

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:i

SQL
A Beginner’s Guide

Second Edition

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:iii

SQL
A Beginner’s Guide

Second Edition

Robert Sheldon

McGraw-Hill/Osborne

New York Chicago San Francisco

Lisbon London Madrid Mexico City

Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:iv

McGraw-Hill/Osborne

2100 Powell Street, 10th Floor

Emeryville, California 94608

U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please

contact McGraw-Hill/Osborne at the above address. For information on translations or

book distributors outside the U.S.A., please see the International Contact Information page

immediately following the index of this book.

SQL: A Beginner’s Guide, Second Edition

Copyright © 2003 by The McGraw-Hill Companies. All rights reserved. Printed in the

United States of America. Except as permitted under the Copyright Act of 1976, no part of

this publication may be reproduced or distributed in any form or by any means, or stored in

a database or retrieval system, without the prior written permission of the publisher, with

the exception that the program listings may be entered, stored, and executed in a computer

system, but they may not be reproduced for publication.

1234567890 FGR FGR 019876543

ISBN 0-07-222885-7

Publisher Brandon A. Nordin

Vice President & Associate Publisher Scott Rogers

Acquisitions Editor Lisa McClain

Senior Project Editor LeeAnn Pickrell

Acquisitions Coordinator Athena Honore

Technical Editor Greg Guntle

Copy Editor Margaret Berson

Proofreader Marion Selig

Indexer James Minkin

Computer Designers Carie Abrew, Tara A. Davis

Illustrators Kathleen Fay Edwards, Melinda Moore Lytle, Michael Mueller, Lyssa Wald

Series Design Jean Butterfield

Series Cover Design Sarah F. Hinks

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be reliable. However, because of the possibility

of human or mechanical error by our sources, McGraw-Hill/Osborne, or others, McGraw-Hill/Osborne does not guarantee the

accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained

from use of such information.

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

About the Author
Robert Sheldon has worked as a consultant and technical writer

for a number of years. As a consultant, he has managed the

development and maintenance of web-based and client-server

applications and the databases that supported those applications.

In addition, he has designed and implemented various Access

and SQL Server databases and has used SQL to build databases,

create and modify database objects, query and modify data, and

troubleshoot system- and data-related problems. Robert has also

written or cowritten eight books on various network and server

technologies, one of which received a Certificate of Merit

from the Puget Sound Chapter of the Society for Technical

Communication. In addition, two of the books that Robert

has written focus exclusively on SQL Server design and

implementation. Robert has also written and edited a variety

of other documentation related to SQL databases and other

computer technologies. In addition, his writing includes material

outside the computer industry—everything from news articles

to ad copy to legal documentation—and he has received two

awards from the Colorado Press Association.

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:v

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio FM:vii

vii

Contents at a Glance

PART I
SQL Databases

1 Introduction to Relational Databases and SQL . 3

2 Working with the SQL Environment . 27

3 Creating and Altering Tables . 47

4 Enforcing Data Integrity . 73

5 Creating SQL Views . 105

6 Managing Database Security . 125

PART II
Data Access and Modification

7 Querying SQL Data . 149

8 Modifying SQL Data . 181

9 Using Predicates . 201

10 Working with Functions and Value Expressions . 233

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:viii

11 Accessing Multiple Tables . 261

12 Using Subqueries to Access and Modify Data . 285

PART III
Advanced Data Access

13 Creating SQL-Invoked Routines . 307

14 Creating SQL Triggers . 337

15 Using SQL Cursors . 361

16 Managing SQL Transactions . 389

17 Accessing SQL Data from Your Host Program . 417

PART IV
Appendixes

A Answers to Mastery Checks . 451

B SQL:1999 Keywords . 489

C SQL Code Used in the Book’s Projects . 495

viii SQL: A Beginner’s Guide

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio FM:ix

ix

Contents

ACKNOWLEDGMENTS . xvii

INTRODUCTION . xix

PART I
SQL Databases

1 Introduction to Relational Databases and SQL . 3

Critical Skill 1.1 Understand Relational Databases . 4

The Relational Model . 5

Project 1-1 Normalizing Data and Identifying Relationships 12

Critical Skill 1.2 Learn about SQL . 14

The SQL Evolution . 14

Types of SQL Statements . 16

Types of Execution . 17

Critical Skill 1.3 Use a Relational Database Management System 19

SQL Standard Versus Product Implementations . 20

Project 1-2 Connecting to a Database . 22

Module 1 Mastery Check . 25

2 Working with the SQL Environment . 27

Critical Skill 2.1 Understand the SQL Environment . 28

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:x

x SQL: A Beginner’s Guide

Critical Skill 2.2 Understand SQL Catalogs . 30

Schemas . 31

Schema Objects . 32

Then What Is a Database? . 35

Critical Skill 2.3 Name Objects in an SQL Environment . 37

Qualified Names . 38

Critical Skill 2.4 Create a Schema . 39

Critical Skill 2.5 Create a Database . 42

Project 2-1 Creating a Database and a Schema . 43

Module 2 Mastery Check . 44

3 Creating and Altering Tables . 47

Critical Skill 3.1 Create SQL Tables . 48

Critical Skill 3.2 Specify Column Data Types . 52

String Data Types . 53

Numeric Data Types . 55

Datetime Data Types . 56

Interval Data Type . 57

Boolean Data Type . 59

Using SQL Data Types . 61

Critical Skill 3.3 Create User-Defined Types . 62

Critical Skill 3.4 Specify Column Default Values . 63

Project 3-1 Creating SQL Tables . 65

Critical Skill 3.5 Alter SQL Tables . 67

Critical Skill 3.6 Delete SQL Tables . 68

Project 3-2 Altering and Deleting SQL Tables . 70

Module 3 Mastery Check . 71

4 Enforcing Data Integrity . 73

Critical Skill 4.1 Understand Integrity Constraints . 74

Critical Skill 4.2 Use NOT NULL Constraints . 76

Critical Skill 4.3 Add UNIQUE Constraints . 77

Critical Skill 4.4 Add PRIMARY KEY Constraints . 80

Critical Skill 4.5 Add FOREIGN KEY Constraints . 83

The MATCH Clause . 88

The <referential triggered action> Clause . 90

Project 4-1 Adding NOT NULL, Unique, and Referential Constraints 92

Critical Skill 4.6 Define CHECK Constraints . 96

Defining Assertions . 99

Creating Domains and Domain Constraints . 99

Project 4-2 Adding a CHECK Constraint . 101

Module 4 Mastery Check . 102

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Contents xi

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:xi

5 Creating SQL Views . 105

Critical Skill 5.1 Add Views to the Database . 106

Defining SQL Views . 112

Critical Skill 5.2 Create Updateable Views . 116

Using the WITH CHECK OPTION Clause . 119

Critical Skill 5.3 Drop Views from the Database . 121

Project 5-1 Adding Views to Your Database . 122

Module 5 Mastery Check . 123

6 Managing Database Security . 125

Critical Skill 6.1 Understand the SQL Security Model . 126

SQL Sessions . 127

Accessing Database Objects . 130

Critical Skill 6.2 Create and Delete Roles . 133

Critical Skill 6.3 Grant and Revoke Privileges . 134

Revoking Privileges . 138

Critical Skill 6.4 Grant and Revoke Roles . 141

Revoking Roles . 142

Project 6-1 Managing Roles and Privileges . 143

Module 6 Mastery Check . 145

PART II
Data Access and Modification

7 Querying SQL Data . 149

Critical Skill 7.1 Use a SELECT Statement to Retrieve Data . 150

The SELECT Clause and FROM Clause . 151

Critical Skill 7.2 Use the WHERE Clause to Define Search Conditions 157

Defining the WHERE Clause . 161

Critical Skill 7.3 Use the GROUP BY Clause to Group Query Results 165

Critical Skill 7.4 Use the HAVING Clause to Specify Group Search Conditions 170

Critical Skill 7.5 Use the ORDER BY Clause to Sort Query Results 172

Project 7-1 Querying the Inventory Database . 175

Module 7 Mastery Check . 178

8 Modifying SQL Data . 181

Critical Skill 8.1 Insert SQL Data . 182

Inserting Values from a SELECT Statement . 186

Critical Skill 8.2 Update SQL Data . 188

Updating Values from a SELECT Statement . 191

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:xii

Critical Skill 8.3 Delete SQL Data . 194

Project 8-1 Modifying SQL Data . 195

Module 8 Mastery Check . 198

9 Using Predicates . 201

Critical Skill 9.1 Compare SQL Data . 202

Using the BETWEEN Predicate . 206

Critical Skill 9.2 Return Null Values . 208

Critical Skill 9.3 Return Similar Values . 211

Project 9-1 Using Predicates in SQL Statements . 215

Critical Skill 9.4 Reference Additional Sources of Data . 217

Using the IN Predicate . 218

Using the EXISTS Predicate . 221

Critical Skill 9.5 Quantify Comparison Predicates . 224

Using the SOME and ANY Predicates . 225

Using the ALL Predicate . 227

Project 9-2 Using Subqueries in Predicates . 228

Module 9 Mastery Check . 230

10 Working with Functions and Value Expressions . 233

Critical Skill 10.1 Use Set Functions . 234

Using the COUNT Function . 234

Using the MAX and MIN Functions . 236

Using the SUM Function . 239

Using the AVG Function . 239

Critical Skill 10.2 Use Value Functions . 241

Working with String Value Functions . 241

Working with Datetime Value Functions . 244

Critical Skill 10.3 Use Value Expressions . 246

Working with Numeric Value Expressions . 246

Using the CASE Value Expression . 249

Using the CAST Value Expression . 252

Critical Skill 10.4 Use Special Values . 254

Project 10-1 Using Functions and Value Expressions . 255

Module 10 Mastery Check . 258

11 Accessing Multiple Tables . 261

Critical Skill 11.1 Perform Basic Join Operations . 262

Using Correlation Names . 265

Creating Joins with More than Two Tables . 266

Creating the Cross Join . 267

Creating the Self-Join . 268

xii SQL: A Beginner’s Guide

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Critical Skill 11.2 Join Tables with Shared Column Names . 270

Creating the Natural Join . 271

Creating the Named Column Join . 272

Critical Skill 11.3 Use the Condition Join . 272

Creating the Inner Join . 273

Creating the Outer Join . 275

Critical Skill 11.4 Perform Union Operations . 279

Project 11-1 Querying Multiple Tables . 281

Module 11 Mastery Check . 283

12 Using Subqueries to Access and Modify Data . 285

Critical Skill 12.1 Create Subqueries That Return Multiple Rows 286

Using the IN Predicate . 287

Using the EXISTS Predicate . 288

Using Quantified Comparison Predicates . 289

Critical Skill 12.2 Create Subqueries That Return One Value 291

Critical Skill 12.3 Work with Correlated Subqueries . 293

Critical Skill 12.4 Use Nested Subqueries . 294

Critical Skill 12.5 Use Subqueries to Modify Data . 296

Using Subqueries to Insert Data . 297

Using Subqueries to Update Data . 298

Using Subqueries to Delete Data . 299

Project 12-1 Working with Subqueries . 299

Module 12 Mastery Check . 303

PART III
Advanced Data Access

13 Creating SQL-Invoked Routines . 307

Critical Skill 13.1 Understand SQL-Invoked Routines . 308

SQL-Invoked Procedures and Functions . 309

Working with the Basic Syntax . 310

Critical Skill 13.2 Create SQL-Invoked Procedures . 312

Invoking SQL-Invoked Procedures . 313

Critical Skill 13.3 Add Input Parameters to Your Procedures 315

Using Procedures to Modify Data . 318

Critical Skill 13.4 Add Local Variables to Your Procedures . 319

Critical Skill 13.5 Working with Control Statements . 321

Create Compound Statements . 321

Create Conditional Statements . 322

Create Looping Statements . 324

Project 13-1 Creating SQL-Invoked Procedures . 326

Contents xiii

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:xiii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:xiv

Critical Skill 13.6 Add Output Parameters to Your Procedures 328

Critical Skill 13.7 Create SQL-Invoked Functions . 330

Project 13-2 Creating SQL-Invoked Functions . 332

Module 13 Mastery Check . 333

14 Creating SQL Triggers . 337

Critical Skill 14.1 Understand SQL Triggers . 338

Trigger Execution Context . 339

Critical Skill 14.2 Create SQL Triggers . 341

Referencing Old and New Values . 342

Dropping SQL Triggers . 344

Critical Skill 14.3 Create Insert Triggers . 344

Critical Skill 14.4 Create Update Triggers . 347

Critical Skill 14.5 Create Delete Triggers . 352

Project 14-1 Creating SQL Triggers . 354

Module 14 Mastery Check . 357

15 Using SQL Cursors . 361

Critical Skill 15.1 Understand SQL Cursors . 362

Declaring and Opening SQL Cursors . 363

Critical Skill 15.2 Declare a Cursor . 366

Working with Optional Syntax Elements . 366

Creating a Cursor Declaration . 370

Critical Skill 15.3 Open and Close a Cursor . 374

Critical Skill 15.4 Retrieve Data from a Cursor . 374

Critical Skill 15.5 Use Positioned UPDATE and DELETE Statements 380

Using the Positioned UPDATE Statement . 380

Using the Positioned DELETE Statement . 382

Project 15-1 Working with SQL Cursors . 383

Module 15 Mastery Check . 386

16 Managing SQL Transactions . 389

Critical Skill 16.1 Understand SQL Transactions . 390

Critical Skill 16.2 Set Transaction Properties . 393

Specifying an Isolation Level . 394

Specifying a Diagnostics Size . 399

Creating a SET TRANSACTION Statement . 400

Critical Skill 16.3 Start a Transaction . 401

Critical Skill 16.4 Set Constraint Deferrability . 402

Critical Skill 16.5 Create Savepoints in a Transaction . 406

Releasing a Savepoint . 408

xiv SQL: A Beginner’s Guide

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Critical Skill 16.6 Terminate a Transaction . 408

Committing a Transaction . 409

Rolling Back a Transaction . 410

Project 16-1 Working with Transactions . 411

Module 16 Mastery Check . 414

17 Accessing SQL Data from Your Host Program . 417

Critical Skill 17.1 Invoke SQL Directly . 418

Critical Skill 17.2 Embed SQL Statements in Your Program . 419

Creating an Embedded SQL Statement . 421

Using Host Variables in Your SQL Statements . 423

Retrieving SQL Data . 424

Error Handling . 427

Project 17-1 Embedding SQL Statements . 429

Critical Skill 17.3 Create SQL Client Modules . 432

Defining SQL Client Modules . 433

Critical Skill 17.4 Use an SQL Call-Level Interface . 435

Allocating Handles . 437

Executing SQL Statements . 440

Working with Host Variables . 441

Retrieving SQL Data . 442

Project 17-2 Using the SQL Call-Level Interface . 443

Module 17 Mastery Check . 446

PART IV
Appendixes

A Answers to Mastery Checks . 451

Module 1: Introduction to Relational Databases and SQL . 452

Module 2: Working with the SQL Environment . 453

Module 3: Creating and Altering Tables . 455

Module 4: Enforcing Data Integrity . 458

Module 5: Creating SQL Views . 460

Module 6: Managing Database Security . 462

Module 7: Querying SQL Data . 464

Module 8: Modifying SQL Data . 466

Module 9: Using Predicates . 469

Module 10: Working with Functions and Value Expressions . 471

Module 11: Accessing Multiple Tables . 473

Module 12: Using Subqueries to Access and Modify Data . 475

Module 13: Creating SQL-Invoked Routines . 476

Module 14: Creating SQL Triggers . 478

Module 15: Using SQL Cursors . 481

Contents xv

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:xv

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:xvi

Module 16: Managing SQL Transactions . 483

Module 17: Accessing SQL Data from Your Host Program . 486

B SQL:1999 Keywords . 489

SQL Reserved Keywords . 490

SQL Nonreserved Keywords . 493

C SQL Code Used in the Book’s Projects . 495

SQL Code by Project . 496

The Inventory Database . 509

Index . 515

xvi SQL: A Beginner’s Guide

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio FM:xvii

Acknowledgments

A s with any publication, too many people were involved in the development of

SQL: A Beginner’s Guide, Second Edition to be able to name them all, but I would

at least like to acknowledge the editors and staff at McGraw-Hill/Osborne whom I had the

pleasure of working with directly. My special thanks go to Lisa McClain, the acquisitions

editor; Athena Honore, the acquisitions coordinator; and LeeAnn Pickrell, the project editor.

Together the three of them kept this project moving forward smoothly and professionally and

provided me with an immeasurable degree of help along the way. Along with these three, I

want to acknowledge Margaret Berson, the copy editor, and all the other editors, proofreaders,

indexers, designers, illustrators, and other participants whose names I never learned. In addition,

I want to acknowledge Greg Guntle, the technical editor, for his attention to detail, his grasp of

the subject matter, and his invaluable input into the book’s content. I also want to thank my

agent, Danielle Jatlow at Waterside Productions, Inc., for making this project happen and for

her continual support in all my efforts. Finally, I want to thank my friend, mentor, and sometimes

co-author Ethan Wilansky for his encouragement, support, and answers to my endless questions

throughout the course of this project and other projects that I have tackled throughout the years.

xvii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:xix

Introduction

R elational databases have become a common mainstay for systems that provide data storage

for various types of applications. Programming languages such as C or COBOL or scripting

languages such as VBScript or JavaScript must often access a data source in order to retrieve or

modify data through the application. Many of these data sources are managed by a relational

database management system (RDBMS) that relies on the Structured Query Language (SQL) to

create and alter database objects, add data to and retrieve data from the database, and modify data

that has been added to that database.

SQL is the most widely implemented language for relational databases. SQL not only

allows you to manage data within the database, but also manage the database itself. By using

SQL statements, you can access an SQL database directly by using an interactive client

application or through an application programming language or scripting language. Regardless

of which method you use to access a data source, you should have a foundation in how to write

SQL statements that allows you to access relational data. SQL: A Beginner’s Guide, Second

Edition provides you with such a foundation. It describes the types of statements that SQL

supports and explains how they’re used to manage databases and their data. By working

through the modules in this book, you’ll build a strong foundation in basic SQL and gain a

comprehensive understanding of how to use SQL to access data in your relational database.

xix

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:xx

xx SQL: A Beginner’s Guide

Who Should Read This Book
SQL: A Beginner’s Guide is recommended for anyone trying to build a foundation in SQL

programming. The book is designed specifically for those who are new or relatively new to SQL;

however, those of you who need a refresher in SQL will also find this book beneficial. Whether

you’re an experienced programmer, have had some web development experience, are a database

administrator, or are new to programming and databases, SQL: A Beginner’s Guide provides a

strong foundation that will be useful to any of you wishing to learn more about SQL. In fact, any

of the following individuals will find this book helpful when trying to understand and use SQL:

● The novice new to database design and SQL programming

● The analyst or manager who wants to better understand how to implement and access SQL

databases

● The database administrator who wants to learn more about programming

● The technical support professional or testing engineer who must perform ad hoc queries

against an SQL data source

● The web developer writing applications that must access SQL databases

● The third-generation language (3GL) programmer embedding SQL within an application’s

source code

● Any other individual who wants to learn how to write SQL code that can be used to create

and access databases within an RDBMS

Whichever category you might fit into, an important point to remember is that the book

is geared toward anyone wanting to learn standard SQL, not a product-specific version of the

language. The advantage of this is that you can take the skills learned in this book and apply

them to real-world situations, without being limited to product standards. You will, of course,

still need to be aware of how the product you work in implements SQL, but with the foundation

provided by the book, you’ll be able to move from one RDBMS to the next and still have a

basic understanding of how SQL is used. As a result, this book is a useful tool to anyone new

to SQL-based databases, regardless of the product used. SQL programmers need only adapt

their knowledge to the specific RDBMS.

What Content the Book Covers
SQL: A Beginner’s Guide is divided into three parts. Part I introduces you to the basic concepts

of SQL and explains how to create objects within your database. Part II provides you with a

foundation in how to retrieve data from a database and modify the data that’s stored in the

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Introduction xxi

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:xxi

database. Part III provides you with information about advanced data access techniques that

allow you to expand on what you learned in Part I and Part II. In addition to the three parts,

SQL: A Beginner’s Guide contains appendixes that include reference material for the information

presented in the three parts.

Description of the Book’s Content
The following outline describes the contents of the book and shows how the book is broken

down into task-focused modules.

Part I: SQL Databases
Part I introduces you to SQL and the SQL environment and explains how to create database

objects within that environment. You’ll also learn how to use constraints in your table

definitions to enforce data integrity.

Module 1: Introduction to Relational Databases and SQL This module introduces

you to relational databases and the relational model, which forms the basis for SQL. You’ll

also be provided with a general overview of SQL and how it relates to RDBMSs.

Module 2: Working with the SQL Environment This module describes the components

that make up the SQL environment. You’ll also be introduced to the objects that make up a schema,

and you’ll learn how to create a schema within your SQL environment. You’ll also be introduced to

the concept of creating a database object in an SQL implementation that supports the creation of

database objects.

Module 3: Creating and Altering Tables In this module, you’ll learn how to create

SQL tables, specify column data types, create user-defined types, and specify column default

values. You’ll also learn how to alter a table definition and delete that definition from your

database.

Module 4: Enforcing Data Integrity This module explains how integrity constraints

are used to enforce data integrity in your SQL tables. The module includes information on

table-related constraints, assertions, and domain constraints. You will learn how to create NOT

NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, and CHECK constraints.

Module 5: Creating SQL Views In this module, you’ll learn how to add views to your

SQL database. You’ll also learn how to create updateable views and how to drop views from

the database.

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:xxii

Module 6: Managing Database Security In this module, you’ll be introduced to the

SQL security model and learn how authorization identifiers are defined within the context of a

session. You’ll then learn how to create and delete roles, grant and revoke privileges, and grant

and revoke roles.

Part II: Data Access and Modification
Part II explains how to access and modify data in an SQL database. You’ll also learn how to

use predicates, functions, and value expressions to manage that data. In addition, Part II

describes how to join tables together and use subqueries to access data in multiple tables.

Module 7: Querying SQL Data This module describes the basic components of the

SELECT statement and how the statement is used to retrieve data from an SQL database.

You’ll learn how to define each clause that makes up the SELECT statement and how those

clauses are processed when querying a database.

Module 8: Modifying SQL Data In this module, you’ll learn how to modify data in an

SQL database. Specifically, you’ll learn how to insert data, update data, and delete data. The

module reviews each component of the SQL statements that allow you to perform these data

modifications.

Module 9: Using Predicates In this module, you’ll learn how to use predicates to

compare SQL data, return null values, return similar values, reference additional sources of

data, and quantify comparison predicates. The module describes the various types of predicates

and shows you how they’re used to retrieve specific data from an SQL database.

Module 10: Working with Functions and Value Expressions This module explains

how to use various types of functions and value expressions in your SQL statements. You’ll

learn how to use set functions, value functions, value expressions, and special values in

various clauses within an SQL statement.

Module 11: Accessing Multiple Tables This module describes how to join tables in

order to retrieve data from those tables. You will learn how to perform basic join operations,

join tables with shared column names, use the condition join, and perform union operations.

Module 12: Using Subqueries to Access and Modify Data In this module, you’ll

learn how to create subqueries that return multiple rows and that return only one value. You’ll

also learn how to use correlated subqueries and nested subqueries. In addition, you’ll learn

how to use subqueries to modify data.

xxii SQL: A Beginner’s Guide

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Part III: Advanced Data Access
Part III introduces you to advanced data-access techniques such as SQL-invoked routines,

triggers, and cursors. You’ll also learn how to manage transactions and how to access SQL

data from your host program.

Module 13: Creating SQL-Invoked Routines This module describes SQL-invoked

procedures and functions and how you can create them in your SQL database. You’ll learn

how to define input parameters, add local variables to your routine, work with control

statements, and use output parameters.

Module 14: Creating SQL Triggers This module introduces you to SQL triggers and

explains how to create insert, update, and delete triggers in your SQL database. You’ll learn

how triggers are automatically invoked and what types of actions they can take.

Module 15: Using SQL Cursors In this module, you’ll learn how SQL cursors are used

to retrieve one row of data at a time from a result set. The module explains how to declare a

cursor, open and close a cursor, and retrieve data from a cursor. You’ll also learn how to use

positioned UPDATE and DELETE statements after you fetch a row through a cursor.

Module 16: Managing SQL Transactions In this module, you’ll learn how

transactions are used to ensure the integrity of your SQL data. The module describes how

to set transaction properties, start a transaction, set constraint deferrability, create savepoints

in a transaction, and terminate a transaction.

Module 17: Accessing SQL Data from Your Host Program This module describes

the four methods supported by the SQL standard for accessing an SQL database. You’ll learn

how to invoke SQL directly from a client application, embed SQL statements in a program,

create SQL client modules, and use an SQL call-level interface to access data.

Part IV: Appendixes
The appendixes include reference material for the information presented in the first three parts.

Appendix A: Answers to Mastery Checks This appendix provides the answers to the

Mastery Check questions listed at the end of each module.

Appendix B: SQL:1999 Keywords This appendix lists the reserved and nonreserved

keywords as they are used in SQL statements and defined in the SQL:1999 standard.

Introduction xxiii

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:xxiii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:xxiv

Appendix C: SQL Code Used in the Book’s Projects This appendix contains a copy

of the SQL statements that are used in the projects throughout the modules. The appendix also

provides the code specific to creating the Inventory database and populating that database with

data. (The Inventory database is created and used in most of the projects in the book.)

Module Content
As you can see in the outline, SQL: A Beginner’s Guide is organized into modules. Each module

focuses on a set of related tasks. The module contains the background information you need to

understand the various concepts related to those tasks, explains how to create the necessary SQL

statements to perform the tasks, and provides examples of how those statements are created. In

addition, each module contains additional elements to help you better understand the information

covered in that module:

● Progress Check Each module contains two or more sets of questions that are interspersed

within the content of the module. The questions are meant to help you understand key points

presented in a particular section. The answers to these questions are provided at the bottom

of the page where the questions appear.

● Ask the Expert Each module contains one or two Ask the Expert sections that provide

information on questions that might arise about the information presented in the module.

● Mastery Check Each module ends with a Mastery Check, which is a set of questions

that tests you on the information and skills you learned in that module. The answers to the

Mastery Check are included in Appendix A.

SQL: A Beginner’s Guide is organized into a logical structure that corresponds to the

process of creating an SQL database. Each module builds on previous modules so that you’re

continuously applying the skills that you learned earlier to the information you’re being taught

in the current module. By the end of the book, you’ll have created a database, created tables

within that database, enforced data integrity on the tables, queried and modified data within

the database, and implemented advanced data access techniques.

Because of the book’s organization, it is recommended that you work through the modules

in the order that they’re presented. If you already have experience with SQL databases, you

might want to use the book more as a reference and simply skip to the module that provides

the information that you’re looking for. However, most readers should start at the beginning

and work their way through each module.

In addition to the module elements already mentioned (Progress Check, Ask the Expert,

and Mastery Check), each module includes examples of SQL syntax and actual statements.

Each module also includes one or more projects that allow you to apply the information that

you learned in the module.

xxiv SQL: A Beginner’s Guide

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL Syntax
The syntax of an SQL statement refers to the structure used for that statement, as outlined in

SQL:1999. Most modules will include the syntax for one or more statements so that you have an

understanding of the basic elements contained in those statements. For example, the following

syntax represents the information you need when you define a CREATE TABLE statement:

<table definition> ::=

CREATE [{ GLOBAL | LOCAL } TEMPORARY] TABLE <table name>

(<table element> [{ , <table element> } . . .])

[ON COMMIT { PRESERVE | DELETE } ROWS]

NOTE
Do not be concerned about the meaning of the SQL code at this time. This example is
meant only to show you how SQL statements are represented in this book.

As you can see, a statement’s syntax can contain many elements. Notice that most of

the words used within the statement are shown in uppercase. The uppercase words are SQL

keywords that are used to formulate the SQL statement. (For a complete list of SQL:1999

keywords, see Appendix B.) Although SQL does not require that keywords be written in

uppercase, I use that convention in this book so that you can easily identify the keywords

within a statement. In addition to the keywords, the syntax for an SQL statement includes a

number of other elements that help define how a particular statement should be created:

● Square brackets The square brackets indicate that the syntax enclosed in those brackets

is optional. For example, the ON COMMIT clause in the CREATE TABLE statement is

optional.

● Angle brackets The angle brackets enclose information that represents a placeholder.

When a statement is actually created, the placeholder is replaced by the appropriate SQL

elements or identifiers. For example, you should replace the <table name> placeholder

with a name for the table when you define a CREATE TABLE statement.

● Curly brackets The curly brackets are used to group elements together. The brackets

tell you that you should first decide how to handle the contents within the brackets and

then determine how they fit into the statement. For example, the PRESERVE | DELETE

set of keywords is enclosed by curly brackets. You must first choose PRESERVE or

DELETE and then deal with the entire line of code. As a result, your clause can read ON

COMMIT PRESERVE ROWS, or it can read ON COMMIT DELETE ROWS.

● Vertical bars The vertical bar can be read as “or,” which means that you should use the

PRESERVE option or the DELETE option.

Introduction xxv

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:xxv

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:xxvi

xxvi SQL: A Beginner’s Guide

● Three periods The three periods indicate that you can repeat the clause as often as

necessary. For example, you can include as many table elements (represented by <table

element>) as necessary.

● Colons/equal sign The ::= symbol (two consecutive colons plus an equal sign) indicates

that the placeholder to the left of the symbol is defined by the syntax following the symbol.

In the syntax example, the <table definition> placeholder equals the syntax that makes up

a CREATE TABLE statement.

By referring to the syntax, you should be able to construct an SQL statement that creates

database objects or modifies SQL data as necessary. However, in order to better demonstrate

how the syntax is applied, each module also contains examples of actual SQL statements.

Examples of SQL Statements
Each module provides examples of how SQL statements are implemented when accessing an

SQL database. For example, you might see an SQL statement similar to the following:

CREATE TABLE CDInventory
(CompactDiscID INT, CDTitle VARCHAR (60), LabelID INT) ;

Notice that the statement is written in special type to show that it is SQL code. Also notice

that keywords are all uppercase. (You don’t need to be concerned about any other details at

this point.)

The examples used in the book are pure SQL, meaning that they’re based on the SQL:1999

standard. You’ll find, however, that in some cases your SQL implementation does not support

an SQL statement in exactly the same way as it is defined in the standard. For this reason, you

might also need to refer to the documentation for a particular product to be sure that your SQL

statement conforms to that product’s standards. Sometimes it might be only a slight variation,

but there might be times when the product statement is substantially different from the SQL

statement.

The examples in each module are based on a database related to an inventory of compact

discs. However, the examples are not necessarily consistent in terms of the names used for

database objects and how those objects are defined. For example, two different modules might

contain examples that reference a table named CDInventory. However, you cannot assume that

the tables used in the different examples are made up of the same columns or contain the same

content. Because each example focuses on a unique aspect of SQL, the tables used in examples

are defined in a way specific to the needs of that example, as you’ll see as you get into the

modules. However, this is not the case for projects, which use a consistent database structure

throughout the book.

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Module Projects
Each module contains one or two projects that allow you to apply the information that you learned

in the module. A project is broken down into steps that walk you through the process of completing

a particular task. Many of the projects include related files that you can download from our Web

site at http://www.osborne.com. The files usually include the SQL statements used within the

projects. In addition, the SQL statements are also included in Appendix C.

The projects are based on the Inventory database. You’ll create the database, create the

tables and other objects in the database, add data to those tables, and then manipulate that data.

Because the projects build on one another, it is best that you complete them in the order that

they’re presented in the book. This is especially true for the modules in Part I, in which you

create the database objects, and Module 7, in which you insert data into the tables. However, if

you do plan to skip around, you can refer to Appendix C, which provides the code necessary to

create the database objects and populate the tables with data.

To complete most of the projects in this book, you’ll need to have access to an RDBMS

that allows you to enter and execute SQL statements interactively. If you’re accessing an

RDBMS over a network, check with the database administrator to make sure that you’re

logging in with the credentials necessary to create a database and schema. You might need

special permissions to create these objects. Also verify whether there are any parameters you

should include when creating the database (for example, log file size), restrictions on the name

you can use, or restrictions of any other kind. Be sure to check the product’s documentation

before working with any database product.

Introduction xxvii

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:xxvii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Part I
SQL Databases

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:1

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Module1
Introduction to
Relational Databases
and SQL

CRITICAL SKILLS
1.1 Understand Relational Databases

1.2 Learn about SQL

1.3 Use a Relational Database Management System

3

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:3

3

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In 1999, the American National Standards Institute (ANSI) and the International Organization

for Standardization (ISO) published their long-awaited SQL standard, which was dubbed

“SQL:1999” (also known as SQL3). The SQL:1999 standard, like its predecessor SQL-92,

is based on the relational data model, which defines how data can be stored and manipulated

within a relational database. Relational database management systems (RDBMSs) such as

Oracle or SQL Server use the SQL standard as a foundation for their products, providing

database environments that support both SQL and the relational data model.

CRITICAL SKILL

1.1 Understand Relational Databases
Structured Query Language (SQL) supports the creation and maintenance of the relational

database and the management of data within that database. However, before I go into a

discussion about relational databases, I want to explain what I mean by the term database.

The term itself has been used to refer to anything from a collection of names and addresses

to a complex system of data retrieval and storage that relies on user interfaces and a network

of client computers and servers. There are as many definitions for the word database as there

are books about them. Despite the lack of an absolute meaning, most sources agree that a database,

at the very least, is a collection of data organized in a structured format that is defined by metadata

that describes that structure. You can think of metadata as data about the data being stored;

it defines how the data is stored within the database.

Over the years, a number of database models have been implemented to store and manage

data. Several of the more common models include the following:

● Hierarchical This model has a parent-child structure that is similar to an inverted tree,

which is what forms the hierarchy. A parent table can have many child tables, but a child

table can have only one parent table. Although the model has been highly implemented, it

is often considered unsuitable for many applications because of its inflexible structure and

lack of support for complex relationships. Still, many implementations have introduced

functionality that works around these limitations.

● Network This model addresses some of the limitations of the hierarchical model. It still

uses an inverted tree structure, but tables are organized into a set structure that relates pairs

of tables into owners and members. Any one table can participate in any set with other tables

in the database, which supports more complex queries than are possible in the hierarchical

model. Still, the network model has its limitations. You have to be very familiar with the

database to work through the set structures, and it’s difficult to change the structure without

affecting applications that interact with the database.

● Relational This model addresses many of the limitations of both the hierarchical and

network models. In a hierarchical or network database, the application relies on a defined

implementation of that database, which is then hard-coded into the application. If you add

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:4

4 Module 1: Introduction to Relational Databases and SQL

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

a new attribute to the database, you must modify the application, even if it doesn’t use the

attribute. However, a relational database is independent of the application; you can modify

the structure without impacting the application. In addition, the structure of the relational

database is based on the relation, or table, which provides the ability to define complex

relationships between these relations. Each relation can be thought of as an entity in its

own right, without the cumbersome limitations of a hierarchical or owner/member model

that restricts how relationships can be defined between tables. In the following section,

“The Relational Model,” I’ll discuss the model in more detail.

Hierarchical and network databases are found in legacy systems and are still used in many

organizations. However, the relational model has replaced many of these systems and is the

model most extensively implemented by modern database products, and it is the relational

model that provides the foundation for SQL.

The Relational Model
If you’ve ever had the opportunity to look at a book about relational databases, you have quite

possibly seen the name of Dr. E. F. Codd referred to in the context of the relational model. In

1970 Codd published his seminal paper, “A Relational Model of Data for Large Shared Data

Banks,” in the journal Communications of the ACM, Volume 13, Number 6 (June 1970). Codd

defines a relational data structure that protects data and allows that data to be manipulated in

a way that is predictable and resistant to error. The relational model, which is rooted primarily

in the mathematical principles of set theory and predicate logic, supports easy data retrieval,

enforces data accuracy and consistency, and provides a database structure independent of the

applications accessing the stored data.

At the core of the relational model is the relation. A relation is a set of columns and rows

collected in a table-like structure that represents a single entity made up of related data. Each

relation comprises one or more attributes (columns). An attribute groups similar types of data

together. For example, in Figure 1-1 the CDName attribute contains the titles of compact discs

(CDs), while artist names and copyright dates are listed in separate attributes.

As you can see in Figure 1-1, each attribute has an associated domain. A domain defines

the type of data that can be stored in a particular attribute; however, a domain is not the same

thing as a data type. A data type, which is discussed in more detail in Module 3, is a specific

kind of constraint associated with a column, whereas a domain, as it is used in the relational

model, has a much broader meaning and describes exactly what data can be included in an

attribute associated with that domain. For example, the Copyright attribute is associated with

the Year domain. The domain can be defined so that the attribute includes only data whose

values and format are limited to years, as opposed to days or months. The domain might also

limit the data to a specific range of years. A data type, on the other hand, restricts the format

of the data, but not the values, unless those values somehow violate the format.

SQL: A Beginner’s Guide 5

1

In
tro

du
ct

io
n

to
Re

la
tio

na
lD

at
ab

as
es

an
d

SQ
L

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:6

Data is stored in a relation in tuples (rows). A tuple is a set of data whose values make up

an instance of each attribute defined for that relation. Each tuple represents a record of related

data. (In fact, the set of data is sometimes referred to as a record.) For example, in Figure 1-1

the second tuple from the top contains the Joni Mitchell value for the Artist attribute, the Blue

value for the CDName attribute, and the 1971 value for the Copyright attribute. Together these

three values form a tuple.

NOTE
The terms relation, attribute, and tuple are used primarily when referring to the relational
model. SQL uses the terms table, column, and row to describe these items. Because the
relational model is based on mathematical principles and SQL is concerned more with
the physical implementation of the model, the meanings for the model’s terms and the
SQL language’s terms are slightly different, but the underlying principles are the same.
The SQL terms are discussed in more detail in Module 2.

The relational model is, of course, more complex than the attributes and tuples that make

up a relation. Two very important considerations in the design and implementation of any

relational database are the normalization of data and the associations of relations among the

various types of data.

Normalizing Data
Central to the principles of the relational model is the concept of normalization, the process of

organizing a database into a structure that preserves the integrity of the stored data and minimizes

6 Module 1: Introduction to Relational Databases and SQL

Figure 1-1 Relation made up of the Artist, CDName, and Copyright attributes

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

redundant data. A normalized database is one that conforms to the rules of the relational model.

These rules, referred to as normal forms, provide specific guidelines on how data should be

organized in order to prevent inconsistencies in and loss of data as the database is being used.

When the original relational model was presented, it included three normal forms. Although

additional normal forms have been added since then, the first three still cover most situations

when normalizing data, and since my intent here is primarily to introduce you to the process

of normalization, I’ll discuss only those three forms.

First Normal Form The first normal form provides the foundation for the second and third

forms. The first form includes the following guidelines:

● Each attribute of a tuple must contain only one value.

● Each tuple in a relation must contain the same number of values.

● Each tuple in a relation must be different.

As you can see in Figure 1-2, the second tuple and the last tuple violate the first normal

form. In the second tuple, the CDName attribute and the Copyright attribute each contain

two values. In the last tuple, the Artist attribute contains three values.

If you were to normalize the data, you would create additional tables that allow you to

separate the data so that each attribute contains only one value, each tuple contains the same

number of values, and each tuple is different, as shown in Figure 1-3. The data now conforms

to the first normal form.

SQL: A Beginner’s Guide 7

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:7

1

In
tro

du
ct

io
n

to
Re

la
tio

na
lD

at
ab

as
es

an
d

SQ
L

Figure 1-2 Relation that violates the first normal form

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:8

8 Module 1: Introduction to Relational Databases and SQL

Notice that there are duplicate values in the second relation; the ArtistID value of 10002 is

repeated and the CDID value of 99308 is repeated. However, when the two attribute values are

taken together, the tuple as a whole forms a unique combination, which means that, despite the

duplications, each tuple in the relation is different.

Second Normal Form The second normal form states that a relation must be in first

normal form and that all attributes in the relation are dependent on the entire candidate key.

A candidate key is a set of one or more attributes that uniquely identify each tuple. For

example, in the relation shown in Figure 1-4, you might decide to designate the Artist and

CDName attributes as a candidate key. Together, these values uniquely identify each tuple.

However, the Copyright attribute is dependent only on the CDName attribute, and not on

the Artist attribute. Even though the relation conforms to the first normal form, it violates the

second normal form. Again, the solution might be to separate the data into different relations,

as you saw in Figure 1-3.

Third Normal Form The third normal form, like the second normal form, is dependent on

the relation’s candidate key. To adhere to the guidelines of the third normal form, a relation

must be in second normal form and nonkey attributes must be independent of each other and

dependent on the key. For example, the candidate key in the relation shown in Figure 1-5 is the

ArtistID attribute. The ArtistName and Agency attributes are both dependent on the key and

are independent of each other. However, the AgencyState attribute is dependent on the Agency

attribute and not on the key. Therefore it violates the conditions of the third normal form. This

attribute would be better suited in a relation that includes data about agencies.

Figure 1-3 Relations that conform to the first normal form

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 9

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:9

1

In
tro

du
ct

io
n

to
Re

la
tio

na
lD

at
ab

as
es

an
d

SQ
L

Figure 1-4 Relation with two attributes forming the candidate key

Figure 1-5 Relation with an attribute that violates the third normal form

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:10

NOTE
In the theoretical world of relational design, the goal is to store data according to
the rules of normalization. However, in the real world of database implementation,
it is a common practice to denormalize data, which means to deliberately violate the
rules of normalization, particularly the second and third normal forms. Denormalization
is used primarily to improve performance or reduce complexity in cases where an
overnormalized structure complicates implementation. Still, the goal of normalization
is to ensure data integrity, and denormalization should be performed with great care.

Progress Check
1. What are the main components of a relation?

2. Which guidelines should you adhere to when normalizing data according to the first

normal form?

Relationships
So far, my focus in this module has been on the relation and how to normalize data. However,

an important component of any relational database is how those relations are associated with

each other. These associations, or relationships, link relations together in ways that are meaningful

to each other, helping to ensure the integrity of the data so that an action taken in one relation

does not negatively impact data in another relation.

A relational database supports three primary types of relationships:

● One-to-one A relationship between two relations in which a tuple in the first relation is

related to only one tuple in the second relation, and a tuple in the second relation is related

to only one tuple in the first relation.

● One-to-many A relationship between two relations in which a tuple in the first relation

is related to one or more tuples in the second relation, but a tuple in the second relation is

related to only one tuple in the first relation.

● Many-to-many A relationship between two relations in which a tuple in the first relation

is related to one or more tuples in the second relation, and a tuple in the second relation is

related to one or more tuples in the first relation.

10 Module 1: Introduction to Relational Databases and SQL

1. The main components of a relation are the attributes (columns), their domains, and the tuples (rows).

2. According to the first normal form, each attribute of a tuple must contain only one value, each tuple

in a relation must contain the same number of values, and each tuple in a relation must be different.

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The best way to illustrate these relationships is to look at a data model of several relations

(shown in Figure 1-6). I’ve named the relations to make referencing them easier. As you can

see, all three types of relationships are represented:

● A one-to-one relationship exists between the ArtistAgencies relation and the ArtistNames

relation. For each artist listed in the first relation, there can be only one artist listed in the

second relation, and vice versa.

● A one-to-many relationship exists between the ArtistNames relation and the ArtistCDs

relation. For each artist in the first relation, one or more tuples for that artist can be listed

in the second relation. In other words, each artist could have made one or more CDs.

However, for each artist listed in the second relation, there can be only one related tuple

for that artist in the first relation.

● A one-to-many relationship exists between the ArtistCDs relation and the CompactDiscs

relation. For each CD, there can be one or more artists; however, the CD can be listed only

once in the CompactDiscs relation.

● A many-to-many relationship exists between the ArtistNames relation and the CompactDiscs

relation. For every artist, there can be one or more CDs, and for every CD, there can be

one or more artist.

NOTE
A many-to-many relationship is physically implemented by adding a third relation
between the first and second relation to create two one-to-many relationships. In
Figure 1-6, the ArtistCDs relation was added between the ArtistNames relation
and the CompactDiscs relation.

SQL: A Beginner’s Guide 11

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:11

1

In
tro

du
ct

io
n

to
Re

la
tio

na
lD

at
ab

as
es

an
d

SQ
L

Figure 1-6 Types of relationships between relations

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:12

12 Module 1: Introduction to Relational Databases and SQL

Project 1-1 Normalizing Data and
Identifying Relationships

As a beginning SQL programmer, it’s unlikely that you’ll be responsible for

normalizing—or denormalizing—data. Still, it’s important that you understand

these concepts, just as it’s important that you understand the sorts of relationships

that can exist between relations. Normalization and relationships, like the relations themselves,

help to provide the foundation on which SQL is built. As a result, this project focuses on the

process of normalizing data and identifying the relationships between relations. To complete

the project, you need only a paper and pencil on which to sketch the data model.

Ask the Expert
Q: You mention that relationships between relations help to ensure data integrity.

How do relationships make that possible?

A: Suppose your data model includes a relation (named ArtistNames) that lists all the

artists who have recorded CDs in your inventory. Your model also includes a relation

(named ArtistCDs) that matches artist IDs with compact disc IDs. If a relationship exists

between the two relations, tuples in one relation will always correspond to tuples in

the other relation. As a result, you could prevent certain actions that could compromise

data. For example, you would not be able to add an artist ID to the ArtistCDs relation

if that ID wasn’t listed in the ArtistNames relation.

Q: What do you mean by the term data model?

A: By data model, I’m referring to a type of diagram that represents the structure of a

database. The model identifies the relations, attributes, keys, domains, and relationships

within that database. Some database designers will create a logical model and physical

model. The logical model is based more on relational theory and applies the appropriate

principles of normalization to the data. The physical model, on the other hand, is concerned

with the actual implementation, as the data will be stored in an RDBMS. Based on the

logical design, the physical design brings the data structure down to the real world of

implementation.

Prj01-1a.jpg
Prj01-1b.jpg

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Step by Step
1. Review the relation in the following illustration:

Identify any elements that do not conform to the three normal forms. You will find that

the Category attribute contains more than one value for each tuple, which violates the first

normal form.

2. Normalize the data according to the normal forms. Sketch out a data model that includes

the appropriate relations, attributes, and tuples. Your model will include three tables, one

for the list of CDs, one for the list of music categories (for example, Pop), and one that

associates the CDs with the appropriate categories of music. View the Prj01-1a.jpg file

online for an example of what your data model might look like.

3. On the illustration you drew, identify the relationships between the relations. Remember

that each CD can be associated with one or more categories, and each category can be

associated with one or more CDs. View the Prj01-1b.jpg file online to view the relationships

between relations.

Project Summary
Data models are usually more specific than the illustrations shown in this project. Relationships

and keys are clearly marked with symbols that conform to a particular type of data modeling

system, and relationships show only the attributes, but not the tuples. However, for the purposes

of this module, it is enough that you have a basic understanding of normalization and the

relationships between relations. The project is meant only as a way for you to better understand

these concepts and how they apply to the relational model.

SQL: A Beginner’s Guide 13

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:13

1

In
tro

du
ct

io
n

to
Re

la
tio

na
lD

at
ab

as
es

an
d

SQ
L

No
rm

ali
zin

gD
at

aa
nd

Id
en

tif
yin

gR
ela

tio
ns

hip
s

Project
1-1

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:14

14 Module 1: Introduction to Relational Databases and SQL

CRITICAL SKILL

1.2 Learn about SQL
Now that you have a fundamental understanding of the relational model, it’s time to introduce

you to SQL and its basic characteristics. As you might recall from the “Understand Relational

Databases” section earlier in this module, SQL is based on the relational model, although it is

not an exact implementation. While the relational model provides the theoretical underpinnings

of the relational database, it is SQL, the language, that supports the physical implementation of

that database.

SQL, a nearly universally implemented relational language, is different from other languages

such as C, COBOL, and Java, which are procedural. A procedural language defines how an

application’s operations should be performed and the order in which they are performed. A

nonprocedural language, on the other hand, is concerned more with the results of an operation;

the underlying software environment determines how the operations will be processed. This is

not to say that SQL supports no procedural functionality. For example, stored procedures, added

to many RDBMS products a number of years ago, are part of the SQL:1999 standard and provide

procedural-like capabilities. (Stored procedures are discussed in Module 13.)

However, SQL still lacks many of the basic programming capabilities of most other computer

languages. For this reason, SQL is often referred to as a data sublanguage because it is most

often used in association with application programming languages such as C and Java, languages

that are not designed for manipulating data stored in a database. As a result, SQL is used in

conjunction with the application language to provide an efficient means of accessing that data,

which is why SQL is considered a sublanguage.

The SQL Evolution
In the early 1970s, after the relational data model had been published, IBM began to develop a

language and a database system that could be used to implement that model. When it was first

defined, the language was referred to as Structured English Query Language (SEQUEL), and when

it was later revised, the name was changed to SQL. As word got out that IBM was developing

a relational database system based on SQL, other companies began to develop their own SQL-

based products. In fact, Relational Software, Inc., now the Oracle Corporation, released their

database system before IBM got their product to the market. As more vendors released

their products, SQL began to emerge as the standard relational database language.

In 1986 ANSI released the first published standard for the language (SQL-86). The standard

was updated in 1989 and again in 1992. SQL-92 represented a major revision of the language,

expanding on and improving features of the earlier versions. Seven years later, in 1999, the

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 15

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:15

1

In
tro

du
ct

io
n

to
Re

la
tio

na
lD

at
ab

as
es

an
d

SQ
L

latest version of the SQL standard, SQL:1999, was released, representing yet another large

step forward in bringing SQL up to date with the real-world implementations of database

systems and the needs of those who use those systems.

Since the release of the SQL:1999 standard, RDBMS vendors have been working to implement

the new standard into their products. However, it should be noted that in some cases, the standard

is merely catching up with functionality already implemented in the database systems. For

example, stored procedures and triggers are new to the SQL standard but have been implemented

in RDBMSs for many years. SQL:1999 is merely standardizing the language used to implement

functionality that already exists.

NOTE
Although I discuss stored procedures in Module 13 and triggers in Module 14, I thought
I’d give you a quick definition of each. A stored procedure is a set of SQL statements that
are stored as an object in the database on the server but can be invoked by a client
simply by calling the procedure. A trigger is similar to a stored procedure in that it is a set
of SQL statements stored as an object in the database on the server. However, rather than
being invoked from a client, a trigger is invoked automatically when some predefined
event occurs, such as inserting or updating data.

Object Relational Model
The SQL:1999 standard does more than build on and expand SQL-92. As I have discussed,

SQL is based on the relational model. This is true for SQL-92 as well as SQL:1999. However,

unlike SQL-92, which is founded on a purely relational model, SQL:1999 extends that model

to include object-oriented constructs into the language. These constructs are based on the

concepts inherent to object-oriented programming, a programming methodology that defines

self-contained collections (objects) of data structures and routines. In object-oriented languages

such as Java and C++, the objects interact with one another in ways that allow the language to

address complex problems that were not easily resolved in traditional languages.

With the advent of object-oriented programming—along with advances in hardware and

software technologies and the growing complexities of applications—it became increasingly

apparent that a purely relational language was inadequate to meet the demands of the real

world. Of specific concern was the fact that SQL could not support complex and user-defined

data types or the extensibility required for more complicated applications.

Fueled by the competitive nature of the industry, RDBMS vendors took it upon themselves

to augment their products and incorporate object-oriented functionality into their systems. The

SQL:1999 standard follows suit and extends the relational model with object-oriented capabilities,

such as methods, encapsulation, and complex user-defined data types, making SQL an object-

relational database language.

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:16

Conformance to SQL:1999
Once SQL was standardized, it followed that the standard would also define what it took for

an implementation of SQL (an RDBMS product) to be considered in conformance to that

standard. For example, the SQL-92 standard provided three levels of conformance: Entry,

Intermediate, and Full. Most popular RDBMSs reached only Entry level conformance.

Because of this, SQL:1999 takes a different approach to setting conformance standards.

For a product to be in conformance with SQL:1999, it must support the Core SQL level

of conformance. Core SQL in the SQL:1999 standard basically consists of all the Entry

level compliance requirements of SQL-92, some of the Intermediate and Full levels, and

a few features new to SQL:1999.

In addition to the Core SQL level of conformance, vendors can claim conformance to one

of the nine packages of features that are part of the SQL language. Each package describes

a standard for a set of related functionality as implemented through SQL. For example, the

eighth package (PKG008) provides details on active database features, which are related to

basic trigger capabilities.

TIP
You can view information about these packages or any other information about the
SQL:1999 standard by purchasing a copy of the appropriate standard document
published by ANSI and ISO. The standard is divided into five documents. The first
document (ANSI/ISO/IEC 9075-1-1999) includes an overview of all five parts.
You can purchase these documents online at the ANSI Electronic Standards Store
(http://webstore.ansi.org/) or the NCITS Standards Store (http://www.cssinfo.com/
ncits.html).

Types of SQL Statements
Although SQL is considered a sublanguage because of its nonprocedural nature, it is

nonetheless a complete language in that it allows you to create and maintain database objects,

secure those objects, and manipulate the data within the objects. One common method used

to categorize SQL statements is to divide them according to the functions they perform.

Based on this method, SQL can be separated into three types of statements:

● Data Definition Language (DDL) DDL statements are used to create, modify, or delete

database objects such as tables, views, schemas, domains, triggers, and stored procedures.

The SQL keywords most often associated with DDL statements are CREATE, ALTER,

and DROP. For example, you would use the CREATE TABLE statement to create a table,

the ALTER TABLE statement to modify the table’s properties, and the DROP TABLE

statement to delete the table definition from the database.

16 Module 1: Introduction to Relational Databases and SQL

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

● Data Control Language (DCL) DCL statements allow you to control who has access

to specific objects in your database. With the DCL statements, you can grant or restrict

access by using the GRANT or REVOKE statements, the two primary DCL commands.

The DCL statements also allow you to control the type of access each user has to database

objects. For example, you can determine which users can view a specific set of data and

which users can manipulate that data.

● Data Manipulation Language (DML) DML statements are used to view, add, modify,

or delete data stored in your database objects. The primary keywords associated with DML

statements are SELECT, INSERT, UPDATE, and DELETE, all of which represent the types

of statements you’ll probably be using the most. For example, you can use a SELECT

statement to retrieve data from a table and an INSERT statement to add data to a table.

Most SQL statements that you’ll be working with fall neatly into one of these categories,

and I’ll be discussing a number of these statements throughout the remainder of the book.

NOTE
There are a number of ways you can classify statements in addition to how they’re
classified in the preceding list. For example, you can classify them according to how
they’re executed or whether or not they can be embedded in a standard programming
language. The SQL:1999 standard provides seven broad categories based on function.
However, I use the preceding method because it is commonly used in SQL-related
documentation and because it is a simple way to provide a good overview of the
functionality inherent in SQL.

Types of Execution
In addition to defining how the language can be used, the SQL:1999 standard provides details

on how SQL statements can be executed. These methods of execution, known as binding styles,

not only affect the nature of the execution, but also determine which statements, at a minimum,

must be supported by a particular binding style. The standard defines four methods of execution:

● Direct invocation By using this method, you can communicate directly from a front-end

application, such as SQL*Plus Worksheet in Oracle or Query Analyzer in SQL Server, to

the database on the SQL server. (These can be on the same computer.) You simply enter your

query into the application window and execute your SQL statement. The results of your query

are returned to you almost immediately, or as immediately as processor power and database

constraints permit. This is a quick way to check data, verify connections, and view

database objects. However, the SQL standard’s guidelines about direct invocation are

fairly minimal, so the methods used and SQL statements supported can vary widely

from product to product.

SQL: A Beginner’s Guide 17

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:17

1

In
tro

du
ct

io
n

to
Re

la
tio

na
lD

at
ab

as
es

an
d

SQ
L

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:18

● Embedded SQL In this method, SQL statements are encoded (embedded) directly in

the host programming language. For example, you can embed SQL statements within C

application code. Before the code is compiled, a preprocessor analyzes the SQL statements

and splits them out from the C code. The SQL code is converted to a form the RDBMS

can understand, and the remaining C code is compiled as it would be normally.

● Module binding This method allows you to create blocks of SQL statements (modules)

that are separate from the host programming language. Once the module is created, it

is combined into an application with a linker. A module contains, among other things,

procedures, and it is the procedures that contain the actual SQL statements.

● Call-level interface (CLI) A CLI allows you to invoke SQL statements through an

interface by passing SQL statements as argument values to subroutines. The statements

are not precompiled as they are in embedded SQL and module binding. Instead, they are

executed directly by the RDBMS.

Direct invocation, although not the most common method used, is the one I’ll be using

primarily for the examples and projects in this book because it supports the submission of

ad hoc queries to the database and generates immediate results. However, embedded SQL

is currently the method most commonly used for executing data. I discuss this method,

as well as module binding and CLI, in greater detail in Module 17.

Progress Check
1. How does SQL differ from other computer languages such as Java, C, and COBOL?

2. What are the three basic types of SQL statements?

3. What four methods can be used to execute SQL statements?

18 Module 1: Introduction to Relational Databases and SQL

1. Java, C, and COBOL are procedural languages, but SQL is a nonprocedural sublanguage that is often used

in association with application programming languages.

2. The three basic types of SQL statements are DDL, DCL, and DML statements.

3. SQL statements can be executed by using direct invocation, embedding, module binding, and CLI.

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1

CRITICAL SKILL

1.3 Use a Relational Database
Management System
Throughout this module, when discussing the relational model and SQL, I’ve often mentioned

RDBMSs and how they use the SQL standard as the foundation for their products. A relational

database management system is a program or set of programs that store, manage, retrieve,

modify, and manipulate data in one or more relational databases. IBM’s DB2 and the shareware

product MySQL are both examples of RDBMSs. These products, like other RDBMSs, allow

you to interact with the data stored in their systems. Although an RDBMS is not required to be

SQL: A Beginner’s Guide 19

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:19

1

In
tro

du
ct

io
n

to
Re

la
tio

na
lD

at
ab

as
es

an
d

SQ
LAsk the Expert

Q: You state that, for an RDBMS to be in conformance with the SQL:1999 standard, it

must comply with Core SQL. Are there any additional requirements that a product

must adhere to?

A: Yes. In addition to Core SQL, an RDBMS must support either embedded SQL or module

binding. Most products support only embedded SQL, with some supporting both. The

SQL standard does not require RDBMS products to support direct invocation or CLI,

although most do.

Q: What are the seven categories used by the SQL:1999 standard to classify SQL

statements?

A: The SQL standard classifies statements into the following categories: schema, data,

transaction, control, connection, session, and diagnostics. Keep in mind that these

classifications are merely a tool that you can use to better understand the scope of the

language and its underlying concepts. Ultimately, it is the SQL statements themselves—

and what they can do—that is important.

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:20

20 Module 1: Introduction to Relational Databases and SQL

based on SQL, most products on the market are SQL-based and strive to conform to the SQL

standard. At a minimum, these products claim Entry level conformance with the SQL-92 standard

and are now working toward Core SQL conformance with SQL:1999.

In addition to complying with SQL standards, most RDBMSs support other features, such

as additional SQL statements, product-based administrative tools, and graphical user interface

(GUI) applications that allow you to query and manipulate data, manage database objects, and

administer the system and its structure. The types of functionality implemented and the methods

used to deliver that functionality can vary widely from product to product. As databases grow

larger, become more complicated, and are distributed over greater areas, the RDBMS products

used to manage those databases become more complex and robust, meeting the demands of the

market as well as implementing new, more sophisticated technologies.

SQL Standard Versus Product Implementations
At the core of any SQL-based RDBMS is, of course, SQL itself. However, the language used

is not pure SQL. Each product extends the language in order to implement vendor-defined

features and enhanced SQL-based functionality. Consequently, every vendor supports a slightly

different variation of SQL, meaning that the language used in each product is implementation-

specific. For example, SQL Server uses Transact-SQL and Oracle uses PL/SQL, while other

products use their own version of the language. As a result, the SQL statements that I provide

in the book might be slightly different in the product implementation that you’re using.

Throughout the book, I will be using pure SQL in most of the examples and projects.

However, I realize that, as a beginning SQL programmer, your primary interest is in implementing

SQL in the real world. For that reason, I will at times use SQL Server (with Transact-SQL) or

Oracle (with PL/SQL) to demonstrate or clarify a particular concept that can’t be fully explained

by pure SQL alone.

One of the advantages to using a product like Oracle or SQL Server is that they both

support direct invocation through a front-end GUI application. SQL Server uses the Query

Analyzer interface, shown in Figure 1-7. The GUI interface makes it possible for you to create

ad hoc SQL queries and view their results, allowing you to apply what you’re learning in the

book to an actual SQL environment. Oracle’s solution for a front-end GUI is the SQL*Plus

Worksheet interface, shown in Figure 1-8.

My use of these two products by no means implies that I’m endorsing either of them over

any other commercial products (such as Sybase or Informix) or shareware products (such as

MySQL or PostgreSQL), and indeed you’re encouraged to use whatever RDBMS you have

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 21

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:21

1

In
tro

du
ct

io
n

to
Re

la
tio

na
lD

at
ab

as
es

an
d

SQ
L

available, assuming it supports most of the functionality that I’ll be discussing in this book.

However, I’m choosing SQL Server and Oracle because I want to be able to demonstrate how

SQL is implemented in the real world and how SQL might differ from an implementation-specific

version of the language, and these two products supply me with the vehicles to do this. Keep in

mind that, in order for you to gain a full understanding of SQL and be able to use it in various

RDBMS products, you will need to understand both standard SQL and the language as it is

implemented in the products you’ll be using.

Figure 1-7 Using Query Analyzer in SQL Server 2000

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:22

Project 1-2 Connecting to a Database
Although this book focuses primarily on pure SQL, in order to try out the examples and do

most of the projects, you’ll need access to an RDBMS in order to execute SQL statements.

As a result, one of the first things you should do is to make sure you’re able to access an SQL

environment. This project will help you do that; however, unlike most other projects in the

book, this one will require more effort on your part to go to resources outside the book to set

yourself up with an RDBMS that allows you to invoke SQL statements directly. To that end,

this project tries to get you started, but you must use your own initiative to ensure that you

have an environment in which you’re comfortable working.

22 Module 1: Introduction to Relational Databases and SQL

Figure 1-8 Using SQL*Plus Worksheet in Oracle9i

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 23

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:23

1

In
tro

du
ct

io
n

to
Re

la
tio

na
lD

at
ab

as
es

an
d

SQ
L

Co
nn

ec
tin

gt
oa

Da
ta

ba
se

Project
1-2

Step by Step
1. Identify the RDBMS you plan to use for the projects in this book. Perhaps there is a system

you’re already familiar with or one that’s available to you in your work environment. If you

don’t have anything available at work and you’re not ready to purchase a product, check

online to see what might be available. Some RDBMS vendors allow you to download a free

trial copy of the software. For example, you can download Oracle9i at http://otn.oracle.com/,

or you can download SQL Server at http://www.microsoft.com/sql/evaluation/trial/default.asp.

(You might need a high-speed Internet connection if the files are too large. This is certainly

the case for the Oracle files.)

One other product you might consider is Ocelot. You can download their RDBMS for

free from http://www.ocelot.ca/index.htm. It’s quick to download, simple to install, and

their GUI front-end application—Ocelot SQL Demo—is easy to use and connects to the

SQL-environment as soon as you open it. According to the Ocelot web site, their product

supports a full implementation of SQL-92, and they have already implemented many

SQL:1999 features. In addition, the language used in Ocelot is pure SQL and is not

implementation-specific.

Before you decide on a system, spend the time necessary to research the product to make

sure it supports direct invocation, preferably though a GUI application, and can run in your

computer environment. Also check to see how much of the SQL:1999 standard it supports

and review any licensing agreements to make sure you’re in compliance. If a system is

available through your work, be sure to talk to database and network administrators to

determine what server you should use, how and whether you should download a copy, and

how to make your connection to the SQL server. You’ll often need an account to connect to

the RDBMS, so if this is the case, find out what username and password you should use.

2. Once you’ve established which RDBMS you’ll be using, install it on your computer. If

you’ll be connecting to a system over the network, you’ll need to install only the client

tools on your local computer.

3. Open the client GUI that allows you to directly invoke SQL statements. When you open the

GUI, you might be prompted for a username and password. When and if you’re prompted

varies depending on the product you’re using, whether you’re connecting over the network,

whether the RDBMS is set up as a stand-alone system, and other variables specific to

the product. In addition, a product such as SQL Server offers security integrated with the

operating system, so you may be prompted for a server name only.

4. Execute a SELECT statement in the application input window. I realize that we haven’t

covered SELECT statements yet, but the basic syntax is relatively easy:

SELECT * FROM <table>

(continued)

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:24

24 Module 1: Introduction to Relational Databases and SQL

The <table> placeholder should be replaced with the name of a table in an existing

database.

The purpose of this exercise is simply to verify that you have connectivity with the data

stored in your RDBMS. Most systems include sample data, and it is that data that you’re

trying to connect to. Check product documentation or check with the database administrator

to verify whether a database exists that you can access.

If you’re working in Oracle, you can execute the following statement:

SELECT * FROM scott.emp;

To execute the statement, type it in the input window of SQL*Plus Worksheet and then

press F5.

If you’re working in SQL Server, you can execute the following statement:

USE pubs
SELECT * FROM employee

To execute the statement, type it in the input window of Query Analyzer and then press F5.

If you’re working in Ocelot, you can execute the following statement:

SELECT * FROM ocelot.emps;

To execute the statement, type it in the input window of Ocelot SQL Demo and then

press ENTER.

Once you execute the statement, the results of your query appear in the output window. At

this point, don’t concern yourself with the meaning of each word in the SQL statement or

with the query results. Your only concern is to make sure everything is working. If you can’t

execute the statement, check with your database administrator or the product documentation.

5. Close the GUI application without saving your query.

Project Summary
As I said at the beginning of the project, this project is different from most of the other ones

in the book because you are, for the most part, on your own to establish connectivity with

your RDBMS. Again, this is because SQL is a language standard, independent of RDBMS

implementations, and vendor-specific issues are, for the most part, beyond the scope of this

book. In addition, the methods used to connect to a database, the tools available to make those

connections, and the way in which an RDBMS is set up vary from product to product, environment

to environment, and even operating system to operating system. However, the time you take

now to research which product you’ll use and to make sure you can connect to data in an existing

database will prove invaluable to you in your ability to apply the information discussed in the

rest of the book.

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 25

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:25

1

In
tro

du
ct

io
n

to
Re

la
tio

na
lD

at
ab

as
es

an
d

SQ
LModule 1 Mastery Check

1. What is a database?

2. Which of the following objects make up a relation?

A. Data types

B. Tuples

C. Attributes

D. Forms

3. A(n) ____________ is a set of data whose values make up an instance of each attribute

defined for that relation.

4. What are the differences between the first normal form and the second normal form?

5. A relation is in third normal form if it is in second normal form and if it complies with

the other guidelines of that form. What are those guidelines?

6. What are the three primary types of relationships supported by a relational database?

7. In your data model, you have two relations associated with each other by a many-to-many

relationship. How will this relationship be physically implemented in a relational database?

8. How does SQL differ from programming languages such as C, COBOL, and Java?

9. What factors have contributed to the SQL:1999 standard incorporating object-oriented

capabilities?

10. Which level of conformance must an RDBMS support in order to comply with SQL:1999?

A. Entry

B. Core

C. Full

D. Intermediate

11. What are the differences between a DDL statement and a DML statement?

12. What method of executing SQL statements would you use if you want to communicate

directly with an SQL database from a front-end application?

13. What four methods does the SQL:1999 standard support for the execution of SQL statements?

14. What is a relational database management system?

15. What is an example of an RDBMS?

P:\010Comp\Begin8\885-7\ch01.vp
Friday, April 04, 2003 5:00:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Module2
Working with the
SQL Environment

CRITICAL SKILLS
2.1 Understand the SQL Environment

2.2 Understand SQL Catalogs

2.3 Name Objects in an SQL Environment

2.4 Create a Schema

2.5 Create a Database

27

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:27

27

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:28

In Module 1, I discuss relational theory, SQL, and relational database management systems

(RDBMSs). In this module, I want to take this discussion one step further and introduce you

to the SQL environment, as it is defined in the SQL:1999 standard. The SQL environment

provides the structure in which SQL is implemented. Within this structure, you can use SQL

statements to define database objects and store data in those objects. However, before you start

writing SQL statements, you should have a basic understanding of the foundations on which

the SQL environment is built so you can apply this information throughout the rest of the book.

In fact, you might find it helpful to refer back to this module often to help gain a conceptual

understanding of the SQL environment and how it relates to the SQL elements you’ll learn

about in subsequent modules.

CRITICAL SKILL

2.1 Understand the SQL Environment
The SQL environment is, quite simply, the sum of all parts that make up that environment.

Each distinct part, or component, works in conjunction with other components to support SQL

operations such as creating and modifying objects, storing and querying data, or modifying

and deleting that data. Taken together, these components form a model on which an RDBMS

can be based. This does not imply, however, that RDBMS vendors adhere strictly to this model;

what components they implement and how they implement them are left, for the most part, to

the discretion of those vendors. Even so, I want to provide you with an overview of the way in

which the SQL environment is defined, in terms of its distinct components, as they are described

in the SQL:1999 standard.

The SQL environment is made up of six types of components, as shown in Figure 2-1. The

SQL client and SQL servers are part of the SQL implementation and are therefore subtypes of

that component.

28 Module 2: Working with the SQL Environment

Figure 2-1 The components of the SQL environment

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Notice that there is only one SQL agent and one SQL implementation, but there are multiple

components for other types, such as catalogs and sites. According to SQL:1999, there must

be exactly one SQL agent and SQL implementation and zero or more SQL client modules,

authorization identifiers, and catalogs. The standard does not specify how many sites are

supported, but implies multiple sites.

Each type of component performs a specific function within the SQL environment.

Table 2-1 describes the six types.

SQL: A Beginner’s Guide 29

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:29

2

W
or

ki
ng

w
ith

th
e

SQ
L

En
vi

ro
nm

en
t

Component Type Description

SQL agent Any structure that causes SQL statements to be executed. The SQL agent is bound to the
SQL client within the SQL implementation.

SQL implementation A processor that executes SQL statements according to the requirements of the SQL
agent. The SQL implementation includes one SQL client and one or more SQL servers.
The SQL client establishes SQL connections with the SQL servers and maintains data
related to interactions with the SQL agent and the SQL servers. An SQL server manages
the SQL session that takes place over the SQL connection and executes SQL statements
received from the SQL client.

SQL client module A collection of SQL statements that are written separately from your programming
application language but that can be called from within that language. SQL client modules
reside within the SQL environment and are processed by the SQL implementation, unlike
embedded SQL, which is written within the application programming language and
precompiled before the programming language is compiled. SQL client modules are
discussed in more detail in Module 17.

Authorization identifier An identifier that represents a user or role that is granted specific access privileges to
objects and data within the SQL environment. A user is an individual security account
that can represent an individual, an application, or a system service. A role is a set
of predefined privileges that can be assigned to a user or to another role. I discuss
authorization identifiers, users, and roles in Module 6.

Catalog A group of schemas collected together in a defined namespace. Each catalog contains
the Information Schema, which includes descriptors of a number of schema objects. The
catalog itself provides a hierarchical structure for organizing data within the schemas.
(A schema is basically a container for objects such as tables, views, and domains, all of
which I’ll be discussing in greater detail in the next section, “Understand SQL Catalogs.”)

Site A site is a placeholder for a value or set of values associated with a specified data type.
Sites are made up of SQL data, most of which comes from the base tables. You can think
of each value as an object that can be assigned a data type; the site is the place that
holds that object. If this all seems confusing to you, it is. The SQL:1999 standard is not
very clear about what it means by sites. The concept of sites is new to SQL:1999, and no
doubt it will be clarified in subsequent releases of the standard. For now, it’s enough that
you know that a site represents one type of component in the SQL environment.

Table 2-1 The Component Types Supported in an SQL Environment

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:30

30 Module 2: Working with the SQL Environment

For the most part, you need to have only a basic understanding of the components that

make up an SQL environment (in terms of beginning SQL programming). However, one of

these components—the catalog—plays a more critical role than the others, with regard to what

you’ll be learning in this book. As a result, I will be going into this topic in more detail and

explaining how it relates to the management of data and the objects that hold that data.

CRITICAL SKILL

2.2 Understand SQL Catalogs
In the previous section, “Understand the SQL Environment,” I state that an SQL environment

is the sum of all parts that make up that environment. You can use the same logic to describe a

catalog, in that a catalog is a collection of schemas and these schemas, taken together, define

a namespace within the SQL environment.

NOTE
A namespace is a naming structure that identifies related components in a specified
environment. A namespace is often depicted in an inverted tree configuration to represent
the hierarchical relationship of objects. For example, suppose your namespace includes
two objects: object1 and object2. If the namespace is called name1, the full object
names will be name1.object1 and name1.object2 (or some such naming configuration),
thus indicating that they share the same namespace.

Another way to look at a catalog is as a hierarchical structure with the catalog as the parent

object and the schemas as the child objects, as shown in Figure 2-2. At the top of the hierarchy

is the SQL environment, which can contain zero or more catalogs (although an environment

with zero catalogs wouldn’t do you much good because the catalog is where you’ll find the

data definitions and SQL data). The schemas are located at the third tier, beneath the catalog,

and the schema objects are at the fourth tier.

You can compare the relationships between the objects in a catalog to the relationships

between files and directories in your computer’s operating system. The catalog is represented

by a directory off the root; the schemas, by subdirectories; and the schema objects, by files

within the subdirectories.

Like the hierarchical structure of a file system, the structure of a catalog is logical in nature;

that is, a file system is presented in a hierarchical form (like that of Windows Explorer), but

that doesn’t mean that the files are actually stored hierarchically on your hard disk. In the same

sense, the catalog hierarchy is merely a representation of the relationships between objects in

your SQL environment. It doesn’t imply any physical containment or organization. How these

objects are actually implemented, with regard to the catalog structure, and which ones are

implemented are left to the discretion of the RDBMS vendor. In fact, the SQL:1999 standard

doesn’t define language for the creation or deletion of catalogs; this too is left up to the vendors,

and few systems even support catalogs.

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 31

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:31

2

W
or

ki
ng

w
ith

th
e

SQ
L

En
vi

ro
nm

en
t

Schemas
Each catalog contains one or more schemas. A schema is a set of related objects that are collected

under a common namespace. The schema acts as a container for those objects, which in turn

store the SQL data or perform other data-related functions. Each schema, the objects contained

in the schema, and the SQL data within those objects are owned by the authorization identifier

associated with that schema.

Unlike catalogs, schemas are widely implemented in RDBMS products. However, as with

catalogs, SQL leaves most of the implementation details up to the vendor, although the standard

does provide language for the creation and deletion of schemas. For creating a schema, the

CREATE SCHEMA statement is used, and for deleting a schema, the DROP SCHEMA statement

is used. Creating and deleting schemas are discussed in more detail in the “Create a Schema”

section.

The treatment of schemas in an RDBMS can vary widely from the standard, and therefore,

it’s important that you read the product documentation carefully if you want to create a schema

in your SQL environment. For example, Oracle9i allows you to create schemas but you cannot

Figure 2-2 The components of a catalog

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:32

delete (drop) them. In addition, if you use the PL/SQL statement CREATE SCHEMA, the

system doesn’t actually create a schema. (The system creates a schema automatically when

a user is created.) Instead, the PL/SQL statement merely allows you to create objects in your

schema and grant privileges on those objects all within one transaction.

Information Schema
Each catalog contains a special schema named INFORMATION_SCHEMA. This schema

contains definitions for a number of schema objects, mostly views. A view is a virtual table

that allows you to view data collected from actual tables. By using these views, you can display

the definitions of objects in that catalog as though it were SQL data. You cannot change any

of the data—if you did you would be changing the object definitions themselves—but you

can display information simply by querying the appropriate view.

As with most SQL features, how the Information Schema is implemented and what

functionality is supported varies from product to product, although these implementations

are usually fairly straightforward. For example, SQL Server 2000 includes a view in the

Information Schema named INFORMATION_SCHEMA.COLUMNS. If you query this view,

the results will include a list that contains information about every column accessible to the

current user within the current database. The results include such information as the column

name, the data type assigned to that column, and the owner (authorization identifier) who

owns that column.

Schema Objects
At the bottom tier of the catalog hierarchy sit the schema objects. The schema objects are a set

of related components that are contained within a schema. This is the level where the SQL data

is stored and, consequently, the level that concerns SQL programmers the most. By using SQL,

you’ll be able to define SQL objects, modify those definitions, and store and manipulate SQL data

within the objects. In fact, most of what you’ll be doing in this book from here on in has a direct

impact on or is directly connected with the schema objects.

The SQL:1999 standard defines 11 types of schema objects. These objects, described in

Table 2-2, provide the foundation for the SQL environment and the structure for the way in which

32 Module 2: Working with the SQL Environment

Schema Object Description

Base table The basic unit of data management in the SQL environment. A table is made up of
columns and rows and is analogous to a relation (with its attributes and tuples) in
relational theory. Each column is associated with a data type and holds values that
are somehow related to each other. For example, a table about customers would
contain columns that contain data about those customers, such as their names and
addresses. (See Module 3.)

Table 2-2 The Types of Objects That Can Be Defined in Each Schema

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 33

2

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:33

2

W
or

ki
ng

w
ith

th
e

SQ
L

En
vi

ro
nm

en
t

Schema Object Description

View A virtual table that is created when the view is invoked (by calling its name). The
table doesn’t actually exist, only the SQL statement that defines the table. When that
statement is invoked, the view pulls data from base tables and displays the results as
if you’re viewing the results of a base table query. (See Module 5.)

Domain A user-defined object that can be specified in place of a data type when defining a
column (a process part of creating or altering a table definition). A domain is based
on an SQL data type but can include a default value and a constraint, which further
limits the values that can be stored in a particular column. (See Module 4.)

User-defined type (UDT) A user-defined object that can be specified in place of a data type when defining a
column. SQL supports two types of UDTs: distinct and structured. Distinct types are
based on SQL data types and their defined values. Structured types are made up of
attribute values, each of which is based on an SQL data type. (See Module 3.)

Constraint A restriction defined on a table, column, or domain that limits the type of data that can
be inserted into the applicable object. For example, you can create a constraint on a
column that restricts the values that can be inserted into that column to a specific range
of numbers. (See Module 4.)

SQL server module A module that contains SQL-invoked routines. A module is an object that contains
SQL statements, routines, or procedures. An SQL-invoked routine is a function or
procedure that can be invoked from SQL. Both functions and procedures are types
of SQL statements that can pass parameters (values passed to a statement when you
invoke that statement). A function can receive input parameters and return a value
based on the expression included in the function statement. A procedure can pass
input and output parameters. (See Module 13.)

Trigger An object associated with a base table that defines an action to be taken when an
event occurs related to that table. The trigger can specify that data be inserted into,
deleted from, or updated in a base table. For example, a row deleted from one table
might cause data to be deleted from another table. (See Module 14.)

SQL-invoked routine A function or procedure that can be invoked from SQL. An SQL-invoked routine can
be a schema object or be embedded in a module, which is also a schema object.
(See Module 13.)

Character set A collection of character attributes that define how characters are represented. A
character set has three attributes: the repertoire, form-of-use, and default collation.
The repertoire determines which characters can be expressed (for example, A, B, C,
and so on); the form-of-use determines how the characters are represented as strings
to hardware and software (for example, one byte per character, two bytes per
character); and the default collation determines how those strings compare with
one another.

Collation A set of rules that control how character strings compare with one another within a
particular repertoire. This information can then be used to order the characters (for
example, A comes before B, B comes before C). A default collation is defined for each
character set.

Translation An operation that maps characters from one character set to characters in another
set. Translations can include such operations as translating characters from upper-
to lowercase or from one alphabet into another.

Table 2-2 The Types of Objects That Can Be Defined in Each Schema (continued)

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:34

data is stored within that environment. I’ll be discussing most of these objects in greater detail

later in the book; as a result, I’ve included references, where appropriate, to the applicable modules.

As I said, I’ll be discussing most of the items in the table in greater detail later in the book.

However, the last three items, which are all related to character sets, are covered only briefly.

The character sets, collations, and translations supported by RDBMSs can vary from product

to product, so too can the implementation of these features. Throughout this book, the examples

and projects I’ll be giving you all rely on whatever the default character set is for the product

that you’re using. If you want to change that character set, either at the default level or the

table level, you should first carefully review the product documentation to find out what is

supported and how those features are implemented.

34 Module 2: Working with the SQL Environment

Ask the Expert
Q: You describe a domain as a user-defined object that is based on a data type but

can include a default value and a constraint. How does this type of domain differ

from a domain as you describe it in the relational model?

A: In many ways the two are the same, and for all practical purposes, you can think of an

SQL domain as a counterpart to a domain in the relational model. There is one subtle

difference, however; a domain in the relational model is merely a description of the

data that can be included in an entity (column) associated with that particular domain.

An SQL domain, on the other hand, restricts the data that can be inserted into the column.

An SQL domain does this through the use of constraints, which are validation rules that

are part of the system of data integrity. The main idea to keep in mind is that a domain

in the relational model is a logical concept, whereas an SQL domain is a physical one.

Q: When you talk about schema objects, you mention base tables. Does SQL support

any other types of tables?

A: The SQL:1999 standard supports three types of tables: base tables, derived tables,

and viewed tables. The base table is a type of table whose data is actually stored

somewhere. In other words, SQL data is stored in a base table. If you query one or

more of those tables, a set of data, specific to the query, is returned in a table format.

The returned table (the result of your query) is known as a derived table. A viewed

table is another name for a view, which is a virtual table whose definition is stored

but whose data is derived from base tables at the time the view is called.

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Then What Is a Database?
As you might have noticed, nowhere in the structure of the SQL environment or a catalog is there

mention of a database. The reason for this is that nowhere in the SQL:1999 standard is the term

database defined. In fact the only mention of a database, in terms of how it might fit into the

structure of the SQL environment, is that you can consider the sites to be the database, although

this is offered more as a suggestion than an absolute definition or as a key to understanding

how databases fit into the environment. In fact, the standard uses the word primarily to refer

to SQL as a database language but never actually defines a database.

This approach might be fine for the standard, but in the real world, it can be difficult for

an RDBMS to create an SQL environment without creating some sort of component that users

can point to and say, “Yes, there is the database.” And indeed, most products allow you to create,

alter, and delete objects that are called databases. For example, in SQL Server 2000 and in

Oracle9i, you can use their management consoles (SQL Server Enterprise Manager and Oracle

Enterprise Manager Console) to view the database objects. Each console provides an overview

of their data environments in a directory-like structure that includes a Databases node. In both

cases, the Databases node contains a list of available databases. Figure 2-3 shows how SQL Server

Enterprise Manager organizes its data environment.

SQL: A Beginner’s Guide 35

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:35

2

W
or

ki
ng

w
ith

th
e

SQ
L

En
vi

ro
nm

en
t

Figure 2-3 SQL Server Enterprise Manager with the Databases node expanded

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:36

NOTE
If you’re using the Ocelot RDBMS, you cannot create a database. Ocelot sticks to a strict
SQL format, with catalogs, schemas, and schema objects. Be sure to read the Ocelot
documentation for an overview of how this structure is represented.

In Module 1, I state that a database is a collection of data organized in a structured format

that is defined by the metadata that describes that structure. In both SQL Server and Oracle

you can see how this definition applies. Both systems (and any true RDBMS you’re working

with) collect the data in a structured format and define that data by the use of schemas, which

contain the metadata. This definition can also be applied to the SQL standard and its construction

of the SQL environment and catalogs. SQL data is stored in an organized format within base

tables. These base tables are contained within a schema, which defines those tables, thereby

defining the data. So even though the SQL:1999 standard doesn’t actually define the term

database, it nonetheless supports the concept of a database, as do the RDBMS products that

implement SQL.

Progress Check
1. What are the six types of components that make up an SQL environment?

2. How is a domain related to a catalog, within the hierarchy of the SQL environment?

3. What are the differences between a base table and a view?

36 Module 2: Working with the SQL Environment

1. The SQL agent, the SQL implementation, SQL client modules, authorization identifiers, catalogs, and sites.

2. A domain is a schema object, which is a child object of the schema. The schema is a child object of a catalog.

3. A base table is the basic unit of data management in the SQL environment. A table is made up of columns and rows and

is analogous to a relation (with its attributes and tuples) in relational theory. A view is a virtual table that is created when the

view is invoked (by calling its name). The table doesn’t actually exist, only the SQL statement that is defined when the view

is created. When that statement is invoked, the view pulls data from base tables and displays the results as if you’re viewing

the results of a base table query.

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CRITICAL SKILL

2.3 Name Objects in an SQL Environment
Up to this point in the book, I have provided you with a lot of conceptual and background

information. The reason for this is that I wanted you have a basic foundation in SQL before

you actually start writing SQL statements. I believe that, with this information, you will be

better able to grasp the logic behind the SQL code that you create and the reason for creating

it, but I have no doubt that you’re more than ready to start writing those statements.

However, before I actually start getting into the meat of SQL, there’s one more topic that

I need to cover briefly—object identifiers. An identifier is a name given to an SQL object.

The name can be up to (but not including) 128 characters and must follow defined conventions.

An identifier can be assigned to any object that you can create with SQL statements, such as

domains, tables, columns, views, or schemas. The SQL:1999 standard defines two types of

identifiers: regular identifiers and delimited identifiers.

Regular identifiers are fairly restrictive and must follow specific conventions:

● The names are not case-sensitive. For example, ArtistNames is the same as

ARTISTNAMES and artistnames.

● Only letters, digits, and underscores are allowed. For example, you can create identifiers

such as First_Name, 1stName, or FIRST_NAME.

● No SQL reserved keywords can be used.

NOTE
A keyword is a word that is part of the SQL lexicon. There are two types of SQL
keywords: reserved and nonreserved. As the name suggests, the reserved keywords
cannot be used for any purpose other than as they are intended to be used within an
SQL statement. The nonreserved words have no such restriction. For a complete list of
the SQL keywords, see Appendix B.

SQL is insensitive to case, with regard to regular identifiers. All names are changed to

uppercase by SQL when they are stored, which is why 1stName and 1STNAME are read as

identical values.

Delimited identifiers are not as restrictive as regular identifiers, but they still must follow

specific conventions:

● The identifier must be enclosed in a set of double quotation marks, such as the

“ArtistNames” identifier.

SQL: A Beginner’s Guide 37

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:37

2

W
or

ki
ng

w
ith

th
e

SQ
L

En
vi

ro
nm

en
t

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:38

● The quotation marks are not stored in the database, but all other characters are stored as

they appear in the SQL statement.

● The names are case-sensitive. For example, “ArtistNames” is not the same as “artistnames”

or ARTISTNAMES, but “ARTISTNAMES” is the same as ARTISTNAMES and

ArtistNames (because regular identifiers are converted to uppercase).

● Most characters are allowed, including spaces.

● SQL reserved keywords can be used.

When you’re deciding on how to name your SQL objects, there are a number of systems

that you can follow. The first choice you’ll have to make is whether you want to use regular

or delimited identifiers. You’ll also want to decide on other issues, such as case and the use

of underscores. For example, you could name a table CompactDiscTitles, compact_disc_titles,

COMPACT_DISC_TITLES, “Compact Disc Titles”, or some other form of that name. The

important part to remember is that you should pick a system and stick with it throughout the

coding for a particular database.

NOTE
For the examples and projects in this book, I use regular identifiers with mixed case
(for example, CompactDiscTitles).

Qualified Names
All schema object identifiers are qualified by the logical way in which they fit into the

hierarchical structure of the SQL environment. A fully qualified name includes the name

of the catalog, the name of the schema, and the name of the schema object, each separated

by a period. For example, suppose you have a table named CDArtists. The table is in the

CompactDiscs schema, which is in the Music catalog. The fully qualified name for that table

would be Music.CompactDiscs.CDArtists.

The way in which these naming conventions play out in various RDBMS products depends

on how that product has implemented the structure of the SQL environment. For example, a

fully qualified name in SQL Server is based on the server name, database name, owner name,

and object name. In this case, a table named Artists might have a fully qualified name of

Server01.MusicDB.dbo.Artists, where Server01 is the name of the server, MusicDB is the

name of the database, and dbo (which refers to database owner) is the name of the object

owner. To determine how fully qualified names are handled for a particular RDBMS, check

the product documentation.

38 Module 2: Working with the SQL Environment

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Progress Check
1. Which type of identifier allows you to use a reserved keyword?

2. You are working in a schema named Music, which is in a catalog named Media.

What is the fully qualified name for the CompactDiscs table?

CRITICAL SKILL

2.4 Create a Schema
Now that you have a fundamental understanding of how to use identifiers to name SQL objects,

you’re ready to start writing SQL statements. I’ll begin with the CREATE SCHEMA statement

because schemas are at the top of the SQL hierarchy, in terms of which objects the SQL:1999

standard allows you to create. (Remember, SQL doesn’t provide any sort of CREATE CATALOG

or CREATE DATABASE statement. It’s left up to the RDBMS vendors to determine how and

whether to implement these objects.) In the next section, “Create a Database,” I will slip out of

SQL mode and discuss database creation because most RDBMS products support the creation

of database objects, and you’ll probably find that you’ll want to create a database in order to

try out the examples and projects in this book.

The place to start with any type of SQL statement is the syntax that defines that statements.

The following syntax shows the basic components of the CREATE SCHEMA statement:

CREATE SCHEMA <name clause>

[<character set or path>]

[<schema elements>]

NOTE
The angle brackets contain information that serves as a placeholder for a value or
clause related to that information. For example, <name clause> is a placeholder for
keywords and values related to naming the schema. The square brackets, on the other
hand, mean that the clause is optional. You do not have to specify a character set, path,
or schema element.

Let’s look at the syntax for the CREATE SCHEMA statement piece by piece. The SQL

keywords CREATE SCHEMA alert the SQL implementation to the type of statement being

executed. This is followed by the <name clause> placeholder, which can include a name for

SQL: A Beginner’s Guide 39

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:39

2

W
or

ki
ng

w
ith

th
e

SQ
L

En
vi

ro
nm

en
t

1. A delimited identifier

2. Media.Music.CompactDiscs

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:40

40 Module 2: Working with the SQL Environment

the schema, an authorization identifier (preceded by the AUTHORIZATION keyword), or

both. As a result, the name clause can take any one of the following forms:

● <schema name>

● AUTHORIZATION <authorization identifier>

● <schema name> AUTHORIZATION <authorization identifier>

The <authorization identifier> value specifies who owns the schema and its objects. If

none is specified, the value defaults to the current user. If no <schema name> value is specified,

a name is created that’s based on the authorization identifier.

The next clause, <character set or path>, allows you to set a default character set, a default

path, or both. The name of the character set is preceded by the DEFAULT CHARACTER SET

keywords and specifies a default character set for the new schema. The path specifies an order

for searching for SQL-invoked routines (procedures and functions) that are created as part of

the CREATE SCHEMA statement. (SQL-invoked routines are discussed in Module 13.)

The <schema elements> clause is made up of various types of other SQL statements that

you can include in the CREATE SCHEMA statement. For the most part, this clause allows

you to create schema objects such as tables, views, domains, and triggers. The advantage to

this is that objects are added right to the schema when you create it, all in one step.

Now that you’ve seen the syntax for a CREATE SCHEMA statement, let’s look at an

example. The following code creates a schema named Inventory. The statement also specifies

an authorization identifier name Mngr and a character set named Latin1.

CREATE SCHEMA Inventory AUTHORIZATION Mngr
DEFAULT CHARACTER SET Latin1
CREATE TABLE Artists
(ArtistID INTEGER, ArtistName CHARACTER (20)) ;

Notice that the code sample includes a CREATE TABLE statement. This is one of the

elements that can be specified as part of the <schema elements> clause. You can include as

many statements as you want. This particular statement creates a table named Artists that

contains the ArtistID column and the ArtistName column. (I discuss the CREATE TABLE

statement in great detail in Module 3.)

In addition to defining a CREATE SCHEMA statement, SQL:1999 also defines a DROP

SCHEMA statement, as shown in the following syntax:

DROP SCHEMA <schema name>

CASCADE | RESTRICT

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The first line is fairly straightforward; the named schema will be removed from the system.

The second line has two options: CASCADE and RESTRICT.

NOTE
The vertical bar (|) symbol can be read as “or,” which means that you should use the
CASCADE option or the RESTRICT option.

If the CASCADE option is specified, all schema objects and SQL data within those objects

are deleted from the system. If the RESTRICT option is used, the schema is deleted only if no

schema objects exist. This method is used as a safeguard against deleting any objects that you

do not want deleted. It’s meant as a way to make you verify that the objects you’re deleting are

what you want to delete before you actually delete the schema.

Now let’s look at an example of the DROP SCHEMA statement. The following code removes

the Inventory schema:

DROP SCHEMA Inventory CASCADE ;

Notice that the CASCADE option is used, which means that all schema objects and SQL

data will be removed.

Progress Check
1. What does the <authorization identifier> value specify in a CREATE SCHEMA statement?

2. What type of information can be included in the <name clause> of a CREATE SCHEMA

statement?

SQL: A Beginner’s Guide 41

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:41

2

W
or

ki
ng

w
ith

th
e

SQ
L

En
vi

ro
nm

en
t

1. The <authorization identifier> value specifies who owns the schema and its objects.

2. The <name clause> can include a name for the schema, an authorization identifier (preceded by the AUTHORIZATION

keyword), or both.

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:42

CRITICAL SKILL

2.5 Create a Database
Despite the fact that the SQL standard does not define what a database is, let alone provide

a statement to create any sort of database object, there is a good possibility that you’ll be

working with an RDBMS that not only supports the creation of a database object, but uses

that object as the foundation for its hierarchical structure in the management of data objects.

Consequently, you might find that, in order to work through the examples and projects in this

book, you want to create a test database so you have an environment in which you can create,

alter, or delete data objects or data as necessary, without risking the loss of data definitions

or data from an actual database. (Ideally, you’ll be working with an RDBMS that is a clean

installation, without any existing databases, except preinstalled system and sample databases.)

If you’ve already worked with an RDBMS, you might be familiar with how database

objects are organized within that system. For example, if you take a look again at Figure 2-3,

you can see that SQL Server organizes the server’s databases into a logical structure beneath

the Databases node. Each database node (for example, Northwind) contains child nodes that

represent the different types of objects associated with that particular database. As you can see,

the Northwind database currently lists 11 types of objects: Diagrams, Tables, Views, Stored

Procedures, Users, Roles, Rules, Defaults, User-Defined Data Types, User-Defined Functions,

and Full-Text Catalogs. For a definition of how SQL Server defines each of these objects, you

should view the product documentation, which you should do for any RDBMS.

Most products that support database objects also support language to create those objects.

For example, Oracle, MySQL, and SQL Server all include the CREATE DATABASE statement

in their SQL-based languages. (Ocelot does not.) However, which parameters can be defined

when building that statement, what permissions you need in order to execute that statement,

and how a system implements the database object vary from product to product, but most products

use the same basic syntax to create a database object:

CREATE DATABASE <database name>

<additional parameters>

Before creating a database in any system, make sure to first read the product documentation,

and if appropriate, consult with a database administrator to be sure that it is safe for you to add

a database object to the SQL environment. Once you create the database, you can create schemas,

tables, views, and other objects within that database, and from there, populate the tables with

the necessary data.

42 Module 2: Working with the SQL Environment

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Project 2-1 Creating a Database and a Schema
In Module 1, Project 1-2, you established access to an RDBMS. In that project, you used a

front-end application that allowed you to directly invoke SQL statements. You will be using

that application for this project (and the rest of the projects in the book) to create a database

and a schema, or whichever of these functions your system supports. Once you create the

database, you should work within the context of that database for future examples and projects.

If your system supports schema creation but not database creation, you should work within

the context of that schema for the other projects.

Step by Step
1. Open the client application that allows you to directly invoke SQL statements. If applicable,

check with the database administrator to make sure that you’re logging in with the credentials

necessary to create a database and schema. You might need special permissions to create

these objects. Also verify whether there are any parameters you should include when creating

the database (for example, log file size), restrictions on the name you can use, or restrictions

of any other kind. Be sure to check the product documentation before going any further.

2. Create a database named Inventory (if your RDBMS supports this functionality). Depending

on the product you’re using, you’ll be executing a statement that’s similar to the following:

CREATE DATABASE Inventory ;

If you’re required to include any additional parameters in the statement, they would most

likely be included in the lines following the CREATE DATABASE clause. Once you execute

the statement, you should receive some sort of message telling you that the statement has

been executed successfully.

3. Connect to the new database. The method for doing that will vary from product to product.

In Oracle, you can connect to a database by clicking Change Database Connection in

SQL*Plus Worksheet and then entering the appropriate logon information. In SQL Server,

it’s simply a matter of selecting the appropriate database from the list of databases in the

Query Analyzer toolbar, or you can execute the following statement:

USE Inventory

4. Create a schema named CDInventory (if your RDBMS supports this functionality). Create

the schema under your current authorization identifier. Do not include any schema elements

at this time. In most cases, you will be executing a statement that looks similar to the following:

CREATE SCHEMA CDInventory ;

SQL: A Beginner’s Guide 43

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:43

2

W
or

ki
ng

w
ith

th
e

SQ
L

En
vi

ro
nm

en
t

Cr
ea

tin
ga

Da
ta

ba
se

an
da

Sc
he

ma

Project
2-1

(continued)

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:44

44 Module 2: Working with the SQL Environment

Project Summary
Projects of this sort can be complicated because they’re so dependent on how RDBMS

products have implemented various features. As a result, you must rely heavily on product

documentation (which you should be using anyway) and, if applicable, database administrators.

However, now that you’ve gotten through this project and have created the necessary database

or schema environment, you should be ready to move on to the examples and projects in the

rest of the book. Because you’ve laid the necessary foundation, you’re now ready to create,

alter, and drop data objects and insert, modify, and delete the data stored in those objects.

Module 2 Mastery Check
1. What are the differences between an SQL agent and an SQL implementation?

2. Which component of an SQL environment represents a user or role that is granted

specific access privileges to objects and data?

A. Catalog

B. Authorization identifier

C. SQL client module

D. SQL agent

3. A(n) ____________ is a collection of schemas that form a namespace within the

SQL environment.

4. What is a schema?

5. Which statement do you use to add a schema to an SQL environment?

A. ADD SCHEMA

B. INSERT SCHEMA

C. CREATE SCHEMA

6. What is the name of the schema that contains definitions for schema objects in a catalog?

7. What are the 11 types of schema objects that can be contained in a schema?

8. What is a view?

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9. Which schema objects provide the basic unit of data management in the SQL environment?

A. Views

B. Domains

C. Base tables

D. Character sets

10. How does the SQL:1999 standard define a database?

11. An ____________ is a name given to an SQL object.

12. How is a regular identifier distinguished from a delimited identifier in an SQL statement?

13. Which type of identifier permits spaces to be used as part of the name of an object?

14. Your SQL environment includes a catalog named Inventory. In that catalog is a schema

named CompactDiscs, and in that schema is a table named Artists. What is the qualified

name of that table?

15. What three forms can the <name clause> component of a CREATE SCHEMA statement take?

16. What are the differences between the CASCADE option and the RESTRICT option in

a DROP SCHEMA statement?

SQL: A Beginner’s Guide 45

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 2
Blind Folio 2:45

2

W
or

ki
ng

w
ith

th
e

SQ
L

En
vi

ro
nm

en
t

P:\010Comp\Begin8\885-7\ch02.vp
Friday, April 04, 2003 5:08:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:47

Module3
Creating and
Altering Tables

CRITICAL SKILLS
3.1 Create SQL Tables

3.2 Specify Column Data Types

3.3 Create User-Defined Types

3.4 Specify Column Default Values

3.5 Alter SQL Tables

3.6 Delete SQL Tables

47

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:48

In an SQL environment, tables are the basic unit of data management. Most SQL programming

you do is related either directly or indirectly to those tables. As a result, before you can insert

data into your database or modify that data, the appropriate tables must have been created or

you must create them. The SQL:1999 standard provides three statements that allow you to define,

change, and delete table definitions from an SQL environment. You can use the CREATE

TABLE statement to add a table, the ALTER TABLE statement to modify that definition,

or the DROP TABLE statement to delete the table and its data from your database. Of these

three statements, the CREATE TABLE statement has the most complex syntax. Not only is

this because of the various types of tables supported by SQL, but because a table definition

can include many elements. However, despite these complexities, table creation is a fairly

straightforward process, once you understand the basic syntax.

CRITICAL SKILL

3.1 Create SQL Tables
As you might recall from Module 2, SQL supports three types of tables: base tables, derived

tables, and viewed tables. Most base tables are schema objects that hold SQL data. Derived tables

are the results you see when you request (query) data from the database. Viewed tables are another

name for views, which I discuss in Module 5. You can think of a viewed table as a type of named

derived table, with a view definition stored in the schema.

In this module, you’ll be working with base tables. In fact, most of what you’ll be working

with directly throughout this book (as well as your programming career) are base tables; however,

not all base tables are the same. Some are persistent (permanent) and some are temporary. Some

are schema objects and some are contained in modules. All module base tables are also temporary

tables. SQL supports four types of base tables:

● Persistent base tables A named schema object defined by a table definition in a

CREATE TABLE statement. Persistent base tables hold the SQL data that is stored in

your database. This is the most common type of base table and is often what is being

referred to when talking about base tables or tables. A persistent base table always exists

as long as the table definition exists, and can be called from within any SQL session.

● Global temporary tables A named schema object defined by a table definition in a

CREATE GLOBAL TEMPORARY TABLE statement. Although the table definition is

a part of the schema, the actual table exists only when referenced within the context of an

SQL session. When the session ends, the table no longer exists. The table created in one

session cannot be accessed from another SQL session. The contents are distinct within

each SQL session.

● Created local temporary tables A named schema object defined by a table definition in

a CREATE LOCAL TEMPORARY TABLE statement. Like a global temporary table, the

created local temporary table can be referenced only within the context of an SQL session

48 Module 3: Creating and Altering Tables

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

and cannot be accessed from another SQL session. However, a global temporary table

can be accessed from anywhere within the associated SQL session, whereas a created

local temporary table can be accessed only within the associated module. The contents

are distinct within that module.

● Declared local temporary tables A table declared as part of a procedure in a module.

The table definition is not contained in the schema and does not exist until that procedure

is executed. Like other temporary tables, the declared local temporary table can be referenced

only within the context of the SQL session.

NOTE
An SQL session refers to the connection between a user and an SQL agent. During this
connection, a sequence of consecutive SQL statements are invoked by this user and then
executed. A module is an object that contains SQL statements, routines, or procedures.
Modules are discussed in Module 13 and Module 17.

Progress Check
1. What three types of tables does SQL support?

2. What four types of base tables does SQL support?

3. Which base tables are created as schema objects?

As you can see, you can use a form of the CREATE TABLE statement to create all base

table types except declared local temporary tables. Throughout the rest of the module, I will

primarily be discussing persistent base tables, although I’ll be touching on the subject of

temporary tables in subsequent modules. In the meantime, let’s take a look at the syntax in

a CREATE TABLE statement:

CREATE [{ GLOBAL | LOCAL } TEMPORARY] TABLE <table name>

(<table element> [{ , <table element> } . . .])

[ON COMMIT { PRESERVE | DELETE } ROWS]

SQL: A Beginner’s Guide 49

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:49

3

C
re

at
in

g
an

d
A

lte
rin

g
Ta

bl
es

1. Base tables, derived tables, and viewed tables (views)

2. Persistent base tables, global temporary tables, created local temporary tables, and declared local temporary tables

3. Persistent base tables, global temporary tables, and created local temporary tables

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:50

50 Module 3: Creating and Altering Tables

NOTE
The curly brackets are used to group elements together. For example, in the first line of
syntax, the GLOBAL | LOCAL keywords are grouped together. The brackets tell you that
you should first decide how to handle the contents within the brackets and then determine
how they fit into the clause. In the first line, you should use either GLOBAL or LOCAL
along with TEMPORARY. However, the entire clause is optional. The three periods (in
the second line) tell you that you can repeat the clause as often as necessary. In this
case, you could add as many <table element> clauses as your definition requires.

The syntax I’ve shown here provides only the basics of the CREATE TABLE statement,

which is actually far more complex. (The syntax and its explanations take up about 38 pages

of the SQL:1999 standard.) Even so, the syntax provided here is enough of a foundation for

you to create the majority of tables that you’re likely to be using.

In the first line of the syntax, you designate whether the table is temporary and you

provide a name for the table, so you have three options:

● CREATE TABLE <table name>

● CREATE GLOBAL TEMPORARY TABLE <table name>

● CREATE LOCAL TEMPORARY TABLE <table name>

Depending on the RDBMS in which you’re working, you might have to qualify the table

name by including a schema name, authorization identifier, or database name (for example,

Inventory.Artists).

The second line of the syntax allows you to specify the parts that make up the table, such

as columns. (I’ll return to that in a moment.) The third line of the syntax applies only if you’re

creating a temporary table. The clause allows you to specify whether or not the table should be

emptied when a COMMIT statement is executed. A COMMIT statement is used in a transaction

to commit changes to the database. I discuss transactions in Module 16.

You can think of the <table element> clauses as the meat of a CREATE TABLE statement.

It is here that you define columns, constraints, and other elements specific to the table you’re

creating. You can define one or more <table element> clauses. If you define more than one,

you must separate them with commas. Of the elements that you can create, we’ll be focusing

primarily on columns (in this module) and constraints (in Module 4). Let’s take a closer look

at the syntax that is used to define a column:

<column name> { <data type> | <domain> }

[<default clause>] [<column constraint>] [COLLATE <collation name>]

In the first line of the syntax, you must provide a column name and declare a data type or

user-defined domain. I discuss data types in the “Specify Column Data Types” section later

in this module, and I discuss domains in Module 4.

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In the second line of the syntax, you have the option to provide a default value (see the

“Specify Column Default Values” section), column constraints (see Module 4), or a collation

(see Module 2).

At its most basic, a CREATE TABLE statement might look something like the following

statement:

CREATE TABLE Artists
(ArtistID INTEGER, ArtistName CHARACTER (60)) ;

In this statement, I’m creating a table named Artists, a column named ArtistID, and a column

named ArtistName. The ArtistID column is associated with the INTEGER data type, and the

ArtistName column is associated with the CHARACTER data type. Notice that the two column

definitions are separated by a comma. If you execute the CREATE TABLE statement, your

table will look similar to the table shown in Figure 3-1.

NOTE
The rows of data would not be in a table until you have actually added that data. The
rows are shown here merely to give you an idea of the type of table that this statement
would create.

Before I go any further with my discussion about creating a table, let’s take a closer look

at data types, which play an integral role in any column definition.

SQL: A Beginner’s Guide 51

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:51

3

C
re

at
in

g
an

d
A

lte
rin

g
Ta

bl
es

Figure 3-1 The ArtistID and ArtistName columns of the Artists table

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:52

52 Module 3: Creating and Altering Tables

CRITICAL SKILL

3.2 Specify Column Data Types
Whenever you define a column in a CREATE TABLE statement, you must, at the very least,

provide a name for the column and an associated data type or domain. The data type or domain

(discussed in Module 4) restricts the value that can be entered into that column. For example,

some data types limit a column’s value to numbers, while other data types allow any character

to be entered. SQL supports three types of data types:

● Predefined Predefined data types are the most common. Each predefined data type is

a named element (using an SQL keyword) that limits values to the restrictions defined by

that database. SQL includes five types of predefined data types: string, numeric, datetime,

interval, and Boolean.

● Constructed Constructed data types, which are new to SQL:1999, are also a named

element but tend to be more complex than predefined data types because they can hold

multiple values. Constructed types allow you to construct more complicated structures

than more traditional data types. A thorough discussion of these types is beyond the scope

of this book, but I wanted to mention them so you know that they exist.

Ask the Expert
Q: When you discussed the various types of tables that SQL supports, you talked

briefly about temporary tables. What do you use temporary tables for?

A: Temporary tables provide you with a way to store temporary results within the context

of your session. You might find that you need a place to store this data in order to take

a certain course of action. You can explicitly create a persistent base table, store data in

that table, and then drop the table when you’re finished, but the temporary table allows

you to do the same without having to explicitly destroy the table each time you use it.

In other words, the temporary table is a useful tool when you need to store data for only

a specific period of time. For example, suppose you have an application that allows you

to generate a quarterly report based on your inventory at the end of the reporting period.

The application might need to gather the data into a meaningful collection to generate

the report; however, once the report is generated, the application no longer needs to

store that data, so the table can be deleted. One of the advantages of using a temporary

table is that, because it is unique to a session, the table cannot interact with other users

or sessions. As a result, the RDBMS doesn’t have to take special steps to lock the

transaction to prevent other users from accessing the data within the temporary tables,

which can result in better performance.

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 53

3● User-Defined User-defined data types are based on predefined types or attribute definitions

and are added as schema objects to the SQL environment. SQL supports two types of user-

defined data types: distinct and structured. The distinct type is based on a predefined data

type, and the structured type is based on attribute definitions. I discuss user-defined types

in the “Create User-Defined Types” section later in this module.

Although all implementations of SQL support data types, which data types are supported

varies from product to product. However, as a beginning SQL programmer, you’ll find that

most implementations support the basic (more traditional) data types, which are the ones I

will be using in the examples and projects throughout the book. These more traditional data

types, sometimes known as primitive types, are all part of the SQL predefined data types, which

I describe in the following sections. Don’t try to memorize each of these types, but start becoming

familiar with the differences between them. You’ll find that, as you start using specific data

types, you’ll become more comfortable with them. In the meantime, refer back to the following

sections as often as necessary whenever you’re working with table definitions or SQL data.

String Data Types
The string data types are made up of types that permit values based on character sets or on data

bits. The values permitted by string types can be fixed in length or varying, depending on the

specific type. SQL defines four types of string data types:

● Character strings Permitted values must be drawn from a specific character set, either

the default set or a set defined at the time that the column is being defined. Character

string data types include CHARACTER, CHARACTER VARYING, and CHARACTER

LARGE OBJECT.

● National character strings Permitted values are similar to character strings except

that the character set associated with these data types is defined by the implementation.

As a result, when a national character string data type is specified, the values associated

with that data type must be based on the character set specified by the relational database

management system (RDBMS) for the national character strings. The national character

string data types include NATIONAL CHARACTER, NATIONAL CHARACTER

VARYING, and NATIONAL CHARACTER LARGE OBJECT.

● Bit strings Permitted values are based on data bits (binary digits), rather than character

sets or collations, which means that these data types allow only values of 0 or 1. SQL

supports two types of bit string data types: BIT and BIT VARYING.

● Binary strings Permitted values are similar to bit strings, except that they are based on

bytes (referred to as octets in SQL:1999), rather than on bits. As a result, no character sets

or collations are associated with them. (A byte is equal to eight bits, which is why the SQL

standard uses the term octet.) SQL supports only one binary string data type: BINARY

LARGE OBJECT.

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:53

3

C
re

at
in

g
an

d
A

lte
rin

g
Ta

bl
es

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:54

Now that you have an overview of the types of string data types, let’s take a closer look at

each one. Table 3-1 describes each of these data types and provides an example of a column

definition that uses the specific type.

54 Module 3: Creating and Altering Tables

Data Type Description/Example

CHARACTER Specifies the exact number of characters (which must be
from a character set) that will be stored for each value. For
example, if you define the number of characters as 10, but
the value contains only six characters, the remaining four
characters will be spaces. The data type can also be referred
to as CHAR.
Example: FullName CHAR (60),

CHARACTER VARYING Specifies the greatest number of characters (which must be
from a character set) that can be included in a value. The
number of characters stored is exactly the same number
as the value entered, so no spaces are added to the value.
The data type can also be referred to as CHAR VARYING
or VARCHAR.
Example: FullName VARCHAR (60),

CHARACTER LARGE OBJECT Stores large groups of characters, up to the specified
amount. The number of characters stored is exactly the
same number as the value entered, so no spaces are
added to the value. The data type can also be referred
to as CLOB.
Example: ArtistBio CLOB (200K),

NATIONAL CHARACTER Operates just like the CHARACTER data type, except that
it’s based on an implementation-defined character set. The
data type can also be referred to as NATIONAL CHAR
and NCHAR.
Example: FullName NCHAR (60),

NATIONAL CHARACTER VARYING Operates just like the CHARACTER VARYING data type,
except that it’s based on an implementation-defined
character set. The data type can also be referred to as
NATIONAL CHAR VARYING or NCHAR VARYING.
Example: FullName NCHAR VARYING (60),

NATIONAL CHARACTER LARGE OBJECT Operates just like the CHARACTER LARGE OBJECT data
type, except that it’s based on an implementation-defined
character set. The data type can also be referred to as
NCHAR LARGE OBJECT or NCLOB.
Example: ArtistBio NCLOB (200K),

Table 3-1 String Data Types with Example Column Definitions

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 55

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:55

3

C
re

at
in

g
an

d
A

lte
rin

g
Ta

bl
es

Numeric Data Types
As you probably guessed by the name, the values specified by the numeric data types are

numbers. All numeric data types have a precision and some have a scale. The precision refers

to the number of digits (within a specific numeric value) that can be stored. The scale refers to

the number of digits in the fractional part of that value (the digits to the right of the decimal

point). For example, the number 435.27 has a precision of 5 and a scale of 2. A scale cannot be

a negative number or be larger than the precision. A scale of 0 indicates that the number is an

integer and contains no fractional component. SQL defines two types of numeric data types:

● Exact numerics Permitted values have a precision and scale, which, for some numeric

data types, are defined by the implementation. Exact numeric data types include NUMERIC,

DECIMAL, INTEGER, and SMALLINT.

● Approximate numerics Permitted values have a precision but no scale. As a result

the decimal point can float. A floating-point number is one that contains a decimal point,

but the decimal point can be located at any place within that number, which is why an

approximate numeric is said to have no scale. Approximate numeric data types include

REAL, DOUBLE PRECISION, and FLOAT.

Table 3-2 describes each of the numeric data types and provides an example of a column

definition that uses the specific type.

Data Type Description/Example

BIT Specifies the exact number of bits that can be stored for
each character. For example, if you define the number of
bits as 2 but the value contains only 1 bit, the remaining
bit will be a space. If the number of bits is not specified,
1 bit is stored.
Example: InStock BIT,

BIT VARYING Specifies the greatest number of bits that can be included
in a value. The number of bits stored is exactly the same
number as the value entered, so no spaces are added to
the value.
Example: InStock BIT VARYING (2),

BINARY LARGE OBJECT Stores large groups of bytes, up to the specified amount.
The number of bytes stored is exactly the same number
as the value entered, so no spaces are added to the value.
The data type can also be referred to as BLOB.
Example: ArtistPic BLOB (1M),

Table 3-1 String Data Types with Example Column Definitions (continued)

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:56

56 Module 3: Creating and Altering Tables

Datetime Data Types
As the name implies, datetime data types are concerned with tracking dates and times. SQL

defines three datetime types—DATE, TIME, and TIMESTAMP—and variations on these

types. These variations are related to Universal Coordinated Time (UCT), which used to be

called Greenwich Mean Time (GMT), and the various time zones. Table 3-3 describes each

of the datetime data types and provides an example of a column definition that uses the

specific type.

Data Type Description/Example

NUMERIC Specifies the precision and the scale of a numeric value. You can specify the
precision only and use the implementation-defined (default) scope, or you can
specify the precision and scope. If you specify neither the precision nor the
scope, the implementation will provide both values.
Example: ArtistRate NUMERIC (5,2),

DECIMAL Specifies values similar to those of the NUMERIC data type. However, if the
implementation-defined precision is higher than the specified precision, values
with the higher precision will be accepted, but the scale will always be what
you specify.
Example: ArtistRoyalty DECIMAL (5,2),

INTEGER Specifies a value with an implementation-defined precision and a 0 scope,
meaning that only integers are accepted and you do not specify any parameters
with this data type. The data type can also be referred to as INT.
Example: ArtistID INT,

SMALLINT Specifies a value similar to an INTEGER data type. However, the precision defined
by the implementation must be smaller than the INTEGER precision.
Example: ArtistID SMALLINT,

FLOAT Specifies the precision of a numeric value, but not the scope. This data type is
useful if you think you’ll be migrating your system from one hardware platform
to another.
Example: ArtistRoyalty FLOAT (6),

REAL Specifies a value with an implementation-defined precision, but without
a scope. The precision must be smaller than the precision defined
for a DOUBLE PRECISION data type.
Example: ArtistRoyalty REAL,

DOUBLE PRECISION Specifies a value with an implementation-defined precision, but without a
scope. The precision must be greater than the precision defined for the REAL
data type. The implication is that the value of the precision should be double
that of the REAL data type, but each implementation defines double differently.
Example: ArtistRoyalty DOUBLE PRECISION,

Table 3-2 Numeric Data Types with Example Column Definitions

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 57

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:57

3

C
re

at
in

g
an

d
A

lte
rin

g
Ta

bl
es

Interval Data Type
The interval data type is closely related to the datetime data types. The value of an interval

data type represents the difference between two datetime values. SQL supports two types

of intervals:

● Year-month intervals The interval data type specifies intervals between years, months,

or both. You can use only the YEAR and MONTH fields in a year-month interval.

● Day-time intervals The interval data type specifies intervals between any of the

following values: days, hours, minutes, or seconds. You can use only the DAY, HOUR,

MINUTE, and SECOND fields in a day-time interval.

Data Type Description/Example

DATE Specifies the year, month, and day value of a date. The year is four digits and
supports the values 0001 through 9999; the month is two digits and supports
the values 01 through 12; and the day is two digits and supports the values
01 through 31.
Example: DateHired DATE,

TIME Specifies the hour, minute, and second values of a time. The hour is two digits
and supports the values 00 through 23; the minute is two digits and supports
the values 00 through 59; and the second is at least two digits and supports
values 00 through 61.999. The data type includes no fractional digits unless
you specify them. For example, TIME (3) would give you three fractional
digits. The data type can also be referred to as TIME WITHOUT TIME ZONE.
Example: SongTime TIME (2),

TIME WITH TIME ZONE Specifies the same information as the TIME data type except that the value
also includes information specific to UTC and time zones. The values added
to the data type range from –11:59 to +12:00.
Example: EventTime TIME WITH TIME ZONE (2)

TIMESTAMP Combines the values of TIME and DATE. The only difference is that with
the TIME data type, the default number of fractional digits is 0, but with the
TIMESTAMP data type, the default number is 6. You can specify a different
number of fractional digits by including a parameter, such as TIMESTAMP (4).
The data type can also be referred to as TIMESTAMP WITHOUT TIME ZONE.
Example: PurchaseDate TIMESTAMP (3),

TIMESTAMP WITH
TIME ZONE

Specifies the same information as the TIMESTAMP data type except that the
value also includes information specific to UTC and time zones. The values
added to the data type range from –11:59 to +12:00.
Example: PurchaseDate TIMESTAMP WITH TIME ZONE (2),

Table 3-3 Datetime Data Types with Example Column Definitions

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:58

58 Module 3: Creating and Altering Tables

You cannot mix one type of interval with the other. For example, you cannot define an interval

data type that uses the YEAR field and the HOUR field.

The interval data type uses the keyword INTERVAL followed by an <interval qualifier>

clause. The clause is a complex series of rules that describe how the INTERVAL data type

can be defined to express intervals involving years, months, days, hours, minutes, or seconds.

In addition, the leading field (the first word) in the clause can be defined with a precision (p).

The precision is the number of digits that will be used in the leading field. If a precision isn’t

specified, the default is 2. For year-month intervals, you can specify one of the following

interval data types:

● INTERVAL YEAR

● INTERVAL YEAR (p)

● INTERVAL MONTH

● INTERVAL MONTH (p)

● INTERVAL YEAR TO MONTH

● INTERVAL YEAR (p) TO MONTH

There are many more options for day-time intervals because you have more fields to

choose from. For example, you can specify any of the following interval types using the

DAY field as a leading field or stand-alone field:

● INTERVAL DAY

● INTERVAL DAY (p)

● INTERVAL DAY TO HOUR

● INTERVAL DAY (p) TO HOUR

● INTERVAL DAY TO MINUTE

● INTERVAL DAY (p) TO MINUTE

● INTERVAL DAY TO SECOND

● INTERVAL DAY (p) TO SECOND

● INTERVAL DAY TO SECOND (x)

● INTERVAL DAY (p) TO SECOND (x)

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

When the SECOND field is the trailing field (the last word), you can specify an additional

precision (x), which defines the number of digits after the decimal point. As you can see from

these examples, there are many more day-time interval data types that can be defined. Keep in

mind, however, that the leading field must always be greater than the trailing field. For example,

the YEAR field is greater than MONTH, and HOUR is greater than MINUTE.

If you were going to use an interval data type in a column definition, it might look something

like the following:

DateRange INTERVAL YEAR (4) TO MONTH,

In this example, a value in this field will include four digits for the year, a hyphen, and then

two digits for the month, for example, 1999-08. If a precision were not specified for the year,

the year range could include only two digits (00 through 99).

In addition to the complexity of the rules that govern the use of the INTERVAL data type,

few implementations support it, making it unlikely that you will be using it anytime soon. For

that reason, I won’t be spending any more time on this data type and will not be using it in any

other examples or projects in the book.

Boolean Data Type
The Boolean data type (unlike the interval data types) is very straightforward and easy to

apply. The data type supports a true/false construct that permits only three values: true, false,

or unknown. A null value evaluates to unknown. (In SQL, a null value is used to signify that

a value is undefined or not known. I discuss null values in Module 4.)

The values in the Boolean data type can be used in SQL queries and expressions for

comparison purposes. (I discuss comparisons in Module 9.) Boolean comparisons follow

specific logic:

● True is greater than false.

● A comparison involving a null value or unknown value will return an unknown result.

● A value of unknown can be assigned to a column only if it supports null values.

To use the Boolean data type, you must use the BOOLEAN keyword with no parameters,

as shown in the following example:

ArtistHasAgent BOOLEAN,

The ArtistHasAgent column will accept only the values of true, false, and unknown.

SQL: A Beginner’s Guide 59

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:59

3

C
re

at
in

g
an

d
A

lte
rin

g
Ta

bl
es

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:60

NOTE
The Boolean data type is based on a specific type of computer logic known as Boolean, which
evaluates conditions of true or false in a given operation or expression. Many programming
languages support Boolean logic through the use of logical operators such as AND, OR,
and NOT, for example, “ItemA IS NOT FALSE” or “ItemA AND ItemB OR ItemC IS TRUE.”
In SQL, Boolean logic is implemented through the use of comparison operators to compare
values within various data types. I discuss these operators in Module 9.

60 Module 3: Creating and Altering Tables

Ask the Expert
Q: How do the predefined data types in SQL compare to the data types you find in

other programming languages?

A: For the most part, it is unlikely that data types from two different languages will be

the same. A set of data types in one language can vary in structure and semantics from

a set of data types in another language. These differences, sometimes called impedance

mismatch, can lead to the loss of information when an application draws data from an

SQL database. In fact, it’s often a good idea to know which language will be used for

applications as the database is being designed. In some cases, the database design can

affect which application language you can use to manipulate data in an SQL database.

However, SQL includes a data conversion expression named CAST. The CAST expression

allows you to convert data from one data type to another data type, allowing the host

language to access values that it wouldn’t have been able to handle in its original form.

The CAST expression is discussed in more detail in Module 10.

Q: Can SQL data types be assigned to objects other than columns?

A: Every SQL data value, or literal, belongs to a data type. For example, data types can be

assigned to the parameters of externally invoked procedures. Externally invoked procedures

are procedures that are contained within an SQL client module. A procedure is an SQL

statement (or series of statements) that can be called from another element in the code,

which in the case of externally invoked procedures is external code. A parameter, which is

the literal that belongs to a data type, is a value that is passed to the procedure and used as

the procedure is processed. The parameter acts as a placeholder for that value. SQL client

modules are discussed in Module 17.

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 61

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:61

3

C
re

at
in

g
an

d
A

lte
rin

g
Ta

bl
es

Using SQL Data Types
Now that you’ve taken a look at the various predefined data types, let’s look at a CREATE

TABLE statement that defines a table with columns that use different data types. In the following

example, the statement is creating a table named Artists that includes four columns:

CREATE TABLE Artists
(ArtistID INT,
ArtistFullName VARCHAR (60),
ArtistDOB DATE,
PosterInStock BOOLEAN) ;

As you can see, the ArtistID column is a numeric data type, the ArtistFullName column

a string data type, the ArtistDOB column is a datetime data type, and the PosterInStock

is a Boolean data type. Figure 3-2 illustrates what this table might look like.

Progress Check
1. What are the five types of predefined data types?

2. What are the differences between character string data types and bit string data types?

3. What does the precision of a numeric data type refer to?

1. String, numeric, datetime, interval, and Boolean

2. Character strings permit values that are drawn from a specific character set, either the default set or a set defined at the

time that the column is being defined. Bit strings permit values that are based on data bits (binary digits), rather than

character sets or collations, which means that these data types allow only values of 0 or 1.

3. The precision refers to the number of digits (within a specific numeric value) that can be stored.

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:62

62 Module 3: Creating and Altering Tables

CRITICAL SKILL

3.3 Create User-Defined Types
In Module 1, I mention that the SQL:1999 standard has incorporated some of the principles of

object-oriented programming (OOP) into its language. One example of this is the user-defined

type, sometimes referred to as the user-defined data type. The user-defined type is a type of

data type (stored as a schema object) that is in part defined by the programmer and in part

based on one or more data types. SQL supports two types of user-defined types:

● Structured types These types are made up of one or more attributes that are each based

on another data type, including predefined types, constructed types, and other structured

types. In addition to being associated with a data type, each attribute can include a default

clause and can specify a collation. A structured type can include methods in its definition.

A method is a type of function that’s associated with a user-defined type. A function is a

named operation that performs predefined tasks that you can’t normally perform by using

SQL statements alone. It is a type of routine that takes input parameters and returns values

based on those parameters.

● Distinct types These types are simply based on predefined data types and whatever

parameters are defined for that data type, if parameters are required or desired.

SQL provides a CREATE TYPE statement for defining user-defined types. However,

the language used for creating a user-defined type can vary from product to product. In

addition, the features that are supported in a user-defined type also vary widely. For example,

Figure 3-2 The Artists table defined with different data types

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 63

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:63

3

C
re

at
in

g
an

d
A

lte
rin

g
Ta

bl
es

SQL Server 2000 does not support a CREATE TYPE statement. Instead you use a built-in

system stored procedure and supply the necessary parameters to create the type, and the type

you’re creating is basically a distinct type.

Despite the differences with and limitations of product implementations, I want to at least

provide you with an example of how the CREATE TYPE statement is used to create a distinct

type. In the following statement, I create a user-defined type that is based on the NUMERIC

data type:

CREATE TYPE Salary AS NUMERIC (8,2)
FINAL ;

Once you’ve created the type, you can use it in a column definition as you would

a predefined data type:

CREATE TABLE Employees
(EmployeeID INTEGER, EmployeeSalary SALARY) ;

Any values you add to the EmployeeSalary column would have to conform to the specifications

of the NUMERIC data type, which has a precision of 8 and a scale of 2. As a result, a value

could be anything from 0 to 999999.99. The nice part about this is that you can then use the

SALARY user-defined type in any other tables that require similar values.

CRITICAL SKILL

3.4 Specify Column Default Values
Another valuable feature that SQL supports is the ability to specify a default value for a

column when you’re using the CREATE TABLE statement to create a table. The syntax

for a simple column definition with a default value looks like this:

<column name> <data type> DEFAULT <default value>

The <column name> and <data type> placeholders, which you should now be familiar

with, are followed by the DEFAULT keyword. After the DEFAULT keyword, you must

specify a value for the <default value> placeholder. This value can be a literal, which is an

SQL data value (such as To be determined); a datetime value function, which is a function

that allows you to perform operations related to dates and times (discussed in Module 10);

or a session-related user function, which is a function that returns user-related information

(discussed in Module 10).

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:64

Whichever type of value you use for the <default value> placeholder, it must conform to

the data requirements of the data type specified in the column definition. For example, if you

define a column with an INT data type or a CHAR (4) data type, you cannot specify a default

value of Unknown. In the first case, INT requires a numeric value, and in the second case,

CHAR (4) requires that the value contain no more than four characters.

In the following example, I use the CREATE TABLE statement to define a table named

Artists, which contains three columns:

CREATE TABLE Artists
(ArtistID INT,
ArtistName VARCHAR (60),
PlaceOfBirth VARCHAR (60) DEFAULT 'Unknown') ;

Notice that the PlaceOfBirth column includes the default value Unknown. The value is

acceptable because it conforms to the data requirements of the VARCHAR (60) data type.

Also notice that the default value is enclosed in single quotes. You must use single quotes

for character string values. Figure 3-3 illustrates what this table might look like if it were

populated with rows of data.

If you were to insert any new rows into this table and you didn’t know the artist’s place

of birth, the system would automatically insert a value of Unknown.

Progress Check
1. What are the differences between a structured user-defined type and a distinct user-defined type?

2. You are creating an SQL table named CDLabels that includes one column named

CompanyName. The column requires a VARCHAR (60) data type and a default value

of Independent. How should you write the SQL statement?

64 Module 3: Creating and Altering Tables

1. Structured types are made up of one or more attributes that can each be based on another data type, including predefined

types, constructed types, and other structured types. Distinct types are based on predefined data types and whatever

parameters are defined for that data type, if parameters are required or desired.

2. You should use the following statement:

CREATE TABLE CDLabels
(CompanyName VARCHAR (60) DEFAULT 'Independent') ;

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Project 3-1 Creating SQL Tables
You’ve probably noticed that I’ve been using CD-related data for the examples I’ve

shown you so far. We will be carrying this theme throughout the book as we begin

to build a database that tracks the CD inventory of a small business. In this project, you will

create three tables that are related to the Inventory database, which you created in Module 2,

Project 2-1. Before you begin, take a look at a simple data model (Figure 3-4) that shows the

three tables you’ll be creating. Each table is represented by a rectangle, with the name of the

table above the rectangle and the name of the columns, along with their data types, listed

within the rectangle.

We will be using the data model throughout the book—as it evolves into a more complex

structure—to define the objects in our database. You can also download the Prj03.txt file,

which contains the SQL statements used in this project.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

You will be creating all objects within that database. (If your RDBMS doesn’t support

the creation of a database and instead you created the CDInventory schema, you should

create all your objects within that schema.)

SQL: A Beginner’s Guide 65

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:65

3

C
re

at
in

g
an

d
A

lte
rin

g
Ta

bl
es

Cr
ea

tin
gS

QL
Ta

ble
s

Project
3-1

Figure 3-3 A default value of Unknown for the PlaceOfBirth column

Prj03.txt

Figure 3-4 Simple data model of the Inventory database

(continued)

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:66

2. The first table that you will create is the CompactDiscs table. Notice that it includes three

columns, two of which have an INT data type and one that has a VARCHAR (60) data type.

This table will hold data about the compact discs in your inventory. The CompactDiscID

column will contain numbers that uniquely identify each CD. The CDTitle column will

contain the actual names of the CDs. The LabelID column will contain numbers that identify

the companies that published the CDs. Enter the following SQL statement into your client

application’s input window:

CREATE TABLE CompactDiscs
(CompactDiscID INT, CDTitle VARCHAR (60), LabelID INT) ;

3. Verify that you have entered the correct information and execute the statement. You should

receive a message confirming that the statement has been successfully executed.

4. The next table that you will create is the CDLabels table. The table includes the LabelID

column, which uniquely identifies each company that publishes the CDs, and the

CompanyName column, which lists the actual names of the companies. Enter and

execute the following code:

CREATE TABLE CDLabels
(LabelID INT, CompanyName VARCHAR (60)) ;

5. The final table that you will create is the MusicTypes table. The table includes the TypeID

column, which uniquely identifies each category of music, and the TypeName column,

which lists the actual names of the categories of music (for example, Blues or Jazz). Enter

and execute the following code:

CREATE TABLE MusicTypes
(TypeID INT, TypeName VARCHAR (20)) ;

6. Close the client application.

Project Summary
Your database should now contain three new tables. These tables will serve as a foundation

for other projects in the book. As you progress through these projects, you will modify these

tables, create additional tables, insert data into the tables, and then query and manipulate that

data. By the time you’ve completed all the projects, you’ll have created and populated a small

database that stores data about an inventory of compact discs.

66 Module 3: Creating and Altering Tables

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 67

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:67

3

C
re

at
in

g
an

d
A

lte
rin

g
Ta

bl
es

CRITICAL SKILL

3.5 Alter SQL Tables
Taking what you’ve learned about creating tables, you can use the ALTER TABLE statement

to modify the definitions of base tables stored in your database (as schema objects). At its most

basic, the syntax for the ALTER TABLE statement looks like this:

ALTER TABLE <table name>

ADD [COLUMN] <column definition>

| ALTER [COLUMN] <column name>

{ SET DEFAULT <default value> | DROP DEFAULT }

| DROP [COLUMN] <column name> { CASCADE | RESTRICT }

The statement allows you to take three different actions: adding columns, altering columns,

or dropping columns.

NOTE
The ALTER TABLE statement also allows you to add or drop table constraints. A table
constraint is a rule that restricts what data can be entered into the table. The table constraint
is part of the table definition, but is not part of any specific column definitions. Constraints
are discussed in detail in Module 4.

The <column definition> placeholder in the ADD [COLUMN] clause is similar to the

column definition section of the CREATE TABLE statement. You provide a column name

and a data type or domain. You also have the option of adding a default clause, a column

constraint, or a collation. For example, you can use the following statement to alter the

Artists table so that it includes a DateOfBirth column:

ALTER TABLE Artists
ADD COLUMN ArtistDOB DATE ;

Unlike the ADD [COLUMN] clause, the ALTER [COLUMN] clause is limited to two actions:

setting a default or deleting the default. For example, suppose your Artists table includes a

PlaceOfBirth column, but no default has been defined for that column. You can add a default

by using the following statement:

ALTER TABLE Artists
ALTER COLUMN PlaceOfBirth SET DEFAULT 'Unknown' ;

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:68

You can also drop the default by using the following statement:

ALTER TABLE Artists
ALTER COLUMN PlaceOfBirth DROP DEFAULT ;

The final clause in the syntax—DROP [COLUMN]—provides two options for deleting a

column and its data from a table: the CASCADE keyword and the RESTRICT keyword. You

might remember these keywords from the discussion about the DROP SCHEMA statement

in Module 2. If the CASCADE option is specified, the column and the data within the column

are deleted regardless of whether other objects reference the column. Any views, constraints,

routines, or triggers that reference the column are also dropped. If the RESTRICT option is

used, the column is deleted only if no views, constraints, routines, or triggers reference the

column. For example, the following statement deletes the PlaceOfBirth column and the data

stored in the column, regardless of dependencies:

ALTER TABLE Artists
DROP COLUMN PlaceOfBirth CASCADE ;

In general, the ALTER TABLE statement is a handy one to know because invariably,

table definitions are going to change, and so too are the types of data stored in those tables.

However, this statement, like most SQL statements, can vary widely from implementation to

implementation, in terms of how the specifics of the statement are applied. As always, be sure

to check your product documentation.

CRITICAL SKILL

3.6 Delete SQL Tables
As you might imagine, the process of deleting a table and its stored data is very

straightforward. The following syntax shows you how easy this process is:

DROP TABLE <table name>{ CASCADE | RESTRICT }

The only real decision you need to make when deleting the table is whether to choose the

CASCADE option or the RESTRICT option. As in previous syntax examples, the two options

determine whether you should delete the table and its data if the table is being referenced by

other objects. If CASCADE is used, the table and its data are deleted, along with any views,

constraints, routines, or triggers that reference the table. If RESTRICT is used, the table is

deleted only if no such dependencies exist. For example, the following statement deletes the

Artists table and the data stored in the column, regardless of dependencies:

DROP TABLE Artists CASCADE ;

68 Module 3: Creating and Altering Tables

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 69

3

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:69

3

C
re

at
in

g
an

d
A

lte
rin

g
Ta

bl
es

Ask the Expert
Q: What if you want to delete the data in a table, but not the table definition itself?

A: Rather than using the DROP TABLE statement, you would use the DELETE statement.

The DELETE statement deletes all rows from a table or deletes only specific rows, as

defined within the statement. This is not the same as the DROP TABLE statement, which

removes the table definition and the data. I discuss the DELETE statement in more

detail in Module 8.

Q: You state that, when a default value is defined for a column, the value is automatically

inserted into the column when you add a row to the table but don’t specify a value

for that particular column. What happens if your column definition doesn’t include

a default and you try to insert that row?

A: The action that is taken depends on whether null values are permitted within the column.

A null value means that the value is not known. This is not the same as a zero, blank, or

default. If a null value is present, then the data is not available. By default, all columns

permit null values, although you can override the default (discussed in Module 4). If

you try to insert a row without specifying a specific value, a null value will be inserted

into that column if the column permits null values. If the column does not permit null

values, you will not be able to insert a row without defining that specific value.

Q: I’ve often heard the term indexes discussed in relation to creating SQL tables.

How do you create indexes?

A: Oddly enough, the SQL:1999 standard does not support the creation and maintenance of

indexes, nor does it define what an index is or mention them in any way. For those of you

not familiar with them, an index is a set of pointers (in a subsidiary table) that correspond

to rows in a table. Indexes speed up queries and improve performance, making data access

much more efficient. As a result, nearly every RDBMS supports some form of indexing,

and indeed they are an important part of that product. However, the method used to

implement indexing varies greatly, so each product provides its own system to set up and

maintain their indexes. For example, the CREATE INDEX statement is available in some

products; however, the syntax for the statement can vary. As always, be sure to review the

product documentation.

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:70

70 Module 3: Creating and Altering Tables

Project 3-2 Altering and Deleting SQL Tables
Throughout the lifecycle of nearly any database, the likelihood that business

requirements will change and the database will have to be altered is almost a foregone

conclusion. As a result, you will no doubt run into situations in which table definitions have to be

modified or they have to be deleted. In this project, you will create a table, drop that table, re-create

it, and then change it by deleting a column. By the time you are finished, you will have added one

more table to the Inventory database and will be making use of that table in later projects. You can

download the Prj03.txt file, which contains the SQL statements used in this project.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database

(or CDInventory schema).

2. You will create a table named CompactDiscTypes. The table will include the

CompactDiscID column and the TypeID column. Both columns will be assigned

an INT data type. Enter and execute the following code:

CREATE TABLE CompactDiscTypes
(CompactDiscID INT, TypeID INT) ;

3. You will now delete the table from the database. Enter and execute the following code:

DROP TABLE CompactDiscTypes CASCADE ;

4. You will now re-create the table you created in step 2, only this time you’ll include a

third column named CDTitle with a data type of VARCHAR (60). Enter and execute

the following code:

CREATE TABLE CompactDiscTypes
(CompactDiscID INT, CDTitle VARCHAR (60), TypeID INT) ;

5. Your next step will be to delete the CDTitle column. Enter and execute the following code:

ALTER TABLE CompactDiscTypes
DROP COLUMN CDTitle CASCADE ;

6. The CompactDiscTypes table should now contain only the CompactDiscID column and the

TypeID column. Close the client application.

Project Summary
The Inventory database should now contain four tables: CompactDiscs, CDLabels, MusicTypes,

and CompactDiscTypes. The CompactDiscTypes table, which you just created, contains two

columns, CompactDiscID and TypeID, both of which are defined with the INT data type. In

subsequent projects, you will continue to build on this database by adding new tables and

modifying existing ones.

Prj03.txt

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 71

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:71

3

C
re

at
in

g
an

d
A

lte
rin

g
Ta

bl
esModule 3 Mastery Check

1. Which kinds of base tables can you create by using a CREATE TABLE statement?

A. Persistent base tables

B. Global temporary base tables

C. Created local temporary tables

D. Declared local temporary tables

2. What is the primary difference between a global temporary table and a created local

temporary table?

3. You’re creating a table named Agents. The table includes the AgentID column, which

has an INT data type, and the AgentName column, which has a CHAR (60) data type.

What SQL statement should you use?

4. What are the three types of data types that SQL supports?

5. What are the four types of string data types?

6. A(n) ____________ data type permits values that are based on data bits, rather than

character sets or collations. This type of data type allows only values of 0 and 1.

7. What are the precision and the scale of the number 5293.472?

8. What are the differences between exact numeric data types and approximate numeric

data types?

9. Which data types are exact numeric data types?

A. DOUBLE PRECISION

B. DECIMAL

C. REAL

D. SMALLINT

10. A(n) ____________ data type specifies the year, month, and day values of a date.

11. What are the two types of interval data types that SQL supports?

12. Which data type should you use to support a true/false construct that can be used

for comparing values?

13. You are creating a distinct user-defined type named City. The user type is based

on the CHAR (40) data type. Which SQL statement should you use?

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 3
Blind Folio 3:72

14. You’re creating a table named Customers. The table includes the CustomerName column

and the CustomerCity column. Both columns have a VARCHAR (60) data type. The

CustomerCity column also has a default value of Seattle. Which SQL statement should

you use?

15. Which SQL statement should you use to delete a column from an existing table?

16. Which SQL statement should you use to delete a table definition and all its SQL data from

a database?

17. Your database includes a table named OperaSingers. You want to add a column named

Nationality to the table. The column should have a VARCHAR (40) data type. What SQL

statement should you use?

18. You want to delete the table definition for the OperaSingers table from your database. You

also want to delete all the data and any dependencies on the table. What SQL statement

should you use?

72 Module 3: Creating and Altering Tables

P:\010Comp\Begin8\885-7\ch03.vp
Monday, April 07, 2003 10:26:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:73

Module4
Enforcing Data Integrity

CRITICAL SKILLS
4.1 Understand Integrity Constraints

4.2 Use NOT NULL Constraints

4.3 Add UNIQUE Constraints

4.4 Add PRIMARY KEY Constraints

4.5 Add FOREIGN KEY Constraints

4.6 Define CHECK Constraints

73

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:74

74 Module 4: Enforcing Data Integrity

A n SQL database must do more than just store data. It must ensure that the data it does

store is correct. If data is inaccurate or inconsistent, the integrity of that data may have

been compromised, bringing into question the reliability of the database itself. In order to

ensure the integrity of the data, SQL provides a number of integrity constraints, rules that are

applied to base tables that constrain the values that can be placed into those tables. You can

apply constraints to individual columns, to individual tables, or to multiple tables. In this module,

I discuss each type of constraint and explain how you can apply them to your SQL database.

CRITICAL SKILL

4.1 Understand Integrity Constraints
SQL integrity constraints, which are usually referred to simply as constraints, can be divided

into three categories:

● Table-related constraints A type of constraint that is defined within a table definition.

The constraint can be defined as part of the column definition or as an element in the table

definition. Constraints defined at the table level can apply to one or more columns.

● Assertions A type of constraint that is defined within an assertion definition (separate

from the table definition). An assertion can be related to one or more tables.

● Domain constraints A type of constraint that is defined within a domain definition

(separate from the table definition). A domain constraint is associated with any column

that is defined within the specific domain.

Of these three categories of constraints, table-related constraints are the most common

and include the greatest number of constraint options. Table-related constraints can be divided

into two subcategories: table constraints and column constraints. The constraints in both these

subcategories are defined in the table definition. A column constraint is included with the column

definition, and a table constraint is included as a table element, similar to the way columns are

defined as table elements. (Module 3 discusses table elements and column definitions.) Both

column constraints and table constraints support a number of different types of constraints.

This is not the case for assertions and domain constraints, which are limited to only one type

of constraint. Figure 4-1 provides an overview of the types of constraints that can be created.

At the top of the illustration, you can see the three categories of constraints. Beneath the

Table-Related Constraints category are the Column Constraints subcategory and the Table

Constraints subcategory, each of which contains specific types of constraints. For example,

table constraints can include unique (UNIQUE constraints and PRIMARY KEY constraints),

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 75

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:75

4

En
fo

rc
in

g
D

at
a

In
te

gr
ity

referential (FOREIGN KEY constraints), and CHECK constraints, while column constraints can

include the NOT NULL constraint as well as unique, referential, and CHECK constraints.

However, domains and assertions support only CHECK constraints.

NOTE
In some places, the SQL:1999 standard uses the term table constraint to refer to both
types of table-related constraints. I use the term table-related to avoid confusion.

As Figure 4-1 shows, there are five different types of constraints: NOT NULL, UNIQUE,

PRIMARY KEY, FOREIGN KEY, and CHECK. In SQL, UNIQUE constraints and PRIMARY

KEY constraints are both considered unique constraints, and FOREIGN KEY constraints are

considered referential constraints. The rest of the module is devoted to explaining what each

of these constraints mean and how to apply them.

Figure 4-1 Types of SQL integrity constraints

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:76

Progress Check
1. What are the three categories of integrity constraints?

2. What are the differences between a column constraint and a table constraint?

3. What types of constraints can you include in a column definition?

CRITICAL SKILL

4.2 Use NOT NULL Constraints
In Module 3, I told you that null signifies that a value is undefined or not known. This is not

the same as a zero, a blank, or a default value. Instead, it indicates that a data value is absent.

You can think of a null value as being a flag. (A flag is a character, number, or bit that indicates

a certain fact about a column. The flag serves as a marker that designates a particular condition

or existence of something.) In the case of null, if no value is provided for a column, the flag is

set, indicating that the value is unknown, or null. Every column has a nullability characteristic

that indicates whether the column will accept null values. By default, all columns accept null

values. However, you can override the default nullability characteristic by using a NOT NULL

constraint, which indicates that the column will not accept null values.

NOTE
Some RDBMSs allow you to change the default nullability of any new column you
create. In addition, some systems support a NULL constraint, which you can use to
designate that a column will accept null values.

The NOT NULL constraint can be used as a column constraint only. It is not supported for

table constraints, assertions, or domain constraints. Implementing a NOT NULL constraint is a

very straightforward process. Simply use the following syntax when creating a column definition:

<column name> { <data type> | <domain> } NOT NULL

76 Module 4: Enforcing Data Integrity

1. Table-related constraints (sometimes referred to simply as table constraints), assertions, and domain constraints

2. Both types of constraints are defined in the table definition. A column constraint is included with the column definition,

and a table constraint is included as a table element, similar to the way columns are defined as table elements.

3. NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, and CHECK

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

For example, suppose you want to create a table named CompactDiscArtists that requires

three columns: ArtistID, ArtistFullName, and PlaceOfBirth. You want to make sure that any

new rows that are added to the table include a value for the ArtistID column and a value for

the ArtistFullName column. To do this, you add a NOT NULL constraint to both column

definitions, as shown in the following SQL statement:

CREATE TABLE CompactDiscArtists
(ArtistID INT NOT NULL,
ArtistFullName VARCHAR (60) NOT NULL,
PlaceOfBirth VARCHAR (60)) ;

Notice that the PlaceOfBirth column does not include a NOT NULL constraint. As a

result, if a value isn’t supplied for this column (when a row is inserted), a null value will be

inserted. (The null flag will be set.) Figure 4-2 shows what the table might look like if rows

were inserted that contained no value for the PlaceOfBirth column.

As you can see, the ArtistID and ArtistFullName columns do not—and cannot—contain

null values. The PlaceOfBirth column, on the other hand, contains two null values.

CRITICAL SKILL

4.3 Add UNIQUE Constraints
If you refer back to Figure 4-1, you’ll see that both column constraints and table constraints

support unique constraints. You’ll also see that that there are two types of unique constraints:

UNIQUE and PRIMARY KEY. In this section, I focus on the UNIQUE constraint. The

PRIMARY KEY constraint is discussed in the “Add PRIMARY KEY Constraints” section

later in this module.

SQL: A Beginner’s Guide 77

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:77

4

En
fo

rc
in

g
D

at
a

In
te

gr
ity

Figure 4-2 Null values appearing in the PlaceOfBirth column of the CompactDiscArtists table

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The UNIQUE constraint allows you to require that a column or set of columns contains

unique values only. For example, take a look at Figure 4-3, which shows the CDInventory

table. The table contains three columns: Artist, CDName, and Copyright.

You might decide that you want the values in the CDName column to be unique so that no

two CD names can be alike. If you applied a UNIQUE constraint to the column, you would not

be able to insert a row that contained a CDName value that already existed in the table. Now

suppose that you realize that making the CDName values unique is not a good idea because it

is possible for more than one CD to share the same name. You decide to take another approach

and use a UNIQUE constraint on the Artist and CDName columns. That way, no Artist/CDName

pair can be repeated. You can repeat an Artist value or a CDName value, but you cannot repeat

a value pair. For example, the table already contains a row with an ArtistID value of Joni Mitchell

and a CDName value of Blue. If a UNIQUE constraint had been applied to these two columns,

you could not add another row that contained both of these values.

Now that you have a basic understanding of how UNIQUE constraints are applied, let’s

take a look at the syntax that you use to create them. Remember, I said that you can create a

UNIQUE constraint that is either a column constraint or a table constraint. To create a column

constraint, add it as part of the column definition, as shown in the following syntax:

<column name> { <data type> | <domain> } UNIQUE

If you want to add a unique constraint as a table constraint, you must add it as a table element

in the table definition, as shown in the following syntax:

[CONSTRAINT <constraint name>]

UNIQUE (<column name> [{, <column name> } . . .])

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:78

78 Module 4: Enforcing Data Integrity

Figure 4-3 The CDInventory table with the Artist, CDName, and Copyright columns

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

As you can see, applying a UNIQUE constraint as a column constraint is a little simpler than

applying it as a table constraint. However, if you apply the constraint at the column level, you

can apply it to only one column. Regardless of whether you use column constraints or table

constraints, you can define as many UNIQUE constraints as necessary in a single table definition.

Now let’s return to the table in Figure 4-3 and use it to create code examples for applying

UNIQUE constraints. In the first example, I apply a UNIQUE constraint to the CDName

column:

CREATE TABLE CDInventory
(Artist VARCHAR (40), CDName VARCHAR (60) UNIQUE, Copyright INT) ;

I can also apply UNIQUE constraints to other columns, but that would not have the same

effect as combining two columns into one table constraint, as shown in the following example:

CREATE TABLE CDInventory
(Artist VARCHAR (40), CDName VARCHAR (60), Copyright INT,
CONSTRAINT un_ArtistCD UNIQUE (Artist, CDName)) ;

The Artist column and CDName column must now contain unique value pairs in order for

a row to be added to the CDInventory table.

Until now, I have told you that a UNIQUE constraint prevents duplicate values from being

entered into a column or columns defined with that constraint. However, there is one exception

to this—the null value. A UNIQUE constraint permits multiple null values in a column. As with

other columns, null values are permitted by default. You can, however, override the default

by using the NOT NULL constraint in conjunction with the UNIQUE constraint. For example,

you can add NOT NULL to the CDName column definition:

CREATE TABLE CDInventory
(Artist VARCHAR (40), CDName VARCHAR (60) NOT NULL UNIQUE, Copyright INT) ;

You can also add NOT NULL to a column definition that’s referenced by a table

constraint:

CREATE TABLE CDInventory
(Artist VARCHAR (40), CDName VARCHAR (60) NOT NULL, Copyright INT,
CONSTRAINT un_ArtistCD UNIQUE (CDName)) ;

In each case, both the NOT NULL constraint and the UNIQUE constraint are applied to

the CDName column, which means the CDName values must be unique and no null values

are allowed.

SQL: A Beginner’s Guide 79

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:79

4

En
fo

rc
in

g
D

at
a

In
te

gr
ity

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:80

Progress Check
1. What type of constraint should you use if you want to prevent null values from being

inserted into a column?

2. What are the two types of unique constraints?

3. You’re defining a UNIQUE constraint named CDArtistUnique on the ArtistName column

and the CDName column. What SQL code should you use for the constraint definition?

CRITICAL SKILL

4.4 Add PRIMARY KEY Constraints
As I mentioned in the “Add UNIQUE Constraints” section, a PRIMARY KEY constraint, like

the UNIQUE constraint, is a type of SQL unique constraint. Both types of constraints permit

only unique values in the specified columns, both types can be applied to one or more columns,

and both types can be defined as either column constraints or table constraints. However,

PRIMARY KEY constraints have two restrictions that apply only to them:

● A column that is defined with a PRIMARY KEY constraint cannot contain null values.

Even if you do not specify NOT NULL in the column definition, the column still must

contain a data value.

● Only one PRIMARY KEY constraint can be defined for each column.

The reason for these restrictions is the role that a primary key plays in a table. As you

might recall from Module 1, each row in a table must be unique. This means that at least one

column or a combination of columns must contain unique values. These columns are known

as a candidate key. A candidate key is a set of one or more columns that uniquely identify

each row. For example, in Figure 4-4, the candidate key in the CDArtists table is the ArtistID

column. Each value in the column must be unique. That way, even if the ArtistName values and

Agency values are duplicated, the row is still unique because the ArtistID value is always unique.

A candidate key can be defined with a UNIQUE constraint or a PRIMARY KEY constraint.

However, each table should include a primary key even if no UNIQUE constraints are defined.

80 Module 4: Enforcing Data Integrity

1. NOT NULL

2. UNIQUE and PRIMARY KEY

3. You should use the following code:

CONSTRAINT CDArtistUnique UNIQUE (ArtistName, CDName)

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Because a primary key cannot accept null values, it acts as the definitive measure by which

a row’s uniqueness can be ensured. Primary keys are also useful when one table references

another through the use of foreign keys. (See the “Add FOREIGN KEY Constraints” section

later in this module.) To define the primary key, you must use the PRIMARY KEY constraint

to specify which column or columns will serve as the table’s primary key. The process of

defining a PRIMARY KEY constraint is very similar to that of defining a UNIQUE constraint.

If you want to add a PRIMARY KEY constraint to a column definition, use the following syntax:

<column name> { <data type> | <domain> } PRIMARY KEY

If you want to add a PRIMARY KEY constraint as a table constraint, you must add it as

a table element in the table definition, as shown in the following syntax:

[CONSTRAINT <constraint name>]

PRIMARY KEY (<column name> [{, <column name> } . . .])

As with the UNIQUE constraint, you can use a column constraint to define a primary key

if you’re including only one column in the definition. For example, if you were to define

SQL: A Beginner’s Guide 81

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:81

4

En
fo

rc
in

g
D

at
a

In
te

gr
ity

Figure 4-4 The candidate key in the CDArtists table

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:82

a PRIMARY KEY constraint for the table shown in Figure 4-4, you would use the following

SQL statement:

CREATE TABLE CDArtists
(ArtistID INT PRIMARY KEY, ArtistName VARCHAR (60), Agency INT) ;

If you want to apply the constraint to multiple columns—or you simply want to keep it

as a separate definition—then you must use a table constraint:

CREATE TABLE CDArtists
(ArtistID INT, ArtistName VARCHAR (60), Agency INT,
CONSTRAINT pk_ArtistID PRIMARY KEY (ArtistID, ArtistName)) ;

This method creates a primary key on the ArtistID column and the ArtistName column, so

no two value pairs can be the same, although duplicates can exist within the individual column.

You might find that you want to define both PRIMARY KEY and UNIQUE constraints

on a table. To do so, you simply define the constraints as you normally would. For example,

the following SQL statement defines a PRIMARY KEY constraint on the ArtistID column

and a UNIQUE constraint on the ArtistName column:

CREATE TABLE CDArtists
(ArtistID INT PRIMARY KEY, ArtistName VARCHAR (60), Agency INT,
CONSTRAINT un_ArtistName UNIQUE (ArtistName)) ;

You would achieve the same results with the following code:

CREATE TABLE CDArtists
(ArtistID INT, ArtistName VARCHAR (60) UNIQUE, Agency INT,
CONSTRAINT pk_ArtistID PRIMARY KEY (ArtistID)) ;

NOTE
I used a UNIQUE constraint in these SQL statements only as a way to demonstrate how
the constraint can be used in a table with a primary key. Most likely, you would not
want to use a UNIQUE constraint for the ArtistName column because it is possible for
two artists to share the same name. (For example, two different blues artists, both of
whom lived in the earlier part of the last century, went by the name of Sonny Boy
Williamson.)

82 Module 4: Enforcing Data Integrity

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CRITICAL SKILL

4.5 Add FOREIGN KEY Constraints
Up to this point, the types of constraints that I’ve discussed have had to do primarily with

ensuring the integrity of data within a table. The NOT NULL constraint prevents the use

of null values within a column, and the UNIQUE and PRIMARY KEY constraints ensure

the uniqueness of values within a column or set of columns. However, the FOREIGN KEY

constraint is different in that it is concerned with how data in one table relates to data in another

table, which is why it is known as a referential constraint—it references another table.

SQL: A Beginner’s Guide 83

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:83

4

En
fo

rc
in

g
D

at
a

In
te

gr
ity

Ask the Expert
Q: Can the columns in a table belong to both a UNIQUE constraint and a PRIMARY

KEY constraint?

A: Yes, as long as they’re not the exact same columns. For example, suppose you have

a table that includes three columns: ArtistID, ArtistName, and PlaceOfBirth. You

can define a PRIMARY KEY constraint that includes the ArtistID and ArtistName

columns, which would ensure unique value pairs in those two columns, but values

within the individual columns could still be duplicated. However, you can then define

a UNIQUE constraint that includes only the ArtistName column to ensure that those

values are unique as well. (This probably isn’t the best design, but it illustrates my

point.) You can also create a UNIQUE constraint that includes the ArtistName and

PlaceOfBirth columns to ensure unique value pairs in those two columns. However,

the only thing you can’t do is create a UNIQUE constraint that includes the ArtistID

and ArtistName columns because they’re already included in the PRIMARY KEY

constraint.

Q: You state that a column that is included in a PRIMARY KEY constraint will not

accept null values. What happens if that column is configured with a NOT NULL

constraint as well?

A: Nothing different happens. The table is still created in the same way. A column definition

that includes PRIMARY KEY is saying the same thing as a column definition that includes

NOT NULL PRIMARY KEY. In fact, prior to SQL-92, the NOT NULL keywords were

required on all columns included in a PRIMARY KEY constraint. The same was true

for UNIQUE constraints. It wasn’t until SQL-92 that null values were permitted in a

UNIQUE constraint, which clearly set them apart from PRIMARY KEY constraints.

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:84

You might recall from Module 1 that tables in a relational database are linked together in

a meaningful way in order to ensure the integrity of the data. This association between tables

forms a relationship that provides referential integrity between tables. Referential integrity

prevents the manipulation of data in one table from adversely affecting data in another table.

Let’s take a look at an example that illustrates this point. Figure 4-5 shows two tables (CDTitles

and CDPublishers) that are each defined with a primary key. The CDTitleID column in the

CDTitles table is configured with a PRIMARY KEY constraint, as is the PublisherID column

in the CDPublishers table. Both these columns are shaded in the illustration.

Notice that the CDTitles table contains a column named PublisherID. This column includes

values from the PublisherID column of the CDPublishers table. In fact, the PublisherID values

in the CDTitles table should include only values that come from the PublisherID column in the

CDPublishers table. You should not be able to insert a row into CDTitles if the PublisherID value is

not listed in the CDPublishers table. At the same time, if you alter or delete a PublisherID value

in the CDPublishers table, you should be able to predict the outcome of your action if those

same values exist in the CDTitles table. These results can be achieved by using a FOREIGN

KEY constraint. A FOREIGN KEY constraint enforces referential integrity between two tables

by ensuring that no action is taken on either table that affects the data protected by the constraint.

In the tables shown in Figure 4-5, the FOREIGN KEY constraint must be configured on

the PublisherID column of the CDTitles table. The FOREIGN KEY constraint restricts the

values in that column to the values of a candidate key (usually the primary key) in the related

table. Only valid data values are permitted in the FOREIGN KEY column or columns.

84 Module 4: Enforcing Data Integrity

Figure 4-5 The relationship between the CDTitles table and the CDPublishers table

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 85

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:85

4

En
fo

rc
in

g
D

at
a

In
te

gr
ity

NOTE
The table that contains the foreign key is the referencing table. The table that is being
referenced by the foreign key is the referenced table. Likewise, the column or columns
that make up the foreign key in the referencing table are referred to as the referencing
columns. The columns being referenced by the foreign key are the referenced columns.

When creating a FOREIGN KEY constraint, you must follow several guidelines:

● The referenced columns must be a candidate key in the referenced table. The primary key

is most commonly used for the referenced columns.

● A FOREIGN KEY constraint can be created as a table constraint or column constraint. If

you create the foreign key as a column constraint, you can include only one column. If you

create the foreign key as a table constraint, you can include one or more columns.

● The foreign key in the referencing table must include the same number of columns that are

being referenced, and the referencing columns must each be configured with the same data

types as their referenced counterparts. However, the referencing columns do not have to

have the same name as the referenced columns.

● If you don’t specify the referenced columns when you define a FOREIGN KEY constraint,

then the columns defined in the primary key of the referenced table are used as the referenced

columns.

These guidelines will become clearer as I explain how to implement a foreign key.

First, let’s take a look at the basic syntax used to create that constraint. If you want to add

a FOREIGN KEY constraint as a column constraint, you must add the constraint to a column

definition, as shown in the following syntax:

<column name> { <data type> | <domain> } [NOT NULL]

REFERENCES <referenced table> [(<referenced columns>)]

[MATCH { FULL | PARTIAL | SIMPLE }]

[<referential triggered action>]

If you want to add a PRIMARY KEY constraint as a table constraint, you must add it as

a table element in the table definition, as shown in the following syntax:

[CONSTRAINT <constraint name>]

FOREIGN KEY (<referencing column > [{, <referencing column> } . . .])

REFERENCES <referenced table> [(<referenced columns>)]

[MATCH { FULL | PARTIAL | SIMPLE }]

[<referential triggered action>]

As you can see, a FOREIGN KEY constraint is a bit more complicated than the constraint

syntax you’ve looked at so far. However, creating a basic FOREIGN KEY constraint is

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:86

86 Module 4: Enforcing Data Integrity

a relatively straightforward process. Let’s take a look at one first, and then we’ll go on to the

more complex language elements.

In the following example, I use a CREATE TABLE statement to create the CDTitles table

(shown in Figure 4-5) and define a column constraint:

CREATE TABLE CDTitles
(CDTitleID INT, CDTitle VARCHAR (60),
PublisherID INT REFERENCES CDPublishers) ;

This statement defines a FOREIGN KEY constraint on the PublisherID column. Notice that,

in order to add a column constraint, all you had to do was add the REFERENCES keyword and

the name of the referenced table. Also notice that the foreign key contains the same number

of columns as the primary key in the referenced table, and the referenced and referencing

columns are the same data type. Remember, if you’re not referencing the primary key in the

referenced table, then you must also include the name of the column or columns, for example,

REFERENCES CDPublishers (PublisherID).

NOTE
Before you can create a foreign key on a table, the referenced table must already exist
and a UNIQUE or PRIMARY KEY constraint must be defined for that table.

In the next example, I create a foreign key that is a table constraint. Unlike the previous

example, I include the name of the referenced column in this constraint definition, even though

it isn’t necessary:

CREATE TABLE CDTitles
(CDTitleID INT, CDTitle VARCHAR (60), PublisherID INT,
CONSTRAINT fk_PublisherID FOREIGN KEY (PublisherID)
REFERENCES CDPublishers (PublisherID)) ;

The last two lines of code are the constraint definition. The name of the constraint,

fk_PublisherID, follows the CONSTRAINT keyword. After that, the FOREIGN KEY

keywords indicate the type of constraint, which is followed by the referencing column name,

PublisherID. This is the name of the column that the constraint is being placed on. If there

were more than one column name, they would be separated by commas. The name of the

referencing column is then followed by the REFERENCES keyword, which is followed

by the name of the referenced table, CDPublishers. The name of the referenced column

follows the name of the referenced table.

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

That’s all there is to it. Once the constraint is defined, you would not be able to insert

values into the PublisherID column of the CDTitles table unless those values appeared in

the primary key of the CDPublishers table. You should note, however, that the values in the

foreign key do not have to be unique, as they must be in the CDPublishers primary key. Values

in the foreign key can be repeated any number of times, unless the column is limited by a unique

constraint.

Before I move on to discussing the other elements of the FOREIGN KEY syntax, let’s

take a quick look at a foreign key that includes multiple columns. In Figure 4-6, there are

two tables: PerformingArtists and ArtistsMusicTypes.

The primary key on the PerformingArtists table is defined on the ArtistFullName and

ArtistDOB columns. The following SQL statement creates the ArtistsMusicTypes table,

which includes a foreign key made up of the ArtistName and DOB columns:

CREATE TABLE ArtistsMusicTypes
(ArtistName VARCHAR (60), DOB DATE, TypeID INT,
CONSTRAINT fk_CDArtists FOREIGN KEY (ArtistName, DOB)
REFERENCES PerformingArtists (ArtistFullName, ArtistDOB)) ;

4

SQL: A Beginner’s Guide 87

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:87

4

En
fo

rc
in

g
D

at
a

In
te

gr
ity

Figure 4-6 A foreign key made up of multiple columns

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:88

In this statement, there are two referencing columns (ArtistName and DOB) and two

referenced columns (ArtistFullName, ArtistDOB). The ArtistName column has the same

data type as the ArtistFullName column, and the DOB column has the same data type as the

ArtistDOB column. As you can see, the referencing columns do not have to have the same

name as their referenced counterparts.

The MATCH Clause
Now that you have an understanding of how to define a basic FOREIGN KEY constraint,

let’s look at another line of the FOREIGN KEY syntax:

[MATCH { FULL | PARTIAL | SIMPLE }]

You can tell from the brackets that this is an optional clause. The purpose of it is to allow

you to decide how to treat null values in the foreign key columns, with regard to permitting

values to be inserted into the referencing columns. If the columns do not permit null values,

then the MATCH clause does not apply. You have three options that you can use in the

MATCH clause:

88 Module 4: Enforcing Data Integrity

Ask the Expert
Q: In Figure 4-6 and in the preceding examples, you created a FOREIGN KEY

constraint on the ArtistName and DOB columns in the ArtistsMusicTypes table.

What would the primary key be for this table?

A: Remember that a primary key must uniquely identify each row in a table. However, because

value pairs in the ArtistName and DOB columns can be repeated (which means that they

can be repeated in the individual columns as well), those two columns cannot be used

by themselves as a primary key for this table. On the other hand, the TypeID column

can have repeating values as well, so that column cannot be used by itself. In addition,

you probably wouldn’t want to combine the TypeID column with one of the other two

columns because it is conceivable that you would have repeating rows (for example,

two artists with the same name performing the same types of music, such as the two

blues musicians named Sonny Boy Williamson, or two artists with the same date of

birth performing the same type of music). As a result, your best solution is to roll all

three columns into the primary key. Together, the three columns would uniquely identify

each row because it is highly unlikely that anyone would share the same name, date of

birth, and type of music (although anything is possible, which is why, ultimately, unique

identifiers are the best way to go).

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

● If MATCH FULL is specified, all referencing columns must have a null value or none of

these columns can have a null value.

● If MATCH PARTIAL is specified, one or more referencing columns can have null values

as long as the remaining referencing columns have values that equal their corresponding

referenced columns.

● If MATCH SIMPLE is specified and one or more referencing columns have null values,

then the remaining referencing columns can have values that are not contained in the

corresponding referenced columns. The SIMPLE option is implied if the MATCH clause

is not included in the FOREIGN KEY constraint definition.

The best way to illustrate each of these MATCH options is through examples of valid and

invalid data that can be inserted in the referencing columns. Going back to our example shown

in Figure 4-6, you can see that the foreign key in the ArtistsMusicTypes table is made up of

two referencing columns: ArtistName and DOB. Table 4-1 provides examples for data that

can and cannot be inserted into the foreign key columns. The examples are based on data in

the primary key columns of the PerformingArtists table.

NOTE
You probably wouldn’t want to permit null values in your referencing columns in the
ArtistsMusicTypes table, particular for the ArtistName column. And if either of these
columns were used in the primary key, you would not be able to permit null values.
However, in order to demonstrate how the MATCH options work, let’s assume that
null values are permitted.

SQL: A Beginner’s Guide 89

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:89

4

En
fo

rc
in

g
D

at
a

In
te

gr
ity

MATCH Option Valid Data Examples Invalid Data Examples

FULL Joni Mitchell, 1943-11-07
NULL, NULL

NULL, 1943-11-07
Joni Mitchell, NULL
Joni Mitchell, 1802-08-03

PARTIAL Patsy Cline, 1932-09-08
NULL, 1932-09-08
Patsy Cline, NULL
NULL, NULL

NULL, 1802-08-03
Henryk Górecki, NULL
Patsy Cline, 1947-03-03

SIMPLE Bing Crosby, 1904-05-02
NULL, 1904-05-02
Bing Crosby, NULL
NULL, 1802-08-03
Henryk Górecki, NULL
NULL, NULL

Bing Crosby, 1802-08-03
Bing Crosby, 1947-03-03
Henryk Górecki, 1947-03-03

Table 4-1 Valid and Invalid Examples of the MATCH Options

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:90

If you decide to use the MATCH clause, you simply add it to the end of your FOREIGN

KEY constraint definition, as shown in the following SQL statement:

CREATE TABLE ArtistsMusicTypes
(ArtistName VARCHAR (60), DOB DATE, TypeID INT,
CONSTRAINT fk_CDArtists FOREIGN KEY (ArtistName, DOB)
REFERENCES PerformingArtists MATCH FULL) ;

To insert data into the referencing columns (ArtistName and DOB), both values have to be null

or they must be a valid data pair from the referenced columns in the PerformingArtists table.

The <referential triggered action> Clause
The final clause in the FOREIGN KEY constraint syntax is the optional <referential triggered

action> clause. The clause allows you to define what types of actions should be taken when

attempting to update or delete data from the referenced columns—if that attempt would cause

a violation of the data in the referencing columns. For example, suppose you try to delete data

from a table’s primary key. If that primary key is referenced by a foreign key and if the data to

be deleted is stored in the foreign key, then deleting the data from the primary key would cause

a violation in the data in the foreign key. Data in referencing columns must always be included

in the referenced columns.

The point to remember about the <referential triggered action> clause is that you are

including in the definition of the referencing table (through the foreign key) an action that

should be taken as a result of something being done to the referenced table. This can be

clarified by taking a look at the syntax for the <referential triggered action> clause:

ON UPDATE <referential action> [ON DELETE <referential action>]

| ON DELETE <referential action> [ON UPDATE <referential action>]

<referential action> ::=

CASCADE | SET NULL | SET DEFAULT | RESTRICT | NO ACTION

NOTE
The ::= symbol (two consecutive colons plus an equal sign) is used in the SQL:1999
standard to separate a placeholder in the angle brackets from its definition. In the
preceding syntax, the <referential action> placeholder is defined. The placeholder is
used in the code preceding the definition. You would then take the definition (the five
keywords) and use them in place of the <referential action> placeholder as it is used
in the ON UPDATE and ON DELETE clauses.

90 Module 4: Enforcing Data Integrity

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4As you can see from the syntax, you can define an ON UPDATE clause, an ON DELETE

clause, or both, and you can define them in any order. For each of these clauses you can choose

one of five referential actions:

● If CASCADE is used and data is updated or deleted in the referenced columns, the data in

the referencing columns is updated or deleted.

● If SET NULL is used and data is updated or deleted in the referenced columns, the values

in the corresponding referencing columns are set to null. Null values have to be supported in

the referencing columns for this option to work.

● If SET DEFAULT is used and data is updated or deleted in the referenced columns, the

values in the corresponding referencing columns are set to their default values. Default

values must be assigned to the referencing columns for this option to work.

● If RESTRICT is used and you try to update or delete data in your referenced columns that

would cause a foreign key violation, you are prevented from performing that action. Data

in the referencing columns can never violate the FOREIGN KEY constraint, not even

temporarily.

● If NO ACTION is used and you try to update or delete data in your referenced columns

that would cause a foreign key violation, you are prevented from performing that action.

However, data violations can occur temporarily under certain conditions during the execution

of an SQL statement, but the data in the foreign key is never violated in its final state (at

the end of that execution). The NO ACTION option is the default used for both updates

and deletes, if no referential triggered action is specified.

If you decide to use the <referential triggered action> clause, you simply add it to the end

of your FOREIGN KEY constraint definition, as shown in the following SQL statement:

CREATE TABLE ArtistsMusicTypes
(ArtistName VARCHAR (60), DOB DATE, TypeID INT,
CONSTRAINT fk_CDArtists FOREIGN KEY (ArtistName, DOB)
REFERENCES PerformingArtists ON UPDATE CASCADE ON DELETE CASCADE) ;

If you update data in or delete data from the referenced columns in PerformingArtists, those

changes will be made to the referencing columns in the ArtistsMusicTypes table.

SQL: A Beginner’s Guide 91

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:91

4

En
fo

rc
in

g
D

at
a

In
te

gr
ity

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:92

Progress Check
1. What two restrictions are placed on PRIMARY KEY constraints that are not placed on

UNIQUE constraints?

2. How does a referential constraint differ from a unique constraint?

3. How do the referencing columns in a FOREIGN KEY constraint compare to the referenced

columns in a candidate key?

4. What three options can you use in a MATCH clause?

Project 4-1 Adding NOT NULL, Unique,
and Referential Constraints

In Module 3, Project 3-1 and Project 3-2, you created several tables that you added to

the Inventory database (or the CDInventory schema). In this project, you will add a

number of constraints to the tables and create new tables that are also defined with constraints.

However, rather than use the ALTER TABLE statement to modify the tables that you already

created, you will be re-creating those tables. The advantage to this is that you’ll be able to see

the complete table definition, as it relates to the updated data model, shown in Figure 4-7.

The data model incorporates a few more elements than you have seen before. It identifies

tables, columns within those tables, data types for those columns, constraints, and relationships

between tables. You should already be familiar with how tables, columns, and data types

are represented, so let’s take a look at constraints and relationships:

● The columns included in the primary key are in the top section of the table, and

the other columns lie in the bottom section. For example, in the CompactDiscs

92 Module 4: Enforcing Data Integrity

1. A column that is defined with a PRIMARY KEY constraint cannot contain null values, and only one PRIMARY KEY

constraint can be defined for each column.

2. A unique constraint ensures the uniqueness of values within a column or set of columns. A referential constraint is

concerned with how data in one table relates to data in another table. The association between tables forms a relationship

that provides referential integrity between tables, thus preventing the manipulation of data in one table from adversely

affecting data in another table.

3. The foreign key in the referencing table must include the same number of columns that are being referenced, and

the referencing columns must each be configured with the same data types as their referenced counterparts.

4. FULL, PARTIAL, and SIMPLE

Prj04.txt

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

table, the CompactDiscID column is the primary key. In some cases, as in the

CompactDiscTypes table, all columns are included in the primary key.

● Each foreign key is represented by an [FK].

● Defaults, UNIQUE constraints, and NOT NULL constraints are identified with

the column.

● Relationships, as defined by foreign keys, are represented by lines that connect

the foreign key in one table to the candidate key in another table.

You’ll find the data model useful not only for this project, but for other projects in the

book, all of which will continue to build upon or use the Inventory database. You can also

download the Prj04.txt file, which contains the SQL statements used in this project.

SQL: A Beginner’s Guide 93

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:93

4

En
fo

rc
in

g
D

at
a

In
te

gr
ity

Ad
din

gN
OT

NU
LL

,U
niq

ue
,a

nd
Re

fe
re

nt
ial

Co
ns

tra
int

s

Project
4-1

Figure 4-7 Data model for the Inventory database

(continued)

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:94

94 Module 4: Enforcing Data Integrity

NOTE
Data models come in many varieties. The model I use here is specific to the needs of the
book. You’ll find in the real world that the models will differ from what you see here.
For example, relationships between tables might be represented differently, and column
definition information might not be quite as extensive.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. You first need to drop the four tables (CompactDiscs, CompactDiscTypes, MusicTypes,

and CDLabels) that you already created. Enter and execute the following SQL statements:

DROP TABLE CompactDiscs CASCADE ;
DROP TABLE CompactDiscTypes CASCADE ;
DROP TABLE MusicTypes CASCADE ;
DROP TABLE CDLabels CASCADE ;

NOTE
If you created either the Artists table or the ArtistCDs table when trying out examples or
experimenting with CREATE TABLE statements, be sure to drop those as well.

Now you can begin to re-create these tables and create new ones. You should create the

tables in the order outlined in this project because the tables referenced in foreign keys will

have to exist—with primary keys created—before you can create the foreign keys. Be sure

to refer to the data model in Figure 4-7 for details about each table that you create.

3. The first table that you’re going to create is the MusicTypes table. It contains two columns:

TypeID and TypeName. You’ll configure the TypeID column as the primary key, and you’ll

configure a UNIQUE constraint and NOT NULL constraint on the TypeName column.

Enter and execute the following SQL statement:

CREATE TABLE MusicTypes
(TypeID INT, TypeName VARCHAR (20) NOT NULL,
CONSTRAINT un_TypeName UNIQUE (TypeName),
CONSTRAINT pk_MusicTypes PRIMARY KEY (TypeID)) ;

4. The next table that you’ll create is the CDLabels table. The table includes the LabelID

column, which will be defined as the primary key, and the CompanyName column, which

will be defined with a default and the NOT NULL constraint. Enter and execute the

following SQL statement:

CREATE TABLE CDLabels
(LabelID INT, CompanyName VARCHAR (60) DEFAULT 'Independent' NOT NULL,
CONSTRAINT pk_CDLabels PRIMARY KEY (LabelID)) ;

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5. Now that you’ve created the CDLabels table, you can create the CompactDiscs table. The

CompactDiscs table contains a foreign key that references the CDLabels table. This is why

you created CDLabels first. Enter and execute the following SQL statement:

CREATE TABLE CompactDiscs
(CompactDiscID INT, CDTitle VARCHAR (60) NOT NULL, LabelID INT NOT NULL,
CONSTRAINT pk_CompactDiscs PRIMARY KEY (CompactDiscID),
CONSTRAINT fk_LabelID FOREIGN KEY (LabelID) REFERENCES CDLabels) ;

6. The next table, CompactDiscTypes, includes two foreign keys, along with its primary key.

The foreign keys reference the CompactDiscs table and the MusicTypes table, both of

which you’ve created. Enter and execute the following SQL statement:

CREATE TABLE CompactDiscTypes
(CompactDiscID INT, MusicTypeID INT,
CONSTRAINT pk_CompactDiscTypes PRIMARY KEY (CompactDiscID, MusicTypeID),
CONSTRAINT fk_CompactDiscID_01 FOREIGN KEY (CompactDiscID)

REFERENCES CompactDiscs,
CONSTRAINT fk_MusicTypeID FOREIGN KEY (MusicTypeID)

REFERENCES MusicTypes) ;

7. Now you can create the Artists table. Enter and execute the following SQL statement:

CREATE TABLE Artists
(ArtistID INT, ArtistName VARCHAR (60) NOT NULL,
PlaceOfBirth VARCHAR (60) DEFAULT 'Unknown' NOT NULL,
CONSTRAINT pk_Artists PRIMARY KEY (ArtistID)) ;

8. The last table you’ll create (at least for now) is the ArtistCDs table. Enter and execute the

following SQL statement:

CREATE TABLE ArtistCDs
(ArtistID INT, CompactDiscID INT,
CONSTRAINT pk_ArtistCDs PRIMARY KEY (ArtistID, CompactDiscID),
CONSTRAINT fk_ArtistID FOREIGN KEY (ArtistID) REFERENCES Artists,
CONSTRAINT fk_CompactDiscID_02 FOREIGN KEY (CompactDiscID)

REFERENCES CompactDiscs) ;

9. Close the client application.

Project Summary
Your database now has six tables, each one configured with the necessary defaults and constraints.

In this project, we followed a specific order for creating the tables in order to more easily

implement the foreign keys. However, you could have created the tables in any order, without

SQL: A Beginner’s Guide 95

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:95

4

En
fo

rc
in

g
D

at
a

In
te

gr
ity

Ad
din

gN
OT

NU
LL

,U
niq

ue
,a

nd
Re

fe
re

nt
ial

Co
ns

tra
int

s

Project
4-1

(continued)

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:96

their foreign keys—unless the referenced table was already created—and then added in the foreign

keys later, but this would have added extra steps. In fact, had you wanted to, you could have

altered the tables that had existed prior to this project (rather than dropping them and then

re-creating them), as long as you created primary keys on the referenced tables before creating

foreign keys on the referencing tables. Regardless of the approach that you take, the end result

should be that your database now has the necessary tables to begin moving on to other components

of SQL.

CRITICAL SKILL

4.6 Define CHECK Constraints
Earlier in the module, in the “Understand Integrity Constraints” section, I discussed the various

constraint categories and the types of constraints they support. (Refer back to Figure 4-1 for an

overview of these categories.) One type of constraint—the CHECK constraint—can be defined

as table constraints, column constraints, domain constraints, or within assertions. A CHECK

constraint allows you to specify what values can be included in a column. For instance, you

can define a range of values (for example, between 10 and 100), a list of values (for example,

blues, jazz, pop, country), or a number of other conditions that restrict exactly what values are

permitted in a column.

CHECK constraints are the most flexible of all the constraints and are often the most

complicated. Despite this, the basic syntax used for a CHECK constraint is relatively simple.

To create a column constraint, use the following syntax in a column definition:

<column name> { <data type> | <domain> } CHECK (<search condition>)

To create a table constraint, use the following syntax in a table definition:

[CONSTRAINT <constraint name>] CHECK (<search condition>)

I’ll be discussing domain constraints and assertions later in this section.

As you can see by the syntax, a CHECK constraint is relatively straightforward. However,

the values used for the <search condition> clause can be very extensive and, consequently, quite

complex. The best way for you to learn about the clause is by looking at examples. However,

most <search condition> components are based on the use of predicates in order to create the

search condition. A predicate is an expression that operates on values. For example, a predicate

can be used to compare values (for instance, Column1 > 10). The greater-than symbol (>) is

a comparison predicate, sometimes referred to as a comparison operator. In this case, the

predicate verifies that any value inserted into Column1 is greater than 10.

Many <search condition> components also rely on the use of subqueries. A subquery is an

expression that is used as a component within another expression. Subqueries are used when

96 Module 4: Enforcing Data Integrity

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

an expression must access or calculate multiple layers of data, such as having to search a second

table to provide data for the first table.

Both predicates and subqueries are complicated enough subjects to be beyond the scope of

a discussion about CHECK constraints, and indeed each subject is treated separately in its own

module. (See Module 9 for information about predicates and Module 12 for information about

subqueries.) Despite the fact that both topics are discussed later in the book, I want to provide

you with at least a few examples of CHECK constraints to give you a feel of how they’re

implemented in an SQL environment.

The first example we’ll look at is a CHECK constraint that defines the minimum and

maximum values that can be inserted into a column. The following table definition in this

example creates three columns and one CHECK constraint (as a table constraint) that restricts

the values of one of the columns to a range of numbers between 0 and 30:

CREATE TABLE CDTitles
(CompactDiscID INT, CDTitle VARCHAR (60) NOT NULL, InStock INT NOT NULL,
CONSTRAINT ck_InStock CHECK (InStock > 0 AND InStock < 30)) ;

If you were to try to enter a value into the InStock column other than 1 through 29, you

would receive an error. You can achieve the same results by defining a column constraint:

CREATE TABLE CDTitles
(CompactDiscID INT, CDTitle VARCHAR (60) NOT NULL,
InStock INT NOT NULL CHECK (InStock > 0 AND InStock < 30)) ;

Let’s take a closer look at the <search condition> clause in these statements, which in this

case is “(InStock > 0 AND InStock < 30).” The clause first tells us that any value entered into

the InStock column must be greater than 0 (InStock > 0). The AND keyword tells us that the

conditions defined on either side of AND must be applied. Finally, the clause tells us that the value

must be less than 30 (InStock < 30). Because the AND keyword is used, the value must be

greater than 0 and less than 30.

Another way that a CHECK constraint can be used is to explicitly list the values that can

be entered into the column. This is a handy option if you have a limited number of values and

they’re not likely to change (or will change infrequently). The following SQL statement creates

a table that includes a CHECK constraint that defines in which decade the music belongs:

CREATE TABLE CDTitles
(CompactDiscID INT, CDTitle VARCHAR (60) NOT NULL, Era CHAR (5),
CONSTRAINT ck_Era CHECK (Era IN

('1940s', '1950s', '1960s', '1970s', '1980s', '1990s', '2000s'))) ;

The value entered into the Era column must be one of the seven decades represented by the

search condition. If you tried to enter a value other than a null value or one of these seven, you

SQL: A Beginner’s Guide 97

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:97

4

En
fo

rc
in

g
D

at
a

In
te

gr
ity

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:98

98 Module 4: Enforcing Data Integrity

would receive an error. Notice that the IN operator is used to designate that the Era column

values must be one of the set of values enclosed by parentheses after IN.

If the number of parentheses starts to get confusing to you, you can separate your code into

lines that follow the embedding of those parentheses. For example, the preceding statement

can be written as follows:

CREATE TABLE CDTitles
(

CompactDiscID INT, CDTitle VARCHAR (60) NOT NULL, Era CHAR (5),
CONSTRAINT ck_Era CHECK
(

Era IN
(

‘1940s’, ‘1950s’, ‘1960s’, ‘1970s’, ‘1980s’, ‘1990s’, ‘2000s’
)

)
) ;

Each set of parentheses and its content is indented to a level that corresponds to the level

of embedding for that particular clause, just like an outline. Using this method tells you exactly

which clauses are enclosed in which set of parentheses, and the statement is executed just the

same as if you hadn’t separated out the lines. The downside is that it takes up a lot of room

(which is why I don’t use this method in this book), although it might be a helpful tool for you

for those statements that are a little more complicated than others.

Now let’s look at one other example of a CHECK constraint. This example is similar to

the first one we looked at, only this one is concerned with values between certain numbers:

CREATE TABLE CDTitles
(CompactDiscID INT, CDTitle VARCHAR (60) NOT NULL, InStock INT NOT NULL,
CONSTRAINT ck_InStock CHECK

((InStock BETWEEN 0 AND 30) OR (InStock BETWEEN 49 AND 60))) ;

In this statement, you use the BETWEEN operator to specify a range. Because you are

creating two different ranges, you enclose each range specification in parentheses: “(InStock

BETWEEN 0 AND 30)” and “(InStock BETWEEN 49 AND 60).” These two range

specifications are then connected by an OR keyword, which indicates that either one or the

other condition must be met. As a result, any value entered into the InStock column must be

from 1 through 29 or from 50 through 59.

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 99

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:99

4

En
fo

rc
in

g
D

at
a

In
te

gr
ity

As I said earlier, you will learn more about search conditions in Module 9. At that time,

you’ll see just how flexible the CHECK constraint is. And when used with subqueries (see

Module 12), they provide a powerful tool for explicitly defining what values are permitted

in a particular column.

Defining Assertions
An assertion is merely a type of CHECK constraint that can be applied to multiple tables.

For this reason an assertion must be created separately from a table definition. To create

an assertion, use the following syntax:

CREATE ASSERTION <constraint name> CHECK <search conditions>

Creating an assertion is very similar to creating a table CHECK constraint. After the

CHECK keyword, you must provide the necessary search conditions. Now let’s take a look

at an example. Suppose the CDTitles table includes a column for the number of compact discs

in stock. You want the total for that table to always be less than the maximum inventory you

want to carry. In the following example, I create an assertion that totals the values in the

InStock column and verifies that the total is less than 5000:

CREATE ASSERTION as_AvgInStock CHECK
((SELECT SUM (InStock) FROM CDTitles) < 5000);

In this statement, I am using a subquery, “(SELECT SUM (InStock) FROM CDTitles),”

and comparing it to 5000. The subquery begins with the SELECT keyword, which is used to

query data from a table. The SUM function adds the values in the InStock column, and the

FROM keyword specifies which table the column is in. The results of this subquery are then

compared (using the less than comparison operator) to 5000. If you try to add a value to the

InStock column that would cause the total to exceed 5000, you would receive an error.

Creating Domains and Domain Constraints
The last type of CHECK constraint is the kind that you insert into a domain definition. For the

most part, the constraint definition is similar to what you’ve seen before, except that you do

not tie the constraint to a specific column or table. In fact, domain constraints use the VALUE

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:100

keyword when referring to the value within a column defined with that particular domain.

Let’s look at the syntax for creating a domain:

CREATE DOMAIN <domain name> [AS] <data type>

[DEFAULT <default value>]

[CONSTRAINT <constraint name>] CHECK (<search condition>)

You should already be familiar with most of the elements in this syntax. I discuss data

types and default clauses in Module 3, and the constraint definition is similar to what you’ve

seen so far in this module.

In the following example, I create a domain that’s based on the INT data type and that

requires all values to be between 0 and 30:

CREATE DOMAIN StockAmount AS INT
CONSTRAINT ck_StockAmount CHECK (VALUE BETWEEN 0 AND 30);

The only really new item here (other than the CREATE DOMAIN clause) is the keyword

VALUE, which, as I said, refers to the value of the column defined with the StockAmount

domain. As a result, if you try to insert a value (into one of those columns) that is not between

0 and 30, you will receive an error.

Progress Check
1. What kinds of constraints can include CHECK constraints?

2. You’re creating a CHECK constraint that includes the following search condition:

“(InStock BETWEEN 0 AND 30).” What does this mean?

3. What keyword is used within a domain constraint to refer to the value within a column?

100 Module 4: Enforcing Data Integrity

1. Table constraints, column constraints, domain constraints, and assertions

2. Values inserted into the InStock column must be within the range of 0 and 30.

3. VALUE

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 101

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:101

4

En
fo

rc
in

g
D

at
a

In
te

gr
ity

Ad
din

ga
CH

EC
K

Co
ns

tra
int

Project
4-2

Project 4-2 Adding a CHECK Constraint
In this project, which is relatively short, you will be using the ALTER TABLE

statement to modify the CompactDiscs table. You will be adding a column to the

table and then defining a CHECK constraint for that column that restricts the values that can

be entered into the column. The additional column and constraint will have no impact on other

tables in the Inventory database or on the relationship between tables. You can download the

Prj04.txt file, which contains the SQL statements used in this project.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. You’re going to modify the CompactDiscs table by adding the InStock column. Enter and

execute the following SQL statement:

ALTER TABLE CompactDiscs
ADD COLUMN InStock INT NOT NULL ;

3. Now that the column exists, you can add a CHECK constraint to the table definition. You

could have entered the constraint as a column constraint, but adding it separately as a table

constraint allows you to do each step separately so you can see the results of your actions.

The CHECK constraint limits the values that can be entered into the InStock column. Each

value must be greater than 0, but less than 50. Enter and execute the following SQL

statement:

ALTER TABLE CompactDiscs
ADD CONSTRAINT ck_InStock CHECK (InStock > 0 AND InStock < 50) ;

4. Close the client application.

Project Summary
The new column, InStock, tracks the number of each compact disc listed in the CompactDiscs

table. The ck_InStock constraint restricts the number per row to an amount between 0 and 50.

Now that the table has been updated, you cannot add any values that would violate the constraint.

Prj04.txt

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Module 4 Mastery Check
1. What is the difference between a table constraint and an assertion?

2. What does a null value signify?

3. Which of the following types of constraints support NOT NULL constraints?

A. Table constraints

B. Column constraints

C. Domain constraints

D. Assertions

4. You are creating a table that includes a column that allows null values but whose non-null

values should be unique. Which type of constraint should you use?

5. You’re creating a table that includes the TypeName column. The column is defined with

the CHAR (10) data type and requires a UNIQUE constraint, which you’ll define as

a column constraint. What SQL code should you use for the column definition?

6. What two restrictions apply to PRIMARY KEY constraints but not to UNIQUE constraints?

7. You’re creating a PRIMARY KEY constraint named pk_ArtistMusicTypes on the

ArtistMusicTypes table. The primary key includes the ArtistName and ArtistDOB

columns. What SQL code should you use for a table constraint?

8. How does a referential constraint differ from a unique constraint?

9. A(n) ____________ constraint enforces referential integrity between two tables by ensuring

that no action is taken to either table that affects the data protected by the constraint.

10. You’re creating a table that includes a column named BusinessTypeID, with a data type

of INT. The column will be defined with a FOREIGN KEY constraint that references the

primary key in a table named BusinessTypes. The foreign key will be added as a column

constraint. What SQL code should you use for the column definition?

11. What three options can you use in the MATCH clause of a FOREIGN KEY constraint?

12. What are the two types of referential triggered actions that can be defined in a FOREIGN

KEY constraint?

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:102

102 Module 4: Enforcing Data Integrity

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

13. You’re creating a FOREIGN KEY constraint and want the values in the referencing column

to be updated if values in the referenced column are updated. Which <referential triggered

action> clause should you use?

A. ON UPDATE RESTRICT

B. ON UPDATE NO ACTION

C. ON UPDATE CASCADE

D. ON UPDATE SET DEFAULT

14. What syntax should you use for a CHECK constraint that you’re defining as a table

constraint?

15. What types of constraints can you define within an assertion?

16. You’re creating a CHECK constraint on the NumberInStock column. You want to limit the

values that can be entered into the column to the range of 11 through 29. What should you

use for the <search condition> clause of the constraint?

SQL: A Beginner’s Guide 103

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 4
Blind Folio 4:103

4

En
fo

rc
in

g
D

at
a

In
te

gr
ity

P:\010Comp\Begin8\885-7\ch04.vp
Monday, April 07, 2003 10:27:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:105

Module5
Creating SQL Views

CRITICAL SKILLS
5.1 Add Views to the Database

5.2 Create Updateable Views

5.3 Drop Views from the Database

105

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:106

106 Module 5: Creating SQL Views

A s you learned in Module 3, persistent base tables store the SQL data in your database.

However, these tables are not always in a form useful to you if you want to look at only

specific data from one table or data from multiple tables. For this reason, the SQL:1999 standard

supports the use of viewed tables, or views. A view is a virtual table whose definition exists as

a schema object. Unlike persistent base tables, there is no data stored in the view. In fact, the

table does not actually exist, only the definition that defines the viewed table. It is this definition

that allows you to call specific information from one or more tables, based on the query statements

in that definition. Once you create a view, you simply invoke it by calling its name in a query

as you would a base table. The data is then presented as though you were looking at a base table.

CRITICAL SKILL

5.1 Add Views to the Database
Before I go too deeply into the specifics of views, I want to review quickly some of what I

discuss in Module 2 and Module 3. A view, as you might recall, is one of three types of tables

supported by SQL, along with base tables and derived tables. Most base tables are schema

objects and come in four types: persistent base tables, global temporary tables, created local

temporary tables, and declared local temporary tables. Of these four types, it is the persistent

base tables that hold the actual SQL data. Derived tables, on the other hand, are merely the

results you see when you query data from the database. For example, if you request data from

the CompactDiscs table, the results of your request are displayed in a table-like format, which

is known as the derived table.

In some ways, a view is a cross between a persistent base table and a derived table. It is like

a persistent base table in that the view definition is stored as a schema object and has a unique

name within that schema that can be invoked as you would a base table. However, a view is

like a derived table in that no data is stored in association with the view. Both derived tables

and views are types of virtual tables. The data is called from one or more base tables when you

invoke the view. In fact, you can think of a view as merely a named derived table, with the view

definition stored in the schema. The data results that you see when you call a view are not stored

anywhere but are derived from existing base tables.

Views can be useful tools when accessing different types of data. One of the main advantages

of using views is that you can define complex queries and store them within the view definition.

That way, rather than having to re-create those queries every time you need them, you can instead

invoke the view. In addition, views can be a handy way to present information to users without

providing them with more information than they need or information that they should not see.

For example, you might want users in your organization to have access to certain employee

records, but you might not want information such as social security numbers or pay rates

available to those users, so you can create a view that provides only the information that they

should see. Views can also be used to synthesize complex structures and present information

in a way that is easier for some users to understand, which in effect hides the underlying

structure of the database from the users.

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Now that you have an overview of what views are, let’s take a look at a few examples that

illustrate how data is extracted from base tables into the type of derived table that is presented

by a view definition. The first example we’ll look at, shown in Figure 5-1, is based on the

CompactDiscInventory table, which includes six columns. Suppose you want to be able to

view only the CDTitle, Copyright, and InStock columns. You could create a view that extracts

these three columns from the table and displays them as if the data existed in its own table, as

SQL: A Beginner’s Guide 107

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:107

5

C
re

at
in

g
SQ

L
Vi

ew
s

Figure 5-1 The CompactDiscsInStock view, based on the CompactDiscInventory table

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:108

shown in Figure 5-1. The CompactDiscsInStock view contains a query that defines exactly

what data should be returned by the view.

You might have noticed that the column names in the view are different from the column

names of the CompactDiscInventory table, even though the data within the columns is the same.

This is because you can assign names to view columns that are different from the originating

table, or you can assign the same names. If you don’t assign any names, the view columns inherit

the names from the originating table. The same is true of data types. The view columns inherit their

data types from their respective table columns. For example, the CompactDisc column in the

CompactDiscsInStock view inherits the VARCHAR (60) data type from the CDTitle column

of the CompactDiscInventory table. You don’t specify the VARCHAR (60) data type anywhere

within the view definition.

As you can see, a view allows you to define which columns are returned when you invoke

the view. The definition for the CompactDiscsInStock view specifies three columns; however,

it could have specified any columns from the CompactDiscInventory table. In addition to columns,

a view definition can specify which rows are returned. For example, Figure 5-2 shows the

CDsInStock1990s view. Notice that it contains the same columns as the CompactDiscsInStock

view (shown in Figure 5-1), but there are fewer rows. In this case, the view definition not only

specifies the three columns from the CompactDiscInventory table, but also specifies that only rows

whose values in the Copyright column fall between 1989 and 2000 are returned.

In the previous two examples, we have looked at views that derive data from only one

table; however, you can create views based on multiple tables. This is particularly useful

if you want to display related information that spans more than one table. Let’s take a look

Figure 5-3, which includes the CDInventory table and the Labels table. The CDInventory table

108 Module 5: Creating SQL Views

Figure 5-2 The CDsInStock1990s view, based on the CompactDiscInventory table

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 109

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:109

5

C
re

at
in

g
SQ

L
Vi

ew
s

contains a list of CDs in your inventory, and the Labels table contains a list of companies that

publish CDs.

Suppose you have users who want to be able to see the names of the CD and the publisher,

but who are not interested in the CompactDiscID or LabelID values. And they certainly aren’t

interested in having to look in two different locations to compare LabelID values in order to

Figure 5-3 The CompactDiscPublishers view, based on the Labels and CDInventory tables

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:110

110 Module 5: Creating SQL Views

match up CDs with company names. One solution is to create a view that matches up this

information for them, while at the same time displaying only the information that is useful

to them. In the case of the CDInventory and Labels table, you can create a view (named

CompactDiscPublishers in Figure 5-3) that bridges this data for the users, while hiding the

underlying structure and extraneous data.

A view of this sort is possible by taking advantage of the relationships between tables. In

the case of the CDInventory and Labels tables, a foreign key has been defined on the LabelID

column of the CDInventory table that references the LabelID column of the Labels table. The

query that is contained in the CompactDiscPublishers view definition matches the values in the

LabelID column of the CDInventory table to the values in the LabelID column of the Labels

table. For every match that is found, a row is returned. For example, the Famous Blue Raincoat

row includes a LabelID value of 5422. In the Labels table, you can see that this value matches

the Private Music row. As a result, the view contains a row with the Famous Blue Raincoat

value and the Private Music value.

NOTE
You don’t necessarily have to use a foreign key relationship to join tables. Any two
columns from different tables that store the same information can be used. This might
mean using all the columns in a foreign key (if the foreign key includes multiple
columns), using only one of the columns, or not using a foreign key at all. I discuss
joining multiple tables in Module 11.

In addition to joining information from different tables, you can also use views to modify

the data that is pulled from a table column and inserted in the view column. This allows you

to take such actions as perform calculations, find averages, determine minimum and maximum

values, and do countless other operations. You can then take the results of these operations and

insert them into a column within the view. In Figure 5-4, for example, the CDDiscounts view

deducts a 10 percent discount from the retail price and inserts the result in the DiscountPrice

column.

The CDDiscounts view includes three columns. The CompactDisc column pulls data

directly from the CDTitle column. The RetailPrice and DiscountPrice columns in the view

both pull their data from the RetailPrice column in the Inventory table. The RetailPrice column

in the view copies the values just as they are. However, before values are inserted into the

DiscountPrice column, they are pulled from the RetailPrice column in the Inventory table,

multiplied by .9, and inserted in their new form into the DiscountPrice column.

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 111

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:111

5

C
re

at
in

g
SQ

L
Vi

ew
s

As you can see, you can specify many types of operations in a view and then simply

invoke the view when you need the information. Most of what can be included in a regular

query can be included in a view. In fact, it is the query, or query expression, that forms the

nucleus of the view. However, before we look at query expressions, I want to first discuss

the syntax used for creating views.

Figure 5-4 The CDDiscounts view, based on the Inventory table

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:112

Progress Check
1. How do views compare to persistent base tables and derived tables?

2. What are two advantages to using views?

3. What happens if you don’t assign column names to a view?

Defining SQL Views
The simplest type of view to create is one that references only one table and that retrieves data

from columns within the table without modifying that data. The more complicated the view,

the more complicated the query expression underlying the view. At its most basic, the syntax

for a view is as follows:

CREATE VIEW <view name> [(<view column names>)]

AS <query expression>

[WITH CHECK OPTION]

For now, we’ll focus only on the first two lines of the syntax and leave the WITH CHECK

OPTION for later, in the “Create Updateable Views” section. In the first line of the syntax,

you must provide a name for the view. In addition, you must provide names for the columns

in the following circumstances:

● If any column values are based on some sort of operation that calculates the value to be

inserted in the column, rather than the value being copied directly from the table. (See

Figure 5-4.)

● If table column names are duplicated, which can happen when joining tables together.

Even if you aren’t required to provide column names, you still can. For example, you might

find that you want to rename them for your own purposes so the names are more logical for

your particular users. If, however, you do provide column names, you must provide them

for all columns. You cannot specify column names for some columns and not others.

112 Module 5: Creating SQL Views

1. A view is like a persistent base table in that the view definition is stored as a schema object and has a unique name

within that schema that can be invoked as you would a base table. A view is like a derived table in that no data is stored

in association with the view.

2. You can define complex queries and store them within the view definition. That way, rather than having to re-create

those queries every time you need them, you can instead invoke the view. You can also present information to users

without providing them with more information than they need or information that they should not see.

3. The view columns inherit the names from the originating table.

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The second line of the syntax includes the AS keyword, which is required, and the <query

expression> placeholder. The <query expression> placeholder, although it appears straightforward,

can imply a complex structure of query statements that can perform a number of operations,

including retrieving data from multiple tables, calculating data, limiting the type of data returned,

or performing most any other type of operation supported by a query expression. Because of

the complexity of query expressions, I spend the better part of Part II in this book discussing

various ways to query data. What this implies, then, is that it would be very difficult to condense

a thorough discussion of query expressions into the topic of views. Still, I want to provide you

with a number of examples that illustrate how you can create views that perform various functions.

With each example, I’ll include a cursory explanation of the query expression used in the view

definition. Know, however, that I will be going into the details of query expressions in greater

depth later in the book, beginning with Module 7.

The first example we’ll look at is based on the view shown in Figure 5-1. The

CompactDiscsInStock view derives data from the CompactDiscInventory table and includes

three columns from that table. To create the view, use the following CREATE VIEW statement:

CREATE VIEW CompactDiscsInStock (CompactDisc, Copyright, InStock)
AS SELECT CDTitle, Copyright, InStock FROM CompactDiscInventory ;

This view is the simplest of all types of views to create. It is based on one table and pulls

three of the six columns from that table. In the first line of the statement, you provide a name

for the view, CompactDiscsInStock, and then provide a name for each of the three columns:

CompactDisc, Copyright, and InStock. If you did not include the column names, the view

columns would inherit their names from the table columns.

The second line of the CREATE VIEW statement includes the AS keyword and the query

expression, which in this case is the following SELECT statement:

SELECT CDTitle, Copyright, InStock FROM CompactDiscInventory

The SELECT statement is one of the most common statements (if not the most common

statement) you’ll be using as an SQL programmer. It also one of the most extensive and flexible

statements you’ll be using, allowing you to form intricate queries that can return exactly the

type of data you want to retrieve from your database.

The SELECT statement used in the CompactDiscsInStock view definition is a SELECT

statement at its most basic. The statement is divided into two clauses: the SELECT clause

and the FROM clause. The SELECT clause identifies which columns to return (CDTitle,

Copyright, and InStock), and the FROM clause identifies which table to pull the data from

(CompactDiscInventory). When you invoke the CompactDiscsInStock view, you are essentially

invoking the SELECT statement that is embedded in the view definition, which in turn pulls

data from the applicable base table.

SQL: A Beginner’s Guide 113

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:113

5

C
re

at
in

g
SQ

L
Vi

ew
s

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:114

In the next example, which is based on the view in Figure 5-2, the CREATE VIEW

statement is nearly the same as the previous example, except that an additional clause has

been added to the statement:

CREATE VIEW CDsInStock1990s (CompactDisc, Copyright, InStock)
AS SELECT CDTitle, Copyright, InStock FROM CompactDiscInventory
WHERE Copyright > 1989 AND Copyright < 2000 ;

The WHERE clause defines a condition that has to be met in order for data to be returned.

As in the previous example, you’re still pulling data from the CDTitle, Copyright, and InStock

columns of the CompactDiscInventory table, only this time you’re limiting the data to those

rows whose Copyright values are greater than 1989 but less than 2000 (Copyright > 1989

AND Copyright < 2000). You might recognize the comparison operators greater than (>) and

less than (<) from Module 4 in the discussion about CHECK constraints. They’re used to limit

which values will be included in the view.

NOTE
The operators used in the WHERE clause (or any condition defined in the clause) have
no effect on the data stored in the base tables. They affect only the data returned when
the view is invoked. I discuss these types of operators in greater detail in Module 9.

You can use the WHERE clause in a SELECT statement to define a wide variety of

conditions. For example, the WHERE clause can be used to help join tables together, as shown

in the following CREATE VIEW statement:

CREATE VIEW CompactDiscPublishers (CompactDisc, Publisher)
AS SELECT CDInventory.CDTitle, Labels.CompanyName
FROM CDInventory, Labels
WHERE CDInventory.LabelID = Labels.LabelID ;

This statement creates the view that you see in Figure 5-3. The name of the view is

CompactDiscPublishers and it includes the CompactDisc column and the Publisher column.

The view pulls information from two sources: the CDTitle column in the CDInventory Table

and the CompanyName column in the Labels table.

Let’s first take a look at the SELECT clause. Notice that the name of each column is qualified

by the name of its respective table (for example, CDInventory.CDTitle). When joining two

or more tables, you must qualify the column names if there’s any possibility that the column

names could be confused, which would be the case if you included columns with the same

name. If, however, there is no possibility the column names could be confused, then you can

omit the table names. For example, the SELECT clause could read as follows:

114 Module 5: Creating SQL Views

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5SELECT CDTitle, CompanyName

Despite the fact that the qualified names are not always necessary, many programmers prefer

to use them in all cases because it’s easier to know what table is being referenced if you ever

need to modify the database structure or the view definition at a later time.

The next clause in the SELECT statement is the FROM clause. When joining tables

together, you must include the name of all the participating tables, separated by a comma.

Other than the issue of multiple names, the FROM clause is similar to what you’ve seen in

other examples.

The WHERE clause, which is the final clause in the SELECT statement, is what matches

rows together. The WHERE clause is necessary because, without it, there would be no way of

knowing how to match up the values from the different tables. The WHERE clause provides

specific instructions how this is to be done. In the CompactDiscPublishers view definition, the

value in the LabelID column of the CDInventory table must equal the value in the LabelID column

of the Labels table for a row to be returned. For example, if you refer again to Figure 5-3, you

can see that the Past Light row in the CDInventory table has a value of 5412 in the LabelID

column, which is matched up with the Windham Hill Records row in the Labels table. Notice

that, once again, the column names are qualified by the table names, which is essential in this

case because the columns share the same name. Without the table names, SQL would not know

whether it was comparing values with itself or with the other table.

You can also expand the WHERE clause to further qualify your query. In the following

example, the WHERE clause limits the rows returned to only those that contain a value of

5403 in the LabelID column of the CDInventory table:

CREATE VIEW CompactDiscPublishers (CompactDisc, Publisher)
AS SELECT CDInventory.CDTitle, Labels.CompanyName
FROM CDInventory, Labels
WHERE CDInventory.LabelID = Labels.LabelID
AND CDInventory.LabelID = 5403 ;

If you were then to invoke the CompactDiscPublishers view, you would see only the CDs that

are produced by MCA Records.

Now let’s look at another example, which is based on the view in Figure 5-4. Like the first

two examples we looked at, this view derives data from only one table. However, this view

actually performs calculations that return data that has been modified. The CREATE VIEW

statement looks like this:

CREATE VIEW CDDiscounts (CompactDisc, RetailPrice, DiscountPrice)
AS SELECT CDTitle, RetailPrice, RetailPrice * .9 FROM Inventory;

The CDDiscounts view includes three columns: CompactDisc, RetailPrice, and DiscountPrice.

The DiscountPrice column contains the calculated values. The SELECT clause identifies the

SQL: A Beginner’s Guide 115

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:115

5

C
re

at
in

g
SQ

L
Vi

ew
s

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:116

116 Module 5: Creating SQL Views

table columns that contain the source data. The first two columns are defined in the same

manner as you’ve seen in previous examples. Data is copied from the CDTitle and RetailPrice

columns in the Inventory table to the CompactDisc and RetailPrice columns of the CDDiscounts

view. However, the third column definition (RetailPrice * .9) is a little different. Values are again

taken from the RetailPrice column, only this time the values are multiplied by .9 (90 percent)

to arrive at the discounted prices that appear in the DiscountPrice column of the view.

You can also add a WHERE clause to the SELECT statement used in the CDDiscounts

view definition:

CREATE VIEW CDDiscounts (CompactDisc, RetailPrice, DiscountPrice)
AS SELECT CDTitle, RetailPrice, RetailPrice * .9 FROM Inventory
WHERE InStock > 10 ;

The WHERE clause restricts the query to only those rows whose InStock value is greater than 10.

Notice that you can use a comparison operator on a table column (InStock) whose values are

not even returned by the view.

As you can see from all these examples of view definitions, there are a great many things

that you can do with views as a result of the flexibility and extensibility of the SELECT

statement. Later in the book, when you become more familiar with the various types of

SELECT statements that you can create and the operations that you can perform, you will

be able to create views that are far more complex than anything we’ve looked at so far.

CRITICAL SKILL

5.2 Create Updateable Views
In SQL, some types of views are updateable. In other words, you can use the view to modify the

data in the underlying table. Whether a view is updateable depends on the SELECT statement

that is defined within the view definition. Typically, the more complex the statement, the less

likely the view will be updateable. There is no syntax within the CREATE VIEW statement that

explicitly designates a view as being updateable. Instead, it is determined strictly by the nature of

the SELECT statement, which must adhere to specific standards in order for the view to be

updateable.

Up to this point in the module, I have implied that the <query expression> placeholder in

the CREATE VIEW syntax is made up of a SELECT statement. To be more precise, a query

expression can be one of several types of expressions. The most common of these, and the one

you’ll be concerned with in this book, is the query specification. A query specification is an SQL

expression that begins with the SELECT keyword and includes a number of elements that form

that expression, as you have seen in the view examples we’ve looked at. A query specification

is updateable if it meets the numerous guidelines outlined in the SQL:1999 standard. For the

sake of simplicity, I refer to the query specification as the SELECT statement, which is often

how it’s referred to in various types of SQL-related and product-related documentation.

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The issue of query specifications and the complexity of the SQL standards aside, the point

I’m trying to make is that the syntax rules that determine the updatability of a view are not simple,

clear-cut guidelines, particularly in light of the fact that I have yet to cover the SELECT

statement in depth (which I do beginning in Module 7). However, there are some logical

underpinnings that can be gleaned from these guidelines:

● Data within the view cannot be summarized, grouped together, or automatically

eliminated.

● At least one column in the source table must be updateable.

● Each column in the view must be traceable to exactly one source column in one table.

● Each row in the view must be traceable to exactly one source row in one table.

In many cases, you’ll be able to determine the updatability of a view simply by applying

common sense. Let’s take a look at an example. Suppose that you decide to add information

about your employees to your database because you want to track CD sale commissions earned

by your employees. You decide to add the EmployeeCommissions table, shown in Figure 5-5,

which lists the total amount of commissions each employee made during a three-year period.

Now suppose you want to know the average commission for each year for all the employees.

You can create a view that determines the average for each year and displays those averages in

three separate columns. To do so, you would use the following CREATE VIEW statement:

CREATE VIEW EmpComm (Avg1999, Avg2000, Avg2001)
AS SELECT AVG(Year1999), AVG(Year2000), AVG(Year2001)
FROM EmployeeCommissions ;

As you can see from the statement, the EmpComm view contains three columns:

Avg1999, Avg2000, Avg2001. The SELECT clause pulls information from three columns

5

SQL: A Beginner’s Guide 117

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:117

5

C
re

at
in

g
SQ

L
Vi

ew
s

Figure 5-5 Annual commission earnings in the EmployeeCommissions table

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:118

118 Module 5: Creating SQL Views

in the EmployeeCommissions table—Year1999, Year2000, and Year2001—and uses the

AVG function to find the average for all the values in each column, as shown in Figure 5-6.

For example, the AVG function first averages the four values in the Year1999 column and

then enters that average in the Avg1999 column of the EmpComm view.

Now suppose you want to update the commission amounts in the EmployeeCommissions

table. You could not do it through the view because values in the views are based on calculations

performed on values in the table. For example, if you updated the value in the Avg1999 column,

the RDBMS would not know how many rows were affected or how to distribute the values

within those rows. In other words, the row in the view is not traceable back to exactly one

source row.

You could, however, create a view that simply extracts information from the

EmployeeCommissions table:

CREATE VIEW EmpComm
AS SELECT EmployeeID, Year1999, Year2000 FROM EmployeeCommissions ;

In this statement, you are creating a view that displays only three of the four columns of

the table. No calculations are performed and only one table is used. Figure 5-7 shows what this

view would look like.

This view, unlike the last one, is updateable. You can modify and insert data because no

data has been summarized or grouped together, each column is traceable to exactly one source

column in one table, and each row is traceable to exactly one source row in one table. In addition,

no data is summarized or grouped together. Of course, if you were to update or insert data through

the view, it is the data in the underlying table that is actually modified. That means any data

modifications must still adhere to the constraints placed on that table. For example, you could

not insert a row through the EmpComm view if null values were not allowed in the Year2001

column of the table. The view would not have the capacity to accept a value for that column,

and the table would not allow you to insert a row without supplying that value.

Figure 5-6 The EmpComm view, based on the average of quarterly earnings

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 119

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:119

5

C
re

at
in

g
SQ

L
Vi

ew
s

You can often determine whether a table is updateable just by looking at the outcome of

any modification attempts. If your goal is to create views that allow users to update data in the

underlying tables, then you must consider the complexities of those views and the functions

that they are to perform. Also keep in mind that the constraints placed on the underlying tables

affect your ability to modify and insert data through a view.

Using the WITH CHECK OPTION Clause
Now let’s return to the CREATE VIEW syntax that I introduced earlier in the section

“Defining SQL Views.” The last line of the syntax includes the following clause:

[WITH CHECK OPTION]

The WITH CHECK OPTION clause applies to updateable views that include a WHERE

clause in the SELECT statement. The best way to illustrate how this works is through an

example. Let’s modify the last view definition we looked at:

CREATE VIEW EmpComm
AS SELECT EmployeeID, Year1999, Year2000 FROM EmployeeCommissions
WHERE Year1999 > 100 ;

The WHERE clause specifies that only rows with Year1999 values greater than 100 should be

returned. This in itself is straightforward enough. However, suppose you want to update this

view by setting a Year1999 value to be less than 100. Because the view is updateable, it will

Figure 5-7 The EmpComm view, based on first and second quarterly earnings

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:120

allow you to do that. However, if you were to then invoke the view, the row you updated would

no longer be visible, nor could you update it further.

To work around this problem, you can add the WITH CHECK OPTION clause to your

view definition, as in the following example:

CREATE VIEW EmpComm
AS SELECT EmployeeID, Year1999, Year2000 FROM EmployeeCommissions
WHERE Year1999 > 100 WITH CHECK OPTION ;

Now if you tried to update a Year1999 value to an amount less than 100, you would receive

an error message telling you that the change could not be made. As you can see, the

WITH CHECK OPTION is a handy way to ensure that your users don’t perform updates that

will prevent them from effectively using the views that you create.

Progress Check
1. You’re creating a view that displays only the CDTitle and InStock columns of the

CompactDiscs table. The view name is CDsInStock and the view column names

are the same as the table column names. What SQL statement should you use to

create your view?

2. You’re creating a view with the following SELECT statement: SELECT AVG(Salary)

FROM Employees. Why can’t you update this view?

3. You’re creating a view that contains a WHERE clause that limits the values returned

in the view. Which additional clause should you include in a view definition to prevent

users from updating data with values outside those limits?

120 Module 5: Creating SQL Views

1. You should use the following SQL statement:

CREATE VIEW CDsInStock AS SELECT CDTitle, InStock FROM CompactDiscs ;

2. The value returned is an average of the values in the Salary column. The RDBMS would not know how many rows in the

table were affected or how to distribute the values within those rows. The row in the view is not traceable back to exactly

one source row.

3. WITH CHECK OPTION

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 121

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:121

5

C
re

at
in

g
SQ

L
Vi

ew
s

CRITICAL SKILL

5.3 Drop Views from the Database
You will no doubt run into situations when you want to remove a view definition from your

database. The syntax for doing this is quite simple:

DROP VIEW <view name>

When you execute the DROP VIEW statement, the view definition is removed; however,

none of the underlying data (which is stored in the base tables) is affected. Once the view is

dropped, you can re-create the view or create a different view with the same name. Now let’s

look at a quick example:

DROP VIEW EmpComm ;

This statement removes the EmpComm view from your database but leaves the underlying

data untouched.

Ask the Expert
Q: You discuss creating views and dropping views but you do not mention altering

views. Does SQL support any sort of ALTER VIEW statement?

A: No, you cannot alter views in SQL. However, some RDBMSs support an ALTER VIEW

statement. Be aware, though, that the functionality supported by these statements can

vary from product to product. For example, the ALTER VIEW statement in SQL Server

is fairly robust and allows you to change many aspects of the view definition, including

the SELECT statement. On the other hand, the ALTER VIEW statement in Oracle is

used to manually recompile a view to avoid runtime overhead. To actually alter a view,

you must first drop it and then re-create it, as is the case with the SQL standard.

Q: In the examples that you use to show how views are created, you use one or two

tables for your source data. Can views be based on more than two tables?

A: Yes, a view can be based on as many tables as can be logically queried in the SELECT

statement. For example, suppose you want to create a view in the Inventory database.

(The Inventory database is the one you’ve been working with for the projects in this

book.) The view might match artists’ names to CD titles. To do that, however, your

SELECT statement would have to join together three tables. You would have to match

the ArtistID values in the Artists table and the ArtistCDs table, and you would have to

match the CompactDiscID values in the CompactDiscs table and the ArtistCDs table.

The result will be that the view will display a list of artists and their CDs. (In Module 11,

I discuss how you can join these tables together in your SELECT statement.)

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:122

122 Module 5: Creating SQL Views

Project 5-1 Adding Views to Your Database
In this project, you will create two views in the Inventory database. The views will

be based on tables you created in previous projects. The first view will be based on

a single table, and the second view will be based on two tables. You’ll create the second view

two different times. You’ll create it once, then drop the view definition from the database, and

then re-create a modified version of the view. You can download the Prj05.txt file, which

contains the SQL statements used in this project.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. The first view that you’ll create is named CDsInStock. The view is based on the CDTitle

and InStock columns in the CompactDiscs table. You want the view to include only those

rows whose values in the InStock column are greater than 10. The view will use the same

column names as the table and will include the WITH CHECK OPTION to prevent values

less than 10 from being added to the InStock column. Enter and execute the following SQL

statement:

CREATE VIEW CDsInStock
AS SELECT CDTitle, InStock FROM CompactDiscs
WHERE InStock > 10 WITH CHECK OPTION ;

3. Next, you will create a view named CDPublishers that will contain the CDTitle column and

the Publisher column. The view will be based on the CDTitle column in the CompactDiscs

table and the CompanyName column of the CDLabels table. You will need to use a WHERE

clause to match rows in the two tables. The WHERE clause will also limit the rows included

in the view to those whose LabelID value in the CDLabels table is either 5403 or 5402.

Enter and execute the following SQL statement:

CREATE VIEW CDPublishers (CDTitle, Publisher)
AS SELECT CompactDiscs.CDTitle, CDLabels.CompanyName
FROM CompactDiscs, CDLabels
WHERE CompactDiscs.LabelID = CDLabels.LabelID
AND CDLabels.LabelID = 5403 OR CDLabels.LabelID = 5402 ;

4. You decide that you do not want to limit the rows to specific values in the LabelID column,

so you must drop the view definition from the database and re-create the view without the

value restrictions. Enter and execute the following SQL statement:

DROP VIEW CDPublishers ;

5. Now you can re-create the CDPublishers view. Enter and execute the following SQL

statements:

Prj05.txt

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 123

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:123

5

C
re

at
in

g
SQ

L
Vi

ew
s

Ad
din

gV
iew

st
oY

ou
rD

at
ab

as
e

Project
5-1

CREATE VIEW CDPublishers (CDTitle, Publisher)
AS SELECT CompactDiscs.CDTitle, CDLabels.CompanyName
FROM CompactDiscs, CDLabels
WHERE CompactDiscs.LabelID = CDLabels.LabelID ;

6. Close the client application.

Project Summary
In addition to the six tables created in earlier projects, your database should now include the

CDsInStock view and the CDPublishers view. Later in this book, you’ll use those views to

query data from the base tables and update that data. Once you have a better understanding of

how to create SELECT statements, you’ll be able to define views that are even more extensive

and provide an even greater level of detail than the views you’ve created so far.

Module 5 Mastery Check
1. What are the three types of stored tables supported by SQL?

2. How do you assign data types to view columns?

3. In what circumstances must you provide the view column names in a view definition?

4. You’re creating a view named EmpBDays. The view is based on the EmpName column

and the BDay column of the Employees table. The view column names will be the same

as the table column names. What SQL code should you use to create the view?

5. You’re creating a view based on the CompactDiscs table in the Inventory database. You

want the view to include only those rows whose value in the LabelID column is 546. What

clause—in addition to the SELECT clause and the FROM clause—should be included in

the SELECT statement for the view?

6. You’re creating a view that references the Employee table and the JobTitle table. The data

in the two tables is matched together by the JobTitleID column in each table. How should

you write the WHERE clause in the view’s SELECT statement?

7. You’re creating a view that references the Employee table and the JobTitle table. The data

in the two tables is matched together by the JobTitleID column in each table. You want the

view to display only those rows whose value in the JobTitleID column of the JobTitle table

is 109. How should you write the WHERE clause in the view’s SELECT statement?

(continued)

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 5
Blind Folio 5:124

8. What is a query specification?

9. Which guidelines should you follow if you want to create an updateable view?

A. Data within the view cannot be summarized, grouped together, or automatically

eliminated.

B. At least one column in the source table must be updateable.

C. Each column in the view must be traceable to exactly one source column in one table.

D. Each row in the view must be traceable to exactly one source row in one table.

10. You create the following view based on the CompactDiscs table in the Inventory database:

CREATE VIEW InStock(Average)
AS SELECT AVG(InStock) FROM CompactDiscs ;

How do you insert data through this view?

11. What type of view does the WITH CHECK OPTION clause apply to?

12. You create the following view definition:

CREATE VIEW EmpComm
AS SELECT EmployeeID, Year1999, Year2000 FROM EmployeeCommissions
WHERE Year1999 > 100 ;

You want to use the view to update data. What happens if you change the Year1999 value

to an amount less than 100?

13. You want to alter the EmpComm view definition in your database. How do you alter that

definition?

14. You want to drop the EmpBDays view definition from your database. What SQL statement

should you use?

15. What happens to the SQL data when you drop a view from the database?

124 Module 5: Creating SQL Views

P:\010Comp\Begin8\885-7\ch05.vp
Tuesday, April 08, 2003 11:06:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:125

Module6
Managing Database
Security

CRITICAL SKILLS
6.1 Understand the SQL Security Model

6.2 Create and Delete Roles

6.3 Grant and Revoke Privileges

6.4 Grant and Revoke Roles

125

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:35:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A critical component of any database is the ability to protect the data from unauthorized

access or malicious attacks. A database must ensure that no unauthorized users can view

or change data that they should not be viewing or changing. At the same time, authorized

users should not be prevented from accessing any information that should be available to

them. In order to support these capabilities, SQL defines a security model that allows you to

determine which users can access specific data and what they can do with that data. At the

core of this model is the authorization identifier. An authorization identifier, as you learned

in Module 2, is an object in the SQL environment that represents a user or group of users that

are granted specific access privileges to objects and data within the SQL environment. Privileges

are granted to authorization identifiers on schema objects. The type of privileges granted

determines the type of access. In this module, we will look at the SQL security model, how it

uses authorization identifiers, and how to set up privileges on objects in your SQL database.

CRITICAL SKILL

6.1 Understand the SQL Security Model
Authorization identifiers provide the foundation for your database’s security. Access to all

objects is permitted through these identifiers. If the authorization identifier doesn’t have the

appropriate privileges to access a specific object, such as a table, the data within that table

is unavailable to that user. In addition, each authorization identifier can be configured with

different types of privileges. For example, you can permit some authorization identifiers

to view the data within a specific table, while permitting other authorization identifiers to

modify that data.

SQL supports two types of authorization identifiers: user identifiers (or users) and role

names (or roles). A user identifier is an individual security account that can represent an

individual, an application, or a system service. The SQL standard does not specify how

an SQL implementation should create a user identifier. The identifier might be tied to the

operating system on which the relational database management system (RDBMS) is running,

or it might be explicitly created within the RDBMS environment.

A role name is a defined set of privileges that can be assigned to a user or to another role.

If a role name is granted access to a schema object and that role name is then specified as

the authorization identifier, then all user identifiers and role names that have been assigned

the specified role name have access to the same object as that role name. For example, in

Figure 6-1 the MrktDept role name has been assigned to the AcctDept role name and to four

user identifiers: Ethan, Max, Linda, and Emma. If the MrktDept role name is the current

authorization identifier and it has been granted access to the Performers table, the AcctDept

role name and all four user identifiers have access to the Performers table. Note that, unlike

a user identifier, SQL does specify how to create a role name, which I discuss in the “Create

and Delete Roles” section later in this module.

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:126

126 Module 6: Managing Database Security

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:35:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In addition to user identifiers and role names, SQL supports a special authorization identifier

named PUBLIC, which is an SQL built-in authorization identifier that includes everyone

who uses the database. Just as with any other authorization identifier, you can grant access

privileges to the PUBLIC account. For example, suppose you wanted any potential customers

to be able to view your list of CDs. You could grant the necessary privileges to the PUBLIC

account for the appropriate tables and column.

SQL Sessions
Each SQL session is associated with a user identifier and role name. An SQL session is the

connection between some sort of client application and the database. The session provides

the context in which the authorization identifier executes SQL statements during a single

connection. Throughout this connection, the SQL session maintains its association with a

user identifier/role name pair.

Let’s take a look at Figure 6-2, which shows the user identifier/role name pair associated

with a session. When a session is first established, the user identifier is always the SQL session

user identifier, which is a special type of user identifier that remains associated with the session

throughout the connection. It is up to the SQL implementation to determine how a specific

SQL: A Beginner’s Guide 127

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:127

6

M
an

ag
in

g
D

at
ab

as
e

Se
cu

rit
y

Figure 6-1 The MrktDept role assigned to four user identifiers and one role

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:35:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:128

128 Module 6: Managing Database Security

account becomes the SQL session user identifier, although it can be an operating system

user account or an account specific to the RDBMS. Whatever method is used to associate an

account with the SQL session user identifier, it is this account that acts as the current user

identifier.

As you can also see in Figure 6-2, the role name is a null value. The role name is always

null when a session is first established. In other words, whenever you log onto an SQL database

and establish a session, the initial user identifier will always be the SQL session user identifier

and the role name will always be a null value.

At any instance during a connection, the session is associated with a user identifier/role

name pair; however, it is not always the same pair throughout the length of the session. For

example, embedded SQL statements, SQL client modules, and SQL-invoked routines can specify

an authorization identifier. If a new identifier is specified, it becomes the current authorization

identifier until the transactions have completed, and access to objects is granted based on the

current user identifier/role name pair.

For any user identifier/role name pair that is current, one of the two values is almost

always null. In other words, if a user identifier is specified, then the role name must be null;

if a role name is specified, then the user identifier must be null. Whichever value is not null

is the authorization identifier.

Figure 6-2 SQL session with user identifier and role name

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:35:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 129

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:129

6

M
an

ag
in

g
D

at
ab

as
e

Se
cu

rit
y

When more than one user identifier/role name pair is used during a session, an authorization

stack is created that reflects the current authorization identifier. The pair at the top of the stack

is the current authorization identifier. Figure 6-3 shows an example of an authorization stack

that can be created during a session.

In this example, the initial user identifier/role name pair is at the bottom of the stack. As

you would expect, the user identifier is the SQL session user identifier and the role name is

a null value. Access to database objects is based on the privileges granted to the SQL session

user identifier when it is current.

During the session, an embedded SQL statement specifies an authorization identifier of

App_User, which is a user identifier. When the embedded statement is executed, App_User

becomes the current authorization identifier, and access privileges are based on that account.

Suppose one of the embedded SQL statements then calls an SQL-invoked routine that

specifies an authorization of Routine_Role, which is a role name. Routine_Role then becomes

the current authorization identifier and is at the top of the authorization stack. Once the routine

runs, the current authorization identifier reverts to App_User, until the embedded statements

run, after which the authorization identifier reverts to the SQL session user identifier.

Notice that in each user identifier/role name pair shown in Figure 6-3, there is exactly one

null value. The other value, the one that is not null, is the authorization identifier.

Figure 6-3 Authorization stack created during an SQL session

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Accessing Database Objects
Now that you have a better understanding of what an authorization identifier is—along with

user identifiers and role names—let’s take a look at what you can do with these identifiers.

Access to data in a database is based on being able to access the objects that contain the data.

For example, you might grant access to some users to a specific set of tables, while other

users have access only to specific columns within a table. SQL allows you to define access

privileges on the following schema objects:

● Base tables

● Views

● Columns

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:130

130 Module 6: Managing Database Security

Ask the Expert
Q: You state that the current authorization identifier can change. How can you

determine who the current authorization user and role name are at any time

during a session?

A: SQL supports several special values that allow you to determine the current values

of the various types of users. The special values act as placeholders for the actual

user-related value. You can use these special values in expressions to return the

value of the specific type of user. For example, you can use the CURRENT_USER

special value to return the value of the current user identifier. SQL supports five of

these special values: CURRENT_USER, USER, CURRENT_ROLE, SESSION_USER,

and SYSTEM_USER. CURRENT_USER and USER mean the same thing and return

a value equal to the current user identifier. CURRENT_ROLE returns the current

role name, and SESSION_USER returns the SQL session user identifier. If the SQL

session user identifier is the current user identifier, then CURRENT_USER, USER,

and SESSION_USER all have the same value, which can occur if the initial identifier

pair is the only active user identifier/role name pair (the pair at the top of the

authorization stack). The last function, SYSTEM_USER, returns the operating system

user who invoked an SQL module. As we get further into this module, you’ll see how

the CURRENT_USER and CURRENT_ROLE special values are used to identify the

current authentication identifier when creating roles and granting privileges. (See the

sections “Create and Delete Roles,” “Grant and Revoke Privileges,” and “Grant and

Revoke Roles.”) In addition, you’ll find more information about special values in

Module 10.

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

● Domains

● Character sets

● Collations

● Translations

● User-defined types

● Triggers

● SQL-invoked routines

For each type of object, you can assign specific types of privileges that vary according to

the type of object it is. These assigned privileges are associated with specific authorization

identifiers. In other words, you can assign one or more privileges to an object for one or more

authorization identifiers. For example, you can assign the SELECT privilege to a table for the

PUBLIC authorization identifier. This would allow all database users to view the contents of

that table.

SQL defines nine types of privileges that you can assign to a schema object. Table 6-1

describes each of these privileges and lists the types of objects that the privilege can be

assigned to.

SQL: A Beginner’s Guide 131

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:131

6

M
an

ag
in

g
D

at
ab

as
e

Se
cu

rit
y

Privilege Description Objects

SELECT Allows specified authorization identifiers to query data in the
object. For example, if UserA is granted the SELECT privilege
on the CDArtists table, that user can view data in that table.

Tables
Views
Columns
Methods (in
structured types)

INSERT Allows specified authorization identifiers to insert data into the
object. For example, if UserA is granted the INSERT privilege on
the CDArtists table, that user can add data in that table.

Tables
Views
Columns

UPDATE Allows specified authorization identifiers to update data in the
object. For example, if UserA is granted the UPDATE privilege
on the CDArtists table, that user can modify data in that table.
However, this privilege does not allow the user to change the
table definition.

Tables
Views
Columns

DELETE Allows specified authorization identifiers to delete data from the
object. For example, if UserA is granted the DELETE privilege on
the CDArtists table, that user can remove data from that table.
However, this privilege does not allow the user to drop the table
definition from the database.

Tables
Views

Table 6-1 Security Privileges Assigned to Database Objects

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:132

132 Module 6: Managing Database Security

Privileges are granted on database objects by using the GRANT statement to specify the

objects as well as the authorization identifier that will have access to those objects. You can

also revoke privileges by using the REVOKE statement. I will be going into greater detail

about both these statements as we move through the module. However, before I discuss how

to grant or revoke privileges, I want to first discuss how to create a role name. (Remember,

SQL doesn’t support the creation of a user identifier, only role names. The process for creating

user identifiers is implementation-specific.)

Privilege Description Objects

REFERENCES Allows specified authorization identifiers to define tables that
reference the table configured with the REFERENCES privilege. For
example, if UserA is granted the REFERENCES privilege on the
CDArtists table, that user can create other tables that reference the
CDArtists table, as would be the case with foreign keys. (Note that
UserA must also have the authorization to create other tables.)

Tables
Views
Columns

TRIGGER Allows specified authorization identifiers to create triggers on the
table. For example, if UserA is granted the TRIGGER privilege on
the CDArtists table, that user can create triggers on that table.

Tables

USAGE Allows specified authorization identifiers to use the object in a
column definition. For example, if UserA is granted the USAGE
privilege on the Money domain, that user can include the domain
in a column definition when creating a table. (Note that UserA
must also have the authorization to create a table.)

Domains
Character sets
Collations
Translations
User-defined types

EXECUTE Allows specified authorization identifiers to invoke an SQL-invoked
routine. For example, if UserA is granted the EXECUTE privilege on
the sp_UpdateCDListing stored procedure, that user would be able
to invoke that stored procedure.

SQL-invoked
routines

UNDER Allows specified authorization identifiers to define a direct subtype
on a structured type. A direct subtype is a structured type that is
associated with another structured type as a child object of that
type. For example, if UserA is granted the UNDER privilege on the
Employee structured type, that user can define direct subtypes such
as Manager or Supervisor.

Structured types

Table 6-1 Security Privileges Assigned to Database Objects (continued)

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 133

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:133

6

M
an

ag
in

g
D

at
ab

as
e

Se
cu

rit
y

Progress Check
1. What is an authorization identifier?

2. What two types of authorization identifiers does SQL support?

3. What is an SQL session?

4. Which privilege should you grant on an object if you want to allow an authorization

identifier to query data in that object?

CRITICAL SKILL

6.2 Create and Delete Roles
For the most part, creating a role is a very straightforward process. The statement includes

only one mandatory clause and one optional clause, as shown in the following syntax:

CREATE ROLE <role name>

[WITH ADMIN { CURRENT_USER | CURRENT_ROLE }]

Notice that the only required part of the syntax is the CREATE ROLE clause, which

means that all you really need to do is specify a name for your role. The WITH ADMIN

clause is optional and you will rarely need to use this. It is necessary only if the current user

identifier/role name pair contains no null values. The clause allows you to designate either

the current user identifier (CURRENT_USER) or the current role name (CURRENT_ROLE)

as the authentication identifier allowed to assign the role to user identifiers or role names. If

the WITH ADMIN clause is not specified, the current authentication identifier, whether the

current user identifier or the current role name, is allowed to assign the role.

1. An authorization identifier is an object in the SQL environment that represents a user or group of users that are granted

specific access privileges to objects and data within the SQL environment.

2. User identifiers and role names

3. An SQL session is the connection between some sort of client application to the database. The session provides the

context in which the authorization identifier executes SQL statements during a single connection.

4. SELECT

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:134

134 Module 6: Managing Database Security

NOTE
You’ll probably find that you rarely need to use the WITH ADMIN clause, particularly
as a beginning SQL programmer. As a result, I keep my discussion about the clause brief.

Now let’s look at creating a role. In the following example, I use the CREATE ROLE

statement to create the Customers role:

CREATE ROLE Customers ;

That’s all there is to it. Once the role is created, you can grant the role to user identifiers or

other role names. I discuss granting and revoking roles in the “Grant and Revoke Roles”

section later in this module.

Dropping a role is just as easy as creating one. The syntax you use is as follows:

DROP ROLE <role name>

In this case, you merely need to identify the name of the role, as in the following example:

DROP ROLE Customers ;

The role is removed from the database. However, before removing a role, be sure that it is a

role that you no longer need or that it is one you specifically want to delete (for security reasons).

As you can see, creating and dropping roles is a very simple process, and it can make

managing your users a lot easier. Roles essentially allow you to group together those users

who require the same privileges on the same object. Now let’s take a look at granting and

revoking privileges to authentication identifiers, including both user identifiers and role names.

NOTE
Support for the CREATE ROLE and DROP ROLE statements varies from implementation
to implementation. For example, Oracle supports both statements, but SQL Server
doesn’t support either statement. However, SQL Server includes system stored
procedures that you can use to create and delete roles. Ocelot, on the other, supports
both statements, but when you execute them, you receive a message saying that the
statement is not pure SQL-92 syntax.

CRITICAL SKILL

6.3 Grant and Revoke Privileges
When you grant privileges on an object, you are associating one or more privileges with one or

more authorization identifiers. This set of privileges and authorization identifiers is assigned to

the object, which allows the authorization identifiers to have access to the object according to

the type of privileges defined. To grant privileges, you must use the GRANT statement, as

shown in the following syntax:

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 135

6GRANT { ALL PRIVILEGES | <privilege list> }

ON <object type> <object name>

TO { PUBLIC | <authorization identifier list> } [WITH GRANT OPTION]

[GRANTED BY { CURRENT_USER | CURRENT_ROLE }]

The statement, as you can see, includes three required clauses—GRANT, ON, and TO—

and two optional clauses—WITH GRANT OPTION and GRANTED BY. I will discuss each

clause individually except for the GRANTED BY clause. The GRANTED BY clause is

similar to the WITH ADMIN clause in the CREATE ROLE statement. Like that clause, the

GRANTED BY clause applies only in those situations where the current user identifier/role

name pair contains no null values. As a beginner in SQL programming, you do not need to

be concerned with the GRANTED BY clause.

NOTE
You must have the necessary privileges on an object to grant privileges on that object.
If you created the object, then you are the owner, which means that you have complete
access to the object. (All privileges have been granted to you, including the ability to
assign privileges to other authorization identifiers.)

Now let’s take a look at the GRANT clause. The clause includes two options: ALL

PRIVILEGES and the <privilege list> placeholder. If you use the ALL PRIVILEGES keywords,

you are granting all available privileges to that object according to the privileges that you have

been granted on the object. For example, assume for a moment that you created a table and are

the owner. As a result, you are automatically granted the SELECT, INSERT, UPDATE,

DELETE, TRIGGER, and REFERENCES privileges. (These are the only privileges that apply

to a table. Refer back to Table 6-1 for a list of privileges and the objects that they apply to.)

You are also automatically granted the ability to assign these privileges. In this situation,

if you use the ALL PRIVILEGES keywords, you would be granting these six privileges to

the authorization identifiers in the GRANT statement.

If you decide not to use the ALL PRIVILEGES option, you must then list each privilege

that should be applied to the user identifiers. However, you can list only those privileges that

can be applied to the specific object. For example, you cannot list the DELETE privilege if

you are granting a privilege on a domain. Also note, if you list more than one privilege, you

must separate the privilege names by a comma.

The next clause we’ll look at is the ON clause, which includes two placeholders: <object type>

and <object name>. The <object type> placeholder simply refers to the type of object that you’re

granting permissions on. SQL supports the following values for the <object type> placeholder:

● TABLE

● DOMAIN

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:135

6

M
an

ag
in

g
D

at
ab

as
e

Se
cu

rit
y

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:136

136 Module 6: Managing Database Security

● COLLATION

● CHARACTER SET

● TRANSLATION

● TYPE

● Special designator for SQL-invoked routines

A value for the <object type> designator is required, unless the value is TABLE, in which

case you can leave that off. (In fact, some implementations, such as SQL Server, require that

you omit TABLE.) If you provide the name of an object without specifying a type, SQL

assumes that the <object type> value is TABLE. However, you’ll probably find that you’ll

want to include the keyword TABLE to keep your code consistent and easy to follow, unless

the implementation prohibits it.

NOTE
The TABLE value includes views. As a result, you can include the name of the view
without including the TABLE keyword.

The <object name> placeholder in the ON clause refers to the name of the specific object.

This value is always required.

The next clause is the TO clause. Like the GRANT clause, the TO clause has two options:

PUBLIC and the <authorization identifier list> placeholder. If you use PUBLIC, all database

users are granted access to the object. If you use the <authorization identifier list> option, then

you must provide the name of one or more authorization identifiers. If there are more than one,

they must be separated by a comma.

The last clause that I am going to discuss is the WITH GRANT OPTION clause. This clause

grants the authorization identifiers permission to grant whatever privileges they’re being granted

in the GRANT statement. For example, suppose you’re granting the EmmaW user identifier

the SELECT privilege on one of your tables. If you use the WITH GRANT OPTION, EmmaW

will be able to grant the SELECT privilege to another user. If you do not use the WITH GRANT

OPTION, EmmaW will not be able to grant the privilege to another user.

Now that we’ve taken a look at the syntax, let’s look at a few examples. In the first example,

we’ll look at a GRANT statement that grants the SELECT privilege to the PUBLIC authorization

identifier. The privilege is granted on a view named AvailableCDs, which lists the CDs that you

currently have in stock. To grant the privilege, use the following statement:

GRANT SELECT ON TABLE AvailableCDs TO PUBLIC ;

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The SELECT privilege allows all database users (PUBLIC) to view data in the AvailableCDs

view. However, because PUBLIC has not been granted any other privileges, users can only view

the data, but not take any action. In addition, because the WITH GRANT OPTION clause is not

included in the statement, users cannot assign the SELECT privilege to any other users (which

is a moot point in this case because everyone can already access the AvailableCDs view).

Now let’s look at another example. This time, I’m granting the SELECT, UPDATE, and

INSERT privileges to the Sales role and the Accounting role so that they have access to the

CDInventory table:

GRANT SELECT, UPDATE, INSERT ON TABLE CDInventory
TO Sales, Accounting WITH GRANT OPTION ;

Notice that the privileges are separated by commas, as are the roles. As a result of this statement,

the users associated with the Sales role and the Accounting role can view, update, and insert

information into the CDInventory table. In addition, these users can assign the SELECT,

UPDATE, and INSERT privileges to other users who need to access the CDInventory table.

The next example we will look at is a slight variation on this last one. Everything is the

same, except that this time, I specify which column can be updated:

GRANT SELECT, UPDATE (CDTitle), INSERT ON TABLE CDInventory
TO Sales, Accounting WITH GRANT OPTION ;

Notice that you can add a column name after the specific privilege. You can add column names

only to the SELECT, INSERT, UPDATE, and REFERENCES privileges. If you add more

than one column name, you must separate them by a comma.

The GRANT statement in this example still allows the Sales and Accounting users to

view and insert information into the CDInventory table, but they can update only the CDTitle

value. They cannot update any other column values in the table. In addition, although they

can still assign privileges to other users, they can assign the UPDATE privilege only on the

CDTitle column.

Let’s take a look at one more example that grants SELECT privileges to the PUBLIC

authorization identifier:

GRANT SELECT (CDTitle, InStock) ON CDInventory TO PUBLIC ;

The PUBLIC authorization identifier allows all users to view data in the CDTitle and InStock

columns of the CDInventory table, but they cannot view any other information in that table

and they cannot modify the data in any way. Notice in this statement that the keyword TABLE

isn’t included. As I said earlier, TABLE is not required.

SQL: A Beginner’s Guide 137

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:137

6

M
an

ag
in

g
D

at
ab

as
e

Se
cu

rit
y

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The GRANT statement, when used in conjunction with the available privileges and the

authorization identifiers, provides a strong foundation for your database security. However,

each SQL implementation is different with regard to how security is implemented and maintained.

Therefore, when it comes to matters of security, it is important that you work closely with

network and database administrators and carefully read the product documentation.

Revoking Privileges
Now that you know how to grant privileges to authorization identifiers, it’s time to learn how

to revoke those privileges. The statement that you use to revoke privileges is the REVOKE

statement, as shown in the following syntax:

REVOKE [GRANT OPTION FOR] { ALL PRIVILEGES | <privilege list> }

ON <object type> <object name>

FROM { PUBLIC | <authorization identifier list>

[GRANTED BY { CURRENT_USER | CURRENT_ROLE }]

{ RESTRICT | CASCADE }

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:138

138 Module 6: Managing Database Security

Ask the Expert
Q: You mention that, in certain situations, it’s possible that the user identifier/role

name pair contains no null values. When would that situation occur?

A: One way in which the user identifier and role name can both contain values (in other

words, neither are null) is by manually assigning a value to the role name. The SET

ROLE statement allows you to assign a value to the current role name. However, doing

so has no effect on the current user identifier. As a result, if the current authorization

identifier is based on a value for the current user identifier (in which case the role name

is null) and you use the SET ROLE statement to assign a current role name value, you

can end up with a user identifier/role name pair that contains no null values. Keep in

mind, however, that even though SQL supports this possibility, your implementation

might not, making it even more unlikely that this situation will come up for you.

As a side note, the counterpart to the SET ROLE statement is the SET SESSION

AUTHORIZATION statement, which sets the value for the current user authorization.

However, this statement, unlike the SET ROLE statement, also sets the current role

name to a null value, which means you won’t run into the same situation

as you can run into when using a SET ROLE statement.

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

You probably recognize many of the syntax elements from the GRANT statement or from

other statements. In fact, the only new component, other than the REVOKE keyword, is the

GRANT OPTION FOR clause. Let’s take a look at that one first, since it’s at the beginning of

the REVOKE statement. This clause applies only when the WITH GRANT OPTION clause is

used in the GRANT statement. If a privilege was granted with this clause, you can use the GRANT

OPTION FOR clause to remove that particular permission. If you do use it, the privileges are

reserved, but the user can no longer grant those privileges to other users.

Forgetting the GRANT OPTION FOR clause for a moment, let’s look at the REVOKE

clause itself, which is used to revoke either all privileges on an object (ALL PRIVILEGES)

or only the defined privileges (<privilege list>). Both these options have the same meaning

they did in the GRANT statement; you can either use ALL PRIVILEGES or you can list each

privilege, separated by a comma.

The ON clause and GRANTED BY clause in the REVOKE statement are exactly the

same as the ON clause and GRANTED BY clause in the GRANT statement. For the ON

clause, you must specify values for the <object type> placeholder and the <object name>

placeholder; however, if the <object type> value is TABLE, then you can leave that off.

As for the GRANTED BY clause, you can choose one of two options (CURRENT_USER

or CURRENT_ROLE).

The FROM clause in the REVOKE statement can also be compared to the GRANT statement.

The only difference is that in the GRANT statement, you use the TO keyword, but in the

REVOKE statement, you use the FROM keyword. In either case, you must choose PUBLIC

as your authorization identifier, or you must list the specific user identifiers and role names.

The last elements of the statement to discuss are the RESTRICT keyword and the

CASCADE keyword. You might recall these keywords from Module 2, Module 3, and Module 4.

If you specify RESTRICT, the privilege will not be revoked if it had been passed on to other

users—in other words, if there are any dependent privileges. (This would mean that the WITH

GRANT OPTION had been used in the GRANT statement and that the authorization identifier

that had been granted the privilege had then granted the privilege to someone else.) If you

specify CASCADE, the privilege will be revoked as will any privileges that were passed on

to other users.

Now let’s take a look at some examples of revoking privileges. The following statement

revokes a SELECT privilege that was granted to the PUBLIC authorization identifier on the

AvailableCDs view:

REVOKE SELECT ON TABLE AvailableCDs FROM PUBLIC CASCADE ;

As you can see, this statement is very similar to what a GRANT statement might look like.

You must identify the privileges, the authorization identifiers, and the object. In addition,

you must specify RESTRICT or CASCADE.

SQL: A Beginner’s Guide 139

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:139

6

M
an

ag
in

g
D

at
ab

as
e

Se
cu

rit
y

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:140

The next example is based on privileges that have been granted on a table named CDInventory.

The Sales role and Accounting role have been granted the following privileges on this table:

GRANT, SELECT, and INSERT. To revoke these privileges, use the following REVOKE

statement:

REVOKE SELECT, UPDATE, INSERT ON TABLE CDInventory
FROM Sales, Accounting CASCADE ;

Notice that you simply specify the privileges you want to revoke, the name of the objects,

and the name of the authorization identifiers. However, since you are revoking all the privileges

that had been granted, you could have simplified the statement by using the ALL PRIVILEGES

keywords, as shown in the following example:

REVOKE ALL PRIVILEGES ON TABLE CDInventory
FROM Sales, Accounting CASCADE ;

If you do not want to revoke all privileges, but instead want to revoke only the UPDATE

and INSERT privileges, you can specify only those privileges, as shown in the following

example:

REVOKE UPDATE, INSERT ON TABLE CDInventory
FROM Sales, Accounting CASCADE ;

You can also choose to revoke privileges for only one of the role names, rather than both.

In addition, you can use the RESTRICT keyword rather than CASCADE.

Now suppose the same privileges had been granted as in the preceding example but in

addition to those, the WITH GRANT OPTION had been specified when granting privileges.

If you want to revoke only the ability of the Sales and Accounting roles to grant privileges

to other users, you can use the following statement:

REVOKE GRANT OPTION FOR ALL PRIVILEGES ON CDInventory
FROM Sales, Accounting CASCADE ;

This statement revokes only the ability to grant privileges; the Sales and Accounting

roles still have access to the CDInventory table. If you want to revoke all their privileges, you

would have to execute this statement without the GRANT OPTION FOR clause. Notice in this

statement that the TABLE keyword wasn’t used before the name of the table. The REVOKE

statement, like the GRANT statement, doesn’t require the TABLE keyword when specifying

a table or view.

140 Module 6: Managing Database Security

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Progress Check
1. You are creating a role named AcctDept. What SQL statement should you use?

2. You are granting privileges on the CDInventory table. You are the owner of the table

and you want to grant every privilege available on the table. What keywords can you

use to specify every table privilege?

3. Which keyword should you use in a REVOKE statement to ensure that a privilege will

not be revoked if there are any dependent privileges?

CRITICAL SKILL

6.4 Grant and Revoke Roles
Now that you know how to create and delete roles and grant and revoke privileges, let’s look

at granting and revoking roles. We’ll start with granting roles. To grant a role, you must use a

GRANT statement to assign one or more role names to one or more authorization identifiers,

as shown in the following syntax:

GRANT <role name list>

TO { PUBLIC | <authorization identifier list> } [WITH ADMIN OPTION]

[GRANTED BY { CURRENT_USER | CURRENT_ROLE }]

By now, most of this syntax should look quite familiar to you, except for a few variations.

The GRANT clause allows you to specify a list of one or more role names. If you specify

more than one name, you must separate them by commas. The TO clause allows you to specify

one or more authorization identifiers. Again, if there are more than one, you must separate

them by a comma. You can also specify the PUBLIC authorization identifier to grant a role

to all database users. The WITH ADMIN OPTION clause, which is optional, allows the

authorization identifiers to grant the role to other users. And the GRANTED BY clause,

which is also optional, is used in those rare instances when the user identifier/role name

pair does not contain a null value.

SQL: A Beginner’s Guide 141

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:141

6

M
an

ag
in

g
D

at
ab

as
e

Se
cu

rit
y

1. You should use the following SQL statement:

CREATE ROLE AcctDept ;

2. ALL PRIVILEGES

3. RESTRICT

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:142

Let’s look at an example. Suppose you have created a role named Managers and you want

to assign that role to a user identifier named LindaN. You would use the following syntax:

GRANT Managers TO LindaN ;

Now suppose you want to give LindaN the ability to grant the Managers role to other users.

To do this, you simply add the WITH ADMIN OPTION clause, as in the following example:

GRANT Managers TO LindaN WITH ADMIN OPTION ;

You can also grant multiple roles to multiple user identifiers. The user identifiers can be

user identifiers or other role names. In the following example, I grant the Managers role and

Accounting role to the LindaN user identifier and the Marketing role name:

GRANT Managers, Accounting TO LindaN, Marketing WITH ADMIN OPTION ;

Now that you know how to grant roles to authorization identifiers, it’s time to learn how

to revoke those roles.

Revoking Roles
Revoking roles is a lot like revoking privileges. The statement that you use to revoke privileges

is the REVOKE statement, as shown in the following syntax:

REVOKE [ADMIN OPTION FOR] <role name list>

FROM { PUBLIC | <authorization identifier list> }

[GRANTED BY { CURRENT_USER | CURRENT_ROLE }]

{ RESTRICT | CASCADE }

As you can see, there is nothing new in the syntax except for the ADMIN OPTION FOR

clause, which is similar to the GRANT OPTION FOR clause used when revoking privileges.

It allows you to revoke the ability to assign roles to other users, without revoking the role itself.

Let’s take a look at an example of revoking a role. Suppose you’ve granted the Managers

role to the LindaN user identifier. You can revoke that role by using the following REVOKE

statement:

REVOKE Managers FROM LindaN CASCADE ;

If you had granted the Managers role and the Accounting role to LindaN and the Marketing

role, your REVOKE statement would look like the following:

REVOKE Managers, Accounting FROM LindaN, Marketing CASCADE ;

142 Module 6: Managing Database Security

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

6Now that we’ve looked at how to grant and revoke roles, you can see how similar this is to

granting and revoking privileges. Again, I must stress that not all implementations are alike with

regard to how they grant and revoke privileges and roles, so be sure to review your product

documentation and work closely with the database administrator.

Project 6-1 Managing Roles and Privileges
In this project, you will create two roles in the Inventory database, grant privileges to

the PUBLIC authorization identifier and to one of the roles you created, grant one of

the roles to the other role, and then revoke all the privileges and roles. Finally, you will drop

the two roles that you created. Your ability to follow all the steps in this project will depend

on the type of security-related statements supported in the SQL implementation that you’re

using. However, the project is designed so that any roles you create or privileges you assign

are dropped by the end of the project. You will not be using these roles for any projects later

in the book. If for any reason this project might affect the security of the system on which you’re

working, you should discuss this project with a database administrator or skip it altogether.

You can download the Prj06.txt file, which contains the SQL statements used in this project.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. The first thing you’ll do is create the Mrkt role. Enter and execute the following SQL

statement:

CREATE ROLE Mrkt ;

3. Next you’ll create the SalesStaff role. Enter and execute the following SQL statement:

CREATE ROLE SalesStaff ;

4. You’ll now grant the SELECT privilege on the CDsInStock view. The privilege will be

assigned to the PUBLIC authorization identifier. Enter and execute the following SQL

statement:

GRANT SELECT ON TABLE CDsInStock TO PUBLIC ;

5. The next privileges you grant will be to the SalesStaff role that you created in step 3.

You’ll be granting the SELECT, INSERT, and UPDATE privileges on the CompactDiscs

table. For the UPDATE privilege you will specify the CDTitle column. You will also allow

the SalesStaff role to grant these privileges to other users. Enter and execute the following

SQL statement:

GRANT SELECT, INSERT, UPDATE (CDTitle) ON TABLE CompactDiscs
TO SalesStaff WITH GRANT OPTION ;

SQL: A Beginner’s Guide 143

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:143

6

M
an

ag
in

g
D

at
ab

as
e

Se
cu

rit
y

Ma
na

gin
gR

ole
sa

nd
Pr

ivi
leg

es

Project
6-1

(continued)

Prj06.txt

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:144

144 Module 6: Managing Database Security

6. You’ll now grant the SalesStaff role to the Mrkt role. Enter and execute the following SQL

statement:

GRANT SalesStaff TO Mrkt ;

7. Your next step is to revoke the SELECT privilege that you granted to the PUBLIC

authorization identifier. Enter and execute the following SQL statement:

REVOKE SELECT ON TABLE CDsInStock FROM PUBLIC CASCADE ;

8. Now you’ll revoke the privileges that you granted to the SalesStaff role. Because you’re

revoking all privileges, you can use the ALL PRIVILEGES keyword. You also want to

ensure that any dependent privileges are revoked, so you’ll use the CASCADE keyword.

Enter and execute the following SQL statement:

REVOKE ALL PRIVILEGES ON TABLE CompactDiscs FROM SalesStaff CASCADE ;

9. You can now revoke the SalesStaff role from the Mrkt role. Enter and execute the following

SQL statement:

REVOKE SalesStaff FROM Mrkt CASCADE ;

10. Your next step is to drop the Mrkt role. Enter and execute the following SQL statements:

DROP ROLE Mrkt ;

11. Finally, you need to drop the SalesStaff role. Enter and execute the following SQL

statements:

DROP ROLE SalesStaff ;

12. Close the client application.

Project Summary
The Inventory database should now be set up the same way it was before you started this

project. The permissions and roles you granted should have been revoked, and the roles

you created should have been dropped. This way, you will not have to worry about security

considerations for other projects. For the remaining projects in the book, you should continue

to work within the same security context in which you’ve been working for this project and

for all projects preceding this one.

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 145

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:145

6

M
an

ag
in

g
D

at
ab

as
e

Se
cu

rit
yModule 6 Mastery Check

1. What is the difference between a user identifier and a role name?

2. What is the name of the special authorization identifier that grants access to all

database users?

3. Each ____________ is associated with a user identifier and role name.

4. An SQL session is associated with which of the following?

A. Privilege

B. User identifier

C. PUBLIC

D. Role name

5. When an SQL session is first established, the user identifier is always the ____________.

6. What is the value of the current role name when an SQL session is first established?

7. What is an authorization identifier?

8. You establish an SQL session with your database. The current user identifier is EthanW.

The current role name is null. What is the current authorization identifier?

9. On which schema objects can you define access privileges?

10. On which types of database objects can you assign the DELETE privilege?

A. Tables

B. Views

C. Columns

D. Domains

11. On which types of database objects can you assign the TRIGGER privilege?

A. Tables

B. Views

C. Columns

D. Domains

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 6
Blind Folio 6:146

12. You’re creating a role named Accounting. Which SQL statement should you use?

13. You’re granting all privileges on the CDNames view to everyone who uses the database.

Which SQL statement should you use?

14. You’re granting the SELECT privilege to the SalesClerk role on a table in your database.

You want the SalesClerk role to be able to assign the SELECT privilege to other users.

What clause should you include in your GRANT statement?

15. You want to grant the Acct role to the MaxN user authorization. You do not want the

user to be able to grant the role to other users. What SQL statement should you use to

grant the role?

146 Module 6: Managing Database Security

P:\010Comp\Begin8\885-7\ch06.vp
Monday, April 07, 2003 10:36:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:147

Part II
Data Access
and Modification

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:148

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:149

Module7
Querying SQL Data

CRITICAL SKILLS
7.1 Use a SELECT Statement to Retrieve Data

7.2 Use the WHERE Clause to Define Search Conditions

7.3 Use the GROUP BY Clause to Group Query Results

7.4 Use the HAVING Clause to Specify Group Search Conditions

7.5 Use the ORDER BY Clause to Sort Query Results

149

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:150

150 Module 7: Querying SQL Data

Once the objects in a database have been created and the base tables populated with data,

you can submit queries that allow you to retrieve specific information from the database.

These queries, which usually take the form of SELECT statements, can range in complexity

from a simple statement that returns all columns from a table to a statement that joins multiple

tables, calculates values, and defines search conditions that restrict exactly which rows of data

should be returned. The SELECT statement is made up of a flexible series of clauses that

together determine which data will be retrieved. In this module, you will learn how to use each

of these clauses in order to perform basic data retrieval, define search conditions, group query

results, specify group search conditions, and order search results.

CRITICAL SKILL

7.1 Use a SELECT Statement to Retrieve Data
In Module 5, when discussing views, I introduce you to the SELECT statement. As you might

recall, the SELECT statement allows you to form intricate queries that can return exactly the

type of data you want to retrieve. It is one of the most common statements you’ll be using as

an SQL programmer, and it is also one of the most flexible and extensive statements in the

SQL standard.

The SELECT statement is a query expression that begins with the SELECT keyword and

includes a number of elements that form the expression. The basic syntax for the SELECT

statement can be split into several specific clauses that each help to refine the query so that

only the required data is returned. The syntax for the SELECT statement can be shown as

follows:

SELECT [DISTINCT | ALL] { * | <select list> }

FROM <table reference> [{ , <table reference> } . . .]

[WHERE <search condition>]

[GROUP BY <grouping specification>]

[HAVING <search condition>]

[ORDER BY <order condition>]

As you can see, the only required clauses are the SELECT clause and the FROM clause.

All other clauses are optional.

The FROM, WHERE, GROUP BY, and HAVING clauses are referred to as the table

expression. This portion of the SELECT statement is always evaluated first when a SELECT

statement is processed. Each clause within the table expression is evaluated in the order listed

in the syntax. The result of that evaluation is a virtual table that is used in the subsequent

evaluation. In other words, the results from the first clause evaluated are used in the next

clause. The results from that clause are then used in the following clause, until each clause in

the table expression is evaluated. For example, the first clause to be evaluated in a SELECT

statement is the FROM clause. Because this clause is required, it is always the first clause

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 151

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:151

7

Q
ue

ry
in

g
SQ

L
D

at
a

evaluated. The results from the FROM clause are then used in the WHERE clause, if a WHERE

clause is specified. If the clause is not specified, then the results of the FROM clause are used

in the next specified clause, either the GROUP BY clause or the HAVING clause. Once the

final clause in the table expression is evaluated, the results are then used in the SELECT clause.

After the SELECT clause is evaluated, the ORDER BY clause is evaluated.

To sum all this up, the clauses of the SELECT statement are applied in the following order:

● FROM clause

● WHERE clause (optional)

● GROUP BY clause (optional)

● HAVING clause (optional)

● SELECT clause

● ORDER BY clause (optional)

Having a basic understanding of the order of evaluation is important as you create more

complex SELECT statements, especially when working with joins and subqueries (discussed

in Module 11 and Module 12, respectively). This understanding is also helpful when discussing

each clause individually because it explains how one clause relates to other clauses. As a result,

it is a good idea for you to keep this order of evaluation in mind throughout this module and

in subsequent modules that build upon various aspects of the SELECT statement.

The SELECT Clause and FROM Clause
Now that you have a basic overview of how the SELECT statement is executed, let’s take

a closer look at the SELECT clause and the FROM clause, the two required clauses in the

statement. I’ll discuss the other clauses in separate sections throughout the remainder of

the module.

Let’s begin with the SELECT clause. The SELECT clause includes the optional DISTINCT

and ALL keywords. The DISTINCT keyword is used if you want to eliminate duplicate rows

from the query results, and the ALL keyword is used if you want to return all rows in the query

results. For example, suppose your database includes a table named PerformerCDs. The table

includes the PerformerName column and the CDName column. Because a CD can include more

than one performer, the CD name can appear more than one time in the table. Now suppose

that you want to query the table for the name of the CDs only, but you don’t want the names

repeated. You can use the DISTINCT keyword to ensure that your query returns the name of

each CD only one time, or you can use the ALL keyword to specify that all rows be returned,

even if there are duplicates. If you don’t specify either of the keywords, the ALL keyword

is assumed.

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:152

In addition to the DISTINCT and ALL keywords, the SELECT clause includes the asterisk

(*) and the <select list> placeholder. You must specify one of these options in the clause. If you

specify the asterisk, all applicable columns are included in the query result.

If you don’t specify an asterisk in the SELECT clause, you must specify each column

as it is derived from its source. The <select list> placeholder can be broken down into the

following syntax:

<derived column> [[AS] <column name>]

[{ , <derived column> [[AS] <column name>] } . . .]

Let’s take a look at the first line of this syntax. (The second line is merely a repeat—as

many times as necessary—of the first line.) The <derived column> placeholder in most cases

refers to the name of the column in the source table. If more than one column is specified,

then they must be separated by a comma. However, the <derived column> placeholder might

also refer to a column or set of columns that are in some way part of an expression. For

instance, in Module 5 I discuss the AVG function, which averages the values in a specified

column. The example I show in that module uses a SELECT statement to query data from

the EmployeeCommissions table, which lists the total amount of commissions each employee

made during a three-year period. The SELECT statement averages the values in three different

columns, as shown in the following SELECT statement:

SELECT AVG(Year1999), AVG(Year2000), AVG(Year2001)
FROM EmployeeCommissions ;

152 Module 7: Querying SQL Data

Ask the Expert
Q: You state that you can use an asterisk to include all columns in the query result.

Does this ever present a problem if the number of columns changes?

A: Yes, this can present a problem. In fact, it is generally recommended that you use the

asterisk only when you’re accessing an SQL database through direct invocation. If you

use the asterisk in embedded SQL and the number of columns changes, you might find

that your application no longer responds correctly because the application language was

coded to expect a specific response. If an asterisk is used and specific columns are expected

to be returned, then you could run into a number of surprises if the database has been

changed. For this reason, you should avoid the asterisk unless directly invoking a SELECT

statement. However, in the case of direct invocation, the asterisk is a handy way to

return all columns without having to specify each one. In fact, many of the examples

in the module use the asterisk to avoid having to repeat column names unnecessarily.

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 153

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:153

7

Q
ue

ry
in

g
SQ

L
D

at
a

In this case, there are three expressions that are used for the <derived column> placeholder:

AVG(Year1999), AVG(Year2000), and AVG(Year2001). Notice that each derived column

expression is separated by a comma, as would be the case if each value were simply a column

name. The following example shows the same SELECT statement as in the preceding example,

except that it uses only column names as the derived columns:

SELECT Year1999, Year2000, Year2001
FROM EmployeeCommissions ;

If you were to execute this SELECT statement, your query would return all the values in the

three columns, rather than averaging those values.

The SELECT clause also allows you to provide a column name for each derived column.

To do this, add the AS keyword and the new column name after the derived column, as shown

in the following example:

SELECT AVG(Year1999) AS Average1999
FROM EmployeeCommissions ;

In this SELECT statement, the value that is returned from the Year1999 column is placed in

a column named Average1999. This is the name of the column that’s returned as part of a

virtual table in the query results. If you don’t specify an AS subclause, the column name in

the virtual table is the same as the column name in the source table. If a column name cannot

be inherited naturally (for example, when adding two column values together), you must use

the AS subclause.

Notice that in the previous examples the FROM clause is used to specify the table

(EmployeeCommissions) that contains the columns referred to in the SELECT clause. The

FROM clause includes the FROM keyword and one or more table references. If there are more

than one, they must be separated by a comma. In most cases, the table reference is either the

name of a table or of joined tables, although it can also be a type of subquery. I discuss joined

tables in Module 11 and subqueries in Module 12. For this module, the FROM clause is used

primarily to reference table names, as I have defined the clause in the two previous examples

(where <table reference> equals EmployeeCommissions).

Together the SELECT clause and the FROM clause form the foundation for the SELECT

statement, which can be as simple as querying every row and every column of a table, as

shown in the following example:

SELECT * FROM Performers ;

In this statement, I specify that every column should be returned for the Performers table.

In addition, because no other clauses have been specified, every row will also be returned.

Let’s take a closer look at this. The Performers table includes the PerformerID, PerformerName,

and PlaceOfBirth columns, as shown in Figure 7-1.

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:154

154 Module 7: Querying SQL Data

If you execute the SELECT statement shown in the previous example, your query results

would look similar to the following:

PerformerID PerformerName PlaceOfBirth
-------- ------------------ ------------------------------
2001 Jennifer Warnes Seattle, Washington, USA
2002 Joni Mitchell Fort MacLeod, Alberta, Canada
2003 William Ackerman Germany
2004 Kitaro Toyohashi, Japan
2005 Bing Crosby Tacoma, Washington, USA
2006 Patsy Cline Winchester, Virginia, USA
2007 Jose Carreras Barcelona, Spain
2008 Luciano Pavarotti Modena, Italy
2009 Placido Domingo Madrid, Spain

Notice that every row of every column is returned in the query results. If you use the asterisk

in your SELECT clause, you do not have to specify the column names.

Now suppose you want to return only the PerformerName and PlaceOfBirth columns.

You could modify your SELECT statement to look like the following:

SELECT PerformerName AS Name, PlaceOfBirth FROM Performers ;

Figure 7-1 The PerformerID, PerformerName, and PlaceOfBirth columns of the
Performers table

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Your query results will now contain only two columns, as shown in the following:

Name PlaceOfBirth
----------------- ------------------------------
Jennifer Warnes Seattle, Washington, USA
Joni Mitchell Fort MacLeod, Alberta, Canada
William Ackerman Germany
Kitaro Toyohashi, Japan
Bing Crosby Tacoma, Washington, USA
Patsy Cline Winchester, Virginia, USA
Jose Carreras Barcelona, Spain
Luciano Pavarotti Modena, Italy
Placido Domingo Madrid, Spain

Notice that the name of the first column is Name, rather than PerformerName. This is

because the AS subclause (specifying Name) is defined as part of the PerformerName derived

column. If you were to specify the DISTINCT keyword in this particular situation, you would

still receive the same number of rows, although they might not be returned in the same order

as they were when you didn’t use the keyword, depending on the SQL implementation. The

reason that the DISTINCT keyword would make no difference in the query results is that

there are no duplicate rows in the table. However, using the DISTINCT keyword can affect

performance, particularly if your query has to sort through a large number of rows, so be

sure to use the keyword only when necessary.

Now let’s take a look at an example that uses the DISTINCT keyword. Suppose your

database includes a table that matches performers to types of music, as shown in Figure 7-2.

SQL: A Beginner’s Guide 155

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:155

7

Q
ue

ry
in

g
SQ

L
D

at
a

Figure 7-2 The PerformerName and Type columns of the PerformerType table

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:156

If your SELECT statement includes both columns in the SELECT clause, as shown in

the following example, your query will return all rows:

SELECT * FROM PerformerType ;

It does not matter if you specify the DISTINCT keyword in this case because your query

results include no duplicate rows. The results would be the same whether you include the

ALL keyword, rather than DISTINCT, or whether you specify neither of the two qualifiers.

In either case, the query results would include the same information that is shown in the

table in Figure 7-2.

Now let’s take a look at the same statement, only this time it specifies the DISTINCT

keyword and only one of the two columns:

SELECT DISTINCT PerformerName FROM PerformerType ;

Notice that this statement includes only the PerformerName column, which includes duplicate

values. By using the DISTINCT keyword, your query results will include only one instance of

each value. If you execute the SELECT statement in the preceding example, your query results

will look similar to the following:

PerformerName

Jennifer Warnes
Joni Mitchell
Kitaro
William Ackerman

Although there are seven rows in the PerformerType table, only four rows are returned

because there are only four unique values in the PerformerName column and the other values

are duplicates.

As you can see, the SELECT clause and the FROM clause are fairly straightforward, at

least at this level of coding. Once we get into more complex structures, you’ll find that both

these clauses can at times become more complicated. However, the important thing to remember

right now is that these clauses act as the foundation for the rest of the SELECT statement. In

terms of execution, the SELECT statement, for all practical purposes, begins with the FROM

clause and ends with the SELECT clause. (The ORDER BY clause is used primarily for display

purposes and doesn’t affect which information is actually returned. The ORDER BY clause is

discussed in more detail in the “Use the ORDER BY Clause to Sort Query Results” section

later in this module.)

156 Module 7: Querying SQL Data

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Progress Check
1. What are the six main clauses in a SELECT statement?

2. Which clauses in a SELECT statement are considered to be part of the table expression?

3. Which keyword should you include in the SELECT clause if you want to eliminate

duplicate rows from the query results?

4. Which symbol can you use if you want to include all of a table’s columns in the SELECT

clause?

CRITICAL SKILL

7.2 Use the WHERE Clause to Define
Search Conditions
The next clause in the SELECT statement is the WHERE clause. The WHERE clause takes

the values returned by the FROM clause (in a virtual table) and applies the search condition

that is defined within the WHERE clause. The WHERE clause acts as a filter on the results

returned by the FROM clause. Each row is evaluated against the search condition. Those rows

that evaluate to true are returned as part of the query result. Those that evaluate to unknown or

false are not included in the results.

For a better understanding of how each row is evaluated, let’s take a closer look at the

<search condition> placeholder. The search condition is made up of one or more predicates

that are used to test the contents returned by the FROM clause. A predicate is an SQL expression

that defines a fact about any row returned by the SELECT statement. You have already seen

examples of predicates in Module 4 and Module 5. For instance, one example of a view definition

(in Module 5) includes the following SELECT statement:

SELECT CDTitle, Copyright, InStock FROM CompactDiscInventory
WHERE Copyright > 1989 AND Copyright < 2000 ;

SQL: A Beginner’s Guide 157

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:157

7

Q
ue

ry
in

g
SQ

L
D

at
a

1. SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY

2. FROM, WHERE, GROUP BY, and HAVING

3. DISTINCT

4. An asterisk (*)

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:158

This statement is querying three columns in the CompactDiscInventory table. The SELECT

clause specifies the columns to be returned, and the FROM clause specifies the source table.

The WHERE clause determines which rows (based on the FROM clause) are included in the

results. In this case, the WHERE clause contains two predicates that are connected by the AND

keyword. The first predicate (Copyright > 1989) specifies that all rows included in the query

results must contain a value greater than 1989 in the Copyright column. The second predicate

(Copyright < 2000) specifies that all rows included in the query results must contain a value

less than 2000 in the Copyright column.

Each predicate is evaluated on an individual basis to determine whether it meets the condition

defined by that predicate. Returning to the last example, the first predicate sets the condition that

values must be greater than 1989. If the Copyright value for a particular row is more than 1989,

the condition is met and the predicate evaluates to true. If the value is not greater than 1989, the

predicate evaluates to false. If SQL cannot determine whether or not the value meets the condition

(as would be the case if the value is null), the predicate evaluates to unknown.

Every predicate is evaluated to true, false, or unknown. If more than one predicate is included

in the WHERE clause, they are joined together by the OR keyword or the AND keyword. If OR

is used, then at least one of the predicates on either side of OR must evaluate to true. If AND is

used, then predicates on either side must evaluate to true. For instance, the WHERE clause in

the last example includes two predicates that are connected by the AND keyword. This means

that the first predicate must evaluate to true and the second predicate must evaluate to true. If

OR had been used instead of AND, then only one of the predicates must evaluate to true, which

is a bit nonsensical because all values except null are either above 1989 or below 2000.

Ultimately, the WHERE clause as a whole must evaluate to true in order for a row to be

included in the query results. If the WHERE clause includes more than one predicate, SQL follows

specific guidelines for how the statement as a whole is evaluated. Let’s start by looking at the

OR keyword. Table 7-1 lists the evaluation of a search condition if the OR keyword is used to

separate two predicates. To use the table, match a condition in the left column to a condition in

the top row. The result (where the cells intersect) shows how the search condition is evaluated

based on how each predicate is evaluated.

As the table shows, if both predicates evaluate to true, then the search condition evaluates

to true. If both are false, then the search condition evaluates to false. A condition is provided

158 Module 7: Querying SQL Data

True False Unknown

True True True True

False True False Unknown

Unknown True Unknown Unknown

Table 7-1 Evaluating Predicates Connected by OR

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

for each possible match. For example, suppose your SELECT statement includes the following

WHERE clause:

WHERE Type = 'Folk' OR Type = 'Jazz'

Now suppose that the first predicate in this example (Type = ‘Folk’) evaluates to true

and the second predicate (Type = ‘Jazz’) evaluates to false. This means that the row being

evaluated contains the Folk value in the Type column, but does not contain the Jazz value

in that column. Now refer back to Table 7-1. If you select True from the first column, select

False from the top row, and then match these two values together (by picking where they

intersect), you can see that the search condition evaluates to true, so the row will be included

in the query results.

You can do the same thing with the AND keyword as you did with the OR keyword.

Table 7-2 matches the nine possible outcomes of two predicates.

Again, you simply match up how each predicate is evaluated to determine whether the

search condition will be evaluated to true, false, or unknown. Remember, the search condition

must evaluate to true for the row to be included in the query results. As you can see, the AND

keyword is a lot less forgiving than the OR keyword. The only way for the search condition to

evaluate to true is for both predicates to evaluate to true.

NOTE
Comparison operators and predicates in general are discussed in greater detail in
Module 9.

If a search condition includes more than two predicates, the predicates are evaluated in the

order they appear, unless parentheses are used to separate combinations of predicates. For

example, you might have a SELECT statement that includes the following WHERE clause:

WHERE InStock = 6 OR InStock = 27 AND LabelID = 833 OR LabelID = 829

SQL: A Beginner’s Guide 159

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:159

7

Q
ue

ry
in

g
SQ

L
D

at
a

True False Unknown

True True False Unknown

False False False False

Unknown Unknown False Unknown

Table 7-2 Evaluating Predicates Connected by AND

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:160

Notice that there are four predicates in this clause. In order to evaluate to true, a row must

contain one of the following values or set of values:

● InStock value of 6

● InStock value of 27 and LabelID value of 833

● LabelID value of 829

The WHERE clause would create the same results if parentheses were used for the predicate

pair in the second bullet:

WHERE InStock = 6 OR (InStock = 27 AND LabelID = 833) OR LabelID = 829

If parentheses are used for other sets of predicates, the results will be different from what

we’ve seen. For example, suppose you use parentheses as follows:

WHERE (InStock = 6 OR InStock = 27) AND (LabelID = 833 OR LabelID = 829)

The predicates are first evaluated within the context of the parentheses and then compared to

other predicates accordingly. In this case, a row must contain one of the two InStock values

and the row must contain one of the two LabelID values. As a result, a row must contain one

of the following sets of values to evaluate to true:

● InStock value of 6 and LabelID value of 833

● InStock value of 6 and LabelID value of 829

● InStock value of 27 and LabelID value of 833

● InStock value of 27 and LabelID value of 829

In general, it’s a good idea to use parentheses to clarify your search condition if there’s

any possibility for confusion.

NOTE
SQL includes three operators that you can use if a search condition becomes too
complicated. These operators are IS TRUE, IS FALSE, and IS UNKNOWN. For example,
you can specify the following search condition: (FirstName = ‘Joni’ AND LastName =
‘Mitchell’) IS TRUE. This means that the FirstName value of a returned row must be Joni
and the LastName value must be Mitchell. In other words, they must evaluate to true. If
you specify IS FALSE in this situation, the predicate pair would have to evaluate to false,
meaning that at least one of the two predicates had to be false (could not be Joni or
could not be Mitchell).

160 Module 7: Querying SQL Data

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Another keyword that you might find useful is the NOT keyword, which can be used alone

or along with the AND keyword and the OR keyword to specify the inverse of a predicate. For

example, your SELECT statement might include the following WHERE clause:

WHERE PerformerName = 'Joni Mitchell' OR NOT PerformerName = 'Kitaro'

In this case, the PerformerName value can be Joni Mitchell or it can be any value other than

Kitaro. By the way, you would get the same result if you used the not equal (<>) comparison

operator, as shown in the following example:

WHERE PerformerName <> 'Kitaro'

Defining the WHERE Clause
Now that you have an overview of how to define a WHERE clause, let’s put it together with

the SELECT clause and FROM clause and take a look at a few examples. The examples that

we’ll be looking at are based on the Inventory table, shown in Figure 7-3. The Inventory table

contains five columns, some of which we’ll be using to define our search conditions.

The first example that we’ll be looking at includes a WHERE clause that defines which

rows can be returned based on the InStock values:

SELECT * FROM Inventory
WHERE InStock < 20 ;

SQL: A Beginner’s Guide 161

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:161

7

Q
ue

ry
in

g
SQ

L
D

at
a

Figure 7-3 The Inventory table containing CD-related data

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:162

If you execute this statement, your query results will be similar to the following:

CompactDiscID CDTitle Copyright RetailPrice InStock
------------- ---------------------- --------- ----------- -------
99301 Famous Blue Raincoat 1991 16.99 6
99303 Court and Spark 1974 14.99 18
99304 Past Light 1983 15.99 2
99305 Kojiki 1990 15.99 5
99306 That Christmas Feeling 1993 10.99 3

As you can see, all but two rows are included in the query results. The rows not included

contain InStock values greater than 20. In other words, these two rows evaluated to false.

Now let’s take that same SELECT statement and refine the WHERE clause even further.

In the new statement, the WHERE clause includes two predicates that are connected by the

AND keyword, as shown in the following example:

SELECT * FROM Inventory
WHERE InStock < 20 AND RetailPrice < 15.00 ;

When you execute this statement, you receive the following results:

CompactDiscID CDTitle Copyright RetailPrice InStock
------------- ---------------------- --------- ----------- -------
99303 Court and Spark 1974 14.99 18
99306 That Christmas Feeling 1993 10.99 3

Notice that only two rows meet the search condition. In other words, only these two rows have

an InStock value of less than 20 and a RetailPrice value of less than 15.00. Because the AND

keyword is used, both predicates must evaluate to true, which they do for these two rows.

Now let’s make one small modification to the SELECT statement. In the WHERE clause,

I have changed the AND keyword to an AND NOT keywords, as shown in the following

example:

SELECT * FROM Inventory
WHERE InStock < 20 AND NOT RetailPrice < 15.00 ;

The NOT keyword changes the query results. As you can see, three rows are returned:

CompactDiscID CDTitle Copyright RetailPrice InStock
------------- ---------------------- --------- ----------- -------
99301 Famous Blue Raincoat 1991 16.99 6
99304 Past Light 1983 15.99 2
99305 Kojiki 1990 15.99 5

162 Module 7: Querying SQL Data

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 163

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:163

7

Q
ue

ry
in

g
SQ

L
D

at
a

The returned rows each contain an InStock value of less than 20 and a RetailPrice value that

is not less than 15.00, or 15.00 or greater.

Next we’ll look at the same SELECT statement, only this time the two predicates are

connected by the OR keyword, as shown in the following example:

SELECT * FROM Inventory
WHERE InStock < 20 OR RetailPrice < 15.00 ;

The query results for this statement include many more rows than when the AND keyword

was used. By its very nature, the OR keyword permits greater opportunities for a search clause

to evaluate to true. As you can see, six rows have now been returned:

CompactDiscID CDTitle Copyright RetailPrice InStock
------------- ---------------------- --------- ----------- -------
99301 Famous Blue Raincoat 1991 16.99 6
99302 Blue 1971 14.99 26
99303 Court and Spark 1974 14.99 18
99304 Past Light 1983 15.99 2
99305 Kojiki 1990 15.99 5
99306 That Christmas Feeling 1993 10.99 3

Each row in the query results contains an InStock value of less than 20 or a RetailPrice value

of less than 15.00. Because the OR keyword is being used, only one of the predicates needs to

evaluate to true, although it’s acceptable if both predicates evaluate to true.

In the next example, I add one more predicate that limits the rows returned to those with an

InStock value greater than 5:

SELECT * FROM Inventory
WHERE InStock < 20 AND InStock > 5 OR RetailPrice < 15.00 ;

For a row to be returned, the InStock value must fall between the range of 5 and 20 or the

RetailPrice value must be less than 15.00. The query results from this SELECT statement

would be as follows:

CompactDiscID CDTitle Copyright RetailPrice InStock
------------- ---------------------- --------- ----------- -------
99301 Famous Blue Raincoat 1991 16.99 6
99302 Blue 1971 14.99 26
99303 Court and Spark 1974 14.99 18
99306 That Christmas Feeling 1993 10.99 3

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:164

Now let’s make one more change to the WHERE clause. Suppose you want the InStock

value to be less than 20 and greater than 5 or the InStock value to be less than 20 and the

RetailPrice value to be less than 15. One way to do this is to add parentheses around the last

two predicates:

SELECT * FROM Inventory
WHERE InStock < 20 AND (InStock > 5 OR RetailPrice < 15.00) ;

The results you receive this time are slightly different because the Blue row no longer

evaluates to true:

CompactDiscID CDTitle Copyright RetailPrice InStock
------------- ---------------------- --------- ----------- -------
99301 Famous Blue Raincoat 1991 16.99 6
99303 Court and Spark 1974 14.99 18
99306 That Christmas Feeling 1993 10.99 3

By combining predicates together, you can create a variety of search conditions that allow

you to return exactly the data you need. The key to writing effective search conditions is a

thorough understanding of predicates and the operators used to form those predicates. Module 9

takes you through many of the operators that you can use and the types of predicates that you

can create. With that information, you can create effective, concise search conditions.

Progress Check
1. A WHERE clause applies a search condition to the values returned by which clause?

2. What is a predicate?

3. What two keywords can you use to join together predicates in the WHERE clause?

4. What keyword can you use to express the inverse of a predicate?

164 Module 7: Querying SQL Data

1. FROM

2. A predicate is an SQL expression that defines a fact about any row returned by the SELECT statement.

3. OR and AND

4. NOT

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CRITICAL SKILL

7.3 Use the GROUP BY Clause
to Group Query Results
The next clause in the SELECT statement is the GROUP BY clause. The GROUP BY clause

has a function very different from the WHERE clause. As the name implies, the GROUP BY

clause is used to group together types of information in order to summarize related data. The

GROUP BY clause can be included in a SELECT statement whether or not the WHERE clause

is used.

As you saw in the “Use a SELECT Statement to Retrieve Data” section, the syntax for the

GROUP BY clause, as it appears in the SELECT statement syntax, looks like the following:

[GROUP BY <grouping specification>]

However, the <grouping specification> placeholder can be broken down into smaller elements:

<column name> [{ , <column name> } . . .]

| { ROLLUP | CUBE } (<column name> [{ , <column name> } . . .])

In actuality, the <grouping specification> syntax, like some of the other syntax in this book, is

even more complex than what I’m presenting here; however, for the purposes of this module,

this syntax will provide you with all the details that you need to use the GROUP BY clause

effectively.

Now let’s look at the syntax itself. The first line should be self-explanatory. You specify

one or more column names that contain values that should be grouped together. This normally

applies to columns that represent some sort of categories whose values are repeated within

the table. For example, your database might include a table that lists the employees in your

organization. Suppose that for each employee the table includes a job title. You might find that

you want to group together information in the table by job title, perhaps to determine such things

as the average salary of each job or number of employees holding each job title. If you need to

specify more than one column name, be sure to separate them with a comma.

As you can see from the syntax, you can specify the second line rather than the first. In this

case, you can use either the ROLLUP or CUBE keyword, along with the name of the columns

in parentheses. Again, be sure to separate column names with a comma. With regard to ROLLUP

and CUBE, the best way to understand these operators is through the use of examples. In fact,

the best way to understand the entire GROUP BY clause is through examples. However, before

we get into those, let’s take a look at the table on which the examples will be based. Figure 7-4

shows the CompactDiscStock table, which contains a list of CDs, whether they’re vocal or

instrumental, the price, and how many of each title are currently in stock.

SQL: A Beginner’s Guide 165

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:165

7

Q
ue

ry
in

g
SQ

L
D

at
a

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:166

166 Module 7: Querying SQL Data

Now we can get on with the examples. In the first one we’ll look at, I use the GROUP BY

clause to group rows based on the Category column of the CompactDiscStock table, as shown

in the following SELECT statement:

SELECT Category, SUM(OnHand) AS TotalOnHand
FROM CompactDiscStock
GROUP BY Category ;

First, let’s take a look at the GROUP BY clause, which specifies that the rows should be

grouped together based on the Category column. If you look at Figure 7-4, you’ll see that the

column contains only two values: Vocal and Instrumental. As a result, the SELECT statement

will return only two rows, one for Instrumental and one for Vocal:

Category TotalOnHand
------------ -----------
Instrumental 78
Vocal 217

Figure 7-4 CD information in the CompactDiscStock table

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 167

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:167

7

Q
ue

ry
in

g
SQ

L
D

at
a

Now let’s look at the SELECT clause in the preceding SELECT statement example. Notice

that the select list includes the SUM function, which adds data in the OnHand column. The

resulting column is then named TotalOnHand. The only other column included in the select

list is the Category column. The select list can include only those columns that are specified

in the GROUP BY clause or that can somehow be summarized.

What this statement does, then, is add together the total OnHand values for each value

in the Category column. In this case, there are 217 total CDs in stock that are categorized as

Vocal, and 78 in stock that are categorized as Instrumental. If there were another category,

then a row would appear for that one as well.

As I said earlier, you can still use the WHERE clause in a SELECT statement that includes

a GROUP BY clause. For example, suppose you want to view totals only for CDs that sell for

less than $16.00. To do this, simply modify your SELECT statement as follows:

SELECT Category, SUM(OnHand) AS TotalOnHand
FROM CompactDiscStock WHERE Price < 16.00
GROUP BY Category ;

Your query results from this statement will be slightly different than if the WHERE clause

had not been included:

Category TotalOnHand
------------ -----------
Instrumental 28
Vocal 172

Notice that your results now show only 28 Instrumental CDs for less than $16.00 and

172 Vocal CDs.

In the previous two examples, the GROUP BY clause specified only one column. However,

you can specify additional columns as necessary. This allows you to create subgroups that group

data within the scope of the main groups. For example, suppose you want to group data not

only according to the values in the Category column, but also according to the values in the

Price column. To do this, you should include the Price column in the select list as well as

the GROUP BY clause, as shown in the following SELECT statement:

SELECT Category, Price, SUM(OnHand) AS TotalOnHand
FROM CompactDiscStock
GROUP BY Category, Price ;

Now your query results will include six rows, rather than two:

Category Price TotalOnHand
------------ ----- -----------
Instrumental 14.99 5
Vocal 14.99 99

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:168

168 Module 7: Querying SQL Data

Instrumental 15.99 23
Vocal 15.99 73
Instrumental 16.99 50
Vocal 16.99 45

Notice that for each Category value, there are three rows, one for each of the Price values.

For example, in the Vocal group, there are 99 CDs at 14.99, 73 CDs at 15.99, and 45 CDs at

16.99. The number of rows depends on how many different values there are in the columns

specified in the GROUP BY clause. In this example, there are two different values in the

Category column and three different values in the Price column, which means that six rows

will be returned.

NOTE
The way in which your query results are returned can vary from implementation to
implementation. For example, some products might group all the Instrumental rows
together and all the Vocal rows together. However, regardless of how the information
appears in your user interface, the end results should be the same.

Now let’s take a look at the ROLLUP and CUBE operators. Both operators are similar

in function in that they return additional data in your query results when added to the GROUP

BY clause. The main difference between the two is that the CUBE operator returns even more

information than the ROLLUP operator. Let’s start with an example of the ROLLUP operator

so I can demonstrate the difference.

In the following SELECT statement, the GROUP BY clause applies the ROLLUP operator

to the Category and Price columns:

SELECT Category, Price, SUM(OnHand) AS TotalOnHand
FROM CompactDiscStock
GROUP BY ROLLUP (Category, Price) ;

NOTE
Implementations can vary with regard to how they support the ROLLUP and CUBE
operators. For example, in SQL Server, you must add WITH ROLLUP or WITH CUBE
to the end of the GROUP BY clause, rather than defining the clause in the way that
the SQL:1999 standard specifies. Be sure to check your product documentation to
determine how these operators are supported.

Now when you execute the SELECT statement, the query results include an additional row

for each value in the Category column:

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 169

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:169

7

Q
ue

ry
in

g
SQ

L
D

at
a

Category Price TotalOnHand
------------ ----- -----------
Instrumental 14.99 5
Instrumental 15.99 23
Instrumental 16.99 50
Instrumental NULL 78
Vocal 14.99 99
Vocal 15.99 73
Vocal 16.99 45
Vocal NULL 217
NULL NULL 295

The two additional rows provide totals for each value in the Category column. For example,

the Instrumental group includes a total of 78 CDs. Notice that the Price column includes a null

value for these particular rows. A value cannot be calculated for this column because all three

subgroups (from the Price column) are represented here.

The CUBE operator returns the same data as the ROLLUP operator, and then some. Notice

that, in the following SELECT statement, I’ve merely replaced the CUBE keyword for ROLLUP:

SELECT Category, Price, SUM(OnHand) AS TotalOnHand
FROM CompactDiscStock
GROUP BY CUBE (Category, Price) ;

This statement returns the following query results:

Category Price TotalOnHand
------------ ----- -----------
Instrumental 14.99 5
Instrumental 15.99 23
Instrumental 16.99 50
Instrumental NULL 78
Vocal 14.99 99
Vocal 15.99 73
Vocal 16.99 45
Vocal NULL 217
NULL NULL 295
NULL 14.99 104
NULL 15.99 96
NULL 16.99 95

You can see that three additional rows have been added to the query results, one row for each

different value in the Price column. Unlike the ROLLUP operator, the CUBE operator summarizes

the values for each subgroup. Also notice that a null value is shown for the Category column.

This is because both Vocal and Instrumental values are included in each subgroup summary.

As you can see, the GROUP BY clause can be a valuable tool when trying to summarize

data, particularly when you make use of the many functions available in SQL, such as SUM

and AVG. In Module 10, I discuss these and many other functions that you can use to make

your SELECT statement more robust and applicable to your needs.

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:170

CRITICAL SKILL

7.4 Use the HAVING Clause to Specify
Group Search Conditions
The HAVING clause is similar to the WHERE clause in that it defines a search condition.

However, unlike the WHERE clause, the HAVING clause is concerned with groups, not

individual rows:

● If a GROUP BY clause is specified, the HAVING clause is applied to the groups created

by the GROUP BY clause.

● If a WHERE clause is specified and no GROUP BY clause is specified, the HAVING clause

is applied to the output of the WHERE clause and that output is treated as one group.

● If no WHERE clause and no GROUP BY clause are specified, the HAVING clause is

applied to the output of the FROM clause and that output is treated as one group.

The best way to understand the HAVING clause is to remember that the clauses in a SELECT

statement are processed in a definite order. A WHERE clause can receive input only from a

FROM clause, but a HAVING clause can receive input from a GROUP BY, WHERE, or FROM

clause. This is a subtle, yet important, distinction, and the best way to illustrate it is to look at

a couple of examples.

In the first example, which is based on the CompactDiscStock table in Figure 7-4, I use

a WHERE clause to specify that the query results should include only rows whose OnHand

value is less than 20, as shown in the following SELECT statement:

SELECT Category, AVG(Price) AS AvgPrice
FROM CompactDiscStock
WHERE OnHand < 20
GROUP BY Category ;

The statement returns two columns: Category and AvgPrice, which is the average of all

prices for each category. The averages include only those rows whose OnHand values are

less than 20. If you executed this statement, the results would look similar to the following:

Category AvgPrice
------------ --------
Instrumental 15.656666
Vocal 15.990000

As you would expect, the query result returns two rows—one for the Instrumental group and

one for the Vocal group.

170 Module 7: Querying SQL Data

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

If you were to use the HAVING clause, rather than the WHERE clause, to limit values

to less than 20, you might use the following SELECT statement:

SELECT Category, AVG(Price) AS AvgPrice
FROM CompactDiscStock
GROUP BY Category
HAVING OnHand < 20 ;

However, if you were to try to execute this statement, you would receive an error because

you cannot apply individual OnHand values to the groups. For a column to be included in

the HAVING clause, it must be a grouped column or it must be summarized in some way.

Now let’s take a look at another example that uses the HAVING clause. In this case,

the clause includes a summarized column:

SELECT Price, Category, SUM(OnHand) AS TotalOnHand
FROM CompactDiscStock
GROUP BY Price, Category
HAVING SUM(OnHand) > 10 ;

The HAVING clause in this statement will work because the OnHand values are being

added together, which means they can work within the group structure. The query results

would be as follows:

Price Category TotalOnHand
----- ------------ -----------
15.99 Instrumental 23
16.99 Instrumental 50
14.99 Vocal 99
15.99 Vocal 73
16.99 Vocal 45

The HAVING clause is applied to the results after they have been grouped together (in the

GROUP BY clause). For each group, the OnHand values are added together, but only groups

with TotalOnHand values over 10 are included. If the HAVING clause were not included, the

query results would include an additional row for the 14.99/Instrumental group.

For the most part, you’ll probably find that you’ll be using the HAVING clause in conjunction

with the GROUP BY clause. By using these two together, you can group together relevant data

and then filter that data to refine your search even further. The HAVING clause also has the

advantage of allowing you to use set functions such as AVG or SUM, which you cannot use in

a WHERE clause. The important points to keep in mind with the HAVING clause are that it is

the last clause in the table expression to be applied and that it is concerned with grouped data,

rather than individual rows.

SQL: A Beginner’s Guide 171

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:171

7

Q
ue

ry
in

g
SQ

L
D

at
a

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:172

Progress Check
1. You’re creating a SELECT statement and you want to group together data based on the

EmployeeTitle column. How should you create your GROUP BY clause?

2. What two operators can you use in a GROUP BY clause to return additional summary data

in a query result?

3. What clause can you add to a SELECT statement to define a search condition on groups?

CRITICAL SKILL

7.5 Use the ORDER BY Clause
to Sort Query Results
The ORDER BY clause, when it is used in a SELECT statement, is the last clause to be

processed. The ORDER BY clause takes the output from the SELECT clause and orders the

query results according to the specifications within the ORDER BY clause. The clause does

not group rows together, as they’re grouped by the GROUP BY clause, nor does it filter out

rows, as they’re filtered by the WHERE clause or the HAVING clause. You can, however,

specify whether the rows are organized in an ascending order (by using the ASC keyword)

or in descending order (by using the DESC keyword).

To use the ORDER BY clause, simply specify one or more columns and the optional

ASC or DESC keywords (one per column). If a keyword is not specified, ASC is assumed.

The rows are organized according to the column you specify. If you define more than one

column in the ORDER BY clause, the rows are organized in the order in which the columns

are specified.

Let’s take a look at a few examples to clarify how the ORDER BY clause works. (The

examples are based on the CompactDiscStock table in Figure 7-4.) In the first example,

I order the rows based on the Price column:

SELECT * FROM CompactDiscStock
WHERE Price < 16.00
ORDER BY Price ;

172 Module 7: Querying SQL Data

1. GROUP BY EmployeeTitle

2. ROLLUP or CUBE

3. HAVING

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Notice that the Price column is specified in the ORDER BY clause. Also notice that

neither the ASC nor the DESC keyword has been specified, so the ASC keyword will be

assumed. If you execute this query, you will receive the following results:

CompactDisc Category Price OnHand
------------------------------------- ------------ ----- ------
Blue Vocal 14.99 42
Court and Spark Vocal 14.99 22
That Christmas Feeling Vocal 14.99 8
Blues on the Bayou Vocal 14.99 27
Orlando Instrumental 14.99 5
Carreras Domingo Pavarotti in Concert Vocal 15.99 27
Leonard Cohen The Best Of Vocal 15.99 12
Fundamental Vocal 15.99 34
Past Light Instrumental 15.99 17
Kojiki Instrumental 15.99 6

The rows are listed according to the Price column. The values in the Price column appear in

ascending order (lowest price to highest price). Because the WHERE clause was specified,

no rows with prices above 15.99 are included in the query results.

In the next example, the SELECT statement is nearly the same as the last statement, except

that an additional column is specified in the ORDER BY clause:

SELECT * FROM CompactDiscStock
WHERE Price < 16.00
ORDER BY Price, OnHand DESC ;

In this case, the OnHand column is followed by the DESC keyword, which means that the

rows will be listed in descending order. However, because there are two columns, the rows are

first ordered by the Price column and then by the OnHand column. If you execute this SELECT

statement, you’ll receive the following results:

CompactDisc Category Price OnHand
------------------------------------- ------------ ----- ------
Blue Vocal 14.99 42
Blues on the Bayou Vocal 14.99 27
Court and Spark Vocal 14.99 22
That Christmas Feeling Vocal 14.99 8
Orlando Instrumental 14.99 5
Fundamental Vocal 15.99 34
Carreras Domingo Pavarotti in Concert Vocal 15.99 27
Past Light Instrumental 15.99 17
Leonard Cohen The Best Of Vocal 15.99 12
Kojiki Instrumental 15.99 6

SQL: A Beginner’s Guide 173

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:173

7

Q
ue

ry
in

g
SQ

L
D

at
a

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:174

174 Module 7: Querying SQL Data

As you can see, the rows are listed according to the order of the Price values, which are in

ascending order. In addition, the OnHand values are listed in descending order for each price.

So for the set of 14.99 Price values, the rows start with a value of 42 in the OnHand column

and end with a value of 5. Then we jump to the next group of Price values: 15.99. Once again,

the largest OnHand value for the 15.99 Price range is listed first and the last row contains the

smallest OnHand value for the 15.99 Price range.

Whenever you’re using the ORDER BY clause, you must be aware of the order in which

you list column names within that clause. In the preceding example, the Price column is listed

first, so the rows are ordered first by the Price column and then by the OnHand column. However,

you can reverse the column names, as shown in the following SELECT statement:

SELECT * FROM CompactDiscStock
WHERE Price < 16.00
ORDER BY OnHand, Price DESC ;

This time, the OnHand column is listed first and the Price column listed second, and

the Price column is assigned the DESC keyword. As a result, the rows will be sorted by the

OnHand column, as shown in the following query results:

CompactDisc Category Price OnHand
------------------------------------- ------------ ----- ------
Orlando Instrumental 14.99 5
Kojiki Instrumental 15.99 6
That Christmas Feeling Vocal 14.99 8
Leonard Cohen The Best Of Vocal 15.99 12
Past Light Instrumental 15.99 17

Ask the Expert
Q: How does the ORDER BY clause affect query results in embedded SQL and

SQL modules?

A: You can use the ORDER BY clause only in direct invocation and when defining

cursors. You cannot use an ORDER BY clause in other situations. This is because of

the limitations on application languages that cannot handle an unknown number of rows

in a query result. Application languages do not know what to do with this sort of

uncertainty. And because the ORDER BY clause applies only to multirow query results,

the clause is not applicable to environments that require rows to be returned one at a

time. However, cursors offer a way for application languages to deal with that uncertainty,

allowing the ORDER BY clause to be used in cursor definitions. Cursors are discussed

in more detail in Module 15.

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Court and Spark Vocal 14.99 22
Carreras Domingo Pavarotti in Concert Vocal 15.99 27
Blues on the Bayou Vocal 14.99 27
Fundamental Vocal 15.99 34
Blue Vocal 14.99 42

Notice that the OnHand values are in ascending order. The rows are then ordered according

to the Price value. However, because there are only two rows that share the same OnHand

value (27), these are the only rows that the ORDER BY column affects, with regard to the

Price column.

The ORDER BY clause is a convenient tool for organizing your query results, but remember,

it doesn’t affect which data is displayed. Only the other clauses can actually name, filter, and

group data. The ORDER BY clause is merely an organizer for what already exists.

Project 7-1 Querying the Inventory Database
For the projects in previous modules, you created a number of persistent base tables

that are capable of storing data. In this module, you learned how to create SELECT

statements that allow you to query data in base tables. As a result, this project focuses on

creating SELECT statements that query data in the tables that you created. However, before

you can actually query those tables, data must be stored within them. Unfortunately, I do not

cover inserting data until Module 8, but I do provide the statements you need to insert the data

in the Prj07.txt file, which you can download from our web site. The file contains a series of

INSERT statements—along with the SELECT statements used in this project—that allow you

to populate the tables. You can also view these statements in Appendix C.

If you look at the Prj07.txt file, you’ll see a series of INSERT statements that are grouped

together according to the tables that you created in the Inventory database. For example, the first

set of INSERT statements are for the CDLabels table, as shown in the following statements:

--Insert data into the CDLabels table
INSERT INTO CDLabels VALUES (827, 'Private Music') ;
INSERT INTO CDLabels VALUES (828, 'Reprise Records') ;
INSERT INTO CDLabels VALUES (829, 'Asylum Records') ;
INSERT INTO CDLabels VALUES (830, 'Windham Hill Records') ;
INSERT INTO CDLabels VALUES (831, 'Geffen') ;
INSERT INTO CDLabels VALUES (832, 'MCA Records') ;
INSERT INTO CDLabels VALUES (833, 'Decca Record Company') ;
INSERT INTO CDLabels VALUES (834, 'CBS Records') ;
INSERT INTO CDLabels VALUES (835, 'Capitol Records') ;
INSERT INTO CDLabels VALUES (836, 'Sarabande Records') ;
--End inserts for the CDLabels table

SQL: A Beginner’s Guide 175

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:175

7

Q
ue

ry
in

g
SQ

L
D

at
a

Qu
er

yin
gt

he
In

ve
nt

or
yD

at
ab

as
e

Project
7-1

Prj07.txt

(continued)

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:176

176 Module 7: Querying SQL Data

You will need to copy these statements into your client application and execute them. Each

INSERT statement adds one row of data to the applicable table. For example, the first INSERT

statement listed in the preceding code adds one row of data to the CDLabels table. The values

that are added are 827 (for the LabelID column) and Private Music (for the CompanyName

column). Again, I will be going into the INSERT statement in greater detail in Module 8. If you

are uncomfortable inserting this data before reading about the INSERT statement, I suggest

that you review the information in Module 8 before working on this project and then return

here to do each step. However, if you decide to do this project now, then you simply need to

execute each statement, as described in the following steps.

NOTE
As you probably noticed, each block of INSERT statements begins and ends with a line
that starts off with double hyphens (--). Double hyphens indicate that the line of text
that follows is a comment. Your SQL implementation will not process these lines. The
comments are there only to provide information to the SQL programmers so they can
better understand the code.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. Open the Prj07.txt file and copy the INSERT statements into your client application. Most

applications will allow you to execute blocks of statements, rather than having to enter the

data one row at a time. If your application supports executing multiple statements, execute

the statements one table at a time. You should enter data for each table in the order that the

data appears in the Prj07.txt file. For example, you should insert values into the CDLabels

table before the CompactDiscs table.

For each INSERT statement that you execute, you should receive a message acknowledging

that the row has been inserted into the table. After you’ve populated each table with data,

you’re ready to move on to the next step.

3. You will now query all the data in the Artists table. Enter and execute the following SQL

statement:

SELECT * FROM Artists ;

Your query results should include the ArtistID, ArtistName, and PlaceOfBirth columns.

There should be 18 rows of data in all.

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4. Now let’s create a query that specifies which columns to include in the query results.

For the next SELECT statement, you will query the CompactDisc table, but return only

the CDTitle and InStock columns. Enter and execute the following SQL statement:

SELECT CDTitle, InStock FROM CompactDiscs ;

Your query results should include only the two columns you specified in the SELECT

statement. In addition, the query should return 15 rows of data.

5. In Module 5, Project 5-1, you created the CDsInStock view. The view returns the same data

as specified in the SELECT statement in Step 4, except that it limits the results to rows with

InStock values greater than 10. You will now query that view. Enter and execute the following

SQL statement:

SELECT * FROM CDsInStock ;

Notice that your SELECT statement is the same as it would have been for a persistent base

table. You can even specify the view column names if you want. (In fact, you should if you’re

querying the view in any way other than through direct invocation.) In the last SELECT

statement, the query returned 15 rows, but this query returns only 12 rows because the

InStock values must be over 10. The nice part about the view is that it is already set up

to return exactly the information you want, without having to define the WHERE clause.

6. Now let’s query the CompactDiscs table but refine our SELECT statement by using

a WHERE clause. Enter and execute the following SQL statement:

SELECT CDTitle, InStock FROM CompactDiscs
WHERE InStock > 10 AND InStock < 30 ;

Because the WHERE clause has been added, your query results should now include

only nine rows, and each row should contain an InStock value between 10 and 30.

7. The next SELECT statement that you create groups together information in the

CompactDiscs table. Enter and execute the following SQL statement:

SELECT LabelID, SUM(InStock) AS TotalInStock
FROM CompactDiscs
GROUP BY LabelID ;

One row is returned for each different LabelID value, and for each of those values, the total

for the InStock values is returned. There are 10 rows in all. Notice that, in your query results,

the name of the column with the InStock totals is called TotalInStock. When you learn

more about joining tables, you’ll be able to group data based on more complex queries.

Joining tables is discussed in Module 11.

SQL: A Beginner’s Guide 177

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:177

7

Q
ue

ry
in

g
SQ

L
D

at
a

Qu
er

yin
gt

he
In

ve
nt

or
yD

at
ab

as
e

Project
7-1

(continued)

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:178

178 Module 7: Querying SQL Data

8. Now you’ll add a HAVING clause to the SELECT statement you just executed. Enter and

execute the following SQL statement:

SELECT LabelID, SUM(InStock) AS TotalInStock
FROM CompactDiscs
GROUP BY LabelID
HAVING SUM(InStock) > 10 ;

The HAVING clause limits the rows that are returned to those whose TotalInStock values

are greater than 10. Now only eight rows are returned.

9. You can also execute a SELECT statement that orders the data returned by your query.

Enter and execute the following SQL statement:

SELECT * FROM CompactDiscs
WHERE InStock > 10
ORDER BY CDTitle DESC ;

Your query results should be organized according to the CDTitle column, with the columns

listed in descending order. Because the WHERE clause is used, only 12 rows should have

been returned.

10. Close the client application.

Project Summary
In this project, you inserted data into the tables of the Inventory database. You then created

SELECT statements that allowed you to query data in those tables. You should feel free to

experiment with SELECT statements and try different types of queries. As you become more

comfortable with using the SELECT statement and learn more advanced techniques for querying

data, you’ll be able to write SELECT statements that access multiple tables, calculate data,

and summarize information. However, even the more advanced techniques rely on the basic

foundation that you have demonstrated in this project. Everything else builds on this.

Module 7 Mastery Check
1. Which clauses in a SELECT statement are part of the table expression?

A. SELECT

B. FROM

C. WHERE

D. ORDER BY

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 179

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:179

7

Q
ue

ry
in

g
SQ

L
D

at
a

2. In what order are the clauses of a SELECT statement applied?

3. You are writing a SELECT statement that retrieves the CDTitle column and all rows from

the Inventory table. Which SELECT statement should you use?

4. You are writing a SELECT statement that retrieves the CDTitle column and all rows from

the Inventory table. You want the column in the query results to be named CompactDisc.

Which SELECT statement should you use?

5. Which clauses in a SELECT statement are required?

A. SELECT

B. FROM

C. WHERE

D. GROUP BY

6. Which keyword should you add to the SELECT clause to ensure that each row of the query

result is unique?

A. ALL

B. ROLLUP

C. DISTINCT

D. CUBE

7. You’re creating a SELECT statement for the Inventory table and you want to ensure that

only rows with a RetailPrice value of less than $16.00 are included in the query results.

What WHERE clause should you use?

8. You’re creating a SELECT statement that includes a WHERE clause. The WHERE clause

contains two predicates. You want the condition of either one of the predicates to be met,

but it’s not necessary for both conditions to be met. What keyword should you use to

connect the two predicates?

9. Each predicate in a WHERE clause is evaluated to which of the following?

A. True

B. Not

C. False

D. Unknown

10. Which clause allows you to group together values in a specified column?

A. ROLLUP

B. HAVING

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 7
Blind Folio 7:180

C. ORDER BY

D. GROUP BY

11. Which two operators can you use in a GROUP BY clause to return additional summary

data in a query result?

A. ROLLUP

B. HAVING

C. CUBE

D. DISTINCT

12. You’re writing a SELECT statement that retrieves the Category and Price columns from the

CompactDiscStock table. You want to group data together first by the Category column and

then by the Price column. Which SELECT statement should you use?

13. You’re writing a SELECT statement that retrieves the Category and Price columns from

the CompactDiscStock table. You want to group together data first by the Category column

and then by the Price column. You then want to filter out any groups that have a Price value

over 15.99. Which SELECT statement should you use?

14. You’re creating a SELECT statement that includes a SELECT clause, FROM clause, WHERE

clause, GROUP BY clause, and HAVING clause. From which clause will the HAVING clause

receive output?

A. SELECT

B. FROM

C. WHERE

D. GROUP BY

15. How does the HAVING clause differ from the WHERE clause?

16. From which clause does the ORDER BY clause receive output?

17. Which keyword should you add to an ORDER BY clause to sort data in descending order?

180 Module 7: Querying SQL Data

P:\010Comp\Begin8\885-7\ch07.vp
Monday, April 07, 2003 10:46:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:181

Module8
Modifying SQL Data

CRITICAL SKILLS
8.1 Insert SQL Data

8.2 Update SQL Data

8.3 Delete SQL Data

181

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:34 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:182

One of the primary functions of any database is to be able to manipulate the data stored

within its tables. Designated users must be able to insert, update, and delete data as

necessary in order to keep the database current and ensure that only the appropriate data is

being stored. SQL provides three statements for basic data manipulation: INSERT, UPDATE,

and DELETE. In this module, I will examine each of these statements and demonstrate how

they can be used in an SQL environment to modify data in the database.

CRITICAL SKILL

8.1 Insert SQL Data
In Module 7, Project 7-1, I introduce you briefly to the INSERT statement. As you can see

from this project, the INSERT statement allows you to add data to the various tables in your

database. The syntax for a basic INSERT statement is relatively straightforward:

INSERT INTO <table name>

[(<column name> [{ , <column name> } . . .])]

VALUES (<value> [{ , <value> } . . .])

Only the first and last lines in the syntax are required. The second line is optional. Both the

first and second lines are part of the INSERT INTO clause. In this clause, you must identify

the name of the table in which you will be inserting data. The table name follows the INSERT

INTO keywords. You then have the option of identifying the column names in the table that

will be receiving the data. This is what the second line in the syntax is for. You can specify one

or more columns, all of which must be enclosed in parentheses. If you specify more than one

column, they must be separated by a comma. If you do specify column names, any columns

within the target table that are not specified must support null values or must be defined with

a default value; otherwise, the database will not know what values to insert into those columns.

In the third line of syntax, which is the VALUES clause, you must specify one or more

values that will be inserted into the table. The values must be enclosed in parentheses and, if

more than one is specified, must be separated by a comma. In addition, the values must meet

the following requirements:

● If the column names are not specified in the INSERT INTO clause, then there must be one

value for each column in the table and the values must be in the same order as they are

defined in the table.

● If the column names are specified in the INSERT INTO clause, then there must be exactly

one value per specified column and those values must be in the same order in which they

are defined in the INSERT INTO clause. However, the column names and values do not

have to be in the same order as the columns in the table definition.

● Each value with a character string data type must be enclosed in single quotes.

182 Module 8: Modifying SQL Data

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
Many SQL programmers prefer to specify the column names in the INSERT INTO clause,
whether or not it’s necessary to do so, because it provides a method for documenting
which columns are supposed to be receiving data. This is especially useful if the database
or applications accessing the database should need to change in any way.

Now let’s take a look at some examples of the INSERT statement. For these examples,

I will use the CDInventory table. The table is based on the following table definition:

CREATE TABLE CDInventory
(CDName VARCHAR (60) NOT NULL,
MusicType VARCHAR (15),
Publisher VARCHAR (50) DEFAULT 'Independent' NOT NULL,
InStock INT NOT NULL) ;

The first example I’ll show you inserts values into every column in the CDInventory table:

INSERT INTO CDInventory
VALUES ('Patsy Cline: 12 Greatest Hits', 'Country', 'MCA Records', 32) ;

Notice that the INSERT INTO clause includes only the name of the CDInventory table, but

does not specify any columns. In the VALUES clause, four values have been specified. The

values are separated by commas, and the values with character string data types are enclosed

in single quotes. If you refer back to the table definition, you’ll see that the values specified in

the VALUES clause are in the same order as the column definitions.

When you execute the INSERT statement shown in the example, the data is added to the

CDInventory table, as shown in Figure 8-1.

If you had tried to execute an INSERT statement like the last example, but included only

three values, rather than four, you would have received an error. For example, you would not

be able to execute the following statement:

INSERT INTO CDInventory
VALUES ('Patsy Cline: 12 Greatest Hits', 'MCA Records', 32) ;

In this example, only three values have been specified. In this case, the missing value is for the

MusicType column. Even though this column accepts null values, the SQL implementation

has no way of knowing which value is being omitted, so an error is returned.

SQL: A Beginner’s Guide 183

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:183

8

M
od

ify
in

g
SQ

L
D

at
a

CDName:
VARCHAR (60)

Patsy Cline: 12 Greatest Hits Country MCA Records

InStock:
INT

32

MusicType:
VARCHAR (15)

Publisher:
VARCHAR (50)

Figure 8-1 The CDInventory table with the new row of data

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:184

Instead of leaving the value out of the VALUES clause, you can specify a null value, as

shown in the following example:

INSERT INTO CDInventory
VALUES ('Out Of Africa', null, 'MCA Records', 29) ;

If you execute the INSERT statement, your table will now include an additional row. Figure 8-2

shows what the table would look like, assuming that the two INSERT statements have been

executed.

The null value was inserted into the MusicType column, and the other values were inserted

into the appropriate columns. If a null value were not permitted in the MusicType column, you

would have had to specify a value.

NOTE
Figure 8-2 shows the new row being inserted after the existing row in the table. However,
the row can be inserted at any place in a table, depending on how the SQL implementation
inserts rows. The SQL standard does not specify where a row should be inserted in a table.

Rather than having to insert a value for every column when you insert a row, you can

specify which columns receive values. For example, you can specify values for the CDName,

Publisher, and InStock columns of the CDInventory table, as shown in the following example:

INSERT INTO CDInventory (CDName, Publisher, InStock)
VALUES ('Fundamental', 'Capitol Records', 34) ;

In this case, one value has been specified for each of the columns identified in the INSERT

INTO clause, and the values are specified in the same order as the columns in the INSERT INTO

clause. Notice that the INSERT statement doesn’t include the MusicType column in the INSERT

INTO clause or in the VALUES clause. You can omit this column because null values are

permitted in that column. If you were to execute this statement, your CDInventory table would

now have a third row (shown in Figure 8-3).

184 Module 8: Modifying SQL Data

CDName:
VARCHAR (60)

Patsy Cline: 12 Greatest Hits Country MCA Records

InStock:
INT

32

MusicType:
VARCHAR (15)

Publisher:
VARCHAR (50)

Out of Africa NULL MCA Records 29

Figure 8-2 The CDInventory table with two rows of data

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Once again, the null value is automatically added to the MusicType column. If a default

value had been defined for the column, that value would have been added. For example, the

following INSERT statement omits the Publisher column, rather than the MusicType column:

INSERT INTO CDInventory (CDName, MusicType, InStock)
VALUES ('Orlando', 'Soundtrack', 5) ;

When the row is added to the CDInventory table, the default value (Independent) is added to

the Publisher column, as shown in Figure 8-4.

If you try to execute an INSERT statement that omits a column that does not permit null

values or is not defined with a default value, you will receive an error.

NOTE
The values that you specify in the VALUES clause must conform to all restrictions placed
on a table. This means that the values must conform to the data types or domains
associated with a column. In addition, the values are limited by any constraints defined
on the table. For example, a foreign key constraint would prevent you from adding any
values that violate the constraint, or a check constraint may limit the range of values that
can be inserted into the table. Be sure that you’re familiar with the restrictions placed on
a table before trying to insert data into that table. You can learn more about data types
in Module 3. You can learn more about domains and constraints in Module 4.

SQL: A Beginner’s Guide 185

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:185

8

M
od

ify
in

g
SQ

L
D

at
a

CDName:
VARCHAR (60)

Patsy Cline: 12 Greatest Hits Country MCA Records

InStock:
INT

32

MusicType:
VARCHAR (15)

Publisher:
VARCHAR (50)

Out of Africa NULL MCA Records 29

Fundamental NULL Capitol Records 34

Figure 8-3 The CDInventory table with three rows of data

CDName:
VARCHAR (60)

Patsy Cline: 12 Greatest Hits Country MCA Records

InStock:
INT

32

MusicType:
VARCHAR (15)

Publisher:
VARCHAR (50)

Out of Africa NULL MCA Records 29

Fundamental NULL Capitol Records 34

Orlando Soundtrack Independent 5

Figure 8-4 The CDInventory table with four rows of data

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

You can, of course, specify all columns in the INSERT INTO clause. If you do this, you

must be sure to specify the same number of values, in the same order in which the columns

are specified. The following INSERT statement inserts values into all columns of the

CDInventory table:

INSERT INTO CDInventory (CDName, MusicType, Publisher, InStock)
VALUES ('Court and Spark', 'Pop', 'Asylum Records', 22) ;

When you execute this statement, a row is added to the CDInventory table, with a value for

each row, as shown in Figure 8-5. If you were to omit one of the values from the VALUES

clause—even if null values were allowed for the related column—you would receive an error

when you executed that statement.

Inserting Values from a SELECT Statement
Earlier in this module, at the beginning of the “Insert SQL Data” section, I say that the VALUES

clause is mandatory and that you need to specify at least one value. There is, however, an

alternative to the VALUES clause. You can use a SELECT statement to specify the values that

you want to insert into a table. The key to using a SELECT statement, just as with using the

VALUES clause, is to make sure that the number of values returned by the SELECT statement

matches the required number of values and that those values conform to any restriction on the

target table. Let’s look at an example.

Suppose that, in addition to the CDInventory table I’ve been using in previous examples,

your database includes a second table named CDInventory2, which includes two columns, as

shown in the following table definition:

CREATE TABLE CDInventory2
(CDName2 VARCHAR (60) NOT NULL,
InStock2 INT NOT NULL) ;

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:186

186 Module 8: Modifying SQL Data

CDName:
VARCHAR (60)

Patsy Cline: 12 Greatest Hits Country MCA Records

InStock:
INT

32

MusicType:
VARCHAR (15)

Publisher:
VARCHAR (50)

Out of Africa NULL MCA Records 29

Fundamental NULL Capitol Records 34

Orlando Soundtrack Independent 5

Court and Spark Pop Asylum Records 22

Figure 8-5 The CDInventory table with five rows of data

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 187

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:187

8

M
od

ify
in

g
SQ

L
D

at
a

The CDName2 column in the CDInventory2 table has the same data type as the CDName

column in the CDInventory table, and the InStock2 column in the CDInventory2 table has the

same data type as the InStock column in the CDInventory table. As a result, values taken from

the two columns in one table can be inserted into the two columns in the second table.

NOTE
A column in one table does not have to be the same data type as a column in another
table for values to be copied from one to the other, as long as the values inserted into
the target table conform to the data restrictions of that table.

By using an INSERT statement, you can copy values from the CDInventory table to the

CDInventory2 table. The following INSERT statement includes a SELECT statement that

queries the CDInventory table:

INSERT INTO CDInventory2
SELECT CDName, InStock FROM CDInventory ;

As you can see, no columns are specified in the INSERT INTO clause; as a result,

values will be inserted into both columns in the CDInventory2 table. In the second line of the

statement, a SELECT statement is used to pull values from the CDName and InStock columns

of the CDInventory table. The values will then be inserted into their respective columns in the

CDInventory2 table, as shown in Figure 8-6.

Notice that the CDInventory2 table contains the same five rows of data that are shown in

Figure 8-5, only the CDInventory2 table contains only two columns: CDName2 and InStock2.

Like any other SELECT statement, the SELECT statement that you use in an INSERT

statement can contain a WHERE clause. In the following INSERT statement, the SELECT

statement contains a WHERE clause that limits the InStock values to an amount greater than 10:

INSERT INTO CDInventory2
SELECT CDName, InStock FROM CDInventory
WHERE InStock > 10 ;

CDName2:
VARCHAR (60)

Patsy Cline: 12 Greatest Hits

InStock2:
INT

32

Out of Africa 29

Fundamental 34

Orlando 5

Court and Spark 22

Figure 8-6 The CDInventory2 table with five rows of data

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:188

If you were to execute this statement, only four rows would be added to the CDInventory2

table, rather than the five rows we saw in the previous example. The WHERE clause in this

case works just like the WHERE clause in any SELECT statement. As a result, any row with

an InStock value that is not greater than 10 is eliminated from the query results. Those new

filtered results are then inserted into the CDInventory2 table.

Progress Check
1. What two clauses are mandatory in an INSERT statement?

2. You’re creating an INSERT statement that inserts data into a table that has four columns.

You do not specify the column names in your INSERT INTO clause. How many values

must you include in your VALUES clause?

3. You’re creating an INSERT statement for the CDInventory table, which includes four

columns. Your INSERT INTO clause includes only three column names. How must the

fourth column be configured to support this INSERT statement?

4. What type of statement can you use in place of a VALUES clause when inserting data

into a table?

CRITICAL SKILL

8.2 Update SQL Data
As its name implies, the UPDATE statement allows you to update data in your SQL database.

With the UPDATE statement, you can modify data in one or more rows for one or more columns.

The syntax for the UPDATE statement can be shown as follows:

UPDATE <table name>

SET <set clause expression> [{ , <set clause expression> } . . .]

[WHERE <search condition>]

As you can see, the UPDATE clause and the SET clause are required, and the WHERE

clause is optional. In the UPDATE clause, you must specify the name of the table that you’re

updating. In the SET clause, you must specify one or more set clause expressions, which I

188 Module 8: Modifying SQL Data

1. INSERT INTO and VALUES

2. Four

3. The omitted column must support null values or must be defined with a default value.

4. SELECT

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 189

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:189

8

M
od

ify
in

g
SQ

L
D

at
a

discuss in more detail later in this module. In the WHERE clause, as with the WHERE clause

in a SELECT statement (see Module 7), you must specify a search condition. The WHERE

clause works here in much the same way it does in the SELECT statement. You specify a

condition or set of conditions that act as a filter for the rows that are updated. Only the rows

that meet these conditions are updated. In other words, only rows that evaluate to true are

updated.

Now let’s return to the SET clause. As you can see, the clause includes the <set clause

expression> placeholder. You must specify one or more set clause expressions. If you specify

more than one, you must separate them with a comma. The syntax of the <set clause expression>

placeholder can be broken down as follows:

<column name> = <value expression>

Basically, you must specify a column name (from the table that you’re updating) and

provide a value that the value in the column should equal. For example, suppose you want a

value in the InStock column to be changed to 37. (It doesn’t matter what the current value is.)

The set clause expression would be as follows: InStock = 37. In this case, the value expression

is 37; however, the value expression can be more complicated than that. For example, you can

base the new value on an old value: InStock = (InStock + 1). In this case, the value expression

is InStock + 1, which adds the current value in the InStock column to 1 to give you a new value.

If the original value was 37, the new value will be 38.

Now that we’ve taken a look at the various parts of the UPDATE statement, let’s put it all

together in some examples. The examples we’ll be looking at are based on the CDInventory

table, which is shown in Figure 8-5.

In the first example, I use the UPDATE statement to change the values of the InStock

column to 27, as shown in the following SQL statement:

UPDATE CDInventory SET InStock = 27 ;

This statement does exactly what you might expect: changes every row in the CDInventory

table so that the InStock column for each row contains a value of 27. This is fine if that’s what

you want, but it will probably turn out to be unlikely that you’ll want to change every row in a

table so that one of its values is the same in every row. More likely than not, you’ll want to

qualify the update by using a WHERE clause.

In the next example, I modify the previous UPDATE statement to include a WHERE clause:

UPDATE CDInventory SET InStock = 27
WHERE CDName = 'Out of Africa' ;

The UPDATE statement still changes the InStock column to a value of 27, but it does so only

for the rows that meet the search condition in the WHERE clause. In this case, only one row

meets that condition: Out of Africa.

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:190

190 Module 8: Modifying SQL Data

You might find that you want to change a value based on a value that already exists, such

as the amount of inventory in stock. For example, you can add 2 to the value in the InStock

column:

UPDATE CDInventory SET InStock = (InStock + 2)
WHERE CDName = 'Out of Africa' ;

If the Out of Africa row contains the value 27 in the InStock column, and you execute this

UPDATE statement, the new value will be 29. If you execute this statement without the

WHERE clause, 2 will be added to the InStock value for every row in the table.

The WHERE clause also allows you to specify more than one predicate, as you can do

with a WHERE clause in a SELECT statement. In the following example, I subtract 2 from

the InStock value for any row that contains a MusicType value of Country and an InStock

value greater than 30:

UPDATE CDInventory SET InStock = (InStock - 2)
WHERE MusicType = 'Country' AND InStock > 30 ;

Only one row (Patsy Cline: 12 Greatest Hits) conforms to the search conditions specified

in the WHERE clause. The InStock value for that row has been changed from 32 to 30.

You can also specify multiple expressions in the SET clause. In other words, you can change

the values of more than one column at a time. For example, suppose you want to change the

Publisher value and InStock value for the Orlando row. Your UPDATE statement might look

something like the following:

UPDATE CDInventory
SET Publisher = 'Sarabande Records', InStock = (InStock * 2)
WHERE CDName = 'Orlando' ;

Notice that the two expressions in the SET clause are separated by a comma. When you

execute this statement, the Publisher value is changed from Independent to Sarabande Records,

and the InStock value is changed from 5 to 10. (The 5 value is multiplied by 2.)

One thing you cannot do, however, is change the value for the same column for two

different rows if you’re trying to insert different values in those rows. Let’s look at an example

to make this clearer. Suppose you want to update the MusicType value for the Out of Africa

row and the Fundamental row, but you want to update these rows with different values. The

Out of Africa row should have a MusicType value of Soundtrack, and the Fundamental row

should have a MusicType value of Blues. As a result, you might try to execute a statement

similar to the following:

UPDATE CDInventory
SET MusicType = 'Soundtrack', MusicType = 'Blues'
WHERE CDName = 'Out of Africa' OR CDName = 'Fundamental' ;

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 191

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:191

8

M
od

ify
in

g
SQ

L
D

at
a

If you tried to execute this statement, the SQL implementation would not know which

MusicType value to put into which row, and you would receive an error. To handle a situation

like this, you would need to create two separate UPDATE statements:

UPDATE CDInventory SET MusicType = 'Soundtrack'
WHERE CDName = 'Orlando' ;
UPDATE CDInventory SET MusicType = 'Blues'
WHERE CDName = 'Fundamental' ;

Updating Values from a SELECT Statement
In the “Inserting Values from a SELECT Statement” section earlier in this module, I told you

that you can use a SELECT statement in place of the VALUES clause. You can also use a

SELECT statement in the SET clause of the UPDATE statement. The SELECT statement

returns the value that is defined in the <value expression> portion of the set clause expression.

In other words, the SELECT statement is added to the right of the equal sign.

Let’s take a look at a few examples to see how this works. The following examples are

based on the original data in the CDInventory table (shown in Figure 8-5) and the CDInventory2

table (shown in Figure 8-6). Suppose you want to update data in the CDInventory2 table by

using values from the CDInventory table. You might create an UPDATE statement that is

similar to the following:

UPDATE CDInventory2
SET InStock2 = (SELECT AVG(InStock) FROM CDInventory) ;

The SELECT statement calculates the average of the InStock values in the CDInventory

table, which is 24, so the set clause expression can be interpreted as follows: InStock = 24. As

a result, all InStock2 values in the CDInventory2 table are set to 24. Of course, you probably

don’t want all your InStock2 values to be the same, so you can limit which rows are updated

by adding a WHERE clause to the UPDATE statement:

UPDATE CDInventory2
SET InStock2 = (SELECT AVG(InStock) FROM CDInventory)
WHERE CDName2 = 'Orlando' ;

Now only the Orlando row will be updated and the InStock value will be changed to 24.

You can even add a WHERE clause to the SELECT statement, as shown in the following

example:

UPDATE CDInventory2
SET InStock2 =
(SELECT InStock FROM CDInventory WHERE CDName = 'Orlando')

WHERE CDName2 = 'Orlando' ;

In this case, the InStock value of 5 is taken directly from the Orlando row of the CDInventory

and used as the <value expression> portion of the set clause expression. As a result, the set

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:192

192 Module 8: Modifying SQL Data

clause expression can be interpreted as the following: InStock2 = 5. (Of course, the value in

the CDInventory won’t change because it is already 5, but if it were something other than 5,

it would have been updated to 5.)

You can add one more layer of complexity to the UPDATE statement by modifying the

SET clause even further. For example, suppose you want to increase the value by 2 before

inserting it into the InStock2 column. To do so, you can change the value expression to the

following:

UPDATE CDInventory2
SET InStock2 =
(SELECT InStock FROM CDInventory WHERE CDName = 'Orlando') + 2

WHERE CDName2 = 'Orlando' ;

Again, the SELECT clause pulls the value of 5 from the InStock column of the CDInventory

table, but this time, 2 is added to the value returned by the SELECT statement, resulting in a

total of 7. As a result, the new set clause expression can be represented as follows: InStock2 =

(5) + 2. If you execute this statement, the InStock2 value will be changed to 7 in the Orlando

row of the CDInventory2 table.

By combining the SET clause with the WHERE clause, you can create UPDATE statements

that can calculate very specific values that can be used to modify any number of rows and

columns that you need to update. However, as with the INSERT statement, any values that

you modify must conform to the restrictions of that table. In other words, the new values must

abide by applicable data types, domains, and constraints.

Ask the Expert
Q: When you’ve discussed the INSERT statement, your examples showed only

one statement at a time. What if you want to execute more than one INSERT

statement at a time?

A: Many applications allow you to execute more than one INSERT statement at a time.

You probably saw an example of that in Module 7, Project 7-1, in which you inserted

a number of values in the tables in the Inventory database. However, if your application

doesn’t allow you to insert multiple INSERT statements, you might want to try a different

approach. You can include each set of values in the VALUES clause, separated by a

comma. For example, suppose you want to insert data into the CDInventory table that

we’ve been using for the examples. Your INSERT statements might look something

like the following:

INSERT INTO CDInventory VALUES
('Patsy Cline: 12 Greatest Hits', 'Country', 'MCA Records', 32),
('Out Of Africa', 'Soundtrack', 'MCA Records', 29),

(continued)

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 193

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:193

8

M
od

ify
in

g
SQ

L
D

at
a

Progress Check
1. Which clauses in an UPDATE statement are mandatory?

2. What clause can you add to an UPDATE statement to specify a condition that must be met

in order for a row to be updated?

3. What are the components of a set clause expression?

4. What type of statement can you use as a value expression to query data from a table?

('Fundamental', 'Blues', 'Capitol Records', 34),
('Orlando', 'Soundtrack', 'Independent', 5),
('Court and Spark', 'Pop', 'Asylum Records', 22) ;

Notice that there are five sets of values, each separated by a comma. If you executed

this statement, five rows would be added to the CDInventory table. Note that not all

implementations support this method for adding values. However, if you’re using the

Ocelot RDBMS, you can use this method. (Another method that you can use is to enclose

the statements in a BEGIN...END block, which I discuss in Module 13.)

Q: So far in this module, you have inserted and updated data in a table. Can you

insert and update data through a view?

A: Yes, you can insert or update data through a view as long as the view is considered

updateable. This means that data within the view cannot be summarized, grouped

together, or automatically eliminated. In addition, at least one column in the source

table must be updateable. Also, each column in the view must be traceable to exactly

one source column in one table, and each row must be traceable to exactly one source

row in one table. In other words, the view cannot use functions such as AVG or SUM

because there is no way of knowing exactly what rows should be updated and what

values to update. (See Module 5 for a more detailed discussion on updateable views.)

However, if a view is updateable, then you simply treat it as you would a persistent

base table. Instead of a table name, specify the view name in the UPDATE or INSERT

INTO clause. In addition, if the view column names are different from the table column

names, use the view column names in your UPDATE or INSERT statements.

1. UPDATE and SET

2. WHERE

3. <column name> = <value expression>

4. SELECT

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:194

194 Module 8: Modifying SQL Data

CRITICAL SKILL

8.3 Delete SQL Data
Of all the data modification statements supported by SQL, the DELETE statement is probably

the simplest. It contains only two clauses, only one of which is mandatory. The following

syntax shows you just how basic the DELETE statement is:

DELETE FROM <table name>

[WHERE <search condition>]

As you can see, the DELETE FROM clause requires that you specify the name of the table

from which you are deleting rows. The WHERE clause, which is similar to the WHERE clause

in a SELECT statement and an UPDATE statement, requires that you specify a search condition.

If you don’t include a WHERE clause in your DELETE statement, all rows are deleted from

the specified table.

NOTE
The DELETE statement deletes only data from a table; it does not delete the table
definition itself. To delete the data and the table definition, use the DROP TABLE
statement. For more information about the DROP TABLE statement, see Module 3.

Notice in the DELETE statement that no column names are specified. This is because you

cannot delete individual column values from a table. You can delete only rows. If you need to

delete a specific column value, you should use an UPDATE statement to set the value to null.

But you can do this only if null values are supported for that column.

Now let’s take a look at a couple of examples of the DELETE statement. The first example

deletes data from the CDInventory table, shown in Figure 8-5:

DELETE FROM CDInventory ;

That’s all there is to it. Of course, you would use this statement only if you want to delete

all data from the CDInventory. Although you might run into some occasions where it’s necessary

to delete every row from a table, it is more likely that you’ll want to use the WHERE clause to

specify which rows to delete. Let’s modify the statement we just looked at to delete only rows

where the MusicTypes values are Country:

DELETE FROM CDInventory
WHERE MusicType = 'Country' ;

When you execute this statement, all rows whose MusicType value is Country will be deleted

from the CDInventory table, which in this case, is the Patsy Cline: 12 Greatest Hits row.

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Now let’s modify this DELETE statement a little further by including two predicates in the

WHERE clause:

DELETE FROM CDInventory
WHERE MusicType = 'Pop' OR Publisher = 'Independent' ;

This statement will delete any rows in the CDInventory table that include a MusicType value

of Pop or a Publisher value of Independent, which means that the Court and Spark row and

Orlando row will be deleted.

As you can see, the number of rows that are deleted from any table depends on the search

conditions defined within the WHERE clause. When a WHERE clause is not specified, all

rows evaluate to true and are deleted from the table. The WHERE clause allows you to specify

exactly which rows should be deleted from the table.

Project 8-1 Modifying SQL Data
In this project, you will use the data modification statements discussed in this

module to modify data in the Inventory database. You will use the INSERT

statement to add data, the UPDATE statement to modify data, and the DELETE statement

to remove the data from the database. Because you will be working only with data, you will

not affect the underlying structure of the tables. You can download the Prj08.txt file, which

contains the SQL statements used in this project.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. First you will add a new company to the CDLabels table. The company is DRG Records

and it will have a LabelID value of 837. Enter and execute the following SQL statement:

INSERT INTO CDLabels VALUES (837, 'DRG Records') ;

One row will be added to the CDLabels table.

3. Now let’s add a new CD to the CompactDiscs table. The CD is named Ann Hampton

Callaway, which has a CompactDiscID value of 116. There are 14 of these CDs in stock

and the LabelID value should be 836. (This is not the correct LabelID value, but we will

use it here for the purposes of this project.) Enter and execute the following SQL statement:

INSERT INTO CompactDiscs
VALUES (116, 'Ann Hampton Callaway', 836, 14) ;

One row will be added to the CompactDiscs table. The LabelID value of 836 represents

Sarabande Records.

SQL: A Beginner’s Guide 195

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:195

8

M
od

ify
in

g
SQ

L
D

at
a

Mo
dif

yin
gS

QL
Da

ta

Project
8-1

Prj08.txt

(continued)

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:196

196 Module 8: Modifying SQL Data

4. Now let’s insert another row into the CompactDiscs table; only this time, your INSERT

statement will specify the column names of the target table. You will insert a CD named

Rhythm Country and Blues. The new row will contain a CompactDiscID value of 117, a

LabelID value of 832 (MCA Records), and an InStock value of 21. Enter and execute the

following SQL statement:

INSERT INTO CompactDiscs
VALUES (117, 'Rhythm Country and Blues', 832, 21) ;

One row will be inserted into the CompactDiscs table.

5. After you enter the Rhythm Country and Blues row, you realize that the InStock value is

incorrect, and you want to update that value to 25. Enter and execute the following SQL

statement:

UPDATE CompactDiscs SET InStock = 25
WHERE CompactDiscID = 117 ;

The InStock value of the Rhythm Country and Blues row will be changed to 25.

6. You now realize that you entered the wrong LabelID value for the Ann Hampton Callaway

row. However, you want to be able to modify the existing value by specifying the company

name rather than the LabelID value. The company name is DRG Records, which you added

to the CDLabels table in Step 2. Enter and execute the following SQL statement:

UPDATE CompactDiscs
SET LabelID =
(SELECT LabelID FROM CDLabels WHERE CompanyName = 'DRG Records')

WHERE CompactDiscID = 116 ;

In this statement, you used a SELECT statement to pull the LabelID value from the CDLabels

table. The statement returned a value of 837. The value 837 was then used as the LabelID

value for the CompactDiscs table. Note that you would not have been able to enter the value

of 837 into the LabelID column of the CompactDiscs table if it did not already exist in the

CDLabels table. Not only is this because a SELECT statement was used to pull that value,

but also because the LabelID column in the CompactDiscs table is a foreign key that

references the CDLabels table. As a result, the value must exist in the referenced table

before it can be added to the referencing table. See Module 4 for more information about

foreign keys.

7. Now let’s take a look at the data that you’ve entered and updated. Enter and execute the

following SQL statement:

SELECT * FROM CompactDiscs
WHERE CompactDiscID = 116 OR CompactDiscID = 117 ;

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The SELECT statement requests data from all columns in the CompactDiscs table, but only

for those rows that have a CompactDiscID value of 116 or 117. Your query results should

include two rows. Verify that the information in those rows is correct. The Ann Hampton

Callaway row should have a LabelID value of 837 and an InStock value of 14, and the

Rhythm Country and Blues row should have a LabelID value of 832 and an InStock

value of 25.

8. Now let’s delete the two rows you added to the CompactDiscs table. Enter and execute the

following SQL statement:

DELETE FROM CompactDiscs
WHERE CompactDiscID = 116 OR CompactDiscID = 117 ;

The Ann Hampton Callaway row and the Rhythm Country and Blues row should have been

deleted from the CompactDiscs table.

9. Next delete the row you added to the CDLabels table. Enter and execute the following SQL

statement:

DELETE FROM CDLabels WHERE LabelID = 837 ;

The DRG Records row should have been deleted from the CDLabels table.

NOTE
If you had tried to delete this row before deleting the Ann Hampton Callaway row in
the CompactDiscs table, you would have received an error because the LabelID value
in CompactDiscs references the DRG Records row in CDLabels. The Ann Hampton
Callaway row had to be deleted first, or the LabelID value had to be changed to
another value that conformed to the foreign key constraint.

10. Close the client application.

Project Summary
In this project, you added one row to the LabelID table and two rows to the CompactDiscs

table. You then updated the two rows in the CompactDiscs table. After that, you deleted all the

rows that you created. By the time you finished the project, the Inventory database should have

been the same as when you began. As you can see, modifying data within tables is a very

straightforward process; however, individual data modification statements can become far more

complex. When you learn more advanced techniques for querying data, you’ll be able to refine

your statements to an even greater degree, providing you with more flexibility in inserting,

updating, and deleting data.

SQL: A Beginner’s Guide 197

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:197

8

M
od

ify
in

g
SQ

L
D

at
a

Mo
dif

yin
gS

QL
Da

ta

Project
8-1

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:198

198 Module 8: Modifying SQL Data

Module 8 Mastery Check
1. Which SQL statement should you use to add data to a table?

A. SELECT

B. INSERT

C. UPDATE

D. DELETE

2. In which clause in the INSERT statement do you identify the table that will receive the

new data?

3. You create the following INSERT statement to add data to the PerformingArtists table:

INSERT INTO PerformingArtists VALUES (12, 'Frank Sinatra') ;

The PerformingArtists table includes three columns. What will happen when you try to

execute this statement?

4. What information must you specify in the VALUES clause of an INSERT statement?

5. What requirements must be met by the values in a VALUES clause?

6. You’re creating an INSERT statement to insert data into the ArtistTypes table. The table

includes only two columns: ArtID and TypeName. You want to insert one row that includes

the ArtID value of 27 and the TypeName value of Gospel. Which SQL statement should

you use?

7. You’re creating an INSERT statement that inserts values taken from another table. Which

type of statement or clause can you use in place of the VALUES clause to pull data from

that other table?

A. UPDATE

B. SET

C. SELECT

D. WHERE

8. Which statement should you use to modify existing data in one or more rows in a table?

A. SELECT

B. INSERT

C. UPDATE

D. DELETE

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

9. What is the purpose of the WHERE clause in an UPDATE statement?

10. You’re creating an UPDATE statement to update data in the PerformingArtists table. You

want to update the ArtID value in the row that contains the PerfArtID value of 139. The

new ArtID value is 27. Which SQL statement should you use?

11. You’re creating an UPDATE statement to update data in the PerformingArtists table. You

want to update the ArtID value of every row to 27. Which SQL statement should you use?

12. You’re updating two columns in the CDInventory table. You want to change the Publisher

value to MCA Records and you want to double the InStock value. Which SET clause

should you use?

13. You’re creating an UPDATE statement that includes a SET clause with one value expression.

You want the value expression to pull a value from another table in the database. Which

statement or clause can you use as a value expression to choose data from another table?

A. SELECT

B. WHERE

C. UPDATE

D. INSERT

14. Which clause in a DELETE statement is required?

15. Which statement or clause do you use in a DELETE statement to specify which rows are

deleted from a table?

A. SELECT

B. WHERE

C. UPDATE

D. INSERT

SQL: A Beginner’s Guide 199

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 8
Blind Folio 8:199

8

M
od

ify
in

g
SQ

L
D

at
a

P:\010Comp\Begin8\885-7\ch08.vp
Monday, April 07, 2003 11:15:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:201

Module9
Using Predicates

CRITICAL SKILLS
9.1 Compare SQL Data

9.2 Return Null Values

9.3 Return Similar Values

9.4 Reference Additional Sources of Data

9.5 Quantify Comparison Predicates

201

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:202

Up to this point in the book, I have presented a great deal of information about various

aspects of database objects and the data that they store. In relation to this, I discussed

querying data (Module 7) and modifying data (Module 8). Now I want to take a step back

and focus on one aspect of these discussions: the WHERE clause. The WHERE clause, as you

might recall, allows you to specify a search condition that filters out those rows that you do not

want returned by a SELECT statement or modified by an UPDATE or DELETE statement. The

search condition includes one or more predicates that each state a fact about any row that is to

be returned or modified. SQL supports a number of types of predicates, all of which allow you

to test whether a condition is true, false, or unknown. In this module, I focus on those predicates

that are most commonly used by SQL programmers, and I provide examples of how they’re

used to view and modify data in an SQL database.

CRITICAL SKILL

9.1 Compare SQL Data
The first types of predicates that I plan to discuss are those that compare data. These predicates,

like any predicate, are included in the WHERE clause. You can include a WHERE clause in

a SELECT, UPDATE, or DELETE statement, and in each case, the clause can contain one or

more comparison predicates.

Each predicate in the WHERE clause (whether a comparison predicate or another type)

is evaluated on an individual basis to determine whether it meets the condition defined by that

predicate. After the predicates are evaluated, the WHERE clause is evaluated as a whole. The

clause must evaluate to true in order for a row to be included in a search result, be updated, or

be deleted. If the clause evaluates to false or unknown, the row is not included or is not modified.

For a complete discussion of how predicates and the WHERE clause are evaluated, see Module 7.

A comparison predicate is a type of predicate that compares the values in a specified

column to a specified value. A comparison operator is used to compare those values. You have

already seen a number of comparison operators (and, subsequently, comparison predicates)

throughout the book. Table 9-1 lists the six comparison operators supported by SQL and

provides an example of each one.

You no doubt recognize several of these operators, and even those you don’t recognize

should be fairly self-explanatory. But let’s take a quick look at the examples in Table 9-1 to

make sure you understand how a comparison predicate works. In the first row in the table (the

Equals row), the example predicate is InStock = 47. If this were to appear in a WHERE clause,

it would look like the following:

WHERE InStock = 47

InStock is the name of the column in the table identified in the statement that contains the

WHERE clause. The equals sign (=) is the comparison operator that is used to compare the

202 Module 9: Using Predicates

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

values in the InStock column to the value to the right of the equals sign, which in this case is 47.

Therefore, for a row to be evaluated to true, the InStock value for that row must be 47. All six

comparison operators work in the same way. In each case, the WHERE clause must evaluate

to true in order for the row to be returned in the query results or to be modified.

NOTE
As you learned in Module 7, you can combine predicates by using the AND keyword
or the OR keyword to join together two or more predicates in a WHERE clause. You
can also use the NOT keyword to create an inverse condition for a particular predicate.
Remember, no matter how many predicates are included in the WHERE clause, the
clause must still evaluate to true.

Now that you have an overview of the six types of comparison predicates, let’s take a look

at some examples. These examples are based on Figure 9-1, which shows the data stored in the

CDsOnHand table.

In the first example we’ll look at, the WHERE clause uses an equals operator to compare

the values in the CDTitle column with one of the CD titles:

SELECT CDTitle, Copyright FROM CDsOnHand
WHERE CDTitle = 'Past Light' ;

This statement will return one row with only two values (one for each column specified in the

SELECT clause), as shown in the following query results:

CDTitle Copyright
---------- ---------
Past Light 1983

SQL: A Beginner’s Guide 203

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:203

9

U
sin

g
Pr

ed
ic

at
es

Operator Symbol Example

Equals = InStock = 47

Not equals <> InStock <> 47

Less than < InStock < 47

Greater than > InStock > 47

Less than or equals <= InStock <= 47

Greater than or equals >= InStock >= 47

Table 9-1 1999 Comparison Operators

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:204

204 Module 9: Using Predicates

Now let’s change this SELECT statement a bit. Instead of using the equals operator, I’ll

use the not equals operator:

SELECT CDTitle, Copyright FROM CDsOnHand
WHERE CDTitle <> 'Past Light' ;

When you execute this statement, six rows are returned:

CDTitle Copyright
----------------------------- ---------
Famous Blue Raincoat 1991
Blue 1971
Court and Spark 1974
Kojiki 1990
That Christmas Feeling 1993
Patsy Cline: 12 Greatest Hits 1988

Notice that all rows except the Past Light row are included in the query results. In this case,

the WHERE clause evaluates to true only when the CDTitle value does not equal Past Light.

Now let’s take a look at the less than operator and the greater than operator. In the next

example, I join two comparison predicates together by using the AND keyword:

SELECT CDTitle, Inventory FROM CDsOnHand
WHERE Inventory > 2 AND Inventory < 25 ;

As you can see, the rows returned by this SELECT statement must contain an Inventory value

between 2 and 25. If you execute this statement, four rows are returned:

Figure 9-1 Comparing data in the CDsOnHand table

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CDTitle Inventory
---------------------- ---------
Famous Blue Raincoat 6
Court and Spark 18
Kojiki 5
That Christmas Feeling 3

When defining the predicates in a WHERE clause, you’re not limited to using only one

column. For instance, suppose you want to modify the last SELECT statement to include a

predicate that’s based on the RetailPrice value, as shown in the following example:

SELECT CDTitle, Inventory FROM CDsOnHand
WHERE Inventory > 2 AND Inventory < 25 AND RetailPrice <> 16.99 ;

Any row returned in the query results must meet all three conditions defined in the WHERE

clause. As a result, only three rows are returned when you execute this statement:

CDTitle Inventory
---------------------- ---------
Court and Spark 18
Kojiki 5
That Christmas Feeling 3

Notice that the query results do not include the RetailPrice column. That is because this

column is not specified in the SELECT clause. Even so, you can still use that column in a

predicate in the WHERE clause to define a search condition.

Now let’s take a look at the less than or equals operator and the greater than or equals

operator. In the following example, both operators are used to limit the rows returned to

those with a Copyright value that falls within the range of 1971 through 1989.

SELECT CDTitle, Copyright FROM CDsOnHand
WHERE Copyright >= 1971 AND Copyright <= 1989 ;

This statement will return slightly different results than what would be returned if you simply

used the greater than and less than operators. By using the greater than or equals operator and

the less than or equals operator, values that equal the specified value are also returned, as

shown in the following query results:

CDTitle Copyright
----------------------------- ---------
Blue 1971
Court and Spark 1974
Past Light 1983
Patsy Cline: 12 Greatest Hits 1988

SQL: A Beginner’s Guide 205

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:205

9

U
sin

g
Pr

ed
ic

at
es

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:206

Notice that the Blue row includes a Copyright value of 1971. This would not have been

included if you had merely used a greater than operator.

Up to this point, the examples I’ve shown you have all been based on SELECT statements.

However, you can add a WHERE clause to an UPDATE statement or a DELETE statement.

Suppose you want to increase the Inventory value for the That Christmas Feeling row. You

can use the following UPDATE statement:

UPDATE CDsOnHand SET Inventory = 10
WHERE CDTitle = 'That Christmas Feeling' ;

When you execute this statement, the Inventory value is increased to 10 for the That Christmas

Feeling row, but not for any other row because the WHERE clause evaluates to true only for

that row. You could have just as easily added this WHERE clause to a DELETE statement, in

which case the That Christmas Feeling row would have been deleted.

As with the WHERE clause in a SELECT statement, you can combine two or more

predicates to form a search condition:

UPDATE CDsOnHand SET Inventory = 3
WHERE CDTitle = 'That Christmas Feeling' AND Copyright = 1993 ;

When you specify the AND keyword, both predicates must evaluate to true in order for the

WHERE clause to evaluate to true. If you specify the OR keyword, instead of AND, then only

one of the predicates must evaluate to true.

Using the BETWEEN Predicate
Strictly speaking, the BETWEEN predicate is not a comparison predicate, at least not as it is

presented in the SQL:1999 standard. It is, however, so similar in function to the greater than

or equals operator and the less than or equals operator (when used together) that it’s worth

discussing here.

The BETWEEN predicate is used in conjunction with the AND keyword to identify a range

of values that can be included as a search condition in the WHERE clause. Values in the

identified column must fall within that range in order to evaluate to true. When you use

the BETWEEN clause, you must specify the applicable column, the low end of the range,

and the high end of the range. The following example (which is based on the CDsOnHand

table in Figure 9-1) specifies a range from 14 through 16:

SELECT CDTitle, RetailPrice FROM CDsOnHand
WHERE RetailPrice BETWEEN 14 AND 16 ;

206 Module 9: Using Predicates

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 207

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:207

9

U
sin

g
Pr

ed
ic

at
es

The RetailPrice value for each row must fall within that range. If you execute this statement,

only four rows are included in the query results:

CDTitle RetailPrice
--------------- ---------
Blue 14.99
Court and Spark 14.99
Past Light 15.99
Kojiki 15.99

Now let’s take a look at a query similar to the one in the last example, only this time using

comparison predicates rather than the BETWEEN predicate:

SELECT CDTitle, RetailPrice FROM CDsOnHand
WHERE RetailPrice >= 14 AND RetailPrice <= 16 ;

Notice that two predicates are used: one with the greater than or equals operator and one with

the less than or equals operator. This SELECT statement will produce the same query results

as the previous SELECT statement.

Now let’s return to the BETWEEN predicate. As with any predicate, you can combine the

BETWEEN predicate with other predicates. In the following statement, the WHERE clause

includes a BETWEEN predicate and a comparison predicate:

SELECT CDTitle, RetailPrice FROM CDsOnHand
WHERE RetailPrice BETWEEN 14 AND 16 AND Inventory > 10 ;

As a result of both predicates, the query results can include only those rows with a RetailPrice

value that falls within the range of 14 through 16 and with an Inventory value greater than 10.

When you execute this query, only two rows are returned:

CDTitle RetailPrice
--------------- -----------
Blue 14.99
Court and Spark 14.99

Again, you will notice that the query results don’t include the Inventory column even though

that column is specified in a predicate in the WHERE clause. You’ll also notice that more than

one column is referenced in the WHERE clause.

In addition to what you’ve seen so far with the BETWEEN predicate, you can also use the

clause to specify the inverse of a condition. This is done by using the NOT keyword within the

predicate. For example, suppose you change the last example to the following:

SELECT CDTitle, RetailPrice FROM CDsOnHand
WHERE RetailPrice NOT BETWEEN 14 AND 16 ;

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:208

The rows returned in the query result will include all rows that do not have a RetailPrice value

within the range of 14 through 16. When you execute the statement, three rows are returned:

CDTitle RetailPrice
----------------------------- -----------
Famous Blue Raincoat 16.99
That Christmas Feeling 10.99
Patsy Cline: 12 Greatest Hits 16.99

Notice that all values within the specified range have been excluded from the query results.

Progress Check
1. What are the six comparison operators?

2. Which symbol do you use to represent a not equals operator in a comparison predicate?

3. What type of predicate can you use in place of the greater than or equals operator and the

less than or equals operator?

CRITICAL SKILL

9.2 Return Null Values
As you might recall from Module 4, a null value is used in place of a value when that value

is undefined or not known. A null indicates that the value is absent. This is not the same as a

zero, a blank, or a default value. By default, SQL allows nulls to be used in place of regular

values (although you can override the default by using a NOT NULL constraint in your

column definition). In those cases where null values are permitted, you might find it necessary

to specify that null values be returned when you query a table. For this reason, SQL provides

the NULL predicate, which allows you to define search conditions that return null values.

The NULL predicate is very straightforward to implement. Used in conjunction with the

IS keyword, the predicate is added to a WHERE clause in the same way any other predicate is

added, and it applies only to null values that might exist in the column that you query. The best

way to illustrate this is through the use of examples. In these examples, I use the ArtistsBio

table, shown in Figure 9-2.

208 Module 9: Using Predicates

1. Equals, not equals, less than, greater than, less than or equals, greater than or equals

2. <>

3. The BETWEEN predicate

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 209

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:209

9

U
sin

g
Pr

ed
ic

at
es

The first example is a SELECT statement that returns rows with a PlaceOfBirth value of null:

SELECT * FROM ArtistsBio
WHERE PlaceOfBirth IS NULL ;

The statement returns all columns from the ArtistsBio table; however, it returns only two rows,

as you can see in the following query results:

PerformerName PlaceOfBirth YearBorn
---------------- ------------ --------
William Ackerman NULL NULL
Bing Crosby NULL 1904

The fact that the YearBorn column contains a null value for the William Ackerman row

has no bearing on the fact that a NULL predicate is used. The NULL predicate in this case

identifies the PlaceOfBirth column only, not the YearBorn column. You can, however, replace

the PlaceOfBirth column with the YearBorn column, in which case the rows returned will be

those with a YearBorn value of null.

According to the SQL:1999 standard, you can also specify both columns in the NULL

predicate, as shown in the following example:

SELECT * FROM ArtistsBio
WHERE (PlaceOfBirth, YearBorn) IS NULL ;

Figure 9-2 Returning null values from the ArtistsBio table

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:210

When you include both columns, the PlaceOfBirth column and YearBorn column must both

return null values in order for a row to be returned, which in the case of the ArtistsBio table

would only be one row.

NOTE
Although the SQL standard permits you to specify multiple columns in the NULL
predicate, many implementations do not support this. Instead you must specify two
NULL predicates.

As an alternative to including both columns in one predicate, you can write your SELECT

statement as follows:

SELECT * FROM ArtistsBio
WHERE PlaceOfBirth IS NULL AND YearBorn IS NULL ;

If you execute this statement, you’ll receive the following query results:

PerformerName PlaceOfBirth YearBorn
---------------- ------------ --------
William Ackerman NULL NULL

SQL supports another feature in the NULL predicate. You can use the NOT keyword to

find the inverse results of the predicate. For example, suppose you want to return all rows that

include an actual value in the PlaceOfBirth column, rather than a null value. Your statement

might look like the following:

SELECT * FROM ArtistsBio
WHERE PlaceOfBirth IS NOT NULL ;

Your query results will now include seven rows, all of which contain values in the

PlaceOfBirth column:

PerformerName PlaceOfBirth YearBorn
----------------- ----------------------------- --------
Jennifer Warnes Seattle, Washington, USA 1947
Joni Mitchell Fort MacLeod, Alberta, Canada 1943
Kitaro Toyohashi, Japan NULL
Patsy Cline Winchester, Virginia, USA 1932
Jose Carreras Barcelona, Spain NULL
Luciano Pavarotti Modena, Italy 1935
Placido Domingo Madrid, Spain 1941

210 Module 9: Using Predicates

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 211

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:211

9

U
sin

g
Pr

ed
ic

at
es

Notice that null values can still exist in other columns. Because only the PlaceOfBirth column

is specified in the NULL predicate, only that column must contain a value in order for a row to

be returned.

As with the predicates we looked at earlier in the module, you can combine the NULL

predicate with other types of predicates. For example, you can modify the last example to limit

the YearBorn values to certain years, as shown in the following example:

SELECT * FROM ArtistsBio
WHERE PlaceOfBirth IS NOT NULL AND YearBorn > 1940 ;

Now any rows returned must include a value in the PlaceOfBirth column and the YearBorn

value must be greater than 1940. If you execute this query, you’ll receive the following results:

PerformerName PlaceOfBirth YearBorn
--------------- ----------------------------- --------
Jennifer Warnes Seattle, Washington, USA 1947
Joni Mitchell Fort MacLeod, Alberta, Canada 1943
Placido Domingo Madrid, Spain 1941

As you can see, only three rows are returned. No rows with a PlaceOfBirth value of null are

returned because null evaluates to unknown, and only WHERE clauses that evaluate to true

can be included in the query results.

CRITICAL SKILL

9.3 Return Similar Values
If any predicate can be fun, it is the LIKE predicate. The LIKE predicate provides a flexible

environment in which you can specify values that are only similar to the values stored in the

database. This is particularly advantageous if you know only the partial name of a value but

still need to retrieve information based on that value. For example, suppose you don’t know

the entire title of a CD, but you do know part of that title. Or perhaps you know only part of a

performer’s name. By using the LIKE predicate, you can ask for values that are similar to what

you do know and from those results determine if the information you need is there.

Before we take a look at the LIKE predicate itself, let’s look at two symbols used within

the predicate. The LIKE predicate uses two special characters—the percentage sign (%) and

the underscore (_)—to help define the search condition specified in the predicate. The

percentage sign represents zero or more unknown characters, and the underscore represents

exactly one unknown character. You can use these characters at the beginning of a value, in

the middle, or at the end, and you can combine them with each other as necessary. The way

in which you use these two characters determines the type of data that is retrieved from your

database. Table 9-2 provides a number of examples of how these special characters can be

used in a LIKE predicate.

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:212

212 Module 9: Using Predicates

As you can see, the percentage sign and underscore special characters provide a great deal

of flexibility and allow you to query a wide range of data.

Now that you have an understanding of the special characters, let’s take a look at the LIKE

predicate as a whole. The LIKE predicate includes the column name, the LIKE keyword, and a

value enclosed in a set of single quotation marks, which is then enclosed in a set of parentheses.

For example, the following WHERE clause includes one LIKE predicate:

WHERE CDID LIKE ('%01')

The predicate includes the CDID column, the LIKE keyword, and a value of %01. Only rows that

contain the correct value in the CDID column are returned in the query results. The CDID column

is part of the CDs table, which is shown in Figure 9-3. We will be using this table for the examples

in this section. Notice that, based on the LIKE predicate defined in the preceding WHERE clause,

only one row can be returned by this clause, the row with a CDID value of 99301.

Now let’s take a look at a few examples of SELECT statements that include a LIKE

predicate. Suppose you want to find any CDs that contain the word Christmas in the title.

You can create the following SELECT statement to query the CDs table:

SELECT * FROM CDs
WHERE CDTitle LIKE ('%Christmas%') ;

Your query results will include only one row:

CDID CDTitle
------ ---------------------
99306 That Christmas Feeling

Sample Value Possible Query Results

'J%' Jennifer Warnes, Joni Mitchell, Jose Carreras

'%spark' Court and Spark

'%blue%' Famous Blue Raincoat, Blue, Blues on the Bayou

'%Cline%Hits' Patsy Cline: 12 Greatest Hits

'194_' 1940, 1942, 1947

'19__' 1900, 1907, 1938, 1963, 1999

'__ue' Blue

'9__01' 90201, 91401, 95501, 99301, 99901

'9_3%' 9032343, 903, 95312, 99306, 983393300333

Table 9-2 Using Special Characters in a LIKE Predicate

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you had included only one percentage sign, no rows would have been returned. For

example, if you eliminated the first percentage sign, your SQL implementation would have

interpreted this to mean that the value begins with the word Christmas, which it does not. The

same is true for the other percentage sign. If you had eliminated that, your implementation

would have assumed that Christmas was the last word in the character string. In addition, if no

percentage signs were used, no rows would have been returned because no values would have

matched Christmas exactly.

You can also add the NOT keyword to a LIKE predicate if you want all rows returned

except those specified by the predicate. Take, for instance, the last example. If you add the

NOT keyword, it will look like the following:

SELECT * FROM CDs
WHERE CDTitle NOT LIKE ('%Christmas%') ;

This time, your query results include all rows that do not include the word Christmas:

CDID CDTitle
----- ---------------------
99301 Famous Blue Raincoat
99302 Blue
99303 Court and Spark
99304 Past Light
99305 Kojiki
99307 Patsy Cline: 12 Greatest Hits

SQL: A Beginner’s Guide 213

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:213

9

U
sin

g
Pr

ed
ic

at
es

Figure 9-3 Returning similar values from the CDs table

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:214

Notice that the That Christmas Feeling row is now among the missing.

You can also combine one LIKE predicate with another LIKE predicate. Suppose, for

example, you still want to exclude the Christmas value, but you want to include the Blue

value, as shown in the following example:

SELECT * FROM CDs
WHERE CDTitle NOT LIKE ('%Christmas%') AND CDTitle LIKE ('%Blue%') ;

The WHERE clause in this SELECT statement eliminates any rows that have the word

Christmas appearing anywhere in the CDTitle value. In addition, the CDTitle value should

include the word Blue. As a result, only two rows are returned.

CDID CDTitle
----- --------------------
99301 Famous Blue Raincoat
99302 Blue

But what happens if the CD title includes both words? For example, Elvis Presley’s Blue

Christmas is now available in CD. In a case of this sort, the LIKE predicate containing NOT

takes precedence over the one that doesn’t contain NOT, regardless of the order in which the

predicates are included in the WHERE clause. Even if a Blue Christmas row existed, it would

not be included in the query results.

Progress Check
1. When is a null value used in a column?

2. What two keywords must you use in a NULL predicate?

3. What two special characters can you use in a LIKE predicate?

4. What components make up a LIKE predicate?

214 Module 9: Using Predicates

1. A null value is used in place of a value when that value is undefined or not known. A null indicates that the value is

absent. This is not the same as a zero, a blank, or a default value.

2. IS NULL

3. A percentage sign and an underscore

4. A LIKE predicate is made up of a column name, the LIKE keyword, and a value enclosed in a set of single quotation

marks, which is then enclosed in a set of parentheses.

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Project 9-1 Using Predicates in SQL Statements
Before we move on to other predicates, I think it’s a good idea to review those

predicates that have already been discussed. These include the six types of

comparison predicates, the BETWEEN predicate, the NULL predicate, and the LIKE

predicate. In this project, you will try a number of these predicates through the use of SELECT

statements that will include the appropriate WHERE clauses. You will be querying tables that

you created in the Inventory database. Because you will be using only SELECT statements,

you won’t be modifying the tables or the database structure in any way. You’ll simply request

data based on the predicates that you define. You can download the Prj09.txt file, which

contains the SQL statements used in this project.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. In the first statement that you create, you’ll query the MusicTypes table to return the names

of those rows whose TypeID value is equal to 11 or 12. Enter and execute the following

SQL statement:

SELECT TypeID, TypeName FROM MusicTypes
WHERE TypeID = 11 OR TypeID = 12 ;

The statement should return two rows, one for Blues and one for Jazz. Notice that the OR

keyword is used to indicate that either value is acceptable.

3. Now you’ll query the Artists table and look for artists other than Patsy Cline and Bing

Crosby. Enter and execute the following SQL statement:

SELECT ArtistName, PlaceOfBirth FROM Artists
WHERE ArtistName <> 'Patsy Cline' AND ArtistName <> 'Bing Crosby' ;

Your query should return 16 rows and should not include the Patsy Cline row or the Bing

Crosby row.

4. Now let’s combine a couple of comparison predicates to create a different sort of search

condition. In this statement, you’ll again query the Artists table, but you’ll request only

those rows whose ArtistID values lie between 2004 and 2014. Enter and execute the

following SQL statement:

SELECT ArtistID, ArtistName FROM Artists
WHERE ArtistID > 2004 AND ArtistID < 2014 ;

Your query should return nine rows.

SQL: A Beginner’s Guide 215

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:215

9

U
sin

g
Pr

ed
ic

at
es

Us
ing

Pr
ed

ica
tes

in
SQ

LS
ta

tem
en

ts

Project
9-1

Prj09.txt

(continued)

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:216

5. Now let’s modify the SELECT statement that you just executed. You should use a

BETWEEN predicate rather than the two comparison predicates. Enter and execute

the following SQL statement:

SELECT ArtistID, ArtistName FROM Artists
WHERE ArtistID BETWEEN 2004 AND 2014 ;

You should now see 11 rows, rather than the 9 that were returned in the previous step. Had

you used the greater than or equals operator and the less than or equals operator in the last

step, your query results would have been the same as in this step.

6. Now let’s query the Artists table once more, only this time, we’ll use the NULL predicate.

Enter and execute the following SQL statement:

SELECT * FROM Artists
WHERE PlaceOfBirth IS NULL ;

Your query will return no results because the PlaceOfBirth column contains no null values.

7. Let’s try the same query as in the last step, only this time we’ll add the NOT keyword to the

NULL predicate. Enter and execute the following SQL statement:

SELECT * FROM Artists
WHERE PlaceOfBirth IS NOT NULL ;

Your query should now return every row in the table (18 in all).

8. In the next statement, you will use the LIKE predicate to find CD titles that include the

word Best or the word Greatest. Your predicate will reference the CDTitle column of the

CompactDiscs table. Enter and execute the following SQL statement:

SELECT CDTitle, InStock FROM CompactDiscs
WHERE CDTitle LIKE ('%Greatest%') OR CDTitle LIKE ('%Best%') ;

Your query should return three rows. In all those rows, the CDTitle value should contain

the words Greatest or Best.

9. Next you’ll modify the statement in the previous step to include the NOT keyword in both

predicates. You should also change the OR keyword to AND. Enter and execute the

following SQL statement:

SELECT CDTitle, InStock FROM CompactDiscs
WHERE CDTitle NOT LIKE ('%Greatest%') AND CDTitle NOT LIKE
('%Best%') ;

216 Module 9: Using Predicates

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Your query results should now include 12 rows. If you had not changed the OR keyword

to AND, your results would have included all 15 rows. This is because connecting the two

predicates with OR would have essentially cancelled out the NOT condition of each of the

two predicates.

10. Close the client application.

Project Summary
In this project, you created a number of SELECT statements that included various predicates.

The predicates were contained in WHERE clauses that were part of the SELECT statements;

however, these clauses could also have been part of UPDATE and DELETE statements. As

you move through the rest of this module, you will learn about other predicates and how they

can be used in various types of statements. These predicates can be used in conjunction with

the ones I’ve already discussed or used by themselves to create more complex search

conditions and return more precise results.

CRITICAL SKILL

9.4 Reference Additional Sources of Data
SQL supports several types of predicates that allow you to reference sources other than the

main table that you’re querying or modifying. As a result, you can create search conditions

that compare data between tables in order to determine which rows should be included in your

query results, which rows should be updated, or which ones deleted. In this section, I look at

two important predicates that you can use to reference other tables: the IN predicate and the

EXISTS predicate.

Both predicates use subqueries to reference data in tables other than the main table being

queried or modified. I first introduce the topic of subqueries in Module 4. As you might recall

from that module, a subquery is an expression that is used as a component within another

expression. In its most common usage, a subquery is simply a SELECT statement embedded

within another statement. When used in a predicate, a subquery becomes part of that predicate

and consequently is embedded in the WHERE clause of a SELECT, UPDATE, or DELETE

statement. Although subqueries are discussed in detail in Module 12, I mention them here

because they’re an integral part of the predicates I’ll be discussing in the remaining part of this

module. In each of these predicates, subqueries are used to reference data in other tables. For

the purposes of this module, I keep my examples of subqueries simple, but know that they can

be far more elaborate than what you see here, and once you complete Module 12, you’ll be

able to apply that knowledge to the predicates you learn about in this module.

SQL: A Beginner’s Guide 217

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:217

9

U
sin

g
Pr

ed
ic

at
es

Us
ing

Pr
ed

ica
tes

in
SQ

LS
ta

tem
en

ts

Project
9-1

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:218

Using the IN Predicate
The IN predicate allows you to determine whether the values in the specified column of one

table are contained in a defined list or contained within another table. In the first case, you

specify the column name, the IN keyword, and a list of values that are compared to the values

in the specified column. In the second case, you specify the column name, the IN keyword,

and a subquery, which references the second table. In either case, if the column value matches

one of the values in the list or in the subquery results, the predicate evaluates to true, and the

row is returned in the query results.

The best way to illustrate both of these methods is through examples. However, before we

look at those, refer to the tables shown in Figure 9-4. These are the tables I’ll be using for the

examples.

As I mentioned, the first method for using the IN predicate is to define a list. Your list

should include all values that are to be compared to the values in the specified column. For

example, suppose you want to limit your query results to rows in the CompactDiscInventory

218 Module 9: Using Predicates

Figure 9-4 Querying data from the CompactDiscInventory table and the
CompactDiscArtists table

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

table that have an InStock value of 12, 22, 32, or 42. You can create a SELECT statement that

looks like the following:

SELECT CDName, InStock FROM CompactDiscInventory
WHERE InStock IN (12, 22, 32, 42) ;

This statement returns only two rows because those are the only rows that have the correct

InStock values:

CDName InStock
--------------- -------
Blue 42
Court and Spark 22

As you can see, using the IN predicate to define a list is a fairly straightforward process

and a useful one when you know exactly which values you want to compare your columns to.

It also is a simpler method than defining separate predicates for each value, as in the following

example:

SELECT CDName, InStock FROM CompactDiscInventory
WHERE InStock = 12 OR InStock = 22 OR InStock = 32 OR InStock = 42 ;

This statement will return the same results as the SELECT statement in the previous

example; however, as you can see, it’s much more cumbersome.

Now let’s take a look at a SELECT statement that uses a subquery in the IN predicate.

Suppose you want to create a query that returns CD names and their artists. You want your

query results to include only those CDs in which there are more than 10 copies of each one.

If you refer back to Figure 9-4, you’ll see that the CompactDiscArtists table includes the CD

names and their artists. However, as you can also see, the InStock values are stored in the

CompactDiscInventory table, which means you’ll need to reference that table in order to

return the correct rows. To do so, you can create the following SELECT statement:

SELECT Title, Artist FROM CompactDiscArtists
WHERE Title IN
(SELECT CDName FROM CompactDiscInventory WHERE InStock > 10) ;

If you execute this statement, you’ll receive the following results:

Title Artist
-------------------- ----------------
Famous Blue Raincoat Jennifer Warnes
Blue Joni Mitchell
Court and Spark Joni Mitchell

SQL: A Beginner’s Guide 219

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:219

9

U
sin

g
Pr

ed
ic

at
es

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:220

Past Light William Ackerman
Out of Africa John Barry
Blues on the Bayou B.B. King

Notice that only six rows have been returned. These are the six CDs listed in the

CompactDiscInventory table that have an InStock value greater than 10.

Now let’s take a closer look at the SELECT statement in order to give you a better

understanding of how the IN predicate works. The WHERE clause contains only one predicate.

It begins with the name of the column (Title) whose values you want to verify. The Title column

is followed by the IN keyword. The keyword is then followed by a subquery, which is enclosed

in parentheses. The subquery consists of the following SELECT statement:

SELECT CDName FROM CompactDiscInventory WHERE InStock > 10

If you were to execute this statement on its own, you would receive the following results:

CDName

Famous Blue Raincoat
Blue
Court and Spark
Past Light
Out of Africa
Blues on the Bayou

Each row in the query results, which are derived from the CompactDiscInventory table, contains

an InStock value greater than 10. The values in the Title column of the CompactDiscArtists

table are then compared against these results. Any row that contains a Title value that matches

one of six CDName values (in the subquery results) is included in the query results of the main

SELECT statement.

NOTE
When including a subquery in an IN predicate, you must specify only one column name
in the SELECT clause. If you specify more than one column name or you specify an
asterisk, you will receive an error.

Like many other predicates, the IN predicate allows you to specify the inverse of a condition

by using the NOT keyword. Suppose you rewrite the SELECT statement in the last example to

include the NOT keyword in the IN predicate:

220 Module 9: Using Predicates

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 221

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:221

9

U
sin

g
Pr

ed
ic

at
es

SELECT Title, Artist FROM CompactDiscArtists
WHERE Title NOT IN
(SELECT CDName FROM CompactDiscInventory WHERE InStock > 10) ;

Your query results will include all those rows that were not returned by the last SELECT

statement and will exclude all those rows that were returned, as shown in the following results:

Title Artist
--- -------------
Kojiki Kitaro
That Christmas Feeling Bing Crosby
Patsy Cline: 12 Greatest Hits Patsy Cline
After the Rain: The Soft Sounds of Erik Satie Pascal Roge
Leonard Cohen The Best Of Leonard Cohen
Fundamental Bonnie Raitt
Orlando David Motion

As you can see, the IN predicate is a very flexible tool for comparing values in a specified

column to data in other tables. You’ll find this extremely useful as you learn more about

subqueries and can create more complex predicates.

Using the EXISTS Predicate
Although similar to an IN predicate, the EXISTS predicate has a slightly different focus. It is

concerned only with determining whether or not the subquery returns any rows. If it returns one

or more rows, the predicate evaluates to true. Otherwise, the predicate evaluates to false. The

predicate is made up of the EXISTS keyword and a subquery. For the subquery to be of any real

value (and subsequently the EXISTS predicate itself), it should include a predicate that matches

two columns in different tables. For example, in Figure 9-4, the CompactDiscInventory table

includes the CDName column, and the CompactDiscArtists table includes the Title column.

The two columns can be matched together to ensure that only relevant rows are returned by

the subquery. Let’s take a look at an example to help clarify this issue.

Suppose you want to retrieve rows from the CompactDiscInventory table so you can

determine how many Joni Mitchell CDs you have in stock. You want to display only the CD

names and the number of CDs in stock. You do not want to display the artist’s name, and you

do not want to display CDs by other artists. To accomplish this, you can use the following

SELECT statement:

SELECT * FROM CompactDiscInventory
WHERE EXISTS
(SELECT Title FROM CompactDiscArtists
WHERE Artist = 'Joni Mitchell'
AND CompactDiscInventory.CDName = CompactDiscArtists.Title) ;

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:222

If you execute this statement, you’ll receive the following query results:

CDName InStock
--------------- -------
Blue 42
Court and Spark 22

The best way to understand how this statement works is to look at how individual rows are

evaluated. Each row returned by the main SELECT statement is evaluated against the subquery.

Because the subquery WHERE clause matches the CDName value to the Title value, the Title

value in the row being evaluated (in the subquery) must match the CDName value in order for

that row to be returned. For example, the first row in the CompactDiscInventory table contains

a CDName value of Famous Blue Raincoat. When this row is tested against the EXISTS predicate,

the Famous Blue Raincoat value is matched with the Famous Blue Raincoat value of the Title

column in the CompactDiscArtists table. In addition, the Joni Mitchell value is matched against

the Artist value for the Famous Blue Raincoat row. Because the Artist value is Jennifer Warnes,

and not Joni Mitchell, the search condition specified in the subquery WHERE clause evaluates

to false, so no subquery row is returned for the Famous Blue Raincoat row. As a result, the

WHERE clause in the main SELECT statement evaluates to false for the Famous Blue Raincoat

row of the CompactDiscInventory table, and the row is not included in the query results.

This process is repeated for each row in the CompactDiscInventory table. If the WHERE

clause in the subquery evaluates to true, then the EXISTS predicate evaluates to true, which

means that the WHERE clause in the main SELECT statement evaluates to true. In the case

of our last example SELECT statement, only two rows meet this criteria.

NOTE
It does not matter what columns or how many columns you specify in the SELECT clause
of the subquery in an EXISTS predicate. This type of predicate is concerned only with
whether rows are being returned, not with the content of those rows. You can specify
any column names or just an asterisk.

The EXISTS predicate, as you might expect, allows you to test the inverse of the predicate

condition by using the NOT keyword:

SELECT * FROM CompactDiscInventory
WHERE NOT EXISTS
(SELECT Title FROM CompactDiscArtists
WHERE Artist = 'Joni Mitchell'
AND CompactDiscInventory.CDName = CompactDiscArtists.Title) ;

222 Module 9: Using Predicates

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this case, all CDs except the Joni Mitchell CDs are included in the query results. This means

that, if the WHERE clause of the subquery evaluates to true (which means that the subquery

returns a row), the predicate itself evaluates to false, and no row is returned. On the other hand,

if the subquery does not return a row, the predicate evaluates to true, and the row is returned in

the query results of the main SELECT statement.

SQL: A Beginner’s Guide 223

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:223

9

U
sin

g
Pr

ed
ic

at
es

Ask the Expert
Q: You’ve provided examples that show that there is often more than one way to

achieve the same outcome. How do you know which option to select when you’re

writing an SQL statement?

A: You’ll find that, as you learn more about SQL programming and gain a better

understanding of the nuances of each statement, there will often be more than one

way to achieve the same results. In these cases, your choice of methods will often

depend on which statement is the simplest to write or how performance is affected in

a particular SQL implementation. As your understanding of SQL grows, so too will

your ability to choose the method that’s best for your situation. In many cases, the

difference between one method over another will not be very great, and your choice

might merely depend on your personal preference. However, you might also run

into situations in which the SQL implementation in which you’re working does not

support all the methods provided in the SQL standard. Therefore, you must select the

method that can be implemented in your particular environment. Whichever methods

you might ultimately use in any given environment, it is best for now that you have

as complete a foundation as necessary in the basics of SQL. That way you’ll be more

prepared for various situations and be better equipped to move from implementation

to implementation. In addition, you should learn about performance issues related to

the implementation with which you’re working. You should consider issues of

performance when making a decision about which SQL statements to use.

Q: When you provided examples of the EXISTS predicate, your subqueries always

matched columns within the subquery WHERE clause. Is this necessary?

A: You can, if you want, create an EXISTS predicate that does not match columns in the

subquery, such as in the following statement:

SELECT Title, Artist FROM CompactDiscArtists
WHERE EXISTS
(SELECT CDName FROM CompactDiscInventory WHERE InStock > 10) ;

(continued)

P:\010Comp\Begin8\885-7\ch09.vp
Tuesday, April 08, 2003 11:48:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:224

Progress Check
1. What is a subquery?

2. What type of predicate should you use to determine whether the values in the specified

column of one table are contained in a defined list or contained within another table?

3. What type of predicate should you include in the subquery WHERE clause of an

EXISTS predicate?

CRITICAL SKILL

9.5 Quantify Comparison Predicates
SQL includes another type of predicate called a quantified comparison predicate, which is a

type of predicate used in conjunction with a comparison operator to determine whether any or

all returned values meet the search requirement. SQL supports three quantified comparison

predicates: SOME, ANY, and ALL. The SOME and ANY predicates are referred to as

existential quantifiers and are concerned with whether any returned values meet the search

requirements. These two predicates are identical in meaning and can be used interchangeably.

The ALL predicate is referred to as a universal quantifier and is concerned with whether all

returned values meet the search requirements. Now let’s take a closer look at each one.

224 Module 9: Using Predicates

In this case, your subquery merely checks to see whether any rows exist in the

CompactDiscInventory table with an InStock value greater than 10. If those rows exist,

the predicate evaluates to true, which means the WHERE clause in the main SELECT

statement evaluates to true. As a result, all rows in the CompactDiscArtists table are

returned. Using this sort of subquery is generally not very useful because it offers little

advantage over a simple SELECT statement. Matching columns from different tables

is essential within the subquery to provide meaningful data to the main SELECT

statement.

1. A subquery is an expression that is used as a component within another expression. In its most common usage, a

subquery is simply a SELECT statement embedded within another statement.

2. An IN predicate

3. A predicate that matches two columns in different tables

P:\010Comp\Begin8\885-7\ch09.vp
Tuesday, April 08, 2003 11:49:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Using the SOME and ANY Predicates
As I mentioned, the SOME and ANY predicates return identical results. For each row,

the predicates compare the value in a specified column to the results of a subquery. If the

comparison evaluates to true for any of the results, the condition has been satisfied and that

row is returned. To create one of these predicates, you must specify the column name that

contains the values you want to compare, the comparison operator (see the “Compare SQL

Data” section), the SOME or ANY keyword, and the subquery. Although you can use either

keyword, I prefer ANY because it seems more intuitive to me, but feel free to use either one.

Now let’s take a look at an example to give you a better feel for how these predicates

work. The example is based on the CDRetail table and the CDSale table, which are shown

in Figure 9-5.

In this example, I want to query data from the CDSale table. I want to return only those

rows that have a Sale value less than some of the Retail values in the CDRetail table. The

Retail values should be from rows that have an InStock value greater than 9. In other words,

the query should return only those CDs whose sale price is less than any retail price of those

CDs in which there are more than nine in stock. To accomplish this, I will use the following

SELECT statement:

SELECT Title, Sale FROM CDSale
WHERE Sale < ANY
(SELECT Retail FROM CDRetail WHERE InStock > 9) ;

9

SQL: A Beginner’s Guide 225

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:225

9

U
sin

g
Pr

ed
ic

at
es

Figure 9-5 Using quantified comparison predicates on the CDRetail and the CDSale tables

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:226

If you want, you can use the SOME keyword rather than the ANY keyword. The query results

would be the same, as shown in the following results:

Title Sale
---------------------- -----
Famous Blue Raincoat 14.99
Blue 12.99
Court and Spark 14.99
Past Light 14.99
Kojiki 13.99
That Christmas Feeling 10.99

Now let’s look at the SELECT statement more closely. The ANY predicate contains the

following subquery:

SELECT Retail FROM CDRetail WHERE InStock > 9

If you were to execute this subquery on its own, you would receive the following results:

Retail

14.99
14.99
15.99
16.99

The Sale value in each row in the CDSale table is then compared to the subquery results.

For example, the Past Light row has a Sale value of 14.99. This value is compared to the subquery

results to see whether 14.99 is less than any value. Because it is less than 15.99 and 16.99, the

predicate evaluates to true, and the row is returned. The only row that does not evaluate to true

is the Patsy Cline: 12 Greatest Hits row because the Sale value is 16.99, and this is not less

than any of the values returned by the query results.

You can use any of the six comparison operators in an ANY or SOME predicate. For

example, if you had used the greater than operator, only the Patsy Cline: 12 Greatest Hits row

would have been returned because it would have been the only row with a Sale value greater

than any row in the subquery results.

NOTE
The quantified comparison predicates do not support an inverse condition like other
predicates. In other words, you cannot add the NOT keyword before ANY or SOME.
However, because you can use the not equals (<>) operator, you can achieve the
same results.

226 Module 9: Using Predicates

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using the ALL Predicate
The ALL predicate works the same way as the ANY and SOME predicates. The ALL predicate

compares column values to the subquery results. However, rather than the column values

having to evaluate to true for any of the result values, the column values must evaluate to true

for all the result values; otherwise, the row is not returned.

Let’s return to the previous example we looked at, only this time substitute the keyword

ALL for the keyword ANY. Your new SELECT statement will look like the following:

SELECT Title, Sale FROM CDSale
WHERE Sale < ALL
(SELECT Retail FROM CDRetail WHERE InStock > 9) ;

If you execute this statement, you’ll find that your query results are quite different from what

they were in the previous example:

Title Sale
---------------------- -----
Blue 12.99
Kojiki 13.99
That Christmas Feeling 10.99

This time, only three rows are returned because they are the only ones that meet the condition

of the WHERE predicate.

If you take a closer look at the statement, you’ll find that the subquery returns the same

values as it does in the previous examples. However, the Sale value for each row in the

CDSale table must now be less than all the values in the subquery results. For example, the

Kojiki row contains a Sale value of 13.99. The subquery results include the values 14.99,

15.99, and 16.99. The 13.99 value is less than all three of the subquery result values, which

means that the predicate evaluates to true, so that row is included in the query results. On the

other hand, the Past Light row contains a Sale value of 14.99, which is not less than the 14.99

subquery value, so that row is not included in the query results.

SQL: A Beginner’s Guide 227

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:227

9

U
sin

g
Pr

ed
ic

at
es

Ask the Expert
Q: In your discussions about quantified comparison predicates, you included examples

on how to use these predicates; however, the examples included only one predicate

in the WHERE clause. Can you use multiple predicates when using a quantified

comparison predicate?

(continued)

P:\010Comp\Begin8\885-7\ch09.vp
Tuesday, April 08, 2003 11:46:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:228

As with the ANY and SOME predicates, you can use any of the six comparison operators

in an ALL predicate. In addition, you can create any type of subquery, as long as it fits in

logically with the main SELECT statement. The point to remember is that the column value

must be true for all subquery results, not just some of them.

Project 9-2 Using Subqueries in Predicates
This project basically picks up where you left off in Project 9-1. Once more, you’ll

be working with predicates, only this time it will be those that use subqueries. These

are the predicates that were discussed since the last project. They include the IN, EXISTS, ANY,

and ALL predicates. As with the previous project, you’ll apply these predicates to the tables

you created in the Inventory database. You can download the Prj09.txt file, which contains the

SQL statements used in this project.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. In your first statement, you’ll use an IN predicate to query data from the CompactDiscs

table. You want to view CD and inventory information for CDs published by Decca Record

228 Module 9: Using Predicates

A: Yes, you can use multiple predicates. As with any other sort of predicate, you simply

connect the predicates with the AND keyword or the OR keyword. But you must make

sure that the logic you’re using not only makes sense in terms of the data being returned,

but also in the sense of being able to understand the statement itself. As a result, the

best way to treat these sorts of situations is to set off each predicate in parentheses and

then connect the parenthetical expressions with AND or OR. For example, suppose you

want to take the example in the section “Using the SOME and ANY Predicates” and

add a LIKE predicate to it. (The example is based on Figure 9-5.) You can create a

SELECT statement similar to the following:

SELECT Title, Sale FROM CDSale WHERE
(Sale < ANY (SELECT Retail FROM CDRetail WHERE InStock > 9))
AND (Title LIKE ('%Blue%')) ;

Notice that each predicate has been enclosed in a set of parentheses and that they are

joined together by AND. If you execute this statement, your query results will meet the

condition of the ANY predicate and the LIKE predicate, which specifies that the Title

value include the word Blue. If you wanted to, you could write these statements without

enclosing the predicates in parentheses, but then the statements can start to get confusing

and, in more complex structures, can start producing unexpected results.

Prj09.txt

P:\010Comp\Begin8\885-7\ch09.vp
Tuesday, April 08, 2003 12:09:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Company. To find out which CDs these are, you must create a subquery that queries data

from the CDLabels table. Enter and execute the following SQL statement:

SELECT CDTitle, InStock FROM CompactDiscs
WHERE LabelID IN
(SELECT LabelID FROM CDLabels
WHERE CompanyName = 'Decca Record Company') ;

Your query results should include only two rows. Both these rows have a LabelID value of

833, which is the value returned by the subquery.

3. Now you will try a SELECT statement similar to the one in Step 2, only this time you’ll

use an EXISTS predicate to return data. In addition, you will have to add a predicate to the

subquery WHERE clause that matches the LabelID value in the CompactDiscs table to the

LabelID value in the CDLabels table. Enter and execute the following SQL statement:

SELECT CDTitle, InStock FROM CompactDiscs
WHERE EXISTS
(SELECT LabelID FROM CDLabels
WHERE CompactDiscs.LabelID = CDLabels.LabelID AND LabelID > 830) ;

Notice that one of the predicates in the subquery WHERE clause uses a comparison operator

to look for LabelID values greater than 830. If you were to look at the CDLabels table, you

would see that six rows contain LabelID values greater than 830. If you were then to match

these six values to the LabelID values in the CompactDiscs table, you would find 11 rows that

would evaluate to true. These are the 11 rows returned by your SELECT statement.

4. In this statement, you’ll use an ANY predicate to compare LabelID values in the CDLabels

table to LabelID values in the CompactDiscs table that are included in rows with an InStock

value greater than 20. The LabelID values in the CDLabels table can match any values in

the subquery results. Enter and execute the following SQL statement:

SELECT LabelID, CompanyName FROM CDLabels
WHERE LabelID = ANY
(SELECT LabelID FROM CompactDiscs WHERE InStock > 20) ;

Your query should return only five rows.

5. Now try creating the same SELECT statement in Step 4, only use an ALL predicate rather

than an ANY predicate. Enter and execute the following SQL statement:

SELECT LabelID, CompanyName FROM CDLabels
WHERE LabelID = ALL
(SELECT LabelID FROM CompactDiscs WHERE InStock > 20) ;

SQL: A Beginner’s Guide 229

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:229

9

U
sin

g
Pr

ed
ic

at
es

Us
ing

Su
bq

ue
rie

si
n

Pr
ed

ica
tes

Project
9-2

(continued)

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:230

230 Module 9: Using Predicates

You’ll find that no rows are returned by this query. This is because the subquery returns

eight rows with five different values. The LabelID value for each row in the CDLabels table

cannot match all values, only one or some of them. The only way you would return any

rows in this case would be if the subquery returned only one row or returned multiple rows

all with the same value.

6. Now try modifying the SELECT statement by changing the comparison predicate in the

subquery WHERE clause to greater than 40. Enter and execute the following SQL statement:

SELECT LabelID, CompanyName FROM CDLabels
WHERE LabelID = ALL
(SELECT LabelID FROM CompactDiscs WHERE InStock > 40) ;

Your query results will now return one row. This is because the subquery returns only one

row, which meets the condition of the ALL predicate.

7. Close the client application.

Project Summary
In this project, you used the IN, EXISTS, ANY, and ALL predicates to query data from the

Inventory database. You could have also used the SOME predicate in place of the ANY

predicate. Combined with the steps in Project 9-1, your statements here should have allowed

you to try a large variety of predicates. As you learn more about subqueries, you will be able to

create even more elaborate predicates, ones that you can use not only in SELECT statements, but

in UPDATE and DELETE statements as well. In the meantime, I suggest that you experiment

with various types of SELECT statements and try different predicates within those statements

to see exactly what types of query results you can receive.

Module 9 Mastery Check
1. In which SELECT statement clause do you include predicates?

2. Which comparison operator symbol should you use to express a not equal condition?

A. <=

B. >=

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 231

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:231

9

U
sin

g
Pr

ed
ic

at
es

C. <>

D. =<

3. Which keywords can you use to combine predicates in a WHERE clause?

4. You want to query a table that includes the Price column. You want to ensure that all rows

returned have a Price value of 13.99. What predicate should you use?

5. You create the following SQL statement:

SELECT CDTitle, RetailPrice FROM CDsOnHand
WHERE RetailPrice >= 14 AND RetailPrice <= 16 ;

What predicate can you use in place of the two predicates shown in this statement?

6. What keyword can you add to a BETWEEN predicate to find the inverse of the condition

specified by the predicate?

7. You want to query a table to determine which values are null. What type of predicate

should you use?

8. You’re creating a SELECT statement that queries the ArtistsBio table. You want to return

all columns in the table, but you want to return only those rows that do not contain null

values in the PlaceOfBirth column. Which SELECT statement should you use?

9. You’re querying the CDInventory table. You want to view all columns, but you want to

view only rows that contain the word Christmas in the name of the CD. The names are

stored in the CDTitle column. Which SELECT statement should you use?

10. What is the difference between a percentage sign and an underscore when used in a LIKE

predicate?

11. What two types of data sources can you use in an IN predicate?

12. Which type of predicate is concerned only with determining whether or not a subquery

returns any rows?

13. What column names must be specified in an EXISTS predicate?

14. You’re creating a SELECT statement that includes a predicate in the WHERE clause.

You want to use a comparison operator to compare the values in one of the columns to

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 9
Blind Folio 9:232

the results of a subquery. You want the predicate to evaluate to true for any of the subquery

results. Which type of predicate should you use?

A. EXISTS

B. ANY

C. ALL

D. IN

15. What is the difference between a SOME predicate and an ANY predicate?

16. How does the ALL predicate differ from the SOME predicate?

232 Module 9: Using Predicates

P:\010Comp\Begin8\885-7\ch09.vp
Monday, April 07, 2003 12:33:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:233

Module10
Working with Functions
and Value Expressions

CRITICAL SKILLS
10.1 Use Set Functions

10.2 Use Value Functions

10.3 Use Value Expressions

10.4 Use Special Values

233

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:234

In earlier parts of the book, you have been briefly introduced to various value-related functions

and expressions. These values and expressions are used in examples and projects in a number of

modules in order to help demonstrate different components of SQL. In this module, I take a closer

look at many of these values and expressions, focusing on those that you are most likely to use

as a beginning SQL programmer. You should keep in mind, however, that this module covers only

a portion of the many types of functions and expressions supported by SQL. In addition, SQL

implementations can vary greatly with regard to which SQL functions and expressions they

support, how those values and expressions are implemented, and what nonstandard functions

and expressions they include in their products in addition to the standard ones. Be sure to check the

product documentation to determine what functionality is supported. In general, I include in this

module those functions and expressions most commonly supported by SQL implementations.

CRITICAL SKILL

10.1 Use Set Functions
In Module 3, I introduce the concept of a function. As you might recall, a function is a named

operation that performs predefined tasks that you can’t normally perform by using SQL statements

alone. It is a type of routine that takes input parameters and returns values based on those

parameters. You have already seen examples of functions, such as SUM and AVG. Both of

these functions are known as set functions. A set function, sometimes referred to as an aggregate

function, processes or calculates data and returns the appropriate values. Set functions require

that the data be grouped in some way, such as would be the case if the GROUPED BY clause

were used in a SELECT statement. If a table is not explicitly grouped in some way, the table

as a whole is treated as one group.

In this section, I discuss five set functions, COUNT, MAX, MIN, SUM, and AVG. These

functions are all commonly supported in SQL implementations. For all the set functions, I

provide examples of how you would use them in the SELECT clause of a SELECT statement.

The examples are based on the ArtistCDs table, shown in Figure 10-1.

Using the COUNT Function
The first set function that we’ll look at is the COUNT function. As the name implies, the

COUNT function counts the number of rows in a table or values in a column, as specified in

a SELECT statement. When you use the COUNT function, you must specify a column name

or an asterisk, which counts all the rows in a table. For example, if you want to know the total

number of rows in the ArtistCDs table, you can use the following SELECT statement:

SELECT COUNT(*) AS TotalRows
FROM ArtistCDs ;

In this statement, the COUNT function is used with an asterisk—in parentheses—

to return every row in the ArtistCDs table. The returned value is listed under the

234 Module 10: Working with Functions and Value Expressions

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 235

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:235

10

W
or

ki
ng

w
ith

Fu
nc

tio
ns

an
d

Va
lu

e
Ex

pr
es

sio
ns

TotalRows column, a name given to the column returned in the query results, as shown

in the following results:

TotalRows

10

As you can see, the query results include only one value (one row with one column). The value

of 10 indicates that the ArtistCDs table contains 10 rows.

As with any other sort of SELECT statement, you can qualify your query results by adding

the necessary clauses to the statement. For example, suppose you want to find out how many

rows include a NumberSold value greater than 20. You can modify your SELECT statement to

include a WHERE clause:

SELECT COUNT(*) AS TotalRows
FROM ArtistCDs WHERE NumberSold > 20 ;

The value returned will now be 7, rather than 10, because only seven rows meet the search

condition specified in the WHERE clause.

You might find that, instead of querying the number of rows in a table, you want to know

the number of values in a given column. In this case, you would specify the column name

Figure 10-1 Using set functions on the ArtistCDs table

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:236

rather than the asterisk. For example, suppose you modify the SELECT statement shown in

the last example to count values in the ArtistName column:

SELECT COUNT(ArtistName) AS TotalArtists
FROM ArtistCDs WHERE NumberSold > 20 ;

When you execute this query, the value returned is again 7. This means that seven ArtistName

values have a NumberSold value greater than 20. However, this statement doesn’t account for

ArtistName values that might be duplicated. If you want to arrive at a count that takes into

consideration duplicate values, you can add the DISTINCT keyword to the COUNT function:

SELECT COUNT(DISTINCT ArtistName) AS TotalArtists
FROM ArtistCDs WHERE NumberSold > 20 ;

This time, a value of 6 is returned rather than 7. This is because the ArtistName column

includes two instances of the Joni Mitchell value. The column contains only six unique values

that meet the condition set forth in the search criteria.

NOTE
Keep in mind that the SELECT statement is processed in a specific order: first the FROM
clause, then the WHERE clause, and then the SELECT clause. As a result, the COUNT
function applies only to the rows that meet the search condition defined in the WHERE
clause. Rows that are not included in the results of the WHERE clause have no bearing
on the COUNT function. For more information about the SELECT statement, see Module 7.

If the column specified in the COUNT function contains null values, those values are not

included in the count. For example, if the ArtistCDs table includes a row with an ArtistName

value of null and a NumberSold value greater than 20, the SELECT statement shown in the

previous example will still return a value of 6 because the null value will not be counted.

However, if you use an asterisk rather than a column name in the COUNT function, all rows

are counted, even if some contain null values.

Using the MAX and MIN Functions
The MAX and MIN functions are so similar that it is worth discussing them together. The

MAX function returns the highest value from the specified column, and the MIN function

returns the lowest value. Both functions require that you specify a column name. For example,

suppose you want to return the highest value from the NumberSold column in the ArtistCDs

table. Your SELECT statement would look like the following:

SELECT MAX(NumberSold) AS MaxSold FROM ArtistCDs ;

236 Module 10: Working with Functions and Value Expressions

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 237

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:237

10

W
or

ki
ng

w
ith

Fu
nc

tio
ns

an
d

Va
lu

e
Ex

pr
es

sio
ns

When you execute this statement, your query results will include only one value (one row

and one column), as shown in the following results:

MaxSold

54

This result, by itself, is not particularly helpful. It would be nice if your query results

also include the name of the artist and the CD. However, SQL does not support a SELECT

statement such as the following:

SELECT ArtistName, CDName, MAX(NumberSold) FROM ArtistCDs ;

Because set functions treat data as groups, you cannot specify the artist name and CD name

without somehow grouping the data together. As it stands now, the MAX function treats the

entire table as one group; however, neither the ArtistName values nor the CDName values are

grouped together in any way, so the SELECT clause becomes illogical.

One way around this is to use a subquery in the WHERE clause to return the maximum

value and then return the necessary information based on that value, as shown in the following

example:

SELECT ArtistName, CDName, NumberSold FROM ArtistCDs
WHERE NumberSold = (SELECT MAX(NumberSold) FROM ArtistCDs) ;

The subquery finds the maximum value (54) and uses that value as a condition in the WHERE

clause. The NumberSold value must equal 54 as long as that is the highest NumberSold value

in the table. Once you define the necessary search condition in the WHERE clause, you can

then use these results to return the information you need. If you execute this statement, one

row is returned:

ArtistName CDName NumberSold
------------ ---------------------------- ----------
Patsy Cline: Patsy Cline 12 Greatest Hits 54

As you can see, you now have all the information you need to determine which artist and CD

have sold the greatest number.

As I said earlier, the MAX and MIN functions are very similar. If you replace MIN for

MAX in the previous example, your query results will look like the following:

ArtistName CDName NumberSold
---------------- ---------- ----------
William Ackerman Past Light 12

The Past Light row is returned because that is the row with the lowest NumberSold value.

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:238

238 Module 10: Working with Functions and Value Expressions

The MAX and MIN functions are not limited to integers. You can also use them to

compare character strings. For example, suppose you want to know which artist comes first

alphabetically. The following statement will return B.B. King:

SELECT MIN(ArtistName) AS LowName FROM ArtistCDs ;

If you use the MAX function, the statement will return William Ackerman.

NOTE
It is quite likely that the tables in your database will separate first names from last
names. I’ve included both names in one column to provide you with simple examples
of how various statements work. If names were separated into two columns, the MIN or
MAX function would need to be used with the appropriate column.

Now let’s back up a little and return to the idea of grouping data. As I mentioned, a set

function treats a table as one group if no grouping has been implemented. However, you

can easily use a GROUP BY clause to group data. Suppose you want to know the maximum

amount sold by each artist. You can group data based on the ArtistName values:

SELECT ArtistName, MAX(NumberSold) AS MaxSold
FROM ArtistCDs WHERE NumberSold > 30
GROUP BY ArtistName ;

The WHERE clause returns only those rows with a NumberSold value greater than 30.

These rows are then grouped together according to the ArtistName values. Once they’re

grouped together, the maximum amount is returned for each artist, as shown in the following

query results:

ArtistName MaxSold
------------- -------
Bing Crosby 34
Joni Mitchell 45
Patsy Cline 54

The GROUP BY clause creates three groups, one for each artist that meets the search

condition defined in the WHERE clause. Of these three groups, only one is made up of

duplicate values: Joni Mitchell. Because there are two Joni Mitchell rows in the ArtistCDs

table, there are two NumberSold values: 45 and 34. As you can see, the highest value is 45,

which is the value that’s included in the query results for the Joni Mitchell group. If the MIN

function had been used in the SELECT statement, the 34 value would have been returned.

As for the other two artist groups, because there is only one value for each of them, the same

value is used regardless of whether the MAX or the MIN function is used.

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 239

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:239

10

W
or

ki
ng

w
ith

Fu
nc

tio
ns

an
d

Va
lu

e
Ex

pr
es

sio
ns

Using the SUM Function
Unlike the MIN and MAX functions, which select the lowest and highest values from a column,

the SUM function adds those values together. This is particularly handy when you want to find

the totals for grouped data (although the SUM function, like any other set function, treats the

table as one group if data hasn’t been explicitly grouped together).

To better understand the SUM function, let’s take the last example we looked at and modify

it slightly:

SELECT ArtistName, SUM(NumberSold) AS TotalSold
FROM ArtistCDs WHERE NumberSold > 30
GROUP BY ArtistName ;

As you saw before, the WHERE clause returns only those rows with a NumberSold value

greater than 30. These rows are then grouped together according to the ArtistName values. Once

they’re grouped together, the total amount for each artist group is returned in the query results:

ArtistName TotalSold
------------- ---------
Bing Crosby 34
Joni Mitchell 79
Patsy Cline 54

Notice that the query results include the same three groups that were returned in the previous

example. The only difference is that the TotalSold value in the Joni Mitchell row is 79, as

opposed to 45 or 34. The SUM function adds these two values together and returns a value of 79.

Because the other two groups are each made up of only one entry, their TotalSold values are

the same as their NumberSold values in the ArtistCDs table.

You do not have to use a GROUP BY clause in a SELECT statement that uses a SUM

function. You can create a SELECT statement as simple as the following:

SELECT SUM(NumberSold) AS TotalSold FROM ArtistCDs ;

This statement merely adds together all the values in the NumberSold column and returns a

value of 292. By itself, this is not always the most helpful information, which is why using

the function along with a GROUP BY clause is far more effective.

Using the AVG Function
As you probably realize, the AVG function merely averages the values in a specified column.

Like the SUM function, it is most effective when used along with a GROUP BY clause, although

it can be used without the clause, as shown in the following example:

SELECT AVG(NumberSold) AS AvgSold FROM ArtistCDs ;

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:240

This statement returns a value of 29, which is based on the NumberSold values in the

ArtistCDs table. This means that, for all the CDs listed in the table, an average of 29 for each

one has been sold. Although you might find this information helpful, it might be more useful

to you if you were to create a statement that groups data together:

SELECT ArtistName, AVG(NumberSold) AS AvgSold
FROM ArtistCDs WHERE NumberSold > 30
GROUP BY ArtistName ;

If you execute this statement, you will receive the following query results:

ArtistName AvgSold
------------- -------
Bing Crosby 34
Joni Mitchell 39
Patsy Cline 54

As in the previous examples, three groups are created, and for each group, an average is

calculated based on the values in the NumberSold column. For the Joni Mitchell row, this

average is based on the NumberSold values of 45 and 34. For the other two rows, the average

is the same as the NumberSold value because there is only one row for each artist.

NOTE
The precision of the values returned by the AVG function depends on the column’s data
type, whether decimals are used, and how the SQL implementation averages numerics.
For example, the exact average for the Joni Mitchell row is 39.5, but because the
NumberSold column is configured with an INT data type, only whole numbers are used.
For some implementations, the .5 is dropped and not rounded up, as shown in my latest
sample query results.

Progress Check
1. Which set function should you use if you want to find the total number of rows in a table?

2. Which set functions can you use to find the highest and lowest values within a column of

numerical values?

3. How does a set function treat a table if the data is not explicitly grouped?

240 Module 10: Working with Functions and Value Expressions

1. COUNT(*)

2. MAX and MIN

3. The table is treated as one group.

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CRITICAL SKILL

10.2 Use Value Functions
Value functions are a type of function that allow you to return a value that in some way calculates

or derives information from the data stored within your tables or from the SQL implementation

itself. Value functions are similar to set functions in the sense that they perform some sort of

behind-the-scenes action to arrive at that value. However, value functions are different from

set functions in that they do not require that data be grouped together.

SQL supports a number of value functions. Which functions are supported in which SQL

implementations can vary widely. In addition, the meaning of a function name can sometimes

vary from one implementation to the next. Still, there are some consistencies among the various

implementations, and those are the value functions on which I focus.

The value functions that I discuss fall into two categories: string value functions and

datetime value functions. In order to illustrate how these functions work, I use the SalesDates

table, shown in Figure 10-2.

Working with String Value Functions
A string value function allows you to manipulate character string data to produce a precise value

that is based on the original character string. When using a string value function, you must supply

the character string as a parameter of the function. That parameter is then converted to a new value

according to the purpose of that function and any other parameters that might be specified. In this

section, I introduce you to three string value functions: SUBSTRING, UPPER, and LOWER.

SQL: A Beginner’s Guide 241

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:241

10

W
or

ki
ng

w
ith

Fu
nc

tio
ns

an
d

Va
lu

e
Ex

pr
es

sio
ns

Figure 10-2 Using value functions on the SalesDates table

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:242

242 Module 10: Working with Functions and Value Expressions

Using the SUBSTRING String Value Function
The SUBSTRING string value function extracts a defined number of characters from an

identified character string in order to create a new string. That original character string can be

derived from a column or can be explicitly stated. In both cases, the character string is passed

as a parameter of the SUBSTRING function, along with a start point and, optionally, a length

specification. For example, suppose you want to return only the first 10 characters of the values

in the CompactDisc column in the SalesDates table. You can create a SELECT statement

similar to the following:

SELECT SUBSTRING(CompactDisc FROM 1 FOR 10) AS ShortName
FROM SalesDates ;

The SUBSTRING function includes three parameters. The first is the name of the column,

CompactDisc, which identifies the source used for the character string. The next parameter,

FROM 1, indicates that the function will start counting at the first character. The third parameter,

10, follows the FOR keyword. The FOR 10 parameter, which is optional, indicates that up to

10 characters will be included in the new character string.

If you execute this SELECT statement, you’ll receive the following query results:

ShortName

Famous Blu
Blue
Court and
Past Light
That Chris
Patsy Clin
Out of Afr
Leonard Co
Fundamenta
Blues on t

Notice that only the first 10 characters of each CompactDisc value are included in the results.

For those values less than 10 characters, the full name appears.

NOTE
In SQL Server, you do not use the FROM and FOR keywords when specifying a
SUBSTRING function. Instead, you simply separate the parameters by using a comma.
In addition, all three parameters are required. Oracle does not support the SUBSTRING
function, but does support a similar function called SUBSTR.

The FROM parameter can accept a negative number or a zero as a parameter. When using

a negative number or a zero, keep in mind that 1 represents what you would think of as a normal

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 243

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:243

10

W
or

ki
ng

w
ith

Fu
nc

tio
ns

an
d

Va
lu

e
Ex

pr
es

sio
ns

starting position. The next character to the left of 1 is 0. The character to the left of 0 is –1,

and so on. The FOR parameter counts characters starting at the starting point. If a zero or a

negative number is used, the SUBSTRING function acts as though characters actually

exist in those places. For example, suppose you modify the preceding SELECT statement

as follows:

SELECT SUBSTRING(CompactDisc FROM -2 FOR 10) AS ShortName
FROM SalesDates ;

If you execute this statement, only the first seven characters of each name would be returned.

If you use a zero instead, only the first nine characters will be returned. It is only when you use

a FROM parameter of 1 that you return exactly the number of characters (from the character

string) that are specified by the FOR parameter.

The SUBSTRING function is not limited to the SELECT clause. In fact, using it in a WHERE

clause can be quite useful when defining a search condition. For example, the following SELECT

statement uses the SUBSTRING function to return rows that start with Blue:

SELECT CompactDisc, DateSold FROM SalesDates
WHERE SUBSTRING(CompactDisc FROM 1 FOR 4) = 'Blue' ;

In this statement, the SUBSTRING function returns the first four characters of the

CompactDisc values and compares them to the Blue value. Only two rows are included

in the query results:

CompactDisc DateSold
------------------ -----------------------
Blue 2002-12-22 12:02:05.033
Blues on the Bayou 2002-12-24 14:15:09.673

Both rows in the query results have a CompactDisc value that starts with Blue. No other rows

meet the search condition specified in the WHERE clause.

Using the UPPER and LOWER String Value Functions
The UPPER and LOWER string value functions are quite similar in that they are both used

to convert characters from one case to another. The UPPER function allows you to convert a

character string to all uppercase. The LOWER function allows you to convert a string to all

lowercase. For example, suppose you want to modify the SELECT statement shown in the last

example to return all CompactDisc values in uppercase. Your SELECT statement would now

include an UPPER function:

SELECT UPPER(CompactDisc) AS Title, DateSold FROM SalesDates
WHERE SUBSTRING(CompactDisc FROM 1 FOR 4) = 'Blue' ;

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:244

244 Module 10: Working with Functions and Value Expressions

Your query results are the same as in the last example, only this time the CD titles are all

in uppercase, as shown in the following results:

Title DateSold
------------------ -----------------------
BLUE 2002-12-22 12:02:05.033
BLUES ON THE BAYOU 2002-12-24 14:15:09.673

If you had used the LOWER function, instead of the UPPER, the CD titles would all be in

lowercase, with no initial capitalization at the beginning of the words.

Working with Datetime Value Functions
Datetime value functions provide information about the current date and time. Each function

returns a value based on the time or date (or both) as they are configured in the operating

system. SQL:1999 supports five datetime value functions, which are described in Table 10-1.

NOTE
SQL implementations vary widely with regard to how they implement datetime
functionality; consequently, the implementation of datetime functions also varies. For
example, SQL Server supports only the CURRENT_TIMESTAMP datetime value function.
On the other hand, Oracle supports the CURRENT_DATE, CURRENT_TIMESTAMP,
and LOCALTIMESTAMP datetime value functions, but not the CURRENT_TIME and
LOCALTIME functions. In addition, the exact values generated by these functions can
also vary from implementation to implementation. For example, the query results will
not always include information about the current time zone, and some might represent
time using a 24-hour clock rather than A.M. and P.M.

Because the CURRENT_TIMESTAMP datetime value function is supported by both SQL

Server and Oracle, let’s take a closer look at implementing that one. However, keep in mind

that implementing any of the SQL datetime functions is the same process, depending on which

functions are supported by the specific SQL implementation in which you’re working.

Value Function Description

CURRENT_DATE Returns a value that represents the current date.

CURRENT_TIME Returns a value that represents the current time. The value includes
information about the current time zone, relative to Universal Coordinated
Time (UCT), which used to be called Greenwich Mean Time (GMT).

CURRENT_TIMESTAMP Returns a value that represents the current date and time. The value
includes information about the current time zone, relative to UCT.

LOCALTIME Returns a value that represents the current time.

LOCALTIMESTAMP Returns a value that represents the current date and time.

Table 10-1 Datetime Value Functions Supported by SQL: 1999

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 245

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:245

10

W
or

ki
ng

w
ith

Fu
nc

tio
ns

an
d

Va
lu

e
Ex

pr
es

sio
ns

By understanding how the CURRENT_TIMESTAMP function works, you’ll gain a better

understanding of how all functions work. However, be sure to check your implementation’s

documentation for more information on any of the functions that are supported by that product.

Depending on the SQL implementation, you can use the CURRENT_TIMESTAMP function

in a SELECT statement to simply retrieve the current timestamp information. As you might

expect with anything related to datetime functionality, the way in which you call a function

can vary. However, in some cases you might be able to use a statement as basic as the following:

SELECT CURRENT_TIMESTAMP

This statement will retrieve the current time and date in some implementations. In other

implementations, you might have to add a FROM clause to the statement in order to retrieve

this information. Regardless of how you need to write your SELECT statement, in all likelihood

using a CURRENT_TIMESTAMP function in this way is not very useful. You’ll probably make

better use of datetime functions by using them to compare data or to insert data automatically.

For example, suppose you wanted the SalesDates table (shown in Figure 10-2) to insert the

current time and date automatically in your table each time you add another row. Your table

definition might look something like the following:

CREATE TABLE SalesDates
(CompactDisc VARCHAR (60),
DateSold DATETIME DEFAULT CURRENT_TIMESTAMP) ;

In this table definition, the DateSold column has been assigned a default value that is

based on the CURRENT_TIMESTAMP function. Each time a row is added to the table, the

datetime value is inserted into the DateSold column for that row. As a result, you can create

INSERT statements that specify only the CompactDisc value. The current date and time are

then automatically added to the DateSold column at the time that the row is added.

Progress Check
1. Which function do you use to extract a defined number of characters from an identified

character string in order to create a new string?

2. How does the UPPER function differ from the LOWER function?

3. Which datetime function returns only the current date?

1. SUBSTRING

2. The UPPER function allows you to convert a character string to all uppercase. The LOWER function allows you to

convert a string to all lowercase.

3. CURRENT_DATE

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:246

CRITICAL SKILL

10.3 Use Value Expressions
A value expression is a type of expression that returns a data value. The expression can include

column names, values, mathematical operators, keywords, or other elements that together create

a sort of formula, or expression, that returns a single value. For example, you can combine the

values in two columns to create one value, or you can perform operations on the value in one

column to create a new value.

In this section, we will look at numeric value expressions as well as the CASE and CAST

value expressions. To demonstrate how several of these expressions work, we will use the

CDTracking table, shown in Figure 10-3.

Working with Numeric Value Expressions
Numeric value expressions are expressions that use mathematic operators to perform calculations

on numeric data values stored in your tables. You can use these operators to add, subtract, multiply,

and divide these values. Table 10-2 shows the four operators that you can use to create numeric

value expressions.

You can build numeric value expressions in much the same way as you build mathematical

formulas. The basic principles are the same. For example, multiplication and division take

precedence over addition and subtraction, and elements that should be calculated first are

enclosed in parentheses; otherwise, each operation is calculated according to precedence and

246 Module 10: Working with Functions and Value Expressions

Figure 10-3 Using value expressions on the CDTracking table

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the order in which it is written. For example, the formula 2 + 2 * 5 / 4 equals 4.5; however, the

formula (2 + 2) * 5 / 4 equals 5. In the first formula, 2 is multiplied by 5, then divided by 4,

and then added to 2. In the second formula, 2 is added to 2, then multiplied by 5, and then

divided by 4.

Now let’s take a look at an example of a numeric value expression. Suppose you want to

add the InStock column to the OnOrder column in the CDTracking table. You can create a

SELECT statement similar to the following:

SELECT CDName, InStock, OnOrder, (InStock + OnOrder) AS Total
FROM CDTracking

As you can see, the SELECT clause first specifies three column names: CDName, InStock,

and OnOrder. These are then followed by a numeric value expression: (InStock + OnOrder).

Values from the InStock and OnOrder columns are added together and included in the query

results under a column named Total, as shown in the following results:

CDName InStock OnOrder Total
----------------------------- ------- ------- -----
Famous Blue Raincoat 19 16 35
Blue 28 22 50
Court and Spark 12 11 23
Past Light 6 7 13
That Christmas Feeling 14 14 28
Patsy Cline: 12 Greatest Hits 15 18 33
Out of Africa 8 5 13
Leonard Cohen The Best Of 6 8 14
Fundamental 10 6 16
Blues on the Bayou 11 10 21

For each row, a value has been added to the Total column that adds together the values in the

InStock column and the OnOrder column.

SQL: A Beginner’s Guide 247

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:247

10

W
or

ki
ng

w
ith

Fu
nc

tio
ns

an
d

Va
lu

e
Ex

pr
es

sio
ns

Expression Operator Example

Addition + InStock + OnOrder

Subtraction - Sold - (InStock + OnOrder)

Multiplication * InStock * 2

Division / Sold / 2

Table 10-2 Using Numeric Value Expressions to Calculate Data

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:248

Numeric value expressions are not limited to the SELECT clause. For example, you can

use one in a WHERE clause to specify a search condition. Suppose you want to return the

same results as in the previous SELECT statement but only for those CDs with a Total value

greater than 25. You can modify your statement as follows:

SELECT CDName, InStock, OnOrder, (InStock + OnOrder) AS Total
FROM CDTracking WHERE (InStock + OnOrder) > 25

Now your search results include only four rows, as shown in the following:

CDName InStock OnOrder Total
----------------------------- ------- ------- -----
Famous Blue Raincoat 19 16 35
Blue 28 22 50
That Christmas Feeling 14 14 28
Patsy Cline: 12 Greatest Hits 15 18 33

Numeric value operators can also be combined with each other to create more complex

expressions. In the next example, I include an additional expression that calculates three sets

of values and combines them into one column in the query results:

SELECT CDName, InStock, OnOrder, (InStock + OnOrder) AS Total,
Sold, (Sold - (InStock + OnOrder)) AS Shortage
FROM CDTracking WHERE (InStock + OnOrder) > 25

This statement allows you to calculate how many CDs you have available (InStock +

OnOrder) as compared to how many you sold. The difference is then added to the Shortage

column in the query results. If you have sold more CDs than are available, a positive number is

added to the Shortage column. If, on the other hand, there are enough CDs available, a negative

number is added. The following query results show the amounts calculated when you execute

the SELECT statement:

CDName InStock OnOrder Total Sold Shortage
----------------------------- ------- ------- ----- ---- --------
Famous Blue Raincoat 19 16 35 34 -1
Blue 28 22 50 56 6
That Christmas Feeling 14 14 28 34 6
Patsy Cline: 12 Greatest Hits 15 18 33 54 21

The query results now include two calculated columns: Total and Shortage. All other values

(InStock, OnOrder, and Sold) are taken directly from the table.

As you can see, numeric value expressions are quite flexible and can be used in many different

ways. In addition to the methods we’ve looked at so far, you can also combine column values with

specified values. For example, suppose you want to see how many CDs you would have available

if you doubled the amount you had on order for those CDs where there are fewer than 15 available:

248 Module 10: Working with Functions and Value Expressions

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 249

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:249

10

W
or

ki
ng

w
ith

Fu
nc

tio
ns

an
d

Va
lu

e
Ex

pr
es

sio
ns

SELECT CDName, InStock, OnOrder, (InStock + OnOrder) AS Total,
(InStock + OnOrder * 2) AS DoubleOrder
FROM CDTracking WHERE (InStock + OnOrder) < 15

The second numeric value expression in this statement multiplies the OnOrder value by 2,

adds it to the InStock value, and inserts the total into the DoubleOrder column of the query

results, as shown in the following results:

CDName InStock OnOrder Total DoubleOrder
------------------------- ------- ------- ----- -----------
Past Light 6 7 13 20
Out of Africa 8 5 13 18
Leonard Cohen The Best Of 6 8 14 22

The query results include only three rows that meet the condition of the WHERE clause.

For each of these rows, the InStock and OnOrder columns are calculated to provide you with

data that can be useful to you, depending on your needs. The nice part is that these values do

not have to be stored in the database. Instead, they’re calculated when you execute the SELECT

statement, rather than having to maintain tables with additional data.

Using the CASE Value Expression
A CASE value expression allows you to set up a series of conditions that modify specified

values returned by your SQL statement. You can change the way a value is represented or

calculate a new value. Each value is modified according to the condition specified within

the CASE expression. A CASE value expression includes the CASE keyword and a list of

conditions. The last condition provides a default condition if none of the previous conditions

have been met. The value expression is then closed by using the END keyword.

Let’s take a look at an example to give you a better idea of how this works. Suppose you

want to increase the number of CDs you have on order, but you want to increase the amount

for only certain CDs. In addition, you want to base how many CDs you add to the order on

the current amount. Before you actually update the table, you can look at what the new values

would be by creating a SELECT statement that queries the CDTracking table, as shown in the

following example:

SELECT CDName, OnOrder, NewOrders =
CASE
WHEN OnOrder < 6 THEN OnOrder + 4
WHEN OnOrder BETWEEN 6 AND 8 THEN OnOrder + 2
ELSE OnOrder

END
FROM CDTracking WHERE OnOrder < 11 ;

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:250

250 Module 10: Working with Functions and Value Expressions

In this statement, three columns are specified: CDName, OnOrder, and NewOrders. The

NewOrders column is the column created for the query results. It will contain the values

updated by the CASE value expression. The expression itself is made up of the column name

(NewOrders), the equals sign, the CASE keyword, two WHEN/THEN clauses, one ELSE

clause, and the END keyword. Each WHEN/THEN clause represents one of the conditions.

For example, the first clause specifies that if the OnOrder value is less than 6, then 4 should

be added to the value. The second WHEN/THEN clause specifies that if the OnOrder value

falls within the range of 6 though 8, then 2 should be added to the value.

After the WHEN/THEN clauses, the ELSE clause specifies the final condition. If the value

does not meet the conditions defined in the WHEN/THEN clauses, then the ELSE clause

specifies a default condition. In the case of the preceding SELECT statement, the ELSE clause

merely refers to the OnOrder column, without specifying any modifications. (It would be the

same as saying OnOrder + 0.) In other words, if none of the WHEN/THEN conditions are met,

the OnOrder value stays the same. If you were to execute the SELECT statement, you would

receive the following results:

CDName OnOrder NewOrders
------------------------- ------- ---------
Past Light 7 9
Out of Africa 5 9
Leonard Cohen The Best Of 8 10
Fundamental 6 8
Blues on the Bayou 10 10

As you can see, the Out of Africa row is increased by 4, the Blues on the Bayou row is not

increased at all, and the other three rows are increased by 2.

In addition to modifying values, you can use a CASE value expression to rename values.

This is particularly useful if your query results include values that are not easily recognizable.

For example, suppose you want to create a query that returns data from the CDCategory column

of the CDTracking table. You can rename the values in the column so that the information

returned is more understandable to users, as shown in the following SELECT statement:

SELECT CDName, CDCategory =
CASE
WHEN CDCategory = 'FROK' THEN 'Folk Rock'
WHEN CDCategory = 'CPOP' THEN 'Classic Pop'
WHEN CDCategory = 'NEWA' THEN 'New Age'
WHEN CDCategory = 'XMAS' THEN 'Christmas'
WHEN CDCategory = 'CTRY' THEN 'Country'
WHEN CDCategory = 'STRK' THEN 'Soundtrack'
WHEN CDCategory = 'BLUS' THEN 'Blues'
ELSE NULL

END
FROM CDTracking ;

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 251

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:251

10

W
or

ki
ng

w
ith

Fu
nc

tio
ns

an
d

Va
lu

e
Ex

pr
es

sio
ns

NOTE
You do not have to put the various components of the CASE value expression on
separate lines, as I have done here. I do it this way in order to clearly show you each
component. It also makes the code more readable to anyone reviewing it.

In this SELECT statement, the different values in the CDCategory column are renamed to

more useful names. Notice that you do not need to repeat the column names to the right of the

THEN keyword. The predicate construction is assumed by the context of the clause. When you

execute this statement, you receive the following query results:

CDName CDCategory
----------------------------- ----------
Famous Blue Raincoat Folk Rock
Blue Classic Pop
Court and Spark Classic Pop
Past Light New Age
That Christmas Feeling Christmas
Patsy Cline: 12 Greatest Hits Country
Out of Africa Soundtrack
Leonard Cohen The Best Of Folk Rock
Fundamental Blues
Blues on the Bayou Blues

As you can see, only user-friendly names appear in the CDCategory column. If any of the

original values had not met the condition defined in the WHEN/THEN clauses, a null value

would be inserted in the query results.

Ask the Expert
Q: Can you use a CASE value expression anywhere other than a SELECT statement?

A: Another handy use for the CASE value expression is in the SET clause of an UPDATE

statement. For example, suppose you want to update the values in the OnOrder column

in the CDTracking table (shown in Figure 10-3). You can update those values by

specifying specific conditions in a CASE expression:

UPDATE CDTracking
SET OnOrder =
CASE
WHEN OnOrder < 6 THEN OnOrder + 4
WHEN OnOrder BETWEEN 6 AND 8 THEN OnOrder + 2
ELSE OnOrder

END

(continued)

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using the CAST Value Expression
The CAST value expression serves a much different purpose than the CASE expression. The

CAST expression allows you to change a value’s data type when retrieving that value from your

database. However, it does not change the data type of the source column. This is particularly

useful when working with programming languages in which data types do not match up and

you need to use a common denominator to work with the value.

To use the CAST value expression, you must specify the CAST keyword, and, in parentheses,

provide the column name, the AS keyword, and the new data type, in that order. To illustrate this,

let’s return to the SalesDates table shown in Figure 10-2. The table includes the CompactDisc

column and the DateSold column. The DateSold column is configured with the TIMESTAMP

data type. Suppose you want to change the datetime values to character strings. You can use

the CAST expression in your SELECT clause, as shown in the following statement:

SELECT CompactDisc, CAST(DateSold AS CHAR (25)) AS CharDate
FROM SalesDates WHERE CompactDisc LIKE ('%Blue%')

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:252

252 Module 10: Working with Functions and Value Expressions

This statement will add 4 to the OnOrder values that are less than 6, and it will add 2 to

the OnOrder values that fall within the range of 6 through 8. Otherwise, no additional rows

will be changed.

Q: Can you reference more than one column in a CASE value expression?

A: Yes, you can reference more than one column. Suppose you want to update OnOrder

values, but base those updates on CDCategory values. You can create a statement

similar to the following:

UPDATE CDTracking
SET OnOrder =
CASE
WHEN CDCategory = 'CPOP' THEN OnOrder * 3
WHEN CDCategory = 'BLUS' THEN OnOrder * 2
ELSE OnOrder

END

In this statement, OnOrder values are multiplied by 3 when CDCategory values equal

CPOP, and OnOrder values are multiplied by 2 when CDCategory values equal BLUS.

Otherwise, no values are changed.

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 253

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:253

10

W
or

ki
ng

w
ith

Fu
nc

tio
ns

an
d

Va
lu

e
Ex

pr
es

sio
ns

This statement converts the DateSold values from TIMESTAMP values to CHAR values.

As you can see, all you need to do is specify the CASE keyword, followed by the parenthetical

parameters that identify the source column and the new data type, along with the AS keyword.

When you execute this statement, you receive query results similar to what you would see if

you had not used CAST:

CompactDisc CharDate
-------------------- -------------------
Famous Blue Raincoat Dec 22 2002 10:58AM
Blue Dec 22 2002 12:02PM
Blues on the Bayou Dec 24 2002 2:15PM

Notice that you can assign a name to the column that contains the new datetime results. In this

case, the new column name is CharDate.

NOTE
You might find that, in your SQL implementation, when a datetime value is converted,
the format changes slightly. For example, in SQL Server, a date value is expressed
numerically and a time value is expressed in a 24-hour clock (military time), but when
the value is converted to a CHAR data type, the time value is expressed in alphanumeric
characters, and the time is expressed in a 12-hour clock (A.M. and P.M.).

Progress Check
1. What type of operators are used in numeric value expressions?

2. What is a CASE value expression?

3. What is the last word in a CASE value expression?

4. What does a CAST value expression do?

1. Mathematic operators

2. A CASE value expression is a type of expression that allows you to set up a series of conditions that modify specified

values returned by your SQL statement.

3. END

4. A CAST value expression changes a value’s data type when retrieving that value from the data base. It does not change

the data type of the source column.

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:254

CRITICAL SKILL

10.4 Use Special Values
In Module 6, I discuss special values that SQL supports that allow you to determine the current

users. A special value exists for each type of user. These values act as placeholders for the

actual user-related value. You can use them in expressions to return the value of the specific

user. SQL supports five special values, which are described in Table 10-3. (See Module 6 for

more information about the various types of SQL users.)

The special values can be used in different ways in an SQL database, such as for establishing

connections or running a stored procedure. The special value, rather than the actual user name,

is embedded in the code to allow the code to remain flexible from one situation to another.

Another way in which a special value can be used is to store user data in a table. To illustrate

this, let’s take a look at the CDOrders table in Figure 10-4.

Each time a row is added to the table, a value for CURRENT_USER is inserted into the

OrderedBy column. This makes it handy to track which user has placed the order. If you were

to look at the table definition, you would see that a default value had been defined for the

OrderedBy column, as shown in the following CREATE TABLE statement:

CREATE TABLE CDOrders
(CDTitle VARCHAR (60), Ordered INT,
OrderedBy CHAR (30) DEFAULT CURRENT_USER) ;

If you were to insert data into this table, you would have to specify only a CDTitle value

and an Ordered value. The OrderedBy value would be inserted automatically, and that value

would be the current user identifier. If you do not specify a default value for the OrderedBy

254 Module 10: Working with Functions and Value Expressions

Value Description

CURRENT_USER Identifies the current user identifier. If the SQL-session user identifier is the current
user identifier, then CURRENT_USER, USER, and SESSION_USER all have the
same value, which can occur if the initial identifier pair is the only active user
identifier/role name pair (the pair at the top of the authentication stack).

USER Identifies the current user identifier. USER means the same thing as
CURRENT_USER.

SESSION_USER Identifies the current SQL-session user identifier.

CURRENT_ROLE Identifies the current role name.

SYSTEM_USER Identifies the current operating system user who invoked an SQL module.

Table 10-3 Using SQL: 1999 Special Values

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 255

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:255

10

W
or

ki
ng

w
ith

Fu
nc

tio
ns

an
d

Va
lu

e
Ex

pr
es

sio
ns

Us
ing

Fu
nc

tio
ns

an
dV

alu
eE

xp
re

ssi
on

s

Project
10-1

column, you can use the special value to insert the user. For example, the following INSERT

statement inserts a row into the CDOrders table:

INSERT INTO CDOrders
VALUES ('Rhythm Country and Blues', 14, CURRENT_USER) ;

When you execute the statement, a value representing the current user identifier (such as

Mngr) is inserted into the OrderedBy column.

To determine the extent to which you can use the special values, you should review the

product documentation for your SQL implementation. You’ll find that the ways in which you

can use these values will vary from one implementation to the next; however, once you’re

comfortable with using special values in your implementation, you’ll find them a useful tool

as you become more proficient with programming SQL.

Project 10-1 Using Functions and Value
Expressions

In this module, you learned about many of the functions and value expressions

supported by SQL. Now you will try out these functions and expressions by querying

data from the Inventory database. Specifically, you will create SELECT statements that contain

Figure 10-4 Using the CURRENT_USER special value in the CDOrders table

Prj10.txt

(continued)

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:256

256 Module 10: Working with Functions and Value Expressions

the COUNT, MIN, SUM, SUBSTRING, and UPPER functions and ones that contain

numerical, CASE, and CAST value expressions. You can download the Prj10.txt file, which

contains the SQL statements used in this project.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. In the first statement, you will determine the number of unique ArtistName values in the

Artists table. Enter and execute the following SQL statement:

SELECT COUNT(DISTINCT ArtistName) AS Artists FROM Artists ;

Your query should return 18 rows, one for each artist.

3. In the next statement, you will determine the minimum number of CDs in stock, as listed in

the CompactDiscs table. You’ll name the column in the query results MinStock. Enter and

execute the following SQL statement:

SELECT MIN(InStock) AS MinStock FROM CompactDiscs ;

Your query results should include only one column and one row, and show a value of 5.

That means that five is the least number of CDs you have in stock for any one CD.

4. Now you will determine the total number of CDs in stock. However, this time you will group

these totals according to the LabelID values. Enter and execute the following SQL statement:

SELECT LabelID, SUM(InStock) AS Total
FROM CompactDiscs GROUP BY LabelID ;

Your query should return 10 rows, one for each LabelID value. The Total value for each

row represents the total number of CDs for that particular LabelID group.

5. In the preceding steps, you used set functions when querying data from the Inventory

database. You’ll now try a couple of value functions. The first of these is SUBSTRING.

In this SELECT statement, you’ll extract data from the PlaceOfBirth column in the Artists

table. You want to extract eight characters, starting with the first character in the string.

Enter and execute the following SQL statement:

SELECT ArtistName, SUBSTRING(PlaceOfBirth FROM 1 FOR 8) AS Birthplace
FROM Artists ;

Your query results should return 18 rows and include two columns: ArtistName and

Birthplace. The Birthplace column contains the extracted values, which are based on the

table’s PlaceOfBirth column.

6. The next value function you’ll try is the UPPER function. In this SELECT statement, you’ll

convert the names of the CDs to all uppercase. Enter and execute the following SQL statement:

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 257

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:257

10

W
or

ki
ng

w
ith

Fu
nc

tio
ns

an
d

Va
lu

e
Ex

pr
es

sio
ns

Us
ing

Fu
nc

tio
ns

an
dV

alu
eE

xp
re

ssi
on

s

Project
10-1

SELECT UPPER(CDTitle) AS CDName FROM CompactDiscs ;

This statement should return 15 rows with only one column that lists the name of the CDs

in the CompactDiscs table. The CD titles should all be in uppercase.

7. Now you will move on to numeric value expressions. The next statement you try creates

two columns in the query results that double and triple the values in the InStock column of

the CompactDiscs table. However, the statement returns values only for those rows with an

InStock value less than 25. Enter and execute the following SQL statement:

SELECT CDTitle, InStock,
(InStock * 2) AS Doubled, (InStock * 3) AS Tripled
FROM CompactDiscs WHERE InStock < 25 ;

Your SELECT statement should return nine rows that each include InStock values that have

been multiplied by 2 and by 3.

8. The next value expression you’ll try is the CASE expression. The statement will provide

updated InStock values in the ToOrder column of the query results. For InStock values

less than 10, the values will be doubled. For InStock values that fall within the range of 10

through 15, 3 will be added to the values. All other InStock values will remain the same.

The statement operates only on those rows whose original InStock value is less than 20.

Enter and execute the following SQL statement:

SELECT CDTitle, InStock, ToOrder =
CASE
WHEN InStock < 10 THEN InStock * 2
WHEN InStock BETWEEN 10 AND 15 THEN InStock + 3
ELSE InStock

END
FROM CompactDiscs WHERE InStock < 20 ;

Your query results should include only seven rows, and the ToOrder column of the query

results should contain the updated values.

9. Now you will try the CAST value expression. You will query the MusicTypes table but will

convert the data type of the TypeName column in your query results. Enter and execute the

following SQL statement:

SELECT TypeID, CAST(TypeName AS CHAR (20)) AS CharType
FROM MusicTypes ;

Your query should return 11 rows. The query results should include a CharType column

that contains the converted values.

10. Close the client application.

(continued)

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:258

Project Summary
You should now be fairly comfortable with the various functions and value expressions that

we reviewed in this module. Remember that each SQL implementation supports different

functions and value expressions, usually many more than what you have seen here. In fact, in

many cases, the functions and value expressions you saw in this module represent only the tip

of the iceberg. Be sure to review your product documentation to find out what functions and

value expressions are supported and how they’re implemented. You’ll find them useful tools

in a variety of situations and well worth the effort you invest now.

Module 10 Mastery Check
1. What is a set function?

2. You’re creating a SELECT statement that queries the ArtistCDs table. The table includes

the ArtistName and CDName columns. You want your statement to return the total number

of rows in the table. Which COUNT function should you include in your SELECT clause?

A. COUNT(*)

B. COUNT(ArtistName)

C. COUNT(CDName)

D. COUNT(ArtistName, CDName)

3. Which set function should you use to add together the values in a column?

A. MAX

B. COUNT

C. SUM

D. AVG

4. Set functions require that the data be ____________ in some way.

5. What are value functions?

6. You’re using the SUBSTRING function to extract characters from the CompactDisc column

of the SalesDates table. You want to start with the third character and extract eight characters.

What parameters should you use in the SUBSTRING function?

258 Module 10: Working with Functions and Value Expressions

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 1:07:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7. You’re using the LOWER function on the Past Light value of the CDName column. What

value will be returned?

8. Which function returns a value that represents the current date and time as well as

information related to UCT?

A. LOCALTIMESTAMP

B. CURRENT_DATE

C. LOCALTIME

D. CURRENT_TIMESTAMP

9. What are four types of operators that you use in a numeric value expression?

10. You are querying data from the CDTracking table. You want to add values in the InStock

column to values in the OnOrder column. You then want to double the column totals. How

do you set up the numeric value expression?

11. Which value expression do you use to set up a series of conditions that modify values?

12. You’re creating a SELECT statement that includes a CASE value expression. You want one

of the conditions to specify that any OnOrder values greater than 10 should be increased by 5.

How should you set up the WHEN/THEN clause?

13. What is a CAST value expression?

14. You’re querying the DateSold column in the SalesDates table. You want to convert the

values to a CHAR (25) data type, and you want the data displayed in the CharDate column

in the query results. How do you define the CAST value expression?

15. Which special value can you use to identify the current SQL session user identifier?

SQL: A Beginner’s Guide 259

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 10
Blind Folio 10:259

10

W
or

ki
ng

w
ith

Fu
nc

tio
ns

an
d

Va
lu

e
Ex

pr
es

sio
ns

P:\010Comp\Begin8\885-7\ch10.vp
Monday, April 07, 2003 2:59:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:261

Module11
Accessing Multiple
Tables

CRITICAL SKILLS
11.1 Perform Basic Join Operations

11.2 Join Tables with Shared Column Names

11.3 Use the Condition Join

11.4 Perform Union Operations

261

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:262

An important component of any relational database is the relationship that can exist between

any two tables. This relationship allows you to tie data in one table to data in another table.

These sorts of relationships are particularly useful when you want to query related data from

more than one table and you want to retrieve that data in a meaningful way so that the relationships

between the tables are, for all practical purposes, invisible. One method that SQL:1999 supports

for querying data in this manner is to join the tables in one statement. SQL defines several

types of join operations. The type that you can use in any given situation depends on your SQL

implementation (with regard to statements supported and how performance might be impacted),

on which data you want returned, and on how the tables have been defined. In this module, I

discuss a number of join operations and provide details about how they’re implemented and

what results you can expect when you use them.

CRITICAL SKILL

11.1 Perform Basic Join Operations
One of the simplest types of joins to implement is the comma-separated join. In this type of

operation, you’re required only to supply a list of tables (separated by commas) in the FROM

clause of the SELECT statement. You can, of course, qualify the join in the WHERE clause—

which you would want to do if you want to extract meaningful data from the tables—but you’re

not required to do so. However, before I discuss the WHERE clause, let’s first take a look at

the comma-separated join at its most basic.

Suppose you want to display data from the CDInventory table and the Performers table,

shown in Figure 11-1. (The figure also includes the PerfType table, which we’ll be using in the

“Creating Joins with More than Two Tables” section.) You can view the data in the CDInventory

and Performers tables by querying each table separately, or you can join the tables in one

statement.

To join the two tables, you can create a SELECT statement as simple as the following one:

SELECT * FROM CDInventory, Performers ;

The query results returned by this statement produce what is known as a Cartesian product

table, which is a list of each row in one table joined together with each row in the other table,

as shown (in part) in the following query results:

CDName PerfID InStock PerfID PerfName TypeID
----------------------- ------ ------- ------ --------------- ------
Famous Blue Raincoat 102 12 102 Jennifer Warnes 12
Blue 101 24 102 Jennifer Warnes 12
Court and Spark 101 17 102 Jennifer Warnes 12
Past Light 105 9 102 Jennifer Warnes 12
Fundamental 104 22 102 Jennifer Warnes 12
Blues on the Bayou 103 19 102 Jennifer Warnes 12

262 Module 11: Accessing Multiple Tables

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Longing in Their Hearts 104 18 102 Jennifer Warnes 12
Luck of the Draw 104 25 102 Jennifer Warnes 12
Deuces Wild 103 17 102 Jennifer Warnes 12
Nick of Time 104 11 102 Jennifer Warnes 12
Both Sides Now 101 13 102 Jennifer Warnes 12
Famous Blue Raincoat 102 12 101 Joni Mitchell 10
Blue 101 24 101 Joni Mitchell 10
Court and Spark 101 17 101 Joni Mitchell 10
Past Light 105 9 101 Joni Mitchell 10

In actuality, the preceding SELECT statement would return far more rows than are shown

here. These results represent only a partial list. Because the CDInventory table contains 11

rows and the Performers table contains 9 rows, the entire query results would contain 99 rows.

Let’s take a closer look at this. The Famous Blue Raincoat row in the CDInventory table has

been joined with each row in the Performers table, which totals 9 rows. Each of the remaining

10 rows in the CDInventory table is matched to each row in the Performers table in the same

way. As a result, there are 99 rows (11 × 9 = 99).

As you can see, these query results are not the most useful. However, you can generate

more meaningful results if you use a WHERE clause to create an equi-join, which is a type of

join that equates the values in one or more columns in the first table to the values in one or

SQL: A Beginner’s Guide 263

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:263

11

A
cc

es
sin

g
M

ul
tip

le
Ta

bl
es

Figure 11-1 Joining the CDInventory, Performers, and PerfType tables

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:264

264 Module 11: Accessing Multiple Tables

more corresponding columns in the second table. For example, you can qualify the previous

SELECT statement in the following way:

SELECT * FROM CDInventory, Performers
WHERE CDInventory.PerfID = Performers.PerfID ;

Now your query results will include only those rows in which the values in the PerfID

column of the CDInventory table match the values in the PerfID column of the Performers

table. Notice that you have to qualify the column names by adding the table names. You must

do this whenever columns from different tables have the same name. If you execute this

statement, you’ll receive the following query results:

CDName PerfID InStock PerfID PerfName TypeID
----------------------- ------ ------- ------ ---------------- ------
Famous Blue Raincoat 102 12 102 Jennifer Warnes 12
Blue 101 24 101 Joni Mitchell 10
Court and Spark 101 17 101 Joni Mitchell 10
Past Light 105 9 105 William Ackerman 15
Fundamental 104 22 104 Bonnie Raitt 10
Blues on the Bayou 103 19 103 B.B. King 11
Longing in Their Hearts 104 18 104 Bonnie Raitt 10
Luck of the Draw 104 25 104 Bonnie Raitt 10
Deuces Wild 103 17 103 B.B. King 11
Nick of Time 104 11 104 Bonnie Raitt 10
Both Sides Now 101 13 101 Joni Mitchell 10

The data returned by this query is now a lot more meaningful. Each CD is matched with

the appropriate performer, and only 11 rows are displayed, rather than 99. However, even

these query results include repetitive data (the PerfID column). In addition, you might find

that not only do you want to eliminate duplicate columns, but you also want to display only

certain columns and perhaps qualify your search condition even further.

Let’s modify the SELECT statement we’ve been looking at even further by specifying

column names in the SELECT clause and adding another predicate to the WHERE clause, as

shown in the following example:

SELECT CDInventory.CDName, Performers.PerfName, CDInventory.InStock
FROM CDInventory, Performers
WHERE CDInventory.PerfID = Performers.PerfID
AND CDInventory.InStock < 15 ;

In this statement, I have specified that three columns should be included in the query results.

Notice that I’ve qualified the column names by including the table names. Notice also that the

WHERE clause includes an additional predicate, separated from the first predicate by the AND

keyword. Now any rows that are returned must also have InStock values less than 15. If you

execute this statement, you’ll receive the following query results:

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CDName PerfName InStock
-------------------- ---------------- -------
Famous Blue Raincoat Jennifer Warnes 12
Both Sides Now Joni Mitchell 13
Past Light William Ackerman 9
Nick of Time Bonnie Raitt 11

As you can see, we’ve refined the query down to just the most essential information. Of

course, you can create all sorts of queries, depending on your needs, as long as you follow the

basic guidelines for creating a comma-separated join:

● Your FROM clause should include all table names.

● Your WHERE clause should define an equi-join.

● Your column references should be qualified when column names are shared among tables.

Aside from these guidelines, you’re free to create whatever sort of SELECT statement is

necessary to extract the information you need from the participating tables. But keep in mind

that there needs to be some sort of logical connection between the tables. This connection is

often seen in the form of a foreign key, but that doesn’t have to be the case. (For more information

about foreign keys, see Module 4.) Whether or not a foreign key exists, you must be able to

join columns logically through an equi-join condition.

Using Correlation Names
As I stated earlier, you must qualify your column references by adding table names to those

columns that share a name. However, as a general policy, it’s a good idea to always qualify

column references when joining tables, whether or not it’s necessary. This makes referencing

the code at a later time much easier if the statement is fully self-documented. However, as

your queries become more complex, it can become increasingly tedious to re-enter table names

every time you reference a column. Because of this, SQL supports correlation names, or aliases,

that can be used for the duration of a statement. A correlation name is simply a shortened version

of the actual table name that is used to simplify code and make it more readable.

Take, for example, the last SELECT statement that we looked at. You can recast this

statement by using correlation names for the two tables:

SELECT c.CDName, p.PerfName, c.InStock
FROM CDInventory AS c, Performers AS p
WHERE c.PerfID = p.PerfID
AND c.InStock < 15 ;

SQL: A Beginner’s Guide 265

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:265

11

A
cc

es
sin

g
M

ul
tip

le
Ta

bl
es

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:266

The SELECT statement produces exactly the same results as the preceding statement, only

now the tables are referenced by different names, except in the FROM clause. In fact, you use

the FROM clause to define the aliases that are used in the rest of the statement. In this case, the

CDInventory table is renamed c, and the Performers table is renamed p. As a result, c and p

must be used everywhere else in the SELECT statement when referring to those tables. Once

a correlation name has been defined, you cannot use the actual table name.

To better understand how the renaming process works, let’s revisit the issue of how

SELECT statements are processed. As you might recall from Module 7, the FROM clause is

processed first and the SELECT clause is processed last. That is why the correlation names are

defined in the FROM clause. Once they are defined, all other clauses can use those aliases

when qualifying column references. The correlation names are used throughout the remainder

of the statement. If you create a new SELECT statement, you must redefine those names.

As you can see in the previous SELECT statement, a correlation name is defined immediately

after the actual table name. The new name follows the AS keyword. However, the AS

keyword is not required. In most implementations, you can also use the following convention

to rename the tables:

SELECT c.CDName, p.PerfName, c.InStock
FROM CDInventory c, Performers p
WHERE c.PerfID = p.PerfID
AND c.InStock < 15 ;

Notice that only the new name is specified, without the AS keyword. This makes the SQL

statement that much simpler. In fact, some implementations, such as Oracle, do not allow you

to use the AS keyword at all, even though it is part of the SQL standard. Again, this last

SELECT statement will provide the same query results that you saw in the two previous

examples. Only the statement itself has been changed.

Creating Joins with More than Two Tables
Up to this point, the examples that we’ve looked at have joined only two tables. However, you

can use a comma-separated join to display data from more than two tables. If you refer again

to Figure 11-1, you’ll see that the PerfType table is included in the illustration. You can, if you

want, join all three tables in a single SELECT statement, as shown in the following example:

SELECT c.CDName, p.PerfName, t.TypeName
FROM CDInventory c, Performers p, PerfType t
WHERE c.PerfID = p.PerfID
AND p.TypeID = t.TypeID
AND TypeName = 'Popular' ;

266 Module 11: Accessing Multiple Tables

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this statement, the FROM clause includes all three tables. In addition, the WHERE

clause provides two equi-join conditions: one that maps the PerfID columns and one that maps

the TypeID columns. If you execute this statement, you’ll receive the following query results:

CDName PerfName TypeName
----------------------- ------------- --------
Blue Joni Mitchell Popular
Court and Spark Joni Mitchell Popular
Fundamental Bonnie Raitt Popular
Longing in Their Hearts Bonnie Raitt Popular
Luck of the Draw Bonnie Raitt Popular
Nick of Time Bonnie Raitt Popular
Both Sides Now Joni Mitchell Popular

Notice that information from all three tables is included in the results: the name of the CD,

the name of the performer, and the category of performer. Even though a relationship might

exist between the CDInventory table and the Performers table, as well as between the Performers

table and the PerfType table, your query results provide a seamless display that hides these

relationships and shows only the information that you need.

Creating the Cross Join
In addition to the comma-separated join, SQL supports another type of operation called the

cross join. The cross join is nearly identical to the comma-separated join. The only difference

is that, instead of separating column names with a comma, you use the CROSS JOIN keywords.

For example, let’s take a statement we used earlier and modify it by replacing the comma with

the CROSS JOIN keywords:

SELECT c.CDName, p.PerfName, c.InStock
FROM CDInventory c CROSS JOIN Performers p
WHERE c.PerfID = p.PerfID
AND c.InStock < 15 ;

This statement returns three columns from two tables, and the WHERE clause contains an

equi-join condition. If you execute the statement, you’ll receive the same results as if you were

using a comma-separated join. Using one over the other may simply be a matter of determining

which statement your SQL implementation supports and, if both are supported, which provides

better performance. In all likelihood, it will come down to a matter of personal preference,

with little advantage of one over the other.

SQL: A Beginner’s Guide 267

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:267

11

A
cc

es
sin

g
M

ul
tip

le
Ta

bl
es

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:268

Creating the Self-Join
Another type of join that you can create is the self-join, which can be either a comma-

separated join or a cross join. In a self-join, you create a join condition that merely references

the same table. For example, suppose you add an Employees table to your database, as shown

in Figure 11-2. The Employees table includes a list of employee IDs, employee names, and the

employee IDs of their managers, who are also listed in the table. For example, the manager of

Mr. Jones (EmpID 102) is Ms. Smith (EmpID 101).

To create a self-join on this table, you must create a join that treats the table as two

separate tables with the same name, same columns, and same data:

SELECT a.EmpID, a.EmpName, b.EmpName AS Manager
FROM Employees a, Employees b
WHERE a.Mngr = b.EmpID ORDER BY a.EmpID ;

268 Module 11: Accessing Multiple Tables

Ask the Expert
Q: If you’re joining tables, it seems likely that in some cases you will return duplicate

rows in your query results, depending on how your SELECT statement is

constructed. How can you avoid duplicate rows?

A: As with most queries, it is possible to return duplicate rows. For example, the following

statement will return duplicate performer names and types:

SELECT p.PerfName, t.TypeName
FROM CDInventory c, Performers p, PerfType t
WHERE c.PerfID = p.PerfID
AND p.TypeID = t.TypeID ;

For those performers who made more than one CD, the query results will contain a

row for each of those CDs. However, as with any other SELECT statement, you can

add the DISTINCT keyword to your SELECT clause, as shown in the following

example:

SELECT DISTINCT p.PerfName, t.TypeName
FROM CDInventory c, Performers p, PerfType t
WHERE c.PerfID = p.PerfID
AND p.TypeID = t.TypeID ;

This statement will return fewer rows than the previous statement (5 compared to 11),

and no rows will be duplicated.

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 269

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:269

11

A
cc

es
sin

g
M

ul
tip

le
Ta

bl
es

In this statement, each instance of the table is given a correlation name. As a result, you

now have table a and table b. You pull the EmpID value and EmpName value from table a, but

you pull the Manager value from table b. The equi-join condition is defined in the WHERE

clause by equating the Mngr value in table a with the EmpID value in table b. This provides

the link that treats one physical table as two logical tables. When you execute this statement,

you receive the following query results:

EmpID EmpName Manager
----- ----------- -----------
102 Mr. Jones Ms. Smith
103 Mr. Roberts Ms. Smith
104 Ms. Hanson Mr. Roberts
105 Mr. Fields Mr. Jones
106 Ms. Lee Mr. Jones
107 Mr. Carver Mr. Roberts

The results include the employee ID and name of each employee, along with the name of

the employee’s manager. As you can see, the self-join can be a handy tool to use in cases such

as this where one table references itself.

Figure 11-2 Self-joining the Employees table

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:270

Progress Check
1. What type of table does a comma-separated join return if an equi-join condition is not

specified in the WHERE clause?

2. What constitutes an equi-join condition in a WHERE clause?

3. If two columns from two different tables share the same name, what must you do with that

name in a SELECT statement?

4. What is a correlation name?

CRITICAL SKILL

11.2 Join Tables with Shared Column Names
SQL provides two methods for setting up joins that you can use when you’re working with

columns that have the same names. These two methods—the natural join and the named

column join—allow you to easily specify a join condition between two tables when one or

more columns within those tables are the same. In order to use either of these two methods,

the tables must meet the following conditions:

● The joined columns must share the same name and have compatible data types.

● The names of the joined columns cannot be qualified with table names.

When you’re using either the natural join or the named column join, each table must share

at least one column in common. For example, the TitlesInStock and the TitleCosts tables,

shown in Figure 11-3, have two columns that are the same: CDTitle and CDType. Notice that

each set of matching columns is configured with the same data type.

You can use a natural join or a named column join to join these two tables. I describe each

of these types of join operations in the next several sections, and I use the tables in Figure 11-3

to illustrate how each of these methods work.

270 Module 11: Accessing Multiple Tables

1. Cartesian product table

2. The values in one or more columns in the first table are equated with the values in one or more corresponding columns in

the second table.

3. You must qualify the name by adding the table name.

4. A correlation name is a shortened version of the actual table name that is used to simplify code and make it more readable.

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
Not all SQL implementations support natural joins or named column joins. For example,
SQL Server does not support either of these methods, although Oracle supports both.

Creating the Natural Join
The natural join automatically matches rows for those columns with the same name. You do

not have to specify any sort of equi-join condition for natural joins. The SQL implementation

determines which columns have the same names and then tries to form a match. The drawback

to this is that you cannot specify which columns are matched up, although you can specify

which columns are included in the query results.

In the following example, a natural join is used to join the TitlesInStock table to the

TitleCosts table:

SELECT CDTitle, CDType, c.Retail
FROM TitlesInStock s NATURAL JOIN TitleCosts c
WHERE s.Inventory > 15 ;

In this statement, the tables are joined through the CDTitle and CDType columns. Notice

that neither column names are qualified. If either of these column names had been included in

SQL: A Beginner’s Guide 271

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:271

11

A
cc

es
sin

g
M

ul
tip

le
Ta

bl
es

Figure 11-3 Joining the TitlesInStock and TitleCosts tables

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:272

the WHERE clause, they still would not be qualified. When you execute this statement, you

receive the following query results:

CDTitle CDType Retail
-------------------- ------- ------
Blues on the Bayou Blues 15.99
Deuces Wild Blues 14.99
Blue Popular 15.99

As you can see, only three rows are returned. These are the rows in which the CDTitle

values in both tables are equal and the CDType values are equal. In addition, the Inventory

values are greater than 15.

Creating the Named Column Join
Although natural joins can be handy for simple join operations, you might find that you do not

always want to include every matching column as part of the join condition. The way around

this is to use a named column join, which allows you to specify which matching columns to

include. For example, suppose you want to include only the CDTitle in the join condition. You

can modify the previous example as follows:

SELECT CDTitle, s.CDType, c.Retail
FROM TitlesInStock s JOIN TitleCosts c
USING (CDTitle)
WHERE s.Inventory > 15 ;

In this statement, I’ve removed the NATURAL keyword and added a USING clause,

which identifies the matching columns. Notice that the CDType column name has now been

qualified, but the CDTitle column has not. Only the columns identified in the USING clause

are not qualified. This statement returns the same results as the preceding example, although

this does not necessarily have to be the case, depending on the data in the tables. If, however,

you include both matching columns in the USING clause, you would definitely see the same

results as you saw in the natural join. By identifying all matching columns in the USING

clause, you are performing the same function as a natural join.

CRITICAL SKILL

11.3 Use the Condition Join
So far in this module, we’ve looked at comma-separated joins, cross joins, natural joins, and

named column joins. In comma-separated and cross joins, the equi-join condition is defined in

the WHERE clause. In natural joins, the equi-join condition is automatically assumed on all

matching columns. And in named column joins, the equi-join condition is placed on any

272 Module 11: Accessing Multiple Tables

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

matching columns defined in the USING clause. The condition join takes an approach

different from any of these. In a condition join, the equi-join condition is defined in the ON

clause, which works in a way very similar to the WHERE clause. However, despite the use of

the ON clause, a basic condition join is similar in many ways to the previous join operations

we’ve looked at, except that, unlike the natural join and named column join, the condition join

allows you to match any compatible columns from one table against those in another table.

Column names do not have to be the same.

A condition join can be separated into two types of joins: inner joins and outer joins. The

difference between the two is the amount of data returned by the query. An inner join returns

only those rows that meet the equi-join condition defined in the SELECT statement. In other

words, the inner join returns only matched rows. An outer join, on the other hand, returns

matched rows and some or all of the unmatched rows, depending on the type of outer join.

NOTE
According to the SQL:1999 standard, natural joins and named column joins support
both inner and outer joins. However, this can vary from SQL implementation to
implementation, so be sure to check the product documentation. By default, a join is
processed as an inner join unless specifically defined as an outer join.

Creating the Inner Join
Now that you have a general overview of the condition join, let’s take a closer look at the inner

join. The inner join is the most common of the condition joins and is specified by using the

INNER JOIN keywords. However, the INNER keyword is not required. If JOIN is used alone,

an inner join is assumed. In addition to the JOIN keyword (specified in the FROM clause), you

must also define an ON clause, which immediately follows the FROM clause. Let’s take a

look at an example to see how this works.

Suppose you want to join the CDTitles table and the TitlesArtists table, shown in Figure 11-4.

In the following example, an inner join has been created that is based on the TitleID columns in the

two tables:

SELECT t.Title, ta.ArtistID
FROM CDTitles t INNER JOIN TitlesArtists ta
ON t.TitleID = ta.TitleID

WHERE t.Title LIKE ('%Blue%') ;

The statement uses the INNER JOIN keywords to join the CDTitles and TitlesArtists

tables. The equi-join condition is defined in the ON clause, using the TitleID column in each

table. Notice that correlation names have been defined on both tables. The SELECT statement

is further qualified by the WHERE clause, which returns only those rows that contain Blue in

SQL: A Beginner’s Guide 273

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:273

11

A
cc

es
sin

g
M

ul
tip

le
Ta

bl
es

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:274

the Title column of the CDTitles table. When you execute this query, you receive the

following query results:

Title ArtistID
-------------------- --------
Famous Blue Raincoat 2001
Blue 2002
Blues on the Bayou 2013

As you can see, the results include information from both tables: the Title column from the

CDTitles table and the ArtistID column from the TitlesArtists table. Although this information

274 Module 11: Accessing Multiple Tables

Figure 11-4 Joining the CDTitles, TitlesArtists, and CDArtists tables

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

can be useful, it might be better for some users if they can view the actual names of the artists,

rather than numbers. The way to achieve this is to include a third table in the join.

Let’s return to the previous example and add a second join condition to the CDArtists table

(shown in Figure 11-4). In the following example, the second condition is added immediately

after the original ON clause:

SELECT t.Title, a.Artist
FROM CDTitles t INNER JOIN TitlesArtists ta
ON t.TitleID = ta.TitleID

INNER JOIN CDArtists a
ON ta.ArtistID = a.ArtistID

WHERE t.Title LIKE ('%Blue%') ;

Notice that the INNER JOIN keywords are repeated, followed by the name of the third

table, which is then followed by another ON clause. In this clause, the equi-join condition is

defined on the ArtistID columns in the TitlesArtists and CDArtists tables. Keep in mind that

you do not need to include the INNER keyword, nor do the columns specified in the ON

clause need to have the same name.

If you execute this statement, you’ll receive the following query results:

Title Artist
-------------------- ------
Famous Blue Raincoat Jennifer Warnes
Blue Joni Mitchell
Blues on the Bayou B.B. King

Notice that the artist names are now listed in the results. Also notice that the fact that three

tables have been used to retrieve this information is invisible to whoever views the query results.

Creating the Outer Join
As I mentioned earlier in this section, an outer join returns all matched rows and some or all

unmatched rows, depending on the type of outer join you create. SQL supports three types of

outer joins:

● Left Returns all matched rows and all unmatched rows from the left table—the table to

the left of the JOIN keyword.

● Right Returns all matched rows and all unmatched rows from the right table—the table

to the right of the JOIN keyword.

● Full Returns all matched and unmatched rows from both tables.

SQL: A Beginner’s Guide 275

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:275

11

A
cc

es
sin

g
M

ul
tip

le
Ta

bl
es

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:276

An outer join follows the same syntax as an inner join, except that, rather than using the

INNER JOIN keywords (or just the JOIN keyword), you use LEFT OUTER JOIN, RIGHT

OUTER JOIN, or FULL OUTER JOIN. Note that the OUTER keyword is optional. For

example, you can specify LEFT JOIN instead of LEFT OUTER JOIN.

The best way to illustrate the differences between the types of outer joins is to show you

the query results for each type. To illustrate the differences, I use the CDInfo table and the

CDType table, shown in Figure 11-5.

In the first example, I define an inner join on the two tables, just to show you what the

query results would normally look like:

SELECT i.Title, t.TypeName, i.Stock
FROM CDInfo i JOIN CDType t
ON i.TypeID = t.TypeID ;

This statement returns the following query results:

Title TypeName Stock
-------------------- ----------- -----
Famous Blue Raincoat Folk Rock 19
Blue Classic Pop 28
Past Light New Age 6
Out of Africa Soundtrack 8
Blues on the Bayou Blues 11

276 Module 11: Accessing Multiple Tables

Figure 11-5 Joining the CDInfo and CDType tables

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In most cases, the inner join will provide all the information you need. But suppose you

want to include the unmatched rows from the CDInfo table. In that case, you would create a

left outer join, as shown in the following example:

SELECT i.Title, t.TypeName, i.Stock
FROM CDInfo i LEFT OUTER JOIN CDType t
ON i.TypeID = t.TypeID ;

Notice that I’ve replaced JOIN (for INNER JOIN) with LEFT OUTER JOIN. As I

mentioned earlier, you can omit the OUTER keyword. If you execute this statement, you’ll

receive the following query results:

Title TypeName Stock
-------------------- ----------- -----
Famous Blue Raincoat Folk Rock 19
Blue Classic Pop 28
Past Light New Age 6
Out of Africa Soundtrack 8
Fundamental NULL 10
Blues on the Bayou Blues 11

As you may have noticed, the Fundamental row is now included in the query results. Although

this row doesn’t include matched columns, it is still included in the query results because it is part

of the left table. For this row, the TypeName column is assigned a null value because no logical

value can be returned for this column. The null value serves as a placeholder.

You can also return the unmatched rows from the CDType table, which is the table to the

right of the JOIN keyword:

SELECT i.Title, t.TypeName, i.Stock
FROM CDInfo i RIGHT OUTER JOIN CDType t
ON i.TypeID = t.TypeID ;

This statement is nearly the same as the preceding statement, except that RIGHT has been

specified. The statement returns the following query results:

Title TypeName Stock
-------------------- ----------- -----
Famous Blue Raincoat Folk Rock 19
Blue Classic Pop 28
Past Light New Age 6
NULL Country NULL
Out of Africa Soundtrack 8
Blues on the Bayou Blues 11
NULL Jazz NULL

SQL: A Beginner’s Guide 277

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:277

11

A
cc

es
sin

g
M

ul
tip

le
Ta

bl
es

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:278

This time the unmatched columns from the right table are included in the results, and null

values are shown for the Title and Stock column.

If you want to return all unmatched rows, then you would need to modify the statement to

define a full outer join:

SELECT i.Title, t.TypeName, i.Stock
FROM CDInfo i FULL OUTER JOIN CDType t
ON i.TypeID = t.TypeID ;

This statement will return the following query results:

Title TypeName Stock
-------------------- ----------- -----
Famous Blue Raincoat Folk Rock 19
Blue Classic Pop 28
Past Light New Age 6
Out of Africa Soundtrack 8
Fundamental NULL 10
Blues on the Bayou Blues 11
NULL Jazz NULL
NULL Country NULL

As you can see, all matched and unmatched rows are included in the query results. Notice that

all six rows are included from the CDInfo table and all seven rows are included from the

CDType table.

Progress Check
1. Which type of join operations can you use only when the joined columns share the same

name?

2. In which clause of a named column join is the equi-join condition specified?

3. In which clause of a condition join is the equi-join condition specified?

4. Which type of condition join returns all matched and unmatched rows?

278 Module 11: Accessing Multiple Tables

1. Natural joins and named column joins

2. USING clause

3. ON clause

4. Full outer join

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 279

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:279

11

A
cc

es
sin

g
M

ul
tip

le
Ta

bl
es

CRITICAL SKILL

11.4 Perform Union Operations
SQL provides yet one more method to join data from different tables. The UNION operator

is a method that you can use to join similar columns from different tables. In order to use the

UNION operator, the source columns must be compatible and the same number of columns

must be extracted from each table. In other words, you can join information, but the operation

is very limited in scope.

Let’s take a look at an example to show you what I mean. If you take a look at Figure 11-6,

you can see that it shows two tables: the CDsContinued table and the CDsDiscontinued table.

The tables are nearly identical in structure but serve two different purposes.

Suppose that you want to join together the data in these two tables so that you can view

information from both tables. You can, of course, execute two separate SELECT statements,

or you can combine those statements into one statement that joins the information, as shown in

the following example:

SELECT * FROM CDsContinued
UNION
SELECT * FROM CDsDiscontinued ;

As you can see, the two SELECT statements are joined together with the UNION operator.

If you execute this statement, you’ll receive the following results:

CDName CDType InStock
----------------------------- ------ -------
Blue CPOP 28
Blues on the Bayou BLUS 11
Court and Spark FROK 3
Famous Blue Raincoat FROK 19
Fundamental NPOP 10
Kojiki NEWA 2
Leonard Cohen The Best Of FROK 3
Orlando STRK 1
Out of Africa STRK 8
Past Light NEWA 6
Patsy Cline: 12 Greatest Hits CTRY 4
That Christmas Feeling XMAS 2

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:280

280 Module 11: Accessing Multiple Tables

The results include 12 rows of data, six rows from each table. You can limit the results

even further by specifying search conditions in WHERE clauses. You can also specify that

your search return only specific columns, such as is the case in the following statement:

SELECT CDType FROM CDsContinued
UNION
SELECT CDType FROM CDsDiscontinued ;

Now when you generate your query, only values from the CDType column are displayed:

CDType

BLUS
CPOP
CTRY
FROK
NEWA
NPOP
STRK
XMAS

Notice that only 8 rows are returned, rather than 12. This is because duplicate rows are

filtered out. If you want all rows included in the query results, regardless of whether there are

duplicate values, you can add the ALL keyword after the UNION operator, as shown in the

following example:

SELECT CDType FROM CDsContinued
UNION ALL
SELECT CDType FROM CDsDiscontinued ;

Figure 11-6 Joining the CDsContinued and CDsDiscontinued tables

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This statement will return 12 rows rather than 8, with several values duplicated.

As you can see, the UNION operator is useful only in very specific cases. If you want

more control over your query results, you should use one of the several types of joins

supported by SQL.

Project 11-1 Querying Multiple Tables
In this module, you have been introduced to a variety of join operations as well as

the UNION operator, which, technically, is not considered a join. Now you will

have the opportunity to practice several of these join techniques by querying data from the

Inventory database. Specifically, you will query some of the tables that are configured with

foreign key relationships, which are the sort of relationships that tie data from one table to data

in another table. Because you will not be changing any data, you should feel free to try out

various types of join operations, beyond what we review in this project. You can download

the Prj11.txt file, which contains the SQL statements used in this project.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. The first type of operation you’ll perform is a comma-separated join on the Artists and

ArtistCDs tables. The join will use the ArtistID column to establish the equi-join condition.

Enter and execute the following SQL statement:

SELECT * FROM Artists a, ArtistCDs c
WHERE a.ArtistID = c.ArtistID ;

SQL: A Beginner’s Guide 281

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:281

11

A
cc

es
sin

g
M

ul
tip

le
Ta

bl
es

Qu
er

yin
gM

ult
ipl

eT
ab

les

Project
11-1

Ask the Expert
Q: Are there any types of joins that are comparable to using a UNION operator?

A: SQL:1999 actually supports a union join that performs many of the same functions as

the UNION operator. The union join is similar to the full outer join, in terms of how

query results are consolidated. However, the full outer join allows you to specify (in

the ON clause) which columns will be matched. A union join does not. In addition, the

union join has generally not been implemented in SQL relational database management

systems (RDBMSs), and it has been deprecated in the SQL:1999 standard, which means

that it is a candidate for deletion from future versions of SQL. So for all practical

purposes, the union join is not something you need to be concerned with.

Prj11.txt

(continued)

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:282

Your query results should include 19 rows and should include the ArtistID columns from

both tables as well as the ArtistName, PlaceOfBirth, and CompactDiscID columns.

3. You will now modify the preceding statement so that it also joins the CompactDiscs table.

That way, you can display the actual name of the CDs. In addition, you will specify the

names of the columns that should be returned. Enter and execute the following SQL

statement:

SELECT d.CDTitle, a.ArtistName, a.PlaceOfBirth
FROM Artists a, ArtistCDs c, CompactDiscs d
WHERE a.ArtistID = c.ArtistID AND d.CompactDiscID = c.CompactDiscID ;

Your query results should again include 19 rows. However, this time the results will display

only the CDTitle, ArtistName, and PlaceOfBirth columns.

4. Now let’s turn the last SELECT statement into a cross join. Enter and execute the following

SQL statement:

SELECT d.CDTitle, a.ArtistName, a.PlaceOfBirth
FROM Artists a CROSS JOIN ArtistCDs c CROSS JOIN CompactDiscs d
WHERE a.ArtistID = c.ArtistID AND d.CompactDiscID = c.CompactDiscID ;

You should receive the same query results as you did in the preceding SELECT statement.

5. The next type of statement that you’ll try is a condition join. As you probably recall, a

condition join can be either an inner join or an outer join. The first type you’ll try is the inner

join. In this statement, you’ll join together three tables: CompactDiscs, CompactDiscTypes,

and MusicTypes. Enter and execute the following SQL statement:

SELECT d.CDTitle, t.TypeName
FROM CompactDiscs d JOIN CompactDiscTypes dt
ON d.CompactDiscID = dt.CompactDiscID

JOIN MusicTypes t
ON dt.MusicTypeID = t.TypeID ;

Your query results should include 24 rows. Only the CDTitle column and the TypeName

column should be displayed.

6. Now let’s modify the last SELECT statement to create a full outer join on both join

conditions. Enter and execute the following SQL statement:

SELECT d.CDTitle, t.TypeName
FROM CompactDiscs d FULL JOIN CompactDiscTypes dt
ON d.CompactDiscID = dt.CompactDiscID

FULL JOIN MusicTypes t
ON dt.MusicTypeID = t.TypeID ;

282 Module 11: Accessing Multiple Tables

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Your query results should now include 26 rows rather than 24. This is because the MusicTypes

table includes two rows that are unmatched: the Jazz row and the International row. In other

words, no CDs match up to either of these two music types.

7. Close the client application.

Project Summary
In this project, you created comma-separated, cross, and condition joins. The condition

joins included inner and outer joins. As you can see, join operations provide a great deal of

flexibility when querying data from the tables in your database. However, they’re not the only

solution when accessing data from more than one table. A subquery will often provide the

same functionality as a join. In Module 12, I discuss subqueries in great detail. As you will

see, they provide yet one more way for you to access data from multiple tables.

Module 11 Mastery Check
1. You are using a comma-separated join operation to join two tables. The first table contains

five rows and the second table contains three rows. How many rows will the Cartesian

product table contain?

2. Which clause contains the equi-join condition in a comma-separated join?

3. What basic guidelines should you follow when creating a comma-separated join?

4. You’re creating a join on two tables. You assign correlation names to each of these tables.

Which names should you use in the SELECT clause: the correlation names or the actual

table names?

5. Which type of join is nearly identical to the comma-separated join?

A. Condition join

B. Natural join

C. Cross join

D. Named column join

6. How many tables are contained in a self-join?

7. What guidelines must you follow when creating natural joins or named column joins?

SQL: A Beginner’s Guide 283

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:283

11

A
cc

es
sin

g
M

ul
tip

le
Ta

bl
es

Qu
er

yin
gM

ult
ipl

eT
ab

les

Project
11-1

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 11
Blind Folio 11:284

8. What is the difference between a natural join and a named column join?

9. Which type of join contains a USING clause to specify the equi-join condition?

10. What are the two types of condition joins?

11. What are the three types of outer joins?

12. Which type of condition join should you use if you want to return only matched rows?

A. Inner join

B. Left outer join

C. Right outer join

D. Full outer join

13. Which type of join contains an ON clause?

A. Cross join

B. Comma-separated join

C. Natural join

D. Condition join

14. A(n) ____________ operator allows you to combine separate SELECT statements into one

statement in order to join data in a query result.

15. What keyword can you use with a UNION operator to return all rows in the query results,

regardless of whether there are duplicate values?

284 Module 11: Accessing Multiple Tables

P:\010Comp\Begin8\885-7\ch11.vp
Friday, April 04, 2003 3:56:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:285

Module12
Using Subqueries
to Access and
Modify Data

CRITICAL SKILLS
12.1 Create Subqueries That Return Multiple Rows

12.2 Create Subqueries That Return One Value

12.3 Work with Correlated Subqueries

12.4 Use Nested Subqueries

12.5 Use Subqueries to Modify Data

285

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Subqueries, like joins, provide a way to access data in multiple tables with a single query.

A subquery can be added to a SELECT, INSERT, UPDATE, or DELETE statement in

order to allow that statement to use the query results returned by the subquery. The subquery is

essentially an embedded SELECT statement that acts as a gateway to data in a second table.

The data returned by the subquery is used by the primary statement to meet whatever conditions

have been defined for that statement. In this module, I discuss how subqueries are used in

various statements, particularly SELECT statements, and provide examples that demonstrate

how to create subqueries and what type of query results to expect.

CRITICAL SKILL

12.1 Create Subqueries That Return
Multiple Rows
In Module 9, I include several examples of subqueries that are used to demonstrate certain

types of predicates, such as IN and EXISTS. This module, in many ways, is an extension of

that discussion because of the way in which subqueries are most commonly implemented—in

the WHERE clause of a SELECT statement. An understanding of these types of subqueries

goes hand in hand with an understanding of how certain predicates are formulated to create

specific search conditions, search conditions that rely on those subqueries to return data from

a referenced table.

You can divide subqueries in a WHERE clause into two general categories: those that can

return multiple rows and those that can return only one value. In this section, I discuss the first

of these categories. In the next section, “Create Subqueries That Return One Value,” I discuss

the second category. As I expand on each subject, you’ll no doubt recognize the statement formats

from my discussion of predicates. Although this information might seem a bit repetitive (which

is why I keep it brief), it is presented here not only to provide a cohesive overview of subqueries,

but also to provide a different perspective. In other words, rather than looking at subqueries

through the perspective of the predicate, we’ll look at them through the subquery itself.

Despite the fact that my discussion focuses on subqueries that are implemented through

the WHERE clause, the use of subqueries is not limited to that clause. Indeed, you can include

subqueries in a SELECT clause or HAVING clause. However, using subqueries in a SELECT

clause is not very common. In addition, you would use subqueries in a HAVING clause only

when defining search conditions on grouped data. Even so, the principles for using subqueries

in a HAVING clause are similar to using them in a WHERE clause. For these reasons, my

discussion here focuses on using subqueries in the WHERE clause. As you become a more

advanced SQL programmer, you might find that you want to try using subqueries in other places

within a SELECT statement.

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:286

286 Module 12: Using Subqueries to Access and Modify Data

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using the IN Predicate
The first type of subquery that we’ll look at is the type used within the IN predicate. As you

might recall from Module 9, the IN predicate compares values from a column in the primary

table to values returned by the subquery. If the column value is in the subquery results, that

row (from the primary table) is returned in the query results of the SELECT statement. For

example, suppose you want to query data from the CDStock table, shown in Figure 12-1.

Your query results should include only those rows whose CDTitle values match the values

returned by the subquery. The subquery results should include only those rows that contain an

ArtistName value of Joni Mitchell (from the CDArtists table). The following SELECT statement

will return this data:

SELECT * FROM CDStock
WHERE CDTitle IN
(SELECT Title FROM CDArtists WHERE ArtistName = 'Joni Mitchell') ;

SQL: A Beginner’s Guide 287

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:287

12

U
sin

g
Su

bq
ue

rie
s

to
A

cc
es

s
an

d
M

od
ify

D
at

a

Figure 12-1 Querying the CDStock and CDArtists tables

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:288

Let’s take a closer look at the subquery in this statement. As you can see, it is included in

the IN predicate, after the IN keyword. The subquery is basically a SELECT statement that

includes a search condition defined in the WHERE clause:

SELECT Title FROM CDArtists WHERE ArtistName = 'Joni Mitchell'

If you were to execute only the subquery, you would receive the following query results:

Title

Blue
Court and Spark

These results are then used by the IN predicate to compare them to the CDTitle values

in the CDStock table. When you execute the entire SELECT statement, you receive the

following results:

CDTitle Stock
--------------- -----
Blue 42
Court and Spark 22

Notice that only two rows are returned from the CDStock table. These rows represent the

two CDs performed by Joni Mitchell. Even though the CDStock table does not include artist

information, you can still tie data from the two tables together because they include similar

columns, allowing you to use the data returned by a subquery.

NOTE
In the case of the example table shown in Figure 12-1, it is conceivable that a foreign
key would be configured on the CDTitle column of the CDStock table to reference the
Title column of the CDArtists table. However, a foreign key relationship is not required.
The primary requirement that a subquery must meet is that it return results that are
logically comparable to the referencing column values. Otherwise, the subquery serves
no purpose, and no rows will be returned by the primary SELECT statement because the
condition of the IN predicate cannot be met.

Using the EXISTS Predicate
In some circumstances, you might want your subquery to return only a value of true or false. The

content of the data itself is unimportant, in terms of meeting a predicate condition. In this case,

you can use an EXISTS predicate to define your subquery. The EXISTS predicate evaluates to

true if one or more rows are returned by the subquery; otherwise, it evaluates to false.

288 Module 12: Using Subqueries to Access and Modify Data

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 289

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:289

12

U
sin

g
Su

bq
ue

rie
s

to
A

cc
es

s
an

d
M

od
ify

D
at

a

For an EXISTS predicate to be useful, it should include in the subquery a search condition

that matches values in the two tables that are being linked through the subquery. This search

condition is similar to the equi-join condition used in certain join operations. (See Module 11

for information about joins and equi-join conditions.) For example, returning to the CDStock

table and the CDArtists tables (shown in Figure 12-1), we can create a SELECT statement that

uses an EXISTS predicate to query the CDArtists table:

SELECT * FROM CDStock s
WHERE EXISTS
(SELECT Title FROM CDArtists a
WHERE a.ArtistName = 'Joni Mitchell' AND s.CDTitle = a.Title) ;

In this statement, each row returned by the primary SELECT statement is evaluated

against the subquery. If the condition specified in the EXISTS predicate is true, the row is

included in the query results; otherwise, the row is omitted. When the specified condition is

true, that means at least one row has been returned by the subquery. In this case, the row

returned will include an ArtistName value of Joni Mitchell. In addition, the CDTitle value in

the CDStock table will be the same as the Title value in the CDArtists table. As a result, only

two rows will be returned by the entire SELECT statement:

CDTitle Stock
--------------- -----
Blue 42
Court and Spark 22

As was the case with the IN predicate, the EXISTS predicate allows you to use a subquery

to access information in another table. Even though the CDStock table doesn’t include

information about the performing artists, the subquery allows you to return data that is based

on artist information.

NOTE
The manner in which an EXISTS predicate is processed can sometimes be a little
unclear. Be sure to refer to Module 9 for a more complete discussion of that predicate.

Using Quantified Comparison Predicates
The IN and EXISTS predicates are not the only predicates that rely on the type of subqueries

that can return one or more rows for the search condition to evaluate to true. Quantified

comparison predicates—SOME, ANY, and ALL—also use subqueries that can return multiple

rows. These predicates are used in conjunction with comparison operators to determine whether

any or all returned values (from the subquery) meet the search condition set by the predicate.

The SOME and ANY predicates, which perform the same function, check to see whether any

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:290

returned values meet the search requirement. The ALL predicate checks to see whether

all returned values meet the search requirement.

When a quantified comparison predicate is used, the values in a column from the primary

table are compared to the values returned by the subquery. Let’s take a look at an example

to clarify how this works. Suppose your database includes the RetailPrices table and the

SalesPrices table, shown in Figure 12-2.

Now suppose that you decide to query the RetailPrices table, but you want to return only

those rows with an RPrice value greater than all values in the SPrice column in the SalesPrices

table, for those SPrice values less than 15.99. To set up this query, you can create a statement

similar to the following:

SELECT CDName, RPrice FROM RetailPrices
WHERE RPrice > ALL
(SELECT SPrice FROM SalesPrices WHERE SPrice < 15.99) ;

Notice that the subquery returns only one column of data—the SPrice values that are less

than 15.99. The values in the RPrice column are then compared to the subquery results. If a

specific RPrice value is greater than all the subquery results, that row is returned. When you

execute the entire SELECT statement, you receive the following results:

CDName RPrice
----------------------------- ------
Famous Blue Raincoat 16.99
Past Light 15.99
Kojiki 15.99
Patsy Cline: 12 Greatest Hits 16.99

As you can see, only four rows are returned. For each row, the RPrice value is greater than

the highest price returned by the subquery, which in this case would be 14.99.

290 Module 12: Using Subqueries to Access and Modify Data

Figure 12-2 Querying the RetailPrices and SalesPrices tables

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 291

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:291

12

U
sin

g
Su

bq
ue

rie
s

to
A

cc
es

s
an

d
M

od
ify

D
at

a

CRITICAL SKILL

12.2 Create Subqueries That Return One Value
So far, we have looked at subqueries that can return one or more rows of data. This is fine in

many circumstances; however, there might be times when you want your subquery to return

only one value so that you can compare the values in one column with a single subquery value.

In these cases, you can use comparison operators.

As you learned in Module 9, the comparison operators include equals (=), not equals (<>),

less than (<), greater than (>), less than or equals (<=), and greater than or equals (>=). For

example, let’s take another look at the RetailPrices and SalesPrices tables (shown in Figure 12-2).

Suppose you want to retrieve data from the RetailPrices table. You want the RPrice values to

equal the maximum price listed in the SPrice column of the SalesPrices table. The following

query allows you to return the necessary data:

SELECT CDName, RPrice FROM RetailPrices
WHERE RPrice =
(SELECT MAX(SPrice) FROM SalesPrices) ;

Ask the Expert
Q: You state that a SELECT clause can include a subquery. How would you include

the subquery in that clause?

A: You can include the subquery in a SELECT clause just as you would a column name.

The values returned from the subquery are inserted in the query results in the same way

column values would be inserted. For example, you can insert a subquery in a SELECT

clause of a statement that is used to query the CDStock table (shown in Figure 12-1).

The subquery pulls data from the CDArtists table, as shown in the following example:

SELECT CDTitle,
(SELECT ArtistName FROM CDArtists a
WHERE s.CDTitle = a.Title) AS Artist ,

Stock FROM CDStock s ;

In the main part of this statement, values are pulled from the CDTitle and Stock

columns. In addition to these values, a list of artists is returned by the subquery. The

artists’ names are matched up to their CDs by using a comparison predicate to compare

values in the CDTitle and Title columns.

When using a subquery in a SELECT clause, you must be careful not to create a

subquery that returns only one value when multiple values are needed. When you return

only one value, that value might be inserted into all rows returned by the main SELECT

statement, depending on how you’ve constructed your query.

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:292

Notice that the subquery returns only one value, which in this case is 16.99. As a result,

only rows with an RPrice value of 16.99 are returned by the SELECT statement, as shown in

the following query results:

CDName RPrice
----------------------------- ------
Famous Blue Raincoat 16.99
Patsy Cline: 12 Greatest Hits 16.99

You do not have to use an aggregate function (such as MAX) to return a single value in a

subquery. For example, the subquery WHERE clause might include a condition that will return

only one value. The important point to remember is that you must be sure that your subquery

returns only one value; otherwise, you will receive an error when using a comparison operator.

However, if you’ve set up your subquery properly, you can use any of the comparison operators

to compare column values. In addition, you’re not limited to numbers. Character strings can

also be compared in comparison predicates.

NOTE
In many cases, you can use predicates such as IN with subqueries that return only one
value. However, these predicates can support only the conditions equal or not equal, not
the conditions lesser than or greater than, which you can use with comparison operators.

Progress Check
1. Which types of predicates can you use with subqueries that return multiple rows?

2. Which types of predicates are you prevented from using with subqueries that return

multiple rows?

3. What should be included in a subquery’s search condition when using an EXISTS

predicate?

4. What are the three quantified comparison predicates?

292 Module 12: Using Subqueries to Access and Modify Data

1. IN, EXISTS, ANY, SOME, and ALL

2. Comparison predicates

3. The subquery of an EXISTS predicate should include a search condition that matches values in the two tables that are

being linked through the subquery.

4. SOME, ANY, and ALL

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

12

SQL: A Beginner’s Guide 293

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:293

12

U
sin

g
Su

bq
ue

rie
s

to
A

cc
es

s
an

d
M

od
ify

D
at

a

CRITICAL SKILL

12.3 Work with Correlated Subqueries
In the “Using the EXISTS Predicate” section earlier in this module, I mention that, for the

EXISTS predicate to be useful, it should include in the subquery a search condition that

matches values in the two tables that are being linked through the subquery. To illustrate this

point, I include in that section an example SELECT statement that contains such a subquery.

I’ll repeat that statement here for your convenience:

SELECT * FROM CDStock s
WHERE EXISTS
(SELECT Title FROM CDArtists a
WHERE a.ArtistName = 'Joni Mitchell' AND s.CDTitle = a.Title) ;

This statement references the CDStock and CDArtists tables in Figure 12-1. Notice that

the subquery includes a predicate that matches CDTitle values in the CDStock table to Title

values in the CDArtists table. This matching of values is similar to the equi-join conditions

you define when joining tables.

The reason I’ve returned to this statement is that it includes a type of subquery I have not

discussed before—the correlated subquery. A correlated subquery is one that is dependent on

the outer statement in some way. In this case, the outer statement is the main SELECT statement

that includes a SELECT clause, a FROM clause, and a WHERE clause, which itself contains

a subquery. Because that subquery references the CDStock table, which is a component of the

outer statement, the subquery is dependent on that statement in order to return data.

In most of the subquery examples we’ve looked at in this module, the subqueries have

stood independent of the outer statement. For example, in the following SELECT statement

(which was used as an example in the “Using the IN Predicate” section earlier in this module),

the subquery is not dependent on the outer statement:

SELECT * FROM CDStock
WHERE CDTitle IN
(SELECT Title FROM CDArtists WHERE ArtistName = 'Joni Mitchell') ;

In this case, the subquery merely returns results, which are then used in an outer statement. The

subquery is evaluated just once, and the results are used by the main statement as necessary. However,

with a correlated subquery, the subquery must often be re-evaluated for each row returned by the

outer statement. The correlated subquery cannot be evaluated just once because at least one of the

values changes for each row. For example, looking again at the SELECT statement that contains

the correlated subquery (as part of the EXISTS predicate), you can see that the CDTitle value

changes for each row returned by the outer SELECT statement. This can have a severe impact on

performance, particularly when you are returning a large number of values. In these cases, you

might find that creating a join provides better performance than a correlated subquery.

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:294

CRITICAL SKILL

12.4 Use Nested Subqueries
Up to this point, we have looked at SELECT statements that included only one subquery. However,

a SELECT statement can contain multiple subqueries. The SQL:1999 standard does not limit

the number of subqueries that can be included in a statement, although practical application,

performance, and the limitations of the SQL implementation all play an important role in

determining what a reasonable number might be. Make certain that you refer to the documentation

for your SQL implementation to determine what restrictions might apply to the use of subqueries.

One way you can include multiple subqueries in a SELECT statement is to include them as

different components of the statement. For example, your WHERE clause might include two

predicates, each of which contains a subquery. Another way in which multiple subqueries can

be included in a SELECT statement is to nest one subquery into the other. These are the types

of subqueries we’ll look at in this section.

A nested subquery is one that is a component of another subquery. The “outer” subquery

acts as a primary SELECT statement that includes a subquery within one of its clauses. In

most cases, the nested subquery will be part of a predicate in the WHERE clause of the outer

subquery. Let’s take a look at an example to help clarify this concept. The example uses the

DiscInventory, DiscArtists, and DiscTypes tables, shown in Figure 12-3.

294 Module 12: Using Subqueries to Access and Modify Data

Ask the Expert
Q: You state that creating a join might be a better alternative to creating a correlated

subquery. How would you restate the preceding SELECT statement as a join?

A: In the preceding SELECT statement, you’ve already identified your equi-join condition

in the subquery, and you already know the names of the two tables that are being joined.

One way you can modify this statement is to use a comma-separated join, as shown in

the following example:

SELECT CDTitle, Stock
FROM CDStock s, CDArtists a
WHERE a.ArtistName = 'Joni Mitchell' AND s.CDTitle = a.Title ;

Notice that the CDTitle and Title columns are still equated with each other. This

statement produces the same results as the statement that included the correlated

subquery, only the SQL implementation is not being forced to reprocess a subquery

for each row returned by the outer statement. Instead, the WHERE clause merely takes

the results returned by the FROM clause and applies the search conditions defined in the

two predicates. For more information about join operations, see Module 11.

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 295

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:295

12

U
sin

g
Su

bq
ue

rie
s

to
A

cc
es

s
an

d
M

od
ify

D
at

a

Suppose that you want to display the names of CDs and the amount in stock for CDs that

are performed by blues artists. The DiscInventory table contains the names of the CDs and the

amount in stock of each one, the DiscArtists table contains the names of the artists, and the

DiscTypes table contains the names of the artist types. The DiscInventory and DiscArtists tables

are related through the ArtistID column in each table. The DiscArtists and DiscTypes tables are

related through the DiscTypeID column in each table. In order to return the information you need,

you must query all three tables, as shown in the following SELECT statement:

SELECT DiscName, StockAmount FROM DiscInventory
WHERE ArtistID IN
(SELECT ArtistID FROM DiscArtists WHERE DiscTypeID IN
(SELECT DiscTypeID FROM DiscTypes WHERE DiscTypeName = 'Blues')) ;

In this statement, the primary SELECT statement queries the DiscInventory table. The

statement includes a subquery in an IN predicate in the WHERE clause. The subquery is a

SELECT statement that queries the DiscArtists table. The subquery, like the primary SELECT

statement, includes an IN predicate in the WHERE clause. This predicate also includes a subquery.

As is the case with the outer subquery, the inner subquery includes a SELECT statement.

However, in this case, the statement is querying the DiscTypes table.

To better understand how the entire SELECT statement works, let’s first look at the inner

subquery. If you were to execute this statement alone, it would return a value of 11, which is

the DiscTypeID value for the DiscTypeName value of Blues. The outer subquery uses this

value in the IN predicate to return those rows with a DiscTypeID value of 11. In this case, the

Figure 12-3 Querying the DiscInventory, DiscArtists, and DiscTypes tables

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:296

296 Module 12: Using Subqueries to Access and Modify Data

only row returned is the B.B. King row, which has an ArtistID value of 103. The ArtistID

value is then used in the IN predicate of the primary SELECT statement to return only those

rows that contain an ArtistID value of 103. If you execute the entire SELECT statement, you’ll

receive the following query results:

DiscName StockAmount
------------------ -----------
Blues on the Bayou 19
Deuces Wild 17

As you can see, only two rows are returned. Notice that the results don’t include any

information from the DiscArtists table or the DiscTypes table, although these two tables

are integral to arriving at these results. If you had wanted, you could have nested additional

subqueries in your statement. Each one would have been processed in the same manner as

the subqueries shown in the previous example.

Progress Check
1. What type of subquery is dependent on the outer statement in some way?

2. How many subqueries can you include in a SELECT statement?

3. What is a nested subquery?

CRITICAL SKILL

12.5 Use Subqueries to Modify Data
At the beginning of this module, I told you that you can use subqueries to modify data as well

as query data. We’ll now look at the three primary data modification statements—INSERT,

UPDATE, and DELETE—and how they use subqueries to modify data in your database. For

each statement, I provide an example that modifies data in the TitleTypes table, shown in

Figure 12-4. Each example includes a subquery that returns data from the TitlesInventory

table. This information is used as a basis for the data modification in the TitleTypes table.

1. Correlated subquery

2. The SQL:1999 standard does not limit the number of subqueries that can be included in a statement, although practical

application, performance, and the limitations of the SQL implementation all play an important role in determining what a

reasonable number might be.

3. A nested subquery is one that is a component of another subquery.

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 297

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:297

12

U
sin

g
Su

bq
ue

rie
s

to
A

cc
es

s
an

d
M

od
ify

D
at

a

NOTE
This section focuses on the subqueries used in the INSERT, UPDATE, and DELETE
statements. For more information about the statements themselves, see Module 8.

Using Subqueries to Insert Data
An INSERT statement, as you no doubt recall, allows you to add data to an existing table.

You can add that data directly to the table or through a view that allows you to insert data into

the underlying table. If you use a subquery in an INSERT statement, you must include it as

one of the values defined in the VALUES clause. For example, suppose you want to insert

data into the TitleTypes table. The VALUES clause should include a value for the CDTitle

column and the CDType column. Now suppose that you know the TitleID value (from the

TitlesInventory table), but you don’t know the exact name of the CD. You can create an

INSERT statement that pulls the name of the CD from the TitlesInventory table and inserts

that value into the TitleTypes table, as shown in the following example:

INSERT INTO TitleTypes VALUES
((SELECT Title FROM TitlesInventory WHERE TitleID = 108), 'Popular') ;

Notice that the subquery appears as one of the values in the VALUES clause. The subquery

returns the value of Both Sides Now. This value and the value Popular are inserted into the

TitleTypes table.

Figure 12-4 Modifying the TitleTypes table

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:298

298 Module 12: Using Subqueries to Access and Modify Data

For the most part, using a subquery in an INSERT statement is a relatively simple process.

However, you must be sure that your subquery returns only one value; otherwise, you will

receive an error. In addition, the value must be compatible with the data type and any other

constraints defined on the target column.

NOTE
Not all SQL implementations support the use of a subquery as a value in the INSERT
statement. For example, SQL Server does not allow you to insert values in this manner,
although Oracle does.

Using Subqueries to Update Data
An UPDATE statement allows you to modify existing data in a table. As with an INSERT

statement, you can modify data directly or through a view, if that view is updatable. To use a

subquery in an UPDATE statement, you can include it in a predicate in the WHERE clause, as

you did with the SELECT statements we looked at earlier in this module. For example, if you

want to update the Both Sides Now row that was inserted in the preceding INSERT statement

example, you can create an UPDATE statement similar to the following:

UPDATE TitleTypes
SET CDType = 'Folk'
WHERE CDTitle IN
(SELECT Title FROM TitlesInventory WHERE TitleID = 108) ;

In this statement, the IN predicate compares the values in the CDTitle column of the

TitleTypes table with the value returned by the subquery. The subquery is a simple SELECT

statement that returns data from the TitlesInventory table. The subquery here works the same

way as you saw in earlier SELECT statement examples. In this case, the subquery returns a

value of Both Sides Now. This value is then used to determine which row in the TitleTypes

table to update. Once this row is determined, the CDType value is changed to Folk.

Subqueries are not limited to the WHERE clause of an UPDATE statement. You can also

use a subquery in the SET clause to provide a value for the identified column. For example,

suppose you want to once again update the Both Sides Now row that was inserted in the preceding

INSERT statement example. You can pull a value from the TitlesInventory table to use as the

new value for the TitleTypes table, as shown in the following UPDATE statement:

UPDATE TitleTypes
SET CDTitle =
(SELECT Title FROM TitlesInventory WHERE TitleID = 108)

WHERE CDTitle = 'Both Sides Now' ;

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Notice that, instead of specifying a value in the SET clause (to the right of the equal sign),

you can specify a subquery. The subquery returns a value of Both Sides Now and inserts that

value into the TitleTypes table.

NOTE
In the preceding example, all we’ve done is insert the same value over the existing one.
The purpose of this statement is only to demonstrate how a subquery can be used in a
SET clause. Even if a new value were being added, the principles would be the same.
For example, if the title had changed in the TitlesInventory table, the preceding statement
would update the title in the TitleTypes table.

Using Subqueries to Delete Data
A DELETE statement is similar to an UPDATE statement, in terms of how a subquery can be

used in the WHERE clause. You simply include a predicate that contains a subquery. In the

following example, I delete the Both Sides Now row that I modified in the previous UPDATE

statement example. To determine which row to delete, I use a subquery to return the appropriate

Title value from the TitlesInventory table:

DELETE TitleTypes
WHERE CDTitle IN
(SELECT Title FROM TitlesInventory WHERE TitleID = 108) ;

As you would expect, the subquery returns the value of Both Sides Now. The IN predicate

compares this value to the values in the CDTitle column of the TitleTypes table. Every row

with matching values is deleted. In this case, only one row has a CDTitle value of Both Sides

Now, so that is the row that is deleted.

Project 12-1 Working with Subqueries
In this module, I discussed how you can use subqueries to query and modify data.

The subqueries we looked at, for the most part, relied on the use of predicates to

define the subquery condition. In this project, you will create a number of SELECT statements

that include WHERE clauses. Those clauses will each include a predicate that defines a subquery,

allowing you to access data from more than one table. You will also modify data by using an

UPDATE statement that contains subqueries in the SET clause and the WHERE clause. For

this project, as with previous projects, you will be using the Inventory database. You can

download the Prj12.txt file, which contains the SQL statements used in this project.

SQL: A Beginner’s Guide 299

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:299

12

U
sin

g
Su

bq
ue

rie
s

to
A

cc
es

s
an

d
M

od
ify

D
at

a
Wo

rk
ing

wi
th

Su
bq

ue
rie

s

Project
12-1

Prj12.txt

(continued)

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:300

300 Module 12: Using Subqueries to Access and Modify Data

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. The first SELECT statement that you’ll create allows you to return the name and number of

CDs that are produced by MCA Records. Enter and execute the following SQL statement:

SELECT CDTitle, InStock FROM CompactDiscs
WHERE LabelID IN
(SELECT LabelID FROM CDLabels WHERE CompanyName = 'MCA Records') ;

This statement uses a subquery to return the LabelID value for MCA Records, which is

stored in the CDLabels table. The value is then used in the IN predicate to compare it to the

LabelID values in the CompactDiscs table. Your query should return four rows.

3. In the next statement, you will use an EXISTS predicate to define a subquery. The predicate

determines whether the CompactDiscs table contains any rows with a CDTitle value of Out

of Africa. Enter and execute the following SQL statement:

SELECT CompanyName FROM CDLabels l
WHERE EXISTS
(SELECT * FROM CompactDiscs d
WHERE l.LabelID = d.LabelID AND CDTitle = 'Out of Africa') ;

The statement will return the name of the company that produces the Out of Africa CD,

which in this case is MCA Records. The MCA Records row in the CDLabels table is the

only row that evaluates to true for the subquery in the EXISTS predicate.

4. In the next statement you create, you’ll determine the distributor names for those CDs in

which the LabelID value in the CDLabels table is equal to any LabelID values returned by

the subquery. Enter and execute the following SQL statement:

SELECT CompanyName FROM CDLabels
WHERE LabelID = ANY
(SELECT LabelID FROM CompactDiscs WHERE InStock > 30) ;

The subquery returns only those LabelID values for rows that contain an InStock value

greater than 30. When you execute this statement, the names of only three companies

should be returned.

5. Now you’ll create a SELECT statement that uses a comparison predicate to define a

subquery. The subquery returns the LabelID value (from the CDLabels table) for Capitol

Records. That value is then compared to the LabelID values in the CompactDiscs table.

Enter and execute the following SQL statement:

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 301

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:301

12

U
sin

g
Su

bq
ue

rie
s

to
A

cc
es

s
an

d
M

od
ify

D
at

a
Wo

rk
ing

wi
th

Su
bq

ue
rie

s

Project
12-1

SELECT CDTitle, InStock FROM CompactDiscs
WHERE LabelID =
(SELECT LabelID FROM CDLabels WHERE CompanyName = 'Capitol Records') ;

This statement should return only two rows.

6. Now let’s redo the statement in Step 5 and turn it into a comma-separated join. Remember that

you should assign correlation names to the tables to simplify the code. Also remember

that the WHERE clause should include an equi-join condition that matches up LabelID

values. Enter and execute the following SQL statement:

SELECT CDTitle, InStock FROM CompactDiscs d, CDLabels l
WHERE d.LabelID = l.LabelID AND CompanyName = 'Capitol Records' ;

As you can see, this statement is a lot simpler than the subquery used in the preceding

statement, and it returns the same results.

7. In the next statement that you’ll create, you will use a nested subquery to return values to

the outer subquery. Enter and execute the following SQL statement:

SELECT ArtistName FROM Artists
WHERE ArtistID IN
(SELECT ArtistID FROM ArtistCDs WHERE CompactDiscID IN
(SELECT CompactDiscID FROM CompactDiscs WHERE CDTitle = 'Past Light')) ;

The inner subquery returns the CompactDiscID value for the Past Light CD. The outer

subquery then uses this value to determine the ArtistID value for that CD. This value is then

used in the main SELECT statement, which returns one value: William Ackerman. He is

the artist on the Past Light CD.

8. Now we’re going to move on to using subqueries in an UPDATE statement. However, let’s

first take a look at the table we’re going to update, which is the CompactDiscTypes table. In

order to know what to update, we’re going to use values from the CompactDiscs table and

the MusicTypes table to help identify the IDs used in the CompactDiscTypes table. Enter

and execute the following SQL statement:

SELECT CDTitle, TypeName
FROM CompactDiscs d, CompactDiscTypes t, MusicTypes m
WHERE d.CompactDiscID = t.CompactDiscID AND t.MusicTypeID = m.TypeID
AND CDTitle = 'Kojiki' ;

In this statement, you join three tables to return the CDTitle value and TypeName value for

the Kojiki CD. The CD is classified as New Age.

(continued)

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:302

302 Module 12: Using Subqueries to Access and Modify Data

9. In this step, you will update the row in the CompactDiscTypes table that matches the

CompactDiscID for the Kojiki CD with the MusicTypeID value for the New Age music

type. You’ll change the music type from New Age to Classical. Enter and execute the

following SQL statement:

UPDATE CompactDiscTypes
SET MusicTypeID =
(SELECT TypeID FROM MusicTypes WHERE TypeName = 'Classical')

WHERE CompactDiscID =
(SELECT CompactDiscID FROM CompactDiscs WHERE CDTitle = 'Kojiki')

AND MusicTypeID =
(SELECT TypeID FROM MusicTypes WHERE TypeName = 'New Age') ;

The statement uses a subquery in the SET clause to pull the TypeID value from the MusicTypes

table. The statement also uses two subqueries in the WHERE clause of the UPDATE

statement to determine which row to update in the CompactDiscTypes table. The first

subquery in the WHERE clause returns the CompactDiscID value for the Kojiki CD. The

second subquery returns the TypeID value for the Classical music type.

10. Now let’s query the CompactDiscTypes table to view the changes. Enter and execute the

following SQL statement:

SELECT CDTitle, TypeName
FROM CompactDiscs d, CompactDiscTypes t, MusicTypes m
WHERE d.CompactDiscID = t.CompactDiscID AND t.MusicTypeID = m.TypeID
AND CDTitle = 'Kojiki' ;

The TypeName value should now be Classical.

11. Finally, you will return the CompactDiscTypes table to its original state. Enter and execute

the following SQL statement:

UPDATE CompactDiscTypes
SET MusicTypeID =
(SELECT TypeID FROM MusicTypes WHERE TypeName = 'New Age')

WHERE CompactDiscID =
(SELECT CompactDiscID FROM CompactDiscs WHERE CDTitle = 'Kojiki')

AND MusicTypeID =
(SELECT TypeID FROM MusicTypes WHERE TypeName = 'Classical') ;

This statement is similar to the preceding UPDATE statement that you used, only now the

New Age music type will be used (which was the original music type).

12. Let’s check the table one more time. Enter and execute the following SQL statement:

SELECT CDTitle, TypeName
FROM CompactDiscs d, CompactDiscTypes t, MusicTypes m
WHERE d.CompactDiscID = t.CompactDiscID AND t.MusicTypeID = m.TypeID
AND CDTitle = 'Kojiki' ;

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 303

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:303

12

U
sin

g
Su

bq
ue

rie
s

to
A

cc
es

s
an

d
M

od
ify

D
at

a
Wo

rk
ing

wi
th

Su
bq

ue
rie

s

Project
12-1

The CompactDiscTypes table should now contain the same values as it did when you

started this project.

13. Close the client application.

Project Summary
In this project, you created several SELECT statements that contained subqueries. These

subqueries were included in predicates that permit the subqueries to return one or more rows.

Specifically, the WHERE clauses included the IN, EXISTS, and ANY predicates. In addition,

you created a SELECT statement that included a comparison predicate, which permits the subquery

to return only one row. You also created a SELECT statement that included nested subqueries.

These subqueries used the IN predicate. In addition to querying data in the Inventory database,

you updated the CompactDiscTypes table by using subqueries that accessed other tables. As you

can see, subqueries provide you with a versatile tool for accessing data in your database. However,

when creating statements that include subqueries, you should always try to determine whether a

join would perform better in any given situation.

Module 12 Mastery Check
1. In which types of statements can you include subqueries?

A. SELECT

B. INSERT

C. UPDATE

D. DELETE

2. What is a subquery?

3. In which clauses of a SELECT statement can you include a subquery?

A. SELECT

B. WHERE

C. GROUP BY

D. HAVING

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 12
Blind Folio 12:304

4. Into what two general categories can you divide subqueries in a WHERE clause?

5. Which types of predicates are you prevented from using with subqueries that return

multiple rows?

A. IN and EXISTS predicates

B. SOME, ANY, and ALL predicates

C. Comparison predicates

D. Quantified comparison predicates

6. When does an EXISTS condition evaluate to true?

7. In addition to numbers, ____________ data can be compared in comparison predicates.

8. Which types of predicates allow you to use subqueries that return multiple rows?

A. IN and EXISTS predicates

B. SOME, ANY, and ALL predicates

C. Comparison predicates

D. Quantified comparison predicates

9. What is a correlated subquery?

10. How often is a correlated subquery evaluated when a SELECT statement is processed?

11. A(n) ____________ is a subquery that is a component of another subquery.

12. How many subqueries can be included in a SELECT statement, as specified by the

SQL standard?

13. Which clause in an INSERT statement can contain a subquery?

14. How many values can a subquery return if it is used in an INSERT statement?

15. Which clauses in an UPDATE statement can contain a subquery?

304 Module 12: Using Subqueries to Access and Modify Data

P:\010Comp\Begin8\885-7\ch12.vp
Friday, April 04, 2003 4:39:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:305

Part III
Advanced Data Access

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:307

Module13
Creating SQL-Invoked
Routines

CRITICAL SKILLS
13.1 Understand SQL-Invoked Routines

13.2 Create SQL-Invoked Procedures

13.3 Add Input Parameters to Your Procedures

13.4 Add Local Variables to Your Procedures

13.5 Working with Control Statements

13.6 Add Output Parameters to Your Procedures

13.7 Create SQL-Invoked Functions

307

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:308

308 Module 13: Creating SQL-Invoked Routines

P rior to the release of SQL:1999, the American National Standards Institute (ANSI) and the

International Organization for Standardization (ISO) published an interim standard in 1996 that

added procedures and functions, along with related language, to the existing SQL standard. This

new publication, referred to as SQL/PSM, or PSM-96 (PSM standing for persistent stored module),

represented the first step toward including procedural capabilities within SQL itself. These new

capabilities, which were later incorporated into the SQL:1999 standard, define, among other

components, the creation of SQL-invoked routines—specifically, SQL-invoked procedures and

SQL-invoked functions. In this module, we’ll take a close look at both procedures and functions,

including how to create them and how to call them once they’re created. We’ll also take a look

at a number of examples that demonstrate the various types of procedures and functions and the

components that make up each.

CRITICAL SKILL

13.1 Understand SQL-Invoked Routines
I first introduced you to the concept of SQL-invoked routines in Module 2, where I describe

the schema objects that can exist within an SQL environment. As you might recall, an

SQL-invoked routine is a function or procedure that can be invoked from SQL. Both functions

and procedures are stored sets of predefined SQL statements that perform some sort of action

on the data in your database. For example, you can define a SELECT statement and store it as

an SQL-invoked procedure. Once you have created that procedure, you can call it simply by

calling its name and, if appropriate, supplying the necessary parameters.

All SQL-invoked routines support the use of parameters, which are values passed to and

from a routine when you invoke that routine. A function can receive input parameters and return

a value based on the expression included in the function definition. A procedure can pass input

and output parameters. Regardless of whether it’s a procedure or function, an SQL-invoked

routine can be a schema object or can be embedded in an SQL server module, which is also a

schema object. (A module is an object that contains SQL statements or routines.)

NOTE
SQL:1999 also supports a third type of SQL-invoked routine—the SQL-invoked
method. A method, which is used in user-defined types, is a type of function that performs
predefined tasks. SQL supports two types of user-defined types: structured types and
distinct types. Methods are used in structured types. The subject of structured user-defined
types is beyond the scope of the book, so I won’t be covering methods in this module.

Most SQL implementations support some form of the SQL-invoked routine in their products.

Within various SQL implementations, SQL-invoked procedures are often referred to as stored

procedures, and SQL-invoked functions are often referred to as user-defined functions. Regardless

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of the names used, the fundamental concepts are the same, and the basic functionality supported is

similar from product to product. However, while concepts and functionality are similar, the

implementation of SQL-invoked routines can vary widely, and the specifics of how SQL-invoked

routines are created and called differ not only between the SQL standard and the individual product,

but also between the products themselves. The main reason for this is that many products had

already implemented PSM technology prior to the publication of the SQL/PSM standard in 1996.

As a result, proprietary functionality has persisted among the different implementations, with few

SQL products conforming to the actual SQL/PSM standard, or, consequently, the PSM-related

portion of the SQL:1999 standard.

Despite the product differences, it is still worthwhile to take a look at the basic concepts

behind SQL-invoked routines, as they are defined in the SQL standard. The standard provides

insight into the underlying structure used by the various SQL implementations and can give you

a cohesive overview of the basic concepts shared by all products that implement SQL-invoked

procedures and functions. However, as with other SQL-related technology, you should refer to

the product documentation for your specific SQL implementation. In few cases will you be able

to use pure SQL to create an implementation-specific SQL-invoked routine.

SQL-Invoked Procedures and Functions
As I mentioned earlier, an SQL-invoked routine can be either an SQL-invoked procedure or an

SQL-invoked function (or, in the case of user data types, an SQL-invoked method). SQL-invoked

procedures and functions are similar in many ways, although there are some basic differences.

Table 13-1 provides an overview of the main differences and similarities.

The easiest way to distinguish between SQL-invoked procedures and functions is to

think of a procedure as a set of one or more stored SQL statements, similar to how a view

stores a SELECT statement (as described in Module 5) and to think of a function as a type

of operation that returns a value, similar to set functions such as SUM or AVG (as described

in Module 10).

SQL: A Beginner’s Guide 309

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:309

13

C
re

at
in

g
SQ

L-I
nv

ok
ed

Ro
ut

in
es

Procedures Functions

Invoked from SQL statements, not from a
programming language.

Invoked from SQL statements, not from a
programming language.

Can be written in SQL or another programming
language.

Can be written in SQL or another programming
language.

Invoked by using the CALL statement. Invoked as a value in an expression.

Support input and output parameters, although
neither are required.

Support input parameters, although none are
required. You cannot define output parameters for a
function. The function returns a single output value.

Table 13-1 Comparing SQL-Invoked Procedures and Functions

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:310

Working with the Basic Syntax
There are many similarities between the syntax used to create procedures and that used to create

functions. In fact, they’re defined as one syntactic element in SQL:1999. In addition, the syntax

is, at its most basic level, similar to how procedures are created in most SQL implementations.

Let’s take a look at the syntax for each one to better understand their basic elements.

Using the CREATE PROCEDURE Statement
The first syntax we’ll look at is that for creating a procedure. At its most basic, the CREATE

PROCEDURE statement looks like the following:

CREATE PROCEDURE <procedure name>

([<parameter declaration> [{ , <parameter declaration> } . . .]])

[<routine characteristic> . . .]

<routine body>

As you can see, you must provide a name for the procedure—in the CREATE PROCEDURE

clause—followed by zero or more parameter declarations, which are enclosed in parentheses. If no

declarations are defined, you must still provide the parentheses. If more than one declaration is

defined, you must separate them by commas. Following the parameter declarations, you have the

option of defining one or more routine characteristics. For example, you can specify whether the

routine is an SQL routine or one written in another language.

NOTE
The type of routine characteristics that you can define vary greatly among the SQL
implementations, not only in terms of which options are supported, but also with regard
to how they’re defined. Consequently, I will keep my discussion of these options short,
but be sure to check the product documentation for more information.

After you’ve defined the procedure’s characteristics, you’re ready to add the SQL statements,

which are represented by the <routine body> placeholder. Many of the statements you’ll use in this

section will be similar to those you’ve already seen in this book. However, the SQL/PSM standard

introduced new language elements that make procedures more dynamic. As we continue through

this module, we’ll look at many of these elements and how they’re used to extend the functionality

of SQL-invoked procedures.

Using the CREATE FUNCTION Statement
Now let’s take a look at the statement used for creating an SQL-invoked function. As you can

see in the following syntax, a function contains a few more elements than a procedure:

310 Module 13: Creating SQL-Invoked Routines

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CREATE FUNCTION <function name>

([<parameter declaration> [{ , <parameter declaration> } . . .]])

RETURNS <data type>

[<routine characteristic> . . .]

[STATIC DISPATCH]

<routine body>

As with procedures, you must first provide a name for your function, followed by the

parameter declaration list. Functions support only input parameters, and if none are provided,

you must still use the parentheses. If more than one is provided, you must separate them by

commas. Following the parameter declarations is the RETURNS clause. You must provide the

data type for the value that’s returned by the parameter. After that, you can include any of the

optional routine characteristics, depending on what options your SQL implementation supports.

Next comes the STATIC DISPATCH clause. You must specify this clause if you use a user-

defined type, a reference data type, or an array data type. Because these types are all beyond

the scope of this book, you do not need to be concerned with the STATIC DISPATCH clause

at this time.

The last thing that you must include in the procedure definition is, of course, the routine

body. As with procedures, these are the SQL statements that make up the core of your procedure.

However, there is one additional element you’ll find in the routine body that is not included in a

procedure’s routine body—a RETURN statement. The RETURN statement specifies the value

that will be returned by the function. Later in this module, in the “Create SQL-Invoked Functions”

section, I’ll discuss the RETURN statement and other elements of the CREATE FUNCTION

statement in more detail.

Progress Check
1. What are the two primary types of SQL-invoked routines supported by SQL?

2. Which type of SQL-invoked routine is invoked by using a CALL statement?

3. What two clauses are included in a CREATE FUNCTION statement that are not included

in a CREATE PROCEDURE statement?

4. What type of parameters can you declare in a CREATE FUNCTION statement?

SQL: A Beginner’s Guide 311

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:311

13

C
re

at
in

g
SQ

L-I
nv

ok
ed

Ro
ut

in
es

1. SQL-invoked procedures and functions

2. SQL-invoked procedure

3. The RETURNS clause and the STATIC DISPATCH clause

4. Input parameters only

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:312

CRITICAL SKILL

13.2 Create SQL-Invoked Procedures
Now that you have an overview of SQL-invoked routines and the syntax used to create them,

let’s take a closer look at how to create SQL-invoked procedures. A procedure can perform

most functions that you can perform by using SQL statements directly. In addition, procedures

can be used to pass parameters and define variables, which we’ll get into later in this module.

For now, let’s look at a procedure at its most basic, one that includes no parameters or special

types of SQL statements.

Suppose you need to query the data in the CDInventory and CDTypes tables shown in

Figure 13-1. You want your query results to return the CD names and number in stock for all

New Age CDs.

To view this information, you can create a SELECT statement that joins the two tables,

as shown in the following example:

SELECT CDTitle, CDStock FROM CDInventory i, CDTypes t
WHERE i.CDTypeID = t.CDTypeID AND CDTypeName = 'New Age' ;

Of course, every time you want to view this information, you would have to re-create

the SELECT statement. However, another option is to store the SELECT statement within the

schema. That way, all you need to do is call that statement whenever you want to view the

New Age CDs. One way to store the SELECT statement is within a view definition:

CREATE VIEW NewAge AS
SELECT CDTitle, CDStock FROM CDInventory i, CDTypes t
WHERE i.CDTypeID = t.CDTypeID AND CDTypeName = 'New Age' ;

312 Module 13: Creating SQL-Invoked Routines

Figure 13-1 Using procedures to access the CDInventory and CDTypes tables

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 313

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:313

13

C
re

at
in

g
SQ

L-I
nv

ok
ed

Ro
ut

in
es

Once the view is created, you can use a SELECT statement to call the view, as shown in the

following statement:

SELECT * FROM NewAge ;

However, views are very limited with regard to the types of statements and functionality

that are supported. For example, you cannot include an UPDATE statement in a view, nor can

you pass parameters. As a result, a better way to store this SELECT statement is as an SQL-

invoked procedure. To do this, you must create a schema object by using the CREATE

PROCEDURE statement, as shown in the following example:

CREATE PROCEDURE NewAgeCDs ()
SELECT CDTitle, CDStock FROM CDInventory i, CDTypes t
WHERE i.CDTypeID = t.CDTypeID AND CDTypeName = 'New Age' ;

This statement represents the minimum amount of information that you must provide in order

to create a procedure; it includes a CREATE PROCEDURE clause that names the procedure

(NewAgeCDs), a set of parentheses, and a routine body, which is the SELECT statement. If you

were defining parameters, their declarations would be enclosed in the parentheses.

As you might well imagine, a CREATE PROCEDURE statement can be far more complex

than what you see here. However, the statement in the example represents the basic structure on

which you would build more extensive statements. Before I discuss more complicated procedures,

let’s first touch on the issue of how this statement is created in various SQL implementations.

Earlier in the module, I told you that SQL implementations can vary widely with regard to the

specifics of how SQL-invoked routines are created and called. As a result, few implementations

support pure SQL when attempting to define your procedures. For example, both SQL Server and

Oracle require that you use the AS keyword before the routine body. In addition, SQL Server does

not use parentheses after the procedure name, whether or not parameters are being defined. Oracle,

on the other hand, does. As a result, you must consult your product documentation whenever you’re

creating a procedure to determine how the product-specific language differs from the SQL standard.

Invoking SQL-Invoked Procedures
Once you’ve created your procedure, you can call it by using a CALL statement. The basic

syntax for the CALL statement is as follows:

CALL <procedure name>

([<value> [{ , <value> } . . .]])

As you can see, you must identify the name of the procedure in the CALL clause and

follow that with the values (in parentheses) that are passed into the procedure as parameters.

If no parameters are defined for the procedure, you must still use the parentheses. If more than

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:314

314 Module 13: Creating SQL-Invoked Routines

one parameter is defined for the procedure, you must separate them with commas. In addition,

you must follow these guidelines when entering values:

● Your CALL statement must include the same number of values as the number of

parameters defined in the procedure.

● The values must be entered in the same order as the order in which they are defined in the

procedure.

● The values must conform to the data types that are assigned to the parameters.

I’ll be discussing parameters in more detail in the next section, “Add Input Parameters to Your

Procedures.”

Now let’s look at an example of the CALL statement. If you want to call the procedure

that was created in the preceding example, you can use the following statement:

CALL NewAgeCDs () ;

In this statement, the name of the procedure follows the CALL keyword. Notice the use of

parentheses even though no parameters were defined for the procedure. Had parameters been

defined, they would have been enclosed in the parentheses. When you call this statement,

you’ll receive the same results as you would have if you had executed the SELECT statement

separately, as shown in the following query results:

CDTitle CDStock
---------- -------
Past Light 6
Kojiki 10

The CALL statement, like the CREATE PROCEDURE statement, can vary from SQL

implementation to implementation in how it is used and whether it is supported. In fact, you’ll

probably find that, for most implementations, you must use an EXECUTE statement, rather

than CALL, to invoke a procedure.

Progress Check
1. What are two types of schema objects that you can use to store a SELECT statement?

2. Which SQL statement do you use to invoke a procedure?

3. You’re calling a procedure named GetTotals. The procedure does not include any parameters,

but does include a SELECT statement that queries the CDInventory table. What SQL statement

should you use to invoke this parameter?

1. Views and SQL-invoked procedures

2. CALL

3. You should use the following SQL statement: CALL GetTotals () ;

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CRITICAL SKILL

13.3 Add Input Parameters to Your Procedures
The NewAgeCDs procedure that we looked at in the previous examples can be very handy

because it saves you having to create an SQL statement each time you want to view information

about New Age CDs. However, in order to return information about other types of CDs, such

as Blues or Country, you must create a new query or set up a procedure for the specific type of

music. But there is another alternative. You can create a procedure that does not specifically

define the music type but instead allows you to enter that type whenever you call that procedure.

That way, you need only one procedure to check each type of music.

To support this type of procedure, you must declare a parameter within the procedure

definition that allows you to accept input values when you call that procedure. Let’s return to

the CDInventory table and CDTypes table shown in Figure 13-1. If we modify the language of

the procedure we created earlier, we can create a new procedure that includes the necessary

input parameter, as shown in the following CREATE PROCEDURE statement:

CREATE PROCEDURE CDsByType (IN p_CDType CHAR (20))
SELECT CDTitle, CDStock FROM CDInventory i, CDTypes t
WHERE i.CDTypeID = t.CDTypeID AND CDTypeName = p_CDType ;

In the first line of code, a parameter is defined after the CREATE PROCEDURE

clause. The parameter declaration includes the IN keyword, the name of the parameter

(p_CDType), and the data type for that parameter (CHAR (20)), all of which are enclosed

in parentheses.

NOTE
The “p_” convention used to name the parameters is not necessary. However, I like to
use some type of naming convention to set parameters apart to make them easier to
pick out in the code.

SQL supports three types of parameters: input, output, and input/output. The three

types are represented by the parameter mode keywords IN, OUT, and INOUT, respectively.

Input parameters allow you to provide values when you invoke a procedure. Those values are

then used within the routine body when the SQL statements are executed. Output parameters

allow your procedure to provide values as a result of invoking the procedure. Input/output

parameters are those that provide the functionality of both input and output parameters. You

do not have to specify one of the parameter mode keywords when you define your parameters.

However, if you don’t specify one of the keywords, SQL assumes that you’re defining an input

parameter.

13

SQL: A Beginner’s Guide 315

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:315

13

C
re

at
in

g
SQ

L-I
nv

ok
ed

Ro
ut

in
es

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:316

NOTE
As with many other aspects of the CREATE PROCEDURE statement, parameter declarations
can vary from product to product. In SQL Server, for example, parameter names must be
preceded by the at (@) symbol, as in “@p_CDType,” the parameter declarations are not
enclosed in parentheses, and the IN keyword is not used. Oracle, on the other hand, does
not require the at symbol and does use parentheses. Oracle also uses the IN keyword, but
it is positioned after the name of the parameter, as in “p_CDType IN CHAR (20).”

Now let’s return to the CDsByType procedure that is defined in the previous CREATE

PROCEDURE statement. Once you define your input parameter, you’ll want to use it in some

meaningful way within the routine body. In this case, the p_CDType parameter is used in the

second predicate in the WHERE clause (CDTypeName = p_CDType). This means that the

value you enter when you invoke the procedure is compared to the CDTypeName values of the

CDTypes table when the SELECT statement is executed. As a result, your query results will

include CD information about the specified music type.

Once you create your procedure, you can invoke it by using a CALL statement that

specifies a value for the parameter. For example, if you want to return information about Folk

Rock CDs, you can use the following CALL statement:

CALL CDsByType ('Folk Rock') ;

Notice that you include the value for the parameter in parentheses after the name of the

procedure. The value must conform to the data type assigned to the parameter, which in this

case is CHAR (20). As with any other instance in which you’re working with character string

values, you must enclose the value in single quotes. When you invoke this procedure, the Folk

Rock value is inserted into the predicate in the WHERE clause and the procedure returns the

following query results:

CDTitle CDStock
-------------------- -------
Famous Blue Raincoat 19

As you can see, you now have a procedure that you can use to return CD information

on any music type. You simply provide the name of the music type when you call the

procedure. However, procedures are not limited to only one parameter. You can include

multiple parameters in any procedure definition. For example, suppose you want to modify

the preceding procedure definition to allow you to enter an amount. You want to use that

amount to return CD information for only those CDs with a CDStock value that exceeds the

specified amount. At the same time, you still want to return CD information for only the

specified music type. As a result, you need to define two parameters, as shown in the

following CREATE PROCEDURE statement:

316 Module 13: Creating SQL-Invoked Routines

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 317

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:317

13

C
re

at
in

g
SQ

L-I
nv

ok
ed

Ro
ut

in
es

CREATE PROCEDURE CDsByType (IN p_CDType CHAR (20), IN p_Amount INT)
SELECT CDTitle, CDStock FROM CDInventory i, CDTypes t
WHERE i.CDTypeID = t.CDTypeID
AND CDTypeName = p_CDType AND CDStock > p_Amount ;

Notice that the parameter declaration clause now includes two input parameters:

p_CDType and p_Amount. The p_Amount parameter is configured with the INT data type.

The p_Amount parameter, like the p_CDType parameter, is used in a predicate in the WHERE

clause (CDStock > p_Amount). As a result, the rows returned by the procedure must include

CDStock values greater than the amount specified when calling the procedure.

Once you’ve created the procedure, you can call it by using a CALL statement that

includes values for both parameters, as shown in the following example:

CALL CDsByType ('New Age', 5) ;

Now your CALL statement includes two values (separated by a comma) within the parentheses.

The values must be listed in the order in which the parameters are defined in the CREATE

PROCEDURE statement. When you invoke this statement, the New Age value is inserted in the

p_CDType parameter, and the 5 value is inserted in the p_Amount parameter, making the SELECT

statement embedded in the procedure definition behave as though you entered the values directly,

as shown in the following example:

SELECT CDTitle, CDStock FROM CDInventory i, CDTypes t
WHERE i.CDTypeID = t.CDTypeID
AND CDTypeName = 'New Age' AND CDStock > 5 ;

If you were to execute this statement, you would return the same query results as you

would if you were to execute the CALL statement using the New Age value and 5 value, as

shown in the following results:

CDTitle CDStock
---------- -------
Past Light 6
Kojiki 10

Now let’s modify the CALL statement to see how specifying a different value might affect

your results. Suppose you use a numeric value of 8, rather than 5, as shown in the following

statement:

CALL CDsByType ('New Age', 8) ;

If you were to execute this statement, only one row would be returned:

CDTitle CDStock
---------- -------
Kojiki 10

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:318

318 Module 13: Creating SQL-Invoked Routines

If you refer back to the CDInventory table in Figure 13-1, you’ll see that only the Kojiki row is

a New Age CD with a CDStock value that exceeds 8, the value you specified in your CALL

statement. As you can see, using multiple parameters can provide you with a variety of options

that make procedures a useful and flexible tool that can eliminate the need to write multiple

statements that are meant to provide similar results. If you define the necessary parameters,

users simply plug in the necessary values to achieve the results they desire.

Using Procedures to Modify Data
Up to this point, the SQL-invoked procedures that we’ve looked at have contained SELECT

statements that query data. However, procedures are not limited to only SELECT statements.

You can include data modification statements such as INSERT, UPDATE, and DELETE.

Let’s return to the CDInventory table and CDTypes table, shown in Figure 13-1. You might

have noticed that the CDInventory table includes a row for the Fundamental CD. The music

type for that CD is New Pop, which is represented by NPOP (the value in the CDTypeID

column). You might also have noticed that there is no corresponding entry in the CDTypes

table for the New Pop type. You can create a procedure that allows you to insert values into

that table. You simply need to define that procedure with the appropriate input parameters and

INSERT statement, as shown in the following example:

CREATE PROCEDURE InsertType (IN p_Type CHAR (4), IN p_Name CHAR (20))
INSERT INTO CDTypes VALUES (p_Type, p_Name) ;

Notice that the procedure definition includes two input parameters: p_Type and p_Name,

both of which are defined with the CHAR data type. These parameters are then used in the

INSERT statement, in the same way in which you would normally specify values to be

inserted into a table. Any parameter that you declare for this purpose must be defined with a

data type that is compatible with the data type defined on the column that contains the data to

be modified. Once you create the procedure, you can use a CALL statement similar to the

following example to invoke the procedure:

CALL InsertType ('NPOP', 'New Pop') ;

Notice that the CALL statement includes NPOP and New Pop values. These values are

passed to the two parameters defined in the InsertType procedure. As a result, they are inserted

into the CDTypes table as though you had executed the INSERT statement directly.

In the same way that you create the InsertType procedure, you can create procedures that

update and delete data by defining procedures that include the appropriate UPDATE and DELETE

statement, rather than an INSERT statement. Simply create the necessary input parameters and pass

the appropriate values to those parameters when you call the procedure. However, keep in mind

that the value you pass to the parameters must conform not only to the data types defined in the

parameter declarations, but also to the data types and constraints on the columns that contain the

data you’re trying to modify.

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 319

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:319

13

C
re

at
in

g
SQ

L-I
nv

ok
ed

Ro
ut

in
es

CRITICAL SKILL

13.4 Add Local Variables to Your Procedures
In addition to allowing you to pass parameters into a procedure, SQL also provides a way for you to

create local variables in the procedure definition that can be used within the body of the procedure.

You can think of a local variable as a type placeholder that holds a value in memory during the

execution of the statements in the routine body. Once the statements are executed, the variable

ceases to exist.

When you define a local variable, you must first declare the variable and then set an initial

value for it. You can then use that variable in the remaining block of statements. The basic

syntax for defining a variable is as follows:

DECLARE <variable name> <data type> ;

As you can see, the syntax is very straightforward. You must provide a name for the variable

and assign a data type. Once you’ve declared the variable, you must then assign an initial value

to it. To do so, you can use the SET statement, which is shown in the following syntax:

SET <variable name> = <value expression> ;

Ask the Expert
Q: Up to this point, you’ve shown us how to create SQL-invoked procedures, but not

how to modify them. Is there a way to alter or delete procedures?

A: The SQL standard supports both an ALTER PROCEDURE statement and a DROP

PROCEDURE statement. The ALTER PROCEDURE statement allows you to alter some

of the routine characteristics of the procedure, but it does not allow you to alter the routine

body. However, the functionality supported by the ALTER PROCEDURE statement can

vary so widely from one SQL implementation to another that you’ll need to check the

product documentation to see whether the statement is supported and what you can do with

that statement. In SQL Server, for example, the ALTER PROCEDURE statement allows

you to modify most aspects of the procedure, whereas the same statement in Oracle is used

primarily to recompile the procedure to avoid runtime compiling (which saves on runtime

overhead). As for the DROP PROCEDURE statement, most implementations support this

and it is usually fairly straightforward. You simply provide the name of the procedure in the

statement and, depending on the SQL implementation, the RESTRICT or CASCADE

keywords, as you’ve seen them used in other DROP statements. Note that the same is true

for the ALTER FUNCTION and DROP FUNCTION statements. Although supported by

many implementations, the ALTER FUNCTION statement can vary from one product to

the next, and the DROP FUNCTION statement is fairly similar.

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:320

320 Module 13: Creating SQL-Invoked Routines

In this statement, you must first provide the variable name and then provide the initial value,

which can be any sort of value expression, such as a number, a character string, or a subquery.

After you’ve declared the variable and assigned the initial value, you’re ready to use the

variable in your routine body. The best way to illustrate this is to show you an example of a

procedure that uses a variable. For this example, we’ll again use the CDInventory table, shown

in Figure 13-1. The following statement creates a procedure that retrieves CD information for

a specific music type:

CREATE PROCEDURE CDAmount (IN p_TypeID CHAR (4))
BEGIN
DECLARE v_Amount INT ;
SET v_Amount = (SELECT AVG(CDStock) FROM CDInventory) ;
SELECT CDTitle, CDStock FROM CDInventory
WHERE CDTypeID = p_TypeID AND CDStock < v_Amount ;

END ;

Let’s go through this statement line by line. In the first line, we create a procedure named

CDAmount and an input parameter named p_TypeID. The second line contains the keyword

BEGIN. The BEGIN keyword is paired with the END keyword in the last line. Together they

enclose a block of statements that are processed as a unit. We’ll take a closer look at the

BEGIN...END block later in the “Working with Control Statements” section.

The third line of the procedure definition includes a DECLARE statement that declares

the v_Amount variable, which is defined with the INT data type. The next line uses a SET

statement to assign an initial value to the parameter. This value is derived from a subquery that

finds the average for all the CDStock values. The average is about 13. In the next two lines of

the procedure definition, a SELECT statement retrieves data from the CDInventory table based

on the values supplied by the parameter and variable.

Once you’ve created your procedure, you can retrieve it by using a CALL statement and

providing a value for the parameter, as shown in the following example:

CALL CDAmount ('NEWA') ;

When the procedure is processed, it inserts the NEWA value from the parameter and the

CDStock average from the variable into the SELECT statement defined in the procedure

definition. It would be similar to executing the following statement:

SELECT CDTitle, CDStock FROM CDInventory
WHERE CDTypeID = 'NEWA' AND CDStock < 13 ;

This SELECT statement, like the procedure itself, will return the following query results:

CDTitle CDStock
---------- -------
Past Light 6
Kojiki 10

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 321

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:321

13

C
re

at
in

g
SQ

L-I
nv

ok
ed

Ro
ut

in
es

Notice that both rows contain CDStock values less than the average amount (13) and both are

New Age CDs.

You’re not limited to only one variable in a procedure definition. You can create a

DECLARE statement for each variable that you want to include. You can also include multiple

variables in one statement, if those variables are assigned the same data type. For example,

suppose you want to declare several variables with an INT data type, as shown in the

following DECLARE statement:

DECLARE Var1, Var2, Var3 INT ;

This statement declares the Var1, Var2, and Var3 variables, and each one is assigned the INT

data type. Once you assign initial values to the variables, you can use them in the routine body

in the same way as any other local variables.

CRITICAL SKILL

13.5 Working with Control Statements
When the SQL/PSM standard was released in 1996, it included not only language that

supported SQL-invoked routines, but language that could be used within those routines to

make them more robust. Such characteristics as grouping statements into blocks and looping

statements so that they could be executed multiple times—behavior traditionally associated

with procedural type languages—made procedures and functions even more valuable to users

needing to access and manipulate data in their databases. The SQL:1999 standard refers to

these new language elements as control statements because they affect how you can control

data in SQL-invoked routines. In this section, we’ll look at several of these control statements,

including those that allow you to group statements into a block, create conditional statements,

and set up statements into a loop.

Create Compound Statements
The most basic of the control statements is the compound statement, which allows you to

group statements into a block. The compound statement starts with the BEGIN keyword and

finishes with the END keyword. Everything between the two keywords is part of the block.

The compound statement is made up of one or more individual SQL statements, which can

include statements such as DECLARE, SET, SELECT, UPDATE, INSERT, DELETE, or

other control statements.

You’ve already seen an example of a compound statement in the preceding CREATE

PROCEDURE statement that defines the CDAmount procedure. (This is the example shown in

the “Add Local Variables to Your Procedures” section.) If you take another look at that example,

you’ll see that the procedure definition includes a compound statement. As you would expect, it

starts with the BEGIN keyword and finishes with the END keyword. The block created by these

keywords includes a DECLARE statement, a SET statement, and a SELECT statement. Notice

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:322

322 Module 13: Creating SQL-Invoked Routines

that each statement is terminated with a semicolon. Although the BEGIN...END statement is

considered one statement, the statements enclosed in the keywords are individual statements in

their own right.

NOTE
In some SQL implementations, the compound statement might not be necessary under
certain circumstances. In these cases, the semicolon terminator might be enough to signal
to the implementation that one statement has ended and another has begun. Even those
implementations that don’t require the semicolon, such as SQL Server, will sometimes
process multiple statements as a block even if the BEGIN...END construction has not been
used. When the implementation reaches the end of one statement, it simply continues on
to the next. However, as a general rule, you should use the compound construction to
keep together those statements that should be processed as a unit. When you don’t use it,
you can sometimes experience unpredictable behavior, depending on the implementation.

You can use the compound statement wherever you need to keep SQL statements together.

That means that they can be embedded within other compound statements or within other

types of control statements. The BEGIN and END keywords do not affect how data might be

passed from one statement to the next, as in the case of parameters.

The good news about compound statements and the BEGIN...END construction is that

they’re supported by most SQL implementations, although there can be slight variations from

one product to the next, in terms of the specifics of how they’re implemented. Be sure to check

the product documentation when using these statements.

Create Conditional Statements
The next type of control statement we’ll look at is the conditional statement. This statement

determines whether a statement is executed based on whether a specified condition evaluates

to true. The statement uses the IF, THEN, and ELSE keywords to establish the conditions and

define the actions to take: if the condition is met, then the SQL statement is executed, or else

another action is taken.

NOTE
The conditional statement is sometimes referred to as an IF statement, an IF...ELSE
statement, an IF...END IF statement, or an IF...THEN...ELSE statement.

Let’s take a look at an example that uses a conditional statement to define different courses

of action, depending on the condition. In the following procedure definition, I modified the

routine body of the CDAmount procedure (which we used in the preceding example) to

include a conditional statement:

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 323

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:323

13

C
re

at
in

g
SQ

L-I
nv

ok
ed

Ro
ut

in
es

CREATE PROCEDURE CDAmount (IN p_TypeID CHAR (4))
BEGIN
DECLARE v_Amount INT ;
SET v_Amount = (SELECT SUM(CDStock) FROM CDInventory
WHERE CDTypeID = p_TypeID) ;

IF v_Amount < 20 THEN
SELECT CDTitle, CDStock FROM CDInventory
WHERE CDTypeID = p_TypeID ;

ELSE
SELECT * FROM CDInventory ;

END IF ;
END ;

Notice that the BEGIN...END block now includes an IF...END IF statement. The IF clause

introduces the statement and sets up the condition. For the condition to evaluate to true, the

value of the v_Amount variable must be less than 20. If the condition evaluates to true, the

first SELECT statement is executed. This is the SELECT statement that follows the THEN

keyword. If the condition is false, then the second SELECT statement is executed. This is

the statement that follows the ELSE keyword. To sum this all up, if v_Amount is less than 20,

the CDTitle and CDStock values from the CDInventory table are returned for those rows that

contain the TypeID specified by the p_TypeID parameter. If v_Amount is not less than 20, all

rows from the CDInventory table are returned.

Once you create your procedure, you can invoke it by using a CALL statement, as you

have for previous procedures. For example, if you want to return New Age (NEWA) CDs, you

can use the following CALL statement:

CALL CDAmount ('NEWA') ;

This statement will return both New Age rows: Past Light and Kojiki. This is because the

total number of New Age CDs (16) is less than 20, so the first SELECT statement is executed.

If you had specified the Classic Pop category (CPOP) when you invoked the CDAmount

procedure, all rows would have been returned. This is because the total number of Classic Pop

CDs (28) exceeds 20. As a result the IF condition would not be met, so the ELSE statement

would be executed.

If you want to create a conditional statement that includes more than one SQL statement

in either the IF clause or the ELSE clause, you can enclose those statements in a control

statement. For example, if we add an UPDATE statement to the condition in the preceding

example and use a control statement to enclose the UPDATE and SELECT statements, your

procedure definition will look like the following:

CREATE PROCEDURE CDAmount (IN p_TypeID CHAR (4))
BEGIN
DECLARE v_Amount INT ;
SET v_Amount = (SELECT SUM(CDStock) FROM CDInventory

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:324

WHERE CDTypeID = p_TypeID) ;
IF v_Amount < 20 THEN
BEGIN
UPDATE CDInventory SET CDStock = CDStock + 1
WHERE CDTypeID = p_TypeID ;

SELECT CDTitle, CDStock FROM CDInventory
WHERE CDTypeID = p_TypeID ;

END ;
ELSE
SELECT * FROM CDInventory ;

END IF ;
END ;

The compound statement groups the two statements into one block of code. This way, the

tables will be updated and the results of the update will be displayed in your query results.

Create Looping Statements
Now let’s take a look at another type of control statement—the looping statement. SQL

actually supports several types of looping statements. We’ll be looking at two of them: the

LOOP statement and the WHILE statement, both of which perform similar functions.

The LOOP statement uses the LOOP and END LOOP keywords to enclose a block of

statements that are executed repeatedly until the loop is explicitly ended, usually through the use

of the LEAVE keyword. Let’s take a look at an example to illustrate how this looks. Once again

using the tables in Figure 13-1, we’ll use a LOOP statement to update the CDInventory table.

324 Module 13: Creating SQL-Invoked Routines

Ask the Expert
Q: The condition statement in the preceding example shows only two conditions and

courses of action: the condition/action defined in the IF clause and the condition/action

defined in the ELSE clause. What if you want to include more conditions?

A: The SQL:1999 standard supports more than two condition/action constructions in a

conditional statement. If more than two are needed, you treat the IF clause and the

ELSE clause as shown in the example. The additional conditions are inserted between

the two clauses by adding an ELSE IF clause or an ELSEIF clause. The syntax for this

would be as follows:

IF <condition> THEN <action>

ELSE IF <condition> THEN <action>

ELSE <action>

The exact way you implement the third condition/action depends on your

implementation. In addition, not all implementations support ELSEIF, and some use

the ELSIF keyword. As always, be sure to refer to your product documentation.

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 325

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:325

13

C
re

at
in

g
SQ

L-I
nv

ok
ed

Ro
ut

in
es

NOTE
If you created and tested the CDAmount procedure in the preceding example, assume that
the CDInventory table has been returned to its original condition shown in Figure 13-1
and that no data has been modified.

In the following procedure definition, I include a LOOP statement that continues to update

the CDStock column until it reaches an amount greater than 14:

CREATE PROCEDURE UpdateStock (IN p_Title CHAR (20))
BEGIN
DECLARE v_Amount INT ;
SET v_Amount = (SELECT CDStock FROM CDInventory
WHERE CDTitle = p_Title) ;

Loop1:
LOOP
SET v_Amount = v_Amount + 1 ;
UPDATE CDInventory SET CDStock = v_Amount
WHERE CDTitle = p_Title ;

IF v_Amount > 14
THEN LEAVE Loop1 ;

END IF ;
END LOOP ;

END ;

In this statement, the loop is first assigned a name (Loop1:). You must include a colon with

the name when you first assign it. Next you create your loop block, which begins with the LOOP

keyword and finishes with the END LOOP keywords. Within the block are SET and UPDATE

statements. These two statements are executed until the loop is terminated. Notice that the CDStock

value is increased by an increment of 1 each time the statements in the loop are executed. These

two statements are followed by an IF statement, which specifies the condition in which the loop is

terminated. If the value for the v_Amount variable exceeds 14, then the loop is terminated (LEAVE

Loop1). The IF statement is then ended with the END IF keywords.

NOTE
If you did not include the IF statement in here (with the LEAVE termination operator), the
loop would continue to increase the CDStock value until it fills all available storage or
some other event terminates the operation.

You can then call the statement by providing the procedure name and a value for the

parameter. For example, suppose you want to update the Fundamental row in the CDInventory

table. You can invoke the procedure with the following CALL statement:

CALL UpdateStock ('Fundamental') ;

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When the procedure is executed, a value of 1 is repeatedly added to the CDStock column

until the value reaches 15, and then the loop is terminated.

You can receive the same results by using a WHILE statement. In the following example, I

modified the UpdateStock procedural definition by replacing the LOOP statement with a

WHILE statement:

CREATE PROCEDURE UpdateStock (IN p_Title CHAR (20))
BEGIN
DECLARE v_Amount INT ;
SET v_Amount = (SELECT CDStock FROM CDInventory
WHERE CDTitle = p_Title) ;

WHILE v_Amount < 15 DO
SET v_Amount = v_Amount + 1 ;
UPDATE CDInventory SET CDStock = v_Amount
WHERE CDTitle = p_Title ;

END WHILE ;
END ;

NOTE
Again, if you tested the procedure created in the example preceding this one, assume
that the table has been returned to its original condition shown in Figure 13-1 and that
no data has been modified.

The WHILE statement sets up the same type of loop condition as the LOOP statement.

However, instead of using an IF statement to terminate the loop, a condition is specified in the

WHILE clause that terminates the loop automatically when the condition evaluates to false. In

this case, the parameter value for v_Amount must be less than 15 for the WHILE condition to

evaluate to true. As long as it does evaluate to true, the SET statement and UPDATE statement

are executed. If the condition evaluates to false, the WHILE loop is terminated.

Project 13-1 Creating SQL-Invoked Procedures
In this project you will apply what you have learned about creating SQL-invoked

procedures to the Inventory database. You’ll create procedures, invoke procedures,

and drop procedures. One of the procedures will include a parameter and one will include a

variable. For this project, even more so than most projects, you’ll need to reference the

product documentation for your SQL implementation to ensure that you take into account

the variations in how a procedure is created, called, and dropped. As I said earlier in this

module, procedure implementation can vary widely between the SQL standard and the

individual product. You can download the Prj13.txt file, which contains the SQL statements

used in this project.

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:326

326 Module 13: Creating SQL-Invoked Routines

Prj13.txt

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 327

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:327

13

C
re

at
in

g
SQ

L-I
nv

ok
ed

Ro
ut

in
es

Cr
ea

tin
gS

QL
-In

vo
ke

dP
ro

ce
du

re
s

Project
13-1

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. The first procedure that you’ll create is a very basic one that queries information from the

CompactDiscs, ArtistCDs, and Artists tables. You’ll join the three tables in order to display

the CD names and artist names. Your procedure will include no parameters or variables.

Enter and execute the following SQL statement:

CREATE PROCEDURE GetCDArtists ()
SELECT cd.CDTitle, a.ArtistName
FROM CompactDiscs cd, ArtistCDs ac, Artists a
WHERE cd.CompactDiscID = ac.CompactDiscID AND ac.ArtistID = a.ArtistID ;

You should receive a message indicating that the GetCDArtists procedure has been created.

3. Next, you’ll call the GetCDArtists procedure. Enter and execute the following SQL

statement:

CALL GetCDArtists () ;

When you invoke the procedure, you should receive query results that include a list of all

the CDs and their artists.

4. Now you’ll drop the procedure from the database. Enter and execute the following SQL

statement:

DROP PROCEDURE GetCDArtists CASCADE ;

You should receive a message indicating that the GetCDArtists procedure has been dropped

from the database.

5. Your next step is to create a procedure similar to the last one, only this time you’ll define a

parameter that allows you to enter the name of the CD. The SELECT statement will include

a predicate that compares the CDTitle value to the value in the p_CD parameter. Enter and

execute the following SQL statement:

CREATE PROCEDURE GetCDArtists (IN p_CD VARCHAR (60))
SELECT cd.CDTitle, a.ArtistName
FROM CompactDiscs cd, ArtistCDs ac, Artists a
WHERE cd.CompactDiscID = ac.CompactDiscID
AND ac.ArtistID = a.ArtistID AND cd.CDTitle = p_CD ;

You should receive a message indicating that the GetCDArtists procedure has been created.

(continued)

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:328

328 Module 13: Creating SQL-Invoked Routines

6. Now you’ll call the GetCDArtists procedure. The CALL statement will include the Fundamental

value to insert into the parameter. Enter and execute the following SQL statement:

CALL GetCDArtists ('Fundamental') ;

Your query results should now include only the Fundamental row.

7. The next procedure that you’ll create is one that uses a variable to hold a number based

on the average of the InStock values. The procedure definition will include a compound

statement that groups together the other statements in the routine body. Enter and execute

the following SQL statement:

CREATE PROCEDURE GetCDAmount ()
BEGIN
DECLARE v_InStock INT ;
SET v_InStock = (SELECT AVG(InStock) FROM CompactDiscs) ;
SELECT CDTitle, InStock FROM CompactDiscs WHERE InStock < v_InStock ;

END ;

You should receive a message indicating that the procedure has been created.

8. Now you’ll call the procedure. Enter and execute the following SQL statement:

CALL GetCDAmount () ;

Your query results should include a list of CDs that have an InStock value less than the

average for all InStock values.

9. Close the client application.

Project Summary
In this project, you created three procedures. The first procedure, GetCDArtists, included no

parameters or variables. After you dropped that procedure, you modified the original GetCDArtists

procedure to include a parameter. You then created a new procedure (GetCDAmount) that included

no procedures but did include one variable. The Inventory database should now contain these two

procedures. Because both procedures only retrieve SQL data, you can invoke them at any time.

CRITICAL SKILL

13.6 Add Output Parameters to Your Procedures
Up to this point, we’ve looked only at procedures that take input parameter values. However,

SQL-invoked procedures also support output parameters. Output parameters provide a way to

create a procedure that returns a value (or multiple values).

The process of defining an output parameter is similar to that of defining an input parameter,

only you use the OUT keyword rather than IN. However, you must still provide a parameter

name and assign a data type. In addition, you must assign a value to that parameter by using a

SET statement.

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 329

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:329

13

C
re

at
in

g
SQ

L-I
nv

ok
ed

Ro
ut

in
es

A procedure definition can include both input and output parameters (and input/output

parameters if your implementation supports them). You can also include variables or any other

elements that we’ve looked at so far in this module.

Now let’s take a look at an example of an output parameter. The following CREATE

PROCEDURE statement creates a procedure that includes one output parameter (but no input

parameters or variables):

CREATE PROCEDURE NewAgeTotal (OUT p_Total INT)
BEGIN
SET p_Total = (SELECT SUM(CDStock) FROM CDInventory i, CDTypes t
WHERE i.CDTypeID = t.CDTypeID AND CDTypeName = 'New Age') ;

END ;

The output parameter (p_Total) is assigned the INT data type. The SET statement defines

a value for the parameter. In this case, the value is equal to the total number of New Age CDs.

This is the value that is returned by the procedure when you invoke it.

The process of invoking a procedure is different from what you’ve seen so far. When

invoking a procedure with an output parameter, you must first declare a variable that is then

used in the CALL statement, as shown in the following example:

BEGIN
DECLARE p_Total INT ;
CALL NewAgeTotal (p_Total) ;

END ;

In this case, I used the same name for the variable as the name of the parameter that was

defined in the procedure definition. However, the variable and parameter are not required to

have the same name, although they must be defined with the same data type.

Progress Check
1. What component can you include in a procedure definition that will allow you to accept

input values when you call that procedure?

2. What types of parameters are supported by SQL?

3. You create a procedure named GetCDInfo. The procedure includes one input parameter.

You want to call that procedure with the value Bonnie Raitt. What SQL statement should

you use to invoke the procedure?

4. What statement should you use to declare a variable?

1. Input parameter

2. Input, output, and input/output parameters

3. You should use the following SQL statement: CALL GetCDInfo ('Bonnie Raitt') ;

4. DECLARE statement

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:330

330 Module 13: Creating SQL-Invoked Routines

CRITICAL SKILL

13.7 Create SQL-Invoked Functions
Earlier in the module, in the “Understand SQL-Invoked Routines” section, I introduced you to the

two types of SQL-invoked routines—procedures and functions—and I described the differences

and similarities between the two. The main differences are that procedures support the definition of

input and output parameters and are invoked by using the CALL statement. Functions, on the other

hand, support the definition of input parameters only and are invoked as a value in an expression.

The function’s output is the value returned by the execution of the function, and not through the

explicit definition of an output parameter.

To create a function, you must use a CREATE FUNCTION statement. The statement is

similar to a CREATE PROCEDURE statement, except for a few critical differences:

● The input parameter definitions cannot include the IN keyword.

● A RETURNS clause must follow the parameter definitions. The clause assigns a data type

to the value returned by the function.

● The routine body must include a RETURN statement that defines the value returned by the

parameter.

NOTE
SQL Server also uses a RETURNS clause to assign a data type to the returned value,
and Oracle uses a RETURN clause. In both cases this clause is followed by the AS
keyword. Both SQL Server and Oracle use a RETURN statement in the routine body to
define the value returned by the parameter.

A function definition can include many of the elements that have been described

throughout this module. For example, you can define local variables, create compound

statements, and use conditional statements. In addition, you can define and use input

parameters in the same way you define and use input parameters in procedures (except that

you do not use the IN keyword).

Now that you have an overview of how to create a function, let’s look at an example,

which is based on the InStockCDs and Performers tables, shown in Figure 13-2.

The following CREATE FUNCTION statement defines a function that returns the artist

name for a specified CD, as it appears in the InStockCDs table:

CREATE FUNCTION CDArtist (p_Title VARCHAR (60))
RETURNS VARCHAR (60)
BEGIN
RETURN
(SELECT ArtistName FROM InStockCDs s, Performers p
WHERE s.Title = p.Title AND s.Title = p_Title) ;

END ;

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 331

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:331

13

C
re

at
in

g
SQ

L-I
nv

ok
ed

Ro
ut

in
es

In the first line of the statement, the CDArtist function and the p_Title parameter have

been defined. In the next line, the RETURNS clause assigns the VARCHAR (60) data type to

the value returned by the function. In the routine body, you can see that a RETURN statement

has been defined. The statement includes a subquery that uses the value of the input parameter

to return the name of the artist.

As you can see, defining a function is not much different from defining a procedure;

however, calling the function is another matter. Instead of using the CALL statement to invoke

the function, you use the function as you would any of the SQL predefined functions. (You

saw some of these functions in Module 10.) For example, suppose you want to find the name

of an artist based on the CD name and you want to know what other CDs that artist has made.

You can create a SELECT statement similar to the one shown in the following example to

retrieve the data:

SELECT Title, ArtistName FROM Performers
WHERE ArtistName = CDArtist ('Blue') ;

Figure 13-2 Using functions to retrieve values from the InStockCDs and Performers tables

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The CDArtist function returns the Joni Mitchell value (the artist of the Blue CD), which is

then compared to the ArtistName values. As a result, two rows are returned by the statement,

as shown in the following query results:

Title ArtistName
--------------- ----------
Blue Joni Mitchell
Court and Spark Joni Mitchell

As you can see, functions help to simplify your queries by storing part of the code as a schema

object (in the form of an SQL-invoked routine) and then invoking that code as necessary by calling

the function as a value in your SQL statement. Functions provide you with a wide range of

possibilities for returning values that make your queries less complex and more manageable.

Project 13-2 Creating SQL-Invoked Functions
In this project you will create a function named CDLabel in the Inventory database.

The function will provide the name of the company that publishes a specified CD.

Once you create the function, you will invoke it by using it as a value in a SELECT statement.

When you are finished, you will drop that function from your database. You can download the

Prj13.txt file, which contains the SQL statements used in this project.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. You will create a function that returns the name of the company that publishes a specified

CD. The function will include an input parameter that allows you to pass the name of the

CD into the function. Enter and execute the following SQL statement:

CREATE FUNCTION CDLabel (p_CD VARCHAR (60))
RETURNS VARCHAR (60)
BEGIN
RETURN
(SELECT CompanyName FROM CompactDiscs d, CDLabels l
WHERE d.LabelID = l.LabelID AND CDTitle = p_CD) ;

END ;

You should receive a message indicating that the CDLabel function has been created.

3. Now that the function has been created, you can use it in your SQL statements as a value in

an expression. The next statement that you’ll create is a SELECT statement that returns the

name of the CD and the company that publishes the CD for those CDs published by the

same company as the specified CD. Enter and execute the following SQL statement:

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:332

332 Module 13: Creating SQL-Invoked Routines

Prj13.txt

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELECT CDTitle, CompanyName FROM CompactDiscs d, CDLabels l
WHERE d.LabelID = l.LabelID
AND CompanyName = CDLabel ('Blues on the Bayou') ;

Your query results should include a list of four CDs, all of which were published by MCA

Records, the company that publishes Blues on the Bayou.

4. Try executing the same statement by using various names of CDs to see what sort of results

are returned.

5. Now you can drop the CDLabel function from your database. Enter and execute the

following SQL statement:

DROP FUNCTION CDLabel CASCADE ;

You should receive a message indicating that the CDLabel function has been dropped from

the database.

6. Close the client application.

Project Summary
The project had you create a function (CDLabel) that includes one parameter (p_CD). The

parameter passes the value of a CD name to the SELECT statement defined in the RETURN

statement of the parameter. The statement uses this information to determine the name of the

company that publishes the CD. You then used the CDLabel function in a SELECT statement

to retrieve the names of all CDs that are published by the same company that published the

specified CD. After that, you dropped the function from the database. Once you’ve completed

this project, try creating other functions in the database, and then use the functions in SELECT

statements to see what sort of data you can return.

Module 13 Mastery Check
1. Which statement do you use to invoke an SQL-invoked procedure?

A. RETURN

B. CALL

C. SET

D. DECLARE

SQL: A Beginner’s Guide 333

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:333

13

C
re

at
in

g
SQ

L-I
nv

ok
ed

Ro
ut

in
es

Cr
ea

tin
gS

QL
-In

vo
ke

dF
un

cti
on

s

Project
13-2

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:334

2. A(n) ____________ is a value passed to a statement in a procedure when you invoke that

procedure.

3. Which types of parameters can you use in an SQL-invoked function?

A. Input

B. Output

C. Input/output

D. Variable

4. What is another name for an SQL-invoked procedure?

5. What are the two primary differences between procedures and functions?

6. What information must you include in a CALL statement when invoking a procedure?

7. Which types of statements can you include in a procedure?

A. SELECT

B. INSERT

C. UPDATE

D. DELETE

8. Which statement do you use to assign an initial value to a variable?

A. DECLARE

B. RETURN

C. SET

D. CALL

9. A(n) ____________ statement allows you to group SQL statements into blocks.

10. Which keyword do you use to begin a conditional statement?

A. IF

B. BEGIN

C. THEN

D. ELSE

11. What keyword do you use in a LOOP statement to end that loop?

334 Module 13: Creating SQL-Invoked Routines

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

12. What is the difference between a conditional statement and a compound statement?

13. What are two types of looping statements?

A. BEGIN...END

B. IF...END IF

C. LOOP...END LOOP

D. WHILE...END WHILE

14. Which type of parameter can return a value when you invoke a procedure?

15. What step must you take when calling a procedure that includes an output parameter?

16. How does a CREATE FUNCTION statement differ from a CREATE PROCEDURE

statement?

13

SQL: A Beginner’s Guide 335

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 13
Blind Folio 13:335

13

C
re

at
in

g
SQ

L-I
nv

ok
ed

Ro
ut

in
es

P:\010Comp\Begin8\885-7\ch13.vp
Friday, April 04, 2003 4:53:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:337

Module14
Creating SQL Triggers

CRITICAL SKILLS
14.1 Understand SQL Triggers

14.2 Create SQL Triggers

14.3 Create Insert Triggers

14.4 Create Update Triggers

14.5 Create Delete Triggers

337

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:338

338 Module 14: Creating SQL Triggers

Up to this point in the book, you have learned to create a number of schema objects that you

can access or invoke by using SQL statements. For example, you learned how to create tables,

views, and SQL-invoked routines. In each case, once you create these objects, you need to take

some sort of action to interact directly with them, such as executing a SELECT statement to

retrieve data from a table or using a CALL statement to invoke a procedure. However, SQL

supports objects that perform actions automatically. These schema objects, which are known

as triggers, respond to modifications made to data within a table. If a specified modification is

made, the trigger is automatically invoked, or fired, causing an additional action to occur. As a

result, you never have to directly invoke the trigger, only take an action that causes the invocation.

In this module, we’ll explore triggers and how they’re used when table data is modified. We’ll

also look at examples of how to create the three basic types of triggers—insert, update, and

delete—and how they can be defined to extend your database’s functionality and help to

ensure the integrity of the data.

CRITICAL SKILL

14.1 Understand SQL Triggers
If you’ve worked around any SQL products before, you’ve no doubt seen triggers implemented

in one of your organization’s databases, or at least heard the term tossed about. Most relational

database management systems (RDBMSs) implemented triggers in their products long ago,

although it wasn’t until SQL:1999 that triggers were added to the standard. The result of the

products preceding the standard is that trigger implementations are very proprietary among the

SQL products and, as a result, support different types of functionality and are implemented in

different ways. For example, SQL Server triggers are somewhat limited in scope, compared to

the SQL standard, whereas Oracle triggers are more robust—and neither product implements

triggers according to the specifications of the SQL standard. Despite this, there are a number

of similarities among the products (such as the use of a CREATE TRIGGER statement to

create a trigger), and the implementations of triggers in the various products share some basic

characteristics, particularly that of being able to fire automatically to perform an action secondary

to the primary action that invoked the trigger.

NOTE
The functionality supported by triggers is sometimes referred to as active database. In
fact, this term is used to describe one of the optional packages that are included in the
SQL standard. The package—PKG008—defines how triggers are implemented in SQL.
(A package is a set of features that a product can claim conformance to in addition to
Core SQL.) For more information about SQL:1999 conformance, see Module 1.

Before we get into the specifics of how to implement triggers, let’s take a look at the trigger

itself, which, as I said, is a schema object (in the same sense as a table or view). A trigger definition

defines the characteristics of the trigger and what actions are taken when the trigger is invoked.

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 339

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:339

14

C
re

at
in

g
SQ

L
Tr

ig
ge

rs

These actions, which are specified in one or more SQL statements (referred to as the triggered

SQL statements), can include such events as updating tables, deleting data, invoking procedures,

or performing most tasks that you can perform with SQL statements. Any limitations placed

on those statements are usually the ones placed by the SQL implementation.

Triggers are invoked when you insert data into a table, update data, or delete data. By

defining one or more triggers on a table, you can specify which data-modification actions will

cause the trigger to fire. The trigger is never invoked unless the specified action is taken. As

you can probably conclude from this, SQL supports three types of triggers: insert, update, and

delete. Each type corresponds with the applicable data modification statement. For example,

an insert trigger is fired when the INSERT statement is executed against the specified table.

Although a trigger is a schema object, separate from table objects, it can be associated with

only one table, which you specify when you create your trigger definition. When the applicable

data modification statement is invoked against that table, the trigger fires, but it will not fire if

a similar statement is invoked against a different table or if a statement other than the specified

type is invoked against the same table. In this sense, a trigger can be thought of as a table

object, despite the fact that it is created at the schema level.

Trigger Execution Context
Before we move on to discussing how a trigger is created, I want to touch on the subject of

how triggers are executed, with regard to the trigger execution context, a type of SQL execution

context. You can think of an execution context as a space created in memory that holds a statement

process during the execution of that statement. SQL supports several types of execution contexts,

triggers being one of them.

A trigger execution context is created each time a trigger is invoked. If multiple triggers are

invoked, an execution context is created for each one. However, only one execution context can

be active in a session at any one time. This is important when a trigger in one table causes a

trigger in a second table to be fired. Let’s take a look at Figure 14-1 to help illustrate this point.

Notice that the figure contains three tables. An update trigger is defined on Table 1, and an

insert trigger is defined on Table 2. When an UPDATE statement is executed against Table 1,

the update trigger fires, creating a trigger execution context that becomes active. However, the

update trigger, which is defined to insert data into Table 2, invokes the insert trigger on Table 2

when the first trigger attempts to insert data into that table. As a result, a second execution context

is created, which becomes the active one. When the second trigger execution has completed, the

second execution context is destroyed, and the first execution context becomes active once more.

When the first trigger execution has completed, the first trigger execution context is destroyed.

A trigger execution context contains the information necessary for the trigger to be executed

correctly. This information includes details about the trigger itself and the table on which the

trigger was defined, which is referred to as the subject table. In addition, the execution context

includes one or two transition tables, as shown in Figure 14-1. The transition tables are virtual

tables that hold data that is updated in, inserted into, or deleted from the subject table. If data is

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:340

updated, then two transition tables are created, one for the old data and one for the new data. If

data is inserted, one transition table is created for the new data. If data is deleted, one transition

table is created for the old data. The transition tables and some of the other information in the

trigger execution context are used by the SQL statements that perform the triggered action.

You’ll learn more about how this information is used in the following section, when we look

at the CREATE TRIGGER syntax.

Progress Check
1. What is a trigger?

2. What are the three types of triggers?

3. How many tables can a trigger be associated with?

4. What is a trigger execution process?

340 Module 14: Creating SQL Triggers

Figure 14-1 Trigger execution contexts for two triggers

1. A trigger is a schema object that is invoked automatically when a specified data modification is made. Once invoked, the

trigger takes a predefined action, which is specified in one or more SQL statements.

2. Insert, update, and delete

3. Only one

4. A trigger execution context is a space created in memory that holds a trigger process during the execution of that trigger.

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 341

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:341

14

C
re

at
in

g
SQ

L
Tr

ig
ge

rs

CRITICAL SKILL

14.2 Create SQL Triggers
Now that you have a general overview of triggers, let’s take a look at the syntax you use to

create them. Most of the syntax is concerned with defining the characteristics of the trigger,

such as the name of the trigger and the type. Only at the end of the statement do you define the

triggered SQL statements that specify the actions taken by the trigger when it is invoked.

The basic syntax for creating a trigger definition is as follows:

CREATE TRIGGER <trigger name>

{ BEFORE | AFTER }

{ INSERT | DELETE | UPDATE [OF <column list>] }

ON <table name> [REFERENCING <alias options>]

[FOR EACH { ROW | STATEMENT }]

[WHEN (<search condition>)]

<triggered SQL statements>

Now let’s take a look at each line of the syntax. The first line is fairly straightforward. You

simply provide a name for the trigger following the CREATE TRIGGER keywords. In the second

line, you must designate whether the trigger is invoked before or after the data modification

statement is applied to the subject table. For example, if you’re defining an insert trigger, you

can specify whether the triggered SQL statements are executed before the data is inserted into

the subject table (by using the BEFORE keyword) or after the data is inserted into the subject

table (by using the AFTER keyword). This feature is particularly useful when one of the tables

is configured with a referential integrity constraint and cannot contain data before that data

exists in the other table. (For information about referential integrity, see Module 4.) Depending

on the nature of the triggered action that is defined, it may not matter whether you designate

BEFORE or AFTER because the triggered action may have no direct relation to the data

modified in the subject table.

In the third line of syntax, you specify whether the trigger is an insert, delete, or update

trigger. If it is an update trigger, you have the option of applying the trigger to one or more

specific columns. If more than one column is specified, you must separate the column names

with commas. In the next line of syntax, you must specify an ON clause that includes the name

of the subject table. This is the table on which the trigger is applied. The trigger can be applied

to only one table.

Up to this point, all the syntax we’ve looked at is required, except for specifying column

names in update trigger definitions, which is optional. However, the next several clauses are

not mandatory, but they add important capabilities to your trigger. The first of these clauses is

the REFERENCING clause. This clause allows you to specify how data that is held in the trigger

execution context is referenced within the WHEN clause or the triggered SQL statements. We’ll

look at the REFERENCING clause in more detail in the following section, “Referencing Old

and New Values.”

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:342

The next line of syntax contains the FOR EACH clause, which includes two options: ROW

or STATEMENT. If you specify ROW, the trigger is invoked each time a row is inserted,

updated, or deleted. If you specify STATEMENT, the trigger is invoked only one time for

each applicable data modification statement that is executed, no matter how many rows are

affected. If you do not include this clause in your trigger definition, the STATEMENT option

is assumed, and the trigger fires only once for each statement.

Next in the syntax is the optional WHEN clause. The WHEN clause allows you to define

a search condition that limits the scope of when the trigger is invoked. The WHEN clause is

similar to the WHERE clause of a SELECT statement. You specify one or more predicates that

define a search condition. If the WHEN clause evaluates to true, the trigger fires; otherwise, no

trigger action is taken. However, this doesn’t affect the initial data modification statement that

was executed against the subject table; only the triggered SQL statements defined in the

trigger definition are affected.

Finally, the last component that your CREATE TRIGGER statement must include is one

or more SQL statements that are executed when the trigger is invoked and, if a WHEN clause

is included, that clause evaluates to true. If the trigger definition includes more than one triggered

SQL statement, those statements must be enclosed in a BEGIN...END block, like those you

saw in Module 13. However, there is one difference from what you saw before. When used in

a trigger definition, the BEGIN keyword must be followed by the ATOMIC keyword to notify

the SQL implementation that the statements within the block must be handled as a unit. In

other words, either all the statements must be executed successfully, or none of the results of

any statement executions can persist. Without the ATOMIC keyword, it would be possible for

some statements to be executed while others fail to be executed.

NOTE
Many implementations do not support the use of the ATOMIC keyword in the
BEGIN...END block of the triggered SQL statements. This includes both SQL
Server and Oracle.

Aside from the issue of the ATOMIC keyword, the triggered SQL statements, including the

BEGIN...END block, can consist of almost any SQL statements, depending on the limitations of

your SQL implementation. Be sure to check the product documentation to determine what limitations

might be placed on the triggered SQL statements and how triggers are generally created and

implemented.

Referencing Old and New Values
Now let’s return to the REFERENCING clause of the CREATE TRIGGER statement. The

purpose of this clause is to allow you to define correlation names for the rows stored in the

342 Module 14: Creating SQL Triggers

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

transition tables or for the transition tables as a whole. As you’ll recall from the “Understand

SQL Triggers” section earlier in this module, the transition tables hold the data that has been

updated, inserted, or deleted in the subject table. The correlation names, or aliases, can then be

used in the triggered SQL statements to refer back to the data that is being held in the transition

tables. This can be particularly handy when trying to modify data in a second table based on

the data modified in the subject table. (This will be made clearer when we look at examples

later in the module.)

If you refer back to the syntax in the previous section, you’ll notice that the optional

REFERENCING clause includes the <alias options> placeholder. SQL supports four options

for this clause:

● REFERENCING OLD [ROW] [AS] <alias>

● REFERENCING NEW [ROW] [AS] <alias>

● REFERENCING OLD TABLE [AS] <alias>

● REFERENCING NEW TABLE [AS] <alias>

Notice that, in the first two options, the ROW keyword is not mandatory. If you don’t

specify ROW, it is assumed. Notice too that the AS keyword is optional in all cases. However,

for the purposes of maintaining clear, self-referencing code, I recommend that you use the

complete option whenever you include it in a trigger definition.

Depending on the type of trigger (update, insert, or delete) and the FOR EACH option

(ROW or STATEMENT), you can include up to four REFERENCING options in your trigger

definition, one of each type. However, you cannot include more than one of any single type.

For example, you cannot include two OLD ROW options in your trigger definition. When

adding REFERENCING options to your trigger definition, you must follow these guidelines:

● You cannot use the NEW ROW and NEW TABLE options for delete triggers because no

new data is created.

● You cannot use the OLD ROW and OLD TABLE options for insert triggers because no

old data exists.

● You can use all four options in an update trigger because there is old data and new data

when you update a table.

● You can use the OLD ROW and NEW ROW options only when you specify the FOR

EACH ROW clause in the trigger definition.

Once you define your REFERENCING clauses and assign the appropriate aliases, you’re

ready to use those aliases in your triggered SQL statements, in the same way you used

correlation names in your SELECT statements.

SQL: A Beginner’s Guide 343

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:343

14

C
re

at
in

g
SQ

L
Tr

ig
ge

rs

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:344

Dropping SQL Triggers
Although the SQL standard does not support any sort of statement that allows you to alter

a trigger, it does support a way to delete a trigger, which you achieve by using the DROP

TRIGGER statement. As you can see in the following syntax, this statement is quite basic:

DROP TRIGGER <name>

All you need to do is provide the name of the trigger, along with the DROP TRIGGER

keywords. Because no other objects are dependent on the trigger, you do not need to specify

any additional keywords, such as CASCADE or RESTRICT. When you execute the DROP

TRIGGER statement, the trigger definition is deleted from the schema.

Progress Check
1. What keywords can you use to designate whether the triggered SQL statements are

executed before or after the data modification statement is applied to the subject table?

2. Which type of trigger allows you to specify the column names of the subject table?

3. Which REFERENCING clause option allows you to define an alias for an old row of data?

4. Which statement can you use to delete a trigger from the schema?

CRITICAL SKILL

14.3 Create Insert Triggers
So far in this module, I’ve provided you with background information about triggers and the

syntax used to create triggers. Now we’ll look at examples of how triggers are created and

what happens when they’re invoked. We’ll begin with the insert trigger, which, as you know,

is invoked when an INSERT statement is executed against the subject table (the table on which

the trigger has been defined). In the first example, we’ll create a trigger on the RetailInventory

table (subject table), shown in Figure 14-2. The trigger, when invoked, will insert data into the

InventoryLog table.

344 Module 14: Creating SQL Triggers

1. BEFORE or AFTER

2. Update trigger

3. REFERENCING OLD [ROW] [AS] <alias>

4. DROP TRIGGER statement

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following CREATE TRIGGER statement defines an INSERT trigger that fires after

the data is inserted into the subject table:

CREATE TRIGGER InsertLog
AFTER INSERT ON RetailInventory
FOR EACH ROW
BEGIN ATOMIC
INSERT INTO InventoryLog (ActionType)
VALUES ('INSERT') ;

END ;

NOTE
As I mentioned at the beginning of the module, SQL implementations can vary widely
with regard to the semantics of the CREATE TRIGGER statement. For example, SQL
Server does not allow you to specify a FOR EACH clause, nor does it support the use
of the ATOMIC keyword in the BEGIN...END statement. On the other hand, the basic
Oracle trigger definition is a lot closer to the SQL standard, although Oracle also does
not support the use of the ATOMIC keyword in a trigger definition.

SQL: A Beginner’s Guide 345

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:345

14

C
re

at
in

g
SQ

L
Tr

ig
ge

rs

Figure 14-2 Creating an insert trigger on the RetailInventory table

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:346

Let’s take a look at this statement one element at a time. In the first line, the CREATE

TRIGGER clause defines a trigger named InsertLog. In the next line, the AFTER keyword is

used to specify that the triggered SQL statements will be executed after the data has been

inserted into the subject table. The AFTER keyword is followed by the INSERT keyword,

which defines the trigger as an insert trigger. Next comes the ON clause, which specifies the

name of the subject table. In this case, the subject table is RetailInventory.

As we move through the statement, we come to the FOR EACH clause, which specifies

the ROW keyword. This clause, when used with ROW, indicates that the trigger will be invoked

for each row that is inserted into the table, rather than for each INSERT statement that is executed

against the table. Following the FOR EACH clause are the triggered SQL statements.

The triggered SQL statements include a BEGIN...END statement and an INSERT statement.

I did not need to include the BEGIN...END statement in the trigger definition because, without

it, there is only one triggered SQL statement. However, I wanted to demonstrate how the block

would be used had there been more than one statement. Notice that the block includes the

ATOMIC keyword following the BEGIN keyword. According to the SQL standard, ATOMIC

is required, although it will depend on your SQL implementation whether the keyword is

supported.

The BEGIN...END block encloses an INSERT statement that adds data to the InventoryLog

table when the trigger is invoked. Each time a row is inserted into the RetailInventory table, a

row is inserted into the InventoryLog table. The InventoryLog row will contain the INSERT

value for the ActionType column. A timestamp value is then added automatically to the

DateModified column, which is defined with the default CURRENT_TIMESTAMP.

You can, if you want, create other triggers on the RetailInventory table. For example, you

might want to create update and delete triggers that insert rows into the InventoryLog table

when the applicable data modifications are made. In that case, you would simply create a

trigger definition for each additional trigger that you need.

NOTE
The SQL standard does not place a limit on the number of triggers that can be defined
on any one table; however, SQL implementations can have many restrictions, so check
the product documentation. In addition to these limitations, various implementations
might support different ways in which multiple triggers can be implemented. For
example, SQL Server allows you to define an insert, update, and delete trigger in
one statement.

Now let’s take a look at what happens when you insert a row into the RetailInventory

table. Suppose you want to insert information on the Fundamental CD. You would create

an INSERT statement as you would normally do, as shown in the following example:

346 Module 14: Creating SQL Triggers

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

INSERT INTO RetailInventory
VALUES ('Fundamental', 15.99, 18) ;

If you were to execute the statement, the rows would be inserted into the RetailInventory

table. To verify this, you can execute the following SELECT statement:

SELECT * FROM RetailInventory ;

The SELECT statement will return the same rows shown in the RetailInventory table in

Figure 14-2, plus an additional row for the Fundamental CD, exactly as you would expect.

The trigger has no effect on the data modifications you make to the RetailInventory table.

However, as you’ll recall from the trigger definition that was defined on the RetailInventory

table, the triggered SQL statements should insert data into the InventoryLog table when the

trigger is invoked, which should occur when you inserted a row into the RetailInventory table.

To verify this, you can execute the following SELECT statement:

SELECT * FROM InventoryLog ;

The query results should include not only the rows shown in the InventoryLog table in

Figure 14-2, but also an additional row that includes an ActionType value of INSERT and

a DateModified value for the current date and time. Each time a row is inserted into the

RetailInventory table, a row is inserted in the InventoryLog table. You could have defined

your triggered SQL statements to take any sort of action, not just log events in a log table.

Depending on your needs and the database in which you work, you have a great many

possibilities for the type of actions that your triggers will support.

CRITICAL SKILL

14.4 Create Update Triggers
Now that you’ve seen an example of an insert trigger, let’s take a look at a couple of update

triggers. The update trigger is invoked when an UPDATE statement is executed against the

subject table. As with any other type of trigger, when the trigger is invoked, the triggered SQL

statements are executed and an action is taken. To illustrate how the update trigger works,

we’ll use the TitlesInStock and TitleCosts tables shown in Figure 14-3.

The first example that we’ll look at is created on the TitlesInStock table and includes

triggered SQL statements that update the TitleCosts table, as shown in the following CREATE

TRIGGER statement:

CREATE TRIGGER UpdateTitleCosts
AFTER UPDATE ON TitlesInStock
REFERENCING NEW ROW AS New
FOR EACH ROW

SQL: A Beginner’s Guide 347

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:347

14

C
re

at
in

g
SQ

L
Tr

ig
ge

rs

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:348

BEGIN ATOMIC
UPDATE TitleCosts c
SET Retail = Retail * .9
WHERE c.CDTitle = New.CDTitle ;

END ;

As you can see, this trigger definition is similar in many ways to the insert trigger we

looked at in the preceding example. The update trigger definition includes the name of the

trigger (UpdateTitleCosts) and specifies the AFTER and UPDATE conditions. The ON clause

then follows the UPDATE keyword and provides the name of the target table. Following all

this is a line of code we did not see in the preceding example—a REFERENCING clause.

The REFERENCING clause uses the NEW ROW option to define a correlation name for

the row that has been updated in the TitlesInStock table. However, the REFERENCING clause,

and subsequently the search condition or triggered SQL statements that might refer to the alias

defined in this clause, are not directly referencing the TitlesInStock table. Instead, they’re

referencing the transition table for new data in the trigger execution context. In other words,

the correlation name defined in the REFERENCING clause references the updated row that is

copied to the transition table. In this case, the correlation name is New. As a result, the New

correlation name can be used in the search condition in the WHEN clause or in the triggered

SQL statements to refer back to the data in the transition table.

Once you’ve defined the correlation name in the REFERENCING clause, you must use

it to qualify the column names of the modified row when they are referenced in the WHEN

clause or in the triggered SQL statements. In the CREATE TRIGGER statement in the

preceding example, you can see that the alias is used in the WHERE clause of the UPDATE

statement. Notice that the word New precedes the column name and that the two are separated

348 Module 14: Creating SQL Triggers

Figure 14-3 Creating an update trigger on the TitlesInStock table

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

by a period. This is typical of how you would qualify a name. It is similar to the way in which

you use the qualified name c.CDTitle for the CDTitle column in the TitleCosts table. If you

had specified a different NEW ROW correlation name or used the name in the WHEN clause

or in another part of the triggered SQL statement, you would still qualify the name of the

column with the alias that references the rows in the transition table or the table itself.

NOTE
SQL Server does not support the REFERENCING clause. However, it supports similar
functionality by automatically assigning the names Inserted and Deleted to the transition
tables (Inserted for new data and Deleted for old data). In addition, there are some
cases in which you must declare a variable to use values from the Inserted and Deleted
tables, rather than qualifying column names, as you do in the SQL standard. Oracle, on
the other hand, does support the REFERENCING clause, but it also automatically assigns
the names New and Old to the transition tables, which you can use in the WHEN clause
and triggered SQL statements without specifying a REFERENCING clause. When you do
use the aliases in the triggered SQL statements of an Oracle trigger definition, you must
precede the alias name with a colon, as in :New. This is not the case for the WHEN
clause, in which the alias name is used without the colon. Also, you cannot use the
keyword ROW in the REFERENCING clause of an ORACLE trigger definition.

In addition to the REFERENCING clause, the CREATE TRIGGER statement also includes

a FOR EACH clause, which specifies the ROW option. Also notice that the triggered SQL

statements include a BEGIN...END statement, which encloses an UPDATE statement. As you

can see, the UPDATE statement modifies the Retail value in the TitleCosts table for the CD

that was updated in the TitlesInStock table.

Now let’s take a look at what happens when you update the TitlesInStock column. The

following UPDATE statement changes the Inventory value for the Famous Blue Raincoat row:

UPDATE TitlesInStock
SET Inventory = 30
WHERE CDTitle = 'Famous Blue Raincoat' ;

When the UPDATE statement is executed, the UpdateTitleCosts trigger is invoked,

causing the TitleCosts table to be updated. As a result, not only is the Inventory value in the

TitlesInStock table changed to 30, but the Retail value in the TitleCosts table is reduced to

15.29 (Retail * .9). Any time you update the TitlesInStock table, the corresponding row or

rows in the TitleCosts table will be reduced by 10 percent.

You might find that you want to limit when the triggered SQL statements are executed.

For example, you might want to reduce the price of CDs only when the inventory exceeds a

certain amount. As a result you decide to change your trigger definition to include a WHEN

clause that defines the necessary search condition. However, as I said earlier, SQL does not

SQL: A Beginner’s Guide 349

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:349

14

C
re

at
in

g
SQ

L
Tr

ig
ge

rs

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:350

350 Module 14: Creating SQL Triggers

support an ALTER TRIGGER statement, so you would need to first delete the trigger from the

database. The way to do that is to use the following DROP TRIGGER statement:

DROP TRIGGER UpdateTitleCosts ;

When you execute this statement, the trigger definition is removed from the schema and

you can now re-create the trigger with the necessary modifications. The following example

again creates the UpdateTitleCosts trigger, but this time a WHEN clause has been added to

the statement:

CREATE TRIGGER UpdateTitleCosts
AFTER UPDATE ON TitlesInStock
REFERENCING NEW ROW AS New
FOR EACH ROW
WHEN (New.Inventory > 20)
BEGIN ATOMIC
UPDATE TitleCosts c
SET RETAIL = Retail * .9
WHERE c.CDTitle = New.CDTitle ;

END ;

As you can see, the WHEN clause specifies that the Inventory value must be greater than

20; otherwise, the triggered SQL statements will not be invoked. Notice that the Inventory

column name is qualified with the New correlation name in the same way that the CDTitle

column name is qualified in the WHERE clause of the UPDATE statement. As a result, the

WHEN clause will reference the transition table for new data in the trigger execution context

when comparing values.

Now let’s take a look at what happens when you update the TitlesInStock table. The

following UPDATE statement changes the Inventory value for the Past Light row:

UPDATE TitlesInStock
SET Inventory = 25
WHERE CDTitle = 'Past Light' ;

As you would expect, the Inventory value in the TitlesInStock column is changed to 25. In

addition, because the condition specified in the WHEN clause is met (New.Inventory > 20),

the triggered SQL statements are executed and the TitleCosts table is updated. If you were to

query the TitleCosts table, you would see that the Retail value for the Past Light row has been

changed to 13.49.

Now let’s take a look at an UPDATE statement that sets the Inventory value to an amount

less than 20:

UPDATE TitlesInStock
SET Inventory = 10
WHERE CDTitle = 'Past Light' ;

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 351

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:351

14

C
re

at
in

g
SQ

L
Tr

ig
ge

rs

Ask the Expert
Q: When describing trigger execution contexts, you discussed how one trigger can

cause another trigger to be invoked. Is there a point at which multiple triggers can

become a problem if too many are invoked?

A: Problems can arise when multiple triggers are invoked and they cause a cascading

effect from one table to the next. For example, an attempt to update one table might

invoke a trigger that updates another table. That update, in turn, invokes another trigger

that modifies data in yet another table. This process can continue on as one trigger after

the next is invoked, creating undesirable results and unplanned data modifications.

The condition can be made even worse if a loop is created in which a trigger causes a

data modification on a table for which another trigger has fired. For example, a data

modification on one table might invoke a trigger that causes a second modification.

That modification invokes another trigger, which in turn invokes another trigger, which

invokes yet another trigger. The last trigger might then modify data in the original

table, causing the first trigger to fire again, repeating the process over and over until

the system fails or an implementation-specific process ends the loop. The best way

to prevent unwanted modifications or trigger loops is through careful planning in

the database design. Triggers should not be implemented unless you’re sure of their

impact. In addition to careful planning, you should look to the SQL implementation

to determine what sorts of safety nets might be in place to prevent trigger looping or

unwanted cascading. For example, some implementations allow you to control whether

cascading triggers are allowed, and some limit the number of cascading triggers that

can fire. Make sure that you read your product’s documentation before creating

multiple triggers in your database.

Q: Earlier, you mentioned that SQL allows you to define multiple triggers on a table.

How are triggers processed if multiple triggers are invoked?

A: In SQL, processing of multiple triggers is a concern only if the triggers are defined

to fire at the same time (BEFORE or AFTER) and if they’re the same type of trigger

(INSERT, UPDATE, or DELETE). For example, a multiple trigger scenario would

exist if two or more triggers are defined (on the same table) with the AFTER UPDATE

keywords. If this condition exists, then the triggers are invoked in the order in which

they were defined. Let’s take a look at an example to show you what I mean. If you

create Trigger1 and then create Trigger2 and then create Trigger3, Trigger1 is invoked

first, then Trigger2, and then Trigger3. The problem with this is that SQL does not

define any way in which you can change that order. For example, if you decide that you

(continued)

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:352

352 Module 14: Creating SQL Triggers

This statement will still update the Inventory value in the TitlesInStock table, but it will

not cause the triggered SQL statements to be executed because the search condition in the

WHEN clause is not met. As a result, no changes are made to the TitleCosts table, although

the TitlesInStock table is still updated.

CRITICAL SKILL

14.5 Create Delete Triggers
The final type of trigger that we’ll look at is the delete trigger. As you would expect, the delete

trigger is invoked when a DELETE statement is executed against the subject table, and as with

other triggers, the triggered SQL statements are executed and an action is taken. Now let’s take

a look at an example that uses the CDStock table and CDOut table, as shown in Figure 14-4.

Suppose you want to create a trigger on the CDStock table. You want the trigger to insert

the deleted values into the CDOut table. The following CREATE TRIGGER statement uses a

REFERENCING clause to allow the triggered SQL statement to know which data to insert

into the CDOut table:

CREATE TRIGGER InsertCDout
AFTER DELETE ON CDStock
REFERENCING OLD ROW AS Old
FOR EACH ROW
INSERT INTO CDOut
VALUES (Old.CDName, Old.CDType) ;

In this statement, you are creating a trigger named InsertCDOut. The statement is defined

with the AFTER DELETE keywords, meaning that the old values are inserted into the CDOut

table after they have been deleted from the CDStock table. The ON clause identifies the

CDStock table as the subject table.

Following the ON clause is the REFERENCING clause. The REFERENCING clause uses

the OLD ROW option to assign a correlation name of Old. Remember that you can use only the

OLD ROW and OLD TABLE options in the REFERENCING clause of a delete trigger definition.

This is because there is no new data, only the old data that’s being deleted.

The FOR EACH clause follows the REFERENCING clause. The FOR EACH clause uses

the ROW option. As a result, a row will be inserted into the CDOut table for each row deleted

from the CDStock table.

want Trigger3 invoked before Trigger1, your only option—based on the SQL

standard—is to delete Trigger1 and Trigger2 from the schema and then re-create the

triggers in the order you want them invoked. Because you did not delete Trigger3, it

will move into the top spot and be the first to be invoked because it will then be seen

as the first to have been created.

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Next comes the triggered SQL statement. Notice that in this example, a BEGIN...END

statement is not used. Because there is only one triggered statement, you do not have to use

the BEGIN...END block. The triggered statement in this case is an INSERT statement that

specifies two values, each of which is based on the values deleted from the CDStock table.

The Old alias is used to qualify each column name. As a result, the deleted values can be

inserted directly into the CDOut table.

Now let’s take a look at an example of what happens when you delete a row from the

CDStock table. The following DELETE statement deletes the Past Light row from the table:

DELETE CDStock
WHERE CDName = 'Past Light' ;

Once you execute this statement, the row is deleted and the trigger is invoked. The row is

then inserted into the CDOut table. You can verify the deletion by using the following SELECT

statement to view the contents of the CDStock table:

SELECT * FROM CDStock ;

The query results from this statement should no longer include the Past Light row.

However, if you execute the following SELECT statement, you’ll see that a row has been

inserted into the CDOut table:

SELECT * FROM CDOut ;

Each time a row is deleted from the CDStock table, two values from that row will be

inserted into the CDOut table. As with other trigger definitions, you could have included a

SQL: A Beginner’s Guide 353

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:353

14

C
re

at
in

g
SQ

L
Tr

ig
ge

rs

Figure 14-4 Creating a delete trigger on the CDStock table

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:354

WHEN clause in your CREATE TRIGGER statement so that the triggered SQL statements

are executed only when the search condition specified in the WHEN clause evaluates to true.

Otherwise, the statements are not executed. The row will still be deleted from the CDStock

table, but nothing will be inserted into the CDOut table.

Project 14-1 Creating SQL Triggers
Throughout this module, we have looked at how to create the three basic types

of triggers—insert, update, and delete triggers. You will now create your own

triggers (one of each of the three types) in the Inventory database. The triggers will be defined

to log data modification activity that occurs in the Artists table. Whenever data is modified in

the Artists table, a row will be inserted into a log table, which you will create. The log table

will record the type of action taken (insert, update, delete), the ArtistID value for the modified

row, and a timestamp of when the row was inserted into the table. As a result, whenever you

execute an INSERT, UPDATE, or DELETE statement against the Artists table, a row will be

inserted into the new table for each row that is modified. As with other projects in this book

(particularly Module 13, when you created stored procedures), you should refer to the

documentation for your SQL implementation when creating triggers to make certain you

follow that product’s standards. There are a lot of variations among the SQL implementations.

You can download the Prj14.txt file, which contains the SQL statements used in this project.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. Before you create the actual triggers on the Artists table, you must create a table that will

log the data modifications you make to the Artists table. The log table, named ArtistLog,

will include three columns to record data modification events. One of the columns will be

configured with a default value that records the current date and time. Enter and execute the

following SQL statement:

CREATE TABLE ArtistLog
(ActionType CHAR (6), ArtistID INT,

ModDate TIMESTAMP DEFAULT CURRENT_TIMESTAMP) ;

You should receive a message indicating that the table was successfully created.

3. Now you will create an insert trigger on the Artists table. The trigger definition will

include a REFERENCING clause that specifies a correlation name (New) for the new

row that is inserted into the Artists table. That correlation name will then be used in the

triggered SQL statement as a value inserted into the ArtistLog table. Enter and execute

the following SQL statement:

354 Module 14: Creating SQL Triggers

Prj14.txt

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 355

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:355

14

C
re

at
in

g
SQ

L
Tr

ig
ge

rs
Cr

ea
tin

gS
QL

Tri
gg

er
s

Project
14-1

CREATE TRIGGER InsertLog
AFTER INSERT ON Artists
REFERENCING NEW ROW AS New
FOR EACH ROW
BEGIN ATOMIC
INSERT INTO ArtistLog (ActionType, ArtistID)
VALUES ('INSERT', New.ArtistID) ;

END ;

You should receive a message indicating that the trigger was successfully created.

4. Next you will create an update trigger. This trigger definition is similar to the one in Step 3,

except that you are specifying that it is an update trigger. Enter and execute the following

SQL statement:

CREATE TRIGGER UpdateLog
AFTER UPDATE ON Artists
REFERENCING NEW ROW AS New
FOR EACH ROW
BEGIN ATOMIC
INSERT INTO ArtistLog (ActionType, ArtistID)
VALUES ('UPDATE', New.ArtistID) ;

END ;

You should receive a message indicating that the trigger was successfully created.

5. Now you will create a delete trigger. This trigger definition is a little different than the last

two triggers because the REFERENCING clause specifies a correlation name for the old

values, rather than the new. This is because new values are not created when you delete

data from a table. The correlation name (Old) is then used in the VALUES clause of the

INSERT statement. Enter and execute the following SQL statement:

CREATE TRIGGER DeleteLog
AFTER DELETE ON Artists
REFERENCING OLD ROW AS Old
FOR EACH ROW
BEGIN ATOMIC
INSERT INTO ArtistLog (ActionType, ArtistID)
VALUES ('DELETE', Old.ArtistID) ;

END ;

You should receive a message indicating that the trigger was successfully created.

6. Now you can begin to test the triggers that you created. The first step is to insert data into

the Artists table. In this statement, values are specified for the ArtistID column and the

(continued)

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:356

ArtistName column, but not the PlaceOfBirth column. As a result, the default value of

Unknown will be inserted in that column. Enter and execute the following SQL statement:

INSERT INTO Artists (ArtistID, ArtistName)
VALUES (2019, 'John Lee Hooker') ;

You should receive a message indicating that the row was successfully inserted into the

Artists table.

7. Now you will update the row that you just inserted by providing a value for the PlaceOfBirth

column. Enter and execute the following SQL statement:

UPDATE Artists
SET PlaceOfBirth = 'Clarksdale, Mississippi, USA'
WHERE ArtistID = 2019 ;

You should receive a message indicating that the row was successfully updated into the

Artists table.

8. Your next step is to delete the row that you just created. Enter and execute the following

SQL statement:

DELETE Artists
WHERE ArtistID = 2019 ;

You should receive a message indicating that the row was successfully deleted from the

Artists table.

9. Now that you’ve modified data in the Artists table, you will look at the ArtistLog table to

verify that rows have been entered into the table to record your data modifications of the

Artists table. Enter and execute the following SQL statement:

SELECT * FROM ArtistLog ;

Your query results should include three rows, one for each action type (INSERT, UPDATE,

and DELETE). The rows should all have the same ArtistID value (2019) and include the

current dates and times.

10. Your next step will be to drop the triggers from the database. The first trigger that you’ll

drop is the insert trigger. Enter and execute the following SQL statement:

DROP TRIGGER InsertLog ;

You should receive a message indicating that the trigger was successfully dropped from

your database.

11. Next you will drop the update trigger. Enter and execute the following SQL statement:

DROP TRIGGER UpdateLog ;

356 Module 14: Creating SQL Triggers

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 357

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:357

14

C
re

at
in

g
SQ

L
Tr

ig
ge

rs
Cr

ea
tin

gS
QL

Tri
gg

er
s

Project
14-1

You should receive a message indicating that the trigger was successfully dropped

from the database.

12. Now drop the delete trigger. Enter and execute the following SQL statement:

DROP TRIGGER DeleteLog ;

You should receive a message indicating that the trigger was successfully dropped from

the database.

13. Finally, you will drop the ArtistLog table that you created in Step 2. Enter and execute

the following SQL statement:

DROP TABLE ArtistLog ;

You should receive a message indicating that the table was successfully dropped from

the database.

14. Close the client application.

Project Summary
In this project, you created the ArtistLog table, which was set up to store information about

data modifications to the Artists table. Next you created three triggers on the Artists table—an

insert trigger, an update trigger, and a delete trigger. All three triggers used REFERENCING

clauses to allow you to pass the ArtistID value of the modified row to the ArtistLog table.

After the triggers were created, you inserted, updated, and deleted data in the Artists table to

test the triggers. You then viewed the contents of the ArtistLog table to verify that the data

modifications had been properly recorded. After that, you dropped the three triggers and the

ArtistLog table. By the time you completed the project, the Inventory database should have

been returned to the same state it was in when you began.

Module 14 Mastery Check
1. What type of actions can be performed by the triggered SQL statements?

2. Which actions can invoke a trigger?

A. Updating data

B. Querying data

C. Deleting data

D. Inserting data

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:358

3. When is an insert trigger invoked?

4. A trigger can be defined on how many tables?

A. Only one

B. One or more

C. One to three

D. Any number of tables

5. A(n) ____________ is a space created in memory that holds a trigger process during the

execution of that trigger.

6. You insert data into Table 1, which invokes an insert trigger defined on that table. The

trigger updates information in Table 2, which invokes an update trigger defined on that

table. The update trigger deletes information in Table 3, which invokes a delete trigger

defined on that table. Which trigger execution context is active at this point?

A. The trigger execution context for the insert trigger

B. The trigger execution context for the update trigger

C. The trigger execution context for the delete trigger

7. If three triggers are invoked during a session, how many trigger execution contexts are

created in that session?

8. What information is included in a trigger execution context?

9. In which clause of the CREATE TRIGGER statement do you assign correlation names to

old and new data?

A. FOR EACH

B. ON

C. REFERENCING

D. WHEN

10. In which clause of the CREATE TRIGGER statement do you specify whether the triggered

SQL statements are executed once for each row or once for each statement?

A. FOR EACH

B. ON

C. REFERENCING

D. WHEN

358 Module 14: Creating SQL Triggers

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

11. You’re creating a trigger definition for an insert trigger. Which REFERENCING clauses

can you include in your CREATE TRIGGER statement?

A. REFERENCING OLD ROW AS Old

B. REFERENCING NEW ROW AS New

C. REFERENCING OLD TABLE AS Old

D. REFERENCING NEW TABLE AS New

12. A(n) ____________ trigger allows you to specify the column names of a subject table.

13. You’re creating an update trigger on the CDInventory table. The table includes a column

named InStock. You want the triggered SQL statements to be executed only when the

InStock value of the updated row exceeds 20. Which clause should you include in your

CREATE TRIGGER statement to restrict when the statements are executed?

A. WHERE

B. HAVING

C. FOR EACH

D. WHEN

14. What statement must you include in your CREATE TRIGGER statement if the trigger

definition includes more than one triggered SQL statement?

15. What SQL statement do you use to alter a trigger definition?

SQL: A Beginner’s Guide 359

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 14
Blind Folio 14:359

14

C
re

at
in

g
SQ

L
Tr

ig
ge

rs

P:\010Comp\Begin8\885-7\ch14.vp
Friday, April 04, 2003 6:08:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:361

Module15
Using SQL Cursors

CRITICAL SKILLS
15.1 Understand SQL Cursors

15.2 Declare a Cursor

15.3 Open and Close a Cursor

15.4 Retrieve Data from a Cursor

15.5 Use Positioned UPDATE and DELETE Statements

361

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A s we have looked at different aspects of SQL throughout this book, we have used direct

invocation to create and access various data objects. Direct invocation, or interactive SQL,

is a type of data access method that supports the ad hoc execution of SQL statements, usually

through some sort of client application. For example, you can use SQL Server Query Analyzer

or Oracle SQL*Plus Worksheet to interact directly with your SQL database. However, direct

invocation generally represents only a small percentage of users. A far more common method

used to access SQL databases is embedded SQL, a data access model in which SQL statements

are embedded in an application programming language, such as C and COBOL. To support

embedded SQL, the SQL standard allows you to declare cursors that act as pointers to specific

rows of data in your query results. This module explains why cursors are used and how cursors

can be declared, opened, and closed within an SQL session. You’ll also learn how to retrieve

data from within the cursor so that your programming language can work with SQL data in a

format that the application can process.

CRITICAL SKILL

15.1 Understand SQL Cursors
One of the defining characteristics of SQL is the fact that data in an SQL database is managed

in sets. In fact, query results returned by SELECT statements are often referred to as result sets.

These result sets are each made up of one or more rows extracted from one or more tables.

When working with SQL data interactively, having data returned in sets rarely presents a

problem because you can normally scroll through the query results to find the information you

need. If the size of the results is too great to easily filter through, you can narrow the focus of

your query expression to return a more manageable result set. However, most data access is

through means other than direct invocation (despite the fact that we access data interactively

throughout the book). One of the most common methods, embedded SQL, accesses data through

embedded SQL statements. The data elements returned by the SQL statements are used by the

outer programming language—the host language—to support specific application processes.

The problem we run into with this system is that the application programming languages

are generally not equipped to deal with data returned in sets. As a result, an impedance mismatch

exists between SQL and the programming languages. Impedance mismatch refers to differences

between SQL and other programming languages. As you might recall from Module 3, one

example of impedance mismatch is the way in which SQL data types differ from data types in

other programming languages. These differences can lead to the loss of information when an

application extracts data from an SQL database. Another example of impedance mismatch is

the fact that SQL returns data in sets but other programming languages cannot handle sets.

Generally, they can process only a few pieces of data at the same time. The way in which

SQL deals with this type of impedance mismatch is through the use of cursors.

A cursor serves as a pointer that allows the application programming language to deal with

query results one row at a time. Although the cursor can traverse all the rows of a query result,

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:362

362 Module 15: Using SQL Cursors

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

it focuses on only one row at a time. A cursor still returns a full result set, but allows the

programming language to call only one row from that set. For example, suppose your query

results are derived from the following SELECT statement:

SELECT PerformerName, PlaceOfBirth FROM Performers

The query results from this statement will return all rows from the Performers table, which

includes the PerformerName column and the PlaceOfBirth column. However, your application

programming language can deal with only one row at a time, so the cursor is declared as an

embedded SQL statement within the application programming language. The cursor is then

opened and a row is retrieved from the query results. Figure 15-1 illustrates how a cursor acts

as a pointer to retrieve only one row of data.

In this case, the row that is retrieved through the cursor is the Bing Crosby row. However,

you can retrieve any row from the query results, and you can continue to retrieve rows, as long

as they’re retrieved one at a time and the cursor remains open. Once you close the cursor, you

cannot retrieve any more rows from the query results.

Declaring and Opening SQL Cursors
Most application programming languages support the use of cursors to retrieve data from an

SQL database. The cursor language is embedded in the programming code in much the same

way you would embed any SQL statement. When using a cursor in a programming language,

you must first declare the cursor—similar to how you would declare a variable—and then use

SQL: A Beginner’s Guide 363

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:363

15

U
sin

g
SQ

L
C

ur
so

rs

Figure 15-1 Using a cursor to access the Performers table

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:364

364 Module 15: Using SQL Cursors

the declaration name (the name you’ve assigned to the cursor) in other embedded SQL statements

to open the cursor, retrieve individual rows through the cursor, and close the cursor.

NOTE
You can also use cursors in SQL client modules, which are sets of SQL statements that
can be called from within an application programming language. Client modules, along
with embedded SQL and interactive SQL, provide one more method to invoke SQL
statements. Because client modules are not implemented as widely as embedded SQL,
I focus on using cursors in embedded SQL. For more information about SQL client
modules, see Module 17.

Although declaring a cursor is pivotal in using that cursor in your application, the

declaration alone is not enough to extract data from an SQL database. In fact, full cursor

functionality is supported through the use of four SQL statements, each of which are

embedded in the application programming language, or host language. The following

descriptions provide an overview of these four statements:

● DECLARE CURSOR Declares the SQL cursor by defining the cursor name, the

cursor’s characteristics, and a query expression that is invoked when the cursor is opened.

● OPEN Opens the cursor and invokes the query expression, making the query results

available to FETCH statements.

● FETCH Retrieves data into variables that pass the data to the host programming

language or to other embedded SQL statements.

● CLOSE Closes the cursor. Once the cursor is closed, data cannot be retrieved from the

cursor’s query results.

The four statements are called from within the host language. Figure 15-2 illustrates how

the cursor-related statements are used. The embedded SQL statements are shown in the boxes

that are shaded gray.

As you can see, you must first declare the cursor, and then you open it. Once you’ve

opened the cursor, you can use the FETCH statement to retrieve rows of data. You can use this

statement as many times as necessary, usually within some sort of looping structure defined by

the host language. Once you’ve retrieved the necessary data, you should close the cursor.

NOTE
For most application programming languages, an embedded SQL statement is preceded by
EXEC SQL. This signals to a preprocessor that the following statement is SQL and must be
processed separately from the host language. The preprocessor, provided by the RDBMS
vendor, analyzes the SQL code and converts it into a form that can be used by the SQL
implementation. The host language is compiled in the normal way. For more information
about embedded SQL, see Module 17.

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Progress Check
1. Which invocation methods support the use of cursors?

2. What do you call the differences between SQL and other programming languages?

3. What is a cursor?

SQL: A Beginner’s Guide 365

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:365

15

U
sin

g
SQ

L
C

ur
so

rs

Figure 15-2 Embedding cursor-related SQL statements

1. Embedded SQL and SQL client modules

2. Impedance mismatch

3. A cursor serves as a pointer that allows the application programming language to deal with query results one row at a

time. Although the cursor can traverse all the rows of a query result, it focuses on only one row at a time.

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:366

366 Module 15: Using SQL Cursors

CRITICAL SKILL

15.2 Declare a Cursor
The first statement that we’ll look at is the DECLARE CURSOR statement. The cursor must be

declared before you can use the cursor to retrieve data. You can declare a cursor at any point in

your application code, as long as it’s declared before using the cursor in any other statements.

NOTE
Many programmers prefer to declare all cursors and variables at the beginning of the
program so that all declarations are kept together. The cursors and variables can then
be referenced at any point in the program.

The syntax for a cursor declaration includes many elements, as shown in the following syntax:

DECLARE <cursor name>

[SENSITIVE | INSENSITIVE | ASENSITIVE]

[SCROLL | NO SCROLL] CURSOR

[WITH HOLD | WITHOUT HOLD]

[WITH RETURN | WITHOUT RETURN]

FOR <query expression>

[ORDER BY <sort specification>]

[FOR { READ ONLY | UPDATE [OF <column list>] }]

As you can see, most of the elements that make up the declaration are optional. We’ll look

at these in greater detail in the following section. For now, let’s focus on those elements that

are required. To do so, we can synthesize the syntax down to the following basic elements:

DECLARE <cursor name> CURSOR FOR <query expression>

This syntax shows only those parts of the cursor declaration that are mandatory. As you

can see, this is a much more manageable chunk of code. All you’re required to provide is a

name for the cursor and the query expression that is invoked when the cursor is opened. The

name must be different from the name of any other cursor declared within the same program.

The query expression is basically a SELECT statement, as you have seen throughout this book.

That’s all there is to the basic syntax. In the following section, we’ll take a look at each of the

optional elements that make up the cursor declaration. After that, we’ll look at some examples.

Working with Optional Syntax Elements
If you refer back to the full syntax for a cursor declaration (shown in the previous section),

you’ll see that the majority of the elements are optional. In this section, we’ll look at each of

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 367

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:367

15

U
sin

g
SQ

L
C

ur
so

rs

these elements. Later in the module, after we’ve completed this discussion, you might find that

you’ll want to refer back to this section for details about specific options.

Cursor Sensitivity
The first optional element of the DECLARE CURSOR statement that we’ll look at is cursor

sensitivity, which is represented with the following syntax:

[SENSITIVE | INSENSITIVE | ASENSITIVE]

Cursor sensitivity is concerned with statements outside the cursor that affect the same

rows as those returned by the cursor. For example, suppose your cursor returns rows from the

CDsInStock table. While the cursor is open, another statement within the same transaction

deletes some of the same rows in the CDsInStock table that were returned by the cursor.

Whether or not the cursor can see these deletions depends on the cursor sensitivity.

As you can see in the syntax, SQL supports three cursor sensitivity options:

● SENSITIVE Significant changes made by statements outside the cursor immediately

affect the query results within the cursor.

● INSENSITIVE Significant changes made by statements outside the cursor do not affect

the query results within the cursor.

● ASENSITIVE Cursor sensitivity is implementation-defined. Significant changes may

or may not be visible within the cursor.

If no cursor sensitivity option is specified, ASENSITIVE is assumed, in which case the

SQL implementation can take whatever action it has been designed to take.

Cursor Scrollability
The next optional element in the DECLARE CURSOR statement that we’ll look at is cursor

scrollability, as shown in the following syntax:

[SCROLL | NO SCROLL]

Scrollability is directly tied to the FETCH statement and the options that the FETCH

statement can use to retrieve data. If the SCROLL option is specified, the FETCH statement

can be defined with one of several options that extend its ability to move through the query

results and return specific rows. The SCROLL option allows the FETCH statement to skip

around through the query results as needed to retrieve the specific row. If NO SCROLL is

specified in the cursor declaration, the FETCH statement cannot make use of the additional

scrolling options and can retrieve only the next available row from the query results. If neither

option is specified, NO SCROLL is assumed. For more information about the FETCH options,

see the “Retrieve Data from a Cursor” section later in this module.

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:368

Cursor Holdability
The next item that we’ll look at in the DECLARE CURSOR syntax is related to cursor holdability,

as shown in the following syntax:

[WITH HOLD | WITHOUT HOLD]

Cursor holdability refers to a characteristic in cursors that is concerned with whether a cursor

is automatically closed when the transaction in which the cursor was opened is committed.

A transaction is an atomic unit of work. This means that all statements within the transaction

must succeed or none of them are used. If some statements within a transaction are executed

and then one statement fails, all executed statements are rolled back and the database remains

unchanged. (Transactions are discussed in more detail in Module 16.)

SQL provides two options that allow you to define cursor holdability: WITH HOLD

and WITHOUT HOLD. If you specify WITH HOLD, your cursor will remain open after you

commit the transaction, until you explicitly close it. If you specify WITHOUT HOLD, your

cursor will be automatically closed when the transaction is committed. If neither option is

specified, WITHOUT HOLD is assumed and your cursor is automatically closed.

NOTE
Even if your cursor is defined as a WITHOUT HOLD cursor—whether explicitly or by
default—it is still generally considered good practice to explicitly close your cursor when
it is no longer needed. This can free up system resources, and it helps to ensure that
your code is clearly self-documented.

The advantage of defining a holdable cursor (one that is defined with the WITH HOLD

option) is that there might be times after a transaction is committed in which you want your cursor

to persist in order to maintain its position within the query results returned by that cursor.

Closing a cursor and reopening it can often make it difficult to restore conditions to exactly

what they were when you first closed the cursor.

Cursor Returnability
Cursor returnability, the next option we’ll look at in the cursor declaration definition, uses the

following syntax:

[WITH RETURN | WITHOUT RETURN]

The returnability option applies only to cursors that are opened in an SQL-invoked

procedure. As you’ll recall from Module 13, an SQL-invoked procedure is a type of routine

that is invoked by using the CALL statement. The CALL statement is an SQL statement that

368 Module 15: Using SQL Cursors

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

retrieves procedures and allows you to pass parameter values to those procedures. If the cursor

is not opened within a procedure, the returnability option has no effect.

As the syntax shows, SQL supports two returnability options: WITH RETURN and

WITHOUT RETURN. If you specify WITH RETURN, the cursor is considered a result set

cursor. If you then open the cursor within an SQL-invoked procedure, the cursor’s result set

is returned to the procedure’s invoker, which might be another SQL-invoked routine or a

programming host language. If you specify WITHOUT RETURN, the cursor’s result set is

returned in the normal manner, whether or not it is opened with an SQL-invoked procedure.

If neither option is specified, WITHOUT RETURN is assumed.

Cursor Ordering
The DECLARE CURSOR statement includes an optional ORDER BY clause, as shown in the

following syntax:

[ORDER BY <sort specification>]

You’ll no doubt recognize this clause from Module 7, when we looked at the basic clauses

of the SELECT statement. You might recall from that discussion that the ORDER BY clause

can be used when directly invoking SQL, but not in an embedded SQL statement, unless that

statement is contained within a cursor declaration.

The ORDER BY clause allows you to sort the query results returned by your query

specification. In the clause, you can specify which columns form the basis for sorting the rows.

If you use an ORDER BY clause, your cursor’s SELECT statement cannot contain a GROUP

BY clause or a HAVING clause. In addition, the SELECT clause portion of the statement

cannot specify the DISTINCT keyword or use a set function.

If your ORDER BY clause includes calculated columns in the query results (such as ColumnA

+ ColumnB), you should define an alias for the result column, as in (ColumnA + ColumnB)

AS ColumnTotals. In addition, you can also use the ASC and DESC keywords for any column

included in the sort specification to specify that the column be sorted in ascending or descending

order, respectively. (For more information about the ORDER BY clause, see Module 7.)

Cursor Updatability
The last optional element of the DECLARE CURSOR statement that we’ll look at is cursor

updatability, as shown in the following syntax:

[FOR { READ ONLY | UPDATE [OF <column list>] }]

Cursor updatability refers to the ability to use an UPDATE or DELETE statement to

modify data returned by the cursor’s SELECT statement. As you can see from the syntax, you

must use the FOR keyword along with the READ ONLY or UPDATE option. Let’s first go

SQL: A Beginner’s Guide 369

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:369

15

U
sin

g
SQ

L
C

ur
so

rs

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:370

over the READ ONLY option. If you specify READ ONLY, you cannot execute an UPDATE

or DELETE statement against the query results returned by the cursor’s SELECT statement.

On the other hand, if you specify UPDATE, you can execute the statements. If you specify

neither option, UPDATE is assumed, unless another option overrides the UPDATE default.

NOTE
In some cases, even if no updatability option is specified, the cursor will be defined as a
read-only cursor because other options might prevent the cursor from being updated.
For example, if you specify the INSENSITIVE option, the cursor will be read-only. The
same is true if you specify an ORDER BY clause or SCROLL keyword.

You’ll notice that the UPDATE option also allows you to specify which columns in the

underlying table can be updated. To do this, you must include the OF keyword, followed by

one or more column names. If more than one column is specified, they must be separated by a

comma. If you do not specify any column names (and the OF keyword), the UPDATE option

applies to all columns in the underlying table.

Creating a Cursor Declaration
Now that we’ve looked at each component of the DECLARE CURSOR statement, let’s take a

look at a few examples that help illustrate how to declare a cursor. For these examples, we’ll

use the CDInventory table, shown in Figure 15-3.

The first example that we’ll review is a basic cursor declaration that includes only the

required elements plus an ORDER BY clause, as shown in the following DECLARE

CURSOR statement:

DECLARE CD1 CURSOR
FOR
SELECT * FROM CDInventory
ORDER BY CompactDisc ;

In this statement, I’ve declared a cursor named CD1 and defined a SELECT statement.

The cursor name follows the DECLARE keyword. After the cursor name, I’ve included

the CURSOR keyword and the FOR keyword. The only additional element is the SELECT

statement, which includes an ORDER BY clause. The statement returns all rows and columns

from the CDInventory table. The rows are then ordered according to the values in the CompactDisc

column. Because I did not specify the ASC or DESC keyword, the rows are returned in

ascending order.

370 Module 15: Using SQL Cursors

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 371

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:371

15

U
sin

g
SQ

L
C

ur
so

rs

NOTE
In Module 7, when discussing the SELECT statement, I explain that, although an asterisk
can be used to return all columns from a table, it is a better practice to identify each
column that you want returned. This is especially important in embedded SQL because
the host language relies on certain values—a specified number in a specified order—
being returned from the database. If the database should change, your application may
not operate properly, and the application code will have to be modified. However, for
the examples in this module, I often use an asterisk to simplify the code and conserve
space, but know that, in the real world, I would usually specify each column.

The ORDER BY clause is an important element because the order in which the rows

are returned affects which rows are retrieved when using a FETCH statement. (I discuss the

Figure 15-3 Declaring cursors on the CDInventory table

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:372

FETCH statement later in the module, in the “Retrieve Data from a Cursor” section.) This is

especially true if defining a scrollable cursor, such as the one in the following example:

DECLARE CD2 SCROLL CURSOR
FOR
SELECT * FROM CDInventory
ORDER BY CompactDisc

FOR READ ONLY ;

Notice that I’ve added two new elements to this statement: the SCROLL keyword and the

FOR READ ONLY clause. The SCROLL keyword signals to the FETCH statement that the

cursor is scrollable. As a result, additional options can be used within the FETCH statement

that extend how your application can move through the cursor results. The FOR READ ONLY

clause indicates that neither an UPDATE nor a DELETE statement can be used to modify data

returned by the cursor. However, this clause is not necessary. Because the cursor declaration

includes the SCROLL keyword and the SELECT statement includes an ORDER BY clause, the

cursor is automatically limited to read-only operations. The use of either of these two options—

or the use of the INSENSITIVE option—automatically overrides the cursor’s default updatability.

The next type of read-only declaration that we’ll look at also includes the INSENSITIVE

keyword, as shown in the following example:

DECLARE CD3 SCROLL INSENSITIVE CURSOR
FOR
SELECT * FROM CDInventory
ORDER BY CompactDisc

FOR READ ONLY ;

The CD3 cursor declaration is exactly like the CD2 cursor declaration except that CD3 has

also been defined as an insensitive cursor. This means that no modifications made to the data

in the underlying table while the cursor is open will be reflected in the query results returned

by the cursor. Of course, if you close the cursor and then reopen it, any modifications that had

been made when the cursor was originally open will be reflected in the data returned by the

reopened cursor.

The three preceding cursor declarations that we’ve looked at have all been read-only. Now

let’s take a look at an updatable cursor. In the following cursor declaration, the SELECT

statement again returns all rows and columns from the CDInventory table:

DECLARE CD4 CURSOR
FOR
SELECT * FROM CDInventory

FOR UPDATE ;

372 Module 15: Using SQL Cursors

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Notice that this DECLARE CURSOR statement does not include the SCROLL keyword,

the INSENSITIVE keyword, or an ORDER BY clause, any of which would have prevented us

from creating an updatable cursor. We could have specified the NO SCROLL and SENSITIVE

options, but they’re not necessary. Also notice, however, that the cursor declaration does include

the FOR UPDATE clause. The clause is also not necessary in this particular statement because

the cursor is, by default, updatable, since it contains no options to limit the updatability.

However, if you want your cursor to be updatable only for a certain column, you must include

the FOR UPDATE clause, along with the column name, as shown in the following example:

DECLARE CD5 CURSOR
FOR
SELECT * FROM CDInventory

FOR UPDATE OF CompactDisc ;

Now the FOR UPDATE clause includes the OF keyword and the column name, CompactDisc.

If you were to try to modify data in the cursor results in columns other than the CompactDisc

column, you would receive an error.

Once you’ve declared your cursor, you can open it and retrieve data from the query results.

However, as you have seen in the preceding cursor declarations, the actions that you can take

are limited to the restrictions defined with the DECLARE CURSOR statement.

Progress Check
1. Which statement do you use to declare a cursor?

2. Which keyword should you include in your cursor declaration if you want to extend the

capabilities of your FETCH statements?

3. What clause can you include in a read-only cursor that returns query results in a specific order?

4. What option should you include in a cursor declaration to define that cursor as holdable?

SQL: A Beginner’s Guide 373

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:373

15

U
sin

g
SQ

L
C

ur
so

rs

1. DECLARE CURSOR statement

2. SCROLL

3. ORDER BY clause

4. WITH HOLD

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:374

CRITICAL SKILL

15.3 Open and Close a Cursor
The process of opening a cursor is very straightforward. You need to provide only the keyword

OPEN and the name of the cursor, as shown in the following syntax:

OPEN <cursor name>

For example, to open the CD1 cursor, you invoke the following SQL statement:

OPEN CD1 ;

You cannot open a cursor until you have declared it. Once you’ve declared it, you can

open it anywhere within your program. The SELECT statement within the cursor is not

invoked until you actually open the cursor. That means that any data modified between when

the cursor is declared and when the cursor is opened is reflected in the query results returned

by the cursor. If you close the cursor and then reopen it, data modifications that took place

between when you close it and when you reopen it are reflected in the new query results.

Once you have finished using your cursor, you should close it so that you can free up

system resources. To close a cursor, you can use the CLOSE statement, as shown in the

following syntax:

CLOSE <cursor name>

The CLOSE statement does nothing more than close the cursor, which means that the

query results from the cursor’s SELECT statement are released. For example, to close the CD1

cursor, use the following SQL statement:

CLOSE CD1 ;

Once you close the cursor, you cannot retrieve any more rows from the cursor’s query results.

In other words, you cannot use a FETCH statement to retrieve data from that cursor. If you reopen

the cursor, you can again retrieve data, but you would again have to close the cursor.

CRITICAL SKILL

15.4 Retrieve Data from a Cursor
So far, you’ve learned how to declare a cursor, open it, and then close it. However, these

actions alone do not allow you to retrieve any of the data that is provided by the cursor. In

order to do that, you must use a FETCH statement.

Before we take a look at the syntax for the FETCH statement, let’s briefly review the

purpose of a cursor and its related statements. As I said earlier, one of the problems with

374 Module 15: Using SQL Cursors

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 375

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:375

15

U
sin

g
SQ

L
C

ur
so

rs

embedding SQL statements in a programming host language is the impedance mismatch. One

form of that mismatch is that SQL returns data in sets and traditional application programming

languages cannot handle sets of data. In general, they can deal only with individual values. In

order to address this form of impedance mismatch, you can use cursors to retrieve data one

row at a time—regardless of how many rows are returned—from which you can extract

individual values that can be used by the host language.

As you have seen, a cursor declaration includes a SELECT statement that returns a set

of data. The OPEN statement executes the SELECT statement, and the CLOSE statement

releases the query results from the SELECT statement. However, it is the FETCH statement

that identifies individual rows within that set of data and extracts individual values from those

rows, which are then passed to host variables. A host variable is a type of parameter that

passes a value to the host language.

One or more FETCH statements can be executed while a cursor is open. Each statement

points to a specific row in the query results, and values are then extracted from those rows.

The following syntax shows the basic elements that make up the FETCH statement:

FETCH [[<fetch orientation>] FROM]

<cursor name> INTO <host variables>

As you can see by the syntax, you must specify the FETCH keyword, the name of the cursor,

and an INTO clause that identifies the host variables that will receive the values returned by

the FETCH statement. These values are derived from the query results that are generated by the

cursor’s SELECT statement when that cursor is opened. If your FETCH statement includes more

than one host variable, you must separate the variables with a comma.

In addition to the mandatory components of the FETCH statement, the syntax also includes

the optional <fetch orientation> placeholder and the FROM keyword. If you specify a fetch

orientation option in your FETCH statement, you must include the FROM keyword, or you

can specify FROM without the fetch orientation.

SQL supports six fetch orientation options that identify which row is selected from the

cursor’s query results. Most of these options are available only if you declare the cursor as

scrollable. A scrollable cursor, as you’ll recall, is one that extends the ability of the FETCH

statement to move through the cursor’s query results. A cursor is scrollable if the cursor

declaration includes the SCROLL keyword. If you include a fetch orientation in your FETCH

statement, you can choose from one of the following options:

● NEXT Retrieves the next row from the query results. If you use NEXT in your first

FETCH statement after you open your cursor, the first row in the query results will be

returned. A second FETCH NEXT statement will return the second row.

● PRIOR Retrieves the row directly preceding the one that had last been retrieved. If

you use PRIOR in your first FETCH statement after you open the cursor, no row will

be returned because no row precedes the first row.

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:376

376 Module 15: Using SQL Cursors

● FIRST Retrieves the first row from your cursor’s query results, regardless of how many

FETCH statements have been executed since opening the cursor.

● LAST Retrieves the last row from your cursor’s query results, regardless of how many

FETCH statements have been executed since opening the cursor.

● ABSOLUTE <value> Retrieves the row specified by the <value> placeholder. The value

must be an exact numeric, although it can be derived from a host variable. The numeric

identifies which row is returned by the FETCH statement. For example, ABSOLUTE 1

returns the first row, ABSOLUTE 2 returns the second row, and ABSOLUTE -1 returns

the last row.

● RELATIVE <value> Retrieves the row specified by the <value> placeholder, relative

to the cursor’s current position. If you use RELATIVE in the first FETCH statement after

you open the cursor, RELATIVE 1 returns the first row from the cursor’s query results,

and RELATIVE -1 returns the last row. However, if the cursor is not at the beginning of

the query results, as it is when you first open the cursor, RELATIVE 1 and RELATIVE -1

return rows relative to the cursor position as it was left after the last executed FETCH

statement.

Whenever you open a cursor, the cursor points to the beginning of the query results. The

FETCH statement moves the cursor to the row designated by the fetch orientation option. If

no option is specified, NEXT is assumed, and the cursor always points to the next row in the

query results.

To help illustrate how the fetch orientation options work, let’s take another look at a cursor

we declared earlier in the module:

DECLARE CD2 SCROLL CURSOR
FOR
SELECT * FROM CDInventory
ORDER BY CompactDisc

FOR READ ONLY ;

Notice that the SCROLL keyword is specified and that the SELECT statement retrieves all

rows and columns from the CDInventory table. Also notice that the SELECT statement includes

an ORDER BY clause that sorts the query results in ascending order according to the values in

the CompactDisc column. This is important because the FETCH statements move through the

rows in the query results in the order specified by the ORDER BY clause, regardless of how rows

are ordered in the underlying table.

Now let’s take another look at the query results returned by the SELECT statement in the

CD2 cursor. The query results, in the form of a virtual table, are shown in Figure 15-4. Notice

that the illustration includes pointers that represent the various types of FETCH statements

(based on their fetch orientation). In each case, the pointer is based on a FETCH statement that

is the first to be executed after the cursor has been opened.

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Notice that the FETCH FIRST and FETCH NEXT pointers each point to the After the

Rain row. This is the first row in the cursor’s query results. FETCH FIRST will always point

to this row, assuming the data in the underlying tables doesn’t change. FETCH NEXT will

always point to the first row whenever it is the first FETCH statement executed after the cursor

is opened. In addition, the FETCH LAST pointer will always point to the That Christmas Feeling

row. However, the FETCH PRIOR pointer doesn’t point to any row. It points instead to a space

prior to the first row of the query results. This is because PRIOR cannot retrieve a row if it is

used in the first FETCH statement after the cursor is opened.

Now let’s take a look at the FETCH ABSOLUTE 5 pointer. As you can see, it points to the

Court and Spark row, which is the fifth row in the cursor’s query results. FETCH ABSOLUTE

5 will always return this row. On the other hand, FETCH RELATIVE 10 points to the Orlando

15

SQL: A Beginner’s Guide 377

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:377

15

U
sin

g
SQ

L
C

ur
so

rs

Figure 15-4 The query results (virtual table) returned by the CD2 cursor

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:378

378 Module 15: Using SQL Cursors

row, which is the tenth row in the cursor’s query results. However, if RELATIVE were used in

a FETCH statement other than the first one, FETCH RELATIVE 10 would probably be pointing

to a different row.

As you can see, the six fetch orientation options provide a great deal of flexibility in

moving through a cursor’s query results. Keep in mind, however, that most of these options

can be used in read-only cursors only, such as the CD2 cursor we’ve been looking at. The only

option that can be used for updatable cursors is NEXT, which is the default fetch orientation.

Now let’s take a look at a few examples of FETCH statements so you can see how they can be

used to retrieve data from your cursor’s query results.

The first FETCH statement that we’ll look at uses the NEXT fetch orientation option to

retrieve a row from the CD2 cursor:

FETCH NEXT FROM CD2
INTO :CD, :Category, :Price, :OnHand ;

The statement identifies the fetch orientation and the cursor name. As you’ll recall, the

NEXT FROM keywords are optional because NEXT is the default fetch orientation. The

statement also includes the INTO clause, which identifies the host variables that will receive

values returned by the FETCH statement. There are four host variables to match the number

of values returned by the FETCH statement. The number of variables must be the same as the

number of columns returned by the cursor’s SELECT statement, and the variables must be

listed in the same order as the columns returned. Notice that the host variables are separated

by commas and their names begin with colons. According to the SQL standard, host variables

must begin with a colon, although this can vary from one SQL implementation to the next.

Now that you’ve seen how a FETCH NEXT statement works, you can create any FETCH

statement for whichever fetch orientation you want to specify. Simply replace one option with

the other. For example, the following FETCH statement uses the ABSOLUTE fetch orientation:

FETCH ABSOLUTE 5 FROM CD2
INTO :CD, :Category, :Price, :OnHand ;

Notice that with the ABSOLUTE option, as with the RELATIVE option, you must specify

a numeric value. In this case, the cursor will retrieve the fifth row from the cursor’s query

results. The ABSOLUTE, FIRST, and LAST options are the only fetch orientation options that

will always return the same row from the cursor’s query results, assuming that the data in the

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 379

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:379

15

U
sin

g
SQ

L
C

ur
so

rs

underlying table has not changed. On the other hand, the NEXT, PRIOR, and RELATIVE

options return rows based on the cursor’s last position. As a result, you want to be certain to

design your cursors and your FETCH statements with positioning in mind.

Ask the Expert
Q: You mention that a cursor’s SELECT statement is not executed until the cursor

is opened. How does this affect special values such as CURRENT_USER or

CURRENT_TIME?

A: Because a cursor’s SELECT statement is not executed until the cursor is opened,

special values are not defined until the cursor is opened, not when the cursor is

declared. For example, if you include the CURRENT_TIME special value in your

cursor’s SELECT statement and declare that cursor at the beginning of your program

code, the time inserted into the CURRENT_TIME value is the time that the cursor is

opened, not when the cursor is declared. In addition, if you close and then reopen the

cursor, the CURRENT_TIME value is that time when you again open the cursor, not

when it was first opened.

Q: You state that host variables are a type of parameter that is used in embedded

SQL. How do host variables differ from other types of parameters?

A: For all practical purposes, a host variable is just like any other parameter. The main

distinction is that a host variable is used in embedded SQL to pass values between

the host language and SQL. The only other real distinction is that a colon must be added

to the name of the variable. The reason that a colon must be included when used in an

embedded SQL statement is to indicate that the name is a host variable and not a column.

As a result, you can use variable names that are meaningful to your application without

worrying about accidentally naming a variable the same as a column name. The colon

has nothing to do with the variable itself, only in distinguishing it as a variable. A colon

must also be used in SQL client modules. However, values are passed to modules through

parameters, rather than host variables. Module parameters are essentially the same

thing as host variables; only the names are different. If you were to refer to all of them

as parameters, you would not be far off.

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:380

Progress Check
1. Which SQL statement executes the SELECT statement in a cursor?

2. What action must you take before opening a cursor?

3. What type of cursor allows you to use all the fetch orientation options in a FETCH statement?

4. Which row in a cursor’s query results does a FETCH LAST statement retrieve?

CRITICAL SKILL

15.5 Use Positioned UPDATE and DELETE
Statements
Once you fetch a row from the query results of an updatable cursor, you might want your

application to then update or delete that row. To do so, you must use a positioned UPDATE

or DELETE statement. The positioned UPDATE and DELETE statements contain a special

WHERE clause that references the opened cursor. Let’s take a look at each of these two

statements to show you how you can use them to modify data returned by your cursor.

Using the Positioned UPDATE Statement
The positioned UPDATE statement is, for the most part, the same as a regular UPDATE

statement, except that it requires a special WHERE clause, as shown in the following syntax:

UPDATE <table name>

SET <set list>

WHERE CURRENT OF <cursor name>

A regular UPDATE statement, as you no doubt recall, contains the UPDATE clause and

the SET clause, just as you see in the syntax for a positioned UPDATE statement. However, in

a regular UPDATE statement, the WHERE clause is optional, but in a positioned UPDATE

statement, it is required. In addition, the WHERE clause must be defined with the CURRENT

OF option, which identifies the opened cursor. By using the CURRENT OF option, you’re

380 Module 15: Using SQL Cursors

1. OPEN statement

2. You must declare the cursor.

3. Scrollable cursor

4. The last row in the cursor’s query results

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

telling your application to use the values returned by the most recent FETCH statement. For

example, if your cursor is pointing to the Past Light row of the CDInventory table (the row

returned by the FETCH statement), it is that row that is being referenced by the WHERE

clause of the positioned UPDATE statement.

Let’s take a look at an example to demonstrate how this works. In the following set of

SQL statements, we declare the CD4 cursor, open that cursor, fetch a row from the cursor’s

query results, update that row, and close the cursor:

DECLARE CD4 CURSOR
FOR
SELECT * FROM CDInventory

FOR UPDATE ;
OPEN CD4 ;
FETCH CD4 INTO :CD, :Category, :Price, :OnHand ;
UPDATE CDInventory SET OnHand = :OnHand * 2
WHERE CURRENT OF CD4 ;

CLOSE CD4 ;

The first statement declares the CD4 cursor and defines a SELECT statement that returns

all rows and columns from the CDInventory table. Next, we open the cursor and then fetch the

next row, which in this case is the first row, Famous Blue Raincoat. After we fetch the row, we

use a positioned UPDATE statement to double the amount of the OnHand value for that row.

Notice that the UPDATE statement includes a WHERE clause that contains the CURRENT

OF option, which identifies the CD4 cursor. After we update the row, we close the cursor.

NOTE
Keep in mind that the statements shown in the preceding example would be embedded
in a host language, so they are not likely to be grouped so closely together and there
may be other host language elements, such as variable declarations, looping structures,
and conditional statements.

In the preceding example, we were able to update the OnHand column because it was

implicitly included in the FOR UPDATE clause of the cursor’s SELECT statement. When no

column names are specified, all columns are updatable. However, let’s look at another example

that explicitly defines a column. In the following set of SQL statements, I’ve declared the CD5

cursor and used it to try to update a row in the CDInventory table:

DECLARE CD5 CURSOR
FOR
SELECT * FROM CDInventory

FOR UPDATE OF CompactDisc ;

SQL: A Beginner’s Guide 381

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:381

15

U
sin

g
SQ

L
C

ur
so

rs

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:382

OPEN CD5 ;
FETCH CD5 INTO :CD, :Category, :Price, :OnHand ;
UPDATE CDInventory SET OnHand = :OnHand * 2
WHERE CURRENT OF CD5 ;

CLOSE CD5 ;

As you can see, the cursor declaration specifies the CompactDisc column in the FOR UPDATE

clause. If you try to execute the UPDATE statement, you will receive an error indicating that the

OnHand column is not one of the columns specified in the cursor declaration.

Using the Positioned DELETE Statement
The positioned DELETE statement, like the positioned UPDATE statement, requires a

WHERE clause that must include the CURRENT OF option. (A regular DELETE statement,

as you’ll recall, does not require the WHERE clause.) A positioned DELETE statement uses

the following syntax:

DELETE <table name>

WHERE CURRENT OF <cursor name>

As you can see, you need to define a DELETE clause that identifies the table and a WHERE

clause that identifies the cursor. The WHERE clause in a positioned DELETE statement works

just like the WHERE clause in a positioned UPDATE statement: The row returned by the last

FETCH statement is the row that is modified. In this case, the row is deleted.

Now let’s look at an example of a positioned DELETE statement. The following SQL

statements declare the CD4 cursor, open the cursor, return a row from the cursor, delete that

row, and close the cursor:

DECLARE CD4 CURSOR
FOR
SELECT * FROM CDInventory

FOR UPDATE ;
OPEN CD4 ;
FETCH CD4 INTO :CD, :Category, :Price, :OnHand ;
DELETE CDInventory WHERE CURRENT OF CD4 ;
CLOSE CD4 ;

You should be familiar with most of these statements. The only new one is the positioned

DELETE statement. This statement deletes the row returned by the FETCH statement, which

is the Famous Blue Raincoat row. Once the row is deleted, the cursor is closed.

382 Module 15: Using SQL Cursors

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Project 15-1 Working with SQL Cursors
In this module, we looked at how to declare cursors, open those cursors, retrieve

data from them, and then close them. In addition, we reviewed positioned

UPDATE and DELETE statements. However, as I said earlier, cursors are used primarily in

embedded SQL, which makes it difficult to fully test cursor functionality if you’re limited to

directly invoking SQL statements (as we are in this project). Ideally, it would be best to embed

the cursor-related SQL statements in a host language, but that is beyond the scope of this book.

What complicates this issue even further is the fact that different SQL implementations support

the use of cursors in an interactive environment in different ways, which can make it difficult

to directly invoke cursor-related statements. Still, you should be able to execute most cursor-

related statements interactively, but know that cursors are designed for use in embedded SQL

and SQL client modules, so you might have to modify the statements a great deal in order to

execute them. You can download the Prj15.txt file, which contains the SQL statements used

in this project.

NOTE
Ideally, it would be good to walk you through each step of declaring and opening a
cursor, retrieving data, and closing a cursor, but because of the nature of direct
invocation, we will use fewer steps and larger blocks of statements.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. The first cursor that you’ll declare and access is a basic read-only cursor that retrieves

data from the CompactDiscs table. The first thing you’ll notice in the set of statements that

you’ll be creating is that you’ll declare a variable named v_CDName. You’ll need to create

this variable in order to fully test the FETCH statement. Keep in mind that, depending on

the situation, the host language, and the product, you may or may not use this method for

creating your variable. Also notice that the variable name in the FETCH statement is not

preceded by a colon. This is because you’ll be using direct invocation to execute these

statements and, for most implementations, the name of the variable in the FETCH statement

will have to be the same as the name you declared at the beginning of this set of statements.

As with any SQL statement, you will find that the exact language that you use to create

statements varies from one product to the next. In addition, the fact that you’re invoking

the statements directly, rather than embedding the statements, can lead to other variations

between SQL and the implementation (such as not using a colon in the variable name).

SQL: A Beginner’s Guide 383

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:383

15

U
sin

g
SQ

L
C

ur
so

rs
Wo

rk
ing

wi
th

SQ
LC

ur
so

rs

Project
15-1

Prj15.txt

(continued)

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:384

384 Module 15: Using SQL Cursors

For example, if you execute these statements in SQL Server, you’ll have to precede your

variable names with the at (@) character. Oracle deviates from the standard even more.

In Oracle, you declare the cursor and variable in one block of statements. In addition, the

CURSOR keyword precedes the name of the cursor, and you must use the IS keyword,

rather than FOR. You must also enclose the OPEN, FETCH, and CLOSE statements in a

BEGIN...END block. You will also find that not all SQL options are supported in all SQL

implementations, and many products include additional features not defined in the SQL

standard. Be sure to check your product’s documentation before trying to declare and

access any cursors.

Now let’s create the cursor-related statements. Enter and execute the following SQL

statements:

DECLARE v_CDName VARCHAR (60) ;
DECLARE CD_cursor1 CURSOR
FOR
SELECT CDTitle FROM CompactDiscs
ORDER BY CDTitle ASC ;

OPEN CD_cursor1 ;
FETCH CD_cursor1 INTO v_CDName ;
CLOSE CD_cursor1 ;

In these statements, you first declared a variable named v_CDName. Next, you declared a

cursor named CD_cursor1. The cursor definition contained a SELECT statement that was

qualified with an ORDER BY clause. Because you included the ORDER BY clause, your

cursor was read-only. After you declared the cursor, you opened it, fetched a row from the

cursor’s query results, and then closed the cursor. The FETCH statement returned the value

After the Rain: The Soft Sounds of Erik Satie, which could have then been used in some

other operation, had you embedded these statements. After you executed the statements,

you should have received a message saying that the statements were executed successfully.

3. Now you will declare and access a second cursor. This time you will specify that the cursor

is insensitive and scrollable. In addition, you will specify that the cursor is read-only, although

this clause is optional because you’re making the cursor scrollable and insensitive. You will

also fetch the last row from the cursor’s query results, rather than the first. Enter and execute

the following SQL statements:

DECLARE v_CDName VARCHAR (60) ;
DECLARE CD_cursor2 SCROLL INSENSITIVE CURSOR
FOR
SELECT CDTitle FROM CompactDiscs
ORDER BY CDTitle ASC

FOR READ ONLY ;
OPEN CD_cursor2 ;
FETCH LAST FROM CD_cursor2 INTO v_CDName ;
CLOSE CD_cursor2 ;

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This time the FETCH statement retrieved the value That Christmas Feeling because LAST

was specified. This value was inserted into the v_CDName variable. After you executed the

statements, you should have received a message saying that the statements were executed

successfully.

4. Your next cursor will be updatable, which means that it cannot include an ORDER BY

clause and cannot define the cursor as insensitive or scrollable. Because the cursor is

updatable, you will also create an UPDATE statement that doubles the value of the InStock

column for the row returned by the FETCH statement. Enter and execute the following

SQL statements:

DECLARE v_CDName VARCHAR (60) ;
DECLARE CD_cursor3 CURSOR
FOR
SELECT CDTitle FROM CompactDiscs

FOR UPDATE ;
OPEN CD_cursor3 ;
FETCH CD_cursor3 INTO v_CDName ;
UPDATE CompactDiscs SET InStock = InStock * 2
WHERE CURRENT OF CD_cursor3 ;

CLOSE CD_cursor3 ;

Notice that your UPDATE statement includes a WHERE clause that contains the

CURRENT OF option, which specifies the CD_cursor3 cursor. This clause is mandatory.

Because no ORDER BY clause was used, the first row in your cursor’s query results was

Famous Blue Raincoat. This is the row that was updated. After you executed the statements,

you should have received a message indicating that a row had been updated.

5. Now let’s take a look at the CompactDiscs table to verify that the change you made is

correct. Enter and execute the following SQL statement:

SELECT * FROM CompactDiscs ;

The InStock value of the Famous Blue Raincoat row should now be 26, double its original

amount.

6. Let’s return the database to its original state. Enter and execute the following SQL

statement:

UPDATE CompactDiscs SET InStock = 13
WHERE CompactDiscID = 101 ;

You should receive a message indicating that the row has been updated.

7. Close the client application.

SQL: A Beginner’s Guide 385

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:385

15

U
sin

g
SQ

L
C

ur
so

rs
Wo

rk
ing

wi
th

SQ
LC

ur
so

rs

Project
15-1

(continued)

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:386

Project Summary
In this project, you declared and accessed three cursors, two that were read-only and one that

was updatable. For all three cursors you declared a variable. The variable was then used in

the FETCH statement to receive the value returned by that statement. For the updatable cursor,

you created an UPDATE statement that modified the InStock value for the row returned by

the FETCH statement. After you updated the CompactDiscs table, you updated it once more to

return the database to its original state. Because no other changes were made to the database,

your data should be as it was before you started this project.

Module 15 Mastery Check
1. What form of impedance mismatch is addressed through the use of cursors?

2. A(n) ____________ serves as a pointer that allows the application programming language

to deal with query results one row at a time.

3. When using cursors in embedded SQL, what is the first step you must take before you can

retrieve data through that cursor?

A. Fetch the cursor.

B. Declare the cursor.

C. Close the cursor.

D. Open the cursor.

4. What are the four cursor-related statements that you can embed in a host language?

5. Which options can be used only in read-only cursor declarations?

A. SCROLL

B. WITH HOLD

C. ORDER BY

D. INSENSITIVE

6. What are the required elements of a DECLARE CURSOR statement?

7. What type of cursors do not see changes made by statements outside the cursor?

386 Module 15: Using SQL Cursors

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 387

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 15
Blind Folio 15:387

15

U
sin

g
SQ

L
C

ur
so

rs

8. Which option should you use in a cursor declaration to extend the retrieving capabilities of

a FETCH statement?

A. WITHOUT HOLD

B. ASENSITIVE

C. SCROLL

D. FOR UPDATE

9. Cursor ____________ refers to a characteristic in cursors that is concerned with whether a

cursor is automatically closed when the transaction in which the cursor was opened is

committed.

10. You’re creating a cursor declaration. The SELECT statement includes an ORDER BY

clause. Which clauses cannot be included in the SELECT statement?

A. SELECT

B. HAVING

C. GROUP BY

D. WHERE

11. Your cursor declaration includes a FOR UPDATE clause that does not specify any

columns. Which columns in the underlying table can be updated?

12. What SQL statement should you use if you want to open the CDArtists cursor?

13. A(n) ____________ statement retrieves rows from a cursor’s query results once you open

that cursor.

14. Which fetch orientation option should you use in a FETCH statement if you want to be sure

to retrieve the first row in a cursor’s query results?

A. PRIOR

B. NEXT

C. ABSOLUTE -1

D. FIRST

15. What clause is required in a positioned UPDATE statement in order to update a row

returned by the most recent FETCH statement?

P:\010Comp\Begin8\885-7\ch15.vp
Monday, April 07, 2003 1:02:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:389

Module16
Managing SQL
Transactions

CRITICAL SKILLS
16.1 Understand SQL Transactions

16.2 Set Transaction Properties

16.3 Start a Transaction

16.4 Set Constraint Deferrability

16.5 Create Savepoints in a Transaction

16.6 Terminate a Transaction

389

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:44:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:390

In Module 4, I spend a considerable amount of time discussing data integrity and the methods

supported by SQL to ensure that integrity. These methods include the creation of constraints,

domains, and assertions, all of which are used by your database in one way or another to ensure

that your SQL data remains valid. However, these methods alone are not always enough to

maintain the integrity of that data. Take, for example, the situation that can arise when more

than one user tries to access and modify data in the same table at the same time or when their

actions overlap and impact the same data. Actions may be taken by one user based on data that

is no longer valid as a result of actions taken by the other user. Data might become inconsistent

or inaccurate, without either user knowing that a problem exists. To address situations of this

type, SQL supports the use of transactions to ensure that concurrent actions do not impact the

validity of the data that is seen by any one user. In this module, I describe how transitions are

implemented in an SQL environment and how you can control their behavior. You will learn

how to set transaction properties, start transactions, terminate them, and use other options that

extend their functionality.

CRITICAL SKILL

16.1 Understand SQL Transactions
Relatively few databases exist in which only one user at any one time is trying to access data

within that database. For the most part, databases are used by different types of users for many

different purposes, and often these users are trying to access the data at the same time. The greater

the number of users, the greater the likelihood that problems could arise when they attempt to

view or modify data at the same time. However, problems can arise even if only two users are

accessing data at the same time, depending on the nature of their operations. For example, one

user might view data in a table, take some sort of action based on that data, then return to the

table to verify the data once more. However, if another user updates that table between the two

times that the first user views it, the first user will see different data the second time, which

can invalidate the action that was taken as a result of the viewing the table the first time.

To address these sorts of data inconsistencies, SQL uses transactions to control the actions

of individual users. A transaction is a unit of work that is made up of one or more SQL statements

that perform a related set of actions. For example, your application might use a transaction to

change the number of CDs in stock. The process of updating the applicable table or tables and

reporting the updated information back to you is treated as a single transaction. The transaction

might include a number of SQL statements that each perform a specific task.

In order for a set of actions to qualify as a transaction, it must pass the ACID test. ACID is

an acronym commonly used when referring to the four characteristics of a transaction:

● Atomic This characteristic refers to the all-or-nothing nature of a transaction. Either all

operations in a transaction are performed or none are performed. If some statements are

executed, the results of these executions are rolled back if the transaction fails at any point

390 Module 16: Managing SQL Transactions

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:44:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 391

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:391

16

M
an

ag
in

g
SQ

L
Tr

an
sa

ct
io

ns

before it is completed. Only when all statements are executed properly and all actions are

performed is a transaction complete and the results of that transaction applied to the database.

● Consistent The database must be consistent at the beginning and at the end of the

transaction. All rules that define the data must be applied to that data as a result of any

changes that occur during the transaction. In addition, all structures within the database

must be correct at the end of the transaction.

● Isolated Data that might temporarily be in an inconsistent state during a transaction

should not be available to other transactions until the data is once again consistent. In

other words, no user should be able to access inconsistent data during a transaction

implemented by another user when the data impacted by the transaction is in an

inconsistent state. In addition, for a transaction to be isolated, no other transactions

can affect that transaction.

● Durable Once the changes made by a transaction are committed, those changes must be

preserved, and the data should be in a reliable and consistent state, even if hardware or

application errors occur.

If at any time during a transaction any problems arise, the entire transaction is rolled back

and the database is returned to the state it was in before the transaction started. Any actions

that were taken are undone and the data is restored to its original state. If the transaction is

successfully completed, all changes are implemented. Throughout the entire process, regardless

of whether the transaction is successfully completed or must be rolled back, the transaction

always ensures the integrity of the database.

SQL supports a number of statements related to transition processing. You can use these

statements to begin and end transactions, set their properties, defer constraint enforcement

during the transaction, and identify places within a transaction that act as stopping points when

you roll back transactions. Throughout the rest of the module, we’ll examine how each of

these statements are used within a transaction. However, before we go into a more detailed

discussion of the statements, I want to provide you with a brief overview of each one in order

to give you a better understanding of how transactions work.

The SQL:1999 standard defines seven statements related to transaction processing:

● SET TRANSACTION Sets the properties of the next transaction to be executed.

● START TRANSACTION Sets the properties of the transaction and starts that transaction.

● SET CONSTRAINTS Sets the constraint mode within a current transaction. The

constraint mode refers to whether a constraint is applied immediately to data when that

data is modified or whether the application of the constraint is deferred until later in the

transaction.

● SAVEPOINT Creates a savepoint within a transaction. A savepoint marks a place

within the transaction that acts as a stopping point when you roll back a transaction.

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:44:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:392

● RELEASE SAVEPOINT Releases a savepoint.

● ROLLBACK Terminates a transaction and rolls back any changes to the beginning of

the transaction or to a savepoint.

● COMMIT Terminates a transaction and commits all changes to the database.

Although we’ll be looking at all seven statements in more detail, some of them are pivotal

in understanding the nature of a transaction. Let’s take a look at Figure 16-1 to help illustrate

this point.

Notice that the figure includes four of the SQL transaction-related statements: SET

TRANSACTION, START TRANSACTION, COMMIT, and ROLLBACK. If a SET

TRANSACTION statement is used, it is executed before the transaction begins. After

that, a START TRANSACTION statement begins the transaction.

NOTE
As you’ll see later in this module, it would be rare in a pure SQL environment that
you would want to use both the SET TRANSACTION and START TRANSACTION
statements because both statements set the same properties. However, you’ll find that
SQL implementations vary with regard to which transaction-related statements they
support and how they implement those statements.

When you start the transaction, the database is in its original state—the data is consistent

and correct. Next the SQL statements within the transaction are processed. If this process is

successful, a COMMIT statement is executed. The COMMIT statement causes the SQL

392 Module 16: Managing SQL Transactions

Figure 16-1 A basic SQL transaction

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:44:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 393

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:393

16

M
an

ag
in

g
SQ

L
Tr

an
sa

ct
io

ns

implementation to update the database and terminate the transaction. If the statement-execution

process is not successful, a ROLLBACK statement is executed, and the implementation returns

the database to its original state. An unsuccessful execution does not necessarily mean that the

statements have failed. A ROLLBACK statement can be executed according to the conditions

of a WHERE clause, a predefined error, or whatever other conditions are defined within the

transaction. The point is, under certain circumstances, the ROLLBACK statement is executed

and under other circumstances, the COMMIT statement is executed.

CRITICAL SKILL

16.2 Set Transaction Properties
The first statement that we’ll look at in detail is the SET TRANSACTION statement. The SET

TRANSACTION statement allows you to configure several of the properties associated with

transaction processing. You can execute this statement only when no transactions are active.

When you do use a SET TRANSACTION statement, the settings configured within the statement

are applied only to the next transaction that is initiated. The settings do not carry over from

one transaction to the next.

The SET TRANSACTION statement is not required in order to initiate a transaction. If the

statement is not executed, the transaction uses the default settings. If the statement is executed,

the transaction uses the settings specified in the statement. If the statement is executed but not

all settings are defined, the transaction uses the defaults for the undefined settings. Regardless

of which settings are configured, none of them are applicable to any transaction except the first

one initiated after the SET TRANSACTION is executed.

Now let’s take a look at the syntax used for a SET TRANSACTION statement. At its most

basic, the syntax looks like the following:

SET [LOCAL] TRANSACTION <mode> [{ , <mode> } . . .]

The first thing that you might notice about this syntax is the optional keyword LOCAL. The

LOCAL keyword applies only to transactions that encompass multiple SQL implementations. If

you’re working with these sorts of transactions, you can use the LOCAL option to apply settings

to the local portion of the transaction. To be able to use the LOCAL option, the transaction

must have been initiated on an SQL server other than the one where the local transaction

settings are configured.

NOTE
The subject of encompassing transactions and local settings is beyond the scope of this
book. I mention them here only to provide you with a complete picture of the SET
TRANSACTION statement. As a beginning SQL programmer, you will most likely
not be concerned with encompassing transactions.

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:44:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:394

394 Module 16: Managing SQL Transactions

Returning to the SET TRANSACTION syntax, you can see that the only other type of

option that you need to specify is the one represented by the <mode> placeholder. There are

three types of transaction modes that you can specify:

● Access level

● Isolation level

● Diagnostics size

You must specify one or more transaction modes. If you specify more than one, you must

separate them with a comma. In addition, you cannot include more than one of any type of

transaction mode. For example, you can specify an access level and an isolation level, but you

cannot specify two isolation levels.

The SET TRANSACTION statement supports two access level options: READ ONLY

and READ WRITE. If you select the READ ONLY option, you cannot include any statements

within the transaction that modify the database. This includes statements that modify data

(such as the UPDATE statement) or statements that modify the database structure (such as

the CREATE TABLE statement). If you select the READ WRITE option, you can execute

both types of statements in your transaction. As you will see in the next section, “Specifying

an Isolation Level,” the default access level depends on the isolation level. However, if no

isolation level and no access level are specified, the default access level is READ WRITE.

Specifying an Isolation Level
When you create a SET TRANSACTION statement, you can specify zero or one isolation

levels. An isolation level defines how isolated a transaction will be from the actions of other

transactions. A SET TRANSACTION statement supports four isolation level options:

● READ UNCOMMITTED

● READ COMMITTED

● REPEATABLE READ

● SERIALIZABLE

The isolation levels are listed from least restrictive to most restrictive, with the READ

UNCOMMITTED option being less effective in terms of isolating data, and the SERIALIZABLE

option more effective. If no isolation level is specified, SERIALIZABLE is assumed.

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:44:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 395

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:395

16

M
an

ag
in

g
SQ

L
Tr

an
sa

ct
io

ns

Data Anomalies
The best way to understand isolation levels is to take a look at the basic types of phenomena

that can occur to data, depending on how isolated one transaction is from another. In general,

three types of phenomena can occur:

● Dirty reads

● Nonrepeatable reads

● Phantom reads

The type of data anomaly that you might experience during a transaction depends on

which isolation level you configure for your transaction. However, before we get into any

more specifications about isolation levels, let’s take a look at these three types of phenomena.

Dirty Reads The first phenomenon that we’ll look at is the dirty read. A dirty read can

occur when one transaction modifies data, a second transaction sees those modifications before

they’re actually committed to the database, and the first transaction rolls back the modifications,

returning the database to its original state. However, the second transaction, having read the

modified data, might have taken action based on the incorrect data. To help illustrate the

concept of a dirty read, let’s take a look at Figure 16-2, which shows two transactions operating

concurrently.

When Transaction 1 first begins, it reads the table in its original state. The transaction

then updates the table, changing the Stock value of each row. After those changes are made,

Transaction 2 is initiated and reads the updated data. For example, Transaction 2 will see that

the Stock value for the Past Light row is 11. Based on that information, Transaction 2 takes

some sort of action, such as ordering additional Past Light CDs. After Transaction 2 has read

the table data, Transaction 1, for one reason or another, rolls back the update, and the database

is returned to its original state. As a result, the Past Light row actually has a Stock value of 22,

even though Transaction 2 thinks that it has a value of 11. Transaction 2, then, is said to have

experienced a dirty read.

Nonrepeatable Reads The next phenomenon that can occur when concurrent transactions

are initiated is the nonrepeatable read. The nonrepeatable read can occur when one transaction

reads data from a table, another transaction then updates that data, and the first transaction

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:44:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:396

rereads the data, only to discover that the data has changed. As a result, the first read is not

repeatable. Let’s take a look at Figure 16-3 to better understand this concept.

When Transaction 1 is initiated, it reads the data in the table. At that point, the transaction

might be involved in other processes or is waiting for a response from a user. For example, the

user might receive a call from a manager who is trying to find out how many CDs are in stock

for a particular CD. The user checks for that information. The manager then puts the user on

hold for a short time, so the user must wait to complete the transaction. During that time,

Transaction 2 is initiated and it updates the table. After the update, Transaction 1 again reads

the data (the manager returns to the phone) and finds different information from the first read,

resulting in a nonrepeatable read.

Phanton Reads The last phenomenon that we’ll look at is the phantom read. Although

similar to the nonrepeatable read, the phantom read has some subtle differences, which are a

factor when trying to determine an isolation level. A phantom read can occur when a transaction

reads a table based on some sort of search condition, then a second transaction updates the data

in the table, and then the first transaction attempts to reread the data, only this time different

396 Module 16: Managing SQL Transactions

Figure 16-2 Concurrent transactions resulting in a dirty read

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:44:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

rows are returned because of how the search condition is defined. To clarify this, let’s take a

look at Figure 16-4.

When Transaction 1 is initiated, it reads the data in the table by executing a SELECT

statement that queries the data. The statement includes a WHERE clause that returns only

those rows with a Stock value greater than 20. That means that the Court and Spark row and

the Past Light row are returned. After Transaction 1 retrieves (reads) the data, Transaction 2

begins and updates the table. Now when Transaction 1 rereads the data (using the same search

criteria), only the Famous Blue Raincoat row is returned because it is now the only row with a

Stock value greater than 20. As a result, the transaction has experienced a phantom read; the

rows that it’s reading are the not the same rows as it saw earlier.

Choosing an Isolation Level
Now that you have an overview of the type of data anomalies that you can run into when you

have concurrent transactions, you should be better equipped to choose an isolation level for

your transaction. The important point to remember is that the more restrictive the isolation

level, the more types of phenomena you can eliminate.

SQL: A Beginner’s Guide 397

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:397

16

M
an

ag
in

g
SQ

L
Tr

an
sa

ct
io

ns

Figure 16-3 Concurrent transactions resulting in a nonrepeatable read

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:44:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:398

Let’s take a look at the READ UNCOMMITTED isolation level, the least restrictive of the

four levels. A transaction that’s configured with this option may experience any of the data

anomalies that we’ve looked at (dirty read, nonrepeatable read, and phantom read). As you can

imagine, this is normally not a desirable state. In fact, if you define a transaction with the READ

UNCOMMITTED option, the transaction cannot include statements that modify data. These

transactions, by default, have a READ ONLY access level, and you cannot specify a READ

WRITE level. (This is different from all other isolation levels in that the default access level is

READ WRITE.) You should use the READ UNCOMMITTED isolation level only for transactions

that generate approximate information, such as some types of statistical data in which the

results are not critical in terms of precise accuracy.

The READ COMMITTED isolation level is only slightly more restrictive than READ

UNCOMMITTED. The READ COMMITTED option prevents dirty reads, but nonrepeatable

reads and phantom reads can still occur. The next option, REPEATABLE READ, is even more

restrictive than READ COMMITTED. It prevents dirty reads and nonrepeatable reads, but does

not prevent phantom reads. The only option that prevents all three types of data anomalies is

SERIALIZABLE.

398 Module 16: Managing SQL Transactions

Figure 16-4 Concurrent transactions resulting in a phantom read

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:44:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A transaction that is defined with the SERIALIZABLE isolation level fully isolates that

transaction from all other transactions. As a result, the transaction is said to be serializable,

meaning that it interacts with concurrent transactions in a way that orders transactions

sequentially so that one transaction cannot impact the other. This does not mean that one

transaction must close before another can open, but it does mean that the results of those

transactions have to be the same as the results of operations that do operate one at a time.

As long as no serializable transaction can influence another serializable transaction, the

transactions are in conformance to the SERIALIZABLE isolation level.

Table 16-1 provides an overview of the phenomena that can occur for each isolation level.

For example, notice that, for the READ UNCOMMITTED option, it’s possible that all three

data anomalies can occur.

As you can see from the table, the SERIALIZABLE isolation level provides the greatest

data protection, and the READ UNCOMMITTED isolation level provides the least protection.

This is why SERIALIZABLE is the default isolation level if no other level is defined.

NOTE
You may be wondering why you don’t simply use the SERIALIZABLE isolation level for
all transactions. However, the more restrictive the isolation level, the greater the effect
on performance, so although you want to be sure to use an isolation level restrictive
enough to meet your needs, you don’t want to define a level that’s more restrictive than
necessary.

Specifying a Diagnostics Size
As you’ll recall from the SET TRANSACTION syntax, one type of transaction mode that you

can define is the diagnostics size. The diagnostics size refers to a diagnostics area that is used

for conditions raised when an SQL statement is executed. A condition is a warning, exception,

or other type of message generated by a statement execution. The diagnostics size actually

refers to the number of conditions that will be stored for the execution of an SQL statement.

For example, if the diagnostics size is 10, up to 10 conditions will be stored for the executed

SQL: A Beginner’s Guide 399

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:399

16

M
an

ag
in

g
SQ

L
Tr

an
sa

ct
io

ns

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes

REPEATABLE READ No No Yes

SERIALIZABLE No No No

Table 16-1 Possible Data Anomalies for Isolation Levels

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:44:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:400

statement. If more than 10 conditions are raised for that statement, only 10 conditions are

saved to the diagnostics area.

NOTE
You cannot assume that any specific conditions will be saved to the diagnostics area
if more conditions are raised than the number defined by the diagnostics size. For
example, if the diagnostics size is 15 and your statement raises 20 conditions, you
cannot assume that the first 15 or last 15 conditions will be recorded. For more
information on how conditions are handled for your particular SQL implementation,
see the product documentation.

If you do not specify a diagnostics size in your SET TRANSACTION statement, the SQL

implementation determines the size of the diagnostics area.

Creating a SET TRANSACTION Statement
Now that you’ve looked at the various components of the SET TRANSACTION statement,

let’s take a look at a couple of examples. The first example defines a transaction with an

access level of READ ONLY, an isolation level of READ UNCOMMITTED, and a

diagnostics size of 5:

SET TRANSACTION READ ONLY,
ISOLATION LEVEL READ UNCOMMITTED,
DIAGNOSTICS SIZE 5 ;

Notice that the transaction modes are separated by commas. Also notice that the isolation

level option includes the keywords ISOLATION LEVEL, and the diagnostics size option

includes the keywords DIAGNOSTICS SIZE. The transaction is configured with the least

restrictive isolation level, which is why the access level must be READ ONLY. You cannot

define a READ WRITE access level for this statement. Because the isolation level is READ

COMMITTED, the statement does not have to specify the READ ONLY access level. It would

have been assumed. However, including it causes no problems and better documents the code.

In the next example, the SET TRANSACTION statement defines a transaction with an access

level of READ WRITE, an isolation level of SERIALIZABLE, and a diagnostics size of 8:

SET TRANSACTION READ WRITE,
ISOLATION LEVEL SERIALIZABLE,
DIAGNOSTICS SIZE 8 ;

Because SERIALIZABLE is the default isolation level, you do not have to specify it in

your SET TRANSACTION statement. In addition, because the READ WRITE access level is

400 Module 16: Managing SQL Transactions

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:44:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the default level for serializable transactions, you do not have to specify that either. Your

statement, then, might have looked like the following:

SET TRANSACTION DIAGNOSTICS SIZE 8 ;

This SET TRANSACTION statement will produce the same results as the preceding one.

As you can see, the SET TRANSACTION statement is a relatively simple statement to

execute. However, be sure to check the documentation for your SQL implementation to determine

the exact syntax used to set transaction properties. For example, SQL Server supports a SET

TRANSACTION ISOLATION LEVEL statement that allows you to set only the isolation

level. You cannot set the access level or diagnostics size. Oracle, on the other hand, supports

a SET TRANSACTION statement that allows you to set a transaction’s access and isolation

level and assign the transaction to a rollback segment.

Progress Check
1. What is a transaction?

2. What are the four ACID characteristics of a transaction?

3. Which SQL statements can you use to set a transaction’s properties?

4. Which access levels are supported in a transaction?

CRITICAL SKILL

16.3 Start a Transaction
In SQL:1999, a transaction can be started implicitly and explicitly. A transaction starts implicitly

when certain types of SQL statements are executed, such as the SELECT, DELETE, UPDATE,

and CREATE TABLE statements. These types of statements must be executed within the

context of a transaction. If a transaction is not active, one is initiated.

Transactions can also be initiated explicitly by using the START TRANSACTION

statement. The START TRANSACTION statement serves two purposes: to set the

transaction’s properties and to initiate the transaction. In terms of setting the properties,

SQL: A Beginner’s Guide 401

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:401

16

M
an

ag
in

g
SQ

L
Tr

an
sa

ct
io

ns

1. A transaction is a unit of work that is made up of one or more SQL statements that perform a related set of actions.

2. Atomic, consistent, isolated, and durable

3. SET TRANSACTION and START TRANSACTION

4. READ ONLY and READ WRITE

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:44:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:402

402 Module 16: Managing SQL Transactions

the START TRANSACTION statement works just like the SET TRANSACTION statement.

You can set the access level, the isolation level, and the diagnostics size. As for initiating a

transaction, you simply execute the START TRANSACTION statement.

The syntax for the START TRANSACTION statement is similar to the SET TRANSACTION

statement, as you can see in the following syntax:

START TRANSACTION <mode> [{ , <mode> } . . .]

After you specify the START TRANSACTION keywords, you must specify one or more

transaction modes. As with the SET TRANSACTION statement, you can include only one

mode for each type.

Now let’s take a look at an example that defines an access level of READ ONLY, an

isolation level of READ UNCOMMITTED, and a diagnostics size of 5:

START TRANSACTION READ ONLY,
ISOLATION LEVEL READ UNOMMITTED,
DIAGNOSTICS SIZE 5 ;

As you can see, this looks almost identical to a SET TRANSACTION statement.

The transaction modes are applied in the same way, and if more than one transaction

mode is specified, they’re separated by a comma. The basic difference between a START

TRANSACTION statement and a SET TRANSACTION statement is that the START

TRANSACTION statement will initiate the transaction as well as set its properties.

NOTE
The START TRANSACTION statement was added to SQL with the release of SQL:1999.
As a result, not all SQL implementations support a START TRANSACTION statement or
any statement that explicitly initiates a transaction. Transactions in Oracle, for example,
can be initiated only implicitly. However, SQL Server supports a BEGIN TRANSACTION
statement, but it does not allow you to define any transaction modes.

CRITICAL SKILL

16.4 Set Constraint Deferrability
There can be times in a transaction when you want to modify data in a table that temporarily

violates a constraint placed on that table. For example, you might have a table that includes a

column configured with the NOT NULL constraint. It is possible that, during the course of the

transaction, you want to insert a row in the table but don’t yet have a value for the NOT NULL

column. For this reason, the SQL standard allows you to define a constraint as deferrable.

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:45:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 403

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:403

16

M
an

ag
in

g
SQ

L
Tr

an
sa

ct
io

ns

That means that the constraint does not have to be applied to the data immediately, when the

modifying SQL statement is executed, but at a later point in a transaction, after you were able

to insert a value into the NOT NULL column.

If a constraint is defined as deferrable, you can use the SET CONSTRAINTS statement

within the transaction to defer the application of the constraint or to apply the constraint

immediately. (Defining a constraint as deferrable doesn’t automatically defer the application

of that constraint. You must still explicitly defer it within the transaction.) If you explicitly

defer a constraint, you can then temporarily violate the deferred constraint until the constraint

is explicitly applied or the transaction ends. For a better understanding of how this works, let’s

take a look at Figure 16-5.

In this illustration, you’ll notice that, after the transaction has been started, you can set

the constraints to deferred. You don’t have to defer the constraints right after the transaction

starts, but you must defer them before executing any SQL statements that could violate the

constraints. Once the applicable SQL statements have been executed and you’re sure that no

SQL data violates any of the deferred constraints, you can then apply the constraints to the

applicable data. If the constraints are violated at this point, the transaction is considered

unsuccessful and any updates are rolled back. Otherwise, the updates are committed to the

database.

Ask the Expert
Q: Does it matter whether your transaction includes data definition language

statements or data manipulation language statements?

A: SQL allows you to include both types of statements in your transaction, but this is not the

case for all SQL implementations. Some implementations do not allow you to mix the two

types of statements in a single transaction. Other products allow you to mix the two types of

statements, but limit which statements can be combined in one transaction. And still other

implementations do not allow data definition language statements to be executed within the

context of a transaction. The restrictions that various implementations place on mixing

statement types can vary widely. The reason for this is that the interactions between the two

types of statements can be complicated, so each implementation determines what statement

mixtures it will support in its own database environment. Be sure to check the product

documentation to determine what types of statements can be included in a transaction and

how they can be mixed.

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:45:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:404

404 Module 16: Managing SQL Transactions

In order to defer or apply the constraints within a transaction, you must use the SET

CONSTRAINTS statement, as shown in the following syntax:

SET CONSTRAINTS { ALL | <constraint names> }

{ DEFERRED | IMMEDIATE }

As you can see from the syntax, you must choose from two sets of options. The first set of

options allows you to specify the deferrable constraints that will be affected by the statement.

If the statement should apply to all deferrable constraints, you can use the ALL keyword;

otherwise, you must list the constraint names, separated by a column. You can specify only

deferrable constraints in the SET CONSTRAINTS statement.

The next set of options you must specify is whether to defer the application of the

identified constraints (DEFERRED) or to apply them immediately (IMMEDIATE). You

should defer constraints before you insert or modify data, and you should apply constraints

after you’ve modified that data.

Normally, you will use the SET CONSTRAINTS statement in sets of two: one statement

to defer the constraints and the other to apply them. However, you don’t actually need to use

Figure 16-5 Deferring constraints in a transaction

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:45:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the SET CONSTRAINTS statement to apply them because all constraints are applied before

the transaction commits, whether or not the constraints have been explicitly applied. However, it

is generally good practice to document all actions, so be sure to explicitly apply your constraints.

Now let’s take a look at an example of a SET CONSTRAINTS statement that defers

Constraint1 and Constraint2:

SET CONSTRAINTS Constraint1, Constraint2 DEFERRED ;

As you can see, all you need to do is list the names of the constraints and the DEFERRED

keyword. If you wanted your statement to apply to all deferrable constraints, you could have

used the ALL keyword in place of the constraint names.

Once you execute all the statements you need to execute, with regard to the deferred

constraints, you can then apply the constraints to the new and modified data. To apply the

constraints, use the following SET CONSTRAINTS statement:

SET CONSTRAINTS Constraint1, Constraint2 IMMEDIATE ;

The only difference between this statement and the one that preceded this is that the

IMMEDIATE keyword is used rather than DEFERRED.

NOTE
In order for you to use the SET CONSTRAINTS statement, your SQL implementation must
support both the statement (or a similar statement) and deferrable constraints. If you cannot
define deferrable constraints in your SQL database, the statement is not very useful.

Progress Check
1. What statement can you use to explicitly initiate a transaction?

2. Which transaction modes can you set in a START TRANSACTION statement?

3. What type of constraint can you specify in a SET CONSTRAINTS statement?

SQL: A Beginner’s Guide 405

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:405

16

M
an

ag
in

g
SQ

L
Tr

an
sa

ct
io

ns

1. START TRANSACTION

2. Access level, isolation level, and diagnostics size

3. Deferrable constraint

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:45:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:406

CRITICAL SKILL

16.5 Create Savepoints in a Transaction
Often when you’re setting up your transactions, you’ll find that the set of actions that you need

to perform is straightforward and easily treated as a unit. However, there might be times when

some of your transactions are not as simple as others and different degrees of complexity

between actions makes treating them as one unit a little more difficult, even though you still

want to keep them all within the same transaction. One way to deal with this type of situation

is through the use of savepoints, which are designated markers within your transaction that act

as rollback points for portions of your transaction.

Say, for example, that the first part of your transaction contains relatively straightforward

code that, although not particularly complicated, can still demand a heavy load on your system’s

performance. Now suppose that later in your transaction you must perform more complex

actions, actions that are more likely to cause a rollback than the first set of actions. However,

you don’t want your rollbacks to cause you to lose the work performed by the first set of

actions because of the hit on performance. If you insert a savepoint between the two sets of

actions and then the second set needs to be rolled back, it will roll back only to the savepoint,

rather than to the beginning of the transaction, thus making it unnecessary to perform the first

set of actions over again. To help illustrate how savepoints work, let’s take a look at Figure 16-6.

As you can see from the diagram, a savepoint can be inserted wherever you want to preserve

a set of actions. Any changes made prior to the savepoint are preserved. In this case, two savepoints

have been defined, each after a set of SQL statements have been successfully executed. If a rollback

is necessary at any point after the savepoint has been defined, the database can be rolled back

to that savepoint, without having to go back to the beginning of the transaction, and the actions

prior to the savepoint will not have to be repeated. In addition, SQL allows you to name savepoints

so that, if necessary, you can roll back the transaction to a specific savepoint, rather than to the

one directly preceding the rollback. As a result, you can be more specific about which operations

to preserve and which to roll back in the event that problems arise in your transaction.

NOTE
As you’ll see in the “Terminate a Transaction” section later in this module, a transaction
is rolled back to a savepoint only if the savepoint is identified in the ROLLBACK statement.
Otherwise, the entire transaction is rolled back and the transaction is terminated, and
the database is returned to its original state before the transaction was initiated.

Creating a savepoint in your transaction is very simple, as shown in the following syntax:

SAVEPOINT <savepoint name>

406 Module 16: Managing SQL Transactions

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:45:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 407

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:407

16

M
an

ag
in

g
SQ

L
Tr

an
sa

ct
io

ns

All you need to do is use the SAVEPOINT keyword, followed by a name for the savepoint.

For example, to create a savepoint named Section1, you would use the following statement:

SAVEPOINT Section1 ;

Once the savepoint is created, you can use the Section1 name to identify the savepoint later

in your transaction.

Figure 16-6 Using savepoints in your transactions

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:45:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:408

Releasing a Savepoint
After some operations within a transaction, you might find that you want to release a savepoint.

If a savepoint is released, you can no longer roll back the transaction to that savepoint. Releasing

a savepoint removes it from the transaction. In addition, all savepoints defined subsequent to

the released savepoint are also released. This means that if your transaction includes three

savepoints and you release the first savepoint, all three are removed from the transaction.

The syntax used to release a savepoint is as follows:

RELEASE SAVEPOINT <savepoint name>

As you can see, this statement is similar to the SAVEPOINT statement. For example, to

release the savepoint created in the preceding example, you would use the following statement:

RELEASE SAVEPOINT Section1 ;

When you execute this statement, the Section1 savepoint is removed from the transaction,

along with any other savepoints defined subsequent to the Section1 savepoint.

CRITICAL SKILL

16.6 Terminate a Transaction
Earlier in this module, you learned that a transaction can be initiated either explicitly or

implicitly. The same thing is true for ending a transaction. You can explicitly commit or roll

back a transaction, which then terminates the transaction, or the transaction is terminated

implicitly when circumstances force that termination.

In SQL, there are four primary circumstances that will terminate a transaction:

● A ROLLBACK statement is explicitly defined in the transaction. When the statement

is executed, actions are undone, the database is returned to the state it was in when the

transaction was initiated, and the transaction is terminated. If the ROLLBACK statement

references a savepoint, only the actions taken after the savepoint are undone, and the

transaction is not terminated.

● A COMMIT statement is explicitly defined in the transaction. When the statement is

executed, all transaction-related changes are saved to the database, and the transaction

is terminated.

● The program that initiated the transaction is interrupted, causing the program to abort. In

the event of an abnormal interruption, which can be the result of hardware or software

problems, all changes are rolled back, the database is returned to its original state, and

the transaction is terminated. A transaction terminated in this way is similar to terminating

a transaction by using a ROLLBACK statement.

408 Module 16: Managing SQL Transactions

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:45:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

● The program successfully completes its execution. All transaction-related changes are saved

to the database, and the transaction is terminated. Once these changes are committed, they

cannot be rolled back. A transaction terminated in this way is similar to terminating a

transaction by using a COMMIT statement.

As you can see, the ROLLBACK and COMMIT statements allow you to explicitly

terminate a transaction, whereas a transaction is terminated implicitly when the program ends

or is interrupted. These methods of termination ensure that data integrity is maintained and the

database is protected. No changes are made to the database unless the transaction is complete.

Now let’s take a closer look at the two statements that you can use to explicitly end a

transaction.

Committing a Transaction
Once all the statements have been executed in a transaction, the transaction must be terminated.

The preferable type of termination is one that commits all the changes to the database. After all,

why try to make changes if you don’t want to commit them? To explicitly commit the changes

and end the transaction, you must use the COMMIT statement, as shown in the following syntax:

COMMIT [WORK] [AND [NO] CHAIN]

At its most basic, the COMMIT statement requires only the COMMIT keyword. All other

statement elements are optional. If you want, you can include the WORK keyword, which is

simply a carryover from earlier versions of SQL. In other words, COMMIT and COMMIT

WORK perform the same function. The only reason to use the WORK keyword is if your

SQL implementation requires it.

The next optional element in the COMMIT statement is the AND CHAIN clause.

The clause tells the system to start a new transaction as soon as the current transaction ends.

The new transaction uses the same transaction modes as the current transaction. If you use

the AND CHAIN option, you do not need to use the SET TRANSACTION or the START

TRANSACTION statements for the next transaction unless you want to specify different modes.

Rather than specify AND CHAIN in your COMMIT statement, you can specify AND NO

CHAIN, which tells your system not to start a new transaction based on the settings of the

current transaction. If AND NO CHAIN is specified, a new transaction will not be initiated

automatically when the current transaction is terminated. You must start a new transaction by

using an implicit method or explicit method. If neither the AND CHAIN clause nor the AND

NO CHAIN clause is specified, AND NO CHAIN is assumed.

In all likelihood, your commit statement will look like the one in the following example:

COMMIT ;

SQL: A Beginner’s Guide 409

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:409

16

M
an

ag
in

g
SQ

L
Tr

an
sa

ct
io

ns

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:45:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:410

As you can see, the COMMIT keyword is the only required element. However, if you want a

new transaction to be initiated after the current one, you should use the following COMMIT

statement:

COMMIT AND CHAIN ;

If you don’t want a new transaction to be initiated, do not include the AND CHAIN clause.

Rolling Back a Transaction
Although the goal of any transaction is to commit the changes made by the statements in that

transaction, there will no doubt be times when you want to roll back those changes. To be able

to control these rollbacks, you must use a ROLLBACK statement to undo changes and terminate

the transaction or to undo changes back to a specified savepoint. The following syntax shows

the various elements that can be included in a ROLLBACK statement:

ROLLBACK [WORK] [AND [NO] CHAIN]

[TO SAVEPOINT <savepoint name>]

The first line of syntax is very similar to the COMMIT statement. You must specify the

ROLLBACK keyword. In addition, you can specify WORK, AND CHAIN, or AND NO

CHAIN, all of which work the same way they did in the COMMIT statement, with AND

NO CHAIN once again being the default.

However, the ROLLBACK statement, unlike the COMMIT statement, includes the optional

TO SAVEPOINT clause. The TO SAVEPOINT clause specifies a savepoint that is used if

changes have to be rolled back. This applies to any changes made after the specified savepoint.

If you include the TO SAVEPOINT clause in your ROLLBACK statement, the transaction

will be rolled back to the savepoint, but it will not be terminated. If the TO SAVEPOINT

clause is not included, all changes are rolled back and the transaction is terminated.

The most basic type of ROLLBACK statement is one that includes no optional elements,

as in the following example:

ROLLBACK ;

You could have included the WORK keyword and the AND NO CHAIN clause, and

the statement would have performed the same function. If you want a new transaction to be

initiated when the current transaction is terminated, you must specify the AND CHAIN clause.

Keep in mind, however, that you cannot specify the AND CHAIN clause and the TO SAVEPOINT

clause because AND CHAIN relies on the transaction being terminated in order to start a new

transaction.

410 Module 16: Managing SQL Transactions

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:45:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you do specify the TO SAVEPOINT clause, you must include the name of the savepoint.

For example, the following ROLLBACK statement specifies the Section1 savepoint:

ROLLBACK TO SAVEPOINT Section1 ;

If this statement is executed, all changes that occurred after the Section1 savepoint was

created are rolled back to the state the database was in when the SAVEPOINT statement was

executed. Even if other savepoints were created after the Section1 savepoint, changes are still

rolled back to Section1.

Project 16-1 Working with Transactions
In this project you will create several transactions that execute statements

against the Inventory database. For each transaction, you will explicitly start the

transaction and execute one or more SQL statements. For this project, you will work with the

SQL: A Beginner’s Guide 411

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:411

16

M
an

ag
in

g
SQ

L
Tr

an
sa

ct
io

ns
Wo

rk
ing

wi
th

Tra
ns

ac
tio

ns

Project
16-1

Ask the Expert
Q: Earlier in the module, you state that statements such as the SELECT, DELETE,

UPDATE, and CREATE TABLE statements must be executed within the context

of a transaction. However, we have not been using transactions in the examples

and projects throughout the book. When are transactions used?

A: Throughout the book, we have been using interactive SQL (direct invocation) to

communicate with the database. Most of the SQL statements that we have been executing

within this environment have been done within the context of a transaction, even though

you weren’t aware of that happening. For most SQL implementations, each SQL statement

is considered its own transaction. When you execute the statement, a transaction is

initiated. If the statement is successful, any changes made are committed to the database

and the transaction is terminated, in much the same way as if you had executed a

COMMIT statement. If the statement is not successful, the changes are rolled back, the

database is returned to the state it was in when the statement was first executed, and the

transaction is terminated, as though you executed a ROLLBACK statement. Although

interactive SQL tends to treat each statement as its own transaction, you can usually

execute transaction-related statements in this environment. However, which statements

you can execute and what options they support varies from product to product, so make

sure you check the documentation. In general, it is not necessary to specifically define a

transaction in interactive SQL.

Prj16.txt

(continued)

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:45:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:412

412 Module 16: Managing SQL Transactions

COMMIT statement and ROLLBACK statement in separate transactions because you’re

working with directly invoked SQL (in your client application). However, if you were

initiating transactions from within an application programming language, you would no doubt

be using COMMIT and ROLLBACK together in some sort of conditional structure. In that

way, certain results would cause the transaction to roll back, and other results would cause

the transaction to commit, depending on how you set up the conditions in the programming

language. However, for this project, we keep them separate so that you can effectively run

through these steps. You can download the Prj16.txt file, which contains the SQL statements

used in this project.

Step by Step
1. Open the client application for your RDBMS and connect to the Inventory database.

2. The first transaction that you’ll create uses a START TRANSACTION statement to set the

isolation level to READ UNCOMMITTED, retrieves information from the Artists table,

and then commits the transaction. Enter and execute the following SQL transaction:

START TRANSACTION ISOLATION LEVEL READ UNCOMMITTED ;
SELECT * FROM Artists ;
COMMIT ;

The transaction should return all the rows and columns from the Artists table.

3. The next transaction that you’ll create also uses a START TRANSACTION statement to

set the isolation level. But this time you’ll be setting the level to SERIALIZABLE. Because

SERIALIZABLE is the default, you aren’t required to define it; however, for the purposes

of this project, we’re going to include it. After you start the transaction, you’ll attempt to

update the CompactDiscs table by increasing the InStock value by 2 for all rows with a

LabelID value equal to 832. After the UPDATE statement, you’ll roll back the transaction

so that no data is modified in the database. Enter and execute the following SQL transaction:

START TRANSACTION ISOLATION LEVEL SERIALIZABLE ;
UPDATE CompactDiscs SET InStock = InStock + 2
WHERE LabelID = 832 ;

ROLLBACK ;

You should receive some sort of message acknowledging the termination of the transaction.

4. Now you’ll confirm that the update you attempted in the preceding step was indeed rolled

back. Enter and execute the following SQL statement:

SELECT CDTitle, InStock FROM CompactDiscs
WHERE LabelID = 832 ;

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:45:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The SELECT statement should return the following query results:

CDTitle InStock
---------------------------- -------
That Christmas Feeling 8
Patsy Cline 12 Greatest Hits 32
Out of Africa 29
Blues on the Bayou 27

The InStock values shown in these results are what were contained in the CompactDiscs

table before you executed the transaction. If the transaction had not been rolled back, each

of these values would have been increased by 2.

5. Now you’re going to add a savepoint to the transaction we created in the previous step.

You want to be sure to reference the savepoint in the ROLLBACK statement. You will

also add a SELECT statement before the savepoint. Enter and execute the following SQL

transaction:

START TRANSACTION ISOLATION LEVEL SERIALIZABLE ;
SELECT CDTitle, InStock FROM CompactDiscs
WHERE LabelID = 832 ;

SAVEPOINT Section1 ;
UPDATE CompactDiscs SET InStock = InStock + 2
WHERE LabelID = 832 ;

ROLLBACK TO SAVEPOINT Section1 ;

Now your transaction will roll back only to the point preceding the UPDATE statement. In

addition, because your transaction included a SELECT statement, you should receive the

query results that you received in the previous step.

6. In the preceding transaction, the SELECT statement came before the savepoint, which

means that the SELECT statement was executed before the UPDATE statement. If the

transaction did not roll back the update, the query results would not reflect the correct

information. As a result, you should verify that the UPDATE statement was rolled back.

Enter and execute the following SQL statement:

SELECT CDTitle, InStock FROM CompactDiscs
WHERE LabelID = 832 ;

Your query results should show the same InStock values as the query results returned in

the previous two steps.

7. Close the client application.

SQL: A Beginner’s Guide 413

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:413

16

M
an

ag
in

g
SQ

L
Tr

an
sa

ct
io

ns
Wo

rk
ing

wi
th

Tra
ns

ac
tio

ns

Project
16-1

(continued)

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:45:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:414

414 Module 16: Managing SQL Transactions

Project Summary
In this project, you created and initiated three transactions. In the first one, you simply queried

data and committed the transaction. In the next two, you updated data and then rolled back the

updates. However, as you saw in the third transaction, it is possible to roll back a transaction to

a specified savepoint. This allows you to protect certain portions of your transaction without

having to reprocess statements that have been executed successfully. Because you rolled back

the updates that you made, the Inventory database should have been left in the same state it

was in when you began this project.

Module 16 Mastery Check
1. Which transaction characteristic refers to the all-or-nothing nature of a transaction?

A. Atomic

B. Consistent

C. Isolated

D. Durable

2. A(n) ____________ is a unit of work that is made up of one or more SQL statements that

perform a related set of actions.

3. Which SQL statements will terminate a transaction?

A. SAVEPOINT

B. SET TRANSACTION

C. ROLLBACK

D. COMMIT

4. What are the three types of transaction modes that you can specify in a SET

TRANSACTION statement?

5. Which access level options can you include in a START TRANSACTION statement?

A. READ ONLY

B. UPDATE

C. LOCAL

D. READ WRITE

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:45:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 415

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:415

16

M
an

ag
in

g
SQ

L
Tr

an
sa

ct
io

ns

6. Two concurrent transactions are active in your system. The first transaction modifies data in

a table. The second transaction sees those modifications before they’re actually committed

to the database. The first transaction then rolls back the modifications. Which type of data

phenomenon has occurred?

A. Phantom read

B. Repeatable read

C. Dirty read

D. Nonrepeatable read

7. A(n) ____________ read can occur when a transaction reads a table based on some sort of

search condition, then a second transaction updates the data in the table, and then the first

transaction attempts to reread the data, but this time different rows are returned because of

how the search condition is defined.

8. Which isolation level fully isolates one transaction from another transaction?

9. You’re using a SET TRANSACTION statement to configure transaction modes. You want

to ensure that no nonrepeatable reads and no dirty reads can occur within that transaction.

However, you’re not concerned about phantom reads. Which isolation level should you use?

A. READ UNCOMMITTED

B. READ COMMITTED

C. REPEATABLE READ

D. SERIALIZABLE

10. You’re setting up a transaction that defers the application of the ck_CDStock constraint

until you execute several SQL statements. After you execute the statements, you want to

explicitly apply the constraint to the changes you made to the database. What SQL

statement should you use to apply the constraints?

11. A(n) ____________ is a designated marker within your transaction that acts as a rollback

point for a portion of your transaction.

12. You want to create a savepoint named svpt_Section2. What SQL statement should you use?

13. You create a transaction that includes four savepoints: Section1, Section2, Section3, and

Section4. Near the end of the transaction, after all four savepoints, you define a RELEASE

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:45:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 16
Blind Folio 16:416

SAVEPOINT that specifies the Section2 savepoint. Which savepoint or savepoints are

removed from the transaction when the RELEASE SAVEPOINT statement is executed?

A. Section1

B. Section2

C. Section3

D. Section4

14. What circumstances will terminate a transaction?

15. You’re creating a ROLLBACK statement in your transaction. You want the rollback to

undo changes back to the svpt_Section2 savepoint. What SQL statement should you use?

16. You’re creating a COMMIT statement in your transaction. After the transaction is terminated,

you want a new transaction to be initiated. The new transaction should be configured with

the same transaction modes as the first transaction. How should you create your COMMIT

statement?

416 Module 16: Managing SQL Transactions

P:\010Comp\Begin8\885-7\ch16.vp
Monday, April 07, 2003 1:45:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:417

Module17
Accessing SQL Data
from Your Host
Program

CRITICAL SKILLS
17.1 Invoke SQL Directly

17.2 Embed SQL Statements in Your Program

17.3 Create SQL Client Modules

17.4 Use an SQL Call-Level Interface

417

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:418

Throughout this book, you have been performing projects and testing examples by using a

client application to work interactively with your SQL database. For example, you might

have been using Query Analyzer to access a SQL Server database or SQL*Plus Worksheet to

access an Oracle database. This method of data access is referred to as direct invocation, or

interactive SQL. The SQL:1999 standard also provides for the use of other types of data

access, including embedded SQL, SQL client modules, and the call-level interface (CLI);

however, the types of data access supported by an SQL implementation can vary from product

to product. Some, for example, do not support embedded SQL, and few support SQL client

modules. In this module, I introduce you to the four types of data access methods and explain

how they can be used to retrieve and modify data in your SQL database. Because SQL and

CLI are the two methods most commonly used by programs to access SQL data, I cover these

two topics in greater detail than direct invocation and SQL client modules, although I do

provide a foundation in all four access types.

CRITICAL SKILL

17.1 Invoke SQL Directly
If you’ve gotten this far in the book, you should already be very comfortable with interactive

SQL. By using your client application, which comes with most database management products,

you’ve been able to create ad hoc SQL statements that return immediate results to the application.

These results are normally displayed in a window separate from where you executed your SQL

statement. For example, let’s take a look at Figure 17-1, which shows SQL Server’s Query

Analyzer. Notice that the top window includes a SELECT statement and the bottom window

includes the query results from executing that statement. Most direct invocation client applications

behave in a manner similar to this.

The types of SQL statements supported by the direct invocation method can vary from one

SQL implementation to the next. Although most implementations will allow you to execute

basic types of statements, such as SELECT or UPDATE, they might not allow you to execute

statements specific to another method of data access. For example, some implementations

might not allow you to declare a cursor within an interactive environment.

Despite the differences among SQL implementations, the SQL standard does define which

types of statements should be supported in an interactive environment. These include SELECT,

INSERT, UPDATE, and DELETE statements and statements related to schema definitions,

transactions, connections, and sessions. You should also be able to declare temporary tables in

an interactive environment. In fact, nearly any actions critical to the maintenance of data and

of the underlying database structure are supported by direct invocation.

One of the main advantages to interactive SQL—in addition to the ability to execute ad

hoc statements—is the elimination of any impedance mismatch. As you’ll recall from earlier

discussions, an impedance mismatch can occur because of differences in data types between

SQL and application programming languages and in how query results (result sets) are handled

418 Module 17: Accessing SQL Data from Your Host Program

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

between SQL and those languages. However, interactive SQL is a pure SQL environment,

which means that only the data types supported by the implementation can be used, and result

sets pose no problems to the client application because you can simply scroll through query

results. Even so, direct invocation represents only a small percentage of users. You’ll find that

most data access is through embedded SQL and CLI-type mechanisms, and some through SQL

client modules, but relatively few users rely on interactive SQL.

CRITICAL SKILL

17.2 Embed SQL Statements in Your Program
In Module 15, when I discuss SQL cursors, I introduce you to embedded SQL. As you’ll recall

from that discussion, embedded SQL refers to SQL statements that are interspersed in some

SQL: A Beginner’s Guide 419

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:419

17

A
cc

es
sin

g
SQ

L
D

at
a

fro
m

Yo
ur

H
os

tP
ro

gr
am

Figure 17-1 Query Analyzer in SQL Server 2000

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

type of application programming language. The SQL statements are blended into the host

language to allow the source program to be able to access and modify SQL data and the

underlying database structure.

According to the SQL:1999 standard, you can embed SQL statements in the following

programming languages:

● Ada

● C

● COBOL

● Fortran

● MUMPS

● Pascal

● PL/I

Although the standard supports embedded SQL statements in these languages, SQL

implementations rarely support embedding statements in all these languages. An implementation

might be limited to only one or two programming languages, and some implementations might

not support embedded SQL at all (although most implementations provide embedded SQL for at

least one language). In addition, many implementations support embedded SQL in languages

other than those specified in the SQL standard.

When a program contains embedded SQL statements, it must be compiled in a manner

different from regular programs. Figure 17-2 illustrates the process followed when compiling

these programs.

As you can see from the figure, we start with a program file that contains the host

programming language and the embedded SQL statements. Before the program is compiled, it

is submitted to a precompiler that is specific to the host programming language and the SQL

implementation. The precompiler strips the SQL statements out of the host language code and

replaces them with calls to the SQL statements. As a result, two files are created, one for the

host language and one for the SQL statements.

Once a file is created for the host language, the source program is compiled in its normal way,

as would be expected from a specific language. The output from the host language compiler is

the object code, which is linked to various library routines. From this, an executable program

is generated that links to the application plan. The application plan is created by a bind utility

that validates and optimizes the SQL statements. The plan contains the SQL statements and

information that the program needs to access the database.

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:420

420 Module 17: Accessing SQL Data from Your Host Program

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating an Embedded SQL Statement
When you develop a program that contains embedded SQL, you must follow specific conventions

that determine how the SQL code is added to the program. These conventions are based on a

combination of special SQL language elements and the requirements of the host programming

language. In order to be used in a host language, an embedded SQL statement must conform to

the following guidelines:

● Each SQL statement must begin with a qualified prefix.

● Each SQL statement may or may not require a qualified terminator, depending

on the host language.

SQL: A Beginner’s Guide 421

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:421

17

A
cc

es
sin

g
SQ

L
D

at
a

fro
m

Yo
ur

H
os

tP
ro

gr
am

Figure 17-2 Compiling programs that contain embedded SQL

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:422

● Line breaks within the SQL statement must be handled according to the style of the host

language.

● The placement of comments must be handled according to the style of the host language.

Most embedded SQL statements require a qualified prefix and terminator. Table 17-1

provides the prefix and terminator for each supported programming language.

As you can see from the table, the Ada, C, Pascal, and PL/I languages all handle an embedded

SQL statement in the same way. For example, suppose you want to embed a SELECT statement

that retrieves the CDName and InStock columns from the CDInventory table. To do so, you

would use the following statement:

EXEC SQL SELECT CDName, InStock FROM CDInventory ;

Notice that the statement is preceded by the EXEC SQL prefix and ended with the

semicolon terminator. If you were to create a similar statement in another language, your

prefix or terminator might be different. In the case of MUMPS, they would both be different.

NOTE
Normally, it doesn’t matter whether your embedded SQL statements appear in uppercase or
lowercase. Programmers generally follow the conventions of the host language. However,
for the purposes of this module, I’ll treat embedded SQL statements as I have other SQL
statements throughout the book: I’ll use uppercase for SQL keywords and mixed case for
SQL identifiers.

422 Module 17: Accessing SQL Data from Your Host Program

Language Prefix Terminator

Ada EXEC SQL ;

C EXEC SQL ;

COBOL EXEC SQL END-EXEC

Fortran EXEC SQL (no terminator)

MUMPS &SQL()

Pascal EXEC SQL ;

PL/I EXEC SQL ;

Table 17-1 Beginning and Ending an SQL Statement

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using Host Variables in Your SQL Statements
In order to use embedded SQL effectively, you must be able to pass values between the host

program and the SQL statements. For example, your embedded SQL statement might include

a WHERE clause that requires a specific value in order to evaluate the search condition. The

value might be supplied by a user or by an operation within the host program. In either case,

that value must in some way be passed from the program to the SQL statement.

To pass values to and from an SQL statement, you can use host variables. A host variable

is a type of parameter that is declared within the host language and is then referenced within

the embedded SQL statement. When a host variable is used within an SQL statement, the name

of the variable must be preceded by a colon. The colon signals to the precompiler that the named

item is a variable and not a database object, such as a table or a column. As a result, you do not

have to worry about whether the host variable shares the same name as a database object.

You can use a host variable in an embedded SQL statement in any place where you might

expect to define a value. For example, the following SELECT statement can be embedded in a

C program:

EXEC SQL SELECT CDName, InStock FROM CDInventory
WHERE CDID = :v_CDID ;

Notice that the v_CDID host variable is preceded by a colon. The colon is used only within the

SQL statement. When the variable is declared—earlier in the host program—no colon is used.

NOTE
The preceding example begins with EXEC SQL and ends with a semicolon. In addition,
no specific continuation character is required to indicate a line break in the SQL statement.
These conventions are consistent with what you would expect to find in a C program.
For the examples in this module, I will be using embedded SQL statements as they would
appear within a C program. Embedded SQL is well supported in C by a number of SQL
implementations.

You’re not limited to referencing a host variable in the WHERE clause of a SELECT

statement. For example, you can reference a variable in the SET clause of an UPDATE statement,

the VALUES clause of an INSERT statement, or the WHERE clause of a DELETE or UPDATE

statement. However, you cannot use a host variable in place of an SQL identifier. In other words,

you cannot pass an object name, such as a table name or column name, through a host variable.

Declaring Host Variables
As I mentioned earlier, you must declare your host variables within the host program. You can

declare them anywhere in the program where you would normally declare variables in a particular

SQL: A Beginner’s Guide 423

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:423

17

A
cc

es
sin

g
SQ

L
D

at
a

fro
m

Yo
ur

H
os

tP
ro

gr
am

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:424

424 Module 17: Accessing SQL Data from Your Host Program

language. In addition, you must declare the variables according to the conventions of the

host language. The only difference is that you must begin the declarations with the BEGIN

DECLARE SECTION statement and end the declarations with the END DECLARE SECTION

statement. These two statements notify the precompiler that the variables enclosed in the statements

are to be used in the other embedded SQL statements.

Let’s take a look at an example of what I mean. Suppose you want to declare two variables,

one to receive a value that identifies the CD and one that receives the name of the CD. Your

variable declaration in C might look like the following:

EXEC SQL BEGIN DECLARE SECTION ;
long v_cdid ; /* compact disc ID */
varchar v_cdname[60] ; /* compact disc name */

EXEC SQL END DECLARE SECTION ;

As you can see, the variable declarations are enclosed in the two declaration-related

SQL statements. Notice that these statements are treated just like any other embedded SQL

statements in C. Each statement begins with EXEC SQL and ends with a semicolon.

Two host variables are being declared in this section. The first one, v_cdid, is declared

with the long data type, and the second variable, v_cdname, is declared with the varchar data

type. The two variable declarations follow the conventions of the host language. Notice that

a comment follows each declaration. The comments also adhere to the conventions of the

host language.

When host variables are used in SQL statements, an impedance mismatch can occur as a

result of the differences between host language data types and SQL data types. As you can see

in the preceding example, the variables are declared with C data types; however, the variables

will be used in SQL statements to pass data to columns that are configured with SQL data types.

If the data types are compatible, then data can be passed through the variables; otherwise, the

impedance mismatch between the data types prevents values from being passed. For example,

the v_cdid variable is configured with the long data type, which is compatible with the INTEGER

data type in SQL, and the v_cdname variable is configured with the varchar data type, which is

compatible with the CHARACTER VARYING data type in SQL. As a result, you can pass

data through these variables as long as the receiving columns are configured with the compatible

data types.

Retrieving SQL Data
As you have seen throughout this book, the process of querying data in an SQL database

involves executing a SELECT statement that in turn retrieves data from the applicable table or

tables and returns that data in a result set. A result set can be made up of one or more rows and

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

17

one or more columns. When you are querying data interactively, the multiple rows present no

problems because your client application can handle more than one row. However, when

querying data from an embedded SQL statement, multiple rows have to be handled through a

cursor in order to allow that host language to work with one row at a time. A cursor, as you’ll

recall, acts as a pointer to specific rows in the result set. The cursor declaration defines the

SELECT statement that retrieves data from the database, and cursor-related statements are

then used to retrieve the individual rows from that result set. (For more information about

cursors, see Module 15.)

Cursors, then, provide a solution to one type of impedance mismatch that can occur

between SQL and the host language. Specifically, SQL returns data in sets, and most

programming languages cannot handle sets. By using some sort of looping construct within

the programming language and then using the SQL FETCH statement, you can cycle through

each row in the result set to retrieve the data that you need.

Despite the availability of cursors to embedded SQL, there are often times when you

know that your database query will return only one row. For example, you might want to

retrieve data about a specific CD or performing artist, in which case, a cursor is unnecessary.

SQL: A Beginner’s Guide 425

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:425

17

A
cc

es
sin

g
SQ

L
D

at
a

fro
m

Yo
ur

H
os

tP
ro

gr
am

Ask the Expert
Q: You state that data can be passed from the variable to the SQL statement if the

data types are compatible. How do you pass data if they’re not compatible?

A: Most programming languages contain at least some data types that do not match up

with SQL data types. If this situation arises, you can use the CAST value expression

within the SQL statement to convert the variable value into a value that can be used by

the SQL statement. In effect, the CAST value expression changes the data type of the

value. For example, we can modify the previous embedded statement to convert the

v_CDID host variable, as shown in the following example:

EXEC SQL SELECT CDName, InStock FROM CDInventory
WHERE CDID = CAST(:v_CDID AS INT) ;

As you can see, CAST is used to convert the value in the host variable to an

INTEGER data type. (For more information about CAST, see Module 10.) To

determine which data types in a host language are compatible with data types in

SQL, you should refer to the SQL:1999 standard, language-specific documentation, or

product-specific documentation.

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:426

To facilitate single-row retrievals, embedded SQL supports the singleton SELECT statement.

A singleton SELECT statement is similar to a regular SELECT statement except in two ways:

● You do not include a GROUP BY, HAVING, or ORDER BY clause.

● You include an INTO clause that specifies the host variables that will pass the data

returned by the SELECT statement to the host program.

For example, suppose your SELECT statement returns the name of the CD and the number

in stock, as shown in the following embedded statement:

EXEC SQL SELECT CDName, InStock INTO :v_CDName, :v_InStock
FROM CDInventory WHERE CDID = :v_CDID ;

As you can see in this statement, the v_CDID variable is used to specify which CD should be

returned. The value is entered by the user, and the variable passes that value from the host

program into the SELECT statement.

Now let’s take a look at the INTO clause. Notice that the clause contains two variables,

the same number of variables as the number of columns retrieved from the CDInventory table.

These variables are declared in the same way as the other host variables that we’ve looked at.

Because this SELECT statement returns only one row and two columns, only two values are

returned. These values are inserted into the variables. The variables must be specified in the

same order as the column names are specified.

NOTE
The v_CDID variable in the WHERE clause is an input host variable, and the v_CDName
and v_InStock variables in the INTO clause are output host variables.

Retrieving Null Values
In Module 4, I discuss null values and how they’re used to represent unknown or unavailable

data. As you’ll recall from that discussion, most SQL columns, by default, permit null values,

although you can override the default by defining a NOT NULL constraint on the column.

However, if you don’t override the default and null values are permitted, you can run into a

problem with the host language because most application programming languages do not

support null values.

To work around this issue, SQL allows you to declare indicator host variables. An indicator

host variable is a type of variable that accompanies a regular host variable, also referred to as

a data host variable. The indicator variable contains a value that specifies whether or not the

value in the associated data variable is null. Indicator variables are declared in the same way

as other host variables.

426 Module 17: Accessing SQL Data from Your Host Program

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

17

SQL: A Beginner’s Guide 427

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:427

17

A
cc

es
sin

g
SQ

L
D

at
a

fro
m

Yo
ur

H
os

tP
ro

gr
am

Let’s take a look at an example of indicator host variables to illustrate how they work. In

the following embedded SELECT statement, an indicator host variable has been added to each

of the host variables in the INTO clause:

EXEC SQL SELECT CDName, InStock
INTO :v_CDName :ind_CDName, :v_InStock :ind_InStock
FROM CDInventory WHERE CDID = :v_CDID ;

The INTO clause includes two indicator host variables: ind_CDName and ind_InStock.

Notice that each indicator variable follows the associated data variable. The placement of the

indicator variable is the only indication the SQL implementation has that a particular host

variable is an indicator variable. There is nothing in the variable declaration or naming that

distinguishes indicator variables from data variables. When the implementation sees that one

variable follows the other and that no comma separates the two, the implementation assigns a

value of 0 to the indicator variable if the associated variable contains a real value (is not null).

If the associated variable contains a null value, the implementation assigns a value of –1 to the

indicator variable. The host program then takes the appropriate action based on this information.

NOTE
When you declare an indicator host variable, be sure to use a data type that supports
the 0 and –1 values.

Error Handling
When you embed SQL statements into your host language, you should provide a way to take

specific actions if you receive error or warning messages when you try to access data. SQL

provides a relatively straightforward method that you can use to monitor errors and warnings

and take actions depending on the results of that monitoring. By embedding WHENEVER

statements in your host language, you can provide your program with an effective level of

error handling that works alongside your other embedded statements.

The WHENEVER statement includes two sets of options, as shown in the following syntax:

WHENEVER

{ SQLEXCEPTION | SQLWARNING | NOT FOUND }

{ CONTINUE | GOTO <target> }

As you can see, you must first specify the WHENEVER keyword and then specify the

necessary options. The first set of options indicates the condition that the WHENEVER statement

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:428

428 Module 17: Accessing SQL Data from Your Host Program

applies to. If that condition is met, a specified action is taken. A WHENEVER statement can

include one of three conditions:

● SQLEXECPTION The condition is met whenever an SQL statement generates an

exception. For example, an exception might be generated when you try to insert invalid

data into a column.

● SQLWARNING The condition is met whenever an SQL statement generates a warning.

For example, a statement might generate a warning if a number has been rounded off.

● NOT FOUND The condition is met whenever a SELECT statement cannot return data

in its query results. This can apply to a singleton SELECT statement or to a FETCH

statement at the end of the cursor’s result set.

Once you specify a condition in your WHENEVER statement, you must specify an action.

The WHENEVER statement supports two actions:

● CONTINUE The program will continue running to the next statement.

● GOTO <target> The program will jump to a section within the host language that is

named in the <target> placeholder.

Now that we’ve looked at the options available in the WHENEVER statement, let’s take a

look at an example. Suppose that you want your SQL statements to go to a certain part of the

program if an error occurs. In the following WHENEVER statement, an exception will cause

the program to move to the Error1 section:

EXEC SQL WHENEVER SQLEXCEPTION GOTO Error1 ;

Notice that the SQLEXCEPTION option and the GOTO option are specified in this

statement. The SQLEXCEPTION option tells the program to take a specified action if an SQL

statement generates an exception. The GOTO option defines the action that should be taken.

In this case, the option specifies that the program should move to the Error1 section of the

host language.

A WHENEVER statement applies to the embedded SQL statements that follow it. You

can embed as many WHENEVER statements in your host language as necessary. The last

statement to appear is the one that is applied to the other statements.

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Progress Check
1. What four methods can you use to access SQL data?

2. What does the precompiler do with the program file?

3. What prefix must you use for an embedded SQL statement in COBOL?

4. What statement should you use at the beginning of the declaration section for host variables?

5. What type of SELECT statement can you use in embedded SQL when retrieving only one

row of data?

Project 17-1 Embedding SQL Statements
In most of the projects in this book, you used a client application to access your

SQL database interactively. However, because of the subject matter of this module,

particularly with regard to embedded SQL, this project will take a different approach from

previous projects. For this project, you will use some type of text editing program (such as

Microsoft Notepad) to complete the steps. Because programming in a host language is beyond

the scope of this book, you will create only the SQL statements that are embedded in the host

language. The statements will conform to C, although they might apply to other host languages.

In the project, you will set up variable declarations, create an error-handling statement, and

embed an SQL SELECT statement that queries data from the Inventory database. You can

download the Prj17.txt file, which contains the embedded SQL statements used in this project.

Step by Step
1. Open a text editing program such as Microsoft Notepad.

2. The first step is to create one input host variable and two output host variables. The

purpose of the input host variable is to be able to receive a CD identifier from the user. That

identifier can then be used in the WHERE clause of the SELECT statement to determine

SQL: A Beginner’s Guide 429

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:429

17

A
cc

es
sin

g
SQ

L
D

at
a

fro
m

Yo
ur

H
os

tP
ro

gr
am

Em
be

dd
ing

SQ
LS

ta
tem

en
ts

Project
17-1

1. Direct invocation, embedded SQL, SQL client modules, and CLI

2. The precompiler strips the SQL statements out of the host language code and replaces them with calls to the SQL

statements. As a result, two files are created, one for the host language and one for the SQL statements.

3. EXEC SQL

4. BEGIN DECLARE SECTION

5. Singleton SELECT statement

Prj17.txt

(continued)

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:430

which row of data will be returned from the CompactDiscs table. Along with declaring the

variables, you will include comments that identify the purpose of those variables. Type the

following embedded SQL statements and variable declarations into your text document:

EXEC SQL BEGIN DECLARE SECTION ;
long v_cdid ; /* input variable for CD identifier */
varchar v_cdtitle[60] ; /* output variable for CD title */
long v_instock ; /* output variable for InStock value */

EXEC SQL END DECLARE SECTION ;

Notice that you were to enter in the entire variable declaration section, so you had to

include the BEGIN DECLARE SECTION statement and the END DECLARE SECTION

statement. These statements are necessary to notify the precompiler that the variable

declarations will be used in the embedded SQL statements.

3. After you create your declaration section, you realize that you want to include indicator

variables for the output data variables. As a result, you must add two declarations to your

declaration section. Type the following declarations into your text document:

short ind_cdtitle ; /* indicator variable for v_cdtitle */
short ind_instock ; /* indicator variable for v_instock */

You can add the declarations anywhere into your declaration section. However, for clear

coding, I suggest you add them close to each of their associated data variables, as shown in

the following declaration section:

EXEC SQL BEGIN DECLARE SECTION ;
long v_cdid ; /* input variable for CD identifier */
varchar v_cdtitle[60] ; /* output variable for CD title */
short ind_cdtitle ; /* indicator variable for v_cdtitle */
long v_instock ; /* output variable for InStock value */
short ind_instock ; /* indicator variable for v_instock */

EXEC SQL END DECLARE SECTION ;

Notice that the two new declarations have been inserted beneath their respective data

variables.

4. Now let’s include an error-handling statement into your test document. The statement will

represent a section named Error1 in your host language. The assumption will be that if an

embedded SQL statement generates an exception, the program will jump to the Error1

section and take whatever action is defined in that section. Type the following embedded

SQL statement into your text document:

EXEC SQL WHENEVER SQLEXCEPTION GOTO Error1 ;

Notice that the embedded SQL code contains a WHENEVER statement that specifies the

SQLEXCEPTION and GOTO options.

430 Module 17: Accessing SQL Data from Your Host Program

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5. Now you’re ready to create the embedded SELECT statement. The statement will contain

the variables defined in your declaration section. In addition, a singleton SELECT statement

will be used because the statement will retrieve only one row at a time. The WHERE

clause is based on a specified CompactDiscID value, and each value is unique within the

CompactDiscs table. (The CompactDiscID column is the primary key, so values must be

unique within that column.) Type the following embedded SQL statement into your text

document:

EXEC SQL SELECT CDTitle, InStock
INTO :v_CDTitle :ind_CDTitle, :v_InStock :ind_InStock
FROM CompactDiscs WHERE CompactDiscID = :v_CDID ;

Notice that an INTO clause is included in this statement. The INTO clause contains the

output data variables and their associated indicator variables. Your text document should

now look like the following code:

EXEC SQL BEGIN DECLARE SECTION ;
long v_cdid ; /* input variable for CD identifier */
varchar v_cdtitle[60] ; /* output variable for CD title */
short ind_cdtitle ; /* indicator variable for v_cdtitle */
long v_instock ; /* output variable for InStock value */
short ind_instock ; /* indicator variable for v_instock */

EXEC SQL END DECLARE SECTION ;
EXEC SQL WHENEVER SQLEXCEPTION GOTO Error1 ;
EXEC SQL SELECT CDTitle, InStock
INTO :v_CDTitle :ind_CDTitle, :v_InStock :ind_InStock
FROM CompactDiscs WHERE CompactDiscID = :v_CDID ;

If this were an actual C program, you would also see the C code surrounding the embedded

SQL statements. The C code would represent that actual program and would take actions

appropriate to that program. For example, the host language would include code that would

allow the program to receive the CD identifier for the user. That identifier would be passed

to the v_cdid variable to be used in the embedded SELECT statement.

6. Save the file and close the application.

Project Summary
In this project, you created a host variable declaration section, declared five host variables,

added an error-handling statement, and embedded a singleton SELECT statement. If this were

a complete C program, the host language would have used the data in the output parameters

to take any actions appropriate to the program. The C program would also include a section

named Error1 that would specify a specific action to take should an exception be generated by

SQL: A Beginner’s Guide 431

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:431

17

A
cc

es
sin

g
SQ

L
D

at
a

fro
m

Yo
ur

H
os

tP
ro

gr
am

Em
be

dd
ing

SQ
LS

ta
tem

en
ts

Project
17-1

(continued)

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:432

the SQL statement. You can, of course, include many more embedded SQL statements than

are used in this project, and you can include other type of statements such as UPDATE or

DELETE. However, the purpose of this project was to provide you with a foundation in

embedded SQL. For more details on embedding SQL statements, you should refer to

documentation specific to the host language and documentation for the applicable SQL

implementation.

CRITICAL SKILL

17.3 Create SQL Client Modules
Now that you have a basic understanding of embedded SQL, let’s take a look at SQL client

modules. SQL client modules are self-contained collections of SQL statements. Unlike embedded

SQL, in which the SQL statements are inserted into the host programming language, SQL

client modules are separate from the host language. The host language contains calls that

invoke the module, which in turn executes the SQL statements within that module.

An SQL client module is made up of the properties that define the module, temporary table

and cursor declarations, and the procedures that contain the SQL statements. Each procedure

can contain only one SQL statement. The following syntax provides the basic elements of an

SQL client module:

MODULE <module name> [NAMES ARE <character set>]

LANGUAGE { ADA | C | COBOL | FORTRAN | MUMPS | PASCAL | PLI }

[SCHEMA <schema name >] [AUTHORIZATION <authorization identifier>]

[<temporary table declarations>] [<cursor declarations>]

PROCEDURE <procedure name> (<parameter declarations>)

<SQL statement> ;

Let’s take a look at each clause within the syntax so that you have a better understanding

of all the elements that make up an SQL client module. The MODULE clause specifies a name

for the module. This is followed by the optional NAMES ARE clause, which is used to specify

a character set for the identifiers in the module. If the NAMES ARE clause is not specified, the

default character set for the SQL implementation is used. The next element in the syntax is the

LANGUAGE clause, which specifies the host language that will be calling the module. You

must specify a language.

After you’ve defined the LANGUAGE clause, you must define a SCHEMA clause, an

AUTHORIZATION clause, or both. The SCHEMA clause identifies the default schema to be

used by SQL statements in the module. The AUTHORIZATION clause identifies the authorization

identifier to be used for executing the statements within the module. If no AUTHORIZATION

clause is specified, the current authorization identifier is assumed.

432 Module 17: Accessing SQL Data from Your Host Program

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can also declare temporary tables and cursors within a module. Temporary tables must

be declared before any cursors or procedures. You can declare as many temporary tables as

necessary. Unlike temporary table declarations, cursor declarations can be mixed in between

procedures; however, a cursor declaration must always precede the procedure that references

that cursor.

The final portion of the module statement is the procedure. As I mentioned earlier, your

module can contain one or more procedures. However, the procedure can contain only one

SQL statement and must contain at least one parameter declaration, which is the status

parameter SQLSTATE.

NOTE
The procedure in an SQL client module is sometimes referred to as an externally
invoked procedure.

The SQLSTATE status parameter provides a way to report errors back to your host

language. Like any other host parameter, values are passed between the SQL database and the

host program. In the case of SQLSTATE, the values are related to the status of SQL statement

execution. By including the SQLSTATE parameter in your modules, you’re allowing your

host program to see the status of your statement execution. As a result, the program can

monitor for errors and take appropriate actions if those errors occur.

In addition to the SQLSTATE status parameter, you must declare all other host parameters

used in the procedure’s SQL statement. Parameter names (except SQLSTATE) must be preceded

by a colon when being declared and when used in the SQL statement. As you can see in the

syntax, parameter declarations must be enclosed by parentheses. In addition, if more than one

parameter is declared, those declarations must be separated by a comma.

Defining SQL Client Modules
Now that we’ve reviewed the syntax for an SQL client module, let’s take a look at an example

of how to create one. In the following statement, I create a module that contains one procedure:

MODULE QueryCDInventory
LANGUAGE C
SCHEMA Inventory AUTHORIZATION Sales
PROCEDURE Query1
(SQLSTATE, :p_CDID INT, :p_CDName VARCHAR(60))
SELECT CDName INTO :p_CDName
FROM CDInventory WHERE CDID = :p_CDID ;

SQL: A Beginner’s Guide 433

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:433

17

A
cc

es
sin

g
SQ

L
D

at
a

fro
m

Yo
ur

H
os

tP
ro

gr
am

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:07:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:434

434 Module 17: Accessing SQL Data from Your Host Program

As you can see in this example, we’re creating a module named QueryCDInventory.

The module will be called by a C program (LANGUAGE C). The SQL statement within the

module will access a table in the Inventory schema and will be executed under the context

of the Sales authorization identifier. The MODULE statement includes only one procedure,

which is named Query1. If more than one procedure were defined, they would each be

terminated by a semicolon. Now let’s take a closer look at the Query1 procedure.

The first thing you might notice is that three host parameters have been declared. The

SQLSTATE parameter provides status information to the host program. The p_CDID parameter

is an input parameter that will receive a value from the host program. The p_CDName parameter

is an output parameter that will take the value returned by the SELECT statement and pass it to

the host program. Notice that both the p_CDID and p_CDName parameters are preceded by a

colon and declared with a data type. The SQLSTATE parameter does not require a semicolon

or data type.

Once we declare the parameters, we can define the SELECT statement. As you can see,

the input parameter is used in the WHERE clause, and the output parameter is used in the

INTO clause. The use of the parameters in this way allows the module to interact with the host

program. A value for the input parameter is passed to the module when the module is called

within the host language, and the output parameter is returned to the host language to be used

by the program as necessary.

NOTE
The process of calling a module within a host program and passing a parameter to
the module is language-specific. Be sure to check the documentation for the specific
programming language and for the applicable SQL implementation.

As you can see, an SQL client module can be a handy tool for developing the SQL

component of an application without having to embed the SQL statements within the host

language. Unfortunately, SQL client modules are not widely supported in SQL implementations,

and if they are supported, they are often not well documented. However, whether or not they’re

widely implemented is becoming beside the point as the industry moves away from embedded

SQL and SQL client modules toward CLI and CLI-like data access, which I cover in the next

section.

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:08:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 435

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:435

17

A
cc

es
sin

g
SQ

L
D

at
a

fro
m

Yo
ur

H
os

tP
ro

gr
am

Progress Check
1. What are SQL client modules?

2. How many SQL statements can you include in a procedure in an SQL client module?

3. Which clause in a MODULE statement do you use to specify the host programming

language?

CRITICAL SKILL

17.4 Use an SQL Call-Level Interface
As you have seen so far in this module, a program can access an SQL database by using

embedded SQL and SQL client modules. In embedded SQL, SQL statements are inserted

directly into the host programming language. For SQL client modules, the host program calls

modules that contain executable SQL statements. The statements are separate from the host

language. SQL provides yet another method for accessing SQL data from within a

programming language—the call-level interface, or CLI.

A CLI is an application programming interface (API) that supports a set of predefined

routines that allow a programming language to communicate with an SQL database. The

programming language calls the routines, which then connect to the database. The routines

access data and status information from the database, as required, and return that information

to the program. Figure 17-3 provides an overview of how a CLI allows a program to

communicate with an SQL database.

The program invokes CLI routines through the use of functions. When calling a function,

the program must specify values for the function’s arguments. These values define what

actions to take and what data to access. The function passes the values to the designated

routine, which acts as an interface between the program and the SQL database. The CLI, in

effect, hides the details of accessing the database from the program, making it possible for

the program to access databases in different management systems.

1. SQL client modules are self-contained collections of SQL statements. Unlike embedded SQL, in which the SQL

statements are inserted into the host programming language, SQL client modules are separate from the host language.

2. One

3. LANGUAGE clause

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:08:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

One of the most well-known implementations of the CLI model is Microsoft’s Open

Database Connectivity (ODBC) API, although other vendors have released CLI-like products

that support similar types of database access. In addition, new generations of data access APIs

are gaining popularity, such as Microsoft’s OLE-DB, which is more efficient than ODBC and

supports access to SQL data sources and other types of data sources. You’ll also find that such

products as ActiveX Data Object (ADO) provide an object-oriented interface between scripting

languages or object-oriented languages and the OLE-DB API. Many development tools also

make accessing an SQL data source easier than ever. For example, Visual Studio .NET allows

you to build data-driven applications in such languages as Visual Basic, C++, and C#. By using

the built-in ADO.NET tools, you can create applications that can access a variety of data

sources, such as SQL Server and Oracle.

The key to all these products is to provide a uniform method of database access from

within the programming language. The CLI specifications in SQL:1999 standardize the

database access interface by providing a set of predefined CLI functions that allow your

program to connect to a database, modify and retrieve data, pass information to and from the

database, and obtain status information about statement execution. In this section, we’ll look

at several CLI functions and how they can be used in a programming language to access

SQL data.

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:436

436 Module 17: Accessing SQL Data from Your Host Program

Figure 17-3 Using a CLI to access data in an SQL database

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:08:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 437

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:437

17

A
cc

es
sin

g
SQ

L
D

at
a

fro
m

Yo
ur

H
os

tP
ro

gr
am

NOTE
Despite how extensively the SQL:1999 standard has defined the CLI model, applications
can vary greatly in the methods they use to access a data source. As a result, you’ll find
that you’ll want to use a data access method that is supported in your environment. For
example, if you’re developing a C application that connects to a data source via ODBC,
the specifics of data access described in this section will be very useful to you. However,
if you’re developing a C# application or an Active Server Pages (ASP) application using
VBScript and you’re connecting to a data source via ADO, you’ll want to refer to
documentation related to that particular technology as well as reviewing the information
in this section.

Allocating Handles
The first step that you must take when accessing a database through a CLI interface is to

establish the necessary allocation handles. An allocation handle is an object returned by the

SQL database when a resource is allocated. The handle is used by the host program to access

the database. You must establish three types of allocation handles in your host program in

order to access SQL data from within that program:

● Environment handle Establishes the environment in which all CLI functions are called

and provides a context in which to establish one or more connection handles.

● Connection handle Establishes a connection context to a specific SQL database. The

connection handle must be established within the context of the environment handle. A

connection handle doesn’t actually connect to the database. It merely provides the context

to make that connection possible. Once a connection handle has been established, you

must use the context of that handle to make the actual connection to the database.

● Statement handle Establishes a context in which SQL statements can be executed. Any

statement invoked through the CLI must be executed within the context of a statement

handle, and the statement handle must be defined within the context of a connection handle.

To better understand how allocation handles operate, let’s take a look at Figure 17-4. As

you can see in the figure, two connection handles are allocated within an environment handle,

and one statement handle is allocated within each connection handle. Each SQL statement is

executed within the context of a statement handle.

Establishing an Environment Handle
To establish an environment handle in which to support database access, you can

use the AllocHandle() function, which requires three arguments. The first argument

(SQL_HANDLE_ENV) specifies the type of handle (environment) that is being allocated.

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:08:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:438

The second argument (SQL_NULL_HANDLE) indicates that the environment handle does not

depend on any existing handle. The third argument is a host variable that identifies the environment

handle. When a host variable is used in this context, it is preceded by an ampersand (&).

NOTE
Host variables are declared according to the conventions of the host language. In
addition, the host program might contain other elements that support CLI functionality.
For example, a C program might require special include files necessary to interact with
the CLI API. In addition, the host program might contain special error-handling functions
that can monitor the success or failure of a CLI routine call. For information about language-
specific elements that should be included in your host program, be sure to check the
documentation for the specific language, CLI API, and SQL implementation.

Now that we’ve reviewed the individual elements necessary to establish an environment

handle, let’s take a look at the AllocHandle() function as it would be included in your C program:

SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;

438 Module 17: Accessing SQL Data from Your Host Program

Environment handle

Connection handle

Statement handle

Connection to
database 1

SQL statement

SQL statement

SQL statement

SQL statement

Connection handle

Statement handle

Connection to
database 2

SQL statement

SQL statement

SQL statement

SQL statement

Figure 17-4 Establishing allocation handles

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:08:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The first thing you’ll notice is that the AllocHandle function is preceded by the SQL prefix.

In C programs, the SQL prefix is added to all CLI functions. The prefix can vary according to

the host language. You’ll also notice in this statement that the three arguments are enclosed in

parentheses and separated by commas. In addition, the host variable that identifies the handle

is preceded by an ampersand.

Establishing a Connection Handle
Once you’ve established your environment handle, you can establish one or more connection

handles within the context of that environment. To do so, you will again use the AllocHandle()

function, along with three arguments. The first argument (SQL_HANDLE_DBC) specifies

the type of handle (connection) that is being allocated. The second argument identifies the

environment in which the connection is being established. (This is the host variable identified

when you established the environment handle.) The third argument is a host variable that

identifies the connection handle. Again, it is preceded by an ampersand, as shown in the

following function statement:

SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc) ;

After you establish the connection handle, you must explicitly connect to the database

within the context of the handle. To do this, you must use the SQLConnect() function, which

takes seven arguments: the connection handle, the target SQL server, the length of the server

name, the connection user, the length of the user name, the connection password, and the

length of the password. For C strings, you can use SQL_NTS in place of length arguments to

indicate that a length does not have to be specified for the preceding string, as shown in the

following example:

SQLConnect (hdbc, server01, SQL_NTS, SaleMngr, SQL_NTS, SalesPW, SQL_NTS) ;

As you can see, the function specifies the hdbc connection handle and the server01 SQL

server. The connection will be established using the SaleMngr user account and the SalesPW

password. Instead of specifying the length of any of the strings, SQL_NTS is used.

Once you’ve connected to the database, you can create statement handles and execute

SQL statements.

Establishing a Statement Handle
In order to execute an SQL statement from within your host program, you must create a statement

handle within the context of your connection handle. As with other types of handles, you can

use the AllocHandle() function to establish the statement handle.

As you have seen, the AllocHandle() function requires three arguments. In the case of a

statement handle, those arguments are SQL_HANDLE_STMT, the host variable that identifies

SQL: A Beginner’s Guide 439

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:439

17

A
cc

es
sin

g
SQ

L
D

at
a

fro
m

Yo
ur

H
os

tP
ro

gr
am

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:08:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:440

the connection handle, and the host variable that identifies the statement handle. The host

variable that identifies the statement handle is preceded by an ampersand, as shown in the

following example:

SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt) ;

In this function, the connection handle referenced is hdbc, and the variable identifying the

statement handle is hstmt.

Executing SQL Statements
Now that you’ve established your allocation handles and connected to the database, you can

set up your functions that allow you to execute the SQL statements. The CLI model supports

two methods that you can use to execute SQL statements. The first is direct execution and the

second is preparing the statement for later execution.

Using the ExecDirect() Function
The first method you can use to execute an SQL statement is the ExecDirect() function. The

function takes three arguments. The first argument is the name of the statement handle in whose

context you’ll be executing the statement. The second argument is the actual SQL statement,

enclosed in double quotation marks. The third argument is the length of the statement. In a C

program, you generally use SQL_NTS to indicate that you do not have to specify the length

of the string.

Let’s take a look at an example of the ExecDirect() function to demonstrate how you can

use it to execute an SQL statement. The following function references the hstmt statement

handle and defines a DELETE statement:

SQLExecDirect (hstmt, "DELETE CDInventory WHERE CDID = 5731", SQL_NTS) ;

As you can see, the SQL statement is passed as an argument to the CLI routine. In this

case, any rows with a CDID value of 5731 will be deleted from the CDInventory table. Notice

that the SQL_NTS value is used to indicate that you do not have to specify the length of the

string (the actual SQL statement).

Using the Prepare() and Execute() Functions
Another method that you can use to execute a statement is to first prepare the statement

and then later execute it. You would use this method if you need to execute your statement

more than one time.

The first function that you use in the two-step process is the Prepare() function, which requires

the same three arguments as the ExecDirect() function, as shown in the following example:

SQLPrepare (hstmt, "DELETE CDInventory WHERE CDID = 5731", SQL_NTS) ;

440 Module 17: Accessing SQL Data from Your Host Program

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:08:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 441

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:441

17

A
cc

es
sin

g
SQ

L
D

at
a

fro
m

Yo
ur

H
os

tP
ro

gr
am

Notice that we reference the same statement handle and define the same SQL statement as

in the preceding ExecDirect() example. The only difference is that, in the case of the Prepare()

function, the statement isn’t actually executed, but is instead prepared for execution. When a

statement must be executed multiple times, this process saves on overhead because the statement

has to be analyzed and optimized only once.

Once you’ve prepared the statement, you can then use the Execute() function to execute

the statement. The Execute() function takes only one argument—the statement handle that

contains the prepared statement, as shown in the following example:

SQLExecute (hstmt) ;

Because the statement was already prepared, you merely need to reference the statement

handle to execute the statement. You can execute the statement as often as necessary simply

by invoking the Execute() function and specifying the statement handle.

Working with Host Variables
In the preceding examples, the SQL statements that we executed were relatively straightforward

because no host variables were used in the statement. However, if you plan to pass host variable

values into or out of an SQL statement, you must take an extra step to bind those host variables

to the SQL statement.

For example, suppose you want to set up a DELETE statement that takes an input variable

identifying the row to be deleted. Your Prepare() function would be similar to the following:

SQLPrepare (hstmt, "DELETE CDInventory WHERE CDID = ?", SQL_NTS) ;

Notice that a question mark is used to indicate the position of the variable. The question mark

is used in place of the host variable.

Once you’ve prepared your SQL statement, you must now bind the host variable to the

statement. To do so in a C program, you must use a BindParameter() function that identifies

the statement handle, the position of the host variable within the SQL statement, the name

of the host variable, and a number of other arguments, as shown in the following example:

SQLBindParameter (hstmt, 1, SQL_PARAMETER_MODE_IN, SQL_INT,
SQL_INT, 4, 0, &v_CDID, 4, &ind_CDID) ;

As you can see, the BindParameter() function takes 10 arguments. Table 17-2 lists the

arguments used in the preceding example and provides a description of each of those arguments.

If more than one host variable is included in your SQL statement, a BindParameter()

function statement should be defined for each variable, and the position (the second argument)

should be incremented by one for each additional variable. Once you bind the host variables to

your SQL statement, you can execute the statement by using the Execute() function.

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:08:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:442

442 Module 17: Accessing SQL Data from Your Host Program

Retrieving SQL Data
Up to this point, the SQL statements that we’ve executed in the CLI environment have not

returned any data. However, you’ll often run into situations when your program will need to

query the database and process the values that are returned by that query. As a result, you’ll

need some sort of mechanism to bind the output from your query to variables that you declared

in the host language.

For example: suppose that you want to execute the following SELECT statement:

SQLExecDirect (hstmt, "SELECT CDName, InStock FROM CDInventory", SQL_NTS) ;

As you can see, the statement will return a list of CDName values and InStock values from the

CDInventory table. In order to deal with those values, you must bind them to the applicable

host variables. To do this in a C program, you should use the BindCol() function. The BindCol()

function is a little simpler than the BindParameter() function and takes only six arguments, as

shown in the following example:

SQLBindCol (hstmt, 1, SQL_CHAR, &v_CDName, 60, &ind_CDName) ;
SQLBindCol (hstmt, 2, SQL_INT, &v_InStock, 5, &ind_InStock) ;

Argument Example Description

1 hstmt Identifies the statement handle that provides the
context for the SQL statement execution

2 1 Identifies the position of the host variable in the
SQL statement

3 SQL_PARAMETER_MODE_IN Specifies whether the host variable is an in, out, or
in/out variable

4 SQL_INT Identifies the data type of the value supplied

5 SQL_INT Identifies the data type of the host variable

6 4 Specifies the column size of the host variable

7 0 Specifies the number of digits to the right of the
decimal required by the host variable

8 &v_CDID Identifies the name of the host variable, as
declared in the host program

9 4 Specifies the length in octets of the host variable

10 &ind_CDID Identifies the name of the indicator variable, as
declared by the host program

Table 17-2 Arguments Used in the BindParameter() Function

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:08:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Table 17-3 lists the arguments used in the first statement of this example and provides a

description of each of those arguments.

Notice that two function statements have been defined, one for each column retrieved by

the SELECT statement. You must define a function statement for each column that is listed

in the SELECT clause of the SELECT statement. Once you bind the column values to the

host variables, you can use those variables in the host program to process the data within

the program as necessary.

Project 17-2 Using the SQL Call-Level Interface
In Project 17-1, you used a text editing program to create embedded SQL statements.

In this project, you will perform similar actions except that you’ll be defining the

functions necessary to make CLI routine calls. As part of this process, you will establish the

necessary allocation handles, create a connection to the database, set up SQL statement

execution, bind host variables to SQL statements, and bind statement output to host variables.

The CLI functions that you’ll be using are those typically used in a C program. Keep in mind,

however, that the CLI model supports many more functions than what we’ve covered in this

module, so be sure to check the appropriate documentation for details on functions other than

those described here. You can download the Prj17.txt file, which contains the CLI function

statements used in this project.

Step by Step
1. Open a text editing program such as Microsoft Notepad.

SQL: A Beginner’s Guide 443

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:443

17

A
cc

es
sin

g
SQ

L
D

at
a

fro
m

Yo
ur

H
os

tP
ro

gr
am

Us
ing

th
eS

QL
Ca

ll-
Le

ve
lI

nt
er

fa
ce

Project
17-2

Argument Example Description

1 hstmt Identifies the statement handle that provides the context for the
SQL statement execution

2 1 Identifies the column as it is listed in the SELECT clause of the
SELECT statement

3 SQL_CHAR Identifies the data type of the host variable

4 &v_CDName Identifies the name of the host variable, as declared in the host
program

5 60 Specifies the length in octets of the host variable

6 &ind_CDName Identifies the name of the indicator variable, as declared by the
host program

Table 17-3 Arguments Used in the BindCol() Function

Prj17.txt

(continued)

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:08:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:444

2. The first step that you must take is to establish an environment handle. You’ll use the henv host

variable to set up the handle. Type the following function statement into your text document:

SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;

Notice that your functions include three arguments, enclosed in parentheses and separated

by commas. Also notice that an ampersand is used for the host variable.

3. Now you can establish your connection environment. The connection environment will be

established within the context of the environment handle that you created in Step 2. Type

the following function statement into your text document:

SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc) ;

As you can see, the henv host variable is used to indicate the environment handle, and the

hdbc host variable is used to identify the connection handle.

4. Now that you’ve established a connection handle, you can create the actual connection. For

this connection, you’ll use DBServer as your SQL server, DBAdmin as the user account,

and AdminPW as the password for that account. Type the following function statement into

your text document:

SQLConnect (hdbc, DBServer, SQL_NTS, DBAdmin, SQL_NTS, AdminPW, SQL_NTS) ;

Notice that the statement includes the SQL_NTS value to indicate that a string length does

not have to be specified.

5. Next you’ll establish your statement handle within the context of the connection you

created in Step 3. Type the following function statement into your text document:

SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt) ;

As you can see, the hdbc host variable is used to identify the connection handle, and the

hstmt variable is used to identify the statement handle.

6. Now that you’ve established your allocation handles and created your connection, you’re

ready to execute an SQL statement. You’ll use the ExecDirect() function to specify a

DELETE statement. Type the following function statement into your text document:

SQLExecDirect (hstmt, "DELETE CompactDiscs
WHERE CompactDiscID = 122", SQL_NTS) ;

The DELETE statement is included as one of the function’s arguments. Notice that it is

enclosed in double quotation marks. Also notice that the statement is being prepared within

the context of the hstmt host variable, which is assigned to the statement environment.

7. In the last step, you executed your SQL statement in one step by using the ExecDirect()

function. In this step, you will prepare an SQL statement for execution, but you will

444 Module 17: Accessing SQL Data from Your Host Program

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:08:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 445

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:445

17

A
cc

es
sin

g
SQ

L
D

at
a

fro
m

Yo
ur

H
os

tP
ro

gr
am

Us
ing

th
eS

QL
Ca

ll-
Le

ve
lI

nt
er

fa
ce

Project
17-2

actually execute it in a later step. Type the following function statement into your text

document:

SQLPrepare (hstmt, "SELECT CDTitle, InStock FROM CompactDiscs
WHERE CompactDiscID = ?", SQL_NTS) ;

Notice that the WHERE clause of the SELECT statement includes a question mark to

indicate that a value will be passed into the statement through a host variable.

8. In order to execute the statement in the previous step, you’ll need to bind the host variable

to the statement. Type the following function statement into your text document:

SQLBindParameter (hstmt, 1, SQL_PARAMETER_MODE_IN, SQL_INT,
SQL_INT, 3, 0, &v_CDID, 4, &ind_CDID) ;

As you can see, the v_CDID host variable is being bound to the SQL statement in the

context of the statement environment created earlier. Because only one host variable is

referenced in the SQL statement, only one BindParameter() function statement is required.

9. Now you can execute the statement prepared in Step 7. Type the following function

statement into your text document:

SQLExecute (hstmt) ;

The statement will be executed in the context of the hstmt statement environment.

10. Next you must bind the query results to the host variables. Because two columns are identified

in the SELECT clause of the SELECT statement, you must include two BindCol() function

statements. Type the following function statements into your text document:

SQLBindCol (hstmt, 1, SQL_CHAR, &v_CDTitle, 60, &ind_CDTitle) ;
SQLBindCol (hstmt, 2, SQL_INT, &v_InStock, 5, &ind_InStock) ;

Your C program should now be able to use the values returned by your SELECT statement.

If you review the document that you created, it should contain the following code:

SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;
SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc) ;
SQLConnect (hdbc, DBServer, SQL_NTS, DBAdmin, SQL_NTS, AdminPW, SQL_NTS) ;
SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt) ;
SQLExecDirect (hstmt, "DELETE CompactDiscs
WHERE CompactDiscID = 122", SQL_NTS) ;

SQLPrepare (hstmt, "SELECT CDTitle, InStock FROM CompactDiscs
WHERE CompactDiscID = ?", SQL_NTS) ;

SQLBindParameter (hstmt, 1, SQL_PARAMETER_MODE_IN, SQL_INT,
SQL_INT, 3, 0, &v_CDID, 4, &ind_CDID) ;

SQLExecute (hstmt) ;
SQLBindCol (hstmt, 1, SQL_CHAR, &v_CDTitle, 60, &ind_CDTitle) ;
SQLBindCol (hstmt, 2, SQL_INT, &v_InStock, 5, &ind_InStock) ;

11. Save the file and close the application.

(continued)

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:08:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:446

446 Module 17: Accessing SQL Data from Your Host Program

Project Summary
This project introduced you to the basic functions necessary to use CLI to access an SQL

database from a host program. What the project did not cover is the actual C code that would

provide the foundation for your program. For example, a C program would usually include

variable declarations, include files, error-handling capabilities, user-related operations, and

conditional language that allowed you to use the values returned by the SQL database. The

CLI functions that we covered in this project would usually be interspersed into and work in

conjunction with the host language. Still, this project should have helped you understand the

basic concepts involved in using CLI and better prepared you for working in the host language

environment when trying to access SQL data.

Module 17 Mastery Check
1. Which data access method should you use if you want to create and execute ad hoc SQL

statements?

A. CLI

B. SQL client modules

C. Direct invocation

D. Embedded SQL

2. What is embedded SQL?

3. Which files are created by an SQL precompiler?

A. A file for the CLI functions

B. A file for the host language

C. A file for the CLI calls

D. A file for the embedded SQL statements

4. Which prefix should embedded SQL statements use when those statements are embedded in

the MUMPS programming language?

A. &SQL(

B. EXEC SQL

C. START-EXEC

D. Statements embedded in MUMPS do not require a prefix.

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:08:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 447

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:447

17

A
cc

es
sin

g
SQ

L
D

at
a

fro
m

Yo
ur

H
os

tP
ro

gr
am

5. A(n) ____________ is a type of parameter that is declared within the host language and is

then referenced within the embedded SQL statement.

6. Which prefix must you provide for a host variable when it is included in an SQL statement?

A. Question mark

B. Ampersand

C. Semicolon

D. Colon

7. You plan to embed SQL statements in your host program. You want to declare several

host variables to be used in the SQL statements. Which SQL statement should you use

to terminate the declaration section of your program?

A. TERMINATE DECLARE SECTION

B. END DECLARE SECTION

C. TERMINATE DECLARATIONS

D. END DECLARATIONS

8. What can cause an impedance mismatch to occur when passing a variable from a host

program to an SQL statement?

9. When can you use a singleton SELECT statement to retrieve data?

10. A(n) ____________ is a type of variable that specifies whether an associated data variable

contains a null value.

11. Which statement can you use in embedded SQL to provide your host program with

exception and warning information?

A. WHENEVER

B. INTO

C. CAST

D. PROCEDURE

12. A(n) ____________ is a self-contained collection of SQL statements that are separate from

a host programming language but that can be called from within that language.

13. What allocation handles must you establish in order to execute an SQL statement through

a CLI API?

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:08:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 17
Blind Folio 17:448

14. Which function should you use to establish a CLI connection handle?

A. ExecDirect()

B. Connect()

C. Prepare()

D. AllocHandle()

15. You’re allocating an environment handle within a C program and associating the handle

with the henv host variable. What function statement should you use?

16. You’re creating the following Prepare() function statement in your host program:

SQLPrepare (hstmt, "SELECT CDID, CDTitle, InStock FROM CompactDiscs
WHERE CompactDiscID = ?", SQL_NTS) ;

How many BindCol() function statements should you create?

A. One

B. Two

C. Three

D. Four

17. What CLI function should you use if you want to execute an SQL statement in one step?

448 Module 17: Accessing SQL Data from Your Host Program

P:\010Comp\Begin8\885-7\ch17.vp
Monday, April 07, 2003 2:08:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Part IV
Appendixes

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:449

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Appendix A
Answers to
Mastery Checks

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:451

451

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:452

Module 1: Introduction to Relational
Databases and SQL

1. What is a database?

A database is a collection of data organized in a structured format defined by metadata that describes

the structure.

2. Which of the following objects make up a relation?

A. Data types

B. Tuples

C. Attributes

D. Forms

B and C are the correct answers.

3. A(n) ____________ is a set of data whose values make up an instance of each attribute defined

for that relation.

Tuple

4. What are the differences between the first normal form and the second normal form?

According to the first normal form, each attribute of a tuple must contain only one value, each tuple

in a relation must contain the same number of values, and each tuple in a relation must be different.

According to the second normal form, a relation must be in first normal form and all attributes in a

relation must be dependent on the entire candidate key.

5. A relation is in third normal form if it is in second normal form and if it complies with the other

guidelines of that form. What are those guidelines?

All nonkey attributes must be independent of each other and dependent on the key.

6. What are the three primary types of relationships supported by a relational database?

One-to-one, one-to-many, many-to-many

7. In your data model, you have two relations associated with each other by a many-to-many

relationship. How will this relationship be physically implemented in a relational database?

The relationship will be implemented by adding a third relation between the original two relations in

order to create two one-to-many relationships.

8. How does SQL differ from programming languages such as C, COBOL, and Java?

Programming languages such as C, COBOL, and Java are procedural languages that define how an

application’s operations should be performed and the order in which they are performed. However, SQL

is a nonprocedural language and is more concerned with the results of an operation; the underlying

452 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

software environment determines how the operations will be processed. Even so, SQL does support

some procedural functionality.

9. What factors have contributed to the SQL:1999 standard incorporating object-oriented

capabilities?

The advent of object-oriented programming, advancements in hardware and software technologies,

and the growing complexities of applications.

10. Which level of conformance must an RDBMS support in order to comply with SQL:1999?

A. Entry

B. Core

C. Full

D. Intermediate

B is the correct answer.

11. What are the differences between a DDL statement and a DML statement?

DDL statements are used to create, modify, and delete database objects such as tables, views, schemas,

domains, triggers, and stored procedures. DML statements are used to view, add, modify, or delete data

stored in the database objects.

12. What method of executing SQL statements would you use if you want to communicate directly

with an SQL database from a front-end application?

Direct invocation

13. What four methods does the SQL:1999 standard support for the execution of SQL statements?

Direct invocation, embedded SQL, module binding, and CLI

14. What is a relational database management system?

An RDBMS is a program or set of programs that store, manage, retrieve, modify, and manipulate data

in one or more relational databases.

15. What is an example of an RDBMS?

Any of the following are examples of RDBMSs: DB2, MySQL, Oracle, SQL Server, PostgreSQL,

Sybase, Informix, Ocelot, or any other RDBMS on the market.

Module 2: Working with the SQL Environment
1. What are the differences between an SQL agent and an SQL implementation?

An SQL agent is any structure that causes SQL statements to be executed. The SQL agent is bound

to the SQL client within the SQL implementation. An SQL implementation is a processor that executes

SQL: A Beginner’s Guide 453

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:453

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:454

SQL statements according to the requirements of the SQL agent. The SQL implementation includes

one SQL client and one or more SQL servers. The SQL client establishes SQL connections with the

SQL servers and maintains data related to interactions with the SQL agent and the SQL servers.

An SQL server manages the SQL session that takes place over the SQL connection and executes

SQL statements received from the SQL client.

2. Which component of an SQL environment represents a user or role that is granted specific

access privileges to objects and data?

A. Catalog

B. Authorization identifier

C. SQL client module

D. SQL agent

B is the correct answer.

3. A(n) ____________ is a collection of schemas that form a namespace within the SQL environment.

Catalog

4. What is a schema?

A schema is a set of related objects that are collected under a common namespace. The schema acts as

a container for those objects, which in turn store the SQL data or perform other data-related functions.

5. Which statement do you use to add a schema to an SQL environment?

A. ADD SCHEMA

B. INSERT SCHEMA

C. CREATE SCHEMA

C is the correct answer.

6. What is the name of the schema that contains definitions for schema objects in a catalog?

INFORMATION_SCHEMA

7. What are the 11 types of schema objects that can be contained in a schema?

Base tables, views, domains, UDTs, constraints, SQL server modules, triggers, SQL-invoked routines,

character sets, collations, and translations

8. What is a view?

A view is a virtual table that is created when the view is invoked (by calling its name). The table

doesn’t actually exist, only the SQL statement that defines the table.

9. Which schema objects provide the basic unit of data management in the SQL environment?

A. Views

B. Domains

454 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AC. Base tables

D. Character sets

C is the correct answer.

10. How does the SQL:1999 standard define a database?

The SQL:1999 standard doesn’t define a database.

11. A(n) ____________ is a name given to an SQL object.

Identifier

12. How is a regular identifier distinguished from a delimited identifier in an SQL statement?

A delimited identifier is enclosed in double quotation marks. A regular identifier is not.

13. Which type of identifier permits spaces to be used as part of the name of an object?

A delimited identifier

14. Your SQL environment includes a catalog named Inventory. In that catalog is a schema

named CompactDiscs, and in that schema is a table named Artists. What is the qualified

name of that table?

Inventory.CompactDiscs.Artists

15. What three forms can the <name clause> component of a CREATE SCHEMA statement take?

A <name clause> in a CREATE SCHEMA statement can take any of the following three forms:

<schema name>

AUTHORIZATION <authorization identifier>

<schema name> AUTHORIZATION <authorization identifier>

16. What are the differences between the CASCADE option and the RESTRICT option in a DROP

SCHEMA statement?

If the CASCADE option is specified, all schema objects and SQL data within those objects are deleted

from the system. If the RESTRICT option is used, the schema is deleted only if no schema objects exist.

Module 3: Creating and Altering Tables
1. Which kinds of base tables can you create by using a CREATE TABLE statement?

A. Persistent base tables

B. Global temporary base tables

C. Created local temporary tables

D. Declared local temporary tables

A, B, and C are the correct answers.

SQL: A Beginner’s Guide 455

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:455

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:456

2. What is the primary difference between a global temporary table and a created local

temporary table?

A global temporary table can be accessed from anywhere within the associated SQL session, whereas

a created local temporary table can be accessed only within the associated module.

3. You’re creating a table named Agents. The table includes the AgentID column, which has an

INT data type, and the AgentName column, which has a CHAR (60) data type. What SQL

statement should you use?

You should use the following SQL statement:

CREATE TABLE Agents
(AgentID INT, AgentName CHAR (60)) ;

4. What are the three types of data types that SQL supports?

Predefined, constructed, and user-defined

5. What are the four types of string data types?

Character strings, national character strings, bit strings, and binary strings

6. A(n) ____________ data type permits values that are based on data bits, rather than character

sets or collations. This type of data type allows only values of 0 and 1.

Bit string

7. What are the precision and the scale of the number 5293.472?

The precision is 7 and the scale is 3.

8. What are the differences between exact numeric data types and approximate numeric data types?

With exact numeric data types, permitted values have a precision and scale. With approximate numeric

data types, permitted values have a precision but no scale.

9. Which data types are exact numeric data types?

A. DOUBLE PRECISION

B. DECIMAL

C. REAL

D. SMALLINT

B and D are the correct answers.

10. A(n) ____________ data type specifies the year, month, and day values of a date.

DATE

456 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

11. What are the two types of interval data types that SQL supports?

Year-month intervals and day-time intervals

12. Which data type should you use to support a true/false construct that can be used for

comparing values?

BOOLEAN

13. You are creating a distinct user-defined type named City. The user type is based on the CHAR

(40) data type. Which SQL statement should you use?

You should use the following SQL statement:

CREATE TYPE City AS CHAR (40)
FINAL ;

14. You’re creating a table named Customers. The table includes the CustomerName column and

the CustomerCity column. Both columns have a VARCHAR (60) data type. The CustomerCity

column also has a default value of Seattle. Which SQL statement should you use?

You should use the following SQL statement:

CREATE TABLE Customers
(CustomerName VARCHAR (60),
CustomerCity VARCHAR (60) DEFAULT 'Seattle') ;

15. Which SQL statement should you use to delete a column from an existing table?

ALTER TABLE

16. Which SQL statement should you use to delete a table definition and all its SQL data from

a database?

DROP TABLE

17. Your database includes a table named OperaSingers. You want to add a column named

Nationality to the table. The column should have a VARCHAR (40) data type. What SQL

statement should you use?

You should use the following SQL statement:

ALTER TABLE OperaSingers
ADD COLUMN Nationality VARCHAR (40) ;

18. You want to delete the table definition for the OperaSingers table from your database. You

also want to delete all the data and any dependencies on the table. What SQL statement should

you use?

You should use the following SQL statement:

DROP TABLE OperaSingers CASCADE ;

A

SQL: A Beginner’s Guide 457

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:457

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:458

Module 4: Enforcing Data Integrity
1. What is the difference between a table constraint and an assertion?

A table constraint is defined within a table definition and applies only to that table. An assertion is a

type of constraint that is defined within an assertion definition (separate from the table definition).

An assertion can be associated with one or more tables.

2. What does a null value signify?

A null signifies that a value is undefined or not known. This is not the same as a zero, a blank, or a

default value. Instead, it indicates that a data value is absent.

3. Which of the following types of constraints support NOT NULL constraints?

A. Table constraints

B. Column constraints

C. Domain constraints

D. Assertions

B is the correct answer.

4. You are creating a table that includes a column that allows null values but whose non-null

values should be unique. Which type of constraint should you use?

UNIQUE

5. You’re creating a table that includes the TypeName column. The column is defined with the

CHAR (10) data type and requires a UNIQUE constraint, which you’ll define as a column

constraint. What SQL code should you use for the column definition?

You should use the following code:

TypeName CHAR (10) UNIQUE

6. What two restrictions apply to PRIMARY KEY constraints but not to UNIQUE constraints?

A column that is defined with a PRIMARY KEY constraint cannot contain null values, and only one

PRIMARY KEY constraint can be defined for each column.

7. You’re creating a PRIMARY KEY constraint named pk_ArtistMusicTypes on the

ArtistMusicTypes table. The primary key includes the ArtistName and ArtistDOB columns.

What SQL code should you use for a table constraint?

You should use the following code:

CONSTRAINT pk_ArtistMusicTypes PRIMARY KEY
(ArtistName, ArtistDOB)

458 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A8. How does a referential constraint differ from a unique constraint?

Referential constraints are concerned with how data in one table relates to data in another table.

Unique constraints ensure the integrity within a table.

9. A(n) ____________ constraint enforces referential integrity between two tables by ensuring that

no action is taken to either table that affects the data protected by the constraint.

FOREIGN KEY

10. You’re creating a table that includes a column named BusinessTypeID, with a data type of INT.

The column will be defined with a FOREIGN KEY constraint that references the primary key

in a table named BusinessTypes. The foreign key will be added as a column constraint. What

SQL code should you use for the column definition?

You should use the following code:

BusinessTypeID INT REFERENCES BusinessTypes ;

11. What three options can you use in the MATCH clause of a FOREIGN KEY constraint?

FULL, PARTIAL, and SIMPLE

12. What are the two types of referential triggered actions that can be defined in a FOREIGN KEY

constraint?

ON UPDATE and ON DELETE

13. You’re creating a FOREIGN KEY constraint and want the values in the referencing column to

be updated if values in the referenced column are updated. Which <referential triggered

action> clause should you use?

A. ON UPDATE RESTRICT

B. ON UPDATE NO ACTION

C. ON UPDATE CASCADE

D. ON UPDATE SET DEFAULT

C is the correct answer.

14. What syntax should you use for a CHECK constraint that you’re defining as a table constraint?

[CONSTRAINT <constraint name>] CHECK (<search condition>)

15. What types of constraints can you define within an assertion?

CHECK constraints

16. You’re creating a CHECK constraint on the NumberInStock column. You want to limit the

values that can be entered into the column to the range of 11 through 29. What should you use

for the <search condition> clause of the constraint?

(NumberInStock BETWEEN 10 AND 30)

SQL: A Beginner’s Guide 459

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:459

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:460

Module 5: Creating SQL Views
1. What are the three types of stored tables supported by SQL?

Base tables, derived tables, and viewed tables (views)

2. How do you assign data types to view columns?

You don’t assign data types to view columns. The view columns inherit their data types from their

respective table columns.

3. In what circumstances must you provide the view column names in a view definition?

You must provide names if any columns are arrived at through some sort of operation that calculates

the value to be inserted in the column, rather than the value coming directly from the table. You must

also provide names if table column names are duplicated, which can happen when joining tables together.

4. You’re creating a view named EmpBDays. The view is based on the EmpName column and the

BDay column of the Employees table. The view column names will be the same as the table

column names. What SQL code should you use to create the view?

You should use the following code:

CREATE VIEW EmpBDays AS SELECT EmpName, BDay FROM Employees ;

5. You’re creating a view based on the CompactDiscs table in the Inventory database. You want

the view to include only those rows whose value in the LabelID column is 546. What clause—

in addition to the SELECT clause and the FROM clause—should be included in the SELECT

statement for the view?

You should use the following WHERE clause:

WHERE LabelID = 546

6. You’re creating a view that references the Employee table and the JobTitle table. The data in

the two tables is matched together by the JobTitleID column in each table. How should you

write the WHERE clause in the view’s SELECT statement?

You should write the following WHERE clause:

WHERE Employee.JobTitleID = JobTitle.JobTitleID

7. You’re creating a view that references the Employee table and the JobTitle table. The data in

the two tables is matched together by the JobTitleID column in each table. You want the view to

display only those rows whose value in the JobTitleID column of the JobTitle table is 109. How

should you write the WHERE clause in the view’s SELECT statement?

You should write the following WHERE clause:

WHERE Employee.JobTitleID = JobTitle.JobTitleID
AND JobTitle.JobTitleID = 109

460 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A8. What is a query specification?

A query specification is an SQL expression that begins with the SELECT keyword and includes a

number of elements that form that expression.

9. Which guidelines should you follow if you want to create an updatable view?

A. Data within the view cannot be summarized, grouped together, or automatically eliminated.

B. At least one column in the source table must be updatable.

C. Each column in the view must be traceable to exactly one source column in one table.

D. Each row in the view must be traceable to exactly one source row in one table.

A, B, C, and D are correct. A view must adhere to all four guidelines to be updatable.

10. You create the following view based on the CompactDiscs table in the Inventory database:

CREATE VIEW InStock(Average)
AS SELECT AVG(InStock) FROM CompactDiscs ;

How do you insert data through this view?

You can’t insert data through this view because the data is being summarized (by using the AVG

function), which means that the row in the view isn’t traceable to exactly one source row in one table.

11. What type of view does the WITH CHECK OPTION clause apply to?

The WITH CHECK OPTION clause applies to updatable views that include a WHERE clause in the

SELECT statement.

12. You create the following view definition:

CREATE VIEW EmpComm
AS SELECT EmployeeID, Year1999, Year2000 FROM EmployeeCommissions
WHERE Year1999 > 100 ;

You want to use the view to update data. What happens if you change the Year1999 value to an

amount less than 100?

The row is changed but you will no longer be able to use the view to display the row or update it.

To avoid having this occur, you can use the WITH CHECK OPTION clause in the CREATE VIEW

statement.

13. You want to alter the EmpComm view definition in your database. How do you alter that

definition?

You must drop the view and then re-create the view.

14. You want to drop the EmpBDays view definition from your database. What SQL statement

should you use?

You should use the following SQL statement:

DROP VIEW EmpBDays ;

SQL: A Beginner’s Guide 461

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:461

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:462

462 Appendix A: Answers to Mastery Checks

15. What happens to the SQL data when you drop a view from the database?

None of the underlying data (which is stored in the base tables) is affected when you drop a view.

Only the view definition is removed.

Module 6: Managing Database Security
1. What is the difference between a user identifier and a role name?

A user identifier is an individual security account that can represent an individual, an application, or a

system service. A role name is a defined set of privileges that can be assigned to a user or to another role.

2. What is the name of the special authorization identifier that grants access to all database users?

PUBLIC

3. Each ____________ is associated with a user identifier and role name.

SQL session

4. An SQL session is associated with which of the following?

A. Privilege

B. User identifier

C. PUBLIC

D. Role name

B and D are the correct answers.

5. When an SQL session is first established, the user identifier is always the ____________.

SQL session user identifier

6. What is the value of the current role name when an SQL session is first established?

A null value

7. What is an authorization identifier?

An authorization identifier is an object in the SQL environment that represents a user or group of

users that are granted specific access privileges to objects and data within the SQL environment.

8. You establish an SQL session with your database. The current user identifier is EthanW.

The current role name is null. What is the current authorization identifier?

EthanW

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9. On which schema objects can you define access privileges?

Base tables, views, columns, domains, character sets, collations, translations, user-defined types,

triggers, and SQL-invoked routines

10. On which types of database objects can you assign the DELETE privilege?

A. Tables

B. Views

C. Columns

D. Domains

A and B are the correct answers.

11. On which types of database objects can you assign the TRIGGER privilege?

A. Tables

B. Views

C. Columns

D. Domains

A is the correct answer.

12. You’re creating a role named Accounting. Which SQL statement should you use?

You should use the following SQL statement:

CREATE ROLE Accounting ;

13. You’re granting all privileges on the CDNames view to everyone who uses the database.

Which SQL statement should you use?

You should use the following SQL statement:

GRANT ALL PRIVILEGES ON TABLE CDNames TO PUBLIC ;

14. You’re granting the SELECT privilege to the SalesClerk role on a table in your database. You

want the SalesClerk role to be able to assign the SELECT privilege to other users. What clause

should you include in your GRANT statement?

WITH GRANT OPTION

15. You want to grant the Acct role to the MaxN user authorization. You do not want the user to

be able to grant the role to other users. What SQL statement should you use to grant the role?

You should use the following SQL statement:

GRANT Acct TO MaxN ;

SQL: A Beginner’s Guide 463

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:463

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:464

Module 7: Querying SQL Data
1. Which clauses in a SELECT statement are part of the table expression?

A. SELECT

B. FROM

C. WHERE

D. ORDER BY

B and C are the correct answers.

2. In what order are the clauses of a SELECT statement applied?

The clauses are applied in the following order: FROM, WHERE, GROUP BY, HAVING, SELECT,

and ORDER BY.

3. You are writing a SELECT statement that retrieves the CDTitle column and all rows from the

Inventory table. Which SELECT statement should you use?

You should use the following SQL statement:

SELECT CDTitle FROM Inventory;

4. You are writing a SELECT statement that retrieves the CDTitle column and all rows from the

Inventory table. You want the column in the query results to be named CompactDisc. Which

SELECT statement should you use?

You should use the following SQL statement:

SELECT CDTitle AS CompactDisc FROM Inventory;

5. Which clauses in a SELECT statement are required?

A. SELECT

B. FROM

C. WHERE

D. GROUP BY

A and B are the correct answers.

6. Which keyword should you add to the SELECT clause to ensure that each row of the query

result is unique?

A. ALL

B. ROLLUP

464 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AC. DISTINCT

D. CUBE

C is the correct answer.

7. You’re creating a SELECT statement for the Inventory table and you want to ensure that only

rows with a RetailPrice value of less than $16.00 are included in the query results. What WHERE

clause should you use?

You should use the following WHERE clause:

WHERE RetailPrice < 16.00

8. You’re creating a SELECT statement that includes a WHERE clause. The WHERE clause

contains two predicates. You want the condition of either one of the predicates to be met, but

it’s not necessary for both conditions to be met. What keyword should you use to connect the

two predicates?

OR

9. Each predicate in a WHERE clause is evaluated to which of the following?

A. True

B. Not

C. False

D. Unknown

A, C, and D are the correct answers.

10. Which clause allows you to group together values in a specified column?

A. ROLLUP

B. HAVING

C. ORDER BY

D. GROUP BY

D is the correct answer.

11. Which two operators can you use in a GROUP BY clause to return additional summary data

in a query result?

A. ROLLUP

B. HAVING

C. CUBE

D. DISTINCT

A and C are the correct answers.

SQL: A Beginner’s Guide 465

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:465

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:466

12. You’re writing a SELECT statement that retrieves the Category and Price columns from the

CompactDiscStock table. You want to group data together first by the Category column and

then by the Price column. Which SELECT statement should you use?

You should use the following SQL statement:

SELECT Category, Price FROM CompactDiscStock
GROUP BY Category, Price ;

13. You’re writing a SELECT statement that retrieves the Category and Price columns from the

CompactDiscStock table. You want to group together data first by the Category column and

then by the Price column. You then want to filter out any groups that have a Price value over

15.99. Which SELECT statement should you use?

You should use the following SQL statement:

SELECT Category, Price FROM CompactDiscStock
GROUP BY Category, Price
HAVING Price < 16.00 ;

14. You’re creating a SELECT statement that includes a SELECT clause, FROM clause, WHERE

clause, GROUP BY clause, and HAVING clause. From which clause will the HAVING clause

receive output?

A. SELECT

B. FROM

C. WHERE

D. GROUP BY

D is the correct answer.

15. How does the HAVING clause differ from the WHERE clause?

The HAVING clause is similar to the WHERE clause in that it defines a search condition. However,

unlike the WHERE clause, the HAVING clause is concerned with groups, not individual rows.

16. From which clause does the ORDER BY clause receive output?

The SELECT clause

17. Which keyword should you add to an ORDER BY clause to sort data in descending order?

DESC

Module 8: Modifying SQL Data
1. Which SQL statement should you use to add data to a table?

A. SELECT

B. INSERT

466 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AC. UPDATE

D. DELETE

B is the correct answer.

2. In which clause in the INSERT statement do you identify the table that will receive the new data?

INSERT INTO

3. You create the following INSERT statement to add data to the PerformingArtists table:

INSERT INTO PerformingArtists VALUES (12, 'Frank Sinatra') ;

The PerformingArtists table includes three columns. What will happen when you try to execute

this statement?

You’ll receive an error because there are not enough values defined for the table and no columns have

been specified to distinguish where the two values should be inserted.

4. What information must you specify in the VALUES clause of an INSERT statement?

You must specify one or more values to be inserted into the table.

5. What requirements must be met by the values in a VALUES clause?

The values must be enclosed in parentheses and, if more than one is specified, must be separated by

a comma. If the column names are not specified in the INSERT INTO clause, then there must be one

value for each column in the table and the values must be in the same order as they are defined in the

table. If the column names are specified in the INSERT INTO clause, then there must be exactly one

value per specified column and those values must be in the same order as they are defined in the INSERT

INTO clause. Each value with a character string data type must be enclosed in single quotes.

6. You’re creating an INSERT statement to insert data into the ArtistTypes table. The table includes

only two columns: ArtID and TypeName. You want to insert one row that includes the ArtID

value of 27 and the TypeName value of Gospel. Which SQL statement should you use?

You should use the following SQL statement:

INSERT INTO ArtistTypes VALUES (27, 'Gospel') ;

7. You’re creating an INSERT statement that inserts values taken from another table. Which type of

statement or clause can you use in place of the VALUES clause to pull data from that other table?

A. UPDATE

B. SET

C. SELECT

D. WHERE

C is the correct answer.

SQL: A Beginner’s Guide 467

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:467

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:468

8. Which statement should you use to modify existing data in one or more rows in a table?

A. SELECT

B. INSERT

C. UPDATE

D. DELETE

C is the correct answer.

9. What is the purpose of the WHERE clause in an UPDATE statement?

The WHERE clause specifies a condition or set of conditions that act as a filter for the rows that are

updated. Only the rows that meet these conditions are updated.

10. You’re creating an UPDATE statement to update data in the PerformingArtists table. You want

to update the ArtID value in the row that contains the PerfArtID value of 139. The new ArtID

value is 27. Which SQL statement should you use?

You should use the following SQL statement:

UPDATE PerformingArtists SET ArtID = 27
WHERE PerfArtID = 139 ;

11. You’re creating an UPDATE statement to update data in the PerformingArtists table. You want

to update the ArtID value of every row to 27. Which SQL statement should you use?

You should use the following SQL statement:

UPDATE PerformingArtists SET ArtID = 27 ;

12. You’re updating two columns in the CDInventory table. You want to change the Publisher value

to MCA Records and you want to double the InStock value. Which SET clause should you use?

You should use the following SET clause:

SET Publisher = 'MCA Records', InStock = (InStock * 2) ;

13. You’re creating an UPDATE statement that includes a SET clause with one value expression.

You want the value expression to pull a value from another table in the database. Which

statement or clause can you use as a value expression to choose data from another table?

A. SELECT

B. WHERE

C. UPDATE

D. INSERT

A is the correct answer.

14. Which clause in a DELETE statement is required?

DELETE FROM

468 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

15. Which statement or clause do you use in a DELETE statement to specify which rows are deleted

from a table?

A. SELECT

B. WHERE

C. UPDATE

D. INSERT

B is the correct answer.

Module 9: Using Predicates
1. In which SELECT statement clause do you include predicates?

WHERE clause

2. Which comparison operator symbol should you use to express a not equal condition?

A. <=

B. >=

C. <>

D. =<

C is the correct answer.

3. Which keywords can you use to combine predicates in a WHERE clause?

The AND keyword and the OR keyword

4. You want to query a table that includes the Price column. You want to ensure that all rows

returned have a Price value of 13.99. What predicate should you use?

Price = 13.99

5. You create the following SQL statement:

SELECT CDTitle, RetailPrice FROM CDsOnHand
WHERE RetailPrice >= 14 AND RetailPrice <= 16 ;

What predicate can you use in place of the two predicates shown in this statement?

RetailPrice BETWEEN 14 AND 16

6. What keyword can you add to a BETWEEN predicate to find the inverse of the condition

specified by the predicate?

NOT

A

SQL: A Beginner’s Guide 469

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:469

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7. You want to query a table to determine which values are null. What type of predicate should

you use?

NULL predicate

8. You’re creating a SELECT statement that queries the ArtistsBio table. You want to return all

columns in the table, but you want to return only those rows that do not contain null values in

the PlaceOfBirth column. Which SELECT statement should you use?

You should use the following SQL statement:

SELECT * FROM ArtistsBio
WHERE PlaceOfBirth IS NOT NULL ;

9. You’re querying the CDInventory table. You want to view all columns, but you want to view

only rows that contain the word Christmas in the name of the CD. The names are stored in the

CDTitle column. Which SELECT statement should you use?

You should use the following SQL statement:

SELECT * FROM CDInventory
WHERE CDTitle LIKE ('%Christmas%') ;

10. What is the difference between a percentage sign and an underscore when used in a LIKE

predicate?

The percentage sign represents zero or more unknown characters, and the underscore represents

exactly one unknown character.

11. What two types of data sources can you use in an IN predicate?

A defined list or a subquery

12. Which type of predicate is concerned only with determining whether or not a subquery returns

any rows?

EXISTS predicate

13. What column names must be specified in an EXISTS predicate?

It does not matter what columns or how many columns you specify in the SELECT clause of the

subquery in an EXISTS predicate. This type of predicate is concerned only with whether rows are

being returned, not with the content of those rows. You can specify any column names or just an

asterisk.

14. You’re creating a SELECT statement that includes a predicate in the WHERE clause. You

want to use a comparison operator to compare the values in one of the columns to the results of

a subquery. You want the predicate to evaluate to true for any of the subquery results. Which

type of predicate should you use?

A. EXISTS

B. ANY

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:470

470 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AC. ALL

D. IN

B is the correct answer.

15. What is the difference between a SOME predicate and an ANY predicate?

There is no difference. The two predicates return identical results.

16. How does the ALL predicate differ from the SOME predicate?

In many respects, the ALL predicate works the same way as the SOME predicate. The ALL predicate

compares column values to the subquery results. However, rather than the column values having to

evaluate to true for any of the result values, the column values must evaluate to true for all the result

values; otherwise, the row is not returned.

Module 10: Working with Functions
and Value Expressions

1. What is a set function?

A set function is a type of function that processes or calculates data and returns the appropriate values.

2. You’re creating a SELECT statement that queries the ArtistCDs table. The table includes the

ArtistName and CDName columns. You want your statement to return the total number of

rows in the table. Which COUNT function should you include in your SELECT clause?

A. COUNT(*)

B. COUNT(ArtistName)

C. COUNT(CDName)

D. COUNT(ArtistName, CDName)

A is the correct answer.

3. Which set function should you use to add together the values in a column?

A. MAX

B. COUNT

C. SUM

D. AVG

C is the correct answer.

4. Set functions require that the data be ____________ in some way.

Grouped

SQL: A Beginner’s Guide 471

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:471

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5. What are value functions?

Value functions are a type of function that allow you to return a value that in some way calculates or

derives information from the data stored within your tables or from the SQL implementation itself.

6. You’re using the SUBSTRING function to extract characters from the CompactDisc column of

the SalesDates table. You want to start with the third character and extract eight characters.

What parameters should you use in the SUBSTRING function?

(CompactDisc FROM 3 FOR 8)

7. You’re using the LOWER function on the Past Light value of the CDName column. What value

will be returned?

The following value will be returned: past light

8. Which function returns a value that represents the current date and time as well as information

related to UCT?

A. LOCALTIMESTAMP

B. CURRENT_DATE

C. LOCALTIME

D. CURRENT_TIMESTAMP

D is the correct answer.

9. What are four types of operators that you use in a numeric value expression?

Addition, subtraction, multiplication, and division

10. You are querying data from the CDTracking table. You want to add values in the InStock

column to values in the OnOrder column. You then want to double the column totals. How do

you set up the numeric value expression?

(InStock + OnOrder) * 2

11. Which value expression do you use to set up a series of conditions that modify values?

CASE

12. You’re creating a SELECT statement that includes a CASE value expression. You want one

of the conditions to specify that any OnOrder values greater than 10 should be increased by 5.

How should you set up the WHEN/THEN clause?

WHEN OnOrder > 10 THEN OnOrder + 5

13. What is a CAST value expression?

A CAST value expression is a type of expression that allows you to change a value’s data type when

retrieving that value from your database.

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:472

472 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

14. You’re querying the DateSold column in the SalesDates table. You want to convert the values to

a CHAR (25) data type, and you want the data displayed in the CharDate column in the query

results. How do you define the CAST value expression?

CAST(DateSold AS CHAR (25)) AS CharDate

15. Which special value can you use to identify the current SQL session user identifier?

SESSION_USER

Module 11: Accessing Multiple Tables
1. You are using a comma-separated join operation to join two tables. The first table contains five

rows and the second table contains three rows. How many rows will the Cartesian product table

contain?

15

2. Which clause contains the equi-join condition in a comma-separated join?

WHERE clause

3. What basic guidelines should you follow when creating a comma-separated join?

Your FROM clause should include all table names, your WHERE clause should define an equi-join

condition, and your column references should be qualified when column names are shared among tables.

4. You’re creating a join on two tables. You assign correlation names to each of these tables. Which

names should you use in the SELECT clause: the correlation names or the actual table names?

The correlation names

5. Which type of join is nearly identical to the comma-separated join?

A. Condition join

B. Natural join

C. Cross join

D. Named column join

C is the correct answer.

6. How many tables are contained in a self-join?

One

7. What guidelines must you follow when creating natural joins or named column joins?

The joined columns must share the same name and have compatible data types, and the names of the

joined columns cannot be qualified with table names.

A

SQL: A Beginner’s Guide 473

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:473

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:474

8. What is the difference between a natural join and a named column join?

The natural join automatically matches rows for those columns with the same name. You do not

have to specify any sort of equi-join condition for natural joins. The SQL implementation determines

which columns have the same names and then tries to form a match. In a named column join, you

must specify the matching column. The matching columns are not determined automatically.

9. Which type of join contains a USING clause to specify the equi-join condition?

A named column join

10. What are the two types of condition joins?

Inner and outer

11. What are the three types of outer joins?

Left, right, and full

12. Which type of condition join should you use if you want to return only matched rows?

A. Inner join

B. Left outer join

C. Right outer join

D. Full outer join

A is the correct answer.

13. Which type of join contains an ON clause?

A. Cross join

B. Comma-separated join

C. Natural join

D. Condition join

D is the correct answer.

14. A(n) ____________ operator allows you to combine separate SELECT statements into one

statement in order to join data in a query result.

UNION

15. What keyword can you use with a UNION operator to return all rows in the query results,

regardless of whether there are duplicate values?

ALL keyword

474 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Module 12: Using Subqueries to Access
and Modify Data

1. In which types of statements can you include subqueries?

A. SELECT

B. INSERT

C. UPDATE

D. DELETE

A, B, C, and D are the correct answers.

2. What is a subquery?

A subquery is an embedded SELECT statement that acts as a gateway to data in a second table. The

data returned by the subquery is used by the primary statement to meet whatever conditions have been

defined for that statement.

3. In which clauses of a SELECT statement can you include a subquery?

A. SELECT

B. WHERE

C. GROUP BY

D. HAVING

A, B, and D are the correct answers.

4. Into what two general categories can you divide subqueries in a WHERE clause?

Subqueries that can return multiple rows and those that can return only one value

5. Which types of predicates are you prevented from using with subqueries that return multiple rows?

A. IN and EXISTS predicates

B. SOME, ANY, and ALL predicates

C. Comparison predicates

D. Quantified comparison predicates

C is the correct answer.

6. When does an EXISTS condition evaluate to true?

An EXISTS condition evaluates to true if one or more rows are returned by the subquery; otherwise,

it evaluates to false.

A

SQL: A Beginner’s Guide 475

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:475

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:476

7. In addition to numbers, ____________ data can be compared in comparison predicates.

Character string

8. Which types of predicates allow you to use subqueries that return multiple rows?

A. IN and EXISTS predicates

B. SOME, ANY, and ALL predicates

C. Comparison predicates

D. Quantified comparison predicates

A, B, and D are the correct answers.

9. What is a correlated subquery?

A correlated subquery is one that is dependent on the outer statement in some way.

10. How often is a correlated subquery evaluated when a SELECT statement is processed?

The correlated subquery must be evaluated for each row returned by the outer SELECT statement.

11. A(n) ____________ is a subquery that is a component of another subquery.

Nested subquery

12. How many subqueries can be included in a SELECT statement, as specified by the SQL

standard?

The SQL:1999 standard does not limit the number of subqueries that can be included in a statement.

13. Which clause in an INSERT statement can contain a subquery?

VALUES clause

14. How many values can a subquery return if it is used in an INSERT statement?

One

15. Which clauses in an UPDATE statement can contain a subquery?

WHERE and SET

Module 13: Creating SQL-Invoked Routines
1. Which statement do you use to invoke an SQL-invoked procedure?

A. RETURN

B. CALL

476 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AC. SET

D. DECLARE

B is the correct answer.

2. A(n) ____________ is a value passed to a statement in a procedure when you invoke that procedure.

Parameter

3. Which types of parameters can you use in an SQL-invoked function?

A. Input

B. Output

C. Input/output

D. Variable

A is the correct answer.

4. What is another name for an SQL-invoked procedure?

Stored procedure

5. What are the two primary differences between procedures and functions?

Procedures are invoked by using a CALL statement, and they support input and out parameters.

Functions are invoked as a value in an expression, and they support input parameters only.

6. What information must you include in a CALL statement when invoking a procedure?

The name of the procedure and the values that are passed to the parameters

7. Which types of statements can you include in a procedure?

A. SELECT

B. INSERT

C. UPDATE

D. DELETE

A, B, C, and D are the correct answers.

8. Which statement do you use to assign an initial value to a variable?

A. DECLARE

B. RETURN

C. SET

D. CALL

C is the correct answer.

SQL: A Beginner’s Guide 477

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:477

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:478

9. A(n) ____________ statement allows you to group SQL statements into blocks.

Control

10. Which keyword do you use to begin a conditional statement?

A. IF

B. BEGIN

C. THEN

D. ELSE

A is the correct answer.

11. What keyword do you use in a LOOP statement to end that loop?

LEAVE

12. What is the difference between a conditional statement and a compound statement?

A conditional statement determines whether a statement is executed based on whether a specified

condition evaluates to true. A compound statement groups statements into a block.

13. What are two types of looping statements?

A. BEGIN...END

B. IF...END IF

C. LOOP...END LOOP

D. WHILE...END WHILE

C and D are the correct answers.

14. Which type of parameter can return a value when you invoke a procedure?

Output

15. What step must you take when calling a procedure that includes an output parameter?

You must declare a variable that is then used in the CALL statement as a parameter value.

16. How does a CREATE FUNCTION statement differ from a CREATE PROCEDURE statement?

In a CREATE FUNCTION statement, the input parameter definitions cannot include the IN keyword.

In addition, a RETURNS clause must follow the parameter definitions, and the routine body must

include a RETURN statement.

Module 14: Creating SQL Triggers
1. What type of actions can be performed by the triggered SQL statements?

The triggered SQL statements can take such actions as updating tables, deleting data, invoking

procedures, or performing most tasks that you can perform with SQL statements.

478 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A2. Which actions can invoke a trigger?

A. Updating data

B. Querying data

C. Deleting data

D. Inserting data

A, C, and D are the correct answers.

3. When is an insert trigger invoked?

When data is inserted into the table on which the trigger is defined

4. A trigger can be defined on how many tables?

A. Only one

B. One or more

C. One to three

D. Any number of tables

A is the correct answer.

5. A(n) ____________ is a space created in memory that holds a trigger process during the

execution of that trigger.

Trigger execution context

6. You insert data into Table 1, which invokes an insert trigger defined on that table. The trigger

updates information in Table 2, which invokes an update trigger defined on that table. The

update trigger deletes information in Table 3, which invokes a delete trigger defined on that

table. Which trigger execution context is active at this point?

A. The trigger execution context for the insert trigger

B. The trigger execution context for the update trigger

C. The trigger execution context for the delete trigger

C is the correct answer.

7. If three triggers are invoked during a session, how many trigger execution contexts are created

in that session?

Three

8. What information is included in a trigger execution context?

A trigger execution context contains the information necessary for the trigger to be executed correctly.

This information includes details about the trigger itself and about the subject table. In addition, the

execution context includes one or two transition tables.

SQL: A Beginner’s Guide 479

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:479

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:480

9. In which clause of the CREATE TRIGGER statement do you assign correlation names to old

and new data?

A. FOR EACH

B. ON

C. REFERENCING

D. WHEN

C is the correct answer.

10. In which clause of the CREATE TRIGGER statement do you specify whether the triggered

SQL statements are executed once for each row or once for each statement?

A. FOR EACH

B. ON

C. REFERENCING

D. WHEN

A is the correct answer.

11. You’re creating a trigger definition for an insert trigger. Which REFERENCING clauses can

you include in your CREATE TRIGGER statement?

A. REFERENCING OLD ROW AS Old

B. REFERENCING NEW ROW AS New

C. REFERENCING OLD TABLE AS Old

D. REFERENCING NEW TABLE AS New

B and D are the correct answers.

12. A(n) ____________ trigger allows you to specify the column names of a subject table.

Update

13. You’re creating an update trigger on the CDInventory table. The table includes a column named

InStock. You want the triggered SQL statements to be executed only when the InStock value

of the updated row exceeds 20. Which clause should you include in your CREATE TRIGGER

statement to restrict when the statements are executed?

A. WHERE

B. HAVING

C. FOR EACH

D. WHEN

D is the correct answer.

480 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A14. What statement must you include in your CREATE TRIGGER statement if the trigger definition

includes more than one triggered SQL statement?

BEGIN...END statement

15. What SQL statement do you use to alter a trigger definition?

SQL does not support a statement that allows you to alter a trigger definition. You must first use the

DROP TRIGGER statement to delete the trigger from the database, and then use the CREATE TRIGGER

statement to re-create the trigger.

Module 15: Using SQL Cursors
1. What form of impedance mismatch is addressed through the use of cursors?

The fact that SQL returns data in sets but other programming languages can process only a few pieces

of data at the same time

2. A(n) ____________ serves as a pointer that allows the application programming language to

deal with query results one row at a time.

Cursor

3. When using cursors in embedded SQL, what is the first step you must take before you can

retrieve data through that cursor?

A. Fetch the cursor.

B. Declare the cursor.

C. Close the cursor.

D. Open the cursor.

B is the correct answer.

4. What are the four cursor-related statements that you can embed in a host language?

DECLARE CURSOR, OPEN, FETCH, and CLOSE

5. Which options can be used only in read-only cursor declarations?

A. SCROLL

B. WITH HOLD

C. ORDER BY

D. INSENSITIVE

A, C, and D are the correct answers.

SQL: A Beginner’s Guide 481

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:481

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:482

6. What are the required elements of a DECLARE CURSOR statement?

DECLARE <cursor name> CURSOR FOR <query expression>

7. What type of cursors do not see changes made by statements outside the cursor?

Insensitive cursors

8. Which option should you use in a cursor declaration to extend the retrieving capabilities of a

FETCH statement?

A. WITHOUT HOLD

B. ASENSITIVE

C. SCROLL

D. FOR UPDATE

C is the correct answer.

9. Cursor ____________ refers to a characteristic in cursors that is concerned with whether a cursor

is automatically closed when the transaction in which the cursor was opened is committed.

Holdability

10. You’re creating a cursor declaration. The SELECT statement includes an ORDER BY clause.

Which clauses cannot be included in the SELECT statement?

A. SELECT

B. HAVING

C. GROUP BY

D. WHERE

B and C are the correct answers.

11. Your cursor declaration includes a FOR UPDATE clause that does not specify any columns.

Which columns in the underlying table can be updated?

All columns

12. What SQL statement should you use if you want to open the CDArtists cursor?

You should use the following statement:

OPEN CDArtists ;

13. A(n) ____________ statement retrieves rows from a cursor’s query results once you open that

cursor.

FETCH

482 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A14. Which fetch orientation option should you use in a FETCH statement if you want to be sure to

retrieve the first row in a cursor’s query results?

A. PRIOR

B. NEXT

C. ABSOLUTE -1

D. FIRST

D is the correct answer.

15. What clause is required in a positioned UPDATE statement in order to update a row returned

by the most recent FETCH statement?

WHERE CURRENT OF <cursor name>

Module 16: Managing SQL Transactions
1. Which transaction characteristic refers to the all-or-nothing nature of a transaction?

A. Atomic

B. Consistent

C. Isolated

D. Durable

A is the correct answer.

2. A(n) ____________ is a unit of work that is made up of one or more SQL statements that

perform a related set of actions.

Transaction

3. Which SQL statements will terminate a transaction?

A. SAVEPOINT

B. SET TRANSACTION

C. ROLLBACK

D. COMMIT

C and D are the correct answers.

4. What are the three types of transaction modes that you can specify in a SET TRANSACTION

statement?

Access level, isolation level, and diagnostics size

SQL: A Beginner’s Guide 483

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:483

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:484

484 Appendix A: Answers to Mastery Checks

5. Which access level options can you include in a START TRANSACTION statement?

A. READ ONLY

B. UPDATE

C. LOCAL

D. READ WRITE

A and D are the correct answers.

6. Two concurrent transactions are active in your system. The first transaction modifies data in a

table. The second transaction sees those modifications before they’re actually committed to the

database. The first transaction then rolls back the modifications. Which type of data phenomenon

has occurred?

A. Phantom read

B. Repeatable read

C. Dirty read

D. Nonrepeatable read

C is the correct answer.

7. A(n) ____________ read can occur when a transaction reads a table based on some sort of

search condition, then a second transaction updates the data in the table, and then the first

transaction attempts to reread the data, but this time different rows are returned because of

how the search condition is defined.

Phantom

8. Which isolation level fully isolates one transaction from another transaction?

SERIALIZABLE

9. You’re using a SET TRANSACTION statement to configure transaction modes. You want

to ensure that no nonrepeatable reads and no dirty reads can occur within that transaction.

However, you’re not concerned about phantom reads. Which isolation level should you use?

A. READ UNCOMMITTED

B. READ COMMITTED

C. REPEATABLE READ

D. SERIALIZABLE

C is the correct answer.

10. You’re setting up a transaction that defers the application of the ck_CDStock constraint until

you execute several SQL statements. After you execute the statements, you want to explicitly

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

apply the constraint to the changes you made to the database. What SQL statement should you

use to apply the constraints?

You should use the following statement:

SET CONSTRAINTS ck_CDStock IMMEDIATE ;

11. A(n) ____________ is a designated marker within your transaction that acts as a rollback point

for a portion of your transaction.

Savepoint

12. You want to create a savepoint named svpt_Section2. What SQL statement should you use?

You should use the following statement:

SAVEPOINT svpt_Section2 ;

13. You create a transaction that includes four savepoints: Section1, Section2, Section3, and Section4.

Near the end of the transaction, after all four savepoints, you define a RELEASE SAVEPOINT

that specifies the Section2 savepoint. Which savepoint or savepoints are removed from the

transaction when the RELEASE SAVEPOINT statement is executed?

A. Section1

B. Section2

C. Section3

D. Section4

B, C, and D are the correct answers.

14. What circumstances will terminate a transaction?

A ROLLBACK statement is explicitly defined in the transaction; a COMMIT statement is explicitly

defined in the transaction; the program that initiated the transaction is interrupted, causing the program

to abort; or the program successfully completes its execution.

15. You’re creating a ROLLBACK statement in your transaction. You want the rollback to undo

changes back to the svpt_Section2 savepoint. What SQL statement should you use?

You should use the following statement:

ROLLBACK TO SAVEPOINT svpt_Section2 ;

16. You’re creating a COMMIT statement in your transaction. After the transaction is terminated,

you want a new transaction to be initiated. The new transaction should be configured with the

same transaction modes as the first transaction. How should you create your COMMIT statement?

You should use the following statement:

COMMIT AND CHAIN ;

SQL: A Beginner’s Guide 485

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:485

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:486

Module 17: Accessing SQL Data from
Your Host Program

1. Which data access method should you use if you want to create and execute ad hoc SQL statements?

A. CLI

B. SQL client modules

C. Direct invocation

D. Embedded SQL

C is the correct answer.

2. What is embedded SQL?

Embedded SQL refers to SQL statements that are interspersed in some type of application programming

language. The SQL statements are blended into the host language to allow the source program to be

able to access and modify SQL data and the underlying database structure.

3. Which files are created by an SQL precompiler?

A. A file for the CLI functions

B. A file for the host language

C. A file for the CLI calls

D. A file for the embedded SQL statements

B and D are the correct answers.

4. Which prefix should embedded SQL statements use when those statements are embedded in the

MUMPS programming language?

A. &SQL(

B. EXEC SQL

C. START-EXEC

D. Statements embedded in MUMPS do not require a prefix.

A is the correct answer.

5. A(n) ____________ is a type of parameter that is declared within the host language and is then

referenced within the embedded SQL statement.

Host variable

6. Which prefix must you provide for a host variable when it is included in an SQL statement?

A. Question mark

B. Ampersand

486 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AC. Semicolon

D. Colon

D is the correct answer.

7. You plan to embed SQL statements in your host program. You want to declare several host

variables to be used in the SQL statements. Which SQL statement should you use to terminate

the declaration section of your program?

A. TERMINATE DECLARE SECTION

B. END DECLARE SECTION

C. TERMINATE DECLARATIONS

D. END DECLARATIONS

B is the correct answer.

8. What can cause an impedance mismatch to occur when passing a variable from a host program

to an SQL statement?

The differences between the host language data type and SQL data type

9. When can you use a singleton SELECT statement to retrieve data?

When your query results will return only one row

10. A(n) ____________ is a type of variable that specifies whether an associated data variable

contains a null value.

Indicator host variable

11. Which statement can you use in embedded SQL to provide your host program with exception

and warning information?

A. WHENEVER

B. INTO

C. CAST

D. PROCEDURE

A is the correct answer.

12. A(n) ____________ is a self-contained collection of SQL statements that are separate from a

host programming language but that can be called from within that language.

SQL client module

13. What allocation handles must you establish in order to execute an SQL statement through a

CLI API?

Environment, connection, and statement

SQL: A Beginner’s Guide 487

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:487

A

A
ns

w
er

s
to

M
as

te
ry

C
he

ck
s

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

14. Which function should you use to establish a CLI connection handle?

A. ExecDirect()

B. Connect()

C. Prepare()

D. AllocHandle()

D is the correct answer.

15. You’re allocating an environment handle within a C program and associating the handle with

the henv host variable. What function statement should you use?

You should use the following function statement:

SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;

16. You’re creating the following Prepare() function statement in your host program:

SQLPrepare (hstmt, "SELECT CDID, CDTitle, InStock FROM CompactDiscs
WHERE CompactDiscID = ?", SQL_NTS) ;

How many BindCol() function statements should you create?

A. One

B. Two

C. Three

D. Four

C is the correct answer.

17. What CLI function should you use if you want to execute an SQL statement in one step?

ExecDirect()

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / A
Blind Folio A:488

488 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\885-7\AppA.vp
Monday, April 07, 2003 2:18:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / B
Blind Folio B:489

AppendixB
SQL:1999 Keywords

489

P:\010Comp\Begin8\885-7\appb.vp
Monday, April 07, 2003 2:25:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / B
Blind Folio B:490

The SQL:1999 standard defines a set of reserved keywords and nonreserved keywords that

are used within your SQL statements. You cannot use reserved keywords as identifiers. In

addition, it is generally a good idea to avoid using unreserved keywords. Note that the SQL

standard warns that it makes no guarantees about what keywords might be added to the standard in

the future. As a result, an identifier you use in a current database might not be usable in future

releases of SQL. You can avoid conflicts with future reserved keywords by adding a digit or

an underscore to your identifier and by not beginning an identifier with current_, session_,

system_, or timezone_, or ending an identifier with _length. You should also note that various

SQL implementations might include additional keywords that cannot be used as identifiers.

Be sure to check the product documentation.

SQL Reserved Keywords
Table B-1 lists SQL reserved keywords.

490 Appendix B: SQL:1999 Keywords

ABSOLUTE ACTION ADD ADMIN

AFTER AGGREGATE ALIAS ALL

ALLOCATE ALTER AND ANY

ARE ARRAY AS ASC

ASSERTION AT AUTHORIZATION BEFORE

BEGIN BINARY BIT BLOB

BOOLEAN BOTH BREADTH BY

CALL CASCADE CASCADED CASE

CAST CATALOG CHAR CHARACTER

CHECK CLASS CLOB CLOSE

COLLATE COLLATION COLUMN COMMIT

COMPLETION CONNECT CONNECTION CONSTRAINT

CONSTRAINTS CONSTRUCTOR CONTINUE CORRESPONDING

CREATE CROSS CUBE CURRENT

CURRENT_DATE CURRENT_PATH CURRENT_ROLE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR CYCLE

DATA DATE DAY DEALLOCATE

DEC DECIMAL DECLARE DEFAULT

Table B-1 SQL Reserved Keywords

P:\010Comp\Begin8\885-7\appb.vp
Monday, April 07, 2003 2:25:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 491

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / B
Blind Folio B:491

B

SQ
L:

19
99

Ke
yw

or
ds

DEFERRABLE DEFERRED DELETE DEPTH

DEREF DESC DESCRIBE DESCRIPTOR

DESTROY DESTRUCTOR DETERMINISTIC DICTIONARY

DIAGNOSTICS DISCONNECT DISTINCT DOMAIN

DOUBLE DROP DYNAMIC EACH

ELSE END END-EXEC EQUALS

ESCAPE EVERY EXCEPT EXCEPTION

EXEC EXECUTE EXTERNAL FALSE

FETCH FIRST FLOAT FOR

FOREIGN FOUND FROM FREE

FULL FUNCTION GENERAL GET

GLOBAL GO GOTO GRANT

GROUP GROUPING HAVING HOST

HOUR IDENTITY IGNORE IMMEDIATE

IN INDICATOR INITIALIZE INITIALLY

INNER INOUT INPUT INSERT

INT INTEGER INTERSECT INTERVAL

INTO IS ISOLATION ITERATE

JOIN KEY LANGUAGE LARGE

LAST LATERAL LEADING LEFT

LESS LEVEL LIKE LIMIT

LOCAL LOCALTIME LOCALTIMESTAMP LOCATOR

MAP MATCH MINUTE MODIFIES

MODIFY MODULE MONTH NAMES

NATIONAL NATURAL NCHAR NCLOB

NEW NEXT NO NONE

NOT NULL NUMERIC OBJECT

OF OFF OLD ON

ONLY OPEN OPERATION OPTION

OR ORDER ORDINALITY OUT

Table B-1 SQL Reserved Keywords (continued)

P:\010Comp\Begin8\885-7\appb.vp
Monday, April 07, 2003 2:25:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / B
Blind Folio B:492

492 Appendix B: SQL:1999 Keywords

OUTER OUTPUT PAD PARAMETER

PARAMETERS PARTIAL PATH POSTFIX

PRECISION PREFIX PREORDER PREPARE

PRESERVE PRIMARY PRIOR PRIVILEGES

PROCEDURE PUBLIC READ READS

REAL RECURSIVE REF REFERENCES

REFERENCING RELATIVE RESTRICT RESULT

RETURN RETURNS REVOKE RIGHT

ROLE ROLLBACK ROLLUP ROUTINE

ROW ROWS SAVEPOINT SCHEMA

SCROLL SCOPE SEARCH SECOND

SECTION SELECT SEQUENCE SESSION

SESSION_USER SET SETS SIZE

SMALLINT SOMESPACE SPECIFIC SPECIFICTYPE

SQL SQLEXCEPTION SQLSTATE SQLWARNING

START STATE STATEMENT STATIC

STRUCTURE SYSTEM_USER TABLE TEMPORARY

TERMINATE THAN THEN TIME

TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE TO

TRAILING TRANSACTION TRANSLATION TREAT

TRIGGER TRUE UNDER UNION

UNIQUE UNKNOWN UNNEST UPDATE

USAGE USER USING VALUE

VALUES VARCHAR VARIABLE VARYING

VIEW WHEN WHENEVER WHERE

WITH WITHOUT WORK WRITE

YEAR ZONE

Table B-1 SQL Reserved Keywords (continued)

P:\010Comp\Begin8\885-7\appb.vp
Monday, April 07, 2003 2:25:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL Nonreserved Keywords
Table B-2 lists SQL nonreserved keywords.

SQL: A Beginner’s Guide 493

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / B
Blind Folio B:493

B

SQ
L:

19
99

Ke
yw

or
ds

ABS ADA ASENSITIVE

ASSIGNMENT ASYMMETRIC ATOMIC

AVG BETWEEN BIT_LENGTH

BITVAR C CALLED

CARDINALITY CATALOG_NAME CHAIN

CHAR_LENGTH CHARACTER_LENGTH CHARACTER_SET_CATALOG

CHARACTER_SET_NAME CHARACTER_SET_SCHEMA CHECKED

CLASS_ORIGIN COALESCE COBOL

COLLATION_CATALOG COLLATION_NAME COLLATION_SCHEMA

COLUMN_NAME COMMAND_FUNCTION COMMAND_FUNCTION_CODE

COMMITTED CONDITION_NUMBER CONNECTION_NAME

CONSTRAINT_CATALOG CONSTRAINT_NAME CONSTRAINT_SCHEMA

CONTAINS CONVERT COUNT

CURSOR_NAME DATETIME_INTERVAL_CODE DATETIME_INTERVAL_PRECISION

DEFINED DEFINER DISPATCH

DYNAMIC_FUNCTION DYNAMIC_FUNCTION_CODE EXISTING

EXISTS EXTRACT FINAL

FORTRAN G GENERATED

GRANTED HIERARCHY HOLD

IMPLEMENTATION INFIX INSENSITIVE

INSTANCE INSTANTIABLE INVOKER

K KEY_MEMBER KEY_TYPE

LENGTH LOWER M

MAX MIN MESSAGE_LENGTH

MESSAGE_OCTET_LENGTH MESSAGE_TEXT METHOD

MOD MORE MUMPS

NAME NULLABLE NUMBER

Table B-2 SQL Nonreserved Keywords

P:\010Comp\Begin8\885-7\appb.vp
Monday, April 07, 2003 2:25:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / B
Blind Folio B:494

494 Appendix B: SQL:1999 Keywords

NULLIF OCTET_LENGTH OPTIONS

OVERLAPS OVERLAY OVERRIDING

PASCAL PARAMETER_MODE PARAMETER_NAME

PARAMETER_ORDINAL_
POSITION

PARAMETER_SPECIFIC_
CATALOG

PARAMETER_SPECIFIC_NAME

PARAMETER_SPECIFIC_
SCHEMA

PLI POSITION

REPEATABLE RETURNED_LENGTH RETURNED_OCTET_LENGTH

RETURNED_SQLSTATE ROUTINE_CATALOG ROUTINE_NAME

ROUTINE_SCHEMA ROW_COUNT SCALE

SCHEMA_NAME SECURITY SELF

SENSITIVE SERIALIZABLE SERVER_NAME

SIMPLE SOURCE SPECIFIC_NAME

SIMILAR SUBLIST SUBSTRING

SUM STYLE SUBCLASS_ORIGIN

SYMMETRIC SYSTEM TABLE_NAME

TRANSACTIONS_COMMITTED TRANSACTIONS_ROLLED_BACK TRANSACTION_ACTIVE

TRANSFORM TRANSFORMS TRANSLATE

TRIGGER_CATALOG TRIGGER_SCHEMA TRIGGER_NAME

TRIM TYPE UNCOMMITTED

UNNAMED UPPER USER_DEFINED_TYPE_CATALOG

USER_DEFINED_TYPE_NAME USER_DEFINED_TYPE_SCHEMA

Table B-1 SQL Nonreserved Keywords (continued)

P:\010Comp\Begin8\885-7\appb.vp
Monday, April 07, 2003 2:25:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Appendix C
SQL Code Used
in the Book’s Projects

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:495

495

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:496

496 Appendix C: SQL Code Used in the Book’s Projects

In the projects throughout this book, you created a number of SQL statements that allowed you

to define database objects in the Inventory database, modify those objects, insert data into the

tables that you created, retrieve that data, and update and delete the data. The statements are

included here so that you can see the progression of the statements as you move through the

projects and also so that you can reference them as necessary in case you need to redo certain

elements of a project. In addition, I’ve provided the SQL statements (in a consolidated form)

used to create the Inventory database and populate the tables with data. You might find that,

as you work your way through this book, you’ll want to be able to re-create the database and

bring it into a consistent state. By using the consolidated code, you can simply create the

database objects and populate the tables as often as necessary, without having to pick the

statements out of different projects.

NOTE
The SQL statements are written in pure SQL. However, some SQL implementations might
require that you modify the statements to conform to the standards of that particular
implementation. Be sure to check the product documentation.

SQL Code By Project
The SQL statements are presented here according to the order in which the projects were

presented in the book. You can reference these statements as necessary to use them to re-create

projects or to use them as a foundation for other projects. If you’re re-creating the Inventory

database and want to ensure that you’re including all the necessary elements, see the “The

Inventory Database” section later in this appendix.

Project 1-2: Connecting to a Database

SELECT * FROM <table>

SELECT * FROM scott.emp ;

USE pubs

SELECT * FROM ocelot.emps ;

Project 2-1: Creating a Database and a Schema

CREATE DATABASE Inventory ;

USE Inventory

CREATE SCHEMA CDInventory ;

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 497

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:497

C

SQ
L

C
od

e
U

se
d

in
th

e
Bo

ok
’s

Pr
oj

ec
ts

Project 3-1: Creating SQL Tables

CREATE TABLE CompactDiscs
(CompactDiscID INT, CDTitle VARCHAR (60), LabelID INT) ;

CREATE TABLE CDLabels
(LabelID INT, CompanyName VARCHAR (60)) ;

CREATE TABLE MusicTypes
(TypeID INT, TypeName VARCHAR (20)) ;

Project 3-2: Altering and Deleting SQL Tables

CREATE TABLE CompactDiscTypes
(CompactDiscID INT, TypeID INT) ;

DROP TABLE CompactDiscTypes CASCADE ;

CREATE TABLE CompactDiscTypes
(CompactDiscID INT, CDTitle VARCHAR (60), TypeID INT) ;

ALTER TABLE CompactDiscTypes
DROP COLUMN CDTitle CASCADE ;

Project 4-1: Adding NOT NULL, Unique, and Referential Constraints

DROP TABLE CompactDiscs CASCADE ;
DROP TABLE CompactDiscTypes CASCADE ;
DROP TABLE MusicTypes CASCADE ;
DROP TABLE CDLabels CASCADE ;

CREATE TABLE MusicTypes
(TypeID INT, TypeName VARCHAR (20) NOT NULL,
CONSTRAINT un_TypeName UNIQUE (TypeName),
CONSTRAINT pk_MusicTypes PRIMARY KEY (TypeID)) ;

CREATE TABLE CDLabels
(LabelID INT, CompanyName VARCHAR (60) DEFAULT 'Independent' NOT NULL,
CONSTRAINT pk_CDLabels PRIMARY KEY (LabelID)) ;

CREATE TABLE CompactDiscs
(CompactDiscID INT, CDTitle VARCHAR (60) NOT NULL, LabelID INT NOT NULL,
CONSTRAINT pk_CompactDiscs PRIMARY KEY (CompactDiscID),
CONSTRAINT fk_LabelID FOREIGN KEY (LabelID) REFERENCES CDLabels) ;

CREATE TABLE CompactDiscTypes
(CompactDiscID INT, MusicTypeID INT,

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:498

CONSTRAINT pk_CompactDiscTypes PRIMARY KEY (CompactDiscID, MusicTypeID),
CONSTRAINT fk_CompactDiscID_01 FOREIGN KEY (CompactDiscID)

REFERENCES CompactDiscs,
CONSTRAINT fk_MusicTypeID FOREIGN KEY (MusicTypeID)

REFERENCES MusicTypes) ;

CREATE TABLE Artists
(ArtistID INT, ArtistName VARCHAR (60) NOT NULL,
PlaceOfBirth VARCHAR (60) DEFAULT 'Unknown' NOT NULL,
CONSTRAINT pk_Artists PRIMARY KEY (ArtistID)) ;

CREATE TABLE ArtistCDs
(ArtistID INT, CompactDiscID INT,
CONSTRAINT pk_ArtistCDs PRIMARY KEY (ArtistID, CompactDiscID),
CONSTRAINT fk_ArtistID FOREIGN KEY (ArtistID) REFERENCES Artists,
CONSTRAINT fk_CompactDiscID_02 FOREIGN KEY (CompactDiscID)

REFERENCES CompactDiscs) ;

Project 4-2: Adding a CHECK Constraint

ALTER TABLE CompactDiscs
ADD COLUMN InStock INT NOT NULL ;

ALTER TABLE CompactDiscs
ADD CONSTRAINT ck_InStock CHECK (InStock > 0 AND InStock < 50) ;

Project 5-1: Adding Views to Your Database

CREATE VIEW CDsInStock
AS SELECT CDTitle, InStock FROM CompactDiscs
WHERE InStock > 10 WITH CHECK OPTION ;

CREATE VIEW CDPublishers (CDTitle, Publisher)
AS SELECT CompactDiscs.CDTitle, CDLabels.CompanyName
FROM CompactDiscs, CDLabels
WHERE CompactDiscs.LabelID = CDLabels.LabelID
AND CDLabels.LabelID = 5403 OR CDLabels.LabelID = 5402 ;

DROP VIEW CDPublishers ;

CREATE VIEW CDPublishers (CDTitle, Publisher)
AS SELECT CompactDiscs.CDTitle, CDLabels.CompanyName
FROM CompactDiscs, CDLabels
WHERE CompactDiscs.LabelID = CDLabels.LabelID ;

498 Appendix C: SQL Code Used in the Book’s Projects

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 499

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:499

C

SQ
L

C
od

e
U

se
d

in
th

e
Bo

ok
’s

Pr
oj

ec
ts

Project 6-1: Managing Roles and Privileges

CREATE ROLE Mrkt ;

CREATE ROLE SalesStaff ;

GRANT SELECT ON TABLE CDsInStock TO PUBLIC ;

GRANT SELECT, INSERT, UPDATE (CDTitle) ON TABLE CompactDiscs
TO SalesStaff WITH GRANT OPTION ;

GRANT SalesStaff TO Mrkt ;

REVOKE SELECT ON TABLE CDsInStock FROM PUBLIC CASCADE ;

REVOKE ALL PRIVILEGES ON TABLE CompactDiscs FROM SalesStaff CASCADE ;

REVOKE SalesStaff FROM Mrkt CASCADE ;

DROP ROLE Mrkt ;

DROP ROLE SalesStaff ;

Project 7-1: Querying the Inventory Database

NOTE
The INSERT statements used for this project are listed at the bottom of the “The Inventory
Database” section later in this appendix.

SELECT * FROM Artists ;

SELECT CDTitle, InStock FROM CompactDiscs ;

SELECT * FROM CDsInStock ;

SELECT CDTitle, InStock FROM CompactDiscs
WHERE InStock > 10 AND InStock < 30 ;

SELECT LabelID, SUM(InStock) AS TotalInStock
FROM CompactDiscs
GROUP BY LabelID ;

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:500

SELECT LabelID, SUM(InStock) AS TotalInStock
FROM CompactDiscs
GROUP BY LabelID
HAVING SUM(InStock) > 10 ;

SELECT * FROM CompactDiscs
WHERE InStock > 10
ORDER BY CDTitle DESC ;

Project 8-1: Modifying SQL Data

INSERT INTO CDLabels VALUES (837, 'DRG Records') ;

INSERT INTO CompactDiscs
VALUES (116, 'Ann Hampton Callaway', 836, 14) ;

INSERT INTO CompactDiscs
VALUES (117, 'Rhythm Country and Blues', 832, 21) ;

UPDATE CompactDiscs SET InStock = 25
WHERE CompactDiscID = 117 ;

UPDATE CompactDiscs
SET LabelID =
(SELECT LabelID FROM CDLabels WHERE CompanyName = 'DRG Records')

WHERE CompactDiscID = 116 ;

SELECT * FROM CompactDiscs
WHERE CompactDiscID = 116 OR CompactDiscID = 117 ;
DELETE FROM CompactDiscs
WHERE CompactDiscID = 116 OR CompactDiscID = 117 ;

DELETE FROM CDLabels WHERE LabelID = 837 ;

Project 9-1: Using Predicates in SQL Statements

SELECT TypeID, TypeName FROM MusicTypes
WHERE TypeID = 11 OR TypeID = 12 ;

SELECT ArtistName, PlaceOfBirth FROM Artists
WHERE ArtistName <> 'Patsy Cline' AND ArtistName <> 'Bing Crosby' ;

SELECT ArtistID, ArtistName FROM Artists
WHERE ArtistID > 2004 AND ArtistID < 2014 ;

500 Appendix C: SQL Code Used in the Book’s Projects

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 501

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:501

C

SQ
L

C
od

e
U

se
d

in
th

e
Bo

ok
’s

Pr
oj

ec
ts

SELECT ArtistID, ArtistName FROM Artists
WHERE ArtistID BETWEEN 2004 AND 2014 ;

SELECT * FROM Artists
WHERE PlaceOfBirth IS NULL ;

SELECT * FROM Artists
WHERE PlaceOfBirth IS NOT NULL ;

SELECT CDTitle, InStock FROM CompactDiscs
WHERE CDTitle LIKE ('%Greatest%') OR CDTitle LIKE ('%Best%') ;

SELECT CDTitle, InStock FROM CompactDiscs
WHERE CDTitle NOT LIKE ('%Greatest%')
AND CDTitle NOT LIKE ('%Best%') ;

Project 9-2: Using Subqueries in Predicates

SELECT CDTitle, InStock FROM CompactDiscs
WHERE LabelID IN
(SELECT LabelID FROM CDLabels
WHERE CompanyName = 'Decca Record Company') ;

SELECT CDTitle, InStock FROM CompactDiscs
WHERE EXISTS
(SELECT LabelID FROM CDLabels
WHERE CompactDiscs.LabelID = CDLabels.LabelID AND LabelID > 830) ;

SELECT LabelID, CompanyName FROM CDLabels
WHERE LabelID = ANY
(SELECT LabelID FROM CompactDiscs WHERE InStock > 20) ;

SELECT LabelID, CompanyName FROM CDLabels
WHERE LabelID = ALL
(SELECT LabelID FROM CompactDiscs WHERE InStock > 20) ;

SELECT LabelID, CompanyName FROM CDLabels
WHERE LabelID = ALL
(SELECT LabelID FROM CompactDiscs WHERE InStock > 40) ;

Project 10-1: Using Functions and Value Expressions

SELECT COUNT(DISTINCT ArtistName) AS Artists FROM Artists ;

SELECT MIN(InStock) AS MinStock FROM CompactDiscs ;

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:502

502 Appendix C: SQL Code Used in the Book’s Projects

SELECT LabelID, SUM(InStock) AS Total
FROM CompactDiscs GROUP BY LabelID ;

SELECT ArtistName, SUBSTRING(PlaceOfBirth FROM 1 FOR 8) AS Birthplace
FROM Artists ;

SELECT UPPER(CDTitle) AS CDName FROM CompactDiscs ;

SELECT CDTitle, InStock,
(InStock * 2) AS Doubled, (InStock * 3) AS Tripled
FROM CompactDiscs WHERE InStock < 25 ;

SELECT CDTitle, InStock, ToOrder =
CASE
WHEN InStock < 10 THEN InStock * 2
WHEN InStock BETWEEN 10 AND 15 THEN InStock + 3
ELSE InStock

END
FROM CompactDiscs WHERE InStock < 20 ;

SELECT TypeID, CAST(TypeName AS CHAR (20)) AS CharType
FROM MusicTypes ;

Project 11-1: Querying Multiple Tables

SELECT * FROM Artists a, ArtistCDs c
WHERE a.ArtistID = c.ArtistID ;

SELECT d.CDTitle, a.ArtistName, a.PlaceOfBirth
FROM Artists a, ArtistCDs c, CompactDiscs d
WHERE a.ArtistID = c.ArtistID AND d.CompactDiscID = c.CompactDiscID ;

SELECT d.CDTitle, a.ArtistName, a.PlaceOfBirth
FROM Artists a CROSS JOIN ArtistCDs c CROSS JOIN CompactDiscs d
WHERE a.ArtistID = c.ArtistID AND d.CompactDiscID = c.CompactDiscID ;

SELECT d.CDTitle, t.TypeName
FROM CompactDiscs d JOIN CompactDiscTypes dt
ON d.CompactDiscID = dt.CompactDiscID

JOIN MusicTypes t
ON dt.MusicTypeID = t.TypeID ;

SELECT d.CDTitle, t.TypeName
FROM CompactDiscs d FULL JOIN CompactDiscTypes dt
ON d.CompactDiscID = dt.CompactDiscID

FULL JOIN MusicTypes t
ON dt.MusicTypeID = t.TypeID ;

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 503

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:503

C

SQ
L

C
od

e
U

se
d

in
th

e
Bo

ok
’s

Pr
oj

ec
ts

Project 12-1: Working with Subqueries

SELECT CDTitle, InStock FROM CompactDiscs
WHERE LabelID IN
(SELECT LabelID FROM CDLabels WHERE CompanyName = 'MCA Records') ;

SELECT CompanyName FROM CDLabels l
WHERE EXISTS
(SELECT * FROM CompactDiscs d
WHERE l.LabelID = d.LabelID AND CDTitle = 'Out of Africa') ;

SELECT CompanyName FROM CDLabels
WHERE LabelID = ANY
(SELECT LabelID FROM CompactDiscs WHERE InStock > 30) ;

SELECT CDTitle, InStock FROM CompactDiscs
WHERE LabelID =
(SELECT LabelID FROM CDLabels WHERE CompanyName = 'Capitol Records') ;

SELECT CDTitle, InStock FROM CompactDiscs d, CDLabels l
WHERE d.LabelID = l.LabelID AND CompanyName = 'Capitol Records' ;

SELECT ArtistName FROM Artists
WHERE ArtistID IN
(SELECT ArtistID FROM ArtistCDs WHERE CompactDiscID IN
(SELECT CompactDiscID FROM CompactDiscs WHERE CDTitle = 'Past Light')) ;

SELECT CDTitle, TypeName
FROM CompactDiscs d, CompactDiscTypes t, MusicTypes m
WHERE d.CompactDiscID = t.CompactDiscID AND t.MusicTypeID = m.TypeID
AND CDTitle = 'Kojiki' ;

UPDATE CompactDiscTypes
SET MusicTypeID =
(SELECT TypeID FROM MusicTypes WHERE TypeName = 'Classical')

WHERE CompactDiscID =
(SELECT CompactDiscID FROM CompactDiscs WHERE CDTitle = 'Kojiki')

AND MusicTypeID =
(SELECT TypeID FROM MusicTypes WHERE TypeName = 'New Age') ;

UPDATE CompactDiscTypes
SET MusicTypeID =
(SELECT TypeID FROM MusicTypes WHERE TypeName = 'New Age')

WHERE CompactDiscID =
(SELECT CompactDiscID FROM CompactDiscs WHERE CDTitle = 'Kojiki')

AND MusicTypeID =
(SELECT TypeID FROM MusicTypes WHERE TypeName = 'Classical') ;

Project 13-1: Creating SQL-Invoked Procedures

CREATE PROCEDURE GetCDArtists ()
SELECT cd.CDTitle, a.ArtistName

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:504

504 Appendix C: SQL Code Used in the Book’s Projects

FROM CompactDiscs cd, ArtistCDs ac, Artists a
WHERE cd.CompactDiscID = ac.CompactDiscID AND ac.ArtistID = a.ArtistID ;

CALL GetCDArtists () ;

DROP PROCEDURE GetCDArtists CASCADE ;

CREATE PROCEDURE GetCDArtists (IN p_CD VARCHAR (60))
SELECT cd.CDTitle, a.ArtistName
FROM CompactDiscs cd, ArtistCDs ac, Artists a
WHERE cd.CompactDiscID = ac.CompactDiscID
AND ac.ArtistID = a.ArtistID AND cd.CDTitle = p_CD ;

CALL GetCDArtists ('Fundamental') ;

CREATE PROCEDURE GetCDAmount ()
BEGIN
DECLARE v_InStock INT ;
SET v_InStock = (SELECT AVG(InStock) FROM CompactDiscs) ;
SELECT CDTitle, InStock FROM CompactDiscs WHERE InStock < v_InStock ;

END ;

CALL GetCDAmount () ;

Project 13-2: Creating SQL-Invoked Functions

CREATE FUNCTION CDLabel (p_CD VARCHAR (60))
RETURNS VARCHAR (60)
BEGIN
RETURN
(SELECT CompanyName FROM CompactDiscs d, CDLabels l
WHERE d.LabelID = l.LabelID AND CDTitle = p_CD) ;

END ;

SELECT CDTitle, CompanyName FROM CompactDiscs d, CDLabels l
WHERE d.LabelID = l.LabelID
AND CompanyName = CDLabel ('Blues on the Bayou') ;

DROP FUNCTION CDLabel CASCADE ;

Project 14-1: Creating SQL Triggers

CREATE TABLE ArtistLog
(ActionType CHAR (6), ArtistID INT,

ModDate TIMESTAMP DEFAULT CURRENT_TIMESTAMP) ;

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 505

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:505

C

SQ
L

C
od

e
U

se
d

in
th

e
Bo

ok
’s

Pr
oj

ec
ts

CREATE TRIGGER InsertLog
AFTER INSERT ON Artists
REFERENCING NEW ROW AS New
FOR EACH ROW
BEGIN ATOMIC
INSERT INTO ArtistLog (ActionType, ArtistID)
VALUES ('INSERT', New.ArtistID) ;

END ;

CREATE TRIGGER UpdateLog
AFTER UPDATE ON Artists
REFERENCING NEW ROW AS New
FOR EACH ROW
BEGIN ATOMIC
INSERT INTO ArtistLog (ActionType, ArtistID)
VALUES ('UPDATE', New.ArtistID) ;

END ;

CREATE TRIGGER DeleteLog
AFTER DELETE ON Artists
REFERENCING OLD ROW AS Old
FOR EACH ROW
BEGIN ATOMIC
INSERT INTO ArtistLog (ActionType, ArtistID)
VALUES ('DELETE', Old.ArtistID) ;

END ;

INSERT INTO Artists (ArtistID, ArtistName)
VALUES (2019, 'John Lee Hooker') ;

UPDATE Artists
SET PlaceOfBirth = 'Clarksdale, Mississippi, USA'
WHERE ArtistID = 2019 ;

DELETE Artists
WHERE ArtistID = 2019 ;

SELECT * FROM ArtistLog ;

DROP TRIGGER InsertLog ;

DROP TRIGGER UpdateLog ;

DROP TRIGGER DeleteLog ;

DROP TABLE ArtistLog ;

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:506

506 Appendix C: SQL Code Used in the Book’s Projects

Project 15-1: Working with SQL Cursors

DECLARE v_CDName VARCHAR (60) ;
DECLARE CD_cursor1 CURSOR
FOR
SELECT CDTitle FROM CompactDiscs
ORDER BY CDTitle ASC ;

OPEN CD_cursor1 ;
FETCH CD_cursor1 INTO v_CDName ;
CLOSE CD_cursor1 ;

DECLARE v_CDName VARCHAR (60) ;
DECLARE CD_cursor2 SCROLL INSENSITIVE CURSOR
FOR
SELECT CDTitle FROM CompactDiscs
ORDER BY CDTitle ASC

FOR READ ONLY ;
OPEN CD_cursor2 ;
FETCH LAST FROM CD_cursor2 INTO v_CDName ;
CLOSE CD_cursor2 ;

DECLARE v_CDName VARCHAR (60) ;
DECLARE CD_cursor3 CURSOR
FOR
SELECT CDTitle FROM CompactDiscs

FOR UPDATE ;
OPEN CD_cursor3 ;
FETCH CD_cursor3 INTO v_CDName ;
UPDATE CompactDiscs SET InStock = InStock * 2
WHERE CURRENT OF CD_cursor3 ;

CLOSE CD_cursor3 ;

SELECT * FROM CompactDiscs ;

UPDATE CompactDiscs SET InStock = 13
WHERE CompactDiscID = 101 ;

Project 16-1: Working with Transactions

START TRANSACTION ISOLATION LEVEL READ UNCOMMITTED ;
SELECT * FROM Artists ;
COMMIT ;

START TRANSACTION ISOLATION LEVEL SERIALIZABLE ;
UPDATE CompactDiscs SET InStock = InStock + 2
WHERE LabelID = 832 ;

ROLLBACK ;

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 507

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:507

C

SQ
L

C
od

e
U

se
d

in
th

e
Bo

ok
’s

Pr
oj

ec
ts

SELECT CDTitle, InStock FROM CompactDiscs
WHERE LabelID = 832 ;

START TRANSACTION ISOLATION LEVEL SERIALIZABLE ;
SELECT CDTitle, InStock FROM CompactDiscs
WHERE LabelID = 832 ;

SAVEPOINT Section1 ;
UPDATE CompactDiscs SET InStock = InStock + 2
WHERE LabelID = 832 ;

ROLLBACK TO SAVEPOINT Section1 ;

SELECT CDTitle, InStock FROM CompactDiscs
WHERE LabelID = 832 ;

Project 17-1: Embedding SQL Statements

EXEC SQL BEGIN DECLARE SECTION ;
long v_cdid ; /* input variable for CD identifier */
varchar v_cdtitle[60] ; /* output variable for CD title */
long v_instock ; /* output variable for InStock value */

EXEC SQL END DECLARE SECTION ;

short ind_cdtitle ; /* indicator variable for v_cdtitle */
short ind_instock ; /* indicator variable for v_instock */

EXEC SQL BEGIN DECLARE SECTION ;
long v_cdid ; /* input variable for CD identifier */
varchar v_cdtitle[60] ; /* output variable for CD title */
short ind_cdtitle ; /* indicator variable for v_cdtitle */
long v_instock ; /* output variable for InStock value */
short ind_instock ; /* indicator variable for v_instock */

EXEC SQL END DECLARE SECTION ;

EXEC SQL WHENEVER SQLEXCEPTION GOTO Error1 ;

EXEC SQL SELECT CDTitle, InStock
INTO :v_CDTitle :ind_CDTitle, :v_InStock :ind_InStock
FROM CompactDiscs WHERE CompactDiscID = :v_CDID ;

EXEC SQL BEGIN DECLARE SECTION ;
long v_cdid ; /* input variable for CD identifier */
varchar v_cdtitle[60] ; /* output variable for CD title */
short ind_cdtitle ; /* indicator variable for v_cdtitle */

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:508

long v_instock ; /* output variable for InStock value */
short ind_instock ; /* indicator variable for v_instock */

EXEC SQL END DECLARE SECTION ;
EXEC SQL WHENEVER SQLEXCEPTION GOTO Error1 ;
EXEC SQL SELECT CDTitle, InStock
INTO :v_CDTitle :ind_CDTitle, :v_InStock :ind_InStock
FROM CompactDiscs WHERE CompactDiscID = :v_CDID ;

Project 17-2: Using the SQL Call-Level Interface

SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;

SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc) ;

SQLConnect (hdbc, DBServer, SQL_NTS, DBAdmin, SQL_NTS, AdminPW, SQL_NTS) ;

SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt) ;

SQLExecDirect (hstmt, "DELETE CompactDiscs
WHERE CompactDiscID = 122", SQL_NTS) ;

SQLPrepare (hstmt, "SELECT CDTitle, InStock FROM CompactDiscs
WHERE CompactDiscID = ?", SQL_NTS) ;

SQLBindParameter (hstmt, 1, SQL_PARAMETER_MODE_IN, SQL_INT,
SQL_INT, 3, 0, &v_CDID, 4, &ind_CDID) ;

SQLExecute (hstmt) ;

SQLBindCol (hstmt, 1, SQL_CHAR, &v_CDTitle, 60, &ind_CDTitle) ;
SQLBindCol (hstmt, 2, SQL_INT, &v_InStock, 5, &ind_InStock) ;

SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;
SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc) ;
SQLConnect (hdbc, DBServer, SQL_NTS, DBAdmin, SQL_NTS, AdminPW, SQL_NTS) ;
SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt) ;
SQLExecDirect (hstmt, "DELETE CompactDiscs
WHERE CompactDiscID = 122", SQL_NTS) ;

SQLPrepare (hstmt, "SELECT CDTitle, InStock FROM CompactDiscs
WHERE CompactDiscID = ?", SQL_NTS) ;

SQLBindParameter (hstmt, 1, SQL_PARAMETER_MODE_IN, SQL_INT,
SQL_INT, 3, 0, &v_CDID, 4, &ind_CDID) ;

SQLExecute (hstmt) ;
SQLBindCol (hstmt, 1, SQL_CHAR, &v_CDTitle, 60, &ind_CDTitle) ;
SQLBindCol (hstmt, 2, SQL_INT, &v_InStock, 5, &ind_InStock) ;

508 Appendix C: SQL Code Used in the Book’s Projects

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 509

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:509

C

SQ
L

C
od

e
U

se
d

in
th

e
Bo

ok
’s

Pr
oj

ec
tsThe Inventory Database

You might find that, as you work through the projects in this book, you need

to re-create the Inventory database. This might be as a result of switching to a

different SQL implementation, reinstalling your SQL implementation, or wanting to start

with a fresh database and data. The following SQL statements will allow you to re-create the

Inventory database objects (tables and views) in their entirety. Once you create the necessary

tables, you can use the INSERT statements to add data to them. If you want to be able to copy

the SQL statements directly from a file, you can download the AppC.txt file, which contains the

data definition statements and the INSERT statements.

CREATE TABLE MusicTypes
(TypeID INT, TypeName VARCHAR (20) NOT NULL,
CONSTRAINT un_TypeName UNIQUE (TypeName),
CONSTRAINT pk_MusicTypes PRIMARY KEY (TypeID)) ;

CREATE TABLE CDLabels
(LabelID INT, CompanyName VARCHAR (60) DEFAULT 'Independent' NOT NULL,
CONSTRAINT pk_CDLabels PRIMARY KEY (LabelID)) ;

CREATE TABLE CompactDiscs
(CompactDiscID INT, CDTitle VARCHAR (60) NOT NULL,
LabelID INT NOT NULL, InStock INT NOT NULL,
CONSTRAINT pk_CompactDiscs PRIMARY KEY (CompactDiscID),
CONSTRAINT fk_LabelID FOREIGN KEY (LabelID) REFERENCES CDLabels,
CONSTRAINT ck_InStock CHECK (InStock > 0 AND InStock < 50)) ;

CREATE TABLE CompactDiscTypes
(CompactDiscID INT, MusicTypeID INT,
CONSTRAINT pk_CompactDiscTypes PRIMARY KEY (CompactDiscID, MusicTypeID),
CONSTRAINT fk_CompactDiscID_01 FOREIGN KEY (CompactDiscID)

REFERENCES CompactDiscs,
CONSTRAINT fk_MusicTypeID FOREIGN KEY (MusicTypeID)

REFERENCES MusicTypes) ;

CREATE TABLE Artists
(ArtistID INT, ArtistName VARCHAR (60) NOT NULL,
PlaceOfBirth VARCHAR (60) DEFAULT 'Unknown' NOT NULL,
CONSTRAINT pk_Artists PRIMARY KEY (ArtistID)) ;

AppC.txt

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:510

510 Appendix C: SQL Code Used in the Book’s Projects

CREATE TABLE ArtistCDs
(ArtistID INT, CompactDiscID INT,
CONSTRAINT pk_ArtistCDs PRIMARY KEY (ArtistID, CompactDiscID),
CONSTRAINT fk_ArtistID FOREIGN KEY (ArtistID) REFERENCES Artists,
CONSTRAINT fk_CompactDiscID_02 FOREIGN KEY (CompactDiscID)

REFERENCES CompactDiscs) ;

CREATE VIEW CDsInStock
AS SELECT CDTitle, InStock FROM CompactDiscs
WHERE InStock > 10 WITH CHECK OPTION ;

CREATE VIEW CDPublishers (CDTitle, Publisher)
AS SELECT CompactDiscs.CDTitle, CDLabels.CompanyName
FROM CompactDiscs, CDLabels
WHERE CompactDiscs.LabelID = CDLabels.LabelID ;

--Insert data into the CDLabels table
INSERT INTO CDLabels VALUES (827, 'Private Music') ;
INSERT INTO CDLabels VALUES (828, 'Reprise Records') ;
INSERT INTO CDLabels VALUES (829, 'Asylum Records') ;
INSERT INTO CDLabels VALUES (830, 'Windham Hill Records') ;
INSERT INTO CDLabels VALUES (831, 'Geffen') ;
INSERT INTO CDLabels VALUES (832, 'MCA Records') ;
INSERT INTO CDLabels VALUES (833, 'Decca Record Company') ;
INSERT INTO CDLabels VALUES (834, 'CBS Records') ;
INSERT INTO CDLabels VALUES (835, 'Capitol Records') ;
INSERT INTO CDLabels VALUES (836, 'Sarabande Records') ;
--End inserts for the CDLabels table

--Insert data into the CompactDiscs table
INSERT INTO CompactDiscs VALUES (101, 'Famous Blue Raincoat', 827, 13) ;
INSERT INTO CompactDiscs VALUES (102, 'Blue', 828, 42) ;
INSERT INTO CompactDiscs VALUES (103, 'Court and Spark', 829, 22) ;
INSERT INTO CompactDiscs VALUES (104, 'Past Light', 830, 17) ;
INSERT INTO CompactDiscs VALUES (105, 'Kojiki', 831, 6) ;
INSERT INTO CompactDiscs VALUES
(106, 'That Christmas Feeling', 832, 8) ;

INSERT INTO CompactDiscs VALUES
(107, 'Patsy Cline: 12 Greatest Hits', 832, 32) ;

INSERT INTO CompactDiscs VALUES
(108, 'Carreras Domingo Pavarotti in Concert', 833, 27) ;

INSERT INTO CompactDiscs VALUES
(109, 'After the Rain: The Soft Sounds of Erik Satie', 833, 21) ;

INSERT INTO CompactDiscs VALUES
(110, 'Out of Africa', 832, 29) ;

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL: A Beginner’s Guide 511

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:511

C

SQ
L

C
od

e
U

se
d

in
th

e
Bo

ok
’s

Pr
oj

ec
ts

INSERT INTO CompactDiscs VALUES
(111, 'Leonard Cohen The Best Of', 834, 12) ;

INSERT INTO CompactDiscs VALUES
(112, 'Fundamental', 835, 34) ;

INSERT INTO CompactDiscs VALUES
(113, 'Bob Seger and the Silver Bullet Band Greatest Hits', 835, 16) ;

INSERT INTO CompactDiscs VALUES
(114, 'Blues on the Bayou', 832, 27) ;

INSERT INTO CompactDiscs VALUES
(115, 'Orlando', 836, 5) ;
--End inserts for the CompactDiscs table

--Insert data into the MusicTypes table
INSERT INTO MusicTypes VALUES (11, 'Blues') ;
INSERT INTO MusicTypes VALUES (12, 'Jazz') ;
INSERT INTO MusicTypes VALUES (13, 'Pop') ;
INSERT INTO MusicTypes VALUES (14, 'Rock') ;
INSERT INTO MusicTypes VALUES (15, 'Classical') ;
INSERT INTO MusicTypes VALUES (16, 'New Age') ;
INSERT INTO MusicTypes VALUES (17, 'Country') ;
INSERT INTO MusicTypes VALUES (18, 'Folk') ;
INSERT INTO MusicTypes VALUES (19, 'International') ;
INSERT INTO MusicTypes VALUES (20, 'Soundtracks') ;
INSERT INTO MusicTypes VALUES (21, 'Christmas') ;
--End inserts for the MusicTypes table

--Insert data into the CompactDiscTypes table
INSERT INTO CompactDiscTypes VALUES (101, 18) ;
INSERT INTO CompactDiscTypes VALUES (101, 13) ;
INSERT INTO CompactDiscTypes VALUES (102, 11) ;
INSERT INTO CompactDiscTypes VALUES (102, 18) ;
INSERT INTO CompactDiscTypes VALUES (102, 13) ;
INSERT INTO CompactDiscTypes VALUES (103, 18) ;
INSERT INTO CompactDiscTypes VALUES (103, 13) ;
INSERT INTO CompactDiscTypes VALUES (104, 16) ;
INSERT INTO CompactDiscTypes VALUES (105, 16) ;
INSERT INTO CompactDiscTypes VALUES (106, 21) ;
INSERT INTO CompactDiscTypes VALUES (107, 13) ;
INSERT INTO CompactDiscTypes VALUES (107, 17) ;
INSERT INTO CompactDiscTypes VALUES (108, 13) ;
INSERT INTO CompactDiscTypes VALUES (108, 15) ;
INSERT INTO CompactDiscTypes VALUES (109, 15) ;
INSERT INTO CompactDiscTypes VALUES (110, 20) ;
INSERT INTO CompactDiscTypes VALUES (111, 13) ;
INSERT INTO CompactDiscTypes VALUES (111, 18) ;

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:512

INSERT INTO CompactDiscTypes VALUES (112, 11) ;
INSERT INTO CompactDiscTypes VALUES (112, 13) ;
INSERT INTO CompactDiscTypes VALUES (113, 13) ;
INSERT INTO CompactDiscTypes VALUES (113, 14) ;
INSERT INTO CompactDiscTypes VALUES (114, 11) ;
INSERT INTO CompactDiscTypes VALUES (115, 20) ;
--End inserts for the CompactDiscTypes table

--Insert data into the Artists table
INSERT INTO Artists VALUES
(2001, 'Jennifer Warnes', 'Seattle, Washington, USA') ;

INSERT INTO Artists VALUES
(2002, 'Joni Mitchell', 'Fort MacLeod, Alberta, Canada') ;

INSERT INTO Artists VALUES
(2003, 'William Ackerman', 'Germany') ;

INSERT INTO Artists VALUES
(2004, 'Kitaro', 'Toyohashi, Japan') ;

INSERT INTO Artists VALUES
(2005, 'Bing Crosby', 'Tacoma, Washington, USA') ;

INSERT INTO Artists VALUES
(2006, 'Patsy Cline', 'Winchester, Virginia, USA') ;

INSERT INTO Artists VALUES
(2007, 'Jose Carreras', 'Barcelona, Spain') ;

INSERT INTO Artists VALUES
(2008, 'Luciano Pavarotti', 'Modena, Italy') ;
INSERT INTO Artists VALUES
(2009, 'Placido Domingo', 'Madrid, Spain') ;

INSERT INTO Artists VALUES
(2010, 'Pascal Roge', 'Unknown') ;

INSERT INTO Artists VALUES
(2011, 'John Barry', 'Unknown') ;

INSERT INTO Artists VALUES
(2012, 'Leonard Cohen', 'Montreal, Quebec, Canada') ;

INSERT INTO Artists VALUES
(2013, 'Bonnie Raitt', 'Burbank, California, USA') ;

INSERT INTO Artists VALUES
(2014, 'Bob Seger', 'Dearborn, Michigan, USA') ;

INSERT INTO Artists VALUES
(2015, 'Silver Bullet Band', 'Does not apply') ;

INSERT INTO Artists VALUES
(2016, 'B.B. King', 'Indianola, Mississippi, USA') ;

INSERT INTO Artists VALUES
(2017, 'David Motion', 'Unknown') ;

INSERT INTO Artists VALUES
(2018, 'Sally Potter', 'Unknown') ;

--End inserts for the Artists table

512 Appendix C: SQL Code Used in the Book’s Projects

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

--Insert data into the ArtistCDs table
INSERT INTO ArtistCDs VALUES (2001, 101) ;
INSERT INTO ArtistCDs VALUES (2002, 102) ;
INSERT INTO ArtistCDs VALUES (2002, 103) ;
INSERT INTO ArtistCDs VALUES (2003, 104) ;
INSERT INTO ArtistCDs VALUES (2004, 105) ;
INSERT INTO ArtistCDs VALUES (2005, 106) ;
INSERT INTO ArtistCDs VALUES (2006, 107) ;
INSERT INTO ArtistCDs VALUES (2007, 108) ;
INSERT INTO ArtistCDs VALUES (2008, 108) ;
INSERT INTO ArtistCDs VALUES (2009, 108) ;
INSERT INTO ArtistCDs VALUES (2010, 109) ;
INSERT INTO ArtistCDs VALUES (2011, 110) ;
INSERT INTO ArtistCDs VALUES (2012, 111) ;
INSERT INTO ArtistCDs VALUES (2013, 112) ;
INSERT INTO ArtistCDs VALUES (2014, 113) ;
INSERT INTO ArtistCDs VALUES (2015, 113) ;
INSERT INTO ArtistCDs VALUES (2016, 114) ;
INSERT INTO ArtistCDs VALUES (2017, 115) ;
INSERT INTO ArtistCDs VALUES (2018, 115) ;
--End inserts for the ArtistCDs table

SQL: A Beginner’s Guide 513

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / C
Blind Folio C:513

C

SQ
L

C
od

e
U

se
d

in
th

e
Bo

ok
’s

Pr
oj

ec
ts

P:\010Comp\Begin8\885-7\appc.vp
Monday, April 07, 2003 2:32:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / Front Matter
Blind Folio FM:ii

P:\010Comp\Begin8\885-7\fm.vp
Tuesday, April 08, 2003 12:33:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:515

Index
Symbols

% (percentage sign), 211

& (ampersand), 438

* (asterisk), 152, 371

_ (underscore character), 211

| (vertical bar symbol), 41

<> (angle brackets), 39

{} (curly brackets), 50

::= (placeholder separator), 90

+ (addition operator), 247

– (subtraction operator), 247

* (multiplication operator), 247

/ (division operator), 247

> (greater-than operator), 96, 114, 203

< (less-than operator), 114, 203

= (equals operator), 202, 203

<> (not-equals operator), 161, 203

>= (greater-than-or-equals operator), 203

<= (less-than-or-equals operator), 203

A
ABSOLUTE option, 376

access levels, 394

ACID test, 390–391

active database, 338

ActiveX Data Object (ADO), 436

ad hoc queries, 18, 20

addition operator (+), 247

ADMIN OPTION FOR clause, 142

AFTER keyword, 341, 346

aggregate functions. See set functions

<alias options> placeholder, 343

aliases, 265–266

ALL keyword, 151–152

ALL predicate, 224, 227–228, 290

ALL PRIVILEGES option, 135, 140

allocation handles, 437–440

connection handle, 439

environment handle, 437–439

statement handle, 439–440

AllocHandle() function, 437–440

ALTER FUNCTION statement, 319

ALTER PROCEDURE statement, 319

ALTER TABLE statement, 48, 67–68

examples of, 67–68

project using, 70

syntax for, 67

table constraints and, 67, 101

ALTER VIEW statement, 121

American National Standards Institute (ANSI),

4, 14, 308

ampersand character (&), 438

515

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:516

AND CHAIN clause, 409, 410

AND keyword

CHECK constraints and, 97

predicates combined with, 158, 159, 203,

206, 228

AND NO CHAIN clause, 409, 410

ANY predicate, 224, 225–226, 289

application programming interface (API), 435

approximate numeric data types, 55

AS keyword, 113, 153, 313, 330

ASC keyword, 172, 173, 369

ASENSITIVE option, 367

assertions, 74, 99

asterisk (*), 152, 371

ATOMIC keyword, 342, 345, 346

attributes, 5

AUTHORIZATION clause, 432

authorization identifiers, 29, 126–127

schemas and, 40

special values and, 130

SQL sessions and, 127–129

types of, 126–127

AUTHORIZATION keyword, 40

AVG function, 239–240

examples of using, 118, 152–153

B
base tables, 32, 34

types of, 48–49

BEFORE keyword, 341

BEGIN...END block, 321–322, 342, 346, 353

BEGIN DECLARE SECTION statement, 424

BEGIN keyword, 320, 321–322

BEGIN TRANSACTION statement, 402

BETWEEN operator, 98

BETWEEN predicate, 206–208

binary string data types, 53

BindCol() function, 442–443

BindParameter() function, 441–442

bit string data types, 53

Boolean data type, 59, 60

BOOLEAN keyword, 59

Boolean logic, 60

C
C programming language, 423

CALL statement, 309, 313–314, 316–318

call-level interface (CLI), 18, 435–446

allocation handles and, 437–440

executing SQL statements with, 440–441

host variables and, 438, 441–442

overview of, 435–436

project on using, 443–446, 508

retrieving SQL data with, 442–443

candidate key, 8, 9, 80–81

Cartesian product table, 262

CASCADE option, 41, 68, 91, 139

CASE value expression, 249–252

Q & A about, 251–252

CAST value expression, 60, 252–253, 425

catalogs, 29, 30–36

components of, 31

information schema in, 32

schema objects in, 32–34

schemas in, 31–32

structure of, 30–31

character sets, 33, 34

character string data types, 53

CHECK constraints, 96–101

adding, 101

assertions and, 99

domains and, 99–100

syntax for, 96–98

CLI. See call-level interface

client modules. See SQL client modules

CLOSE statement, 364, 374

Codd, E. F., 5

collation, 33

columns

data types for, 52–62

default values for, 63–64, 65, 69

integrity constraints for, 74–75

join operations and, 270–272

referencing and referenced, 85

view definitions and, 108

comma-separated joins, 262–265

COMMIT statement, 392–393, 408, 409–410

committing transactions, 409–410

516 SQL: A Beginner’s Guide

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

comparison operators, 60, 96, 202–203, 291

comparison predicates, 202–208

examples of using, 203–206

quantified, 224–228

types of, 202–203

compound statements, 321–322

condition joins, 272–278

inner joins, 273–275

outer joins, 275–278

conditional statements, 322–324

conditions, 399

connection handle, 437, 439

constraints, 33, 74–103

adding, 92–96, 101

categories of, 74

CHECK, 96–101

data integrity and, 74

deferrability of, 402–405

FOREIGN KEY, 83–91

mastery check on, 102–103, 458–459

NOT NULL, 76–77

PRIMARY KEY, 80–82

projects on using, 92–96, 101, 497–498

Q & A about, 83, 88

referential, 83

types of, 74–75

UNIQUE, 77–79, 82

constructed data types, 52

CONTINUE action, 428

control statements, 321–326

compound, 321–322

conditional, 322–324

looping, 324–326

overview of, 321

Q & A about, 324

Core SQL conformance, 16, 19

correlated subqueries, 293–294

correlation names, 265–266

COUNT function, 234–236

CREATE ASSERTION statement, 99

CREATE DATABASE statement, 42

CREATE FUNCTION statement, 310–311, 330

CREATE GLOBAL TEMPORARY TABLE

statement, 48

CREATE INDEX statement, 69

CREATE LOCAL TEMPORARY TABLE

statement, 48

CREATE PROCEDURE statement, 310, 313

input parameters, 315–318

output parameters, 328–329

CREATE ROLE statement, 134

CREATE SCHEMA statement, 31, 39–40

CREATE TABLE statement, 48

data type definition, 61

default values, 63–64

examples of, 51, 61

syntax for, 49–51

CREATE TRIGGER statement, 341–343

delete triggers and, 352–354

insert triggers and, 344–347

REFERENCING clause, 341, 342–343,

348–349, 352

syntax for, 341–342

update triggers and, 347–352

CREATE TYPE statement, 62–63

CREATE VIEW statement, 112–116

SELECT statement, 113–116

WITH CHECK OPTION clause, 119–120

created local temporary tables, 48–49

cross joins, 267

CUBE operator, 165, 168–169

CURRENT OF option, 380–381, 382

CURRENT_DATE function, 130

CURRENT_ROLE special value, 130, 254

CURRENT_TIMESTAMP function, 130–131

CURRENT_TIME function, 130, 379

CURRENT_USER special value, 130, 254, 379

cursors, 362–387

closing, 374

declaring, 363–364, 366–373

embedded statements related to, 364, 365

examples of declaring, 370–373

holdability options, 368

impedance mismatches and, 425

mastery check on, 386–387, 481–483

opening, 364, 374

ordering options, 369

overview of, 362–363

positioned DELETE statement, 382

positioned UPDATE statement, 380–382

Index 517

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:517

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:518

project on working with, 383–386, 506

Q & A about, 379

read-only, 370

retrieving data from, 374–379

returnability options, 368–369

scrollability options, 367

sensitivity options, 367

SQL client modules and, 364, 433

syntax for, 366–370

updatability options, 369–370

D
data

deleting, 69, 194–195, 299

denormalizing, 10

inserting, 182–188, 297–298

integrity of, 12, 74

modifying, 182–199, 296–299

normalizing, 6–10, 12–13

querying, 150–180

updating, 188–193, 298–299

data access methods, 418–448

call-level interface, 435–446

direct invocation, 418–419

embedded SQL, 419–432

mastery check on, 446–448, 486–488

projects on, 429–432, 443–446

SQL client modules, 432–435

data anomalies, 395–397

dirty reads, 395, 396

nonrepeatable reads, 395–396, 397

phantom reads, 396–397, 398

summary table of, 399

Data Control Language (DCL), 17

Data Definition Language (DDL), 16, 403

data host variables. See host variables

data integrity, 12, 74

See also constraints

Data Manipulation Language (DML), 17, 403

data models, 12, 94

data types, 5, 52–62

Boolean, 59, 60

constructed, 52

datetime, 56–57

example of using, 61

interval, 57–59

numeric, 55–56

predefined, 52, 60

Q & A about, 60

string, 53–55

user-defined, 53, 62–63

database objects

privileges assigned to, 130–132

See also schema objects

databases, 4

creating, 42, 43

models of, 4–5

project on connecting to, 22–24, 496

SQL environment and, 35–36

See also relational databases

Databases node, 35

DATE data type, 56

datetime data types, 56–57

descriptions/examples of, 57

types of, 56

datetime value functions, 244–245

day-time intervals, 57

DCL statements, 17

DDL statements, 16, 403

DECLARE CURSOR statement, 364, 366–373

basic syntax for, 366

examples of using, 370–373

holdability options, 368

optional syntax elements, 366–370

ordering options, 369

returnability options, 368–369

scrollability options, 367

sensitivity options, 367

updatability options, 369–370

DECLARE statement, 321

declared local temporary tables, 49

declaring

cursors, 363–364, 366–373

host variables, 423–424

variables, 319–321

DEFAULT keyword, 63

deferrable constraints, 402–405

DEFERRED keyword, 405

DELETE FROM clause, 194

518 SQL: A Beginner’s Guide

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DELETE privilege, 131

DELETE statement, 69, 194–195

cursor declarations and, 369–370

examples of using, 194–195

mastery check on, 199, 468–469

positioned, 382

procedures containing, 318

project using, 195–197

subqueries used in, 299

syntax for, 194

triggers and, 352–354

delete triggers, 352–354

project on creating, 354–357

syntax for, 352

deleting

data, 69, 194–195, 299, 318

functions, 319

procedures, 319

roles, 133–134

schemas, 31, 40–41

tables, 68, 70

triggers, 344

view definitions, 121

delimited identifiers, 37–38

denormalizing data, 10

<derived column> placeholder, 152–153

derived tables, 34, 48

DESC keyword, 172, 173, 369

diagnostics size, 399–400

direct invocation, 17, 18, 362, 418–419

direct subtype, 132

dirty reads, 395, 396

DISTINCT keyword, 151–152, 155–156

distinct types, 62, 308

division operator (/), 247

DML statements, 17, 403

domain constraints, 74, 99–100

domains, 5, 33

CHECK constraint and, 100–101

SQL vs. relational model, 34

syntax for creating, 100

DROP FUNCTION statement, 319

DROP PROCEDURE statement, 319

DROP ROLE statement, 134

DROP SCHEMA statement, 31, 40–41

DROP TABLE statement, 48, 68, 70

DROP TRIGGER statement, 344, 350

DROP VIEW statement, 121

E
ELSE clause, 250, 324

ELSE keyword, 322–323

ELSEIF clause, 324

embedded SQL, 18, 362, 419–432

compiling programs with, 420–421

data retrieval with, 424–427

error handling with, 427–428

EXEC SQL statement and, 364, 422

guidelines for using, 421–422

host variables used with, 423–424

null values retrieved with, 426–427

overview of, 419–420

prefixes and terminators for, 422

programming languages using, 420

project on using, 429–432, 507–508

Q & A about, 425

END DECLARE SECTION statement, 424

END keyword, 320, 321–322

END LOOP keyword, 324

Entry level conformance, 16

environment handle, 437–439

equals sign (=), 202, 203

equi-joins, 263–264, 272–273

error handling, 427–428

exact numeric data types, 55

EXEC SQL statement, 364

ExecDirect() function, 440

Execute() function, 441

EXECUTE privilege, 132

EXECUTE statement, 314

executing SQL statements, 17–18, 440–441

execution context, 339–340

existential quantifiers, 224

EXISTS predicate, 221–223

subqueries used in, 288–289, 293

expressions

query, 116

value, 246–253

Index 519

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:519

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:520

F
<fetch orientation> placeholder, 375

FETCH statement, 364, 374–379

examples of using, 376–379

orientation options, 375–376

overview of, 374–375

first normal form, 7–8

FIRST option, 376

flags, 76

floating-point numbers, 55

FOR EACH clause, 342, 345, 349, 352

FOR keyword, 369

FOR UPDATE clause, 381–382

FOREIGN KEY constraints, 83–91

guidelines for creating, 85

MATCH clause, 88–90

multiple columns and, 87–88

<referential triggered action> clause, 90–91

syntax for, 85–87

FROM clause, 153–156

FETCH statement and, 375

view definitions and, 113, 115

full outer joins, 275–276

fully qualified names, 38

functions, 33, 62, 234–245, 330–333

AVG, 239–240

CLI routines and, 435

COUNT, 234–236

creating, 310–311, 330–333

datetime, 244–245

deleting, 319

LOWER, 243–244

mastery check on, 258–259, 471–473

MAX, 236–238

MIN, 236–238

modifying, 319

procedures compared to, 309

projects on, 255–258, 332–333, 501–502, 504

set, 234–240

string, 241–244

SUBSTRING, 242–243

SUM, 239

UPPER, 243–244

value, 241–245

See also procedures

G
global temporary tables, 48

GOTO action, 428

GRANT clause, 135, 141

GRANT OPTION FOR clause, 139, 140

GRANT statement, 132, 134–138, 141–142

GRANTED BY clause, 139, 141

granting

privileges, 132, 134–138

roles, 141–142

greater-than operator (>), 96, 114, 203

greater-than-or-equals operator (>=), 203

GROUP BY clause, 165–169

<grouping specification> placeholder, 165

GUI applications, 20

H
HAVING clause, 170–171

subqueries in, 286

hierarchical databases, 4

holdability, cursor, 368

host variables, 375, 379, 423–424

CLI and, 438, 441–442

declaring, 423–424

indicator, 426–427

I
identifiers, 37–38

IF...ELSE statement, 322

IF...END IF statement, 322

IF...THEN...ELSE statement, 322

IF clause, 324

IF keyword, 322–323

IF statement, 322, 325

IMMEDIATE keyword, 405

impedance mismatch, 60, 362, 418, 425

IN keyword, 315

IN operator, 98

IN predicate, 218–221

subqueries used in, 287–288, 292

indexes, 69

indicator host variables, 426–427

520 SQL: A Beginner’s Guide

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Information Schema, 32

inner joins, 273–275

INOUT keyword, 315

input parameters, 315–318

input/output parameters, 315

INSENSITIVE option, 367

INSERT INTO clause, 182–186

INSERT keyword, 346

INSERT privilege, 131, 137, 140

INSERT statement, 182–188

examples of using, 183–186

executing multiple, 192–193

mastery check on, 198, 466–467

procedures containing, 318

project using, 175–176, 195–197

Q & A about, 192–193

SELECT statement and, 186–188

subqueries used in, 297–298

syntax for, 182

triggers and, 344–347

VALUES clause, 182–186

insert triggers, 344–347

project on creating, 354–357

syntax for, 345

inserting SQL data, 182–188

procedures for, 318

project on, 195–197

SELECT statement for, 186–188

subqueries for, 297–298

through a view, 193

INTEGER data type, 425

integrity constraints, 74–75

categories of, 74

types of, 74–75

See also constraints

interactive SQL, 362, 411, 418–419

International Organization for Standardization

(ISO), 4, 308

interval data type, 57–59

INTERVAL keyword, 58

INTO clause, 426

Inventory database, SQL statements, 509–513

IS FALSE operator, 160

IS TRUE operator, 160

IS UNKNOWN operator, 160

isolation levels, 394–399

choosing for transactions, 397–399

data anomalies and, 395–397

options specified for, 394

J
join operations, 262–284

basic performance of, 262–265

comma-separated joins, 262–265

condition joins, 272–278

correlated subqueries and, 293, 294

correlation names and, 265–266

cross joins, 267

equi-joins, 263–264, 272–273

inner joins, 273–275

mastery check on, 283–284, 473–474

multiple tables and, 266–267

named column joins, 272, 273

natural joins, 271–272, 273

outer joins, 275–278

overview of, 262

project on using, 281–283, 502

Q & A about, 281

SELECT statement and, 262–265, 294

self-joins, 268–269

shared column names and, 270–272

union joins, 281

UNION operator and, 279–281

See also subqueries

K
keywords, 37, 490–494

nonreserved, 493–494

reserved, 490–492

See also specific keywords

L
LANGUAGE clause, 432

LAST option, 376

LEAVE keyword, 324

left outer joins, 275–276

Index 521

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:521

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:522

less-than operator (<), 114, 203

less-than-or-equals operator (<=), 203

LIKE predicate, 211–214

combining, 214, 228

examples of using, 212–214

special characters used in, 211, 212

LOCAL keyword, 393

local variables, 319–321

LOCALTIME function, 130

LOCALTIMESTAMP function, 130

logical model, 12

LOOP keyword, 324

LOOP statement, 324–326

looping statements, 324–326

LOWER function, 243–244

M
many-to-many relationship, 10, 11

mastery checks, 452–488

on constraints, 102–103, 458–459

on cursors, 386–387, 481–483

on data access methods, 446–448, 486–488

on DELETE statement, 199, 468–469

on functions, 258–259, 471–473

on INSERT statement, 198, 466–467

on join operations, 283–284, 473–474

on modifying data, 198–199, 466–469

on predicates, 230–232, 469–471

on procedures, 333–335, 476–478

on queries, 178–180, 464–466

on relational databases, 25, 452–453

on security, 145–146, 462–463

on SELECT statement, 178–180, 464–466

on SQL environment, 44–45, 453–455

on SQL-invoked routines, 333–335, 476–478

on subqueries, 303–304, 475–476

on tables, 71–72, 455–457

on transactions, 414–416, 483–485

on triggers, 357–359, 478–481

on UPDATE statement, 198–199, 468

on value expressions, 258–259, 471–473

on views, 123–124, 460–462

MATCH clause, 88–90

MATCH FULL option, 89

MATCH PARTIAL option, 89

MATCH SIMPLE option, 89

mathematic operators, 246, 247

MAX function, 236–238

metadata, 4

methods, 62, 308

MIN function, 236–238

<mode> placeholder, 394

modifying data, 182–199

deleting data, 194–195

inserting data, 182–188, 192–193

mastery check on, 198–199, 466–469

procedures used for, 318

project on, 195–197, 500

Q & A about, 192–193

subqueries used for, 296–299

updating data, 188–192, 193

module binding, 18

MODULE clause, 432

modules, 49, 308

multiplication operator (*), 247

N
name objects, 37–38

named column joins, 272, 273

NAMES ARE clause, 432

namespace, 30

national character string data types, 53

natural joins, 271–272, 273

nested subqueries, 294–296

network databases, 4

NEXT option, 375

NO ACTION option, 91

NO SCROLL option, 367

nonprocedural language, 14

nonrepeatable reads, 395–396, 397

nonreserved keywords, 37, 493–494

normal forms, 7

normalizing data, 6–10

first normal form, 7–8

project on, 12–13

second normal form, 8

third normal form, 8–9

NOT keyword, 161, 203, 226

BETWEEN predicate and, 207

EXISTS predicate and, 222

522 SQL: A Beginner’s Guide

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

IN predicate and, 220

LIKE predicate and, 213, 214

NULL predicate and, 210

NOT NULL constraints, 76–77, 83

deferrability of, 402–403

project on using, 92–96

not-equals operator (<>), 161, 203, 226

NOTFOUND condition, 428

NULL constraint, 76

NULL predicate, 208–211

null values, 59, 69, 76, 138

predicate for returning, 208–211

retrieving with embedded SQL, 426–427

nullability characteristic, 76

numeric data types, 55–56

descriptions/examples of, 56

types of, 55

numeric value expressions, 246–249

examples of, 247–249

operators used in, 247

O
object identifiers, 37–38

<object name> placeholder, 136

<object type> placeholder, 135–136

object-oriented programming (OOP), 15, 62

object-relational database language, 15

objects

database, 130–132

name, 37–38

schema, 32–34

Ocelot, 23, 36

ON clause, 135–136, 139, 273, 352

ON DELETE clause, 90, 91

ON UPDATE clause, 90, 91

one-to-many relationship, 10, 11

one-to-one relationship, 10, 11

Open Database Connectivity (ODBC), 436

OPEN statement, 364, 374

operators

comparison, 60, 96, 202–203, 291

mathematic, 246, 247

OR keyword, 158, 203, 206, 228

Oracle

downloading a trial copy, 23

parameter declarations, 316

PL/SQL language, 20

SQL*Plus Worksheet interface, 20, 22

triggers, 338, 345, 349

ORDER BY clause, 172–175, 369

ordering, cursor, 369

OUT keyword, 315, 328

outer joins, 275–278

examples of, 276–278

types of, 275–276

output parameters, 315, 328–329

P
packages, 16, 338

parameters, 308

adding to procedures, 315–318, 328–329

defining for functions, 330

input, 315–318

output, 328–329

SQLSTATE status, 433

supported by SQL, 315

percentage sign (%), 211

persistent base tables, 48

persistent stored module (PSM), 308

phantom reads, 396–397, 398

physical model, 12

PL/SQL language, 20

positioned DELETE statement, 382

positioned UPDATE statement, 380–382

precision, 55

predefined data types, 52, 60

predicates, 202–232

ALL predicate, 224, 227–228

ANY predicate, 224, 225–226

BETWEEN predicate, 206–208

CHECK constraints and, 96–97

combining, 203, 206, 227–228

comparing data with, 202–208

defining search conditions with, 157–161

examples of using, 162–164

EXISTS predicate, 221–223, 288–289

Index 523

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:523

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:524

IN predicate, 218–221, 287–288

LIKE predicate, 211–214

mastery check on, 230–232, 469–471

NULL predicate, 208–211

projects on using, 215, 228–230, 500–501

Q & A about, 223–224, 227–228

quantified comparison, 224–228, 289–290

SELECT statements and, 215–217

SOME predicate, 224, 225–226

subqueries used with, 217, 228–230,

287–290, 292

WHERE clause and, 157–161, 202–208

Prepare() function, 440–441

primary key, 80–82, 88

PRIMARY KEY constraints, 80–82, 83

PRIOR option, 375

privileges

database objects and, 130–132

granting, 132, 134–138

managing, 143–144

revoking, 132, 138–140

types of, 131–132

procedural language, 14

procedures, 33, 312–329

altering, 319

control statements and, 321–326

creating, 310, 312–313, 326–328

deleting, 319

functions compared to, 309

input parameters added to, 315–318

invoking, 313–314

local variables added to, 319–321

mastery check on, 333–335, 476–478

modifying data using, 318

output parameters added to, 328–329

project on creating, 326–328, 503–504

Q & A about, 319

SQL client modules and, 433

See also functions

projects, 496–513

on altering/deleting tables, 70, 497

on call-level interface, 443–446, 508

on connecting to a database, 22–24, 496

on constraints, 92–96, 101, 497–498

on cursors, 383–386, 506

on database creation, 43–44, 496

on embedded SQL, 429–432, 507–508

on functions, 255–258, 332–333,

501–502, 504

on identifying relationships, 12–13

on join operations, 281–283, 502

on modifying data, 195–197, 500

on normalizing data, 12–13

on predicates, 215, 228–230, 500–501

on procedures, 326–328, 503–504

on querying databases, 175–178, 499–500

on roles and privileges, 143–144, 499

on schema creation, 43–44, 496

on SQL-invoked routines, 326–328, 332–333,

503–504

on subqueries, 299–303, 503

on table creation, 65–66, 497

on transactions, 411–414, 506–507

on triggers, 354–357, 504–505

on value expressions, 255–258, 501–502

on views, 122–123, 498

PUBLIC authorization identifier, 127, 136–137, 141

Q
qualified names, 38

quantified comparison predicates, 224–228

ALL predicate, 227, 228

ANY predicate, 225–226

combining, 227–228

Q & A about, 227–228

SOME predicate, 225–226

subqueries used in, 289–290

queries, 150–180

ad hoc, 18, 20

data retrieval and, 150–156

defining search conditions for, 157–164

embedded SQL and, 424–426

group search conditions for, 170–171

grouping results of, 165–169

join operations and, 281–283

mastery check on, 178–180, 464–466

project on using, 175–178, 499–500

524 SQL: A Beginner’s Guide

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Q & A about, 152, 174

sorting results of, 172–175

See also SELECT statement; subqueries

Query Analyzer, SQL Server, 20, 21, 418, 419

query expressions, 113, 116

query specifications, 116–117

R
RDBMS. See relational database management system

READ COMMITTED option, 394, 398

READ ONLY option, 369–370, 394, 398

READ UNCOMMITTED option, 394, 398, 399

READ WRITE option, 394, 398

records, 6

referenced tables/columns, 85

REFERENCES privilege, 132, 137

REFERENCING clause, 341, 342–343,

348–349, 352

referencing tables/columns, 85

<referential action> placeholder, 90

referential constraints, 83

project on using, 92–96

referential integrity, 84

<referential triggered action> clause, 90–91

regular identifiers, 37

relational database management system

(RDBMS), 4, 19–22

connecting to, 22–24, 496

creating a database, 42, 43

overview of, 19–20

product implementations and, 20–22

SQL standards and, 20–21

relational databases, 4–13

components of, 5–6

connecting to, 22–24

creating, 42, 43

denormalization of, 10

mastery check on, 25, 452–453

normalization of, 6–10, 12–13

origins of, 5

Q & A about, 12

relationships of, 10–11

terminology of, 6

relational language, 14

relations, 5, 12

relationships, 10–11

data integrity and, 12

project on identifying, 12–13

RELATIVE option, 376

RELEASE SAVEPOINT statement, 392, 408

REPEATABLE READ option, 394, 398

reserved keywords, 37, 490–492

RESTRICT option, 41, 68, 91, 139

result sets, 362

RETURN statement, 330

returnability, cursor, 368–369

RETURNS clause, 330

REVOKE statement, 132, 138–140, 142

revoking

privileges, 132, 138–140

roles, 142

right outer joins, 275–276

role names, 126, 127–129

roles

creating, 133–134

deleting, 134

granting, 141–142

managing, 143–144

revoking, 142

ROLLBACK statement, 392, 393, 406, 408, 410–411

rolling back transactions, 410–411

ROLLUP operator, 165, 168–169

<routine body> placeholder, 310

routines. See SQL-invoked routines

ROW keyword, 343

rows

duplicated in join operations, 268

subqueries returning multiple, 286–291

S
SAVEPOINT statement, 391, 406–407, 411

savepoints

creating, 406–407

diagram of using, 407

releasing, 408

scale, 55

Index 525

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:525

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:526

SCHEMA clause, 432

schema objects, 32–34

privileges assigned to, 130–132

types of, 32–33

schemas, 31–32

creating, 31, 39–40

deleting, 31, 40–41

Information Schema, 32

objects defined in, 32–34

project on creating, 43–44, 496

SCROLL option, 367

scrollability, cursor, 367

<search condition> clause, 96, 97, 157

search conditions

HAVING clause for group, 170–172

operators used in, 160

predicates and, 157–161

WHERE clause for defining, 157–164

second normal form, 8

security, 126–146

authorization identifiers and, 126–129

database objects and, 130–132

mastery check on, 145–146, 462–463

overview of, 126–127

privileges and, 130–132, 134–141

project on managing, 143–144, 499

Q & A about, 130, 138

roles and, 133–134, 141–143

SQL sessions and, 127–129

SELECT clause, 113, 114–115

ALL keyword, 151–152

DISTINCT keyword, 151–152, 155–156

subqueries in, 286, 291

<select list> placeholder, 152

SELECT privilege, 131, 136–137, 139

SELECT statement, 113, 150–180

asterisk used with, 152, 371

cursors and, 374, 379

FROM clause, 113, 115, 153–156

GROUP BY clause, 165–169

HAVING clause, 170–171

inserting values from, 186–188

join operations and, 262–265, 294

mastery check on, 178–180, 464–466

ORDER BY clause, 172–175

overview of, 150–151

predicates used in, 215–217

processing order for clauses in, 151, 236

project on using, 175–178, 499–500

retrieving data with, 150–156

SELECT clause, 113, 114–115, 151–153

singleton, 426

syntax for, 150

updateable views and, 116–117

updating values from, 191–192

view definitions and, 113–116

WHERE clause, 114, 157–164

See also queries

self-joins, 268–269

SENSITIVE option, 367

sensitivity, cursor, 367

SERIALIZABLE option, 394, 398–399

serializable transactions, 399

sessions, 49, 127–129

SESSION_USER special value, 130, 254

SET clause, 188–189, 190

subqueries used in, 298–299

<set clause expression> placeholder, 189

SET CONSTRAINTS statement, 391, 403–405

SET DEFAULT option, 91

set functions, 234–240

AVG, 239–240

COUNT, 234–236

MAX, 236–238

MIN, 236–238

SUM, 239

SET NULL option, 91

SET ROLE statement, 138

SET SESSION AUTHORIZATION statement, 138

SET TRANSACTION statement, 391, 392, 393–401

access levels, 394

creating, 400–401

diagnostics size, 399–400

examples of using, 400–401

isolation levels, 394–399

syntax for, 393–394

similar values, predicate for returning, 211–214

singleton SELECT statement, 426

sites, 29

SOME predicate, 224, 225–226, 289

526 SQL: A Beginner’s Guide

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

sorting query results, 172–175

special characters, used in LIKE predicate, 211, 212

special values, 130, 254–255

SQL (Structured Query Language), 4, 14–19

constraints, 74–103

cursors, 362–387

data types, 52–62

embedded, 18, 362, 364, 419–432

environment, 28–45

evolution of, 14–16

execution methods, 17–18

functions, 234–245, 330–333

interactive, 362, 411, 418–419

join operations, 262–284

keywords, 37, 490–494

packages, 16

predicates, 202–232

procedures, 312–329

security, 126–146

special values, 254–255

statement types, 16–17

subqueries, 286–304

tables, 48–72

transactions, 390–416

triggers, 338–359

value expressions, 246–253

views, 106–124

SQL-86 standard, 14

SQL-92 standard, 14, 15, 16

SQL:1999 standard, 15–16, 19, 308, 490

SQL agent, 29

SQL clauses. See specific clauses

SQL client modules, 29, 432–435

creating, 433–434

cursors in, 364, 433

overview of, 432–433

syntax for, 432

SQL code examples (by project), 496–513

SQL environment, 28–45

catalogs, 30–36

component types, 28–29

creating databases, 42, 43

creating schemas, 39–40, 43

database concept and, 35–36

deleting schemas, 40–41

information schema, 32

mastery check on, 44–45, 453–455

name objects, 37–39

overview of, 28–30

Q & A about, 34

schema objects, 32–34

schemas, 31–32

SQL implementation, 29

SQL-invoked methods, 308

SQL-invoked routines, 33, 308–311

comparison of, 309

control statements and, 321–326

functions as, 330–333

mastery check on, 333–335, 476–478

overview of, 308–309

procedures as, 312–329

projects on creating, 326–328, 332–333,

503–504

Q & A about, 319, 324

syntax for, 310–311

See also functions; procedures

SQL*Plus Worksheet interface, 20, 22

SQL Server

downloading a trial copy, 23

Enterprise Manager, 35

parameter declarations, 316

Query Analyzer interface, 20, 21, 418, 419

Transact-SQL language, 20

triggers, 338, 345, 349

SQL server module, 33

SQL sessions, 49, 127–129

SQL statements

classification of, 17, 19

consideration on choosing, 223

embedding in programs, 419–432

execution of, 17–18, 440–441

Inventory database examples, 509–513

predicates used in, 215–217

presented in projects, 496–513

triggered, 339

types of, 16–17

See also specific statements

SQLConnect() function, 439

SQLEXCEPTION condition, 428

SQLSTATE parameter, 433

Index 527

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:527

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:528

SQLWARNING condition, 428

START TRANSACTION statement, 391, 392,

401–402

statement handle, 437, 439–440

STATEMENT option, 342

stored procedures, 15, 308

string data types, 53–55

descriptions/examples of, 54–55

types of, 53

string value functions, 241–244

LOWER, 243–244

SUBSTRING, 242–243

UPPER, 243–244

Structured Query Language. See SQL

structured types, 62, 308

sublanguage, 14

subqueries, 286–304

CHECK constraints and, 96–97

correlated, 293–294

deleting data using, 299

EXISTS predicate and, 288–289, 293

IN predicate and, 287–288

inserting data using, 297–298

join operations and, 294

mastery check on, 303–304, 475–476

modifying data using, 296–299

nested, 294–296

overview of, 286

predicates and, 217, 228–230, 287–290, 292

project on using, 299–303, 503

Q & A about, 291, 294

quantified comparison predicates and,

289–290

returning multiple rows, 286–291

returning one value, 291–292

SELECT clause and, 286, 291

SET clause and, 298–299

updating data using, 298–299

VALUES clause and, 297

WHERE clause and, 286

See also join operations; queries

SUBSTRING function, 242–243

subtraction operator (–), 247

SUM function, 239

SYSTEM_USER special value, 130, 254

T
table constraints, 67, 75

table-related constraints, 74, 75

tables, 48–72

altering, 67–68, 70

base, 32, 34, 48–49

correlation names for, 265–266

creating, 48–51, 65–66

data types for, 52–62

default values for, 63–64, 65, 69

deleting data from, 69, 194–195

derived, 34, 48

dropping, 68, 70

indexing, 69

inserting data into, 182–188

integrity constraints for, 74–75

joining, 110, 262–284

mastery check on, 71–72, 455–457

projects on working with, 65–66, 70, 497

Q & A about, 52, 60, 69

temporary, 52, 433

updating data in, 188–192

user-defined types for, 62–63

viewed, 34, 48

<target> placeholder, 428

temporary tables, 52, 433

terminating transactions, 408–409

THEN keyword, 322–323

third normal form, 8–9

TIME data type, 56

TIMESTAMP data type, 56

TO clause, 136, 141

TO SAVEPOINT clause, 410, 411

transactions, 390–416

access levels for, 394

ACID characteristics of, 390–391

committing, 409–410

cursor holdability and, 368

data anomalies and, 395–397, 398, 399

deferring constraints in, 402–405

definition of, 390

diagnostics size for, 399–400

diagram illustrating, 392

isolation levels for, 394–399

528 SQL: A Beginner’s Guide

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

mastery check on, 414–416, 483–485

modes specified for, 394

overview of, 390–393

project on working with, 411–414, 506–507

Q & A about, 403, 411

rolling back, 410–411

savepoints in, 406–408

serializable, 399

setting properties of, 393–401

SQL statements for, 391–393, 403

starting, 401–402

terminating, 408–409

Transact-SQL, 20

translation, 33

TRIGGER privilege, 132

triggers, 15, 33, 338–359

creating, 341–344, 354–357

delete, 352–354

dropping, 344, 350

execution context of, 339–340

insert, 344–347

mastery check on, 357–359, 478–481

multiple, 351–352

overview of, 338–339

project on creating, 354–357, 504–505

Q & A about, 351–352

syntax for defining, 341

update, 347–352

tuples, 6

U
UNDER privilege, 132

underscore character (_), 211

union joins, 281

UNION operator, 279–281

UNIQUE constraints, 77–79, 82, 83

project on using, 92–96

universal coordinated time (UCT), 56

universal quantifier, 224

updatability, cursor, 369–370

updateable views, 116–119

UPDATE clause, 188

UPDATE privilege, 131, 137, 140

UPDATE statement, 188–192

cursor declarations and, 369–370

examples of using, 189–191

mastery check on, 198–199, 468

positioned, 380–382

procedures containing, 318

project using, 195–197

Q & A about, 193

SELECT statement and, 191–192

SET clause, 188–189, 190

subqueries used in, 298–299

syntax for, 188–189

triggers and, 347–352

WHERE clause, 189–190

update triggers, 347–352

project on creating, 354–357

syntax for, 347–348

updating SQL data, 188–192

procedures for, 318

project on, 195–197

SELECT statement for, 191–192

subqueries for, 298–299

through a view, 193

UPPER function, 243–244

USAGE privilege, 132

user identifiers, 126, 127–129

USER special value, 130, 254

user-defined functions, 308

user-defined types, 33, 52, 62–63, 308

USING clause, 272

V
value expressions, 246–253

CASE, 249–252

CAST, 252–253

mastery check on, 258–259, 471–473

numeric, 246–249

project on using, 255–258, 501–502

Q & A about, 251–252

value functions, 241–245

datetime, 244–245

LOWER, 243–244

string, 241–244

Index 529

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:529

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7
Blind Folio Index:530

SUBSTRING, 242–243

UPPER, 243–244

VALUE keyword, 99–100

VALUES clause, 182–186, 297

variables

adding to procedures, 319–321

assigning initial values to, 319–320

host, 375, 379, 423–424, 426, 438

indicator host, 426–427

syntax for defining, 319

vertical bar symbol (|), 41

viewed tables, 34, 48

views, 32, 33, 106–124

advantages of using, 106

altering, 121

column names and, 108

creating, 112–116, 122–123

deleting, 121

examples of, 107–111

inserting and updating data through, 193

mastery check on, 123–124, 460–462

multiple tables and, 108–110, 121

overview of, 106

project on, 122–123, 498

Q & A about, 121

syntax for, 112

updateable, 116–120

W
WHEN clause, 354

WHENEVER statement, 427–428

WHEN/THEN clause, 250–251

WHERE clause, 157–164

deleting data with, 194, 195

examples of defining, 161–164

inserting data with, 187–188

positioned statements and, 380–382

predicates evaluated in, 157–161, 202–208

subqueries implemented through, 286

updating data with, 189, 191, 192

view definitions and, 114, 115, 116, 119

WHILE statement, 326

WITH ADMIN clause, 133, 134

WITH ADMIN OPTION clause, 141, 142

WITH CHECK OPTION clause, 119–120

WITH GRANT OPTION clause, 137, 140

WITH HOLD option, 368

WITH RETURN option, 368–369

WITHOUT HOLD option, 368

WITHOUT RETURN option, 368–369

WORK keyword, 409, 410

Y
year-month intervals, 57

530 SQL: A Beginner’s Guide

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA

McGraw-Hill Book Company Australia Pty. Ltd.

TEL +61-2-9900-1800

FAX +61-2-9878-8881

http://www.mcgraw-hill.com.au

books-it_sydney@mcgraw-hill.com

CANADA

McGraw-Hill Ryerson Ltd.

TEL +905-430-5000

FAX +905-430-5020

http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA

(Excluding South Africa)

McGraw-Hill Hellas

TEL +30-210-6560-990

TEL +30-210-6560-993

TEL +30-210-6560-994

FAX +30-210-6545-525

MEXICO (Also serving Latin America)

McGraw-Hill Interamericana Editores S.A. de C.V.

TEL +525-117-1583

FAX +525-117-1589

http://www.mcgraw-hill.com.mx

fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)

McGraw-Hill Book Company

TEL +65-6863-1580

FAX +65-6862-3354

http://www.mcgraw-hill.com.sg

mghasia@mcgraw-hill.com

SOUTH AFRICA

McGraw-Hill South Africa

TEL +27-11-622-7512

FAX +27-11-622-9045

robyn_swanepoel@mcgraw-hill.com

SPAIN

McGraw-Hill/Interamericana de España, S.A.U.

TEL +34-91-180-3000

FAX +34-91-372-8513

http://www.mcgraw-hill.es

professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,

EASTERN, & CENTRAL EUROPE

McGraw-Hill Education Europe

TEL +44-1-628-502500

FAX +44-1-628-770224

http://www.mcgraw-hill.co.uk

computing_europe@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:

McGraw-Hill/Osborne

TEL +1-510-596-6600

FAX +1-510-596-7600

http://www.osborne.com

omg_international@mcgraw-hill.com

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:531

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

O s b o r n e d e l i v e r s r e s u lt s !]

Designed for people. Not clocks.

People learn at their own pace.
That’s why our Beginner’s Guides
provide a systematic pedagogy.
Real-world examples from
seasoned trainers teach the
critical skills needed to master
a tool or technology.

Osborne Beginner’s Guides:
Essential Skills—Made Easy

proven learning features:

1 Modules

2 Critical Skills

3 Step-by-Step Tutorials

4 Ask the Experts

5 Progress Checks

6 Annotated Syntax

7 Mastery Checks

8 Projects

9 Network Blueprints

99

Solaris 9 Administration:
A Beginner’s Guide
Paul A. Watters, Ph.D.
ISBN: 0-07-222317-0

UNIX System Administration:
A Beginner’s Guide
Steve Maxwell
ISBN: 0-07-219486-3

Dreamweaver MX:
A Beginner’s Guide
Ray West & Tom Muck
ISBN: 0-07-222366-9

HTML: A Beginner’s Guide,
Second Edition
Wendy Willard
ISBN: 0-07-222644-7

Java 2: A Beginner’s Guide,
Second Edition
Herbert Schildt
ISBN: 0-07-222588-2

UML: A Beginner’s Guide
Jason Roff
ISBN: 0-07-222460-6

Windows XP Professional:
A Beginner’s Guide
Martin S. Matthews
ISBN: 0-07-222608-0

Networking: A Beginner’s Guide,
Third Edition
Bruce Hallberg
ISBN: 0-07-222563-7

Linux Administration:
A Beginner’s Guide,
Third Edition
Steve Graham
ISBN: 0-07-222562-9

Red Hat Linux Administration:
A Beginner’s Guide
Narender Muthyala
ISBN: 0-07-222631-5

Windows .NET Server 2003:
A Beginner’s Guide
Martin S. Matthews
ISBN: 0-07-219309-3

Begin8 / SQL: A Beginner’s Guide / Sheldon / 222885-7 / 1
Blind Folio 1:532

P:\010Comp\Begin8\885-7\index.vp
Tuesday, April 08, 2003 1:34:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

	SQL
A Beginner’s Guide
	SQL
 A Beginner’s Guide
	About the Author
	Contents at a Glance
	Contents
	Acknowledgments

	Introduction
	Who Should Read This Book
	What Content the Book Covers
	Description of the Book¡¯s Content
	Module Content

	I SQL Databases
	1 Introduction to Relational Databases and SQL
	Critical Skill 1.1 Understand Relational Databases
	Ask the Expert
	The Relational Model
	Progress Check
	Project 1-1 Normalizing Data and
Identifying Relationships

	Critical Skill 1.2 Learn about SQL
	Ask the Expert
	The SQL Evolution
	Types of SQL Statements
	Types of Execution
	Progress Check

	Critical Skill 1.3 Use a Relational Database Management System
	SQL Standard Versus Product Implementations
	Project 1-2 Connecting to a Database

	Module 1 Mastery Check

	2 Working with the SQL Environment
	Critical Skill 2.1 Understand the SQL Environment
	Critical Skill 2.2 Understand SQL Catalogs
	Schemas
	Schema Objects
	Ask the Expert
	Then What Is a Database?
	Progress Check

	Critical Skill 2.3 Name Objects in an SQL Environment
	Qualified Names
	Progress Check

	Critical Skill 2.4 Create a Schema
	Progress Check

	Critical Skill 2.5 Create a Database
	Project 2-1 Creating a Database and a Schema

	Module 2 Mastery Check

	3 Creating and Altering Tables
	Critical Skill 3.1 Create SQL Tables
	Ask the Expert
	Progress Check

	Critical Skill 3.2 Specify Column Data Types
	String Data Types
	Numeric Data Types
	Datetime Data Types
	Interval Data Type
	Boolean Data Type
	Ask the Expert
	Using SQL Data Types
	Progress Check

	Critical Skill 3.3 Create User-Defined Types
	Critical Skill 3.4 Specify Column Default Values
	Progress Check
	Project 3-1 Creating SQL Tables

	Critical Skill 3.5 Alter SQL Tables
	Critical Skill 3.6 Delete SQL Tables
	Ask the Expert
	Project 3-2 Altering and Deleting SQL Tables

	Module 3 Mastery Check

	4 Enforcing Data Integrity
	Critical Skill 4.1 Understand Integrity Constraints
	Progress Check

	Critical Skill 4.2 Use NOT NULL Constraints
	Critical Skill 4.3 Add UNIQUE Constraints
	Progress Check

	Critical Skill 4.4 Add PRIMARY KEY Constraints
	Ask the Expert

	Critical Skill 4.5 Add FOREIGN KEY Constraints
	Ask the Expert
	The MATCH Clause
	The < referential triggered action> Clause
	Progress Check

	Critical Skill 4.6 Define CHECK Constraints
	Defining Assertions
	Creating Domains and Domain Constraints
	Progress Check
	Project 4-2 Adding a CHECK Constraint

	Module 4 Mastery Check

	5 Creating SQL Views
	Critical Skill 5.1 Add Views to the Database
	Progress Check
	Defining SQL Views

	Critical Skill 5.2 Create Updateable Views
	Using the WITH CHECK OPTION Clause
	Progress Check

	Critical Skill 5.3 Drop Views from the Database
	Ask the Expert
	Project 5-1 Adding Views to Your Database

	Module 5 Mastery Check

	6 Managing Database Security
	Critical Skill 6.1 Understand the SQL Security Model
	SQL Sessions
	Ask the Expert
	Accessing Database Objects
	Progress Check

	Critical Skill 6.2 Create and Delete Roles
	Critical Skill 6.3 Grant and Revoke Privileges
	Ask the Expert
	Revoking Privileges
	Progress Check

	Critical Skill 6.4 Grant and Revoke Roles
	Revoking Roles
	Project 6-1 Managing Roles and Privileges
	Project Summary

	Module 6 Mastery Check

	II Data Access and Modification
	7 Querying SQL Data
	Critical Skill 7.1 Use a SELECT Statement to Retrieve Data
	The SELECT Clause and FROM Clause
	Ask the Expert
	Progress Check

	Critical Skill 7.2 Use the WHERE Clause to Define Search Conditions
	Defining the WHERE Clause
	Progress Check

	Critical Skill 7.2 Use the WHERE Clause to Define Search Conditions
	Critical Skill 7.4 Use the HAVING Clause to Specify Group Search Conditions
	Progress Check

	Critical Skill 7.5 Use the ORDER BY Clause to Sort Query Results
	Ask the Expert
	Project 7-1 Querying the Inventory Database

	Module 7 Mastery Check

	8 Modifying SQL Data
	Critical Skill 8.1 Insert SQL Data
	Inserting Values from a SELECT Statement
	Progress Check

	Critical Skill 8.2 Update SQL Data
	Updating Values from a SELECT Statement
	Ask the Expert
	Progress Check

	Critical Skill 8.3 Delete SQL Data
	Project 8-1 Modifying SQL Data

	Module 8 Mastery Check

	9 Using Predicates
	Critical Skill 9.1 Compare SQL Data
	Using the BETWEEN Predicate
	Progress Check

	Critical Skill 9.2 Return Null Values
	Critical Skill 9.3 Return Similar Values
	Progress Check
	Project 9-1 Using Predicates in SQL Statements

	Critical Skill 9.4 Reference Additional Sources of Data
	Using the IN Predicate
	Using the EXISTS Predicate
	Ask the Expert
	Progress Check

	Critical Skill 9.5 Quantify Comparison Predicates
	Using the SOME and ANY Predicates
	Using the ALL Predicate
	Ask the Expert
	Project 9-2 Using Subqueries in Predicates

	Module 9 Mastery Check

	10 Working with Functions and Value Expressions
	Critical Skill 10.1 Use Set Functions
	Using the COUNT Function
	Using the MAX and MIN Functions
	Using the SUM Function
	Using the AVG Function
	Progress Check

	Critical Skill 10.2 Use Value Functions
	Working with String Value Functions
	Working with Datetime Value Functions
	Progress Check

	Critical Skill 10.3 Use Value Expressions
	Working with Numeric Value Expressions
	Using the CASE Value Expression
	Ask the Expert
	Using the CAST Value Expression
	Progress Check

	Critical Skill 10.4 Use Special Values
	Project 10-1 Using Functions and Value
 Expressions
	Module 10 Mastery Check

	11 Accessing Multiple Tables
	Critical Skill 11.1 Perform Basic Join Operations
	Using Correlation Names
	Creating Joins with More than Two Tables
	Creating the Cross Join
	Ask the Expert
	Creating the Self- Join
	Progress Check

	Critical Skill 11.2 Join Tables with Shared Column Names
	Creating the Natural Join
	Creating the Named Column Join

	Critical Skill 11.3 Use the Condition Join
	Creating the Inner Join
	Creating the Outer Join
	Progress Check

	Critical Skill 11.4 Perform Union Operations
	Ask the Expert
	Project 11-1 Querying Multiple Tables

	Module 11 Mastery Check

	12 Using Subqueries to Access and Modify Data
	Critical Skill 12.1 Create Subqueries That Return Multiple Rows
	Using the IN Predicate
	Using the EXISTS Predicate
	Using Quantified Comparison Predicates
	Ask the Expert

	Critical Skill 12.2 Create Subqueries That Return One Value
	Progress Check
	Ask the Expert

	Critical Skill 12.3 Work with Correlated Subqueries
	Critical Skill 12.4 Use Nested Subqueries
	Progress Check

	Critical Skill 12.5 Use Subqueries to Modify Data
	Using Subqueries to Insert Data
	Using Subqueries to Update Data
	Using Subqueries to Delete Data
	Project 12-1 Working with Subqueries

	Module 12 Mastery Check

	III Advanced Data Access
	13 Creating SQL-Invoked Routines
	Critical Skill 13.1 Understand SQL-Invoked Routines
	SQL- Invoked Procedures and Functions
	Working with the Basic Syntax
	Progress Check

	Critical Skill 13.2 Create SQL-Invoked Procedures
	Invoking SQL- Invoked Procedures
	Progress Check

	Critical Skill 13.3 Add Input Parameters to Your Procedures
	Using Procedures to Modify Data
	Ask the Expert

	Critical Skill 13.4 Add Local Variables to Your Procedures
	Critical Skill 13.5 Working with Control Statements
	Create Compound Statements
	Create Conditional Statements
	Create Looping Statements
	Ask the Expert
	Project 13-1 Creating SQL-Invoked Procedures

	Critical Skill 13.6 Add Output Parameters to Your Procedures
	Progress Check

	Critical Skill 13.7 Create SQL-Invoked Functions
	Project 13-2 Creating SQL-Invoked Functions

	Module 13 Mastery Check

	14 Creating SQL Triggers
	Critical Skill 14.1 Understand SQL Triggers
	Trigger Execution Context
	Progress Check

	Critical Skill 14.2 Create SQL Triggers
	Referencing Old and New Values
	Dropping SQL Triggers
	Progress Check

	Critical Skill 14.3 Create Insert Triggers
	Critical Skill 14.4 Create Update Triggers
	Ask the Expert

	Critical Skill 14.5 Create Delete Triggers
	Project 14-1 Creating SQL Triggers

	Module 14 Mastery Check

	15 Using SQL Cursors
	Critical Skill 15.1 Understand SQL Cursors
	Declaring and Opening SQL Cursors
	Progress Check

	Critical Skill 15.2 Declare a Cursor
	Working with Optional Syntax Elements
	Creating a Cursor Declaration
	Progress Check

	Critical Skill 15.3 Open and Close a Cursor
	Critical Skill 15.4 Retrieve Data from a Cursor
	Ask the Expert
	Progress Check

	Critical Skill 15.5 Use Positioned UPDATE and DELETE Statements
	Using the Positioned UPDATE Statement
	Using the Positioned DELETE Statement
	Project 15-1 Working with SQL Cursors

	Module 15 Mastery Check

	16 Managing SQL Transactions
	Critical Skill 16.1 Understand SQL Transactions
	Critical Skill 16.2 Set Transaction Properties
	Specifying an Isolation Level
	Specifying a Diagnostics Size
	Creating a SET TRANSACTION Statement
	Progress Check

	Critical Skill 16.3 Start a Transaction
	Critical Skill 16.4 Set Constraint Deferrability
	Ask the Expert
	Progress Check

	Critical Skill 16.5 Create Savepoints in a Transaction
	Releasing a Savepoint

	Critical Skill 16.6 Terminate a Transaction
	Committing a Transaction
	Rolling Back a Transaction
	Ask the Expert
	Project 16-1 Working with Transactions

	Module 16 Mastery Check

	17 Accessing SQL Data from Your Host Program
	Critical Skill 17.1 Invoke SQL Directly
	Critical Skill 17.2 Embed SQL Statements in Your Program
	Creating an Embedded SQL Statement
	Using Host Variables in Your SQL Statements
	Retrieving SQL Data
	Ask the Expert
	Error Handling
	Progress Check
	Project 17-1 Embedding SQL Statements

	Critical Skill 17.3 Create SQL Client Modules
	Defining SQL Client Modules
	Progress Check

	Critical Skill 17.4 Use an SQL Call-Level Interface
	Allocating Handles
	Executing SQL Statements
	Working with Host Variables
	Retrieving SQL Data
	Project 17-2 Using the SQL Call-Level Interface

	Module 17 Mastery Check

	IV Appendixes
	Module 1: Introduction to Relational
Databases and SQL
	Module 2: Working with the SQL Environment
	Module 3: Creating and Altering Tables
	Module 4: Enforcing Data Integrity
	Module 5: Creating SQL Views
	Module 6: Managing Database Security
	Module 7: Querying SQL Data
1.
	Module 8: Modifying SQL Data
	Module 9: Using Predicates
	Module 10: Working with Functions
and Value Expressions
	Module 11: Accessing Multiple Tables
	Module 12: Using Subqueries to Access
 and Modify Data

	Module 13: Creating SQL-Invoked Routines
	Module 14: Creating SQL Triggers
	Module 15: Using SQL Cursors

	Index

