
problem, eigenvalues λi are defined from desired pulsations and damping ratios
(ωi, ξi), i = 1, 2, · · · , n as follows:

∀i ∈ [1, n] , λi = −ξi ωi + j
√
1− ξ2i ωi [A3.8]

∀i ∈ [n+ 1, 2n] , λi = λi−n [A3.9]

For each eigenvalue λi, the associated eigenvector vi is decoupled from qj , ∀j ̸= i.
So let us define Iin as the n − 1 × n matrix built removing the ith row of In and
Ei =

[
Iin 0n−1×n

]
. Assuming A has the structure presented in equation [A3.2], then

for i ∈ [1, · · · , n], vi and wi can be computed such that equation [A3.10] is true.

[
A+ λi In B

Ei 0n−1×n

]
� �� �

Ai

[
vi
wi

]
= 0 [A3.10]

That is [vTi wT
i ]

T ∈ Ker(Ai). The corresponding state-feedback law is:

K = − [
w1 · · · wn w1 · · · wn

] [
v1 · · · vn v1 · · · vn

]−1
[A3.11]

Due to decoupling constraints Ei, it can be shown that K = K0.

A3.3. Recovering control law [3.4] using LMI

Illustrations presented in sections 3.4.2, 3.5.3 and 3.6 showed how it was possible
to recover the nominal static state-feedback gain K0 defined in equation [3.4] using a
full-order LMI-based H∞ solver followed by a reduction of the full-order controller
to its DC gain. This can be explained using the parameterization of all stabilizing
state-feedbacks.

A3.3.1. Parameterization of all stabilizing state-feedback gains

In [ZHO 96] Therorem 17.6, and [GAD 06], parameterization of all stabilizing
state-feedback with a guarantee on the closed-loop H∞ performance is proposed. Let
us consider the standard problem P (s) (equation [3.9]) shown in Figure 3.3 and the
change of variable u = F−1M&u. Then the new problem &P between z1 and
[wT &uT ]T writes:
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�P :=


0n In 0n 0n

−M−1K −M−1D In In
diag(ω2

i )−M−1K diag(2ξiωi)−M−1D In In
In 0n 0n 0n
0n In 0n 0n

 =

 A B2 B2

C1 I I

I 0 0

.

Considering a static state-feedback &u = &Kx, the closed-loop plant reads:

Fl( �P , �K) :=

[
A+B2

�K B2

C1 + �K I

]
,

Then for a given γ, the following assertions are equivalent to characterize an
admissible stabilizing state-feedback &K:

– ∥Fl( �P , �K)∥∞ < γ,

– H(γ) =

A+B2
�K + 1

γ2−1
B2(C1 + �K) 1

γ2−1
B2B

T
2

− γ2

γ2−1
(C1 + �K)T (C1 + �K) −

(
A+B2

�K + 1
γ2−1

B2(C1 + �K)
)T


has no eigenvalue on the imaginary axis.

– ∃ X > 0 solution of:

X

(
A+B2

�K +
1

γ2 − 1
B2(C1 + �K)

)

+

(
A+B2

�K +
1

γ2 − 1
B2(C1 + �K)

)T

X

+ X
B2B

T
2

γ2 − 1
X +

γ2

γ2 − 1
(C1 + �K)T (C1 + �K) = 0,

– or (after some developments) ∃ X > 0 solution of:

X(A−B2C1) + (A−B2C1)
TX −XB2B

T
2 X

+
γ2

γ2 − 1
( �K + C1 +BT

2 X)T ( �K + C1 +BT
2 X) = 0.

Then the parameterization reads &K is a stabilizing state-feedback gain such that
∥Fl( &P , &K)∥∞ ≤ γ if and only if there exists a parameter L such that:&K = −C1 −BT

2 X + L, where X = XT ≥ 0 solution of:

X(A−B2C1) + (A−B2C1)
TX −XB2B

T
2 X +

γ2

γ2 − 1
LTL = 0.
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The central control &K0 is defined for the particular value L = 0, that is:

&K0 = −C1 −BT
2 X0 withX0 = XT

0 ≥ 0 solution of:

X0(A−B2C1) + (A−B2C1)
TX0 −X0B2B

T
2 X0 = 0.

In our problem, A − B2C1 =

[
0n In

−diag(ω2
i ) −diag(2ξiωi)

]
is a stable matrix and

depends only on specifications (ξi, ωi) and not on the plant characteristics (M, D,
K). So the solution is X0 = 0n×n and the central controller reads &K0 = −C1.

Then, for any optimal or suboptimal controller &K, we can write:

Fl( &P , &K) = Fl(P,F
−1M &K),

so the central controller of the initial problem P (s) reads:

K = −F−1MC1 = F−1[K−Mdiag(ω2
i ) D−Mdiag(2ξiωi)] = K0.

We can recognize the nominal state-feedback defined in equation [3.6]. It can be
shown that the LMI-based H∞ solver applied on the problem &P provides a dynamic
controller with a DC gain equal to the central state-feedback K0 augmented with
2n very fast dynamics. These fast eigenvalues can be easily reduced a posteriori.
Indeed, the LMIs to be solved on the problem &P become marginal and depend only
on specifications (ξi, ωi). The optimization problem is then recast in a standard linear
problem:

minCTX subject to LMIs:L(X) < R(X)
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where X is the vector of decision variables consisting of:

– γ: the H∞ performance index;

– the upper part coefficients of symmetric positive matrices X1 and Y1 solutions
of two H∞ Riccati inequalities for �γ (the optimal value).

It can be easily checked that the default values for C (in function hinfsyn, for
instance) are 1 for γ and 10−6 for the coefficients of matrices X1 and Y1. Such a
tuning leads to very fast eigenvalues in the resulting optimal controller.
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Appendix 4

Help of Matlab® Functions

A4.1. Function cor2tfg

Observer-based realization of a given controller
==============================================================

[T,F,G] = COR2TFG(PLANT,SYS_K)
Given an nk-order controller SYS_K defined by a state-space
realization (Ak, Bk, Ck, Dk) associated with state variable Xk,
given an n order given plant PLANT defined by a state-space
realization (A,B,C,D) associated with state variable X,
COR2TGF computes the matrix T (nk x n) of the linear combination
Z=TX of the plant states X that are estimated by the controller
state Xk; that is, Xk=Z_hat.
F and G are the dynamic matrix and the input matrix of the
Luenberger observer associated with the controller, that is:
let u and y be the input and the output of the plant, the
controller SYS_K can be parametrized in the following way:

(s or z)X_k = F X_k + G (y-Du) + T B u
u = Ck X_k + Dk y

Remark A4.1.- * SYS_K, PLANT are defined as SS objects;
* feedback between PLANT and SYS_K is positive;
* continuous- or discrete-time cases are supported;
* a real solution may not exit.

This function plots the map of closed-loop eigenvalues (red x)
and PLANT open-loop eigenvalues (blue +) in the complex plane.
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Then, the user can choose, in an interactive procedure, the
nk closed-loop eigenvalues, which must be assigned to the
Luenberger observer dynamics (spec(F); marked with red o).

The function ensures that a plant uncontrollable eigenvalue
is not assigned to spec(F).
The controller SYS_K is assumed to be minimal.
Auto-conjugate eigenvalues are assigned together.

[T,F,G] = COR2TFG(PLANT,SYS_K,TOL) allows a tolerance TOL
(default: 10^-6) to be taken into account in the uncontrollable
subspace computation.

Reference: Alazard D., Apkarian P. "Exact
observer based structures for arbitrary compensators",
International Journal of Robust and Non-Linear
Control, Vol. 9, no. 2, pp. 101-118, 1999.

See also cor2tfga, cor2obr, cor2obra, obr2cor.

A4.2. Function cor2obr

Observer-based realization of a given controller
================================================================

[Kc,Kf,Q] = COR2OBR(PLANT,SYS_K) computes a real observer-based
realization, that is the Youla parameterization (defined by Kc,
Kf and Q), of a given controller SYS_K for a given plant
PLANT in the case: NK (SYS_K order) >= N (PLANT order).

In the discrete-time case, PLANT and SYS_K must have
the same sampling period. Then, the function computes the
predictor observer-based realization.

Remark A4.2.- * SYS_K, PLANT and Q are defined as SS object;
* feedback between PLANT and SYS_K is positive;
* a real solution may not exit;
* NQ (order of Q) = NK - N.

This function plots the map of closed-loop eigenvalues (red x)
and PLANT open-loop eigenvalues (blue +) in the complex plane.
Then, the user can choose, in a interactive procedure, the
closed-loop eigenvalues distribution between:
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* state-feedback dynamics [A-BKc] (blue o);
* state-estimation dynamics [A-KfC] (red o);
* Youla parameter dynamics (Q) (green o).

Uncontrollable eigenvalues are automatically assigned to [A-BKc].
Unobservable eigenvalues are automatically assigned to [A-KfC].
(the controller SYS_K is assumed to be minimal).
Auto-conjugate eigenvalues are assigned together.

[KC,KF,Q] = COR2OBR(PLANT,SYS_K,TOL) allows a tolerance TOL
(default: 10^-6) to be taken into account in the unobservable
and uncontrollable subspaces computation.

OBR = COR2OBR(...) creates a structure variable OBR with
fields:

* OBR.mod : the model of the plant (=PLANT);
* OBR.Kc : state-feedback gain;
* OBR.Kf : state-estimator gain;
* OBR.Q : Youla parameter (ss);
* OBR.obr : the observer-based realization (ss) of the

controller;
* OBR.M : the transformation matrix between the old and the

new state-space realizations of the controller:
X_k = M [X_hat X_Q].

Reference: Alazard D., Apkarian P., "Exact
observer based structures for arbitrary compensators",

International Journal of Robust and Non-Linear Control,
Vol. 9, no. 2, pp. 101-118, 1999.

See also cor2obra, obr2cor, cor2tfg, cor2tfga.

A4.3. Function obr2cor

SYS_K=OBR2COR(PLANT,K,G,Q)
computes the state-space realization SYS_K=ss(AK,BK,CK,DK)
of the observer-based controller defined by the
Youla parameterization:

- K: state-feedback gain;
- G: state-estimation gain;
- Q: dynamic Youla parameter.

This parameterization concerns the plant defined by PLANT.
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PLANT,Q and SYS_K are defined as SS objects
(continous- and discrete-time cases are considered).

Let us note: [A,B,C,D,Ts]=ssdata(PLANT), then the controller
realization is:

________________________
| |
| A-BK-GC+GDK | G | B-GD |

u <----| -K | 0 | I |<----- y
y-yhat /----| -C+DK | I | -D |<---\ e

| |________________________| |
| |
| ___________ |
| | | |
\------------->| Q(s or z) |-------/

|___________|

Remark A4.3.- positive feedback is assumed for SYS_K.

Reference: Alazard D., Apkarian P., "Exact
observer based structures for arbitrary compensators",

International Journal of Robust and Non-Linear Control,
no. 9, pp. 101-118 1999.

See also cor2obr, cor2obra, obr2cor2ddl.

A4.4. Function obr2cor2ddl

COR=OBR2COR2DDL(PLANT,K,G,Q,H)
computes the state-space realization of the 2 degree-of-freedom
observer-based controller COR defined by the Youla
parameterization:

- K: state-feedback gain;
- G: state-estimation gain;
- Q: dynamic Youla parameter;

(this parameterization concern the plant defined by PLANT)
- H: a static feedforward matrix (H=eye(size(K,1)) by default).

Inputs of COR are measurement (y) and reference input (r).

PLANT,Q and COR are defined as SS objects
(continous- and discrete-time cases are considered).
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Let us note: [A,B,C,D]=ssdata(PLANT), then the controller
realization is:

________________________
| |
| A-BK-GC+GDK | G | B-GD |

u <----| -K | 0 | I |<------------- y
y-yhat /----| -C+DK | I | -D |<---0<--|H|--- r

| |________________________| + |+
| |
| ___________ |
| | | |
\------------->| Q(s or z) |-------/

|___________|

Remark A4.4.- * continuous-time formulation (or predictor form in
discrete-time) for the state estimator;

* positive feeedback.

See also cor2obr, cor2obra, obr2cor.

Other syntax:
COR=OBR2COR2DDL(PLANT,K,G,Q,H,M) allows to take into account a
static input matrix M=[M1;M2] between H.r and
* xHatDot (or xHat(k+1)) through matrix M1;
* xQdot (or xQ(k+1)) through matrix M2.

A4.5. Function obcanon

Observer-based realization of a given system on a canonic
system (with same order).

================================================================

OBR = OBCANON(PLANT) computes a real observer based realization,
that is the Youla parameterization (defined by OBR.Kc, OBR.Kf
and OBR.Q), of a given (continuous- or discrete-time) system
PLANT on a canonical system provided in OBR.mod.

OBR is a structured variable with several fields.

The canonical system OBR.mod is defined by:
OBR.mod=ss([zeros(n,1) [eye(n-1);zeros(1,n-1)]],...

[zeros(n-p,p);eye(p)],[eye(m) zeros(m,n-m)],zeros(m,p));
where n, m and p are the order, the number of imputs and the



164 Reverse Engineering in Control Design

number of outputs of PLANT, respectively. That is: OBR.mod
(mxp) is a set of n integrators (or delays) in series with:

* the inputs of the first p intergrators (delays) are
are connected to the p inputs;

* the ouputs of the last m intregrators (delays) are
connected to the m ouputs.

Remark A4.5.- * A minimal state-space realization of PLANT is
first computed.

* Auto-conjugate eigenvalues are assigned together.

OBR.obr is the new state-space realization of PLANT.
OBR.M is the transformation matrix between the old and the

new state-space vector of the system:
X_plant = M [X_hat]

See also obr2cor, cor2tfg, cor2tfga, cor2obr, cor2obra.

A4.6. Function cor2tfga

Observer-based realization of a given controller
==========================================================

[T,F,G] = COR2TFGA(PLANT,SYS_K)
Given an nk-order controller SYS_K defined by a state-space
realization (Ak, Bk, Ck, Dk) associated with state variable Xk,
given an n-order given plant PLANT defined by a state-space
realization (A,B,C,D) associated with state variable X,
COR2TGFA computes the matrix T (nk x n) of the linear combination
Z=TX of the plant states X that are estimated by the controller
state Xk; that is, Xk=Z_hat.
F and G are the dynamic matrix and the input matrix of the
Luenberger observer associated with the controller, that is:
let u and y be the input and the output of the plant, the
controller SYS_K can be parametrized in the following way:

(s or z)X_k = F X_k + G (y-Du) + T B u
u = Ck X_k + Dk y

Remark A4.6.- * SYS_K, PLANT are defined as SS objects;
* feedback between PLANT and SYS_K is positive;
* continuous- or discrete-time cases are supported;
* a real solution may not exit.
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Among the combinatory set of solutions T, F and G, a particular
solution is selected. This solution consists of isolating the
n closed-loop eigenvalues located on root loci starting from
the n plant open-loop eigenvalues. The NK other closed-loop
eigenvalues are then assigned to F (and thus does not include
plant uncontrollable eigenvalues).
(This root locus considers the same loop gain varying from 0
to 1 on all control channels.)

The controller SYS_K is assumed to be minimal.
Auto-conjugate eigenvalues are assigned together.

[T,F,G] = COR2TFGA(SYS,COR,NBPOINTS) allows to fix the number
of intermediate points on root loci (200 by default).

[T,F,G] = COR2TFGA(PLANT,SYS_K,NBPOINTS,TOL) allows a
tolerance TOL (default: 10^-6) to be taken into account in the
uncontrollable subspace computation.

See also cor2tfg, cor2obr, cor2obra, obr2cor, obrmap.

A4.7. Function cor2obra

Observer-based realization of a given controller
================================================================

[Kc,Kf,Q] = COR2OBRA(PLANT,SYS_K) computes a real observer based
realization, that is the Youla parameterization (defined by Kc,
Kf and Q), of a given controller SYS_K for a given plant
PLANT in the case: NK (SYS_K order) >= N (PLANT order).

In the discrete-time case PLANT and SYS_K must have
the same sampling period. Then, the function computes the
predictor observer-based realization.

Remark A4.7.- * SYS_K, PLANT and Q are defined as SS object;
* feedback between PLANT and SYS_K is positive;
* a real solution may not exit;
* NQ (order of Q) = NK - N.

Among the combinatory set of solutions (Kc,Kf,Q), a particular
solution is selected. This solution consists of assigning to the
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state-feedback dynamics the N closed-loop eigenvalues located
on root loci starting from the N plant open-loop eigenvalues.
(This root locus considers the same loop gain varying from 0
to 1 on all control channels.)
The NK other closed-loop eigenvalues are assigned to A-KfC
and to the Youla parameter Q dynamics.
The proposed assignment can be plotted in the complex plane
using function OBRMAP.

Uncontrollable eigenvalues are automatically assigned to [A-BKc].
Unobservable eigenvalues are automatically assigned to [A-KfC].
(the controller SYS_K is assumed to be minimal).
Auto-conjugate eigenvalues are assigned together.

[KC,KF,Q] = COR2OBRA(SYS,COR,NBPOINTS) allows to fix the number
of intermediate points on root loci (200 by default).

[KC,KF,Q] = COR2OBRA(PLANT,SYS_K,NBPOINTS,TOL) allows a
tolerance TOL (default: 10^-6) to be taken into account in the
unobservable and uncontrollable subspaces computation.

OBR = COR2OBRA(...) creates a structure variable OBR with
fields:

* OBR.mod : the model of the plant (=PLANT);
* OBR.Kc : state-feedback gain;
* OBR.Kf : state-estimator gain;
* OBR.Q : Youla parameter (ss);
* OBR.obr : the observer-based realization (ss) of the

controller;
* OBR.M : the transformation matrix between the old and the

new state-space realizations of the controller:
X_k = M [X_hat X_Q].

See also cor2obr, obr2cor, cor2tfg, cor2tfga, obrmap.

A4.8. Function obrmap

OBRMAP(OBR) plots the closed-loop eigenvalues map
of the system OBR.mod in positive feedback
with the observer-based controller defined by the
Youla parameterization (OBR.Kc, OBR.Kf,
OBR.Q) associated with OBR.mod:

- Kc: state-feedback gain,



Appendix 4 167

- Kf: state-estimation gain,
- Q: (ss) dynamic Youla parameter.

The structured input argument OBR can be the output of the
function COR2OBRA (for instance).

On the map are marked:
(considering [A,B,C,D,Ts]=ssdata(OBR.mod))

- state-feedback dynamics: spec(A-B*Kc) (blue o);
- state-estimation dynamics: spec(A-Kf*C) (red o);
- Youla parameter dynamics: spec(Q.a) (green o).

and also:
- open-loop plant dynamics: spec(A) (blue +);
- open-loop controller dynamics: (green +).

Remark A4.8.- * continuous-time formulation (or predictor form in
discrete-time) for the state estimator

[SFDYN,SEDYN,QDYN]=OBRMAP(OBR) does not open a graphics
window but returns:

* SFDYN: state-feedback dynamics: spec(A-B*K);
* SEDYN: state-estimation dynamics: spec(A-G*C);
* QDYN: Youla parameter dynamics spec(Q.a);

See also cor2obr, cor2obra, cor2tfg, cor2tfga and obr2cor.

A4.9. Function h2hinfsol

[Kpopt,Kdopt,Copt]=h2hinfsol(m,d,k,w,xi)

Assumption: m>0, xi>0, w>0

H2/Hinfty problem for a second-order mechanical system:
m*xddot+d*xdot+k*x=u.

Kpopt and Kdopt are the optimal gains of the stabilizing
control law: u=Kp*x+Kd*xdot such that:

* the acceleration sensitivity function fits the template:
W(s)=(s^2+2*xi*w*s+w^2)/s^2;

* the h2norm (J) of the transfer between the distrubance w
on the acceleration and u is minimized.

Copt is the optimal cost squared (Copt=Jopt^2).
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This function plots also:
* the frequency-domain responses (sigma) of the open-loop

and closed-loop acceleration sensitivity function;
* a 3D plot: J^2=function(Kp,Kd).

Example: [kp,kv,C]=h2hinfsol(10,1,10,0.7,0.6);
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