

SQL
FUNDAMENTALS

Third Edition

This page intentionally left blank

SQL
FUNDAMENTALS

Third Edition

■■

John J. Patrick

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Patrick, John J.
 SQL fundamentals / John J. Patrick. — 3rd ed.
 p. cm.
 Includes indexes.
 ISBN 978-0-13-712602-6 (pbk. : alk. paper) 1. SQL (Computer program
language) 2. Oracle. 3. Microsoft Access.
I. Title.
 QA76.73.S67P38 2008
 005.75'65—dc22

 2008024745

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-712602-6
ISBN-10: 0-13-712602-6
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, August 2008

Dedicated to four wonderful teachers

Seymour Hayden, who taught me mathematics

Stanley Sultan, who taught me Irish literature

Jim Seibolt, who taught me computers

Scot Stoney, who taught me databases

and to all my students.

This page intentionally left blank

CONTENTS AT A GLANCE

vii

Preface . xxv
1 Storing Information in Tables . 1
2 Getting Information from a Table . 31
3 Compound Conditions in the Where Clause. 83
4 Saving Your Results . 133
5 The Data Dictionary and Other Oracle Topics . 171
6 Creating Your Own Tables . 209
7 Formats, Sequences, and Indexes . 245
8 Data Integrity . 281
9 Row Functions . 321

10 Using Row Functions . 361
11 Summarizing Data . 399
12 Controlling the Level of Summarization . 435
13 Inner Joins . 473
14 Outer Joins . 517
15 Union and Union All . 555
16 Cross Joins, Self Joins, and CrossTab Queries . 597
17 Combining Tables in a Production Database . 653
18 If-Then-Else, Parameter Queries, and Subqueries . 673
19 The Multiuser Environment . 721
20 The Design of SQL. 739
A Oracle Is Free: How to Get Your Copy . 751
B Quick Start with Oracle . 765
C Quick Start with Access . 771
D Diagram of the Lunches Database. 783

Index . 787

This page intentionally left blank

ix

Preface xxv

How the Topics Are Presented xxvi
The Companion Web Site xxvii
Acknowledgments xxvii

Chapter 1
Storing Information in Tables . 1

Introduction 3
1-1 What is SQL? 3
1-2 What is a relational database and why would you use one? 4
1-3 Why learn SQL? 6
1-4 What is in this book? 8

The Parts of a Table 9
1-5 Data is stored in tables 10
1-6 A row represents an object and the information about it 11
1-7 A column represents one type of information 12
1-8 A cell is the smallest part of a table 14
1-9 Each cell should express just one thing 15
1-10 Primary key columns identify each row 16
1-11 Most tables are tall and thin 18

CONTENTS

CONTENTSx

Examples of Tables 19
1-12 An example of a table in Oracle and Access 19
1-13 Some design decisions in the l_employees table 22
1-14 The Lunches database 23

Key Points 30

Chapter 2
Getting Information from a Table 31

The Select Statement 33
2-1 The goal: Get a few columns and rows from a table 33
2-2 Overview of the select statement 34

The Select Clause 37
2-3 Overview of the select clause 37
2-4 Use a select clause to get a list of some of the columns 38
2-5 Use a select clause to get a list of all of the columns 41
2-6 Use a select clause to get the distinct values in one column 44
2-7 Use a select clause to get the distinct values in two columns 48

The Where Clause 50
2-8 Overview of the where clause 50
2-9 Using an Equal condition in the where clause 52
2-10 Using a Less Than condition in the where clause 56
2-11 Using a Not Equal condition in the where clause 58
2-12 Using the in condition in the where clause 61
2-13 Using the between condition in the where clause 63
2-14 Using the like condition in the where clause 66
2-15 Using the is null condition in the where clause 69

The Order By Clause 71
2-16 Overview of the order by clause 71
2-17 Sorting the rows by one column in ascending order 73
2-18 Sorting the rows by several columns in ascending order 75
2-19 Sorting the rows by several columns in various orders 77
2-20 The whole process so far 79

Key Points 80

CONTENTS xi

Chapter 3
Compound Conditions in the Where Clause 83

Compound Conditions in the Where Clause 85
3-1 Using a compound condition in the where clause 85
3-2 Using not with in, between, like, and is null 88
3-3 The standard form of a complex condition in the where clause 90
3-4 A common mistake 92

Constant Values 95
3-5 Using a constant value in the select clause 96
3-6 Using a table of constants 98

Punctuation Matters 102
3-7 Punctuation you need to know right now 102
3-8 Punctuation reference section 106

Case Sensitivity 113
3-9 Case sensitivity in Oracle 113
3-10 The debate about case sensitivity in SQL 117
3-11 You have a choice 117
3-12 You can turn off case sensitivity in the Oracle SQL

 Command Line environment 117
3-13 Case sensitivity in Access 118

Three-Valued Logic 120
3-14 SQL uses three-valued logic 120

Error Messages 122
3-15 Error messages are often wrong 122

Some Exercises Solved for You 124
3-16 Exercise 1 124
3-17 Exercise 2 127
3-18 Exercise 3 129

Key Points 131

Chapter 4
Saving Your Results . 133

Saving Your Results in a New Table or View 135
4-1 Create a new table from the result of a select statement 135
4-2 Creating a new view from the results of a select statement 139

CONTENTSxii

4-3 Similarities between tables and views 142
4-4 Differences between tables and views 142
4-5 Deleting a table 143
4-6 Deleting a view 145
4-7 One view can be built on top of another view 146
4-8 Preventative delete 149

Modifying the Data in a Table with SQL 151
4-9 Adding one new row to a table 151
4-10 Adding many new rows to a table 154
4-11 Changing data in the rows already in a table 157
4-12 Deleting rows from a table 159

Modifying the Data in a Table with the GUI 161
4-13 Using the Oracle GUI to change data in a table 161
4-14 Using the Access GUI to change the data in a table 164

Restrictions on Modifying the Data in a Table 167
4-15 Constraints with insert, update, and delete 167
4-16 Security restrictions 169

Key Points 170

Chapter 5
The Data Dictionary and Other Oracle Topics 171

Commit, Rollback, and Transactions 173
5-1 The commit and rollback commands 173
5-2 The Autocommit option 174
5-3 Transactions 175

Modifying Data through a View 179
5-4 Changing data through a view 180
5-5 Example of changing data through a view 181
5-6 Views using With Check Option 189

 The SQL Commands Page in Oracle 192
5-7 Overview of the SQL Commands page 192
5-8 The Autocommit option 194
5-9 The Explain option 194

Using the Oracle Data Dictionary — Part 1 195
5-10 Overview of the Data Dictionary 195

CONTENTS xiii

5-11 How to find the names of all the tables 197
5-12 How to find the names of all the views 199
5-13 How to find the select statement that defines a view 200
5-14 How to find the names of the columns in a table or view 201
5-15 How to find the primary key of a table 203

Key Points 207

Chapter 6
Creating Your Own Tables . 209

Creating Tables 211
6-1 The create table command 211
6-2 Datatypes in Oracle and Access 212
6-3 Text datatypes 217
6-4 Numeric datatypes 222
6-5 Date/time datatypes 222
6-6 Other datatypes 222
6-7 Putting data into a new table 223
6-8 Creating the l_employees table in Oracle 224

Changing Tables 226
6-9 Adding a primary key to a table 226
6-10 Changing the primary key of a table 228
6-11 Adding a new column to a table 229
6-12 Expanding the length of a column 231
6-13 Deleting a column from a table 232
6-14 Making other changes to tables 234

Tables with Duplicate Rows 236
6-15 The problem with duplicate rows 237
6-16 How to eliminate duplicate rows 239
6-17 How to distinguish between duplicate rows 240

Key Points 243

Chapter 7
Formats, Sequences, and Indexes 245

Formats 247
7-1 Formats of dates 247

CONTENTSxiv

7-2 Displaying formatted dates 249
7-3 Entering formatted dates 252
7-4 Other formats in Oracle 254
7-5 Formats in Access 254

Sequences 257
7-6 Creating a sequence in Oracle 257
7-7 Using sequences in Oracle 258
7-8 Sequences in Access 260

Indexes 262
7-9 Creating an index 263
7-10 The Optimizer 264
7-11 An example of how an index works 264

Using the Oracle Data Dictionary — Part 2 266
7-12 How to find information about the datatype of a column 266
7-13 How to find information about sequences 269
7-14 How to find information about indexes 271
7-15 How to find information about all your database objects 274
7-16 How to use the index of Data Dictionary tables 276
7-17 How to use the index of Data Dictionary columns 277

An Exercise Solved for You 278
7-18 Create a table of the days you want to celebrate 278

Key Points 280

Chapter 8
Data Integrity . 281

Constraints on One Table 283
8-1 A constraint keeps the data consistent 283
8-2 check constraints 283
8-3 unique constraints 285
8-4 not null constraints 287
8-5 primary key constraints 288
8-6 Restrictions on the datatype and length of fields 289

Referential Integrity 289
8-7 The concept of RI 290
8-8 An example of RI 291

CONTENTS xv

8-9 Inserts and updates to the data table prevented by RI 293
8-10 Inserts and updates to the data table allowed by RI 294
8-11 Updates and deletes to the lookup table prevented by RI 295
8-12 How to delete a code from the lookup table 296
8-13 How to change a code in the lookup table 298
8-14 RI as a relationship between the tables 299
8-15 Setting up RI in the Access GUI 300

The Delete Options and Update Options of RI 303
8-16 The three options for deletes and updates to the lookup table 303
8-17 The delete rule: set null 304
8-18 The delete rule: cascade 306
8-19 The update rule: cascade 308

Variations of Referential Integrity 311
8-20 The two meanings of primary key 311
8-21 Using two or more columns for the primary key 313
8-22 The lookup and data tables can be the same table 315

How to Code Constraints in a Create Table Statement 316
8-23 Constraints are often coded in the create table statement 316

Key Points 319

Chapter 9
Row Functions . 321

Introduction to Row Functions 323
9-1 Getting data directly from the beginning table 323
9-2 What is a row function? 324
9-3 An example of a row function in the select clause 327
9-4 An example of a row function used in

all the clauses of a select statement 329
9-5 Defining a row function as the first step 331

Numeric Functions 334
9-6 Functions on numbers 334
9-7 How to test a row function 336
9-8 Another way to test a numeric row function 337

Text Functions 340
9-9 Functions on text 340

CONTENTSxvi

9-10 Combining the first and last names 344
9-11 Separating the first and last names 346
9-12 Formatting phone numbers 348

Date Functions 350
9-13 Functions on dates 350
9-14 An example of a date function 354
9-15 Removing the time from a date 356

Key Points 359

Chapter 10
Using Row Functions . 361

Specialized Row Functions 363
10-1 Other row functions 363
10-2 Using a function to identify the user and the date 365
10-3 Using a function to change nulls to other values 366
10-4 Using a function to change the datatype 369

Using the Documentation of Row Functions 372
10-5 Using Oracle documentation 373
10-6 Using Access documentation 374
10-7 Using the Access Expression Builder to find row functions 375

Creating Patterns of Numbers and Dates 376
10-8 Create a simple pattern of numbers 377
10-9 Create a complex pattern of numbers 379
10-10 List all the days of one week 381
10-11 Create a calendar of workdays 383
10-12 How to find out how many days old you are 388
10-13 How to find the date when you will be 10,000 days old 389
10-14 Numbering the lines of a report in Oracle and Access 390
10-15 Optional: An easy way to solve an algebraic equation 393

Key Points 397

Chapter 11
Summarizing Data . 399

Introduction to the Column Functions 401
11-1 Summarizing all the data in a column 401

CONTENTS xvii

11-2 A list of the column functions 402

Maximum and Minimum 404
11-3 Finding the maximum and minimum values 404
11-4 Using a where clause with a column function 407
11-5 Finding the rows that have the maximum or minimum value 409

Count 411
11-6 Counting rows and counting data 411
11-7 Counting to zero, part 1 413
11-8 Counting the number of distinct values in a column 415
11-9 Counting the number of distinct values in two or more columns 417

Sum and Average 420
11-10 The sum and average functions 420
11-11 The problem with nulls in addition and how to solve it 422

Other Topics 428
11-12 Nulls are not always changed to zero 428
11-13 Counting the number of nulls in a column 430
11-14 Counting distinct dates 431

Key Points 434

Chapter 12
Controlling the Level of Summarization 435

Dividing a Table into Groups of Rows 437
12-1 Summary of groups of data within a column 437
12-2 The group by clause 438
12-3 Groups formed on two or more columns 441
12-4 Null groups when there are two or more grouping columns 444
12-5 Summarized data cannot be mixed with

 nonsummarized data in the same select statement 447
12-6 Solution 1: Add more columns to the group by clause 451
12-7 Solution 2: Divide the query into two separate select statements 452
12-8 How to create a report with subtotals and a grand total 455
12-9 Counting to zero, part 2 455
12-10 Counting to zero, part 3 457

Eliminating Some of the Summarized Data 459
12-11 The having clause 460

CONTENTSxviii

12-12 The having clause contrasted with the where clause 462
12-13 The whole process of the select statement on a single table 463
12-14 The having clause does not add any

 more power to the select statement 463
12-15 Use a where clause to eliminate raw data 466
12-16 How to apply one column function to another

 column function and get around other restrictions 467

Key Points 471

Chapter 13
Inner Joins .473

Introduction to Joins 475
13-1 A query can use data from several tables 475
13-2 The best approach is to join two tables at a time 477

Inner Joins of Two Tables 479
13-3 A one-to-one relationship 479
13-4 A many-to-one relationship 483
13-5 A one-to-many relationship 485
13-6 A many-to-many relationship 487
13-7 Unmatched rows are dropped 489
13-8 Rows with a null in the matching column are dropped 491
13-9 Five ways to write the SQL for an inner join 493

Variations of the Join Condition 495
13-10 A join using two or more matching columns 495
13-11 A join using between to match on a range of values 497
13-12 A join using the Greater Than condition 499
13-13 A join using a row function 501
13-14 Writing the join condition in the from clause 502

Applications of Joins 504
13-15 Lookup tables 504
13-16 Combining a join and selection of data 507
13-17 Using a join with summarization 510
13-18 How to find the primary key in the Oracle Data Dictionary 512
13-19 Combining three or more tables with inner joins 513

Key Points 515

CONTENTS xix

Chapter 14
Outer Joins . 517

Introduction to Outer Joins 519
14-1 Outer joins are derived from inner joins 519
14-2 The three types of outer joins 520
14-3 The left outer join 522
14-4 The right outer join 524
14-5 The full outer join 526
14-6 An introduction to the union 529
14-7 An example of a union of two tables with matching columns 531

Applications of Outer Joins 534
14-8 Counting to zero, part 4 534
14-9 Combining an outer join with a selection of the data 536
14-10 A full outer join in sorted order 539
14-11 Finding the defects in a pattern 542
14-12 Comparing tables using two or more columns 544
14-13 Comparing two different full outer joins 546
14-14 Problem: Left and right outer joins can be difficult to handle 549

Key Points 553

Chapter 15
Union and Union All . 555

Union Basics 557
15-1 The difference between a union and a join 557
15-2 The difference between a union and a union all 559
15-3 The select statements within a union 561
15-4 The order by clause in a union 563
15-5 Creating a table or view that includes a union 567
15-6 Automatic datatype conversion in a union 570

Unconventional Unions 573
15-7 A union of tables with different datatypes 574
15-8 A union of two tables with different numbers of columns 576

Applications of a Union 577
15-9 Determining if two tables are identical 578
15-10 Using a literal in a union to identify the source of the data 581

CONTENTSxx

15-11 Attaching messages to flag exceptions, warnings, and errors 583
15-12 Dividing data from one column into two different columns 585
15-13 Applying two functions to different parts of the data 587
15-14 A union of three or more tables 588

Set Intersection and Set Difference in Oracle 590
15-15 Set intersection 590
15-16 Set difference 592

Key Points 595

Chapter 16
Cross Joins, Self Joins, and CrossTab Queries597

Cross Joins 599
16-1 Definition of a cross join 599
16-2 Why are cross joins important? 601
16-3 An inner join is derived from a cross join 601
16-4 The properties of an inner join 604
16-5 An error in the join condition can appear to be a cross join 605
16-6 Using a cross join to list all the possible combinations 608
16-7 Other layouts when there are three or more dimensions 611
16-8 Avoid a cross join of large tables 612

Self Joins 613
16-9 Why would you ever join a table with itself? 613
16-10 An example of a self join 616
16-11 Handling a sequence of events 618
16-12 Generating the numbers from 0 to 999 621

CrossTab Queries in Access 624
16-13 CrossTab queries when there are two dimensions 624
16-14 CrossTab queries with up to four dimensions 631
16-15 CrossTab queries with more dimensions 633
16-16 CrossTab to show who is attending each lunch 638
16-17 CrossTab to show the foods for each lunch 641

CrossTab Queries in Oracle 645
16-18 CrossTab queries in Oracle — Part 1 645
16-19 CrossTab queries in Oracle — Part 2 647

Key Points 650

CONTENTS xxi

Chapter 17
Combining Tables in a Production Database 653

Methods of Joining Three or More Tables 655
17-1 Joining several tables in a series of steps 655
17-2 Joining several tables at once in the where clause 658
17-3 Joining several tables at once in the from clause 658

Losing Information 660
17-4 Be careful with an inner join 660
17-5 Be careful with a left and right outer join 660
17-6 A full outer join preserves all the information 661
17-7 A full outer join of several tables 661

Caring about the Efficiency of Your Computer 663
17-8 Monitor your queries 663
17-9 Use the indexes 664
17-10 Select the data you want early in the process 664
17-11 Use a table to save summarized data 665
17-12 Try several ways of writing the SQL 665

Standardizing the Way That Tables Are Joined 666
17-13 The joins are part of the database design 666
17-14 A view can standardize the way tables are joined 666
17-15 Ad hoc reporting 670

Key Points 671

Chapter 18
If-Then-Else, Parameter Queries, and Subqueries . . . 673

If-Then-Else Logic 675
18-1 The case and decode functions in Oracle 675
18-2 The Immediate If (iif) function in Access 680
18-3 Attaching messages to rows 683
18-4 Dividing data from one column into two different columns 685
18-5 Applying two functions to different parts of the data 687

Parameter Queries 689
18-6 A parameter query in Oracle 690
18-7 Using a parameter more than once in Oracle 693
18-8 More ways to define parameters in Oracle 695

CONTENTSxxii

18-9 A parameter query in Access 698
18-10 A query in Access with two parameters 699
18-11 Limitations on parameters in Access 700

Subqueries 700
18-12 Introduction to subqueries 701
18-13 Subqueries that result in a list of values 703
18-14 Subqueries that result in a single value 706
18-15 Avoid using not in with nulls 708

Applications of Subqueries 710
18-16 Subqueries used in an update command 710
18-17 Finding the difference between two tables 712
18-18 Using the most current data 714

Older Features of Subqueries 714
18-19 Correlated subqueries 714
18-20 Subqueries using exists 716
18-21 Using a subquery to write an outer join 717
18-22 Nested subqueries 718
18-23 Subqueries can be used in limited locations 719
18-24 Many subqueries can also be written as a join 719

Key Points 719

Chapter 19
The Multiuser Environment . 721

Database Configurations 723
19-1 The single-user environment 723
19-2 The multiuser environment 724
19-3 The distributed environment 725
19-4 Connecting via the Internet 726

Operating in a Multiuser Environment 727
19-5 How to use a table you do not own 727
19-6 Synonyms 728
19-7 Snapshots 730

Security and Privileges 732
19-8 Identifying the user 732
19-9 Privileges 732

CONTENTS xxiii

19-10 Roles 734
19-11 Several people can use the same table at the same time 736

The Oracle Data Dictionary and the Multiuser Environment 736
19-12 ALL versus USER 736
19-13 How to find the tables youwant in the Data Dictionary 737
19-14 How to find the meaning of the columns 737

Key Points 738

Chapter 20
The Design of SQL . 739

Original SQL Design Objectives 741
20-1 Do one thing and do it well 741
20-2 Focus on information 741
20-3 Keep it simple 742
20-4 Coordinate people to work together 743

Newer Interfaces 743
20-5 Forms 744
20-6 Reports 744
20-7 Web tools 745

Typical Applications 748
20-8 Smaller databases 748
20-9 OLTP 748
20-10 Data warehouses 748

Key Points 749

Appendix A
Oracle Is Free: How to Get Your Copy 751

Getting Current Information 752
Which Version of Oracle Should You Get? 752
System Requirements 753
Downloading Oracle from the Internet 753
Installing Oracle 754
Setup to Run the Examples in This Book 754

A-1 Create a new database user 755
A-2 Download the files to build the Oracle tables 758

CONTENTSxxiv

A-3 Build the Oracle tables by running an SQL script 758
A-4 Disaster recovery if you need it 763

How to Stop Running Oracle 763
What to Do if Oracle Slows Down Your Computer 763

A-5 The official Oracle solution 763
A-6 My own solution 764

Appendix B
Quick Start with Oracle .765

Log in to Your Computer 766
Go to the Database Home Page 766
Log in to the Oracle Database 768
Go to the SQL Commands Page 768
Enter and Run an SQL Query 769
Optional: Print Your Query and the Results 770

Appendix C
Quick Start with Access . 771

You May Use Access 2007, 2003, 2002, or 2000 772
How to Start Access 772
Entering an SQL Query 774
Dealing with Errors in Access 776
Printing from Access 777
Using the Access Trust Center 778

Appendix D
Diagram of the Lunches Database 783

Join Conditions 784
Data Validation Rules 785

Index 787

xxv

SQL is one of the most important computer languages. It is the language
of databases. Whenever you search for the information you need in a
large library of information, the code that performs the search is likely to
be using SQL. Many applications in which you share information to
coordinate with other people also use SQL.

It is used in more than 100 software products, and new ones are being
added all the time. This book shows you how to get the most out of the
databases you use. It explains how to use SQL to solve practical prob-
lems, using the most widely used SQL products, Oracle and Microsoft
Access. Oracle and Access are both widely used, easily available, and run
on personal computers. By learning these two products in detail, you
will have all the basic skills to use any of the many products based on
SQL.

PREFACE

PREFACExxvi

How the Topics Are Presented

This book uses an informal conversational style to take you on a tour of
SQL topics. Oracle and Access are placed side by side doing the same
tasks, so you can see their similarities and differences. Most topics are
illustrated with an example of SQL code. I have intentionally kept the
tables small in these examples, which makes them easy to check and
understand.

Each example of SQL code begins by setting a task. Then the SQL code
is given that performs that task. Whenever possible, I wrote the SQL
code so that it works in both Oracle and Access. However, sometimes I
could not do that, so I wrote one version of SQL code for Oracle and a
different version for Access.

To make this book easier to read, each example of SQL shows the begin-
ning and ending data table(s). This allows you to check that you under-
stand what the SQL is doing. I have tried to make these examples small
so they are easy to check.

Each example is often followed by notes to explain any subtle points
about the SQL code or the data tables.

Finally, I give you a problem to solve to check your understanding of the
topic. You can decide if you want to do these problems or not. Usually
they are fairly easy and require only a small modification of the SQL
code in the example. If you decide to do a problem, the Web site will
allow you to determine if your solution is correct.

Each example of SQL code in this book is designed to be independent
and stand on its own, without needing any changes performed in previ-
ous sections. This allows you to skip around in the book and read the
sections in any order you want. Some people may want to read the book
from beginning to end, but it is not necessary to do this.

Be sure to look at the appendices for practical tips on how to run Oracle
and Access. The database files and the code for all the examples are
available from the Web site. In several places throughout this book, I
have expressed opinions about computer technology, something that
many other technical books avoid doing. These opinions are my own and
I take full responsibility for them. I also reserve the right to change my
mind. If I do so, I will put my revised opinion, and the reasons that have
caused me to change my thinking, on the Web site for this book.

PREFACE xxvii

The Companion Web Site

The companion Web site for this book is a Google group called “sqlfun.”
The group Web address is:

http://groups.google.com/group/sqlfun

You can also send e-mail to me at:

sqlfun@gmail.com

This Web site contains:

■ Oracle SQL code to build all the data tables used in this book.

■ Access databases with all the data tables used in this book. Data-
bases are available for several versions of Access.

■ Ways to check your answers to problems in the book.

■ A list of corrections, if there are any.

■ An open area for discussions, your comments, and questions you
want me to answer.

I invite you to come visit the Web site!

Acknowledgments

Many people contributed greatly to this book. I would like to thank them
for all the support they have given me during the time I was writing it.
Their ideas and feedback have improved the quality of the material and
the way I present it. In particular, I want to thank the following people for
their suggestions and help with this third edition:

■ Dejang Liu

■ Alma Lynn Bane

People who helped with the previous editions include:

■ Anila Manning, for much help in writing the second edition.

■ Paul Reavis, who taught this course with me at UC Berkeley Extension.

http://groups.google.com/group/sqlfun

PREFACExxviii

■ Todd Matson, who reviewed the Access material.

■ Faysal Shaarani and Bill Allaway, who reviewed the Oracle material.

■ Spencer Brucker and the UC Berkeley Extension, who have supported
me in teaching the SQL Fundamentals course and developing the
material in this book.

■ All the folks at Prentice Hall, especially Bernard Goodwin, editor;
Vanessa Moore, Moore Media, Inc., production editor; Michael
Meehan and Jeffery Pepper, the original editors for this book; and the
many other people with whom I never worked directly.

■ Thanks especially to my mom, Jean Praninskas, and to my son, Rich-
ard Watts, who also reviewed this book.

Thanks also to Brian Akitoye, Mehran Ansari, Asa Ashraf, Anne Bester,
Sandra Bush, Connie Chong, Patricia Cleveland, Robert D’Antony, Gan
Davnarrain, Bruce Douglass, James Drummond, Ron Duckworth, Dean
Evans, Steve Fajardo, Earl Gardner, Wolday Gebremichael, Neelam
Hasni, Reda Ismail, Marques Junior, John Karsnak, Allyson Kinney, Gla-
dys Lattier, Brian Lester, Mahen Luximan, Alex McDougall, E. Muljadi,
Satyendra Narayan, Bade Oyebamiji, Stefan Pantazi, Todd Perchert,
Oxana Rakova, Jacob Relles, Ricardo Ribeiro, Cindy Roberts, John
Rusk, Ty Seward, Gary Shapiro, David Smith, Kenneth Smith, Joan
Spasyk, Patricia Warfel, and William White.

1

chapter 1

In relational databases, all the data is stored in tables and all
the results are expressed in tables. In this chapter, we examine
tables in detail.

STORING
INFORMATION

IN TABLES

Introduction. 3

1-1 What is SQL? .3
1-2 What is a relational database and why would you use one?4
1-3 Why learn SQL? .6
1-4 What is in this book? .8

The Parts of a Table . 9

1-5 Data is stored in tables .10
1-6 A row represents an object and the information about it 11
1-7 A column represents one type of information. .12
1-8 A cell is the smallest part of a table .14
1-9 Each cell should express just one thing .15

1-10 Primary key columns identify each row .16
1-11 Most tables are tall and thin. .18

Examples of Tables . 19

1-12 An example of a table in Oracle and Access .19
1-13 Some design decisions in the l_employees table22
1-14 The Lunches database .23

Key Points . 30

3

Introduction

1-1 What is SQL?

The name SQL stands for Structured Query Language. It is pronounced
“S-Q-L” and can also be pronounced “sequel.”

SQL is a computer language designed to get information from data that is
stored in a relational database. In a moment, I discuss what a relational
database is. For now, you can think of it as one method of organizing a
large amount of data on a computer. SQL allows you to find the informa-
tion you want from a vast collection of data. The purpose of this book is to
show you how to get the information you want from a database.

SQL is different from most other computer languages. With SQL, you
describe the type of information you want. The computer then determines
the best procedure to use to obtain it and runs that procedure. This is
called a declarative computer language because the focus is on the result:
You specify what the result should look like. The computer is allowed to
use any method of processing as long as it obtains the correct result.

Most other computer languages are procedural. These are languages like C,
Cobol, Java, Assembler, Fortran, Visual Basic, and others. In these lan-
guages, you describe the procedure that will be applied to the data; you do
not describe the result. The result is whatever emerges from applying the
procedure to the data.

Let me use an analogy to compare these two approaches. Suppose I go to a
coffee shop in the morning. With the declarative approach, used by SQL, I
can say what I want: “I would like a cup of coffee and a donut.” With the pro-
cedural approach, I cannot say that. I have to say how the result can be
obtained and give a specific procedure for it. That is, I have to say how to
make a cup of coffee and how to make a donut. So, for the coffee, I have to
say, “Grind up some roasted coffee beans, add boiling water to them, allow
the coffee to brew, pour it into a cup, and give it to me.” For the donut, I will
have to read from a cookbook. Clearly, the declarative approach is much
closer to the way we usually speak and it is much easier for most people to
use.

The fact that SQL is easy to use, relative to most other computer lan-
guages, is the main reason it is so popular and important. The claim is
often made that anyone can learn SQL in a day or two. I think that claim is
more a wish than a reality. After all, SQL is a computer language, and com-
puters are not as easy to use as telephones — at least not yet.

CHAPTER 1 STORING INFORMATION IN TABLES4

Nonetheless, SQL is easy to use. With one day of training, most people can
learn to obtain much useful information. That includes people who are not
programmers. People throughout an organization, from secretaries to vice
presidents, can use SQL to obtain the information they need to make busi-
ness decisions. That is the hope and, to a large extent, it has been proven
true.

Information is not powerful by itself. It only becomes powerful when it is
available to people throughout an organization when they need to use it.
SQL is a tool for delivering that information.

Notes about SQL
■ SQL is the designated language for getting information from a

relational database.

■ SQL says what information to get, rather than how to get it.

■ Basic SQL is easy to learn.

■ SQL empowers people by giving them control over information.

■ SQL allows people to handle information in new ways.

■ SQL makes information powerful by bringing it to people when they
need it.

1-2 What is a relational database
and why would you use one?

A relational database is one way to organize data in a computer. There are
other ways to organize it, but in this book, we do not discuss these other
ways, except to say that each method has some strengths and some draw-
backs. For now, we look only at the advantages a relational database has to
offer.

SQL is one of the main reasons to organize data into a relational database.
Using SQL, information can be obtained from the data fairly easily by peo-
ple throughout the organization. That is very important.

Another reason is that data in a relational database can be used by many
people at the same time. Sometimes hundreds or thousands of people can
all share the data in a database. All the people can see the data and change
the data (if they have the authority to do so). From a business perspective,
this provides a way to coordinate all the employees and have everybody
working from the same body of information.

INTRODUCTION 5

A third reason is that a relational database is designed with the expecta-
tion that your information requirements may change over time. You might
need to reorganize the information you have or add new pieces of informa-
tion to it. Relational databases are designed to make this type of change
easy. Most other computer systems are difficult to change. They assume
that you know what all the requirements will be before you start to con-
struct them. My experience is that people are not very good at predicting
the future, even when they say they can, but here I am showing my own bias
toward relational databases.

From the perspective of a computer programmer, the flexibility of a rela-
tional database and the availability of SQL make it possible to develop new
computer applications much more rapidly than with traditional tech-
niques. Some organizations take advantage of this; others do not.

The idea of a relational database was first developed in the early 1970s to
handle very large amounts of data — millions of records. At first, the rela-
tional database was thought of as a back-end processor that would provide
information to a computer application written in a procedural language
such as C or Cobol. Even now, relational databases bear some of the traits
of that heritage.

Today, however, the ideas have been so successful that entire information
systems are often constructed as relational databases, without much need
for procedural code (except to support input forms). That is, the ideas that
were originally developed to play a supporting role for procedural code
have now taken center stage. Much of the procedural code is no longer
needed.

In relational databases, all the data is kept in tables, which are
two-dimensional structures with columns and rows. I describe tables in
detail later in this chapter. After you work with them for a while, you will
find that tables provide a very useful structure for handling data. They
adapt easily to changes, they share data with all users at the same time,
and SQL can be run on the data in a table. Many people start thinking of
their data in terms of tables. Tables have become the metaphor of choice
when working with data.

Today, people use small personal databases to keep their address books,
catalog their music, organize their libraries, or track their finances. Busi-
ness applications are also built as relational databases. Many people pre-
fer to have their data in a database, even if it has only a few records in it.

CHAPTER 1 STORING INFORMATION IN TABLES6

The beginning of relational databases
■ Relational databases were originally developed in the 1970s to organize

large amounts of information in a consistent and coherent manner.

■ They allowed thousands of people to work with the same information
at the same time.

■ They kept the information current and consistent at all times.

■ They made information easily available to people at all levels of an
organization, from secretaries to vice presidents. They used SQL,
forms, standardized reports, and ad-hoc reports to deliver informa-
tion to people in a timely manner.

■ They were designed to work as an information server back end. This
means that most people would not work directly with the database;
instead, they would work with another layer of software. This other
software would get the information from the database and then adapt
it to the needs of each person.

■ They empowered people by making current information available to
them when they needed to use it.

Today — How relational databases have changed
■ In addition to the large databases described already, now there are

also many smaller databases that handle much smaller amounts of
information. These databases can be used by a single person or
shared by a few people.

■ Databases have been so successful and are so easy to use that they
are now employed for a wider range of applications than they were
originally designed for.

■ Many people now work directly with a database instead of through
another layer of software.

■ Many people prefer to keep their data in databases. They feel that
relational databases provide a useful and efficient framework for han-
dling all types of data.

1-3 Why learn SQL?

SQL is used in more than 100 software products. Once you learn SQL, you
will be able to use all of these products. Of course, each one will require a
little study of its special features, but you will soon feel at home with it and
know how to use it. You can use this one set of skills over and over again.

INTRODUCTION 7

Other SQL Products
Major SQL Products (and Products Based on SQL)

Oracle 4th Dimension

Microsoft SQL Server SQLBase

Microsoft Access CSQL

MySQL FileMaker PRO

DB2 (IBM Data Server) Helix Database

Informix ODBC

PostgreSQL Ingres

Sybase MonetDB

Microsoft Visual FoxPro H2

NonStop SQL MaxDB

Dataphor VMDS

Teradata TimesTen

Openbase

eXtremeDB

Interbase

OpenEdge ABL

SmallSQL

Linter SQL DMBS

Derby

Adabas D

Greenplum Database

HSQLDB

Alpha_Five

One$DB

ScimoreDB

Pervasive PSQL

Gladius DB

Daffodil database

solidDB

(and many more)

CHAPTER 1 STORING INFORMATION IN TABLES8

There are reasons SQL is used so much. One reason is that it is easy to
learn, relative to many other computer languages. Another reason is that it
opens the door to relational databases and the many advantages they offer.
Some people say that SQL is the best feature of relational databases and it
is what makes them successful. Other people say that relational databases
make SQL successful. Most people agree that together they are a winning
team.

SQL is the most successful declarative computer language — a language
with which you say what you want rather than how to get it. There are some
other declarative languages and report-generation tools, but most of them
are much more limited in what they can do. SQL is more powerful and can
be applied in more situations.

SQL can help you get information from a database that may not be avail-
able to people who do not know SQL. It can help you learn and understand
the many products that are based on it.

Finally (don’t tell your boss), learning SQL can be enjoyable and fun. It can
stretch your mind and give you new tools with which to think. You might
start to view some things from a new perspective.

1-4 What is in this book?

The subject of this book
This book shows you how to use SQL to get information from a relational
database. It begins with simple queries that retrieve selected data from a
single table. It progresses step by step to advanced queries that summarize
the data, combine it with data from other tables, or display the data in spe-
cialized ways. It goes beyond the basics and shows you how to get the
information you need from the databases you have.

Who should read this book?
Anyone with an interest in getting information from a database can read
this book. It can be a first book about databases for people who are new to
the subject. You do not need to be a computer programmer. The discussion
begins at the beginning and it does not assume any prior knowledge about
databases. The only thing you need is the persistence to work through the
examples and a little prior experience working with your own computer.

THE PARTS OF A TABLE 9

Professional programmers can also use this book. The techniques shown
here can help them find solutions to many problems. Whether you are a
novice or a professional, an end user or a manager, the SQL skills you learn
will be useful to you over and over again.

Organization of this book
This book discusses the practical realities of getting information from a
database. A series of specific tasks are accomplished and discussed. Each
concept is presented with an example.

The tasks are designed and arranged to show the most important aspects of
the subject. Each topic is discussed thoroughly and in an organized manner.
All the major features and surprising aspects of each topic are shown.

Why compare two different implementations
of SQL — Oracle and Access?
If a book discusses only the theory of SQL, and no particular product that
implements it, the reader will be left with no practical skills. He or she will
be able to think about the concepts, but might have difficulty writing code
that works.

If a book discusses only one implementation of SQL, it is easy to get dis-
tracted by the quirks and special features it has. You also lose sight of the
fact that SQL is used in many products, although in slightly different ways.

This book compares Oracle and Access because they are two of the most
widely used SQL products and because they both run on a PC. They are
somewhat different. You will see them side by side. Oracle is used mostly
for larger business applications. Access is used mostly for personal data-
base applications and smaller business applications.

The Parts of a Table

SQL always deals with data that is in tables. You probably understand
tables already on an informal level. The tables used in a relational data-
base have a few unusual features. Because computers need precise defini-
tions, the description of a table must be formalized. In this section, I define
what a table is and what its parts are.

CHAPTER 1 STORING INFORMATION IN TABLES10

1-5 Data is stored in tables

In a relational database, all the data is stored in tables. A table is a
two-dimensional structure that has columns and rows. Using more tradi-
tional computer terminology, the columns are called fields and the rows are
called records. You can use either terminology.

Most people are familiar with seeing information in tables. Bus schedules
are usually presented in tables. Newspapers use tables to list stock values.
We all know how to use these tables. They are a good way to present a lot of
information in a very condensed format. The tables in a relational database
are very similar to these tables, which we all understand and use every day.

All the information in a relational database is kept in tables. There is no
other type of container to keep it in — there are no other data structures.
Even the most complex information is stored in tables. Someone once said
that there are three types of data structures in a relational database: tables,
tables, and tables. In a relational database, we have nothing but tables;
there are no numbers, no words, no letters, and no dates unless they are
stored in a table.

You might think that this restricts what a relational database can do and
the data it can represent. Is it a limitation? The answer is no. All data is
capable of being represented in this format. Sometimes you have to do
some work to put it in this format. It doesn’t always just fall into this format
by itself. But you can always succeed at putting data into tables, no matter
how complex the data is. This has been proven in mathematics. The proof
is long and complex and I do not show it to you here, but you can have con-
fidence that tables are versatile enough to handle all types of data.

The following two depictions show a basic table structure and how a table
might store information.

A conceptual diagram of a table.

THE PARTS OF A TABLE 11

An example of a table that stores information about children.

Each row contains information about one child. Each column contains one
type of information for all the children. As always, this table contains only a
limited amount of information about each child. It does not say, for
instance, how much each child weighs.

■ In a relational database, all the data is stored in tables.

■ A table has two dimensions called columns and rows.

■ Tables can hold even the most complex information.

■ All operations begin with tables and end with tables. All the data is
represented in tables.

1-6 A row represents an object
and the information about it

Each row of a table represents one object, event, or relationship. I call
them all objects for now, so I do not have to keep repeating the phrase
“object, event, or relationship.”

All the rows within a table represent the same type of object. If you have 100
doctors in a hospital, you might keep all the information about them in a
single table. If you also want to keep information about 1,000 patients who
are in the hospital, you would use a separate table for that information.

First Name Last Name Age Gender Favorite Game

Nancy Jones 1 F Peek-a-boo

Paula Jacobs 5 F Acting

Deborah Kahn 4 F Dolls

Howard Green 7 M Baseball

Jack Lee 5 M Trucks

Cathy Rider 6 F Monsters

Notes

CHAPTER 1 STORING INFORMATION IN TABLES12

The tables in a relational database may contain hundreds or thousands of
rows. Some tables even contain many millions of rows. In theory, there is
no limit to the number of rows a table can have. In practice, your computer
will limit the number of rows you can have. Today, business databases run-
ning on large computers sometimes reach billions of rows.

There are also some tables with only one row of data. You can even have an
empty table with no rows of data in it. This is something like an empty box.
Usually, a table is only empty when you first build it. After it is created, you
start to put rows of data into it.

In a relational database, the rows of a table are considered to be in no par-
ticular order so they are an unordered set. This is different from the tables
most people are familiar with. In a bus schedule, the rows are in a definite
and logical order. They are not scrambled in a random order.

Database administrators (DBAs) are allowed to change the order of the
rows in a table to make the computer more efficient. In some products,
such as Access, this can be done automatically by the computer. As a
result, you, the end user seeking information, cannot count on the rows
being in a particular order.

A conceptual diagram of a row.

■ A row contains data for one object, event, or relationship.

■ All the rows in a table contain data for similar objects, events, or
relationships.

■ A table may contain hundreds or thousands of rows.

■ The rows of a table are not in a predictable order.

1-7 A column represents one type of information

A column contains one particular type of information that is kept about all
the rows in the table. A column cannot, or should not, contain one type of
information for one row and another type for another row. Each column
usually contains a separate type of information.

Notes

THE PARTS OF A TABLE 13

Each column has a name, for instance “favorite game,” and a datatype. We
discuss datatypes in chapter 6, but for now let’s keep it simple. There are
three main datatypes: text, numbers, and dates. This means that there are
three types of columns: columns containing text, columns containing num-
bers, and columns containing dates.

Some columns allow nulls, which are unknown values. Other columns do
not allow them. If a column does not allow nulls, then data is required in
the column for every row of the table. This means it is a required field.
When a column does allow nulls, the field is optional.

Most tables contain 5 to 40 columns. A table can contain more columns,
250 or more, depending on the relational database product you are using,
but this is unusual.

Each column has a position within the table. That is, the columns are an
ordered set. This contrasts with the rows, which have no fixed order.

Information about the columns — their names, datatypes, positions, and
whether they accept nulls — is all considered to be part of the definition of
the table itself. In contrast, information about the rows is considered to be
part of the data and not part of the definition of the table.

A conceptual diagram of a column.

■ A column contains one type of data about each row of the table.

■ Each column has a name.

■ Each column has a datatype. The most important datatypes are:

• Text

• Numbers

• Dates with times

Notes

CHAPTER 1 STORING INFORMATION IN TABLES14

■ Some columns accept nulls, and others do not. A null is an unknown
value.

■ Each column has a position within the table. In contrast to rows, the
columns of a table form an ordered set. There is a first column and a
last column.

■ Most tables have 40 columns or fewer.

1-8 A cell is the smallest part of a table

A cell occurs where one row meets with one column. It is the smallest part
of a table and it cannot be broken down into smaller parts.

A cell contains one single piece of data, a single unit of information. At
least that is the way it is in theory, and this is how you should begin to
think about it. In practice, sometimes a cell can contain several pieces of
information. In some applications a cell can contain an entire sentence, a
paragraph, or an entire document with hundreds of pages. For now we will
consider that a cell can contain one of the following:

■ One word

■ One letter

■ One number

■ One date, which includes the time

■ A null, which indicates that there is no data in the cell

For the first few chapters of this book, we consider the information in a cell
to be atomic, which means that it is a single indivisible unit of information.
We gather and arrange information from a table by manipulating its cells.
We either use all the information within a cell or we do not use that cell at
all. Later, when we discuss row functions, you will see how to use only part
of the data from a cell.

A column is a collection of cells. These cells have the same datatype and rep-
resent the same type of information. A row is a collection of cells. Together,
they represent information about the same object, event, or relationship.

A conceptual diagram of a cell.

THE PARTS OF A TABLE 15

■ A cell contains a single piece of data, a single unit of information.

■ Usually a cell contains one of the following types of data:

• Text, sometimes one word, or sometimes a one-letter code, such as
M for male or F for female

• A number

• A date and time

• A null, which is an unknown value (some people call this an empty
cell, or missing data)

■ All the cells in a column contain the same type of information.

■ All the cells in a row contain data about the same object, event, or
relationship.

1-9 Each cell should express just one thing

Each cell expresses just one thing — one piece of information. That is the
intent of the theory of relational databases. In practice, it is not always
clear what this means. The problem, partly, is that English and other spo-
ken languages do not always express information clearly. Another part of
the problem is that information does not always come in separate units.

Let’s examine one case in detail. A person in America usually has two
names — a first name and a last name. Now that is a bit of a problem to me
when I want to put information in the computer. There is one person, but
there are two names. How should I identify the person? Should I put both
names together in one cell? Should I put the names into two separate
cells? The answer is not clear.

Both methods are valid. The designers of the database usually decide
questions like this. If the database designers think that both names will
always be used together, they will usually put both names in a single cell.
But if they think that the names will be used separately, they will put each
name in a separate cell.

The problem with this is that the way a database is used may change over
time, so even if a decision is correct when it is made, it might become
incorrect later on.

Notes

CHAPTER 1 STORING INFORMATION IN TABLES16

Two ways to show the name of a person in a table. (A) One column for the
name. Both the first and last names are put in a single cell. (B) Two separate
columns: one for the first name and another for the last name. Each cell
contains a single word.

■ Both methods are equally valid.

■ The first method emphasizes that Susan Riley is one person, even
though the English language uses two separate words to express her
name. It implies that we will usually call her “Susan Riley,” using both
her names together as a single unit.

■ The second method emphasizes the English words. It implies that we
will want to use several different variations of her name, calling her
“Susan” or “Susan Riley” or “Miss Riley.” The words “Susan” or “Riley”
can come from the table in the database. Any other words must be
supplied by some other means.

■ The database design intends each cell to be used in whole or not
used at all. In theory, you should not need to subdivide the data in a
cell. However, in practice that is sometimes required.

1-10 Primary key columns identify each row

Most tables contain a primary key that identifies each row in the table and
gives it a name. Each row must have its own identity, so no two rows are
allowed to have the same primary key.

The primary key consists of several columns of the table. By convention,
these are usually the first few columns. The primary key may be one column
or more than one. We say that there is only one primary key, even when it
consists of several columns, so it is the collection of these columns, taken
as a single unit, that is the primary key and serves to identify each row.

Full Name First Name Last Name

Susan Riley Susan Riley

(A) (B)

Notes

THE PARTS OF A TABLE 17

The primary key is like a noun because it names the object of each row. The
other columns are like adjectives because they give additional information
about the object.

A table can only contain a single primary key, even if it consists of several
columns. This makes sense because there is no point in identifying a row
twice — those identities could conflict with each other. Suppose, for exam-
ple, that we have a table of employees. Each employee can be identified by
an employee number or a Social Security number. The database designers
would need to choose which column to make the primary key of the table.
They could choose either one to be the primary key of the table, or they
could choose to use both together to make a primary key. However, they are
not allowed to say that each column by itself is a primary key.

The name of a column is considered to be part of the definition of the
table. In contrast, the name of a row, which is the primary key of the row, is
considered to be part of the data in the table.

There are two rules that regulate the columns of the primary key of a table:

1. None of the columns of the primary key can contain a null. This
makes sense because a null is an unknown value. Therefore, a null in
any part of the primary key would mean we do not know the identity
of the object or the row. In databases, we do not want to enter infor-
mation about unidentified rows.

2. Each row must have an identity that is different from every other row
in the table. That is, no two rows can have the same identity — the
same values in all the columns of the primary key. For any two rows
of the table, there must be at least one column of the primary key
where the values are different.

The first column is usually the primary key of the table.

Primary Key

A

B

C

D

CHAPTER 1 STORING INFORMATION IN TABLES18

Sometimes the primary key is the first several columns of the table.

■ Most tables have primary keys.

■ Usually, the primary key consists of the first column or the first several
columns of the table.

■ The primary key names the object, event, or relationship the row rep-
resents. In grammatical terms, it is a noun because it is the subject of
all the information in the row.

■ The other columns of the table make statements about the primary
key. In grammatical terms, they are adjectives or adverbs that describe
the object named by the primary key and give additional information
about it.

1-11 Most tables are tall and thin

Many books on SQL give the impression that tables are usually square —
that they have about the same number of rows as they have columns. This
false impression is left because the tables in most SQL books are approxi-
mately square. In any book, the tables must be kept small. In a book, when
you run SQL code you must be able to examine the results in full detail.

However, the tables that are used in real production systems usually have a
different shape. They are tall and thin. They may have 30 columns, but
1,000,000 rows.

Not all tables have this shape, but most do. Some tables have only one
row.

I tell you this because I like to visualize the data and the tables I am work-
ing with. If you like to visualize them, too, then at least I have provided you

Primary Key

A 1

A 2

B 1

B 2

Notes

EXAMPLES OF TABLES 19

with the correct picture. If you are not inclined to visualize these things, do
not worry about it. Just go on to the next page.

Most tables have many more rows than columns.

Examples of Tables

Up to now, we have discussed the theory of tables, but you have not seen
any real ones. In the following sections you will see some actual tables. We
look at a table to see how it looks in both Oracle and Access. We discuss
some of the design decisions that are used in constructing many tables. We
also examine the tables of the Lunches database, which is used in many of
the examples throughout this book.

1-12 An example of a table in Oracle and Access

This section shows the same table in both Oracle and Access. This is our
first opportunity to examine how Oracle and Access compare.

You will have to decide for yourself how similar they are and how different
they are. To me, this example shows that they are about 90 percent similar
and about 10 percent different. Of course, this is just one example. You
might ask yourself which percentages you would use to describe this.

CHAPTER 1 STORING INFORMATION IN TABLES20

Oracle tables can be shown in two formats that are very similar, but have a
few slight differences. To keep things simple here, I am only showing you
one of those formats. The following Oracle table was obtained using the
“SQL Command Line” environment. The other Oracle format occurs in the
“Database Home Page” environment. I will discuss it briefly in the notes at
the end of this section.

l_employees table: Oracle format

l_employees table: Access format

Similarities between Oracle and Access
■ Column names are printed at the top of the column. The column

names are part of the structure of the table, not part of the data in the
table.

■ Sometimes the column names shown in the column headings are
truncated. This is a slight problem. You are given tools to deal with it.

■ Columns containing text data are justified to the left.

■ Columns containing numbers are justified to the right.

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EXAMPLES OF TABLES 21

■ Columns containing dates often display only the date. The format for
displaying the date is not part of the data. The value of the date is
stored in the table, but the format of the date is specified separately.
The date actually contains both a date and a time, but the time is
often not displayed.

■ Columns displaying currency amounts are actually stored as num-
bers, and use a format to put in the dollar signs and decimal points.

Differences between Oracle and Access
■ Display framework: Oracle displays lines of character data. Access

uses graphical techniques to display the data in a grid and color the
borders of the grid.

■ Case: The Oracle table is shown all in uppercase. The Access table
uses uppercase only for the first letter. It is a common convention to
set the databases up this way. Mixed-case data can be put into an
Oracle table, but this makes the data more difficult to handle, so Ora-
cle data is usually either all uppercase or all lowercase. Access data is
handled as if it were all uppercase, although it is displayed in mixed
case. This makes it look nicer, but sometimes it can also be deceiving.
In Access, the data appears to be mixed case, but the data behaves as
if it were in uppercase. For instance, John and jOhn appear different
in Access, but they are handled as if they are the same.

■ Column headings: Oracle can use several lines for a column heading.
Access displays the heading on a single line.

■ Date formats: The dates above show Oracle and Access using the
same date format. I made that happen here because I wanted Oracle
and Access to look similar. However, on your computer the dates will
probably use different formats.

Oracle and Access can both display dates in a variety of formats. Each
has a default format to use for dates when no other format is speci-
fied. However, Oracle uses one method to specify this default format
for dates and Access uses a different method.

■ Date alignment: Oracle aligns dates to the left, whereas Access
aligns them to the right.

■ Nulls: In this book, I have set up Oracle to always display nulls as
(null) in all the columns of every table. This cannot easily be done
in Access.

CHAPTER 1 STORING INFORMATION IN TABLES22

■ Position pointer: The Access table contains a record selector and a
pointer to a particular field within that record, which allows you to
modify the data. The Oracle table does not contain these.

■ Ability to add data: In Access, a blank row at the bottom of a table indi-
cates that new rows of data can be entered into the table. Also an extra
column is displayed called “Add New Field”. This is not done in Oracle.

The other Oracle format is used in the “Database Home Page” environment.
It has several technical differences, but none that will challenge your under-
standing of what is going on. Here are a few of these differences:

■ Tables are displayed on pages in your Web browser.
■ Column headings are never truncated.

■ All fields are justified to the left.

■ Nulls are shown with dashes

■ Dollar amounts are not automatically formatted.

1-13 Some design decisions in the l_employees table

The l_employees table contains some design decisions that I want to
point out to you because they reflect some common practices within rela-
tional databases. Like all design decisions, they could have been made in
other ways. This is not the only way to design the table. It might not even
be the best way. But you may often encounter these design decisions and
you need to be aware of them.

l_employees table

Notes

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EXAMPLES OF TABLES 23

Design decisions to be aware of
■ The phone_number column contains text data, not numbers.

Although the data look like numbers, and the column name says
number, it actually has a text datatype. You can tell this by its align-
ment, which is to the left. The reason the table is set up this way is
that the phone number data will never be used for arithmetic. You
never add two phone numbers together or multiply them. You only
use them the way they are, as a text field. So this table stores them as
text.

■ The employee_id column contains numbers. You can tell this by its
alignment, which is to the right. Now, we do not do arithmetic with
employee IDs, we never add them together, so why isn’t this a text
field, too? The answer is that numbers are often used for primary key
columns even when no arithmetic will be performed on them. This
can allow the computer to handle the table more quickly.

■ The manager_id column contains numbers, but it is not a primary
key column. So why doesn’t it contain text? This column is intended
to match with the employee_id column, so it has been given the
same datatype as that column. This improves the speed of matching
the two columns.

■ The name of the table, l_employees, might seem strange. The l indi-
cates that this table is part of a group of tables. The names of all the
tables in the group start with the same letter(s). In this case it shows
that the table is part of the Lunches database. (Here I use the term
database to mean a collection of related tables.)

■ The people who design databases put a considerable amount of work
into the consistent naming of objects, using standard prefixes, suf-
fixes, abbreviations, and column names. This makes the whole model
easier to understand and more usable for the code that is developed
for each database.

1-14 The Lunches database

Most of the examples of SQL code in this book are based on the Lunches
database. You can get a complete listing of this database from the Web
site. To read this book, you will need to understand the story and the data,
so here is the basic story.

CHAPTER 1 STORING INFORMATION IN TABLES24

There is a small company with ten employees. This company will serve
lunch to its employees on three occasions. Each employee can attend as
many of these lunches as his or her schedule permits. When employees
register to attend a lunch, they get to pick what they want to eat. They
may choose from among the ten foods available to them. They can decide
to have a single portion or a double portion of any of these foods. The
Lunches database keeps track of all this information.

That is the story. Now let’s look at the data. When I call this a database, I
mean that it is a collection of related tables. The set of tables, taken
together, tell the story. There are seven tables in this database:

■ Employees (l_employees)

■ Departments (l_departments)

■ Constants (l_constants)

■ Lunches (l_lunches)

■ Foods (l_foods)

■ Suppliers (l_suppliers)

■ Lunch Items (l_lunch_items)

To show that these tables are all related to each other and to distinguish
them from other tables we may use, the names of these tables are all pre-
fixed with the letter l. When there are multiple words, such as
lunch_items, the spaces are replaced with underscore characters. This
helps the computer understand that the two words together are a single
name.

l_employees table

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EXAMPLES OF TABLES 25

The l_employees table lists all the employees. Each employee can be
identified by an employee ID, which is a number assigned to him or her.
This allows the company to hire two people with the same name. The pri-
mary key is the employee_id column.

Each employee has a manager, who is also an employee of the company.
The manager is identified by his or her employee ID. For instance, the
manager_id column shows that Jim Kern is managed by employee 201.
Employee 201 is Susan Brown.

Susan Brown and Carol Rose are the only employees without a manager.
You can tell this because there is a null in the manager_id columns. How-
ever, these nulls mean different things.

Susan Brown is the head of the company. The null in this case does not
mean that we do not know who her manager is. Rather, it means that she
does not have a manager.

Carol Rose is a new hire. The null in her manager_id column could mean
that she has not yet been assigned to a manager or it could mean that the
information has not yet been entered into the database.

l_departments table

Each employee works for one department. The department code is shown
in the l_employees table. The full name of each department is shown in
the l_departments table. The primary key of this table is dept_code.

These tables can be linked together by matching the dept_code columns.
For example, the l_employees table shows us that employee 202, Jim
Kern, has a department code of SAL. The l_departments table says that
the sales department uses the department code SAL. This tells us that Jim
Kern works in the sales department.

DEPT
CODE DEPARTMENT_NAME
---- ------------------------------
ACT ACCOUNTING
EXE EXECUTIVE
MKT MARKETING
PER PERSONNEL
SAL SALES
SHP SHIPPING

CHAPTER 1 STORING INFORMATION IN TABLES26

l_constants table

The l_constants table contains some constant values and has only one
row. We use these values with the other tables of the database. These val-
ues are expected to change infrequently, if at all. Storing them in a sepa-
rate table keeps the SQL code flexible by providing an alternative to
hard-coding these values into SQL. Because the table of constants has
only one row, it does not need a primary key.

l_lunches table

The l_lunches table registers an employee to attend a lunch. It assigns a
lunch ID to each lunch that will be served. For example, employee 207, Dan
Smith, will attend a lunch on November 16, 2011. His lunch is identified as
lunch_id = 2.

The lunch_id column is the primary key of this table. This is an example of
a surrogate key, which is also called a meaningless primary key. Each row is
assigned a unique number, but there is no intrinsic meaning to that num-
ber. It is just a convenient name to use for the row, or the object that the
row represents — in this case, a lunch.

 BUSINESS
BUSINESS_NAME START_DATE LUNCH_BUDGET OWNER_NAME
------------------------------ ----------- ------------ --------------
CITYWIDE UNIFORMS 01-JUN-1998 $200.00 SUSAN BROWN

LUNCH_ID LUNCH_DATE EMPLOYEE_ID DATE_ENTERE
--------- ----------- ----------- -----------
 1 16-NOV-2011 201 13-OCT-2011
 2 16-NOV-2011 207 13-OCT-2011
 3 16-NOV-2011 203 13-OCT-2011
 4 16-NOV-2011 204 13-OCT-2011
 6 16-NOV-2011 202 13-OCT-2011
 7 16-NOV-2011 210 13-OCT-2011
 8 25-NOV-2011 201 14-OCT-2011
 9 25-NOV-2011 208 14-OCT-2011
 12 25-NOV-2011 204 14-OCT-2011
 13 25-NOV-2011 207 18-OCT-2011
 15 25-NOV-2011 205 21-OCT-2011
 16 05-DEC-2011 201 21-OCT-2011
 17 05-DEC-2011 210 21-OCT-2011
 20 05-DEC-2011 205 24-OCT-2011
 21 05-DEC-2011 203 24-OCT-2011
 22 05-DEC-2011 208 24-OCT-2011

EXAMPLES OF TABLES 27

The l_lunches table shows the most common way to use a surrogate key.
Usually a single column is the primary key. That column has a different
value in every row.

Some database designers like to use surrogate keys because they can
improve the efficiency of queries within the database. Surrogate keys are
used especially to replace a primary key that would have many columns,
and when a table is often joined to many other tables.

Other designers do not like surrogate keys because they prefer to have each
column contain meaningful data. This is an area of debate among database
designers, with many pros and cons on each side. People who use data-
bases need only be aware that these columns are meaningless numbers
used to join one table to another.

l_foods table

The l_foods table lists the foods an employee can choose for his or her
lunch. Each food is identified by a supplier ID and a product code.
Together, these two columns form the primary key. The product codes
belong to the suppliers. It is possible for two suppliers to use the same
product code for different foods. In fact, the product code AS has two differ-
ent meanings. Supplier JBR uses this product code for soda, but supplier
VSB uses it for dessert.

The price increases are proposed, but are not yet in effect. The nulls in the
price_increase column mean that there will not be a price increase for
those food items.

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

CHAPTER 1 STORING INFORMATION IN TABLES28

l_suppliers table

The l_suppliers table shows the full names for the suppliers of the
foods. For example, the l_foods table shows that french fries will be
obtained from supplier ID FRV. The l_suppliers table shows that Frank
Reed’s Vegetables is the full name of this supplier. The primary key of these
tables is the supplier ID.

l_lunch_items table

When you look at the l_lunch_items table you need to be aware that the
data in the item_number column is aligned to the right because it is a col-
umn of numbers. The data in the supplier_id column is aligned to the
left because it is a column of text. So when you look at the first row, 1 ASP
is not a single piece of data. Instead, the item_number value is 1 and the
supplier_id value is ASP.

SUPPLIER
ID SUPPLIER_NAME
-------- ------------------------------
ARR ALICE & RAY'S RESTAURANT
ASP A SOUP PLACE
CBC CERTIFIED BEEF COMPANY
FRV FRANK REED'S VEGETABLES
FSN FRANK & SONS
JBR JUST BEVERAGES
JPS JIM PARKER'S SHOP
VSB VIRGINIA STREET BAKERY

 SUPPLIER PRODUCT
 LUNCH_ID ITEM_NUMBER ID CODE QUANTITY
--------- ----------- -------- ------- ---------
 1 1 ASP FS 1
 1 2 ASP SW 2
 1 3 JBR VR 2
 2 1 ASP SW 2
 2 2 FRV FF 1
 2 3 JBR VR 2
 2 4 VSB AS 1
 3 1 ASP FS 1
 3 2 CBC GS 1
 3 3 FRV FF 1
 3 4 JBR VR 1
 3 5 JBR AS 1
(and many more rows)

EXAMPLES OF TABLES 29

The l_lunch_items table shows which foods each employee has chosen
for his or her lunch. It also shows whether they want a single or a double
portion. For example, look at lunch_id 2, which we already know to be
Dan Smith’s lunch on November 16. It consists of four items. The first item
is identified as ASP-SW. Here I am putting the supplier_id and the
product_code column data together separated by a hyphen. Looking in
the l_foods table, we find this is a sandwich. The l_lunch_items table
says he wants two of them, which is shown in the quantity column. See if
you can figure out all the foods he wants for his lunch.

The correct answer is:

2 sandwiches

1 order of french fries

2 cups of coffee

1 dessert

The primary key of this table consists of the first two columns of the table,
lunch_id and item_number. The item_number column is a tie-breaker
column, which is another type of meaningless primary key. In this design, I
wanted to use the lunch ID to identify each food within a lunch. However,
most lunches have several foods. So I cannot use the lunch ID by itself as a
primary key, because that would create several rows in the table with the
same value in the primary key, which is not allowed. I needed a way for each
row to have a different value in the primary key. That is what a tie-breaker
column does. The item_number column numbers the items within each
lunch. Therefore, the combination of lunch ID and item number provides a
unique identity for each row of the table and can serve as the primary key. A
primary key of this sort, containing more than one column, is sometimes
called a composite key.

Challenging features of the Lunches database
Most SQL books have you work with a database that is tame and contains
no challenges. This book is different. I have intentionally put some features
in the Lunches database that could cause you to get the wrong result if you
do not handle them properly. I show you how to become aware of these sit-
uations and how to deal with them. Many real business databases contain
similar challenges. Here are a few of them:

■ Two employees are not attending any of the lunches — employee 209,
Paula Jacobs, and employee 206, Carol Rose.

CHAPTER 1 STORING INFORMATION IN TABLES30

■ One food has not been ordered in any of the lunches — broccoli.

■ One of the departments is not yet staffed with any employees — the
personnel department.

Key Points

■ In this book we assume that the database has already been built and
you just need to learn how to use it. By analogy, this book shows you
how to drive a car without trying to show you how to build one.

■ Databases are used in many businesses and SQL is used in many
software products, so the skills you learn will help you in many differ-
ent situations.

■ Tables are the main construct of a database. All data is kept in tables.
Also any data that is given to you will be given in the form of a table.
Tables have columns and rows. Usually there are many more rows
than columns.

■ Most tables have a primary key. This gives a name to each row of
the table and prevents the table from having any two rows that are
identical.

■ There are a few differences between Oracle and Access, but there are
many more similarities.

■ Oracle is mostly used in businesses with large databases. Hundreds
of people may be using the database at the same time. The database
can help coordinate all the people in a business and keep them work-
ing together.

■ Access is mostly used by individuals with small personal databases.
Usually only one person is using the database at any given time.
Access is also used in some business situations.

31

chapter 2

This chapter explains the basic technique for getting the infor-
mation you want from a table when you do not want to make
any changes to the data and when all the information is in one
table. The table might be very large and you might only want a
small amount of data from it.

GETTING
INFORMATION

FROM A TABLE

The Select Statement . 33

2-1 The goal: Get a few columns and rows from a table .33
2-2 Overview of the select statement .34

The Select Clause . 37

2-3 Overview of the select clause .37
2-4 Use a select clause to get a list of some of the columns38
2-5 Use a select clause to get a list of all of the columns 41
2-6 Use a select clause to get the distinct values in one column44
2-7 Use a select clause to get the distinct values in two columns 48

The Where Clause . 50

2-8 Overview of the where clause .50
2-9 Using an Equal condition in the where clause .52

2-10 Using a Less Than condition in the where clause. .56
2-11 Using a Not Equal condition in the where clause. .58
2-12 Using the in condition in the where clause .61
2-13 Using the between condition in the where clause63
2-14 Using the like condition in the where clause. .66
2-15 Using the is null condition in the where clause .69

The Order By Clause. 71

2-16 Overview of the order by clause .71
2-17 Sorting the rows by one column in ascending order73
2-18 Sorting the rows by several columns in ascending order.75
2-19 Sorting the rows by several columns in various orders77
2-20 The whole process so far .79

Key Points . 80

33

The Select Statement

In SQL, the select statement is used to get information from a table. Much
of this book is concerned with the select statement. This chapter explains
its four basic clauses and the options available for three of these clauses.

2-1 The goal: Get a few columns
and rows from a table

Our goal is to get the data we want from a table. The table may be large and
contain a lot of data. We only want a small part of it and we do not want to
change the data in any way. The select statement allows us to retrieve a
few columns and a few rows of data from the table.

Let’s put some numbers on this. The particular numbers are not important,
but they draw the picture more clearly. Suppose that printing all the data in
the table would take 1,000 pages, and suppose we want only two pages of
data from it. The select statement allows us to get just the two pages of
data we want.

It is as if we want to read an article on redwood trees from an encyclopedia.
We only want to see that one article. We do not want to read the entire
encyclopedia from beginning to end. The select statement allows us to
find the particular article we want to read.

The following diagram shows a large table of data. A small amount of that
data is being retrieved into the result of the select statement. In this dia-
gram, the data we want is scattered throughout the table in various col-
umns and rows. It is collected together by the select statement.

Beginning table. Result table.

A B C D E

A C E

CHAPTER 2 GETTING INFORMATION FROM A TABLE34

Handling small tables of data
If a table of data is small, there might not be much reason to write a
select statement. For instance, if we can print the entire table on two
pages, then why not print it completely and let people work to find the
information they want? In many situations, this approach makes the
most sense.

In this book, we use small tables as learning tools. With tables this size,
there is not much reason to use select statements. However, these tables
are being used as examples to show how the select statement works
when it is used with larger tables.

2-2 Overview of the select statement

The select statement is used to get some of the data from a table. It has
six clauses:

select Which columns of data to get

from Which table has the data

where Which rows of data to get

group by (Described in chapter 12)

having (Described in chapter 12)

order by Which columns are used to sort the result

They must be written in this order. Group by and having are used in sum-
marizing data, and we examine them later.

This chapter discusses the options available for the select, where, and
order by clauses. For now, the from clause will always list only one table.

A select statement is often called a query. These two terms are used
interchangeably. The term “select statement” emphasizes the syntax of
the SQL command. The term “query” emphasizes the purpose of the
command.

THE SELECT STATEMENT 35

Show an example of a select statement that uses all of the clauses just
listed. Show the employee_id, last_name, and credit_limit columns
from the l_employees table of the Lunches database. Show only the
employees who have a credit limit greater than $20.00. Sort the rows of the
result by the last name of the employee.

select employee_id, ➊

 last_name,
 credit_limit
from l_employees ➋

where credit_limit > 20.00 ➌

order by last_name; ➍

Beginning table (l_employees table)

Result table ➎

Task

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE CREDIT
 ID LAST_NAME LIMIT
-------- ---------- -------
 201 BROWN $30.00
 208 CAMPBELL $25.00
 210 HOFFMAN $25.00
 202 KERN $25.00
 205 PERKINS $25.00
 207 SMITH $25.00
 203 WOODS $25.00

CHAPTER 2 GETTING INFORMATION FROM A TABLE36

➊ The select clause lists the columns you want to show in the result
table. They can be listed in any order. Their order in the select clause
determines their order within the result table. When the computer sees a
column name that is not followed by a comma it expects to see the next
clause, the from clause.

Also, note that the names of these columns do not contain spaces.
Access allows this, but I do not recommend it because a space is usually
used as a delimiter. The underscore character (_) is usually used instead
of a space to separate the words in the name of each column. By typing
last_name with an underscore, you are telling the computer that this is
the name of a single column. If you typed last name with a space, the
computer would try to find a column named last and it would not find
any column with that name. This would cause an error and the computer
would not process the select statement. Chapter 3 discusses the issue
of using spaces in column names in more detail.

➋ The from clause names the table that the data comes from — the
l_employees table of the Lunches database. In the naming scheme
used here, the prefix “l_” indicates that the employees table is part of
the Lunches database. This table is shown as the beginning table.

➌ The where clause indicates which rows to show in the result table. The
condition where credit_limit > 20.00 eliminates the rows for
employees 204 and 209 because they have a $15.00 credit limit, and
employee 206, which has a null value.

Note that the dollar amount is written without the dollar sign. It must
also be written without any commas. The decimal point is acceptable,
but not required. The condition could also be written as follows: where
credit_limit > 20. In this SQL code here, I put two zeros after the dec-
imal point to make it look more like a currency value. This has no effect
on the result of the query.

➍ The order by clause specifies that the rows of the result table should be
sorted in alphabetical order by the last_name column. A semicolon
marks the end of the SQL statement. In Oracle, this statement will not
run without the semicolon. In Access, it is optional. In Oracle, you could
put a slash (/) on the next line as an alternative to the semicolon.
Because using a semicolon is valid within both products, in this book I
use a semicolon at the end of every SQL statement.

➎ Some people would call this a query result listing. This name has some
merit, because it is not a table. It is the result of running a query or a
select statement. In Oracle, these results are shown on the screen as a
Web page within your browser. In Access, they are shown on the screen
as if they are in a table, with some interactive elements, in datasheet
view. In other books you may find the terms derived table and virtual
table.

Notes

THE SELECT CLAUSE 37

I call this a result table because according to relational database theory,
tables are the only database structure. The input to a query is a table,
and the output of a query is a table. This result table appears only on the
screen. It is not stored on the disk.

The Select Clause

The select clause is the first part of a query. The select clause says which
columns of information you want, what order you want them in, and what
you want them to be called. Do not confuse the select clause with the
select statement.

2-3 Overview of the select clause

There are three forms of the select clause. The following pages show an
example of each of these.

select a list of columns ■ Get only the columns listed.
■ Put them in the order they are listed.
■ You can rename them.

select *

or select table_name.*
■ Get all the columns of the table.
■ Put them in the same order they are in the table.
■ You cannot rename them in SQL. (Within some

products, you can rename them in other ways.)
■ When any additional columns are listed, besides

those of one table, the table name is required
before the asterisk. A period is placed between
the table name and the asterisk, so the com-
mand reads as follows: select table_name.*

select distinct a list of columns ■ Get only the columns listed.
■ Put them in the order they are listed.
■ You can rename them.
■ Eliminate duplicate rows from the result.

CHAPTER 2 GETTING INFORMATION FROM A TABLE38

The first form, select a list of columns, gets only the columns that are
listed. It can rename these columns, giving them a column alias. It also
specifies the order in which the columns are to be listed.

The second form, select *, gets all the columns of a table. This does not
list the columns individually, so it cannot give the columns an alias or
specify an order for the columns. The columns are listed in the order in
which they appear in the table.

The third form, select distinct a list of columns, is similar to the first
form, but it includes the word distinct. This eliminates all the duplicate
rows from the result table. Two rows are duplicates if they have identical
values in every column of the result table. If even one column is different,
they do not match and they are not duplicates.

The only required clauses are the select clause and the from clause. You
can write a select statement with only these two clauses. The following
query lists all the columns and all the rows of the l_employees table.

select *
from l_employees;

2-4 Use a select clause to get
a list of some of the columns

This section shows an example of a select clause that is used to get a list
of columns. Only the columns listed in the select clause appear in the
result table. The other columns of the beginning table are omitted.

The order of the columns within the select clause determines their order
within the result table. This can be different from their order within the
beginning table.

It is possible for the same column to be listed two or more times. This is
sometimes useful when different formatting or functions are applied to
the column. Chapter 7 discusses formatting. Functions are covered in
chapters 9 and 10.

A literal value can be included in the select clause. That value will then
appear in every row of the result table. If the literal value is text, it must be
enclosed in single quotes. If it is a number, no quotes are used. In the
example for this section, the text literal “excellent worker” is enclosed in
single quotes, but there are no quotes around the numeric literal 10.

THE SELECT CLAUSE 39

A column can be renamed by giving it a column alias. This changes the
heading that appears in the result table. It does not have any permanent
effect on the table or the database. To assign a column alias, use this syntax:

column_name AS alias_name

The word “as” is optional in Oracle and required in Access. I recommend
that you use it because it makes the select statement easier to read and
understand. Usually you should avoid using spaces within the name of the
column alias. A common convention is to replace the spaces with under-
score characters. In the example for this section, four columns are given
new names.

In the result table you might sometimes see the column heading truncated.
This is done to save space and make the result table fit better on the page.
Instead of showing the full column name or column alias, only the beginning
part is shown. This is done in both Access and the older interface of Oracle
that uses the SQL command line. The newer interface of Oracle, the Data-
base Home Page environment, does not have this problem.

In Access, if you want to see the full column heading, use the mouse to
make the column wider. This can be done after SQL has been run.

Get the following three columns from the l_employees table:

employee_id
phone_number
last_name

Display them in that order. Change the name of the employee_id column to
employee_number and the name of the phone_number column to exten-
sion. Also create two new columns: evaluation and rating. Give every
employee an evaluation of “excellent worker” and a rating of 10.

select employee_id as employee_number, ➊

 phone_number as extension,
 last_name,
 'EXCELLENT WORKER' as evaluation, ➋

 10 as rating ➌

from l_employees;

Task

Oracle & Access SQL

CHAPTER 2 GETTING INFORMATION FROM A TABLE40

Beginning table (l_employees table)

Result table

➊ The employee_id column is being renamed employee_number. This
new name, the column alias, is the column heading in the result table.
An underscore character is used to join the words “employee” and “num-
ber.” This makes the column alias a single word, as it contains no spaces.
My reason for doing this is that Oracle and Access SQL are the same as
long as the column alias does not contain spaces.

Both Oracle and Access allow spaces in the column alias. However, the
code is written with a slight difference. In Oracle, double quotes must be
used around a column alias that contains a space, whereas in Access,
square brackets are used:

Oracle: select employee_id as "employee number"
Access: select employee_id as [employee number]

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE_NUMBER EXTENSION LAST_NAME EVALUATION RATING
--------------- ---------- ---------- ---------------- ---------
 201 3484 BROWN EXCELLENT WORKER 10
 202 8722 KERN EXCELLENT WORKER 10
 203 7591 WOODS EXCELLENT WORKER 10
 204 6830 OWENS EXCELLENT WORKER 10
 205 5286 PERKINS EXCELLENT WORKER 10
 206 (null) ROSE EXCELLENT WORKER 10
 207 2259 SMITH EXCELLENT WORKER 10
 208 1752 CAMPBELL EXCELLENT WORKER 10
 209 3357 JACOBS EXCELLENT WORKER 10
 210 2974 HOFFMAN EXCELLENT WORKER 10

Notes

THE SELECT CLAUSE 41

➋ The text 'EXCELLENT WORKER' is added to every row of the result table
in a column called evaluation. This is an example of placing a literal
value in a select statement. Here, the literal value is text, so it is
enclosed in single quotes.

I used uppercase letters within the single quotes because I wanted to
have uppercase letters in the result table. If I had used lowercase let-
ters in the select statement, the result table would show this text in
lowercase letters.

➌ Here the literal value is a number, so it is not enclosed in quotes.

List the description and price of all the foods. Change the name of the
description column to food_item and the name of the price column to
cost.

2-5 Use a select clause to
get a list of all of the columns

Here is an example of a select clause that gets all the columns of a table
and lists them in the same order in which they occur within the beginning
table. In this example, there is no where clause, so the result table con-
tains all the columns and all the rows of the beginning table. This means
that the beginning table and the result table are identical.

This is the simplest select statement that you can write. The select
clause and the from clause are required in any select statement. All other
clauses are optional.

This method of showing the contents of a table gives you a good guess
about the following:

■ The number of columns in the table

■ The number of rows in the table, unless there are too many rows to
list conveniently

■ The names of the columns

However this information is not always accurate. Sometimes a table has
been set up so that certain columns or rows are hidden from you. Some-
times the column names shown here can be different from the column
names used in the actual table.

Check your understanding

CHAPTER 2 GETTING INFORMATION FROM A TABLE42

Get the entire l_employees table, all the columns and all the rows. Display
all the columns in the same order as they are defined in the table.

select *
from l_employees;

Beginning table (l_employees table)

Result table ➊

Task

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- ---------- ---- ----------- ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

THE SELECT CLAUSE 43

➊ The result table is identical to the beginning table, except possibly for
the order of the rows. In the listings here, the rows are in exactly the
same order. I did this to make the example easy to understand. In theory,
however, the rows of both tables are unordered sets, so the rows in the
result table could appear in a different order.

If a where clause is added to the select statement, the result table can con-
tain only some of the rows of the beginning table. For example:

select *
from l_employees
where manager_id is null;

This lists the two rows for employees 201 and 206.

Result table: Variation 1

If an order by clause is added to the select statement, the rows of the
result table may be sorted in a different order. For example, you could sort
them by hire_date. When there is no order by clause, the computer is
allowed to list the rows of the result table in any order. To control the order
and ensure that the rows are sorted by the value in the employee_id col-
umn, it is necessary to write:

select *
from l_employees
order by last_name;

Notes

Oracle & Access SQL: Variation 1 — Adding a where clause

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 206 CAROL ROSE ACT (null) (null) (null) (null)

Oracle & Access SQL: Variation 2 — Adding an order by clause

CHAPTER 2 GETTING INFORMATION FROM A TABLE44

Result table: Variation 2

Displaying the data in any table
If you know the name of any table, you can display all the data in it with the
select statement:

select *
from table_name;

You replace table_name with the name of your table.

List all the columns and all the rows of the foods table. How many columns
are in this table? How many rows? What are the names of the columns?

2-6 Use a select clause to get the
distinct values in one column

This section shows an example of using select distinct on one column
to find all of its values and list each of them only once. This is particularly
useful when you are working with a column that contains codes, such as
the dept_code column. In this example, we apply select distinct to the
manager_id column. In the result table, manager ID 201 is displayed only
once, even though there are three rows of the beginning table with this
value. The duplicate values are removed.

Notice that the null value does appear in the result table. Here we see that
select distinct treats nulls as it treats any other data in the table. If

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- ---------- ---- ----------- ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201

Check your understanding

THE SELECT CLAUSE 45

there were several nulls in the manager_id column of the beginning table,
the result table would still contain only a single null.

In Access, to use select distinct you need to write the SQL yourself.
The tools to help you write a query in Access will not write a select
distinct query for you.

Get a list of all the different values in the manager_id column of the
l_employees table.

select distinct manager_id
from l_employees;

Beginning table (l_employees table)

Result table

Task

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- ---------- ---- ----------- ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

MANAGER
 ID

 201
 202
 203
(null)

CHAPTER 2 GETTING INFORMATION FROM A TABLE46

Where nulls are placed in the sort order —
A difference between Oracle and Access
In Oracle, nulls are placed at the bottom of the sort order. In Access they
are placed at the top. This is not a big difference. It causes a slight differ-
ence in the appearance of the result, although the rows in the result are the
same in both cases.

Everyone agrees on the sort order for the numbers 0 to 9 and for the letters
A to Z. However, there is no such agreement about how nulls fit into the
sort order. In the absence of a common agreement, the developers of Ora-
cle decided to resolve the issue one way and the developers of Access
decided to resolve it another way.

The result table shown next shows the null at the bottom. This is the Oracle
method. People using Access will find the null at the top. In Access, the
null appears as a blank.

In this example, one could argue that because the select statement con-
tains no order by clause, the rows of the result table are allowed to be in
any order. In theory, the null can appear in any position within the result
table. In practice, when select distinct is used, a sort is performed as
part of the process of eliminating duplicates. Therefore, the rows of the
result table are presented in sorted order, even though no order by clause
is used. In this case, the sort is performed on the manager_id column.

Select distinct may be used with a where clause to limit the number of
rows in the result table. The where clause is processed first, which removes
some rows from the beginning table. Then the select distinct clause is
processed. Here is an example:

select distinct manager_id
from l_employees
where employee_id in (201, 208, 210);

Result table: Variation 1

Oracle & Access SQL:
Variation 1 — Adding a where clause to select distinct

MANAGER
 ID

 203
(null)

THE SELECT CLAUSE 47

Select distinct may be used with an order by clause to sort the rows of
the result table in either an ascending or a descending order.

select distinct manager_id
from l_employees
order by manager_id desc;

Result table: Variation 2

If the word distinct is removed from the select statement, the result
table will be the same as the manager_id column of the beginning table.
The value 201 will appear three times. No duplicate values will be removed,
nor will any sort occur. The rows might appear in the same order as in the
beginning table, or they could appear in some completely different order.
Here is an example:

select manager_id
from l_employees;

Result table: Variation 3

Oracle & Access SQL:
Variation 2 — Adding an order by clause to select distinct

MANAGER
 ID

(null)
 203
 202
 201

Oracle & Access SQL:
Variation 3 — What happens if you eliminate the word distinct?

MANAGER
 ID

(null)
 201
 201
 202
 202
(null)
 203
 203
 201
 203

CHAPTER 2 GETTING INFORMATION FROM A TABLE48

List all the different supplier_id values from the l_foods table.

2-7 Use a select clause to get the
distinct values in two columns

This section shows an example of using select distinct with two
columns. The same technique can be used when there are three or more
columns. We want to get a list of the distinct values when all these col-
umns are combined together as a single unit.

The SQL code is similar to the code in the previous section. Here a second
column, the credit_limit column, is added to the select distinct

clause. The result table shows all the different combinations of values in
the two columns, manager_id and credit_limit.

When select distinct is used with several columns, the result table
shows a single instance of each valid combination of the columns. In other
words, no two rows of the result table are the same. Any two rows must dif-
fer in the values of one or more columns.

You should pay attention to the way that nulls are handled by select
distinct. SQL makes a point in saying in most circumstances that a null
is an unknown value. Therefore we are not allowed to say that that one null
is equal to another null. We have to assume that they might have different
values.

However, there are some exceptions to this rule and select distinct is
one of them. Here all the nulls within a single column are treated as if they
have the same value, the value of “missing data.”

When data is being summarized, as it is here, it is common for nulls to be
handled this way.

Get a list of all the different values in the manager_id and credit_limit
columns of the l_employees table.

Check your understanding

Task

THE SELECT CLAUSE 49

select distinct manager_id,
 credit_limit
from l_employees;

Beginning table (l_employees table)

Result table

What it means to eliminate duplicate rows from the result
The result table here contains two rows with a manager ID of 201. In section
2-6, there was only one such row. What is the difference?

There is another column in the result, the credit_limit column. The two
rows in which manager ID equals 201 have different values in the
credit_limit column, $15.00 and $25.00. Two rows of the result are dis-
tinct as long as there is at least one column in which they differ. In section
2-6, the credit limit was not part of the result, so the difference between
these rows is not in the result. That is why these two occurrences of 201 are
condensed into a single row.

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

MANAGER CREDIT
 ID LIMIT
------- -------
 201 $15.00
 201 $25.00
 202 $15.00
 202 $25.00
 203 $25.00
(null) $30.00
(null) (null)

CHAPTER 2 GETTING INFORMATION FROM A TABLE50

The beginning table contains three rows with a manager ID of 201. Two
rows have a $25.00 credit limit and one has a $15.00 credit limit. The result
table shows only one row for each of these combinations.

In the result table, each row is distinct. You can think of this as a three-step
process. First, all the columns in each row of the result table are concate-
nated together into a single unit of data, then these units are sorted. Last,
all the duplicate units are removed.

List all the different values in columns A and B of the sec0207 table.

The Where Clause

The where clause is used to choose which rows of data you want to
retrieve. Because a table can have thousands of rows, this clause must be
flexible enough to specify many different conditions. This makes it more
complex than the other clauses we examine in this chapter.

2-8 Overview of the where clause

The where clause specifies a condition that is true for all the rows you want
in the result table. For all other rows the condition is false or unknown. The
following table summarizes the conditions you can use. All of these condi-
tions can be used with any of the main types of data — text, numbers, and
dates.

Each condition has both a positive form and a negative form. The negative
form is always the exact opposite of the positive form. For example, the is
not null condition is true for every row for which the is null condition is
false. The not between condition is true for every row where the between
condition is false.

Check your understanding

THE WHERE CLAUSE 51

Comparison conditions that can be used in the where clause.

Condition Meaning Examples

EQUAL — and other comparison tests

= equal with numbers: credit_limit = 25.00
with text: first_name = 'SUE'
with dates:
 Oracle: hire_date = '01-JUN-2010'
 Access: hire_date = #01-JUN-2010#

< less than credit_limit < 25.00

<= less than or equal first_name <= 'M'

> greater than Oracle: hire_date > '01-JUN-2010'
Access: hire_date > #01-JUN-2010#

>= greater than or equal credit_limit >= 30.00

<> and
others

not equal first_name <> 'ALICE'

SET INCLUSION TEST — a list of specific values

in in a set credit_limit in (15.00, 25.00)

not in not in a set dept_code not in ('EXE', 'MKT', 'ACT')

RANGE TEST — anywhere between two values

between in a range credit_limit between 21.00 and 27.00

not between not within a range dept_code not between 'ACT' and 'SAL'

PATTERN MATCHING TEST — using wildcard characters

like matches a pattern phone_number like '%48%'

not like does not match a pattern dept_code not like '%A%'

NULL TEST — find nulls

is null is a null value manager_id is null

is not null is not a null value manager_id is not null

BOOLEAN CONNECTORS — joining simple conditions together

and both of the conditions are
true

(credit_limit = 25.00)
and (first_name = 'SUE')

or one of the conditions is true (credit_limit = 25.00)
or (first_name = 'SUE')

not the condition is false not (credit_limit = 25.00)

CHAPTER 2 GETTING INFORMATION FROM A TABLE52

2-9 Using an Equal condition
in the where clause

This section shows a query in which the where clause uses an Equal (=)
condition. I will show you four examples of this.

In the first example, the Equal condition is used with a number. No quotes
are used around the number. All the rows from the beginning table that
have manager_id values equal to 203 are shown in the result table.

Note that the employees who have a null value in the manager_id column
are not shown. This affects employees 201 and 206. The null value means
that the value is missing in the database. The value could be equal to 203,
but we do not know this, so the row for the employee is not shown in the
result table.

In the second example, the Equal condition is used with text. The text must
be enclosed in single quotes.

For all employees who report to employee 203, Martha Woods, list the
following:

employee_id
first_name
last_name
manager_id
hire_date

select employee_id, ➊

 first_name,
 last_name,
 manager_id,
 hire_date
from l_employees
where manager_id = 203; ➋

Task for example 1

Oracle & Access SQL

THE WHERE CLAUSE 53

Beginning table (l_employees table)

Result table: Example 1

➊ The select clause lists five columns, and the result table shows these
five columns in the order in which they are listed.

➋ The where clause contains only one condition:

manager_id = 203

Three rows of the beginning table satisfy this condition, and the result
table shows all these rows.

For all the employees whose first name is Henry, list the same columns as
before.

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE MANAGER
 ID FIRST_NAME LAST_NAME ID HIRE_DATE
-------- ---------- ---------- ------- ------------
 207 DAN SMITH 203 01-DEC-2008
 208 FRED CAMPBELL 203 01-APR-2008
 210 NANCY HOFFMAN 203 16-FEB-2007

Notes

Task for example 2

CHAPTER 2 GETTING INFORMATION FROM A TABLE54

select employee_id,
 first_name,
 last_name,
 manager_id,
 hire_date
from l_employees
where first_name = 'HENRY'; ➌

Result table: Example 2

➌ A text value must be enclosed in single quotes. It must be in uppercase
to match the data in the table.

For all the employees who were hired on July 1, 2008, list the same columns
as before.

select employee_id,
 first_name,
 last_name,
 manager_id,
 hire_date
from l_employees
where hire_date = '01-JUL-2008'; ➍

Oracle & Access SQL

EMPLOYEE MANAGER
 ID FIRST_NAME LAST_NAME ID HIRE_DATE
-------- ---------- ---------- ------- ------------
 205 HENRY PERKINS 202 01-MAR-2006

Notes

Task for example 3

Oracle SQL

THE WHERE CLAUSE 55

select employee_id,
 first_name,
 last_name,
 manager_id,
 hire_date
from l_employees
where hire_date = #01-JUL-2008#; ➎

Result table: Example 3

➍ In Oracle, date values must be enclosed in single quotes.

➎ In Access, date values must be enclosed in pound signs.

For all the employees whose first name is Paula, list the same columns as
before. Change the name of the first_name column to given_name.

select employee_id,
 first_name as given_name,
 last_name,
 manager_id,
 hire_date
from l_employees
where first_name = 'PAULA'; ➏

Result table: Example 4

Access SQL

EMPLOYEE MANAGER
 ID FIRST_NAME LAST_NAME ID HIRE_DATE
-------- ---------- ---------- ------- ------------
 204 ELLEN OWENS 202 01-JUL-2008

Notes

Task for example 4

Oracle & Access SQL

EMPLOYEE MANAGER
 ID GIVEN_NAME LAST_NAME ID HIRE_DATE
-------- ---------- ---------- ------- ------------
 209 PAULA JACOBS 201 17-MAR-1999

CHAPTER 2 GETTING INFORMATION FROM A TABLE56

➏ In the where clause you must use the original name of the column,
first_name,even though the first_name column has been renamed
to given_name in the select clause.

List the first name and last name of the employees with the first name of
Nancy.

2-10 Using a Less Than condition in the where clause

This section shows an example of a query that uses a Less Than (<) condi-
tion in the where clause. If there were rows with a null value in the
credit_limit column, they would not be included in the result table.

In place of the < sign, in this example you could write any of these:

<= (less than or equal to)

> (greater than)

>= (greater than or equal to)

List all employees who have a credit limit less than $17.50. Show the
columns:

employee_id
first_name
last_name
credit_limit

select employee_id,
 first_name,
 last_name,
 credit_limit
from l_employees
where credit_limit < 17.50; ➊

Notes

Check your understanding

Task for example 1

Oracle & Access SQL

THE WHERE CLAUSE 57

Beginning table (l_employees table)

Result table: Example 1

➊ The where clause contains only one condition:

where credit_limit < 17.50

This condition uses the less than (<) sign. The numeric value in the SQL
code, 17.50, cannot contain a dollar sign or a comma. This can be con-
fusing because often dollar signs and commas are displayed when you
see the data in a table. The beginning table has two rows that satisfy this
condition. The result table shows those two rows.

Show another way to write this query, using the greater than or equal to (>=)
sign and negating the condition with a Boolean not.

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE CREDIT
 ID FIRST_NAME LAST_NAME LIMIT
-------- ---------- ---------- -------
 204 ELLEN OWENS $15.00
 209 PAULA JACOBS $15.00

Notes

Task for example 2

CHAPTER 2 GETTING INFORMATION FROM A TABLE58

select employee_id,
 first_name,
 last_name,
 credit_limit
from l_employees
where not (credit_limit >= 17.50); ➋

Result table: Example 2 — Same as previous result table

➋ This is another way to write the Less Than condition.

List the first name and last name of the employees with employee_id
greater than or equal to 205.

2-11 Using a Not Equal condition
in the where clause

This section shows an example of a query that uses a Not Equal condition
in its where clause.

Most SQL products support several ways to write the Not Equal condition.
Unfortunately, some of the ways that work in one product may not work in
another product. I prefer the method shown here because it works in all
products and it is easy for both people and computers to understand.

When possible, it is best to avoid using a Not Equal condition because it is
much less efficient for the computer to process than conditions such as
Equal (=) or between.

Oracle & Access SQL

Notes

Check your understanding

THE WHERE CLAUSE 59

List all employees who do not report to employee 203, Martha Woods.
Show the following columns:

employee_id
first_name
last_name
manager_id

select employee_id,
 first_name,
 last_name,
 manager_id
from l_employees
where not (manager_id = 203); ➊

Beginning table (l_employees table)

Result table

Task

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE MANAGER
 ID FIRST_NAME LAST_NAME ID
-------- ---------- ---------- -------
 202 JIM KERN 201
 203 MARTHA WOODS 201
 204 ELLEN OWENS 202
 205 HENRY PERKINS 202
 209 PAULA JACOBS 201

CHAPTER 2 GETTING INFORMATION FROM A TABLE60

➊ The Boolean not reverses the meaning of the condition that follows it. It
only applies to that one condition. Here it changes the Equal condition
into the Not Equal condition.

Variations
Some other ways to write the Not Equal condition are as follows:

where manager_id <> 203

where not manager_id = 203

where manager_id != 203

where manager_id ^= 203

You might find these variations in code you inherit, or you might prefer to
use some of them yourself.

SQL uses three-valued logic
The result table in this section does not show the rows that have a null
value in the manager_id column. To show all the rows from the beginning
table, we need to consider three different conditions:

where manager_id = 203

where not (manager_id = 203)

where manager_id is null

This is an example of what we mean when we say that SQL uses
three-valued logic. Chapter 3 discusses this in more detail.

List the first name and last name of the employees with employee id not
equal to 205. Write this in three different ways that all work in the version of
SQL you are currently using,

Notes

Check your understanding

THE WHERE CLAUSE 61

2-12 Using the in condition in the where clause

This section shows an example of a query that uses an in condition in its
where clause. The in condition is used to show membership in a set. It is
used when there is a list of discrete values that satisfy the condition. The
set of all these valid values is placed in parentheses as a comma-delimited
list.

All the values must have the same datatype — numbers, text, or dates. All
the values can be numbers, or they can all be text, or they can all be dates.
It does not make sense to mix these categories. More specifically, the val-
ues must have the same datatype as the column being tested.

It would not make sense to include null in the list of valid values because
the in condition is never satisfied by a null in the data.

Sometimes in production code an in condition checks for 10 to 50 different
values. In this situation it is much more efficient to write the code using an
in condition rather than many Equal conditions. The examples in this book
do not show this efficiency because they check for only two or three values.

List all employees who report to employees 202 or 203, Jim Kern or Martha
Woods. Show the following columns:

employee_id
first_name
last_name
manager_id

select employee_id,
 first_name,
 last_name,
 manager_id
from l_employees
where manager_id in (202, 203); ➊

Task for example 1

Oracle & Access SQL

CHAPTER 2 GETTING INFORMATION FROM A TABLE62

Beginning table (l_employees table)

Result table: Example 1

➊ This condition means that the manager_id column is equal to either
202 or 203.

Show another way to write the same query. Use two Equal conditions com-
bined together with a Boolean or.

select employee_id,
 first_name,
 last_name,
 manager_id
from l_employees
where manager_id = 202
 or manager_id = 203; ➋

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE MANAGER
 ID FIRST_NAME LAST_NAME ID
-------- ---------- ---------- -------
 204 ELLEN OWENS 202
 205 HENRY PERKINS 202
 207 DAN SMITH 203
 208 FRED CAMPBELL 203
 210 NANCY HOFFMAN 203

Notes

Task for example 2

Oracle & Access SQL variation: Using Equal conditions

THE WHERE CLAUSE 63

➋ You must repeat the column name, manager_id, within each Equal
condition.

Result table: Example 2 — Same as previous result table

List the first name, last name, and department code of the employees that
have department codes sal, shp, and act. Do this using an in condition.

2-13 Using the between condition in the where clause

This section shows an example of a query that uses the between condition
in its where clause. Note that the endpoints, August 16, 1999, and July 1,
2003, are both included in the result table. Some people prefer not to use
the between condition with dates because a date can also contain a time,
which can create some confusion.

The between condition can be applied to numbers, text, and dates. In this
example, it is applied to dates. In Oracle, dates must be enclosed in single
quotes (''). In Access, they must be enclosed in pound signs (##). That is the
only difference between the Oracle SQL and the Access SQL in this example.

List all employees hired between August 16, 1999, and July 1, 2008. Show the
following columns:

employee_id
first_name
last_name
hire_date

select employee_id,
 first_name,
 last_name,
 hire_date
from l_employees
where hire_date between 16-AUG-1999
 and 01-JUL-2008 ;

Notes

Check your understanding

Task for example 1

Oracle SQL

' '
' '

CHAPTER 2 GETTING INFORMATION FROM A TABLE64

select employee_id,
 first_name,
 last_name,
 hire_date
from l_employees
where hire_date between 16-AUG-1999
 and 01-JUL-2008 ;

Beginning table (l_employees table)

Result table: Example 1

Write the same query as in the preceding task with an in condition. This
requires you to write about 3,300 dates and demonstrates the usefulness of
the between condition. Even when the code can be written in another way,
the code is more compact and less prone to errors when the between condi-
tion is used.

Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE
 ID FIRST_NAME LAST_NAME HIRE_DATE
-------- ---------- ---------- ------------
 202 JIM KERN 16-AUG-1999
 204 ELLEN OWENS 01-JUL-2008
 205 HENRY PERKINS 01-MAR-2006
 208 FRED CAMPBELL 01-APR-2008
 210 NANCY HOFFMAN 16-FEB-2007

Task for example 2

#
#

THE WHERE CLAUSE 65

select employee_id,
 first_name,
 last_name,
 hire_date
from l_employees
where hire_date in ('16-aug-1999',
 '17-aug-1999',
 '18-aug-1999',
(about 3,300 more dates)
 '29-jun-2008',
 '30-jun-2008',
 '01-JUL-2008');

select employee_id,
 first_name,
 last_name,
 hire_date
from l_employees
where hire_date in (#16-aug-1999#,
 #17-aug-1999#,
 #18-aug-1999#,
(about 3,300 more dates)
 #29-jun-2008#,
 #30-jun-2008#,
 #01-JUL-2008#);

Result table: Example 2 — Same as previous result table

Notes on the dates in this variation
Actually, these two methods of writing the code are not quite equivalent. A
date in SQL always includes a time, although often the time is not shown
when the data is displayed. With the SQL code using the between condi-
tion, all the times of all the dates are included. But with the code using the
in condition, the time must be midnight on the dates listed. Between
always specifies a range and in always specifies a series of points.

List the employee ID, first name, and last name of the employees that have
an employee ID between 201 and 205.

Oracle SQL variation: Using an in condition

Access SQL variation: Using an in condition

Check your understanding

CHAPTER 2 GETTING INFORMATION FROM A TABLE66

2-14 Using the like condition in the where clause

This section shows an example of a query that uses the like condition in
its where clause. The like condition is used for finding patterns in the
data. Patterns are specified using wildcard characters, which are used only
with the like condition. When the same characters are used with another
condition, such as the between condition, they are no longer wildcards. A
column of any of the major datatypes — text, number, or date — can be
searched with a pattern. Case sensitivity is often an issue, but here I have
turned it off. For details, see sections 3-9 to 3-13.

In both Oracle and Access SQL, the pattern specification should be
enclosed in single quotes. Patterns are specified differently in Oracle than
they are in Access. Access allows a greater variety of patterns than Oracle.
The wildcard characters are different. These wildcard characters are shown
in the following table.

Wildcard characters and their meanings.

Oracle Access Meaning

% (percent sign) * (asterisk) A string of characters of any length,
or possibly no characters at all (a zero-
length string).

_ (underscore) ? (question mark) One character.

(not available) # (pound sign) One digit (numeric character).

(not available) ➊ [c-m] (square brackets
with a dash)

Range of characters.
(The characters must be in ascending
order. [a-z] is correct; [z-a] is not.)

(not available) ➋ [!c-m] Outside a range of characters.

\% or _
(backslash) ➌

[*] or [?] or [#]
(square brackets)

In Access, putting a character in square
brackets means to take it literally, rather
than using it as a wildcard character.

THE WHERE CLAUSE 67

The following table shows some examples of patterns.

➊ Sometimes this code can be used: 'c' <= value and 'm' > value

➋ Sometimes this code can be used: 'c' > value or 'm' <= value

➌ In Oracle, you can set up the backslash to be an Escape character. Any
character placed after it is treated as a literal value rather than given a
special meaning. To activate the backslash as an Escape character, use
the SQL*Plus command:

set escape \;

List all employees who have the letter n in their last name. Show the fol-
lowing columns:

employee_id
first_name
last_name

select employee_id,
 first_name,
 last_name
from l_employees
where last_name like ' ';

Examples of wildcard patterns.

Pattern Oracle Access Examples

Text string beginning with an n 'N%' 'N*' 'NONE'
'N123'
'NO CREDIT'
'N'

Four characters ending with an e '_ _ _ E' '???E' 'NONE'
'123E'
'1 3E'

Starting with a letter between a
and g, followed by two digits

(not available) '[A-G]##' 'A47'
'B82'

Notes

Task

Oracle SQL

%N%

CHAPTER 2 GETTING INFORMATION FROM A TABLE68

select employee_id,
 first_name,
 last_name
from l_employees
where last_name like ' ';

Beginning table (l_employees table)

Result table

List the employee ID, first name, and last name of the employees that have
an employee ID that contains a number 1.

Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE
 ID FIRST_NAME LAST_NAME
-------- ---------- ----------
 201 SUSAN BROWN
 202 JIM KERN
 204 ELLEN OWENS
 205 HENRY PERKINS
 210 NANCY HOFFMAN

Check your understanding

N

THE WHERE CLAUSE 69

2-15 Using the is null condition
in the where clause

This section shows an example of a query that uses an is null condition
in its where clause. A null means the data value is missing from the data-
base. This can happen under several different conditions:

■ When the data value is unknown

■ When it would never make sense to put data in that field

■ When someone knows the data value, but it has not yet been entered
into the database

Note that you must write this condition “is null,” rather than “= null.”
This is to remind you that a null is missing data and it is not like any other
value in the table, because it does not have a particular value.

Nulls receive special treatment in several situations within a database.
Throughout this book I point out when they are treated differently from
other data.

List all employees who have a null in the manager_id column. Show the
following columns:

employee_id
first_name
last_name
manager_id

select employee_id,
 first_name,
 last_name,
 manager_id
from l_employees
where manager_id is null;

Task

Oracle & Access SQL

CHAPTER 2 GETTING INFORMATION FROM A TABLE70

Beginning table (l_employees table)

Result table

Why databases use nulls
Before nulls were invented, computer systems often used spaces or special
values, such as 99, to designate that data was missing. This caused two
problems.

One problem was a lack of uniformity. Each computer system used differ-
ent values to designate missing data. Often a single application used three
of these special values: one for numbers, one for text, and one for date
fields.

The special values for numbers were often all 9s, but one application might
use 999, whereas another used 999999. Sometimes the various fields within
a single application would use different numbers of digits.

The special values for text were often spaces. However, some applications
used a single space. Others would fill the field with spaces. The computer
would not always consider these to be equal. Some applications even used
a zero-length string, which just confused things even more.

For date fields, January 1, 1900 often designated missing data, but some
applications used other dates.

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE MANAGER
 ID FIRST_NAME LAST_NAME ID
-------- ---------- ---------- -------
 201 SUSAN BROWN (null)
 206 CAROL ROSE (null)

THE ORDER BY CLAUSE 71

The second problem was that these special data values were sometimes
processed as if they were actual data. This could lead to errors that were
difficult to detect, particularly if some calculation was done that changed
the values of these fields.

To solve these problems, nulls were created to designate missing data. A
rigid distinction is made between nulls and other types of data. Nulls do
not have datatypes, meaning there is no distinction between a null in a
numeric column and one in a text or date column.

List all the columns of the employee table for rows that contain a null in the
manager_ID column.

The Order By Clause

The order by clause determines how the rows of the result table are sorted
when they are printed or displayed on the screen. If you leave out the
order by clause, you are saying that you do not care about this order and
you are giving the computer permission to display the rows of the result in
any order.

2-16 Overview of the order by clause

In working with most of the tables in this book, you can get acceptable
results even if you do not write an order by clause because most of the
tables are small. They contain only a few rows. However, when you work
with larger tables, it is essential to use an order by clause.

This section shows the syntax of the order by clause and a few examples of
it. The clause contains a list of columns and a specification for each of
these columns to sort them in either ascending or descending order.

The first column listed in the order by clause is the primary sort order. The
columns that are listed after the first one are used only when two rows have
identical values in the first column. This rule applies to all the columns. For
example, the third column is only used to sort the rows that have identical
values in the first two columns of the order by clause.

Ascending order is the default. It is usually not specified. To sort on a col-
umn in descending order, desc must always be specified.

Check your understanding

CHAPTER 2 GETTING INFORMATION FROM A TABLE72

Columns are usually specified by their names. Another method is to specify
a number — this is the position of the column within the select clause.
This is an older method that is being phased out. Some brands of SQL
allow you to use a column alias in an order by clause. Oracle allows this,
but Access does not.

A column can sometimes be listed in the order by clause without listing it
in the select clause. However, it is good programming practice to list in
the select clause all the columns used in the order by clause.

In Oracle, nulls are sorted at the bottom. In Access, they are sorted at the
top. Other slight differences in the sort order can occur depending on a
variety of factors, such as:

■ Which SQL product you are using

■ Whether you are using a small computer or a large computer

■ Whether you are using a special alphabet

■ Options set by your DBA

Syntax of the order by clause

Sort order options for each column

Examples of an order by clause
order by employee_id

order by last_name, first_name

order by hire_date desc,
 last_name,
 first_name

order by a list of column names You may specify a sort order for each
column (see below).

order by a list of numbers You may specify a sort order for each
column (see below).

asc Means ascending order (default).

desc Means descending order.

THE ORDER BY CLAUSE 73

2-17 Sorting the rows by one
column in ascending order

This section shows a query with one column in its order by clause. The
rows of the result table are sorted by the values in that column. The default
order is ascending order. There are two methods to write this:

■ The first method uses the name of the column within the data table.
This method is usually best because it is easiest for people to read
and understand. If this column has been renamed, you must still use
the old name within the order by clause.

■ The second method uses a number instead of a column name. This
number is the position of the column within the select clause.

List the last name and first name of all the employees in the l_employees
table. Rename the last_name column to family_name. Sort the rows by
the last_name column in ascending order. Show how to do this using the
two methods of specifying the column to sort on.

select last_name as family_name,
 first_name
from l_employees
order by last_name; ➊

select last_name as family_name,
 first_name
from l_employees
order by 1; ➋

Task

Oracle & Access SQL: Use the column name to specify the sort order

Oracle & Access SQL: Use the column number to specify the sort order

CHAPTER 2 GETTING INFORMATION FROM A TABLE74

Beginning table (l_employees table)

Result table

➊ The last_name column has been renamed to family_name in the
select clause. However, in the order by clause, you must still use its
original name from the beginning table, which is last_name.

➋ The number 1 here means that the rows of the result table will be sorted
by the first column in the select clause, which is also the first column
of the result table.

List the department name column from the departments table. Give this col-
umn a new name of dept. Put the rows in ascending order. Write this SQL in
two different ways.

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

FAMILY_NAME FIRST_NAME
----------- -----------
BROWN SUSAN
CAMPBELL FRED
HOFFMAN NANCY
JACOBS PAULA
KERN JIM
OWENS ELLEN
PERKINS HENRY
ROSE CAROL
SMITH DAN
WOODS MARTHA

Notes

Check your understanding

THE ORDER BY CLAUSE 75

2-18 Sorting the rows by several
columns in ascending order

This section shows a query with two columns in its order by clause, both
of which are sorted in ascending order.

List the department codes and last names of all the employees, except for
employee 209. Sort the rows of the result table on both columns in ascend-
ing order.

select dept_code,
 last_name
from l_employees
where not (employee_id = 209)
order by dept_code, ➊

last_name; ➋

Beginning table (l_employees table)

Task

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

CHAPTER 2 GETTING INFORMATION FROM A TABLE76

Result table

➊ The rows of the result table are sorted first and primarily on the
dept_code column. For instance, all four rows with a dept_code of SAL
are sorted before the three rows with SHP.

➋ The rows with identical values in the dept_code column are then sorted
on the last_name column. Within the SAL department code, the last
names are put in ascending alphabetical order. Within the SHP depart-
ment code, the names are put in a separate ascending alphabetical
order.

➌ Note the order of these rows in the result table. Here, for the employees
within any particular department, the last names are in ascending order.
In the next section, we change the order and place the last names in
descending order.

The table sec0218 has two columns named A and B. Each column contains
the numbers 1, 2, and 3. The table has nine rows showing all the combina-
tions of values.

List all the columns of this table. Sort the rows in two ways:

1. First by column A, then by column B.

2. First by column B, then by column A.

Observe the difference in the result.

DEPT
CODE LAST_NAME
---- ----------
ACT ROSE
EXE BROWN
SAL HOFFMAN
SAL KERN
SAL OWENS
SAL PERKINS
SHP CAMPBELL ➌

SHP SMITH ➌

SHP WOODS ➌

Notes

Check your understanding

THE ORDER BY CLAUSE 77

2-19 Sorting the rows by several
columns in various orders

This shows the same query as in the previous section, except that the sort
on the last_name column is in descending order. The contrast with the
result table in the previous section shows the difference.

List the department codes and last names of all the employees, except for
employee 209. Sort the rows of the result table in ascending order on the
dept_code column and in descending order on the last_name column.

select dept_code,
 last_name
from l_employees
where not (employee_id = 209)
order by dept_code, ➊

 last_name ; ➋

Beginning table (l_employees table)

Task

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

desc

CHAPTER 2 GETTING INFORMATION FROM A TABLE78

Result table

➊ The rows of the result table are sorted first and primarily on the
dept_code column.

➋ All the rows with the same value in the dept_code column are sorted on
the last_name column in descending order. This is applied twice, once
with the SAL department codes and again with the SHP ones.

➌ Note the order of these rows. Compare the order here with the order
shown in the previous result table.

The table sec0219 has three columns named A, B, and C. Each column con-
tains the numbers 1, 2, and 3. There are 27 rows, one for each combination of
values.

List all the columns of this table. Sort the rows first by column A, second by
column B in reverse order, and third by column C in reverse order.

DEPT
CODE LAST_NAME
---- ----------
ACT ROSE
EXE BROWN
SAL PERKINS
SAL OWENS
SAL KERN
SAL HOFFMAN
SHP WOODS ➌

SHP SMITH ➌

SHP CAMPBELL ➌

Notes

Check your understanding

THE ORDER BY CLAUSE 79

2-20 The whole process so far

Here is a quick summary of the process a select statement describes.
Note that clauses of the select statement are processed in a different
order than they are written.

A B C D E A B C D EStep 1:
The from clause
chooses the beginning
table.

Step 2:
The where clause chooses
which rows of data you
want from the table in
step 1.

B D E B D EStep 3:
The select clause
chooses which columns of
data you want from the table
in step 2.

Step 4:
The order by clause
chooses which columns are
used to sort the rows from
the table in step 3.

CHAPTER 2 GETTING INFORMATION FROM A TABLE80

Key Points

■ A select statement allows you to get the data you want from a table.
Usually you will only want a few columns and rows from a large table.
The basic select statement has four clauses:

• The select clause says which columns you want.

• The from clause says what table you are getting the data from.

• The where clause says which rows you want.

• The order by clause says how to sort the final result.

There are two more clauses used to summarize data. You will learn
about them in chapters 11 and 12.

■ In the select clause you can choose the columns you want, specify
the order in which you want them, and give them new names. Option-
ally you can tell SQL to eliminate any duplicate rows from the result.
Another variation of the select clause gives you all the rows of the
table.

■ In the from clause you name the table that contains the data. For sev-
eral chapters you will get all the data from a single table. In chapters
13 and 14 you will learn how to get data from several tables.

■ In the where clause you can choose the rows you want. Often there
are many rows to choose from, so you need to be sure to specify just
the ones you want. Some of the relations you can use in the where
clause are:

• Equal

• Less Than

• Greater Than

• Not Equal

• In

• Between

• Like

• Is null

You can also combine these together with And, Or, and Not. Chapter 3
shows you how to do this.

KEY POINTS 81

■ In the order by clause you can specify the order in which you want
the rows of the result table to be sorted. If you do not include an
order by clause, the rows of the result table could be in a random
order, so it is a good practice to always write an order by clause in
your select statement.

■ A null represents data that is missing from the database table. It
could be missing permanently because no data would make sense
there, or it could be missing temporarily because the data is not
known or it has not been entered into the table yet.

■ Most of the time, the same SQL code that works in Oracle also works
in Access.

This page intentionally left blank

83

chapter 3

In chapter 2, we used fairly simple conditions in the where
clause. In this chapter, we discuss how to combine several of
these simple conditions into a compound condition. This is
particularly important when we are handling tables with many
rows. It allows us to specify the particular set of rows we want.

This chapter also discusses several other important topics. You
should read this chapter quickly and make sure you do not get
bogged down in any part of it. The topics themselves are not
really part of SQL. Rather, these are general programming top-
ics that could trip you up along the way if you are not aware of
them.

If your main goal is to learn SQL, I recommend that you read the
chapter once and then move quickly onto the next chapter. This
chapter is not meant to be studied. You can come back to it later
if you find you need to.

COMPOUND
CONDIT IONS IN

THE WHERE
CLAUSE

Compound Conditions in the Where Clause . 85

3-1 Using a compound condition in the where clause .85
3-2 Using not with in, between, like, and is null 88
3-3 The standard form of a complex condition in the where clause90
3-4 A common mistake .92

Constant Values . 95

3-5 Using a constant value in the select clause .96
3-6 Using a table of constants. .98

Punctuation Matters . 102

3-7 Punctuation you need to know right now .102
3-8 Punctuation reference section .106

Case Sensitivity . 113

3-9 Case sensitivity in Oracle .113
3-10 The debate about case sensitivity in SQL .117
3-11 You have a choice .117
3-12 You can turn off case sensitivity in the

 Oracle SQL Command Line environment .117
3-13 Case sensitivity in Access .118

Three-Valued Logic. 120

3-14 SQL uses three-valued logic .120

Error Messages . 122

3-15 Error messages are often wrong .122

Some Exercises Solved for You . 124

3-16 Exercise 1 .124
3-17 Exercise 2 .127
3-18 Exercise 3 .129

Key Points . 131

85

Compound Conditions in the Where Clause

This group of sections deals with the Boolean connectors and, or, and not.
It shows how to place complex conditions in the where clause into stan-
dard form. Along the way, it shows you the rules you need to know to work
with these Boolean connectors.

If you handle large tables, with a million or more rows, you may need to use
very complex conditions in the where clause to specify the set of rows you
want in the result. To keep this complexity to a reasonable level, these condi-
tions are often put into standard form.

The standard form is discussed in section 3-3. You should read this sec-
tions over once, but do not worry if you have difficulty with it. This material
is not needed in the rest of the book, but the details are here if you need
them later when you are working with very large tables.

3-1 Using a compound condition in the where clause

Compound conditions can be formed using the three Boolean connectors:
and, or, and not. And and or combine two conditions to form a single
compound condition. They can be applied repeatedly, thus combining
many conditions into a single compound condition. Not is applied to a sin-
gle condition and reverses its meaning.

Definition of and

Definition of or

Definition of not

In the preceding definitions, A and B stand for any statement, such as
employee_id < 500 or first_name = 'Mary'.

The way the words and, or, and not are used in computer languages is not
quite the same as the way they are used in spoken and written English.
They are sometimes used in a loose and casual way in English, but they are
always used in a precise way in computer languages.

The statement “A and B” is true only when both A and B are true.

The statement “A or B” is true when either A or B is true.

The statement “not A” is true when A is false.

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE86

In English the word “not” is often misplaced and misused. Here is an
example:

“All that glitters is not gold.”
— Shakespeare

I think Shakespeare is completely wrong in this statement. I think he meant
to say “Not all that glitters is gold” or perhaps “Some things that glitter are
not gold.” The point is that the word NOT is often misused in English.

In English the words “and” and “or” are sometimes used in a way that
makes them interchangeable. They are never interchangeable in computer
languages. Here is an example:

“Please make the seats near each doorway available to seniors or
disabled persons.”

— a sign in the San Francisco BART subway system

Would it make any difference if the word “or” was changed to “and”? Would
the meaning change or would it stay the same?

Within a complex condition, when several Boolean connectors are being
used, parentheses should be used liberally. Even if you think they are not
needed by the computer, they are needed to make the statement easy for
people to read and understand. If you leave out some of the parentheses,
the computer may understand the statement one way, but many people
might interpret it in another way.

The example in this section shows a query that has a where clause that
uses a compound condition. It shows how to include the null values when
using a Not Equal condition. You must explicitly ask for the nulls if you
want them to appear in the result table.

List all employees who do not report to employee 203, Martha Woods.
Include rows with a null value in the manager_id column. Show the follow-
ing columns: employee_id, first_name, last_name, and manager_id.

select employee_id,
 first_name,
 last_name,
 manager_id
from l_employees
where not (manager_id = 203) ➊

 or manager_id is null; ➋

Task

Oracle & Access SQL

COMPOUND CONDITIONS IN THE WHERE CLAUSE 87

Beginning table (l_employees table)

Result table

➊ Not is used to reverse the meaning of “manager_id = 203” to create the
meaning “manager_id is not equal to 203.” The parentheses are
optional. I used them here to make the meaning clearer to people who
read the SQL code.

➋ Or is used to combine the two conditions:

not (manager_id = 203) and manager_id is null

This forms a single compound condition:

not (manager_id = 203) or manager_id is null

List all the rows of the l_foods table that have a price less than $1.00 or
greater than $5.00.

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE MANAGER
 ID FIRST_NAME LAST_NAME ID
-------- ---------- ---------- -------
 201 SUSAN BROWN (null)
 202 JIM KERN 201
 203 MARTHA WOODS 201
 204 ELLEN OWENS 202
 205 HENRY PERKINS 202
 206 CAROL ROSE (null)
 209 PAULA JACOBS 201

Notes

Check your understanding

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE88

3-2 Using not with in, between, like, and is null

This section shows the word not can be used in two different ways with the
following conditions: in, between, like, and is null. The meanings are
exactly the same.

Version 1 will show the word not used as part of the condition test. There is
one condition test called in and there is another condition test called not
in. The same applies to all these conditions:

in not in
between not between
like not like
is null is not null

Version 2 will show the word not used as a Boolean connector modifying
an entire condition. In the first line of the where clause, not is applied to
the condition:

dept_code in ('act', 'mkt')

This condition is then written with an additional set of parentheses:

not (dept_code in ('act', 'mkt'))

The computer also understands this without the additional set of parentheses:

not dept_code in ('act', 'mkt')

However, this can be more confusing to most people, so I do not recom-
mend it.

In the following code, you will notice that the patterns used with the like
condition differ in Oracle and in Access. We discussed this in section 2-14.

Show the employee_id, first_name, last_name, and manager_id of the
employees having all of the following conditions:

■ dept_code is not act or mkt

■ last_name does not begin with any letter from J to M

■ last_name does not end with S

■ manager_id is not a null value

Task

COMPOUND CONDITIONS IN THE WHERE CLAUSE 89

select employee_id,
 first_name,
 last_name,
 manager_id
from l_employees
where dept_code ('ACT', 'MKT')
 and last_name 'J' and 'M'
 and last_name '%S' (Oracle)
 and last_name '*S' (Access)
 and manager_id ;

select employee_id,
 first_name,
 last_name,
 manager_id
from l_employees
where (dept_code ('ACT', 'MKT'))
 and (last_name 'J' and 'M')
 and (last_name '%S') (Oracle)
 and (last_name '*S') (Access)
 and (manager_id);

Beginning table (l_employees table)

Result table

Oracle & Access SQL: Version 1 — Using not within the condition

Oracle & Access SQL: Version 2 — Using a Boolean not

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE MANAGER
 ID FIRST_NAME LAST_NAME ID
-------- ---------- ---------- -------
 207 DAN SMITH 203
 208 FRED CAMPBELL 203
 210 NANCY HOFFMAN 203

not in
not between
not like
not like
is not null

not in
not between
not like
not like
not is null

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE90

List all the foods from the l_foods table that do not have a null in the
price_increase column.

3-3 The standard form of a complex
condition in the where clause

This section shows an example of a query with a very complex condition in
its where clause. You might need to use a condition of this sort when you
are dealing with a large table that has many millions of rows. As a general
rule, as a table gets larger the where clause gets more complex. Additional
conditions are required to select the rows you want. Also, sometimes the
logic within a query needs to be quite complex.

The purpose of this example is to show a condition in the where clause
that is organized in the standard form of a Boolean expression. With a little
effort, any complex condition can be written in this form. Writing a condi-
tion in this way can make it easy for people to read, understand, and work
with. Complex conditions that are not in standard form are prone to errors.
So, part of the debugging effort of a select statement can be working with
the condition in the where clause to put it into standard form. Here I am
using the term standard form to mean that the expression is placed in a
standardized format.

The example in this section is a bit contrived. You really do not need com-
plexity on this scale when you are dealing with tables as small and simple
as the ones in this book. However, I want to show you the principle.

Definition of standard form in the where clause

Check your understanding

The three Boolean connectors and, or, and not are strictly controlled:

• Not is applied only to simple conditions. It is not applied to com-
pound conditions that include an and or an or.

• And is used to combine simple conditions and conditions involving
not. None of these conditions are allowed to contain an or. Many con-
ditions can be combined together with and. If there is more than one
and, the conditions can be combined in any order and no parentheses
are required. Each of these compound conditions is usually enclosed
in parentheses.

• Or is the top-level connector. It combines all the compound conditions
using and and not. If there is more than one or, the compound condi-
tions can be combined in any order and no parentheses are required.

COMPOUND CONDITIONS IN THE WHERE CLAUSE 91

Show an example of a select statement that has a where clause in stan-
dard form. The following example shows the format. It does run, but it is not
intended to make much sense.

select employee_id,
 first_name,
 last_name
from l_employees
where (manager_id is null ➊

 and first_name = 'SUSAN'
 and credit_limit = 30.00)
 or ➋

 (not (hire_date is null) ➌

 and credit_limit between 10.00 and 50.00 ➍

 and last_name in ('SMITH', 'JACOBS', 'PATRICK')
 and not (dept_code = 'SHP'))
 or
 (credit_limit > 22.00
 and hire_date is null)
 or
 (employee_id > 700
 and dept_code in ('SAL', 'MKT')
 and manager_id = 400);

Beginning table (l_employees table)

Result table ➎

Task

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE
 ID FIRST_NAME LAST_NAME
-------- ---------- ----------
 201 SUSAN BROWN
 209 PAULA JACOBS

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE92

➊ This line and the next two lines are a compound condition joined
together with and. The parentheses enclosing these three lines are
optional, but make the condition easier to read.

➋ This is an or joining together the compound conditions formed with
and.

➌ This shows a Boolean not applied to a simple condition that does not
contain any and or or.

➍ The and on this line is part of the between condition. It is not a Boolean
and connector.

➎ The result table shows that this code actually runs. In this example, it is
not important to follow the precise logic.

Put the following where clause into standard form:

select *
from l_employees
where not ((first_name = 'JIM' or first_name = 'DAN')
and (last_name = 'BROWN' or last_name = 'SMITH'))

3-4 A common mistake

This section shows a common mistake that people make when they write a
complex condition in the where clause and they do not specify enough
parentheses. In this example, most people understand that the first three
conditions of the where clause are related because they all involve the
same column, employee_id. Placing a pair of parentheses around the first
three conditions can represent the understanding that most people have.

To a computer, however, or is always a higher level connector than and
when parentheses do not say otherwise. So the computer understands the
statement differently. To the computer, there are three clusters joined
together by or.

Notes

Check your understanding

COMPOUND CONDITIONS IN THE WHERE CLAUSE 93

Of the employees whose employee IDs are 203, 204, or 205, list only the ones
in the sales department.

Beginning table (l_employees table)

select *
from l_employees
where employee_id = 203 ➊

 or employee_id = 204
 or employee_id = 205
 and dept_code = 'SAL';

➊ This where clause does not contain enough parentheses to control the
way that the individual conditions are combined. Most people will
understand it to mean one thing, but the computer will understand it to
mean something else.

select *
from l_employees
where (employee_id = 203 ➋

 or employee_id = 204
 or employee_id = 205)
 and dept_code = 'SAL';

Task

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ----------- ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Oracle & Access SQL: Parentheses are missing — A common mistake

Notes

Oracle & Access SQL: How people often misunderstand this code

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE94

Result table that people often expect from this code

➋ The pair of parentheses here shows how most people understand the
code in ➊.

select *
from l_employees
where (employee_id = 203) ➌

 or
 (employee_id = 204)
 or
 (employee_id = 205
 and dept_code = 'SAL');

Result table that the computer produces ➍

➌ The pairs of parentheses here show the way that the computer under-
stands the code in ➊. The computer combines phrases with and before
combining phrases with or.

➍ This table contains the row from employee_id 203, Martha Woods, who
is in the shipping department. This occurred because a mistake was
made when writing the code in ➊. The mistake was in leaving out a pair
of parentheses. If you don’t want this row in your result table, you must
write the code in ➋.

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ----------- ------- ------ -------
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202

Notes

Oracle & Access SQL: How a computer understands this code

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ----------- ------- ------ -------
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202

Notes

CONSTANT VALUES 95

Add parentheses to the following select statement to prevent it from
making a common mistake.

select *
from l_foods
where description = 'FRESH SALAD'
 or description = 'SANDWICH'
 or description = 'DESSERT'
 and price <= 2.50
 and price_increase <= 0.25;

Constant Values

On the level of data in a table, a constant value is a column that contains
the same value in every row. Usually there is no reason to place a column
like this in a table. Two other techniques can be used instead. One tech-
nique places a literal value into the select clause as a hard-coded value.
This works well when you have only a few select statements. However,
when you have a large number of select statements, this technique can
make the code inflexible. This means that the code cannot easily be
changed to adapt to changing requirements.

The other technique places the constant values in a separate table, which I
call a table of constants. This is defined as a table that has only one row. It
has a separate column for each distinct constant value. The names of these
columns are usually designed so they are unique and are not identical to
the column names in any other table. After this table has been created, it
can be used in coding select statements with any other table.

This technique is used primarily when you have 20 or more select state-
ments that all use the same set of constants. For instance, I once became
responsible for a set of quarterly reports someone else had written. The
beginning date and ending date of the quarter was hard-coded into each
select statement. Each time I wanted to run these reports I had to change
the beginning date and ending date in all of the code. This took most of a
day, and there would always be some errors to find and correct, so the
whole process took about two days. After doing this a few times, I got tired
of it and I changed the code to get the dates from a table of constants. It
would then take me only a few minutes to run all the reports.

Check your understanding

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE96

3-5 Using a constant value in the select clause

This section shows constant values hard-coded within a select clause.
This example shows all the different types of data that can be coded as con-
stant values — text, numbers, and nulls. The column that appears to be a
date is actually a text field, where the text represents a date.

You will understand this comment about dates better when we discuss the
Date datatype and the formatting of dates in chapters 6 and 7. Data with a
Date datatype can be stored in a table, but cannot be printed directly.
Dates must be printed as text. So when a date appears in a select clause,
it must appear as text.

Beginning table

A B
A B
A B
A B
A B
A B
A B
A B
A B
A B
A B
A B

Result table

A
A
A
A

Literals in select clause

New columns coded as
constant values in the
select statement

Step 2:
Select the data you want
from the single table.

Step 1:
Combine the beginning table
and the constant values to
form a single table.

CONSTANT VALUES 97

The preceding diagram shows what happens on a conceptual level when a
constant value is used within a select clause. It is as if a new column was
added to the beginning table. This new column contains the same value in
every row and it can be given a column alias, a temporary name, just like
any other column. The syntax is the same here as it is for a column. The
syntax is:

constant_value AS column_alias

This is parallel to:

column_name AS column_alias

Show a query that contains hard-coded values in the select clause. Show a
text value, a numeric value, a date value, and a null value.

select employee_id,
 last_name,
 'EXCELLENT WORKER' as evaluation, ➊

 10 as rating, ➋

 '01-JAN-2011' as eval_date, ➌

 null as next_eval ➍

from l_employees
order by employee_id;

Beginning table (l_employees table)

Task

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE98

Result table

➊ This constant value is a text field. Although it is a hard-coded literal
within the select clause, it behaves as if it had created a new column
within the beginning table.

➋ This constant value is a numeric field.

➌ This constant value is a text field that represents a date.

➍ This constant value is a null. You must not put quotes around the word
null.

3-6 Using a table of constants

Here are some of the benefits of using a table of constants:

■ It adds flexibility to your SQL code. Your select statements can
change easily if the value of any of these constants ever changes.

■ It guarantees consistency. You are sure that all the select state-
ments are using the same values for these constants.

This section shows an example of a select statement that uses a table of
constants. To do this, the from clause needs to list two tables: the table of
constants and another table of data. All the other clauses of the select
statement can refer to the columns of either table. No relationship
between the two tables is required. The fact that a table of constants has
only one row ensures that all the constant values will be copied into every
row of the other table.

EMPLOYEE NEXT
 ID LAST_NAME EVALUATION RATING EVAL_DATE EVAL
-------- ---------- ---------------- --------- ----------- ------
 201 BROWN EXCELLENT WORKER 10 01-JAN-2011 (null)
 202 KERN EXCELLENT WORKER 10 01-JAN-2011 (null)
 203 WOODS EXCELLENT WORKER 10 01-JAN-2011 (null)
 204 OWENS EXCELLENT WORKER 10 01-JAN-2011 (null)
 205 PERKINS EXCELLENT WORKER 10 01-JAN-2011 (null)
 206 ROSE EXCELLENT WORKER 10 01-JAN-2011 (null)
 207 SMITH EXCELLENT WORKER 10 01-JAN-2011 (null)
 208 CAMPBELL EXCELLENT WORKER 10 01-JAN-2011 (null)
 209 JACOBS EXCELLENT WORKER 10 01-JAN-2011 (null)
 210 HOFFMAN EXCELLENT WORKER 10 01-JAN-2011 (null)

Notes

CONSTANT VALUES 99

For this technique to work, the names of the columns in the table of con-
stants must all be different from any column name in the other table. When
this is not true, you need to use other techniques discussed in chapter 13.

The following diagram shows what happens on a conceptual level when a
table of constants is used with another table in a select statement. It is as
if new columns have been added to the other table. These new columns
contain the same value in every row.

Table of constants
A B

Beginning table

A B
A B
A B
A B
A B
A B
A B
A B
A B
A B
A B
A B

Result table

A
A
A
A

Step 2:
Select the data you want
from the single table.

Step 1:
Combine the beginning table
and the constant values to
form a single table.

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE100

Code the select statement from the previous section using a table of con-
stants instead of hard-coded literals.

select employee_id,
 last_name,
 evaluation, ➊

 rating, ➊

 eval_date, ➊

 next_eval ➊

from l_employees,
 sec0306_constants
order by employee_id;

Beginning table 1 (l_employees table)

Beginning table 2 (sec0306_constants table)

Task

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

 NEXT
EVALUATION RATING EVAL_DATE EVAL
---------------- --------- ----------- ------
EXCELLENT WORKER 10 01-JAN-2011 (null)

CONSTANT VALUES 101

Result table

➊ This column now comes from the table of constants instead of being
hard-coded as a literal into the select clause.

Modify the following select statement to remove the hard-coded values
$1.00 and $2.00 from the code and place them in a table of constants.

The table sec0306_price_constants is already set up for you. The
min_price field = 1.00 and the max_price field = 2.00.

When I make a change like this, in addition to replacing the hard-coded val-
ues, I often put those values in the select clause so I can see exactly what
the values are whenever I run the SQL code.

select description
from l_foods
where price between 1.00 and 2.00
order by description;

EMPLOYEE LAST NEXT
 ID NAME EVALUATION RATING EVAL_DATE EVAL
-------- -------- ---------------- --------- ----------- ------
 201 BROWN EXCELLENT WORKER 10 01-JAN-2011 (null)
 202 KERN EXCELLENT WORKER 10 01-JAN-2011 (null)
 203 WOODS EXCELLENT WORKER 10 01-JAN-2011 (null)
 204 OWENS EXCELLENT WORKER 10 01-JAN-2011 (null)
 205 PERKINS EXCELLENT WORKER 10 01-JAN-2011 (null)
 206 ROSE EXCELLENT WORKER 10 01-JAN-2011 (null)
 207 SMITH EXCELLENT WORKER 10 01-JAN-2011 (null)
 208 CAMPBELL EXCELLENT WORKER 10 01-JAN-2011 (null)
 209 JACOBS EXCELLENT WORKER 10 01-JAN-2011 (null)
 210 HOFFMAN EXCELLENT WORKER 10 01-JAN-2011 (null)

Notes

Check your understanding

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE102

Punctuation Matters

It is almost embarrassing to talk in detail about punctuation . Small prob-
lems, like the one in the previous sentence, are often ignored. (Did you
notice that there is a space before the period?) People usually focus on the
words first and then expect the punctuation to be easy. However, comput-
ers focus on the punctuation first and then look at the words. Any mistake
in punctuation can completely confuse the computer. More than half the
errors most people make while learning SQL are errors in punctuation.

This is made more difficult because punctuation has additional meanings
in SQL that it does not have in English or any other spoken language. Also,
Oracle and Access use punctuation somewhat differently.

Section 3-7 contains the minimum you need to know about punctuation.
Section 3-8 contains a more detailed discussion of punctuation. You might
want to skim this section for now and refer to it later.

3-7 Punctuation you need to know right now

This section contains short explanations about punctuation. I only tell you
enough here to keep you out of trouble and tell you about the best prac-
tices. More detailed explanations are presented in the next section.

Spaces in names — Avoid them when you can
It is best to avoid using a space in any name — table names, column
names, and the names of any other database objects. Use an underscore
character instead of a space. For example, do not name a column hiree-
date, which has a space between the e of hire and the d of date. Name it
hire_date.

Commas
Commas separate the items of a list. A list cannot end with a comma. If the
last item of a list is removed, the comma preceding it must also be
removed. The following example shows a common error:

select first_name,
 last_name

from l_employees;

Do not use commas or dollar signs when entering numbers. Decimal points
are the only punctuation allowed within numbers.

,

PUNCTUATION MATTERS 103

Single quotes
If you are going to use single quotes, make sure you are using a text editor,
such as Notepad, that will use “straight quotes.” Some word processing
programs substitute “curly quotes” for straight quotes. Usually curly quotes
are not acceptable in SQL code.

In Oracle, you should use only single quotes to surround text strings and
dates. Do not use quotes around numbers. See the following examples:

select *
from l_employees
where dept_code in ('SAL', 'SHP')

or hire_date > '01-JAN-2003'
or employee_id = 201;

In Access, like in Oracle, text strings must be enclosed in quotes and num-
bers must not be enclosed in them. However, dates are punctuated differ-
ently in Access than they are in Oracle. In Access, dates are enclosed in
pound signs, not in quotes:

select *
from l_employees
where dept_code in ('SAL', 'SHP')

or hire_date > #01-JAN-2003#
or employee_id = 201;

Double quotes
If you are going to use double quotes, make sure you are using a text editor,
such as Notepad, that will use “straight quotes.” Some word processing
programs substitute “curly quotes” for straight quotes. Usually curly quotes
are not acceptable in SQL code.

In Oracle, single quotes and double quotes have different meanings. You
should almost always use single quotes, except in two special situations,
which are explained in the next section.

In Access, single quotes and double quotes have the same meaning, so you
can use double quotes anywhere you can use single quotes. In this book I
mostly use single quotes because I want the same code to work in both
Oracle and Access.

Pound signs
Access uses pound signs to enclose dates. See the previous example.

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE104

Semicolons
A semicolon marks the end of an SQL statement.

Reserved words — Avoid them
SQL uses some reserved words. In general, you should avoid using any
word you think might be reserved. For example, do not try to name a col-
umn from or date. Few reserved words contain an underscore, so adding
an underscore is a way to avoid using a reserved word. In the example, it
would be acceptable to name a column from_ or date_.

List the names of all the suppliers that have an apostrophe or an ampersand
in their names. Use the l_suppliers table.

select supplier_name
from l_suppliers
where supplier_name like '%''%' ➊

 or supplier_name like '%&%'
order by supplier_name;

select supplier_name
from l_suppliers
where supplier_name like "*'*" ➋

or supplier_name like "*&*"
order by supplier_name;
or

select supplier_name
from l_suppliers
where supplier_name like '*''*' ➊

or supplier_name like '*&*'
order by supplier_name;

Task

Oracle SQL

Access SQL

PUNCTUATION MATTERS 105

Beginning table (l_suppliers table)

Result table

➊ Use two single quotes in succession to express a single apostrophe
when it occurs within single quotes.

➋ Use only one single quote to express a single apostrophe when it occurs
within double quotes.

Find and correct the error in the following:

select *
from l_suppliers
where supplier_name = 'frank reed's vegetables';

SUPPLIER
ID SUPPLIER_NAME
-------- ----------------------------
ARR ALICE & RAY'S RESTAURANT
ASP A SOUP PLACE
CBC CERTIFIED BEEF COMPANY
FRV FRANK REED'S VEGETABLES
FSN FRANK & SONS
JBR JUST BEVERAGES
JPS JIM PARKER'S SHOP
VSB VIRGINIA STREET BAKERY

SUPPLIER_NAME

ALICE & RAY'S RESTAURANT
FRANK & SONS
FRANK REED'S VEGETABLES
JIM PARKER'S SHOP

Notes

Check your understanding

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE106

3-8 Punctuation reference section

This is a reference for the most common types of punctuation required by
Oracle and Access. It includes the previous section. This section covers
punctuation you can learn later. You do not need to read it now.

How to avoid having spaces in names
It is best to avoid using spaces in the names of database objects or column
names. Traditionally with computers, spaces have been used as a separator
character and you are simply asking for trouble if you start to use a space in
any other way.

There are two methods that are often used to eliminate spaces. One
method replaces the spaces with underscore characters. The other method
uses mostly lowercase letters, except each word begins with one uppercase
letter. The spaces are removed. Here is an example of both methods:

Name with spaces: hire date

Method 1: hire_date

Method 2: HireDate

In this book I use the first method. To me, this makes the code easier to
read, but this is a matter of taste, so you can use the other method if you
prefer it.

How to handle spaces in names
Sometimes you cannot avoid having spaces in names, usually because the
system is already set up before you arrive. Then you just have to deal with
them. Both Oracle and Access provide a way to handle this situation. In
Oracle, you enclose the name in double quotes. In Access, you enclose the
name in square brackets. For example:

Name with spaces: hire date

Oracle method: "hire date"

Access method: [hire date]

Commas
Commas separate the items of a list. A list cannot end with a comma. If the
last item of a list is removed, the comma preceding it must also be removed.

This example shows a common error:

select first_name,
 last_name
from l_employees;

,

PUNCTUATION MATTERS 107

Do not use commas or dollar signs when entering numbers. Decimal points
are the only punctuation allowed within numbers.

Single quotes
In Oracle, character strings and dates must be enclosed in single quotes.
The terms character string and text string mean the same thing. In Access,
they can be enclosed in either single quotes or double quotes.

Two single quotes next to each other can be used to code an apostrophe.
For details, see the discussion of apostrophes.

Double quotes
In Access, double quotes and single quotes mean the same thing, so text
strings can be enclosed in either single quotes or double quotes.

In Oracle, double quotes are used around any column alias. In particular,
they are needed around a column alias that contains a special character or
a space. After the column alias is created in the select clause, it can be
used in the order by clause, but it must still be in double quotes. For
example:

select first_name as "FIRST NAME"
from l_employees
order by "FIRST NAME";

In Oracle, double quotes are also used to put text into date formats. We
discuss date formats in chapter 7. Here is an example:

select employee_id,
to_char(hire_date, '"HIRED IN THE YEAR " yyyy')
from l_employees;

Apostrophes
An apostrophe can be written as two single quotes next to each other. To
find the names of all the suppliers with an apostrophe in their names, you
can write as follows.

select *
from l_suppliers
where supplier_name like '% %';

Oracle SQL

''

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE108

select *
from l_suppliers
where supplier_name like '* *';

An easier method to write an apostrophe in Access encloses a single quote
in a pair of double quotes:

select *
from l_suppliers
where supplier_name like "* *";

Pound signs
Access uses the pound sign to enclose dates:

select *
from l_employees
where hire_date = #16-FEB-2007#;

Oracle encloses dates in single quotes:

where hire_date = '16-FEB-2007';

SQL can be written in free format
Most of the SQL in this book is written in a highly structured way. I recom-
mend using this format. However, this formatting is not required. The code
can all be written on one line, or you can get creative and write it in some
fancy shape.

The clauses of the select statement must always be written in a specified
order. However, you can run the lines together in any way you wish. You can
write as follows:

select *
from l_employees;

or

select * from l_employees;

or

select
 * from
 l_employees
 ;

Access SQL method 1

Access SQL method 2

''

'

PUNCTUATION MATTERS 109

There are two exceptions to this. A bug in Oracle at one time did not allow any
completely blank lines in the middle of an SQL statement. This issue has
mostly been fixed now. However, when you run the Oracle SQL Command Line
environment, you may have to use an SQL*Plus command to allow them.

Access allows blank lines, but it does not allow any characters after the
semicolon that marks the end of the SQL statement.

Double dashes (comment line)
In Oracle and most other SQL products, any text written after two dashes is
a comment. The dashes can be written at the beginning of the line or in the
middle:

-- This is a comment line

or

select first_name, last_name -- this is a comment

Access does not allow comments in the SQL window. So, when you write
SQL for both Oracle and Access, you cannot put comments into it.

Periods and exclamation marks
In both Oracle and Access, a period is often used between a table name
and a column name to indicate that the column is part of that particular
table:

select l_employees first_name
from l_employees;

In Access, an exclamation mark can sometimes be used to mean the same:

select l_employees first_name
from l_employees;

Oracle can use a period in a column alias. Access cannot. The following
SQL works in Oracle, but not in Access:

select first_name as "AND SO MUCH MORE ..."

from l_employees;

Ampersands
In Oracle, when you use the SQL Command Line environment, the amper-
sand is often used to indicate a variable. For instance, &fox could be a vari-
able. A slightly different type of variable is &&fox. You will be asked to
supply a value for &fox each time it occurs in an Oracle script file. With
&&fox you will only be asked to supply a value the first time it occurs.

.

!

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE110

If you want to use an ampersand as an ordinary character, you should turn
this feature off. To do this, run the following command:

set define off

This is an SQL*Plus command, not an SQL command. It sets the environ-
ment in which SQL runs in Oracle.

In Access, an ampersand is used for concatenation. For example:

"sweet" & "heart" = "sweetheart"

Vertical bars
The vertical bar or double bar is the uppercase symbol above the back-
slash. The key usually shows two short lines, one above the other. However,
many printers display it as a single line.

Oracle, in the SQL Command Line environment, uses a vertical bar to
divide a column heading into two or more lines. This is done within the
column command. For example:

column first_name heading 'FIRST NAME'

Oracle also uses two consecutive double bars for the concatenation func-
tion. For example:

'SUN' 'SHINE' = 'SUNSHINE'

Semicolons
A semicolon marks the end of an SQL statement. This tells the computer
that the statement is complete and may now be processed. Oracle requires
a semicolon to end a statement. Oracle also accepts a forward slash as
another method of statement termination. In Access, the semicolon is
optional.

Colons
Oracle, in the Database Home Page environment, uses a colon as the first
character of a variable name. An example is :fox. The user will be asked for
the value of this variable at the time that the select statement is run.

Numbers — Commas, decimal points, and dollar signs
When you are using a number within SQL code, do not use commas or dol-
lar signs. Decimal points may be used.

|

||

PUNCTUATION MATTERS 111

Square brackets
In Access, square brackets are used to enclose names that contain spaces:

select [employee ID],
[first name],
[last name]

from [employees table of the lunches database];

Asterisks
In both Oracle and Access, select * means “select all the columns.”
Count(*) means “count all the rows.” An asterisk is also used as a sign for
multiplication. In Access patterns, it is a wildcard character meaning “any
number of characters, or possibly no characters at all.”

Forward slashes
In Oracle, a forward slash can be used to terminate an SQL statement.
More precisely it means “run the SQL code that is now in the buffer.”

A different meaning in both Oracle and Access uses a forward slash for divi-
sion of numbers.

Multiline comments
In Oracle, you can enter a multiline comment by beginning it with /* and
putting */ at the end. For example:

/*
this is the beginning of the comment,
then you add as many lines as you want ...
and keep on adding more lines
You end the comment this way
*/

Not Equal conditions
The Not Equal condition can be shown in several ways. To exclude an
employee_id of 201, you may write any of the following:

where employee_id != 201 Oracle only
where employee_id ^= 201 Oracle only
where employee_id <> 201 Oracle & Access
where not employee_id = 201 Oracle & Access
where not (employee_id = 201) Oracle & Access

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE112

Wildcards
Wildcards are used in a where clause with a like condition.

% (percent) Used to mean any number of characters,
or possibly no characters at all.

_ (underscore) Used to mean exactly one unknown
character.

* (asterisk) Used to mean any number of characters
or possibly no characters at all.

? (question mark) Used to mean exactly one unknown
character.

(pound sign) Used to mean exactly one digit, 0 to 9.

[a-d] (square brackets) Used to mean a range of characters, in
this case from a to d.

[*] (square brackets around Means the character itself, without its
a wildcard character) wildcard properties.

Regular expressions
Oracle can now use regular expressions. They are a more powerful alterna-
tive to using wildcard expressions. I am not going to try to explain them in
this book. They come from the Perl language. Here is an example of a regu-
lar expression:

select regexp_replace(number_with_format_1,
 '([[:digit:]]{3})\.([[:digit:]]{5})\.
 ([[:digit:]]{4})\.([[:digit:]]{7})',
'+\1-\3-\3-\4') as number_with_format_2

from my_table;

Note how complex this is and how much punctuation there is in it. Also
note that three different types of parentheses are used, each with its own
special meaning. In this code, lines 2 and 3 must be put on a single line,
otherwise the code runs but gives the wrong results.

If you want to know more about the use of regular expressions in Oracle,
see chapter 3 of the Two Day Developer Guide in the Oracle documentation.

In Oracle

In Access

CASE SENSITIVITY 113

Case Sensitivity

3-9 Case sensitivity in Oracle

Many Oracle databases are case sensitive. That means that the data held in
the tables distinguishes between uppercase letters, such as “A”, and lower-
case letters, such as “a”. Some fields may be in mixed case. The data often
looks better that way.

Unfortunately, it can also mean that sometimes you need to remember for
each column in which case the data is coded. For instance “JOHN”, “john”,
and “John” are all different. If you look for data but you use the wrong case,
you will not find it. There are two ways to deal with this.

First, the only parts of SQL code that are case sensitive are the parts
between quotation marks, so that is the only part where you need to be
concerned about uppercase versus lowercase. Now let us assume for this
discussion that the data in the first_name column is actually “John”,
where the first letter is uppercase and the remaining letters are lowercase.

One strategy is to actually remember which case the data is written in. If
you remember this you can use your knowledge when you write the literal
values (the part between quotation marks) in your SQL code. Here is an
example:

select *
from employees
where first_name = 'John';

The other strategy is to use a row function to convert the first_name col-
umn in the where clause to be in a particular case. There are two row func-
tions you can use to do this: upper and lower. They can convert the
first_name column to uppercase letters or lowercase letters, respectively.
Using this strategy, you can write the SQL code:

select *
from employees
where upper(first_name) = 'JOHN';

A common compromise in an Oracle database is to put most of the data in
uppercase and have only a few fields that are exceptions to this. Then peo-
ple simply remember that most text between quotes should be in upper-
case. I am using that compromise in this book.

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE114

Show that the demonstration database distributed with Oracle XE is a
case-sensitive database.

1. Start Oracle by going to the Database Home Page.

 Start > All Programs > Oracle Database 10g Express Edition
 > Go To Database Home Page

2. Log on as userID hr. The password is hr if you followed the direc-
tions in the “Getting Started Guide” for Oracle Database Express
Edition; otherwise the password is whatever you set it to when you
unlocked this account.

3. Click the SQL icon, then the SQL Commands icon.

4. Change Display to 200.

5. In the top part of the screen enter:

select * from employees;

and click the Run button.

6. Note that the data in the first_name and last_name columns is
mixed case, but the data in the email and job_id columns is in
uppercase. This shows you that this is a case-sensitive database.

Oracle result table 1 (first few rows, shows this table uses mixed case)

Task for example 1

Procedure

CASE SENSITIVITY 115

Show the problem in dealing with a case-sensitive database.

Enter this code in the top part of the screen and click the Run button:

select *
from employees
where first_name = 'john';

Oracle result for example 2: a message
no data found

Show one method to deal with case sensitivity.

select *
from employees
where first_name = 'John';

Oracle result table 3

If you use this method, you could often get the wrong results. There are two
reasons for this:

■ You might not know exactly what case is used in the data.

■ The data in the table may be entered in an inconsistent way.

Task for example 2

Oracle SQL: This does not work

Task for example 3

Oracle SQL: Using the case that matches the data

Warning

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE116

Show the other method to deal with case sensitivity.

select *
from employees
where lower(first_name) = 'john';

Oracle result table 4
Same as result 3

Show SQL code that uses the common compromise to put all literals in
uppercase.

select *
from employees
where email = 'SKING';

Oracle result table 5

Add the word “upper” to the following code to make it work regardless of how
the name is capitalized in the data.

select *
from employees
where last_name = 'de haan';

Task for example 4

Oracle SQL: Using a row function

Task for example 5

Oracle SQL: A common compromise, using uppercase for most fields

Check your understanding

CASE SENSITIVITY 117

3-10 The debate about case sensitivity in SQL

Actually, there is not much of a debate about case sensitivity in SQL.
Rather there are two camps of people. Each camp believes that it is entirely
right and everyone else is entirely wrong, so this is more like a religion than
a debate. I find I can get along with either group as long as I pretend that I
believe the same way they do.

The issue is whether a database should be case sensitive or not. Some peo-
ple believe that making it non-case-sensitive makes it easier to use and
therefore a more useful and reliable tool. Other people believe that case
sensitivity is just a fact of life; it is not such a big deal, and everyone should
be able to handle it.

The original designers of the SQL language believed that non-case-sensi-
tivity is best. You can still see traces of this in the SQL language itself. For
instance, table names and column names are not allowed to be case sensi-
tive. If you already have a table named “employees”, you are not allowed to
create a new table named “EMPLOYEES”, because each table is required to
have its own name and these two names are considered to be the same.

3-11 You have a choice

When you use Oracle, you can choose whether you prefer to work with a
case-sensitive or a non-case-sensitive database. If you start Oracle by
going to the Database Home Page, then you will be operating in a
case-sensitive environment.

However, if you prefer to use a non-case-sensitive environment, that is also
available to you. Just start Oracle by going to the SQL Command Line.

The next section explains how to turn off case sensitivity in the SQL Com-
mand Line environment.

3-12 You can turn off case sensitivity in the
Oracle SQL Command Line environment

Some people prefer to use a non-case-sensitive database. This allows them
to focus on learning SQL without having an additional nagging concern
about uppercase versus lowercase.

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE118

Two steps are required to do this. First, the data must be stored in the Ora-
cle database using uppercase letters. In the Oracle database for this book I
have already done this. There are no mixed case fields or lowercase fields
outside of this chapter. By contrast, the Access data is usually in mixed
case.

Second, you can use the SQL*Plus command:

set sqlcase upper;

SQL*Plus is the environment in which Oracle SQL is run when you start
Oracle with the “Run SQL command line” interface. This command causes
SQL*Plus to translate every SQL command into uppercase letters. For
example, when you enter

select * from employees where first_name = 'john';

the SQL*Plus environment changes this to

SELECT * FROM EMPLOYEES WHERE FIRST_NAME = 'JOHN';

before the command is run.

3-13 Case sensitivity in Access

Access deals with the case sensitivity issue in an entirely different way.
Access stores data in the database in exactly the way you enter it, using
uppercase and lowercase letters. Oracle does this, too. But when Access
compares two values to see if they are the same, Access uses a non-case
sensitive method of comparing them.

This means that every Access database is non-case-sensitive. When you
write SQL code for an Access database, you do not have to worry whether
the literal values need to be uppercase or lowercase letters. The case in the
literal value does not need to match the case of the data in the database.

Usually in this book I try to show you that Oracle SQL and Access SQL are
similar. In this section I am going to do something different because I want
to show you that they handle the case sensitivity issue in different ways. I
am going to write one SQL statement that does not even involve literals of
any sort. You will see that I get one result when I run it in Oracle and a dif-
ferent result when I run it in Access.

CASE SENSITIVITY 119

Show that Oracle and Access handle case sensitivity in different ways and
that this can affect the result of running an SQL statement.

select *
from sec0313_case_sensitivity
where name1 = name2
order by row_id;

Beginning table (sec0313_case_sensitivity table)

Oracle result table

Access result table

Note that these tables are different. The result in Oracle has three rows and
the Access result has four rows.

Task

Oracle & Access SQL

 ROW_ID NAME1 NAME2
---------- ---------- ----------
 1 john john
 2 John John
 3 JOHN JOHN
 4 john JOHN

 ROW_ID NAME1 NAME2
---------- ---------- ----------
 1 john john
 2 John John
 3 JOHN JOHN

Notes

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE120

Three-Valued Logic

3-14 SQL uses three-valued logic

Many people know the statement that SQL uses three-valued logic, but
some people are not sure what it means. The meaning is very simple. Take
any logical statement that you could put in a where clause, let’s call it A. It
could be

first_name = 'JOHN'

or

supplier_id = 'FV' and product_code = 'AS'

or

many other logical conditions.

The point is we can think that our logical condition is either true or not true
for each row of any table.

Actually, that way of thinking is incorrect. That would be correct if there
were two alternatives: Either the statement is true or it is false. However,
there is a third possibility. It could be unknown, which means that we do
not know if it is correct or not. There could be a null in one of the columns
we are testing. The term three-valued logic refers to this third possibility. It
is another way to say that there could be some nulls in the data.

There is also another way to think of this. If you take any table, you can sep-
arate its rows into three separate groups. One group will be all the rows
where condition A is true. One group will be all the rows where condition A
is false. The third group will be all the rows where we do not know whether
condition A is true or not.

Show that the logical condition

"the price increase is greater than 20 cents"

divides rows of the l_foods table into three separate parts:

■ The rows where it is a true statement

■ The rows where it is a false statement

■ The rows where where we do not yet know if the statement is true or
false

Task

THREE-VALUED LOGIC 121

1. Show the rows where the statement is true.

 select *
 from l_foods
 where price_increase > 0.20
 order by menu_item;

2. Show the rows where the statement is false.

 select *
 from l_foods
 where not(price_increase > 0.20)
 order by menu_item;

3. Show the rows where the truth of the statement is unknown.

 select *
 from l_foods
 where price_increase is null
 order by menu_item;

Beginning table (l_foods table)

Result table 1 (The rows where the statement is true)

Oracle & Access SQL

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- ----------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- ----------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
JBR AS 8 SODA $1.25 $0.25
VSB AS 10 DESSERT $3.00 $0.50

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE122

Result table 2 (The rows where the statement is false)

Result table 3 (The rows where the truth of the statement is unknown)

Error Messages

3-15 Error messages are often wrong

One of the major challenges in dealing with computer software of any type
is that the error messages are often wrong. This can drive you crazy at
times. The message is usually correct in saying there is an error. There usu-
ally is an error of some kind. However, identifying the error and telling you
how you can correct it is the part that is often wrong. Many people want to
know why.

The short answer is that when the computer encounters an error, it can
become genuinely confused. It doesn’t have anything to fall back on. It
doesn’t understand your thinking, motivation, or intent. It does not have an
overall understanding of what you are trying to accomplish. It does not
even have another level of code to give it some guidance. In short, it was
totally dependent on your code and your code did not work.

The best that many error messages can do is point out the location of the
error. That can help you guess what might be wrong, but sometimes the
error actually occurs before the place that the message indicates. If the
error points to the end of your code, then it is not telling you much. As you
get more experience with computers, you become better at guessing what
the problems could be.

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- ----------- --------
FRV BR 6 BROCCOLI $1.00 $0.05
JBR VR 9 COFFEE $0.85 $0.15

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- ----------- --------
ASP SP 2 SOUP OF THE DAY $1.50 (null)
FRV FF 7 FRENCH FRIES $1.50 (null)

ERROR MESSAGES 123

Because I know of this problem with error messages, I am not a big fan of
computer systems that try to give you several error messages at a time. I
think that if a computer encounters an error it should show you one error
message, indicate the location as best it can, and then stop. Most com-
puter software does this today.

I remember the first COBOL program I wrote. COBOL is not used much
today, but there are still some programs written in it. In theory, this lan-
guage would tell you all your errors in one compile. It would not just stop
at the first error.

My program was about 20 pages long. The output of my first compile was
50 pages of error messages. That was very shocking and discouraging. How-
ever, I sat down determined to go through every one of those messages. I
knew that they were all supposed to be valuable information.

When I finished the process of going through all the error messages, I had
found one word that was spelled incorrectly and one period that was miss-
ing. These problems were indicated in the first two messages. All the other
messages were total rubbish because the computer was completely con-
fused before it got to that point

Show the error messages produced by the code:

select first_name,
 last_name,
from l_employees;

The problem with this code is that there is a comma after last_name.

ORA-00936 missing expression

Task

Oracle error message

Access error message

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE124

Start with any select statement that works. On purpose, change it so that it
does not work anymore. See how well the error messages can tell you what
the problem is.

Some Exercises Solved for You

Here are some exercises I have solved for you. The problems might look
simple, but they are actually a bit tricky. I chose to solve these exercises
because they illustrate many of the fine points in the topics we have
already discussed.

3-16 Exercise 1

List the employees who have last names starting with H through P.

select employee_id,
 first_name,
 last_name
from l_employees
where last_name between 'H' and 'P'
order by employee_id;

Beginning table (l_employees table)

Check your understanding

Task

Oracle & Access SQL: First attempt — INCORRECT

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

SOME EXERCISES SOLVED FOR YOU 125

Result table ➊

➊ Henry Perkins is not listed in the result table. The problem is that P
means “P followed by a space” in this context, and PE comes after P fol-
lowed by a space.

select employee_id,
 first_name,
 last_name
from l_employees
where last_name between 'H' and 'P%' ➋

order by employee_id;

select employee_id,
 first_name,
 last_name
from l_employees
where last_name between 'H' and 'P*' ➋

order by employee_id;

Result table

EMPLOYEE
 ID FIRST_NAME LAST_NAME
-------- ---------- ----------
 202 JIM KERN
 204 ELLEN OWENS
 209 PAULA JACOBS
 210 NANCY HOFFMAN

Notes

Oracle SQL: Second attempt — INCORRECT

Access SQL: Second attempt — INCORRECT

EMPLOYEE
 ID FIRST_NAME LAST_NAME
-------- ---------- ----------
 202 JIM KERN
 204 ELLEN OWENS
 209 PAULA JACOBS
 210 NANCY HOFFMAN

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE126

➋ Here we are trying to use a wildcard character after the P to mean “P fol-
lowed by any other character.” The code runs, but Henry Perkins is still
missing from the result.

Only the like condition supports wildcard characters. When these char-
acters are used with the between condition, they are considered to be
regular characters instead of wildcard characters. So here the percent
sign and the asterisk are regular characters. PE comes after P% and P*,
so Perkins is not included in the result.

select employee_id,
 first_name,
 last_name
from l_employees
where last_name between 'H' and 'PZZ' ➌

order by employee_id;

Result table

➌ This stretches the between condition to the end of the Ps. Of course, it
assumes there will not be any data between PZZ and Q.

select employee_id,
 first_name,
 last_name
from l_employees
where last_name between 'H' and 'Q' ➍

order by employee_id;

Notes

Oracle & Access SQL: Third attempt — CORRECT

EMPLOYEE
 ID FIRST_NAME LAST_NAME
-------- ---------- ----------
 202 JIM KERN
 204 ELLEN OWENS
 205 HENRY PERKINS
 209 PAULA JACOBS
 210 NANCY HOFFMAN

Notes

Oracle & Access SQL: Fourth attempt — CORRECT

SOME EXERCISES SOLVED FOR YOU 127

➍ This is another way to stretch the range of the between condition to
include all words beginning with P. Of course, if someone has Q as their
last name, then that row would also be included in the result table.
(There is a jazz musician whose last name is Q.)

select employee_id,
 first_name,
 last_name
from l_employees
where last_name like '[H-P]*' ➎

order by employee_id;

➎ In this solution we are using the like condition instead of the between
condition. We can do this in Access, but not in Oracle, because Access
supports a greater variety of patterns than Oracle does.

select employee_id,
 first_name,
 last_name
from l_employees
where last_name >= 'H'
 and last_name < 'Q'
order by employee_id;

3-17 Exercise 2

In the l_suppliers table, list the row for Alice & Ray’s Restaurant.

select *
from l_suppliers
where supplier_name = 'ALICE & RAY'S RESTAURANT'; ➊

Result — An error message

Notes

Access SQL: Fifth attempt — CORRECT

Notes

Oracle & Access SQL: Sixth attempt — CORRECT (the best solution)

Oracle & Access SQL: First attempt — INCORRECT

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE128

select *
from l_suppliers
where supplier_name = 'ALICE & RAY S RESTAURANT'; ➋

select *
from l_suppliers
where supplier_name = ALICE & RAY S RESTAURANT ; ➌

Part of the beginning table (l_suppliers table)

Result table

➊ The supplier name contains an apostrophe, which confuses the
computer.

➋ Use two consecutive single quotes to code an apostrophe in a text string
that is enclosed in single quotes.

➌ In Access, we can enclose a text string in double quotes. When we do
this, the apostrophe in the name does not cause a problem.

Oracle & Access SQL: Second attempt — CORRECT

Access SQL: Third attempt — CORRECT

SUPPLIER
ID SUPPLIER_NAME
-------- ---------------------------
ARR ALICE & RAY'S RESTAURANT
ASP A SOUP PLACE

SUPPLIER
ID SUPPLIER_NAME
-------- ----------------------------
ARR ALICE & RAY'S RESTAURANT

Notes

''

" ' "

SOME EXERCISES SOLVED FOR YOU 129

3-18 Exercise 3

List the employee_id, first_name, last_name, and hire_date of all the
employees hired in the year 2008.

select employee_id,
 first_name,
 last_name,
 hire_date
from l_employees
where hire_date = '2008'; (Oracle) ➊

where hire_date = #2008#; (Access)

Result — An error message

select employee_id,
 first_name,
 last_name,
 hire_date
from l_employees
where hire_date between '01-JAN-2008' (Oracle) ➋

 and '31-DEC-2008'; (Oracle)

where hire_date between #01-JAN-2008# (Access)
 and #31-DEC-2008#; (Access)

Beginning table (l_employees table)

Oracle & Access SQL: First attempt — INCORRECT

Oracle & Access SQL: Second attempt — CORRECT

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE130

Result table

➊ When we specify a date, we cannot only give the year.

➋ To specify a year, we must say that the date is between January 1 and
December 31 of that year.

select employee_id,
 first_name,
 last_name,
 hire_date
from l_employees
where to_char(hire_date, 'yyyy') = '2008'; ➌

select employee_id,
 first_name,
 last_name,
 hire_date
from l_employees
where year(hire_date) = 2008; ➍

➌ In Oracle, the to_char function can specify the format of a date. For
more details, see section 7-2.

➍ In Access, the year function shows only the year part of a date, and it
shows this as an integer. Here the hire_date is 2008, which is an inte-
ger and not a date so it is not enclosed within pound signs.

EMPLOYEE
 ID FIRST_NAME LAST_NAME HIRE_DATE
-------- ---------- ---------- ------------
 204 ELLEN OWENS 01-JUL-2008
 207 DAN SMITH 01-DEC-2008
 208 FRED CAMPBELL 01-APR-2008

Notes

Oracle SQL: Another solution, using features we have not covered yet

Access SQL: Another solution, using features we have not covered yet

Notes

KEY POINTS 131

Key Points

■ Computers use the words and, or, and not in a precise way that is a
little different that the way they are sometimes used in English.

■ When you write a select statement, you may sometimes want to
hardcode some values into the statement you are writing. You can
make your code more flexible by using a table of constants instead.

■ Punctuation is very important in all computer languages, including
SQL.

■ Some databases are case sensitive and others are not. You need to
know if the database you are using is case sensitive or not.

■ SQL uses three-valued logic. This is another way to say that there can
be nulls in the data.

■ Error messages are not always completely correct. This applies to all
computer software.

This page intentionally left blank

133

chapter 4

The result table of a query has columns and rows. It is a table
and it can be handled like any other table. This chapter shows
you how to save the results of a query in a new table and make
modifications to the data.

SAVING YOUR
RESULTS

Saving Your Results in a New Table or View . 135

4-1 Create a new table from the result of a select statement 135
4-2 Creating a new view from the results of a select statement 139
4-3 Similarities between tables and views .142
4-4 Differences between tables and views .142
4-5 Deleting a table .143
4-6 Deleting a view .145
4-7 One view can be built on top of another view. .146
4-8 Preventative delete .149

Modifying the Data in a Table with SQL. 151

4-9 Adding one new row to a table .151
4-10 Adding many new rows to a table .154
4-11 Changing data in the rows already in a table .157
4-12 Deleting rows from a table .159

Modifying the Data in a Table with the GUI . 161

4-13 Using the Oracle GUI to change data in a table .161
4-14 Using the Access GUI to change the data in a table.164

Restrictions on Modifying the Data in a Table . 167

4-15 Constraints with insert, update, and delete .167
4-16 Security restrictions. .169

Key Points . 170

135

Saving Your Results in a New Table or View

All the queries you have written so far display their results on the screen.
After the computer is turned off, the results are gone. This chapter shows
how to save the results in a table. Alternatively, they can be saved in a view,
which is similar to a table.

To see the data in your table or view, you must use:

select * from new_table or view;

4-1 Create a new table from the
result of a select statement

This section shows how to create a new table from the results of a select
statement. Both Oracle and Access can perform this operation, but they
specify it with different syntax. Oracle follows the SQL standard, but Access
has created its own nonstandard expression.

You are the owner of the new table and have complete control over it. The
new table is private and can only be seen and used by you unless you decide
to share it with other people. You can modify the data in this table by adding
new rows, changing rows, or deleting rows.

There are two tasks in this section. In the first task we create a new table
from a select statement. In the second task you create your own copy of
an existing table so you can modify it and change its data without affecting
the original table.

Description of the process
Begin with any select statement. In Oracle, one new line is added before
the select clause. This line says create table, and then gives the name
of the new table, followed by the word as.

In Access, a new clause is added right after the select clause. This clause
says into followed by the name of the new table. Except for this one
change, the original select statement does not need to be changed. How-
ever, there are some special considerations about the order by clause.

In old versions of SQL, you could not include an order by clause. If the
original select statement included this clause, you had to delete it. The
reasoning was that the rows of a table are, in theory, an unordered set, so
when you created a new table, you were not allowed to specify an order for
its rows.

CHAPTER 4 SAVING YOUR RESULTS136

Now this has changed. The newer versions of Oracle and Access do allow
you to use an order by clause in a create table statement. However, in
theory, the rows of the table are still an unordered set, which means that
the order by clause is being ignored. For that reason I do not usually use it
in this book.

In both Oracle and Access, I recommend that the name of the new table be
a name that is not already used by any other object in the database. Both
Oracle and Access allow some exceptions to this rule, but you are inviting
confusion and trouble if you have two objects with the same name. Each
table must have a unique name. If a name is already being used, you will
receive an error message and your SQL statement will not be processed.

In Access, when you create a new table from a select statement, you must
click the Run button on the Ribbon in the upper left corner of the screen.
This might be a little different from your usual procedure to run a query. I
often run a query by clicking the View Datasheet button in the bottom right
corner of the screen. However, if you click that button the select state-
ment will run and you will see the results, but the results will not be saved
in a new table.

The Run button you need to click is not always available to you on the Rib-
bon; that is, it is context sensitive. To see it you need to create a query. To
do this you can:

1. Click the Create tab.

2. Click Query Design in the Other group.

3. Close the Show Table window.

4. Click SQL View.

5. Enter a select statement SQL query or create it.

The Run button appears within the Results group of the Design tab within
the Query Tools context.

SAVING YOUR RESULTS IN A NEW TABLE OR VIEW 137

Save the result table of the following select statement. Create a new per-
manent table. Show how to change a select statement so that the result is
saved in a new table, instead of being displayed on the screen. Name the
new table sec0401_sales_staff.

select employee_id, ➊

 first_name,
 last_name,
 dept_code
from l_employees
where dept_code = 'SAL'
order by employee_id; ➋

create table sec0401_sales_staff as ➌

select employee_id,
 first_name,
 last_name,
 dept_code
from l_employees
where dept_code = 'SAL';

select employee_id,
 first_name,
 last_name,
 dept_code
into sec0401_sales_staff ➍

from l_employees
where dept_code = 'SAL';

select *
from sec0401_sales_staff ➏

order by employee_id; ➐

Task: Create a new table from a select statement

Oracle SQL: Modified select statement — Save results in a table

Access SQL: Modified select statement — Save results in a table

Oracle & Access SQL: Show the table you created ➎

CHAPTER 4 SAVING YOUR RESULTS138

Beginning table (l_employees table)

New table (sec0401_sales_staff table)

➊ You can begin with any select statement.

➋ Removing the order by clause is optional. You are allowed to use it
when you create a table. However, this is just allowed for convenience in
writing the SQL statement. The rows of the table will still be an unor-
dered set. The meaning of the order by clause will be ignored.

➌ In Oracle, you add a create table clause before the select clause.

➍ In Access, you add an into clause after the end of the select clause
and before the from clause.

➎ After you create a new table, you can write any select statement using
the data from the new table. To see the data in the new table you cre-
ated, you need to use the following:

select * from sec0401_sales_staff;

➏ The from clause here names the new table.

➐ The order by clause here does put the rows of the result table in a spe-
cific order.

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE DEPT
 ID FIRST_NAME LAST_NAME CODE
-------- ---------- ---------- ----
 202 JIM KERN SAL
 204 ELLEN OWENS SAL
 205 HENRY PERKINS SAL
 210 NANCY HOFFMAN SAL

Notes

SAVING YOUR RESULTS IN A NEW TABLE OR VIEW 139

Create a copy of the l_employees table. Name it sec0401_employees.

Here is the reason you might want to do this. Later in this chapter you will
learn how to change the data in a table. However, you should not make any
changes to the data in the l_employees table because many of the exam-
ples in this book are based on it. If you make a change to the data in this
table, the examples in the book might not work correctly.

Instead, you can make a new copy of the table and then you can change the
data in the new copy. This allows you to practice changing the data and still
keep the l_employees table unchanged so it works in all the examples
from the book.

4-2 Creating a new view from
the results of a select statement

This section shows another way to save the results of a query. Here the
results are saved in a view rather than a table. A view is very much like a
table. The next two sections discuss the similarities and differences
between a view and a table, but for now, you can think of a view as a special
type of table.

Access uses the term saved query instead of the term view. However, they
both mean the same thing. Standard SQL calls it a view.

After the new view is created, it can be used like a table. It can be used in
the from clause of any select statement. You are the owner of this view
and have complete control over it. You are the only person who can use it,
unless you decide to share it with other people.

In the previous section I showed you how to create your own personal copy
of a table, so in this section you might expect me to show you how to cre-
ate your own personal copy of a view. However, that is usually not neces-
sary. Just use your own initials at the beginning of the name of the view.
That usually gives you all the ownership you need.

Description of the process
Begin with any select statement. In Oracle, one new line is added before
the select clause. This line says create view, and then gives the name of
the new view, followed by the word as.

In Access you use a graphical user interface (GUI) method to create a saved
query. After you enter the query, press CTRL + S or click the Save icon near

Check your understanding

CHAPTER 4 SAVING YOUR RESULTS140

the Microsoft Office button. Then enter the query name in the Save as win-
dow.The name of the view, just like the name of a table, must be unique.

In older versions of SQL, the order by clause had to be dropped when you
created a view. However, the current versions of both Oracle and Access
allow you to keep the order by clause in the select statement that
defines the view.

Save the result table of the following select statement. Here we are getting
a few rows and a few columns from a table. Create a new view from this
select statement and name it sec0402_sales_staff_view.

select employee_id, ➊

 first_name,
 last_name,
 dept_code
from l_employees
where dept_code = 'SAL'
order by employee_id; ➋

create view sec0402_sales_staff_view as ➌

select employee_id,
 first_name,
 last_name,
 dept_code
from l_employees
where dept_code = 'SAL'
order by employee_id;

After you create this view, you can look at it with:

select * from sec0402_sales_staff_view; ➍

This is not available in Access as an SQL command that runs within the SQL
view.

Task

Oracle SQL:
Modified select statement — Save the results in a view

SAVING YOUR RESULTS IN A NEW TABLE OR VIEW 141

Step 1: Enter the select statement in the SQL window:

select employee_id,
 first_name,
 last_name,
 dept_code
from l_employees
where dept_code = 'SAL'
order by employee_id;

Step 2: Run the query by clicking the Run button on the Ribbon or the View
Datasheet button. You do this to make sure that the query runs.

Step 3: Save the select statement. One way to do this is with CTRL + S.

Step 4: Enter a name for the query in the Save As window, as shown here.

Beginning table and result table — Same as in the previous section

➊ Begin with any select statement.

➋ The order by clause is allowed in Oracle and Access.

➌ In Oracle, you add a create view clause before the select clause.

➍ You can always use a select * query to see the view you have created.

➎ Access does not have an SQL command to create a view, at least not on the
SQL window level. Instead, it uses a GUI method to create a saved query.

Create a view of the l_employees table. Name it sec0402_employees_view.

Access GUI method: Save the results in a saved query ➎

Notes

Check your understanding

CHAPTER 4 SAVING YOUR RESULTS142

4-3 Similarities between tables and views

Tables and views are very similar. They look alike. They both are two-dimen-
sional structures that can contain the same types of data. They both have
columns, rows, and cells. They can both be used as a source of data in the
from clause of a select statement.

Most of the time there is no need to distinguish between them. Often when
I use the word table I mean a view or a table. When I want to differentiate a
table from a view, I usually call the table a base table or a data table.

Show that you can use the table and view created in the previous sections as
a source of data for a query. Run these select statements:

select *
from sec0401_employees;

select *
from sec0402_employees_view;

4-4 Differences between tables and views

A table stores data directly on the disk. A view stores a select statement
on the disk, but does not store any data. When SQL uses a view in the from
clause of a query, it runs the select statement that defines the view. The
result table of this select statement is the data of the view. On a basic
level, tables store the data that is in a database. A view displays a presenta-
tion of the data that is already in the tables.

A table always requires much more disk space than a view. A table can con-
tain thousands or even millions of rows, which can require a substantial
amount of disk space. A view needs very little disk space because it is only
storing a select statement.

A table is static, but a view is dynamic. If you want stability to be sure the
data will not change unless you explicitly make changes to it, you should
store your data in a table. On the other hand, if you want the latest infor-
mation that shows all the recent changes to the data in the database, you
should use a view.

Whenever you use a view, SQL runs the select statement that defines the
view. The data is drawn from the underlying tables at that time, so the data
in a view can change although no commands have been issued to explicitly
change it.

Check your understanding

SAVING YOUR RESULTS IN A NEW TABLE OR VIEW 143

Should you use a table or a view?
Use a table when you want to store data that does not exist anywhere else
in the database. Use a view when you want to present the data in a new
way. The underlying data must already be present in the tables of the data-
base. Also use a view if you want the data to change dynamically as other
people make changes to the tables in the database.

4-5 Deleting a table

Now that you know how to create new tables, you also need to know how to
delete them. Otherwise, you will eventually have more of them than you
want.

In both Oracle and Access, you can delete a table with the SQL command
drop table, followed by the name of the table. This gets rid of the table
entirely. It deletes the data in the table, the table structure, and the defini-
tions of the columns. The name of the table is no longer reserved.

The differences between a table and a view.

Table View

Stores the data in the database on the
disk drive.

Stores the select statement that defines the
view. It has no data of its own.

Uses a lot of disk space for a large
table.

Uses very little disk space.

The data belongs to the table. The data does not belong to the view. It
belongs to the tables used in the select
statement that defines the view.

The data in a table is stable and does
not change by itself.

The data in a view is dynamic and changes
when the data in the underlying tables is
changed.

CHAPTER 4 SAVING YOUR RESULTS144

Delete the table named sec0405_sales_staff.

drop table sec0405_sales_staff;

In Access, you can also use a GUI method to delete a table.

Step 1: Click the Tables tab.

Step 2: Highlight the name of the table, as shown here.

Step 3: Press the Delete key.

Beginning table (sec0405_sales_staff table)

Result — No table

Delete the table sec0405_table_to_delete.

Task

Oracle & Access SQL

Access GUI method alternative

EMPLOYEE DEPT
 ID FIRST_NAME LAST_NAME CODE
-------- ---------- ---------- ----
 202 JIM KERN SAL
 204 ELLEN OWENS SAL
 205 HENRY PERKINS SAL
 210 NANCY HOFFMAN SAL

Check your understanding

SAVING YOUR RESULTS IN A NEW TABLE OR VIEW 145

4-6 Deleting a view

In Oracle, there is an SQL command to delete a view. In Access, you must
use a GUI method. Except for this difference, deleting a view is like deleting
a table.

Delete the view named sec0406_sales_staff_view.

drop view sec0406_sales_staff_view;

Step 1: Highlight the name of the saved query, as shown here.

Step 2: Press the Delete key.

Beginning view (sec0406_sales_staff_view)

Result — No view

Delete the view sec0406_view_to_delete.

Task

Oracle SQL

Access GUI method

EMPLOYEE DEPT
 ID FIRST_NAME LAST_NAME CODE
-------- ---------- ---------- ----
 202 JIM KERN SAL
 204 ELLEN OWENS SAL
 205 HENRY PERKINS SAL
 210 NANCY HOFFMAN SAL

Check your understanding

CHAPTER 4 SAVING YOUR RESULTS146

4-7 One view can be built on top of another view

A view can be defined from another view. This is similar to defining a view
from a base table. In the select statement that defines a view, the from
clause can name either a base table or another view.

Why would you want to do this? Why not just define each view directly from
base tables? There are two reasons. One reason is to control complexity. A
very complex query can often be replaced by a series of simple queries built
on top of each other. This produces code that is easier for people to under-
stand. The code can be verified and debugged more easily, and it is more
likely to be correct.

The other reason is to coordinate two parts of a computer application. This
can tie the parts together, so that if one part is changed, the other part is
changed automatically to maintain a specific relationship with the first
part.

An important feature of views is that they run automatically. If a higher
level view is used in the from clause of a select statement, then all the
views it depends on are also run. This can be quite a lot of processing. The
important point is that you do not need to run the lower level views your-
self. SQL takes care of this for you.

There are layers of views
Circular definitions are not allowed in views. When one view is built from
another view, care must be taken to ensure that there are no circles in the
definition. A circle would occur if view_1 is defined, directly or indirectly,
from view_2 and view_2 is defined, directly or indirectly, from view_1.
The computer must always be able to find the base tables for every view. It
could not do this if circles were allowed in the definitions.

Because of this, the views can be thought of as being organized into layers.
Views built directly from base tables are the first layer, views built from
these are the second layer, and so on.

What happens when an underlying
base table or view is deleted?
In some SQL products, if you delete a base table or a view, all the other
views that are built on top of that table or view are also deleted. This is a
cascaded delete. Dropping any base table or view can automatically trigger
the dropping of many other views. In this situation, you must be very cau-
tious before you drop any base table or view.

SAVING YOUR RESULTS IN A NEW TABLE OR VIEW 147

In other SQL products, including Oracle and Access, the higher level views
are inactivated, but they are not entirely deleted. This means that the defi-
nition of the higher level view is retained even though it does not work cur-
rently. If, at a later time, the base table or lower level view is restored, the
higher level view will work again.

An example of building one view on top of another view
In this section I build two views. The first view, sec0407_sales_staff_view1,
is built directly on the l_employees table. The second view,
sec0407_sales_staff_view2, is built on top of the first view. I want to
keep this example clear and simple, so I am trying to avoid any unneces-
sary complexity. That is why this example does not show the level of com-
plexity being reduced.

In this example, the sec0407_sales_staff_view2 view could have been
defined directly from the l_employees table. This view is so simple that
there is no particular reason to define it in two steps, except to show the
technique of building one view from another view.

Now let’s return to the discussion of the effects of deleting one of these
objects. If the l_employees table is deleted, both of the views would be
disabled until a new table or view named l_employees is built again. If
sec0407_sales_staff_view1 is deleted, only sec0407_sales_staff_
view2 would be disabled. If sec0407_sales_staff_view2 is deleted,
this would have no effect on either the table or the other view.

Create a view, named sec0407_sales_staff_view1, that lists the employ-
ees in the sales department. Show the following columns: employee_id,
first_name, last_name, and dept_code.

Then create another view, named sec0407_sales_staff_view2, from the
first view. Use all the rows from the sec0407_sales_staff_view1, except
the ones with employee_id greater than 208. Use all the columns from the
sec0407_sales_staff_view1 except dept_code.

Task

CHAPTER 4 SAVING YOUR RESULTS148

create view sec0407_sales_staff_view1 as
select employee_id,
 first_name,
 last_name,
 dept_code
from l_employees
where dept_code = 'SAL';

Step 1, Part 1: Enter this query in the SQL window:

select employee_id,
 first_name,
 last_name,
 dept_code
from l_employees
where dept_code = 'sal';

Step 1, Part 2: Save the query. Name it sec0407_sales_staff_view1.

Result of Step 1 — sec0407_sales_staff_view1

create view sec0407_sales_staff_view2 as
select employee_id,
 first_name,
 last_name
from sec0407_sales_staff_view1 ➌

where employee_id <= 208;

Oracle SQL: Step 1 — Create the first view from a base table ➊

Access GUI method: Step 1 — Create the first view from a base table ➊

EMPLOYEE DEPT
 ID FIRST_NAME LAST_NAME CODE
-------- ---------- ---------- ----
 202 JIM KERN SAL
 204 ELLEN OWENS SAL
 205 HENRY PERKINS SAL
 210 NANCY HOFFMAN SAL

Oracle SQL: Step 2 — Create a second view from the first one ➋

SAVING YOUR RESULTS IN A NEW TABLE OR VIEW 149

Step 2, Part 1: Enter this query in the SQL window:

select employee_id,
 first_name,
 last_name
from sec0407_sales_staff_view1 ➌

where employee_id <= 208;

Step 2, Part 2: Save the query. Name it sec0407_sales_staff_view2.

Result of Step 2 — sec0407_sales_staff_view2

➊ This shows how the view sec0407_sales_staff_view1 is created. In
the select statement that defines this view, the from clause refers to a
base table, l_employees.

➋ This shows how the view sec0407_sales_staff_view2 is created. It
is built on top of the view sec0407_sales_staff_view1.

➌ The from clause refers to the first view, sec0407_sales_staff_view1,
rather than to a base table.

4-8 Preventative delete

A preventative delete drops the previous version of a table or view before it
creates the new version. This ensures that the name will be available within
the database for the new table or view you want to create. People use this
coding technique when they are in the process of developing new code,
and they need to try several versions before they get it correct. Preventative
deletes are also used to ensure that the following create table or create
view statement will run without the error of the name being unavailable.

It is called a preventative delete because it prevents an error from occur-
ring. Often, we do not expect that anything will actually be deleted. There
may be no such object to delete. The delete is done to prevent a possible
problem.

Access GUI method: Step 2 — Create a second view from the first one ➋

EMPLOYEE
 ID FIRST_NAME LAST_NAME
-------- ---------- ----------
 202 JIM KERN
 204 ELLEN OWENS
 205 HENRY PERKINS

Notes

CHAPTER 4 SAVING YOUR RESULTS150

A preventative delete can be used in Oracle. In Access you could follow the
same procedure, but you would have to do it manually as a two-step pro-
cess. This would not save you any work, so usually it is not done.

Coding a preventative delete
For tables, a preventative delete can be coded by putting a drop table

statement before a create table statement. In Oracle this is usually done
within a script file, where several commands are run as a single unit. If the
object does not currently exist, the drop command will fail and issue an
error message. However, the Oracle script will continue to run.

For views, Oracle has a special option to support preventative deletes. You
can say create or replace view, instead of create view. This is not part
of standard SQL. It is an extension to the standard that is special to Oracle.
Oracle does not have a similar feature for tables. This is probably because
it would be too “dangerous” to encourage the use of preventative deletes
with tables.

In Access, you get a warning message if the table or view already exists. You
are given the option to replace the previous object. This makes preventa-
tive deletes less important in Access than they are in Oracle

Show how to code a preventative delete. List all the columns of the
l_employees table.

➊

create table sec0408_sales_staff as
select *
from l_employees
where dept_code = 'SAL';

Access issues a warning message if you try to use the same name twice in
the database.

➋

create view sec0408_sales_staff_view as
select *
from l_employees
where dept_code = 'SAL';

Task

Oracle SQL: A preventative delete for a table

Oracle SQL: Method 1 — A preventative delete for a view

drop table sec0408_sales_staff;

drop view sec0408_sales_staff_view;

MODIFYING THE DATA IN A TABLE WITH SQL 151

➌

select *
from l_employees
where dept_code = 'SAL';

This feature is not available in Access.

➊ This drop table statement is a preventative delete. It is placed directly
before the table is created.

➋ This drop view statement is a preventative delete.

➌ Create or replace view is a special feature available in Oracle.

Modifying the Data in a Table with SQL

After you have created a new table, you may want to put some rows of data
in it. For tables that already contain data, you may want to add new rows,
change the data in a few columns of an existing row, or delete some rows
entirely. This section shows you how to do these things.

4-9 Adding one new row to a table

This section shows how to add a single new row to a table. There are two
methods to do this. Both are versions of the insert statement, and begin
with insert into followed by the name of the table. They both have the
word values followed by a list of values in parentheses. The value put into
any column must always match the datatype of that column: text, number,
or date.

Method 1 specifies a value for each column of the table. The list of values
must contain an entry for every column of the table and be listed in the
same order as the columns of the table. The columns of a table always have
a specific order. The information in the table is not affected by the order of
the columns. However, the order of the columns does affect the syntax of
some SQL statements, such as this one.

If you want to put a null in a column using this method, you must code the
value null without quotes. SQL does not allow you to code two commas in
a row to produce a null.

Oracle SQL: Method 2 — A preventative delete for a view

Notes

create or replace view sec0408_sales_staff_view as

CHAPTER 4 SAVING YOUR RESULTS152

Method 2 puts values in only some of the columns of the table. These col-
umns are listed after the name of the table in the SQL command. Nulls are
placed in all the columns that are not listed. The list of values must contain
an entry for each column in the list. The values must be listed in the same
order as the columns.

When you use this method, you must include every column of the primary
key in the list of columns. Otherwise, nulls would be entered in the col-
umns of the primary key, which is not allowed. You receive an error mes-
sage if you forget to list any of the columns of the primary key.

Method 2 is the standard in many shops. It is more specific even if it is a lit-
tle more trouble to write. If a new column is added to a table, code written
using the first method will no longer work, but code written using the sec-
ond method will run.

Add two new rows to the sec0409_foods table. Show the two methods of
adding a single row.

insert into sec0409_foods ➊

values ('ARR', 'AP', 11, 'APPLE PIE', 1.50, null); ➋

insert into sec0409_foods
(product_code, description, supplier_id, price) ➌

values ('BP', 'BLUEBERRY PIE', 'ARR', 1.60); ➍

Task

Oracle & Access SQL:
Method 1 — Putting data in all the columns

Oracle & Access SQL:
Method 2 — Putting data in only some columns

MODIFYING THE DATA IN A TABLE WITH SQL 153

Table before the changes (sec0409_foods table)

Table after the changes

➊ There is no list of columns following the table name. This means that
values will be entered in all the columns of the table.

➋ A value is given for every column of the table. The last column contains a
null, and this must be coded as null without quotes.

➌ The four columns listed after the table name are the only columns in
which data can be entered. All other columns will be null.

➍ The values must be listed in the same order as the columns are listed
in ➌. If any of these columns is null, the word null, without quotes,
must be coded in the list of values.

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50
ARR AP 11 APPLE PIE $1.50 (null) ➎

ARR BP (null) BLUEBERRY PIE $1.60 (null) ➏

Notes

CHAPTER 4 SAVING YOUR RESULTS154

➎ The first insert statement, using method 1, added this row.

➏ The second insert statement, using method 2, added this row.

Text is sometimes truncated by the insert statement. For example, if you try
to put a 20-character text string into a 5-character field, only the first 5 char-
acters are kept. The remaining 15 characters are thrown away.

Worse, when this happens, there is no warning message to tell you it hap-
pened. There is no message at all! So you might only find out when you see
that some of your data is missing.

Each text field is limited to some maximum length. This limitation may not
be obvious to you, but it is always present behind the scenes.

Add a new row to the sec0409_employees table. Use the data:

 employee_id = 301

 first_name = Ellen
 last_name = Perkins

 dept_code = IT

 hire_date = March 9, 2009
 credit_limit = $20.00

 phone_number = null

 manager_id = 201

4-10 Adding many new rows to a table

This section shows you how to add several new rows to a table using a
select statement. This can only be done when the data is already in the
database in some form. You cannot enter data that is completely new using
this method.

This is another variation on the command to enter a single row of data. The
format of the SQL statement is as follows:

Method 1

INSERT INTO table_name
select_statement;

Method 2

INSERT INTO table_name (list_of_columns)
select_statement;

Warning: Text fields may be silently truncated

Check your understanding

MODIFYING THE DATA IN A TABLE WITH SQL 155

It is best to write the select statement that creates the new rows without
an order by clause. If it does contain an order by clause, the statement
will still run, but the ordering will be ignored.

The result table from the select statement must have the correct number
of columns, in the correct order, and those columns must have the correct
datatypes. It is as if each row of the result table provides a list of values to
be inserted into the table (see section 4-9).

In the sec0410_foods table, duplicate all the rows from supplier ASP and
change the supplier to ARR. Put nulls in the price and price_increase
columns of the new rows.

You might do this if you are unhappy with supplier ASP and you are now
going to get all those products from supplier ARR. This task would be the
first step. The next step would be to delete all the rows for supplier ASP.

So that you can run both versions of this code, method 1 and method 2 use
two different copies of the l_foods table.

insert into sec0410_foods ➊

select 'ARR', ➋

 product_code,
 menu_item,
 description,
 null,
 null
from sec0410_foods ➌

where supplier_id = 'ASP'; ➍ ➎

Access does not support this syntax. Use method 2 instead.

insert into sec0410a_foods
(supplier_id, product_code, menu_item, description) ➏

select 'ARR', ➐

 product_code,
 menu_item,
 description
from sec0410_foods
where supplier_id = 'ASP';

Task

Oracle SQL: Method 1 — Putting data in all the columns

Oracle & Access SQL: Method 2 — Putting data in only some columns

CHAPTER 4 SAVING YOUR RESULTS156

Table sec0410_foods and sec0410a_foods after the changes

➊ The sec0410_foods table will receive the new rows of data. Because no
columns are listed after the table name, the select statement must cre-
ate a value for every column of the table.

➋ There are six columns in the table receiving the data, so there must be
six columns listed in the select clause. Note that the last two columns
are explicitly coded as the word null, without quotes. The 'ARR' is a lit-
eral that is hard-coded into this select statement. Here it sets the
supplier_id column to the value ARR in all the new rows of the result
table.

➌ The data will be retrieved from the sec0410_foods table. This is the
same table that is receiving the new rows of data. This is an unusual sit-
uation, but it works without any problems.

➍ The where clause limits the data that is taken from the table named in
the from clause in ➌.

➎ The select statement does not contain an order by clause.

➏ A list of columns follows the name of the table receiving the data. Only
these columns can receive data. All the other columns will be null.

➐ Four columns are listed after the table name in ➏, so the select clause
must contain four columns in the same order.

➑ These three rows have been added to the table by a single insert state-
ment. Either the method 1 or the method 2 SQL statement can add all
three of these rows.

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC HB 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50
ARR FS 1 FRESH SALAD (null) (null) ➑

ARR SP 2 SOUP OF THE DAY (null) (null) ➑

ARR SW 3 SANDWICH (null) (null) ➑

Notes

MODIFYING THE DATA IN A TABLE WITH SQL 157

Tables sec0410_data2 and sec0410_data1 have the same record struc-
ture. Each row has three columns: a number column, a text column, and a
date column. Write an insert statement that puts all the rows of table
sec0410_data2 into table sec0410_data1.

4-11 Changing data in the rows already in a table

This section shows you how to change data in rows that are already in the
table. You can modify the values in one column or several columns. Usu-
ally, the data in only a few columns is modified at a time. If you want to
modify the data in all the columns, it might be easier to add a new row to
the table and delete the old row.

The format of the SQL statement is as follows:

UPDATE table_name
SET column_1 = value_1,
 column_2 = value_2
WHERE condition;

The values of any number of columns can be changed in one statement.

The syntax here is easier to read and work with than in the insert com-
mand. The name of the column is aligned with its value. You do not need to
correlate two separate lists. However, this comes at a price. The names of
the columns must be explicitly stated in each update statement.

The value can be a fixed value, a function, an expression, or even a sub-
query. In later chapters we discuss row functions and subqueries in detail.

Some people would call the functions in this example expressions because
of the form in which they are written, with the plus sign in the middle, like
“price + .10”. They would call it a function if the plus sign were written first,
like “+(price, .10)”. I do not find this distinction to be very significant and I
call them both functions.

The where clause is critical, because it indicates which rows of the table
should be changed. Without it, all the rows of the table are changed. Data
is changed only in the rows that satisfy the where condition. Other rows
remain unchanged.

If you want to change the data in a single row, it is best to specify the values
of the primary key columns in the where clause.

Check your understanding

CHAPTER 4 SAVING YOUR RESULTS158

In the sec0411_foods table, add 10 cents to both the price and the price
increases for all the foods supplied by JBR and FRV.

update sec0411_foods ➊

set price = price + 0.10, ➋

 price_increase = price_increase + 0.10 ➌

where supplier_id in ('JBR', 'FRV'); ➍

Table before the changes (sec0411_foods table)

Table sec0411_foods after the changes

Task

Oracle & Access SQL

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.10 $0.15 ➍

FRV FF 7 FRENCH FRIES $1.60 (null) ➍ ➎

JBR AS 8 SODA $1.35 $0.35 ➍

JBR VR 9 COFFEE $0.95 $0.25 ➍

VSB AS 10 DESSERT $3.00 $0.50

MODIFYING THE DATA IN A TABLE WITH SQL 159

➊ The data will be changed in the sec0411_foods table.

➋ Ten cents is added to the price column, then the result is placed back
in the price column. The comma at the end of the line shows that there
is another column with a value that will be changed.

➌ Ten cents is added to the price_increase column, then the result is
placed in the price_increase column. Because there is no comma at
the end of this line, there are no more columns being changed. Also
note that there is no from clause.

➍ The where clause limits the rows that are changed. There are only four
rows that satisfy the following condition:

supplier_id in ('JBR', 'FRV')

These are the only rows that are changed.

➎ The price increase value is null in the result table because it is null in the
beginning table.

In the sec0411_employees table, change the credit limit to $27.00 for all
the employees who currently have a credit limit of $15.00 and also for any
employee who has a null in the credit limit field.

4-12 Deleting rows from a table

This section shows how to delete rows from a table. You can delete one row
or several rows. The SQL statement format is as follows:

DELETE FROM table_name
WHERE condition;

The where condition is critical here, as in the update statement. Without
it, all the rows of the table are deleted. The table structure remains and the
table itself still exists, but it has no data in it.

The where clause controls which rows are deleted. It sets a condition that
can be like any of the ones we used in the where clause of a select state-
ment. All the rows for which the condition is true are deleted.

Delete all the rows with supplier_id values of cbc and jbr from the
sec0412_foods table.

Notes

Check your understanding

Task

CHAPTER 4 SAVING YOUR RESULTS160

delete from sec0412_foods ➊

where supplier_id in ('CBC', 'JBR'); ➋

Table before the changes (sec0412_foods table)

Table after the changes

➊ Rows of data will be deleted from the sec0412_foods table.

➋ Delete all the rows where the supplier_id value is cbc or jbr.

➌ These rows will be deleted.

In the sec0412_employees table, delete the rows with employee_id
between 202 and 205.

Oracle & Access SQL

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70 ➌

CBC SW 5 HAMBURGER $2.50 $0.30 ➌

FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25 ➌

JBR VR 9 COFFEE $0.85 $0.15 ➌

VSB AS 10 DESSERT $3.00 $0.50

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
VSB AS 10 DESSERT $3.00 $0.50

Notes

Check your understanding

MODIFYING THE DATA IN A TABLE WITH THE GUI 161

Modifying the Data in a Table with the GUI

Both Oracle and Access allow you to use the GUI to change the data in a
table. This is often more convenient than using SQL commands. It can feel
more immediate and more direct, as if there is less of a barrier between you
and the data.

However, this convenience comes at a price. It works best when you are the
only person using the database and you do not need an audit trail for the
changes you are making to the data. Probably you are in that situation right
now, while you are reading this book.

Part of the price is that the Oracle GUI is different than the Access GUI, so
that the skills you develop in one product do not immediately carry over to
working with the other product. Also some SQL products do not offer this
function through a GUI at all.

Another problem occurs when you are sharing the database with many
other people. The GUI might not handle potential conflicts as well as the
SQL commands would handle them. These conflicts could occur if you are
trying to change a row at the same time that another person is changing it.

You cannot use the GUI if you are using another programming language,
such as Java, to access the database. Program interfaces to the database
generally use the SQL commands: insert, update, and delete.

Also the GUI will not give you an audit trail of your changes. If you need an
audit trail, one of the best methods is to create a file of your changes using
an editor such as Notepad. That file can then be used to make the actual
changes to the database and if you save the file, it can act as your audit trail.

To sum up, you should use SQL commands, not the GUI, to make changes
to the data in the following circumstances:

■ Many people are using the database at the same time.

■ You are using a program interface to access the database.

■ You need an audit trail of your changes.

4-13 Using the Oracle GUI to change data in a table

In the Oracle GUI you can use the Object Browser to change the data in a
table. Click the arrow on the right side of the Object Browser icon, then select:

Browse > Tables

CHAPTER 4 SAVING YOUR RESULTS162

Then select the table and click Data.

MODIFYING THE DATA IN A TABLE WITH THE GUI 163

Use the sec0413_suppliers table to show how the Oracle GUI can:

■ Add a new row to the table.

■ Change the data in some fields within a row already in the table.

■ Delete a row from the table.

Adding a new row
To add a new row to the table, click the Insert Row button. You will get a
new screen that shows you all the fields of the row and gives you a space to
enter the new data.

To add this one row, click the Create button. To add additional rows after
this one, click the Create and Create Another button.

Changing the data in a row already in the table
To change the value of a field within a row already in the table, click the
Edit icon on the left of the row you want to change. This opens a new
screen that shows you all the fields of that row. Then you can enter new val-
ues in any of the fields you want to change.

Task

CHAPTER 4 SAVING YOUR RESULTS164

When you have entered all your changes, press the Apply Changes button
to change the data in the row.

Deleting a row
To delete a row of data, click the Edit icon on the left of the row you want to
delete. This opens a new screen that shows you all the fields of that row.
Then click the Delete button.

Use the Oracle GUI to change the following data in the sec0413_foods
table:

■ Add a new row to the table for “Irish stew” or one of your favorite
foods.

■ Change “broccoli” to “peas”.

■ Delete the row for the food you like the least.

4-14 Using the Access GUI to
change the data in a table

In the Access GUI you essentially type your changes into the table as if it
were a Word document. This gives a very direct experience of being in con-
trol of the data, without any extra buttons to push or other complexities of
the interface.

To select a table to change, double-click the name of the table in the Navi-
gation Bar.

Check your understanding

MODIFYING THE DATA IN A TABLE WITH THE GUI 165

Use the sec0414_suppliers table to show how the Access GUI can:

■ Add a new row to the table.

■ Change the data in some fields within a row already in the table.

■ Delete a row from the table.

Beginning table (sec0414_suppliers table)

Adding a new row
To add a new row to the table, type the data into the blank row at the bot-
tom of the table — the one with the asterisk beside it. As soon as you start
to enter data in the new row, the icon of the row you are entering changes
to a pencil to show that this is the row that is being written at this moment.

As soon as you start to enter data into one new row, another new row is
added to the bottom of the table with an asterisk for an icon. This gives you
a place to add another row if you wish to do so.

Task

CHAPTER 4 SAVING YOUR RESULTS166

Changing the data in a row already in the table
To change data in rows already in the table, type over the value that is
there.

Deleting a row
To delete a row of data, highlight the row by clicking on the left margin,
then press the Delete key.

Use the Access GUI to change the following data in the sec0414_foods
table:

■ Add a new row to the table for “Irish stew” or one of your favorite
foods.

■ Change “broccoli” to “peas”.

■ Delete the row for the food you like the least.

Check your understanding

RESTRICTIONS ON MODIFYING THE DATA IN A TABLE 167

Restrictions on Modifying the Data in a Table

4-15 Constraints with insert, update, and delete

Sometimes you can enter a perfectly correct insert, update, or delete
statement and it will not work. Instead, you will get an error message. Many
tables have restrictions on what data can be put into them. These restric-
tions are called constraints. We discuss them further in chapter 8.

If you try to modify the data in a table in a way that the constraints do not
allow, you will get an error message but the data will not be changed.

For instance, suppose you want to change the data in a table that has a
primary key. The primary key is a type of constraint. It does not allow nulls
in any of the columns that are part of the primary key. Also, no two rows
can have the same values in all the columns of the primary key. You will
receive an error message if you try to put data in the table that violates
these constraints.

Show an update statement that is valid when it is applied to one table, but
gives an error when it is applied to another similar table because of a con-
straint on the second table.

The l_employees table has a constraint that each person must have a differ-
ent phone number. If you try to change a phone number in some row and
that number is already being used by another person, you will not be allowed
to make the change.

The sec0415_employees table is similar to the l_employees table. It has
all the same columns, all the same rows, and all the same data, but it does
not have any constraint on the phone number column.

Show an update statement that changes the phone number for Jim Kern to
be the same as the phone number for Susan Brown. Show that this update
statement works when it is applied to the sec0415_employees table. Show
that this same update statement gives an error when it is applied to the
l_employees table.

Task

CHAPTER 4 SAVING YOUR RESULTS168

update sec0415_employees
set phone_number = '3484'
where employee_id = 202;

update l_employees
set phone_number = '3484'
where employee_id = 202;

Beginning table (sec0415_employees table and l_employees table)

Result after the update statement is applied to the sec0415_employees table

Oracle & Access SQL: This works

Oracle & Access SQL: This gives an error because it violates a constraint

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 3484 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

RESTRICTIONS ON MODIFYING THE DATA IN A TABLE 169

Result after the update statement is applied to the l_employees table —
Oracle error message (Access shows a different error message)

➊ The word “constraint” in this error message tells us there is a rule
restricting the data that can be placed in this table. In this case the rule
says that no two employees can have the same phone number. That rule
caused this update statement to be rejected.

Write SQL to delete the Sales Department (SAL) from the
sec0415_departments table. This should work. Then apply the same
SQL statement to the l_departments table. This time you will get an
error message.

4-16 Security restrictions

In addition to constraints, there may also be security restrictions that limit
the modifications you can make to the data in a table. Constraints are like
business rules that are enforced on the data by the database. You can usu-
ally find a way to satisfy a constraint.

Security restrictions are meant to keep you out of private areas or impose
limitations on what you can do. They are the guard rails that keep everyone
safe and keep the database operating smoothly. Usually you will encounter
security restrictions only when you are sharing a large database with many
other people.

Relational databases have a large variety of security restrictions that can be
imposed. Some tables may contain private or confidential information and
you may not be able to see those tables at all. Other tables might have
restrictions on which rows and which columns you can see. Sometimes you
are allowed to see data, but you are not allowed to change it.

When you bump up against a security restriction, you might want to ask
your DBA about it, just to be sure you understand what is going on. Then it
is usually best to just accept the restriction and find another way to accom-
plish whatever you are trying to do.

ORA-00001:unique constraint (JPATRICK.UNIQUE_EMP_PHONE_NUM) violated ➊

Notes

Check your understanding

CHAPTER 4 SAVING YOUR RESULTS170

Key Points

■ You can save the result of any select statement in a table or view. A
table saves the actual data as it is at one particular moment in time. A
view saves the select statement and runs it again whenever you use
the view.

■ A table contains fixed data, unless you change it.

■ A view contains data that is constantly updated.

■ One view can be built from another view. Both views will run automat-
ically each time you use them.

■ You can delete a table or view.

■ Insert adds one new row to a table. When insert is used with a
select statement, it can add many new rows to a table.

■ Update makes changes to rows that are already in the table.

■ Delete removes rows from the table.

■ You can change the data in a table using the GUI. The effect is the
same as using the SQL commands: insert, update, and delete.

■ Sometimes you are not allowed to make certain changes to the data
in a table because of constraints or security restrictions.

171

chapter 5

This chapter expands on the topics we discussed in chapter 4.
In this chapter, we discuss transactions and modifying data
through a view. We also discuss the SQL Commands page,
which Oracle uses to run an SQL command. You learn how to
find information about the tables and views we have created
and the ones that have already been created for us.

THE DATA
DICTIONARY
AND OTHER

ORACLE TOPICS

Commit, Rollback, and Transactions . 173

5-1 The commit and rollback commands .173
5-2 The Autocommit option .174
5-3 Transactions .175

Modifying Data through a View . 179

5-4 Changing data through a view .180
5-5 Example of changing data through a view. .181
5-6 Views using With Check Option .189

The SQL Commands Page in Oracle . 192

5-7 Overview of the SQL Commands page. .192
5-8 The Autocommit option .194
5-9 The Explain option. .194

Using the Oracle Data Dictionary — Part 1 . 195

5-10 Overview of the Data Dictionary .195
5-11 How to find the names of all the tables. .197
5-12 How to find the names of all the views .199
5-13 How to find the select statement that defines a view200
5-14 How to find the names of the columns in a table or view201
5-15 How to find the primary key of a table. .203

Key Points . 207

173

Commit, Rollback, and Transactions

5-1 The commit and rollback commands

When you make a change to the data in a table, at first the change is made
in a temporary way. Later, you can make the change permanent or reverse
it. Commit makes the change permanent. It is a save command on the SQL
level. Rollback throws out the changes. It is an undo command on the
SQL level. Rollback goes back to the last commit point.

As an analogy, when you make changes to a word processing document, at
first your changes are only temporary; they are held in memory. To make
them permanent you must save them. That is like doing a commit. To throw
out your changes, you close the document without saving the changes.
That is like doing a rollback.

Commit also has another effect: It makes your changes public. When you
first enter your changes, they are private and only you can see them. If
other people are using the database table you are changing, they will not
see your changes until you commit them.

Oracle supports commit and rollback, as they are actual commands
within Oracle. Most other SQL products also support them. However,
Access does not support them. Access uses a different mechanism to pro-
vide the same ability — the UseTransaction property. Because this property
is used primarily on the Visual Basic level within Access, I do not discuss it
further. To keep this book to a reasonable size, I am not discussing the
Visual Basic level of Access.

Issue one or more commands to change the data — insert, update,
delete.

commit;

Issue one or more commands to change the data — insert, update,
delete.

rollback;

Access does not support commit and rollback on the level of the SQL
window.

Oracle SQL: To save your changes permanently and make them public

Oracle SQL: To undo your changes

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS174

5-2 The Autocommit option

In chapter 4 you used the insert, update, and delete commands. The
changes you made to the data were permanent even though you did not
commit them. How did that happen?

Actually, your changes were committed automatically by the database. That
is why you did not have to issue the commit command yourself.

Most SQL products have an option that allows the database engine to
issue a commit command right after every insert, update, and delete
command. This option is often called Autocommit.

In the Oracle Database Home Page environment, on the SQL Commands
screen, there is a checkbox that allows you to turn Autocommit on or off:

When the checkbox is selected, the results of the insert, update, and
delete commands are saved automatically and immediately by Oracle
with a commit command. This is often convenient, but it prevents you from
performing transactions.

When the checkbox is cleared, you are able to perform transactions. How-
ever, you must issue the commit and rollback commands yourself.

In Access, the Autocommit option is always on by default when you enter
code through the SQL view. If you use Macros or Visual Basic modules then
there are ways you can turn it off and create transactions.

1. Turn off the Autocommit option:

■ If you are using the Home Page environment, clear the Autocom-
mit checkbox.

■ If you are using the SQL Command Line environment, issue the
SQL*Plus command:

set autocommit off;

Check your understanding

COMMIT, ROLLBACK, AND TRANSACTIONS 175

2. Add a new row to a copy of the departments table:

insert into sec0502_departments
values('IT', 'INFORMATION TECHNOLOGY');

3. Save this change by issuing a commit command:

commit;

4. Add another new row to the copy of the departments table:

insert into sec0502_departments
values('LAW', 'LEGAL DEPARTMENT');

5. Undo this change by issuing a rollback command:

rollback;

6. List all the rows in the copy of the departments table:

select *
from sec0502_departments;

7. Confirm that the table has the row for the IT department and that it
does not have the row for the LAW department.

5-3 Transactions

A transaction can only occur when the autocommit option is turned off. A
transaction allows you to bundle several changes together. These changes
can affect several different tables and they can be a mixture of insert,
update, and delete commands.

The most important thing about a transaction is that all the changes will go
into the database together. There are two options:

■ All of the updates are successful and they will all go into the database
together at the same time with a single commit command.

■ If any one of the updates fails for any reason, then none of the
changes will be made to the database. All of the changes will be
rolled back.

Often transactions are programmed and controlled by another level of soft-
ware that is issuing SQL commands to the database. But you can use trans-
actions yourself by issuing your own commit and rollback commands.

A transaction occurs between two commit points. You can begin a transac-
tion by issuing a commit or rollback command. This finalizes any
changes to the database that are already pending and establishes the
point you will return to if you issue a rollback command. Sometimes you
do not need to issue this initial commit or rollback command because
the computer automatically does it for you.

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS176

The transaction consists of all the insert, update, and delete state-
ments done after one commit or rollback and before the next one.

A transaction is used to ensure that the data in the database stays con-
sistent. Sometimes the data in several tables needs to be changed in a
coordinated way. By placing all these changes within a transaction, you
can be sure that the tables will not become corrupted if some of the
changes succeed and others fail.

Here is an example that uses a transaction. Suppose you have been saving
to buy a new car. You have been putting money in your savings account and
now you have $5,000 to use for a down payment on the car you want. You
need to transfer the money from your savings account to your checking
account so you can write a check to the car dealer.

The bank keeps information about its savings accounts in one table and
information about its checking accounts in another table. Both of these
tables need to be changed in a coordinated way. You want to take $5,000
out of your savings account and put $5,000 into your checking account.
These two changes should be put into a transaction so they both succeed
or they both fail. The code to do this follows.

Take $5,000 from the savings account of Amy Johnson and put $5,000 into her
checking account. Wrap these two changes in a single transaction.

commit; ➊

update sec0503_savings_accounts ➋

 set balance = balance - 5000
where customer = 'AMY JOHNSON';

If you get an error message, do a rollback and stop entering this transaction.

update sec0503_checking_accounts ➌

 set balance = balance + 5000
where customer = 'AMY JOHNSON';

If you get an error message, do a rollback and stop entering this transaction.

If both update statements succeed, commit the changes.

commit; ➍

Task

Oracle SQL

COMMIT, ROLLBACK, AND TRANSACTIONS 177

Table before changes 1 (sec0503_savings_accounts table)

Table before changes 2 (sec0503_checking_accounts table)

Commit is performed . . .

Table after changes 1 (sec0503_saving_accounts table)

Table after changes 2 (sec0503_checking_accounts table)

➊ The first commit makes sure that there are no unsaved changes already
present. It guarentees that we are starting off with a clean slate. If later
you decide to do a rollback, this is the point to which you will return.

➋ The first statement to modify the data begins the transaction.

➌ All subsequent changes that modify the data are part of the transaction
that is already started.

➍ The final commit statement ends the transaction and makes the changes
permanent.

S_ACCOUNT_ID CUSTOMER BALANCE
------------ ------------------------- ---------
 5926 FRED BOYD 15642.33
 6197 AMY JOHNSON 5280.25
 5926 VALERIE SHAW 35159.64

C_ACCOUNT_ID CUSTOMER BALANCE
------------ ------------------------- ---------
 2741 BOB WILKINS 1567.35
 3852 AMY JOHNSON 357.26
 8954 JUDY SPENCER 6296.54

S_ACCOUNT_ID CUSTOMER BALANCE
------------ ------------------------- ---------
 5926 FRED BOYD 15642.33
 6197 AMY JOHNSON 280.25
 5926 VALERIE SHAW 35159.64

C_ACCOUNT_ID CUSTOMER BALANCE
------------ ------------------------- ---------
 2741 BOB WILKINS 1567.35
 3852 AMY JOHNSON 5357.26
 8954 JUDY SPENCER 6296.54

Notes

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS178

Transactions are important
Transactions are a powerful and important feature of SQL. However, they
are usually used in a more complex setting than the database we are using
in this book. For that reason, I do not discuss them any further.

Use the tables for checking accounts and savings accounts in this section.
Use a transaction to delete the checking account for Bob Wilkins and transfer
all his money to a new savings account. The ID of the new savings account is
5678.

To do this you can follow these steps:

1. Turn off the autocommit option.

2. Delete the checking account.

3. Create the savings account.

4. Verify that your changes are okay.

5. Commit your changes.

Again, use the tables for this section. Use a transaction to transfer $20,000
for Fred Boyd from his savings account to his checking account.

To do this you can follow these steps:

1. Update the amount of money in his savings account.

2. Update the amount of money in his checking account.

3. Verify that your changes are okay. In particular, verify the amount of
money left in his savings account. If this is a negative number, then
the change is not okay.

4. Roll back the changes.

Check your understanding 1

Check your understanding 2

MODIFYING DATA THROUGH A VIEW 179

Modifying Data through a View

Up to now, when we used an insert, update, or delete statement, that
statement always named the table in which the data would be changed. For
example, the word insert is followed by the name of the table that will
receive the new row.

It is also possible to follow the word insert with the name of a view,
instead of a table. You might wonder what this means because a view is
only a select statement and it does not contain any data. It means to add
a new row to the underlying table on which the view is based.

Here is an analogy: Picture yourself standing outside a house in the garden.
Inside the house there is a large table with many things on it. You can reach
through an open window to manipulate some of the things on the table.
Other things on the table are beyond your reach. In this analogy, the view is
the open window. You can manipulate the data in the table by reaching
through the view.

If you are the only person using a database, you will probably change the
data directly in a table, rather than using a view. It is simpler to do it that
way. However, it is a common practice to change the data through a view
when you are working with a large database that many people are using at
the same time.

This is partly a matter of how large databases are managed and adminis-
tered. Usually, only the DBAs are allowed to work directly with the tables.
Everyone else who changes the data must use a view. The purpose of this
rule is to allow the DBAs to make changes to the tables, such as adding a
new column, at the same time that other people are modifying the data.
DBAs and the other users are separated so they have a minimal impact on
each other. Each can work separately without concern about what the other
person is doing.

A view can also be used for security. It can limit the data a user can change,
allowing changes to only certain columns and rows.

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS180

5-4 Changing data through a view

When you change data through a view, only some of the data in the table
can be changed. In general, you can only change the data that can be seen
through the view. Here are two exceptions to this rule:

1. You can only delete rows that can be seen through the view. When
you delete a row, you delete the entire row, which includes all the
columns, even those that cannot be seen through the view.

2. You can insert a new row even if it cannot be seen through the view.
If the view is defined With Check Option, then you can only insert
rows that can be seen through the view. See section 5-6 for details.

The following table summarizes these exceptions.

Exceptions to insert, update, and delete.

Only certain views can be used for changing data. These are called update-
able views. A view is updateable when the following apply:

1. It only contains data from one table.

2. It contains some or all of the columns and rows from the table.

3. It does not summarize the data or condense it by using select
distinct. The data in each cell of the view comes from the data in
only one cell of the table.

Both Oracle and Access allow a few more views to be updateable. However,
this is the usual set of updateable views within most SQL products. In
Access, it is easy to tell whether a view is updateable. If it is, a blank row is
shown at the bottom of the view where you can enter new rows of data.

The following diagram shows a conceptual picture of a view and its under-
lying table.

Rows restricted to
the ones in the view

Columns restricted to
the ones in the view

Insert No Yes

Update Yes Yes

Delete Yes No

MODIFYING DATA THROUGH A VIEW 181

Conceptual diagram of a view and its underlying table.

5-5 Example of changing data through a view

This section shows how to change the data in a table, using a process that
changes it through a view. Part 1 shows all the components of this process.
Parts 2 and 3 show data actually being changed.

This looks more complicated than changing the data directly in the
table. However, from the user’s perspective, the difference is very small.
The user issues the same insert, update, and delete commands. The
only difference is that these commands name a view instead of naming
a base table.

View based on
the table. The

data in the
underlying

table can be
changed by
“reaching

through” this
view.

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS182

Conceptual diagram of changing data through a view.

The components of the process in the conceptual diagram

1. The first component is the beginning table. This is where the data is
actually stored.

2. The second component is the beginning view. This is derived from
the beginning table by applying the select statement that defines
the view. The view definition is not shown separately in this diagram.

3. The data is changed through the view using an insert, update, or
delete command. An update command can only work on the data
that appears in the beginning view. It cannot change the data in any
column or row that does not appear in the beginning view.

The insert command can add rows to the table that do not appear
in the view, but it can only place data in the columns that appear in
the view. All other columns are set to null.

The delete command can only delete rows from the table if they
appear in the view. However, it deletes entire rows from the table,
including columns that do not appear in the view.

1
Beginning

table

5
Ending
table

2
Beginning

view

4
Ending
view

3
Change

the
data

MODIFYING DATA THROUGH A VIEW 183

4. The fourth component is the ending view. The illustration shows this
from the user’s perspective. From the computer’s perspective, the
changes are made directly to the ending table. The ending view is
then derived from the ending table.

5. The last component is the ending table. This shows all the changes
made to the data, regardless of whether they appear in the ending
view.

In Access, if you are changing the data using the GUI environment, the end-
ing view does not appear immediately. Access provides a stable working
environment for making the changes. It shows you the beginning view and
your changes as a working document called a datasheet. To see the ending
view, you must close the view and then open it again.

This section shows two examples of changing data through a view. Here is
the definition of that view.

create or replace view sec0505_shipping_dept_view as
select employee_id,
 first_name,
 last_name,
 dept_code,
 credit_limit
from sec0505_employees
where dept_code = 'SHP';

Step 1: Delete the saved query shipping_dept_view if it already exists.

Step 2: Enter this query in the SQL window:

select employee_id,
 first_name,
 last_name,
 dept_code,
 credit_limit
from sec0505_employees
where dept_code = 'SHP';

Step 3: Save the query. Name it sec0505_shipping_dept_view.

Oracle SQL: shipping_dept_view

Access SQL: shipping_dept_view

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS184

Beginning table (sec0505_employees table)

Add a new employee, John Patrick, with a credit limit of $25.00, to the
shipping department. Increase Martha Woods’ credit limit to $35.00 and
delete the row for Fred Campbell. Make these changes through the
sec0505_shipping_dept_view.

➊ You can make changes to any of the data that appears in the columns
and rows of this view.

➋ Make all command changes through the sec0505_shipping_dept_view.

➌ All the changes are reflected in the ending view.

➍ All the changes are reflected in the ending table.

Ending table (sec0505_employees table) ➍

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- ---------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Task for example 1

Notes

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- ---------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $35.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
 212 JOHN PATRICK SHP (null) $25.00 (null) (null)

MODIFYING DATA THROUGH A VIEW 185

Beginning view (sec0505_shipping_dept_view) ➊

These changes can be seen in the ending view, so this code runs whether or
not the view is defined With Check Option.

insert into sec0505_shipping_dept_view
values (212, 'JOHN', 'PATRICK', 'SHP', 25.00);

update sec0505_shipping_dept_view
 set credit_limit = 35.00
where employee_id = 203;

delete from sec0505_shipping_dept_view
where employee_id = 208;

Ending view (sec0505_shipping_dept_view) ➌

EMPLOYEE DEPT CREDIT
 ID FIRST_NAME LAST_NAME CODE LIMIT
-------- ---------- ---------- ---- -------
 203 MARTHA WOODS SHP $25.00
 207 DAN SMITH SHP $25.00
 208 FRED CAMPBELL SHP $25.00

Oracle & Access SQL: Change the data through the view ➋

EMPLOYEE DEPT CREDIT
 ID FIRST_NAME LAST_NAME CODE LIMIT
-------- ---------- ---------- ---- -------
 203 MARTHA WOODS SHP $35.00
 207 DAN SMITH SHP $25.00
 212 JOHN PATRICK SHP $25.00

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS186

Beginning table (sec0505b_employees table) ➊

From the sec0505b_employees table, transfer Dan Smith from shipping to
marketing and add Susan Manning as a new executive.

➊ The beginning table shows Dan Smith in the shipping department, and
there is no row for Susan Manning.

➋ Make the sec0505b_shipping_dept_view from the sec0505b_employees
table.

➌ The update and insert statements make changes through the
sec0505b_shipping_dept_view.

➍ You cannot verify that the changes were made correctly. The ending view
does not contain a record for either Dan Smith or Susan Manning.

➎ Only in the ending table, the sec0505b_employees table, can you verify
that Dan Smith is now in the marketing department and Susan Manning
is now an executive.

Ending table (sec0505b_employees table) ➎

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- ---------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Task for example 2

Notes

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- ---------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH MKT 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
 211 SUSAN MANNING EXE (null) $50.00 (null) (null)

MODIFYING DATA THROUGH A VIEW 187

Beginning view (sec0505b_shipping_dept_view) ➋

These changes can only be seen in the ending table, not in the ending view,
so this code runs only if the view is not defined With Check Option.

update sec0505b_shipping_dept_view
set dept_code = 'MKT'
where employee_id = 207;

insert into sec0505b_shipping_dept_view
values (211, 'SUSAN', 'MANNING', 'EXE', 50.00);

Ending view (sec0505b_shipping_dept_view) ➍

EMPLOYEE DEPT CREDIT
 ID FIRST_NAME LAST_NAME CODE LIMIT
-------- ---------- ---------- ---- -------
 203 MARTHA WOODS SHP $25.00
 207 DAN SMITH SHP $25.00
 208 FRED CAMPBELL SHP $25.00

Oracle & Access SQL: Change the data through the view ➌

EMPLOYEE DEPT CREDIT
 ID FIRST_NAME LAST_NAME CODE LIMIT
-------- ---------- ---------- ---- -------
 203 MARTHA WOODS SHP $25.00
 208 FRED CAMPBELL SHP $25.00

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS188

Change the following SQL code to create your own example that shows you
can modify the data in a table by making changes to a view based on that
table.

In this example, the view you create will include all the columns and all the
rows of the underlying table. This is the easiest and most straightforward
case. It is also the way that this feature is used most often.

1. List all the columns and rows of the foods table. This shows what
data is in the table before you make any changes to it.

 select *
 from sec0505_foods;

2. Create a view of the foods table. Include all the columns and rows
in the view.

 create or replace view sec0505_foods_view as
 select *
 from sec0505_foods;

3. Show that you can use an insert statement with this view.

 insert into sec0505_foods_view
 values('ABC', 'DEF', 51, 'BLUEBERRY PIE', 2.99, null);

4. Show that you can use an update statement with this view.

 update sec0505_foods_view
 set menu_item = 20,
 description = 'CARROTS'
 where description = 'BROCCOLI';

5. Show that you can use a delete statement with this view.

 delete from sec0505_foods_view
 where description = 'DESSERT';

6. List all the columns and rows of the underlying table. Show that all
the changes you made to the view actually affected the data in the
underlying table.

 select *
 from sec0505_foods;

Check your understanding

MODIFYING DATA THROUGH A VIEW 189

5-6 Views using With Check Option

In the previous section we saw that a change can be made to the data
through a view, even if the new or modified row does not appear in the end-
ing view. In particular, an insert command can insert a new row even if
that row does not appear in the ending view. Also, an update command
can make a change to a row so that it does not appear in the ending view.

Sometimes we do not want to allow such changes. We can prevent them by
defining the view With Check Option. This can be done in Oracle and most
other types of SQL. However, Access does not support this option.

When the view is defined With Check Option, you are only permitted to use
insert or update when the resulting row will appear in the ending view.
You can still delete any row that appears in the beginning view. In effect,
this says that you can only make changes when you can see the result of
those changes and verify that they are correct. You are not allowed to make
changes you cannot see.

In the example of the previous section, we would not be allowed to change
the department for Dan Smith. We would also not be allowed to add Susan
Manning, because she will not work in the shipping department.

Create the sec0506a_shipping_dept_view without using With Check
Option. Then show how to modify this code to create the
sec0506b_shipping_dept_view that uses With Check Option.

create or replace view sec0506a_shipping_dept_view as
select employee_id,
 first_name,
 last_name,
 dept_code,
 credit_limit
from sec0506_employees
where dept_code = 'SHP';

Task

Oracle SQL: Create the sec0506a_shipping_dept_view
without using With Check Option

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS190

create or replace view sec0506b_shipping_dept_view as
select employee_id,
 first_name,
 last_name,
 dept_code,
 credit_limit
from sec0506_employees
where dept_code = 'SHP'

➊

Access does not support With Check Option.

➊ To code with check option, place it at the end of the select state-
ment that defines the view.

Change the following SQL code to create your own example that shows the
effect of using With Check Option when you define a view.

In this example, the view you create will include all the columns of the
underlying table, but only some of its rows. A few rows cannot be seen
through this view.

1. List all the columns and rows of the foods table. This shows what
data is in the table before you make any changes to it.

 select *
 from sec0506_foods;

2. Create a view of the copy of the foods table. Include all the columns
and most of the rows in the view. Use With Check Option when you
define the view.

 create or replace view sec0506_foods_view as
 select *
 from sec0506_foods
 where price <= 2.00
 with check option;

Oracle SQL: Create the sec0506b_shipping_dept_view
using With Check Option

Notes

Check your understanding

with check option;

MODIFYING DATA THROUGH A VIEW 191

3. Show that you can use an insert statement to add a new row that
will appear in this view.

 insert into sec0506_foods_view
 values('ABC', 'DEF', 61, 'CHICKEN SOUP', 1.99, null);

4. Show that you cannot use an insert statement to add a new row
that will not appear in this view.

 insert into sec0506_foods_view
 values('ABC', 'DEF', 61, 'BEEF SOUP', 2.01, null);

5. Show that you can use an update statement to change a row that
appears in this view, if the changed row will also appear in the view.

 update sec0506_foods_view
 set price = 1.50
 where description = 'SODA';

6. Show that you cannot use an update statement to change a row that
appears in this view, if the changed row will not appear in the view.

 update sec0506_foods_view
 set price = 3.00
 where description = 'COFFEE';

7. Show that you cannot use an update statement to change a row that
does not appear in this view, even if the changed row would appear
in the view.

 update sec0506_foods_view
 set price = 1.50
 where description = 'GRILLED STEAK';

8. Show that you can use a delete statement to delete a row that
appears in this view.

 delete from sec0506_foods_view
 where description = 'FRENCH FRIES';

9. Show that you cannot use a delete statement to delete a row that
does not appear in this view.

 delete from sec0506_foods_view
 where description = 'DESSERT';

10. List all the columns and rows of the underlying table. Verify that the
data has changed in the way you expected.

 select *
 from sec0506_foods;

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS192

 The SQL Commands Page in Oracle

When you run a single SQL command in the Oracle Home Page environ-
ment, you use the SQL Commands page. Appendix B shows you the basic
technique of using this page. Here we examine in greater detail all the vari-
ous features and options that are available on this page.

5-7 Overview of the SQL Commands page

Here is what the SQL Commands page looks like before any SQL command
is entered into it:

The features available on this page are:

■ Home link — Use this to go back to your home page.

■ Logout link — Use this to log out of the database.

■ Help link — Use this to get help with the SQL Commands page.

THE SQL COMMANDS PAGE IN ORACLE 193

■ User Identification — This shows the userID that is currently logged
on.

■ Home > SQL > SQL Commands — This shows you where you are in
relationship to your home page. For example, here we are currently on
the SQL Commands page. We got here from our home page via the
SQL page. If you click on “Home” or “SQL,” you will go back to those
pages.

■ Autocommit checkbox — See section 5-8.

■ Display drop-down list — The maximum number of rows to display of
the result table.

■ Save button — Click this button to save an SQL command that you
will want to run many times in the future. When you save an SQL
command this way, you will be able to give it a name and enter a
description of what it does.

■ Run button — Click this button to run an SQL command.

■ Area to enter an SQL command — Usually you enter one SQL com-
mand here. You can also enter several SQL commands, then select
and highlight the one you want to run.

■ Results option — Select this option to run an SQL command and see
the result table.

■ CSV Export — This option appears at the bottom of the result table
when you run an SQL query. It exports the result table in CSV format,
which is Comma-Separated Values format.

■ Explain option — See section 5-9.

■ Describe option — “Describe” is an Oracle command that shows you
the definitions of the columns of any table or view. This shows you the
datatype, length, and other information about each column.

■ Saved SQL option — This shows you a list of all the SQL commands
you saved by clicking the Save button. Each of these SQL commands
is identified with a name and a description.

■ History option — This shows you a list of all the SQL commands you
have ever run. You can click on an SQL command to copy it back to
the command area and you can modify it there. A Find box is avail-
able to help you search for the particular SQL command you want.

■ Results area — This is the area that shows the results.

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS194

5-8 The Autocommit option

When the Autocommit checkbox is checked, here is what that means:

■ An SQL commit command runs automatically after each change to
the data in a table or view. That is, it runs after any insert, update,
or delete command. This commit command causes the change to
become permanent immediately.

■ The commit and rollback SQL commands are disabled and have no
effect.

■ All other people who are using the database will immediately see any
changes you make to the data in the tables or view of the database.

When the Autocommit checkbox is unchecked, here is what that means:

■ An SQL commit command is not run automatically after each change
to the data in a table or view. This causes all your changes to the data
to be in a temporary status until you issue a commit or a rollback
command.

■ You can make changes to the data in several tables and they will all
be temporary changes until you issue a commit or rollback com-
mand. This allows you to batch several changes together in a “trans-
action.” Then you can either accept the batch and make all those
changes permanent or you can reject the batch and reject all of those
changes.

■ The commit SQL command makes permanent all your temporary
changes to the data. After your changes have become permanent all
other people who are using the database will immediately see your
changes.

■ The rollback SQL command rejects and discards all the temporary
changes you have made.

5-9 The Explain option

The Explain option is used to estimate how long a query will take to pro-
cess. This is an advanced option that is used mostly when there is a lot of
data in the database and when the queries are quite complex.

If you have an advanced query and you want to estimate whether it will take
one hour to run or ten hours, then you might run the Explain option.

USING THE ORACLE DATA DICTIONARY — PART 1 195

If you have SQL code that will run many times, maybe once a week or more,
then you might want to write several versions of the SQL code to try to find
the one that is most efficient. You might use the Explain option to compare
these different versions of the SQL query.

A DBA might use the Explain option with an SQL query that is run many
times to determine which indexes are being used to process the query.
This might lead the DBA to conclude that some new indexes need to be
built to make the database process more efficiently.

Using the Oracle Data Dictionary — Part 1

This section describes how to find information about the tables and views
in a database. The database needs to keep track of all the tables and views
for its own processing. This information is available to everyone who uses
the database.

5-10 Overview of the Data Dictionary

The Data Dictionary is a set of tables that contains all the information
about the structure of the database. It contains the names of all the
tables, their columns, their primary keys, the names of the views, the
select statements that define the views, and much more. The Data Dic-
tionary is sometimes called the System Catalog. Most SQL products have a
Data Dictionary.

These tables are created and maintained by the database system itself.
They contain all the information the database system needs to support its
own processing, its self-knowledge. Because this information is stored in
tables, you can use select statements to get information from it. These
tables are like any other tables. This may seem natural, but it is actually a
big step forward. Often in software, the “inner knowledge” is in a com-
pletely different format than the “outer knowledge.”

The details of the Data Dictionary differ for each SQL product. They even
differ slightly from one version of a product to the next. The differences are
in the names of the Data Dictionary tables, what columns they contain, and
what codes are used.

These details are tied very closely to the inner workings of the database
engine itself, the Database Management System (DBMS). When new capa-
bilities are added to the DBMS, new information is often added to the Data

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS196

Dictionary. Much of this information is meant only for the DBAs and can be
ignored by other people. However, you can use a lot of the information that
can be found there. Almost anything you might want to know about the
database is contained in the Data Dictionary.

Oracle Data Dictionary
Oracle has a Data Dictionary. This set of tables contains complete informa-
tion about all the database tables, views, and other objects. For now, I
focus on obtaining information from it about the database objects we have
discussed so far: tables, views, and primary keys.

The Oracle Data Dictionary: Information about tables and views.

Note that user_tables are limited to information about the database
objects that you own; all_tables may also include information about
database objects that are owned by other people, but only if they have
decided to share them with you.

Information to Get Data Dictionary Table Data Dictionary Columns

Table names user_tables

or
all_tables

table_name

View names user_views

or
all_views

view_name

View definition user_views

or
all_views

text

Columns of tables and
views

user_tab_columns

or
all_tab_columns

column_name

Primary keys of tables user_constraints and
user_cons_columns

or
all_constraints and
all_cons_columns

(see section 5-15)

USING THE ORACLE DATA DICTIONARY — PART 1 197

Access uses the GUI to show this information
Access does not have a Data Dictionary. This is unusual for an SQL prod-
uct. Instead, it can show you information about your table, views, and pri-
mary key by using the GUI.

Having this information available via the GUI is not always as good as hav-
ing it in tables. If you simply want to look up the information by hand, the
GUI method is fine, but if you want to write select statements that make
use of this information, it is much better to have the information available
in tables.

5-11 How to find the names of all the tables

When I start to work with any database, the first thing I want to know is the
names of the tables. All the data is contained in tables. They are the basic
building blocks for everything else in the database. Once I know the name
of a table, I can examine its data by using the following command:

SELECT *
FROM table_name;

In the Oracle Data Dictionary, the table named user_tables contains the
names of all the tables you own. It has many columns and most of them will
not interest you — they are for the DBAs. The column called table_name
contains the name of every table.

The table named all_tables contains the names of all the tables you are
allowed to access. This includes tables owned by other groups or people in
addition to the tables you own.

In Oracle, the table names and the view names are contained in different
Data Dictionary tables. In some other SQL products, the information about
the tables and views is kept together in a single table.

Find the names of all the tables you own.

select table_name
from user_tables;

Task for example 1

Oracle SQL — List all the tables you own

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS198

Oracle result table

Find the names of all the tables you are permitted to use.

select table_name
from all_tables;

The result is the same as before because I am the only user of my database.

In Access, all the tables and views (queries) are shown in the navigation pane.

TABLE_NAME

L_CONSTANTS
L_DEPARTMENTS
L_EMPLOYEES
L_FOODS
L_LUNCHES
L_LUNCH_ITEMS
L_SUPPLIERS
NUMBERS_0_TO_9
(and many others)

Task for example 2

Oracle SQL — List all the tables you are permitted to use

Access GUI method: Find the names of all the tables and views

USING THE ORACLE DATA DICTIONARY — PART 1 199

List the names of all the tables you own.

5-12 How to find the names of all the views

This section shows how to find the names of all your views, which are
another important part of a database. In the Oracle Data Dictionary, the
table named user_views contains information about all the views owned
by your userID. The view_name column is the only one you need right now.

Find the names of all the views you own.

select view_name
from user_views;

Oracle result table ➊

➊ Your results may be different if you have not run all the Oracle SQL in
the book so far.

List the names of all the views you own.

Check your understanding

Task

Oracle SQL

VIEW_NAME

ALL_LUNCHES
NUMBERS_0_TO_99
SALES_STAFF_1
SALES_STAFF_2
SHIPPING_DEPT

(and many more)

Notes

Check your understanding

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS200

5-13 How to find the select
statement that defines a view

This section shows how to find the select statement that defines a partic-
ular view. You get the text column from the user_views table. You can
use the where clause to specify which view definition you want.

Oracle retains the format of the select statement the way you enter it, but
Access does not. Access uses its own formatting. Sometimes it rewrites the
select statement entirely. In this example, the Access format is easy to
read, but sometimes the format is difficult because it is written to be read
by computers, not people.

Find the select statement that defines the sec0513_shipping_dept_view.

select view_name,
 text
from user_views
where view_name = 'SEC0513_SHIPPING_DEPT_VIEW'; ➊

Oracle result table

➊ The where clause limits the information to a single view.

Task

Oracle SQL

VIEW_NAME TEXT
------------------------------ ---------------------------
SEC0513_SHIPPING_DEPT_VIEW SELECT EMPLOYEE_ID,

 FIRST_NAME,
 LAST_NAME,
 DEPT_CODE,
 CREDIT_LIMIT

 FROM L_EMPLOYEES
 WHERE DEPT_CODE = 'SHP'
 WITH CHECK OPTION

Notes

USING THE ORACLE DATA DICTIONARY — PART 1 201

Step 1: Find the view in the Navigation Pane and right-click on it.

Step 2: Choose Design View.

Find the select statement that defines the numbers_0_to_99 view.

5-14 How to find the names of the
columns in a table or view

This section shows you how to get the names of the columns to use in cod-
ing a select statement. When you look at a table, the column names seem
to be displayed above each column. These names are meant to help a per-
son read and understand the table, but they are not always the actual
names you need to use to write a select statement. They can be truncated
or they can be changed entirely by the SQL select statement.

Oracle has two different methods to obtain this information. One method
uses the describe command followed by the name of the table. This is a
command that only works in Oracle.

The other method uses the Oracle Data Dictionary. A select statement
gets the column_name column from the user_tab_columns table. This
table contains information about the columns of both tables and views.
The name of this table should be pronounced “User Table Columns,” but in
the spelling, the word “Table” is truncated.

A where clause is needed to limit the result to the columns of a single
table or view. If you do not use a where clause you will get the names of all
the columns of all your tables and views, which might be an overwhelming
amount of information. In this where clause, table_name is set equal to
the name of either a table or a view. The order of the columns within the
table is contained in the column_id column.

Access GUI method: Find the definition of a view

Check your understanding

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS202

Find the full names of all the columns of the l_employees table. List these
columns in their order within the table.

describe l_employees;

Oracle response from the SQL Commands page of the Database Home Page environ-
ment. (This does not work in an SQL Script file.)

select table_name,
 column_name,
 column_id
from user_tab_columns
where table_name = 'L_EMPLOYEES'
order by column_id;

Result table

Task

Describe command in Oracle

Oracle SQL: Column names of tables and views

TABLE_NAME COLUMN_NAME COLUMN_ID
---------------------------- ---------------------------- ---------
L_EMPLOYEES EMPLOYEE_ID 1
L_EMPLOYEES FIRST_NAME 2
L_EMPLOYEES LAST_NAME 3
L_EMPLOYEES DEPT_CODE 4
L_EMPLOYEES HIRE_DATE 5
L_EMPLOYEES CREDIT_LIMIT 6
L_EMPLOYEES PHONE_NUMBER 7
L_EMPLOYEES MANAGER_ID 8

USING THE ORACLE DATA DICTIONARY — PART 1 203

Step 1: Find the table in the Navigation Pane and right-click on it.

Step 2: Choose Design View.

Use the Data Dictionary to find the names of all the columns of the
l_employees table.

5-15 How to find the primary key of a table

This section shows how to find the primary key of a table. The primary key
can consist of several columns, but is considered to be a single unit. A view
does not have a primary key.

To find information about primary keys in the Oracle Data Dictionary, you
need to know that a primary key is one type of constraint. A constraint is
any rule that restricts the data that can be entered into a column. We dis-
cuss constraints in more detail in chapter 8. A primary key is a constraint

Access GUI method: Column names for tables, but not for views

Check your understanding

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS204

because the data that can be entered into its columns is restricted by the
following rules:

1. Nulls are not allowed in primary key columns.

2. No two rows can have the same value in all the primary key columns.

For now, you must use a two-step process to find this information in the
Oracle Data Dictionary. In section 13-18 I will show you how to combine
these steps and get this information with a single select statement.

The goal of the first step is to find the exact name of the constraint from the
user_constraints table. In the following example, the select statement
lists all the constraints on the l_foods table. There are three of them. The
primary key constraint is the one with a value of P in the constraint_type
column, so the name of this constraint is pk_l_foods. If you have put pk_
in the names of all the primary key constraints, this first step may not be
necessary.

The second step finds all the columns involved with the constraint. It uses
the user_cons_columns table. The name of this table is pronounced
“User Constraint Columns,” but in the spelling, the word “Constraint” is
truncated. In the example, the pk_l_foods constraint is listed with two
columns: supplier_id and product_code. You already know that this is
the correct answer from the design of the Lunches database.

Find all the columns in the primary key of the l_foods table.

select table_name,
 constraint_type,
 constraint_name
from user_constraints
where table_name = 'L_FOODS'; ➊

Result table: Step 1 ➋

Task

Oracle SQL: Step 1

TABLE_NAME C CONSTRAINT_NAME
------------------------------ - ------------------

L_FOODS R FK_FOODS_SUPPLIER_ID
L_FOODS C FOODS_MAX_PRICE

L_FOODS P PK_L_FOODS

USING THE ORACLE DATA DICTIONARY — PART 1 205

select *
from user_cons_columns
where table_name = 'L_FOODS'; ➊

Result table: Step 2

➊ This where clause limits the result to the constraints on one table. This
is what you want. Otherwise the result can become confusing to read.

➋ The constraint_type column contains the following codes:

P — Primary key

R — Referential Integrity, foreign key

C — Check constraint

U — Uniqueness constraint

Constraints are discussed in chapter 8.

➌ The constraint_name, pk_l_foods, shows you which rows you want
from this table. The position says that supplier_id is the first col-
umn in the primary key, and product_code is the second column.

Step 1: Find the table in the Navigation Pane and right-click it.

Oracle SQL: Step 2

OWNER CONSTRAINT_NAME TABLE_NAME COLUMN_NAME POSITION
--------- --------------------- ----------- -------------- ---------
SQLFUN FK_FOODS_SUPPLIER_ID L_FOODS SUPPLIER_ID 1
SQLFUN FOODS_MAX_PRICE L_FOODS PRICE (null)

➌

➌

Notes

Access GUI method: Find the primary key of a table ➍

SQLFUN PK_L_FOODS L_FOODS SUPPLIER_ID 1
SQLFUN PK_L_FOODS L_FOODS PRODUCT_CODE 2

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS206

Step 2: Choose Design View.

➍ In Access, the columns of the primary key are shown with the key symbol
to the left of the column names.

Use the Data Dictionary to find the primary key of the l_employees table.

Notes

Check your understanding

KEY POINTS 207

Key Points

Transactions:

■ A transaction is an SQL structure that allows you to group several
database changes together so either they will all succeed or they will
all fail.

■ The commit command ends a transaction by saving all the changes.

■ The rollback command ends a transaction by deleting all the
changes. It restores the tables to the way they were when the last
commit occurred.

■ The autocommit option automatically performs a commit after every
insert, update, and delete statement.

Modifying data through a view:

■ When many people are using a database at the same time, you might
be required to make changes to the data in a table by modifying the
data through a view. This is also sometimes required when additional
layers of software are involved.

■ Some views are updateable and others are not.

■ When you modify data through a view, you are really changing the
data in the table that the view is based on.

Oracle SQL Commands page:

■ The SQL Commands page contains features to save your SQL queries,
control the maximum number of rows of the output, export the result
table, and control whether autocommit is on or off.

Oracle Data Dictionary:

■ The Data Dictionary is a set of tables that contain all the information
about objects in the database. These tables are used by the RDBMS
(Relational DataBase Management System) itself to control the data-
base. You can also use them, like any other tables, to find informa-
tion about the database.

This page intentionally left blank

209

chapter 6

In this chapter, you learn how to create your own tables in a
way that provides maximum control over every aspect of the
tables. In chapter 4, you created new tables from other tables.
Here, you create tables from the beginning, without relying on
other tables.

CREATING YOUR
OWN TABLES

Creating Tables . 211

6-1 The create table command .211
6-2 Datatypes in Oracle and Access .212
6-3 Text datatypes .217
6-4 Numeric datatypes. .222
6-5 Date/time datatypes .222
6-6 Other datatypes .222
6-7 Putting data into a new table .223
6-8 Creating the l_employees table in Oracle .224

Changing Tables. 226

6-9 Adding a primary key to a table .226
6-10 Changing the primary key of a table .228
6-11 Adding a new column to a table. .229
6-12 Expanding the length of a column. .231
6-13 Deleting a column from a table .232
6-14 Making other changes to tables .234

Tables with Duplicate Rows . 236

6-15 The problem with duplicate rows. .237
6-16 How to eliminate duplicate rows .239
6-17 How to distinguish between duplicate rows. .240

Key Points . 243

211

Creating Tables

A table can be created with an SQL command, giving you precise control
over every part of the table.

6-1 The create table command

The create table statement creates a new table. When it is first created,
this table will not have any rows of data in it. This command has the follow-
ing format:

CREATE TABLE table_name
(column_name_1 data_type_1,
 column_name_2 data_type_2,
...);

This is the simplest form of the command. Many other options can be spec-
ified in this command or added later. All the columns of the table must be
listed.

This method of creating a table allows the greatest control over all its ele-
ments. A table consists of the following:

■ A table name

■ Names of the columns

■ Datatypes of the columns

■ A sequence to the columns

People sometimes think of a table as consisting of data, but this is incor-
rect. The table is a container, like a box. The data are held in a table.

The list of datatypes in Oracle is a little different from the one for Access.
Each SQL product supports datatypes that differ slightly from other SQL
products. Because the datatypes are named in this command, the SQL
statement for Oracle is different from the one for Access.

Primary keys and many other options can be specified when the table is
first created or they can be specified after it is already built. They can even
be specified after the table has data in it. The alter table statement is
used to add a primary key to a table after it has been created. We discuss
this in section 6-9.

In the following example, the create table statements are the same for
Oracle and Access, except for the names of the datatypes.

CHAPTER 6 CREATING YOUR OWN TABLES212

Create a new table similar to the l_foods table by defining its columns with
a create table statement. Move the position of the menu_item column to
make it the first column.

create table sec0601_foods
(menu_item number(2),
 supplier_id varchar2(3),
 product_code varchar2(2),
 description varchar2(20),
 price number(4,2),
 price_increase number(4,2));

create table sec0601_foods
(menu_item byte,
 supplier_id varchar(3),
 product_code varchar(2),
 description varchar(20),
 price money,
 price_increase money);

Result — An empty table with no data in it

6-2 Datatypes in Oracle and Access

What is a datatype? Data is represented inside the computer as a pattern of
1s and 0s. Only certain patterns are meaningful — all others are nonsense.
These meaningful patterns are called datatypes.

Oracle uses a different set of meaningful patterns than Access does. For
instance, each use a different pattern of 1s and 0s to represent the date Jan-
uary 1, 2010. The meaning of the data is the same, but the binary represen-
tation of it is different. In short, they use different datatypes. Each SQL
product has its own set of datatypes. Each one assigns slightly different
meanings to patterns of binary digits.

Task

Oracle SQL

Access SQL

When a table is created, at first it does not contain any data, so you cannot see it with a
select statement. In Oracle you can see this table in Object Builder or by looking in the
Data Dictionary. In Access, you can see the table in the Navigation Pane.

CREATING TABLES 213

For the most part, the meanings are the same, even though they are repre-
sented differently on a binary level. The differences show up mostly at the
extremes. Consider dates. Both Oracle and Access can handle dates
between 100 AD and 9999 AD. That is a greater range of dates than I have
ever needed to use.

However, Oracle dates and Access dates do have some differences because
of the different patterns of 1s and 0s that represent them. In particular, Ora-
cle can handle dates between 4712 BC and 100 AD, but Access cannot.

The main point here is that the datatypes for Oracle and Access are very
similar, but they differ in the small details. Also, the names of these
datatypes are different, so the create table statements are different.

The following table shows the similarities and differences between the
datatypes used in Oracle and Access. The datatypes for text, date/time, and
storage are very similar. Access has a one-bit datatype for Yes/No and
True/False, which Oracle does not have. Oracle might use an entire byte of
data to represent this. Usually, that is acceptable.

Another difference is the numbers. Access uses many datatypes for num-
bers. This is the traditional approach and most computer products follow
it. Oracle combines decimal numbers and floating-point numbers together
in a single datatype.

The datatypes for storage are used for binary data such as pictures, sound
clips, video clips, and compiled programs. These are not active elements
within the database — you cannot search, sort, index, or apply functions to
them.

The use of storage datatypes in databases is currently in the process of
change. It is changing in two opposite directions at the same time. From
one perspective, their use is being phased out in favor of storing files
within the operating system, rather than in a database, and only placing a
pointer to them in the database itself. From another perspective, their use
is increasing to support object-oriented concepts.

The names of the datatypes given here are the internal names for the ele-
ments of the database engines. For Access they are the names used by the
JET engine. The GUI graphical presentation layer of Access sometimes uses
slightly different names.

Many of these datatypes also have synonyms or external names. These are
intended to make one SQL product compatible with another. This is an
attempt to map the datatypes of one product to the datatypes of another.

CHAPTER 6 CREATING YOUR OWN TABLES214

Main Oracle and Access datatypes.

Oracle Access Comments

CHARACTER DATATYPES

varchar2(Size)

(when size is 1
to 255)

varchar(Size)

or
text(Size)

Variable-length character string.
Size is the maximum length of the column.
Size can be from 1 to 255.
In Oracle, the size can be larger but columns more
than 255 bytes long are long strings. They have
restricted capabilities and behave differently.

char(Size) char(Size) Fixed-length character strings.
Size is the maximum length of the column.
Size can be from 1 to 255.

DATE/TIME DATATYPES

date datetime A date and time.
Oracle: from 4712 BC to 9999 AD.
Access: from 100 AD to 9999 AD.

NUMERIC DATATYPES

number(P,S) Number: Either integers, decimals, or scientific
notation (floating-point) numbers.
P: Precision, is the total number of digits other
than zeros. From 1 to 38.
S: Scale, is the number of digits to the right of the
decimal point. From 0 to 130.
Examples:
 1234.56 has type number(6,2)
 0.0000123 has type number(3,7)
 1230000. has type number(7,0)
Valid numbers:

From
 .00...01 (129 zeros after the decimal point),
 which has type number(1,130)
To
 99...9900...00 (38 nines followed by 88 zeros),
 which has type number(38,0)

CREATING TABLES 215

Main Oracle and Access datatypes. (continued)

Additional Oracle and Access datatypes.

Oracle Access Comments

NUMERIC DATATYPES (continued)

byte Integer, from 0 to 255.

smallint Integer, from about –32,000 to 32,000.

integer

or number
Integer, from about –2,000,000,000 to
2,000,000,000.

money

or
currency

Integer and four decimal places.
Plus or minus about 900,000,000,000,000
Automatically formatted as currency.

real Floating-point number (positive or negative).
From about 1.4E–45 to 3.4E38.

float Floating-point number (positive or negative).
From about 4.9E–324 to 1.8E308.

Oracle Access Comments

STORAGE DATATYPES (You cannot sort, search, or index them)

clob memo Character data.
CLOB is a Character Large OBject.
Maximum length is 2 GB or more.

varchar2(Size)

(when size is 256
to 4,000)

Character data.

raw(Size) binary Binary data: pictures, sound.
Oracle: up to 2,000 bytes long
Access: up to 255 bytes long.

blob image

or
OLE object

Binary data: pictures, video, sound, compiled
programs, multimedia.
BLOB is a Binary Large OBject.
Maximum length is 2 GB or more.

CHAPTER 6 CREATING YOUR OWN TABLES216

Additional Oracle and Access datatypes. (continued)

Oracle Access Comments

BIT DATATYPES

bit

or
yesno

Any binary choice.
For instance: yes or no, true or false.

PSEUDO DATATYPES

counter Automatically numbers the rows in a table.
Access GUI calls this autonumber.

rowid Address of a row within its table.
Each row has a different address.

rownum Sequential number assigned to each row.

bfile OLE object Locator for a large binary file stored outside the
database. This is a type of pointer. It points to a
file, which is stored by the operating system.

SPECIALIZED TIME/DATE DATATYPES

timestamp(P) Point of time.
Used to show the sequence of events within the
computer.
Year, month, day, hour, minute, second, and frac-
tion of a second.
P: Precision, is the number of digits in the frac-
tional part of a second. From 0 to 9.

interval

year(P) to month
Period of time in years and months.
P: Precision, is the number of digits in the year.

interval day(D)

to second(S)

Period of time in days, hours, minutes, and
seconds.
D: Number of digits in the day.
S: Number of digits in the fractional part of a
second.

CREATING TABLES 217

6-3 Text datatypes

The most important datatypes for storing text are:

■ Variable length strings

■ Fixed length strings

■ Long strings

Here the word “string” is short for the phrase “string of characters.” Those
characters can be letters of the alphabet, numerals, punctuation marks, or
spaces, which are all 8-bit characters.

There are also strings for 16-bit unicode characters that are used for
Chinese and other languages, but that is another topic, which I do not
discuss now.

Variable length strings
Variable length strings are the most frequently used datatype for text. They
are used for short text, up to about 250 characters long. If you want to store
entire documents of text, usually you would use a different datatype.

In a column of variable length strings, each string can have a different
length. There is a maximum limit to what that length can be.

Strings up to that maximum length are accepted. Strings that are longer
than the maximum length are sometimes truncated to the maximum
length and sometimes cause the row to be rejected entirely.

Strings that are shorter than the maximum length are stored completely,
except for any spaces on the end of the string. Let me go over that again. If
there are spaces at the beginning or middle of the string, they are stored in
the field. Only spaces at the end of the string are truncated. This is done to
save storage space on the disk drive.

Often, each variable length string begins with a hidden field that states its
actual length. However, the particular method of storing variable length
strings can vary from one SQL product to another.

Here is an example. Suppose I try to store " good dog " in a variable length
string with a maximum length greater than 10. The characters I enter are:

space - space - g - o - o - d - space - d - o - g - space

What is actually stored in the string is:

10 - space - space - g - o - o - d - space - d - o - g

In this example, 10 is the hidden length indicator.

CHAPTER 6 CREATING YOUR OWN TABLES218

Fixed length strings
Fixed length strings are mostly used for high-performance databases. Fixed
length strings can process more quickly than variable length strings.

In a column of fixed length strings, all the strings are the same length.
Shorter strings entered into the field are padded with spaces on the end.
Longer strings are truncated or rejected entirely.

Continuing the earlier example, suppose I store " good dog " in a fixed
length string of length 13.

What is actually stored in the string is:

space - space - g - o - o - d - space - d - o - g - space - space - space

Long strings
Long strings are used to store large amounts of text data, such as entire
books or other documents. Sometimes they are considered to be a storage
datatype, rather than a text datatype.

It used to be that any string longer than 255 characters was considered to
be a long string. Long strings had reduced functionality within SQL. For
instance, you could not search for a long string or use a long string in a
where clause.

Now, however, many of these restrictions have been reduced. Some SQL
products, including Oracle, allow you to use much longer strings with full
SQL functionality.

In Oracle, long strings are an older feature of databases and they are not
used much anymore. They have been mostly replaced by newer features
that are sometimes called LOBs (for Large OBjects) for binary data, or
CLOBs for character data.

In Access, the Memo datatype is used for long strings. A memo field can
hold up to two gigabytes of data and allows rich text formatting.

Create a table with columns that show all the text datatypes. Put some data
in it and test it.

Task

CREATING TABLES 219

create table sec0603_text_datatypes
(row_id varchar2(3),
 variable_length_string varchar2(3),
 fixed_length_string char(3),
 long_string varchar2(1000));

-- These insert statements will work correctly
insert into sec0603_text_datatypes
values ('A', '1', '1', '1');

insert into sec0603_text_datatypes
values ('B', '22', '22', rpad('2', 1000, '2'));

insert into sec0603_text_datatypes
values ('C', '333', '333', rpad('3', 1000, '3'));

-- The next insert statements reject with an error message
-- Because the data in one of the fields is too long

-- The error message says that the data in the second field
-- is too long.
-- The variable-length-string field has a maximum length
-- of 3 characters.
-- But the data in the insert statement is 4 characters.
-- This causes the insert statement to reject.
insert into sec0603_text_datatypes
values ('D', '4444', '22', rpad('2', 1000, '2'));

-- The error message says that the data in the third field
-- is too long.
-- The fixed-length-string field has a maximum length
-- of 3 characters.
-- But the data in the insert statement is 4 characters.
-- This causes the insert statement to reject.
insert into sec0603_text_datatypes
values ('E', '22', '4444', rpad('2', 1000, '2'));

-- The error message says that the data in the fourth field
-- is too long.
-- The long-string field has a maximum length
-- of 1000 characters.
-- But the data in the insert statement is 1001 characters.
-- This causes the insert statement to reject.
insert into sec0603_text_datatypes
values ('F', '22', '22', rpad('4' ,1001, '4'));

Oracle SQL ➊

CHAPTER 6 CREATING YOUR OWN TABLES220

-- Show the result
select row_id,
 length(variable_length_string) as length_of_vl_string,
 length(fixed_length_string) as length_of_fl_string,
 length(long_string) as length_of_long_string
from sec0603_text_datatypes;

Oracle result table

create table sec0603_text_datatypes
(row_id varchar(3),
 variable_length_string varchar(3),
 fixed_length_string char(3),
 long_string memo);

-- These insert statements will work correctly
insert into sec0603_text_datatypes
values ('A', '1', '1', '1');

insert into sec0603_text_datatypes
values ('B', '22', '22', string(1000, '2'));

insert into sec0603_text_datatypes
values ('C', '333', '333', string(1000, '3'));

-- The next two insert statements actually run
-- But they run incorrectly and silently change the data.
-- The data is truncated to the maximum length of the field
-- But there is no error message or warning message.
-- YOU DO NOT WANT THIS TO OCCUR
-- THIS IS A BAD FEATURE

-- In this insert statement, the second field is too long.
-- The data in the variable length string is changed
-- silently to '444'.
insert into sec0603_text_datatypes
values ('D', '4444', '22', string(1000, '2'));

ROW_ID LENGTH_OF_VL_STRING LENGTH_OF_FL_STRING LENGTH_OF_LONG_STRING
------ ------------------- ------------------- ---------------------
A 1 3 1
B 2 3 1000
C 3 3 1000

Access SQL ➊

CREATING TABLES 221

-- In this insert statement, the third field is too long.
-- The data in the fixed length string is changed
-- silently to '444'.
insert into sec0603_text_datatypes
values ('E', '22', '4444', string(1000, '2'));

-- In this insert statement, there is a problem with
-- the fourth field.
-- The fourth field has a memo datatype.
-- This datatype can hold up to 2 gigabytes of characters.
-- However, you may hit many limitations before you can
-- create a string of that size.
-- In this example, I hit the limitation of the amount
-- of memory installed in my computer.
-- This causes the String function to fail.
-- The error message I get is: system resources exceeded
-- Then the failure of the String function causes the
-- Insert statement to also fail.
-- That is what you want to happen.
insert into sec0603_text_datatypes
values ('F', '22', '22', string(1000000, '2'));

-- Show the result
select row_id,
 len(variable_length_string) as length_of_vl_string,
 len(fixed_length_string) as length_of_fl_string,
 len(long_string) as length_of_long_string
from sec0603_text_datatypes;

Access result table

➊ I know that this code contains row functions that we haven’t discussed
yet, but just let me do the work here so you can observe the text
datatypes. These row functions are discussed in chapter 9.

Notes

CHAPTER 6 CREATING YOUR OWN TABLES222

6-4 Numeric datatypes

Access has many different types of numbers. It makes a distinction
between precise numbers and floating-point (approximate) numbers. It
also has different categories of numbers according to the number of bits
they can use.

Oracle has integrated all these different types of numbers into one
datatype, so you do not need to wonder which type of number to use in
Oracle because there is only one possibility.

6-5 Date/time datatypes

A field with a date/time datatype always contains both a date and a time.
If you enter only the time, usually the date will be set to today’s date. If
you enter only the date, usually the time is automatically set to midnight.
In most SQL products, the date/time data is kept to an accuracy of one
second.

When greater accuracy is needed, the timestamp datatype is used. This is
used mostly for timing and sequencing events within the computer itself.
Oracle supports this datatype, but Access does not.

Oracle also has a datatype, called interval, to express lengths of time rather
than specific points of time. For example “26 minutes” is a length of time,
but “January 1, 2000 at 12:01” is a point of time.

In Access, lengths of time are expressed as numbers with an implied unit.
In the preceding example, Access would just store the number 26 in the
data. The unit of “minutes” would be implied.

6-6 Other datatypes

Most of the other datatypes are used for specialized purposes such as:

■ Storage

■ HTML data (Web pages)

■ XML data

■ Spatial data

Several datatypes are available for storage. The types of data that can be
stored includes pictures, spreadsheets, compiled programs, and the entire
text of books.

CREATING TABLES 223

Sometimes a database will store a set of objects, such as a set of pictures,
in a table as a way of organizing them. Then additional columns are added
to the table to describe each object. SQL does not do much with the
objects themselves, but SQL can be useful in manipulating the table using
the descriptive columns.

HTML and XML data are important for Web applications. In the past few
years there has been a lot of growth in the uses of XML.

Some SQL products have special datatypes to handle spatial data. This
functionality is used in medical imaging, engineering, city planning, and
architecture.

6-7 Putting data into a new table

When we first create a table by defining its columns, the table itself is just
an empty structure. There is no data in it.

In section 6-1 we created a new version of the l_foods table with the col-
umns rearranged to make the menu_item column be the first column. Here
we continue that example. The new table has already been built. Now we
want to put data in it.

We have discussed two ways to put data in a table. One way uses an
insert statement with literal values and adds one row at a time (see sec-
tion 4-9). The other way uses an insert statement with a select state-
ment and can add many rows at once (see section 4-10).

In this example we use an insert with a select statement because all of
the data is already in the original version of the table and it just needs to
be copied into the new table.

Copy all the data from the l_foods table to the sec0607_foods table.

insert into sec0607_foods
select menu_item,
 supplier_id,
 product_code,
 description,
 price,
 price_increase
from l_foods;

Task

Oracle & Access SQL

CHAPTER 6 CREATING YOUR OWN TABLES224

The sec0607_foods table with data loaded into it

Use a create table statement to create a new copy of the l_employees
table, with a new name of course. Then use an insert statement with a
select clause to copy all the data from the l_employees table to your new
copy of the table.

6-8 Creating the l_employees table in Oracle

It is time for you to look at some real code instead of simplified examples.
In this section I want to show you the Oracle code I wrote to create the
l_employees table of the Lunches database. The notes explain what the
code is doing. You might understand most of this already, but there are a
few parts of the code that we haven’t covered yet.

This code is from the SQLFUN_BUILD_ORACLE_TABLES.TXT script you ran
to create the tables for this book. After you read this section, you might want
to try to read the rest of this script to see how the other tables are built.

The type of punctuation used in this example is what I consider to be the
most “natural” type of punctuation. Sometimes you might see SQL code
like this written with a very stylized method of punctuation, such as:

CREATE TABLE L_EMPLOYEES
(EMPLOYEE_ID NUMBER(3)
 , FIRST_NAME VARCHAR2(10)
 , LAST_NAME VARCHAR2(20)
);

 MENU SUPPLIER PRODUCT PRICE
 ITEM ID CODE DESCRIPTION PRICE INCREASE
------- -------- ------- -------------------- -------- --------
 1 ASP FS FRESH SALAD $2.00 $0.25
 2 ASP SP SOUP OF THE DAY $1.50 (null)
 3 ASP SW SANDWICH $3.50 $0.40
 4 CBC GS GRILLED STEAK $6.00 $0.70
 5 CBC SW HAMBURGER $2.50 $0.30
 6 FRV BR BROCCOLI $1.00 $0.05
 7 FRV FF FRENCH FRIES $1.50 (null)
 8 JBR AS SODA $1.25 $0.25
 9 JBR VR COFFEE $0.85 $0.15
 10 VSB AS DESSERT $3.00 $0.50

Check your understanding

CREATING TABLES 225

Show the Oracle code that creates the l_employees table.

-- CREATE THE L_EMPLOYEES TABLE ➊

CREATE TABLE L_EMPLOYEES ➋

(EMPLOYEE_ID NUMBER(3),
FIRST_NAME VARCHAR2(10),
LAST_NAME VARCHAR2(20),
DEPT_CODE VARCHAR2(3),
HIRE_DATE DATE,
CREDIT_LIMIT NUMBER(4,2),
PHONE_NUMBER VARCHAR2(4),
MANAGER_ID NUMBER(3));

ALTER TABLE L_EMPLOYEES ➌

ADD CONSTRAINT PK_L_EMPLOYEES
PRIMARY KEY (EMPLOYEE_ID);

INSERT INTO L_EMPLOYEES VALUES ➍

 (201, 'SUSAN', 'BROWN', 'EXE', '01-JUN-1998', 30, '3484',
 NULL);
INSERT INTO L_EMPLOYEES VALUES
 (202, 'JIM', 'KERN', 'SAL', '16-AUG-1999', 25, '8722',
 201);
INSERT INTO L_EMPLOYEES VALUES
 (203, 'MARTHA', 'WOODS', 'SHP', '02-FEB-2009', 25,
 '7591', 201);
INSERT INTO L_EMPLOYEES VALUES
 (204, 'ELLEN', 'OWENS', 'SAL', '01-JUL-2008', 15, '6830',
 202);
INSERT INTO L_EMPLOYEES VALUES
 (205, 'HENRY', 'PERKINS', 'SAL', '01-MAR-2006', 25,
 '5286', 202);
INSERT INTO L_EMPLOYEES VALUES
 (206, 'CAROL', 'ROSE', 'ACT', NULL, NULL, NULL, NULL);
INSERT INTO L_EMPLOYEES VALUES
 (207, 'DAN', 'SMITH', 'SHP', '01-DEC-2008', 25, '2259',
 203);
INSERT INTO L_EMPLOYEES VALUES
 (208, 'FRED', 'CAMPBELL', 'SHP', '01-APR-2008', 25,
 '1752', 203);
INSERT INTO L_EMPLOYEES VALUES
 (209, 'PAULA', 'JACOBS', 'MKT', '17-MAR-1999', 15,
 '3357', 201);

Task

Oracle SQL

CHAPTER 6 CREATING YOUR OWN TABLES226

INSERT INTO L_EMPLOYEES VALUES
 (210, 'NANCY', 'HOFFMAN', 'SAL', '16-FEB-2007', 25,
 '2974', 203);
COMMIT;

ANALYZE TABLE L_EMPLOYEES COMPUTE STATISTICS; ➎

CREATE SEQUENCE SEQ_EMPLOYEE_ID ➏

START WITH 211
INCREMENT BY 1;

➊ This code begins with a brief comment that says what the code does. In
Oracle and most other SQL products, a comment line begins with two
dashes usually followed by a space.

➋ Set up the structure of the table. Define the names of the columns, their
datatypes, and their sequence.

➌ This alter table command makes the employee_id column the pri-
mary key of the table.

➍ These insert statements put the data into the table.

➎ You should run the analyze table command after you create a new
table and load data into it. You should also run this command after you
add a substantial amount of data to any table. The command puts infor-
mation about the table, such as its size and other characteristics, into
the Data Dictionary.

➏ This create sequence command sets up a sequence that can be used
to automatically set the next value for the employee_id column.

Changing Tables

The structure of a table is not cast in concrete and fixed forever. A table can
be changed in many ways, even after it contains data. The alter table

statement is especially designed to make changes to tables. It can make
several types of changes. A few examples of this command are given in
these sections.

6-9 Adding a primary key to a table

This section shows how to add a primary key to a table, even after the table
contains many rows of data. The syntax is:

Notes

CHANGING TABLES 227

ALTER TABLE table_name
ADD CONSTRAINT name_of_the_constraint
PRIMARY KEY (list_of_columns_in_the_primary_key);

A primary key is one type of constraint, which is a rule that restricts the
data that can be entered into the table. This is discussed in section 5-15.
The preceding command adds a constraint to a table and the type of con-
straint it adds is a primary key constraint.

When you create a new table by saving the results of a select statement, as
we did in chapter 4, the new table is created without a primary key. If you want
to have a primary key on one of these tables, you must create it yourself.

If the table already contains data, that data must conform to the restric-
tions of a primary key. Otherwise, this command will fail and you will get an
error message. A primary key cannot be put on a table if the data in the
table does not support it. The data must not have two rows with the same
values in all of the primary key columns, or nulls in any of the columns of
the primary key.

A table is only allowed to have one primary key, although this key may con-
sist of a combination of several columns.

It is not necessary to issue a commit command after an alter table com-
mand. Changes made by the alter table command are immediately
made in a permanent way. Actually, a commit is never needed after a Data
Definition Language (DDL) command, which creates a database object or
changes the structure of an object. Commit is only needed after the Data
Modification Language (DML) commands, such as insert, update, and
delete, which change the data in a table.

Add a primary key to the sec0609_foods table. The primary key of this table
will consist of the two columns, supplier_id and product_code.

alter table sec0609_foods ➊

add constraint pk_sec0609_foods ➋

primary key (supplier_id, product_code); ➌

Task

Oracle & Access SQL: Add a primary key to a table

CHAPTER 6 CREATING YOUR OWN TABLES228

➊ The table sec0609_foods will be changed by this command.

➋ This gives a name to the constraint. In this case, the name is
pk_sec0609_foods. It combines pk_, meaning primary key, with the
name of the table. This is my own naming convention. You can name it
something else.

The name of the constraint is used mostly in error messages and in a few
operations such as deleting the constraint or temporarily disabling it. It
is not referred to directly in any select statement. The name should
suggest the purpose of the constraint.

➌ The words primary key specify that this is a primary key constraint. The
list of columns that follows includes the columns that will form the pri-
mary key. This list can contain any number of columns, even all the col-
umns in the table, but it is usually limited to one or two.

Add a primary key to a copy of the employees table, sec0609_employees.

6-10 Changing the primary key of a table

This section shows you how to change the primary key of a table. A table
can have only one primary key, so you must delete the old primary key
before you can create a new one. Often when you do this, the new primary
key adds more columns to the old one.

Change the primary key of the sec0610_foods table. Make the menu_item
column the new primary key of this table. Show two ways to drop the primary
key of a table.

alter table sec0610_foods
drop constraint pk_sec0610_foods; ➊

alter table sec0610_foods
add constraint pk_sec0610_foods
primary key (menu_item);

Notes

Check your understanding

Task

Oracle & Access SQL:
Method 1 — Using the name of the constraint to drop it

CHANGING TABLES 229

alter table sec0610b_foods
drop primary key; ➋

alter table sec0610b_foods
add constraint pk_sec0610b_foods
primary key (menu_item);

Access does not support this syntax.

➊ On this line, pk_sec0610_foods is the name of the constraint. The
name of a constraint is easy to forget. You might need to find the name
of the constraint in the Data Dictionary to delete the primary key.

➋ Using this format for the alter table statement, you do not need to
know the name of the constraint to delete the primary key.

6-11 Adding a new column to a table

This section shows you how to add a new column to a table. The table may
already have many rows of data in it. The new column is always positioned
at the end of the table. Initially it contains only nulls. Later you will have
the task of putting data into it.

The SQL code to add a new column is different in Oracle than it is in
Access. This is partly because they must use their own datatypes in this
command. Another reason is that Access uses the words add column

where Oracle only uses add.

In Access, the GUI always shows a table with “Add New Field” positioned at
the end of the table. This is done to remind you that you can always add a
new column to a table.

Add a new column to the sec0613_foods table. Name the new column
date_introduced and give it a datatype of date.

Oracle SQL:
Method 2 — Not using the name of the constraint to drop it

Notes

Task

CHAPTER 6 CREATING YOUR OWN TABLES230

alter table sec0611_foods
add date_introduced date; ➊

alter table sec0611_foods
add date_introduced datetime; ➋

Beginning table (sec0611_foods table)

Ending table ➌

Oracle SQL

Access SQL

 MENU SUPPLIER PRODUCT PRICE
 ITEM ID CODE DESCRIPTION PRICE INCREASE
------- -------- ------- ------------------- -------- --------
 1 ASP FS FRESH SALAD $2.00 $0.25
 2 ASP SP SOUP OF THE DAY $1.50 (null)
 3 ASP SW SANDWICH $3.50 $0.40
 4 CBC GS GRILLED STEAK $6.00 $0.70
 5 CBC SW HAMBURGER $2.50 $0.30
 6 FRV BR BROCCOLI $1.00 $0.05
 7 FRV FF FRENCH FRIES $1.50 (null)
 8 JBR AS SODA $1.25 $0.25
 9 JBR VR COFFEE $0.85 $0.15
 10 VSB AS DESSERT $3.00 $0.50

 MENU SUPPLIER PRODUCT PRICE
 ITEM ID CODE DESCRIPTION PRICE INCREASE DATE_INTR
------- -------- ------- ----------------- -------- -------- ---------
 1 ASP FS FRESH SALAD $2.00 $0.25 (null)
 2 ASP SP SOUP OF THE DAY $1.50 (null) (null)
 3 ASP SW SANDWICH $3.50 $0.40 (null)
 4 CBC GS GRILLED STEAK $6.00 $0.70 (null)
 5 CBC SW HAMBURGER $2.50 $0.30 (null)
 6 FRV BR BROCCOLI $1.00 $0.05 (null)
 7 FRV FF FRENCH FRIES $1.50 (null) (null)
 8 JBR AS SODA $1.25 $0.25 (null)
 9 JBR VR COFFEE $0.85 $0.15 (null)
 10 VSB AS DESSERT $3.00 $0.50 (null)

column

CHANGING TABLES 231

➊ In Oracle, the date_introduced column is given the Oracle datatype
date. Notice that the word add is followed by the column name. The
implication is that a new column is being added.

➋ In Access, the date_introduced column is given the Access datatype
datetime. Notice that the word add is followed by the word column.

➌ Initially, the new column contains nulls. After you define this column,
you need to put data into it. The new column is always the last column
in the table. Within most SQL products, you have no control over the
placement of the column.

Add two new columns to a copy of the departments table,
sec0611_departments. One new column, a text column, will be for the
name of the manager of the department. The other new column, a numeric
column, is for the annual budget of the department.

6-12 Expanding the length of a column

This section shows you how to expand the length of a column in Oracle by
changing its datatype. A text column must remain a text column, but you
can change its maximum length and switch between a fixed length charac-
ter string and a variable length character string.

A numeric column must remain a numeric column, but you can change the
maximum number of digits it can contain or the number of digits after the
decimal point. These changes are useful when you receive data that is too
big to put into the columns you have defined.

All dates have the same datatype, so it does not make sense to change the
datatype of a date column.

Change the datatype of the description column of the sec0612_foods
table. It is currently defined as a variable length character string with a maxi-
mum length of 20 characters. Change it to a character string with a length of
25 characters.

Notes

Check your understanding

Task

CHAPTER 6 CREATING YOUR OWN TABLES232

In Oracle, change the price column of this table. It is currently defined as
a number with a maximum of four digits, two of which come after the deci-
mal point. Change it to have a maximum of seven digits total — five before
the decimal and two after. In Access, this change is not needed because the
price column already has a datatype of currency, so it can already han-
dle large numbers.

alter table sec0612_foods
modify description varchar2(25);

alter table sec0612_foods
modify price number(7,2);

alter table sec0612_foods
alter column description varchar(25);

Result table — The table does not show any difference

➊ In Access you can make similar changes on the GUI level using the
Design view of the table.

Expand the length of the last_name column of a copy of the employees
table, sec0612_employees. Expand it to a length of 50 letters so people
with hyphenated last names can be hired by the company.

6-13 Deleting a column from a table

This section shows you how to delete a column from a table. The early ver-
sions of Oracle did not support this option, but now it does. It was added
to Oracle version 8. New options continue to be added to the alter table
command.

Oracle SQL

Access SQL ➊

Notes

Check your understanding

CHANGING TABLES 233

Delete the price_increase column from the new version of the
sec0613_foods table.

alter table sec0613_foods
drop column price_increase;

Beginning table (sec0613_foods table)

Ending table

Delete the phone_number column from a copy of the employees table,
sec0613_employees.

Task

Oracle & Access SQL

 MENU SUPPLIER PRODUCT PRICE
 ITEM ID CODE DESCRIPTION PRICE INCREASE DATE_INTR
------- -------- ------- ----------------- -------- -------- ---------
 1 ASP FS FRESH SALAD $2.00 $0.25 (null)
 2 ASP SP SOUP OF THE DAY $1.50 (null) (null)
 3 ASP SW SANDWICH $3.50 $0.40 (null)
 4 CBC GS GRILLED STEAK $6.00 $0.70 (null)
 5 CBC SW HAMBURGER $2.50 $0.30 (null)
 6 FRV BR BROCCOLI $1.00 $0.05 (null)
 7 FRV FF FRENCH FRIES $1.50 (null) (null)
 8 JBR AS SODA $1.25 $0.25 (null)
 9 JBR VR COFFEE $0.85 $0.15 (null)
 10 VSB AS DESSERT $3.00 $0.50 (null)

 MENU SUPPLIER PRODUCT
 ITEM ID CODE DESCRIPTION PRICE DATE_INTR
------- -------- ------- --------------------- -------- ---------
 1 ASP FS FRESH SALAD $2.00 (null)
 2 ASP SP SOUP OF THE DAY $1.50 (null)
 3 ASP SW SANDWICH $3.50 (null)
 4 CBC GS GRILLED STEAK $6.00 (null)
 5 CBC SW HAMBURGER $2.50 (null)
 6 FRV BR BROCCOLI $1.00 (null)
 7 FRV FF FRENCH FRIES $1.50 (null)
 8 JBR AS SODA $1.25 (null)
 9 JBR VR COFFEE $0.85 (null)
 10 VSB AS DESSERT $3.00 (null)

Check your understanding

CHAPTER 6 CREATING YOUR OWN TABLES234

6-14 Making other changes to tables

This section shows a method of making changes to a table that does not
use the alter table command. You already know this method, but I want
to remind you of it here, in the context of the present discussion. This
method can make almost any change you can think of. It is very flexible, but
it is less efficient than the alter table command. Efficiency is usually
important only when you are working with very large tables.

Here are some of the changes you can make to any table:

■ Add new columns.

■ Delete columns.

■ Delete rows.

■ Rename columns.

■ Change the data in columns.

■ Change the datatype of columns.

■ Reorder columns.

■ Delete a primary key.

This gives you nearly total control over every aspect of a table. Adding a pri-
mary key is the only change that requires the alter table command.

This technique uses a create table statement with a select statement,
which we used in section 4-1.

Create the sec0614_phone_list table from the l_employees table.
Include the columns last_name, first_name, and phone_number.

■ Rename the phone_number column to ext.

■ Change the order of the first_name and last_name columns.

■ Delete many columns from the beginning table.

■ Add a new column for notes and leave it blank.

■ Change the phone number for Woods to 9408.

Task

CHANGING TABLES 235

create table sec0614_phone_list as
select last_name,
 first_name,
 phone_number as ext,
 ' ' as notes ➌

from l_employees
where employee_id between 203 and 206;

update sec0614_phone_list
set ext = '9408' ➍

where last_name = 'WOODS';

select last_name,
 first_name,
 phone_number as ext,
 ' ' as notes ➌

into sec0614_phone_list
from l_employees
where employee_id between 203 and 206;

update sec0614_phone_list
set ext = '9408'
where last_name = 'WOODS';

Beginning table (l_employees table)

Oracle SQL ➊

Access SQL ➋

EMPLOYEE FIRST LAST DEPT CREDIT PHONE MANAGER
 ID NAME NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- -------- -------- ----- ------------ -------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

CHAPTER 6 CREATING YOUR OWN TABLES236

New table created in this section (sec0614_phone_list table) ➎

➊ In Oracle, the create table command and the update command can
be put into a single script and run as a single unit.

➋ In Access, the create table command must be run first. Then the
update command can be run. The SQL window in Access only allows us
to run one command at a time.

➌ This adds a new column to the table and names it notes. There are 13
spaces between the beginning quote and the ending quote. In Oracle
this makes the column a fixed length character string with a length of 13
characters. In Access the 13 spaces are not needed, and you can use two
quotes with one space between them. Spaces, not nulls, are put in this
field.

➍ In the update statement, the phone_number must be referred to by its
new name, ext.

➎ Here is the procedure you would follow if you wanted to name this new
table l_employees, so that it would replace the beginning table. Do not
do this now.

drop table l_employees;
create table l_employees as
select * from sec0614_phone_list;

Tables with Duplicate Rows

In a relational database you are allowed to create tables with duplicate
rows. That is, you can have two or more rows that have the same values in
every column. Usually you want to avoid duplicate rows in your tables.
When a table has a primary key, no duplicate rows are allowed. That is one
of the purposes of a primary key.

LAST_NAME FIRST_NAME EXT NOTES
---------- ---------- ---- -------------
WOODS MARTHA 9408
OWENS ELLEN 6830
PERKINS HENRY 5286
ROSE CAROL (null)

Notes

TABLES WITH DUPLICATE ROWS 237

6-15 The problem with duplicate rows

This section discusses when you may want to avoid duplicate rows and
when you may want to allow them.

When to avoid duplicate rows
If you are going to share a table with someone else, or give it to them, the
table should have a primary key, which will ensure that it does not have any
duplicate rows. Such rows are avoided because it is usually unclear what
they mean. Two different interpretations are possible:

1. Each row represents a separate object.

2. These rows are redundant representations of the same object.

To prevent confusion, you should not allow duplicate rows in tables that
are made public.

When to allow duplicate rows
If you are the only person using a table, you might want to allow duplicate
rows. You may allow them especially if the table is part of an intermediate
step of some process, rather than a final result. The idea is that you will
know what the duplicate rows mean in your own tables, even if nobody else
knows.

Why duplicate rows are allowed in tables
Duplicate rows are allowed in tables for convenience. It is always better not
to have duplicate rows in your tables, but it often requires extra effort to
avoid them. You do not always have to make that effort.

For example, when you use a select statement to get a result table, two of
the rows of the result table may be identical. That might or might not be a
problem. It is a problem if you are showing the results to others and they do
not know the meaning of these duplicate rows. It is not a problem if you are
the only person seeing these results and you do know their meaning.

Example of duplicate rows that represent separate objects
In this example, the duplicate rows in a table represent distinct objects,
events, or relationships. You are using a database to track your expenses.
To keep things simple, you have decided to keep two pieces of data: the
object you bought and the price. On Monday, you buy a hamburger for
$2.00 and eat it. On Tuesday, you buy another hamburger for $2.00 and eat

CHAPTER 6 CREATING YOUR OWN TABLES238

it. In your table of expenses these are duplicate rows. The duplicate row
means that there is really another object. Together, the two rows mean that
you bought two hamburgers and spent $4.00.

This example may seem artificial because if you also entered the date of
the purchase, the rows would not be duplicates. They are only duplicates
because you have not recorded all the data. However, we are always in this
situation, whether we are aware of it or not. Our tables contain what we
consider to be the most significant pieces of information, but there is
always some information that is left out.

The two duplicate rows are two different pieces of information (sec0615a table)

Example of duplicate rows that represent the same object
In this example, the duplicate rows in a table are redundant representa-
tions of a single object, event, or relationship. You are running an advertis-
ing campaign. You buy copies of several mailing lists and combine them
into a single list. The duplicate rows have the same name and address.
These duplicate rows are multiple representations of the same informa-
tion. Here the duplicate row does not mean that there is another object. It
only means that the same object is shown twice.

The two duplicate rows are a single piece of information (sec0615b table)

➊ These rows are duplicates.

OBJECT_BOUGHT PRICE
-------------------- --------
NEWSPAPER $0.75
COFFEE $1.55
HAMBURGER $2.00 ➊

FLOWERS $15.38
HAMBURGER $2.00 ➊

BOOK $24.89
MOVIE TICKETS $22.00

FIRST_NAME LAST_NAME ADDRESS
---------- ---------- -------------------
SUSAN BROWN 512 ELM STREET ➊

JIM KERN 837-9TH AVENUE
MARTHA WOODS 169 PARK AVENUE
SUSAN BROWN 512 ELM STREET ➊

ELLEN OWENS 418 HENRY STREET

Notes

TABLES WITH DUPLICATE ROWS 239

6-16 How to eliminate duplicate rows

There are two ways to get rid of the duplicate rows in your tables. The
method you use depends on the meaning you are giving to the duplicate
rows. This section shows how to eliminate the duplicates if you consider
them to be multiple representations of the same object. The next section
shows how to add a new column that distinguishes between the duplicate
rows. You use this method when you consider them to be representations
of different objects.

If you want to keep only one row of each set of duplicate rows, you can cre-
ate a new table using select distinct.

Eliminate the duplicate rows from the sec0615b table. Keep only one copy
of each row that has a duplicate.

create table sec0616_no_duplicate_rows as
select distinct *
from sec0615b;

select distinct *
into sec0616_no_duplicate_rows
from sec0615b;

Beginning table (sec0615b table)

Task

Oracle SQL

Access SQL

FIRST_NAME LAST_NAME ADDRESS
---------- ---------- -----------------
SUSAN BROWN 512 ELM STREET ➊

JIM KERN 837-9TH AVENUE
MARTHA WOODS 169 PARK AVENUE
SUSAN BROWN 512 ELM STREET ➊

ELLEN OWENS 418 HENRY STREET

CHAPTER 6 CREATING YOUR OWN TABLES240

Result table (sec0616_no_duplicate_rows table)

➊ The beginning table has two rows that are duplicates. Every field in them
has exactly the same value. The result table has just one of these rows.

Eliminate the duplicate rows from the sec0616_duplicate_rows table.

6-17 How to distinguish between duplicate rows

Suppose you have a table containing duplicate rows and you consider each
of these rows to represent a separate object. You can change this table to
distinguish between the duplicate rows by adding a new column of mean-
ingful data to the table. For example, you could add a date_purchased
column to the first table in section 6-12. This would show that the two
hamburgers were purchased on different dates. The two rows for hamburg-
ers would thus no longer be duplicates.

There are no duplicate rows in this table (sec0617a table)

Although it is best to add a new column of meaningful data, this may
require a lot of work. Another method is commonly used, which adds a col-
umn of numbers to the table. Each row is given a distinct number, ensuring

FIRST_NAME LAST_NAME ADDRESS
---------- ---------- -------------------
ELLEN OWENS 418 HENRY STREET
JIM KERN 837-9TH AVENUE
MARTHA WOODS 169 PARK AVENUE
SUSAN BROWN 512 ELM STREET ➊

Notes

Check your understanding

OBJECT_BOUGHT PRICE DATE_PURCHASED
-------------------- -------- --------------
NEWSPAPER $0.75 14-JUN-2010
COFFEE $1.55 14-JUN-2010
HAMBURGER $2.00 14-JUN-2010
FLOWERS $15.38 14-JUN-2010
HAMBURGER $2.00 15-JUN-2010
BOOK $24.89 15-JUN-2010
MOVIE TICKETS $22.00 15-JUN-2010

TABLES WITH DUPLICATE ROWS 241

that there will no longer be any duplicate rows in the table. This method is
shown next.

Why would you want to distinguish between duplicate rows? For example,
you might have four rows that are identical, but you only want to have three
of them.

Distinguish between the duplicate rows of the sec0612a table by adding a
column of numbers to the table. Make this the first column of the table.

create table sec0617_with_line_numbers as ➊

select rownum as row_id, ➋

 object_bought,
 price
from sec0615a;

select *
into sec0617c ➌

from sec0615a;

alter table sec0617c
add column row_id counter; ➍

select row_id, ➎

 object_bought,
 price
into sec0617_with_line_numbers
from sec0617c;

Beginning table (sec0615a table)

Task

Oracle SQL

Access SQL

OBJECT_BOUGHT PRICE
-------------------- --------
NEWSPAPER $0.75
COFFEE $1.55
HAMBURGER $2.00
FLOWERS $15.38
HAMBURGER $2.00
BOOK $24.89
MOVIE TICKETS $22.00

CHAPTER 6 CREATING YOUR OWN TABLES242

Ending table (sec0617_with_line_numbers table)

➊ In Oracle, when you add a column of numbers to a table, you can create
either a new table or a new view.

➋ In Oracle, rownum generates the row numbers. It is a 0-parameter func-
tion that can be used within a select statement.

➌ In Access, when you add a column of numbers to a table, you must cre-
ate a new table. You cannot create a new view because the alter table
statement only works with tables.

➍ In Access, counter generates the row numbers. It is a sequence genera-
tor that is handled as a datatype. To add it to a table you must use an
alter table statement, which will place the row_id column at the end
of this table.

➎ This places the row_id column as the first column of the table, which is
one of the requirements of this task.

Assign a number to each row of the sec0617_duplicate_rows table.

 ROW_ID OBJECT_BOUGHT PRICE
--------- -------------------- --------
 1 NEWSPAPER $0.75
 2 COFFEE $1.55
 3 HAMBURGER $2.00
 4 FLOWERS $15.38
 5 HAMBURGER $2.00
 6 BOOK $24.89
 7 MOVIE TICKETS $22.00

Notes

Check your understanding

KEY POINTS 243

Key Points

■ You can create a new table with a create table statement. This
allows you to see exactly what a table is and control every aspect of it.

■ A table has a name and it has a sequence of columns in a specific
order. Each column has a name and a datatype. That is what a table
is. A table is a structure that can hold data, but it does not consist of
the data it holds.

■ When a table is first created, it contains no data. After a table is cre-
ated rows of data can be put into it.

■ The basic datatypes for columns are text, number, and date. Some
SQL products have other datatypes for special kinds of data.

■ You can make changes to a table after it has been created and even
after data has been put into the table. You can add or change its pri-
mary key, add or delete columns, expand the size of a column, or
make other changes.

■ Duplicate rows in a table can cause confusion. Occasionally this can-
not be avoided, However, you should almost always put a primary key
on your data tables. This will prevent duplicate rows.

This page intentionally left blank

245

chapter 7

You now know how to build your own tables and put data in
them. This chapter discusses some other features you may want
to add to your tables.

Formats affect the appearance of the data without changing its
value. In Access, formats can be part of the definition of a table.
In Oracle, they are used mostly within SQL statements to format
dates.

Sequences provide a way to automatically number the rows of
a table.

Indexes are used mostly to speed up the processing of select
statements within large databases.

This chapter also discusses the Data Dictionary, which shows
you how to find information about the tables you create.

FORMATS,
SEQUENCES,

AND INDEXES

Formats. 247

7-1 Formats of dates. .247
7-2 Displaying formatted dates .249
7-3 Entering formatted dates .252
7-4 Other formats in Oracle. .254
7-5 Formats in Access .254

Sequences . 257

7-6 Creating a sequence in Oracle .257
7-7 Using sequences in Oracle .258
7-8 Sequences in Access .260

Indexes . 262

7-9 Creating an index .263
7-10 The Optimizer .264
7-11 An example of how an index works .264

Using the Oracle Data Dictionary — Part 2 . 266

7-12 How to find information about the datatype of a column266
7-13 How to find information about sequences .269
7-14 How to find information about indexes. .271
7-15 How to find information about all your database objects274
7-16 How to use the index of Data Dictionary tables .276
7-17 How to use the index of Data Dictionary columns .277

An Exercise Solved for You . 278

7-18 Create a table of the days you want to celebrate .278

Key Points . 280

247

Formats

People often confuse formats with functions. A format refers to the way a
value is presented. For instance, “01-jan-10” and “January 1, 2010” are two
formats for the same date. A function makes a change to the value. For
instance, “01-jan-10 + 1” is “January 2, 2010”.

7-1 Formats of dates

In both Oracle and Access, dates and times are stored together within a
single datatype. Whenever you see a date, there is always a time stored
with it. Whenever you see a time, there is always a date stored with it.

Inside the database a date is stored in a very compressed manner. If you
saw one directly, you would not know what it was. When a date is displayed
in a result table, it is always translated into a character string, such as “Jan
1, 2010”, so that you can understand it. Several different translations are
available to give different formats of the same date. Another format is
“2010-01-01”. The date format you specify tells the database how you want
the dates to be displayed. If you do not specify a date format, the default
date format is used.

In this section we discuss how to specify a format that is different than the
default date format. In the following two sections, you will see how these
formats can be applied to display dates in particular ways and how to enter
times with dates.

The following table shows some of the most useful date formats. These can
be combined together in any way you wish. These are used both for dis-
playing dates and entering dates into tables.

In Oracle, there is one default format for dates. It is usually set to
dd-mon-yy, which shows dates in the format 20-JAN-10 with a two-digit year.
In the SQL Command Line environment, you can change this default format
to dd-mon-yyyy with a four-digit year. To do this you can use the command:

alter session set nls_date_format = 'DD-MON-YYYY';

Whatever the default format is, if you want to display or enter dates in any
other format, you must explicitly state what format you are using. In Oracle,
dates and times are enclosed in single quotes. This is similar to text strings.

In Access, when you enter a date, you enclose it in pound signs (##) to set
it apart from a text string. Access knows it is a date by the pound signs, and
will attempt to automatically determine what format this date is in. Access
can accept a date in many formats.

In Access, the default format for displaying a date is set by the Windows
operating system, using the Regional Settings in the Windows Control Panel.

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES248

Oracle and Access date formats.

Oracle Format Access Format Example Comment

YEAR

yyyy yyyy 1998 Four-digit year

yy yy 98 Two-digit year

MONTH

month mmmm October Full name of the month

mon mmm Oct Abbreviated name of the month

mm mm 10 Number of the month, 01 to 12

DAY

dd dd 18 Date of the month, 01 to 31

day dddd Friday Full name of the day

dy ddd Fri Abbreviated name of the day

d w 6 Numeric day of the week:
1 is Sunday, 2 is Monday, 7 is Saturday

TIME

hh24 hh 14 24-hour time, 00 to 23

hh12 hh am/pm 02 12-hour time, 00 to 11

hh hh am/pm 02 12-hour time, 00 to 11

mi nn 30 Minute after the hour, 00 to 59

ss ss 59 Second, 00 to 59

am am/pm AM or PM, whichever applies

pm am/pm AM or PM, whichever applies

OTHER

q q 4 Quarter of the year, 1 to 4

ww ww 45 Week of the year, 1 to 54

JULIAN

ddd y 350 Number of days since January 1

j Number of days since Dec. 31, 4713 BC

sssss Number of seconds since midnight;
used to calculate with times

FORMATS 249

Some combinations of date formats.

7-2 Displaying formatted dates

In Oracle, the to_char function specifies the format to use when display-
ing a date. To_char means that we are converting a date datatype into a
character datatype so it can be displayed. In Access, the format function is
used the same way.

These functions have two parameters. The first is the name of the column
containing the dates. The second is the format to be used in displaying the
date. The format specification must be enclosed in single quotes. It is pos-
sible to add text to the format, such as "In the year of ". This text must be
enclosed in double quotes.

mm-dd-yyyy hh:mi:ss am mm-dd-yyyy hh:nn:ss am/pm 10-18-1998 05:36:45 PM

mm-dd-yyyy hh:mi am mm-dd-yyyy hh:nn am/pm 10-18-1998 05:36 PM

day, month dd, yyyy dddd, mmmm dd, yyyy Sunday, October 18, 1998

dd-mon-yy dd-mmm-yy 18-Oct-98

mm-dd-yyyy mm-dd-yyyy 10-18-1998

hh:mi:ss am hh:nn:ss am/pm 05:36:45 PM

hh:mi am hh:nn am/pm 05:36 PM

hh24:mi hh:nn 17:36

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES250

From the l_employees table, list the employee_id, first_name, and
hire_date of all the employees. Add another column showing the hire date
formatted in the form mm-dd-yyyy followed by the time. Sort the rows of the
result by the employee_id.

select employee_id,
 first_name,
 hire_date,
 to_char(hire_date, 'MM-DD-YYYY HH:MI AM') ➊

 as formatted_date ➌

from l_employees
order by employee_id;

select employee_id,
 first_name,
 hire_date,
 format(hire_date, 'MM-DD-YYYY HH:NN AM/PM') ➋

 as formatted_date ➌

from l_employees
order by employee_id;

Beginning table (l_employees table)

Task

Oracle SQL

Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

FORMATS 251

Result table ➍

➊ In Oracle, the to_char function is used to control the format in which a
date is displayed. The second parameter is the Oracle date format you
want to use. It is enclosed in single quotes.

The to_char function is used, not the to_date function. When a date is
stored in the database, it has a date datatype. You want to change the
format to a text datatype, so that it can be displayed.

➋ In Access, the format function is used to control the format in which a
date will be displayed. The second parameter is the Access date format
you want to use. It is enclosed in single quotes.

➌ as formatted_date creates a column alias for the previous line. I
would write it as part of that line if I had room to do so. I created the col-
umn alias on the next line and indented it to the far right to show that it
is a continuation of the preceding line.

➍ The data in the table show that all the formatted dates have 12:00 AM
(midnight) as their time. This is the default time that is set in Oracle and
Access when no specific time is entered.

Modify the select statement in this section to display the hire_date col-
umn in the format: January 10, 2012.

EMPLOYEE
 ID FIRST_NAME HIRE_DATE FORMATTED_DATE
-------- ---------- ------------ --------------------
 201 SUSAN 01-JUN-1998 06-01-1998 12:00 AM
 202 JIM 16-AUG-1999 08-16-1999 12:00 AM
 203 MARTHA 02-FEB-2009 02-02-2004 12:00 AM
 204 ELLEN 01-JUL-2008 07-01-2003 12:00 AM
 205 HENRY 01-MAR-2006 03-01-2000 12:00 AM
 206 CAROL (null) (null)
 207 DAN 01-DEC-2008 12-01-2004 12:00 AM
 208 FRED 01-APR-2008 04-01-2003 12:00 AM
 209 PAULA 17-MAR-1999 03-17-1999 12:00 AM
 210 NANCY 16-FEB-2007 02-16-2004 12:00 AM

Notes

Check your understanding

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES252

7-3 Entering formatted dates

This section shows you how to enter a time when you enter a date. All
dates in SQL include a time, but the time is automatically set to midnight
unless you enter a different time.

In Oracle, the DBAs have selected one default date format, which usually
does not show the time. If you want to enter a time with a date, you must
use the to_date function. It changes the text you enter for the date into a
date datatype that can be stored in the database. This function has two
parameters enclosed in single quotes. The first parameter is a character
string, which expresses the date and the time. The second parameter tells
Oracle how to format the first string into a date datatype. It gives the date
format of the first parameter. The to_date function changes the character
string you entered into a date with a time.

In Access the process is much simpler. You just enclose the date and time
in pound signs, showing that what you enter is a date. Access will deter-
mine the format automatically.

Insert a new row into the sec0703_lunches table. Use the following data:

lunch_id = 25

lunch_date = December 5, 2011 at 11:30 a.m.

employee_id = 202

date_entered = (use the current date and time)

Use a date format, if needed, to enter the date.

insert into sec0703_lunches
values (25,
to_date('12-05-2011 11:30 AM','MM-DD-YYYY HH:MI AM'), ➊

 202, sysdate); ➋

insert into sec0703_lunches
values (25, #DEC 5 2011 11:30 AM#, ➌

 202, now()); ➍

Task

Oracle SQL

Access SQL

FORMATS 253

Beginning table (sec0703_lunches table)

New row ➎

➊ In Oracle, we use the to_date function to enter dates into tables. The
date you write in an SQL statement is text because it is enclosed in sin-
gle quotes. You need to change the text string into a date datatype to
store it in the table. The to_date function does this.

Dates can be entered in any format, but the specific format of the text
data must be explicitly specified. A time can be entered along with a
date if the format includes a time.

If a time is entered, it is permanently stored in the table. However, it will
only be displayed when it is explicitly requested. Dates containing times
can cause errors if the users are not aware that the times are contained
in the data.

➋ In Oracle, sysdate gives you the current date and time.

➌ In Access, a date is surrounded by pound signs (##), indicating that you
want to enter a date. Most date formats are recognized automatically by
Access. Their format does not need to be explicitly declared.

 LUNCH EMPLOYEE
 LUNCH_ID DATE ID DATE_ENTERE
--------- ------------ -------- -----------
 1 16-NOV-2011 201 13-OCT-2011
 2 16-NOV-2011 207 13-OCT-2011
 3 16-NOV-2011 203 13-OCT-2011
 4 16-NOV-2011 204 13-OCT-2011
 6 16-NOV-2011 202 13-OCT-2011
 7 16-NOV-2011 210 13-OCT-2011
 8 25-NOV-2011 201 14-OCT-2011
 9 25-NOV-2011 208 14-OCT-2011
 12 25-NOV-2011 204 14-OCT-2011
 13 25-NOV-2011 207 18-OCT-2011
 15 25-NOV-2011 205 21-OCT-2011
 16 05-DEC-2011 201 21-OCT-2011
 17 05-DEC-2011 210 21-OCT-2011
 20 05-DEC-2011 205 24-OCT-2011
 21 05-DEC-2011 203 24-OCT-2011
 22 05-DEC-2011 208 24-OCT-2011

 25 05-DEC-2011 202 17-JUN-2011

Notes

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES254

It is best to avoid ambiguous date formats. For example, does #7/4/99#
mean April 7 or July 4? The meaning in America is different from the
meaning in Europe.

➍ In Access, now() gives you the current date and time.

➎ The time, 11:30 AM, is present in the data, even though it is not displayed.

Add a new row to a copy of the employees table, sec0703_employees. Set
the hire date to show that the person was hired at 10:00 AM.

7-4 Other formats in Oracle

In Oracle, within the SQL Command Line environment, there are also for-
mats for text and number fields. These are not set on the SQL level itself,
rather they are set on the SQL*Plus level. For more information about this
refer to the Oracle documentation about SQL*Plus.

7-5 Formats in Access

In Access, the format of a column is often specified in the field properties
of the table design. It can also be specified within a select query using the
format function. In addition to date formats, there are also formats for
numbers, text, and yes/no datatypes.

Access offers a great variety of formats. There are two types of formats:
predefined formats, which are ready-made for you and have names, and
custom formats, which you specify yourself. A reference to all these formats
is available in the Format Property Help.

In the following example, I create a custom format for the phone_number
column, which has a text datatype. The format is:

"(415) 643-"@@@@

The characters within double quotes will be added as a literal value to each
phone number. The @ represents a single character from the data in the
phone_number column.

Oracle can also display the phone numbers this way, but it uses a different
method. In Oracle, we could code a literal into the select statement and
concatenate it to the phone number. For more details see section 9-12.

Check your understanding

FORMATS 255

Format the phone_number column entries of the sec0705_employees
table. Give each phone number the area code (415) and the prefix 643-. Show
two methods of doing this in Access: a GUI method and an SQL method. In
the SQL method, show the employee_id, first_name, last_name, and
the formatted phone_number columns.

select employee_id,
 first_name,
 last_name,
 format(a.phone_number, '"(415) 643-"@@@@') ➋

 as phone_number ➌

from sec0705_employees a; ➍

Task

Access GUI: Set field properties in the table design ➊

Access SQL: Use the format function

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES256

Result table

➊ This screen is the Design view of the sec0705_employees table. First
select the phone_number field, which will be highlighted. Then set the
field properties in the bottom half on the screen.

➋ In Access SQL, the same format is used as in the Access GUI. The differ-
ence is that it is placed as the second parameter within the format func-
tion and enclosed in single quotes. See notes ➌ and ➍ for an
explanation of the “a” before the phone_number.

➌ When the format function is applied to the phone_number column, the
result is an expression and is no longer named phone_number. To name
the formatted expression phone_number it is necessary to give it a col-
umn alias. In Access, to give this expression the alias phone_number,
I had to put an “a” before the column name phone_number. This is a
table reference, and specifies that this is a column of the
sec0705_employees table. In Oracle, this trick is not needed. The col-
umn alias can be phone_number without putting an “a” and a dot before
the column name.

➍ This line assigns table alias “a” to the sec0705_employees table.

Notes

SEQUENCES 257

Sequences

A sequence is used to generate numbers sequentially. After the numbers are
generated, their value is fixed and they are only numbers — there is no
dynamic quality to them at all. If a row is deleted, the sequence numbers in
the remaining rows do not change. The column with data generated by a
sequence must have a numeric datatype.

The idea is that each row will be given a different number. Sequences are
used in several ways: They can be used to put the rows in a specific order or
to make sure that no two rows are identical. Sometimes a sequence is used
as a “meaningless” primary key for a table. When several people are enter-
ing data into a table at the same time, a sequence may be used to show
which record was entered first. It is up to the application to determine the
meaning of the numbers generated by the sequence.

In the Lunches database, a sequence is used as the primary key of the
l_lunches table. In this case, each time a person signs up to attend a
lunch, that lunch is assigned the next number. So far, the numbers 1
through 22 have been used. A few numbers are missing, just like they
would be in real life. These numbers were actually generated in sequence,
but their rows have been deleted. The next row in this table will be
assigned the number 23.

Both Oracle and Access offer sequences, but they implement them in dif-
ferent ways. In Oracle, a sequence is a database object, similar to a table.
Oracle also has the rownum function to generate sequences. In Access, a
sequence is implemented as a datatype.

7-6 Creating a sequence in Oracle

In Oracle, a sequence is a type of object in the database. This means that it
exists within the database in the same way that a table or view exists. It can
be created with the words create sequence, followed by the name of the
new sequence. The starting number and the increment can be set in this
command. I like to begin the names of all my sequences with seq_ fol-
lowed by an identification of the column it is used with.

A particular sequence is usually used to generate numbers for just one col-
umn, so if several columns in your tables use sequences, a separate
sequence is set up for each one.

To delete a sequence enter drop sequence, followed by the name of the
sequence.

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES258

Create a sequence to use with the lunch_id column.

-- Delete command for a sequence ➊

-- This is a preventative delete for the sequence we
-- are about to create.
drop sequence sec0706_seq_lunch_id; ➋

-- Create a new sequence
create sequence sec0706_seq_lunch_id ➌

 start with 23
 increment by 1;

Result

➊ In Oracle and most other SQL products, a line that begins with two
dashes is a comment line. In my opinion, all code should begin with at
least one or two comment lines. In this book I usually do not include
comment lines in the code because Access does not allow them and I
am trying to write code that works in both Oracle and Access.

➋ This deletes the sequence, if it already exists. A preventative delete
ensures that the name of the sequence is available for the create
sequence command to use.

➌ This command creates the sequence.

Create a new sequence named seq0706_my_stuff. Set the beginning value
to 100.

7-7 Using sequences in Oracle

A sequence can do just two things: It can give you its current value or its
next value. To get either of these you begin with the name of the sequence,
followed by a period. Immediately after the period use currval to get the
current value or nextval to get the next value. These can be used in a
select statement, an insert statement, or any other SQL statement.

Task

Oracle SQL: Create and drop a sequence

After you create a sequence you can use it. See the next section.

Notes

Check your understanding

SEQUENCES 259

Insert two rows into the sec0707_lunches table using the
sec0707_seq_lunch_id sequence to assign the values in the lunch_id
column.

insert into sec0707_lunches
values (sec0707_seq_lunch_id.nextval, ➊

 '07-DEC-2011', 202, sysdate); ➋

insert into sec0707_lunches
values (sec0707_seq_lunch_id.nextval, ➌

 '07-DEC-2011', 204, sysdate);

select * from sec0707_lunches;

Result table: Example 1 — The new rows

Determine the most recent value that has been assigned by the
seq_lunch_id sequence.

select sec0707_seq_lunch_id.currval ➍

from dual; ➎

Result table: Example 2

Task for example 1

Oracle SQL: Get the next value of a sequence

 LUNCH EMPLOYEE
 LUNCH_ID DATE ID DATE_ENTERE
--------- ------------ -------- -----------
 23 07-DEC-2011 202 17-JUN-2011
 24 07-DEC-2011 204 17-JUN-2011

Task for example 2

Oracle SQL: Get the current value of a sequence

CURRVAL

 24

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES260

➊ This gets the next value from the sequence. We told it to start with 23
and that is the first value we get.

➋ In Oracle, sysdate supplies the current date and time.
➌ This gets the next value from the sequence. This time it gets the value

24.
➍ This gets the current value of the sequence.
➎ The dual table in Oracle is a dummy table used to print out values. For

more details see section 9-7.

Determine the current value of the sequence seq_sec0707. Then use its
next three values to add new rows to the sec0707_sequence table. This
table has only one column. It holds the value of the sequence number.

7-8 Sequences in Access

The Access way of generating sequences is called autonumber on the GUI
level and counter on the JET engine level, and is treated as a datatype. It
automatically assigns sequential numbers to new rows. If a new column is
added to a table and that column is given the counter datatype, then all
the rows currently in the table are assigned sequential numbers.

The JET engine level of Access is the level that processes the SQL. Access is
a complex product with many levels. We are dealing with it on one particu-
lar level in this book — the level of the SQL view in the query mode.

Add a new column to the sec0708_suppliers table that numbers all the
rows sequentially. Show two methods to accomplish this, one using Access
SQL and the other using Access GUI.

alter table sec0708_suppliers
add column new_num counter; ➊

Notes

Check your understanding

Task

Access SQL

SEQUENCES 261

Beginning table (sec0708_suppliers table)

Ending table

Access GUI method ➋

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES262

➊ On the SQL level, Access uses counter as the name of the special
datatype of a sequence.

➋ On the GUI level, Access uses autonumber as the name of the special
datatype of a sequence. Note that the field size is shown as long inte-
ger, which is the actual datatype of the column.

Add a new column to the sec0708_departments table that numbers all the
rows sequentially.

Indexes

Indexes are mysterious in SQL. They lurk behind the scenes, and you rarely
work with them directly. An index is used to make SQL process more effi-
ciently. It can make a select statement run much faster. Indexes are usu-
ally created by the DBA, so I do not discuss them in detail here.
Application programmers and end users only need to have a slight aware-
ness of indexes. The most important things to know are that indexes exist
and you can talk to your DBA about them.

An index is always formed on certain columns of a particular table. It is
something like a table, but it has an additional layer of organization that
enables it to find information quickly by finding the correct rows of the
table to use. It contains pointers that go directly into the table. It is a data-
base object, it contains data drawn from the table, and it requires disk
space. An index for a large table may require a considerable amount of disk
space. All the indexes on a set of tables may require as much disk space as
the tables themselves, which can be a large amount.

An index is a double-edged sword. Although it will speed up your select
statements, it may also slow down changes that are being made to the data.
The reason is that indexes in SQL are updated dynamically at runtime.
Whenever the data in a table is changed, all the indexes on that table also
must be changed. If this causes an index to be reorganized, a delay can
occur while the reorganization takes place.

One way of “tuning” a database is to add an index to it. When an index is
added to a database, certain select statements will run much faster, but
others will not run faster at all. When a database is fairly young and does

Notes

Check your understanding

INDEXES 263

not contain much data, all queries run quickly and the database has a lot of
flexibility. However, when the database ages and contains much more data,
indexes must be built to keep it performing well. Because of these indexes
some specific queries will still run quickly, but all other queries will run
slowly, perhaps taking an hour or more. Then we say that the database has
lost much of its flexibility.

You have already created some indexes, although you might not have
known it. When you add a primary key to a table, an index is automatically
built on the primary key columns. This all happens behind the scenes, with-
out any messages to you. That is how elusive indexes can be.

7-9 Creating an index

It is very simple to create an index. The trick is to know which ones have
more benefit than cost. Your DBA can help you determine this. In fact, your
DBA may want to be the person responsible for building all of the indexes.

The command to create an index is:

CREATE INDEX name_of_the_new_index
ON table_name (ordered_list_of_columns_in_the_index)

I like to name indexes “ix” followed by the name of the table and then some
indicator of the columns in the index. An index can be created even if there
are several rows with the same values in the index columns. In the follow-
ing example, it would be acceptable if there were several employees with
the same first and last names.

Another kind of index, called a unique index, prevents such duplicate val-
ues. We discuss unique indexes in chapter 8. To delete an index, use the
command drop index followed by the name of the index.

Create an index on the names of the employees in the l_employees table.
Include both the last_name and the first_name values in the index, in
that order.

create index ix_sec0709_employees_name
on sec0709_employees (last_name, first_name);

Task

Oracle & Access SQL

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES264

Result

Build an index on a copy of the departments table, sec0709_departments.
Index the department_name field.

7-10 The Optimizer

You never use an index when you code a select statement. Instead, the
Optimizer figures out the best way to process your select statement and it
will make the best possible use of the indexes that have been built. The
Optimizer is a very important component of database software.

Here is what goes on behind the scenes when you submit a select state-
ment for a DBMS to run. First the statement is parsed. It is broken apart
grammatically, so the computer understands what you want done. The next
question is how to do it. This is where the Optimizer comes in.

The Optimizer makes a list of many different ways the select statement
could be processed. It considers using many different indexes, searching
and sorting the records in various ways. Then for each possible process it
estimates how long it would take and how much computing power would be
required. Then it decides which process is best, giving the fastest response
and using the least amount of the computer’s resources. This is the process
the computer uses to create an answer to your select statement.

7-11 An example of how an index works

Here is an example of how an index works. This example is simplified to
show the basic principle. Many complexities have been removed. First you
need some background about the way computers work. Here I am speaking
about one computer that is not networked with other computers.

The slowest operation in a computer is its input and output (I/O), which is
reading and writing to the disk drive. It is approximately 1,000 times slower
than any operation in the computer’s central processing unit (CPU), which
handles all the complex logic. You can have a good idea of how long a pro-
cess will take if you can estimate how much I/O it requires; that is, how
many times it will need to read and write to the disk.

An index is built, but you cannot see it. You can find entries for it in the Data Dictionary.

Check your understanding

INDEXES 265

One way to measure the size of a table is by the number of I/O operations it
takes to read the entire table. Each read from the disk may get 100 rows,
depending on the size of the rows in the table and many other factors. If a
table contains 1,000,000 rows, it might require 10,000 reads to get the
entire table. This might take 10 or 20 minutes or even longer, depending on
the speed of the computer and how many other people are using the table.

As an example, suppose that this table is the l_employees table and it
contains 1,000,000 rows. We are going to write a query to find all the people
who were hired from 2009 to the end of 2010. First we examine how the
query is processed if no indexes have been built on this table, or at least no
indexes involving the hire_date column. Then we examine how it could
be processed if an index has been created on that column. Here is the
query:

select employee_id,
 last_name,
 first_name,
 hire_date
from l_employees
where hire_date >= '01-JAN-2009'
 and hire_date <= '31-DEC-2010'
order by last_name,
 hire_date,
 employee_id;

Before this query can be run, the Optimizer must determine how to process
it. The primary factors are the from clause and the where clause, which
indicate what table or tables the data will come from and which rows of
those tables to use. This is what affects the amount of I/O. In this example,
all the data comes from the l_employees table and only the hire_date
column is used in the where clause.

If no indexes have been built on the l_employees table, the only way the
computer can process this query is to read the whole table and test each
row to see if the condition in the where clause is satisfied. Testing
1,000,000 rows may seem like a lot of work to you, but to the computer that
is the easy part — reading all the rows of the table from the disk is the hard
part. This process may take 20 minutes or more, as discussed earlier.

The processing of this select statement will be very different if an index
has already been built on the hire_date column of the l_employees
table. The Optimizer will use this index to determine which rows of the
table are needed. This can greatly reduce the number of rows that need to
be read from the disk. Instead of 10,000 I/O operations, perhaps only 100
are needed for the data of the result table. Using the index might require 10

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES266

I/O operations. Therefore, the total might be 110 I/O instead of 10,000. This
would produce the result table 100 times quicker and use less of the com-
puter’s resources.

Using the Oracle Data Dictionary — Part 2

In chapter 5 you learned to use the Oracle Data Dictionary. You found infor-
mation in it about all the database elements studied up to that point. Since
then you have learned about datatypes, sequences, and indexes. We now
want to see how to find information about these things in the Data Dictio-
nary. I also show you how to use the two indexes for the Dictionary.

7-12 How to find information
about the datatype of a column

This section shows you how to find detailed information about the
datatypes of the columns in a table or view. We will use the table in the
Oracle Data Dictionary called User Table Columns, which is spelled:

user_tab_columns

Note that this table contains information about the columns of both tables
and views, even though its name mentions only tables. This table contains
many columns of information, but we are only interested in a few of them. I
have picked out the columns I want you to understand now. The following
table provides a quick summary of what these columns mean.

Column Meaning

column_id Shows the order of the columns within the table or
view — which column is first, second, etc.

column_name Shows the name of the column.

data_type Shows the datatype of the column. Of course, these
are all Oracle datatypes.

data_length For fixed length datatypes, such as numbers and
dates, this shows the number of bytes of disk space
required to store one cell of the column.
For variable length datatypes, such as variable length
character strings (varchar2), this shows the maximum
length of the column.

USING THE ORACLE DATA DICTIONARY — PART 2 267

I want to point out some things from the result table in the following exam-
ple. The first line in the result table shows the first column of the
l_employees table, which is the employee_id column. Its datatype is
number and it allows a maximum of three digits with no digits after the
decimal point. Nulls are not allowed in this column. You can guess that the
reason nulls are not allowed in this column is because it is the primary key,
although its status as the primary key is not shown here. Within each row,
this column requires 22 bytes of disk space even though this number can
only contain three digits.

The second row of the result table shows a text column, the first_name
column. It is the second column within the l_employees table. Its
datatype is varchar2, which is a variable length character string and it has
a maximum length of ten characters. Nulls are allowed in this column.

The fifth row of the result table shows a date column, the hire_date col-
umn. Nulls are allowed in this column. Within each row, this column
requires 7 bytes of disk space.

The sixth row of the result table shows a number with some digits after the
decimal point. This is the credit_limit column. It can contain only num-
bers with a maximum of four digits, two before the decimal and two after.

In Access, much of this information is available on the GUI level from the
Design view of the table. When you select a column, the field properties in
the bottom part of the screen show details about the exact definition of the
column.

Column Meaning

data_precision Used only with number columns. This is the maxi-
mum number of digits allowed for the number —
both the digits before the decimal point and those
after it.

data_scale Used only with number columns. This is the number
of digits after the decimal point.

nullable Shows Y if a null can be entered into the column.
Shows N if a null cannot be entered into the column.

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES268

Find information about the datatypes of all the columns of the l_employees
table.

-- Find information about the datatypes of columns ➊

select column_id,
 column_name,
 data_type,
 data_length,
 data_precision,
 data_scale,
 nullable
from user_tab_columns
where table_name = 'L_EMPLOYEES' ➋

order by column_id; ➌

Result table

➊ This is a comment line. It may be omitted. Comment lines begin with two
dashes.

➋ This where clause limits the result to showing the columns of a single
table, the l_employees table.

➌ This order by clause sorts the columns into the same order they have
within the l_employees table.

Task

Oracle SQL

COLUMN_ID COLUMN_NAME DATA_TYPE DATA_LENGTH DATA_PRECISION DATA_SCALE N
--------- ------------ --------- ----------- -------------- ---------- -
 1 EMPLOYEE_ID NUMBER 22 3 0 N
 2 FIRST_NAME VARCHAR2 10 (null) (null) Y
 3 LAST_NAME VARCHAR2 10 (null) (null) Y
 4 DEPT_CODE VARCHAR2 3 (null) (null) Y
 5 HIRE_DATE DATE 7 (null) (null) Y
 6 CREDIT_LIMIT NUMBER 22 4 2 Y
 7 PHONE_NUMBER VARCHAR2 4 (null) (null) Y
 8 MANAGER_ID NUMBER 22 3 0 Y

Notes

USING THE ORACLE DATA DICTIONARY — PART 2 269

Find information about the datatypes of all the columns of the l_foods
table.

7-13 How to find information about sequences

In Oracle, we said that a sequence is a database object, so you should
expect to find information about sequences in the Oracle Data Dictionary.
The dictionary table to use is called user_sequences. By examining the
columns in this table, you can learn exactly what an Oracle sequence is
composed of. You can also make an educated guess about the options that
are available when you create a sequence. The columns of this table are as
follows:

Access GUI

Check your understanding

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES270

In Access, sequences are handled as if they were datatypes, so information
about them is available on the GUI level from the Design view of the table.
When you select a column with the autonumber datatype, the field proper-
ties in the bottom part of the screen show details about the sequence.

Find all the information about your sequences in Oracle.

select *
from user_sequences;

Result table

Column Meaning

sequence_name Sequence name.

min_value Minimum value of the sequence.

max_value Maximum value of the sequence.

increment_by Value by which sequence is incremented.

cycle_flag Does sequence wrap around on reaching limit?

order_flag Are sequence numbers generated in order?

cache_size Number of sequence numbers to cache (hold in memory).

last_number Last sequence number written to disk.

Task

Oracle SQL

SEQUENCE_NAME MIN_VAL MAX_VALUE INCREMENT_BY C O CACHE_SIZE LAST_NUMBER
------------- ------- --------- ------------ - - ---------- -----------
SEQ_EMPLOYEE_ID 1 1.000E+27 1 N N 20 211
SEQ_LUNCH_ID 1 1.000E+27 1 N N 20 43
SEQ_MENU_ITEM 1 1.000E+27 1 N N 20 11

USING THE ORACLE DATA DICTIONARY — PART 2 271

7-14 How to find information about indexes

In Oracle, you need to look at two tables in the Data Dictionary to find
information about the indexes that have been built. This is similar to the
way you found information about primary keys in section 5-15. An index,
like a primary key, is a single database structure that may involve many col-
umns in a particular order. All the columns must come from a single table.
The two dictionary tables with information about indexes are as follows:

user_indexes
user_ind_columns

The user_indexes table contains one row for each index, even if several
columns are involved in the index. This table has many columns, but we are
only interested in a few of them. These columns are as follows:

Access GUI

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES272

In the following example, you can see that there are two indexes on the
l_employees table. They both are in the indx tablespace, which is where
they should be. They are both valid, unique indexes.

The user_ind_columns table contains a row for every column involved
with every index. This tells you all the columns involved with each index.
We do not use the last two columns of this table, so you do not have to
worry about what they mean. The columns of this table are as follows:

In Access, you can see the indexes on a table by opening the table in
Design view. Then click Indexes in the Ribbon, which is within the Design
tab. In the following example, you can see that there are two indexes on the
l_employees table. Sometimes indexes are created automatically within
Access as part of its “self-tuning” abilities.

Column Meaning

index_name Name of the index

table_name Name of the table on which the index is formed

uniqueness Whether two rows are allowed to have the same values in all of
the columns of the index

tablespace_name Name of the tablespace containing the index

status Whether the index is valid or not

Column Meaning

index_name Name of the index

table_name Name of the table on which the index is formed

column_name Name of a column in the index

column_position Position of the column within the index

column_length Length of the column within the index

descend Sort order — whether the index is in ascending or descending
order

USING THE ORACLE DATA DICTIONARY — PART 2 273

Find all the indexes on the l_employees table and which columns they
contain.

select index_name,
 table_name,
 uniqueness,
 tablespace_name,
 status
from user_indexes
where table_name = 'L_EMPLOYEES';

Result table

select *
from user_ind_columns
where table_name = 'L_EMPLOYEES';

Result table

Task

Oracle SQL: Step 1

INDEX_NAME TABLE_NAME UNIQUENES TABLESPACE_NAME STATUS
--------------------- ------------- --------- ---------------- ------
PK_L_EMPLOYEES L_EMPLOYEES UNIQUE INDX VALID
UNIQUE_EMP_PHONE_NUM L_EMPLOYEES UNIQUE INDX VALID

Oracle SQL: Step 2

 COLUMN COLUMN
INDEX_NAME TABLE_NAME COLUMN_NAME POSITION LENGTH DESC
-------------------- ------------ ----------- --------- --------- ----
PK_L_EMPLOYEES L_EMPLOYEES EMPLOYEE_ID 1 22 ASC
UNIQUE_PHONE_NUM L_EMPLOYEES PHONE_NUMBER 1 4 ASC

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES274

Find out what indexes there are on the l_departments table.

7-15 How to find information about
all your database objects

Most of the tables of the Oracle Data Dictionary are concerned with only a
single type of database object, but there is one table that lists all of the
objects you own regardless of what type of object they are. In addition to
listing all of your objects, it also tells you when each object was created
and the last time each object was changed. Sometimes this is very handy
information to know. The name of this table is User Objects. Its most inter-
esting columns are as follows:

Access GUI

Check your understanding

Column Meaning

object_name The name of the object

object_type The type of database object (table, view, sequence, index, etc.)

created The date and time that the object was created

last_DDL_time The last date and time that the object was changed

status Valid or invalid

USING THE ORACLE DATA DICTIONARY — PART 2 275

List all the database objects you own in Oracle, the date each was created,
and the most recent date each was changed.

select object_name,
 object_type,
 created,
 last_ddl_time,
 status
from user_objects;

Result table

Task

Oracle SQL

OBJECT_NAME OBJECT_TYPE CREATED LAST_DDL_TI STATUS
-------------------- ----------- ----------- ----------- -------
L_CONSTANTS TABLE 06-JUN-2007 06-JUN-2007 VALID
L_DEPARTMENTS TABLE 06-JUN-2007 06-JUN-2007 VALID
L_EMPLOYEES TABLE 06-JUN-2007 20-JUN-2007 VALID
L_FOODS TABLE 06-JUN-2007 06-JUN-2007 VALID
L_LUNCHES TABLE 06-JUN-2007 06-JUN-2007 VALID
L_LUNCH_ITEMS TABLE 06-JUN-2007 06-JUN-2007 VALID
L_SUPPLIERS TABLE 06-JUN-2007 06-JUN-2007 VALID
NUMBERS_0_TO_9 TABLE 06-JUN-2007 06-JUN-2007 VALID
NUMBERS_0_TO_99 VIEW 06-JUN-2007 06-JUN-2007 VALID
PK_L_DEPARTMENTS INDEX 06-JUN-2007 06-JUN-2007 VALID
PK_L_EMPLOYEES INDEX 06-JUN-2007 06-JUN-2007 VALID
PK_L_FOODS INDEX 06-JUN-2007 06-JUN-2007 VALID
PK_L_LUNCHES INDEX 06-JUN-2007 06-JUN-2007 VALID
PK_L_LUNCH_ITEMS INDEX 06-JUN-2007 06-JUN-2007 VALID
PK_L_SUPPLIERS INDEX 06-JUN-2007 06-JUN-2007 VALID
SEQ_EMPLOYEE_ID SEQUENCE 19-JUN-2007 19-JUN-2007 VALID
SEQ_LUNCH_ID SEQUENCE 17-JUN-2007 17-JUN-2007 VALID
SEQ_MENU_ITEM SEQUENCE 19-JUN-2007 19-JUN-2007 VALID
UNIQUE_PHONE_NUM INDEX 20-JUN-2007 20-JUN-2007 VALID

(and many more)

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES276

7-16 How to use the index of
Data Dictionary tables

The Oracle Data Dictionary contains more than 200 tables. It can be diffi-
cult to determine which table contains the information you are looking for.
The Dictionary table solves this problem because it contains an entry for
each of these tables, so it functions as an index to all the other tables. It
contains two columns: column_name and comments. You can use like to
search for patterns of letters in either of these columns.

Find all the tables in the Oracle Data Dictionary that contain information
about sequences. To do this, find the names of all the tables with the letters
“SEQ” in them. Also list the comments about these tables.

select *
from dictionary
where table_name like '%SEQ%';

Result table

Find all the tables in the Oracle Data Dictionary about views.

Task

Oracle SQL

TABLE_NAME COMMENTS
--------------------------- --
ALL_SEQUENCES Description of SEQUENCEs accessible to
 the user

USER_SEQUENCES Description of the user's own SEQUENCEs
SEQ Synonym for USER_SEQUENCES

Check your understanding

USING THE ORACLE DATA DICTIONARY — PART 2 277

7-17 How to use the index of
Data Dictionary columns

After you know the name of the dictionary table you want to look at, often the
next problem is to learn the meanings of its columns. The Dictionary Col-
umns table can give you this information, as the following example shows.
This table contains three columns: table_name, column_name, and com-
ments. Of course, these columns can also be used with like to search for
patterns of letters.

Find the meaning of all the columns of the all_sequences table.

select *
from dict_columns
where table_name = 'ALL_SEQUENCES';

Result table

Find the meanings of all the columns of the user_tables table.

Task

Oracle SQL

TABLE_NAME COLUMN_NAME COMMENTS
-------------- --------------- ---------------------------------------
ALL_SEQUENCES SEQUENCE_OWNER Name of the owner of the sequence
ALL_SEQUENCES SEQUENCE_NAME SEQUENCE name
ALL_SEQUENCES MIN_VALUE Minimum value of the sequence
ALL_SEQUENCES MAX_VALUE Maximum value of the sequence
ALL_SEQUENCES INCREMENT_BY Value by which sequence is incremented
ALL_SEQUENCES CYCLE_FLAG Does sequence wrap around on reaching
 limit?
ALL_SEQUENCES ORDER_FLAG Are sequence numbers generated in order?
ALL_SEQUENCES CACHE_SIZE Number of sequence numbers to cache
ALL_SEQUENCES LAST_NUMBER Last sequence number written to disk

Check your understanding

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES278

An Exercise Solved for You

7-18 Create a table of the
days you want to celebrate

This section integrates the various topics discussed in this chapter. We cre-
ate a table, put some data in it, and display it using a date format. I encour-
age you to make your own modifications to the following code and
experiment with any variations that occur to you.

Create a new table to keep track of events in your life you want to celebrate.
Put three columns in the table: a sequence, a text column, and a date col-
umn. Put a primary key on the table using the sequence as a primary key. Put
a few rows of data into the table and list them out, formatting the dates to
show the day of the week, the full name of the month, and a four-digit year.

create table sec0718_my_days
(my_seq_id number,
my_event varchar2(25),
my_date date);

alter table sec0718_my_days
add constraint pk_sec0818_my_days
primary key (my_seq_id);

create sequence seq_sec0718_my_days
start with 1
increment by 1;

insert into sec0718_my_days
values (seq_sec0718_my_days.nextval,
'BIRTH DATE', '16-JAN-1971');

insert into sec0718_my_days
values (seq_sec0718_my_days.nextval,
'COLLEGE GRADUATION', '24-JUN-1993');

Task

Oracle SQL

AN EXERCISE SOLVED FOR YOU 279

insert into sec0718_my_days
values (seq_sec0718_my_days.nextval,
'WEDDING', '14-FEB-1994');

commit;

select my_seq_id,
my_event,
to_char(my_date, 'DAY MONTH DD, YYYY') as my_date
from sec0718_my_days
order by my_seq_id;

create table sec0718_my_days
(my_seq_id counter,
my_event text(25),
my_date datetime);

alter table sec0718_my_days
add constraint pk_sec0718_my_days
primary key (my_seq_id);

insert into sec0718_my_days (my_event, my_date)
values ('Birth Date', #16-jan-1971#);

insert into sec0718_my_days (my_event, my_date)
values ('College Graduation', #24-jun-1993#);

insert into sec0718_my_days (my_event, my_date)
values ('Wedding', #14-feb-1994#);

select my_seq_id,
my_event,
format(my_date, 'DDDD MMMM DD, YYYY') as my_date2
from sec0718_my_days
order by my_seq_id;

Result table

Access SQL

MY_SEQ_ID MY_EVENT MY_DATE
--------- ------------------------- ----------------------------
 1 BIRTH DATE SATURDAY JANUARY 16, 1971
 2 COLLEGE GRADUATION THURSDAY JUNE 24, 1993
 3 WEDDING MONDAY FEBRUARY 14, 1994

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES280

Key Points

■ A format can change the appearance of a field, but cannot change its
value. For example, “October 15, 2010” and “2010-10-15” are two for-
mats for the same date. By specifying the date format you can control
how your dates are displayed.

■ A sequence is usually used to assign sequential numbers to the rows
of a table. This can be used to create the primary key of a table.

■ An index operates behind the scenes to make the database more effi-
cient. Often indexes are created by DBAs, who are responsible for
keeping the database healthy. However, when you create a table with
a primary key, that primary key is implemented by creating an index.

281

chapter 8

This chapter discusses the ways data can be validated before it
is entered into the database. Validation is particularly important
when many people are entering data and sharing the same
database. Validation also ensures that the data meets a certain
level of consistency.

In a relational database, referential integrity is one of the main
techniques of data validation. It protects columns that contain
codes. For example, a column for gender can only contain the
codes M and F. Referential integrity can enforce that rule.

A check constraint is another type of validation. It can check
that some statement is true; for example, “Price is less than
$100.00.” There is always validation on the primary key of a
table to preserve its properties. A not null constraint is a way
to say that the field is required. A unique constraint ensures
that no two rows contain the same value.

The topics in this chapter are not needed to read the rest of this
book. Readers may skip ahead to the next chapter and come
back to this material later.

DATA INTEGRITY

Constraints on One Table . 283

8-1 A constraint keeps the data consistent .283
8-2 check constraints .283
8-3 unique constraints. .285
8-4 not null constraints .287
8-5 primary key constraints .288
8-6 Restrictions on the datatype and length of fields. .289

Referential Integrity. 289

8-7 The concept of RI .290
8-8 An example of RI .291
8-9 Inserts and updates to the data table prevented by RI 293

8-10 Inserts and updates to the data table allowed by RI 294
8-11 Updates and deletes to the lookup table prevented by RI.295
8-12 How to delete a code from the lookup table. .296
8-13 How to change a code in the lookup table .298
8-14 RI as a relationship between the tables. .299
8-15 Setting up RI in the Access GUI .300

The Delete Options and Update Options of RI . 303

8-16 The three options for deletes and updates to the lookup table303
8-17 The delete rule: set null .304
8-18 The delete rule: cascade. .306
8-19 The update rule: cascade .308

Variations of Referential Integrity. 311

8-20 The two meanings of primary key. .311
8-21 Using two or more columns for the primary key .313
8-22 The lookup and data tables can be the same table 315

How to Code Constraints in a Create Table Statement. 316

8-23 Constraints are often coded in the create table statement316

Key Points . 319

283

Constraints on One Table

8-1 A constraint keeps the data consistent

A constraint is a rule that ensures the data in the database meets a certain
level of consistency. This consistency ensures that the data is meaningful
and makes sense to all the people who use the database. The term “con-
straint” is a shortened form of the phrase “data integrity constraint.”

A constraint works by allowing certain changes to the data in the database
and not allowing other changes. The changes that are rejected would vio-
late the rule that the constraint is trying to enforce.

A constraint can work when you use any of the SQL commands to change
the data; that is, the insert, update, or delete command. First, the SQL
command is checked to make sure it makes sense. Then the constraints are
checked to make sure that the proposed changes do not violate any of the
constraint rules. The data in the database is changed only after it has been
shown that all the constraint rules are satisfied.

If you are only getting information from a database that has constraints
and you are not changing any of that information, then you should be able
to rely on the fact that the data is consistent and it obeys all the rules of
the constraints.

There are many types of constraints, but the most important one is referen-
tial integrity (RI). It deals with the relationship between two different
tables. It is one of the more complex constraints. That is why most of this
chapter deals with RI.

Before we get into the details of RI, let’s look at some of the simpler types
of constraints that involve only one single table.

8-2 check constraints

A check constraint ensures that some statement about the data is true for
every row of a table. Oracle supports check constraints, but Access does
not. Access has validation rules, which are somewhat similar. They both val-
idate data when it is being entered or updated. The change to the data is
rejected when it does not pass the test.

A constraint always checks all the old data, so we know that all the data in
the table passes the test. If the old data does not pass the test, the con-
straint is rejected. However, a validation rule does not check the old data
unless we ask it to, so there may be old data in the table that would not
pass the test. That is the main difference.

CHAPTER 8 DATA INTEGRITY284

Another difference is that a check constraint in Oracle is part of Oracle
SQL. It is a command that is issued like any other SQL. A validation rule in
Access is a property and cannot be set through SQL. It can be set in the
GUI, in a macro, or in a module, but not through the SQL window.

In Oracle, set a constraint to check that all the prices in the sec0802_foods
table are less than $10.00. In Access, set a validation rule to do this. (This
constraint has already been set for the l_foods table.)

alter table sec0802_foods
add constraint sec0802_foods_max_price
check (price < 10.00);

Open the sec0802_foods table in Design view and highlight the price col-
umn. Within the General properties set the Validation Rule to be “<10”, with-
out the quotes, and set the Validation Text to be “Price exceeds $10.00”. The
Validation Text line is the error message to be displayed if the rule is not met.

Task

Oracle SQL

Access GUI

CONSTRAINTS ON ONE TABLE 285

Create a check constraint on the hire_date column of the
sec0802_employees table. Check that the hire_date comes after 1995.

8-3 unique constraints

A uniqueness constraint on a table column ensures that every row of that
table contains a different value. In other words, no two rows have the same
value in that column. A null is always allowed in the column. Many rows of
the table can have a null in the column, but all non-null values in the col-
umn can occur only once. A uniquess constraint is sometimes called a
unique constraint. It can be created with an alter table statement.

A unique index is closely related to a uniqueness constraint and does almost
the same thing. However, it is classified as a type of index rather than as a
constraint. Like any other index, it can make some of the processing in the
database more efficient. It can be created with a create index statement.

A uniqueness constraint or a unique index can be placed on a combination
of several columns. Then each column itself could have duplicate values,
but the combination of columns would be required to have a different
value for every row of the table.

For example, if we put a uniqueness constraint on the first_name and
last_name columns of the l_employees table, we could have several
employees with the same first name or last name, but we could not have
any two employees with both the same first name and also with the same
last name.

Place a uniqueness constraint on the phone_number column of the
sec0803_employees table. This will ensure that each employee has his or
her own phone number. Show two ways to do this. Use different tables so
both SQL statements can be run.

alter table sec0803_employees
add constraint unique_sec0803_emp_phone_num
unique (phone_number);

Check your understanding

Task

Oracle SQL: Method 1 — Define a constraint

CHAPTER 8 DATA INTEGRITY286

create unique index uix_sec0803b_emp_phone
on sec0803b_employees (phone_number);

Open the sec0803_employees table in Design view, highlight the line for
the phone_number column and set the Indexed line to the option that says
“Yes (No Duplicates)”, as in the screen shown here.

➊ The method shown can be used to put a uniqueness constraint in one
field. To put a uniqueness constraint in a combination of fields, use:

Table design view ➜ design tab ➜ Indexes

Put a uniqueness constraint on the department_name field of the
sec0803_departments table.

Oracle SQL: Method 2 — Define a unique index

Access GUI method ➊

Notes

Check your understanding

CONSTRAINTS ON ONE TABLE 287

8-4 not null constraints

A not null constraint on a column ensures that there are no nulls in that
column. This is another way to say that data is required in that column. A
not null constraint can only be placed on a single column. In Oracle this
can be coded as a check constraint.

Create a not null constraint for the employee_id column of the
sec0804_lunches table.

alter table sec0804_lunches
add constraint nn_sec0804_lunches_employee_id
check (employee_id is not null);

Open the sec0804_lunches table in Design view, highlight the
employee_id column, and set the Required line to Yes.

Make the last_name column a required field in the sec0804_employees
table.

Task

Oracle SQL

Access GUI

Check your understanding

CHAPTER 8 DATA INTEGRITY288

8-5 primary key constraints

A primary key constraint is a combination of both a unique constraint
and a not null constraint. A table is only allowed to have one primary
key constraint. However it may have several unique constraints or not
null constraints.

Place a primary key constraint on the employee_id column of the
sec0805_employees table.

alter table sec0805_employees
add constraint pk_sec0805_employees
primary key (employee_id);

Open the sec0805_employees table in Design view and highlight the
employee_id column. Click the button on the toolbar that shows a key, as
shown on the following screen.

Task

Oracle & Access SQL

Access GUI

REFERENTIAL INTEGRITY 289

Put a primary key constraint on the sec0805_departments table. Define
the primary key to be the dept_code field.

8-6 Restrictions on the datatype
and length of fields

The datatype definition for each column of a table functions as a con-
straint. That is, it limits the data that can be entered into that column. It
limits the datatype of the data and also the length of the data. For example:

1. The value Jane cannot be entered into a numeric column.

2. The value 123456789 cannot be entered into a numeric column if
the column is restricted to two-digit numbers.

These are restrictions on the data, and therefore they are constraints. How-
ever, most discussions of SQL do not list them as constraints.

Referential Integrity

RI is the main type of data validation within relational databases. It
ensures that certain relationships are maintained between the data in one
table and the data in another table. An RI constraint usually involves two
different tables.

Usually this validation is done when the data is being changed; that is, dur-
ing the processing of insert, update, and delete statements. These
statements will fail if they would change the data in a way that does not
conform to the requirements of RI.

During massive loads of thousands of rows of data, this validation is usu-
ally turned off temporarily. After the load is finished, the validation is
turned on again. So what happens if faulty data is entered during these
loads? We will not be able to turn on the validation until the data has been
fixed. So whenever RI is active, we are assured that one table has a certain
relationship to another table.

Check your understanding

CHAPTER 8 DATA INTEGRITY290

8-7 The concept of RI

The following illustration shows the concept of RI.

RI is a relationship between the data in two columns. These columns are
usually in different tables. One column, called the primary key, contains a
list of all the valid values for some field. The other column, the foreign key,
contains data that is validated against this list. The table containing the list
of valid values is called a lookup table. It is also called a reference table or
the parent table. The other table is sometimes called the data table or the
child table.

The valid values are often a set of codes containing two or three characters.
The lookup table contains a list of these codes and their meanings. Some-
times it also contains additional data about them.

The data in both columns is allowed to change. However the rule must be
maintained that the foreign key can only contain values that are also in the
primary key column. The foreign key can also contain nulls.

The relationship between the data in these two columns has consequences
for the way in which the data is allowed to change. In the lookup table, a
new value can always be inserted into the primary key, but an update or
delete statement is restricted if it would remove a value that is used in the
foreign key.

Primary key
this is the list of
all valid values

A

B

C

Foreign key
the values in this
column are checked
for validity

B

C

A

C

A

null

C

B

Referential integrity

Data table
also called
child table

Lookup table
also called
reference table
or parent table

REFERENTIAL INTEGRITY 291

In the data table, a value can always be deleted or set to null, but any new
value introduced with an insert or update must pass validation, otherwise
it is rejected.

The two columns often have the same or similar names. The database
designers do this to suggest that the columns are related to each other. An
index is usually built on each of the columns to keep the database running
efficiently.

Before the RI relationship can be set up, you must create a primary key, or
at least a unique index, in the lookup table. Access strictly enforces this
rule, but Oracle allows some exceptions.

8-8 An example of RI

In this section we set up a relationship of RI between two tables. The
states table is the lookup table and the clients table is the data table.
More specifically, we create RI between the state_code columns of these
tables.

The states table and the clients table are part of an application for a
salesman. His sales region consists of three states: California, Oregon, and
Washington. He is only allowed to have clients in those states.

In the following example, RI is set up using an alter table statement. The
first line says alter table, and then gives the name of the data table,
which is the table containing the column with data that will be validated.

The second line says add constraint, followed by the name of the con-
straint. The naming convention used here begins all foreign key constraints
with the letters fk_, followed by the names of the table and column that
will be validated. This is one of several popular naming conventions.

The third line specifies that this is a foreign key constraint. This is followed
by the name of the column to be validated, enclosed in parentheses.

The last line specifies the list of all the valid values. The word references
is followed by the name of the lookup table. This implies that the primary
key of the lookup table contains the list of all the valid values.

If the list of valid values is in a column that is different than the primary key
of the lookup table, then the name of that column must be given, enclosed
in parentheses.

CHAPTER 8 DATA INTEGRITY292

Show how to set up RI. Validate the state_code column of the clients table.

alter table sec0808_clients
add constraint fk_sec0808_clients_state_code
foreign key (state_code)
 references sec0808_states (state_code); ➋

Lookup table (sec0808_states table)

Data table (sec0808_clients table)

➊ The state_code column is already the primary key of the lookup table,
the sec0808_states table. This must be done before the RI relation-
ship is created.

➋ Specifying the column with (state_code) is optional here because it is
the primary key of the lookup table. I write the column name even when
it is not required because I feel it makes the code easier for people to
understand.

Set up RI between the sec0808_departments table and the
sec0808_employees table. The sec0808_depatrments table contains a
list of all the valid values of the dept_code field.

Task

Oracle & Access SQL: Set up RI ➊

STATE
CODE STATE_NAME STATE_CAPITAL
----- ------------------------------ -----------------
CA CALIFORNIA SACRAMENTO
OR OREGON SALEM
WA WASHINGTON OLYMPIA

 STATE
CLIENT_ID CLIENT_NAME CODE
--------- ------------------------------ -----
 100 LARRY COHEN CA
 200 ALICE WILLIAMS CA
 300 ROGER WOLF OR
 400 NANCY KERN OR
 500 CATHY LEE WA
 600 STEVEN LAKE WA

Notes

Check your understanding

REFERENTIAL INTEGRITY 293

8-9 Inserts and updates to the
data table prevented by RI

This section shows that RI provides data validation within a foreign key col-
umn of the data table. It prevents a value from being entered into that col-
umn if it is not one of the valid values contained in the lookup table.

The SQL in the following example tries to put New York and Massachusetts
into the state_code column of the clients table. These states are not
part of the sales region, so they are not included in the states table. RI
rejects these insert and update statements.

On the clients table, write an insert and an update statement that will
be rejected by RI.

insert into sec0809_clients
values (700, 'GAIL HAUSER', 'NY');

update sec0809_clients
set state_code = 'MA'
where client_id = 200;

Result — An error message ➊

➊ Access will notify you that an error has occurred and ask you if you want
to run the query anyway. Even if you choose Yes, no change is made to
the tables.

There is already an RI relation between the sec0809_departments table
and the sec0809_employees table. Write an SQL insert statement and an
update statement on the sec0809_employees table that will be rejected
because of RI. Hint: Use a value of the dept_code field that is not one of the
valid codes listed in the sec0809_departments table.

Task

Oracle & Access SQL

Notes

Check your understanding

CHAPTER 8 DATA INTEGRITY294

8-10 Inserts and updates to the
data table allowed by RI

This section shows that RI allows an insert or update statement to occur
in the foreign key column of the data table as long as it follows the rules. A
value can be entered into that column if it is one of the valid values con-
tained in the lookup table.

In the following example, the first two SQL commands are the same as in
the previous section, except that the state codes are valid. These states are
part of the sales region and they are included in the states table. RI allows
these insert and update statements.

In the last insert statement, the state_code is null. This shows that we
can enter a null in a foreign key column, even though there is no null in the
list of valid values.

On the clients table, write an insert and an update statement that will
be allowed by RI.

insert into sec0810_clients
values (700, 'GAIL HAUSER', 'OR');

update sec0810_clients
set state_code = 'WA'
where client_id = 200;

insert into sec0810_clients
values (800, 'CARL LOGAN', null);

Beginning table (sec0810_clients table)

Task

Oracle & Access SQL

 STATE
CLIENT_ID CLIENT_NAME CODE
--------- ------------------------------ -----
 100 LARRY COHEN CA
 200 ALICE WILLIAMS CA
 300 ROGER WOLF OR
 400 NANCY KERN OR
 500 CATHY LEE WA
 600 STEVEN LAKE WA

REFERENTIAL INTEGRITY 295

Ending table

There is already an RI relation between the sec0810_departments table
and the sec0810_employees table. Write an SQL insert statement and an
update statement on the sec0810_employees table that will be accepted
by RI.

8-11 Updates and deletes to the
lookup table prevented by RI

This section shows that RI prevents codes from being changed or deleted in
the lookup table while those codes are being used in the foreign key col-
umn of the data table.

The SQL in the following example tries to change Oregon to Massachusetts
and tries to delete California from the states table. These states are cur-
rently being referred to by rows in the clients table, so RI rejects these
update and delete statements.

Here we are using RI with the restrict option, which is the default and
most commonly used option. Later we look at some other ways to set up
RI.

On the states table, write an update and a delete statement that will be
rejected by RI.

 STATE
CLIENT_ID CLIENT_NAME CODE
--------- ------------------------------ ------
 100 LARRY COHEN CA
 200 ALICE WILLIAMS WA
 300 ROGER WOLF OR
 400 NANCY KERN OR
 500 CATHY LEE WA
 600 STEVEN LAKE WA
 700 GAIL HAUSER OR
 800 CARL LOGAN (null)

Check your understanding

Task

CHAPTER 8 DATA INTEGRITY296

update sec0811_states
set state_code = 'MA'
where state_code = 'OR';

delete from sec0811_states
where state_code = 'CA';

Result — An error message

There is already an RI relation between the sec0811_departments table
and the sec0811_employees table. Write an SQL update statement and a
delete statement on the sec0811_departments table that will be rejected
because of RI.

8-12 How to delete a code from the lookup table

To delete a value from the primary key of a lookup table, we must first
ensure that the value is not being used in the foreign key column by any
row of the data table.

In the following example, we want to remove California from the states
table. Before we can do this, we must remove it from every row of the
clients table. Instead of deleting these clients, we set their state_code
values to null.

Delete California from the states table.

update sec0812_clients
 set state_code = null
where state_code = 'CA';

delete from sec0812_states
where state_code = 'CA';

Oracle & Access SQL

Check your understanding

Task

Oracle & Access SQL

REFERENTIAL INTEGRITY 297

Beginning table 1 (sec0812_states table)

Beginning table 2 (sec0812_clients table)

Ending table 1 (sec0812_states table)

Ending table 2 (sec0812_clients table)

There is already an RI relation between the sec0812_departments table
and the sec0812_employees table. Delete the shipping department from
the sec0812_departments table. Hint: First you must change some data in
the sec0812_employees table.

STATE
CODE STATE_NAME STATE_CAPITAL
------ ------------------------------ --------------------
CA CALIFORNIA SACRAMENTO
OR OREGON SALEM
WA WASHINGTON OLYMPIA

 STATE
CLIENT_ID CLIENT_NAME CODE
--------- ------------------------------ ------
 100 LARRY COHEN CA
 200 ALICE WILLIAMS CA
 300 ROGER WOLF OR
 400 NANCY KERN OR
 500 CATHY LEE WA
 600 STEVEN LAKE WA

STATE
CODE STATE_NAME STATE_CAPITAL
------ ------------------------------ -----------------
OR OREGON SALEM
WA WASHINGTON OLYMPIA

 STATE
CLIENT_ID CLIENT_NAME CODE
--------- ------------------------------ ------
 100 LARRY COHEN (null)
 200 ALICE WILLIAMS (null)
 300 ROGER WOLF OR
 400 NANCY KERN OR
 500 CATHY LEE WA
 600 STEVEN LAKE WA

Check your understanding

CHAPTER 8 DATA INTEGRITY298

8-13 How to change a code in the lookup table

To change a value in the primary key of a lookup table, we use a three-step
process. First, we enter the new code into the lookup table. Second, we
change all the data in the data table from the old code to the new code.
Third, we delete the old code from the lookup table.

In the following example, we want to change the code for California from CA
to ZZ. The reason for doing this is to show the process of accomplishing it.

Change the state_code for California to ZZ in both the states table and
the clients table.

insert into sec0813_states
values ('ZZ', 'CALIFORNIA', 'SACRAMENTO');

update sec0813_clients
 set state_code = 'ZZ'
where state_code = 'CA';

delete from sec0813_states
where state_code = 'CA';

Beginning table 1 (sec0813_states table)

Beginning table 2 (sec0813_clients table)

Task

Oracle & Access SQL

STATE
CODE STATE_NAME STATE_CAPITAL
------ ------------------------------ --------------------
CA CALIFORNIA SACRAMENTO
OR OREGON SALEM
WA WASHINGTON OLYMPIA

 STATE
CLIENT_ID CLIENT_NAME CODE
--------- ------------------------------ ------
 100 LARRY COHEN CA
 200 ALICE WILLIAMS CA
 300 ROGER WOLF OR
 400 NANCY KERN OR
 500 CATHY LEE WA
 600 STEVEN LAKE WA

REFERENTIAL INTEGRITY 299

Ending table 1 (sec0813_states table)

Ending table 2 (sec0813_clients table)

There is already an RI relation between the sec0813_departments table
and the sec0813_employees table. Write SQL to change the code of the
shipping department from SHP to ABC.

8-14 RI as a relationship between the tables

I said before that RI is a relationship between the data in two columns, but
that is not quite the whole story. It is also a relationship between two
tables: the lookup table and the data table. There are two parts to this:

1. We must insert rows into the lookup table before we can insert any
rows into the data table.

2. We cannot drop either table until we drop the RI relationship.

These are the rules in general, but there are ways to get around them,
which we discuss later.

STATE
CODE STATE_NAME STATE_CAPITAL
------ ------------------------------ ----------------
OR OREGON SALEM
WA WASHINGTON OLYMPIA
ZZ CALIFORNIA SACRAMENTO

 STATE
CLIENT_ID CLIENT_NAME CODE
--------- ------------------------------ ------
 100 LARRY COHEN ZZ
 200 ALICE WILLIAMS ZZ
 300 ROGER WOLF OR
 400 NANCY KERN OR
 500 CATHY LEE WA
 600 STEVEN LAKE WA

Check your understanding

CHAPTER 8 DATA INTEGRITY300

8-15 Setting up RI in the Access GUI

This section shows how to set up RI in Access using GUI methods instead
of SQL. The tables used here are called sec0815_states and
sec0815_clients. These are separate copies of the states and clients
tables.

Set up RI between the state_code columns of the sec0815_states table
and the sec0815_clients table. Use the Access GUI to do this.

Step 1: Click the Database Tools tab on the Ribbon. Then click Relationships
in the Show/Hide group. Then click Show Table in the Relationships group.
Then scroll down the Show Table window until you find the
SEC0815_CLIENTS table. Click on it to select it:

Database Tools > Relationships > Show Table > select Tables tab >
select SEC0815_CLIENTS > Add

Task

Access GUI method

REFERENTIAL INTEGRITY 301

Step 2: Choose the tables you want and click Add for each of them. For this
example, choose the SEC0815_STATES table and click Add. Then choose the
SEC0815_CLIENTS table and click Add again. Then close the Show Table
window. These tables will be shown in the Relationships window.

You can drag the tables by their title bars. Here I have rearranged the Rela-
tionships window so only these two tables are shown.

Step 3: Select the primary key. In this example, choose the STATE_CODE col-
umn of the SEC0815_STATES table. Hold the mouse down and drag from the
primary key to the foreign key, then release the mouse button. In this exam-
ple, drag from the STATE_CODE column of the SEC0815_STATES table to the
STATE_CODE column of the SEC0815_CLIENTS table. The Edit Relation-
ships window will open. Select the Enforce Referential Integrity checkbox.

CHAPTER 8 DATA INTEGRITY302

Step 4: Click the Create button. Now RI has been set up and you are done
The line between the two tables shows the RI relationship.

If, at a later time, you want to delete or change the relationship, right-click
the line between the two tables.

Use the Access GUI to set up RI between the sec0815_departments table
and the sec0815_employees table.

Check your understanding

THE DELETE OPTIONS AND UPDATE OPTIONS OF RI 303

The Delete Options and Update Options of RI

The previous sections showed you that a delete or an update to the lookup
table can be disallowed by RI. This is the most common way RI is set up,
but some other options are explained here.

8-16 The three options for deletes
and updates to the lookup table

By default, we are not allowed to change or delete values in the primary key
of the lookup table, when those values occur in the foreign key of the data
table. Having RI operate this way is called the restrict option, because
we are restricted from making these changes to the lookup table.

When we set up RI, we can choose one of three options for handling
deletes from the lookup table. In Access, we can also choose one of three
options for handling updates to the lookup table. This gives us nine ways
to set up RI. The three options are:

■ restrict (the default if we do not choose the other options)

■ set null

■ cascade

In describing RI up to now, I have been describing it with the restrict
option, because this is the most common form. For some special purposes,
we use the set null and cascade options, but they should always be used
carefully.

The set null and cascade options for deletes say that we can always delete a
value from the lookup table. These options for updates say that we can always
change a value in the lookup table. Here are the effects of these options on the
matching values within the foreign key column of the data table:

set null All the matching values in the foreign key column
are automatically changed to null. The rest of the
data in the row is unchanged.

cascade deletes The entire row is deleted from the data table when
there is a matching value in the foreign key column.

cascade updates All the matching values in the foreign key column are
automatically changed to the new value. The rest of the
data in the row is unchanged.

CHAPTER 8 DATA INTEGRITY304

Delete options
Oracle supports all three delete options. From an SQL command, Access
supports only the restrict deletes option. The cascade deletes option is
available, but it must be set in the GUI.

Update options
Both Oracle and Access support the restrict updates option, which is
the default. Access also supports the cascade updates option, which must
be set in the GUI.

8-17 The delete rule: set null

In the next example, the first task sets up RI between the sec0817_states
table and the sec0817_clients table using the set null option. The sec-
ond task deletes California from the lookup table. In the foreign key all the
references to California are automatically changed to null.

Set up RI between the sec0817_states table and the sec0817_clients
table. Use the set null option for deletes.

alter table sec0817_clients
add constraint fk_sec0817_clients_state_code
foreign key (state_code)
 references sec0817_states (state_code)
 on delete set null; ➊

Access does not support this option.

Delete California from the sec0817_states table. Do this when RI has been
set up using the set null option.

delete from sec0817_states
where state_code = 'CA';

Access does not support the delete rule set null.

Task for example 1: Set up RI with set null for deletes

Oracle SQL

Task for example 2: Show how RI works with set null for deletes

Oracle SQL

THE DELETE OPTIONS AND UPDATE OPTIONS OF RI 305

Beginning table 1 (sec0817_states table)

Beginning table 2 (sec0817_clients table)

Ending table 1 (sec0817_states table)

Ending table 2 (sec0817_clients table)

➊ This line creates the set null option.

➋ The state codes for California are automatically changed to nulls in the
foreign key column.

STATE
CODE STATE_NAME STATE_CAPITAL
------ ------------------------------ ------------------
CA CALIFORNIA SACRAMENTO
OR OREGON SALEM
WA WASHINGTON OLYMPIA

 STATE
CLIENT_ID CLIENT_NAME CODE
--------- ------------------------------ ------
 100 LARRY COHEN CA
 200 ALICE WILLIAMS CA
 300 ROGER WOLF OR
 400 NANCY KERN OR
 500 CATHY LEE WA
 600 STEVEN LAKE WA

STATE
CODE STATE_NAME STATE_CAPITAL
------ ------------------------------ -------------------
OR OREGON SALEM
WA WASHINGTON OLYMPIA

 STATE
CLIENT_ID CLIENT_NAME CODE
--------- ------------------------------ ------
 100 LARRY COHEN (null) ➋

 200 ALICE WILLIAMS (null) ➋

 300 ROGER WOLF OR
 400 NANCY KERN OR
 500 CATHY LEE WA
 600 STEVEN LAKE WA

Notes

CHAPTER 8 DATA INTEGRITY306

Set up RI between the sec0817_departments table and the
sec0817_employees table. Handle deletes using the set null rule. Then
show the effect of this rule by deleting the shipping department from the
sec0817_departments table.

8-18 The delete rule: cascade

In the following example, the first task sets up RI between the
sec0818_states table and the sec0818_clients table using the
cascade option for deletes. The second task deletes California from the
lookup table. In the data table all the rows that had CA in the foreign key
column are deleted.

For emphasis, I want to say this again: It is not the values in the foreign key
column that are deleted. It is the entire row of information that gets
deleted automatically, so consider the consequences carefully before you
set up this option.

Set up RI between the sec0818_states table and the sec0818_clients
table. Use the option to have cascading deletes.

alter table sec0818_clients
add constraint fk_sec0818_clients_state_code
foreign key (state_code)
 references sec0818_states (state_code)
 on delete cascade; ➊

Follow the directions in section 8-15 to set up RI with the Access GUI. In the
Edit Relationships dialog box, select two checkboxes:

■ Enforce Referential Integrity

■ Cascade Delete Related Records

Check your understanding

Task for example 1: Set up RI with cascade for deletes

Oracle SQL

Access GUI method

THE DELETE OPTIONS AND UPDATE OPTIONS OF RI 307

Delete California from the sec0818_states table. Do this when RI has been
set up using the cascade deletes option.

delete from sec0818_states
where state_code = 'CA';

Beginning table 1 (sec0818_states table)

Beginning table 2 (sec0818_clients table)

Task for example 2: Show how RI works with cascade for deletes

Oracle & Access SQL

STATE
CODE STATE_NAME STATE_CAPITAL
------ ------------------------------ ------------------
CA CALIFORNIA SACRAMENTO
OR OREGON SALEM
WA WASHINGTON OLYMPIA

 STATE
CLIENT_ID CLIENT_NAME CODE
--------- ------------------------------ ------
 100 LARRY COHEN CA
 200 ALICE WILLIAMS CA
 300 ROGER WOLF OR
 400 NANCY KERN OR
 500 CATHY LEE WA
 600 STEVEN LAKE WA

CHAPTER 8 DATA INTEGRITY308

Ending table 1 (sec0818_states table)

Ending table 2 (sec0818_clients table) ➋

➊ This line creates the cascade option.

➋ All the rows where the state codes were for California are automatically
deleted.

Set up RI between the sec0818_departments table and the
sec0818_employees table. Handle deletes using the cascade rule. Then
show the effect of this rule by deleting the shipping department from the
sec0818_departments table.

8-19 The update rule: cascade

Access has the ability to cascade updates to the parent table and apply
those updates to the child table.

In the following example, the first task sets up RI between the
sec0819_state table and the sec0819_clients table using the cascade
option for updates. The second task changes the abbreviation for California
from CA to ZZ within the lookup table. In the data table, all the rows that
had CA in the foreign key column now have the new value ZZ. This shows
the process of changing codes, even if this example is a bit stretched.

STATE
CODE STATE_NAME STATE_CAPITAL
------ ------------------------------ -------------------
OR OREGON SALEM
WA WASHINGTON OLYMPIA

 STATE
CLIENT_ID CLIENT_NAME CODE
--------- ------------------------------ ------
 300 ROGER WOLF OR
 400 NANCY KERN OR
 500 CATHY LEE WA
 600 STEVEN LAKE WA

Notes

Check your understanding

THE DELETE OPTIONS AND UPDATE OPTIONS OF RI 309

Set up RI between the sec0819_states table and the sec0819_clients
table. Use the option to have cascading deletes.

Follow the directions in section 8-15 to set up RI with the Access GUI. In the
Edit Relationships dialog box, select two checkboxes:

■ Enforce Referential Integrity

■ Cascade Update Related Fields

Delete California from the sec0819_states table. Do this when RI has been
set up using the cascade updates option.

update sec0819_states
 set state_code = 'ZZ'
where state_code = 'CA';

Oracle does not support cascaded updates.

Task for example 1: Set up RI with cascade for updates

Access GUI method

Task for example 2: Show how RI works with cascade for updates

Access SQL

CHAPTER 8 DATA INTEGRITY310

Beginning table 1 (sec0819_states table)

Beginning table 2 (sec0819_clients table)

Ending table 1 (sec0819_states table)

Ending table 2 (sec0819_clients table) ➊

➊ All the rows in the data table where the state codes were CA are auto-
matically changed to ZZ.

Notes

VARIATIONS OF REFERENTIAL INTEGRITY 311

Set up RI between the sec0819_departments table and the
sec0819_employees table. Handle updates using the cascade rule. Then
show the effect of this rule by changing the shipping department code in the
sec0819_departments table from SHP to ABC.

Variations of Referential Integrity

So far when I have described RI to you, the primary key was always a single
column and the foreign key was always in a table that was different from the
primary key. Some other options are presented in the following sections.

8-20 The two meanings of primary key

The term primary key is used with two different meanings. When we are
talking about tables in general, we speak about the primary key as the
unique identifier of each row. It is the noun or the subject of each row. A
table is only allowed to have one primary key, although that key can consist
of several columns.

When we are talking about RI, we speak about the primary key as the list of
valid values, which is contained in the lookup table. A few years ago these
were the same. That is, the list of valid values was always the primary key of
the lookup table.

In the last few years a new option has become available that makes these
two meanings different. The new option is that the list of valid values can
be from a column that is different from the primary key of the lookup table.
An example of this is shown later.

We cannot use just any column of the lookup table. The column must have
a different value in every row and there must be a unique index defined on
the column.

This feature is interesting and it is occasionally useful. But most of the time
a lookup table is designed so that its primary key is its list of valid values.
So we seldom need to distinguish between the two meanings of primary
key.

The following example shows a case where the primary key of the table
for the sec0820_states table is different from the primary key for RI,
the list of valid values. We have two tables, sec0820_states and

Check your understanding

CHAPTER 8 DATA INTEGRITY312

sec0820_clients, with RI between them. The state_capital column of
the sec0820_clients table is validated from the column of the same
name within the sec0820_states table.

Here we see that the state_code column is the primary key of the
sec0820_states table. However, the state_capital column of the
sec0820_states table provides the list of valid values for the RI.

Set up RI between the sec0820_states table and the sec0820_clients
table.

alter table sec0820_states
add constraint unique_sec0820_states_s_capital
 unique (state_capital);

alter table sec0820_clients
add constraint fk_sec0820_clients_state_capital
foreign key (state_capital)
 references sec0820_states (state_capital);

Lookup table (sec0820_states table)

Data table (sec0820_clients table)

Task

Oracle & Access SQL: Step 1, create a uniqueness constraint ➊

Oracle & Access SQL: Step 2, create RI ➋

STATE
CODE STATE_NAME STATE_CAPITAL
------ ------------------------------ ----------------
CA CALIFORNIA SACRAMENTO
OR OREGON SALEM
WA WASHINGTON OLYMPIA

CLIENT_ID CLIENT_NAME STATE_CAPITAL
--------- ------------------------------ ------------------
 100 LARRY COHEN SACRAMENTO
 200 ALICE WILLIAMS SACRAMENTO
 300 ROGER WOLF SALEM
 400 NANCY KERN SALEM
 500 CATHY LEE OLYMPIA
 600 STEVEN LAKE OLYMPIA

VARIATIONS OF REFERENTIAL INTEGRITY 313

➊ A uniqueness constraint must be put on the state_capital column of
the sec0820_states table, which is the lookup table. This creates the
restriction that each row of the table must have a different value in this
column. This uniqueness constraint is required before the RI constraint
can be created.

It is also possible to make the state_capital column the primary key
of the sec0820_states table. This is another way to create the restric-
tion that each row of the table must have a different value in this column
and it allows the RI constraint to be created. However, in this example,
this is not possible because the state_code column is already defined
to be the primary key of the sec0820_states table.

This restriction is necessary so that when a specific value is “looked up”
in the sec0820_states table, only a single row of that table can have a
matching value.

➋ This alter table statement creates the RI constraint on the
state_capital column. Now we might say that the state_capital
column of the sec0820_states table is the “primary key of the RI rela-
tionship” even though it is not the primary key of the table.

8-21 Using two or more columns
for the primary key

All of our examples so far have had a single column as the primary key. This
is by far the most common situation when we are using a lookup table and
RI. However it is also possible to have several columns in the primary key
of the lookup table and within the data table to validate the combination of
several columns together.

In fact, this is done in the Lunches database. We have RI between the
l_foods table and the l_lunch_items table. The combination of the
supplier_id and product_code columns is validated for every row of the
l_lunch_items table.

Show how RI is set up between the l_foods table and the l_lunch_items
table. So this code will run, I use copies of these tables here.

Notes

Task

CHAPTER 8 DATA INTEGRITY314

alter table sec0821_lunch_items
add constraint fk_sec0821_lunch_items_foods
foreign key (supplier_id, product_code) ➊

 references sec0821_foods (supplier_id, product_code); ➋

Lookup table (sec0821_foods table)

Data table (sec0821_lunch_items table)

➊ The foreign key consists of two columns, supplier_id and
product_code, of the sec0821_lunch_items table. These two col-
umns are in a specific order and are taken together to form a single unit,
which is the foreign key, whose value needs to be verified. This is the
same idea that allows the primary key of a table to consist of several col-
umns, even though the primary key is considered to be a single entity.

➋ The list of all the valid values for the foreign key resides in the rows of
the sec0821_foods table. Specifically, in the supplier_id column and
product_code column of that table. Again, these two columns form a
single unit, an ordered pair, in which the columns have a specific order.

Oracle & Access SQL

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- ----------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

 SUPPLIER PRODUCT
 LUNCH_ID ITEM_NUMBER ID CODE QUANTITY
--------- ----------- -------- ------- ---------
 1 1 ASP FS 1
 1 2 ASP SW 2
 1 3 JBR VR 2
 2 1 ASP SW 2
(and many more)

Notes

VARIATIONS OF REFERENTIAL INTEGRITY 315

8-22 The lookup and data tables
can be the same table

It is possible for the lookup table and the data table to be the same table.
That is, one column of a table is validated against another column from the
same table. In fact this occurs within the Lunches database. The
l_employees table has an employee_id column and a manager_id col-
umn. Each manager_id is required to be a valid employee_id.

Show how RI is set up between the employee_id column and the
manager_id column of the l_employees table.

alter table sec0822_employees ➊

add constraint fk_sec0822_emp_manager_id
foreign key (manager_id)
 references sec0822_employees (employee_id); ➊

The lookup table and the data table are the same table(sec0822_employees table)

➊ The same table, the sec0822_employees table, is named in both the
alter table clause and the references clause. This creates the condi-
tion that the data table and the lookup table are both the same table.

➋ The employee_id column is the primary key of the table, so each row of
the table must have a different value in this column. This column is also
the primary key of the RI relationship. It is the list of all the valid values
that may be entered into the manager_id column.

Task

Oracle & Access SQL

EMPLOYEE FIRST LAST DEPT CREDIT PHONE MANAGER
 ID➋ NAME NAME CODE HIRE_DATE LIMIT NUMBER ID➌

-------- ------ -------- ------ ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Notes

CHAPTER 8 DATA INTEGRITY316

➌ Each time a new row is inserted into the table or a row within the table is
changed, the value in the manager_id column is checked to verify that
the value is valid. To be valid, that same value must be present in the
employee_id column of some row already in the table. If the value in
the manager_id column is not valid, then the new row or the changed
row is not accepted into the table.

How to Code Constraints in a
Create Table Statement

This section shows some examples of how to code constraints in the
create table statement. You will often see this done in production code.
The advantage to doing this is that it puts all the code in one place. It com-
pacts the code into a single unt. This is great after the code has been fully
developed and debugged.

However, when you first develop some new code, I suggest that you do not
use this method of coding. Instead, write each constraint separately as I
have done in this chapter up to now. This spreads the code out in small
pieces so that errors are easier to isolate and fix.

8-23 Constraints are often coded
in the create table statement

When you code a constraint within a create table statement, if the con-
straint affects only one column of this table, you can define the constraint at
the same time that you define the column. You can often define them both
on the same line of code. This is sometimes called a column constraint.

However, if the constraint involves more than one column of this table, you
are only allowed to code it after you have defined all the columns of the
table. It goes in a separate section of the create table statement. This is
sometimes called a table constraint.

There are two variations of this coding. In the easiest method, you allow
the database to assign all the names of the constraints. With a little more
effort you can name the constraints yourself.

Constraint names are not used much, so many people feel that it is not
important what the names are. However, they do appear in error messages.
If you want the people using the database to understand the error mes-
sages when they occur, then it is best to assign names to the constraints
that can be easily recognized.

HOW TO CODE CONSTRAINTS IN A CREATE TABLE STATEMENT 317

Show how to code the constraints on the l_employees table within the
create table statement for that table.

create table sec0823a_employees
(employee_id number(3) primary key, ➊

first_name varchar2(10) not null,
last_name varchar2(20) not null,
dept_code varchar2(3) references

 sec0823a_departments(dept_code),
hire_date date,
credit_limit number(4,2) check

 (credit_limit < 50),
phone_number varchar2(4) unique,
manager_id number(3) references

 sec0823a_employees(employee_id),
unique (first_name, last_name)); ➋

create table sec0823a_employees
(employee_id integer primary key, ➊

first_name varchar(10) not null,
last_name varchar(20) not null,
dept_code varchar(3) references
 sec0823a_departments(dept_code),
hire_date datetime,
credit_limit money check(credit_limit < 50),
phone_number varchar(4) unique,
manager_id integer references
 sec0823a_employees(employee_id),
unique (first_name, last_name)); ➋

create table sec0823b_employees
(employee_id number(3) constraint pk_employee_id ➊

 primary key,
first_name varchar2(10) constraint nn_first_name

 check (first_name is not null),
last_name varchar2(20) constraint nn_last_name

 check (last_name is not null),
dept_code varchar2(3) constraint fk_dept_code
 references
 sec0823b_departments(dept_code),

Task

Oracle SQL: Method 1 — Without naming the constraints

Access SQL: Method 1 — Without naming the constraints

Oracle SQL: Method 2 — Giving your own names to the constraints

CHAPTER 8 DATA INTEGRITY318

hire_date date,
credit_limit number(4,2) constraint max_credit_limit

 check (credit_limit < 50),
phone_number varchar2(4) constraint unique_phone_num
 unique,
manager_id number(3) constraint fk_manager_id
 references

 sec0823b_employees(employee_id),
constraint unique_full_name

 unique (first_name, last_name)); ➋

create table sec0823b_employees
(employee_id integer constraint pk_employees ➊

 primary key,
first_name varchar(10) constraint nn_first_name
 not null,
last_name varchar(20) constraint nn_last_name
 not null,
dept_code varchar(3) constraint fk_dept_code
 references

 sec0823b_departments(dept_code),
hire_date datetime,
credit_limit money constraint max_credit_limit

 check (credit_limit < 50),
phone_number varchar(4) constraint unique_phone_num
 unique,
manager_id integer constraint fk_manager
 references

 sec0823b_employees(employee_id),
constraint unique_full_name

 unique (first_name, last_name)); ➋

➊ The column constraints begin with the employee_id column and end
with the manager_id column. Some columns of the table might not
have a column constraint defined on them. In this example, the
hire_date column does not have a column constraint.

➋ The table constraints begin here. A table constraint can involve more
that one column. There can be many table constraints, although this
example has only one. Note that there is a comma at the end of the def-
inition of the last column of the table (the manager_id column) when
table constraints are being defined.

Access SQL: Method 2 — Giving names to the constraints

Notes

KEY POINTS 319

Key Points

■ The purpose of data integrity is to keep all the data in the database
consistent so everyone can use it.

■ The mechanism of data integrity is to define constraints, which are
rules that sometimes do not allow you to add, change, or delete data.
In a well designed database, the message is always clear about why
this action is not allowed and what you can do to correct it. Unfortu-
nately, many databases have messages that are somewhat confusing.

■ An RI constraint restricts the values that can be entered into a specific
column. The list of valid values is in the primary key column of
another table. This ensures that the second table is a valid lookup
table for the column. That is, for any value that is in the column, the
lookup table has a match and can provide additional information,
such as the meaning of a coded field.

■ RI is a complex topic and there are several variations of it. The main
issue is how you can change the list of valid values.

■ A check constraint establishes a rule that the data must pass, for
example, that a number must be between 10 and 50.

■ A unique constraint says that every value in the column must be dif-
ferent. Any two rows must have different values.

■ A not null constraint says that nulls are not allowed in the column;
that is, the data value is required.

■ A primary key constraint is a combination of a unique constraint
and a not null constraint.

■ The datatype of a column can restrict the size of a number that can be
put into the column or the length of test that can be put into the col-
umn. In this way it is also a type of constraint.

This page intentionally left blank

321

chapter 9

In all the select statements we have written so far, the data in
the result was an exact copy of the data in some cell of the
beginning table. In this chapter, we remove that limitation. Row
functions can create new values that do not exist in the original
table.

ROW
FUNCTIONS

Introduction to Row Functions. 323

9-1 Getting data directly from the beginning table .323
9-2 What is a row function? .324
9-3 An example of a row function in the select clause327
9-4 An example of a row function used in all the clauses of a

select statement .329
9-5 Defining a row function as the first step .331

Numeric Functions . 334

9-6 Functions on numbers. .334
9-7 How to test a row function .336
9-8 Another way to test a numeric row function .337

Text Functions . 340

9-9 Functions on text .340
9-10 Combining the first and last names. .344
9-11 Separating the first and last names .346
9-12 Formatting phone numbers .348

Date Functions . 350

9-13 Functions on dates .350
9-14 An example of a date function .354
9-15 Removing the time from a date .356

Key Points . 359

323

Introduction to Row Functions

Row functions calculate a new value based on the data in a single row of
the table. The value can be based on the data in one column or several dif-
ferent columns. Some row functions operate on numbers, and others oper-
ate on text or on dates.

9-1 Getting data directly from the beginning table

In all the SQL we have done so far, the data in the result table came directly
from the data in the original table. More specifically, the value in each cell
of the result table was copied from some cell of the original table. No
change at all was made to the value in the cell.

The following conceptual diagram shows this process. Data from a few rows
and columns of the beginning table are gathered together to form the
result table. All the other data in the beginning table is ignored.

Beginning table

Result table

The value in
every cell
comes from the
beginning
table.

CHAPTER 9 ROW FUNCTIONS324

9-2 What is a row function?

Row functions calculate or construct a new value that is not in the begin-
ning table. This new value is constructed from the values in one or more
cells of the original table. All these cells must be part of a single row within
the table.

The following conceptual diagram shows a row function as seen from a
point of view that considers one row of the beginning table. A single new
value is constructed by the function from the values in one or more cells of
the row.

The next conceptual diagram shows a row function as seen from the point
of view that considers all the rows of the beginning table. A new value is
created for each row. In effect, this adds a new column of data to the begin-
ning table. Then the techniques you have already learned are applied to
this enhanced table to create a final report from some of the rows and
some of the columns.

The new values may appear in the result table, they may be used to pick
rows from the beginning table, or they may be used to sort the rows of the
result table. That is, the row function may be used in the select clause,
the where clause, or the order by clause of a select statement.

The new column of information is not stored on the disk with the other
data of the table. It does not become a permanent part of the table itself.
Rather, it is held in memory while the select statement is being pro-
cessed. The memory is released after the select statement has finished
processing, so the new column of data exists only while one select state-
ment is being processed.

Beginning table

New value
Created by a row
function from the
values in one or
more columns of
a single row.

INTRODUCTION TO ROW FUNCTIONS 325

More precisely, the processing of the select statement occurs as if the
new values were all stored in memory. Actually, the computer is allowed to
take shortcuts as long as it obtains the correct result. The new values may
be calculated for only a few of the rows, if that is sufficient to obtain the
result table.

Of course, you can create a new table that stores the new column as data
on the disk by using the create table statement you learned in section
4-1. An example of this is shown next.

Create a new table that adds a new column to the l_foods table. Create the
new column by using a row function that adds together the price and the
price_increase columns. Name this column new_price.

create table sec0902_foods as
select l_foods.*, ➊

 price + price_increase as new_price
from l_foods;

Task

Oracle SQL

Beginning table

Step 1:
Create a new
column by
applying the
row function to
every row.

Result table

Step 2:
Select the data
you want.

CHAPTER 9 ROW FUNCTIONS326

select l_foods.*, ➊

 price + price_increase as new_price
into sec0902_foods
from l_foods;

Beginning table (l_foods table)

New table with a column created by a row function (seec0902_foods table)

Access SQL

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- ------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

SUPPLIER PRODUCT MENU PRICE NEW
ID CODE ITEM DESCRIPTION PRICE INCREASE PRICE
-------- ------- ------- ------------------ -------- -------- ------
ASP FS 1 FRESH SALAD $2.00 $0.25 $2.25
ASP SP 2 SOUP OF THE DAY $1.50 (null) (null) ➋

ASP SW 3 SANDWICH $3.50 $0.40 $3.90
CBC GS 4 GRILLED STEAK $6.00 $0.70 $6.70
CBC SW 5 HAMBURGER $2.50 $0.30 $2.80
FRV BR 6 BROCCOLI $1.00 $0.05 $1.05
FRV FF 7 FRENCH FRIES $1.50 (null) (null) ➋

JBR AS 8 SODA $1.25 $0.25 $1.50
JBR VR 9 COFFEE $0.85 $0.15 $1.00
VSB AS 10 DESSERT $3.00 $0.50 $3.50

INTRODUCTION TO ROW FUNCTIONS 327

➊ In both Oracle and Access, when we follow select * with additional col-
umns, we need to add the table name and a period before the asterisk.

➋ The new_price is null when the price_increase is null because a null
is an unknown value. In general, when a null is added to another value
the result is a null.

Create a new table, named sec0902_employees, that adds two new
columns to the l_employees table. Create the new columns by using
the following row functions:

Column Name: full_name

Oracle: first_name || ' ' || last_name

Access: first_name & ' ' & last_name

Column Name: new_credit_limit

Oracle & Access: credit_limit + 10.00

9-3 An example of a row function
in the select clause

In the previous section I used a row function to create a new column in the
table. This is step 1 in the diagram on page 325. In that example I did not
go on to step 2, which would select some data from the new table I created.
In this section I combine both steps in a single select statement. I use a
row function, which defines a new column, and I also select data to display
in the final report.

In this example the price increase is added to the price, which creates a
new price. This is a function because a new value is obtained. This function
uses two columns from the beginning table: price and price_increase.
Other row functions can use a single column or multiple columns.

Notes

Check your understanding

CHAPTER 9 ROW FUNCTIONS328

From the l_foods table list the menu_item, description, and
new_price. Calculate the new_price by adding together price and
price_increase.

select menu_item,
 description,
 price + price_increase as new_price ➊

from l_foods
where menu_item < 15
order by menu_item;

Beginning table (l_foods table)

Result table

Task

Oracle & Access SQL

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

 MENU NEW
 ITEM DESCRIPTION PRICE
------- -------------------- ------
 1 FRESH SALAD $2.25
 2 SOUP OF THE DAY (null)
 3 SANDWICH $3.90
 4 GRILLED STEAK $6.70
 5 HAMBURGER $2.80
 6 BROCCOLI $1.05
 7 FRENCH FRIES (null)
 8 SODA $1.50
 9 COFFEE $1.00
 10 DESSERT $3.50

INTRODUCTION TO ROW FUNCTIONS 329

➊ This is the row function.

The following select statement lists all the employees hired before Jan-
uary 1, 2000 and shows their credit limits. Modify this statement to add
$10.00 to their credit limits.

This change in the amount of the credit limits shows up in this one result
table, but does not affect the data in the underlying table.

select employee_id,
 first_name,
 last_name,
 credit_limit
from l_employees
order by employee_id;

9-4 An example of a row function used in
all the clauses of a select statement

This section shows an example of a row function used in several clauses of
a select statement. In this example it is used in the select clause, where
clause, and order by clause. Each time it is used we must write out the
entire function. This is not ideal, and the next section shows you how to
avoid writing out the function many times.

In this example, the function is fairly simple and writing it several times is
not much of a problem. However, when a function is longer and more com-
plex, having several copies of it can create a problem. When small changes
are made to one instance of the function and not the others, it can be very
difficult to debug.

In the following code, parentheses are put around the function when it is
written in the where clause and the order by clause. These are optional,
but I use them because I think it makes the code easier to read.

Notes

Check your understanding

CHAPTER 9 ROW FUNCTIONS330

From the l_foods table list the menu_item, description, and
new_price. Calculate the new_price by adding together the price and the
price_increase. List only the foods where the new price is greater than
$2.00. Sort the rows of the result table on the new_price column.

select menu_item,
 description,
 price + price_increase as new_price ➊

from l_foods
where (price + price_increase) > 2.00 ➋

order by (price + price_increase); ➌

Beginning table (l_foods table)

Result table ➍

Task

Oracle & Access SQL

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

 MENU NEW
 ITEM DESCRIPTION PRICE
------- -------------------- ------
 1 FRESH SALAD $2.25
 5 HAMBURGER $2.80
 10 DESSERT $3.50
 3 SANDWICH $3.90
 4 GRILLED STEAK $6.70

INTRODUCTION TO ROW FUNCTIONS 331

➊ In the select clause the function is written for the first time.

➋ In the where clause the entire function must be written out again.

➌ In the order by clause the entire function must be written out again.

➍ Rows having a null in the new_price column do not satisfy the condi-
tion in the where clause, so they do not appear in the result table.

From the l_employees table list the employee ID, first name, last name,
and new credit limit (which is credit_limit + 10.00) for all employees
whose new credit limit is above $20.00. Sort the rows by the new credit limit.

9-5 Defining a row function as the first step

This section shows you a technique that can be used when the same row
function is used in several different clauses of a select statement. When
this was done in the previous section, the function was written several
times. We had no guarantee that the function was exactly the same each
time it was used. A typing error could make one instance slightly different
from another.

This technique prevents such differences from occurring. It also makes the
code easier to write and understand. If the row function is complex, it
ensures that all references to the function are defined in exactly the same
way. I recommend using this technique in most situations.

The first step of this technique creates a table or view that defines the new
column using the row function. The next step is able to use the name of the
new column in several places without rewriting the entire definition of the
row function.

The task is the same as in the previous section.

Notes

Check your understanding

Task

CHAPTER 9 ROW FUNCTIONS332

create or replace view sec0905_step1_view as
select menu_item,
 description,
 price + price_increase as new_price ➋

from l_foods;

Part 1: Enter this in the SQL window:

select menu_item,
 description,
 price + price_increase as new_price
from l_foods;

Part 2: Save the query. Name it sec0905_step1_view.

select menu_item,
 description,
 new_price ➌

from sec0905_step1_view
where new_price > 2.00 ➍

order by new_price; ➎

Beginning table (l_foods table)

Oracle SQL: Step 1 — Create a view ➊

Access SQL: Step 1 — Create a view ➊

Oracle & Access SQL: Step 2 — Use the new view ➋

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

INTRODUCTION TO ROW FUNCTIONS 333

Result table produced by step 1

Result table produced by step 2

➊ The first step of this technique creates a view that defines the row func-
tion and gives a name to the column it creates. Step 1 could have cre-
ated a table instead of a view, but using a view is usually more efficient.

Note that the row function is written only once with the new technique.
However, with the previous technique, it had to be written several times.

➋ The second step is almost the same as the select statement in section
9-4. One difference is that the view created in step 1 is used in the from
clause. Another difference is that the name of the new column is used
in all the clauses instead of writing out the explicit definition of the
function.

➌ Here, the new_price column is used in the select clause.

➍ Here, the new_price column is used in the where clause.

➎ Here, the new_price column is used in the order by clause.

 MENU NEW
 ITEM DESCRIPTION PRICE
------- -------------------- ------
 1 FRESH SALAD $2.25
 2 SOUP OF THE DAY (null) ➏

 3 SANDWICH $3.90
 4 GRILLED STEAK $6.70
 5 HAMBURGER $2.80
 6 BROCCOLI $1.05
 7 FRENCH FRIES (null)
 8 SODA $1.50
 9 COFFEE $1.00
 10 DESSERT $3.50

 MENU NEW
 ITEM DESCRIPTION PRICE
------- -------------------- ------
 1 FRESH SALAD $2.25
 5 HAMBURGER $2.80
 10 DESSERT $3.50
 3 SANDWICH $3.90
 4 GRILLED STEAK $6.70

Notes

CHAPTER 9 ROW FUNCTIONS334

➏ A null is an unknown number, so a null added to any other number is a
null; at least this is the case for row functions. To prevent a null from
occurring here, you can use the nvl function in Oracle or the nz function
in Access. These functions can change the nulls in the price_increase
column into zeros. Then the addition will work. I show you how to do
this in chapter 10.

Repeat the exercise in the previous section, but this time do it in two steps.
In step 1, define a view that includes all the fields you need and defines the
new credit limit field. In step 2 write a select statement based on that view.

Numeric Functions

Some row functions perform arithmetic on numbers. Others round or trun-
cate numbers.

9-6 Functions on numbers

The row functions for arithmetic do exactly what you expect them to do. An
asterisk is used for the multiplication sign, as it is in most computer lan-
guages. Null does not mean zero. It means an unknown value. So any row
function that operates on a null produces a null as the result.

The following table shows some of the most frequently used functions on
numbers. I omitted from this list the trigonometry functions and loga-
rithms. Both Oracle and Access have them. Other, more specialized func-
tions can be found in the technical reference.

Frequently used numerical functions.

Check your understanding

Oracle Access Description Examples

ARITHMETIC

+ + Addition Oracle & Access: 3 + 2 = 5
Oracle & Access: 3 + null = null

– – Subtraction Oracle & Access: 3 – 2 = 1
Oracle & Access: 3 – null = null

* * Multiplication Oracle & Access: 3 * 2 = 6
Oracle & Access: 3 * null = null

NUMERIC FUNCTIONS 335

Frequently used numerical functions. (continued)

Oracle Access Description Examples

ARITHMETIC (continued)

/ / Division Oracle & Access: 10 / 3 = 3.3333
Oracle & Access: 10 / null = null

power ^ Value raised to an
exponent

Oracle: power(5, 2) = 25
Access: 5^2 = 25

sqrt sqr Square root Oracle: sqrt(25) = 5
Access: sqr(25) = 5

(can be
made)

\ Integer division Access: 20 \ 3 = 6
Access: 20 \ null = null
Oracle equivalent: floor(20 / 3) = 6

mod mod Remainder after
division

Oracle: mod(10, 3) = 1
Access: 10 mod 3 = 1

SIGN, ROUNDING, AND TRUNCATION

sign sgn Sign indicator
(1 if positive,
–1 if negative,
0 if zero)

Oracle: sign(–8) = –1
Access: sgn(–8) = –1

abs abs Absolute value Oracle & Access: abs(–8) = 8

ceil (can be
made)

Smallest integer
larger than or equal
to a value

Oracle: ceil(3.5) = 4
Access equivalent: int(3.5 + 0.9) = 4

floor int Largest integer less
than or equal to a
value

Oracle: floor(3.5) = 3
Access: int(3.5) = 3

round (can be
made)

Round to a specified
precision

Oracle: round(3.4567, 2) = 3.46
Access equivalent:
int(3.4567 *(10^2)+0.5)/(10^2)= 3.46

trunc (can be
made)

Truncate to a
specified precision

Oracle: trunc(3.4567, 2) = 3.45
Access equivalent:
int(3.4567 *(10^2))/(10^2)= 3.45

CHAPTER 9 ROW FUNCTIONS336

9-7 How to test a row function

This section shows you one technique for testing a row function. This is a
way to discover what a row function does by using it to calculate a value.

The problem with doing calculations in SQL is that everything in SQL must
be done in terms of tables. You must begin with a table and end with a
table. So how can you multiply two numbers?

You have to start with a table — any table. It does not matter what data is
in the table. Oracle provides a special table set up for this purpose. It is
called the dual table. It has only one row and one column. In Access, I have
created this table for you. In other Access databases you may have to cre-
ate this table yourself. When you do this, be sure to put some data in the
table. It does not matter what the values are, but they should not be a null.
Actually, any table with only one row will work, so we could use the
l_constants table here instead of the dual table.

This technique does not use the data in the beginning table. It only uses
the table as a framework to get the select statement to process.

What I have just described is the traditional way that SQL worked — a table
of some sort was always required in any SQL statement. However Access
has created a new way to work around this problem. In Access you can write
only the select clause and omit any reference to a table.

Show how to test a row function. As an example, show 3 * 4 = 12.

select 3 * 4
from dual;

select 3 * 4;

Beginning table (dual table with dummy data)

Task

Oracle & Access SQL ➊

Access SQL ➋

D
-
X

NUMERIC FUNCTIONS 337

Result table

➊ The dual table is used here as an empty vessel. It provides the structure
of a table, but no content. It provides a framework to carry other content.

➋ No table name is required.

9-8 Another way to test a numeric row function

This section shows you another way to test a function on numbers. In the
previous technique, we saw only one specific calculation. One of the signif-
icant features of numbers is that they form patterns. Using the previous
technique, you could not see the pattern, but with this technique, you can.

This technique uses a table I set up for you containing all the numbers from
–10 to +10. The numeric function is calculated on each of these numbers.
The advantage is that you get to see how the function behaves over a range
of values and the pattern that is created. If you want to see a larger range,
you can use another table I set up for you called Numbers_0_to_99.

Test the function MOD(x, 3) where x goes from –10 to +10.

select n,
 mod(n, 3)
from sec0908_test_numbers
order by n;

select n,
 n mod 3
from sec0908_test_numbers
order by n;

 3*4

 12

Notes

Task

Oracle SQL

Access SQL

CHAPTER 9 ROW FUNCTIONS338

Beginning table (sec0908_test_numbers table)

Result table ➊

 N

 -10
 -9
 -8
 -7
 -6
 -5
 -4
 -3
 -2
 -1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 N MOD(N,3)
--------- ---------
 -10 -1
 -9 0
 -8 -2
 -7 -1
 -6 0
 -5 -2
 -4 -1
 -3 0
 -2 -2
 -1 -1
 0 0
 1 1
 2 2
 3 0
 4 1
 5 2
 6 0
 7 1
 8 2
 9 0
 10 1

NUMERIC FUNCTIONS 339

➊ The last column shows the pattern created by MOD 3. This pattern is 0,
1, 2, 0 ... on the positive numbers and it is 0, –1,–2, 0 ... on the negative
numbers.

Test the following numeric row functions over a range of values from –10 to
+10, using the table sec0908_test_numbers.

➋ Oracle handles this differently than Access. Oracle returns an error mes-
sage and no result table. It refuses to process the query at all. Access
produces a result table and calculates a result for all the values of n
except when n = 0. It says “#Error” for the value of 10/n when n = 0.

➌ Add the condition: WHERE NOT (n = 0)

➍ Oracle handles this differently than Access. Oracle returns an error mes-
sage and no result table. It refuses to process the query at all. Access
produces a result table and calculates a result for all the values of n
except when n < 0. It says “#Error” for the value of the square root when
n < 0.

➎ Add the condition: WHERE n >= 0

Notes

Check your understanding

Purpose Oracle Access

Multiplication 5 * n 5 * n

Division of n n / 10 n / 10

Division by n ➋ 10 / n 10 / n

Division by n ➌ 10 / n 10 / n

Exponents power(2, n) 2^n

Square root ➍ sqrt(n) sqr(n)

Square root ➎ sqrt(n) sqr(n)

Integer part of division floor(n/3) n\3

Remainder after division mod(n,3) n mod 3

Notes for “Check your understanding”

CHAPTER 9 ROW FUNCTIONS340

Text Functions

Some row functions operate on text. Most of them produce text as output,
but a few of them produce numbers. Text functions are also sometimes
called character functions or string functions.

9-9 Functions on text

The table that follows shows the row functions on text that are used most
often. Other ones can be found in the technical manuals. These row func-
tions operate on both fixed length and variable length strings of characters.

The names of some of the Access functions here contain both uppercase
and lowercase letters. This is done for readability, not because the names
of these functions are case sensitive. It is a convention in Access that if the
name is formed from two or more words, the first letter of each word is cap-
italized. For instance, the name of the function StrConv is a shortened
form of String Conversion. The functions still work if you write them in all
lowercase letters, but they are not as easy for people to understand.

Frequently used textual row functions.

Oracle Access Description Examples

FUNCTIONS THAT RESULT IN TEXT

concat

or ||
&

or
+

Concatenation Oracle:
concat('sun', 'flower') = 'sunflower'

Oracle:
'sun' || 'flower' = 'sunflower'

Access:
'sun' & 'flower' = 'sunflower'

Access:
'sun' + 'flower' = 'sunflower'

Parameters:
first part = 'sun'

second part = 'flower'

Notes: In Access, + and & are different in
how they handle nulls.
'sun' + null = null

'sun' & null = 'sun'

TEXT FUNCTIONS 341

Frequently used textual row functions. (continued)

Oracle Access Description Examples

FUNCTIONS THAT RESULT IN TEXT (continued)

substr Mid Substring Oracle:
substr ('sunflower', 4, 3) = 'flo'

Access:
mid('sunflower', 4, 3) = 'flo'

Parameters:
beginning string = 'sunflower'

starting position = 4

length = 3

replace Replace Replace string Oracle & Access:
replace ('ABCABC', 'AB', '1234') =

 '1234C1234C'

Parameters:
beginning string = 'ABCABC'

substring to be replaced = 'AB'

string used for replacement = '1234'

rpad (not
available)

Right Pad Oracle:
rpad('DOG', 10, '*-') = 'DOG*-*-*-*'

Parameters:
beginning string = 'DOG'

ending length = 10

padding string = '*-'

lpad (not
available)

Left Pad Oracle:
lpad('DOG', 10, '*-') = '*-*-*-*DOG'

Parameters:
beginning string = 'DOG'

ending length = 10

padding string = '*-'

(can be
made)

String Create a string
of specified
length

Access: string(5,'A') = 'AAAAA'
Parameters:
ending length = 5

character to repeat = 'A'

Oracle equivalent: rpad('A', 5, 'A')

soundex (not
available)

Find names
that sound
similar but
might be
spelled
differently

Oracle example:
select name

from names_table

where soundex(name)=soundex('John')

CHAPTER 9 ROW FUNCTIONS342

Frequently used textual row functions. (continued)

Oracle Access Description Examples

FUNCTIONS THAT CONTROL CAPITALIZATION

upper UCase

or
StrConv(,1)

Uppercase
or
string conversion

Oracle:
upper ('sunflower') = 'SUNFLOWER'

Access:
ucase('sunflower') = 'SUNFLOWER'

Access:
StrConv('sunflower',1) = 'SUNFLOWER'

lower LCase

or
StrConv(,2)

Lowercase
or
string conversion

Oracle:
lower ('SUNFLOWER') = 'sunflower'

Access:
lcase('SUNFLOWER') = 'sunflower'

Access:
StrConv('SUNFLOWER',2) = 'sunflower'

initcap StrConv(,3) Initial capital
for each word

Oracle:
initcap ('sun flower') = 'Sun Flower'

Access:
StrConv('sun flower', 3)= 'Sun Flower'

FUNCTIONS THAT CONTROL BLANK SPACES

ltrim LTrim Left trim:
remove spaces
on left

Oracle & Access:
ltrim(' hello world ') =

 'hello world '

rtrim RTrim Right trim:
remove spaces
on right

Oracle & Access:
rtrim(' hello world ') =

 ' hello world'

trim Trim Trim on both
the left and
right

Oracle & Access:
trim(' hello world ') =

 'hello world'

(can be
made)

Space Create a string
of spaces of
specified
length

Access:
space(5) =' '

Parameters:
ending length = 5

Oracle equivalent: rpad(' ', 5, ' ')

TEXT FUNCTIONS 343

Frequently used textual row functions. (continued)

Test the following row functions using the dual table technique. (See section
9-7.) If you are using Access, you do not need to use the dual table.

FUNCTIONS THAT RESULT IN NUMBERS

length Len Number of
characters in a
text string

Oracle: length ('sunflower') = 9
Access: len('sunflower') = 9

instr InStr Starting
position of
one string
occurring in
another

Oracle & Access:
instr ('sunflower', 'low') = 5

Oracle & Access:
instr ('sunflower', 'zzz') = 0

Parameters:
base string = 'sunflower'

string to find = 'low'

Note: Zero means that the second string
does not occur in the first string.

Check your understanding

Purpose Oracle Access

Concatenation 'first' || 'second' 'first' & 'second'

Substring substr('abcdefghij',3,4) Mid('abcdefghij',3,4)

Length of text length('abcdefg') Len('abcdefg')

Starting position, when the
second string is part of the first
string

instr('abcdefg', cd') InStr('abcdefg','cd')

Starting position, when the
second string is not part of the
first string

instr('abcdefg','zz') InStr('abcdefg','zz')

Uppercase upper('dog') UCase('dog')

Lowercase lower('CAT') LCase('CAT')

Trim spaces trim(' bird ') trim(' bird ')

CHAPTER 9 ROW FUNCTIONS344

9-10 Combining the first and last names

This section shows you an example that uses text functions. We combine
the first name and the last name in a single column, placing one space
between the two names.

A single space is then concatenated to the right of the first name. To code
that single space, enclose one space within single quotes. Then the last
name is concatenated to the end.

Oracle and Access use different signs for concatenation, but they mean the
same thing. Access uses the ampersand (&). Oracle uses two double bars
(||). On most keyboards the double bar is Shift + Backslash.

Variations of this technique can be used to put the name in other formats
such as:

Susan W. Brown
Ms. Brown
Brown, Susan W.

List the employee_id and the full name of each employee. Create the full
name by combining the first and last names separated by a single space.

select employee_id,
 first_name || ' ' || last_name as full_name ➊

from l_employees;

select employee_id,
 first_name & ' ' & last_name as full_name ➋

from l_employees;

Task

Oracle SQL

Access SQL

TEXT FUNCTIONS 345

Beginning table (l_employees table)

Result table

➊ In Oracle, the concatenation operator is ||, where | is the uppercase sym-
bol on the Backslash key. I always put a space on both sides of the con-
catenation sign. In the middle of the concatenation, the single space
between the names is formed by:

single quote — space — single quote

➋ In Access, the concatenation operator is &.

List the employee ID and the names of all the employees. Write the names
like “Brown, S.” with the last name capitalized, then a comma and a space,
then the first initial capitalized followed by a period.

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE
 ID FULL_NAME
-------- ---------------
 201 SUSAN BROWN
 202 JIM KERN
 203 MARTHA WOODS
 204 ELLEN OWENS
 205 HENRY PERKINS
 206 CAROL ROSE
 207 DAN SMITH
 208 FRED CAMPBELL
 209 PAULA JACOBS
 210 NANCY HOFFMAN

Notes

Check your understanding

CHAPTER 9 ROW FUNCTIONS346

9-11 Separating the first and last names

In the previous section we discussed how to combine the first_name and
last_name to create the full_name. In this section we go in the opposite
direction. We begin with the full_name and divide it into two parts: the
first_name and the last_name.

Finding the position of the space that separates the first_name from the
last_name is the central point of this technique. This is the first step and it
can be done with the instr function. In the next step the full_name
column can be divided into two parts: the part before the space and the
part after the space, which become the first_name and the last_name
columns, respectively.

In specifying the last_name, only two parameters are used: the beginning
string and the starting position. The third parameter, which is the length, is
not specified. When this is done the substring extends all the way to the
end of the beginning string.

The sec0911_full_name table contains one column, which contains the
full name, both the first name and last name separated by a single space.
From this table list the full name, the position of the space, the first name,
and the last name.

create or replace view sec0911_step1_view as ➊

select full_name,
 instr(full_name, ' ') as position_of_space ➋

from sec0911_full_name;

select full_name,
 position_of_space,
 substr(full_name, 1, position_of_space - 1)

 as first_name, ➌

 substr(full_name, position_of_space + 1)
 as last_name ➍

from sec0911_step1_view;

Task

Oracle SQL

TEXT FUNCTIONS 347

Step 1: Enter the following query in the SQL window:

select full_name, ➎

 instr(full_name, ' ') as position_of_space ➋

from sec0911_full_name;

 Save the query. Name it sec0911_step1_view.

Step 2:

select full_name,
 position_of_space,
 mid(full_name, 1, position_of_space - 1)

 as first_name, ➌

 mid(full_name, position_of_space + 1)
 as last_name ➍

from sec0911_step1_view;

Beginning table (sec0911 table)

Result table

Access SQL

FULL_NAME

SUSAN BROWN
JIM KERN
MARTHA WOODS
ELLEN OWENS
HENRY PERKINS
CAROL ROSE
DAN SMITH
FRED CAMPBELL
PAULA JACOBS
NANCY HOFFMAN

 POSITION
FULL_NAME OF SPACE FIRST_NAME LAST_NAME
--------------- --------- ---------- ----------
SUSAN BROWN 6 SUSAN BROWN
JIM KERN 4 JIM KERN
MARTHA WOODS 7 MARTHA WOODS
ELLEN OWENS 6 ELLEN OWENS
HENRY PERKINS 6 HENRY PERKINS
CAROL ROSE 6 CAROL ROSE
DAN SMITH 4 DAN SMITH
FRED CAMPBELL 5 FRED CAMPBELL
PAULA JACOBS 6 PAULA JACOBS
NANCY HOFFMAN 6 NANCY HOFFMAN

CHAPTER 9 ROW FUNCTIONS348

➊ In Oracle, the first step creates a view that defines the position of the
space. Here I use the Oracle command create or replace view, which
is one way to do a preventative delete.

➋ This is the definition of the position of the space.

➌ The first_name begins at the first character of the full_name. It
extends until the character before the space.

➍ The last_name begins at the character after the space. It extends until
the end of the full_name.

➎ In Access, I chose to have the first step create a new table, rather than a
view. This does not create a problem because the amount of data is small.

Table sec0911_names contains names of people in the format “Brown,
Susan V.” Create a new view in which you have separated the first name, mid-
dle initial, and last name into separate columns. Hint: This might be easier if
you do it in a series of steps.

9-12 Formatting phone numbers

In section 7-5 we formatted the phone_number column of the l_employees
table in Access. In the format we added an area code and the first three digits
of the phone number. We could not use the same technique in Oracle because
Oracle formats apply only to columns with a date or number datatype.

Now we are ready to format the phone numbers in Oracle by concatenating
the phone_number with a literal. The same technique also works in Access.

When we use this technique we need to decide how we want to handle
nulls in the data. There is one phone number that contains a null. To
exclude it from the result table, we want to add a where clause to the code:

where phone_number is not null;

However if we do this, there is a price to pay — the entire row for Carol Rose
disappears from the result table, so the listing of the employees is incomplete.
We will be able to fix this problem when we discuss unions in chapter 15.

List the employee ID, employee name, and the phone number of all the
employees. Format the phone_number values to include the area code and
the first three digits of the phone number.

Notes

Check your understanding

Task

TEXT FUNCTIONS 349

select employee_id,
 first_name,
 last_name,
 '(415) 643-' || phone_number as phone_number2
from l_employees;

select employee_id,
 first_name,
 last_name,
 '(415) 643-' & phone_number as phone_number2
from l_employees;

Beginning table (l_employees table)

Result table

Oracle SQL

Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE PHONE
 ID FIRST_NAME LAST_NAME NUMBER
-------- ---------- ---------- ---------------
 201 SUSAN BROWN (415) 643-3484
 202 JIM KERN (415) 643-8722
 203 MARTHA WOODS (415) 643-7591
 204 ELLEN OWENS (415) 643-6830
 205 HENRY PERKINS (415) 643-5286
 206 CAROL ROSE (415) 643- ➊

 207 DAN SMITH (415) 643-2259
 208 FRED CAMPBELL (415) 643-1752
 209 PAULA JACOBS (415) 643-3357
 210 NANCY HOFFMAN (415) 643-2974

CHAPTER 9 ROW FUNCTIONS350

➊ This incomplete phone number results from the null in the
phone_number column of the beginning table.

Table sec0912_phone_numbers contains phone numbers in the format
“(415) 627-1445” These numbers do not all begin in the first column. Create a
new view with two columns in which you have separated the area code from
the rest of the phone number.

Date Functions

Some row functions operate on dates. Functions on dates are different
from the date formats you learned in chapter 7. Date formats change the
appearance of the date without changing its value. Date functions change
the value of the data to another date.

9-13 Functions on dates

This section shows you the date functions that are used most often. Date
calculations are usually made in terms of the number of days, rather than
months or years, because the number of days in a month or year can vary.

Both Oracle and Access can add a number of days to a date; subtract a
number of days from a date; and find the number of days between two
dates. These are the most important date functions.

Using the table of numbers from 0 to 99, you can add these numbers to any
date and create a calendar that is 100 days long. Although you can subtract
one date from another date, you cannot add one date to another date.

When you are working with dates, be sure to remember that each date also
has a time, even if the time is not being displayed. A fraction can be added
to a date to change the time.

In the table that follows, the Oracle dates are assumed to already be in
date format. This assumption works when they are in a column that has a
date datatype. If you are writing these dates directly into a select state-
ment, the to_date function must be used to convert the text string within
quotes to a date datatype. For example, the first line in the table shows:

'20-jan-2015' + 3 = '23-jan-2015'

Notes

Check your understanding

DATE FUNCTIONS 351

To use this function on a column of dates named date_col, we would
write:

select date_col + 3

To use this function with the dual table and enter the date directly into the
select clause, we would write:

select to_date('20-jan-2015') + 3
from dual;

Frequently used date functions.

Oracle Access Description and Examples

date + number date + number
or
DateAdd('d',)

Add a number of days to a date.
Oracle:
'20-JAN-2015' + 3 = '23-JAN-2015'

Access:
#20-JAN-2015# + 3 = #23-JAN-2015#

Access:
DateAdd('d',3,#01-20-2015#) = #01-23-2015#

date – number date – number
or
DateAdd('d',)

Subtract a number of days from a date.
Oracle:
'20-JAN-2015' - 3 = '17-JAN-2015'

Access:
#20-JAN-2015# - 3 = #17-JAN-2015#

Access:
DateAdd('d',-3,#01-20-2015#) = #01-17-2015#

date – date date – date
or
DateDiff('d',)

The number of days between two dates.
Oracle:
'23-JAN-2015' - '20-JAN-2015' = 3

Access:
#23-JAN-2015# - #20-JAN-2015# = 3

Access:
DateDiff('d',#01-20-2015#,#01-23-2015#) = 3

extract(day) Day Gets the day of the month from a date.
Oracle:
extract(day from '20-JAN-2015') = 20

Access:
Day(#20-JAN-2015) = 20

CHAPTER 9 ROW FUNCTIONS352

Frequently used date functions. (continued)

Oracle Access Description and Examples

extract(month) Month Gets the number of the month from a date.
Oracle:
extract(month from '20-JAN-2015') = 1

Access:
Month(#20-JAN-2015) = 1

extract(year) Year Gets the year from a date.
Oracle:
extract(year from '20-JAN-2015') = 2015

Access:
Year(#20-JAN-2015) = 2015

(can be made) Weekday Gets the day of the week from a date.
Access:
Weekday(#20-JAN-2015) = 3

Notes:
1 = Sunday
2 = Monday
3 = Tuesday
4 = Wednesday
5 = Thursday
6 = Friday
7 = Saturday
Oracle equivalent:
to_char('20-JAN-2015', 'DAY') = 'TUESDAY'

to_date DateSerial Creates a date.
Oracle:
to_date('20-JAN-2015') = '20-JAN-2015'

Access:
DateSerial(2015, 1, 20) = #20-JAN-2015#

trunc DateValue Sets the date/time to midnight, the beginning of
the day. Optionally, may set the date/time to a dif-
ferent starting point such as the beginning of the
hour, week, or century.
Oracle:
trunc('20-JAN-2015 5:00 pm') =

 '20-JAN-2015 12:00 am'

Access:
DateValue(#20-JAN-2015 5:00 pm#) =

 #20-JAN-2015#

DATE FUNCTIONS 353

Frequently used date functions. (continued)

Oracle Access Description and Examples

round (can be made) Rounds the date/time to midnight, the beginning of
the day or optionally to another starting point.
Oracle:
round('20-JAN-2015 5:00 pm') = '21-JAN-2015'

Access equivalent:
DateValue(#20-JAN-2015 5:00 pm# + .5) =

 #21-JAN-2015#

next_day (can be made) Date of the next specified weekday.
Oracle:
next_day ('20-JAN-2015', 'MON') =

 '26-JAN-2015'

Access equivalent:
#20-JAN-2015# - Weekday(#20-JAN-2015#) +

iif(2 > Weekday(#20-JAN-2015#), 0, 7) + 2 =

 #26-JAN-2015#

Notes: 2 = Monday

last_day (can be made) Date of the last day of the month.
Oracle:
last_day('20-FEB-2016') = '29-FEB-2016'

Oracle:
last_day('20-FEB-2015') = '28-FEB-2015'

Access equivalent:
DateSerial(Year(#20-FEB-2015#,

 Month(#20-FEB-2015# + 1, 1) - 1

add_months DateAdd('m',) Add a number of months to a date.
Oracle:
add_months('21-JAN-2025', 3) = '21-apr-2025')

Access:
DateAdd('m', 3, #21-JAN-2025#) =

 #21-APR-2025#)

months_between DateDiff('m',) Number of months between two dates.
Oracle:
months_between('21-APR-2025','21-JAN-2025')

 = 3

Access:
DateDiff('m', #21-APR-2025#, #21-JAN-2025#)

 = 3

CHAPTER 9 ROW FUNCTIONS354

Test the following row functions using the dual table technique. (See section
9-7.) In Access, you do not need to use the dual table.

1. Add a number of days to a date.
Oracle: to_date('07-mar-2011') + 2
Access: #07-mar-2011# + 2

2. Subtract a number of days to a date.
Oracle: to_date('07-mar-2011') - 2
Access: #07-mar-2011# - 2

3. Add a number of months to a date.
Oracle: add_months(to_date('07-mar-2011'),2)
Access: DateAdd('m',2,#07-mar-2011#)

4. Add a number of years to a date (or 12 months for each year).
Oracle: add_months(to_date('07-mar-2011'),24)
Access: DateAdd('y',2,#07-mar-2011#)

5. Find the number of days between two dates.
Oracle: to_date('27-mar-2011')-to_date('07-mar-2011')
Access: #27-mar-2011# - #07-mar-2011#

9-14 An example of a date function

This section shows you an example of a date function. This function calcu-
lates the number of months each employee has worked for the company as
of January 1, 2011. A month is not counted until a full month has been
worked.

To count the months in an even way, I have decided to write the code as if
all months are 30 days long. First I find the number of days between the
person’s hire date and January 1, 2011. Then I divide the number of days by
30 and throw away the fraction. This gives me the number of months.

When you are calculating with dates, it is usually best to do your calcula-
tion first in terms of the number of days and then, if you desire, convert the
answer into weeks, months, or years. This strategy gives you the most con-
trol and the most accurate answers.

You might think this would be easier to do using the months_between
function. However, this function often does not produce precise results.
One reason is that the lengths of the months vary. When I tried using it in
this example I found that Oracle and Access behave differently, and neither
of them was as reliable as working directly with the number of days.

Check your understanding

DATE FUNCTIONS 355

Here is an example of one of the problems with the months_between func-
tion. Using this function on the computer I found that between February 28
and March 28 there is one month, but between February 28 and March 29
there is less than one month.

List all the employees, their hire dates, and the number of months each per-
son will have worked for the company as of January 1, 2011.

select first_name, last_name, hire_date,
 floor((to_date('01-JAN-2011') - hire_date)/30) ➊

 as months_with_the_company
from l_employees;

select first_name, last_name, hire_date,
 int((#01-JAN-2011# - hire_date)/30)

 as months_with_the_company
from l_employees;

Beginning table (l_employees table)

Task

Oracle SQL

Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

CHAPTER 9 ROW FUNCTIONS356

Result table

➊ The to_date function is used to convert the character string
01-jan-2011 into a date. Subtracting the hire_date from this date
gives the number of days the employee has worked for the company.
Dividing this number by 30 gives the number of months. The floor
function rounds down to get rid of the fraction.

9-15 Removing the time from a date

Every date in SQL includes a time, even though we do not always see it.
Sometimes this can be a problem for us, depending on what we are doing.
Sometimes we want to be able to use the date without the time.

This section shows you one way to remove the time from the date. Or
rather, it sets all the times to midnight, so all the times have the same
value. This technique is presented here because we will need to use it in
chapter 11.

List the l_lunches table. First, show the times that are in the beginning
table. Then show how to remove these times.

FIRST_NAME LAST_NAME HIRE_DATE MONTHS_WITH_THE_COMPANY
---------- ---------- ------------ -----------------------
SUSAN BROWN 01-JUN-1998 153
JIM KERN 16-AUG-1999 138
MARTHA WOODS 02-FEB-2009 23
ELLEN OWENS 01-JUL-2008 30
HENRY PERKINS 01-MAR-2006 58
CAROL ROSE (null) (null)
DAN SMITH 01-DEC-2008 25
FRED CAMPBELL 01-APR-2008 33
PAULA JACOBS 17-MAR-1999 143
NANCY HOFFMAN 16-FEB-2007 47

Notes

Task

DATE FUNCTIONS 357

select lunch_id, lunch_date,
 employee_id,
 to_char(date_entered,

 'DD-MON-YYYY HH:MI AM') as date_entered
from l_lunches;

select lunch_id, lunch_date,
 employee_id,
 format(date_entered,

'DD-MMM-YYYY HH:NN AM/PM') as date_entered2
from l_lunches;

select lunch_id, lunch_date,
 employee_id,
 to_char(trunc(date_entered),

 'DD-MON-YYYY HH:MI AM') as date_entered
from l_lunches;

select lunch_id, lunch_date,
 employee_id,
 format(datevalue(date_entered),

'DD-MMM-YYYY HH:NN AM/PM') as date_entered2
from l_lunches;

Oracle SQL: Show the dates and times in the l_lunches table

Access SQL: Show the dates and times in the l_lunches table

Oracle SQL: The trunc function removes the time

Access SQL: The datevalue function removes the time

CHAPTER 9 ROW FUNCTIONS358

Beginning table (l_lunches table)

Result table

 LUNCH EMPLOYEE
 LUNCH_ID DATE ID DATE_ENTERED
--------- ------------ -------- --------------------
 1 16-NOV-2011 201 13-OCT-2011 10:35 AM
 2 16-NOV-2011 207 13-OCT-2011 10:35 AM
 3 16-NOV-2011 203 13-OCT-2011 10:35 AM
 4 16-NOV-2011 204 13-OCT-2011 10:35 AM
 6 16-NOV-2011 202 13-OCT-2011 10:36 AM
 7 16-NOV-2011 210 13-OCT-2011 10:38 AM
 8 25-NOV-2011 201 14-OCT-2011 11:15 AM
 9 25-NOV-2011 208 14-OCT-2011 02:23 PM
 12 25-NOV-2011 204 14-OCT-2011 03:02 PM
 13 25-NOV-2011 207 18-OCT-2011 08:42 AM
 15 25-NOV-2011 205 21-OCT-2011 04:23 PM
 16 05-DEC-2011 201 21-OCT-2011 04:23 PM
 17 05-DEC-2011 210 21-OCT-2011 04:35 PM
 20 05-DEC-2011 205 24-OCT-2011 09:55 AM
 21 05-DEC-2011 203 24-OCT-2011 11:43 AM
 22 05-DEC-2011 208 24-OCT-2011 02:37 PM

 LUNCH EMPLOYEE
 LUNCH_ID DATE ID DATE_ENTERED
--------- ------------ -------- --------------------
 1 16-NOV-2011 201 13-OCT-2011 12:00 AM
 2 16-NOV-2011 207 13-OCT-2011 12:00 AM
 3 16-NOV-2011 203 13-OCT-2011 12:00 AM
 4 16-NOV-2011 204 13-OCT-2011 12:00 AM
 6 16-NOV-2011 202 13-OCT-2011 12:00 AM
 7 16-NOV-2011 210 13-OCT-2011 12:00 AM
 8 25-NOV-2011 201 14-OCT-2011 12:00 AM
 9 25-NOV-2011 208 14-OCT-2011 12:00 AM
 12 25-NOV-2011 204 14-OCT-2011 12:00 AM
 13 25-NOV-2011 207 18-OCT-2011 12:00 AM
 15 25-NOV-2011 205 21-OCT-2011 12:00 AM
 16 05-DEC-2011 201 21-OCT-2011 12:00 AM
 17 05-DEC-2011 210 21-OCT-2011 12:00 AM
 20 05-DEC-2011 205 24-OCT-2011 12:00 AM
 21 05-DEC-2011 203 24-OCT-2011 12:00 AM
 22 05-DEC-2011 208 24-OCT-2011 12:00 AM

KEY POINTS 359

Key Points

■ A row function produces a single value based on the values in one or
more columns of a single row. This is done for every row of the table.
When a row function is used, you can think that a new column was
added to the beginning table.

■ There are many row functions. To learn about them you need to be
able to use the reference material for the SQL product you are using.
Each product is a little different. The next chapter shows you how to
do this.

■ There are row functions on text, number, and date columns. Some-
times there are also row functions on columns with other specialized
datatypes.

■ A column is often given a particular datatype so it is ready to handle
certain row functions. For instance, a column may be given a numeric
datatype if you intend to do arithmetic on it.

■ Some of the row functions on numbers are addition, subtraction, mul-
tiplication, and division.

■ Some of the row functions on text are concatenation, substring, and
length.

■ Some of the row functions on dates are adding or subtracting a given
number of days to a date, calculating the number of days between two
dates, and setting the time associated with a date to midnight.

This page intentionally left blank

361

chapter 10

In the last chapter, we discussed many of the most commonly
used row functions. In this chapter, we discuss a few more row
functions that are used for special purposes. We also discuss
the documentation of row functions and show some of their
applications.

USING ROW
FUNCTIONS

Specialized Row Functions . 363

10-1 Other row functions .363
10-2 Using a function to identify the user and the date365
10-3 Using a function to change nulls to other values .366
10-4 Using a function to change the datatype. .369

Using the Documentation of Row Functions . 372

10-5 Using Oracle documentation .373
10-6 Using Access documentation .374
10-7 Using the Access Expression Builder to find row functions 375

Creating Patterns of Numbers and Dates. 376

10-8 Create a simple pattern of numbers .377
10-9 Create a complex pattern of numbers .379

10-10 List all the days of one week. .381
10-11 Create a calendar of workdays .383
10-12 How to find out how many days old you are. .388
10-13 How to find the date when you will be 10,000 days old.389
10-14 Numbering the lines of a report in Oracle and Access 390
10-15 Optional: An easy way to solve an algebraic equation 393

Key Points . 397

363

Specialized Row Functions

A few other row functions also have special purposes.

10-1 Other row functions

Here is an overview of four other types of row functions. We discuss them
in more detail in the following sections.

Other row functions.

Oracle Access Description and Examples

FUNCTIONS TO IDENTIFY THE USER AND THE DATE

user CurrentUser() Name of the userID for the current session.
Oracle: user = 'SQLFUN'
Access: CurrentUser() = 'Admin'

sysdate Now()

Date()

Time()

The current date and time.
Oracle: sysdate = '20-DEC-2015'
Access: Now() = '20-DEC-2015 10:30:25 AM'
Access: Date() = '20-DEC-2015'
Access: Time() = '10:30:25 AM'

systimestamp (not
available)

The current date and time to a fraction of a second.
Also the time zone.
Oracle: systimestamp =
 '20-DEC-2015 10.42.15.692000 AM -08:00'
The meaning of this result is that for this computer
the time is accurate to one-thousandth of a second.
The time zone is 8 hours less than GMT, Greenwich
Mean Time.

FUNCTIONS TO CHANGE NULLS TO OTHER VALUES

nvl nz Converts nulls to another value.
Oracle:
nvl(col_1, 0) = col_1 if col_1 is not null
 = 0 if col_1 is null

Access:
nz(col_1, 0) = 'col_1' if col_1 is not null
 = '0' if col_1 is null

CHAPTER 10 USING ROW FUNCTIONS364

Other row functions. (continued)

Oracle Access Description and Examples

FUNCTIONS TO CHANGE NULLS TO OTHER VALUES (continued)

nvl2 (can be made) Converts nulls to another value.
Oracle:
 nvl2(col, val1, val2)
 = val1 if col is not null
 = val2 if col is null

Access equivalent:
iif(col is not null, val1, val2)
 = val1 if col is not null
 = val2 if col is null

FUNCTIONS TO CHANGE THE DATATYPE

to_char CStr Converts a number or date to a character string (text).
Also used to control the formats of dates in Oracle.
Oracle: to_char(7) = '7'
Access: CStr(7) = '7'

to_date CDate Converts a number or character string to a date.
Also used to control the input of dates with a
specified format in Oracle.
The first date Oracle and Access can handle:
Oracle: to_date(1, 'j') = '01-jan-4712 BC
Access: CDate(1) = #12/31/1899#
A date closer to the present:
Oracle: to_date('03/10', 'mm/yy') = '01-mar-2010'
Access: CDate('Jan 18, 2010') = #1/18/2010#

to_number CInt

CDbl

(others)

Converts a character string to a number.
Oracle: to_number('8') = 8
Access: CInt('8') = 8

FUNCTIONS TO PICK ONE VALUE

greatest (not available) Chooses the greatest member of a list.
Applies to numbers, text, and dates.

Oracle: greatest(1, 9, 2, 3) = 9

least (not available) Chooses the least member of a list.
Applies to numbers, text, and dates.

Oracle: least(1, 9, 2, 3) = 1

SPECIALIZED ROW FUNCTIONS 365

10-2 Using a function to identify
the user and the date

This section shows you how to use functions to identify the user, the date,
and the time. The technique is similar in Oracle and Access, although the
details are quite different.

In Oracle, the name of the userID is obtained from the User function. This is
the name you use when you log on to Oracle. In Access, it is obtained from
the CurrentUser() function. Unless you have set up special security for
Access, the value of this function is set to Admin. The opening parenthesis,
followed immediately by a closing parenthesis, might seem peculiar. This is
an example of a 0-parameter function. The pair of parentheses is retained to
show that it is a function, but it does not require any input parameters. In
effect, a 0-parameter function is a name for a constant value. Some people
call this a system variable. Here that constant value depends on the userID
you are logged on to.

In Oracle, the date and time are obtained from the sysdate function. In
Access, they are obtained from the Now(), Date(), or Time() functions. In
Oracle, if we want to see the time in addition to the date, we need to format
sysdate with the to_char function. In Access, the time shows up auto-
matically from the default formatting, so we do not need to use the format
function. We discussed date formats in section 7-1.

Do not confuse the Oracle function sysdate with the Access function
Date(). They both may show only the date and not the time. However,
sysdate actually contains the time although it is not always shown.
Date() does not include the time.

In Oracle, the following code uses the dual table in the from clause. In Ora-
cle, this table is already built for us. In Access, we could build a dual table,
but this is not required. This was discussed in section 9-7.

Show how to identify the user, the date, and the time.

Task

CHAPTER 10 USING ROW FUNCTIONS366

select user,
 to_char(sysdate, 'DAY MONTH DD, YYYY HH:MI AM')

 as date_time
from dual;

Oracle result table

select CurrentUser() as user,
 format(Now(), 'DDDD MMMM DD, YYYY HH:NN AM/PM')

 as date_time;

Access result table

10-3 Using a function to change
nulls to other values

The nvl (null value) function in Oracle and the nz (non-zero) function in
Access change the nulls in some columns to another value, such as zero.
When the original value in the column is not null, no change is made and
the value stays the same. The original column can have any datatype —
number, text, or date.

In Oracle, the nvl function does not change the datatype of the column, so
the datatype of the replacement value must be the same as the one the col-
umn originally has. This restriction means that nulls in a numeric column
can be changed to zero or some other number, but not to text or a date. The
nulls in a text column must be replaced with text, or possibly with a string
of blanks. The nulls in a date column can only be changed to a date.

In Access, the nz function always changes the column to a text datatype.
Any data, including numbers and dates, can always be represented as text.
The replacement value, which is substituted for nulls, can be any datatype.
However, it is changed to text when it is output from the nz function.

Oracle SQL

USER DATE_TIME
------------------------------ -------------------------------------
JPATRICK WEDNESDAY DECEMBER 26,2007 02:13 PM

Access SQL

SPECIALIZED ROW FUNCTIONS 367

Show how to replace nulls with other values. Do this with a number column,
a text column, and a date column.

Demonstrate two methods of doing this. In one method, the null is
replaced with a value that has the same datatype as the column. In the
other method, the null is replaced with text.

select pkey,
 nvl(num_col,0) as num_col2,
 nvl(text_col, 'ZILCH') as text_col2,
 nvl(date_col, '01-JAN-1900') as date_col2
from sec1003;

select pkey,
 nz(num_col,0) as num_col2,
 nz(text_col, 'ZILCH') as text_col2,
 nz(date_col, #01-JAN-1900#) as date_col2
from sec1003;

Beginning table (sec1003 table)

Result table: Method 1

Task

Oracle SQL: Oracle style —
Replacement value has the same datatype as the column ➊

Access SQL: Oracle style —
Replacement value has the same datatype as the column ➋

PKEY NUM_COL TEXT_COL DATE_COL
----- --------- -------- -----------
A 1 M (null)
B 2 (null) 20-JAN-2013
C (null) N 21-JAN-2013

PKEY NUM_COL2 TEXT_COL DATE_COL2
----- --------- -------- -----------
A 1 M 01-JAN-1900
B 2 ZILCH 20-JAN-2013
C 0 N 21-JAN-2013

CHAPTER 10 USING ROW FUNCTIONS368

select pkey,
 nvl(to_char(num_col), 'NO NUMBER') as num_col2,
 nvl(text_col, 'NO TEXT') as text_col2,
 nvl(to_char(date_col), 'NO DATE') as date_col2
from sec1003;

select pkey,
 nz(num_col, 'NO NUMBER') as num_col2,
 nz(text_col, 'NO TEXT') as text_col2,
 nz(date_col, 'NO DATE') as date_col2
from sec1003;

Result table: Method 2

➊ In Oracle, we use the nvl function to replace the null values. This exam-
ple uses zero to replace the nulls in a column of numbers. It uses “zilch,”
a text string, to replace the nulls in a column of text. It uses January 1,
1900, a date, to replace the nulls in a column of dates. The datatype of
the original column is not changed.

➋ In Access, we use the nz function to replace the null values. The same
replacement values are used as in the Oracle example. The differences
are that the name of the function is nz, and pound signs are used to
enclose the date. In Access, the nz function converts all the columns to
text, whereas in Oracle, the nvl function leaves the datatype of the col-
umn unchanged.

➌ In Oracle, if we want to replace the nulls with text, we must first convert
the entire column to text using the to_char function. This is an unusual
way to write the code in Oracle, but I am doing it here to show that it can
be done.

➍ In Access, when you begin with a column of any datatype, you can
change the nulls into text strings with the nz function.

Oracle SQL:
Access style — Replacement value is text ➌

Access SQL:
Access style — Replacement value is text ➍

PKEY NUM_COL2 TEXT_COL DATE_COL2
----- -- -------- -----------
A 1 M NO DATE
B 2 NO TEXT 20-JAN-2013
C NO NUMBER N 21-JAN-2013

Notes

SPECIALIZED ROW FUNCTIONS 369

10-4 Using a function to change the datatype

Functions that change datatypes keep the outer meaning of the data the
same while changing the inner representation — the datatype — of the
data. For instance, “8” as a character string differs from “8” as a number.
They both mean 8 but if you could see the patterns of 1s and 0s inside the
computer, you would see one binary pattern for the number and a different
binary pattern for the character string.

Why do we care about this difference? One reason is that each row function
works only with data that have a particular datatype. For example, consider
addition. Addition is defined on numbers, but not on character strings.
When 8 and 4 are numbers, then “8 + 4” makes sense, and is equal to the
number 12. However, when 8 and 4 are character strings, “8 + 4” does not
make sense. It is not equal to anything, and will give us an error message if
we use it, or at least so says the theory. Things work a bit differently in prac-
tice, as we will see.

Oracle, Access, and most other SQL products do a certain amount of auto-
matic datatype conversion. Some SQL products do more of this than other
products. The idea is to make things easier for the user. A novice user might
become confused and enraged if the database refuses to add 8 and 4 when
they are text. An error message about the datatype might not calm the user.
To make things work more smoothly, the 8 and 4 are automatically converted
into numbers and then added together. This happens silently, behind the
scenes. There is no message to indicate this is occurring.

The following example shows that automatic datatype conversion is used
by both Oracle and Access to perform arithmetic on text strings. In this
case, Oracle performs all the operations correctly. Access performs subtrac-
tion, multiplication, and division correctly, but it has a flaw when it per-
forms addition. Access says that “8 + 4” = 84. Clearly, it is doing
concatenation instead of addition. To obtain the correct result, we need to
do the datatype conversion ourselves instead of relying on the automatic
conversion. To do this we change the text datatype to an integer datatype,
using the cint (convert to integer) function. This is one example of a time
when the conversion must be done using the conversion functions.

Often when I first write some code, I assume that most of the datatype con-
versions will be done for me automatically. This works 99 percent of the
time. If the results seem strange in some way, I have to debug and fix the
code. It is during this process of debugging and fixing that I most often
decide to control the datatype conversion myself using a datatype conver-
sion function.

CHAPTER 10 USING ROW FUNCTIONS370

Show the effects of automatic datatype conversion. Perform arithmetic on
numbers that are in columns with a text datatype.

select pkey, ➊

 text_1,
 text_2,
 text_1 + text_2 as text_add, ➋

 text_1 - text_2 as text_subtract,
 text_1 * text_2 as text_multiply,
 text_1 / text_2 as text_divide
from sec1004;

Beginning table (sec1004 table)

Oracle result table — Correct

Access result table — Addition is incorrect

Task

Oracle & Access SQL: This shows the problem in Access

PKEY TEXT_1 TEXT_2
---- ------ ------
A 8 4
B 33 11

PKEY TEXT_1 TEXT_2 TEXT_ADD TEXT_SUBTRACT TEXT_MULTIPLY TEXT_DIVIDE
---- ------ ------ --------- ------------- ------------- -----------
A 8 4 12 4 32 2
B 33 11 44 22 363 3

SPECIALIZED ROW FUNCTIONS 371

select pkey,
 text_1,
 text_2,
 cint(text_1) + cint(text_2) as text_add, ➌

 text_1 - text_2 as text_subtract,
 text_1 * text_2 as text_multiply,
 text_1 / text_2 as text_divide
from sec1004;

Access result table — Correct

➊ This prints out the primary key and the two text items, so you can show
them in the result table. Why is there a primary key? It does not do any-
thing in this example. However, every table should have a primary key
and most listings should display it.

➋ The next lines add, subtract, multiply, and divide the two text items. For
these operations to make sense, the text must be automatically con-
verted to numbers before the arithmetic can be done.

➌ The cint (convert to integer) function is used to convert the text to inte-
gers. Then Access can add them, giving 8 + 4 = 12.

There is a reason why Access says 8 + 4 = 84. In many of the early PC
computer languages, the plus sign is used with text strings to mean con-
catenation. For example:

sun + flower = sunflower

Access has decided to preserve this legacy. Some computer code might
need to be rewritten if they were to correct this mistake, so there is a rea-
son for it, but I think that it is a bad reason!

Access SQL: Correction

Notes

CHAPTER 10 USING ROW FUNCTIONS372

The following select statements show all the numbers from 0 to 99. One of
the statements sorts these numbers in numeric order, the others sort the
numbers in alphabetic order. Run these queries. Can you see the difference
in the order of the numbers?

Oracle & Access:

select n as numeric_order
from numbers_0_to_99
order by n;

Oracle only:

select to_char(n) as alphabetic_order
from numbers_0_to_99
order by to_char(n);

Access only:

select cstr(n) as alphabetic_order
from numbers_0_to_99
order by cstr(n);

Using the Documentation of Row Functions

I have shown you the row functions I use the most. However, there are
many more row functions available. Some SQL products have a few special
row functions that other products do not have, so it is important to be able
to find the list of row functions in the documentation.

Oracle and Access both have extensive online documentation that is easy
to use. Google and other search engines are another good source of infor-
mation. There are also blogs and online discussion groups available.

This documentation is not limited to row functions. All aspects of the prod-
ucts are included in this documentation. I do have to admit, however, that
sometimes this documentation is difficult to read and to use. It is not
always written at a level that matches your understanding. Sometimes it
seems to give too much detail, and sometimes it seems not to give
enough.

Check your understanding

USING THE DOCUMENTATION OF ROW FUNCTIONS 373

10-5 Using Oracle documentation

In Oracle, go to the home page and click Documentation. This opens the
Oracle Database Documentation Library. From there you can use Search to
find a term or use the Master Index.

The Oracle Database Documentation Library.

Find and read the documentation for the replace function. First use the
Master Index in the Oracle documentation, as that will probably give you the
best result. Then try using the Search facility.

Check your understanding

CHAPTER 10 USING ROW FUNCTIONS374

10-6 Using Access documentation

In Access, all you need to do is press the F1 key to launch the online help.

Press the F1 key to launch Access online help.

Find and read the documentation for the string function.

Check your understanding

USING THE DOCUMENTATION OF ROW FUNCTIONS 375

10-7 Using the Access Expression
Builder to find row functions

In Access, I use the Expression Builder as a reference document to tell me
what row functions are available. This is not the only thing that Expression
Builder is designed to do, but it is the way that I use it.

To start the Expression Builder and see the functions, follow these steps:

1. Click the Create tab on the Ribbon.

2. Click Query Design on the Ribbon.

3. Close the Show Table window.

4. Right-click a Field cell or a Criteria cell.

5. Click Build.

6. Double-click Functions.

7. Click Built-in Functions.

8. Select the type of function you want from the second column.

9. The third column shows you a list of the functions that are available.

Using the preceding steps to get to Expression Builder.

CHAPTER 10 USING ROW FUNCTIONS376

The Expression Builder opening screen.

Find the list of all the text functions. See if you can understand most of them.

Creating Patterns of Numbers and Dates

Row functions can be used to create patterns of numbers or dates. These
are useful in creating a variety of reports. When you create these pat-
terns, the beginning table is usually a table of numbers. In this book, I
have provided you with two tables of numbers: numbers_0_to_9 and
numbers_0_to_99.

The technique shown here uses SQL to generate these patterns. SQL is
able to do this, but other computer languages are designed to generate
patterns and can do so more efficiently. Using another technique, we could
generate the pattern of numbers in some other language, create a file, and
then load that file into a database table.

Why would you want to create a pattern and put it in a database table? This
can be useful in several ways. A pattern of dates can serve as a calendar. Often
a pattern is the beginning point for adding other types of data. For instance, we
might begin with a calendar and then add to it our plans for each day.

Check your understanding

CREATING PATTERNS OF NUMBERS AND DATES 377

In another application a pattern can help us find flaws or imperfections in
some other data. We might have some data that nearly fits into a pattern,
but not quite. We might want to show explicitly where the data does not fit
the pattern. One way to do this is to generate a perfect pattern and then
compare it with the data we have.

10-8 Create a simple pattern of numbers

This section shows you how to create a simple pattern of numbers. The
next section shows you how to create a complex pattern of numbers. The
idea I want you to take away from these two sections is that we can create
almost any pattern of numbers.

The example in this section shows how to list all the multiples of three
between 50 and 250. The purpose of this is to show you how to create pat-
terns of numbers. The particular patterns you need may vary. There is no
particular significance to this pattern, except that it is easy to create.

The beginning table is the table numbers_0_to_99. I have created this
table for you already. In chapter 16, we will discuss how to generate a table
like this with as many numbers as you want. For now, 100 numbers are
enough to handle.

To get the multiples of three, you multiply all the numbers in the table by
three. To create other patterns, you could multiply the numbers in the
beginning table by any number, M. Then you could add another number, A.
If the numbers in the table are called T, this creates a table of numbers of
the form (T * M) + A. You can also take any section from this table by set-
ting a starting point and an ending point. Of course, any series of numbers
you can list, you can also save in a new table or view.

List all the numbers that are multiples of three between 50 and 250. To do
this, begin with the table numbers_0_to_99.

create or replace view sec1008_view as
select n,
 3 * n as multiple_of_3 ➊

from numbers_0_to_99; ➋

Task

Oracle SQL: Step 1

CHAPTER 10 USING ROW FUNCTIONS378

Step 1, Part 1: Enter this in the SQL window:

select n,
 3 * n as multiple_of_3 ➊

from numbers_0_to_99; ➋

Step 1, Part 2: Save the query and name it sec1008_view.

select multiple_of_3
from sec1008_view
where multiple_of_3 between 50 and 250
order by multiple_of_3;

Beginning table (numbers_0_to_99 table) ➌

Result table

Access SQL: Step 1

Oracle & Access SQL: Step 2

 N

 0
 1
 2
 3

(and many more)

 97
 98
 99

MULTIPLE_OF_3

 51
 54
 57
 60

(and many more)

 243
 246
 249

CREATING PATTERNS OF NUMBERS AND DATES 379

➊ This creates a new column called multiple_of_3.

➋ The beginning table contains all the numbers from 0 to 99. I have already
created this table for you.

➌ The rows of this table are shown in their logical order so that this exam-
ple is easy to understand. However, the rows in any table are in no par-
ticular order. If you display this table without an order by clause, the
rows may be in a different order. To see them in this order you must
include order by n.

Create a view of the multiples of 7 between 700 and 900.

10-9 Create a complex pattern of numbers

In the previous section we created a simple pattern of numbers. Now I want
to show you that you can create a very complex pattern of numbers. The
prime numbers are one of the most complex sequences, so we’ll use them
as an example.

This section shows how to list the prime numbers between 10 and 99. We
need to find the numbers that cannot be evenly divided by 2, 3, 5, or 7. This
is done in the where clause. The mod function shows the remainder after
division. If we enter

mod(x, y) = 0

this means that Y divides evenly into X. We want the opposite of that, so we
want

not (mod(n, 2) = 0)

This gives us the numbers that are not divisible by 2. Similar logic is used
with 3, 5, and 7.

In Access, this condition is written as follows:

not ((n mod 2) = 0)

List all the prime numbers that are greater than 10 and less than 100.

Notes

Check your understanding

Task

CHAPTER 10 USING ROW FUNCTIONS380

select n as prime_number
from numbers_0_to_99
where n > 10
 and not (mod(n, 2) = 0)
 and not (mod(n, 3) = 0)
 and not (mod(n, 5) = 0)
 and not (mod(n, 7) = 0)
order by n;

select n as prime_number
from numbers_0_to_99
where n > 10
 and not ((n mod 2) = 0)
 and not ((n mod 3) = 0)
 and not ((n mod 5) = 0)
 and not ((n mod 7) = 0)
order by n;

Beginning table (numbers_0_to_99 table)

Result table

Oracle SQL

Access SQL

 N

 0
 1
 2
(and many more)
 98
 99

PRIME_NUMBER

 11
 13
 17
 19
 23
(and many more)
 83
 89
 97

CREATING PATTERNS OF NUMBERS AND DATES 381

10-10 List all the days of one week

This section shows you how to list all seven consecutive days of the week.
The purpose is to show that we can create a pattern of dates, just like we
can create a pattern of numbers. In fact, any pattern of numbers can also be
made into a pattern of dates.

We do this in three steps. The first step creates what I call a table of con-
stants, which is a table with only one row. It contains one column: the date
on which we want the week to begin. There are several ways to create this
table, but I use the method that gives me the most control over the pro-
cess.

The second step creates a view containing seven consecutive days. We get
the beginning date from the table of constants and then add the numbers 0
to 6 to it.

The third step formats these dates in three different ways. The date is actu-
ally presented three times with a different format each time.

List all the days for one week beginning with February 24, 2010. For each
date, also list the day of the week in both abbreviated form and fully spelled
out.

create table sec1010_constants
(begin_date date);

insert into sec1010_constants
values ('24-FEB-2010');

Remember, in Access, you can only run one statement at a time.

create table sec1010_constants
(begin_date datetime);

insert into sec1010_constants
values (#24-FEB-2010#);

Task

Oracle SQL: Step 1 — Create a table of constants

Access SQL: Step 1 — Create a table of constants

CHAPTER 10 USING ROW FUNCTIONS382

Result table: Step 1 (date_constants table)

create or replace view sec1010_view as
select begin_date + digit as days
from numbers_0_to_9,
 sec1010_constants
where digit < 7;

Step 2, Part 1: Enter the following query in the SQL window:

select cdate(begin_date + digit) as days ➊

from numbers_0_to_9,
 sec1010_constants
where digit < 7;

Step 2, Part 2: Save the query and name it sec1010_view.

Result table: Step 2 (sec1010_view)

select days,
 to_char(days, 'DY') as abbreviated_day,
 to_char(days, 'DAY') as full_day
from sec1010_view
order by days;

BEGIN_DATE

24-FEB-2010

Oracle SQL: Step 2 — Create a view containing seven dates

Access SQL: Step 2 — Create a view containing seven dates

DAYS

24-FEB-2010
25-FEB-2010
26-FEB-2010
27-FEB-2010
28-FEB-2010
01-MAR-2010
02-MAR-2010

Oracle SQL: Step 3 — List the days formatted in three ways

CREATING PATTERNS OF NUMBERS AND DATES 383

select days,
 format(days, 'DDD') as abbreviated_day,
 format(days, 'DDDD') as full_day
from sec1010_view
order by days;

Result table: Step 3

➊ In Access, you need to use the CDate function to get dates in the result
table. Otherwise, you will only get numbers.

Create a calendar showing all the days of the current month.

10-11 Create a calendar of workdays

In this section we create a more complex pattern of dates. In the previous
section we listed several consecutive days. In this section, we only list the
days that are between Monday and Friday. We will also use a trick to put
one blank line between the weeks.

We use four steps to create this calendar. The first two steps are similar to the
technique we used in the previous section. This creates a table containing all
the days between a beginning date and an end date. This table also contains
a column, n, of whole numbers, which we use later. We create a table, rather
than a view, because we want to modify some of these dates in step 3. We
would be unable to make these modifications to a view.

Access SQL: Step 3 — List the days formatted in three ways

DAYS ABBREVIATED_DAY FULL_DAY
----------- -------------------- ---------
24-FEB-2010 WED WEDNESDAY
25-FEB-2010 THU THURSDAY
26-FEB-2010 FRI FRIDAY
27-FEB-2010 SAT SATURDAY
28-FEB-2010 SUN SUNDAY
01-MAR-2010 MON MONDAY
02-MAR-2010 TUE TUESDAY

Notes

Check your understanding

CHAPTER 10 USING ROW FUNCTIONS384

In step 3, we delete all the dates on Sundays and we turn all the Saturday
dates into nulls. These nulls become the blank lines separating one week
from another.

In step 4, we list the dates in two different formats. The trick to positioning
the blank lines is order by n. Think of N as another column in the result
table, but it is hidden. It provides the framework that organizes the rows of
the result table. An additional result table in step 4 shows the column that
is hidden in the first result table.

Create a calendar showing the workdays, Monday through Friday, for March,
April, and May 2015. List the day of the week in one column and the date in
the format MM/DD/YYYY in the next column. Leave one blank line between
the weeks.

create table sec1011_boundaries
(start_date date,
end_date date);

insert into sec1011_boundaries
values ('01-MAR-2015', '01-JUN-2015');

create table sec1011_boundaries
(start_date datetime,
end_date datetime);

insert into sec1011_boundaries
values (#01-MAR-2015#, #01-JUN-2015#);

Result table: Step 1

Task

Oracle SQL: Step 1 — Create a table of constants

Access SQL: Step 1 — Create a table of constants

START_DATE END_DATE
--------------- -----------
01-MAR-2015 01-JUN-2015

CREATING PATTERNS OF NUMBERS AND DATES 385

create table sec1011_calendar as
select n, ➊

 start_date + n as date_1 ➋

from numbers_0_to_99,
 sec1011_boundaries
where start_date + n < end_date;

select n, ➊

 cdate(start_date + n) as date_1 ➋ ➌

into sec1011_calendar
from numbers_0_to_99,
 sec1011_boundaries
where start_date + n < end_date;

Result table: Step 2

➊ We include the column, n, to use as a framework in step 4.

➋ We name this column date_1 instead of date to avoid the possibility of
using a reserved word.

➌ In Access the cdate function is necessary to format this column as dates.
Otherwise it appears only as numbers.

Oracle SQL: Step 2 — Create a table containing all the consecutive days

Access SQL: Step 2 — Create a table containing all the consecutive days

 N DATE_1
--------- -----------
 0 01-MAR-2015
 1 02-MAR-2015
 2 03-MAR-2015
 3 04-MAR-2015
 4 05-MAR-2015
 5 06-MAR-2015
 6 07-MAR-2015
 7 08-MAR-2015

(and many more)

 90 30-MAY-2015
 91 31-MAY-2015

Notes

CHAPTER 10 USING ROW FUNCTIONS386

delete from sec1011_calendar
where to_char(date_1, 'DY') = 'SUN';

update sec1011_calendar
 set date_1 = null
where to_char(date_1, 'DY') = 'SAT';

delete from sec1011_calendar
where format(date_1, 'DDD') = 'SUN'; ➍

update sec1011_calendar
 set date_1 = null
where format(date_1, 'DDD') = 'SAT'; ➍

Result table: Step 3

➍ Another way to write this condition in Access is:

where weekday(date_1) = 'SUN';

Oracle SQL: Step 3 —
Delete Sundays and change Saturdays to nulls to create a blank line

Access SQL: Step 3 —
Delete Sundays and change Saturdays to nulls to create a blank line

 N DATE_1
-------- -----------
 1 02-MAR-2015
 2 03-MAR-2015
 3 04-MAR-2015
 4 05-MAR-2015
 5 06-MAR-2015
 6 (null)
 8 09-MAR-2015

(and many more)

 88 28-MAY-2015
 89 29-MAY-2015
 90 (null)

Notes

CREATING PATTERNS OF NUMBERS AND DATES 387

select to_char(date_1, 'DAY') as day_of_the_week,
 to_char(date_1, 'MM/DD/YYYY') as work_day
from sec1011_calendar
order by n;

select format(date_1, 'DDDD') as day_of_the_week,
 format(date_1, 'MM/DD/YYYY') as work_day
from sec1011_calendar
order by n;

Result table: Step 4

Oracle SQL: Step 4 — Display the report

Access SQL: Step 4 — Display the report

DAY_OF_THE_WEEK WORK_DAY
--------------- ----------
MONDAY 03/02/2015
TUESDAY 03/03/2015
WEDNESDAY 03/04/2015
THURSDAY 03/05/2015
FRIDAY 03/06/2015

MONDAY 03/09/2015
TUESDAY 03/10/2015
WEDNESDAY 03/11/2015
THURSDAY 03/12/2015
FRIDAY 03/13/2015

MONDAY 03/16/2015

(and many more)

FRIDAY 05/22/2015

MONDAY 05/25/2015
TUESDAY 05/26/2015
WEDNESDAY 05/27/2015
THURSDAY 05/28/2015
FRIDAY 05/29/2015

CHAPTER 10 USING ROW FUNCTIONS388

Result table: Step 4 — Showing the hidden column, N

10-12 How to find out how many days old you are

Do you know how old you are? How many days old? The date functions can
tell you very easily. Just enter your birth date in the following code. The
integer part of the answer is your age in days.

What does the decimal part of the answer mean? Two meanings are possi-
ble. If you enter the time you were born into the code, the decimal part
shows you the fraction of the next day that has already gone by.

If you do not enter a time, the computer sees your birth date with the
default time of midnight. It measures this against the current date and the
current time, so the decimal represents the current time as of when you are
running this code.

Find out how many days old you are.

 N DAY_OF_THE_WEEK WORK_DAY
---- --------------- ----------
 1 MONDAY 03/02/2015
 2 TUESDAY 03/03/2015
 3 WEDNESDAY 03/04/2015
 4 THURSDAY 03/05/2015
 5 FRIDAY 03/06/2015
 6
 8 MONDAY 03/09/2015

(and many more)

 82 FRIDAY 05/22/2015
 83
 85 MONDAY 05/25/2015
 86 TUESDAY 05/26/2015
 87 WEDNESDAY 05/27/2015
 88 THURSDAY 05/28/2015
 89 FRIDAY 05/29/2015
 90

Task

CREATING PATTERNS OF NUMBERS AND DATES 389

select sysdate - to_date('21-MAR-1978') as days_old ➊ ➋

from dual;

select now() - #21-MAR-1978# as days_old; ➊ ➌

Result table ➍

➊ Use your own birth date.

➋ In Oracle, we must use the to_date function to turn the text string
'21-MAR-1978' into a date. We can subtract one date from another, but
we cannot subtract a text string from a date.

➌ In Access, enclosing #21-MAR-1978# in pound signs makes it a date.

➍ Obviously, this number changes every day, so your result will be different
from the one shown here.

Create a table showing several significant dates in your life. Have a date field
and a text field that says what happened on that date. Then write a select
statement that shows how many days have passed since that time.

10-13 How to find the date when
you will be 10,000 days old

Do you know on what date you will be 10,000 days old? Again, the date
functions can easily tell you. Mark this date on your calendar so you can
celebrate!

Oracle SQL

Access SQL

DAYS_OLD

8509.3539

Notes

Check your understanding

CHAPTER 10 USING ROW FUNCTIONS390

Find the date when you will be (or were) 10,000 days old. Use your birth date
in the following code.

select to_date('21-MAR-1978') + 10000
 as celebration_day

from dual;

select #21-MAR-1978# + 10000 as celebration_day;

Result table

Find the date when the United States will be 100,000 days old.

10-14 Numbering the lines of a
report in Oracle and Access

Sometimes you have a report in which the lines are sorted in a particular
order. You may want to number these lines in the order in which they appear.
To do this, you can create a new column that contains the line numbers.

Both Oracle and Access have special features to help you do this, but these
features work differently.

The Oracle method

1. Create a new view from the beginning select statement. Oracle
allows us to keep the order by clause in a view.

2. Use rownum to add a column of line numbers.

Task

Oracle SQL

Access SQL

CELEBRATION

06-AUG-2011

Check your understanding

CREATING PATTERNS OF NUMBERS AND DATES 391

The Access method

1. Create a new table from the beginning select statement. Access
allows us to keep the order by clause.

2. Add a new column with the alter table command. Give the new
column the datatype counter. This assigns the numbers auto-
matically.

The following select statement creates a report. All the lines of the report
are sorted in a particular order. We want to number the lines of this report
sequentially, beginning with 1.

select price,
 description
from l_foods
where price > 1.75
order by price,
 description;

Beginning report

create or replace view sec1014_view as
select price,
 description
from l_foods
where price > 1.75
order by price,
 description;

Task

 PRICE DESCRIPTION
----------- --------------
 $2.00 FRESH SALAD
 $2.50 HAMBURGER
 $3.00 DESSERT
 $3.50 SANDWICH
 $6.00 GRILLED STEAK

Oracle SQL:
Step 1 — Create a view that includes an order by clause

CHAPTER 10 USING ROW FUNCTIONS392

select rownum as line_number,
 a.*
from sec1014_view a
order by rownum;

select price,
 description
into sec1014_table
from l_foods
where price > 1.75
order by price,
 description;

alter table sec1014_table
add column line_number counter;

Result table

➊ In Access, this code will make the line numbers the last column. One
more step is required if you want the line numbers in the first column:
Just define another view and place the columns in the order you want.

Oracle SQL:
Step 2 — Use rownum to create the line numbers

Access SQL:
Step 1 — Create a table that includes an order by clause

Access SQL:
Step 2 — Add a column of line numbers ➊

LINE_NUMBER PRICE DESCRIPTION
----------- ----------- ----------------
 1 $2.00 FRESH SALAD
 2 $2.50 HAMBURGER
 3 $3.00 DESSERT
 4 $3.50 SANDWICH
 5 $6.00 GRILLED STEAK

Notes

CREATING PATTERNS OF NUMBERS AND DATES 393

10-15 Optional: An easy way to
solve an algebraic equation

In this section I show you an easy way to solve an algebraic equation. I can
hear the groans already. I know, you never wanted to do this again in your
life. Well, give me a couple of minutes to show you that there is a much
easier way than you learned in school. I’ll do all the work. You can watch.

I use three steps to find the solution of the equation in the following task.
The first step calculates the value of the function on the left side of the
equation for every whole number between 0 and 99. Then I look at these
values and I observe the following:

1. The value of the function at 0 is a negative value.

2. The value of the function at 99 is a positive value.

3. The value of the function changes from negative to positive only
once.

4. This change occurs between 90 and 91.

So I have found that this function equals zero somewhere between 90 and
91. Next, I want to refine this solution and make it accurate to two decimal
places.

Step 2 generates all the numbers with two decimal places between 90.00
and 90.99. Step 3 calculates the value of the function for each of these
numbers. I look at these values and I observe that they change from nega-
tive to positive between 90.33 and 90.34, so this is the solution to the
equation.

 I could repeat this process more times to get additional accuracy.

Find a solution to the following equation:

x4 – 91x3 + 66x2 – 451x – 5913 = 0

Find a solution between 0 and 99, if there is one. Make the solution accurate
to two decimal places.

Task

CHAPTER 10 USING ROW FUNCTIONS394

select n,
 ((n * n * n * n) - 91 * (n * n * n) +66 * (n * n)
 -451 * n -5913) as value_of_function
from numbers_0_to_99
order by n;

Beginning table (numbers_0_to_99 table)

Result table: Step 1

Oracle & Access SQL:
Step 1 — Calculate the value of the function between 0 and 99

 N

 0
 1

(and many more)

 98
 99

 N VALUE_OF_FUNCTION
-------- -----------------
 0 -5913
 1 -6388

(all negative values)

 89 -933204
 90 -240903
 91 499592
 92 1289907
 93 2131692

(all positive values)

 98 7172097
 99 8358696

CREATING PATTERNS OF NUMBERS AND DATES 395

There is a solution to the equation between 90 and 91.

create or replace view sec1015_view as
select n,
 90 + (n/100) as m
from numbers_0_to_99
order by n;

Step 2, Part 1: Enter this query in the SQL window:

select n,
 90 + (n/100) as m
from numbers_0_to_99
order by n;

Step 2, Part 2: Save this query and name it sec1015_view.

Result table: Step 2

select m,
 ((m * m * m * m) -91 * (m * m * m) +66 * (m * m)
 -451 * m -5913) as value_of_function
from sec1015_view
order by (m * 100); ➊

Step 1 — Conclusion

Oracle SQL: Step 2 — Generate the numbers between 90.00 and 90.99

Access SQL: Step 2 — Generate the numbers between 90.00 and 90.99

 N M
--------- ---------
 0 90
 1 90.01
 2 90.02

(and many more)

 98 90.98
 99 90.99

Oracle & Access SQL:
Step 3 — Calculate the value of the function between 90.00 and 90.99

CHAPTER 10 USING ROW FUNCTIONS396

Beginning table (sec1015 view)

Result table: Step 3

There is a solution to the equation between 90.33 and 90.34.

➊ Why do I multiply M by 100 in the order by clause? I can write order by
m, in Oracle, which is a more logical way to write the code. However, this
does not work in Access. A bug in Access puts the rows in the wrong
order. To work around this problem, I multiply M by 100.

 N M
--------- ---------
 0 90
 1 90.01
 2 90.02

(and many more)

 97 90.97
 98 90.98
 99 90.99

 M VALUE_OF_FUNCTION
--------- -----------------
 90 -240903
 90.01 -233739.3
 90.02 -226570.8

(all negative values)

 90.32 -9265.465
 90.33 -1946.697
 90.34 5376.9437
 90.35 12705.458

(all positive values)

 90.98 484299.32
 90.99 491943.17

Step 3 — Conclusion

Notes

KEY POINTS 397

Key Points

■ This chapter shows you some specialized row functions and gives a
few examples.

■ The online documentation for Oracle and Access is easy to use.

■ You can change nulls to other values with a row function.

■ You can identify the user with a row function.

■ You can get the current date and time with a row function.

■ You can change the datatype of a column to another datatype with
row functions.

■ You can number the rows of a result table with a row function.

This page intentionally left blank

399

chapter 11

In the previous chapters, the data in the result table came
directly from the beginning table or was a function of a single
row of that table. In this chapter, the data in the result table can
summarize the data in an entire column of the beginning table.
This is done using a column function. The seven types of column
functions provide different ways to summarize the data in a
column.

In the next chapter, you will see how to control the level of sum-
marization. In this chapter, the summarization always produces
a single row in the result table.

SUMMARIZ ING
DATA

Introduction to the Column Functions . 401

11-1 Summarizing all the data in a column. .401
11-2 A list of the column functions .402

Maximum and Minimum . 404

11-3 Finding the maximum and minimum values .404
11-4 Using a where clause with a column function. .407
11-5 Finding the rows that have the maximum or minimum value.409

Count . 411

11-6 Counting rows and counting data .411
11-7 Counting to zero, part 1. .413
11-8 Counting the number of distinct values in a column.415
11-9 Counting the number of distinct values in two or more columns.417

Sum and Average . 420

11-10 The sum and average functions .420
11-11 The problem with nulls in addition and how to solve it 422

Other Topics. 428

11-12 Nulls are not always changed to zero .428
11-13 Counting the number of nulls in a column .430
11-14 Counting distinct dates. .431

Key Points . 434

401

Introduction to the Column Functions

The data in a table is summarized using column functions, which examine
all the data in a column. Column functions are also called aggregate
functions.

Every row of the table is involved. Within this chapter, we consider the case
when this summarization produces a single row in the result table. In the
next chapter I will show you how to get several rows of summarization. The
following sections provide an overview of the column functions.

11-1 Summarizing all the data in a column

The conceptual diagram that follows shows the way a column function
works when it is applied to the whole table. All the data in a single column
is summarized and produces one result. For example, the result might be
the sum of all the numbers in the column.

The column can be a row function as well as a column of data stored on the
disk. Any of the row functions you studied in chapter 9 can create a new
column. A column function can then operate on it.

Several different column functions exist, and each one summarizes the data
in a different way. One gets the maximum value, one gets the average, one
gets the minimum, and there are several others, all listed in section 11-2.

Beginning table

Result table
Summary of all the rows in the beginning table.
There is only one row in the result table.

CHAPTER 11 SUMMARIZING DATA402

11-2 A list of the column functions

This section is an overview of the column functions. Each one produces a
different type of summarization. They are explained in detail on the next
few pages. Column functions are also called aggregate functions or group
functions.

Compared with the row functions, only a few column functions exist —
seven main ones, to be exact. Of course, some SQL products extend the list
and define other column functions for special purposes. For instance, both
Oracle and Access have defined Standard Deviation and Variance. These
are not usually considered parts of standard SQL.

Nulls are ignored by all the column functions except one
The column functions ignore nulls in the data. Nulls are treated as if they
did not exist. The one exception is the count(*) function, which does
count nulls and treats them like any other type of data.

Nulls are treated this way because this is how summarization usually deals
with unknown values. For example, suppose you have data for 1,000 peo-
ple, such as which political candidates they like. There are two people who
are supposed to be in this sample, but you do not have any data for them
yet. Now you are asked to summarize the data. Would you reply that you
cannot summarize the data, because you do not have all the data yet? Or
would you summarize the data you have for 1,000 people and ignore the
two people for whom you do not have any data?

Most people would do the latter: They would summarize the 1,000 pieces of
data they have and ignore the two pieces of data they do not have. This
process of ignoring the unknown data is exactly what SQL does. When SQL
summarizes data, it completely ignores the nulls and treats them as if they
were not even there. SQL has not created any new rules here. It has only
followed the standard method of summarization.

INTRODUCTION TO THE COLUMN FUNCTIONS 403

Overview of the column functions.

Examples of column functions.

Oracle SQL Access SQL Meaning

Column functions for text, number, and date columns

max max Maximum value in the column.

min min Minimum value in the column.

count(*) count(*) Total number of rows in the table.

count(column) count(column) Number of rows in the column
that are not null.

count(distinct column) Not available as a column
function, but the same
result can be achieved by
a workaround.

Number of distinct values in the
column where column is the name
of a column in the table.

Column functions for numeric columns only

sum sum Sum of all values in a column.

avg avg Average of all values in a column.

stddev (two Ds) stdev (one D) Standard deviation.

variance var Variance.

Column Function Text Column Number Column Date Column

(Data)

Apple 1 25-jan-2055

Banana 2 null

Cherry null 21-jan-2033

null 2 17-jan-1999

Peach 3 19-jan-2015

max Peach 3 25-jan-2055

min Apple 1 17-jan-1999

sum n/a 8 n/a

avg n/a 8/4 = 2 n/a

count(*) 5 5 5

count(column) 4 4 4

count(distinct column) 4 3 4

CHAPTER 11 SUMMARIZING DATA404

Maximum and Minimum

11-3 Finding the maximum and minimum values

This section shows you how to use a column function. It uses the minimum
(min) and maximum (max) column functions, and shows them applied to
three columns with the datatypes of text, number, and date.

The datatype of a column determines the sort order that is applied to its
data: Text columns are sorted in alphabetic order, number columns are
sorted in numeric order, and date columns are sorted in date order. This
can affect which values are chosen to be the minimum and maximum
values.

When the query does not contain a where clause, the column function
applies to all the rows in the table. The next section shows the effect of a
where clause.

The result of a column function is always a single value. In the next chapter,
I introduce the group by clause. Then the column function will result in
more than one value. When you don’t have a group by clause, the entire
table is one group, and therefore you have only one row in the result.

Note that the result table in this example contains only a single row. This
single value summarizes all the values in the entire column within all the
rows of the table.

Each column of the result table is calculated separately and the row in the
result table contains columns that may not be closely related to each other.
In the following example, there is no employee named “Susan Woods,” but
that name appears in the result table. “Susan” is the maximum value in the
first_name column. “Woods” is maximum value in the last_name col-
umn. However, “Susan” and “Woods” are not related to each other.

Nulls and column functions
Column functions ignore nulls, so where they are placed in the sort order
doesn’t matter — whether they come first, as in Access, or last, as in Ora-
cle. The maximum or minimum value is not affected by any nulls the col-
umn may contain. The maximum and minimum are never a null, unless the
entire column is null.

MAXIMUM AND MINIMUM 405

A few people get upset about this. They argue that if a column contains
even one null, which is an unknown value, then the maximum or minimum
is unknown, so it should be a null. For these people, I make the following
points:

1. Summarization always deals with the known data and ignores the
unknown data. This approach is part of the process of summariza-
tion. It is not a feature that is unique to SQL.

2. If summarization handled nulls in the way these people suggest,
then almost all summarized values would be nulls. A single null
would be more important than thousands of known values, making
summarization itself ineffective. So the process of summarization
cannot treat nulls in the way these people suggest. A person can
object to all summarization, but that is another matter.

3. The result of every SQL query is based on the data we have right
now. We can never obtain some “ultimately perfect” database. We
almost never can know every detail we would like to know about any
topic.

Find the following:

■ The minimum credit limit given to any employee

■ The maximum credit limit given to any employee

■ The first name of an employee that comes last alphabetically

■ The last name of an employee that comes last alphabetically

■ The latest date when any of the employees was hired

select min(credit_limit), ➊

 max(credit_limit),
 max(first_name),
 max(last_name), ➋

 max(hire_date) ➌

from l_employees;

Task

Oracle & Access SQL

CHAPTER 11 SUMMARIZING DATA406

Beginning table (l_employees table)

Result table ➍

➊ The min function is applied to the credit_limit column, a numeric
column. The numeric order is used to decide the minimum value.

➋ The max function is applied to the last_name column, a text column.
The alphabetic order is used to decide the maximum value.

➌ The max function is applied to the hire_date column, a date column.
The date order is used to decide the maximum value.

➍ The result table contains only one row. Note that in Oracle the column
headings for the text and date columns are truncated.

Table sec1103 contains two columns, row_ID and num_1. (It also contains a
column named num_2, but we are not going to use that column now.) Find
the minimum and maximum values of the num_1 column. Name these val-
ues "minimum" and "maximum."

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

MIN(CREDIT_LIMIT) MAX(CREDIT_LIMIT) MAX(FIRST_ MAX(LAST_N MAX(HIRE_DA
----------------- ----------------- ---------- ---------- -----------
 $15.00 $30.00 SUSAN WOODS 01-DEC-2008

Notes

Check your understanding

MAXIMUM AND MINIMUM 407

11-4 Using a where clause with a column function

When a where clause is used in a query that contains a column func-
tion, the where clause is applied first. The column function is then
applied only to the rows that satisfy the where condition, not to all
the rows of the table.

This section shows the same query we used in the previous section with the
addition of a where clause. This changes some of the values in the result
table.

Perform the same task as in the previous section, but only for some of the
rows of the table. For employees 202 to 206, find the following:

■ The minimum credit limit given to any employee

■ The maximum credit limit given to any employee

■ The first name of an employee that comes last alphabetically

■ The last name of an employee that comes last alphabetically

■ The latest date when any of the employees was hired

select min(credit_limit),
 max(credit_limit),
 max(first_name),
 max(last_name),
 max(hire_date)
from l_employees
where employee_id between 202 and 206; ➊

Task

Oracle & Access SQL

CHAPTER 11 SUMMARIZING DATA408

Beginning table (l_employees table)

First, the where clause is applied to the beginning table ➋

Then the column functions are calculated to create the result table

➊ The where clause limits the scope of the column functions to consider
only employees 202 to 206.

➋ The where clause is applied first. In effect, this reduces the number of
rows in the beginning table.

Repeat the exercise in the previous section, except this time add a where
clause that limits the row_ID column to values less than 8. Is there any
change in the minimum and maximum values?

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)

MIN(CREDIT_LIMIT) MAX(CREDIT_LIMIT) MAX(FIRST_ MAX(LAST_N MAX(HIRE_DA
----------------- ----------------- ---------- ---------- -----------
 $15.00 $25.00 MARTHA WOODS 02-FEB-2009

Notes

Check your understanding

MAXIMUM AND MINIMUM 409

11-5 Finding the rows that have
the maximum or minimum value

Often, finding the maximum or minimum value in a column is not enough.
You want to find more information about the row or rows where the maxi-
mum or minimum value occurs.

Several rows may have the minimum or maximum value. Asking, “Which
row has the maximum value?” is okay, but two rows have the minimum
value. So, the question, “Which row has the minimum value?” contains an
incorrect assumption that only one such row exists.

Incidentally, you can see that no column function is able to display this
additional information. The result table of a column function is always one
single row, but the result table in the following example contains three
rows.

You can write SQL in two ways to accomplish this goal. These two methods
are very similar. In the first method, you run two separate queries. The first
select statement finds the correct value of the maximum or minimum. In
this example, you want to find the minimum credit limit, which is $15.00.
You enter this value into the where clause of the second query. This
method relies on you to transfer the information from the result table of
the first query to the SQL code of the second query.

The second method uses a subquery to get the minimum value. A subquery
is a select statement embedded within another select statement. In this
case, the inner select statement is evaluated first. It obtains the mini-
mum value for credit_limit, which is $15.00. The computer substitutes
this result in the outer select statement, replacing the inner select
statement. Then the outer query is evaluated, giving the result table. The
benefit of this method is that it uses only one query. It does not rely on the
person running the query to transfer information, so it provides a more
packaged solution.

Find all the employees who have the minimum credit limit.

select min(credit_limit)
from l_employees;

Task

Oracle & Access SQL: Method 1, Step 1 ➊

CHAPTER 11 SUMMARIZING DATA410

select employee_id,
 first_name,
 last_name,
 credit_limit
from l_employees
where credit_limit = 15.00 ➌

order by employee_id;

select employee_id,
 first_name,
 last_name,
 credit_limit
from l_employees
where credit_limit = (select min(credit_limit) ➍

 from l_employees)
order by employee_id;

Beginning table (l_employees table)

Result table

Oracle & Access SQL: Method 1, Step 2 ➋

Oracle & Access SQL: Method 2 ➍

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE CREDIT
 ID FIRST_NAME LAST_NAME LIMIT
-------- ---------- ---------- -------
 204 ELLEN OWENS $15.00
 209 PAULA JACOBS $15.00

COUNT 411

➊ This finds the smallest credit limit of any of the employees, $15.00.

➋ A second query gets additional information about the employees who
have the minimum credit limit.

➌ The value “15.00” is obtained from the result of the first query. The dollar
sign is dropped. Numbers within SQL code cannot contain dollar signs
or commas. The decimal point and two zeros are optional. They are writ-
ten here to show that this is a currency value. It could also be written as
“15” without the decimal point and zeros.

➍ This is the subquery.

Repeat the exercise in section 11-3. Then find the row_IDs for the minimum
and maximum values.

Count

11-6 Counting rows and counting data

SQL has two different methods of counting the data in a column. These
methods differ in how they count nulls. Later we discuss a third method of
counting that counts the number of different values in the column.

This section shows two varieties of the count column function. The
count(*) function counts the number of rows in the table. The
count(column) function counts the amount of data in a specific column,
ignoring all the nulls.

Counting all the rows in a table
The count(*) function counts all the rows in the table. The result is the
same as if all the values in any column were counted, including the nulls.
This is the only column function that treats nulls the same way it treats
other values.

You can think of this function in two ways. If you think of it as counting all the
rows in a table, then any nulls in the table do not get involved in this. If you
think of it as counting all the values in a column, then all the nulls are
included in the count. No matter which column is counted, the result is the
same for every column. You are free to think about the function in either way.

Notes

Check your understanding

CHAPTER 11 SUMMARIZING DATA412

Counting all the values in a column, excluding nulls
The count(column) function counts all the values in the specified column
that are not nulls. It tells you how much data is entered in the column.
Clearly, each column can have a different count because each column can
contain a different number of nulls. The column can have any datatype —
text, number, or date.

Count the number of rows in the l_employees table. Also, count the num-
ber of non-null values in these three columns:
 last_name

 hire_date

 manager_id

select count(*), ➊

 count(last_name), ➋

 count(hire_date), ➌

 count(manager_id) ➍

from l_employees;

Beginning table (l_employees table)

Result table ➎

Task

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

COUNT(*) COUNT(LAST_NAME) COUNT(HIRE_DATE) COUNT(MANAGER_ID)
--------- ---------------- ---------------- -----------------
 10 10 9 8

COUNT 413

➊ Count(*) finds the number of rows in the table.

➋ This applies the count(column) function to a text column — the
last_name column. The result is 10 because there are no nulls in this
column.

➌ This applies the count(column) function to a date column — the
hire_date column. The result is 9 because there is one null in this col-
umn.

➍ This applies the count(column) function to a column of numbers — the
manager_id column. The result is 8 because there are two nulls in this
column.

➎ The result table contains only one row.

In table sec1106, find the following information:

■ The number of rows in the table

■ The number of rows that have a non-null value in the Num_1 column

■ The number of rows that have a null value in the Num_1 column

11-7 Counting to zero, part 1

Sometimes you want zeros to appear in your result. When you want this,
the way to get it is to apply the count(column) function to a column of
nulls. The count(distinct column) function can also create a zero.

No other column function can do this. When any other column function is
applied to a column of nulls, the result is a null. The one exception is the
count(*) function. It counts the number of rows in the table, so it never
results in a zero.

Now you are probably thinking that it is unusual for a table to have a col-
umn that contains only nulls. That is true. However, in the next chapter we
won’t be summarizing an entire column at once. Instead, we will divide the
rows into several groups and separately summarize each group. A column
often contains only nulls for a group of rows.

We use this later, but right now I am trying to show you how each column
function works.

Notes

Check your understanding

CHAPTER 11 SUMMARIZING DATA414

In Oracle and Access, apply all the column functions to the column that con-
tains only nulls. Show that the count(column) function results in a zero,
but the max, min, sum, and avg functions result in a null.

select count(col_2) as count_col,
 count(*) as count_rows,
 max(col_2) as max,
 min(col_2) as min,
 sum(col_2) as sum,
 avg(col_2) as avg
from sec1107;

Beginning table (sec1107 table)

Result table

In Oracle, apply count(distinct column) to the column of nulls. Show
that this also results in a zero.

select count(distinct col_2) as count_distinct
from sec1107;

Access does not support count(distinct column).

Task for example 1

Oracle & Access SQL

PK_1 COL_2
---- ------
A (null)
B (null)
C (null)
D (null)
E (null)

COUNT_COL COUNT_ROWS MAX MIN SUM AVG
--------- ---------- ------ ------ --------- ---------
 0 5 (null) (null) (null) (null)

Task for example 2

Oracle SQL

COUNT 415

Result table

Repeat the exercise in the previous section, except add a where clause that
limits the row_id to the value 1. Note the zero in the result.

11-8 Counting the number of
distinct values in a column

This section shows you how to count the number of different values in a
column. Nulls are not counted as values. If the column contains codes,
such as the dept_code column, you can use this technique to find out how
many different codes are used within that column. Oracle and Access use
different methods for this.

In Oracle, the column function count(distinct column) produces this
result. In Access, this column function does not exist. You can get around
this problem by using two steps.

The first step uses select distinct to create a table or a view that con-
tains all the distinct values within the column. If there is a null in the col-
umn, it is included in the result table produced by select distinct. The
second step counts the values in this table without counting the null. This
gives the correct result.

Find the number of different values in the manager_id column of the
l_employees table.

select count(distinct manager_id)
from l_employees;

COUNT_DISTINCT

 0

Check your understanding

Task

Oracle SQL ➊

CHAPTER 11 SUMMARIZING DATA416

Beginning table (l_employees table)

Result table

select distinct manager_id ➌

into sec1108_step1
from l_employees;

Access table: Step 1

select count(manager_id) ➍

from sec1108_step1;

Access result table

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

COUNT(DISTINCTMANAGER_ID)

 3

Access SQL (workaround): Step 1 ➋

Access SQL (workaround): Step 2 ➋

COUNT 417

➊ In Oracle, you can use the count(distinct column) function.

➋ In Access, you must write two separate queries and run each query
separately.

➌ In Access, the first query creates a table containing all the different val-
ues, including the null. If there are several nulls in the manager_id col-
umn of the beginning table, there is still only one null in the step1
table. That is, select distinct treats all nulls as though they have the
same value, even though they are all unknown values.

➍ In Access, the second query uses the function count(column).

In table sec1103, find the number of distinct values in the num_1 column.

11-9 Counting the number of distinct
values in two or more columns

This section shows you how to use count distinct to find the number of
different values of two or more columns. Here I mean that the columns are
taken in combination with each other, so a new combination occurs when-
ever any one of the columns has a new value.

This combination of the columns into a single unit of data is similar to
the way that select distinct works with rows. With select distinct,
two rows are considered identical only when all the columns have the
same values.

There is a technical difference between count distinct and select
distinct. Count distinct is a column function. Here, distinct elimi-
nates duplicate values of a single column. Select distinct is an entire
select statement. Here distinct eliminates duplicate rows of the result
table.

To get these two structures to work the same way, you need to use a trick:
Concatenate all the columns together into a single column before applying
count distinct to them. The one column that count distinct applies
to then actually contains the values of all the columns.

A second trick should also be used. A separator should be placed between
the columns of the concatenation. The separator is usually a one-character
literal. It is often a punctuation character or special character that you know

Notes

Check your understanding

CHAPTER 11 SUMMARIZING DATA418

does not appear in the data. If the data might contain any character, you may
need to use a separator containing a string of two or three characters. In the
following SQL code, an asterisk is used for the separation character.

By using a separator, we prevent the possibility that different values in two
columns will produce the same value when they are concatenated. For
example:

Nulls are counted when the count distinct function is applied to two or
more columns and a separator is used. Even if there are nulls in all the col-
umns that are concatenated together, it is still counted. The separators are
not nulls, so the concatenation is not a null and it is counted.

In Access, we need to use the same workaround to get count distinct

that we used in the previous section.

Count the number of distinct combinations of manager_id and
credit_limit.

select count(distinct (manager_id || '*' || credit_limit))
from l_employees;

Column 1 Column 2
Concatenation
without a Separator

Concatenation
with a Separator

A BCD ABCD A*BCD

AB CD ABCD AB*CD

ABC D ABCD ABC*D

Column 1 Column 2
Concatenation
without a Separator

Concatenation
with a Separator

null null null *

Task

Oracle SQL

COUNT 419

Beginning table (l_employees table)

Result table

select distinct manager_id,
 credit_limit
into sec1109_manager_credit
from l_employees;

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

COUNT(DISTINCT(MANAGER_ID||'*'||CREDIT_LIMIT))
--

 7

Access SQL (workaround): Step 1 ➊

Access temporary table: Step 1

CHAPTER 11 SUMMARIZING DATA420

select count(*) ➋

from sec1109_manager_credit;

➊ This two-step method also works in Oracle, and it avoids the trick of
using a separator character.

➋ When you are counting more than one column, use count(*) instead of
count (column) as you did in section 11-8. The row with the null in
both columns is counted.

In table sec1103, find the number of distinct values in the num_1 and num_2
columns, taken together.

Sum and Average

11-10 The sum and average functions

This section shows an example using the sum (sum) and average (avg) col-
umn functions. These functions can be applied only to a column of num-
bers. Text and date columns cannot be used with these functions.

Nulls are ignored by both of these functions. The next section shows how
this can sometimes cause a problem for the sum function. For the avg func-
tion, nulls are ignored both in adding up the column and in counting the
number of items to set the divisor.

Access SQL (workaround): Step 2

Access result table: Step 2

Notes

Check your understanding

SUM AND AVERAGE 421

Find the sum and average of all the credit limits in the l_employees table.

select sum(credit_limit), ➊

 avg(credit_limit) ➋

from l_employees;

Beginning table (l_employees table)

Result table ➌

➊ This is an example of the sum(column) function. The result, 210, is the
sum of the nine values in the credit_limit column.

➋ This is an example of the avg(column) function. It finds the average of
the numbers. The result is 210 / 9 = 23.33, where 210 is the sum of the
values in the credit_limit column and 9 is the number of values in
that column, excluding nulls.

➌ The result table contains only one row.

In table sec1103, find the sum and average of the num_1 column.

Task

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

SUM(CREDIT_LIMIT) AVG(CREDIT_LIMIT)
----------------- -----------------
 210 23.333333

Notes

Check your understanding

CHAPTER 11 SUMMARIZING DATA422

11-11 The problem with nulls in
addition and how to solve it

SQL sometimes has a problem with addition when both of the following
conditions exist:

1. Two or more columns are added together.

2. There are nulls in some of those columns.

One of the basic properties of addition is that the order in which you add the
numbers does not matter. The sum is always the same. Sometimes addition
in SQL violates this property, as the example in this section shows.

The problem is that SQL has two kinds of addition, row addition and col-
umn addition, which have different ways of handling nulls. Row addition
adds numbers within one row. It is a row function. Row addition handles a
null as an unknown value. So, for example:

3 + null = null

Column addition adds numbers within one column. It is one of the func-
tions used for summarization. All summarization functions ignore nulls.
So, for example:

 3

+ null

 3

To solve this problem, you need to replace all the nulls with zeros. You can
do this by using the row functions nvl in Oracle and nz in Access. Another
method uses the update statement to make the change. This method
changes the data in the beginning table. If you do not want to change the
data permanently, you can do a rollback after you perform the calculation.

The following example shows two columns of numbers, and these columns
contain some nulls. When all the numbers are added together, you get one
result if you add the columns first and you get a different result if you add
the rows first.

When the columns are added first, using column addition, you get the
result that the sums of the columns are 6 and 15. Adding these together
with row addition, you get the following:

6 + 15 = 21

SUM AND AVERAGE 423

When the rows are added first, using row addition, you get the result that
the sums of the rows are 5, null, 8, and null. Adding these together with col-
umn addition, you get the following:

5

+ null

+ 8

+ null

13

The solution
Several solutions are available. The easiest is to always add the columns
first. This works, but it is sometimes tricky to implement. You need to be
aware of columns that are defined as row functions of other columns and
that information may get hidden.

A better solution is to stay aware of numeric columns in your database that
allow nulls. Whenever you use one of these columns, use it with the nvl or
nz function.

Add all the numbers in columns 2 and 3 of the following beginning table.
Show that in SQL we get two different answers, depending on the order in
which we add the numbers. If we add each of the columns first, the resulting
sum is 21. If we add across the rows first, the resulting sum is 13.

Then show that when the nulls are changed to zeros, the problem with
addition is solved: The result is the same whether the columns or the rows
are added first.

select sum(col_2)+sum(col_3) as columns_added_first, ➊

 sum(col_2 + col_3) as rows_added_first ➋

from sec1111;

Task

Oracle & Access SQL: An example of the problem with addition

CHAPTER 11 SUMMARIZING DATA424

Beginning table (sec1111 table)

Result table — Without changing the nulls to zeros ➌

➊ This line adds the columns first.

➋ This line adds the rows first.

➌ This shows that the sums are different.

Add columns first:

Then 6 + 15 = 21.

PK_1 COL_2 COL_3
------ --------- ---------
A 1 4
B (null) 5
C 2 6
D 3 (null)

COLUMNS_ADDED_FIRST ROWS_ADDED_FIRST
------------------- ----------------
 21 13

Notes

Explanation

Col_2 Col_3

1 4

null 5

2 6

3 null

—— ——

Sum 6 15

SUM AND AVERAGE 425

Add rows first:

Then 5 + 8 = 13.

select sum((col_2,)) + sum((col_3,)) ➍ ➏

 as columns_added_first,
 sum((col_2,) + (col_3,)) ➍

 as rows_added_first
from sec1111;

select sum((col_2,)) + sum((col_3,)) ➎ ➏

 as columns_added_first,
 sum((col_2,) + (col_3,)) ➎

 as rows_added_first
from sec1111;

Result table — With the nulls changed to zeros ➐

➍ In Oracle, the nvl function is applied to both columns to change the
nulls into zeros.

➎ In Access, the nz function is applied to both columns to change the
nulls into zeros.

Col_2 Col_3 Sum

1 4 = 5

null 5 = null

2 6 = 8

3 null = null

Oracle SQL: Method 1 — Using a row function CORRECT

Access SQL: Method 1 — Using a row function CORRECT

COLUMNS_ADDED_FIRST ROWS_ADDED_FIRST
------------------- ----------------
 21 21

Notes

nvl 0 nvl 0

nvl 0 nvl 0

nz 0 nz 0

nz 0 nz 0

CHAPTER 11 SUMMARIZING DATA426

➏ If you remember to always add the columns first, you do not need to use
the nvl or nz functions. This makes the code:

select sum(col_2) + sum(col_3)

In a way, this is the easiest solution. However, sometimes it can leave a
trap in your code that someone else may fall into. The next programmer
who works on the code might write:

sum(col_2 + col_3)

This would give the wrong answer.

➐ This shows that the sums are the same.

Add columns first:

Then 6 + 15 = 21.

Add rows first:

Then 5 + 5 + 8 +3 = 21.

Explanation

Col_2 Col_3

1 4

0 5

2 6

3 0

—— ——

Sum 6 15

Col_2 Col_3 Sum

1 4 = 5

0 5 = 5

2 6 = 8

3 0 = 3

SUM AND AVERAGE 427

Step 1: In the Home Page interface, clear the Autocommit checkbox. In the
SQL Command Line interface, set Autocommit off.

Step 2: Change the nulls to zeros in any columns used in the calculation.

update sec1111
 set col_2 = 0
where col_2 is null;

update sec1111
 set col_3 = 0
where col_3 is null;

Step 3: Run your report.

select sum(col_2)+sum(col_3) as columns_added_first,
 sum(col_2 + col_3) as rows_added_first
from sec1111;

Step 4: Undo the temporary changes to the data.

rollback;

In Access, we could use a similar process, but Access does not have a roll-
back statement, so the changes to the data would be permanent.

As long as you are comfortable interpreting all the nulls in your numeric col-
umns as zeros, all you need to do is add up the columns first. This works
because column addition ignores the nulls, which is similar to treating them
as zeros.

In table sec1103, show the problem with nulls in addition and how to solve
it.

1. Add columns num_1 and num_2, adding each row first.

2. Add columns num_1 and num_2, adding each column first.

3. Add columns num_1 and num_2, changing all the nulls to zeros first.

Oracle SQL: Method 2 — Changing the data temporarily CORRECT

One last thought

Check your understanding

CHAPTER 11 SUMMARIZING DATA428

Other Topics

The next three sections discuss some details that are important in many
applications that use summarization.

11-12 Nulls are not always changed to zero

In the previous section, all the nulls were changed to zeros, which is the
usual procedure. Ninety percent of the time the nulls in numeric columns
are changed to zeros, if their value is changed at all. Sometimes, however,
you might want to change the nulls to some other value, perhaps an esti-
mate of what the value will eventually be. This section gives an example.

In this example, a store receives orders for merchandise that it will ship to
customers. At the end of each day, the store wants to know the total value
of all the invoices. Each invoice is calculated with the formula:

(Price * Quantity) + Tax + Shipping = Invoice

The problem is that sometimes the tax or shipping columns contain
nulls, meaning that it is an unknown amount. In this situation, you need to
carefully control how the calculation is performed and how the rows that
contain nulls are counted.

There are three choices:

1. Bill all the amounts you know and estimate an amount for the nulls.

2. Bill all the amounts you know and nothing for the nulls.

3. Ignore any invoice with incomplete data.

This section shows the SQL code for the first choice, which is the best one.

Find the total for all the invoices in the table. Calculate an invoice as:

(Price * Quantity) + Tax + Shipping = Invoice

Estimate values for the nulls that occur in the tax and shipping columns
by applying these rules:

1. Replace a null in the tax column with:

0.07 * price * quantity

2. Replace a null in the shipping column with:

0.12* price * quantity

Task

OTHER TOPICS 429

select sum((price * quantity)
 + nvl(tax, 0.07 * price * quantity) ➊

 + nvl(shipping, 0.12 * price * quantity)) ➋

 as total_invoices
from sec1112_shipping;

select sum((price * quantity)
 + nz(tax, 0.07 * price * quantity) ➊

 + nz(shipping, 0.12 * price * quantity)) ➋

 as total_invoices
from sec1112_shipping;

Beginning table (sec1112_shipping table)

Result table

➊ Change the null in the tax column to an estimate of the tax.

➋ Change the null in the shipping column to an estimate of the shipping
charge.

Oracle SQL

Access SQL

PK_1 PRICE QUANTITY TAX SHIPPING
----- -------- --------- -------- --------
A $211.00 3 $48.00 $63.00
B $138.00 7 (null) $72.00
C $592.00 1 $51.00 $76.00
D $329.00 2 $54.00 (null)

TOTAL_INVOICES

 $3,359.58

Notes

CHAPTER 11 SUMMARIZING DATA430

11-13 Counting the number of nulls in a column

How can you count the number of nulls in a column? This goal may seem
to be a problem because all the column functions ignore nulls. This section
shows the technique. The where clause limits the rows to the ones we want
to count. Then the count(*) function counts them.

Often we are most interested in knowing if a column contains any nulls at
all and less interested in getting the exact count.

Find the number of nulls in the manager_id column of the l_employees
table.

select count(*) as number_of_nulls
from l_employees
where manager_id is null;

Beginning table (l_employees table)

Result table

Task

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

NUMBER_OF_NULLS

 2

OTHER TOPICS 431

11-14 Counting distinct dates

When you use count distinct on a date column, you may not get the
result you expect. This happens because the data in a date column may
contain a time, which is often not shown. Thus two rows that appear to
have the same date may in fact be different because the times are different.

Count the number of different dates in the date_entered column of the
l_lunches table.

select count(distinct date_entered) ➊

from l_lunches;

Beginning table (l_lunches table) ➋

Result table — The problem ➌

Task

Oracle SQL: The problem

 LUNCH EMPLOYEE
 LUNCH_ID DATE ID DATE_ENTERE
--------- ------------ -------- -----------
 1 16-NOV-2011 201 13-OCT-2011
 2 16-NOV-2011 207 13-OCT-2011
 3 16-NOV-2011 203 13-OCT-2011
 4 16-NOV-2011 204 13-OCT-2011
 6 16-NOV-2011 202 13-OCT-2011
 7 16-NOV-2011 210 13-OCT-2011
 8 25-NOV-2011 201 14-OCT-2011
 9 25-NOV-2011 208 14-OCT-2011
 12 25-NOV-2011 204 14-OCT-2011
 13 25-NOV-2011 207 18-OCT-2011
 15 25-NOV-2011 205 21-OCT-2011
 16 05-DEC-2011 201 21-OCT-2011
 17 05-DEC-2011 210 21-OCT-2011
 20 05-DEC-2011 205 24-OCT-2011
 21 05-DEC-2011 203 24-OCT-2011
 22 05-DEC-2011 208 24-OCT-2011

COUNT(DISTINCTDATE_ENTERED)

 16

CHAPTER 11 SUMMARIZING DATA432

select count(distinct trunc(date_entered)) ➍

from l_lunches;

Result table — The solution ➎

Step 1:

select distinct format(date_entered, 'YYYY-MM-DD') ➐

 as date_entered2
into temp_date
from l_lunches;

Step 2:

select count(date_entered2)
from temp_date;

Beginning table (l_lunches table as shown in Access) ➑

Oracle SQL: The solution

COUNT(DISTINCTTRUNC(DATE_ENTERED))

 5

Access SQL: The solution ➏

OTHER TOPICS 433

Access result table: Step 1

Access result table: Step 2

➊ You need to be careful when you use count distinct with a date field.
You need to remember that a date always includes a time.

➋ Only the dates are shown in this listing of the l_lunches table. The
times are not shown, even though they are actually in the data.

➌ The result shows there are 16 different values in this column. The date in
each row is different because the times are different.

➍ The solution is to apply the trunc function to the date column. This
truncates the time and leaves only the date.

➎ Now we get the answer we expected.

➏ Because Access does not support count distinct, you must use the
workaround given in section 11-9.

➐ Here the format function is used to remove the time from the data in the
date_entered column. There are other ways to achieve the same thing.
In Oracle you can use the trunc function and in Access you can use the
DateValue function.

➑ In Access the default date format does show the time, so the problem
described in this section is less likely to happen.

Notes

CHAPTER 11 SUMMARIZING DATA434

Key Points

■ Column functions summarize all the data in a single column of a
table. This can be either the data table or a result table. In this chap-
ter, the summarization extends over all the rows of the table and it
produces a single number, text string, or date. In the next chapter, you
will see how to modify this summarization process to produce several
numbers, text strings, or dates.

■ There are only seven column functions and two more that are fairly
new. They are: maximum, minimum, sum, average, and three types of
counting. Recently, many SQL products have added variance and
standard deviation to deal with statistical data.

■ All of the column functions, except count(*), completely ignore any
nulls that are in the summarized column.

■ Max and min return the values you expect. To find the rows that
have these values, it is best to use a separate select statement.

■ Sum and avg can apply only to columns of numbers. Often, you will
want to use a row function to change the nulls in the column to zeros
before you apply the sum or avg column functions.

■ Count(column_name) counts the number of rows in the table that
have a non-null value in the column.

■ Count(distinct column_name) counts the number of different val-
ues that are in the column. To find the number of different values in
two or more columns, first combine those columns into a single col-
umn, then apply the count(distinct) column function to that com-
bined column.

■ Count(*) counts the number of rows in the table. It is not bound to
one specific column.

435

chapter 12

In chapter 11, we summarized all the data in a column of a
table. The result was a single value. In this chapter, we divide
the rows of the table into groups, which are nonoverlapping sets
of rows. Each group is summarized separately, resulting in a
summary value for each of the groups.

At our discretion, we can either summarize a column into a
single value or divide it into 100 pieces and summarize each
piece. This gives us control over the level of detail we want to
see.

CONTROLLING
THE LEVEL OF

SUMMARIZATION

Dividing a Table into Groups of Rows . 437

12-1 Summary of groups of data within a column .437
12-2 The group by clause .438
12-3 Groups formed on two or more columns .441
12-4 Null groups when there are two or more grouping columns.444
12-5 Summarized data cannot be mixed with nonsummarized

data in the same select statement. .447
12-6 Solution 1: Add more columns to the group by clause.451
12-7 Solution 2: Divide the query into two separate select statements. . . .452
12-8 How to create a report with subtotals and a grand total455
12-9 Counting to zero, part 2 .455

12-10 Counting to zero, part 3 .457

Eliminating Some of the Summarized Data . 459

12-11 The having clause .460
12-12 The having clause contrasted with the where clause 462
12-13 The whole process of the select statement on a single table463
12-14 The having clause does not add any more

 power to the select statement. .463
12-15 Use a where clause instead of a having clause

 to eliminate raw data .466
12-16 How to apply one column function to another

 column function and get around other restrictions 467

Key Points . 471

437

Dividing a Table into Groups of Rows

You can divide the rows of a table into separate groups. The group by

clause in a select statement can do this. Then each group of rows is sum-
marized into one line (row) of the summary.

The column functions summarize each group of rows. This allows you to
control the level of summarization and detail.

12-1 Summary of groups of data within a column

This section shows a conceptual diagram of the way a column function
works when it is applied to groups of rows within a table. Each row of the
table is assigned to a group. Each row can be part of only a single group.

The column function produces a summary of each group of rows, which is a
single value for each group. The result of the column function has one row
for every group of rows in the beginning table.

The number of groups that the beginning table is divided into determines
how detailed and fine-grained the summarization is. At one extreme, each
row of the beginning table can be a separate group. Then no summariza-
tion occurs at all. At the other extreme, all the rows of the beginning table
can be put into a single group. This was the case when we summarized the
entire table in the previous chapter. Then all the data within the column is
condensed down to a single value — a single number, text item, or date.

Grouping the rows of a table, then summarizing each group.

A

A

A

B

B

C

C

C

Grouping
column

Summarized
column

Beginning table
The rows are formed into groups.

A

B

C

Result table
Each row of the result table comes from
one group of rows in the beginning table.

Group
identity

Summarized
data for each group

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION438

12-2 The group by clause

The example in this section shows how you can control the level of summa-
rization using a group by clause. In this example a single column is used in
the group by clause. This is the simplest case.

Each group is formed from all the rows of the table that have the same
value in the grouping column. This means that each row of the table is
placed in a group along with all the other rows that have the same value in
that column. No row is placed in more than one group.

The columns are then summarized separately for each group. The result
table contains one row for each group along with the summarized data for
that group.

All the rows with a null in the grouping column are placed within a single
group called the null group. The null group is similar to the Other category
that is often used when data is summarized. This may seem a little unusual
because nulls are unknown values and normally we do not consider one
null to be equal to another. But what would the alternative be?

It would not work well if SQL formed a separate group from each null value.
Each of these groups would contain only one row. There would be too
many groups with only a single row and the summarization would not work
well. Therefore the only effective solution is to form a single group from all
the rows with a null in the grouping column.

We often say that every table should have a primary key, although we allow
some exceptions. However, in this example you could not put a primary key
on the manager_id column. Because of the null group, there is a null value
in this column and a primary key column must not contain a null. You often
cannot put a primary key on the result table of a grouped query.

For each manager_id, list the number of employees each one manages.
Also list the range of their employees’ credit limits by showing the minimum
and maximum. Omit employee 202.

Task

DIVIDING A TABLE INTO GROUPS OF ROWS 439

select manager_id, ➌

 count(employee_id) as number_of_employees,
 min(credit_limit) as minimum_credit,
 max(credit_limit) as maximum_credit
from l_employees
where not (employee_id = 202) ➊

group by manager_id ➋

order by manager_id;

Beginning table (l_employees table)

First the where clause is applied and the row for employee_id = 202 is removed ➍

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION440

Then the rows of the table are divided into groups that have the same value in the
manager_id column ➎

Result table ➏

➊ ➍ First, the where clause is applied to the rows of the beginning table. It
eliminates some of the rows. In this example, employee 202 is deleted
from further consideration.

➋ ➎ Second, the remaining rows of the table are divided into groups by
their value in the manager_id column. This creates four groups:

• The two rows with a manager_id of 201

• The two rows with a manager_id of 202

• The three rows with a manager_id of 203

• The two rows with a null value in the manager_id column

➌ ➏ Third, the column functions summarize the data in each of the
groups. They produce one row in the result table for each of the
groups.

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201

 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202

 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 206 CAROL ROSE ACT (null) (null) (null) (null)

MANAGER
 ID NUMBER_OF_EMPLOYEES MINIMUM_CREDIT MAXIMUM_CREDIT
------- ------------------- -------------- --------------
 201 2 $15.00 $25.00
 202 2 $15.00 $25.00
 203 3 $25.00 $25.00
(null) 2 $30.00 $30.00

Notes

DIVIDING A TABLE INTO GROUPS OF ROWS 441

The result table is usually structured to identify each group and then
give summary information about that group. It does not need to be
structured this way, but that is usually the most logical way to present
the data. To achieve this, the select clause lists the grouping col-
umn(s) first, followed by column functions. The select clause here is
organized that way.

Last, the order by clause sorts the rows of the result table into a log-
ical order. Usually the order by clause contains the same columns as
the group by clause.

Table sec1202 has four columns: row_id, col_1, col_2, and col_3. Write
a select statement that groups the rows by the value in col_1 and for each
group determines the sum of the values in col_3.

12-3 Groups formed on two or more columns

This section shows a group by clause that uses two grouping columns.
Each group is formed from all the rows that have identical values in both of
these columns. If two rows have different values in either of these columns,
they belong to different groups. The groups are the same regardless of the
order in which the columns are listed in the group by clause.

A group by clause can list any number of columns. When a new column is
added to the group by clause, each prior group may split into two or more
new groups.

Drill down is a term that is used to describe the process of beginning with a
high level of summarization and progressing to finer levels of detail. You
can compare the result table of this section with the one from the previous
section to see an example of a drill down.

The usual SQL technique behind a drill down is to add another column to
the group by clause. This further divides each of the groups of rows. The
same column is also added to the select clause and the order by clause.
In the following example, the dept_code column is added to these
clauses. I highlighted this change in the code.

Check your understanding

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION442

From the code in section 12-2, drill down by adding the department code.
Omit employee 202.

select manager_id, ➌

 ,
 count(employee_id) as number_of_employees,
 min(credit_limit) as minimum_credit,
 max(credit_limit) as maximum_credit
from l_employees
where not (employee_id = 202) ➊

group by manager_id, ➋

order by manager_id, ➍

 ;

Beginning table (l_employees table)

First the where clause is applied and the row for employee_id = 202 is removed ➎

Task

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

dept_code

dept_code

dept_code

DIVIDING A TABLE INTO GROUPS OF ROWS 443

Then the rows of the table are divided into groups that have the same values in both
the manager_id and dept_code columns ➏

Result table

➊ ➎ The where clause is applied first. In this example it eliminates the row
for employee 202 from further consideration.

➋ ➏ Groups of rows are formed that have identical values in both the
manager_id and dept_code columns.

➌ Then the column functions in the select clause are evaluated sepa-
rately for each group. The result table contains one row for each
group. The department code is added to the select clause to fully
identify each group in the listing of the result table.

➍ As a last step, the rows of the result table are sorted on the two col-
umns used to create the groups. Although the order of these columns
does not matter in the group by clause, it does matter in the order
by clause. Because the manager_id is listed first in the order by
clause, the primary sort is done on that column.

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201

 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201

 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202

 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203

 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)

 206 CAROL ROSE ACT (null) (null) (null) (null)

MANAGER DEPT
 ID CODE NUMBER_OF_EMPLOYEES MINIMUM_CREDIT MAXIMUM_CREDIT
------- ---- ------------------- -------------- --------------
 201 MKT 1 $15.00 $15.00
 201 SHP 1 $25.00 $25.00
 202 SAL 2 $15.00 $25.00
 203 SAL 1 $25.00 $25.00
 203 SHP 2 $25.00 $25.00
(null) ACT 1 (null) (null)
(null) EXE 1 $30.00 $30.00

Notes

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION444

12-4 Null groups when there are
two or more grouping columns

This section shows what happens when the rows of a table are grouped on
two or more columns and several of those columns contain nulls. In this
situation, the nulls are handled as if “null” was a specific value, like any
other value. That is, if two nulls occur within a single grouping column,
they are handled as if they have the same value and they are placed within
the same group. If they occur in different grouping columns, they are han-
dled separately, as any other values would be. Actually, this occurred in the
previous section, but this section emphasizes the point.

In effect, this can create several Other categories within the summarization,
but all the nulls are not placed into a single Other category. That is how the
process is sometimes described, and that description is wrong. It is correct
only when there is a single grouping column.

If you are grouping by more than one column and you truly want an Other
category, you will need to create it yourself as a separate step. SQL will not
create it for you. Usually you will not need to do this. However, you should
pay careful attention to the sort order of the rows if they have any nulls in
the grouping columns.

A null in the data is handled in two different ways within a grouped sum-
marization. A null in a grouping column is handled as if it is a specific value
and it is placed in a null group. However, a null in a column that is being
summarized is ignored by the column functions that do the summarization.

In the following example, the groups are formed on col_2 and col_3.
Both of these columns contain nulls. There are five separate groups that
contain a null group in one of the two grouping columns. In the result
table, each of these groups creates a separate row. In effect, this gives five
Other categories.

Then the data in col_4 and col_5 are summarized for each of the groups.
When the data is summarized with the count(*) function, we could think
that the nulls are being counted, although it is really the rows that are
being counted for each group. When the data are summarized with the
count(column) function, the nulls are completely ignored.

Within this example we can see that nulls in grouping columns are handled
differently from nulls in summarized columns.

DIVIDING A TABLE INTO GROUPS OF ROWS 445

Group the following table on the two columns, col_2 and col_3. For each
group of rows, calculate

■ The number of rows in the group

■ The number of rows that have data in column col_4

■ The number of rows that have data in column col_5

select col_2, ➊

 col_3, ➊

 count(*),
 count(col_4),
 count(col_5)
from sec1204
group by col_2,
 col_3 ➋

order by col_2,
 col_3;

Beginning table (sec1204 table) divided into groups

Task

Oracle & Access SQL

 PK_1 COL_2 COL_3 COL_4 COL_5
--------- ------ ------ ------ ------
 1 A Y M (null)
 2 A Y (null) (null)

 3 A Z M (null)
 4 A Z (null) (null)

 5 A (null) M (null)
 6 A (null) (null) (null)

 7 B Y M (null)
 8 B Y (null) (null)

 9 B Z M (null)
 10 B Z (null) (null)

 11 B (null) M (null)
 12 B (null) (null) (null)

 13 (null) Y M (null)
 14 (null) Y (null) (null)

 15 (null) Z M (null)
 16 (null) Z (null) (null)

 17 (null) (null) M (null)
 18 (null) (null) (null) (null)

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION446

Result table ➌

This is what does not happen when the beginning table (sec1204 table) is divided
into groups. Here all the rows with a null in either grouping column form a single
group. If SQL worked this way, there would be only one Other category.

COL_2 COL_3 COUNT(*) COUNT(COL_4) COUNT(COL_5)
------ ------ --------- ------------ ------------
A Y 2 1 0
A Z 2 1 0

2 1 0
B Y 2 1 0
B Z 2 1 0

2 1 0
2 1 0
2 1 0
2 1 0

 PK_1 COL_2 COL_3 COL_4 COL_5
--------- ------ ------ ------ ------
 1 A Y M (null)
 2 A Y (null) (null)

 3 A Z M (null)
 4 A Z (null) (null)

 7 B Y M (null)
 8 B Y (null) (null)

 9 B Z M (null)
 10 B Z (null) (null)

 5 A (null) M (null)➍

 6 A (null) (null) (null)
 11 B (null) M (null)
 12 B (null) (null) (null)
 13 (null) Y M (null)
 14 (null) Y (null) (null)
 15 (null) Z M (null)
 16 (null) Z (null) (null)
 17 (null) (null) M (null)
 18 (null) (null) (null) (null)

A (null)

B (null)
(null) Y
(null) Z
(null) (null)

DIVIDING A TABLE INTO GROUPS OF ROWS 447

➊ col_2 and col_3 are used to group the data from the beginning table.
They are listed in the select clause so that the result table makes
sense.

➋ The group by clause lists both col_2 and col_3.

➌ The highlighted rows in the result table show the five separate null
groups. In more general terms, these are five separate Other categories.

➍ This is what does not happen. SQL does not form a single group out of
all the rows that have a null in one of the grouping columns.

Use table sec1202. Write a select statement that groups the rows by the
value in col_1 and col_2. For each group determine the sum of the values
in col_3.

12-5 Summarized data cannot be
mixed with nonsummarized data
in the same select statement

A select statement cannot list both summarized data and detail data
because the output of a select statement must be like a table. I have been
calling this the result table. It must have columns and rows. In particular,
each of the columns must have the same number of rows.

The example in this section shows a select statement that does not work
and produces an error message because this select statement is mixing
summarized data with detail data.

The second and third columns of the select clause are detail data. They are
first_name and last_name. No column functions are applied to these col-
umns and they are not listed in the group by clause. That is why they yield
detail data. If the select clause listed only these columns, the result table
would have 10 rows. Each row of the result table would come from a single
row in the beginning table. The result table would be similar to the following:

Notes

Check your understanding

FIRST_NAME LAST_NAME
---------- ---------

(10 rows of detail data)

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION448

The first and fourth columns of the select clause are summarized data.
The first column is manager_id. This column is also listed in the group by
clause, so it is a grouping column, which is summarized data. The fourth
column uses the max column function, so it is also summarized data. If the
select clause listed only these columns, the result table would have four
rows. Each of these rows would summarize all the rows with a particular
manager_id. There are four different values in the manager_id column, so
the result table would be similar to the following:

These two tables cannot be combined to form a single table because the
columns contain different numbers of rows. For this reason, you are not
allowed to mix summarized data and detail data in the same select
statement.

Error messages
This section also shows that the error messages produced by Oracle and
Access do not always tell you specifically what the error is or how to fix it.
This is a problem with almost all computer software, not just Oracle and
Access. It is very difficult for any type of computer software to tell you what
the problems are in your code. Often when the computer detects a prob-
lem, it is genuinely confused, so it gives you a confused error message. It
may point to the wrong location of the error — often the error actually
occurs on the line above or below where the error message says it occurs.
The error message may say that one thing is wrong, when the problem is
something else entirely. The one thing you can count on is that when an
error message appears, there is actually an error of some sort somewhere
in your code. This is one of the basic problems you must learn to deal with
in any type of computer programming.

The error messages shown in this section illustrate another difficulty. These
error messages are specific to the problem and they do indicate accurately
where the error first occurs. However, they are worded in a manner that is
difficult to understand.

MANAGER_ID MAX(CREDIT_LIMIT)
---------- ----------------

(4 rows of summarized data)

DIVIDING A TABLE INTO GROUPS OF ROWS 449

How to solve the problem
At times, you will attempt to mix summarized data with detail data. It hap-
pens to everyone. You will receive the error messages shown here. The
question is, how do you move on and deal with the problem?

On a technical level, there are two main techniques you can use. The one
you choose depends on what you are trying to do. The next two sections
show these techniques with the SQL code used in this section. The tech-
niques are as follows:

1. Add more columns to the group by clause. Add all the columns that
contain detail data.

2. Separate your query into two separate select statements, one for
summarized data and the other for detail data.

Show the error that occurs when a summarized column and a nonsumma-
rized column both occur within the same select statement.

select manager_id, ➊

 first_name, ➋

 last_name, ➋

 max(credit_limit) ➌

from l_employees
group by manager_id
order by manager_id;

Beginning table (l_employees table)

Task

Oracle & Access SQL: This contains an error

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION450

 FIRST_NAME,
 *
ERROR at line 2:
ORA-00979: not a GROUP BY expression

➊ The manager_id column is a grouping column because it is listed in the
group by clause.

➋ The first_name and last_name columns are detail data. They are not
summarized.

➌ The maximum_credit_limit column is summarized data because it
applies a column function.

➍ In Oracle the asterisk under first_name indicates that this is the loca-
tion of the first error. The message, “not a GROUP BY expression,” is
meant to suggest that you should put first_name in the group by
clause.

Sometimes Oracle displays a more cryptic message, “not a single-group
group function,” to indicate that you are trying to mix summarized data
with detail data.

➎ In Access, the error message can also be confusing.

Oracle error message ➍

Access error message ➎

Notes

DIVIDING A TABLE INTO GROUPS OF ROWS 451

12-6 Solution 1: Add more columns
to the group by clause

This section shows one technique for dealing with the error that occurred
in the SQL code of section 12-5. In this technique, all the columns of the
select clause that are not column functions are placed in the group by

clause.

This technique works, in the sense that it produces SQL code that runs.
However, it might or might not produce the result you want. It can add
many more groups to your result, which can affect the level of summariza-
tion.

In this example several new groups have been formed by adding the
first_name and last_name columns to the group by clause. In fact a
separate group has been created for each employee, because there are no
two employees with the same name. Each of these groups has only one
row, so the column function max(credit_limit) produces the same
result as simply listing the credit_limit column. It is up to you to decide
if this is the result you want.

Show one technique to deal with the error in the SQL code of section 12-5.
This technique adds more columns to the group by clause. (I highlighted the
changes to the code.)

select manager_id,
 first_name, ➊

 last_name, ➊

 max(credit_limit)
from l_employees
group by manager_id,
 , ➋

 ➋

order by manager_id;

Task

Oracle & Access SQL

first_name
last_name

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION452

Beginning table (l_employees table)

Result table

➊ First_name and last_name were detail data in the select statement
in the previous section. Here they are summarized data because they
appear in the group by clause.

➋ First_name and last_name are added to the group by clause.

12-7 Solution 2: Divide the query into
two separate select statements

This section shows another technique for dealing with the error that
occurred in the SQL code of section 12-5. In this technique, the query is
divided into two separate select statements, one statement for summa-
rized data and one for detail data.

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

MANAGER
 ID FIRST_NAME LAST_NAME MAX(CREDIT_LIMIT)
------- ---------- ---------- -----------------
 201 JIM KERN 25
 201 MARTHA WOODS 25
 201 PAULA JACOBS 15
 202 ELLEN OWENS 15
 202 HENRY PERKINS 25
 203 DAN SMITH 25
 203 FRED CAMPBELL 25
 203 NANCY HOFFMAN 25
(null) CAROL ROSE (null)
(null) SUSAN BROWN 30

Notes

DIVIDING A TABLE INTO GROUPS OF ROWS 453

In the statement for summarized data all the columns of detail data are
removed from the select clause. No other clause needs to be changed. In
the statement for the detail data all the column functions are removed and
the group by clause is removed. This gets both of the select statements
to run and produce results. Then it is up to you to decide how to put those
results together to express your meaning.

Show another technique to deal with the error in the SQL code of section
12-5. This technique divides the select statement into two separate select
statements — one for summarized data and one for detail data.

select manager_id,
 max(credit_limit)
from l_employees
group by manager_id
order by manager_id;

Beginning table (l_employees table)

Result table

Task

Oracle & Access SQL: Statement 1 — For summarized data

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

MANAGER
 ID MAX(CREDIT_LIMIT)
------- -----------------
 201 25
 202 25
 203 25
(null) 30

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION454

select manager_id,
 first_name,
 last_name
from l_employees
order by manager_id;

Result table

Suppose you wanted to show all the data in table sec1202 and you also
wanted to show the total for col_3. Could you do this with SQL?

The answer is no. The best you can do is to run two queries. One would
show the data with:

select *
from sec1202;

The other would show the total with:

select sum(col_3) as grand_total
from sec1202;

Then, if you were desperate, you could paste the two pieces of paper
together. Or you could do the same thing in SQL using a union.

Fortunately, most SQL products give you a better way. There is usually
some sort of report level to the software that will do totals and subtotals
for you.

Oracle & Access SQL: Statement 2 — For detail data

MANAGER
 ID FIRST_NAME LAST_NAME
------- ---------- ----------
 201 JIM KERN
 201 MARTHA WOODS
 201 PAULA JACOBS
 202 ELLEN OWENS
 202 HENRY PERKINS
 203 DAN SMITH
 203 FRED CAMPBELL
 203 NANCY HOFFMAN
(null) SUSAN BROWN
(null) CAROL ROSE

Check your understanding

DIVIDING A TABLE INTO GROUPS OF ROWS 455

12-8 How to create a report with
subtotals and a grand total

A common type of report shows details and also has subtotals and a grand
total. How can SQL produce a report like this? The previous sections have
stated that you cannot get both detail data and summarized data from a
single select statement, so it will take more than a single select state-
ment to produce such a report.

The usual way to produce a report like this is to have SQL work together
with another layer of reporting software. SQL supplies the detail data
sorted in the correct order. The other layer of software takes care of the con-
trol breaks (where the subtotals are placed), the subtotals, and the grand
total.

This arrangement, having SQL work together with another layer of software,
goes back to the idea of using SQL as part of a back-end data server. The
plan is for SQL to deal with the information level while the other layer of
software deals with the presentation level.

What can you use for this other layer of software? There are many options.
Oracle SQL*Plus, which is used in the SQL Command Line environment,
can create a report with totals and subtotals. Access can also, using its
reports. Another option is a software package called Crystal Reports.

Oracle has some special features for totals and subtotals
Oracle has developed two special functions for doing totals and subtotals
on the SQL level. They are called rollup and cube. I do not explain them
here because they are not part of standard SQL. If you want to find out
about them you can find information in the documentation or on the Web.

12-9 Counting to zero, part 2

This is part two of a series. We want to count the number of lunches each
employee will attend and list all the employees, even the two who are not
attending any lunches. For those two, we want to put a zero in the
number_of_lunches column. We will achieve this goal in chapter 14.
Right now we are building up to it.

Section 11-7 is part one of this series. There we showed that the
count(column) function is capable of counting to zero. In this part we use
the l_lunches table and that column function to count the number of

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION456

lunches for each employee who is listed in that table. This is a good first try
that gets most of the answer.

When we examine the result table we see some success and also that some
improvement is needed. The success is that it counts the number of
lunches for the employees who are attending at least one lunch. The
changes we want to make are to list the two employees who are not attend-
ing any lunches and to list the names of all the employees.

From the l_lunches table, count the number of lunches each employee will
attend.

select employee_id,
 count(lunch_id) as number_of_lunches
from l_lunches
group by employee_id
order by employee_id;

Beginning table (l_lunches table)

Task

Oracle & Access SQL

 LUNCH EMPLOYEE
 LUNCH_ID DATE ID DATE_ENTERE
--------- ------------ -------- -----------
 1 16-NOV-2011 201 13-OCT-2011
 2 16-NOV-2011 207 13-OCT-2011
 3 16-NOV-2011 203 13-OCT-2011
 4 16-NOV-2011 204 13-OCT-2011
 6 16-NOV-2011 202 13-OCT-2011
 7 16-NOV-2011 210 13-OCT-2011
 8 25-NOV-2011 201 14-OCT-2011
 9 25-NOV-2011 208 14-OCT-2011
 12 25-NOV-2011 204 14-OCT-2011
 13 25-NOV-2011 207 18-OCT-2011
 15 25-NOV-2011 205 21-OCT-2011
 16 05-DEC-2011 201 21-OCT-2011
 17 05-DEC-2011 210 21-OCT-2011
 20 05-DEC-2011 205 24-OCT-2011
 21 05-DEC-2011 203 24-OCT-2011
 22 05-DEC-2011 208 24-OCT-2011

DIVIDING A TABLE INTO GROUPS OF ROWS 457

Result table ➊

➊ There are no rows for employees 206 or 209.

12-10 Counting to zero, part 3

To get to the final result of this “Counting to zero” series, you need to use two
techniques: summarization and outer join. Because we have talked about
summarization in this chapter, I want you to see the summarization part of
the solution, so for now I am giving you the outer join part. In chapter 14, I
show you how to create it yourself. This outer join adds two rows to the
l_lunches table, one for employee 206 and one for employee 209. These
rows have a null in the lunch_id and lunch_date columns.

The one thing that is a bit tricky is the group by clause. You might think it
is enough to have just the employee_id column in this clause because
that is what really forms the groups. However, then we would be mixing
summarized data (employee_id and number_of_lunches) with detail
data (first_name and last_name), which we are not allowed to do.

You might say that we know that there is only one first name and one last
name for each employee ID because employee_id is the primary key of the
l_employees table. There is some validity to that point, but that level of
intelligence is not built into SQL.

The computer does not know that there is only one first name and one last
name for each employee ID, or at least it is not thinking about that fact
when it processes this select statement. SQL requires you to put
first_name and last_name into the group by clause. Then all the col-
umns in the select clause are summarized data.

EMPLOYEE
 ID NUMBER_OF_LUNCHES
-------- -----------------
 201 3
 202 1
 203 2
 204 2
 205 2
 207 2
 208 2
 210 2

Notes

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION458

Count the number of lunches each employee will attend. List the employee
IDs and names of all the employees.

select employee_id,
 first_name, ➊

 last_name, ➊

 count(lunch_id) as number_of_lunches
from sec1210
group by employee_id,
 first_name,
 last_name
order by employee_id;

Beginning table (sec1210)

Task

Oracle & Access SQL

EMPLOYEE LUNCH
 ID FIRST_NAME LAST_NAME LUNCH_ID DATE
-------- ---------- ---------- --------- ------------
 201 SUSAN BROWN 1 16-NOV-2011
 201 SUSAN BROWN 8 25-NOV-2011
 201 SUSAN BROWN 16 05-DEC-2011
 202 JIM KERN 6 16-NOV-2011
 203 MARTHA WOODS 3 16-NOV-2011
 203 MARTHA WOODS 21 05-DEC-2011
 204 ELLEN OWENS 12 25-NOV-2011
 205 HENRY PERKINS 15 25-NOV-2011
 205 HENRY PERKINS 20 05-DEC-2011
 206 CAROL ROSE (null) (null) ➋

 207 DAN SMITH 2 16-NOV-2011
 207 DAN SMITH 4 16-NOV-2011
 207 DAN SMITH 13 25-NOV-2011
 208 FRED CAMPBELL 9 25-NOV-2011
 208 FRED CAMPBELL 22 05-DEC-2011
 209 PAULA JACOBS (null) (null) ➋

 210 NANCY HOFFMAN 7 16-NOV-2011
 210 NANCY HOFFMAN 17 05-DEC-2011

ELIMINATING SOME OF THE SUMMARIZED DATA 459

Result table

➊ We must add the first_name and last_name to the group by clause.

➋ These new rows are created by an outer join.

➌ All the employees are shown. A zero is created for the two people who
are not attending any lunches.

Eliminating Some of the Summarized Data

After data have been summarized, it is possible to eliminate some of the
rows of the result. This is done with the having clause of a select state-
ment. We might do this if we only want to see the largest categories or the
most relevant portion of the data.

Often by the time data are grouped and summarized, the result table is
only a few pages long and we do not object to looking at the whole thing. In
that case, we do not need a having clause.

When there are many groups in the summarization, the having clause can
be a convenient way to focus on the ones in which we are most interested.

EMPLOYEE FIRST LAST
 ID NAME NAME NUMBER_OF_LUNCHES
-------- ---------- ---------- -----------------
 201 SUSAN BROWN 3
 202 JIM KERN 1
 203 MARTHA WOODS 2
 204 ELLEN OWENS 2
 205 HENRY PERKINS 2
 206 CAROL ROSE 0 ➌

 207 DAN SMITH 2
 208 FRED CAMPBELL 2
 209 PAULA JACOBS 0 ➌

 210 NANCY HOFFMAN 2

Notes

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION460

12-11 The having clause

There is one more clause in the select statement that we have not yet dis-
cussed: the having clause. When the result table contains data that are
grouped and summarized, the having clause can eliminate some of the
groups from the result table. The groups are still formed and all the calcu-
lations and summarizations are done, but they are deleted at the end of the
process.

The example in this section shows a query with a having clause that elimi-
nates the foods for which fewer than 10 servings have been ordered.

For the data shown here, only a few rows are eliminated from the result
table. The having clause is usually used with a larger amount of data. For
instance, out of 100 employees, most of them would only attend one lunch.
The having clause can help you find the few people who are attending two
or more lunches. This clause is often used to find exceptions in the data.

The having clause is always used with a group by clause, but a group by

clause is often used alone. As the following code shows, the having clause
is written directly after the group by clause and before the order by

clause.

From the l_lunch_items table, list the supplier ID and product code (these
identify a food) of all the foods for which 10 servings or more have been
ordered.

select supplier_id,
 product_code,
 sum(quantity) as total_servings
from l_lunch_items
group by supplier_id,
 product_code
having sum(quantity) >= 10 ➊

order by supplier_id,
 product_code;

Task

Oracle & Access SQL

ELIMINATING SOME OF THE SUMMARIZED DATA 461

Beginning table (l_lunch_items table) ➋

Result table before the having clause is applied

Result table after the having clause is applied ➌

 SUPPLIER PRODUCT
 LUNCH_ID ITEM_NUMBER ID CODE QUANTITY
--------- ----------- -------- ------- ---------
 1 1 ASP FS 1
 1 2 ASP SW 2
 1 3 JBR VR 2
 2 1 ASP SW 2
 2 2 FRV FF 1
 2 3 JBR VR 2
 2 4 VSB AS 1
 3 1 ASP FS 1
 3 2 CBC GS 1
 3 3 FRV FF 1
 3 4 JBR VR 1
 3 5 JBR AS 1
(and many more rows)

SUPPLIER PRODUCT
ID CODE TOTAL_SERVINGS
-------- ------- --------------
ASP FS 9
ASP SP 11
ASP SW 7
CBC GS 10
CBC SW 5
FRV FF 10
JBR AS 11
JBR VR 17
VSB AS 6

SUPPLIER PRODUCT
ID CODE TOTAL_SERVINGS
-------- ------- --------------
ASP SP 11
CBC GS 10
FRV FF 10
JBR AS 11
JBR VR 17

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION462

➊ This is the having clause. You often write a column function within this
clause.

➋ The rows of the beginning table are grouped and processed in the same
way, as if the having clause were not present.

➌ The having clause eliminates rows from the result table.

Table sec1211 has three columns: row_id, col_1, and col_2. Group on
col_1 and get the sum of col_2. Add a having clause to show only the
rows of the result table where the sum is greater than 20.

12-12 The having clause contrasted
with the where clause

The having clause is similar to the where clause in the following ways:

1. They both eliminate data from the result table.

2. They both set conditions that some data will pass and other data
will not pass.

3. A null in the data can never satisfy a condition in either a having
clause or a where clause. The only exception occurs with the is
null condition.

The having clause is different from the where clause in the following ways:

1. The where clause can only eliminate rows from the beginning table,
the raw data, before any other processing occurs.

2. The having clause can eliminate data that have been grouped and
summarized, after most of the processing has already taken place.

3. The where clause cannot use column functions in the conditions it
sets.

4. The having clause can use column functions in its conditions.

Notes

Check your understanding

ELIMINATING SOME OF THE SUMMARIZED DATA 463

12-13 The whole process of the
select statement on a single table

Here is a summary of the entire process that a select statement describes
when it operates on a single table. All six clauses of the select statement
are shown here. This is an idealized model of the processing. The computer
is allowed to use shortcuts in its processing as long as it gets the same
result that this idealized model would produce.

Step 1: The from clause chooses the beginning table.

Step 2: The row functions are calculated. In effect, this adds new columns
to the beginning table.

Step 3: The where clause chooses which rows of data to process from the
table. Any rows that do not satisfy its condition are eliminated.

Step 4: The select clause chooses which columns of data to process and
list in the result table. The process also includes other columns used in the
group by, having, and order by clauses. Any other columns are eliminated.

Step 5: The group by clause separates the rows into different groups.

Step 6: The column functions summarize the data in each group.

Step 7: The having clause chooses which rows of summarized data to put
in the result table.

Step 8: The order by clause chooses which columns are used to sort the
rows of the result table for its presentation.

12-14 The having clause does not add any more
power to the select statement

The having clause is sometimes convenient to use, but it is never
required. At best it can save us one step, one SQL statement. To eliminate
a having clause use the following procedure:

Step 1: Create a view or a table from all the data after they are grouped
and summarized. Do not include the having clause.

Step 2: Write a select statement from that view. In this select statement
a where clause can be used to do the same work that the having clause
did before.

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION464

Show an example of replacing a having clause with a two-step process.
Rewrite the SQL code of section 12-11 and eliminate the having clause.

create or replace view sec1214_view as
select supplier_id,
 product_code,
 sum(quantity) as total_servings
from l_lunch_items
group by supplier_id,
 product_code;

Step 1, Part 1: Enter this select statement in the SQL window:

select supplier_id,
 product_code,
 sum(quantity) as total_servings
from l_lunch_items
group by supplier_id,
 product_code;

Step 1, Part 2: Save this query. Name it sec1214_view.

Beginning table (l_lunch_items table)

Task

Oracle SQL:
Step 1 — Create a view from the grouped and summarized data

Access SQL:
Step 1 — Create a view from the grouped and summarized data

 SUPPLIER PRODUCT
 LUNCH_ID ITEM_NUMBER ID CODE QUANTITY
--------- ----------- -------- ------- ---------
 1 1 ASP FS 1
 1 2 ASP SW 2
 1 3 JBR VR 2
 2 1 ASP SW 2
 2 2 FRV FF 1
 2 3 JBR VR 2
 2 4 VSB AS 1
 3 1 ASP FS 1
 3 2 CBC GS 1
 3 3 FRV FF 1
 3 4 JBR VR 1
 3 5 JBR AS 1
(and many more rows)

ELIMINATING SOME OF THE SUMMARIZED DATA 465

View created by step 1

select *
from sec1214_view
where total_servings >= 10 ➊

order by supplier_id,
 product_code;

Result table from step 2

➊ This where clause does the same work that the having clause is doing
in section 12-11

SUPPLIER PRODUCT
ID CODE TOTAL_SERVINGS
-------- ------- --------------
ASP FS 9
ASP SP 11
ASP SW 7
CBC GS 10
CBC SW 5
FRV FF 10
JBR AS 11
JBR VR 17
VSB AS 6

Oracle & Access SQL: Step 2

SUPPLIER PRODUCT
ID CODE TOTAL_SERVINGS
-------- ------- --------------
ASP SP 11
CBC GS 10
FRV FF 10
JBR AS 11
JBR VR 17

Notes

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION466

12-15 Use a where clause to eliminate raw data

Sometimes you can use either a where clause or a having clause to elimi-
nate the data you do not want to see. When you have a choice like this, it is
always better to use a where clause. This will let your query process more
efficiently because the data are eliminated earlier in the process.

You should only use a having clause to eliminate data that are summa-
rized, not raw data from the beginning table.

In theory, it should not make a difference whether we code a condition in
the where clause or in the having clause. People should specify only the
result. The optimizer is responsible for determining the most efficient way
to obtain the result. However, optimizers are not always perfect and most
do not even attempt to make a change of this type.

The code in this section shows an example of a having clause that can be
replaced by a where clause.

For each manager_id between 201 and 203, show the number of employees
the manager supervises.

select manager_id,
 count(*)
from l_employees
group by manager_id
having manager_id between 201 and 203; ➊

select manager_id,
 count(*)
from l_employees
where manager_id between 201 and 203 ➋

group by manager_id;

Task

Oracle & Access SQL: Using a having clause

Oracle & Access SQL:
Gets the same result more efficiently by using a where clause

ELIMINATING SOME OF THE SUMMARIZED DATA 467

Beginning table (l_employees)

Result table — Both select statements give the same result

➊ This shows a condition limiting the data written in the having clause.

➋ This shows the same condition written in the where clause.

12-16 How to apply one column function to
another column function and get around
other restrictions

Some people say you cannot apply one column function to another column
function. I say you can do it, but it requires a series of steps. In most SQL
products it cannot be done in a single select statement.

The problem SQL in the following example does not run in either Oracle or
Access. What I am trying to do in this code is to find the most popular food,
the one that been ordered the most. The problem seems to be that I cannot
apply the max column function to the sum column function.

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

MANAGER
 ID COUNT(*)
------- ---------
 201 3
 202 2
 203 3

Notes

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION468

To get around this restriction I will solve the problem in three steps. First, I
will create a view showing the total quantity of each food item that has
been ordered for the lunches. The sum column function will be used in cre-
ating this view.

In step 2, I find the maximum value in that sum column. In step 3 I find all
the rows of the view I created in step 1 that have the maximum value. In
this example there is only one row that has the maximum value, but in
other examples there could be several rows that all have the same maximal
value.

How to work around other restrictions on column functions
You might encounter other “restrictions” on what you can do with column
functions. In my experience, I have been able to get around all the restric-
tions by just dividing the problem into two or more steps.

Show how to divide the following problem SQL into a series of steps that will
run. The problem area is highlighted.

select supplier_id,
 product_code,

from l_lunch_items
group by supplier_id,
 product_code,
 sum(quantity);

create or replace view sec1216_view as
select supplier_id,
 product_code,
 sum(quantity) as total_quantity
from l_lunch_items
group by supplier_id,
 product_code;

Task

Problem SQL

Oracle SQL: Step 1 — Create a view using one column function

max(sum(quantity))

ELIMINATING SOME OF THE SUMMARIZED DATA 469

Step 1, Part 1: Enter this in the SQL window:

select supplier_id,
 product_code,
 sum(quantity) as total_quantity
from l_lunch_items
group by supplier_id,
 product_code;

Step 1, Part 2: Save the query. Name it sec1216_view.

Beginning table (l_lunch_items table)

View created in step 1 (sec1216_view)

Access SQL: Step 1 — Create a view using one column function

 SUPPLIER PRODUCT
 LUNCH_ID ITEM_NUMBER ID CODE QUANTITY
--------- ----------- -------- ------- ---------
 1 1 ASP FS 1
 1 2 ASP SW 2
 1 3 JBR VR 2
 2 1 ASP SW 2
 2 2 FRV FF 1
 2 3 JBR VR 2
 2 4 VSB AS 1
 3 1 ASP FS 1
 3 2 CBC GS 1
 3 3 FRV FF 1
 3 4 JBR VR 1
 3 5 JBR AS 1

(and many more rows)

SUPPLIER PRODUCT
ID CODE TOTAL_QUANTITY
-------- ------- --------------
ASP FS 9
ASP SP 11
ASP SW 7
CBC GS 10
CBC SW 5
FRV FF 10
JBR AS 11
JBR VR 17
VSB AS 6

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION470

select max(total_quantity)
from sec1216_view;

Result table of step 2

select supplier_id,
 product_code,
 total_quantity
from sec1216_view
where total_quantity = 17;

Result table of step 3

Oracle & Access SQL: Step 2 —
Apply the other column function to the view created in step 1

MAX(TOTAL_QUANTITY)

 17

Oracle & Access SQL: Step 3 — Finish the report

SUPPLIER PRODUCT
ID CODE TOTAL_QUANTITY
-------- ------- --------------
JBR VR 17

KEY POINTS 471

Key Points

■ You can divide the rows of a table into several separate groups, then
summarize the rows in each group. The result table will have one row
for each group that is summarized.

■ The table can be either a data table or a view. Each row of the table
can belong to only one group.

■ If a single column of the table is used to group the rows, all the nulls
in that column are put into a single group. That is, all the nulls in that
column are handled as if they all had the same value. This one group
for all the unknown values is a true Other group.

■ If two or more columns are used to group the rows, all the nulls in a
single grouping column are put into a single group and handled as if
they were the same, but the nulls in different columns are kept sepa-
rate. This creates several different groups for the unknown values.

■ A result table that contains summarized data will contain only sum-
marized data. It cannot also contain raw data that are not summa-
rized. However, many SQL products have reports that can do this and
Oracle has the functions rollup and cube to do totals and subtotals.

■ Some rows can be dropped from a result table containing summa-
rized data. To do this you use the having clause of the select state-
ment. This clause can be a convenience, but it does not add any more
power to the select statement.

This page intentionally left blank

473

chapter 13

So far, we have obtained data from one table or view, some-
times adding a table of constants. In the next four chapters,
we discuss seven different ways to combine two tables. On a
conceptual level, the tables are combined first, which creates a
single table. Then the techniques we have discussed so far are
applied to get a final report from that table.

This chapter discusses inner joins, the most common way to
combine two tables.

INNER JOINS

Introduction to Joins . 475

13-1 A query can use data from several tables .475
13-2 The best approach is to join two tables at a time.477

Inner Joins of Two Tables . 479

13-3 A one-to-one relationship. .479
13-4 A many-to-one relationship .483
13-5 A one-to-many relationship .485
13-6 A many-to-many relationship .487
13-7 Unmatched rows are dropped .489
13-8 Rows with a null in the matching column are dropped491
13-9 Five ways to write the SQL for an inner join .493

Variations of the Join Condition . 495

13-10 A join using two or more matching columns .495
13-11 A join using between to match on a range of values497
13-12 A join using the Greater Than condition .499
13-13 A join using a row function. .501
13-14 Writing the join condition in the from clause .502

Applications of Joins. 504

13-15 Lookup tables .504
13-16 Combining a join and selection of data .507
13-17 Using a join with summarization .510
13-18 How to find the primary key in the Oracle Data Dictionary512
13-19 Combining three or more tables with inner joins 513

Key Points . 515

475

Introduction to Joins

An inner join combines the data from two or more tables. The result of this
is a single table that is often quite large. The techniques you have learned
in previous chapters are then used to extract a small amount of data from
this large table.

An inner join used to just be called a join and many people still speak this
way, but now the terminology is changing. Outer joins have become an
official part of SQL. To distinguish what we used to call a join from an
outer join, we now use the term inner join. We discuss outer joins in the
next chapter.

13-1 A query can use data from several tables

Often, several different tables are used together in a select statement.
This is necessary when the data you need do not all exist in one table or
view. On a conceptual level, this process has two steps: First, the separate
tables are combined into a single table. Then the select statement oper-
ates on this table using any of the techniques we have discussed so far.

The following diagram shows these two steps. In the first step, four sepa-
rate tables of data are combined to form a single table that can be very
large. It may contain several copies of the four beginning tables in different
permutations and combinations. One row of any of the beginning tables
can be matched with many combinations of rows from the other tables.

In the second step, a report is extracted from the single table. It gathers a
few of the rows and a few of the columns of the table, applies row functions
and column functions to them, and sorts the result.

The single table that combines all the data might exist only in theory. It
might never be formed physically within the computer, either in memory or
on the disk. It might be too large for the computer to handle. However, the
final report that is produced must be the same as if this table were formed.
The computer is allowed to take shortcuts in the process, as long as they
do not affect the result.

The two steps shown here may be coded in SQL as a single select state-
ment, or each step can be a separate select statement. There are many
different ways to write the SQL statements, but the process is always fun-
damentally the same as the one shown in the following diagram.

CHAPTER 13 INNER JOINS476

A query can use data from several tables.

In this model, in step 1 all the tables are joined at once into a single large
table. Then, in step 2, we extract a small amount of information from this
large table using the techniques described in the previous chapters.

Step 1

Result table

Step 2

A B

C

D

ABCD

INTRODUCTION TO JOINS 477

13-2 The best approach is to
join two tables at a time

You can combine several tables at one time, as shown in the previous sec-
tion. However, this process often becomes difficult to control and it is
prone to errors.

Often, the best technique is to combine the beginning tables two at a time.
The first step of this process combines two of the tables and each step after
that adds one additional table.

The following diagram shows this process with four beginning tables. This
shows the way the SQL code can be written. Each step in the diagram is a
separate SQL statement and the process is written as a series of three SQL
statements, each of which creates a table or view. Creating views is usually
more efficient.

Step 1a combines tables A and B. This can be coded as one select state-
ment and saved as a view.

Step 1b combines the result of step 1 with table C. This can also be coded
as a select statement and saved as a view.

Step 1c combines the result of step 2 with table D. The view this creates
combines the data from all four of the beginning tables. Together, the
three steps of this process are equivalent to the first step of the diagram in
the previous section.

Step 2 extracts a small amount of data using all the techniques we have
discussed so far.

You can understand a join of several tables as a series of steps that each
join two tables at a time. The presentation in the next few chapters is
focused on the process of combining just two tables.

A query can use data from several tables. In this model, in step 1 the tables
are joined two at a time to form a single large table. Then, in step 2, we
extract a small amount of information from this large table.

CHAPTER 13 INNER JOINS478

Combining tables two at a time.

A B

AB

Step 1a

C

Step 1b

DABC

Step 1c

ABCD

Result table

Step 2

INNER JOINS OF TWO TABLES 479

Inner Joins of Two Tables

The most common way to combine two tables is with an inner join. An
inner join strictly enforces the join condition. Any row without a matching
row in the other table is dropped from the result. Because of this, an inner
join may lose information.

13-3 A one-to-one relationship

This section shows a model case of combining two tables with an inner
join. This shows the technique that is always used, but avoids the complex-
ities, which we discuss later. For now, just focus on this simple example.

Rows from one table are matched with rows from the other table. There are
no hidden links between the two tables. The data in the tables determine
how to combine the rows. One column is chosen from each table. When
these columns have the same value, the rows are combined.

The Data
In the example that follows, the fruit number column (f_num) is chosen
from the fruits table and the color number column (c_num) is chosen
from the colors table. These are sometimes called the matching columns.
A row of the fruits table is matched with a row of the colors table when
the matching columns have the same value. The apple is matched with red
because both the matching columns contain a 1. The banana is matched
with yellow because both matching columns contain a 2, and so on.

Each row of the fruits table matches with one and only one row of the
colors table. Likewise, each row of the colors table matches with one
and only one row of the fruits table. This is sometimes called a
one-to-one relationship between the two tables. It is a special condition that
can occur only when both tables have the same number of rows. (Some
people use the term one-to-one relationship with a slightly different mean-
ing, but that is another story.)

The data in the chosen columns create this relationship. The tables are
seemingly being “zipped together” by the values of the data in the matching
columns. Note that the color red occurs in rows 1 and 3 of the colors
table. This is allowed; there is no rule that every row has to have a different
value.

CHAPTER 13 INNER JOINS480

Join the fruits table and the colors table with an inner join. Match the
f_num column of the fruits table with the c_num column of the colors
table. Combine a row of the fruits table with a row of the colors table
when the values in these matching columns are equal. Because of the data in
the beginning tables, this creates a one-to-one relationship between the two
beginning tables.

select a.fruit,
 a.f_num,
 b.c_num,
 b.color
from sec1303_fruits a,
 sec1303_colors b
where a.f_num = b.c_num
order by a.fruit;

Beginning table 1 Relationship Beginning table 2
sec1303_fruits table f_num = c_num sec1303_colors table

Result table

Task

Oracle & Access SQL — Explained below

FRUIT F_NUM
---------- ---------
APPLE 1

CHERRY 3

ORANGE 5

<-------------->
<-------------->
<-------------->
<-------------->
<-------------->

C_NUM COLOR
----- ----------
 1 RED

 3 RED

 5 ORANGE

FRUIT COLOR
---------- --------- --------- ----------
APPLE 1 1 RED

CHERRY 3 3 RED

ORANGE 5 5 ORANGE

BANANA 2

GRAPE 4

2 YELLOW

4 PURPLE

F_NUM C_NUM

BANANA 2 2 YELLOW

GRAPE 4 4 PURPLE

INNER JOINS OF TWO TABLES 481

The SQL for this inner join
The SQL statement in this example needs some explanation. The from
clause lists both beginning tables. It also assigns a table alias to each table.
This is an alternative name or short name for the table, which only applies
within the context of a single select statement. The fruits table is
assigned the table alias a and the colors table is assigned the table alias
b. The table alias follows the name of the table. A comma separates the
entry for the first table from the one for the second table.

When table aliases have been assigned in the from clause, they can be
used in all the other clauses of the select statement. When there is more
than one beginning table, it is a good idea to identify the table to which
each column belongs. This is done whenever the column is used through-
out the select statement. To do this, write the table alias and a period
before the name of each column. For example, in the first line of the follow-
ing code, a.fruit means the fruit column from the fruits table.

The select clause in this code includes all the columns of both beginning
tables. I want to show you how the two tables join together, which is step 1
in the diagram on page 476. At this time, I am not doing any selection from
these data, which is step 2 in this same diagram. In section 13-16 I show
how both steps can be combined in a single select statement.

The where clause contains the join condition, which is a statement. When
that statement is true, a row from one table is matched with a row from the
other table. Here the join condition is that the fruit number (f_num) col-
umn of the fruits table is equal to the color number (c_num) column of
the colors table. This is written as follows:

a.f_num = b.c_num

In every row of the result table, we see that the fruit number column has
the same value as the color number column because of the join condition
we have used. With a more complex join condition, they might not always
have the same value.

The order by clause is not usually included as part of the join, but I wrote
it here so that the rows of the result table would be in a logical order.

Two definitions of a one-to-one relationship — A sad story
It is very nice when a term for a fundamental concept such as a “one-to-one
relationship” has a single meaning that everyone agrees on. It is sad when
a term like this becomes compromised by having two different definitions.

CHAPTER 13 INNER JOINS482

This term was first used in mathematics to talk about sets. In mathematics,
two sets have a one-to-one relationship when you can match every member
of the first set with a member from the second set and vice versa. No mem-
ber of either set is allowed to be unmatched.

About 100 years later, database designers decided to use this same term
and give it a different meaning. In database design, unmatched rows are
allowed. The only thing that is not allowed is having a row of one table
matched with several rows from the other table.

What database designers really mean is a “(zero-or-one)-to-(zero-or-one)
relationship,” but that is a very clumsy phrase.

SQL uses both these concepts, although the context is a little different. The
inner join is based on the exact matching that mathematics requires. The
outer join allows for unmatched rows.

Do these joins by hand, without a computer. Join a row of Table 1 with a row
of Table 2 if the first letters are the same. Show all the rows of both tables,
even if they do not have a matching row in the other table. Create the result
table and state if this is a one-to-one relationship in the mathematical sense
or in the database design sense.

Check your understanding

1. Table 1 Table 2
Active Cat
Busy Dog
Crafty Ape
Determined Eel
Eccentric Bird

2. Table 1 Table 2
Active Cat
Busy Dog
Crafty Ape
Determined Fish
Eccentric Bird

Rabbit

INNER JOINS OF TWO TABLES 483

13-4 A many-to-one relationship

The next five sections, including this one, all use the same SQL statement
as the previous section. What differs is the data in the beginning tables.
The changing data give us an opportunity to discuss other aspects of this
inner join.

In this section a strawberry has now been added to the fruits table. The
row of the strawberry has a 1 in the f_num column, which matches with
the 1 in the c_num column for the color red.

The result shows that there is a red apple and a red strawberry. Therefore,
two rows of the fruits table are matched with a single row of the colors
table.

In effect, the row 1 RED is duplicated within the result table. It occurs twice
in the result table, even though it occurs only once in the beginning
colors table.

This section shows a many-to-one relationship between the two tables.
Some colors are matched with many fruits. In this context, many means
more than one. However, each fruit is matched with only one color.

Join the fruits table and the colors table with an inner join. Use the same
join condition as the previous section. The data here show a many-to-one
relationship between the tables.

select a.fruit,
 a.f_num,
 b.c_num,
 b.color
from sec1304_fruits a,
 sec1304_colors b
where a.f_num = b.c_num
order by a.fruit;

Task

Oracle & Access SQL

CHAPTER 13 INNER JOINS484

Beginning tables
sec1304_fruits table sec1304_colors table

Result table

Do this join by hand, without a computer. Join a row of Table 1 with a row of
Table 2 if the first letters are the same. Create the result table and state if this
is a many-to-one relationship.

FRUIT F_NUM
---------- ---------

BANANA 2
CHERRY 3
GRAPE 4
ORANGE 5

 C_NUM COLOR
--------- ----------

 2 YELLOW
 3 RED
 4 PURPLE
 5 ORANGE

FRUIT F_NUM C_NUM COLOR
---------- --------- --------- ----------

BANANA 2 2 YELLOW
CHERRY 3 3 RED
GRAPE 4 4 PURPLE
ORANGE 5 5 ORANGE

Check your understanding

Table 1 Table 2
Active Cat
Busy Dog
Crafty Ape
Determined Eel
Eccentric Bird
Blissful
Careless
Cautious
Eerie

APPLE 1

STRAWBERRY 1

 1 RED

APPLE 1 1 RED

STRAWBERRY 1 1 RED

INNER JOINS OF TWO TABLES 485

13-5 A one-to-many relationship

In this section the color green has been added to the colors table and the
strawberry has been temporarily removed. The color green has 1 as its
color number (c_num), which is the same as the color number value for
red.

This is an example of a one-to-many relationship. It is the same as the previ-
ous section, except the roles of the tables are reversed. Here some fruits
match with many colors, although each color is matched with only one
fruit.

The result table shows that the apple row in the beginning fruits table is
matched with both the red and green rows of the colors table. This
results in a red apple and a green apple. The apple row occurs once in the
beginning tables, but twice in the result table.

This shows that inner joins are symmetric. The principles work the same
way regardless of the order of the tables.

Join the fruits table and the colors table with an inner join. Use the same
join condition as in the previous sections.

select a.fruit,
 a.f_num,
 b.c_num,
 b.color
from sec1305_fruits a,
 sec1305_colors b
where a.f_num = b.c_num
order by a.fruit;

Task

Oracle & Access SQL

CHAPTER 13 INNER JOINS486

Beginning tables
sec1305_fruits table sec1305_colors table

Result table

Do this join by hand, without a computer. Join a row of Table 1 with a row of
Table 2 if the first letters are the same. Create the result table and state if this
is a one-to-many relationship.

FRUIT F_NUM
---------- ---------

BANANA 2
CHERRY 3
GRAPE 4
ORANGE 5

 C_NUM COLOR
--------- ----------

 2 YELLOW
 3 RED
 4 PURPLE
 5 ORANGE

FRUIT F_NUM C_NUM COLOR
---------- --------- --------- ----------

BANANA 2 2 YELLOW
CHERRY 3 3 RED
GRAPE 4 4 PURPLE
ORANGE 5 5 ORANGE

Check your understanding

Table 1 Table 2
Active Cat
Busy Dog
Crafty Ape
Determined Eel
Eccentric Bird

Armadillo
Butterfly
Camel
Crocodile

APPLE 1 1 RED
 1 GREEN

APPLE 1 1 RED
APPLE 1 1 GREEN

INNER JOINS OF TWO TABLES 487

13-6 A many-to-many relationship

In this section we combine the changes in the last two sections. Here we
have both the strawberry in the fruits table and green in the colors
table. The strawberry has a 1 in the fruit number (f_num) column and
green has a 1 in the color number (c_num) column.

This is an example of a many-to-many relationship between the tables.
Here, two fruits, the apple and the strawberry, have a 1 in the matching col-
umn of the fruits table. Also two colors, red and green, have a 1 in the
matching column of the colors table.

The result table shows all the possible combinations and permutations of
these matches. There is a red apple, a green apple, a red strawberry, and a
green strawberry.

If there were 10 fruits and 10 colors that all matched, these would create
100 rows in the result table, so you can see that the result table can easily
become very large.

Join the fruits table and the colors table with an inner join. Use the same
join condition as in the previous sections.

select a.fruit,
 a.f_num,
 b.c_num,
 b.color
from sec1306_fruits a,
 sec1306_colors b
where a.f_num = b.c_num
order by a.fruit;

Task

Oracle & Access SQL

CHAPTER 13 INNER JOINS488

Beginning tables
sec1306_fruits table sec1306_colors table

Result table ➊

➊ The result of a join includes all the possible combinations of rows
from the first table and second table that satisfy the join condition.
Here we have a red apple, a green apple, a red strawberry, and a green
strawberry.

In this example I have kept the tables small. However, when you are han-
dling larger tables, you might be surprised at the number of rows in the
result table. For instance, if the beginning tables each contain 100 rows,
the result table could contain 10,000 rows.

FRUIT F_NUM
---------- ---------

BANANA 2
CHERRY 3
GRAPE 4
ORANGE 5

 C_NUM COLOR
--------- ----------

 2 YELLOW
 3 RED
 4 PURPLE
 4 GREEN
 5 ORANGE

FRUIT F_NUM C_NUM COLOR
---------- --------- --------- ----------

BANANA 2 2 YELLOW
CHERRY 3 3 RED
GRAPE 4 4 PURPLE
GRAPE 4 4 GREEN
ORANGE 5 5 ORANGE

Notes

APPLE 1

STRAWBERRY 1

 1 RED
 1 GREEN

APPLE 1 1 RED
APPLE 1 1 GREEN

STRAWBERRY 1 1 RED
STRAWBERRY 1 1 GREEN

INNER JOINS OF TWO TABLES 489

Do this join by hand, without a computer. Join a row of Table 1 with a row of
Table 2 if the first letters are the same. Create the result table and state if this
is a many-to-many relationship.

13-7 Unmatched rows are dropped

This section shows that rows are dropped if they do not have a matching
row in the other table — they do not appear in the result table. This situa-
tion occurs whether the rows are in the first table or the second table.

The only rows that appear in the result tables are those that have a match-
ing row in the other table. It is somewhat like a dance where you must bring
your partner — singles are not allowed. This feature distinguishes an inner
join. Outer joins, discussed in the next chapter, provide an alternative and
restore some of the rows that have been dropped.

The inner join applies a strict interpretation to the join condition. All the
rows of the result table must satisfy the join condition. This requires a
matching pair of rows with one coming from each beginning table.

With an inner join, many rows from the beginning tables can be dropped,
so information that is in the beginning tables may not be in the result
table. That is, information may be lost. There is no warning message when
this occurs.

In the beginning tables that follow, the highlighted rows are the ones
dropped from the result table.

Check your understanding

Table 1 Table 2
Active Cat
Busy Dog
Crafty Ape
Determined Eel
Eccentric Bird
Blissful Armadillo
Careless Butterfly
Cautious Camel
Eerie Crocodile

CHAPTER 13 INNER JOINS490

Join the fruits table and the colors table with an inner join with the join
condition used in the previous sections. The data here show that rows in
beginning tables may not appear at all in the result table.

select a.fruit,
 a.f_num,
 b.c_num,
 b.color
from sec1307_fruits a,
 sec1307_colors b
where a.f_num = b.c_num
order by a.fruit;

Beginning tables
sec1307_fruits table sec1307_colors table

Result table

➊ These rows do not have a matching row in the other table, so they disap-
pear from the result table.

Task

Oracle & Access SQL

FRUIT F_NUM
---------- ---------
APPLE 1
BANANA 2

➊

➊

ORANGE 5
STRAWBERRY 1

 C_NUM COLOR
--------- ---------
 1 RED
 2 YELLOW
 1 GREEN
 5 ORANGE
 ➊

FRUIT F_NUM C_NUM COLOR
---------- --------- --------- ---------
APPLE 1 1 GREEN
APPLE 1 1 RED
BANANA 2 2 YELLOW
ORANGE 5 5 ORANGE
STRAWBERRY 1 1 GREEN
STRAWBERRY 1 1 RED

Notes

CHERRY 3
GRAPE 4

6 WHITE 3

INNER JOINS OF TWO TABLES 491

13-8 Rows with a null in the
matching column are dropped

This section shows a detail from the previous section. If there is a null in one
of the matching columns, then the entire row that contains that null will be
dropped from the result table. This is because a null can never satisfy any
join condition in the where clause that combines two tables.

In the following data, the kiwi has a null in the matching column. The color
brown also has a null in the matching column. The join condition says the
values in the two matching columns must be equal before a pair of rows
can be combined in the result table.

However, a null is an unknown value and the two nulls are not considered
to be equal, so both these rows are dropped from the result table.

Join the fruits table and the colors table with an inner join using the join
condition from the previous sections. Note that there is no brown kiwi in the
result table.

select a.fruit,
 a.f_num,
 b.c_num,
 b.color
from sec1308_fruits a,
 sec1308_colors b
where a.f_num = b.c_num
order by a.fruit;

Task

Oracle & Access SQL

CHAPTER 13 INNER JOINS492

Beginning tables
sec1308_fruits table sec1308_colors table

Result table

Which rows from each table are unmatched and would be dropped from the
inner join? Assume a row of Table 1 would be joined with a row of Table 2 if
the first letters are the same.

FRUIT F_NUM
---------- ---------
APPLE 1
BANANA 2
CHERRY 3
GRAPE 4
ORANGE 5

 C_NUM COLOR
--------- ----------
 1 RED
 2 YELLOW
 3 RED
 4 PURPLE
 5 ORANGE

FRUIT F_NUM C_NUM COLOR
---------- --------- --------- ----------
APPLE 1 1 RED
BANANA 2 2 YELLOW
CHERRY 3 3 RED
GRAPE 4 4 PURPLE
ORANGE 5 5 ORANGE

Check your understanding

Table 1 Table 2
Active Cat
Busy Dog
Crafty Ape
Determined Fly
Eccentric Bird
(null) (null)

KIWI (null) (null) BROWN

INNER JOINS OF TWO TABLES 493

13-9 Five ways to write the SQL for an inner join

This section shows five variations of the SQL code used in the previous sec-
tions. There is no difference in what these variations do in terms of the
result tables they produce. They are just different ways to write the same
code. Which one you choose is just a matter of style and what you find eas-
iest to read and understand.

Variation 1 is the one I usually like best. Each table alias is a single letter
and the names of all the columns are spelled out.

Variation 2 is similar, except that select * is used instead of spelling out
the names of the columns. This emphasizes that all the columns from both
tables are being included. It is also easier to write than variation 1 when
the tables have many columns. Note that the table alias must precede the
asterisk. In the select clause a.* means “all the columns of the fruits
table” and b.* means “all the columns of the colors table.”

Variation 3 uses table aliases that are longer than a single letter, allowing
them to be more descriptive of the beginning table they stand for.

Variation 4 does not use table aliases. The from clause lists the beginning
tables, but it does not assign table aliases to them. Within the other
clauses of the select statement, the full name of each table is written
before each column. So, instead of

Table_Alias.Column_Name

we write

Table_Name.Column_Name

Variation 5 also does not use any table aliases. It makes use of the fact that
there is no column in the first table with exactly the same name as any col-
umn in the second table. When this is true, the computer is able to figure
out which table each column belongs to, just from the column name itself,
so we are not required to identify the table. The computer can understand
this SQL code, but it is kinder to the other people who might read it if we
identify the beginning table of each column. I always try to write my code
so that both computers and people can easily understand. I do not recom-
mend using this variation.

CHAPTER 13 INNER JOINS494

Show the five ways of writing the SQL for the inner join used in the previous
sections.

select a.fruit,
 a.f_num,
 b.c_num,
 b.color
from sec1309_fruits a,
 sec1309_colors b
where a.f_num = b.c_num
order by a.fruit;

select a.*,
 b.*
from sec1309_fruits a,
 sec1309_colors b
where a.f_num = b.c_num
order by a.fruit;

select fru.fruit,
 fru.f_num,
 col.c_num,
 col.color
from sec1309_fruits fru,
 sec1309_colors col
where fru.f_num = col.c_num
order by fru.fruit;

select sec1309_fruits.fruit,
 sec1309_fruits.f_num,
 sec1309_colors.c_num,
 sec1309_colors.color
from sec1309_fruits,
 sec1309_colors
where sec1309_fruits.f_num = sec1309_colors.c_num
order by sec1309_fruits.fruit;

Task

Oracle & Access SQL: Variation 1 — This is the best solution

Oracle & Access SQL: Variation 2

Oracle & Access SQL: Variation 3

Oracle & Access SQL: Variation 4

VARIATIONS OF THE JOIN CONDITION 495

select fruit,
 f_num,
 c_num,
 color
from sec1309_fruits,
 sec1309_colors
where f_num = c_num
order by fruit;

Write a select statement to create the inner join of these tables. Join a row
of Table 1 with a row of Table 2 if the first letters are the same. Write the SQL
in the recommended way, using variation 1.

Variations of the Join Condition

The preceding examples all showed the most common type of join condi-
tion: using just one matching column from each table and requiring the
two matching columns to have the same value. This section shows exam-
ples of the many other types of inner join conditions.

13-10 A join using two or more matching columns

This section shows an example of a join condition that uses two matching
columns from each table. This contrasts with the previous sections, which
used a single column from each table to form the inner join. The same prin-
ciple shown here can be used to join tables on any number of columns.

Oracle & Access SQL: Variation 5
Fine for computers, confusing for people — Not recommended

Check your understanding

Sec1309_Table1 Sec1309_Table2
Adjective Animal

Active Cat
Busy Dog
Crafty Ape
Determined Fly
Eccentric Bird
(null) (null)

CHAPTER 13 INNER JOINS496

Here, a color is matched with a fruit only when both sets of matching col-
umns have the same values:

fruits.f_num_1 = colors.c_num_1

and

fruits.f_num_2 = colors.c_num_2

The first row of the fruits table matches with the first row of the colors
table, giving a red apple. This match occurs because the first column of
each row has the value 1 and the second column of each row has the value
5. However, the first row of the fruits table does not match with the sec-
ond row of the colors table. That is, no yellow apple exists because the
second columns of these rows have different values — the fruits table
has the value 5 and the colors table has the value 6.

Join the fruits table and the colors table with an inner join. Use a join
condition that matches rows when the first two columns of each table are
equal.

select a.f_num_1, ➊

 a.f_num_2,
 a.fruit,
 b.c_num_1,
 b.c_num_2,
 b.color
from sec1310_fruits a,
 sec1310_colors b
where a.f_num_1 = b.c_num_1 ➋

 and a.f_num_2 = b.c_num_2
order by a.fruit; ➌

Beginning tables
sec1310_fruits table sec1310_colors table

Task

Oracle & Access SQL

 F_NUM_1 F_NUM_2 FRUIT
--------- --------- ----------
 1 5 APPLE
 1 6 BANANA
 2 5 CHERRY
 2 6 GRAPE
 2 7 ORANGE

 C_NUM_1 C_NUM_2 COLOR
--------- --------- ----------
 1 5 RED
 1 6 YELLOW
 2 5 RED
 2 6 PURPLE
 2 7 ORANGE

VARIATIONS OF THE JOIN CONDITION 497

Result table

➊ All the columns are listed from both tables.

➋ The join condition is written in the where clause. Here there are two
conditions combined together with the word and.

➌ The order by clause is not really part of the join, but it is included here
to make the result table easier to read.

Write a select statement to create the inner join of tables
sec1310_table1 and sec1310_table2. The join condition should say that
the first three columns of these tables are equal.

13-11 A join using between to
match on a range of values

This section shows an example of using the between condition in a join,
rather than a condition of equality. Three columns are involved in this join
condition, and the value in one column must lie between the values in the
other two.

In this example, test scores between 90 and 100 get an A, those between 80
and 89 get a B, and so on. The grade ranges must not overlap.

Assign grades to students by placing their individual test scores within one
of the grading ranges.

 F_NUM_1 F_NUM_2 FRUIT C_NUM_1 C_NUM_2 COLOR
--------- --------- ---------- --------- --------- ----------
 1 5 APPLE 1 5 RED
 1 6 BANANA 1 6 YELLOW
 2 5 CHERRY 2 5 RED
 2 6 GRAPE 2 6 PURPLE
 2 7 ORANGE 2 7 ORANGE

Notes

Check your understanding

Task

CHAPTER 13 INNER JOINS498

select a.student_name, ➊

 a.test_score,
 b.letter_grade
from sec1311_student_scores a,
 sec1311_grade_ranges b
where a.test_score between b.beginning_score

 and b.ending_score ➋

order by a.student_name; ➌

Beginning tables
sec1311_student_scores table sec1311_grade_ranges table ➍

Result table

➊ Here, only three columns are listed in the select clause because that is
enough to understand this join and that is all I wanted in the result.

➋ The join condition is written in the where clause. Note that this condi-
tion uses between. The test score is placed between the beginning
score and the ending score.

➌ The order by clause makes the result table easier to read. It is not part
of the join.

➍ You must set up the grade ranges so there are no overlaps. Each score
must correspond to only one letter grade.

Oracle & Access SQL

STUDENT_NAME TEST_SCORE
--------------- ----------
CATHY 85
FRED 60
JOHN 95
MEG 92

BEGINNING ENDING LETTER
 SCORE SCORE GRADE
--------- ------ ------
 90 100 A
 80 89 B
 70 79 C
 60 69 D
 0 59 F

STUDENT_NAME TEST_SCORE LETTER_GRADE
--------------- ---------- ------------
CATHY 85 B
FRED 60 D
JOHN 95 A
MEG 92 A

Notes

VARIATIONS OF THE JOIN CONDITION 499

A large dictionary has four volumes. Table sec1311_dictionary shows the
range of words that are in each volume. Table sec1311_words contains
some words that are in the dictionary. Write SQL to determine which volume
of the dictionary contains each of these words.

13-12 A join using the Greater Than condition

This section shows an example of using a Greater Than condition to form a
join, rather than an equality. Variations of this type of join can use:

■ Less Than

■ Less Than or Equal to

■ Greater Than or Equal to

In this example, each row of one table is paired with many rows of the other
table. For example, row 6 from the bigger_numbers table is matched with
rows 1 to 5 from the smaller_numbers table.

Join the bigger_numbers table with the smaller_numbers table. Create a
join condition that pairs each bigger number with all the smaller numbers
that are less than it.

select a.*, ➊

 b.*
from sec1312_bigger_numbers a,
 sec1312_smaller_numbers b
where a.larger_number > b.smaller_number ➋

order by a.larger_number, ➌

 b.smaller_number;

Check your understanding

Task

Oracle & Access SQL

CHAPTER 13 INNER JOINS500

Beginning tables
sec1312_bigger_numbers table sec1312_smaller_numbers table

Result table

➊ All the columns are listed from both tables.

➋ The where clause contains the join condition, which says that one col-
umn is greater than another column.

➌ The order by clause makes the result table easier to read.

➍ The one row, 6, in the bigger_numbers table, combines with each row of
the smaller_numbers table and generates five rows within the result table.

List all the letters that are greater than S. Use the alphabet table. Put these
letters in order.

LARGER_NUMBER WORD
------------- ---------------
 1 ONE
 2 TWO
 3 THREE
 4 FOUR
 5 FIVE
 6 SIX ➍

SMALLER_NUMBER WORD
-------------- ---------------
 1 ONE
 2 TWO
 3 THREE
 4 FOUR
 5 FIVE
 6 SIX

LARGER_NUMBER WORD SMALLER_NUMBER WORD
------------- --------------- -------------- ---------------
 2 TWO 1 ONE
 3 THREE 1 ONE
 3 THREE 2 TWO
 4 FOUR 1 ONE
 4 FOUR 2 TWO
 4 FOUR 3 THREE
 5 FIVE 1 ONE
 5 FIVE 2 TWO
 5 FIVE 3 THREE
 5 FIVE 4 FOUR
 6 SIX 1 ONE ➍

 6 SIX 2 TWO ➍

 6 SIX 3 THREE ➍

 6 SIX 4 FOUR ➍

 6 SIX 5 FIVE ➍

Notes

Check your understanding

VARIATIONS OF THE JOIN CONDITION 501

13-13 A join using a row function

This section shows a row function being used to create a join condition. In
the following example, the values of two columns are added together. Each
of the beginning tables contains one of these columns. Rows from the two
beginning tables are joined together whenever the sum is equal to six.

select a.fruit,
 a.f_num,
 b.c_num,
 b.color
from sec1313_fruits a,
 sec1313_colors b
where a.f_num + b.c_num = 6
order by a.fruit;

Beginning tables
sec1313_fruits table sec1313_colors table

Result table

Tables sec1313_words1 and sec1313_words2 contains words. Join these
tables together when the words end in the same letter.

Oracle & Access SQL

FRUIT F_NUM
---------- ---------
APPLE 1
BANANA 2
CHERRY 3
GRAPE 4
ORANGE 5
STRAWBERRY 1

 C_NUM COLOR
--------- ----------
 1 RED
 1 GREEN
 2 YELLOW
 3 RED
 4 PURPLE
 4 GREEN
 5 ORANGE

FRUIT F_NUM C_NUM COLOR
---------- --------- --------- ----------
APPLE 1 5 ORANGE
BANANA 2 4 PURPLE
BANANA 2 4 GREEN
CHERRY 3 3 RED
GRAPE 4 2 YELLOW
ORANGE 5 1 RED
ORANGE 5 1 GREEN
STRAWBERRY 1 5 ORANGE

Check your understanding

CHAPTER 13 INNER JOINS502

13-14 Writing the join condition in the from clause

This section shows a newer way of writing the join of the fruits table with
the colors table. This method of writing a join is part of the new SQL stan-
dard, called SQL-92. This syntax places the join condition within the from
clause, rather than in the where clause. The older syntax is still valid, and will
remain valid in the future. Access and Oracle support this newer syntax.

The newer syntax writes the join condition in an on clause within the from
clause. This allows the where clause to be focused on the rows of data we
want to use for the final report. It does not need to handle the join condition.

There is no comma after the a, which is the table alias for the first table.
Instead of a comma, the words inner join are placed between the two tables.

Show the syntax for joining two tables in the from clause. Join the fruits
table and the colors table as we have done before.

select a.fruit,
 a.f_num,
 b.c_num,
 b.color

➊

➋

order by a.fruit;

select a.fruit,
 a.f_num,
 b.c_num,
 b.color

➌

➍

order by a.fruit;

Task

Oracle & Access SQL: Older syntax

Oracle & Access SQL: Newer syntax

from sec1314_fruits a,
 sec1314_colors b
where a.f_num = b.c_num

from sec1314_fruits a
 inner join sec1314_colors b
 on a.f_num = b.c_num

VARIATIONS OF THE JOIN CONDITION 503

Beginning tables
sec1314_fruits table sec1314_colors table

Result table

➊ The from clause lists the tables and assigns aliases (short names) to the
tables. There is a comma between the names of the tables.

➋ The join condition is written in the where clause.

➌ The from clause specifies that this is an inner join, in addition to listing
the tables and assigning the aliases. There is no comma between the
names of the tables.

➍ The join condition is written within the from clause. The word on pre-
cedes the join condition.

FRUIT F_NUM
---------- ---------

BANANA 2
CHERRY 3
GRAPE 4
ORANGE 5

 C_NUM COLOR
--------- ----------

 2 YELLOW
 3 RED
 4 PURPLE
 4 GREEN
 5 ORANGE

FRUIT F_NUM C_NUM COLOR
---------- --------- --------- ----------

BANANA 2 2 YELLOW
CHERRY 3 3 RED
GRAPE 4 4 PURPLE
GRAPE 4 4 GREEN
ORANGE 5 5 ORANGE

Notes

APPLE 1

STRAWBERRY 1

 1 RED
 1 GREEN

APPLE 1 1 RED
APPLE 1 1 GREEN

STRAWBERRY 1 1 RED
STRAWBERRY 1 1 GREEN

CHAPTER 13 INNER JOINS504

Change this SQL, writing the join condition in the from clause.

select a.student_name,
 a.test_score,
 b.letter_grade
from sec1311_student_scores a,
 sec1311_grade_ranges b
where a.test_score between b.beginning_score
 and b.ending_score
order by a.student_name;

Applications of Joins

Now let’s look at a few applications of inner joins.

13-15 Lookup tables

A lookup table is also known as a table of codes. It is a table that contains a
set of codes and their meanings. In the Lunches database, the
l_departments table is a lookup table because it contains a row for each
valid department code and the full name of that department. Because this
is a typical lookup table, let’s look at it while I explain more about this type
of table.

An example of a lookup table (l_departments table)

A lookup table often has only two columns: a column of the codes and a
column of their meanings. There can be additional columns of information
that, when present, contain further information about the code. For exam-
ple in the l_departments table, additional columns could include depart-
ment budget, department staff level, or department manager.

Check your understanding

DEPT
CODE DEPARTMENT_NAME
---- -------------------
ACT ACCOUNTING
EXE EXECUTIVE
MKT MARKETING
PER PERSONNEL
SAL SALES
SHP SHIPPING

APPLICATIONS OF JOINS 505

The column of codes is the primary key of the table. This column contains a
row for each code that is a valid value. Referential integrity, a form of data
validation, is set up between the lookup table and any other table that uses
the code. In this example, the first column, dept_code, of the
l_departments table is the list of all the valid values of the department
code.

The l_employees table also contains a dept_code column, and a data vali-
dation rule is applied to that column. Whenever a new row is inserted into
the l_employees table, the value in the dept_code column must be one of
the valid values. Otherwise the row is rejected and we get an error message.

The same data validation rule also applies to updates. In a row that already
exists in the l_employees table, we can change the value of the
dept_code column to any valid value. If we try to change it to an invalid
value, the update is rejected and we get an error message.

There is a many-to-one relationship between a lookup table and another
table that makes use of its codes. In our example, a code can occur only
once in the l_departments table, which is the lookup table, but the code
can occur many times in the l_employees table, which uses the codes.

Lookup tables are often used in database design to make the database
self-documenting. The very large tables in a database use codes to save
disk space and to validate the data. The lookup tables provide the mean-
ings of those codes and a complete list of all their valid values.

Inner joins and lookup tables
An inner join can be used to look up the meanings of the codes from a
lookup table. The following example shows the department name for each
employee. The l_employees table contains only the dept_code column.
The department_name column is looked up from the l_departments
table.

When we use an inner join we must remember that some of the rows of
data could be dropped. We need to sit down and analyze this in detail to
see if anything important may have been lost. In the following example, we
want all the employees to appear in the result table. An employee will be
dropped if there is no matching row in the l_departments table. In this
example, no employees are dropped because the dept_code column of the
l_employees table:

1. Has Referential integrity with the l_departments table.

2. Contains no nulls.

CHAPTER 13 INNER JOINS506

Referential integrity assures us that every value within the dept_code col-
umn of the l_employees table has a matching row in the l_departments
table, so no employee will be dropped.

For each employee show the employee_id, first_name, last_name,
dept_code, and department_name. Sort the rows by the employee_id.
Use an inner join to get the department_name from the l_departments
table.

select a.employee_id,
 a.first_name,
 a.last_name,
 a.dept_code,
 b.department_name
from l_employees a,
 l_departments b
where a.dept_code = b.dept_code
order by a.employee_id;

Beginning table 1 (l_employees table)

Task

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

APPLICATIONS OF JOINS 507

Beginning table 2 (l_departments table)

Result table

Write a select statement to list all the foods on the lunch menu and show
the full name of the supplier of each food.

13-16 Combining a join and selection of data

The SQL code in section 13-15 combined the inner join and the selection of
data from that join. A select statement often does both of these things.

Now, I want to show you that there are two steps going on here, even
though we wrote only one SQL statement. The first step forms the inner
join of the l_employees table and the l_departments table. This creates
a table or view that contains all the columns of both tables: eight columns
from the l_employees table and two from the l_departments table, for a
total of 10 columns.

DEPT
CODE DEPARTMENT_NAME
---- -----------------
ACT ACCOUNTING
EXE EXECUTIVE
MKT MARKETING
PER PERSONNEL
SAL SALES
SHP SHIPPING

EMPLOYEE DEPT
 ID FIRST_NAME LAST_NAME CODE DEPARTMENT_NAME
-------- ---------- ---------- ---- -----------------
 201 SUSAN BROWN EXE EXECUTIVE
 202 JIM KERN SAL SALES
 203 MARTHA WOODS SHP SHIPPING
 204 ELLEN OWENS SAL SALES
 205 HENRY PERKINS SAL SALES
 206 CAROL ROSE ACT ACCOUNTING
 207 DAN SMITH SHP SHIPPING
 208 FRED CAMPBELL SHP SHIPPING
 209 PAULA JACOBS MKT MARKETING
 210 NANCY HOFFMAN SAL SALES

Check your understanding

CHAPTER 13 INNER JOINS508

In the second step only part of those data are selected to be in the result
table. In this case, five of the columns are retained and the other five are
dropped.

Each of these steps can have a where clause. In step 1 the where clause is
the join condition used to combine the two tables. In step 2 the where
clause selects the rows we want to appear in the result table. When both
steps are combined into a single select statement, the where clause per-
forms both of these roles.

Modify the SQL in section 13-15 so that only employees 201 to 205 appear in
the result table. This is an example of a where clause that performs two
roles.

Then rewrite this SQL to show the two separate steps: the inner join and
the selection of data.

select a.employee_id,
 a.first_name,
 a.last_name,
 a.dept_code,
 b.department_name
from l_employees a,
 l_departments b
where a.dept_code = b.dept_code ➊

 and a.employee_id < 206 ➋

order by a.employee_id;

The where clause performs two functions:

■ It joins several beginning tables together into one combined table

■ It selects some rows of the combined table and rejects other rows

create or replace view sec1316_view as
select a.*,
 b.dept_code as dept_code2,
 b.department_name
from l_employees a,
 l_departments b
where a.dept_code = b.dept_code; ➌

Task

Oracle & Access SQL: The where clause performs two functions

Oracle SQL: Step 1 — Create the inner join of the tables

APPLICATIONS OF JOINS 509

Step 1, Part 1: Enter this query in the SQL window:

select a.*,
 b.dept_code as dept_code2,
 b.department_name
from l_employees a,
 l_departments b
where a.dept_code = b.dept_code; ➌

Step 1, Part 2: Save the query. Name it sec1316_view.

Step 1 result table (sec1316_view)

select employee_id,
 first_name,
 last_name,
 dept_code,
 department_name
from sec1316_view
where employee_id < 206 ➍

order by employee_id;

Access SQL: Step 1 — Create the inner join of the tables

EMPLOYEE DEPT CREDIT PHONE MANAGER DEPARTMENT
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID DEP NAME
-------- ---------- --------- ---- ----------- ------- ------ ------- --- ----------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null) EXE EXECUTIVE
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201 SAL SALES
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201 SHP SHIPPING
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202 SAL SALES
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202 SAL SALES
 206 CAROL ROSE ACT (null) (null) (null) (null) ACT ACCOUNTING
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203 SHP SHIPPING
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203 SHP SHIPPING
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201 MKT MARKETING
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203 SAL SALES

Oracle & Access SQL:
Step 2 — Select part of the data from the sec1316_view

CHAPTER 13 INNER JOINS510

Step 2 result table

➊ This is the join condition. It refers to both tables.

➋ This is a selection condition. It refers to only one table.

➌ In step 1, this is the join condition. It combines the two tables.

➍ In step 2, this is the selection condition. It selects the rows for the result
table.

Demonstrate that a select statement can be separated into two parts: The
first part joins the tables and creates a new table, and the second part
restricts the amount of data that is shown. For the following select state-
ment, write two SQL statements to separate these two steps.

select a.description,
 b.supplier_name
from l_foods a,
 l_suppliers b
where a.supplier_id = b.supplier_id
order by a.description;

13-17 Using a join with summarization

The example in this section shows all six clauses of the select statement
and an inner join, all working together. The where clause contains a join
condition and also a condition that selects the data for the result table. The
group by clause needs to contain three columns of data to make every col-
umn a summarized column.

EMPLOYEE DEPT
 ID FIRST_NAME LAST_NAME CODE DEPARTMENT_NAME
-------- ---------- ---------- ---- -----------------
 201 SUSAN BROWN EXE EXECUTIVE
 202 JIM KERN SAL SALES
 203 MARTHA WOODS SHP SHIPPING
 204 ELLEN OWENS SAL SALES
 205 HENRY PERKINS SAL SALES

Notes

Check your understanding

APPLICATIONS OF JOINS 511

List all the employees who are attending more than one lunch, except
employee 208. Show the following columns: employee_id, first_name,
last_name, and number_of_lunches.

select a.employee_id,
 a.first_name,
 a.last_name,
 count(*) as number_of_lunches
from l_employees a,
 l_lunches b
where a.employee_id = b.employee_id
 and not (a.employee_id = 208)
group by a.employee_id,
 a.first_name,
 a.last_name
having count(*) > 1
order by a.employee_id;

Result table

List all the foods on the menu and the total number of orders for each food
item. Note that broccoli does not show up in the result because no one has
ordered it.

Task

Oracle & Access SQL

EMPLOYEE
 ID FIRST_NAME LAST_NAME NUMBER_OF_LUNCHES
-------- ---------- ---------- -----------------
 201 SUSAN BROWN 3
 203 MARTHA WOODS 2
 204 ELLEN OWENS 2
 205 HENRY PERKINS 2
 207 DAN SMITH 2
 210 NANCY HOFFMAN 2

Check your understanding

CHAPTER 13 INNER JOINS512

13-18 How to find the primary key
in the Oracle Data Dictionary

In section 5-15 I showed you how to find the columns of the primary key of
a table using two steps. I promised to show you how to do it in a single
step, and now that you understand an inner join I can fulfill that promise.

Find all the columns in the primary key of the l_foods table.

Step 1:

select table_name,
 constraint_type,
 constraint_name
from user_constraints
where table_name = 'L_FOODS';

Step 2:

select *
from user_cons_columns
where table_name = 'L_FOODS';

select b.column_name,
 b.position
from user_constraints a, ➊

 user_cons_columns b
where a.table_name = b.table_name ➋

 and a.constraint_name = b.constraint_name
 and a.table_name = 'L_FOODS' ➌

 and a.constraint_type = 'P'; ➍

order by b.position;

Result table ➎

Task

Oracle SQL: Two-step method

Oracle SQL: One-step method using an inner join

COLUMN_NAME POSITION
------------------------------ ---------
SUPPLIER_ID 1
PRODUCT_CODE 2

APPLICATIONS OF JOINS 513

➊ Both Data Dictionary tables are used in the from clause.

➋ The first two lines of the where clause join the two tables.

➌ This line gives the name of the table. We want to find whether this table
has a primary key. If so, this code will show which columns are part of
that key.

➍ A constraint type of 'p' is a primary key constraint. The other values of
this column are:

r — Referential integrity constraint

u — Uniqueness constraint

c — Check constraint

➎ The primary key of the l_foods table has these two columns in this order.

13-19 Combining three or
more tables with inner joins

You can combine three or more tables with inner joins. You can join several
tables together all at the same time, as I do in this section, or you can join
the tables together two at a time in a series of steps.

When you combine several tables at once, the where clause can become
quite long and complex. You must be sure to put all the join conditions
into the where clause and relate each table to every other table.

When you combine several tables together with inner joins, you need to
keep in mind that some of the information from the beginning tables may
be dropped. The rows of the result table will only be the perfectly matched
combinations of rows from all the beginning tables. In other words, if four
tables are being joined, a matching row from each of those four tables is
required to produce one row in the result table. If any of these rows is miss-
ing, data will be dropped.

Sometimes that is not a problem, because that is exactly what you want to
happen. At other times, it is a problem.

Show information about all the lunches ordered by people in the shipping
department. Show the employee ID, names of the employees, the lunch date,
and the descriptions and quantities of the foods they will eat. Sort the result
by the employee_id and the lunch_date columns. To do this you need to
join four tables.

Notes

Task

CHAPTER 13 INNER JOINS514

select a.employee_id,
 a.first_name,
 a.last_name,
 b.lunch_date,
 d.description,
 c.quantity
from l_employees a, ➊

 l_lunches b,
 l_lunch_items c,
 l_foods d
where a.employee_id = b.employee_id ➋

 and b.lunch_id = c.lunch_id
 and c.supplier_id = d.supplier_id
 and c.product_code = d.product_code
 and a.dept_code = 'SHP' ➌

order by a.employee_id,
 b.lunch_date;

Result table

Oracle & Access SQL

EMPLOYEE FIRST LAST LUNCH
 ID NAME NAME DATE DESCRIPTION QUANTITY
-------- ---------- ---------- ------------ ----------------- ---------
 203 MARTHA WOODS 16-NOV-2011 FRESH SALAD 1
 203 MARTHA WOODS 16-NOV-2011 GRILLED STEAK 1
 203 MARTHA WOODS 16-NOV-2011 COFFEE 1
 203 MARTHA WOODS 16-NOV-2011 SODA 1
 203 MARTHA WOODS 16-NOV-2011 FRENCH FRIES 1
 203 MARTHA WOODS 05-DEC-2011 SOUP OF THE DAY 1
 203 MARTHA WOODS 05-DEC-2011 DESSERT 1
 203 MARTHA WOODS 05-DEC-2011 COFFEE 2
 203 MARTHA WOODS 05-DEC-2011 GRILLED STEAK 1
 207 DAN SMITH 16-NOV-2011 SANDWICH 2
 207 DAN SMITH 16-NOV-2011 FRENCH FRIES 1
 207 DAN SMITH 16-NOV-2011 COFFEE 2
 207 DAN SMITH 16-NOV-2011 DESSERT 1
 207 DAN SMITH 25-NOV-2011 SOUP OF THE DAY 2
 207 DAN SMITH 25-NOV-2011 SANDWICH 2
 207 DAN SMITH 25-NOV-2011 SODA 1
 207 DAN SMITH 25-NOV-2011 FRENCH FRIES 1
 208 FRED CAMPBELL 25-NOV-2011 FRESH SALAD 1
 208 FRED CAMPBELL 25-NOV-2011 SOUP OF THE DAY 1
 208 FRED CAMPBELL 25-NOV-2011 HAMBURGER 2
 208 FRED CAMPBELL 25-NOV-2011 FRENCH FRIES 1
 208 FRED CAMPBELL 25-NOV-2011 COFFEE 1
 208 FRED CAMPBELL 25-NOV-2011 SODA 1
 208 FRED CAMPBELL 05-DEC-2011 FRESH SALAD 1
 208 FRED CAMPBELL 05-DEC-2011 GRILLED STEAK 1
 208 FRED CAMPBELL 05-DEC-2011 FRENCH FRIES 1
 208 FRED CAMPBELL 05-DEC-2011 COFFEE 1
 208 FRED CAMPBELL 05-DEC-2011 SODA 1

KEY POINTS 515

➊ The from clause must list all the tables being joined, even if no column
from the table appears in the select clause.

➋ The first four lines of the where clause make up the join condition that
relates each table to all of the other tables.

➌ The last line of the where clause limits the data that appear in the final
result table. It is not part of the join condition.

Join all the tables of the lunches database together. Show all the columns of
each table. To do this, modify the select statement in this section and add
the three other tables to it. How many rows and columns are in this table?

Key Points

■ You can write a select statement that uses data from several tables.
When you are joining the tables, first the tables are combined
together to form a new larger table. Then data are selected or summa-
rized from this new table. Inside the computer, SQL is allowed to use
shortcuts to get to the result more efficiently, but the result must be
the same as if the steps had been done in this order.

■ The inner join is the most frequently used method to combine several
tables together. Other methods include outer joins and unions. These
are presented in the next two chapters.

■ When you are combining more than two tables, the best approach is
to join only two tables at a time. You can repeat this process to com-
bine as many tables as you want.

■ The join condition is the rule that is used to match rows of one table
with rows of another table. It can be written in either the from clause
or the where clause. Often a database is designed so that its tables
are joined together in certain fixed ways.

■ Unmatched rows are always dropped from an inner join. This can
cause a loss of information in the result. This is an important issue to
be aware of.

Notes

Check your understanding

CHAPTER 13 INNER JOINS516

■ When you are combining several tables together, if a row from one
table does not have a match in just one of the other tables, that row
will be dropped from the result. Therefore, the more tables you com-
bine with an inner join, the greater the potential for lost information.

■ Lookup tables are often used in database design to show the meaning
of codes and other standardized information. When you are using a
lookup table, there should be no possibility of unmatched rows or
lost information.

517

chapter 14

An inner join may drop some of the rows from the beginning
tables. An outer join puts back some of those rows. There are
three types of outer joins, each type adding back a different set
of the dropped rows.

OUTER JOINS

Introduction to Outer Joins . 519

14-1 Outer joins are derived from inner joins .519
14-2 The three types of outer joins. .520
14-3 The left outer join .522
14-4 The right outer join .524
14-5 The full outer join .526
14-6 An introduction to the union .529
14-7 An example of a union of two tables with matching columns.531

Applications of Outer Joins . 534

14-8 Counting to zero, part 4. .534
14-9 Combining an outer join with a selection of the data536

14-10 A full outer join in sorted order .539
14-11 Finding the defects in a pattern .542
14-12 Comparing tables using two or more columns. .544
14-13 Comparing two different full outer joins .546
14-14 Problem: Left and right outer joins can be difficult to handle 549

Key Points . 553

519

Introduction to Outer Joins

Inner joins often drop some of the rows of the beginning tables if they do
not have a matching row in the other table. If we want to keep these
unmatched rows instead of dropping them, we need to use an outer join.

14-1 Outer joins are derived from inner joins

An outer join is derived from an inner join by adding back some of the rows
that the inner join dropped from the beginning tables. Each of the three
types of outer joins adds back a different set of rows. However, all three
types of outer joins begin by forming the inner join.

Most of this discussion of outer joins is based on two tables named twos
and threes. The twos table contains a column of numbers that consists of
all the multiples of two up to 20, with the addition of one null. This table
also contains a column of words that describe the numbers and the null.

The threes table is similar, except that it contains the multiples of three
up to 20. The joins will be done on the columns of numbers. The columns
of words are there to show that the tables have columns other than those
used in the joins. Often, many such columns exist. We always join these
tables on the columns of numbers, matching the number column from the
twos table with the number column from the threes table.

In both tables, the number column contains a null and the word column for
that row does not contain a null. It contains a word with four letters: N, U, L,
and L. These are meant to be a description of what is in the number column.

The inner join of these tables contains three rows — 6, 12, and 18. All the
other rows of the beginning tables are dropped from the result table.

Show the inner join of the twos table and the threes table. Make a list of
the rows of the beginning tables that are dropped from the result table.

select a.*,
 b.*
from twos a,
 threes b
where a.number_2 = b.number_3
order by a.number_2;

Task

Oracle & Access SQL

CHAPTER 14 OUTER JOINS520

Beginning tables
twos table threes table

Result table (inner join)

Rows dropped from the twos table Rows dropped from the threes table

14-2 The three types of outer joins

There are three types of outer joins: the left outer join, the right outer join,
and the full outer join. They all begin with the inner join, and then they add
back some of the rows that have been dropped.

 NUMBER_2 WORD_2
--------- ---------------
 2 TWO
 4 FOUR
 6 SIX
 8 EIGHT
 10 TEN
 12 TWELVE
 14 FOURTEEN
 16 SIXTEEN
 18 EIGHTEEN
 20 TWENTY
(null) NULL

 NUMBER_3 WORD_3
--------- ---------------
 3 THREE
 6 SIX
 9 NINE
 12 TWELVE
 15 FIFTEEN
 18 EIGHTEEN
(null) NULL

 NUMBER_2 WORD_2 NUMBER_3 WORD_3
--------- --------------- --------- --------------
 6 SIX 6 SIX
 12 TWELVE 12 TWELVE
 18 EIGHTEEN 18 EIGHTEEN

 NUMBER_2 WORD_2
------------- ---------------
 2 TWO
 4 FOUR
 8 EIGHT
 10 TEN
 14 FOURTEEN
 16 SIXTEEN
 20 TWENTY
(null) NULL

 NUMBER_3 WORD_3
------------- ---------------
 3 THREE
 9 NINE
 15 FIFTEEN
(null) NULL

INTRODUCTION TO OUTER JOINS 521

The left outer join adds back all the rows that are dropped from the first
table. Nulls are placed in the columns that come from the other table. For
instance, in the first row of the following table, the row 2 TWO is added back
to the result table. The columns for the matching row of the threes table,
number_3 and word_3, are set to null.

The right outer join adds back all the rows that are dropped from the sec-
ond table. In all the rows that are added back, the columns for the match-
ing rows of the twos table are set to null.

The full outer join adds back all the rows dropped from both tables.

For the twos table and the threes table, show the results of the three types
of outer joins.

Result table — Left outer join (has all the rows from the first table)

Result table — Right outer join (has all the rows from the second table)

Task

 NUMBER_2 WORD_2 NUMBER_3 WORD_3
--------- --------------- --------- ---------------

 4 FOUR (null) (null)
 6 SIX 6 SIX
 8 EIGHT (null) (null)
 10 TEN (null) (null)
 12 TWELVE 12 TWELVE
 14 FOURTEEN (null) (null)
 16 SIXTEEN (null) (null)
 18 EIGHTEEN 18 EIGHTEEN
 20 TWENTY (null) (null)
(null) NULL (null) (null)

 NUMBER_2 WORD_2 NUMBER_3 WORD_3
--------- --------------- --------- ---------------

 6 SIX 6 SIX
(null) (null) 9 NINE
 12 TWELVE 12 TWELVE
(null) (null) 15 FIFTEEN
 18 EIGHTEEN 18 EIGHTEEN
(null) (null) (null) NULL

 2 TWO (null) (null)

(null) (null) 3 THREE

CHAPTER 14 OUTER JOINS522

Result table — Full outer join (has all the rows from both tables)

14-3 The left outer join

A left outer join keeps all of the rows from the first table, but has only the
rows from the second table that match with a row from the first table. You
write the join condition in the from clause. Oracle also has another way to
write a left outer join that puts the join condition in the where clause. This
is an older syntax that you should be able to recognize, but it is best not to
use it anymore.

In the following example, the rows of the result table are sorted on the
number column from the first table to put them in a logical order. In Oracle,
the null is sorted at the end of the table. In Access, it is sorted at the begin-
ning. The order by clause in this example is not needed to join the two
tables together. It is used here to display the rows of the result in a logical
order.

Show the syntax to write a left outer join in Oracle and in Access.

 NUMBER_2 WORD_2 NUMBER_3 WORD_3
--------- --------------- --------- ---------------
 2 TWO (null) (null)
(null) (null) 3 THREE
 4 FOUR (null) (null)
 6 SIX 6 SIX
 8 EIGHT (null) (null)
(null) (null) 9 NINE
 10 TEN (null) (null)
 12 TWELVE 12 TWELVE
 14 FOURTEEN (null) (null)
(null) (null) 15 FIFTEEN
 16 SIXTEEN (null) (null)
 18 EIGHTEEN 18 EIGHTEEN
 20 TWENTY (null) (null)
(null) NULL (null) (null)
(null) (null) (null) NULL

Task

INTRODUCTION TO OUTER JOINS 523

select a.*,
 b.*
from twos a
 threes b ➊

 a.number_2 = b.number_3 ➋

order by a.number_2; ➌

select a.*,
 b.*
from twos a,
 threes b
where a.number_2 = b.number_3 ➍

order by a.number_2; ➌

Beginning tables
twos table threes table

Result table — Left outer join

Oracle & Access SQL

Oracle SQL — Older syntax, Oracle 8 or earlier, do not use it anymore

 NUMBER_2 WORD_2
--------- ---------------
 2 TWO
 4 FOUR
 6 SIX
 8 EIGHT
 10 TEN
 12 TWELVE
 14 FOURTEEN
 16 SIXTEEN
 18 EIGHTEEN
 20 TWENTY
(null) NULL

 NUMBER_3 WORD_3
--------- --------------
 3 THREE
 6 SIX
 9 NINE
 12 TWELVE
 15 FIFTEEN
 18 EIGHTEEN
(null) NULL

 NUMBER_2 WORD_2 NUMBER_3 WORD_3
--------- --------------- --------- ---------------
 2 TWO (null) (null)
 4 FOUR (null) (null)
 6 SIX 6 SIX
 8 EIGHT (null) (null)
 10 TEN (null) (null)
 12 TWELVE 12 TWELVE
 14 FOURTEEN (null) (null)
 16 SIXTEEN (null) (null)
 18 EIGHTEEN 18 EIGHTEEN
 20 TWENTY (null) (null)
(null) NULL (null) (null)

left outer join
on

(+)

CHAPTER 14 OUTER JOINS524

➊ “Left outer join” is written in the from clause. The word “outer” is
optional, so you can also write “left join” here.

➋ The join condition is written in the on subclause of the from clause.

➌ The order by clause puts the rows in a logical order. It is not required in
a left outer join.

➍ In the older syntax of Oracle, the join condition is written in the where
clause. A plus sign in parentheses, (+), is written to the right of the join
condition. This specifies a left outer join. When several clauses are in the
join condition, the plus sign must be written to the right of each of them.

Putting the plus sign on the right might not seem to make sense to write
a left outer join. One way to think about this is that the plus sign is writ-
ten on the side where the nulls are added to the incomplete rows that
are added back.

The following select statement shows all the employees who are in each
department. First run this code as it is — as an inner join. Then change it to a
left outer join. What is the difference in the result tables?

select a.department_name,
 b.first_name,
 b.last_name
from l_departments a,
 l_employees b
where a.dept_code = b.dept_code;

14-4 The right outer join

The right outer join is similar to the left outer join, except it is the reverse:
The rows dropped from the second table are added back instead of the
rows from the first table. The syntax is also similar. The difference between
the syntax for Oracle and Access is the same for both the left and right
outer joins.

A right outer join keeps all of the rows from the second table, but has only
the rows from the first table that match with a row from the second table.

Show the syntax to write a right outer join in Oracle and in Access.

Notes

Check your understanding

Task

INTRODUCTION TO OUTER JOINS 525

select a.*,
 b.*
from twos a
 threes b ➊

 a.number_2 = b.number_3 ➋

order by b.number_3; ➌

select a.*,
 b.*
from twos a,
 threes b
where a.number_2 = b.number_3 ➍

order by b.number_3; ➌

Beginning tables
twos table threes table

Result table — Right outer join

Oracle & Access SQL

Oracle SQL — Older syntax, Oracle 8 or earlier, do not use it anymore

 NUMBER_2 WORD_2
--------- ---------------
 2 TWO
 4 FOUR
 6 SIX
 8 EIGHT
 10 TEN
 12 TWELVE
 14 FOURTEEN
 16 SIXTEEN
 18 EIGHTEEN
 20 TWENTY
(null) NULL

 NUMBER_3 WORD_3
--------- --------------
 3 THREE
 6 SIX
 9 NINE
 12 TWELVE
 15 FIFTEEN
 18 EIGHTEEN
(null) NULL

 NUMBER_2 WORD_2 NUMBER_3 WORD_3
--------- --------------- --------- ---------------
(null) (null) 3 THREE
 6 SIX 6 SIX
(null) (null) 9 NINE
 12 TWELVE 12 TWELVE
(null) (null) 15 FIFTEEN
 18 EIGHTEEN 18 EIGHTEEN
(null) (null) (null) NULL

right outer join
on

(+)

CHAPTER 14 OUTER JOINS526

➊ The phrase “right outer join” is written in the from clause. The word
“outer” is optional, so you can also write “right join” here.

➋ The join condition is written in the on subclause of the from clause.

➌ The order by clause puts the rows in a logical order. It is not required in
a right outer join.

➍ In the older syntax of Oracle, the join condition is written in the where
clause. A plus sign in parentheses, (+), is written to the left of the equal
sign. This specifies a right outer join. When several clauses are in the
join condition, the plus sign must be written on the left side of each of
them.

This is a modification of the exercise in section 14-3. The only thing that has
been changed is the order of the tables in the from clause. First run this code
as it is — as an inner join. Then change this select statement to a right
outer join. What is the difference in the result tables?

select a.department_name,
 b.first_name,
 b.last_name
from l_employees b,
 l_departments a
where a.dept_code = b.dept_code;

14-5 The full outer join

The full outer join adds back all the rows dropped from both tables by the
inner join. It keeps all the rows from both tables and makes as many
matches as the data and the join condition allow.

Oracle has direct support for the full outer join. That is, you can do it with a
single command. However, in Access you need to construct it yourself as a
union of two one-sided outer joins.

You can create a full outer join by writing a union of the left outer join and
the right outer join. The next two sections of this chapter tell you as much
as you need to know about the union to understand it when it is used in a
full outer join. For now, you can think of it as a way to combine a left outer
join and a right outer join. We discuss the union in more detail in the next
chapter.

Notes

Check your understanding

INTRODUCTION TO OUTER JOINS 527

The SQL may look complicated, but it is only:

■ Left outer join

■ union

■ Right outer join

The order of the left and right outer joins does not matter and can be
reversed, so the full outer join can also be written:

■ Right outer join

■ union

■ Left outer join

Show the syntax to write a full outer join in Oracle and in Access.

select a.*,
 b.*
from twos a
 full outer join threes b
 on a.number_2 = b.number_3;

select a.*,
 b.*
from twos a
 threes b
 on a.number_2 = b.number_3

select c.*,
 d.*
from twos c ➋

 threes d ➋

 on c.number_2 = d.number_3;

Task

Oracle SQL ➊

Access SQL (This also works in Oracle)

left outer join

union

right outer join

CHAPTER 14 OUTER JOINS528

Beginning tables — twos table and threes table, shown in the previous sections

Result table — Full outer join ➌

➊ Oracle has direct support for a full outer join.

➋ In this example I use a and b for the table aliases in the first select
statement and then I use c and d for the table aliases in the second
select statement. I do this for clarity, so anyone who looks at the code
can tell immediately what is going on. To the computer the two select
statements are independent of each other and the table aliases do not
need to be different. So many people would write a and b again in the
second select statement instead of c and d.

➌ I have put the rows of this table in a logical order so you can see what is
going on. When you run the code you will probably see the rows in a dif-
ferent order.

This is a modification of the exercise in section 14-3. The only thing that has
changed is that table sec1405_employees replaces table l_employees.
The new table contains one new employee who has not been assigned to any
department yet. First run this code as it is — as an inner join. Then change
this select statement to a full outer join. What is the difference in the result
tables?

 NUMBER_2 WORD_2 NUMBER_3 WORD_3
--------- --------------- --------- ---------------
 2 TWO (null) (null)
(null) (null) 3 THREE
 4 FOUR (null) (null)
 6 SIX 6 SIX
 8 EIGHT (null) (null)
(null) (null) 9 NINE
 10 TEN (null) (null)
 12 TWELVE 12 TWELVE
 14 FOURTEEN (null) (null)
(null) (null) 15 FIFTEEN
 16 SIXTEEN (null) (null)
 18 EIGHTEEN 18 EIGHTEEN
 20 TWENTY (null) (null)
(null) NULL (null) (null)
(null) (null) (null) NULL

Notes

Check your understanding

INTRODUCTION TO OUTER JOINS 529

select a.department_name,
 b.first_name,
 b.last_name
from l_departments a,
 sec1405_employees b
where a.dept_code = b.dept_code;

14-6 An introduction to the union

This section introduces the union because we have used it in creating a full
outer join. At this time, I limit the discussion to its use in this context. The
next chapter discusses the union in more detail.

A union of two tables adds the rows of one table to the other table, and the
two beginning tables are combined to form a single table, as shown in the
following diagram. The rows of the two tables must be identical or nearly
identical in structure, so that they can all fit together within the framework
of a single table. This means that they must have the same number of col-
umns and the datatypes of these columns must be in the same order. Oth-
erwise, a union cannot be formed.

Duplicate rows are eliminated from a union. If two rows have the same val-
ues in every column, the union keeps only one of them and drops the other
one. This action is taken whether both rows come from the same table or
whether they come from different tables.

The definition of a union of tables is similar to the way a union of sets is
defined in mathematics. In a union of sets no duplicate elements are
allowed. This is why duplicate rows are not allowed in a union of tables.

We have formed a union of two tables before. The method we used was to
insert the rows from one table into the other table and then to use select
distinct to eliminate the duplicate rows.

When a union is written within SQL code, the word union is placed
between two select statements. Each select statement stands for a
table — the result table it produces.

In the case of a full outer join, the union is placed between the select
statements for the left outer join and the right outer join. These two tables
always have the same number of columns and the datatypes of those col-
umns are always in the same order, so the union can always be formed.

CHAPTER 14 OUTER JOINS530

The process of forming a union.

Show how to write a union in SQL. Show the select statement for the pre-
ceding diagram. Write the select statement so that its result table is table C
in the diagram.

select *
from A

select *
from B;

Task for example 1: Write a union

Oracle & Access SQL: Select statement for the preceding diagram

A

B

A

B

C

A
union

B

Two separate
tables. Their
row structures
are the same.

All the rows
are combined
into one table.

Duplicate
rows are
eliminated.

union

INTRODUCTION TO OUTER JOINS 531

Show another way to write the SQL for the preceding diagram. Write this SQL
to create table C as a new table.

insert into B
 select *
 from A;

create table C as
 select distinct *
 from B;

select distinct *
into C
from B;

This is a model of the SQL code for the diagram. This SQL does not actually
run.

14-7 An example of a union of
two tables with matching columns

This section shows an example of a union. The two beginning tables have
the same structure. That is, they both have three columns and the
datatypes of these columns in order are as follows:

■ Numeric

■ Text

■ Date/time

These are the three main types of columns that are used in relational data-
bases. This example shows they can all be used in a union.

Task for example 2: Another procedure to form a union

Oracle & Access SQL: Step 1

Oracle SQL: Step 2

Access SQL: Step 2

Notes

CHAPTER 14 OUTER JOINS532

The result table contains all the rows from both beginning tables. We can
call these rows 1 through 7. Rows 1 and 2 come only from the first begin-
ning table. Rows 6 and 7 come only from the second beginning table. Rows
3, 4, and 5 come from both beginning tables; however, only a single copy of
these rows is kept in the result table, because the duplicate copies of rows
are eliminated.

Look at the column headings of the result table. The first select state-
ment sets them. The column headings of the first beginning table are used,
unless a column alias is assigned. The word_1 column in this example is
assigned to the column alias text_1.

The order by clause is the last line and it is placed after the second
select statement. A union can have only one order by clause, and it
must be the last line of the union. This clause sorts all the rows of the
union into a designated order.

After you examine this example of a union, turn back to section 14-2 and
look at the tables for the three types of outer joins. Can you see how the
full outer join is the result of a union between the left outer join and the
right outer join?

Show an example of a select statement that uses a union.

select a.number_1, ➊

 a.word_1 as text_1, ➋

 a.date_1
from sec1407_first a
union ➌

select b.number_2, ➍

 b.word_2,
 b.date_2
from sec1407_second b
order by number_1; ➎

Task

Oracle & Access SQL

INTRODUCTION TO OUTER JOINS 533

Beginning tables
sec1407_first table sec1407_second table

Result table ➏

➊ The first select statement lists three columns. It determines the head-
ing for the columns. It cannot have an order by clause.

➋ In a union, a column alias is assigned within the first select statement.
Aliases cannot be assigned in the second select statement.

➌ The word union is placed between the two select statements.

➍ The second select statement must have the same number of columns
as the first select statement and the datatypes of the matching col-
umns must be compatible.

➎ The order by clause is placed at the end of the union.

➏ Even though both beginning tables have rows 3, 4, and 5, the result table
contains only a single copy of these rows. This shows that duplicate rows
are eliminated.

The table sec1407_departments has the same format as the
l_departments table. Write a select statement that shows the union of
the two tables.

NUMBER_1 WORD_1 DATE_1
--------- ------------ -----------
 1 ONE 01-DEC-2001
 2 TWO 02-DEC-2002
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005

NUMBER_2 WORD_2 DATE_2
-------- ------------- -----------
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005
 6 SIX 06-DEC-2006
 7 SEVEN 07-DEC-2007

NUMBER_1 TEXT_1 DATE_1
--------- --------------- -----------
 1 ONE 01-DEC-2001
 2 TWO 02-DEC-2002
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005
 6 SIX 06-DEC-2006
 7 SEVEN 07-DEC-2007

Notes

Check your understanding

CHAPTER 14 OUTER JOINS534

Applications of Outer Joins

The following sections provide some applications of outer joins and the
last section shows why left and right outer joins can be difficult to handle.

14-8 Counting to zero, part 4

This section shows the full SQL solution in our continuing discussion of
how to count the number of lunches each employee will attend. The new
aspect shown here is the outer join between the l_employees table and
the l_lunches table.

Show the number of lunches each employee will attend. Include all the
employees. Show a zero if the employee is not attending any lunches.

select a.employee_id,
 a.first_name,
 a.last_name,
 count(b.lunch_id) as number_of_lunches ➊

group by a.employee_id,
 a.first_name,
 a.last_name
order by a.employee_id;

Beginning table 1 (l_employees table)

Task

Oracle & Access SQL

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

from l_employees a
 left outer join l_lunches b
 on a.employee_id = b.employee_id

APPLICATIONS OF OUTER JOINS 535

Beginning table 2 (l_lunches table)

Result table

➊ Here the count(column) function is being applied to the lunch_id
column from the l_lunches table. Why did I choose this column? To get
the zeros, I could have used any column from the l_lunches table,
because the outer join sets all the columns to nulls when an employee is
not attending any lunches.

 LUNCH EMPLOYEE
LUNCH_ID DATE ID DATE_ENTERE
-------- ------------ -------- -----------
 1 16-NOV-2011 201 13-OCT-2011
 2 16-NOV-2011 207 13-OCT-2011
 3 16-NOV-2011 203 13-OCT-2011
 4 16-NOV-2011 204 13-OCT-2011
 6 16-NOV-2011 202 13-OCT-2011
 7 16-NOV-2011 210 13-OCT-2011
 8 25-NOV-2011 201 14-OCT-2011
 9 25-NOV-2011 208 14-OCT-2011
 12 25-NOV-2011 204 14-OCT-2011
 13 25-NOV-2011 207 18-OCT-2011
 15 25-NOV-2011 205 21-OCT-2011
 16 05-DEC-2011 201 21-OCT-2011
 17 05-DEC-2011 210 21-OCT-2011
 20 05-DEC-2011 205 24-OCT-2011
 21 05-DEC-2011 203 24-OCT-2011
 22 05-DEC-2011 208 24-OCT-2011

EMPLOYEE_ID FIRST_NAME LAST_NAME NUMBER_OF_LUNCHES
----------- ---------- ---------- -----------------
 201 SUSAN BROWN 3
 202 JIM KERN 1
 203 MARTHA WOODS 2
 204 ELLEN OWENS 2
 205 HENRY PERKINS 2
 206 CAROL ROSE
 207 DAN SMITH 2
 208 FRED CAMPBELL 2
 209 PAULA JACOBS
 210 NANCY HOFFMAN 2

Notes

0

0

CHAPTER 14 OUTER JOINS536

The following select statement shows the number of orders for each food
on the menu. Modify the SQL so the result table shows that there are no
orders for broccoli.

select a.description as food_item,
 sum(b.quantity) as number_of_orders
from l_foods a,
 l_lunch_items b
where a.supplier_id = b.supplier_id
 and a.product_code = b.product_code
group by a.description
order by a.description;

14-9 Combining an outer join
with a selection of the data

The SQL code in the previous section combined two steps into a single
select statement. In theory, the first step creates the outer join of the two
beginning tables. The result of this step is a table that has all the columns
from both tables and all the rows that the outer join creates.

The second step selects some of the data from this table, groups it, and
summarizes it. This creates the result table.

The following example solves the same problem as in the previous section,
but shows each of these steps separately. When the problem is more com-
plex than the one shown here, this method of coding is easier to create and
less prone to errors.

Create an outer join of the l_employees table and the l_lunches table.
Retain all the rows of data from both tables.

create table sec1409 as
select a.*,
 b.lunch_id,
 b.lunch_date,
 b.employee_id as employee_id2,
 b.date_entered
from l_employees a
 left outer join l_lunches b
 on a.employee_id = b.employee_id;

Check your understanding

Task for example 1

Oracle SQL

APPLICATIONS OF OUTER JOINS 537

select a.*,
 b.lunch_id,
 b.lunch_date,
 b.employee_id as employee_id2,
 b.date_entered
into sec1409
from l_employees a
 left outer join l_lunches b
 on a.employee_id = b.employee_id;

Beginning tables —
The l_employees table and the l_lunches table are shown in the previous section.

Result table —
Sec1409 table, except for the last column, date_entered, which does not fit here.

Access SQL

EMP FIRST LAST DEPT CREDIT PHONE MANAGER LUNCH LUNCH EMP
 ID NAME NAME CODE HIRE_DATE LIMIT NUMBER ID ID DATE ID2
--- ------ -------- ---- ----------- ------- ------ ------- ------- ----------- -------
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null) 1 16-NOV-2011 201
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null) 8 25-NOV-2011 201
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null) 16 05-DEC-2011 201
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201 6 16-NOV-2011 202
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201 3 16-NOV-2011 203
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201 21 05-DEC-2011 203
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202 4 16-NOV-2011 204
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202 12 25-NOV-2011 204
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202 15 25-NOV-2011 205
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202 20 05-DEC-2011 205
206 CAROL ROSE ACT (null) (null) (null) (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203 2 16-NOV-2011 207
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203 13 25-NOV-2011 207
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203 9 25-NOV-2011 208
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203 22 05-DEC-2011 208
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201 (null) (null) (null)
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203 7 16-NOV-2011 210
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203 17 05-DEC-2011 210

CHAPTER 14 OUTER JOINS538

Show the number of lunches each employee will attend. Start with the
sec1409 table. Then select these columns: employee_id, first_name,
and last_name. Group these data and summarize them to count the num-
ber of lunches each employee will attend.

This code is almost identical to the SQL in section 12-10.

select employee_id,
 first_name,
 last_name,
 count(lunch_id) as number_of_lunches
from sec1409
group by employee_id,
 first_name,
 last_name
order by employee_id;

Result table

Task for example 2

Oracle & Access SQL

EMPLOYEE
 ID FIRST_NAME LAST_NAME NUMBER_OF_LUNCHES
-------- ---------- ---------- -----------------
 201 SUSAN BROWN 3
 202 JIM KERN 1
 203 MARTHA WOODS 2
 204 ELLEN OWENS 2
 205 HENRY PERKINS 2
 206 CAROL ROSE 0
 207 DAN SMITH 2
 208 FRED CAMPBELL 2
 209 PAULA JACOBS 0
 210 NANCY HOFFMAN 2

APPLICATIONS OF OUTER JOINS 539

14-10 A full outer join in sorted order

This section shows a full outer join of the twos table with the threes
table. The rows of the result table are sorted into their logical order. This
order may not seem surprising to you, but a trick is required to achieve it.

The difficulty in sorting the rows of a full outer join is that they need to be
sorted on a combination of the two columns, number_2 and number_3. If it
is sorted on a single column, all the rows that contain a null in that column
are sorted together. In Oracle, all of these rows go to the bottom. In Access,
they all go to the top. Both the number_2 column and the number_3 col-
umn contain many nulls because this is a full outer join. Sorting on either
of these columns does not give us the result we want.

The trick is to use a row function that combines the values of the
number_2 and number_3 columns. In Oracle, we can use the nvl (null
value) function:

NVL(number_2, number_3)

In Access, we can use the nz (nonzero) function and multiply the result by
one:

NZ(number_2, number_3) * 1

The resulting value from both of these functions is as follows:

number_2 if it is not null

number_3 if number_2 is null, even if number_3 is a null

In Access, we multiply the nz function by one to convert it into a number.
Otherwise, it would be a text field and would sort the rows in alphabetic
order rather than numeric order. Because a union requires the columns of
each select statement to match, these functions must be placed within
each of the select statements.

Create a full outer join of the twos table and the threes table. Create a col-
umn that will sort the rows in numeric order.

Task

CHAPTER 14 OUTER JOINS540

select a.*, ➊

 b.*,
 ➋

from twos a
 full outer join threes b
 on a.number_2 = b.number_3

➌

select a.*, ➊

 b.*,
 ➍

from twos a
 left outer join threes b
 on a.number_2 = b.number_3
union
select c.*,
 d.*,
 ➎

from twos c
 right outer join threes d
 on c.number_2 = d.number_3

➌

Beginning tables
twos table threes table

Oracle SQL

Access SQL

 NUMBER_2 WORD_2
--------- ---------------
 2 TWO
 4 FOUR
 6 SIX
 8 EIGHT
 10 TEN
 12 TWELVE
 14 FOURTEEN
 16 SIXTEEN
 18 EIGHTEEN
 20 TWENTY
(null) NULL

 NUMBER_3 WORD_3
--------- --------------
 3 THREE
 6 SIX
 9 NINE
 12 TWELVE
 15 FIFTEEN
 18 EIGHTEEN
(null) NULL

nvl(a.number_2,b.number_3) as sort_order

order by sort_order;

nz(a.number_2,b.number_3) * 1 as sort_order

nz(c.number_2,d.number_3) * 1

order by sort_order;

APPLICATIONS OF OUTER JOINS 541

Result table ➏

➊ The select clause includes all the columns of both tables and an addi-
tional column to determine the sort order.

➋ The null value function, nvl, is used in Oracle to determine the sort
order. This is equal to the number_2 column, except if that column con-
tains a null, in which case it is equal to the number_3 column. The col-
umn alias sort_order is given to this column.

➌ The full outer join is sorted by the sort_order column.
➍ In Access, the nz function is used to determine the sort order. This is

equal to number_2, except when number_2 is null then it is equal to
number_3. It is multiplied by one to give it a numeric datatype.

➎ The nz function to create the sort_order column must also be
included in the second select statement.

➏ Often the sort_order column is not displayed. This makes the sort
order just “naturally appear.” To use this trick, you could create a view
from the select statement in this section and then not display the
sort_order column, but still use it for sorting.

You can force a full other join, or any other result table, to be in the order you
want by adding a new column to specify the sort order. Special tricks are
sometimes used to assign numbers to rows when a particular order is
required.

 NUMBER_2 WORD_2 NUMBER_3 WORD_3 SORT_ORDER
--------- --------------- --------- --------------- ----------
 2 TWO (null) (null) 2
(null) (null) 3 THREE 3
 4 FOUR (null) (null) 4
 6 SIX 6 SIX 6
 8 EIGHT (null) (null) 8
(null) (null) 9 NINE 9
 10 TEN (null) (null) 10
 12 TWELVE 12 TWELVE 12
 14 FOURTEEN (null) (null) 14
(null) (null) 15 FIFTEEN 15
 16 SIXTEEN (null) (null) 16
 18 EIGHTEEN 18 EIGHTEEN 18
 20 TWENTY (null) (null) 20
(null) NULL (null) (null) (null)
(null) (null) (null) NULL (null)

Notes

Comment

CHAPTER 14 OUTER JOINS542

14-11 Finding the defects in a pattern

In this section we compare two tables using a single column from each
table. In this particular example each table has only one column, but in a
more general setting the tables could have any number of columns.

The idea is that one table contains a pattern of numbers that has some
defects. The other table contains the same pattern without any defects. Our
job is to find all the defects in the first table.

The SQL does an outer join between these tables, keeping all the rows of
the perfect pattern and listing the columns from both tables. If a number,
such as 5, is missing from the defective table, the join shows it by produc-
ing the row <5, null>. If a number is repeated several times in the defec-
tive table, it is also repeated that many times in the join. An example is
that 3 occurs twice in the defective table, and the outer join contains the
row <3, 3> twice.

Then the SQL groups the rows of the join, making a separate group for each
number. It counts each group on the column that comes from the defective
table. Most numbers have a count of 1. When these are eliminated, only
the defects are shown in the result table.

The table sec1411_numbers contains the numbers from 1 to 1,000. A few
numbers are missing and a few numbers are repeated. Find all the missing
numbers and all the repeated numbers. Count the number of times each of
these numbers occurs. For the missing numbers, count that they occur zero
times.

select a.n,
 b.n,
 count(b.n)
from numbers_1_to_1000 a
 left outer join sec1411_numbers b
 on a.n = b.n
group by a.n,
 b.n
having not (count(b.n) = 1)
order by a.n;

Task

Oracle & Access SQL

APPLICATIONS OF OUTER JOINS 543

Beginning table (ex1203a table)

Result table

 N

 1
 2
 3
 3
 4
 6
 7
 8
 9
 10
 11
 12
 13
 13
 13
 13
 14
(and many more)

 N N COUNT(B.N)
--------- --------- ----------
 3 3 2
 5 (null) 0
 13 13 4
 48 48 4
 67 67 2
 72 72 3
 103 103 2
 113 113 5
 123 (null) 0
 148 148 4
 167 167 2
 172 172 3
 248 248 2
 267 267 2
 275 (null) 0
 367 (null) 0
 460 (null) 0
 503 503 2
 548 548 2
 555 (null) 0
 619 (null) 0
 713 713 2
 748 748 2
 778 (null) 0
 821 (null) 0
 872 872 2
 913 913 2
 972 972 2
 998 (null) 0

CHAPTER 14 OUTER JOINS544

When you need to look for repeated rows or values in a large amount of data,
the trick that we employed here is often useful. First, group the data together
and count them in a way that most of the data will get a count of one. Then
use a having clause to hide these data so you can focus on the exceptions.

14-12 Comparing tables using two or more columns

This section shows you how to compare two tables that contain two or
more columns by finding the rows in one table that do not exist in another
table. This can be done in several ways.

The technique shown here lists all the columns from both tables. It forms a
left outer join between the first table and the second table. This join retains
all the rows in the first table, and when the second table does not have a
matching row, nulls are placed in the columns of the second table.

The second part of this technique selects all the rows that have a null in a
column of the second table. This shows the rows of the first table that do
not exist in the second table.

You can also perform this process in two steps. It may be easier to under-
stand that way. In the first step, form the left outer join and examine the
results. In the second step, select the rows that have a null in one of the
columns of the second table.

Find the rows in the sec1412a table that do not exist in the sec1412b table.

select a.first_col,
 a.second_col,
 b.first_col,
 b.second_col
from sec1412a a
 left outer join sec1412b b
 on a.first_col = b.first_col
 and a.second_col = b.second_col
where b.first_col is null ➊

order by a.first_col,
 a.second_col;

Comment

Task

Oracle & Access SQL

APPLICATIONS OF OUTER JOINS 545

Beginning table 1 (sec1412a table)

Beginning table 2 (sec1412b table)

Result table

FIRST_COL SECOND_COL
--------------- ------------
11101 22201
11101 22202
11101 22203
11102 22201
11102 22202
11102 22203
11103 22201
11103 22202
11103 22203
11104 22201
11104 22202
11104 22203
11105 22201
11105 22202
11105 22203

FIRST_COL SECOND_COL
--------------- ------------
11101 22201
11101 22202
11101 22203
11102 22201
11102 22203
11103 22202
11103 22203
11104 22201
11104 22202
11105 22201
11105 22202
11105 22203

FIRST_COL SECOND_COL FIRST_COL SECOND_COL
--------------- --------------- --------------- ------------
11102 22202 (null) (null)
11103 22201 (null) (null)
11104 22203 (null) (null)

CHAPTER 14 OUTER JOINS546

➊ Eliminate this where condition if you want to perform the process in two
steps. That creates the first step, which forms the left outer join. In the
second step, apply this where condition.

In this section we found the rows from the first table that do not exist in the
second table. If you want to fully compare the tables you will need to run this
select statement again to find the rows of the second table that do not
exist in the first table.

The table sec1412_departments is similar to the l_departments table,
except that a few rows have been added, deleted, or changed. Find all the dif-
ferences between the two tables.

14-13 Comparing two different full outer joins

People sometimes talk as if there were only one way to form a full outer
join between two tables. However, there are many ways to create the join.
Every join condition you can write can be used to form a different full outer
join. In this section we compare two full outer joins of the same tables to
see how they are similar and how they are different. For this example, we
return to the fruits and colors tables from chapter 13.

Use the two tables sec1413_fruits and sec1413_colors. Form the full
outer join of these tables using the join condition:

f_num = c_num

Then form the full outer join using the join condition:

fruit = color

Examine the result tables. State what is similar and what is different about
these full outer joins.

Notes

Comment

Check your understanding

Task

APPLICATIONS OF OUTER JOINS 547

In Oracle, the full outer join can be written directly, without using a union. I
use a union here to make the Oracle SQL the same as the Access SQL.

First full outer join:

select a.*,
 b.*
from sec1413_fruits a
 left outer join sec1413_colors b
 on a.f_num = b.c_num
union
select a.*,
 b.*
from sec1413_fruits a
 right outer join sec1413_colors b
 on a.f_num = b.c_num;

Second full outer join:

select a.*,
 b.*
from sec1413_fruits a
 left outer join sec1413_colors b
 on a.fruit = b.color
union
select a.*,
 b.*
from sec1413_fruits a
 right outer join sec1413_colors b
 on a.fruit = b.color;

Beginning tables
sec1413_fruits table sec1413_colors table

Oracle & Access SQL (Oracle also has another method)

FRUIT F_NUM
---------- ---------
APPLE 1
BANANA 2
CHERRY 3
GRAPE 4
ORANGE 5
STRAWBERRY 1

 C_NUM COLOR
--------- --------
 1 RED
 2 YELLOW
 1 GREEN
 5 ORANGE
 6 WHITE

CHAPTER 14 OUTER JOINS548

First full outer join using the join condition: f_num = c_num

Second full outer join using the join condition: fruit = color
This looks completely different to me.

Similarities between the two full outer joins
■ They both contain all the rows from the beginning tables.

■ They both contain all the columns from the beginning tables.

Differences between the two full outer joins

FRUIT F_NUM C_NUM COLOR
---------- --------- --------- ----------
APPLE 1 1 GREEN
APPLE 1 1 RED
BANANA 2 2 YELLOW
CHERRY 3 (null) (null)
GRAPE 4 (null) (null)
ORANGE 5 5 ORANGE
STRAWBERRY 1 1 GREEN
STRAWBERRY 1 1 RED
(null) (null) 6 WHITE

FRUIT F_NUM C_NUM COLOR
---------- --------- --------- ----------
APPLE 1 (null) (null)
BANANA 2 (null) (null)
CHERRY 3 (null) (null)
GRAPE 4 (null) (null)
ORANGE 5 5 ORANGE
STRAWBERRY 1 (null) (null)
(null) (null) 1 GREEN
(null) (null) 1 RED
(null) (null) 2 YELLOW
(null) (null) 6 WHITE

First Full
Outer Join

Second Full
Outer Join

Total number of rows in the result table 9 10

Number of rows in the result table that match a
fruit and a color

6 1

Number of rows in the result table with an
unmatched fruit or color

3 9

APPLICATIONS OF OUTER JOINS 549

14-14 Problem: Left and right outer
joins can be difficult to handle

In this section I want to tell you about one of the main problems with left
and right outer joins. They are okay when there is only one of them and you
use it to join two tables together, but things become subtle and complex
the moment you use two of them to join three tables together. You can get
this to work, but you have to be extremely careful or you will get a result
that is different than what you expect it to be.

This is one of the more difficult sections of the book. Don’t get hung up on
it. You can safely move on and skip this section entirely if you want.

I want to make this point by showing you an example. I picked an example
where almost everything is the same so you might expect the difference to
have no effect at all. However, I show you that in the result there is a differ-
ence you might not anticipate.

In this example we join three tables together using two left outer joins. We
keep the tables in the same order relative to each other and keep the join
conditions as similar as possible. There is just one difference. In case one,
tables 1 and 2 are joined together first, then the result is joined with table
3. In case two, tables 2 and 3 are joined together first, then the result is
joined with table 1. Expressing this mathematically, we show

(A x B) x C is not equal to A x (B x C)

where:

A, B, and C are tables

x is a left outer join

First Full
Outer Join

Second Full
Outer Join

Number of fruits from the beginning table that
are matched with at least one color

4 1

Number of fruits from the beginning table that
are not matched with any color

2 5

Number of colors from the beginning table that
are matched with at least one fruit

4 1

Number of colors from the beginning table that
are not matched with any fruit

1 4

CHAPTER 14 OUTER JOINS550

Next we need to agree on some details for this test. I have tried to be fair. I
picked three tables without any hidden relationships to each other. I
picked:

Table A = multiples of 2 from 0 to 100

Table B = multiples of 3 from 0 to 100

Table C = multiples of 5 from 0 to 100

The numbers 2, 3, and 5 are prime numbers. This keeps the tables indepen-
dent from each other.

The first left outer join on each side is between two tables with one column
each; let’s call them R and S. The simplest join condition is R = S.

The second left outer join on each side is between a table with one column
— let’s call it T — and the previous result table, which has two columns, R
and S. Which of these columns should T be equal to? To be fair, let’s allow a
join when T is equal to either R or S.

Putting this all together, I wrote the following code. Note that for clarity I
write each left outer join in a separate step. I also save the result of each
step in a new table. After creating the two tables, I compare them to show
that they are different.

The Access SQL and the Oracle SQL differ slightly. I show only the Access
SQL here. The notes tell you how to modify it for Oracle.

select a.*,
 b.*
into sec1414_AxB ➊

from sec1414_twos a
 left outer join sec1414_threes b
 on a.multiple_of_2 = b.multiple_of_3;

select a.*,
 b.*
into sec1414_AxB_xC ➊

from sec1414_AxB a
 left outer join sec1414_fives b
 on (a.multiple_of_2 = b.multiple_of_5
 or a.multiple_of_3 = b.multiple_of_5);

Access SQL: Create (A × B) (Modify this for Oracle ➊)

Access SQL: Create (A × B) × C (Modify this for Oracle ➊)

APPLICATIONS OF OUTER JOINS 551

select a.*,
 b.*
into sec1414_BxC ➊

from sec1414_threes a
 left outer join sec1414_fives b
 on a.multiple_of_3 = b.multiple_of_5;

select a.*,
 b.*
into sec1414_Ax_BxC ➊

from sec1414_twos a
 left outer join sec1414_BxC b
 on (a.multiple_of_2 = b.multiple_of_3
 or a.multiple_of_2 = b.multiple_of_5);

To compare these two tables I use a technique from the next chapter because
I think it shows the result more clearly. I label the rows from each table and
combine the tables with a union all. Follow along with me for now. You can
come back later and check how I did this.

select a.*,
 '(AxB)xC' as source
from sec1414_AxB_xC a
union all
select b.*,
 'Ax(BxC)'
from sec1414_Ax_BxC b
order by 1, 2, 3, 4;

Access SQL: Create (B × C) (Modify this for Oracle ➊)

Access SQL: Create A × (B × C) (Modify this for Oracle ➊)

Oracle & Access SQL: Compare (A × B) × C with A × (B × C)

CHAPTER 14 OUTER JOINS552

Result table (the first few rows show the difference)

➊ Here is how to create the Oracle SQL: Remove the line

into new_table

that comes after the select clause in the Access SQL. Replace it with the
line

create new_table as

Put this line before the select clause in the Oracle SQL. This has been
done for you in the script file containing all the Oracle SQL for chapter
14. It is available from the Web site.

➋ These rows are different. They show part of the differences between (A ×
B) × C and A × (B × C).

MULTIPLE_OF_2 MULTIPLE_OF_3 MULTIPLE_OF_5 SOURCE
--------------- --------------- --------------- ------------
0 0 0 (AxB)xC
0 0 0 Ax(BxC)
2 (null) (null) (AxB)xC
2 (null) (null) Ax(BxC)
4 (null) (null) (AxB)xC
4 (null) (null) Ax(BxC)
6 6 (null) (AxB)xC
6 6 (null) Ax(BxC)
8 (null) (null) (AxB)xC
8 (null) (null) Ax(BxC)
10 (null) 10 (AxB)xC ➋

10 (null) (null) Ax(BxC) ➋

12 12 (null) (AxB)xC
12 12 (null) Ax(BxC)
14 (null) (null) (AxB)xC
14 (null) (null) Ax(BxC)
...
(102 rows total)

(90 more rows)

Notes

KEY POINTS 553

Key Points

There are three types of outer joins:

■ An outer join is similar to an inner join, except it retains some of the
unmatched rows that an inner join drops.

■ An outer join requires more processing by the computer than an inner
join. For this reason they are used less than inner joins. They are
often reserved for situations in which they are specifically needed.

■ There are three types of outer joins: left outer join, right outer join,
and full outer join.

■ A left outer join and a right outer join of two tables retain all the
unmatched rows from one table, but do not retain the unmatched
rows from the other table. These are sometimes called one-sided
outer joins.

■ A full outer join of two tables retains all the unmatched rows from
both tables. This is sometimes called a two-sided outer join.

■ When three or more tables are combined with outer joins, the tables
should be joined two at a time in a series of steps. If any of these joins
is a left outer join or a right outer join, the result depends on the spe-
cifics of how the join is done — the specific sequence in which the
tables are joined and types of joins used. Unless you are very careful,
this can lead to inaccurate results.

■ When three or more tables are combined with only inner joins, the
order of the joins is not important.

■ When three or more tables are combined with only full outer joins,
the order of the joins is not important, but this is best avoided
because of the additional expense and processing required.

■ Outer joins are often used with summarization to include zeros in the
result.

■ Outer joins are also used to compare two tables.

Type of Outer Join Effect on First Table Effect on Second Table

Left outer join Keeps all the rows Keeps only the matching rows

Right outer join Keeps only the matching rows Keeps all the rows

Full outer join Keeps all the rows Keeps all the rows

This page intentionally left blank

555

chapter 15

The union was introduced in the last chapter because it was
needed to code a full outer join. In this chapter, we discuss the
union in detail. Union and union all provide two more ways
to combine tables.

Forming a union can be a very powerful technique. Unfortu-
nately, many people do not understand it or use it very well.
Skillful use of unions can replace many more complex features
of SQL, such as outer joins or if-then-else logic.

UNION
AND

UNION ALL

Union Basics . 557

15-1 The difference between a union and a join .557
15-2 The difference between a union and a union all559
15-3 The select statements within a union .561
15-4 The order by clause in a union .563
15-5 Creating a table or view that includes a union .567
15-6 Automatic datatype conversion in a union .570

Unconventional Unions. 573

15-7 A union of tables with different datatypes .574
15-8 A union of two tables with different numbers of columns 576

Applications of a Union . 577

15-9 Determining if two tables are identical .578
15-10 Using a literal in a union to identify the source of the data581
15-11 Attaching messages to flag exceptions, warnings, and errors 583
15-12 Dividing data from one column into two different columns585
15-13 Applying two functions to different parts of the data 587
15-14 A union of three or more tables .588

Set Intersection and Set Difference in Oracle . 590

15-15 Set intersection .590
15-16 Set difference .592

Key Points . 595

557

Union Basics

A union of tables combines the rows of two tables together in a single
table without making any changes to those rows. For all the rows to fit into
one table, the rows of both tables must have the same structure. That is,
they must have the same number of columns and the datatypes of corre-
sponding columns must be the same.

15-1 The difference between a union and a join

A union and a join are similar in that they are both ways of combining
two tables to form another table. However, they do this combining in
very different ways. The geometry is different, as shown in the following
diagram.

The differing geometry of a union and a join.

In a union, the rows of one table must fit into the other table. The number
of columns in the result table is the same as the number in both of the
beginning tables. No new columns are added. The rows of all the tables
have the same sequence of datatypes for their columns.

In a join, the rows of one table may be very different from the rows of the
other table. The result table can contain columns from both the first and
second tables. It can contain all the columns of the first table and all the
columns of the second table.

A

B

A B

Union

Join

CHAPTER 15 UNION AND UNION ALL558

In a union, the maximum number of rows is the sum of the number of rows in
the two tables. In a join, the maximum number of rows is the product of them.

Neither a join nor a union automatically gets a primary key. If you want to
create a primary key for them, you must use an alter table statement. We
did this in section 6-9.

Show an example of the difference between a union and a join. Here, we use
the same tables we used in chapter 14.

select number_1,
 word_1,
 date_1
from sec1501_first
union
select number_2,
 word_2,
 date_2
from sec1501_second
order by number_1;

Beginning tables
sec1501_first table sec1501_second table

Result table — A union

Task

Oracle & Access SQL — For a union

 NUMBER_1 WORD_1 DATE_1
--------- ---------- -----------
 1 ONE 01-DEC-2001
 2 TWO 02-DEC-2002
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005

 NUMBER_2 WORD_2 DATE_2
--------- ---------- -----------
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005
 6 SIX 06-DEC-2006
 7 SEVEN 07-DEC-2007

 NUMBER_1 WORD_1 DATE_1
--------- ---------- -----------
 1 ONE 01-DEC-2001
 2 TWO 02-DEC-2002
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005
 6 SIX 06-DEC-2006
 7 SEVEN 07-DEC-2007

UNION BASICS 559

select a.*,
 b.*
from sec1501_first a,
 sec1501_second b
where a.number_1 = b.number_2
order by a.number_1;

Result table — An inner join

1. Here is some information about the size of two tables:

Table 1: 10 columns 100,000 rows

Table 2: 10 columns 50,000 rows

What is the maximum size of the union of these two tables? What is
the maximum size of the inner join of the tables? By “maximum size”
I mean the maximum number of columns and rows.

2. Write a select statement to form the union of the twos table and
the threes table.

15-2 The difference between a
union and a union all

Union all is another way to combine tables. It is very similar to a union.
The only difference is that duplicate rows are not eliminated and the rows
are not automatically sorted. In a union the rows get sorted as part of the
process of eliminating duplicate rows.

A union all requires fewer computing resources than a union, so use it
when you can, particularly when you are handling large tables. In most sit-
uations you should use a union. The following are situations when you
should use union all:

Oracle & Access SQL — For an inner join

NUMBER_1 WORD_1 DATE_1 NUMBER_2 WORD_2 DATE_2
-------- ------------- ----------- --------- ------------- -----------
 3 THREE 03-DEC-2003 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005 5 FIVE 05-DEC-2005

Check your understanding

CHAPTER 15 UNION AND UNION ALL560

■ You know you have duplicate rows and you want to keep them.

■ You know there cannot be any duplicate rows.

■ You do not care whether there are any duplicate rows.

The rules that apply to a union also apply to union all, so as I discuss the
details of a union, I am usually discussing them both.

In the following example, the union all has two identical rows numbered 3.
As the previous section shows, a union has one of these rows. Except for
duplicate rows, the result tables of the union and the union all are the
same.

Show an example of a union all.

select number_1,
 word_1,
 date_1
from sec1502_first

select number_2,
 word_2,
 date_2
from sec1502_second
order by number_1;

Beginning tables
sec1502_first table sec1502_second table

Task

Oracle & Access SQL — For a union all

 NUMBER_1 WORD_1 DATE_1
--------- ---------- -----------
 1 ONE 01-DEC-2001
 2 TWO 02-DEC-2002
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005

 NUMBER_2 WORD_2 DATE_2
--------- ---------- -----------
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005
 6 SIX 06-DEC-2006
 7 SEVEN 07-DEC-2007

union all

UNION BASICS 561

Result table — Showing a union all

Write a select statement to form a union of the twos table and the threes
table. Use union all. How does this differ from using a regular union?

15-3 The select statements within a union

The select statements within a union can be quite complex. They are
allowed to contain all six clauses, except for the order by clause. They are
allowed to contain row functions, grouped summarization, inner joins, and
outer joins.

If we want to assign a new name to a column — a column alias — then we
must do this in the first select statement within the union.

In the following example, the first select statement contains an inner join
and grouped summarization. It contains all five clauses of the select
statement that it can use: select, from, where, group by, and having.
The select clause lists three columns: The first two are text and the third
is a number. That sets the structure of the rows of the result table. The rows
from the second select statement must have the same structure. The first
select clause also assigns the column alias number_of_lunches.

The second select statement may seem to be entirely different. It is as
simple as it can be. The select clause contains literals and the dual table
is used in the from clause. The order by clause is not part of the second
select statement, it is part of the union. The select clause does have
three columns with the datatypes: text, text, and number. That is as similar
as it needs to be to the first select statement.

 NUMBER_1 WORD_1 DATE_1
--------- ---------- -----------
 1 ONE 01-DEC-2001
 2 TWO 02-DEC-2002

 4 FOUR 04-DEC-2004
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005
 5 FIVE 05-DEC-2005
 6 SIX 06-DEC-2006
 7 SEVEN 07-DEC-2007

Check your understanding

 3 THREE 03-DEC-2003
 3 THREE 03-DEC-2003

CHAPTER 15 UNION AND UNION ALL562

Some people consider this a sneaky way to put more data into the result
table.

From the l_lunches table, count the number of lunches each employee will
attend. Get the last name and first name of each employee from the
l_employees table using an inner join. Do not try to include employees who
are not attending any lunches. Use a union to include a row showing that
you will not attend any of the lunches.

select a.last_name,
 a.first_name,
 count(b.lunch_id) as number_of_lunches
from l_employees a,
 l_lunches b
where a.employee_id = b.employee_id
group by a.first_name,
 a.last_name
having count(b.lunch_id) < 5
union all ➊

select 'PATRICK',
 'JOHN',
 0
from dual
order by last_name;

Beginning tables — The l_lunches table and the l_employees table from the
Lunches database

Result table

Task

Oracle & Access SQL

LAST_NAME FIRST_NAME NUMBER_OF_LUNCHES
---------- ---------- -----------------
BROWN SUSAN 3
CAMPBELL FRED 2
HOFFMAN NANCY 2
KERN JIM 1
OWENS ELLEN 2
PATRICK JOHN 0
PERKINS HENRY 2
SMITH DAN 2
WOODS MARTHA 2

UNION BASICS 563

➊ Here I am using a union all instead of a union because I already know
that there are no duplicate rows.

1. What is wrong with this select statement?

select number_2
from twos
union
select number_3,
 word_3
from threes;

2. Goal 1: Show that a union is similar to an insert statement in that
it can add new data to the result table.

3. Goal 2: Show a union that uses more than two select statements.
The following select statement shows the number of lunches that
each employee will attend, but it does not account for Carol Rose or
Paula Jacobs because they are not attending any lunches. Modify
this statement to show that these two people will not attend any
lunches.

select a.first_name,
 a.last_name,
 count(b.lunch_id) as number_of_lunches
from l_employees a
 inner join l_lunches b
 on a.employee_id = b.employee_id
group by a.first_name,
 a.last_name;

15-4 The order by clause in a union

A union can have only one order by clause and it must be placed at the
end of the statement. It provides the sort order for all the rows of the union
from both select statements.

There are some choices about what kind of items we can sort by. There is
also some confusion here. The order by clause in a union can seem to be
a bit temperamental. In some SQL products you might have to try several
options before you find one that works. In some circumstances we may find
that only some of these options work. Here is a list of possibilities to try:

Notes

Check your understanding

CHAPTER 15 UNION AND UNION ALL564

1. A column name from the first select clause, without a table
reference

2. A column alias from the first select clause, without a table
reference

3. A column name or column alias from the first select clause,
with a table reference

4. A number that is the position of the column within the union

The first three options are preferred because they make the code easier to
read and understand. They are shown in tasks 1, 2, and 3. Task 3 shows that
in Access we can specify which table the column name or column alias
comes from. The last option, shown in task 4, almost always works, even
when the first three options do not.

Show a union that uses a column name in its order by clause.

select number_1,
 word_1,
 date_1
from sec1504_first
union
select *
from sec1504_second
order by ;

Beginning tables
sec1504_first table sec1504_second table

Task for example 1

Oracle & Access SQL: Use a column name in the order by clause

 NUMBER_1 WORD_1 DATE_1
--------- ---------- -----------
 1 ONE 01-DEC-2001
 2 TWO 02-DEC-2002
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005

 NUMBER_2 WORD_2 DATE_2
--------- ---------- -----------
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005
 6 SIX 06-DEC-2006
 7 SEVEN 07-DEC-2007

word_1

UNION BASICS 565

Result table — Sorted on the second column

Show a union that uses a column alias in its order by clause.

select number_1,
 word_1 as ,
 date_1
from sec1504_first
union
select *
from sec1504_second
order by ;

Beginning tables — Same as in task 1

Result table — Same as in task 1

Show that in Access we can use a table alias in an order by clause of a
union.

 NUMBER_1 WORD_1 DATE_1
--------- ---------- -----------
 5 FIVE 05-DEC-2005
 4 FOUR 04-DEC-2004
 1 ONE 01-DEC-2001
 7 SEVEN 07-DEC-2007
 6 SIX 06-DEC-2006
 3 THREE 03-DEC-2003
 2 TWO 02-DEC-2002

Task for example 2

Oracle & Access SQL: Use a column alias in the order by clause

Task for example 3

text_1

text_1

CHAPTER 15 UNION AND UNION ALL566

select a.number_1,
 a.word_1,
 a.date_1
from sec1504_first a
union
select *
from sec1504_second
order by word_1;

Oracle does not support using a table alias in an order by clause of a
union.

Beginning tables — Same as in task 1

Access result table

Show a union that uses a column position number in its order by clause.

select *
from sec1504_first
union
select *
from sec1504_second
order by ; ➊

Beginning tables — Same as in task 1

Result table — Same as in task 1

Access SQL: Include a table reference in the order by clause

Task for example 4

Oracle & Access SQL: Use a column number in the order by clause

a.

2

UNION BASICS 567

➊ This says to sort the rows of the result table on its second column.

Modify the following union. Add an order by clause to it to sort the rows by
the last name. Try all four methods. Which ones work?

select a.first_name,
 a.last_name,
 count(b.lunch_id) as number_of_lunches
from l_employees a
 inner join l_lunches b
 on a.employee_id = b.employee_id
group by a.first_name,
 a.last_name
union all
select 'Carol',
 'Rose',
 0
from dual
union all
select 'Paula',
 'Jacobs',
 0
from dual;

15-5 Creating a table or view that includes a union

A few years ago, in earlier versions of SQL, people were not allowed to cre-
ate a view that contained a union. This restriction no longer applies to
most SQL products, so we do not need to worry about it. If you have inher-
ited some SQL code written years ago, you might find that code had to
work around this restriction.

Although this feature is available now, it does not work perfectly in most
SQL products. It can still give you a few surprises. The following examples
show you how to create a table and a view that includes a union. The notes
discuss the surprises I found.

Notes

Check your understanding

CHAPTER 15 UNION AND UNION ALL568

Create a view in Oracle that is defined using a union. Show that you can also
include an order by clause.

create or replace view sec1505a_view as
select *
from sec1505_first
union
select *
from sec1505_second
order by 2;

Beginning tables — sec1505_first table and sec1505_second table; same as the
sec1504 tables in the preceding listing

Result view (sec1505a_view)

Create a table in Oracle that is defined using a union. Show that you can
also include an order by clause.

create table sec1505b_table as
select *
from sec1505_first
union
select *
from sec1505_second
order by 2;

Result table — Same as in task 1

Task for example 1

Oracle SQL: Create a view using a union with an order by clause

 NUMBER_1 WORD_1 DATE_1
--------- ---------- -----------
 5 FIVE 05-DEC-2005
 4 FOUR 04-DEC-2004
 1 ONE 01-DEC-2001
 7 SEVEN 07-DEC-2007
 6 SIX 06-DEC-2006
 3 THREE 03-DEC-2003
 2 TWO 02-DEC-2002

Task for example 2

Oracle SQL: Create a table using a union with an order by clause

UNION BASICS 569

Create a view in Access that is defined using a union. Show that you can also
include an order by clause.

Step 1: Enter this query in the SQL window:

select *
from sec1505_first
union
select *
from sec1505_second
order by 2;

Step 2: Save the query. Name it sec1505a_view.

Create a table in Access that is defined using a union. Show that you can
also include an order by clause.

You cannot do this directly. The workaround is to create the table from a
saved query.

select *
into sec1505b_table
from sec1505a_view;

➊ In Access, we cannot directly create a table from a union query. The
workaround is to first create a saved query containing the union and
then create a table from the saved query.

Task for example 3

Access SQL: Create a view using a union with an order by clause

Task for example 4

Access SQL: Create a table using a union with an order by clause ➊

Notes

CHAPTER 15 UNION AND UNION ALL570

Goal: Show that a union can add new rows of data to a table. This is similar
to what an insert statement does.

First, create a select statement that lists all the columns and rows of the
l_employees table and uses a union all to add the following new
employee. Then save the result table as a new table called
sec1505_employees.

 Employee_id: 301

 First_Name: Gail

 Last_Name: Jones

 Dept_code: Sal

 Hire_date: Feb 15, 2011

 Credit_limit: $25.00

 Phone_number (null)

 Manager_id 202

15-6 Automatic datatype conversion in a union

The result table of a union contains all the rows from both beginning
tables. Each column of this result table has one specific datatype, like any
column of any other table. Does this mean that we can only form a union
when both beginning tables have columns with exactly the same datatypes
in all their columns? No.

All that is required is that the matching columns are compatible with each
other. They could both be text, or they could both be numbers, or they
could both be dates. Beyond that, any difference in the datatypes will be
handled by automatic datatype conversion.

Text columns
First, consider text columns. Suppose the first column of one beginning
table contains text strings that are 10 characters long. Suppose the first
column of the other beginning table contains text strings that are 20 char-
acters long. I am speaking about the first columns because it is convenient,
but this applies to any matching set of columns from each table.

Under the strictest definition of a union, this small difference in the
datatype of these columns would mean that the data from one cannot be
put into the other column. In our example, the data of a text string that is
20 characters long would not be able to fit into a space that is only 10 char-
acters long, so it might seem that a union cannot be formed.

Check your understanding

UNION BASICS 571

However, all SQL products resolve this difference to make the union possi-
ble. This is done by automatically changing the datatype of one or both col-
umns to make them the same. In our example, the data of the first table, the
10-character-long text strings, are automatically converted into 20-charac-
ter-long text strings. Then all the data have precisely the same datatype, so
all the data can be put into a single column. This permits the union.

When two columns of text strings have different lengths, this difference in
their datatypes is resolved by making the length of all the data equal to the
length of the longest column. This is the shortest possible length to use
without losing any part of the data.

Numeric columns
Next, consider numeric columns. Suppose the first column of one begin-
ning table contains numbers that are two digits long and the first column
of the other beginning table contains numbers that are seven digits long.

Under the strictest definition of a union, we would not be able to create a
union. That is, the seven-digit numbers would not be able to fit into a
space that allowed for only two digits.

However, all SQL products are able to resolve this difference by changing
the datatypes automatically in the process of forming the union.

When two columns of numbers have different lengths, this difference in
their datatypes is usually resolved by giving all the numbers the maximum
length allowed to any number. Different SQL products will differ on the
exact details of what that maximum length is.

Date columns
Last, consider date columns. There is only one datatype for dates, so all
columns of dates have will always have precisely the same datatype.

Compatibility of columns
Because of this automatic datatype conversion, we say that any two col-
umns of text are compatible and any two columns of numbers are compati-
ble. By extension, we also say that any two columns of dates are
compatible. In conclusion, we can always form a union of two tables if they
have the same number of columns and the matching columns from each
table are compatible.

Show an example of automatic datatype conversion taking place in a union.

Task

CHAPTER 15 UNION AND UNION ALL572

create or replace view sec1506_union_view as
select number_column_with_length_7 as number_column,
 text_column_with_length_7 as text_column
from sec1506_with_long_columns
union
select number_column_with_length_2,
 text_column_with_length_2
from sec1506_with_short_columns
order by 1;

Step 1: Enter this query in the SQL window:

select number_column_with_length_7 as number_column,
 text_column_with_length_7 as text_column
from sec1506_with_long_columns
union
select number_column_with_length_2,
 text_column_with_length_2
from sec1506_with_short_columns
order by 1;

Step 2: Use the GUI to save the query. Name it sec1506_union_view.

select *
from sec1506_union_view;

Beginning table: sec1506_with_long_columns

Beginning table: sec1506_with_short_columns

Oracle SQL ➊

Access SQL ➊

Oracle & Access SQL

NUMBER_COLUMN_WITH_LENGTH_7 TEXT_COLUMN_WITH_LENGTH_7
--------------------------- -------------------------
 1111111 AAAAAAA
 2222222 BBBBBBB
 3333333 CCCCCCC
 4444444 DDDDDDD
 5555555 EEEEEEE

NUMBER_COLUMN_WITH_LENGTH_2 TEXT_COLUMN_WITH_LENGTH_2
--------------------------- -------------------------
 33 CC
 44 DD
 55 EE
 66 FF
 77 GG

UNCONVENTIONAL UNIONS 573

Result table

➊ The reason the Oracle SQL differs from the Access SQL here has nothing
to do with the automatic datatype conversion that takes place in a
union. Instead, Oracle and Access have different ways of saving the
result in a new view.

Run the code from this section. Use the methods of section 7-12 to examine
the datatypes of the columns of the beginning tables and of the new view
created by the union. Have any of the datatypes changed in the process of
forming the union?

Unconventional Unions

It is common knowledge that we can only create a union of two tables if
they have the same number of columns and the datatypes of the matching
columns are compatible. That common knowledge is wrong!

These rules are only true on the most detailed level, which is the most triv-
ial level. They are false on the broader level, which is the level of handling
information, In the next two sections, I break both these rules and create
unions of tables that have different numbers of columns and where the col-
umns do not seem to match.

I end up with the opinion that I can perform a union of any two tables. The
one limitation is that the columns of the result table must have some con-
sistent meaning. I impose that rule myself because I want the result to
make sense on one level or another.

NUMBER_COLUMN TEXT_COLUMN
------------- -----------
 33 CC
 44 DD
 55 EE
 66 FF
 77 GG
 1111111 AAAAAAA
 2222222 BBBBBBB
 3333333 CCCCCCC
 4444444 DDDDDDD
 5555555 EEEEEEE

Notes

Check your understanding

CHAPTER 15 UNION AND UNION ALL574

15-7 A union of tables with different datatypes

This section shows a union that matches a numeric column with a text col-
umn. Some people think this cannot be done.

The reason it can be done is that all types of data can be converted to text.
After all the columns have been converted to text, they all have the same
datatype, so they all fit together in a union. In this example, I use a row
function to explicitly convert the datatype of each column to text, rather
than relying on automatic datatype conversion. However, in many SQL
products this conversion is done automatically for you.

In the following example, numeric data are changed into text data so that
they can be combined in the union with other text data. In Oracle, the
to_char row function changes numeric data and date/time data to text
data. In Access you can use the format row function.

Show how to use datatype conversion functions in a union to make every
column into a text column.

create or replace view sec1507_union_view as
select as first_column,
 text_column_with_length_7 as second_column
from sec1507_with_long_columns
union
select text_column_with_length_2,

from sec1507_with_short_columns
order by 1;

Step 1: Enter this query in the SQL window:

select as first_column,
 text_column_with_length_7 as second_column
from sec1507_with_long_columns
union
select text_column_with_length_2,

from sec1507_with_short_columns
order by 1;

Step 2: Use the GUI to save the query. Name it sec1507_union_view.

Task

Oracle SQL

Access SQL

to_char(number_column_with_length_7

to_char(number_column_with_length_2

format(number_column_with_length_7)

format(number_column_with_length_2)

UNCONVENTIONAL UNIONS 575

select *
from sec1507_union_view;

Beginning table: sec1507_with_long_columns

Beginning table: sec1507_with_short_columns

Created view (sec1507_union_view)

Modify the following select statement. Convert the datatypes of all the col-
umns to text. (Actually, sometimes this code will work as it is and the conver-
sion of the datatypes is done automatically for you behind the scenes.)

select date_1,
 date_1,
 date_1

Oracle & Access SQL

NUMBER_COLUMN_WITH_LENGTH_7 TEXT_COLUMN_WITH_LENGTH_7
--------------------------- -------------------------
 1111111 AAAAAAA
 2222222 BBBBBBB
 3333333 CCCCCCC
 4444444 DDDDDDD
 5555555 EEEEEEE

NUMBER_COLUMN_WITH_LENGTH_7 TEXT_COLUMN_WITH_LENGTH_7
--------------------------- -------------------------
 33 CC
 44 DD
 55 EE
 66 FF
 77 GG

FIRST_COLUMN SECOND_COLUMN
-- -------------------------
1111111 AAAAAAA
2222222 BBBBBBB
3333333 CCCCCCC
4444444 DDDDDDD
5555555 EEEEEEE
CC 33
DD 44
EE 55
FF 66
GG 77

Check your understanding

CHAPTER 15 UNION AND UNION ALL576

from sec1507_first
union
select number_2,
 word_2,
 date_2
from sec1507_second;

15-8 A union of two tables with
different numbers of columns

This section shows a union of two tables that have different numbers of
columns. Some people think this cannot be done. It can be done because
we can add extra columns to one table to give both tables the same num-
ber of columns.

In the following example, I do a union of a table that has two columns with
a table that has three columns. To do this I add a column of nulls to the
first table. Both tables have three columns when the union is performed.

Show how to form a union of two tables that have different numbers of
columns.

select a.number_col,
 a.text_col,
 a.date_col
from sec1508_more_columns a
union
select b.number_col,
 b.text_col,
 ➊

from sec1508_less_columns b;

Beginning tables
sec1508_more_columns sec1508_less_columns

Task

Oracle & Access SQL

NUMBER_COL TEXT_COL DATE_COL
---------- -------- -----------
 1111111 AAAAAAA 01-DEC-2015
 2222222 BBBBBBB 02-DEC-2015
 3333333 CCCCCCC 03-DEC-2015
 4444444 DDDDDDD 04-DEC-2015
 5555555 EEEEEEE 05-DEC-2015

NUMBER_COL TEXT_COL
---------- --------
 3333333 CCCCCCC
 4444444 DDDDDDD
 5555555 EEEEEEE
 6666666 FFFFFFF
 7777777 GGGGGGG

null

APPLICATIONS OF A UNION 577

Result table

➊ This is where the extra column is added. It is also possible to use a lit-
eral to create a new column. For example, you could use the literal
'This value is unknown' to replace the null in the SQL statement.

Modify the following select statement to make it work. Add one more col-
umns to the second select statement. You can use either a null or a literal
value.

select number_1,
 word_1,
 date_1
from sec1508_more_columns
union
select number_2,
 word_2
from twos;

Applications of a Union

A union has some very useful applications. It gives us a lot of power that
we have not had until now. Two analogies come to mind when I think of the
applications of a union. The first is the saying from ancient Rome, “Divide
and conquer.” We are able to divide the rows of a table into separate
groups, apply a different type of processing to each group, and then use a
union to put all the rows back into one table.

NUMBER_COL TEXT_COL DATE_COL
---------- -------- -----------
 1111111 AAAAAAA 01-DEC-2015
 2222222 BBBBBBB 02-DEC-2015
 3333333 CCCCCCC 03-DEC-2015
 3333333 CCCCCCC (null)
 4444444 DDDDDDD 04-DEC-2015
 4444444 DDDDDDD (null)
 5555555 EEEEEEE 05-DEC-2015
 5555555 EEEEEEE (null)
 6666666 FFFFFFF (null)
 7777777 GGGGGGG (null)

Notes

Check your understanding

CHAPTER 15 UNION AND UNION ALL578

The other analogy is “management by exception.” This contrasts with “man-
agement by handling all the details,” which can overwhelm us with the vol-
ume of details. We are able to isolate the exceptional cases and flag them
so we can see and handle the special circumstances they present. Using a
union, we can merge these exceptional cases with the majority of the data
to again create a unified view of all the data.

15-9 Determining if two tables are identical

When two tables have the same number of columns and rows, they might
appear to be identical, but perhaps one of the cells has a different value in
one table than in the other. How can we be certain about this?

One way is to form the union of the two tables. This method works if the
tables have primary keys or if you know that they do not have any duplicate
rows, which is the case for most tables.

If the two tables are identical, the union will have the same number of
rows as the beginning tables. All the rows of the second table will be elimi-
nated as duplicates. If they are not identical, the union will have more
rows.

If there is a difference between the tables, this technique does not help us
find out what it is. We have other ways of finding that information. This
technique only determines whether there is a difference.

Test whether two tables are identical. We already know that these tables have
the same number of columns and that the datatypes of those columns are
compatible.

select count(*) from l_foods;
select count(*) from sec1509_foods;

Task

Oracle & Access SQL:
Step 1 — Determine if the tables have the same number of rows

APPLICATIONS OF A UNION 579

Beginning table 1 (l_foods table)

Beginning table 2 (sec1509_foods table)

The result table is the same for both select statements in step 1.
This shows that both tables have the same number of rows.

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

 COUNT(*)

 10

CHAPTER 15 UNION AND UNION ALL580

create or replace view sec1509_union_view as
select * from l_foods
union
select * from sec1509_foods;

Step 2, Part 1: Enter this query in the SQL window:

select * from l_foods
union
select * from sec1509_foods;

Step 2, Part 2: Save this query. Name it sec1509_union_view.

select count(*)
from sec1509_union_view;

Result table

The tables are identical.

One of the two tables, sec1509a_lunches or sec1509b_lunches, is iden-
tical to the l_lunches table. The other table is different. Determine which
table is the same and which one is different.

Oracle SQL:
Step 2 — Create a view that is the union of both tables

Access SQL:
Step 2 — Create a view that is the union of both tables

Oracle & Access SQL:
Step 3 — Count the number of rows in the view

COUNT(*)

 10

Conclusion

Check your understanding

APPLICATIONS OF A UNION 581

15-10 Using a literal in a union to
identify the source of the data

In this section we add a new column to each of the beginning tables using
a literal. That column identifies the table that the data come from. After
we perform the union, the source of each row of data is identified.

If both tables contain an identical row, the duplicate is not eliminated.
Rather, it is shown to come from both tables. This might be what we want
to happen.

The new column ensures that no row from the first table can be identical to
a row from the second table, so we should use a union all instead of a
union.

Show a select statement that uses a union with literals to identify the
source of each row.

select number_1, ➊

 word_1,
 date_1,
 'from the first table' as source_of_the_data ➋

from sec1510_first
union all
select number_2, ➌

 word_2,
 date_2,
 'from the second table' ➍

from sec1510_second
order by number_1;

Task

Oracle & Access SQL

CHAPTER 15 UNION AND UNION ALL582

Beginning tables
sec1510_first table sec1510_second table

Result table

➊ The first select statement lists the rows from the first table. It attaches
a literal to each of these rows.

➋ The literal is text placed within quotation marks. A column alias gives
this column a name. Every row of the first table has the same value in
this new column.

➌ The second select statement lists the rows from the second table. It
attaches a different literal to each of these rows.

➍ This is the text that is added to each row of the second table.

 NUMBER_1 WORD_1 DATE_1
--------- ---------- -----------
 1 ONE 01-DEC-2001
 2 TWO 02-DEC-2002
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005

 NUMBER_2 WORD_2 DATE_2
--------- ---------- -----------
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005
 6 SIX 06-DEC-2006
 7 SEVEN 07-DEC-2007

 NUMBER_1 WORD_1 DATE_1 SOURCE_OF_THE_DATA
--------- ---------- ----------- ---------------------
 1 ONE 01-DEC-2001 FROM THE FIRST TABLE
 2 TWO 02-DEC-2002 FROM THE FIRST TABLE
 3 THREE 03-DEC-2003 FROM THE FIRST TABLE
 3 THREE 03-DEC-2003 FROM THE SECOND TABLE
 4 FOUR 04-DEC-2004 FROM THE FIRST TABLE
 4 FOUR 04-DEC-2004 FROM THE SECOND TABLE
 5 FIVE 05-DEC-2005 FROM THE FIRST TABLE
 5 FIVE 05-DEC-2005 FROM THE SECOND TABLE
 6 SIX 06-DEC-2006 FROM THE SECOND TABLE
 7 SEVEN 07-DEC-2007 FROM THE SECOND TABLE

Notes

APPLICATIONS OF A UNION 583

The following select statement creates a union of the twos table with the
threes table. Add a new column to show the table from which each row
comes.

select number_2,
 word_2
from twos
union
select number_3,
 word_3
from threes;

15-11 Attaching messages to flag
exceptions, warnings, and errors

This section shows you how to attach messages to rows of data. The rows
of a table are divided into two groups: a small group that will be flagged
with a message and a much larger group that will receive no message.

This technique is useful for finding exceptional conditions in the data and
for attaching warning messages and error messages.

The where clauses in the two select statements divide the rows of data
into two groups. One group receives a message and the other group gets a
blank space instead of a message. Then the union puts all these rows back
into a single table.

When we divide the rows into two separate groups, it is important to
remember that SQL uses three-valued logic. It is not enough to use a con-
dition, A, in one where clause and its opposite, NOT A, in the other. We
must always consider the possibility that there are nulls in the data and
handle that case.

List the foods and their prices. Add the message “expensive item” to the
foods that cost more than $2.00. List the foods in alphabetical order.

Check your understanding

Task

CHAPTER 15 UNION AND UNION ALL584

select description,
 price,
 'EXPENSIVE ITEM' as message
from l_foods
where price > 2.00
union all
select description,
 price,
 ' '
from l_foods
where not (price > 2.00)
 or price is null
order by description;

Beginning table (l_foods table)

Result table

Oracle & Access SQL

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

DESCRIPTION PRICE MESSAGE
-------------------- -------- --------------
BROCCOLI $1.00
COFFEE $0.85
DESSERT $3.00 EXPENSIVE ITEM
FRENCH FRIES $1.50
FRESH SALAD $2.00
GRILLED STEAK $6.00 EXPENSIVE ITEM
HAMBURGER $2.50 EXPENSIVE ITEM
SANDWICH $3.50 EXPENSIVE ITEM
SODA $1.25
SOUP OF THE DAY $1.50

APPLICATIONS OF A UNION 585

List all the rows and columns of the l_employees table. Add a new column
that says "Old Timer" for any employee that was hired before the year 2000
and is blank for all other employees. Sort this by the employee_id column.

15-12 Dividing data from one column
into two different columns

This section shows you how to divide one column of data into two or more
columns. This technique can be useful in making some types of data stand
out or in sorting the data into several categories.

This technique is similar to the ones we have used before. The where
clauses of the select statements divide the rows of the beginning table
into separate groups. Then the data are listed in the desired column and a
blank is placed in the other columns. A union puts all these pieces back
together.

Divide the cost column from the beginning table into two columns: debits
and credits.

select item,
 as debits,
 cost as credits
from sec1512_finances
where cost > 0
union all
select item,
 cost,

from sec1512_finances
where cost < 0
 or cost is null
order by item;

Check your understanding

Task

Oracle & Access SQL

null

null

CHAPTER 15 UNION AND UNION ALL586

Beginning table (sec1512_finances table)

Result table

List the last name, first name, and hire date of all the people in the
l_employees table. Divide the hire date column into two columns: one
called “old timers” for people hired before the year 2000, and one called
“newer hires” for people hired after that year. Sort the result table by last
name and then by first name.

ITEM COST
------------------------- -----------
SAMSONITE SUITCASE -$248.13
RENT FOR APRIL $700.00
OPERA TICKET -$145.00
LUNCH -$15.62
DEBT REPAID BY JIM $20.00
CAR REPAIR -$622.98
HAIRCUT -$22.00
BIRTHDAY GIFT FROM MOM $200.00

ITEM DEBITS CREDITS
------------------------- -------- --------
BIRTHDAY GIFT FROM MOM $200.00
CAR REPAIR -$622.98
DEBT REPAID BY JIM $20.00
HAIRCUT -$22.00
LUNCH -$15.62
OPERA TICKET -$145.00
RENT FOR APRIL $700.00
SAMSONITE SUITCASE -$248.13

Check your understanding

APPLICATIONS OF A UNION 587

15-13 Applying two functions to
different parts of the data

This section shows you how to apply several different calculations to the
data in different rows. First, we use the where clauses in the select state-
ments to divide the rows into groups. We make a separate group for each
calculation and perform the calculations on all the rows within each group.
Then we use a union to combine all the groups again.

Show how to make two different calculations, depending on the data in a
row. Increase the price of all foods costing more than $2.00 by 5 percent.
Increase the price of all other foods by 10 percent. Ignore the existing
price_increase column.

select menu_item,
 description,
 price + (price * .05) as new_price
from l_foods
where price > 2.00
 or price is null
union all
select menu_item,
 description,
 price + (price * .10)
from l_foods
where price <= 2.00
order by menu_item;

Task

Oracle & Access SQL

CHAPTER 15 UNION AND UNION ALL588

Beginning table (l_foods table)

Result table

The numbers_0_to_9 table contains the numbers from zero to nine. Multi-
ply all the even numbers by two and multiply all the other numbers by three.

15-14 A union of three or more tables

You can code a union of as many tables as you wish, as many as 10 or
more. The union operation works the same way. If you want to use column
aliases, you must assign them in the first select statement. The code may
be long, but it is not complex.

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- -------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

 MENU NEW
 ITEM DESCRIPTION PRICE
------- -------------------- ------
 1 FRESH SALAD $2.20
 2 SOUP OF THE DAY $1.65
 3 SANDWICH $3.68
 4 GRILLED STEAK $6.30
 5 HAMBURGER $2.63
 6 BROCCOLI $1.10
 7 FRENCH FRIES $1.65
 8 SODA $1.38
 9 COFFEE $0.94
 10 DESSERT $3.15

Check your understanding

APPLICATIONS OF A UNION 589

List the letters from 'A' to 'G'. Do this as a union of seven tables.

select 'A' as letters
from dual
union
select 'B'
from dual
union
select 'C'
from dual
union
select 'D'
from dual
union
select 'E'
from dual
order by 1;

Beginning table

Result table

Task

Oracle & Access SQL

DUMMY

X

LETTERS

A
B
C
D
E

CHAPTER 15 UNION AND UNION ALL590

Set Intersection and Set Difference in Oracle

Oracle has created extensions to standard SQL that provide direct support
for finding the intersection and difference between two tables. These opera-
tions can be done in any brand of SQL, but the Oracle extensions make
them easier. These methods provide a good way to compare two tables to
determine which rows are identical and which rows are different.

15-15 Set intersection

The intersection of two tables consists of all the rows that are identical in
both tables. In Oracle, we can find the intersection of two tables with the
intersect operation. This works much like a union in that the word goes
between two select statements. These select statements define the
tables that we are intersecting.

You can perform the same operation in other brands of SQL by writing an
inner join of the tables, listing all the rows that are identical in both tables.
This method is shown in the Access code.

Find the intersection of two tables. That is, find all the rows that occur in
both tables.

select number_1,
 word_1,
 date_1
from sec1515_first

select number_2,
 word_2,
 date_2
from sec1515_second
order by number_1;

Access does not support this method.

Task

Oracle SQL ➊

intersect

SET INTERSECTION AND SET DIFFERENCE IN ORACLE 591

select a.number_1,
 a.word_1,
 a.date_1
from sec1515_first a,
 sec1515_second b
where a.number_1 = b.number_2
 and a.word_1 = b.word_2
 and a.date_1 = b.date_2
order by a.number_1;

Beginning tables
sec1515_first table sec1515_second table

Result table

➊ This method works even when there are nulls in several of the columns.

➋ This method works only when there are no nulls in any of the columns.
To compare tables that contain nulls, one method is to temporarily
change all the nulls to some other value, doing a rollback at the end to
return them to nulls. Another method is to change the join condition on
each column to include the possibility of nulls. Using this method,
instead of writing

a.column1 = b.column1

I would write

(a.column1 = b.column1
or (a.column1 is null and b.column1 is null))

Access SQL ➋

 NUMBER_1 WORD_1 DATE_1
--------- ---------- -----------
 1 ONE 01-DEC-2001
 2 TWO 02-DEC-2002
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005

 NUMBER_2 WORD_2 DATE_2
--------- ---------- -----------
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005
 6 SIX 06-DEC-2006
 7 SEVEN 07-DEC-2007

 NUMBER_1 WORD_1 DATE_1
--------- ---------- -----------
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005

Notes

CHAPTER 15 UNION AND UNION ALL592

Use the method of this section to find the intersection of the twos table and
the threes table.

15-16 Set difference

Oracle supports the minus operation to find all the rows in one table that
are not present in another table. The word minus is placed between two
select statements, similar to the way the word union is placed.

This is a very nice feature that Oracle has created. It is not part of standard
SQL. Rather, it is an extension to standard SQL that Oracle has added. Few,
if any, other types of SQL have a feature like this.

Clearly, this operation is one-sided; that is, it makes a difference which
table is the first table and which one is second. To find all the differences
between two tables, A and B, we must look at both:

■ A minus B

■ B minus A

Another way to produce this result uses an outer join. The Access code
shows this technique.

Find all the rows that are in one table and not in the other table. Do this both
ways to find all the differences between the two tables.

select number_1,
 word_1,
 date_1
from sec1516_first

select number_2,
 word_2,
 date_2
from sec1516_second
order by number_1;

Access does not support the minus operation.

Check your understanding

Task

Oracle SQL: Step 1 ➊

minus

SET INTERSECTION AND SET DIFFERENCE IN ORACLE 593

select a.number_1,
 a.word_1,
 a.date_1
from sec1516_first a
 left outer join sec1516_second b
 on a.number_1 = b.number_2
 and a.word_1 = b.word_2
 and a.date_1 = b.date_2
where b.number_2 is null
order by a.number_1;

Beginning tables
sec1516_first table sec1516_second table

Result table — Step 1

select number_2,
 word_2,
 date_2
from sec1516_second

select number_1,
 word_1,
 date_1
from sec1516_first
order by number_2;

Access does not support the minus operation.

Access SQL: Step 1 ➋

 NUMBER_1 WORD_1 DATE_1
--------- ---------- -----------
 1 ONE 01-DEC-2001
 2 TWO 02-DEC-2002
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005

 NUMBER_2 WORD_2 DATE_2
--------- ---------- -----------
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005
 6 SIX 06-DEC-2006
 7 SEVEN 07-DEC-2007

 NUMBER_1 WORD_1 DATE_1
--------- ---------- -----------
 1 ONE 01-DEC-2001
 2 TWO 02-DEC-2002

Oracle SQL: Step 2 ➊

minus

CHAPTER 15 UNION AND UNION ALL594

select b.number_2,
 b.word_2,
 b.date_2
from sec1516_first a
 right outer join sec1516_second b
 on a.number_1 = b.number_2
 and a.word_1 = b.word_2
 and a.date_1 = b.date_2
where a.number_1 is null
order by b.number_2;

Result table — Step 2

➊ This method works even when there are nulls in several of the columns.

➋ This method works only when there are no nulls in any of the columns.
To compare tables that contain nulls, one method is to temporarily
change all the nulls to some other value, doing a rollback at the end to
return them to nulls. Another method is to change the join condition on
each column to include the possibility of nulls. Using this method,
instead of writing

a.column1 = b.column1

we would write

(a.column1 = b.column1
or (a.column1 is null and b.column1 is null))

Use the method of this section to find the difference of the twos table and
the threes table.

Access SQL: Step 2 ➋

 NUMBER_2 WORD_2 DATE_2
--------- ---------- -----------
 6 SIX 06-DEC-2006
 7 SEVEN 07-DEC-2007

Notes

Check your understanding

KEY POINTS 595

Key Points

■ A union is different from a join. In a join, the data tables are com-
bined before the selection or summarization takes place. In a union,
the selection or summarization is done before the result tables are
combined.

■ In a union, the rows of two or more result tables are merged into a
single result table and then duplicate rows are eliminated. To make
this possible, the result tables from the select statements must be
created with the same number of columns. Also, for every N, the Nth
columns of all the result tables must have compatible datatypes.

■ A union all is similar to a union, except the duplicate rows are not
eliminated. They are left in the final result table.

■ There can only be one order by clause in a union or union all. It
must be placed at the end of the statement.

■ Union and union all have many applications. They can be used to
compare tables and add missing data to reports. They can replace
outer joins and if-then-else logic.

■ Unfortunately, many of the graphical (GUI) tools that generate SQL do
not support the union. This is one of their major failings.

■ Oracle has added two special operations, extensions to SQL, that are
similar to a union: intersect and minus.

This page intentionally left blank

597

chapter 16

This chapter finishes the discussion of techniques used to join
two tables. You will not use these techniques very often, but
knowing them will add depth to your understanding of all joins.
They will also enable you to get results that would be almost
impossible to obtain otherwise.

A cross join is used to define an inner join. It is also important in
detecting errors in your code. Cross joins of small tables are
acceptable and useful at times, but cross joins of large tables
should be avoided.

A self join involves joining a table with itself. This is necessary
when you need information from several rows of the same table
at the same time.

CROSS JOINS,
SELF JOINS,

AND CROSSTAB
QUERIES

Cross Joins. 599

16-1 Definition of a cross join .599
16-2 Why are cross joins important? .601
16-3 An inner join is derived from a cross join .601
16-4 The properties of an inner join .604
16-5 An error in the join condition can appear to be a cross join605
16-6 Using a cross join to list all the possible combinations 608
16-7 Other layouts when there are three or more dimensions 611
16-8 Avoid a cross join of large tables .612

Self Joins. 613

16-9 Why would you ever join a table with itself? .613
16-10 An example of a self join. .616
16-11 Handling a sequence of events .618
16-12 Generating the numbers from 0 to 999 .621

CrossTab Queries in Access . 624

16-13 CrossTab queries when there are two dimensions624
16-14 CrossTab queries with up to four dimensions .631
16-15 CrossTab queries with more dimensions .633
16-16 CrossTab to show who is attending each lunch .638
16-17 CrossTab to show the foods for each lunch .641

CrossTab Queries in Oracle . 645

16-18 CrossTab queries in Oracle — Part 1 .645
16-19 CrossTab queries in Oracle — Part 2 .647

Key Points . 651

599

Cross Joins

A cross join is another way to combine two tables. It should only be used
with small tables.

Cross joins are important to understand because they provide the founda-
tion for both inner and outer joins. The properties of inner joins are derived
from the properties of cross products.

16-1 Definition of a cross join

This section shows an example of a cross join, which is also called a cross
product and a Cartesian product. A cross join matches each row of the first
table with each row of the second table. This results in all possible combi-
nations of the rows. A cross join often generates a lot of data, so it should
be used infrequently and with great care.

The number of columns and rows in a cross join are as follows:

Columns in cross join = Sum of the number of columns in the beginning tables. (Add)

Rows in cross join = Product of the number of rows in the beginning tables. (Multiply)

In the following example, the cross join is written by putting both of the
beginning tables in the from clause. This may look similar to an inner join.
The difference is that there is no join condition at all.

When there is no join condition, SQL forms the cross product of the begin-
ning tables.

The first table has four rows and the second table has five, so the result
table has 20 rows. The first table has two columns and the second table
has three, so the result table has five columns.

Show an example of a cross join.

select a.*,
 b.*
from sec1601_columns_1_to_2 a,
 sec1601_columns_3_to_5 b;

Task

Oracle & Access SQL ➊

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES600

Beginning tables
sec1601_columns_1_to_2 table sec1601_columns_3_to_5 table

Result table

➊ There is no where clause to create a join condition between the two
beginning tables. This is how a cross join is coded.

NUM_COL_1 TEXT_COL_2
--------- ----------
 1 A
 2 B
 3 C
 4 D

NUM_COL_3 TEXT_COL_4 DATE_COL_5
--------- ---------- -----------
 25 VV 05-AUG-2025
 26 WW 06-SEP-2026
 27 XX 07-OCT-2027
 28 YY 08-NOV-2028
 29 ZZ 09-DEC-2029

NUM_COL_1 TEXT_COL_2 NUM_COL_3 TEXT_COL_4 DATE_COL_5
--------- ---------- --------- ---------- -----------
 1 A 25 VV 05-AUG-2025
 2 B 25 VV 05-AUG-2025
 3 C 25 VV 05-AUG-2025
 4 D 25 VV 05-AUG-2025
 1 A 26 WW 06-SEP-2026
 2 B 26 WW 06-SEP-2026
 3 C 26 WW 06-SEP-2026
 4 D 26 WW 06-SEP-2026
 1 A 27 XX 07-OCT-2027
 2 B 27 XX 07-OCT-2027
 3 C 27 XX 07-OCT-2027
 4 D 27 XX 07-OCT-2027
 1 A 28 YY 08-NOV-2028
 2 B 28 YY 08-NOV-2028
 3 C 28 YY 08-NOV-2028
 4 D 28 YY 08-NOV-2028
 1 A 29 ZZ 09-DEC-2029
 2 B 29 ZZ 09-DEC-2029
 3 C 29 ZZ 09-DEC-2029
 4 D 29 ZZ 09-DEC-2029

Notes

CROSS JOINS 601

By hand, without a computer, write the cross join of the following two tables:

16-2 Why are cross joins important?

A cross join is such a simple concept that people sometimes ask, “What is
its purpose? What is it good for?”

As the following sections show, cross joins are important for several reasons:

1. The definition of an inner join is based on a cross join.

2. Sometimes errors show up as cross joins.

3. A cross join of small tables can be used to show all combinations.

4. We need to avoid cross joins of large tables.

16-3 An inner join is derived from a cross join

A inner join is defined from a cross join. Here is the exact definition of the
process that creates an inner join of two tables:

1. Create the cross join of the beginning tables.

2. Evaluate the join condition for each row of the cross join. The join
condition is a statement. (Some people prefer to call it an expression
or a logical expression.) For every row of the cross join, that state-
ment will be either True, False, or Unknown.

3. Keep only the rows that evaluate to True. Drop all the rows that eval-
uate to False or Unknown.

4. Remove the evaluation column.

Show each step of the process to create an inner join of the fruits and
colors tables. Use the join condition f_num = c_num.

Check your understanding

Table 1 Table 2
U 10
V 20
W 30
X 40
Y 50
Z

Task

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES602

select a.*,
 b.*
from sec1603_fruits a,
 sec1603_colors b
where a.f_num = b.c_num;

Beginning tables
sec1603_fruits table sec1603_colors table

5 rows 5 rows

Step 1 — Form the cross join of the two tables

25 rows

Oracle & Access SQL

FRUIT F_NUM
---------- ---------
APPLE 1
BANANA 2
STRAWBERRY 1
GRAPE 4
KIWI (null)

 C_NUM COLOR
--------- ---------
 1 RED
 2 YELLOW
 1 GREEN
 5 WHITE
(null) BROWN

FRUIT F_NUM C_NUM COLOR
---------- --------- --------- ----------
APPLE 1 1 RED
APPLE 1 1 GREEN
APPLE 1 2 YELLOW
APPLE 1 5 WHITE
APPLE 1 (null) BROWN
BANANA 2 1 RED
BANANA 2 1 GREEN
BANANA 2 2 YELLOW
BANANA 2 5 WHITE
BANANA 2 (null) BROWN
GRAPE 4 1 RED
GRAPE 4 1 GREEN
GRAPE 4 2 YELLOW
GRAPE 4 5 WHITE
GRAPE 4 (null) BROWN
KIWI (null) 1 RED
KIWI (null) 1 GREEN
KIWI (null) 2 YELLOW
KIWI (null) 5 WHITE
KIWI (null) (null) BROWN
STRAWBERRY 1 1 RED
STRAWBERRY 1 1 GREEN
STRAWBERRY 1 2 YELLOW
STRAWBERRY 1 5 WHITE
STRAWBERRY 1 (null) BROWN

CROSS JOINS 603

Step 2 — Evaluate the join condition in each row of the cross join
Assign an evaluation to each row: True, False, or Unknown.
Here, the join condition is f_num = c_num.

Step 3 — Keep only the rows that evaluate as True

FRUIT F_NUM C_NUM COLOR EVALUATION
---------- --------- --------- ---------- ----------
APPLE 1 1 GREEN TRUE
APPLE 1 1 RED TRUE
APPLE 1 2 YELLOW FALSE
APPLE 1 5 WHITE FALSE
APPLE 1 (null) BROWN UNKNOWN
BANANA 2 1 GREEN FALSE
BANANA 2 1 RED FALSE
BANANA 2 2 YELLOW TRUE
BANANA 2 5 WHITE FALSE
BANANA 2 (null) BROWN UNKNOWN
GRAPE 4 1 GREEN FALSE
GRAPE 4 1 RED FALSE
GRAPE 4 2 YELLOW FALSE
GRAPE 4 5 WHITE FALSE
GRAPE 4 (null) BROWN UNKNOWN
KIWI (null) 1 GREEN UNKNOWN
KIWI (null) 1 RED UNKNOWN
KIWI (null) 2 YELLOW UNKNOWN
KIWI (null) 5 WHITE UNKNOWN
KIWI (null) (null) BROWN UNKNOWN
STRAWBERRY 1 1 GREEN TRUE
STRAWBERRY 1 1 RED TRUE
STRAWBERRY 1 2 YELLOW FALSE
STRAWBERRY 1 5 WHITE FALSE
STRAWBERRY 1 (null) BROWN UNKNOWN

FRUIT F_NUM C_NUM COLOR EVALUATION
---------- --------- --------- ---------- ----------
APPLE 1 1 RED TRUE
APPLE 1 1 GREEN TRUE
BANANA 2 2 YELLOW TRUE
STRAWBERRY 1 1 RED TRUE
STRAWBERRY 1 1 GREEN TRUE

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES604

Step 4 — Remove the evaluation; this is the inner join

By hand, without a computer, write the cross join of the following two tables:

16-4 The properties of an inner join

This section shows you how the properties of an inner join, which we dis-
cussed in chapter 13, are derived from the definition of an inner join given
in the previous section.

■ An inner join contains all valid combinations of rows. Each row of
one table can match with many rows of the other table.

This occurs because the first step of forming an inner join is to form a cross
join. The cross join creates all possible combinations of the rows. Every
possible combination that passes the validity test of the succeeding steps
becomes part of the inner join.

■ Rows are dropped from the join if there is no matching row in the
other table.

In step 2 of the definition in the previous section, for each row of the cross
join, the statement of the join condition was evaluated. If there is no
matching row in the other table, this evaluation is never True. It is always
False or Unknown.

FRUIT F_NUM C_NUM COLOR
---------- --------- --------- ----------
APPLE 1 1 RED
APPLE 1 1 GREEN
BANANA 2 2 YELLOW
STRAWBERRY 1 1 RED
STRAWBERRY 1 1 GREEN

Check your understanding

Table 1 Table 2
2 (null)
4 3
6 6
8 9
10 12
12

CROSS JOINS 605

In step 3 we only keep the rows of the cross join that evaluate to True. This
drops all the rows from one of the beginning tables that do not have a
match in the other beginning table.

■ Rows are dropped from the join if any matching column(s) con-
tains a null.

In step 2, the join condition statement always evaluates to Unknown if any
of the matching columns contains a null because a null is always handled
as an unknown value when we evaluate row functions.

In step 3, all of these rows of the cross join are dropped.

■ Inner joins are symmetric. The order in which the tables are
joined does not matter. Expressed mathematically:

A × B = B × A
and (A × B) × C = A × (B × C)

The symmetry of inner joins occurs because each of the steps in the defini-
tion is symmetric.

In step 1, the cross join is symmetric. That is, “A cross join B” is equal to “B
cross join A.” This is because a cross join creates all possible combinations
of the rows. It does not consider the order of the tables.

Step 2 evaluates the join condition statement. It does not know or care
which table came first.

Step 3 drops all the rows of the cross join that do not evaluate to True. This
has no reference to the order of the tables.

Step 4 drops the evaluation column. The order of the tables plays no role
here.

16-5 An error in the join condition
can appear to be a cross join

One frequent type of error that occurs in SQL is omission of one of the join
conditions within the where clause. The result often resembles a cross
product. You may see the data you expected, but then see it repeated many
times. For example, if you were expecting to have 100 rows in the result,
you might find that you have 2,000, with each of the rows you wanted
repeated 20 times.

If you see this, do not panic. Just examine your where clause carefully to be
sure it contains all the conditions it needs. Sometimes you might not be

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES606

sure if a condition is needed or not. It may seem redundant and unneces-
sary. Putting extra conditions in the where clause may cause more process-
ing to occur, but at least the results are accurate. Putting too few
conditions in the where clause can produce the wrong results. When in
doubt, add extra conditions to the where clause.

As you write SQL, you should pay attention to the size of your tables and
know approximately how much data to expect. If your results do not meet
your expectations, you can search for possible coding errors.

In the following example, there is a mistake in the first version of the SQL.
The join between the l_lunch_items table and the l_foods table is
incorrect. This join should match on two columns, supplier_id and
product_code, but the condition that the product codes are equal has
been left out of the where clause.

The effect of the mistake in this example is subtle. When we look at the
result table, we might notice that the values in the supplier_id column
are repeated several times. That gives us a hint that there could be an error.

The repetition is due to a cross join, which occurs because we have left one
of the join conditions out of the where clause. To confirm our suspicions,
we could ask how many items are expected in lunch 2. By looking at the
l_lunch_items table, we would find that there should be four items in
this lunch, but the result table lists eight items, so we know there is an
error somewhere.

The first thing I would do in this situation would be to review all the join
conditions in the where clause. In this case, that would solve the problem.

The effect of the error is that when someone orders one item from a sup-
plier, they get all the items offered by that supplier.

Show an example of SQL that contains an error. Leave one of the join condi-
tions out of the where clause. Show how we might detect this error.

For lunch 2, list the lunch_id, supplier_id, product_code, description,
price, and quantity columns. Use the l_foods table and the
l_lunch_items table.

Task

CROSS JOINS 607

select a.lunch_id,
 b.supplier_id,
 b.product_code,
 b.description,
 b.price,
 a.quantity
from l_lunch_items a,
 l_foods b
where a.supplier_id = b.supplier_id
 and a.lunch_id = 2;

Incorrect result table

select a.lunch_id,
 b.supplier_id,
 b.product_code,
 b.description,
 b.price,
 a.quantity
from l_lunch_items a,
 l_foods b
where a.supplier_id = b.supplier_id

 and a.lunch_id = 2;

Oracle & Access SQL: Join is incorrect

 SUPPLIER PRODUCT
 LUNCH_ID ID CODE DESCRIPTION PRICE QUANTITY
--------- -------- ------- -------------------- -------- ---------
 2 FS FRESH SALAD $2.00 2
 2 SP SOUP OF THE DAY $1.50 2
 2 SW SANDWICH $3.50 2
 2 FRV BR BROCCOLI $1.00 1
 2 FRV FF FRENCH FRIES $1.50 1
 2 AS SODA $1.25 2
 2 VR COFFEE $0.85 2
 2 VSB AS DESSERT $3.00 1

Oracle & Access SQL: Join is correct

ASP
ASP
ASP

JBR
JBR

and a.product_code = b.product_code

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES608

Correct result table

Suppose you are developing a new select statement. It is fairly complex
and you are using several tables. You are expecting a result with about 400
rows, but the result you get is about 2,000 rows. What part of your select
statement would you examine first?

16-6 Using a cross join to list
all the possible combinations

Sometimes we might want to list all the possible combinations of several
factors. This occurs mostly when we are trying to analyze a complex situa-
tion or when we just want to be sure we have considered all the possibili-
ties.

For example, suppose I have decided to buy a new car. I plan to spend
some time shopping for it, so I get exactly the one I want. I know that sales-
people are going to try to get me to make a purchase before I have com-
pleted all my shopping, so I want to set up a framework, a checklist, for
myself.

I have decided to look at four types of cars: Ford, Toyota, Volkswagen, and
Chevy. I want to look at three colors: white, red, and green. I could make
two lists:

 SUPPLIER PRODUCT
LUNCH_ID ID CODE DESCRIPTION PRICE QUANTITY
-------- -------- ------- -------------------- ----------- ---------
 2 ASP SW SANDWICH $3.50 2
 2 FRV FF FRENCH FRIES $1.50 1
 2 JBR VR COFFEE $0.85 2
 2 VSB AS DESSERT $3.00 1

Check your understanding

Car Type Color

Ford White

Toyota Red

Volkswagen Green

Chevy

CROSS JOINS 609

Then I could arrange the options as a two-dimensional grid:

Or I could use a cross join to create a table of all the combinations. This
table has 12 rows. The first few are as follows:

It might seem that the two-dimensional layout is the easiest to use. It is
more compact than the format generated by the cross join. The problem is
that it is limited to handling only two factors and it cannot easily handle
additional factors. In contrast, the cross join layout is able to handle any
number of factors without any changes.

For example, suppose I also decide to look at two-door cars and four-door
cars. I want to add this factor into my shopping. With the cross join
approach, this is easy to do.

I get 24 rows in the table I create with the cross join. The first few are as
follows:

White Red Green

Ford

Toyota

Volkswagen

Chevy

Car Type Color

Ford White

Ford Red

Ford Green

Toyota White

Toyota Red

Car Type Color Doors

Ford White 2

Ford White 4

Ford Red 2

Ford Red 4

Ford Green 2

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES610

The power of using a cross join in a situation like this is that the cross join
will continue to work without any rearrangement even if you have 20 or
more factors that you want to consider.

Use a cross join to list all the combinations of the following factors:
car_type and color.

select a.car_type,
 b.color
from sec1606_car_types a,
 sec1606_colors b
order by a.car_type,
 b.color;

Beginning tables
sec1606_car_types table sec1606_colors table

Result table

Task

Oracle & Access SQL

CAR_TYPE

FORD
TOYOTA
VOLKSWAGEN
CHEVY

COLOR

WHITE
RED
GREEN

CAR_TYPE COLOR
---------- ----------
CHEVY GREEN
CHEVY RED
CHEVY WHITE
FORD GREEN
FORD RED
FORD WHITE
TOYOTA GREEN
TOYOTA RED
TOYOTA WHITE
VOLKSWAGEN GREEN
VOLKSWAGEN RED
VOLKSWAGEN WHITE

CROSS JOINS 611

16-7 Other layouts when there
are three or more dimensions

Let’s continue the example from the previous section. We have three
dimensions we are considering: car type, color, and number of doors. In the
last section we saw that the layout of the result table produced by a cross
join can handle this easily and it can continue to handle the situation even
if many more dimensions are added. So the layout of a cross join is fine for
the computer and all analysis tasks.

However, a two-dimensional layout is very attractive and can make a nice
presentation for people view. A two-dimensional layout can be best, there-
fore, when your aim is to communicate with other people, or even just to
understand the data yourself.

How are we going to deal with having three dimensions, but having only
two dimensions in which to present them? There are two solutions to this
problem.

Layout 1: Several two-dimensional tables

Table 1: Two-door cars

White Red Green

Ford

Toyota

Volkswagen

Chevy

Table 2: Four-door cars

White Red Green

Ford

Toyota

Volkswagen

Chevy

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES612

Here two separate tables are being used. If you can picture one of these
tables stacked on top of the other, you will see that this is essentially a
three-dimensional layout. Only two dimensions are shown at a time and all
other dimensions become labels for for the variety of tables.

Layout 2: One table

Here the layout uses one single table. One dimension goes across the
page. All the other dimensions are kept in a cross join layout on the left
side of the page.

16-8 Avoid a cross join of large tables

Never perform a cross join of two large tables! This can bring even a large
computer to its knees. It can use up a large amount of the computer’s
resources and cost a lot of money. It probably will not give you anything
useful anyway.

There have been a few times in my career as a programmer when I consid-
ered doing a cross join on some large tables. Usually I was searching for
something, I had been working on a problem for several days, and using a
cross join seemed to be the only solution.

In every one of those cases, after a bit more thought, I was able to avoid the
cross join or at least limit it to a few small tables. Before you do a cross join
take a good look at the tables you are going to join. If there are any rows
you can eliminate from these tables, you should do so. I have always found
that I only needed a small part of the entire table.

Doors White Red Green

Ford 2

Toyota 2

Volkswagen 2

Chevy 2

Ford 4

Toyota 4

Volkswagen 4

Chevy 4

SELF JOINS 613

If you first create new tables that have only a few rows of the original large
table, it is okay to perform a cross join on those small tables.

Avoiding a cross join of large tables.

Self Joins

A self join is any inner, outer, or cross join in which a table is joined with
itself. Many database designers consider self joins to be confusing and
unintuitive, so they try to avoid them. Most databases are designed so that
self joins are rarely needed for everyday tasks. However, using a self join
can provide information that cannot be obtained in any other way.

16-9 Why would you ever join a table with itself?

It does not seem to make sense to join a table with itself
When we work on a problem, one of the first things we decide is which tables
are needed. To make this decision, we think about the tables as containing
certain kinds of information — one table contains information about food,
another table contains information about employees. Joining a table with

Beginning table 1

Beginning table 2

Step 1:
Select only the
rows you need
from each
beginning
table.

Step 2:
Create the
cross join of
these tables.

Result table Step 3:
Select the
data you
want.

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES614

itself seems to just give us two copies of the same thing. It does not seem to
give us any more information, so it does not seem to make any sense.

Why it does make sense
All databases, Oracle and Access included, process one row of a table at a
time. You can access all the columns within a row, but only within one row.
If we need information from two different rows at the same time, then it is
necessary to join the table with itself.

How it is done
We can think about a self join as if we have two separate tables; they just
happen to be identical. In the from clause, the table is listed twice. The two
copies are distinguished by giving each one a separate table alias.

We only need to have one copy of the table stored on the disk. The com-
puter software is able to behave as if we had two separate copies of it. If we
are using a view instead of a table, that view only needs to be defined once.

In the following example, the beginning table contains a G and an H in col-
umn 1 (col_1). They are in different rows, so the computer cannot use both
of them at the same time. However, in the result table of the cross join,
there are two rows containing both G and H. From this table the computer
can use both G and H at the same time.

Within the SQL, we see that the same table is listed twice in the from
clause. Each time it is listed we give it a different table alias. The first table
alias is A and the second one is B.

Form a cross join of a table with itself.

select a.col_1,
 a.col_2,
 b.col_1 as col_3,
 b.col_2 as col_4
from sec1609 a,
 sec1609 b;

Task

Oracle & Access SQL

SELF JOINS 615

Beginning table (sec1609 table)

Result table (Cross join of the sec1609 table with itself)

➊ These two lines both include G and H.

COL_1 COL_2
---------- ---------
G 1
H 2
I 3
J 4

COL_1 COL_2 COL_3 COL_4
---------- --------- ---------- ---------
G 1 G 1
H 2 G 1 ➊

I 3 G 1
J 4 G 1
G 1 H 2 ➊

H 2 H 2
I 3 H 2
J 4 H 2
G 1 I 3
H 2 I 3
I 3 I 3
J 4 I 3
G 1 J 4
H 2 J 4
I 3 J 4
J 4 J 4

Notes

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES616

16-10 An example of a self join

This section shows you an example of a self join. We want to list informa-
tion about the employee and the manager on the same row of a report. The
problem is that the information about the manager is in a different row
from the information about the employee. So, we need to use two different
rows of the table at the same time. We might picture the situation like this:

Next, we change the picture to a different form. The next depiction shows
two tables being joined. They are placed side by side and the join condition
is shown. The join condition is that the value in the Manager ID column of
the first table equals the value in the Employee ID column of the second
table. These two tables just happen to be identical. That is what makes this
a self join. Now all the information we need is in a single row.

Employee Information table (emp): Manager Information table (boss):
First copy of l_employees table Second copy of l_employees table

Employee ID Last Name Phone Manager ID

xxxxx xxxxx xxxxx employee information

xxxxx xxxxx manager information

Employee
ID

Last
Name Phone

Manager
ID

Employee
ID

Last
Name Phone

Manager
ID

xxxxx xxxxx xxxxx xxxxx xxxxx

SELF JOINS 617

In the SQL, the l_employees table is joined to itself. The first copy is given
the table alias emp, meaning that employee information is taken from this
copy of the table. The second copy is given the table alias boss, meaning
that manager information is taken from this copy of the table. The com-
puter only needs a single copy of the table, but it acts as if it has two sepa-
rate copies.

The preceding depiction shows that the join condition is:

emp.manager_id = boss.employee_id

A left outer join is used because we want to include all the employees, even
those who do not currently have a manager.

From the l_employees table, list the employee ID, last name, and phone
number of each employee with the name and phone number of his or her
manager. Include a row for each employee, even those who do not have a
manager. Sort the rows by the employee_id column.

select emp.employee_id,
 emp.last_name,
 emp.phone_number,
 boss.last_name as manager_name,
 boss.phone_number as manager_phone
from l_employees emp
 left outer join l_employees boss
 on emp.manager_id = boss.employee_id
order by emp.employee_id;

Task

Oracle & Access SQL

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES618

Beginning table (l_employees table)

Result table

16-11 Handling a sequence of events

Here is another example of using a self join. Sometimes a table in a data-
base is used to show a sequence of events. A table like this has an order to
its rows. This order might be achieved by including a timestamp field to
indicate when each row was created or changed. Another method uses a
primary key that is a sequence or an AutoNumber field. Each row shows
one event. To determine the time between events, you can use a self join.

For example, suppose we set up a database for a package pickup and deliv-
ery service. One table in the database might keep track of each stop the
truck makes. This could be done in a number of ways, but I will keep the
example here fairly simple.

EMPLOYEE DEPT CREDIT PHONE MANAGER
 ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ---------- --------- ---- ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE PHONE
 ID LAST_NAME NUMBER MANAGER_NAME MANAGER_PHONE
-------- ---------- ------ ------------ -------------
 201 BROWN 3484 (null) (null)
 202 KERN 8722 BROWN 3484
 203 WOODS 7591 BROWN 3484
 204 OWENS 6830 KERN 8722
 205 PERKINS 5286 KERN 8722
 206 ROSE (null) (null) (null)
 207 SMITH 2259 WOODS 7591
 208 CAMPBELL 1752 WOODS 7591
 209 JACOBS 3357 BROWN 3484
 210 HOFFMAN 2974 WOODS 7591

SELF JOINS 619

The beginning table shows several stops made by one truck. These data
have already been conditioned for our task. Probably your raw data will not
look like this. To get the data in a form like this you will probably need to
extract these data from a larger table, sort them by the date and time fields,
and add a sequence number field. We discussed how to add a sequence
number field in section 10-14.

In this section we want to determine the time between events. That is, we
want to determine the time that elapsed between the time shown on one
row and the time shown on the next row. To do this, I will match each row
with the next row in a self join. Then I can subtract one time field from the
other to find the elapsed time.

Find the amount of time that has elapsed between one event and the next
event.

select b.event,
 to_char(a.time_done, 'HH:MI') as start_time, ➊

 to_char(b.time_done, 'HH:MI') as end_time, ➊

 ((b.time_done - a.time_done) * 60 * 24) ➋

 as minutes_elapsed_time
from sec1611_events a, ➌

 sec1611_events b ➌

where a.sequence_number + 1 = b.sequence_number ➍

order by a.sequence_number;

select b.event,
 a.time_done as start_time, ➊

 b.time_done as end_time, ➊

 format((b.time_done - a.time_done),'HH:NN') ➋

 as elapsed_time
from sec1611_events a, ➌

 sec1611_events b ➌

where a.sequence_number + 1 = b.sequence_number ➍

order by a.sequence_number;

Task

Oracle SQL

Access SQL

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES620

Beginning table (sec1611_events table)

Result table

➊ What I want to show here is a time without a date. The data implies that
all the dates are the same, so there is no point in showing them. When I
entered the data, I entered only the time without a date. However, both
Oracle and Access used the current date when I loaded the data and they
both stored both the time and date in the time_done field. To show only
the time requires some special tricks.

In Oracle, I use the to_char function and a date format that shows only
the time.

In Access, I do not need to apply any function. Access remembers that I
entered the data as a time without a date. Therefore, it automatically
displays the data in the form in which I entered it.

➋ Here I want to show the number of minutes that have elapsed between
events. Oracle and Access have different ways to do this.

SEQUENCE_NUMBER TRUCK_ID EVENT TIME_DONE
--------------- --------- ------------------------------ ---------
 1 41 DELIVERED PACKAGE 391 11:27 AM
 2 41 DELIVERED PACKAGE 392 11:33 AM
 3 41 PICKED UP PACKAGE 572 11:42 AM
 4 41 STARTED LUNCH BREAK 11:54 AM
 5 41 ENDED LUNCH BREAK 12:23 PM
 6 41 DELIVERED PACKAGE 393 12:37 PM
 7 41 PICKED UP PACKAGE 573 12:44 PM
 8 41 PICKED UP PACKAGE 574 01:02 PM
 9 41 DELIVERED PACKAGE 394 01:08 PM
 10 41 DELIVERED PACKAGE 395 01:12 PM

EVENT START_TIME END_TIME MINUTES_ELAPSED_TIME
----------------------- ---------- ----------------------------
DELIVERED PACKAGE 392 11:27 AM 11:33 AM 6
PICKED UP PACKAGE 572 11:33 AM 11:42 AM 9
STARTED LUNCH BREAK 11:42 AM 11:54 AM 12
ENDED LUNCH BREAK 11:54 AM 12:23 PM 29
DELIVERED PACKAGE 393 12:23 PM 12:37 PM 14
PICKED UP PACKAGE 573 12:37 PM 12:44 PM 7
PICKED UP PACKAGE 574 12:44 PM 01:02 PM 18
DELIVERED PACKAGE 394 01:02 PM 01:08 PM 6
DELIVERED PACKAGE 395 01:08 PM 01:12 PM 4

Notes

SELF JOINS 621

In Oracle, when I subtract one date from another date, I get a number.
This is the number of days between the events. To translate this into
minutes I need to multiply this number by 60 * 24, which is the number
of minutes in a day.

In Access, I can simply format the number as an elapsed time.

➌ Here the table is joined with itself.

➍ This is the join condition. It matches each row with the row that comes
after it in the sequence.

Table sec1611_prime_numbers contains the first 50 prime numbers. Use a
self join to determine the difference between each prime and the next one.

16-12 Generating the numbers from 0 to 999

This section shows you how to create a table containing all the numbers
from 0 to 999. To do this we will use both a self join and a cross join. We
will cross join a table with itself. With this technique, you can create as
many numbers as you want.

First, we create a table of all the digits, all the numbers from 0 to 9. Then,
we create another table from this by using a select statement.

We have already been using a table of numbers from 0 to 99. I created this
table for you. Here you will see how to create a table like this for yourself
whenever you want one.

In the first step, a table is created to contain all the digits. Oracle and
Access must use their own datatypes, number for Oracle and smallint for
Access. Otherwise, the SQL is the same. At this point, the table contains no
data.

In the second step, the data are put into the table. There are only 10
records, so this is easy. The SQL is exactly the same in Oracle and Access.

In the third step, this table of digits is used to create a new table containing
the numbers from 0 to 999. The table, numbers_0_to_9, is cross joined
with itself. You can see this self join in the from clause, which lists the
table three times. The first copy of the table is given the table alias a, the
second copy is given the table alias b, and the third copy is given the table
alias c. The result of this join is every combination of three digits.

Check your understanding

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES622

The select clause turns each combination of three digits into a single,
three-digit number. It multiplies the first digit by 100, and the second digit
by 10. Then it adds up all the numbers to get a single three-digit number.

For example,

three digits: 3, 4, 5

become one number: (3 × 100) + (4 × 10) + 5 = 345

This much of the third step is the same in both Oracle and Access. How-
ever, they differ in their techniques to save these results in a table.

Create a table with all the numbers from 0 to 999. First, create a table of the
numbers from 0 to 9. Then cross join it with itself.

We already have a table named numbers_0_to_9 containing all the digits.
We want to leave that table alone. We create a new table with a slightly differ-
ent name so I can show you how this all works.

create table numbers_0_to_9
(digit number(1));

create table my_numbers_0_to_9
(digit smallint);

insert into my_numbers_0_to_9 values (0);
insert into my_numbers_0_to_9 values (1);
insert into my_numbers_0_to_9 values (2);
insert into my_numbers_0_to_9 values (3);
insert into my_numbers_0_to_9 values (4);
insert into my_numbers_0_to_9 values (5);
insert into my_numbers_0_to_9 values (6);
insert into my_numbers_0_to_9 values (7);
insert into my_numbers_0_to_9 values (8);
insert into my_numbers_0_to_9 values (9);
commit;

Task

Oracle SQL: Step 1 — Create a table to contain all 10 digits

Access SQL: Step 1 — Create a table to contain all 10 digits

Oracle & Access SQL: Step 2 — Put data in the table

SELF JOINS 623

Created table (my_numbers_0_to_9 table)

create table numbers_0_to_999 as
select ((a.digit * 100) + (b.digit * 10) + c.digit) as n
from my_numbers_0_to_9 a,
 my_numbers_0_to_9 b,
 my_numbers_0_to_9 c;
order by 1;

select ((a.digit * 100) + (b.digit * 10) + c.digit) as n
into numbers_0_to_999
from my_numbers_0_to_9 a,
 my_numbers_0_to_9 b,
 my_numbers_0_to_9 c;
order by 1;

Created table (numbers_0_to_999 table)

 DIGIT

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Oracle SQL: Step 3 — Create a table of numbers from 0 to 999

Access SQL: Step 3 — Create a table of numbers from 0 to 999

 N

 0
 1
etc
 999

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES624

CrossTab Queries in Access

16-13 CrossTab queries when
there are two dimensions

Access has a way to display one dimension (column) of a result table in
columns across the page. Every value in that column then creates a sepa-
rate column in the new result table. This is called a CrossTab query or a
Pivot query. Oracle also has a way to do this, but the code is more difficult
in Oracle. I show the Oracle method later in this chapter.

In this section I want to create this table:

A CrossTab query works best when the data have only two dimensions. That
is what we discuss in this section. In the next sections we discuss a
CrossTab query when the data have more than two dimensions.

Access has two new clauses of the select statement, Transform and Pivot,
which are special extensions to SQL to support CrossTab queries. You
could learn how to code those clauses, but there is a much easier way. It is
easier to use the CrossTab Query Wizard and that is what I use in this and
the next section.

Access designs the wizard to ask you a series of questions. It is hoped that
each question is narrowly focused and easy to answer. This does mean that
there are several steps to the process. I like to have some guidance on my
first time through a wizard, so I try to provide that guidance to you.

Create a CrossTab query that shows two dimensions — car types going down
the left side of the page and colors going across the top of the page.

White Red Green

Ford

Toyota

Volkswagen

Chevy

Task

CROSSTAB QUERIES IN ACCESS 625

The first step is to create a view (saved query) with three columns. Two of the
columns are the two dimensions of the table that you see displayed on the
edges. In our example, they are the type of car and the color. The third col-
umn is the data that you will see in the middle part of the table. In our exam-
ple, that is just blanks. Here is the SQL:

select a.car_type,
 b.color,
 null as blank_field
from sec1613_car_types a,
 sec1613_colors b
order by a.car_type,
 b.color;

I will save this query and I name it sec1613_data_view.

1. Click the Create tab.

2. Click Query Wizard, shown as follows.

3. Select CrossTab Query Wizard.

4. Click OK.

Step 1: Create three columns of data

Step 2: Start the CrossTab Query Wizard

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES626

5. Choose to view the queries, because I saved the data as a query.

6. Select sec1613_data_view.

7. Click Next.

Step 3: Select the table or view that contains the data

CROSSTAB QUERIES IN ACCESS 627

8. Highlight car_type in available fields.

9. Click the > button to select it. This moves the car_type to the list of
selected fields and removes it from the list of available fields. It sets
the vertical dimension of the report. In the sample report, this
places the car_type as the first column.

10. Click Next.

Step 4: Select the column to go down the left edge of the page

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES628

11. Highlight color. It may already be highlighted for you. This sets
the horizontal dimension of the report. In the sample report, this
places the values of the color field as the headers of the remaining
columns.

12. Click Next.

13. The blank_field is already highlighted. It is highlighted because it
is the only field left. I set things up to work this way when I created a
view with only three fields. If you start with more than three fields,
this step allows you to select which field will go in the body of the
report.

Step 5: Select the column to go across the top of the page

Step 6: Select the column of data to display in the table

CROSSTAB QUERIES IN ACCESS 629

14. Select Max in the Functions list. You could also select First, Last,
or Min, but not Count.

This says that if there is more than one blank field for any combina-
tion of a color and a body type, then the blank field with the maxi-
mum value will be used within the body of the report.

Again, I already set things up so this will work easily. I set things up
so that there is only one blank field for any combination of a color
and a body type. That is why it does not matter in this example if you
choose First, Last, Max, or Min. However, if you select Count, the
body of the report will contain only zeros. In the sample report, this
places Max(blank_field) in the body of the report.

15. Clear the Yes, Include row sums checkbox. We do not want row sums
in this report.

16. Click Next.

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES630

17. Name the query. I am naming mine Sec1613_Crosstab, but you
can use any name you want.

18. Select View the query.

19. Click Finish.

Step 7: Finish

Result: CrossTab Query

CROSSTAB QUERIES IN ACCESS 631

16-14 CrossTab queries with up to four dimensions

In this section we continue our example and add the number of doors as
the third dimension. Here, we continue to use the CrossTab Query Wizard.
We lay out the result as one table, where two dimensions go down the page
and one goes across, as explained in section 16-7.

The process here is very similar to the previous section. Because the proce-
dure has many steps, I only show you the parts that are different.

Create a CrossTab query that shows three dimensions — car types and num-
ber of doors going down the left side of the page and colors going across the
top of the page.

In this example we create four columns of data — one for each of the three
dimensions and one for the body of the table. Here is the SQL:

select a.car_type,
 b.color,
 c.doors,
 null as blank_field
from sec1614_car_types a,
 sec1614_colors b,
 sec1614_number_of_doors c
order by a.car_type,
 b.color,
 c.doors;

Save this query and name it sec1614_data_view. Steps 2 and 3 are simi-
lar to the previous section.

Task

Step 1: Create the data

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES632

In this step we select two columns to go down the page, car_type and
doors.

All the rest of the steps are similar to the previous section.

Step 4: Select the columns to go down the left edge of the page

Result: CrossTab query

CROSSTAB QUERIES IN ACCESS 633

16-15 CrossTab queries with more dimensions

In this section I show you another method to do the same thing we did in
the previous section. The reason for using another method is that the
Access wizard we used in the last section is limited in what it can do. It has
a built-in restriction that only allows you to put three columns on the left
edge of the page.

Sometimes you might need a more flexible tool. That is what I show you
here. This method uses the Access GUI tool for query design.

This section shows a simple example of this technique. Later in this chap-
ter I show you a more complex example.

This is the same as the previous section. Create a CrossTab query that shows
three dimensions — car types and number of doors going down the left side
of the page and colors going across the top of the page.

This step is almost the same as the previous section. I could have used the
same code here, but to make this example easier to understand I spelled out
the full names of the tables instead of using the table aliases a, b, and c.
Also, I do not save the query in this step. I modify it before I save it.

select sec1615_car_types.car_type,
 sec1615_colors.color,
 sec1615_number_of_doors.doors,
 null as blank_field
from sec1615_car_types,
 sec1615_colors,
 sec1615_number_of_doors
order by sec1615_car_types.car_type,
 sec1615_colors.color,
 sec1615_number_of_doors.doors;

Task

Step 1: Create the data

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES634

After you run the query, click the Design View icon in the bottom right corner
of the screen. You will get something like this:

Make several adjustments to the GUI:

1. Rearrange the tables on top. Drag them by their header bars.

2. Shorten the length of the tables. Place the mouse pointer at the bot-
tom of each table. When it turns into a double-headed arrow, hold
down the mouse button and drag the bottom of the table upward.

3. Move the bottom panel up. Place the mouse pointer between the
top part of the screen and the bottom part. When it turns into a
double-headed arrow, hold down the mouse button and drag the
bottom part of the screen upward.

Step 2: Change from SQL view to design view

Step 3: Adjust the GUI

CROSSTAB QUERIES IN ACCESS 635

4. Expand the width of the doors field. Place the mouse pointer at the
right edge of the doors field and one row up. When it turns into a
double-headed arrow, hold down the mouse button and drag the
edge of the field to the right.

In the Query Type section of the Ribbon, click the CrossTab Query button.

Step 4: Make this a CrossTab query

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES636

This creates two new rows in the query grid, Total and Crosstab. The query
grid will now look something like this:

1. Set the CrossTab line of the car_type column to Row Heading. To do
this, click the mouse in the cell of the CrossTab row and the car_type
column. Click the selection button and select Row Heading.

2. Set the CrossTab line of the doors column to Row Heading. You can
have any number of columns set to Row Heading.

3. Set the CrossTab line of the color column to Column Heading. You
must have only one column set to Column Heading. This is the col-
umn that will be displayed across the top of the page.

4. Set the CrossTab line of the blank_field column to Value. You
must have one column set to Value. This will provide the values
inside the cells of the result table.

5. Set the totals line of the blank_field column to Min. The totals
line for all the other columns is automatically set to Group By.

Step 5: Specify which columns are row headings, etc.

CROSSTAB QUERIES IN ACCESS 637

The query grid will now look something like this:

Click the Run button on the Ribbon or click the Datasheet View button in the
bottom right corner of the screen.

Step 6: Run the query

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES638

Press Ctrl + S. Name it sec1615_crosstab.

16-16 CrossTab to show who is
attending each lunch

In this section I create a CrossTab query in Access to show which lunches
each employee has signed up for. In particular, what I want to create is a
CrossTab query that shows the following:

■ Down the left side of the page

 All employees (employee_id, first_name, last_name)

■ Across the top of the page

 All lunch dates

■ Within the body of the CrossTab

 An X if the employee has signed up for that lunch

I will do this task as if I am dealing with a large production database. I am
allowing you to look over my shoulder and see exactly what I am doing.

First, I make a list of all the entries in each dimension. I list all the employ-
ees, then I list all the lunch dates.

Next, I form the cross product of these dimensions.

■ All employees × all lunch dates

This gives me the framework for the CrossTab I want to create. It shows all
the possibilities.

Then, I will get the specific data from the l_lunches table that shows
which lunches each employee has signed up for. At this point I have three
types of data and I am ready to do the CrossTab procedure. The three types
of data are: employee data, lunch dates, and an X if the employee signed
up for the lunch

Step 7: Save the query

CROSSTAB QUERIES IN ACCESS 639

In the last step I form the CrossTab query with the lunch dates going across
the top of the page.

select employee_id,
 first_name,
 last_name
from l_employees;

Save the query. Name it sec1616_step1_employee_dimension_view.

I do not need to be concerned about duplicate rows here because I know
employee_id is the primary key of the table.

I note that the number of rows is 10.

select distinct lunch_date
from l_lunches;

Save the query. Name it sec1616_step2_lunch_date_dimension_view.

I need to use select distinct here because I want each date to occur
only once.

I note that the number of rows is three.

select a.*,
 b.*
from sec1616_step1_employee_dimension_view a,
 sec1616_step2_lunch_date_dimension_view b;

Save the query. Name it sec1616_step3_framework_view.

I use a cross product to show every possible combination of an employee
and a lunch date.

I note that there are 30 rows. This is correct because 30 = 10 × 3.

As I add data to this framework, I want to make sure that this framework
remains complete. To do this, I use an outer join to add the data so no
row of the framework can be deleted. I also check that I always retain all
30 rows.

Step 1: List all employees

Step 2: List all lunch dates

Step 3: Create the framework

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES640

select a.*,
 format(b.lunch_date, 'X') as signed_up
from sec1616_step3_framework_view a
 left outer join l_lunches b
 on a.employee_id = b.employee_id
 and a.lunch_date = b.lunch_date;

Save the query. Name it sec1616_step4_view.

Now all the data have been placed within the framework. All the data I need
are completely integrated. I am ready to display the lunch dates across the
top of the page with a CrossTab query.

I have already explained most of the steps to do this, but here are the steps if
you need them:

1. Click the Create tab on the Ribbon.

2. Click Query Design on the Ribbon.

3. Click the Queries tab in the Show Table window.

4. Add the sec1616_step4_view.

5. Close the Show Table window.

6. Drag each column from the sec1616_step4_view to the grid below.

7. On the Ribbon, click the button to create a crosstab query.

8. Set the values in the Total, Crosstab, and Sort rows as shown next.

Save the query. Name it sec1616_step5_crosstab. Here is the design view
for the query.

Step 4: Add data from the l_lunches table

Step 5: Make the CrossTab query

CROSSTAB QUERIES IN ACCESS 641

Result table

16-17 CrossTab to show the foods for each lunch

In this section I create a CrossTab query in Access for the foods that have
been ordered for each lunch. In particular, I want to create a CrossTab query
that shows the following:

■ Down the left side of the page

 All employees (employee_id, first_name, last_name)

 All lunch dates

 An X if the employee will attend that lunch

■ Across the top of the page

 All foods (shown as menu item number)

■ Within the body of the CrossTab

 Quantity ordered (1 or 2)

To fit the result in this book I have to use menu item number instead of the
name of the food. I would prefer to show the full names of the foods, but
that would take up too much space. I would do that if I did not have to fit
the result in a confined space.

First, I make the framework:

■ All employees × all lunch dates × all foods

Next, I will get put specific data in the framework from two tables:
l_lunches and l_lunch_items. I use a separate step to add the data
from each of these tables.

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES642

The last step will be to turn this table into a CrossTab query with the foods
going across the top of the page.

select supplier_id,
 product_code,
 menu_item,
 description as food
from l_foods;

Save the query. Name it sec1617_step1_food_dimension_view.

Why do I use so many columns? I need the menu_item column for the
CrossTab query. I need the supplier_id and product_code to use in the
join when I get data from the l_lunch_items table. The description col-
umn is optional, but I like to have it because it contains the name of the
food.

I know that I will not have any duplicate rows because the supplier_id
and Product_code form the primary key of the l_foods table.

I note that the number of rows is 10.

select a.*,
 b.*,
 c.*
from sec1616_step1_employee_dimension_view a,
 sec1616_step2_lunch_date_dimension_view b,
 sec1617_step1_food_dimension_view c

Save the query. Name it sec1617_step2_framework_view.

This is the cross product of the three dimensions I want for this query.

I note that the number of rows is 300. This is correct because 300 = 10
(employees) × 3 (lunch dates) × 10 (foods).

As data is added to this framework, none of the rows should be deleted.
There should always be 300 rows.

Step 1: List all foods

Step 2: Create the framework

CROSSTAB QUERIES IN ACCESS 643

select a.*,
 format(b.lunch_date, 'X') as signed_up,
 b.lunch_id
from sec1617_step2_framework_view a
 left outer join l_lunches b
 on a.employee_id = b.employee_id
 and a.lunch_date = b.lunch_date;

Save the query. Name it sec1617_step3_view.

In this step I get two pieces of information. I get the indicator to say that
the employee has signed up for the lunch. I also get the lunch_id. I will
need to use this in the join condition when I get data from the
l_lunch_items table.

I am using a left outer join to make sure that this does not delete any rows
from the framework.

There are 300 rows. This is correct.

select a.*,
 b.quantity
from sec1617_step3_view a
 left outer join l_lunch_items b
 on a.supplier_id = b.supplier_id
 and a.product_code = b.product_code
 and a.lunch_id = b.lunch_id;

Save the query. Name it sec1617_step4_view.

In this step I get the quantity of each food that has been ordered. I know
the value must be 1 or 2. Again, I use a left outer join to make sure I pre-
serve all the rows of the framework.

I still have 300 rows. That is correct.

Now all the information is integrated. If I wanted, I could go directly to the
CrossTab process from here. But there are several columns I will not use in
the CrossTab. I added those columns to use them in join conditions and for
other reasons.

In the next step I clean up the data so that they match the CrossTab as
closely as possible. Here that means I keep the columns for the CrossTab
and drop all the others.

Step 3: Add data from the l_lunches table

Step 4: Add data from the l_lunch_items table

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES644

select a.employee_id,
 a.first_name,
 a.last_name,
 a.lunch_date,
 a.menu_item,
 a.signed_up,
 a.quantity
from sec1617_step4_view a;

Save the query. Name it sec1617_step5_view.

I still have 300 rows. That is correct.

This step just drops some columns from the previous view.

I have already explained most of the steps to do this, for a reminder see the
previous section. Save the query. Name it sec1617_step6_crosstab. Here
is the design view for the query:

Step 5: Select the columns for the CrossTab query

Step 6: Make the CrossTab query

CROSSTAB QUERIES IN ORACLE 645

Result table

CrossTab Queries in Oracle

16-18 CrossTab queries in Oracle — Part 1

In general, it is difficult to create CrossTab queries in Oracle. It can be
done, but it requires a lot of effort. When I want to write a CrossTab query, I
usually use Access rather than Oracle because it is easier.

What I show you here are two fairly simple examples, just to give you the fla-
vor of the code. First, I continue the preceding example. I get the same result
table, but I write the code in Oracle. In the next section I add some data to
the table, so you can see the technique involved in handling those data.

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES646

In this section, I again produce a three-dimensional grid with no data in it,
just as I did in the last section. However, there is one important difference
between Oracle and Access that is shown in this code. In Oracle, you often
choose the column that will go across the top of the page so you know in
advance all the values that the column could possibly contain. Those val-
ues are hard-coded into the SQL. In the following example, those are the
values of the color column: Green, Red, and White. These become the col-
umn headings that go across the page.

In Access, it is not necessary to hard-code those values. The column head-
ings are obtained from the data that are in the column.

Create the same CrossTab query result that we had in the previous section;
that is, create a three-dimensional grid. Car type and number of doors will go
down the left edge of the page. Color will go across the top of the page.

select a.car_type, ➊

 b.doors, ➊

 ' ' as green, ➋

 ' ' as red, ➋

 ' ' as white ➋

from sec1618_car_types a,
 sec1618_number_of_doors b,
 sec1618_colors c
group by a.car_type, ➊

 b.doors ➊

order by a.car_type,
 b.doors;

Result table

Task

Oracle SQL

CAR_TYPE DOORS GREEN RED WHITE
---------- --------- ---------- ---------- ----------
CHEVY 2
CHEVY 4
FORD 2
FORD 4
TOYOTA 2
TOYOTA 4
VOLKSWAGEN 2
VOLKSWAGEN 4

CROSSTAB QUERIES IN ORACLE 647

➊ Usually, you need to group by all the columns that go down the left side
of the page.

➋ In this code, I needed to know all the possible colors and hard-code
those values into the column headings. Access does not require this.

16-19 CrossTab queries in Oracle — Part 2

This section continues the example of the previous section, but this time
there are data to display. The beginning table has 24 rows. The first three
columns create a three-dimensional structure. They are a cross product of
four car types, three colors, and two different styles of doors.

The fourth column contains data that will be displayed in the CrossTab
query. This is the new factor that I focus on. To handle it, I need to use the
decode row function and the max column function. The decode row func-
tion is explained in chapter 18. All you need to see here is that it can dis-
tribute data into several different columns.

This code runs as a single SQL statement. However, I can explain it better if
I divide what I say into two parts. The first part uses the decode row func-
tion to distribute the data into the three color columns, but it leaves many
nulls in the result table. The second part uses the max column function to
get rid of the null values.

Create a CrossTab query in Oracle that displays data.

select car_type,
 doors,
 decode(color, 'GREEN', to_char(my_data), null)

 as green,
 decode(color, 'RED', to_char(my_data), null) as red,
 decode(color, 'WHITE', to_char(my_data), null)

 as white
from sec1619
order by car_type,
 doors;

Notes

Task

Oracle SQL:
First version — Showing just the effect of the decode function

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES648

Beginning table (sec1619)

CAR_TYPE DOORS COLOR MY_DATA
---------- --------- ---------- ---------

CHEVY 2 GREEN 1

CHEVY 2 RED 2

CHEVY 2 WHITE 3
CHEVY 4 GREEN 4

CHEVY 4 RED 5

CHEVY 4 WHITE 6
FORD 2 GREEN 7

FORD 2 RED 8

FORD 2 WHITE 9
FORD 4 GREEN 10

FORD 4 RED 11

FORD 4 WHITE 12
TOYOTA 2 GREEN 13

TOYOTA 2 RED 14

TOYOTA 2 WHITE 15
TOYOTA 4 GREEN 16

TOYOTA 4 RED 17

TOYOTA 4 WHITE 18
VOLKSWAGEN 2 GREEN 19

VOLKSWAGEN 2 RED 20

VOLKSWAGEN 2 WHITE 21

VOLKSWAGEN 4 GREEN 22
VOLKSWAGEN 4 RED 23

VOLKSWAGEN 4 WHITE 24

CROSSTAB QUERIES IN ORACLE 649

Result table: First version — data are distributed into three columns

CAR_TYPE DOORS GREEN RED WHITE

---------- --------- ---------- ---------- ----------

CHEVY 2 (null) 2 (null)
CHEVY 2 1 (null) (null)

CHEVY 2 (null) (null) 3

CHEVY 4 4 (null) (null)

CHEVY 4 (null) 5 (null)
CHEVY 4 (null) (null) 6

FORD 2 7 (null) (null)

FORD 2 (null) 8 (null)
FORD 2 (null) (null) 9

FORD 4 (null) 11 (null)

FORD 4 10 (null) (null)
FORD 4 (null) (null) 12

TOYOTA 2 (null) 14 (null)

TOYOTA 2 13 (null) (null)
TOYOTA 2 (null) (null) 15

TOYOTA 4 (null) 17 (null)

TOYOTA 4 16 (null) (null)
TOYOTA 4 (null) (null) 18

VOLKSWAGEN 2 19 (null) (null)

VOLKSWAGEN 2 (null) 20 (null)
VOLKSWAGEN 2 (null) (null) 21

VOLKSWAGEN 4 22 (null) (null)

VOLKSWAGEN 4 (null) 23 (null)

VOLKSWAGEN 4 (null) (null) 24

CHAPTER 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES650

select car_type,
 doors,
 max(decode(color, 'GREEN', to_char(my_data), null))

 as green,
 max(decode(color, 'RED', to_char(my_data), null))

 as red,
 max(decode(color, 'WHITE', to_char(my_data), null))

 as white
from sec1619
group by car_type,
 doors
order by car_type,
 doors;

Result table: Final version

Oracle SQL:
Complete and final version — This is the only SQL you need

CAR_TYPE DOORS GREEN RED WHITE
---------- --------- ---------- ---------- ----------
CHEVY 2 1 2 3
CHEVY 4 4 5 6
FORD 2 7 8 9
FORD 4 10 11 12
TOYOTA 2 13 14 15
TOYOTA 4 16 17 18
VOLKSWAGEN 2 19 20 21
VOLKSWAGEN 4 22 23 24

KEY POINTS 651

Key Points

■ A cross join of two tables is an inner join without a join condition. The
result is that every row of the first table is combined with every row of
the second table.

■ An inner join, in theory, is defined from a cross join.

■ If you are developing a query that involves a join and you get many
more rows in the result than you expected, your problem is probably
that you left out one of the join conditions. You should carefully
examine the from clause and the where clause.

■ When you are handling large tables be careful about the join condi-
tions. If you leave out the join conditions completely you will get a
cross join. This can cause the computer to do a lot of processing, it
can be expensive, and will not produce the result you want. In a regu-
lated environment your query may be removed from the computer
before it finishes.

■ It is okay to do a cross join of a few small tables if that is what you
need to do. In a self join a table is joined to another copy of itself. The
join can be either an inner join or an outer join. You can use a self join
when you need information from two or more rows at the same
moment to perform a row function or check a condition.

■ In a CrossTab query, the values of one column are displayed across
the top of the page. This gives a more compact presentation of the
data. Often this can make the data easier to understand.

This page intentionally left blank

653

chapter 17

Congratulations! If you have read this far, you have finished all
the topics that I cover in detail. The last four chapters of this
book round out the discussion and place that material in con-
text. The viewpoint changes here to a broader perspective and
less detail.

Chapter 17 discusses some of the challenges in combining
tables within a production-sized system, which is a much larger
system than those we have discussed until now.

Chapter 18 discusses the if-then-else functions, parameter
queries, and subqueries. These are important topics that I have
not covered yet because they did not fit into the framework of
our discussion so far.

Chapter 19 discusses the multiuser environment. Most data-
bases are shared environments that many people use at the
same time. This environment is set up by the DBAs, but you can
work more effectively if you understand how it is done.

Chapter 20 discusses the design of SQL and what the language
is attempting to achieve. It also discusses forms and reports,
which have become the way many people interact with a data-
base.

COMBINING
TABLES IN A
PRODUCTION

DATABASE

Methods of Joining Three or More Tables . 655

17-1 Joining several tables in a series of steps .655
17-2 Joining several tables at once in the where clause658
17-3 Joining several tables at once in the from clause658

Losing Information. 660

17-4 Be careful with an inner join. .660
17-5 Be careful with a left and right outer join .660
17-6 A full outer join preserves all the information .661
17-7 A full outer join of several tables .661

Caring about the Efficiency of Your Computer . 663

17-8 Monitor your queries .663
17-9 Use the indexes .664

17-10 Select the data you want early in the process. .664
17-11 Use a table to save summarized data .665
17-12 Try several ways of writing the SQL .665

Standardizing the Way That Tables Are Joined. 666

17-13 The joins are part of the database design .666
17-14 A view can standardize the way tables are joined 666
17-15 Ad hoc reporting .670

Key Points . 671

655

Methods of Joining Three or More Tables

When you need to join three or more tables for a query, the method I rec-
ommend is to use a series of steps and combine the tables two at a time.
The first step combines two of the tables and saves the result as a view. The
next step combines that view with one more table and creates another
view. This is repeated as many times as necessary.

This method gives you maximum control. It is less prone to errors
than other methods. If errors do occur, they are easier to find and fix. If
your query takes a long time to run, you can time and monitor each
step individually.

To keep this process as efficient as possible for the computer, particularly if
you run some of the steps individually, you should select the data you want
as early in the process as possible. The idea is to keep the size of your
tables as small as possible so the computer does not have to handle a lot
of rows that you will later discard.

That is my recommendation, but there is another school of thought. Some
people like to write a single select statement that joins all their tables
and selects all their data at the same time.

There is sometimes some logic to this other point of view. If you can tell
the computer what you want to do all at one time, then the optimizers in
the database might be able to find a more efficient way to process your
query. If you have production code that you know is completely debugged
and correct, it makes sense to combine the steps together into a single
SQL statement.

However, I have usually been a person who develops new code for the data-
base. I know that errors and inefficiencies can creep into the code in many
unexpected ways. I try to write code so that I can find the errors and fix
them as easily as possible. Also, I like to keep things simple so I make fewer
errors to begin with. That is why I like to divide any problem into a series of
steps.

17-1 Joining several tables in a series of steps

Here is an example of code that joins two tables at a time in a series of
steps. This is the technique I recommend.

CHAPTER 17 COMBINING TABLES IN A PRODUCTION DATABASE656

For the lunch on November 16, 2011, list all the foods served, the quantities,
the total price of each food, and who will be eating the lunches. The price
increases will be in effect and 10 cents will be added to the price when the
price increase is null. List the following columns:

employee_id

first_name

last_name

food

quantity

total_price

create or replace view sec1701a_view as
select a.employee_id,
 a.first_name,
 a.last_name,
 b.lunch_id
from l_employees a,
 l_lunches b
where a.employee_id = b.employee_id
 and b.lunch_date = '16-NOV-2011';

create or replace view sec1701b_view as
select a.*,
 b.supplier_id,
 b.product_code,
 b.quantity
from sec1701a_view a,
 l_lunch_items b
where a.lunch_id = b.lunch_id;

create or replace view sec1701c_view as
select a.*,
 b.description as food,
 b.price+nvl(b.price_increase,.10) as new_price
from sec1701b_view a,
 l_foods b
where a.supplier_id = b.supplier_id
 and a.product_code = b.product_code;

Task

Oracle SQL

METHODS OF JOINING THREE OR MORE TABLES 657

select employee_id,
 first_name,
 last_name,
 food,
 quantity,
 new_price * quantity as total_price
from sec1701c_view
order by employee_id,
 food;

The Access code is very similar, and I encourage you to write your own.
Remember that Access does not have create view, so you have to create
saved queries using the GUI.

Result table

Access SQL

EMPLOYEE FIRST LAST
 ID NAME NAME FOOD QUANTITY TOTAL_PRICE
-------- -------- -------- -------------------- --------- -----------
 201 SUSAN BROWN COFFEE 2 $2.00
 201 SUSAN BROWN FRESH SALAD 1 $2.25
 201 SUSAN BROWN SANDWICH 2 $7.80
 202 JIM KERN COFFEE 2 $2.00
 202 JIM KERN DESSERT 1 $3.50
 202 JIM KERN FRENCH FRIES 1 $1.60
 202 JIM KERN GRILLED STEAK 1 $6.70
 202 JIM KERN SOUP OF THE DAY 1 $1.60
 203 MARTHA WOODS COFFEE 1 $1.00
 203 MARTHA WOODS FRENCH FRIES 1 $1.60
 203 MARTHA WOODS FRESH SALAD 1 $2.25
 203 MARTHA WOODS GRILLED STEAK 1 $6.70
 203 MARTHA WOODS SODA 1 $1.50
 204 ELLEN OWENS FRENCH FRIES 1 $1.60
 204 ELLEN OWENS HAMBURGER 2 $5.60
 204 ELLEN OWENS SODA 2 $3.00
 204 ELLEN OWENS SOUP OF THE DAY 2 $3.20
 207 DAN SMITH COFFEE 2 $2.00
 207 DAN SMITH DESSERT 1 $3.50
 207 DAN SMITH FRENCH FRIES 1 $1.60
 207 DAN SMITH SANDWICH 2 $7.80
 210 NANCY HOFFMAN COFFEE 1 $1.00
 210 NANCY HOFFMAN DESSERT 1 $3.50
 210 NANCY HOFFMAN FRESH SALAD 1 $2.25
 210 NANCY HOFFMAN GRILLED STEAK 1 $6.70
 210 NANCY HOFFMAN SOUP OF THE DAY 1 $1.60

CHAPTER 17 COMBINING TABLES IN A PRODUCTION DATABASE658

17-2 Joining several tables at
once in the where clause

This section shows all the tables being joined within one select state-
ment. This is a style of coding that I do not recommend, because it can get
too complex.

The task here is the same as in section 17-1.

select a.employee_id,
 a.first_name,
 a.last_name,
 d.description as food,
 c.quantity,
 ((d.price + nvl(d.price_increase,.10))
 * c.quantity) as total_price
from l_employees a,
 l_lunches b,
 l_lunch_items c,
 l_foods d
where a.employee_id = b.employee_id
 and b.lunch_date = '16-NOV-2011'
 and b.lunch_id = c.lunch_id
 and c.supplier_id = d.supplier_id
 and c.product_code = d.product_code
order by a.employee_id,
 d.description;

For Access, just change the nvl function to an nz function and enclose the
date in pound signs.

17-3 Joining several tables at once in the from clause

This is a variation of the code in section 17-2. The difference here is that the
join condition is written in the from clause rather than the where clause.
The syntax itself forces you to join two tables at a time. This is done in a
nesting arrangement, which you can see in the code.

Task

Oracle SQL

Access SQL

METHODS OF JOINING THREE OR MORE TABLES 659

The task here is the same as in section 17-1.

select a.employee_id,
 a.first_name,
 a.last_name,
 d.description as food,
 c.quantity,
 ((d.price + nvl(d.price_increase,.10))
 * c.quantity) as total_price
from ((l_employees a
 inner join l_lunches b
 on a.employee_id = b.employee_id)
 inner join l_lunch_items c
 on b.lunch_id = c.lunch_id)
 inner join l_foods d
 on c.supplier_id = d.supplier_id
 and c.product_code = d.product_code
where b.lunch_date = '16-NOV-2011'
order by a.employee_id,
 d.description;

select a.employee_id,
 a.first_name,
 a.last_name,
 d.description as food,
 c.quantity,
 ((d.price + nz(d.price_increase,.10))
 * c.quantity) as total_price
from ((l_employees a
 inner join l_lunches b
 on a.employee_id = b.employee_id)
 inner join l_lunch_items c
 on b.lunch_id = c.lunch_id)
 inner join l_foods d
 on c.supplier_id = d.supplier_id
 and c.product_code = d.product_code
where b.lunch_date = #16-NOV-2011#
order by a.employee_id,
 d.description;

Result table — Same as in section 17-1

Task

Oracle SQL

Access SQL

CHAPTER 17 COMBINING TABLES IN A PRODUCTION DATABASE660

Losing Information

One of the things we need to think carefully about when we join several
tables together is what data might be lost in the process. Inner joins, left
outer joins, and right outer joins can all lose information. Only a full outer
join always preserves all the information.

17-4 Be careful with an inner join

An inner join can lose more data than any other type of join. A row from
one of the beginning tables is lost unless there is a matching row in every
other table. If any of the tables has a null in a column used in the join con-
dition, then some data may be lost. The only time we can be certain an
inner join will not lose any information is when referential integrity pro-
tects the join condition between the tables. The more tables you use in an
inner join, the greater the chance of losing data.

Some aspects of inner joins do make them easy to use. When we use an
inner join we do not need to be concerned about which table comes first
and which comes second. The same result is produced either way. This is
sometimes expressed as:

A inner join B = B inner join A

Also, when we combine three or more tables with inner joins, the order in
which we combine them does not matter. The result is always the same.
This is sometimes expressed as:

(A inner join B) inner join C = A inner join (B inner join C)

17-5 Be careful with a left and right outer join

A left and right outer join restores some of the information lost by an inner
join, but it does not restore all of the lost data. Of course, a left outer join
and a right outer join are the same thing except for the order of the tables,
so I am talking about one type of join here, not two different types. This
means that we can turn all right outer joins into left outer joins by changing
the order of the tables.

A left (or right) outer join of two tables is fairly straightforward and easy to
understand. However, things get trickier when we use left outer joins to
combine three or more tables. The order in which we combine the tables
can make a difference — which two tables are joined first, which one is

LOSING INFORMATION 661

third, which one is fourth, and so on. This subtle difference can cause
errors that are not easy to detect.

17-6 A full outer join preserves all the information

A full outer join does not lose any information. It keeps all the information
in all of the tables. This is nice from the perspective of the application pro-
grammer. On the other hand, it requires more computing resources, so use
it only when you need to.

Full outer joins also have the nice properties of inner joins. We do not need
to be concerned about which table comes first and which one comes sec-
ond. That is:

A full outer join B = B full outer join A

Also, when we combine three or more tables with full outer joins, the order
in which we combine them does not matter. The result is always the same.
That is:

(A full outer join B) full outer join C = A full outer join (B full outer join C)

17-7 A full outer join of several tables

Because full outer joins preserve all of the information, why don’t we use
them all of the time? Some people do. This can be a good practice, particu-
larly when you are working with several small tables that are often not com-
pletely consistent with each other.

In general, we are discouraged from using full outer joins all the time, par-
ticularly when we are working with large tables. Why? A full outer join
requires more computer resources to process than an inner join. Some-
times people are trying to protect the computer when they tell you not to
use a full outer join.

When I am developing new code and working with tables with which I am
not completely familiar, I use a full outer join whenever I think I might need
one. When I create code that will run frequently — every day, every week, or
even once a month, then I try to use inner joins whenever I can.

People sometimes ask me how to combine three or more tables with full
outer joins. If you do it as a series of steps, it is simple and easy to do, as
shown in the following task. If you try to do it all in one select statement,
it will be quite difficult.

CHAPTER 17 COMBINING TABLES IN A PRODUCTION DATABASE662

Join three tables: l_employees, l_departments, and l_lunches. Join all
the tables with full outer joins.

The point here is the technique of writing the SQL code, so I do not show
you the beginning tables and result table.

-- step 1: create a full outer join from two of the tables
create or replace view sec1707a_view as
select a.*,
 b.lunch_id,
 b.lunch_date,
 b.date_entered
from l_employees a
 full outer join l_lunches b
 on a.employee_id = b.employee_id;

/* step 2: create a full outer join from the results of
step 1 and the third table
*/

create or replace view sec1707b_view as
select a.*,
 b.department_name
from sec1707a_view a
 full outer join l_departments b
 on a.dept_code = b.dept_code;

Step 1: Enter this code in the SQL window:

select a.*,
 b.lunch_id,
 b.lunch_date,
 b.date_entered
from l_employees a
 left outer join l_lunches b
 on a.employee_id = b.employee_id

Task

Oracle SQL

Access SQL

CARING ABOUT THE EFFICIENCY OF YOUR COMPUTER 663

union
select a.*,
 b.lunch_id,
 b.lunch_date,
 b.date_entered
from l_employees a
 right outer join l_lunches b
 on where a.employee_id = b.employee_id;

 Save this query. Name it sec1707a_view.

Step 2: Enter this query in the SQL window:

select a.*,
 b.department_name
from sec1707a_view a
 left outer join l_departments b
 on a.dept_code = b.dept_code
union
select a.*,
 b.department_name
from sec1707a_view a,
 right outer join l_departments b
 on a.dept_code = b.dept_code;

 Save this query. Name it sec1707b_view.

Caring about the Efficiency of Your Computer

If you are going to combine several large tables together, you should be
aware of the effect this might have on your computer. If you are running on
your own computer, your query might take a long time to run. Some queries
can run for several hours.

If you are running on a shared computer, a long-running query can affect
the other people using the computer and it can cost a lot of money.

17-8 Monitor your queries

It is a good idea to monitor your queries in some way, particularly when
you are handling several large tables. I consider a table to be large when it
has more than 100,000 rows.

CHAPTER 17 COMBINING TABLES IN A PRODUCTION DATABASE664

It is good to have an approximate idea of the number of rows of the begin-
ning tables, the number of rows you expect in the result, and how long you
expect the query to run. If you expected a result in less than two minutes
and your query has been running for more than 20 minutes, you might want
to stop the processing and examine your code.

In many shops you can also monitor the cost of your queries. This is an
approximate measure of the amount of computer resources required to
process the query. Do not try to be too precise about the cost, because the
accounting procedures that produce the cost are usually not very accurate.

Sometimes you might want to ask for help from another programmer or
your DBA. The next sections may also give you some hints.

17-9 Use the indexes

One way to improve the efficiency of your queries is to use the indexes that
the database has. You need to find out which columns have indexes on
them. Try to use those columns in your join conditions and when you place
selection conditions in the where clause. Most databases already have
indexes on all the columns intended for use in join conditions.

Here is one of my experiences involving indexes. Once I was writing some
queries at a large company and every time I wrote a query using a particular
table, the query would time out. When a query times out, this means that
the query has processed in the computer for the maximum time allowed,
which was about an hour at that shop. When I submitted one of these que-
ries, it would run for an hour, then I would get an error message from the
operating system, no result table, and a bill for $3,000.

I investigated this by going to the Data Dictionary and looking for the
indexes on the table. I found that an index was missing. I told the DBA,
and within two days the index was built. Then my queries ran in just a few
minutes.

17-10 Select the data you want early in the process

Another way to improve the efficiency of your queries is to select the data
you want early in the process. Make the beginning tables as small as possi-
ble before you join them. In other words, don’t ask the computer to handle
rows of data that you know you will not use.

CARING ABOUT THE EFFICIENCY OF YOUR COMPUTER 665

This is fairly simple to do if you organize your code as a series of steps. Just
put steps at the beginning that eliminate some of the rows from each
beginning table.

If the optimizer always worked perfectly, it would do this for you automati-
cally. However, most optimizers are not that smart yet, so it is worthwhile
for you to try doing it yourself.

17-11 Use a table to save summarized data

Sometimes we may develop a small amount of data, perhaps a few thou-
sand rows, from several tables that are much larger, using a query that runs
for an hour. If we anticipate using this information several times or if we
intend to do some complex manipulations on it, we might want to save it
in a table rather than a view.

If we saved it as a view, the information would need to be created afresh
each time we wanted to use it. By saving it in a table we know that it only
needs to be created once.

We did this at a company I worked for. The company had more than 10,000
employees and an accounting system that kept track of every penny each
person spent. There were 2 million rows of data generated each month.
Once a month we would summarize these expenses into 500 categories and
save the data in a table. Then we would run all the monthly budgeting
reports from the summarized data in that table, instead of running them
from the raw data.

17-12 Try several ways of writing the SQL

Suppose you have a long-running query that is scheduled to process regu-
larly — daily, weekly, or even monthly. You might try to write the SQL in
several different ways to see if you can find one way that is more efficient
than the others. For instance, you might try combining the tables in a dif-
ferent order, or you might try using a subquery instead of a join. This type
of experimentation is not worth doing if the query is only run occasionally,
but it can pay off when the query is run many times.

CHAPTER 17 COMBINING TABLES IN A PRODUCTION DATABASE666

Standardizing the Way That Tables Are Joined

You should seldom have to invent ways to join tables. You should just fol-
low the pattern that has already been set up by the designers of the data-
base. If a view has been created that joins all the tables together, then you
can use that view to get information as if it were a single table.

17-13 The joins are part of the database design

Usually the people who design the database tables also design a way for
those tables to be joined. You should almost always follow their design.
You should not have to guess or make things up yourself. However, this
information is not always communicated very clearly.

Sometimes the names of the columns suggest how to make the join. All the
columns with identical names should be joined. Sometimes you can look
at code other people have written to see what join conditions they used.
Your DBA may be able to help. Rarely will it be worthwhile to try to find the
documents from the database design team. Occasionally, the database
may have changed and evolved, which could mean that you will need to
use a different join condition.

17-14 A view can standardize the
way tables are joined

If the tables in a database are fairly small, we can set up one view that com-
bines the data from all of the tables. Then anyone who wants information
from the database can select it from this one view. It is as if the whole data-
base were one table. The following example creates a view like this for the
Lunches database.

If the database contains several large tables, we usually do not combine
them into a single view because that could consume too much of the com-
puter’s resources. However, we might create a few views that combine two
or three of the tables at a time.

The view created in this section contains all the employees, even the ones
who are not attending any of the lunches. It also contains all the foods,
even the one that has not been ordered. However, it contains only the
departments that have employees in them and only the suppliers that are
supplying foods on the current menu.

STANDARDIZING THE WAY THAT TABLES ARE JOINED 667

Create a single view that combines all the tables of the Lunches database.
Name this view all_lunches_view.

create or replace view sec1714a_view as
select a.*,
 b.department_name
from l_employees a,
 l_departments b
where a.dept_code = b.dept_code;

create or replace view sec1714b_view as
select a.*,
 b.business_name,
 b.business_start_date,
 b.lunch_budget,
 b.owner_name
from sec1714a_view a,
 l_constants b;

create or replace view sec1714c_view as
select a.*,
 b.lunch_id,
 b.lunch_date,
 b.date_entered
from sec1714b_view a
 left outer join l_lunches b
 on a.employee_id = b.employee_id;

create or replace view sec1714d_view as
select a.*,
 b.supplier_name
from l_foods a
 left outer join l_suppliers b
 on a.supplier_id = b.supplier_id;

Task

Oracle SQL

CHAPTER 17 COMBINING TABLES IN A PRODUCTION DATABASE668

create or replace view sec1714e_view as
select a.*,
 b.lunch_id,
 b.item_number,
 b.quantity
from sec1714d_view a
 left outer join l_lunch_items b
 on a.supplier_id = b.supplier_id
 and a.product_code = b.product_code;

create or replace view sec1714_all_lunches_view as
select a.*,
 b.supplier_id,
 b.product_code,
 b.menu_item,
 b.description,
 b.price,
 b.price_increase,
 b.supplier_name,
 b.item_number,
 b.quantity
from sec1714c_view a
 full outer join sec1714e_view b
 on a.lunch_id = b.lunch_id;

Step 1: Enter this query in the SQL window:

select a.*,
 b.department_name
from l_employees a,
 l_departments b
where a.dept_code = b.dept_code;

Save the query. Name it sec1714a_view.

Step 2: Enter this query in the SQL window:

select a.*,
 b.business_name,
 b.business_start_date,
 b.lunch_budget,
 b.owner_name
from sec1714a_view a,
 l_constants b;

Save the query. Name it sec1714b_view.

Access SQL

STANDARDIZING THE WAY THAT TABLES ARE JOINED 669

Step 3: Enter this query in the SQL window:

select a.*,
 b.lunch_id,
 b.lunch_date,
 b.date_entered
from sec1714b_view a
 left outer join l_lunches b
 on a.employee_id = b.employee_id;

Save the query. Name it sec1714c_view.

Step 4: Enter this query in the SQL window:

select a.*,
 b.supplier_name
from l_foods a
 left outer join l_suppliers b
 on a.supplier_id = b.supplier_id;

Save the query. Name it sec1714d_view.

Step 5: Enter this query in the SQL window:

select a.*,
 b.lunch_id,
 b.item_number,
 b.quantity
from sec1714d a
 left outer join l_lunch_items b
 on a.supplier_id = b.supplier_id
 and a.product_code = b.product_code;

Save the query. Name it sec1714e_view.

Step 6: Enter this query into the SQL window:

select a.*,
 b.supplier_id,
 b.product_code,
 b.menu_item,
 b.description,
 b.price,
 b.price_increase,
 b.supplier_name,
 b.item_number,
 b.quantity
from sec1714c_view a
 left outer join sec1714e_view b
 on a.lunch_id = b.lunch_id

CHAPTER 17 COMBINING TABLES IN A PRODUCTION DATABASE670

union
select a.*,
 b.supplier_id,
 b.product_code,
 b.menu_item,
 b.description,
 b.price,
 b.price_increase,
 b.supplier_name,
 b.item_number,
 b.quantity
from sec1714c_view a
 right outer join sec1714e_view b
 on a.lunch_id = b.lunch_id;

 Save the query. Name it sec1714_all_lunches_view.

Result table — The result table has 25 columns and 74 rows

17-15 Ad hoc reporting

Sometimes a database is called on to do things that it was never designed
to do. Sometimes a business needs to respond to unforeseen changes.
Maybe the currency rate has changed. Maybe Congress is considering a
new law and we need to estimate how it will affect the business. At such
times the database can be looked on as a resource, a vast collection of
data. People try to use the database to fill their immediate needs, even if it
was not designed for that purpose. This is always a bit unreliable, but it can
provide some information.

An ad hoc report is meant to run only once. The database can be used in
some very creative ways. One of the features of a relational database that is
supposed to help with ad hoc reporting is that it is possible to join tables
together in ways that the designers never imagined.

KEY POINTS 671

Key Points

■ If you have a complex project, try to break it up into a series of simpler
steps, instead of trying to do it all at once. Then each piece will be
easier to do. Also, if you make some mistakes like I do, they will be
easier to find and correct. If you create a view from each step, you will
only need to run the last step and all the preceding steps will run
automatically. If you are looking for possible errors, you can run each
step individually.

■ Try to join just two tables together at a time. Lookup tables can be an
exception to this if you are sure that the lookup table always has a
matching row. You can be sure of this when the lookup table is pro-
tected by referential integrity.

■ If you combine tables with an inner join, be aware that some informa-
tion could be dropped from the result. This is also a concern with left
and right outer joins.

■ If you combine tables with left and right outer joins, be aware that
your result depends on the specific order in which the tables are com-
bined.

■ If you combine tables with full outer joins, be aware of how much
computer processing this requires.

■ Usually the tables of a database are designed to be joined together in
one specific way. It is usually best to follow the method that other
people are using.

■ When you deal with a large database you should often monitor your
query. You should have some rough idea of how long it will take to run
and how many rows it will produce. If it takes too long to run or pro-
duces too many rows, investigate why this happened.

■ The tables may be combined in many ways. You can use an inner join,
three types of outer join, union, cross join, or self join. All the report-
ing that comes later depends on the way the tables have been com-
bined, so it is important to make sure it has been done correctly.
Because the data in the tables changes, it is important to write code
that can deal with any data that could be put into the tables, not just
the data that is there right now.

CHAPTER 17 COMBINING TABLES IN A PRODUCTION DATABASE672

■ The two major problems when combining several tables are loss of
data and use of excessive computer resources. Loss of data can occur
if the tables are not combined correctly. This is sometimes difficult to
detect. The data just seem to disappear. It requires careful checking to
make sure that you are getting all the data you think you should have.

■ Databases have often been accused of requiring excessive computer
resources. It is hard to know if that is true or not. However, certainly if
a query is to be run daily, we should pay attention to the amount of
resources it consumes. Sometimes a small change can make a query
run much more efficiently.

673

chapter 18

This chapter discusses three important topics that do not fit into
the framework of the rest of the book. The first topic discusses
if-then-else logic. Oracle implements this with the decode
function. Access uses the Immediate If (iif) function. These
functions do not introduce any new power into SQL, but they
make some queries easier to write.

The second topic is parameter queries. This type of query asks
you some questions before it runs. For example, it might ask,
“What are the beginning and ending dates?” The answers you
provide are used to modify the SQL, so the result is tailored to
your needs.

The last topic is subqueries. When one query is written inside
another query, it is called a subquery. This was once considered
to be the most important feature of SQL, but now its use has
diminished and it is only used occasionally.

In this chapter some of the Oracle code contains SQL*Plus
commands. You need these when you run in the Oracle SQL
Command Line environment. However, the Oracle Home Page
environment does not support SQL*Plus and will usually ignore
these commands.

IF -THEN-ELSE,
PARAMETER

QUERIES, AND
SUBQUERIES

If-Then-Else Logic. 675

18-1 The case and decode functions in Oracle .675
18-2 The Immediate If (iif) function in Access .680
18-3 Attaching messages to rows .683
18-4 Dividing data from one column into two different columns685
18-5 Applying two functions to different parts of the data.687

Parameter Queries. 689

18-6 A parameter query in Oracle .690
18-7 Using a parameter more than once in Oracle .693
18-8 More ways to define parameters in Oracle .695
18-9 A parameter query in Access. .698

18-10 A query in Access with two parameters .699
18-11 Limitations on parameters in Access .700

Subqueries . 700

18-12 Introduction to subqueries .701
18-13 Subqueries that result in a list of values. .703
18-14 Subqueries that result in a single value .706
18-15 Avoid using not in with nulls .708

Applications of Subqueries . 710

18-16 Subqueries used in an update command .710
18-17 Finding the difference between two tables .712
18-18 Using the most current data .714

Older Features of Subqueries . 714

18-19 Correlated subqueries. .714
18-20 Subqueries using exists .716
18-21 Using a subquery to write an outer join .717
18-22 Nested subqueries. .718
18-23 Subqueries can be used in limited locations .719
18-24 Many subqueries can also be written as a join. .719

Key Points . 719

675

If-Then-Else Logic

The original design of SQL intentionally omitted the if-then-else and
goto constructs. They were considered to add too much complexity. The
objective was to keep the SQL language very simple and straightforward.

Sometimes people say that the case and decode functions in Oracle
introduces if-then-else logic into SQL. The examples in this section
show what they mean by this statement. They imply that this makes SQL
more powerful and capable of doing new things.

Actually, most things that can be done using these functions can also be
done using a union. No new capabilities are added. However, the case
and decode function does make many SQL statements easier to write.

In Access, the Immediate If (iif) function can do many of the things that
the Oracle functions can do.

18-1 The case and decode functions in Oracle

The decode function is an extension that Oracle has added to standard
SQL. It names some specific values that will be turned into other values. It
performs a series of tests to determine whether the data in the column are
equal to one of a few specific values. If one of these values is matched, it
places a new value in the column. Otherwise, if none of the specific values
is matched, it places a default value (else-value) in the column.

This is based on a series of tests for an Equal condition. It can also test for
a Less Than or Greater Than condition by using a trick with the sign func-
tion that I show you in section 18-3.

Oracle syntax for the decode function
DECODE(tested_value,
 if_1, then_1,
 if_2, then_2,
 ...
 default_value)

where

tested_value = a column of a table or a row function.

If tested_value equals if_1, then the decode function equals then_1.

If tested_value equals if_2, then the decode function equals then_2.

And so on.

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES676

If tested_value is not equal to any of the if values, then the decode
function equals the last value, in the default_value position.

The if value, the then value, and the default_value may be:

■ A literal (of any data type)

■ A null

■ A column

■ A row function, using one or several columns in a single row

Oracle case function
The case function is a more modern version of the decode function. It
works in a similar way. I think you will be able to understand the examples
without any more explanation, because the logic is very similar to the logic
of the decode function.

The syntax of the case function is cleaner and easier to understand. It also
has more power and capabilities. What I show you here is just part of what
it can do.

Show an example using the decode function in Oracle. Substitute carrots for
broccoli in the menu of lunch foods.

-- Override a value in one column.
select decode(description, ➊

 'BROCCOLI', 'CARROTS', ➋

 description) as new_menu, ➌

 price
from l_foods;

-- Override a value in one column.
select case when description = 'BROCCOLI' then 'CARROTS' ➊➋

 else description ➌

 end as new_menu, ➍

 price
from l_foods;

Task for example 1

Oracle SQL using the decode function

Oracle SQL using the case function

IF-THEN-ELSE LOGIC 677

Beginning table (l_foods table)

Result table

➊ The change is based on the data in the description column.

➋ If the value in the description column is broccoli, then change it to
carrots.

➌ Otherwise, if the value in the description column is not broccoli, the
value of this function is equal to the value in the description column.

➍ The case statement must finish with the word end.

➎ This is the row that was changed.

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- ----------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

NEW_MENU PRICE
-------------------- -----------
FRESH SALAD $2.00
SOUP OF THE DAY $1.50
SANDWICH $3.50
GRILLED STEAK $6.00
HAMBURGER $2.50
CARROTS $1.00 ➎

FRENCH FRIES $1.50
SODA $1.25
COFFEE $0.85
DESSERT $3.00

Notes

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES678

The decode function in task 1 changed the value in a single column. To
change several columns, we must use the functions several times, once for
each column. In addition to the changes we made in task 1, change the price
of the carrots to $1.20.

-- Override the values in two columns.
select decode(description,
 'BROCCOLI', 'CARROTS',
 description) as new_menu,
 decode(description, ➊

 'BROCCOLI', 1.20, ➋

 price) as price ➌

from l_foods;

-- Override the values in two columns.
select case when description = 'BROCCOLI' then 'CARROTS'
 else description
 end as new_menu,
 case when description = 'BROCCOLI' then 1.20 ➊ ➋

 else price ➌

 end as price
from l_foods;

Result table

Task for example 2

Oracle SQL using the decode function

Oracle SQL using the case function

NEW_MENU PRICE
-------------------- --------
FRESH SALAD $2.00
SOUP OF THE DAY $1.50
SANDWICH $3.50
GRILLED STEAK $6.00
HAMBURGER $2.50
CARROTS $1.20 ➍

FRENCH FRIES $1.50
SODA $1.25
COFFEE $.85
DESSERT $3.00

IF-THEN-ELSE LOGIC 679

➊ To determine which row will receive the changed value, we test the
description column, even though it is the price column that is being
changed. We do this because we only want to change one price of one
item and it is the value in the description column that tells the com-
puter which row to change.

➋ If the description column is equal to broccoli, then we change the
price to $1.20. You might think that because we want to change the price
of the carrots, we should use carrots in this test, but the data comes
from the beginning table, and there the value is broccoli.

➌ Otherwise, for all rows except the one for broccoli, the value of this
function is equal to the value in the price column.

➍ This is the row that has been changed. Only the value in the result table
is changed. The value in the beginning table is not changed.

One of the ways that if-then-else logic is often used is to replace a
lookup table. This can be handy when a lookup table is not available and you
do not have permission to create a new table.

For example, suppose you are working with the data in the l_employees
table. Suppose the lookup table l_departments does not exist or you
have not been given permission to use it. Suppose you want to translate
the dept_code fields into departments’ names. You might find yourself in
a position where the only way you have to do this is to use if-then-else
logic.

Write an SQL query from the l_employees table (without using the
l_departments table) that shows the employee_id, first_name,
last_name, and department name. Get the department name from the
dept_code field by using if-then-else logic.

Notes

Check your understanding

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES680

18-2 The Immediate If (iif) function in Access

The Immediate If (iif) function is used to create an if-then-else condi-
tion in Access. This is an extension to standard SQL that Access has added.
It tests a statement to determine whether it is true or false. It assigns one
value to the function if the statement is true and a different value if the
statement is false.

The condition used in the test can be any SQL condition, including:

■ Equal

■ Less Than

■ Greater Than

■ In

■ Between

■ Like

■ Is null

Access syntax for the immediate if function (iif)

iif(true_or_false_expression, true_value, false_value)

where

true_or_false_expression is any statement resulting in a value of
True or False. In Access, False is the value 0 and True is any other value.
The value used most frequently for True is –1.

true_value is the final value of the iif function when the statement in
the first parameter is True.

false_value is the final value of the iif function when the statement
in the first parameter is False or Unknown. .

IF-THEN-ELSE LOGIC 681

Show an example of an SQL statement using the iif function. Substitute
carrots for broccoli in the menu of lunch foods.

select iif(description = 'BROCCOLI', 'CARROTS',
 description) as new_menu,
 price
from l_foods;

Beginning table (l_foods table)

Result table

Task for example 1

Access SQL

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES682

In addition to the changes you made in task 1, change the price of the carrots
to $1.20.

select iif(description = 'BROCCOLI',
 'CARROTS', description) as new_menu,

 iif(description = 'BROCCOLI',
 1.20, a.price) as price ➊

from l_foods a;

Result table

➊ In Access, I write “a.price” to say it is a column from the beginning
table. The “a” is a table alias for the l_foods table, which is assigned in
the from clause. This distinguishes it from the column alias price,
which is assigned in the select clause of this SQL statement and deter-
mines the heading for the column in the result table.

If you do not make this distinction, Access becomes confused, and can-
not run the SQL.

Do the same task as “Check your understanding” for the previous section.
This time perform the task in Access, rather than Oracle.

Task for example 2

Access SQL

Notes

Check your understanding

IF-THEN-ELSE LOGIC 683

18-3 Attaching messages to rows

The decode, case, and iif functions can be used to attach messages to
certain rows. These messages might convey information, flag exceptions,
issue warnings, or show errors. This can also be done with a union.

The task of this section is the same as in section 15-11 in which the SQL
code was written with a union. Here it is written using the decode, case,
and iif functions.

Which way of writing the code is best? In this example, I like the Oracle
code using the case function. It says what it is doing most clearly in simple
words. The code for the Oracle decode function seems tricky and difficult to
understand.

List the foods and their prices. Add the message “expensive item” to the
foods that cost more than $2.00. List the foods in alphabetical order.

select description,
 price,
 decode(sign(price - 2.00), ➊

 +1, 'EXPENSIVE ITEM',
 0, ' ',
 -1, ' ',
 null, ' ') as message
from l_foods
order by description;

select description,
 price,
 case when price > 2.00 then 'EXPENSIVE ITEM'
 else ' '
 end as message
from l_foods
order by description;

Task

Oracle SQL — Using decode

Oracle SQL — Using case

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES684

select description,
 price,
 iif (price > 2.00, 'EXPENSIVE ITEM', ' ')

 as message
from l_foods
order by description;

Beginning table (l_foods table)

Result table

➊ In Oracle, the sign function allows decode to cover a range of values,
rather than just a few specific values. This is a trick. We take the price
and subtract $2.00 from it. Then we test the result to see if it is positive
or negative. The result is positive when the price is greater than $2.00.

Access SQL — Using iif

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- ----------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

DESCRIPTION PRICE MESSAGE
-------------------- ----------- --------------
BROCCOLI $1.00
COFFEE $0.85
DESSERT $3.00 EXPENSIVE ITEM
FRENCH FRIES $1.50
FRESH SALAD $2.00
GRILLED STEAK $6.00 EXPENSIVE ITEM
HAMBURGER $2.50 EXPENSIVE ITEM
SANDWICH $3.50 EXPENSIVE ITEM
SODA $1.25
SOUP OF THE DAY $1.50

Notes

IF-THEN-ELSE LOGIC 685

The value of the sign function is +1 for all positive numbers. It is -1 for
all negative numbers. Otherwise, it is 0 or null. In this example, the
sign function creates a +1 when the price is more than $2.00, a 0 when
the price is equal to $2.00, a -1 when the price is less than $2.00, and a
null when the price is null.

This trick reduces a range of values to four distinct possibilities.

List all the employees from the l_employees table. Include their
hire_date. Use if-then-else logic to define a message field. When the
hire date is before the year 2000, add the message “Old Guard.” When the
hire date is after the year 2005, add the message “Young Turk.”

18-4 Dividing data from one column
into two different columns

The decode, case, and iif functions can be used to divide the data in one
column into two columns. This is done to make the information easier for
people to absorb. The task in this section is the same as in section 15-12,
where the SQL was written using a union.

Divide the cost column from the beginning table into two columns: debits
and credits.

set null ' '; ➊

select item,
 decode (sign(cost),
 +1, null,
 0, null,
 -1, cost,
 null, null) as debits,
 decode (sign(cost),
 +1, cost,
 0, cost,
 -1, null, ➋

 null, null) as credits
from sec1804_finances
order by item;

Check your understanding

Task

Oracle SQL — Using the decode function

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES686

set null ' '; ➊

select item,
 case when cost < 0 then cost
 else null ➋

 end as debits,
 case when cost >= 0 then cost
 else null ➋

 end as credits
from sec1804_finances
order by item;

select item,
 iif(cost < 0, cost, ' ') as debits,
 iif(cost >=0, cost, ' ') as credits
from sec1804_finances
order by item;

Beginning table (sec1804_finances table)

Result table

Oracle SQL — Using the case function

Access SQL — Using the iif function

ITEM COST
------------------------- ------------
SAMSONITE SUITCASE -$248.13
RENT FOR APRIL $700.00
OPERA TICKET -$145.00
LUNCH -$15.62
DEBT REPAID BY JIM $20.00
CAR REPAIR -$622.98
HAIRCUT -$22.00
BIRTHDAY GIFT FROM MOM $200.00

ITEM DEBITS CREDITS
------------------------- ------------ ------------
BIRTHDAY GIFT FROM MOM $200.00
CAR REPAIR -$622.98
DEBT REPAID BY JIM $20.00
HAIRCUT -$22.00
LUNCH -$15.62
OPERA TICKET -$145.00
RENT FOR APRIL $700.00
SAMSONITE SUITCASE -$248.13

IF-THEN-ELSE LOGIC 687

➊ In Oracle, this command tells SQL*Plus to display nulls as blank spaces.
After running this query, you may want to see the nulls as (null) again.
If you do, you can use this command:

set null '(null)';

➋ In Oracle, the null here cannot be replaced with a space enclosed in sin-
gle quotes because the credits column is numeric, as cost is a num-
ber. We are not allowed to enter text values into a numeric column.

List all the employees from the l_employees table. Include their
hire_date. Use if-then-else logic to divide the hire dates into two differ-
ent columns. One column will contain all the hire dates before the year 2000.
The other column will contain all the hire dates after the year 2000.

18-5 Applying two functions to
different parts of the data

The decode, case, and iif functions can be used to apply one function to
part of the data and another function to the rest of the data. The task in this
section is the same as in section 15-13, where the SQL code was written
using a union.

Increase the price of all foods costing more than $2.00 by 5 percent.
Increase the price of all other foods by 10 percent. Ignore the
price_increase column.

Notes

Check your understanding

Task

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES688

select menu_item,
 description,
 decode (sign(price - 2.00),
 +1, price * 1.05,
 0, price * 1.10,
 -1, price * 1.10,

 null, null) as new_price
from l_foods
order by menu_item;

select menu_item,
 description,
 case when price > 2.00 then price * 1.05
 else price * 1.10
 end as new_price
from l_foods;

select description,
 iif(price > 2.00, price * 1.05, price * 1.10)

 as new_price
from l_foods;

Beginning table (l_foods table)

Oracle SQL — Using decode

Oracle SQL — Using case

Access SQL — Using iif

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- ----------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

PARAMETER QUERIES 689

Result table

List all the employees from the l_employees table. Include their
hire_date and credit_limit. Use if-then-else logic to increase the
credit limits. For employees hired before the year 2000, double their credit
limits. For other employees, increase their credit limits by 50 percent.

Parameter Queries

There are no variables in SQL. Everything about an SQL query must be spe-
cific — the literal values, the column names, and the table names. The
state of the data can be an unknown, because the data may be constantly
changing, but there are no unknowns within an SQL query or command.

In this chapter, we discuss two methods that take a step toward introducing
variables into SQL — parameter queries and subqueries. We have already
discussed another method, using a table of constants. In that method,
many of the literal values are put as data into a table instead of being
coded directly into the SQL. Usually a table of constants has only one row.

In a parameter query, the variables do not belong to the SQL itself; rather,
they belong to the environment that people use to submit SQL queries.

■ In Oracle Database Home Page, the environment is PL/SQL. Variables
are written with a colon before the name of the variable. For example:

:dog

 MENU NEW
 ITEM DESCRIPTION PRICE
------- -------------------- --------
 1 FRESH SALAD $2.20
 2 SOUP OF THE DAY $1.65
 3 SANDWICH $3.68
 4 GRILLED STEAK $6.30
 5 HAMBURGER $2.63
 6 BROCCOLI $1.10
 7 FRENCH FRIES $1.65
 8 SODA $1.38
 9 COFFEE $.94
 10 DESSERT $3.15

Check your understanding

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES690

■ In Oracle SQL Command Line, the environment is SQL*Plus. Vari-
ables are written with one or two ampersands before the name of the
variable. For example:

&dog or &&dog

■ In Access, the environment is the GUI layer, before the SQL query is
sent to the JET database engine for processing. Variables are written
enclosed in square brackets. For example:

[Enter the name of the dog]

You usually write a parameter query for an end user to run. At runtime, the
end user is asked to provide specific values for all the variables. These val-
ues are placed into the SQL statement before it is sent to the DBMS.

In the next few sections I mostly discuss the SQL Command Line environ-
ment for Oracle.

18-6 A parameter query in Oracle

A parameter query in Oracle is a select statement that contains variables.
These variables begin with an ampersand, such as &employee_id. When
SQL*Plus finds a variable beginning with &, it asks you for the value of the
variable. It substitutes the value you give to the variable into the select
statement, so that the select statement no longer contains any variables.
Then it sends that statement to the SQL level for processing.

In this section, you cannot type the commands directly into SQL*Plus. To
write a parameter query in Oracle, you must write it in Notepad and save it as
a file. This is called an Oracle script file. To run this file, enter “start” within
SQL*Plus, followed by the name of the file. An example of this follows.

Parameter queries are used to make the SQL code more flexible. The per-
son running the code can enter the values they need. Oracle allows you to
use parameters with all types of SQL statements.

Write an Oracle script file containing a parameter query. Make the query
prompt for a value of the employee_id number and have it return the row
for that employee from the l_employees table.

Task

PARAMETER QUERIES 691

Save this code in a file named c:\temp\sec1806a.txt.

-- Prepare SQL*Plus to run a parameter query
set echo off; ➊

set scan on; ➋

set define on;

-- Run the parameter query
select *
from l_employees
where employee_id = &employee_num; ➌

-- Return SQL*Plus to the standard settings
set scan off;
set define off;
set echo on;

start c:\temp\sec1806a.txt

When the code is run, the computer asks for information.
I enter 210 for the value of the employee_num field.

Result table

➊ This prevents detail messages from appearing on the screen. They are
irrelevant in this context.

➋ The next two lines set up the SQL*Plus environment to accept parame-
ter queries.

The set scan on tells SQL*Plus to scan SQL statements for variables,
which begin with an ampersand. The set define on allows SQL*Plus to
define variables.

➌ &employee_num is a variable. SQL*Plus will ask you what value you
want this variable to have.

Oracle SQL: Step 1 — Create a file using Notepad

Oracle SQL: Step 2 — Run the parameter query

Enter value for employee_num: 210

EMPLOYEE FIRST LAST DEPT CREDIT PHONE MANAGER
 ID NAME NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- -------- -------- ------ ------------ -------- ------ -------
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Notes

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES692

select *
from l_employees
where employee_id = :employee_num;

You can get to the SQL Commands page from the Oracle Database Home
Page. This query will not work as an SQL Script because a script is not
allowed to ask the user for parameter values.

The parameter query is entered into the SQL Commands page.

After you click the Run button, a new screen is shown to collect the values
of the parameters. Here I entered the value 202.

Oracle SQL: Enter this parameter query on the SQL Commands page

PARAMETER QUERIES 693

Then you click the Submit button in the Enter Bind Variables window and
the query will run.

The SQL Commands page now shows both the SQL statement and the result table.

Write a parameter query that asks the user to enter a department code and
then gives the user the full name of the department.

18-7 Using a parameter more than once in Oracle

In an Oracle script file, we might want to use the same variable several
times. To do this, we begin the name of the variable with two ampersands
(&&) the first time it occurs. When SQL*Plus encounters a variable begin-
ning with &&, it asks for a value of the variable and remembers the value
you have given to that variable. Then it will use that value whenever it finds
the variable again.

Write an Oracle script file containing a parameter query. Have the query
prompt for a value of the employee_id number and have it return all the
rows for that employee from the l_employees table and the l_lunches
table.

Check your understanding

Task

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES694

Save this code in a file named c:\temp\sec1807.txt.

-- Prepare SQL*Plus to run a parameter query
set echo off;
set scan on;
set define on;

-- Run the first parameter query
select *
from l_employees
where employee_id = &&employee_num; ➊

-- Run the second parameter query
-- without asking the user again for the Employee ID
select *
from l_lunches
where employee_id = &employee_num; ➋

-- Return SQL*Plus to the standard settings
undefine employee_num; ➌

set scan off;
set define off;
set echo on;

start c:\temp\sec1807.txt

When the code is run, the computer asks for information.
I enter 210 for the value of the employee_num field.

Result table

Oracle SQL: Step 1 — Create a file using Notepad

Oracle SQL: Step 2 — Run the parameter query

Enter value for employee_num: 210

EMPLOYEE FIRST LAST DEPT CREDIT PHONE MANAGER
 ID NAME NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- -------- -------- ------ ------------ -------- ------ -------
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

1 row selected.

 LUNCH EMPLOYEE
 LUNCH_ID DATE ID DATE_ENTERE
--------- ------------ -------- -----------
 7 16-NOV-2011 210 13-OCT-2011
 17 05-DEC-2011 210 21-OCT-2011

PARAMETER QUERIES 695

➊ &&employee_num prompts for the value, remembers it, and uses this
value whenever it encounters &employee_num again.

➋ The value of &employee_num has already been set, so you will not be
prompted for the value of this variable.

➌ This resets the SQL*Plus environment so that the value of the
&employee_num variable is no longer defined. Notice that in this state-
ment there is no & before the name of the variable.

Actually, this task cannot be done using the Oracle Home Page environment.
This task runs two queries with two different tables. In the SQL Command
environment, you can only run a single query. In the SQL Script environment,
you can run two queries, but parameter queries do not work in this environ-
ment because there is no interaction with the user.

Write a parameter query that asks the user to enter a department code and
then gives the user the full name of the department and the names of all the
employees in that department.

18-8 More ways to define parameters in Oracle

There are two other ways to define a parameter in an Oracle script file. One
way uses the define command:

define my_dog = jimmy;

The word define is followed by the name of the variable, an equal sign, and
the value of the variable. The semicolon is optional. This is useful if you want
to have variables in your code for your own use. You can use a variarble this
way to keep the code flexible. However, if another person runs the code, that
person will not be asked for the value of the variable at runtime.

The other way to define a parameter prompts the person who runs the code
for the value of the variable. It requires two commands. The prompt com-
mand asks a question. Then the accept command takes the response and
stores that response in a variable. For example:

prompt Enter the name of your dog;
accept my_dog char;

The accept command creates the variable. The word char at the end of the
command tells it to create a character variable to hold a text value. The

Notes

The Oracle Database Home Page method cannot do this task

Check your understanding

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES696

other options that can be used at the end of an accept command are nun-
ber and date.

When the variable is used where the substitution is intended to occur, the
name of the variable must be preceded with an ampersand. For example,

&my_dog

Save this code in a file named c:\temp\sec1808.txt.

-- Prepare the SQL*Plus environment
set echo off;
set scan on;
set define on;

-- Have SQL*Plus define three SQL*Plus variables. The value
-- of one variable is set here in the SQL*Plus script file.
-- The user is asked for values of the other two variables.
define table = l_employees; ➊

prompt Enter a valid Employee ID number; ➋

accept employee_num number; ➌

prompt Enter a valid Department code using uppercase letters;
accept depart_code char; ➍

-- Run two SQL queries using those variables
select *
from &table ➎

where employee_id = &employee_num;
select *
from &table
where dept_code = '&depart_code'; ➏

-- Return SQL*Plus to the standard settings
undefine table;
undefine employee_num;
undefine depart_code;
set scan off;
set define off;
set echo on;

start c:\temp\sec1808.txt

Oracle SQL: Step 1 — Create a file using Notepad

Step 2: Oracle SQL*Plus — Run the parameter query

PARAMETER QUERIES 697

When the code is run, the computer asks for information.
I enter 210 and then SAL.

Result table

➊ This define command creates a variable called table and gives it the
value l_employees. Notice that there is no ampersand at the beginning
of the word table when the variable is defined. However, there is an
ampersand in &table when the variable is used.

➋ This prompt command displays the message “Enter a valid Employee ID
number”. It does not have single quotes around the message. If you use sin-
gle quotes, they will appear in the message. The message is case sensitive.

➌ This accept command takes the value that has been entered and
assigns it to the variable employee_num. The variable is defined as a
numeric datatype.

➍ This accept command takes the value that has been entered and
assigns it to the variable depart_code. The variable is defined as a text
datatype.

➎ This line uses the &table variable, the value of which has already been
set by the define command.

➏ This line uses the &depart_code variable, the value of which has
already been set by the accept command. Notice that single quotes are
placed around the variable. These are required because it is a text item.
Without the quotes, after substitution, this line would read:

Enter a valid Employee ID number
210
Enter a valid Department code using uppercase letters
SAL

EMPLOYEE FIRST LAST DEPT CREDIT PHONE MANAGER
 ID NAME NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- -------- ------- ------ ------------ -------- ------ -------
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EMPLOYEE FIRST LAST DEPT CREDIT PHONE MANAGER
 ID NAME NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- -------- ------- ------ ------------ -------- ------ -------
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Notes

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES698

where dept_code = SAL

This would result in an error message. With the quotes, after substitu-
tion, this line reads:

where dept_code = 'SAL'

This is correct code.

Repeat the problem of the previous section, but use the methods shown in
this section.

Write a parameter query that asks the user to enter a department code and
then gives the user the full name of the department and the names of all
the employees in that department.

18-9 A parameter query in Access
Access automatically prompts you for the value of any variable it does not
recognize. It is tuned to prompt for parameter values. You may have
encountered this already. If you misspell the name of a column, it prompts
you to enter a value for that column. Usually, that is not what you want to
do, and this can create some strange error messages.

When you want to create a parameter query in Access, it is easy to do.
Access is always ready to accept parameters.

Write a procedure in Access that will ask for an employee ID number. After
the user enters this number, the procedure finds the information about that
employee in the l_employees table.

select *
from l_employees
where dept_code = [Enter a valid Department Code]; ➊

Check your understanding

Task

Access SQL

Prompt for information

PARAMETER QUERIES 699

Result table

➊ The text within the square brackets indicates a single parameter. The
actual text is used to prompt for the information. This technique will
work even without the square brackets, as long as the text contains no
spaces

Write a parameter query that asks the user to enter a department code and
then gives the user the full name of the department.

18-10 A query in Access with two parameters

When there are two or more parameters within a query in Access, the same
value is placed in all the parameters with the same name. If you want to put
different values in two parameters, you must give them different names.
The name of a parameter comes from the text that it prompts for.

Ask the person running the query for a beginning date and an ending date.
Then show the rows from the l_employees table for all the people hired
between those two dates.

select *
from l_employees
where hire_date between [date] and [date]
order by hire_date;

Notes

Check your understanding

Task

Access SQL — Incorrect

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES700

With this code, there will be only one prompt for date. The same value will
be placed into both parameters. The query returns only the rows for the
people hired on that one date.

select *
from l_employees
where hire_date between [Enter beginning date]

 and [Enter ending date]
order by hire_date;

Write a parameter query that asks the user to enter a department code and
then gives the user the full name of the department and the names of all the
employees in that department.

18-11 Limitations on parameters in Access

In Access, you can only use a parameter in a query to hold the place for a
specific value, such as “102,” “Bob,” or “March 4, 1906.” You cannot use a
parameter in the place of a column name or a table name. In contrast, Ora-
cle allows you to use a parameter for any word within a query.

Within an Oracle script file, the same parameter can be used in several
related queries. You cannot do this in Access, because the SQL window
only allows you to enter one query at a time.

Subqueries

A select statement that is embedded within another select statement is
called a subquery. In the following sections I discuss several variations on
this idea. Most of the time you do not have to use subqueries. There are
still a few places where you have to use them, and you may have to under-
stand code that was written 10 years ago when outer joins were not avail-
able and inner joins were less efficient than they are today.

Access SQL — Correct

Check your understanding

SUBQUERIES 701

18-12 Introduction to subqueries

When SQL was first created, people thought that subqueries would be the
most important feature of the language. One style of coding SQL, found in
older code, makes extensive use of subqueries. Some people still write
code this way, but this style has now fallen out of favor.

It has largely been replaced by a style that prefers to use joins when there is
a choice. There are three reasons for this change. One reason is that the
processing of joins has become much more efficient. Originally it was
thought that subqueries would always process much more quickly than
joins. In the past few years many improvements have been made to the
Optimizer that make joins more efficient. Now joins are often just as effi-
cient as subqueries, and sometimes even more efficient.

The second reason is that outer joins have now become a standard part of
the language. The early SQL standards, SQL-86 and SQL-89, did not
include outer joins. Subqueries were used to write them. Now most prod-
ucts support outer joins and they are included in the newest standard,
SQL-92. Now we can write an outer join without using a subquery.

The third reason is that code written with many subqueries is difficult to
understand and maintain. Code written with joins is often easier to under-
stand and modify when changes are needed, and other people can work
with the code more easily.

Show an example of a subquery. List the foods that cost less than the aver-
age price of all the items on the menu. List the descriptions and prices of
these foods. Sort the rows in ascending order on the description column.

select a.description,
 a.price
from l_foods a
where a.price <

order by a.description;

Task

Oracle & Access SQL

(select avg(b.price)
from l_foods b)

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES702

Beginning table (l_foods table)

Step 1: The subquery is processed first.

select avg(b.price)
from l_foods b;

Result table: Step 1

Step 2: The result is placed in the outer query.

select a.description,
 a.price
from l_foods a
where a.price <
order by a.description;

Step 3: The outer query is processed.

Result table

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
-------- ------- ------- -------------------- ----------- --------
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

How the computer processes this query

AVG(B.PRICE)

 2.31

DESCRIPTION PRICE
-------------------- -----------
BROCCOLI $1.00
COFFEE $0.85
FRENCH FRIES $1.50
FRESH SALAD $2.00
SODA $1.25
SOUP OF THE DAY $1.50

2.31

SUBQUERIES 703

Write an SQL query using a subquery. List all the employees who have a
credit limit that is greater than the average credit limit.

18-13 Subqueries that result in a list of values

Some subqueries result in a single value and others return a list of values.
Those are the only options. A subquery is not allowed to return any more
values than that. For example, it cannot return a table with several rows
and several columns. The reason is that the result of the subquery must fit
into the statement of the outer query. Within the context of an SQL state-
ment, only a single value or a list of values can make sense.

This section shows a subquery that results in a list of values. To make this
list work with the syntax of the outer join, the condition in the where
clause must be:

IN
or NOT IN

Find all the rows from the twos table where the number_2 column matches
a value in the number_3 column of the threes table.

select number_2,
 word_2
from twos
where number_2 in (select number_3 ➊

 from threes);

Check your understanding

Task for example 1

Oracle & Access SQL: Using the in condition

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES704

Beginning tables
twos table threes table

Result table ➋

➊ The result of this subquery is the list (3, 6, 9, 12, 15, 18, null). When this
list is substituted in the main query, the select statement is:

select number_2,
 word_2
from twos
where number_2 in (3, 6, 9, 12, 15, 18, null);

➋ The result of this subquery is the same as an inner join.

 NUMBER_2 WORD_2
--------- ------------
 2 TWO
 4 FOUR
 6 SIX
 8 EIGHT
 10 TEN
 12 TWELVE
 14 FOURTEEN
 16 SIXTEEN
 18 EIGHTEEN
 20 TWENTY
(null) NULL

NUMBER_3 WORD_3
--------- ------------
 3 THREE
 6 SIX
 9 NINE
 12 TWELVE
 15 FIFTEEN
 18 EIGHTEEN
(null) NULL

NUMBER_2 WORD_2
-------- ---------------
 6 SIX
 12 TWELVE
 18 EIGHTEEN

Notes

SUBQUERIES 705

Find all the rows from the twos table where the number_2 column does not
match any value in the number_3 column of the threes table.

select number_2,
 word_2
from twos
where number_2 not in (select number_3 ➊

 from threes
 where number_3 is not null);

Result table ➋

➊ The result of this subquery is the list (3, 6, 9, 12, 15, 18). The null has
been removed because the not in condition is used (see section 18-15).
When this list is substituted in the main query, the select statement is:

select number_2,
 word_2
from twos
where number_2 not in (3, 6, 9, 12, 15, 18);

➋ The row with a null in the number_2 column does not appear in the
result table.

First write an SQL query that results in a list of values. List the employee_ids
from the l_employees table where the hire date is after the year 2000.

Next use that query as a subquery within another query. List all the lunches
from the l_lunches table for those employees.

Task for example 2

Oracle & Access SQL: Using the not in condition

NUMBER_2 WORD_2
-------- -------------
 2 TWO
 4 FOUR
 8 EIGHT
 10 TEN
 14 FOURTEEN
 16 SIXTEEN
 20 TWENTY

Notes

Check your understanding

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES706

18-14 Subqueries that result in a single value

This section shows a subquery that results in a single value. One way to
ensure that there is only one value is to use a column function such as
max or sum. Here, the condition in the where clause can be any of the
following:

■ = (Equal)

■ <> (Not Equal)

■ < (Less Than) or <= (Less Than or Equal)

■ > (Greater Than) or >= (Greater Than or Equal)

■ IN

■ NOT IN

■ BETWEEN

Find the row of the twos table where the number_2 column is equal to the
maximum value in the number_3 column of the threes table.

select number_2,
 word_2
from twos
where number_2 = (select max(number_3) ➊

 from threes);

Beginning tables — Same as in the previous section

Result table

➊ This subquery results in the value 18. When this value is substituted in
the main query, the select statement is

select number_2,
 word_2
from twos
where number_2 = 18;

Task for example 1

Oracle & Access SQL: Using the Equal condition

NUMBER_2 WORD_2
--------- ---------------
 18 EIGHTEEN

Notes

SUBQUERIES 707

Find all the rows of the twos table where the number_2 column is not equal
to the maximum value in the number_3 column of the threes table.

select number_2,
 word_2
from twos
where number_2 <> (select max(number_3) ➊

 from threes);

Result table ➋

➊ This subquery results in the value 18.

➋ The row with a null in the number_2 column does not appear in the
result table.

First write an SQL query that results in a single value. List the average credit
limit for all the employees from the l_employees table.

Next, use that query as a subquery within another query. List all the
employees who have a credit limit above that value.

Task for example 2

Oracle & Access SQL: Using the Not Equal condition

NUMBER_2 WORD_2
--------- ------------
 2 TWO
 4 FOUR
 6 SIX
 8 EIGHT
 10 TEN
 12 TWELVE
 14 FOURTEEN
 16 SIXTEEN
 20 TWENTY

Notes

Check your understanding

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES708

18-15 Avoid using not in with nulls

If you use a subquery that generates a list of values and the subquery is
used in a where clause with the not in condition, you need to make sure
that the subquery excludes nulls from its list.

The SQL code for example 2 shows that no rows are selected when both of
the following conditions apply: The result of a subquery is a list that
includes a null, and the list is used with a not in condition. This makes
sense because a null is an unknown value. There are not any rows that we
can say are definitely not in a list, when the list contains an unknown value.
The following example shows how this works.

Find all the rows of the twos table where the number_2 column is equal to
one of the values in the number_3 column of the threes table. This SQL
code shows that the in condition is not affected by nulls.

select number_2,
 word_2
from twos
where number_2 in (select number_3 ➊

 from threes);

Result table

Find all the rows of the twos table where the number_2 column is not equal
to any of the values in the number_3 column of the threes table. You need
to be careful here because the number_3 column contains a null. The SQL
code here shows that nulls are critical when you are using the not in condi-
tion with a subquery.

Task for example 1

Oracle & Access SQL

NUMBER_2 WORD_2
--------- --------------
 6 SIX
 12 TWELVE
 18 EIGHTEEN

Task for example 2

SUBQUERIES 709

select number_2,
 word_2
from twos
where number_2 not in (select number_3 ➋

 from threes);

Result — The query runs, but there are no data in the result

select number_2,
 word_2
from twos
where number_2 not in (select number_3 ➌

 from threes
 where number_3 is not null);

Result table

➊ This subquery results in the list (3, 6, 9, 12, 18, null). The null in this list
does not cause a problem when it is used with an in condition.

➋ This subquery results in the list (3, 6, 9, 12, 18, null). The null in this list
causes a major problem when it is used with a not in condition. The
query runs, but it produces a message that says “no rows selected.”

➌ This subquery results in the list (3, 6, 9, 12, 18). The null is removed
by the where condition in the subquery. This list works with a not in
condition.

Oracle & Access SQL: Incorrect

Oracle & Access SQL: Correct

NUMBER_2 WORD_2
--------- ---------------
 2 TWO
 4 FOUR
 8 EIGHT
 10 TEN
 14 FOURTEEN
 16 SIXTEEN
 20 TWENTY

Notes

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES710

Applications of Subqueries

The sections that follow show you some of the ways in which subqueries
are most useful. You often have to use them in update statements, to com-
pare tables, or to select the most current data from your tables.

18-16 Subqueries used in an update command

Often you may be given several changes to make in the data of a large
table. If you use an update statement to make these changes, you will
need to use a subquery. In fact, you will need to use two subqueries: one in
the set clause and one in the where clause.

The subquery in the set clause gives new values to the column that is
being changed. The subquery in the where clause specifies which rows to
change. Without this second subquery, every value in the column is
changed. Many of these values are set to null.

Apply the updates given in the following table to change the manager_id
column of the sec1816_employees table.

I am going to show you two methods of coding this. Each method will
change the data in the table. I will use two different copies of the employees
table so that you can run both SQL statements and compare the results.

Beginning tables to be updated
(sec1816a_employees table and sec1816bb_employees table)

Task

EMPLOYEE FIRST LAST DEPT CREDIT PHONE MANAGER
 ID NAME NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- -------- -------- ----- ------------ -------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) (null)
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

APPLICATIONS OF SUBQUERIES 711

Beginning table of updates (sec1816_changes table)

update sec1816a_employees a
set a.manager_id = (select b.new_manager
 from sec1816_changes b

 where a.employee_id = b.emp_id);

Result table — Incorrect

➊ The incorrect SQL code placed nulls in the manager_id column of these
rows.

update sec1816b_employees a
set a.manager_id = (select b.new_manager
 from sec1816_changes b

 where a.employee_id = b.emp_id)
where a.employee_id in (select c.emp_id ➊

 from sec1816_changes c);

 EMP_ID NEW_MANAGER
--------- -----------
 206 204
 207 204
 209 205
 210 205

Oracle & Access SQL: Incorrect

EMPLOYEE FIRST LAST DEPT CREDIT PHONE MANAGER
 ID NAME NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- -------- -------- ----- ------------ -------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)➊

 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 (null)➊

 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 (null)➊

 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 (null)➊

 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 (null)➊

 206 CAROL ROSE ACT (null) (null) (null) 204
 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 204
 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 (null)➊

 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 205
 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 205

Notes

Oracle & Access SQL: Correct

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES712

Result table

➊ A second subquery is required to specify which rows to change.

➋ Changes are made only to the desired rows.

18-17 Finding the difference between two tables

This section shows you how to find the differences between two tables.
This method uses a subquery to remove all the rows that are identical in
the two tables, so only the rows that are different remain. Two tricks are
involved in this process.

The first trick concatenates all the columns of a table to form a single value.
A separator is placed between the columns. We used a similar trick in sec-
tion 11-9. This is necessary because a subquery is able to compare one list
of single values with another, but it cannot compare rows of values.

The second trick is to use two SQL queries. Each query finds all the rows in
one table that are not present in the other table. Therefore, two queries are
needed to find all the rows that do not match.

The Access code is very similar to the Oracle code, but you need to use &
for concatenation instead of ||.

Find all the rows of the sec1817_first table that are not identical to any
row of the sec1817_second table.

EMPLOYEE FIRST LAST DEPT CREDIT PHONE MANAGER
 ID NAME NAME CODE HIRE_DATE LIMIT NUMBER ID
-------- ------- -------- ------ ------------ ------- ------ -------
 201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
 202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
 203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
 204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
 205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
 206 CAROL ROSE ACT (null) (null) (null) 204 ➋

 207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 204 ➋

 208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
 209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 205 ➋

 210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 205 ➋

Notes

Task for example 1

APPLICATIONS OF SUBQUERIES 713

select *
from sec1817_first
where (number_1||'*'||word_1||'*'||date_1)
 not in (select (number_2||'*'||word_2||'*'||date_2)
 from sec1817_second);

Beginning tables
sec1817_first table sec1817_second table

Result table

Find all the rows of the sec1817_second table that are not identical to any
row of the sec1817_first table.

select *
from sec1817_second
where (number_2||'*'||word_2||'*'||date_2)
 not in (select (number_1||'*'||word_1||'*'||date_1)
 from sec1817_first);

Result table

Oracle SQL

NUMBER_1 WORD_1 DATE_1
--------- ---------- -----------
 1 ONE 01-DEC-2001
 2 TWO 02-DEC-2002
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005

NUMBER_2 WORD_2 DATE_2
-------- ----------- -----------
 3 THREE 03-DEC-2003
 4 FOUR 04-DEC-2004
 5 FIVE 05-DEC-2005
 6 SIX 06-DEC-2006
 7 SEVEN 07-DEC-2007

NUMBER_1 WORD_1 DATE_1
--------- ---------- -----------
 1 ONE 01-DEC-2001
 2 TWO 02-DEC-2002

Task for example 2

Oracle SQL

NUMBER_2 WORD_2 DATE_2
--------- ---------- -----------
 6 SIX 06-DEC-2006
 7 SEVEN 07-DEC-2007

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES714

18-18 Using the most current data

Sometimes you may need to use a subquery to get the most current data
out of a table. Some tables contain historic data as well as current data.

I had to do this when I was working with a table that received new data
every month. The old data were retained in the table. It would have been a
cleaner database design if the current data had been kept separate from
the historic data, but in this case the database tables were not designed
that way. I could not change the design, so I had to code around it.

I used a subquery to make sure the most current data was being used. My
SQL code looked something like this:

select ...
from historic_data
where data_date = (select max(data_date)
 from historic_data)

Older Features of Subqueries

I suggest you do not use the features shown in the following sections.
You need to understand them because they might be used in code that
you inherit, but they show an older way of using SQL that is rarely used
today.

18-19 Correlated subqueries

A correlated subquery is a subquery that contains a reference to the table
in the outer query. Because of this, a correlated subquery cannot be evalu-
ated before the outer query. In the following SQL code, the twos table is
named in the from clause of the outer query. The threes table is named in
the from clause of the subquery. However, the where clause of the sub-
query references both the twos table and the threes table.

Because of this reference, the subquery cannot be evaluated separately
from the outer query. They must be evaluated together. This is a com-
plex process and you might want to skip this section unless you need to
know it.

OLDER FEATURES OF SUBQUERIES 715

Step 1: A row is obtained from the twos table, which is the table of the
outer select statement. This could be any row, but we suppose it is the
row for the number 2. Next, the number 2 is placed into the subselect,
resulting in:

(select b.number_3
 from threes b
 where 2 = b.number_3)

This results in no values, so a list containing no values is plugged into the
outer select statement, which becomes:

select a.number_2,
 a.word_2
from twos a
where a.number_2 = null
order by a.number_2;

This select results in no values, so the number 2 does not become part of
the final result table.

Step 2: Another row is obtained from the twos table. This could be any
row, but we suppose it is the row for the number 6. Next, the number 6 is
placed into the subselect, resulting in:

(select b.number_3
 from threes b
 where 6 = b.number_3)

The result table of this subselect is the number 6, so the value 6 is plugged
into the outer select statement, which becomes:

select a.number_2,
 a.word_2
from twos a
where a.number_2 = 6
order by a.number_2;

This select results in the number 6, which comes from the twos table. So
the number 6 does become part of the final result table.

Step 3 through Step 10,000: This process is repeated for every row of the
twos table, however many there are.

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES716

Use a correlated subquery to find all the rows of the twos table that match
with a row of the threes table. Use the number columns of both tables to do
the match.

select a.number_2,
 a.word_2
from twos a
where a.number_2 = (select b.number_3
 from threes b

 where a.number_2 = b.number_3)
order by a.number_2;

Result table

18-20 Subqueries using exists

The word exists can be used in the where clause with a subquery. This is
always a correlated subquery. As shown earlier, the process of evaluating
this query goes through a separate step for every row of the table in the
outer query. A row of the outer query becomes part of the result table only
if there is at least one row when the subquery is evaluated.

Use a correlated subquery with exists to find all the rows of the twos table
that match with a row of the threes table. Use the number columns of both
tables to do the match.

select a.number_2,
 a.word_2
from twos a
where exists (select b.number_3
 from threes b

 where a.number_2 = b.number_3)
order by a.number_2;

Task

Oracle & Access SQL

NUMBER_2 WORD_2
--------- ---------------
 6 SIX
 12 TWELVE
 18 EIGHTEEN

Task

Oracle & Access SQL

OLDER FEATURES OF SUBQUERIES 717

Result table

18-21 Using a subquery to write an outer join

It used to be that if you wanted to use an outer join you had to write it
yourself using a subquery with not exists. You would not write code like
this today. The following example shows you how this used to be done. We
will form a left outer join of the twos table and the threes table.

There are two select statements that are combined with a union. The first
select statement forms the inner join of the two tables. The second
select statement adds back all the rows from the twos table that were
dropped by the inner join.

Form the left outer join of the twos table and the threes table. Show how
this code used to be written before outer joins were included in SQL.

select a.number_2, ➊

 a.word_2,
 b.number_3,
 b.word_3
from twos a,
 threes b
where a.number_2 = b.number_3
union all ➋

select a.number_2, ➌

 a.word_2,
 null, ➍

 null
from twos a
where not exists (select b.number_3 ➎

 from threes b
 where a.number_2 = b.number_3)

order by 1;

NUMBER_2 WORD_2
--------- ---------------
 6 SIX
 12 TWELVE
 18 EIGHTEEN

Task

Oracle & Access SQL

CHAPTER 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES718

Result table

➊ This select is an inner join of the twos table and the threes table.

➋ A union all can be used instead of union because no rows from the
first select will be duplicated by a row of the second select.

➌ This select lists the rows from the twos table that were dropped by the
inner join.

➍ In Oracle8i, replace this null with to_number (null). Oracle requires
the null to be declared as a numeric datatype. This is a workaround for a
problem in Oracle8i. Oracle9i has fixed this problem.

➎ A not exists is used with a correlated subquery to find the rows of the
twos table that were dropped by the outer join.

18-22 Nested subqueries

The SQL language allows you to nest subqueries 15 levels deep, but you
should never do this. I could not even bring myself to make an example for
you to see. It is acceptable to have one or two levels of subqueries. Beyond
that, the code is almost impossible to understand, change, and maintain. If
you find code like this, I recommend that you rewrite it.

 NUMBER_2 WORD_2 NUMBER_3 WORD_3
--------- --------------- --------- ---------------
 2 TWO (null) (null)
 4 FOUR (null) (null)
 6 SIX 6 SIX
 8 EIGHT (null) (null)
 10 TEN (null) (null)
 12 TWELVE 12 TWELVE
 14 FOURTEEN (null) (null)
 16 SIXTEEN (null) (null)
 18 EIGHTEEN 18 EIGHTEEN
 20 TWENTY (null) (null)
(null) NULL (null) (null)

Notes

KEY POINTS 719

18-23 Subqueries can be used in limited locations

It is sometimes said that subqueries can act as variables. However, they are
not very good variables because they have a limitation: They can only be
used in the where clause and the having clause. For instance, they cannot
be used in the select clause as a variable name for a column. They cannot
be used in the from clause as a variable name for a table.

18-24 Many subqueries can also be written as a join

The subqueries in the previous sections could also be written as joins. See
chapters 13 and 14 if you would like to compare the two methods. In most
cases I recommend you use joins because the code they produce is easier
to understand, maintain, and change.

If a query is run frequently, such as every day, the performance of the query
might be the most important issue. In some cases a subquery will run
faster than a join. In other cases, the join will run faster. You might have to
code a query both ways and test them to see which is faster.

Key Points

■ You can use if-then-else logic in a select statement. Many peo-
ple prefer this to using a union. I like to use a union because it is the
same in every type of SQL product. On the other hand, many people
find that if-then-else logic is easier to think about. The choice is
yours.

■ Parameter queries are useful if you want to make some decisions
about a query at the moment you are running it. They are also useful
if you are designing a query for someone else to run and you want
them to make some decisions at runtime. I often like to use a table of
constants instead of parameters. I feel that I have better control that
way. But some people like parameters better. Again, the choice is up
to you and your users.

■ Most of the time I avoid using subqueries by using outer joins
instead. But there are time when you may need a subquery. The most
common use of a subquery is in an update statement.

This page intentionally left blank

721

chapter 19

One of the most important features of a database is its ability to
coordinate the work of many people who are all using its data
at the same time. Many people can change the data and many
other people can run queries simultaneously. Each person can
work independently, as if he or she is working alone. The data-
base coordinates all the work and prevents conflicts.

In this chapter, I discuss only Oracle, so we can cover more
material more quickly. Access also has a way to implement
many of these same concepts and to set up a secure multiuser
environment. However, many of the details are different, so it
would be too complex to discuss both products at the same
time.

This chapter is an introduction to this topic. It covers the most
important points. If you need more detail, you can refer to the
Oracle or Access technical reference manuals.

THE
MULTIUSER

ENVIRONMENT

Database Configurations . 723

19-1 The single-user environment .723
19-2 The multiuser environment. .724
19-3 The distributed environment .725
19-4 Connecting via the Internet .726

Operating in a Multiuser Environment. 727

19-5 How to use a table you do not own .727
19-6 Synonyms .728
19-7 Snapshots .730

Security and Privileges . 732

19-8 Identifying the user .732
19-9 Privileges. .732

19-10 Roles .734
19-11 Several people can use the same table at the same time736

The Oracle Data Dictionary and the Multiuser Environment . 736

19-12 ALL versus USER .736
19-13 How to find the tables you want in the Data Dictionary737
19-14 How to find the meaning of the columns .737

Key Points . 738

723

Database Configurations

A database can be set up and configured in many ways. It can be set up to
be used by a single person, or it can be set up for thousands of people to
use with computers located in many different places. This configuration is
performed by the DBAs. As an end user or application programmer, you
simply use the computers you are given and many of the details of the con-
figuration are hidden from you. However, it is my experience that the
details are never completely hidden and understanding some of the basics
of the configuration is important for everybody using the database.

19-1 The single-user environment

So far in this book we have not discussed how the computer and database
are configured. That is what we discuss in this chapter. When you use SQL,
you may have pictured yourself working alone on your own computer. In
this configuration the database belongs to you, it runs on your own per-
sonal computer, and you are the only user.

This is one way a database can be set up. It is the default configuration for
Access. It is rare for Oracle to run this way, but it is possible. In fact, you
probably have run Oracle with this configuration as you studied this book.
The following illustration shows a single-user configuration.

One person working alone on his own computer. So far, this is the
configuration we have been working with throughout this book.

Bob

CHAPTER 19 THE MULTIUSER ENVIRONMENT724

19-2 The multiuser environment

In a multiuser configuration many people use the database at the same
time. The database is on a server. Each user has his or her own personal
computer. A network connects all the PCs to the server. Most of this chapter
discusses issues involved in this configuration.

Usually the database is installed on a userID that belongs to the applica-
tion, rather than to a particular user. Each user has his or her own userID.
All of these userIDs are installed on the same server.

Most of SQL works the same in this configuration as it does in the single-user
configuration. The main difference is in the names of the tables. To refer to
a table that belongs to a different userID, we use the format:

Owner_Name.Table_Name

For example, suppose the Lunches database has been installed on a userID
named “Lunches”. Suppose I am logged onto a different userID named
“John”. If I want to list all the data in the l_employees table, I would write:

select *
from lunches.l_employees;

Similarly, I could refer to any table that belonged to another user, if I had
permission to do so. The following illustration shows a multiuser configu-
ration.

Several people working together using a database on a shared server. This configuration is
often used in medium-sized companies.

Sue Bob Kate

Server

DATABASE CONFIGURATIONS 725

19-3 The distributed environment

In the previous configuration the database resided on a single server.
Sometimes the database can be distributed across several servers con-
nected in a network. The servers are often in diverse locations. Perhaps one
is in London, another is in San Francisco, and a third is in Tokyo. This is a
complex configuration and it can have many variations. We discuss it only
briefly in this section.

The distribution of data can take several forms. Usually some tables are on
one server and other tables are on another server. In Access, we use linked
tables. In Oracle, the servers are connected together on the software level
using database links. Again, the table names show this difference. In Ora-
cle, the format of the table names is:

Owner_Name.Table_Name@Database_Link

The server that you are logged onto is called your local server. Any other
server is called a remote server. If you have the right permissions, you can
access all the data in the distributed database this way. Database links
allow you to handle a distributed database as if it were a single integrated
database.

However, there is a serious problem: A query can be very inefficient if it
is getting a lot of data from a remote server. Moving a large amount of
data across the network can be very slow. There are two solutions to this
problem.

One solution is to design your queries so they only bring small amounts of
data across the network. This requires careful design and programming,
which can be a lot of work.

Another solution makes local copies of many of the tables that are on the
remote servers. In Oracle, these are called snapshots or materialized views.
In Access, they are called replicas and the process is called replication.
These copies are often set up to be read-only, but they can also be set up to
be updateable so you can do an insert, update, or delete to modify the
data.

This solves one problem, but it creates another. When you have two copies
of the same table, they may start to diverge, so you have the problem of
synchronization and setting a refresh rate.

Designing a distributed database is complex because you must consider
the network, the number of servers, the distribution of the data, which
tables to replicate, and how often to synchronize them. The following illus-
tration shows a distributed database.

CHAPTER 19 THE MULTIUSER ENVIRONMENT726

Several people working together using a database on several shared servers connected by a
network. This configuration is often used in large companies.

19-4 Connecting via the Internet

How are the servers connected to each other? And how are the users con-
nected to their local servers? There are many possibilities. It used to be
that this was always done on a private high-speed network. Now the Inter-
net can be used by some systems to connect to the users. You probably
noticed that the new user interface in Oracle uses your browser and takes
you to the Database Home Page.

Sue

Bob

Kate

Jill

John

Kiko

Sally Fred Tina

Server

Server Server

OPERATING IN A MULTIUSER ENVIRONMENT 727

Operating in a Multiuser Environment

When you work in a multiuser environment, you often need to use
tables you do not own. These tables may be in a remote location. You
might develop your own names for them, called synonyms, or you might
find that many of these complexities are hidden from you. Sometimes
when a table is in a remote location, you work with a local version of it
called a snapshot.

19-5 How to use a table you do not own

So far you have owned all the tables you have used. When you create a
table, view, or other database object, you are the owner of it. This gives you
the exclusive right to use it, change it, or delete it. You can also share it
with other people by giving them permission to use it. There are many dif-
ferent levels of permission you can grant to others.

When you have permission to use a table you do not own, you can refer to
it by writing the owner name and a period before the table name, in the fol-
lowing format:

owner_name.table_name

This section provides an example of using such a table name. Usually when
Oracle is installed, a demonstration userID is set up called HR and a table
called regions is created on it. You will list all the data in this table. First,
I must show you how to set this up.

In Oracle, list all the data in the table regions owned by HR. On your first
try, you will not be able to do this because HR has not shared the table with
you. Then you will log on as HR and give yourself permission to use this
table. Finally, you will go back to your own ID and show that you can now list
the data in this table.

Task

CHAPTER 19 THE MULTIUSER ENVIRONMENT728

Step 1: Log on to your own userID as usual. Then try to list the table.

select * from hr.regions;

You will get an error message saying that the table does not exist In fact,
the table does exist, but you do not yet have permission to use it.

Step 2: Log on to hr. The password is what you set it to after you installed
Oracle. Show that the table does exist by listing it. Then give yourself per-
mission to run a select statement with the table.

select * from regions;
grant select on regions to your_userid;

Replace your_userid with the name of your own userID in the grant
statememt.

Step 3: Log on to our own userID again and show that you can now list the
table.

select * from hr.regions;

Result table

19-6 Synonyms

In Oracle, a synonym is an alternate name for a table or view. It can also be
an alternate name for many other types of database objects, such as a
sequence or snapshot. A synonym itself is a database object. It is perma-
nent until you drop it. This contrasts with a table alias, which is also an
alternate name for a table or view. However, a table alias exists only while
a single select statement is running. It vanishes when the select state-
ment ends.

A synonym can be private or public. A private synonym can be used only by
the person (userID) who created it or owns it. A public synonym can be
used by anyone on any userID.

Oracle SQL

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa

OPERATING IN A MULTIUSER ENVIRONMENT 729

Synonyms are often used in a multiuser configuration or a distributed data-
base configuration. They are used to make the names of the tables or other
database objects simpler and easier to remember. Synonyms can hide the
owner name or the name of the database link. They can create the illusion
that you are working in a single-user configuration by hiding the complex
names of objects in the other configurations.

Create a synonym for the l_employees table on the lunches userID of the
denver server. Give it the name d_employees.

create synonym d_employees
for lunches.employees@denver;

➊ You can run this code and create the synonym, but you will not be able
to use it unless you happen to have a remote server named denver.

Create a synonym for the regions table owned by HR. Give this synonym the
name my_regions. You already have permission to use a select statement
with this table. A synonym will allow you to use a simpler name for this table,
as if it were your own table.

Then list all the data in this table using the synonym in the select statement.

Log in to your own userID. Then enter:

create synonym my_regions for hr.regions;
select * from my_regions; ➊

Result table ➋

Task for example 1

Oracle SQL: This shows an idea. It is not meant to work ➊

Notes

Task for example 2

Oracle SQL

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa

CHAPTER 19 THE MULTIUSER ENVIRONMENT730

➊ my_regions is a synonym for hr.regions which is the regions table
owned by hr.

➋ This is the same table we listed in the previous section.

19-7 Snapshots

A snapshot is a copy of a table made at a particular time. To an end user, it
might appear exactly like a table. A snapshot is frequently used in a distrib-
uted database to create a local copy of a remote table. This speeds up the
processing of queries that use that table, because it saves the time of
transferring the data across the network. A snapshot is also called a materi-
alized view or a replica.

Snapshots are used mostly to “tune” a database and get it to perform more
quickly. Only DBAs create snapshots, but you need to know what they are
because you might use them.

A snapshot can be set up in a number of different ways. Most snapshots are
read-only. This means they can be used in queries, but you cannot modify
the data.

A few snapshots can be updated. Updateable snapshots allow you to make
changes to the data by using insert, update, and delete. However,
updateable snapshots are more complex and they are used less frequently.

A major issue with any snapshot is how often it is refreshed. It needs to be
synchronized with the table it has copied. When you are using snapshots,
you will need to be aware of the timing of this synchronization. The data
you see may not be completely current, and when you change the data,
people at other locations may not see those changes immediately.

Create a snapshot and use it in a query. You will need DBA authority to per-
form this task. You can do this on your own computer, but you will not be
able to do it on a computer you share with others at work or school.

Notes

Task

OPERATING IN A MULTIUSER ENVIRONMENT 731

Log in to the system userID or another userID that has DBA privileges.

create snapshot snap_countries as
select * from hr.countries;

grant select on snap_countries to public;

Then log in to your own userID.

select * from snap_countries;

Result table

Oracle SQL

CO COUNTRY_NAME REGION_ID
-- -- ---------
AR Argentina 2
AU Australia 3
BE Belgium 1
BR Brazil 2
CA Canada 2
CH Switzerland 1
CN China 3
DE Germany 1
DK Denmark 1
EG Egypt 4
FR France 1
HK HongKong 3
IL Israel 4
IN India 3
IT Italy 1
JP Japan 3
KW Kuwait 4
MX Mexico 2
NG Nigeria 4
NL Netherlands 1
SG Singapore 3
UK United Kingdom 1
US United States of America 2
ZM Zambia 4
ZW Zimbabwe 4

CHAPTER 19 THE MULTIUSER ENVIRONMENT732

Security and Privileges

When many people are working with the same database, there are usually
restrictions on which data each person is allowed to change. There are also
restrictions on which data they can access. These rules are often defined for
a group of people, such as for the payroll department, and each person
within that department is given the privileges of that group.

19-8 Identifying the user

Each user should have his or her own userID and password. You must use
them to identify yourself when you log on to the database. From a com-
puter’s point of view, a human is a userID. That is the basis for the security
of the database. This may seem obvious, but Access, for instance, does not
usually require you to log on to the database.

Sometimes a computer is set up so that the userID and password you sup-
ply when you log on to the operating system are automatically passed to
Oracle. These replace the userID and password for the Oracle login.

19-9 Privileges

When you create a table, view, or other database object on your userID, you
are the owner of that object and you are the only person who can use it
(although DBAs can access anything in the database). You can allow other
people to use your table by granting them the privilege to use it in a
select statement, or you can grant them the privilege to use an insert
statement, update, delete, or any combination of these. Using a view, you
can limit their access to certain rows and certain columns. You can also
revoke privileges any time you wish.

The privileges you can grant are very fine-grained. That means you have a
high degree of control. You can be very specific about what you allow peo-
ple to do and what you do not allow.

You can grant a privilege to one particular userID or grant it to the public.
When you grant a privilege to the public, you are granting it to every userID.

Up to now, we have discussed object privileges. There are also system priv-
ileges that a DBA can grant to a userID to control the operations that it can
do. For example there is a Create Table privilege. Without it, you cannot
create a table. There is also a Connect privilege. Without it, you cannot log
on to the userID.

SECURITY AND PRIVILEGES 733

Why would someone set up a userID and not allow anyone to log on to it?
This is a common practice for an application userID. For example, suppose
we set up the Lunches database so that three people, Bob, Jill, and Mary,
can use it. Suppose that we do not want any of these people to own the
database. They are just allowed to use it.

We would set up three individual userIDs for Bob, Jill, and Mary. We would
also set up an application userID for the Lunches database. It would own
all the tables, views, and other database objects of the application. No one
would be allowed to log on directly to the Lunches userID. People could
only log on to their individual userIDs and use the privileges they have
been granted to the Lunches database.

Grant to hr the privilege to insert new rows into the l_lunches table.

grant insert on l_lunches to hr;

Revoke the privilege granted in task 1.

revoke insert on l_lunches from hr;

Allow anyone to use the l_employees table in a select statement.

grant select on l_employees to public;

Task for example 1

Oracle SQL

Task for example 2

Oracle SQL

Task for example 3

Oracle SQL

CHAPTER 19 THE MULTIUSER ENVIRONMENT734

19-10 Roles

Privileges can control access to the database, but they are difficult to man-
age because they are so fine-grained. A privilege usually authorizes one
userID to perform one operation. In many applications there are thousands
of privileges that must be granted. That can be a lot of work!

Roles provide a more organized way to manage privileges. A role is a set of
privileges and it has a name. To use a role, you first create it and give it a
name. DBA authority is required to create a role, so you will need to use the
system userID. If you are not running your own copy of Oracle, you might
not be allowed to create a role.

After the role is created, you grant a set of privileges to the role. When you
grant the role to a userID, it gets all the privileges assigned to the role. This
makes it easy to assign the same set of privileges to many userIDs.

Create a role named sales_dept_role.

Log in to the system userID or another userID that has DBA privileges.

create role sales_dept_role;

Grant to the sales_dept_role the privilege to run a select, insert,
update, or delete statement on the job_history table owned by hr.
Grant this role to your own userID.

Log in to the HR userID. ➋

grant select, insert, update, delete
on job_history to sales_dept_role;

grant sales_dept_role to your_userid; ➌

Task 1: Create the role and give it a name

Oracle SQL ➊

Task 2: Grant privileges you own to the role

Oracle SQL

SECURITY AND PRIVILEGES 735

From your own userID, you can now display all the rows and columns of the
job_history table owned by hr.

Log in to your own userID. ➍

select * from hr.job_history;

Result table

➊ Log on to the system userID. This has DBA authority, which is needed to
create a role. The role created here has no privileges yet. It only has a
name.

➋ Log on to the hr userID and grant privileges to the role.

➌ Grant all the privileges of the role to your own userID.

➍ Log on to your own userID and view the job_history table that
belongs to hr. You are allowed to view this table because hr has given
you permission to do so.

Task 3: Use the role

Oracle SQL

EMPLOYEE
 ID START_DATE END_DATE JOB_ID DEPARTMENT_ID
-------- --------------- ----------- ---------- -------------
 102 13-JAN-1993 24-JUL-1998 IT_PROG 60
 101 21-SEP-1989 27-OCT-1993 AC_ACCOUNT 110
 101 28-OCT-1993 15-MAR-1997 AC_MGR 110
 201 17-FEB-1996 19-DEC-1999 MK_REP 20
 114 24-MAR-1998 31-DEC-1999 ST_CLERK 50
 122 01-JAN-1999 31-DEC-1999 ST_CLERK 50
 200 17-SEP-1987 17-JUN-1993 AD_ASST 90
 176 24-MAR-1998 31-DEC-1998 SA_REP 80
 176 01-JAN-1999 31-DEC-1999 SA_MAN 80
 200 01-JUL-1994 31-DEC-1998 AC_ACCOUNT 90

Notes

CHAPTER 19 THE MULTIUSER ENVIRONMENT736

19-11 Several people can use the
same table at the same time

The database is designed to allow several people to use the same table at
the same time. Some people may be looking at the data. Other people may
be changing the data.

There is only a conflict when two people want to change the same row of
the table at the same time. When this happens, the database makes one
person wait until changes by the other person are finished and committed.

The Oracle Data Dictionary
and the Multiuser Environment

You can find all the information about your multiuser environment in the
Data Dictionary.

19-12 ALL versus USER

The names of the tables in the Oracle Data Dictionary begin with ALL,
USER, or DBA. Most tables have all three versions. To see what this means,
consider an example:

Table Name Information in the Data Dictionary Table

USER_TABLES Information about all the tables you own; that is, all the tables cre-
ated on your userID.

ALL_TABLES Information about all the tables you own and all the tables on
other userIDs that you have been granted the privilege to use.

DBA_TABLES Information about all the tables in the database. To use this table
you must have DBA privileges. If you have Oracle installed on your
home computer, you can use this table from the system userID or
any other userID you create with DBA privileges.

THE ORACLE DATA DICTIONARY AND THE MULTIUSER ENVIRONMENT 737

19-13 How to find the tables you
want in the Data Dictionary

In the Data Dictionary you can find information about the multiuser envi-
ronment — synonyms, snapshots, privileges, and roles. You will have to
look in several tables. Use the dictionary table to find the names of the
tables you want. Here is how to get started.

Find the names of the Data Dictionary tables containing information about
synonyms.

select *
from dictionary
where table_name like '%SYN%';

Result table

19-14 How to find the meaning of the columns

Once you know the name of a Data Dictionary table, you can find the mean-
ing of all of its columns using the dict_columns table.

Find the meanings of all the columns of the all_synonyms table.

select *
from dict_columns
where table_name = 'ALL_SYNONYMS';

Task

Oracle SQL

TABLE_NAME COMMENTS
------------------------------ --------------------------------------
ALL_SYNONYMS All synonyms accessible to the user
USER_SYNONYMS The user's private synonyms
SYN Synonym for USER_SYNONYMS

Task

Oracle SQL

CHAPTER 19 THE MULTIUSER ENVIRONMENT738

Result table

Key Points

■ Databases are designed so that many people can use them at the
same time. Some databases can have hundreds or thousands of peo-
ple using them at the same moment.

■ Each person using a database is allowed to think that he or she is the
only person using it at that moment. The database is carefully engi-
neered to handle any conflicts and give you that illusion. You are
actually in a protected environment. You do not need to think about
what anyone else might be doing with the database. On rare occa-
sions the database may not be able to fully resolve a conflict and you
might be asked to wait until another person has completed some
work.

■ Several people can make changes to the same table at the same time.
There is only a conflict when two people try to change the same row at
the same time. Then one person will have to wait until the other per-
son is done changing that row. That could be some time if the person
is doing a long transaction.

■ To use a table owned by someone else, you put the owner name
before the table name. To use a table at another location, you put the
database link name after the table name. The full format is:

owner_name.table_name@database_link

■ You can use synonyms to give tables names that are more convenient.

■ You can use grant and revoke to control the access other people
have to your tables. The privileges you can grant or revoke include
select, insert, update, and delete.

TABLE_NAME COLUMN_NAME COMMENTS
------------- ------------- --
ALL_SYNONYMS OWNER Owner of the synonym
ALL_SYNONYMS SYNONYM_NAME Name of the synonym
ALL_SYNONYMS TABLE_OWNER Owner of the object referenced by the
 synonym
ALL_SYNONYMS TABLE_NAME Name of the object referenced by the
 synonym
ALL_SYNONYMS DB_LINK Name of the database link referenced in

 a remote synonym

739

chapter 20

SQL lies at the heart of most information systems today. The
main objective of SQL is to find the correct information for you.
It relies on other software to present that information to you in a
polished manner. A variety of software can provide that polish.

SQL is often used with software that can produce forms and
reports. A form displays one record at a time. Data in a single
row can be entered, viewed, changed, or deleted. Most people
find this easier than entering SQL commands.

A report displays many records. It is always based on a query.
It cleans up the result table; puts in page numbers, column head-
ings, and totals; and adds other elements that make the report
easier to read.

THE DESIGN
OF SQL

Original SQL Design Objectives . 741

20-1 Do one thing and do it well. .741
20-2 Focus on information .741
20-3 Keep it simple .742
20-4 Coordinate people to work together .743

Newer Interfaces . 743

20-5 Forms .744
20-6 Reports .744
20-7 Web tools .745

Typical Applications . 748

20-8 Smaller databases .748
20-9 OLTP .748

20-10 Data warehouses .748

Key Points . 749

741

Original SQL Design Objectives

In the early 1970s people were devising ways to handle very large amounts
of information. Solving that problem was the original motivation that led
to relational databases and SQL. Essential aims of the design are to make
the handling of information as simple as possible and to make the informa-
tion accessible to a large number of people.

20-1 Do one thing and do it well

SQL was designed to handle a large amount of information and to coordi-
nate the use of that information by a group of people. That is all it was
designed to do. It was never intended to be a complete application in itself
or to replace other types of software. It was designed to be an information
repository and to work in cooperation with other types of software. It was
designed to do one thing and do it well.

Until now in this book I have focused the discussion on SQL itself. I have
invited you to imagine that the database is already built and you are sitting
alone at a computer trying to get some information out of it or perhaps
making a few modifications to the data. I have invited you to imagine that
you are the only person using the database, that it belongs to you, and that
SQL is the only software you will use. That has been a useful illusion for
teaching you SQL, but in the real world you will usually be sharing the
database with many other people. SQL will provide an important part of
what you need, but it may leave a few gaps for you to fill with other tools.

20-2 Focus on information

SQL makes a distinction between the information level and the presentation
level. Within that dichotomy, SQL focuses primarily on the information
level and leaves the presentation level to other software. This is not meant
to suggest that the presentation is less important than the information.
The presentation may be very important, but it is not what SQL is designed
to do well.

For example, SQL does not put page numbers on a report. It might produce
a report of 100 pages without any page numbers. If you want page numbers
on the report, and I would want them, you might pull the report into
Microsoft Word. There you could choose among several types of page num-
bers, in several sizes and typefaces, placed on the page in a variety of ways.
It is important to have these options and to use them. However, it is not
the job of SQL to give them to you.

CHAPTER 20 THE DESIGN OF SQL742

SQL is designed to work hand-in-hand with other programming languages
such as Java, C#, COBOL, and Visual Basic. The idea is that SQL will pro-
vide some specialized services and these other languages will do all the
other things that need to be done. Some of those other things are:

■ Presenting the data in a polished form

■ Interacting with the end user

■ Interfacing and integrating with other programming systems

■ Providing complex rules for data validation

In fact, when we used SQL in this book, we always had another level of soft-
ware between SQL and us. When we used Oracle with the Home Page envi-
ronment, we reached SQL through the browser and an Oracle SQL interface
embedded within the browser. If you used Oracle with the SQL Command
Line environment, you reached SQL through the system Command Line
software and through SQL*Plus. Another language that is frequently used
with Oracle is PL/SQL. When we used Access, we reached the JET engine,
which processes SQL, through GUI screens that actually communicate with
JET using a language called Data Access Objects (DAO). Another language
that can be used to communicate with Jet SQL is ActiveX Data Objects
(ADO).

20-3 Keep it simple

SQL is designed to avoid the things that make many computer languages
complex. Because of this, sometimes programmers feel that SQL is missing
some important parts. It does not have all the things that programmers are
used to having in a computer language. In particular, SQL does not have:

■ Variables

■ Loops or goto statements

■ Mixing of detail data with summarized data (although Oracle does
have cube and rollup)

■ An object model with objects, properties, events, and methods

This is not a mistake. The design of SQL intentionally avoids these things.
The idea is to keep the handling of information as simple as possible.
These structures can lead to excessive complexity, so they are not included
in SQL.

NEWER INTERFACES 743

The issue we discussed in the previous section is also a part of the strategy
to keep the design simple. That is, SQL is intended to do one thing well —
handle information. It is not intended to do other things, and that is a
major part of what keeps it simple.

Variables, loops, and the other things listed are available in most program-
ming languages. Because SQL is designed to work along with one of these
languages, there is no reason to also have these things within SQL itself. If
you need a variable or a loop, you can get it from the other programming
language.

As SQL has evolved over a few decades, an effort has been made to make it
even simpler. When SQL was first developed it was designed so that sub-
queries would be used extensively. The original design allowed subqueries
to be nested 15 levels deep. This produced code that was hard to under-
stand and maintain even if you had written it yourself.

In the past few years outer joins have become an official part of SQL. To a
large extent, an outer join can be used to replace a subquery. This makes
the code much easier to understand and maintain, taking SQL one step fur-
ther toward its goal of being simple.

20-4 Coordinate people to work together

One of the strengths of SQL is that it allows a large group of people to work
together using current information. People at all levels of an organization
can work on the same project. In this aspect, SQL is a tool for coordinating
a large workforce and getting everyone to pull in the same direction, as we
discussed in chapter 19.

In the world today, databases lie at the heart of most large businesses and
government agencies. The database plays a role in coordinating the people
as well as providing a store of information.

Newer Interfaces

When SQL was first designed, the idea was that everybody from vice presi-
dents to secretaries would write select queries. That would be the way
they would interact with the database. However, experience has shown that
most vice-presidents do not want to write their own select queries, so
new interfaces are needed.

CHAPTER 20 THE DESIGN OF SQL744

Forms provide a universal language that everyone feels comfortable with.
They are used a lot in business and government, so forms were adopted as
a front end to databases. Forms deal primarily with data at the lowest level
of detail.

Reports provide formatting to make larger collections of information easier
to read. Web tools are in the process of being integrated into many data-
bases so that forms and reports can be accessed over the Internet. Data-
bases also interface with programming languages such as Java or Visual
Basic to provide a bridge to other software applications.

20-5 Forms

Forms can be used to enter, modify, and delete data and to find individual
records in a database. This is equivalent to writing an insert, update,
delete, or select statement in SQL. Forms usually handle one row at a
time. Some forms show a few records together. An example of a form is
shown here.

20-6 Reports

Whereas forms handle individual records, reports handle many records at a
time. The example in the next section shows the detail of every lunch,
along with subtotals and a grand total. It has a title for the report, a date
when the report was run, page numbers, and the data in the first three col-
umns is not repeated on every line.

NEWER INTERFACES 745

20-7 Web tools

Oracle and Access have developed the ability to use forms and reports over
the Internet. This is one of the major features that has been added in the
past few years.

Employee Lunches

Employee ID First Name Lunch Date Description Quantity Total Price

201 Susan Nov 16, 2011 Sandwich 2 $7.00

Coffee 2 $1.70

Fresh Salad 1 $2.00

Summary for ‘Lunch Date’ = Nov 16, 2011 (3 detail records)

Sum 5 $10.70

201 Susan Nov 25, 2011 Fresh Salad 1 $2.00

Grilled Steak 1 $6.00

Soda 1 $1.25

Summary for ‘Lunch Date’ = Nov 25, 2011 (3 detail records)

Sum 3 $9.25

201 Susan Dec 05, 2011 Hamburger 1 $2.50

Soda 1 $1.25

Sandwich 1 $3.50

Fresh Salad 1 $2.00

Coffee 1 $0.85

Summary for ‘Lunch Date’ = Dec 05, 2011 (5 detail records)

Sum 5 $10.10
Summary for ‘Employee ID’ = 201 (11 detail records)

Sum 13 $30.05

202 Jim Nov 16, 2011 Soup Of The Day 1 $1.50

Grilled Steak 1 $6.00

French Fries 1 $1.50

Coffee 2 $1.70

Dessert 1 $3.00

Summary for ‘Lunch Date’ = Nov 16, 2011 (5 detail records)

Sum 6 $13.70
Summary for ‘Employee ID’ = 202 (5 detail records)

Sum 6 $13.70

203 Martha Nov 16, 2011 Fresh Salad 1 $2.00

Coffee 1 $0.85

Soda 1 $1.25

French Fries 1 $1.50

Grilled Steak 1 $6.00

Summary for ‘Lunch Date’ = Nov 16, 2011 (5 detail records)

Sum 5 $11.60

203 Martha Dec 05, 2011 Soup Of The Day 1 $1.50

Grilled Steak 1 $6.00

Coffee 2 $1.70

Dessert 1 $3.00

Monday, January 28, 2008 Page 1 of 3

CHAPTER 20 THE DESIGN OF SQL746

Employee ID First Name Lunch Date Description Quantity Total Price

Summary for ‘Lunch Date’ = Dec 05, 2011 (4 detail records)

Sum 5 $12.20

Summary for ‘Employee ID’ = 203 (9 detail records)

Sum 10 $23.80

204 Ellen Nov 16, 2011 Hamburger 2 $5.00

French Fries 1 $1.50

Soup Of The Day 2 $3.00

Soda 2 $2.50

Summary for ‘Lunch Date’ = Nov 16, 2011 (4 detail records)

Sum 7 $12.00

204 Ellen Nov 25, 2011 Fresh Salad 1 $2.00

Grilled Steak 1 $6.00

Coffee 2 $1.70

Dessert 1 $3.00

Summary for ‘Lunch Date’ = Nov 25, 2011 (4 detail records)

Sum 5 $12.70
Summary for ‘Employee ID’ = 204 (8 detail records)

Sum 12 $24.70

205 Henry Nov 25, 2011 Soda 2 $2.50

Soup Of The Day 1 $1.50

Grilled Steak 1 $6.00

French Fries 1 $1.50

Summary for ‘Lunch Date’ = Nov 25, 2011 (4 detail records)

Sum 5 $11.50

205 Henry Dec 05, 2011 Fresh Salad 1 $2.00

Soup Of The Day 1 $1.50

Grilled Steak 1 $6.00

French Fries 1 $1.50

Soda 1 $1.25

Summary for ‘Lunch Date’ = Dec 05, 2011 (5 detail records)

Sum 5 $12.25

Summary for ‘Employee ID’ = 205 (9 detail records)

Sum 10 $23.75

207 Dan Nov 16, 2011 French Fries 1 $1.50

Coffee 2 $1.70

Sandwich 2 $7.00

Dessert 1 $3.00

Summary for ‘Lunch Date’ = Nov 16, 2011 (4 detail records)

Sum 6 $13.20

207 Dan Nov 25, 2011 Soup Of The Day 2 $3.00

Sandwich 2 $7.00

French Fries 1 $1.50

Monday, January 28, 2008 Page 2 of 3

NEWER INTERFACES 747

Employee ID First Name Lunch Date Description Quantity Total Price

207 Dan Nov 25, 2011 Soda 1 $1.25

Summary for ‘Lunch Date’ = Nov 25, 2011 (4 detail records)

Sum 6 $12.75

Summary for ‘Employee ID’ = 207 (8 detail records)

Sum 12 $25.95

208 Fred Nov 25, 2011 Hamburger 2 $5.00

Coffee 1 $0.85

French Fries 1 $1.50

Fresh Salad 1 $2.00

Soup Of The Day 1 $1.50

Soda 1 $1.25

Summary for ‘Lunch Date’ = Nov 25, 2011 (6 detail records)

Sum 7 $12.10

208 Fred Dec 05, 2011 Fresh Salad 1 $2.00

Grilled Steak 1 $6.00

French Fries 1 $1.50

Soda 1 $1.25

Coffee 1 $0.85

Summary for ‘Lunch Date’ = Dec 05, 2011 (5 detail records)

Sum 5 $11.60
Summary for ‘Employee ID’ = 208 (11 detail records)

Sum 12 $23.70

210 Nancy Nov 16, 2011 Fresh Salad 1 $2.00

Dessert 1 $3.00

Coffee 1 $0.85

Soup Of The Day 1 $1.50

Grilled Steak 1 $6.00

Summary for ‘Lunch Date’ = Nov 16, 2011 (5 detail records)

Sum 5 $13.35

210 Nancy Dec 05, 2011 Dessert 1 $3.00

Soup Of The Day 1 $1.50

Grilled Steak 1 $6.00

French Fries 1 $1.50

Coffee 2 $1.70

Summary for ‘Lunch Date’ = Dec 05, 2011 (5 detail records)

Sum 6 $13.70

Summary for ‘Employee ID’ = 210 (10 detail records)

Sum 11 $27.05

Grand Total 86 $192.70

Monday, January 28, 2008 Page 3 of 3

CHAPTER 20 THE DESIGN OF SQL748

Typical Applications

20-8 Smaller databases

SQL and relational databases were originally developed to handle very
large amounts of data. It was considered overkill to use them for smaller
amounts of data. It used to be said that if you used a relational database
for your address book, it would be like using a bulldozer to crack a peanut.

Today, SQL and relational databases are being used for much smaller data-
bases, such as for a lawyer’s office. I even use a database to balance my
checkbook and organize my address book. Once you start thinking in terms
of representing information in tables, you see how you can use this frame-
work to organize many things, big or small. One of the leading SQL prod-
ucts for developing smaller databases is Access.

20-9 OLTP

Online transaction processing (OLTP) systems focus mostly on inputting
data. There may also be a few small reports. Often, OLTP systems use forms
and handle only a few records at a time.

There is no “typical” OLTP system. Every application is different, but here is
a sketch of one such system:

■ 25,000,000 rows of data

■ 200 users who can simultaneously enter and retrieve data

■ Two-second response time on most transactions

20-10 Data warehouses

Data warehouses emphasize the collection and analysis of even larger
amounts of data. These systems often focus on reports that perform a
detailed analysis of the data.

Again, there is no “typical” data warehouse system, but here is a sketch of
one such system:

■ 500,000,000 rows of data

■ One report is run at a time to analyze the data

■ Three hours is a typical time to run a report

KEY POINTS 749

Key Points

■ Relational databases were originally designed to store and handle
large amounts of data. People would obtain that data by using SQL.

■ SQL was originally designed with the goal that it would be simple
and easy to use.

■ It has succeeded, to a large extent, in meeting that goal, but things
are not always as easy as we would like them to be,

■ Today forms, reports, and Web tools are used in addition to SQL to
make it easy to use the information in a database.

This page intentionally left blank

751

appendix A

This appendix shows you how to obtain and install your free
copy of Oracle. This is not an evaluation copy. It does not limit
your use to only a few days. It is free for you to use forever for
your learning as long as you use it in a noncommercial manner.
It is also fast to download and easy to administer.

The topics in this appendix are as follows:

■ Getting current information.

■ Which version of Oracle should you get?

■ System requirements.

■ Downloading Oracle from the Internet.

■ Installing Oracle.

■ Setup to run the examples in this book.

■ How to stop running Oracle.

■ What to do if Oracle slows down your computer.

ORACLE IS FREE:
HOW TO GET
YOUR COPY

APPENDIX A ORACLE IS FREE: HOW TO GET YOUR COPY752

Getting Current Information

The information in this appendix is subject to change because, from time
to time, Oracle Corporation changes its policies and the way it markets its
products. To obtain the most current information, please visit the Web site
for this book:

http://groups.google.com/group/sqlfun

Links to the Oracle Web pages will be available there.

Which Version of Oracle Should You Get?

To run the examples of SQL code in this book on your computer(s), you
will need Oracle Database 10g Express Edition, which is also called Ora-
cle Database XE. It comes in two versions using different character sets.
One is for English and a few other languages of Western Europe. The
other version is for international languages. In this book I use the
English version.

You will be asked if you want to install a client or a server. You must install
the server of this database, not just a client. If you have a network of com-
puters at home, you could install the server on one computer and install
only the client on the other computers. When you install the server, a client
will automatically be installed on the same computer.

If you use Oracle at work or at school, you might have a different product or
version. All the examples in this book should run there, too, so use the ver-
sion you have available. Be aware, however, that you might have restric-
tions on what you can do when you are using an Oracle database that you
do not control. For example, you might not be allowed to create your own
tables.

Because Oracle Database XE is free, I recommend that you install it on
your home computer even if you can use Oracle at work or at school.

http://groups.google.com/group/sqlfun

SYSTEM REQUIREMENTS 753

System Requirements

Most modern computers running a Microsoft Windows or Linux operating
system will be able to run Oracle Database XE. Having sufficient hard drive
space is the biggest problem I’ve seen, so you might consider adding an
external hard drive that uses a USB connection, if you don’t have one
already.

Here are the computer specifications I recommend. For more exact require-
ments, consult the Oracle documentation.

■ Operating system: Microsoft Windows 2000 or later (32-bit version)

■ Broadband connection to the Internet (to download Oracle)

■ Network protocol: TCP/IP

■ Web browser: Microsoft IE 6.0 or later (or some others)

■ Memory: 512 megabytes of RAM

■ Disk space: 2 gigabytes (not using disk compression)

To install Oracle, you must be an Administrator on your computer. If it is
your own computer, you are already the administrator.

If you have an Apple computer you might be able to find ways to get Oracle
and other Windows software to work on your computer.

Downloading Oracle from the Internet

First, you will need to register as a member of OTN (Oracle Technology Net-
work). This is free. You must provide your name, address, and some other
information. You will also need to accept the license for the software.

If you have a broadband connection to the Internet, you can download
Oracle Database 10g Express Edition. It is about 170 megabytes, so this
could take a few hours.

If you have a 56k modem, you should use a download manager so you can
recover if the connection is lost. Another alternative is to find a friend or a
shop with a DSL connection.

DOWNLOADING ORACLE FROM THE INTERNET

APPENDIX A ORACLE IS FREE: HOW TO GET YOUR COPY754

Installing Oracle

Oracle is fairly easy to install: Just follow the documentation. The link to
this documentation is on the Web site for this book. You may need to make
a few adjustments to your operating system, Web browser, and firewall.

During the installation, you will be asked to set a password for the Data-
base Administrator named “System.” Be sure to remember this password.

After Oracle is installed, you can find the program from your Start menu, as
shown here:

Initially, two database users are set up: System and HR. System is a data-
base administrator with an unlocked account. HR is an ordinary database
user with a locked account.

You should follow the directions under “Get Started” for at least the first
three steps. This shows you how to set a password for the HR user, unlock
the account, and log in as that user.

Setup to Run the Examples in This Book

There are a few more steps you need to perform before you are ready to run
the examples in this book. First you will create a new database user. Then
you will run an SQL script to build the Oracle tables. Follow each of these
next steps.

SETUP TO RUN THE EXAMPLES IN THIS BOOK 755

A-1 Create a new database user

You should set up a new user to run the examples in this book. Here is how
to do that:

1. Open the Database Home Page login window: Start > All Programs
> Oracle Database 10g Express Edition > Go To Database Home
Page. (If you get a “Page Not Found” message, see Appendix B.) This
actually takes you to the Database Login page. You will get to the
Database Home Page after you log in.

2. Log in to the database administrator’s account: Username = System,
Password = [the password you set up when Oracle was installed].
Click Login.

APPENDIX A ORACLE IS FREE: HOW TO GET YOUR COPY756

3. Open the window to create a new user: Click the arrow on the right
side of Administration > Manage Database Users > Create Database
User.

SETUP TO RUN THE EXAMPLES IN THIS BOOK 757

4. Enter information for the new user: Username = your_name or sql-
fun (I recommend not putting spaces in the username), Password =
your_password, Expire Password = [leave this blank unless you want
your password to expire], Account Status = Unlocked, User Privi-
leges: Roles = [check all roles], Direct Grant System Privileges =
[give yourself all these privileges].

5. Click the Create button.

6. Click Logout.

APPENDIX A ORACLE IS FREE: HOW TO GET YOUR COPY758

A-2 Download the files to build the Oracle tables

Download the file SQLFUN_Build_Oracle_Tables.txt from the Web site.
This file is an SQL script. It is a sequence of SQL commands.

A-3 Build the Oracle tables by running an SQL script

1. Open the Database Home Page login window: Start > All Programs >
Oracle Database 10g Express Edition > Go To Database Home Page.

2. Log in to the user account you created to use with this book:
Username = your_name or sqlfun, Password = your_password, click
Login.

3. Open the window to upload an SQL script: Click the arrow on the
right of SQL > SQL Scripts > Upload Script. The window shown here
will appear:

SETUP TO RUN THE EXAMPLES IN THIS BOOK 759

4. Enter all the information for the upload: File = [browse to find the
file you downloaded from the Web site[, Script Name =
SQLFUN_Build_Oracle_Tables [or any other name you want to call
it], File Character Set = Unicode UTF-8 .

5. Click Upload. Wait until you get the “Script Uploaded” message and
then change the View from Icons to Details.

APPENDIX A ORACLE IS FREE: HOW TO GET YOUR COPY760

6. Open the Script Editor: Click the Edit icon, shown in the previous
image, in the detail line for SQLFUN_Build_Oracle_Tables. Doing so
will bring you to the following screen:

7. Click the Run button. You will be shown some information about the
script and asked to confirm that you want to run it.

SETUP TO RUN THE EXAMPLES IN THIS BOOK 761

8. Click Run again to confirm your request. Your script will now run. It
might take two or three minutes to complete the process.

At first, the Status will say “Submitted.” You can press the F5 key
whenever you want to refresh the Web page and see the progress of
the script. The Status will change to “Executing.” When the script is
done, the Status will say “complete.”

9. View the results: Click the View Results icon. Each line shows the
result of one SQL command.

APPENDIX A ORACLE IS FREE: HOW TO GET YOUR COPY762

10. Select View = Summary (not Detail), Display = 5000, and click the Go
button.

11. Scroll to the bottom of the page. At the bottom you should see a
report showing the number of objects the SQL script created. The
rightmost column should always read OK. The last number on the
With Errors line at the bottom of the page is the number of errors. It
should be 0.

HOW TO STOP RUNNING ORACLE 763

12. If With Errors = 0, you are done. You can log out.

13. Otherwise you need to identify the errors. Scroll to the top of the
page. Use CTRL+F to open the Find window in the browser. Search
for “ORA-”. That is the prefix for all the errors. (At this point you
might not know how to deal with the errors very well. Check for a few
obvious things: Did you run out of memory or disk space? Did you
run this script more than once? If there are errors you cannot
resolve, send me a message on the Web site.)

Note: Later you can use this technique of running an SQL script to run all
the SQL examples for a single chapter.

A-4 Disaster recovery if you need it

In case you created the Oracle tables on a production ID, you can drop all
the tables and other database objects created by the preceding SQL
scripts. Just download and run the SQLFUN_Delete_Oracle_Tables.txt file.

How to Stop Running Oracle

When you are done with your Oracle session, you can log out and close
your browser. You might also want to stop the Oracle database with: Start >
All Programs > Oracle Database 10g Express Edition > Stop Database.

What to Do if Oracle Slows Down Your Computer

When Oracle is installed, the default configuration automatically starts the
Oracle database each time you start up your computer. This is fine if you use
Oracle all the time or if your computer is so strong that you do not miss the
resources that Oracle consumes. But some people (like me) use their com-
puters for many other things and don’t have extra resources to waste.

There are two solutions to this problem. You can pick the one you like better.

A-5 The official Oracle solution

You can stop the database: Start > All Programs > Oracle Database 10g
Express Edition > Stop Database.

WHAT TO DO IF ORACLE SLOWS DOWN YOUR COMPUTER

APPENDIX A ORACLE IS FREE: HOW TO GET YOUR COPY764

If you do this and later you decide you want to use Oracle, you must start the
database again: Start > All Programs > Oracle Database 10g Express Edi-
tion > Start Database.

This technique works perfectly.

The problem with it from my perspective is that you must remember to
stop the database each time you start up your computer. To me that is a
nuisance.

A-6 My own solution

Oracle uses services to start the database. I change the startup type prop-
erty of the OracleServiceXE service from Automatic to Manual. This pre-
vents the database from starting automatically and it keeps the resources
of my computer available for other uses.

To do this: Start > Control Panel > Administrative Tools > Services >
right-click on the OracleServiceXE service > Properties > change the
Startup Type from Automatic to Manual > click Apply > click OK.

If you do this and later you decide you want to use Oracle, you must start
the database. Use the preceding procedure. The downside to this method
is it may not be possible to run Oracle from a User Limited account on the
computer.

765

appendix B

This appendix contains a sample session that shows you how to
use Oracle with this book. This demonstration shows you all the
tricks you need to know. To keep things simple I assume you
have installed Oracle on a single computer running Windows
XP.

The topics in this appendix are as follows:

■ Log in to your computer.

■ Go to the Database Home Page.

■ Log in to the Oracle database.

■ Go to the SQL Commands page.

■ Enter and run an SQL query.

■ Optional: Print your query and the results.

QUICK START
WITH ORACLE

APPENDIX B QUICK START WITH ORACLE766

Log in to Your Computer

Log in to your computer with the same account you used when you
installed Oracle. This will be an Administrator account.

Here I am being conservative. You might also be able to get other accounts
to work. But let’s keep things simple for now. You can be sure that the
account that installed Oracle is set up correctly for Oracle to run.

If you only have one user set up on your computer, you do not need to
worry about this issue.

Go to the Database Home Page

Oracle uses your Web browser to interact with you. This will start your
browser and display a Web page that allows you to log in to the database.
Here you will be logging on as a client of the Database. Usually the server
part of the database starts automatically when you start your computer.

Here is the procedure:

1. Start > All Programs > Oracle Database 10g Express Edition > Go To
Database Home Page. This displays the Login page.

GO TO THE DATABASE HOME PAGE 767

2. If you get to this screen, skip ahead to “Log in to the Oracle
Database” on the next page. If you do not get this, you might get a
“Page Not Found” message instead:

3. This means the server part of the database has not started yet. To
start it: Start > All Programs > Oracle Database 10g Express Edition
> Start Database. This runs in a command window and takes a
minute or two. Here is what you will see:

4. When that finishes, you can close the Start Database window and
the browser window. Then try again to go to the Database Home
Page.

APPENDIX B QUICK START WITH ORACLE768

Log in to the Oracle Database

Enter the Username and Password for the user account you set up to use
with this book. (See Appendix A.) Then click the Login button.

Do not use the System or HR user. My username is JPATRICK. Yours might
be your name, or you might have used SQLFUN.

This displays the home page for the user account that logged in.

Go to the SQL Commands Page

The SQL Commands page will allow you to run one SQL command at a
time. That is what you usually want to do.

There are two ways to get to the SQL Commands page:

1. Click the SQL icon > Click the SQL Commands icon.

2. Click the arrow on the right side of the SQL icon > Click SQL
Commands > Click Enter Command.

ENTER AND RUN AN SQL QUERY 769

This displays the following page:

Enter and Run an SQL Query

Type in an SQL query. Or, if you have your query in a Notepad file, you can
copy and paste it into this page.

APPENDIX B QUICK START WITH ORACLE770

Then click the Run button. The result of the SQL query is displayed in the
bottom part of the page:

If you get an error message instead of a result table, the error message
does not always accurately tell you what the problem is. Sometimes you
will need to figure out the cause of the error yourself.

Note: To run all the SQL queries for a chapter, run an SQL script. This
method is shown in Appendix A.

Optional: Print Your Query and the Results

You can print your results using CTRL+P, just as you would with any other
Web page.

771

appendix C

Here is a sample session that shows you how to use Access. I
begin by showing you how to start the program. Then I show
you how to enter a query, run it, and print the result.

The topics in this appendix are as follows:

■ You may use Access 2007, 2003, 2002, or 2000.

■ How to start Access.

■ Entering an SQL query.

■ Dealing with errors in Access.

■ Printing from Access.

■ Using the Access Trust Center.

QUICK START
WITH ACCESS

APPENDIX C QUICK START WITH ACCESS772

You May Use Access 2007, 2003, 2002, or 2000

The Web site for this book has Access databases in four formats: Access
2007, Access 2003, Access 2002, and Access 2000. You need to use the one
that matches the version of Access installed on your computer. The images
and procedures in this appendix are from Access 2007. If you have a differ-
ent version, the images and procedures will be a little different, but the
functions will be the same.

How to Start Access

There are several ways to open Access. I recommend this method:

1. Right-click the Start button.

2. Click Explore (or use another method to open Windows Explorer).

3. Find the database you want to open, which will have the file type
ACCDB (for older versions of Access, the file type is MDB). Then
Double-click it.

Another way to open Access is:

1. Left-click the Start button.

2. Click All Programs.

3. Click Microsoft Access (it might be in the Microsoft Office folder).

If you get a message that the database is read-only, you will need to make
some corrections and start again. You need the database to be read-write
in order to enter SQL queries. If you find that it is read-only, there are two
major things to check.

The most common cause is that the read-only property is set. To change
this:

1. Open Windows Explorer.

2. Locate the Access database file and right-click it.

HOW TO START ACCESS 773

3. Select Properties and clear the checkbox for Read-only, shown in the
following image.

4. Click Apply, then Click OK.

Another reason some Access databases are read-only is that they are on a
read-only disk drive. This occurs in the computer labs of many schools
where the teacher has placed some files on a server for the students to
copy. To use the database, you must make a personal copy of the Access
database file onto your local read-write drive, which is usually the C drive.

When you have successfully started Access, you will see something like the
following image.

APPENDIX C QUICK START WITH ACCESS774

In Access 2007, you might get a Security Warning like the one shown here.
To elminate the warning for this session: Options > Enable this content >
OK. To get rid of it permanently, use the Trust Center.

Entering an SQL Query

1. Begin a query: Create tab > Query Design icon. You will see some-
thing like this:

ENTERING AN SQL QUERY 775

2. Close the Show Table window. Enter SQL view by clicking the SQL
button in the bottom right corner of the screen.

3. You can type in your SQL query. The method that I prefer is to copy
the query from a Notepad file and paste it into this screen.

I recommend that you enter your query into Notepad, rather than
directly into Access, so you have more control over it. Access refor-
mats a query when it is saved, but in Notepad your query will retain
the format you give it. Notepad provides an easy way to edit and
print your queries.

4. Run the SQL query. To do this, click the Run icon, shown as an excla-
mation point in the preceding image.

Optional: Adjust the width of the columns so that the column name
appears completely. You can adjust the width of a column with the
mouse. Run the mouse over the top line of the table. Between col-

APPENDIX C QUICK START WITH ACCESS776

umns the mouse icon will change. Then you can hold the mouse
button down and drag to change the width of the column.

5. Optional: You can print the result table from the query with CTRL+P.
You cannot print the SQL query itself this way. That is another rea-
son you should keep your SQL in a Notepad file when you are work-
ing with Access.

Dealing with Errors in Access

Some of the error messages in Access are very helpful and others are less
so. Some of the error messages in Access are so strange that they do not
even look like error messages Once you know what they are, it is easy to
deal with them. I will show you an example of this.

We can use the same query we used earlier, but this time we will put an
error in it. The error is that we will leave the second letter A out of the name
of the last_name field. Here is the SQL:

select first_name,
 last_nme
from l_employees;

Now here is the message that Access uses to tell you about this error:

PRINTING FROM ACCESS 777

It doesn’t look much like an error message. In fact, it is not an error mes-
sage at all. Rather, it is asking you to enter a value for the unknown called
last_nme.

When Access comes across something it does not recognize, it often treats
the unknown as a parameter and it asks you what value you want to enter in
that parameter. This is a case where Access is getting seriously confused.

However, once you understand that Access has this quirk, then the mes-
sage is helpful. You look at the “parameter” that Access wants you to enter.
In this case it is “Last_nme” and you can immediately tell what the problem
is.

For people who want to know more about this particular error message,
here is an explanation: Access assumes that anything it does not recognize
is a parameter, which is a type of variable value that is entered when the
query is run. In this case, Access is asking you for the value of last_nme. If
you responded to the message by entering “Smith”, Access would replace
last_nme in the query with Smith, which is equivalent to placing the lit-
eral Smith in the query. The result table would look like this:

Printing from Access

You can print your result tables directly from Access by using File > Print.

The one thing you cannot print this way is your SQL code. That is one of the
reasons you should put your SQL code into Notepad. You can print it from
there.

APPENDIX C QUICK START WITH ACCESS778

Using the Access Trust Center

Each time you open the Access database, you might see a message that
reads,

Security Warning Certain content in the database has been disabled

and gives you an Options button to click.

If you do not see this message, don’t worry. You are okay and do not need
the informtion in this section.

If you do see this message and you want to get rid of it permanently, then
this section is for you. First, you must have administrative privileges on
your computer. Usually, this means that the computer belongs to you and
you log into the computer as an administrator.

If you do not have administrative privileges, then you can only get rid of
this message for one session at a time and you must repeat the process in
each session. That is annoying, but there is no way around it. I have already
showed you what you need to do at the end of the “How to Start Access”
section of this appendix.

Before you decide to get rid of this message permanently, you need to
understand what it means. Does it mean that Access has scanned this
database and has found some horrible virus that is just waiting to destroy
your computer? No, the message does not mean that, though it seems to
want to imply this. The message is vague and scary. I think it is intended to
be that way.

USING THE ACCESS TRUST CENTER 779

What it actually means is that Access will disable Visual Basic modules
and certain macro commands, unless you say it is okay to run them.
Those things could potentially harm your computer. If some malicious
stranger sends you an Access database by e-mail, don’t open it. At least,
don’t open it in Enabled mode. When an Access database is opened, it
can be set to run some code automatically and that code could possibly
harm your computer.

The database you use with this book doesn’t have any Visual Basic mod-
ules or any macros. Then why are you still getting this message? The mes-
sage doesn’t mean that Access has scanned the database and found
something that might damage your comuter. Rather, it means that Access
has not scanned the database and Microsoft wants you to assume all the
responsibility in case something goes wrong. That is rather weak in my
opinion. I think they could have done better.

Now that you understand the message, if you still want to turn it off perma-
nently, here is how:

1. Click the Options button. The Microsoft Office Security Options win-
dow will open.

APPENDIX C QUICK START WITH ACCESS780

2. Click Open The Trust Center. This opens the Trust Center window. It
will probably open to the Message Bar settings. One way to turn the
message off is to change the Message Bar Settings to the option
“Never show information about blocked content,” but that is not the
best way. It might block too much.

3. Click Trusted Locations on the left side of the window.

USING THE ACCESS TRUST CENTER 781

4. Click the Add new location button. This opens the Microsoft Office
Trusted Location window. There is a warning that asks you to make
sure the new trusted location is secure. I am not sure how you are
expected to be able to do that. I suppose if it is your own computer,
you can say that certain folders in it it will be secure.

5. Click the Browse button, then choose the folder where you have
installed the database or one of its parent folders. Then click OK.

6. If you decide to, select the checkbox “Subfolders of this location are
also trusted.” Enter a description if you want. Then click the OK but-
ton in the Microsoft Trusted Location window.

7. Click OK in the Trust Center window and click OK again in the
Microsoft Office Security Options window. Now you are done.

This page intentionally left blank

783

appendix D

This appendix contains a diagram of the Lunches database
that shows all the tables in the database and how they are
related to each other. It contains a list of the join conditions to
use when you are obtaining data from more than one table. The
data validation rules are also shown here.

DIAGRAM OF
THE LUNCHES

DATABASE

APPENDIX D DIAGRAM OF THE LUNCHES DATABASE784

Diagram of the Lunches database.

The columns of the primary key are shown with a key symbol next to them.

The names of all the tables in the Lunches database begin with the prefix
l_. This prefix shows that these tables are related and that they are all
parts of a single system.

The lines between the tables show the join conditions.

The lines containing a one (1) and an infinity sign (∞) show join conditions
that are also referential integrity constraints.

Join Conditions

The relationships between the tables.

Tables to Be Joined SQL Code Showing the Join Condition
(The join condition is shown in the where clause.)

l_employees
l_departments

select a.*,
 b.*
from l_employees a,
 l_departments b
where a.dept_code = b.dept_code;

l_employees
l_lunches

select a.*,
 b.*
from l_employees a,
 l_lunches b
where a.employee_id = b.employee_id;

l_lunches
l_lunch_items

select a.*,
 b.*
from l_lunches a,
 l_lunch_items b
where a.lunch_id = b.lunch_id;

L‚ÄìEMPLOYE L‚ÄìLUNCH‚ÄìIL‚ÄìLUNCH L‚ÄìFOO L‚ÄìSUPPLIE

L‚ÄìCONSTAN

L‚ÄìDEPARTMEN

DATA VALIDATION RULES 785

The relationships between the tables. (continued)

Data Validation Rules

Primary key constraints are not shown here.

Tables to Be Joined SQL Code Showing the Join Condition
(The join condition is shown in the where clause.)

l_lunch_items
l_foods

select a.*,
 b.*
from l_lunch_items a,
 l_foods b
where a.supplier_id = b.supplier_id
 and a.product_code = b.product_code;

l_foods
l_suppliers

select a.*,
 b.*
from l_foods a,
 l_suppliers b
where a.supplier_id = b.supplier_id;

l_constants

Any other table
select a.*,
 b.*
from l_constants a
 any_other_table b;

(No join condition is needed between the l_constants
table and any other table because this table contains only
one row.)

Table Column Validation Rule

Validation Rule 1: Not Null Constraint

l_employees first_name first_name is a required field.

Validation Rule 2: Not Null Constraint

l_employees last_name last_name is a required field.

Validation Rule 3: Not Null Constraint

l_lunches employee_id employee_id is a required field.

Validation Rule 4: Uniqueness Constraint

l_employees phone_number Each employee must have a distinct phone
number.

APPENDIX D DIAGRAM OF THE LUNCHES DATABASE786

Table Column Validation Rule

Validation Rule 5: Uniqueness Constraint

l_employees first_name,
last_name

No two employees can have both the same first
name and the same last name.

Validation Rule 6: Check Constraint

l_foods price The price must be less than $10.00.

Validation Rule 7: Referential Integrity Constraint

l_employees manager_id Data is checked. It must have a valid value.

l_employees employee_id List of all the valid values.

Validation Rule 8: Referential Integrity Constraint

l_employees dept_code Data is checked. It must have a valid value.

l_departments dept_code List of all the valid values.

Validation Rule 9: Referential Integrity Constraint

l_lunches employee_id Data is checked. It must have a valid value.

l_employees employee_id List of all the valid values.

Validation Rule 10: Referential Integrity Constraint

l_lunch_items lunch_id Data is checked. It must have a valid value.

l_lunches lunch_id List of all the valid values.

Validation Rule 11: Referential Integrity Constraint

l_lunch_items supplier_id,
product_code

Data is checked. It must have a valid value.

l_foods supplier_id,
product_code

List of all the valid values.

Validation Rule 12: Referential Integrity Constraint

l_foods supplier_id Data is checked. It must have a valid value.

l_suppliers supplier_id List of all the valid values.

787

Chapter INDEX

Symbols and Numbers
' (single quote):

apostrophe, 105, 107, 127
single quote, 52, 66, 103, 107

- (dash):
subtract a date from another date,

351
subtract a number from a date, 351
subtract numbers, 334

-- (double dash), comment line, 109
! (exclamation mark), 109
!= (not equal), 60, 111
" (double quote), 40, 103, 106
(pound sign):

date indicator, 55, 103, 108, 247, 252
wildcard character, 66, 112

$ (dollar sign), 36, 57, 110
% (percent), wildcard character, 66, 112
& (ampersand):

concatenate, 110, 340, 344, 348
variable in SQL*Plus, 109, 689, 690,

693
&& (variable in SQL*Plus), 693
@ (at sign), 725
* (asterisk):

count all rows, 403, 411
multiply, 111, 334
select all columns, 37, 111
wildcard character, 66, 112

, (comma), 36, 57, 102, 106, 110
. (period):

decimal point, 36, 57, 110
in table names, 109, 724, 725, 727

/ (forward slash):
divide numbers, 111, 335
statement end in Oracle, 111

/* */ (multiline comment), 111
\ (backslash), integer divide, 335
: (colon), prefix creating a variable, 110, 689
; (semicolon), end of SQL statement, 104, 110
? (question mark), wildcard character, 66, 112
[] (square brackets):

handling spaces in names, 40, 106, 111
variable in Access, 689
in wildcard, 66, 112

^ (caret, Shift + 6, exponent), 335
^= (not equal), 60, 111
_ (underscore):

in names, 36, 40, 106
wildcard character, 66, 12

|| (two double bars or two pipe symbols),
concatenate, 110, 340, 344, 349

+ (plus):
add a number to a date, 351
add numbers, 334

< (less than), 51, 56, 499
<= (less than or equal to), 51, 56, 499
<> (not equal), 51, 60, 111
= (equal):

do not use with null, 69
equal condition, 51, 52
= null (okay in update), 296

> (greater than), 51, 56, 499
>= (greater than or equal to), 51, 499
0-parameter function, 365
3-valued logic, 60, 120

INDEX788

A
Abs function, absolute value of a number, 335
Accept command, get value of a variable, 695
Access:

autocommit, 174
case sensitivity, 118
commit, 173
count distinct not supported, 416
create a table with a union, 569
database versions, 772
Data Dictionary not supported, 197
datasheet, 183
datatypes for numbers, many, 213
default date format, 247
documentation, 374
enter an SQL query, 774
error messages, 776
error with addition, 369
full outer join not supported directly, 526
indexed with no duplicates property, 286
input format of dates, 252
parameter query, 699, 700
print, 776, 777
quick start, 771
read-only file, 773
read-write file, 773
relationships, 300
run a query, 775
security warning, 774, 778
select distinct not supported, 45
set difference not supported, 592
set intersect not supported, 591
start database, 772
time period is represented by numbers, 222
Trust Center, 778
validation rule property, 284
validation text property, 284
with check option not supported, 189

Access GUI:
add column, 229
add row (insert), 165
autonumber datatype (sequence), 271
cascade delete in RI, 306
cascade updates in RI, 308
change data (update), 166
column field properties, 269
column names, 203
create a saved query (view), 139
create a sequence, 260
delete a row, 166

delete a saved query (view), 145
delete a table, 144
Expression Builder, 375
find definition of saved query (view), 201
find indexes, 274
find name of saved query, 198
find table names, 198
format property, 255
primary key, 205, 208
referential integrity, 300
required field, 287
unique constraint, 286

Add (+):
numbers, 334
number to a date, 351

Add a row to a table, 151
Addition:

column function, 403, 420
problem and solution, 422
row function, 328, 329

Add_months function, 353
Ad-hoc reporting, 670
Administrator account (in Windows), 766
ADO, 742
Age in days, 388, 389
Aggregate function, 401, 402
Algebraic equation, 393
Alter table command:

add a new column, 229
check constraint, 283
check not-null, 287
commit not needed, 227
drop column, 233
drop constraint, 228
drop primary key, 228
foreign key, 291
modify datatype, 231
not-null constraint, 287
primary key, 227, 288
RI (referential integrity), 291
unique constraint, 285

Ampersand (&):
concatenate, 110, 340, 344, 348
variable in SQL*Plus, 109, 689, 690,

693
Analyze Table command, 226
AND, 51, 85, 90
Apostrophe ('), 105, 107, 127
Application development, rapid, 5
Approximate numbers, 222

INDEX 789

AS:
column alias, 39
create table, 135
create view, 139

ASC, ascending sort order, 72, 77
Associative rule, left and right outer joins do not

obey it, 549
Asterisk (*):

count all rows, 403, 411
multiply, 111, 334
select all columns, 41, 111
wildcard character, 66, 112

Atomic data, 14
At sign (@), 725
Autocommit, 174
Automatic datatype conversion:

in a row function, 369
in a union, 570

AutoNumber datatype, 216, 260, 391
Avg column function, average, 403, 420

B
Backslash (\), integer divide, 335
Base table, 142
Between condition, 51, 53, 64, 65, 124
Bfile datatype, 216
Binary datatype, 215
Binary pattern, 369
Bit datatype, 216
Blob datatype, binary large object datatype, 215
Boolean condition, standard form, 90
Boolean connectors and expression, 85
Byte datatype, 215

C
C#, 742
Calendar, 376
Capitalization, see case sensitivity
Caret (^; Shift + 6), exponent, 335
Cartesian product, 599
Cascade rule, 303, 306, 308
Case function, 676–689
Case sensitivity, 21, 113–120
CDate function, convert to a date, 364
CDbl function, convert to a Double number, 364
Ceil function, round a number upward, 335
Cell, 14, 15
Change data through a view:

conceptual diagram, 181, 182
examples, 183–188

Character function, 340
Character string, 107
Char datatype, fixed length text string, 214
Check constraint, 281, 283
Child table, 290
CInt function, convert to an integer, 364, 371
Clob datatype, character large object datatype,

215
COBOL, 742
Colon (:), prefix creating a variable, 110, 689
Column:

add a new column, 229
column alias, 38, 39
created by a row function, 325
Data Dictionary, 277
datatype, 13, 213, 266
date column, 13
defined, 10–13
drop a column (delete), 233
find names of columns, 266
format of a column, 38
heading of a column, 20, 39
modify datatype of a column, 231
name, 13,
number column, 13, 38
position (sequence), 13
rename with a column alias, 38, 39
sequence, 13
text column, 13, 38
truncated heading, 39
width, 39

Column alias:
order by clause, 74, 564
union, 561

Column constraint, 316
Column function:

avg, average, 420
count, 411
defined, 399, 401
grouped, 435
max, maximum, 403, 404
min, minimum, 403, 404
non-grouped, 401
null group, 444
restrictions, 467
stddev, standard deviation, 403
stdev, standard deviation, 403
sum, 420
used in a subquery, 706
variance, 403

INDEX790

Column function (continued):
var, variance, 403
where clause processed first, 404, 407
workarounds, 467

Column name, in order by clause of a union, 564
Column position number, in order by clause of a

union, 564
Combinations, create with cross join, 601, 608
Comma (,), 36, 57, 102, 106, 110
Comment:

line comment (--), 109, 226
multiline comment (/* */), 111

Commit command:
alter table command, 227
autocommit, 174, 194
commit command, 173
transaction, 175

Common mistake, 92
Compare:

full outer joins, 546
one pattern with another, 542
tables, 509, 544, 578, 592

Compatibility of datatypes, 571
Complexity, control of, 146
Composite key, 29
Compound condition, 51, 85, 90, 92
Computer language:

different from English, 85
punctuation, 102

Compute Statistics, 226
Concat function, concatenation, 340, 348
Conceptual diagram:

atomic data, 16
beginning and ending tables for a query, 33
cell, 14
changing data through a view, 181, 182
column, 13
column function, 401
constant value used in a query, 96
cross join, 613
effect of a query, 33
eliminate unneeded raw data early, 613
grouped summarization, 437
inner join as a series of steps, 478
inner join of several tables, 476
lunches database, 784
primary key, 17, 18
problem with addition, 424, 425
query without row functions, 323
referential integrity (RI), 290

row, 12
row function:

effect on one row, 324
effect on the whole table, 325

self join, 616
shape of a table, 19
table, 10
table of constants used in a query, 99
two-dimensional layout, 609, 611, 612
union, 530
union contrasted with join, 557
whole process of a query, 79,

Configuration:
distributed configuration, 726
multiuser (client/server) configuration, 724
single-user configuration, 723
using Internet, 726

Consistency:
in computer code, 98
of data, 281
implmented by a constraint, 283
implmented by a transaction, 176

Constant value, see literal value
hard-coded into queries, 96
table of constants, 98

Constraint:
allows only some changes to the data, 283
check constraint, 281
coded in create table statement, 316
foreign key constraint, 290
not-null constraint, 281
primary key constraint, 288
referential integrity, 289
uniqueness constraint, 285

Coordinate:
parts of an application, 146
people, 721

Correlated subquery, 714
Cost of a query, 663
Count column function:

data in a column excluding nulls, 411
distinct, 417
distinct dates, 431
rows, 411
to zero, 413

Count distinct column function, 417
Counter datatype, 216

autonumber, 216
Create index, 263

create unique index, 286

INDEX 791

Create or replace view command, 150
Create synonym command, 729
Create table command:

with constraints, 316
by defining columns, 211
with select statement, 135
with a union, 567
use a new name, 136

Create unique index command, 286
Create view command, 139

with a union, 567
Cross join,

avoid using with large tables, 612
create a list of all combinations, 608
defined, 599
properties of inner join, 604
used to define inner join, 601
used to detect errors, 601, 605
uses of, 601

Cross product, see cross join
CStr function, convert to a text string, 364
currency:

currency datatype, 215
stored as a number, 21

CurrentUser () function, 366
Currval, current value of a sequence, 258

D
Database:

configuration, 723
distributed, 725
evolution, 6
joins are part of the design, 666
link, 725
objects, 274

Datab warehouse, 748
Data Dictionary:

all database objects, 274
all data is in tables, 195
ALL_ prefix, 736
all_tables, 196
all_views, 196
column names, 201
columns of Data Dictionary, 277
datatype of a column, 266
DBA_ prefix, 736
definition of a view, 200
dict_columns, 237, 277
dictionary table, 237, 276
index, 271

index of columns, 737
index of Data Dictionary, 276
overview, 195
primary key, 512
sequence, 269
table names, 197
user_cons_columns, 204
user_constraints, 196
user_ind_columns, 271
user_indexes, 271
USER_ prefix, 196, 736
user_sequences, 266
user_tab_columns, 196
user_tables, 196, 197
user_views, 196, 199
view, find statement that defines it, 200
view names, 199

Datasheet, 183
Data table, 142, 290
Datatype:

automatic datatype conversion, 369, 570
autonumber, 216
bfile, 216
binary, 215
bit, 216
blob, 215
byte, 215
char, 214
clob, 215
counter, 216
currency, 215
date, 214
datetime, 214
definition, 212
difference in details between products, 213
external name, 213
find in Data Dictionary, 266
float, 215
functions to convert, 364, 369
image, 215
integer, 215
internal name, 213
interval, 216
memo, 215
money, 215
number, 214, 215
numeric, 222
OLE object, 215, 216
raw, 215
rowid, 216

INDEX792

Datatype (continued):
rownum, 216
smallint, 215
storage, 213
synonym, 213
text, 214, 217
timestamp, 216
union, 574
validation of data, 289
varchar, 214
varchar2, 214
yesno, 216

Date:
alignment, 21
between, 129
count distinct, 431
data entry format, 252
datatype, 214
default date format, 247
display format, 249
distinct dates, 129
enclosed in pound signs in Access, 55, 63
enclosed in single quotes in Oracle, 55, 63
format, 247
includes time, 222, 350
internal format is compressed, 247
pattern, 381, 383
remove time, 356
row function, 130, 350
stored with a time, 247
time not displayed, 21
year, 129

DateAdd function, 351, 353
Date datatype, 214
DateDiff function, 351, 353
Date() function, 363, 365
Date indicator (#), 55, 103, 108, 247, 252
Datetime datatype, 214
DateValue function, 352
Day function, 351
DBA (database administrator), 179, 194, 227,

262, 723, 730, 732
DBMS (database management system), 195, 264,

690,
DDL (data definition language), 36
Decimal point, 36, 57, 110
Declarative language, 3
Decode function:

apply two functions to a column, 687
attach messages to rows, 683

defined, 674
divide a column into two columns, 685
syntax, 675

Default date format, 247
Delete, see Drop command

restricted by a constraint, 167
row, 159

Delete command:
autocommit, 194
commit, 173
constraint, 283
limited by security, 169
referential integrity (RI), 289, 290
rollback, 173
view, 179–181

Delete option: 304
Desc, descending sort order, 72, 77
Describe command, 202
Design decision:

consistent names, 23
match the datatypes of columns, 23
numeric datatype, 23
prefix of table names, 23
referential integrity (RI), 290
table of constants, 95
text datatype, 23
tie-breaker column, 29

Design objective of SQL:
coordinate people to work together, 743
focus on information, 742
handle a large amount of information, 741
keep it simple, 742

Dict_columns table, 237, 277
Dictionary table, 276, 737
Distinct:

combination of columns, 417
count distinct, 415
select distinct, 44
uniqueness constraint, 285

Distributed configuration, 725, 729
Dividing one column into two, 585
DML (data modification language), 227
Documentation:

Access, 374
Access row functions, 375
Oracle, 373

Dollar sign ($), 57, 110
Double bar (pipe symbol, Shift + \):

concatenate (||), 110, 340, 344, 348
heading separator (|), 110

INDEX 793

Double dash (--), comment line, 109
Double quote ("), 40, 103, 106
Drill down, 441
Drop command:

column, 233
constraint, 228
primary key, 228
sequence, 257
table, 144
view, 145

Dual table, 336
Duplicate rows:

can all be the same object, 238
can be different objects, 237
distinguish them, 240
eliminate, 49, 237, 239
problem with, 237
when to allow, 237

Duplicate values, 34

E
Efficiency, 262, 264, 661, 663–665
English:

different than computer languages, 85
misuse of AND and OR, 86
misuse of NOT, 86
punctuation, 102

Equal (=), 51, 52
Error detection:

cross join, 601
punctuation, 102
too many rows in the result, 605
truncation, 154
where clause, 605

Error message:
constraint, 167, 316
details are often wrong, 122, 448
location of the error is usually right, 122
one error message is best, 123
plan your error messages, 316

Errors in a pattern, how to find them, 542
Event, 11
Exclamation mark (!), 109
Exists condition in a subquery, 716
Exp function, exponent, 335
Explain option, 194
Exponent (^), 335
Expression, 601
Expression Builder, 375

External name, 213
Extract function, 351, 352

F
Field, 10
Fixed length string, 217
Flexability in computer code, 98
Float datatype, 215
Floor function, round a number downward, 335
Foreign key, 290
Foreign key clause, 292
Form, 744
Format:

date, 247
defined, 247
used to display a date, 249
used to enter a date, 252

Format function, 250, 254, 356, 365
Forward slash (/), divide, 111, 335
Free format, 108
From clause:

full outer join, 526
inner join, 502
joining several tables at once, 658
left outer join, 522
new syntax for inner join, 502
overview, 34
right outer join, 524

Full outer join:
comparing two full outer joins, 546
defined, 522
easy to handle, 661
saves all information, 660
of several tables, 661
sorted, 539
symmetric, 661
syntax, 526
uses more computer resources, 661

Functions:
column functions, 401, 403
dates, 350
numbers, 334
text, 341

G
Grand total, 455, 744
Grant command, 728, 733

used with a role, 734
Greater than condition (>), 51, 56, 499

INDEX794

Greater than or equal to condition (>=), 51, 499
Greatest function, pick greatest number, 364
Group by clause:

add more columns, 451
cannot mix detail with summary, 452
eliminating some groups, 459
groups formed on one column, 438
groups formed on several columns, 441
how to mix detail with summary, 455
null group, 444
restrictions on a grouped query, 467

GUI (graphical user interface), advantages and
limitations, 161

H
Hard-coded value, 101
Having clause:

contrast with where clause, 462
defined, 460
redundant, 463
replaced by where clause, 463, 466

Heading separator (|), 110
Help, 374
History option, 192
HR userID, 754
HTML data, 222

I
Identify user, 732
If-then-else logic, 673

case function, 676
decode function, 675
IIF function, 680

Image datatype, 215
Immediate if (IIF) function:

apply two functions to column, 685, 687
attach messages to rows, 683
divide one column into two, 685
syntax, 680

Inactive view, 147
In condition,

contrast with between condition, 64
contrast with equal to condition, 62
used to handle dates, 65
used with a subquery, 703

Index:
create an index, 263
created by DBA, 262
find indexes in Data Dictionary, 271

how an index works, 262, 264
optimizer, 264
primary key, 263
used for efficiency, 664

Information:
can always be put in a table, 10
focus on, 741
handle a large amount of information, 5, 741
handle a small amount of information, 5
information level, 741
systems, 5
a table contains one type of information, 11

Information loss:
full outer join keeps all information, 660
inner join, 660
left and right outer join, 660

Initcap function, capitalize first letter of each
word, 342

Inner join, 473–515
with between in join condition, 497
defined from a cross join, 601
drops unmatched rows, 489, 491, 604
examples, 504
with greater than in join condition, 499
joining many tables, 513
joining two tables,
lookup table, 505
loses information, 489, 491, 660
many-to-many relationship, 487
many-to-one relationship, 483
matching on a range of values, 497
new syntax (from clause), 502
nulls in columns of join condition, 491
one-to-many relationship, 485
one-to-one relationship, 479
properties of an inner join, 604
related to outer join, 519
with a row function in join condition, 501
self join, 613
with several matching columns, 495
standardized join conditions, 666
with summarization, 510
symmetry of an inner join, 660
variations of syntax, 493, 502
writing SQL in a series of steps, 477, 507, 655

Insert command:
autocommit, 194
commit, 173
constraint, 283
limited by security, 169

INDEX 795

null, 151, 152
referential integrity (RI), 289, 290
restricted by a constraint, 167
rollback, 173
with a select statement, 154
several rows at once, 154
specify which columns, 152
text fields may be truncated, 154
transaction, 175
with a view, 181

InStr function, test if one text string contains
another, 343, 346

Integer datatype, 215
Internal name of a datatype, 213
Intersect, intersection of tables, 590
Interval datatype, 222
Int function, round to an integer, 335
Into clause, 135
I/O (input/output), 264
Is not null condition, 51, 88
Is null condition, 51, 69

J
Java, 742
JET engine (in Access), 742
Join:

ad-hoc join, 670
combining several tables, 473, 474, 655
contrast with a union, 557
cross join, 597, 599
database design, 666
from clause, 658
inner join, 473
outer join, 475, 519
primary key, 558
self join, 597
in a series of steps, 447, 655
standardized join conditions, 666
where clause, 658

Justification of data, 20

L
Last_day function, 353
Last row in an Access datasheet, 21
Lcase function, change text to lowercase, 342
Least function, pick smallest number, 364
Left outer join:

defined, 521
difficult on three tables, 660

loses information, 660
non-associative, 549
not symmetric, 660
problem with it, 549
syntax, 522

Len function, length of a text string, 343
Length function, length of a text string, 343
Less than condition (<), 51, 56, 499
Less than or equal to condition (<=), 51, 56, 499
Like condition, 51, 66
Linked tables, 725
Literal value, 38, 41, 95–98
Local server, 725
Logical expression, 601
Long string, 217
Lookup table, 504
Lower function, change text to lowercase, 342
Lpad function, put spaces on the left of text, 341
Ltrim function, remove spaces from the left of

text, 342
Lunches database:

crosstab query, 638, 641
data validation rules, 785
diagram, 783
introduction, 24
join conditions, 784

M
Many only means more than one, 483
Many-to-many relationship, 487
Many-to-one relationship, 483
Master index, 373
Materialized view, 730
Max column function, maximum value, 403
Memo datatype, 215
Mid function, get text from middle of a string,

341, 346
Midnight, 252
Min column function, minimum value, 403,

409
Minus, subtract one table from another, 592
Missing data, see Null
Mod function, remainder after division, 335, 379
Money datatype, 215,663
Month function,extract the month from a date,

352
Months_between function, number of months

between two dates, 353
Multiuser configuration, 721, 727

INDEX796

N
Names, spaces in, 40, 102, 106
Next_day function, date of the next day, 353
Nextval, next value in a sequence, 258
Non-associative:

left outer join, 549
right outer join, 549

Non-procedural language, see Declarative
language

Not:
boolean not, 51, 85, 88
is not null condition, 51, 88
not between condition, 51, 88
not equal condition, 51, 88
not in condition, 51, 88 , 708
not like condition, 51, 88

Not equal condition (<>, !=, ^=), 60, 111
Not-null constraint, 281, 287
Now() function, current date and time, 252, 363,

365
Null:

cannot be in a primary key, 17
change to another value, 363, 366
defined, 13
displayed in Oracle,
effect on inner join, 605
has no datatype, 71
in column functions, 402, 404, 411, 413, 422
in matching columns of an inner join, 489,

491
insert statement, 151, 152
is null condition, 69
missing or unknown data, 13, 70
not in condition, 708
null group, 438, 444
number in a column, 430
problems within subqueries, 708
row function, 327
select distinct, 44, 48
sort order of nulls, 46, 72
value substituted for a null, 422, 428
where clause conditions, 51, 52
why use them, 70

Null group, 48, 438, 444
Number datatype, 214, 213
Numbers:

approximate, 222
floating-point, 222
generating numbers, 621
number functions, 334

numbering lines of a report, 390
precise, 222

NVL function, changes nulls to other values, 363,
366

NVL2 function, 364
NZ function, changes nulls to other values, 363,

366

O
Object, 11
OLE object datatype, 215, 216
ON clause:

contains join condition, 502
delete rule in RI, 304
update rule in RI, 306

One-to-many relationship, 485
One-to-one relationship (two meanings), 481
Online help, 374
Optimizer, 264, 466, 655, 701
OR, 51, 85, 90
Oracle:

autocommit, 174
automatic start, 763
commit, 173
create a new userID, 755
crosstab query, 645, 674
cube command, 455
current information, 752
Data Dictionary, 736
default date format, 247
documentation, 373
download file, 753
download Oracle, 753
dual table, 260
enter a query, 769
entering formatted dates, 252
error messages, 763
explain option, 194
free, 751
full outer join, 526
get started after install, 754
go to database home page, 766
home page, 768
how to get it, 751
how to stop it, 736
install Oracle, 754
intersect command, 590
login to administrator account, 766
manual startup, 764
minus command, 592

INDEX 797

numbers all have one datatype, 213
page not found error, 767
print result tables, 770
quick start, 765
regular expression, 112
remove automatic start, 763
rollback, 173
rollup command, 455
run a query, 769
sequence, 257
setup for this book, 754
SQL Commands page, 768
sqlfun_build_oracle_tables.txt file, 758
sqlfun_delete_oracle_tables.txt file, 763
start an Oracle session, 766
start database, 764, 767
stop database, 763
system requirements, 753
transaction, 175
Web browser interface, 766
which version to get, 752

Oracle GUI:
add a new row (insert), 163
change a row (update), 163
create a new user, 755
delete a row, 164
running a script file, 758
running one SQL command, 192
SQL Commands page, 192

Order by clause:
column alias, 74
column name, 71
column position number, 72
in an insert statement, 155
more than one column, 75
overview, 34, 71
sorting a full outer join, 539
in a table, 135, 390
union, 561, 563
in a view, 140, 390

OTN (Oracle Technology Network), 753
Outer join:

applications, 534
full, 522, 526
left, 521, 522
related to inner join, 519
right, 521, 524
self join, 613
separating into two steps, 536
sorted full outer join, 539

standardizing joins, 666
written as a subquery, 717

Owner name, 725
Owner of a table, 724, 727

P
Parameter query:

in Access, 699
in Oracle, 690

Parentheses and precedence, 92
Parent table, 290
Parts of a table, 9
Password, 732
Pattern, 66
Patterns of dates, 381, 383
Patterns of numbers, 376
Percent (%), wildcard character, 66, 112
Performance, see Efficiency
Period (.):

decimal point, 57, 110
in table names, 109, 724–727

Pipe (|), 110
Pivot clause, 624
Pivot query, 624
Position number of a column, 22
Pound sign (#):

date indicator, 55, 63, 103, 108, 252
wildcard character, 66, 112

Power function, exponent, 335
Precise numbers, 222
Presentation level, 741
Preventative delete, 149
Primary key:

can have many columns, 17
cannot contain a null, 17
change primary key, 228
composit key, 229
create primary key, 226
Data Dictionary, 512
defined, 16
index, 263
join, 558
meaningless, 26
numeric, 23
only one allowed, 227
part of the data, 17
prevents duplicate rows, 237
referential integrity, 290
subject of the row, 17
surrogate key, 26

INDEX798

Primary key (continued):
two meanings, 311
union, 558
usually the first columns, 17

Prime numbers, 379
Private synonym, 728
Privilege, 732
Procedural language, 3
Production table, 653
Prompt command, display a message, 695
Public synonym, 728
Punctuation, 102, 110, 224

Q
Query:

ad-hoc query, 670
crosstab query, 597
frequent running query, 665
parameter query, 673, 690
query result listing, 36
saved query in Access, 139
select statement, 34
subquery, 673, 700, 701

Question mark (?), wildcard in Access, 66, 112
Quick start:

with Access, 771
with Oracle, 765

R
Rapid application development, 5
Raw datatype, 215
Real datatype, 215
Record defined, 10
Reference clause, 292
Reference table, 290
Referential integrity (RI) constraint:

cascaded deletes, 303, 306
cascaded updates, 308
change one of the valid values, 298
defined, 290
delete rules, 303
deletes allowed by RI, 294
deletes prevented by RI, 295
inserts allowed by RI, 294
inserts prevented by RI, 293
primary key, 311
relationship between tables, 299
RI on a single table, 315

RI on several columns, 313
set null rule for deletes, 303, 304
turned off temporarily, 289
update rules, 303, 308
updates allowed by RI, 294
updates prevented by RI, 393, 395

Regular expression, 112
Relational database, 3–5
Relationship, 11, 300
Remote server, 725
Replace function, substitute one string for

another, 341
Replica, 725, 730
Replication, 725
Report, can mix detail with summary data, 455,

744
Required field, 287
Reserved word, 104
Restrict rule, 303
Result table, 36
Revoke command, 733, 734
Right outer join:

defined, 521
difficult on three tables, 660
information loss, 660
non-associative, 549
non-symmeteric, 660
problem with it, 549
syntax, 524

Role, 734
Rollback command:

autocommit, 194
cancel changes to data, 173
used in a transaction, 175
used to change data temporarily, 427

Rollup function, 455
Round function:

round dates, 353
round numbers, 334, 335

Row:
defined, 10
delete a row, 159
distinct rows, 49
insert (add) a row, 151
with maximum or minimum value, 409
number in output of query, 663
unmatched, 489, 491, 519, 604
unordered, 12
update (change) a row, 157

INDEX 799

Row function:
apply two functions to a column, 587
arithmetic on numbers, 334
change datatype, 369
change nulls to other values, 366
creates a new column in a table, 325
creates a new value, 324
defined, 232, 324
defined in the first step, 331
documentation, 372
functions on dates, 350
functions on numbers, 334
functions on text, 341
identify the date and the user, 363
null input gives null output, 227
numeric test of a row function, 336, 337
other row functions, 363
pick one value, 364
test a row function, 336, 337
used in a join condition, 501
used in all clauses of a select statement, 327,

329, 332
used in a series of steps, 331

Rowid datatype, 216
Rownum datatype, 216
Rownum function, 390
Rpad function, add spaces to the right of text,

341
Rtrim function, remove spaces from right of text,

342
Run button, 136

S
Saved query, in Access, 139
Security, 169, 732
Select clause:

column alias, 39
overview, 34, 37
in a union, 561

Select data early in the process, 664
Select distinct:

Access does not support this, 45
distinct values in one column, 44
distinct values in several columns, 48
null, how it is handled, 44
overview, 37
used to eliminate duplicate rows, 239

Select statement:
defined, 34
overview, 34

processes one row at a time, 614
query, 35
whole process, 79, 463
within a union, 561

Self join:
defined, 613
example, 616, 618, 621
used with a sequence, 618

Semicolon (;), end of SQL statement, 104, 110
Sequence:

create a sequence in Oracle, 257
Data Dictionary, 269
defined, 257
sequences in Access, 260
sequences in Oracle, 258
value in row does not change, 257

Series of steps, SQL written in:
inner join, 507
inner or outer join, 655
outer join, 536
row function, 331
technique shown, 146
views created in layers, 146

Server:
local, 725
remote, 725

Set difference, 590, 592
Set intersection, 590
Set null rule, 303, 304
Sgn function, sign of a number, 335
Shared application, 724
Shared database, 663
Sharing the database with other people:

autocommit, 194
snapshot, 730
synonym, 728
table, 173, 727, 736
transaction, 175

Sign function, sign of a number, 335
Simple logical condition, contrast with complex

logical condition, 90, 92
Simultaneous users, 4
Single quote ('), 52, 63, 66, 103, 107
Single-user configuration, 723
Slash (/):

backslash (\) used for integer divide, 335
divide numbers (/), 335
multiline comment (/* */), 111
statement end in Oracle (/), 111

Slowest operation in the CPU is I/O, 264

INDEX800

Smallint datatype, 215
Small table, 71, 608, 664
Snapshot, 725, 727, 730
Sort, 73, see Order by clause
Sort order:

position of a null, 46
primary sort order, 75
secondary sort order, 75

Soundex function, find words that sound alike,
341

Space function, creates a string of blank
characters, 342

Spaces in names, avoid them, 39, 40, 102
Spacial data, 222
SQL:

defined, 3, 4
design objectives, 739, 741
newer interfaces, 743
products, 7
typical applications, 748

SQL Commands page, 192
Sqlfun:

sqlfun_build_oracle_tables.txt file, 224, 758
sqlfun_delete_oracle_tables.txt file, 763

SQL*Plus, 254, 673, 742
SQL script, how to run, 758
Sqr function, square root, 335
Sqrt function, square root, 335
Square brackets []:

handling spaces in names, 40, 106, 111
variable in Access, 689
in wildcard, 66, 112

Standard form:
of a boolean expression, 90
of a where clause, 90

Stddev function (with two Ds), standard
deviation, 403

Stdev function (with one D), standard deviation,
403

Storage data, 222
StrConv function, convert a text string to upper-

case, lowercase, or with the first letter
of each word capitalized, 342

String (of alphanumeric characters):
fixed-length string, 217
long string, 217
variable-length string, 217

String function, create a string that repeats a
character a specified number of times,
341

Subquery:
correlated, 714
defined, 701
example, 710
with an exists condition, 716
with an in condition, 708
limitations, 719
with a list of values, 703
nested, 718
with a not in condition, 708
older features, 714
replace with a join, 719
to select most current data, 714
with a single value, 706
used in an update, 710
used to compare tables, 712
to write an outer join, 717

Substr function, substring of text, 341, 346
Subtotal, 455, 744
Subtract (-):

a date from another date, 351
a number from a date, 351
a number from another number, 334

Sum:
problem with addition, 422
sum column function, 403, 420, 422
sum row function, 328, 329, 334, 422
using NVL or NZ in a sum, 422

Summarizing data:
cannot mix detail with summary, 447
column functions, 403
eliminating groups of summarized data, 459
group by clause, 438
grouped summarization defined, 435, 437
how to mix detail with summary, 455
null group, 444
summarizing and an inner join, 510
summarizing an entire column, 401
table of summarized data, 665
workaround restrictions, 467

Surrogate key, 26
Symmetry in joins:

cross join, 605
full outer join, 661
inner join, 605

Synonym:
alternate name of a datatype, 213
alternate name of a table, 728

Sysdate function:
contrast with date function, 365

INDEX 801

current time and date, 252, 363, 365
System Catalog, 195, see Data Dictionary
System userID, 754, 755
System variable, 365
Systimestamp function, current date and time

(very precise), 363

T
Table:

add a column, 229
add a primary key, 225, 226
add rows, 223
alter table command, 226–234, 283–316
base table, 142
can handle all information, 10
can have only one primary key, 17
child table, 290
column names are part of the table, 201
combining, 473, 475, 557, 599
combining with cross join, 599
compare two tables, 544, 578, 590, 592, 712
conceptual diagram, 10
constants table, 95
contains a single type of information, 11
create a table, 135, 211, 212, 224, 316
data table, 142, 290
definition, 211
delete a column, 233
delete rows, 159
derived table, 36
dictionary table, 737
difference from a view, 142
drop (delete) a table, 144
dual table, 336, 365
with duplicate rows, 236, 237
empty, 212
insert (add) rows, 151, 154
large, 12, 85, 601, 612
lookup table, 290, 504
make unusual changes, 234
modify the datatype of a column, 231
most tables have a primary key, 17
name of a table, 197
with one row, 12
with an order by clause, 390
owned by another person, 727
owner, 724
parent table, 290
parts of a table, 9
preventative delete of a table, 149

primary key, 16
production tables, 653
qualification of table name, 724
reference table, 290
result table, 36
RI as a relationship between tables, 299
shape of a table, 18
similar to a view, 139, 142
simultaneous use, 736
small table, 34, 71, 599, 608, 664
static data, 142
stored on disk, 142
summarized data kept in a table, 665
synonym, 728
table of constants, 96
update (change) rows, 157
usually has more rows than columns, 18
virtual table, 36

Table alias, 481
contrast with synonym, 728
used in a self join, 614

Table of constants, 98
Text column, 13, 38
Text datatype, 214
Text functions, 340
Text string, 107
Three-valued logic, 60, 120
Time:

date datatype, 214
datetime datatype, 214
entered with a date, 252
included with a date, 350
period of time, 216
point of time, 216
remove the time from the date, 356
set the time to midnight for a date, 252
time is always stored with a date, 247

Time() function, get the current time, 363, 365
Timestamp datatype, 216, 222
To_char function, convert to text, 249, 356, 364,

365
To_date function, convert to a date, 252, 352, 364
To_number function, convert to a number, 364
Transaction, 175, 194
Transform clause, 624
Trim function, trim spaces from both ends of

text, 342
Trunc function:

truncate time from dates, 352
truncate numbers, 335

INDEX802

Tune a database, 262
Two-dimensional layout, 609, 611, 624

U
Ucase function, change text to uppercase, 342
Underscore (_):

in names, 36, 40, 106
wildcard character, 66, 12

Union:
applications, 576
apply two functions to a column, 587
attach messages to rows, 583
automatic datatype conversion, 570
basics, 557
contrast with a join, 557
create a table with a union, 567
create a view with a union, 567
divide one column into two columns, 585
identify source of data, 581
introduction to unions, 529
match columns with different datatypes, 570,

574
matching datatypes, 557
order by clause in a union, 563
primary key, 558
same number of columns, 557
select statements in a union, 561
syntax, 530
of tables with different numbers of columns,

576
unconventional, 573
union all, 559
union of several tables, 588
used to create a full outer join, 526

Union all:
contrast with union, 559
syntax, 560
when to use it, 560
why to use it, 559

Unique index, 263, 285
Uniqueness constraint, 281, 285
Unknown, truth value of a null, 120
Unmatched rows:

dropped by an inner join, 489, 491, 604
restored by an outer join, 519

Updateable views, 180
Update command:

autocommit, 194
change data, 157
commit, 173

constraints restricting changes, 283, 393, 395
rollback, 173
set clause, 157
subquery, used in, 710
view, used for updates, 179–181
where clause, 157

Upper function, change text to uppercase, 342
User_cons_columns table, 196, 204
User_constraints table, 196, 204
User function, userID using the database, 363,

732
UserID, 732
User_ind_columns table, 271
User_indexes table, 271
User_objects table, 275
User_sequences table, 269
User_tab_columns table, 196, 266
User_tables table, 196, 197
User_views table, 196

V
Validation, of data:

check constraints, 283
datatype as data validation, 289
not-null constraint, 287
primary key constraint, 288
referential integrity constraint, 289
uniqueness constraint, 285

Validation rules, 283
Validation text, 284
Valid values, 290
Varchar datatype, 214
Varchar2 datatype, 214, 215
Var column function, variance, 403
Variable:

& (ampersand) in variable name, 690, 693
&& (double ampersand) in variable name, 693
accept command, 693, 695
define a variable in SQL*Plus, 695
used in a parameter query, 689, 690
variables in Access, 698

Variance column function, variance, 403
View:

change data through a view, 179
circular definitions not allowed, 146
column names, 201
create a view, 139
create or replace a view, 151
difference from a table, 142
drop (delete) a view, 145

INDEX 803

dynamic data, 142
find column names, 199
find select statement that defines a view, 200
layers of views, 146
materialized views, 725, 730
might be dropped automatically, 146
with an order by clause, 390
preventative delete of a view, 149
restoring a view, 147
select statement stored on disk, 142
similar to a table, 139
used to standardize joins, 666
updateable view, 180
with check option, 189

Visual Basic, 742

W
Web browser, 742
Web page data, 222
Web site for this book, 752
Web tools, 745

Weekday function, day of the week, 352
Where clause:

compound conditions in where clause, 85
contrast with having clause, 462
not used in cross join, 600
overview, 43, 50
preferred to having clause, 463
standard form, 90
used to eliminate raw data, 466
used to join several tables at once, 658
why it is complex, 50

Wildcard characters, 66, 112
With check option, 189

Y
Year function, extract the year from a date, 352
Yesno datatype, 216

Z
Zero, counting to, 413, 455, 457, 534
Zero-length string, 70

	SQL fundamentals
	CONTENTS
	PREFACE
	How the Topics Are Presented
	The Companion Web Site
	Acknowledgments

	Chapter 1 STORING INFORMATION IN TABLES
	Introduction
	1-1 What is SQL?
	1-2 What is a relational database and why would you use one?
	1-3 Why learn SQL?
	1-4 What is in this book?

	The Parts of a Table
	1-5 Data is stored in tables
	1-6 A row represents an object and the information about it
	1-7 A column represents one type of information
	1-8 A cell is the smallest part of a table
	1-9 Each cell should express just one thing
	1-10 Primary key columns identify each row
	1-11 Most tables are tall and thin

	Examples of Tables
	1-12 An example of a table in Oracle and Access
	1-13 Some design decisions in the 1_employees table
	1-14 The Lunches database

	Key Points

	Chapter 2 GETTING INFORMATION FROM A TABLE
	The Select Statement
	2-1 The goal: Get a few columns and rows from a table
	2-2 Overview of the select statement

	The Select Clause
	2-3 Overview of the select clause
	2-4 Use a select clause to get a list of some of the columns
	2-5 Use a select clause to get a list of all of the columns
	2-6 Use a select clause to get the distinct values in one column
	2-7 Use a select clause to get the distinct values in two columns

	The Where Clause
	2-8 Overview of the where clause
	2-9 Using an Equal condition in the where clause
	2-10 Using a Less Than condition in the where clause
	2-11 Using a Not Equal condition in the where clause
	2-12 Using the in condition in the where clause
	2-13 Using the between condition in the where clause
	2-14 Using the like condition in the where clause
	2-15 Using the is null condition in the where clause

	The Order By Clause
	2-16 Overview of the order by clause
	2-17 Sorting the rows by one column in ascending order
	2-18 Sorting the rows by several columns in ascending order
	2-19 Sorting the rows by several columns in various orders
	2-20 The whole process so far

	Key Points

	Chapter 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE
	Compound Conditions in the Where Clause
	3-1 Using a compound condition in the where clause
	3-2 Using not with in, between, like, and is null
	3-3 The standard form of a complex condition in the where clause
	3-4 A common mistake

	Constant Values
	3-5 Using a constant value in the select clause
	3-6 Using a table of constants

	Punctuation Matters
	3-7 Punctuation you need to know right now
	3-8 Punctuation reference section

	Case Sensitivity
	3-9 Case sensitivity in Oracle
	3-10 The debate about case sensitivity in SQL
	3-11 You have a choice
	3-12 You can turn off case sensitivity in the Oracle SQL Command Line environment
	3-13 Case sensitivity in Access

	Three-Valued Logic
	3-14 SQL uses three-valued logic

	Error Messages
	3-15 Error messages are often wrong

	Some Exercises Solved for You
	3-16 Exercise 1
	3-17 Exercise 2
	3-18 Exercise 3

	Key Points

	Chapter 4 SAVING YOUR RESULTS
	Saving Your Results in a New Table or View
	4-1 Create a new table from the result of a select statement
	4-2 Creating a new view from the results of a select statement
	4-3 Similarities between tables and views
	4-4 Differences between tables and views
	4-5 Deleting a table
	4-6 Deleting a view
	4-7 One view can be built on top of another view
	4-8 Preventative delete

	Modifying the Data in a Table with SQL
	4-9 Adding one new row to a table
	4-10 Adding many new rows to a table
	4-11 Changing data in the rows already in a table
	4-12 Deleting rows from a table

	Modifying the Data in a Table with the GUI
	4-13 Using the Oracle GUI to change data in a table
	4-14 Using the Access GUI to change the data in a table

	Restrictions on Modifying the Data in a Table
	4-15 Constraints with insert, update, and delete
	4-16 Security restrictions

	Key Points

	Chapter 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS
	Commit, Rollback, and Transactions
	5-1 The commit and rollback commands
	5-2 The Autocommit option
	5-3 Transactions

	Modifying Data through a View
	5-4 Changing data through a view
	5-5 Example of changing data through a view
	5-6 Views using With Check Option

	The SQL Commands Page in Oracle
	5-7 Overview of the SQL Commands page
	5-8 The Autocommit option
	5-9 The Explain option

	Using the Oracle Data Dictionary — Part 1
	5-10 Overview of the Data Dictionary
	5-11 How to find the names of all the tables
	5-12 How to find the names of all the views
	5-13 How to find the select statement that defines a view
	5-14 How to find the names of the columns in a table or view
	5-15 How to find the primary key of a table

	Key Points

	Chapter 6 CREATING YOUR OWN TABLES
	Creating Tables
	6-1 The create table command
	6-2 Datatypes in Oracle and Access
	6-3 Text datatypes
	6-4 Numeric datatypes
	6-5 Date/time datatypes
	6-6 Other datatypes
	6-7 Putting data into a new table
	6-8 Creating the 1_employees table in Oracle

	Changing Tables
	6-9 Adding a primary key to a table
	6-10 Changing the primary key of a table
	6-11 Adding a new column to a table
	6-12 Expanding the length of a column
	6-13 Deleting a column from a table
	6-14 Making other changes to tables

	Tables with Duplicate Rows
	6-15 The problem with duplicate rows
	6-16 How to eliminate duplicate rows
	6-17 How to distinguish between duplicate rows

	Key Points

	Chapter 7 FORMATS, SEQUENCES, AND INDEXES
	Formats
	7-1 Formats of dates
	7-2 Displaying formatted dates
	7-3 Entering formatted dates
	7-4 Other formats in Oracle
	7-5 Formats in Access

	Sequences
	7-6 Creating a sequence in Oracle
	7-7 Using sequences in Oracle
	7-8 Sequences in Access

	Indexes
	7-9 Creating an index
	7-10 The Optimizer
	7-11 An example of how an index works

	Using the Oracle Data Dictionary — Part 2
	7-12 How to find information about the datatype of a column
	7-13 How to find information about sequences
	7-14 How to find information about indexes
	7-15 How to find information about all your database objects
	7-16 How to use the index of Data Dictionary tables
	7-17 How to use the index of Data Dictionary columns

	An Exercise Solved for You
	7-18 Create a table of the days you want to celebrate

	Key Points

	Chapter 8 DATA INTEGRITY
	Constraints on One Table
	8-1 A constraint keeps the data consistent
	8-2 check constraints
	8-3 unique constraints
	8-4 not null constraints
	8-5 primary key constraints
	8-6 Restrictions on the datatype and length of fields

	Referential Integrity
	8-7 The concept of RI
	8-8 An example of RI
	8-9 Inserts and updates to the data table prevented by RI
	8-10 Inserts and updates to the data table allowed by RI
	8-11 Updates and deletes to the lookup table prevented by RI
	8-12 How to delete a code from the lookup table
	8-13 How to change a code in the lookup table
	8-14 RI as a relationship between the tables
	8-15 Setting up RI in the Access GUI

	The Delete Options and Update Options of RI
	8-16 The three options for deletes and updates to the lookup table
	8-17 The delete rule: set null
	8-18 The delete rule: cascade
	8-19 The update rule: cascade

	Variations of Referential Integrity
	8-20 The two meanings of primary key
	8-21 Using two or more columns for the primary key
	8-22 The lookup and data tables can be the same table

	How to Code Constraints in a Create Table Statement
	8-23 Constraints are often coded in the create table statement

	Key Points

	Chapter 9 ROW FUNCTIONS
	Introduction to Row Functions
	9-1 Getting data directly from the beginning table
	9-2 What is a row function?
	9-3 An example of a row function in the select clause
	9-4 An example of a row function used in all the clauses of a select statement
	9-5 Defining a row function as the first step

	Numeric Functions
	9-6 Functions on numbers
	9-7 How to test a row function
	9-8 Another way to test a numeric row function

	Text Functions
	9-9 Functions on text
	9-10 Combining the first and last names
	9-11 Separating the first and last names
	9-12 Formatting phone numbers

	Date Functions
	9-13 Functions on dates
	9-14 An example of a date function
	9-15 Removing the time from a date

	Key Points

	Chapter 10 USING ROW FUNCTIONS
	Specialized Row Functions
	10-1 Other row functions
	10-2 Using a function to identify the user and the date
	10-3 Using a function to change nulls to other values
	10-4 Using a function to change the datatype

	Using the Documentation of Row Functions
	10-5 Using Oracle documentation
	10-6 Using Access documentation
	10-7 Using the Access Expression Builder to find row functions

	Creating Patterns of Numbers and Dates
	10-8 Create a simple pattern of numbers
	10-9 Create a complex pattern of numbers
	10-10 List all the days of one week
	10-11 Create a calendar of workdays
	10-12 How to find out how many days old you are
	10-13 How to find the date when you will be 10,000 days old
	10-14 Numbering the lines of a report in Oracle and Access
	10-15 Optional: An easy way to solve an algebraic equation

	Key Points

	Chapter 11 SUMMARIZING DATA
	Introduction to the Column Functions
	11-1 Summarizing all the data in a column
	11-2 A list of the column functions

	Maximum and Minimum
	11-3 Finding the maximum and minimum values
	11-4 Using a where clause with a column function
	11-5 Finding the rows that have the maximum or minimum value

	Count
	11-6 Counting rows and counting data
	11-7 Counting to zero, part 1
	11-8 Counting the number of distinct values in a column
	11-9 Counting the number of distinct values in two or more columns

	Sum and Average
	11-10 The sum and average functions
	11-11 The problem with nulls in addition and how to solve it

	Other Topics
	11-12 Nulls are not always changed to zero
	11-13 Counting the number of nulls in a column
	11-14 Counting distinct dates

	Key Points

	Chapter 12 CONTROLLING THE LEVEL OF SUMMARIZATION
	Dividing a Table into Groups of Rows
	12-1 Summary of groups of data within a column
	12-2 The group by clause
	12-3 Groups formed on two or more columns
	12-4 Null groups when there are two or more grouping columns
	12-5 Summarized data cannot be mixed with nonsummarized data in the same select statement
	12-6 Solution 1: Add more columns to the group by clause
	12-7 Solution 2: Divide the query into two separate select statements
	12-8 How to create a report with subtotals and a grand total
	12-9 Counting to zero, part 2
	12-10 Counting to zero, part 3

	Eliminating Some of the Summarized Data
	12-11 The having clause
	12-12 The having clause contrasted with the where clause
	12-13 The whole process of the select statement on a single table
	12-14 The having clause does not add any more power to the select statement
	12-15 Use a where clause to eliminate raw data
	12-16 How to apply one column function to another column function and get around other restrictions

	Key Points

	Chapter 13 INNER JOINS
	Introduction to Joins
	13-1 A query can use data from several tables
	13-2 The best approach is to join two tables at a time

	Inner Joins of Two Tables
	13-3 A one-to-one relationship
	13-4 A many-to-one relationship
	13-5 A one-to-many relationship
	13-6 A many-to-many relationship
	13-7 Unmatched rows are dropped
	13-8 Rows with a null in the matching column are dropped
	13-9 Five ways to write the SQL for an inner join

	Variations of the Join Condition
	13-10 A join using two or more matching columns
	13-11 A join using between to match on a range of values
	13-12 A join using the Greater Than condition
	13-13 A join using a row function
	13-14 Writing the join condition in the from clause

	Applications of Joins
	13-15 Lookup tables
	13-16 Combining a join and selection of data
	13-17 Using a join with summarization
	13-18 How to find the primary key in the Oracle Data Dictionary
	13-19 Combining three or more tables with inner joins

	Key Points

	Chapter 14 OUTER JOINS
	Introduction to Outer Joins
	14-1 Outer joins are derived from inner joins
	14-2 The three types of outer joins
	14-3 The left outer join
	14-4 The right outer join
	14-5 The full outer join
	14-6 An introduction to the union
	14-7 An example of a union of two tables with matching columns

	Applications of Outer Joins
	14-8 Counting to zero, part 4
	14-9 Combining an outer join with a selection of the data
	14-10 A full outer join in sorted order
	14-11 Finding the defects in a pattern
	14-12 Comparing tables using two or more columns
	14-13 Comparing two different full outer joins
	14-14 Problem: Left and right outer joins can be difficult to handle

	Key Points

	Chapter 15 UNION AND UNION ALL
	Union Basics
	15-1 The difference between a union and a join
	15-2 The difference between a union and a union all
	15-3 The select statements within a union
	15-4 The order by clause in a union
	15-5 Creating a table or view that includes a union
	15-6 Automatic datatype conversion in a union

	Unconventional Unions
	15-7 A union of tables with different datatypes
	15-8 A union of two tables with different numbers of columns

	Applications of a Union
	15-9 Determining if two tables are identical
	15-10 Using a literal in a union to identify the source of the data
	15-11 Attaching messages to flag exceptions, warnings, and errors
	15-12 Dividing data from one column into two different columns
	15-13 Applying two functions to different parts of the data
	15-14 A union of three or more tables

	Set Intersection and Set Difference in Oracle
	15-15 Set intersection
	15-16 Set difference

	Key Points

	Chapter 16 CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES
	Cross Joins
	16-1 Definition of a cross join
	16-2 Why are cross joins important?
	16-3 An inner join is derived from a cross join
	16-4 The properties of an inner join
	16-5 An error in the join condition can appear to be a cross join
	16-6 Using a cross join to list all the possible combinations
	16-7 Other layouts when there are three or more dimensions
	16-8 Avoid a cross join of large tables

	Self Joins
	16-9 Why would you ever join a table with itself?
	16-10 An example of a self join
	16-11 Handling a sequence of events
	16-12 Generating the numbers from 0 to 999

	CrossTab Queries in Access
	16-13 CrossTab queries when there are two dimensions
	16-14 CrossTab queries with up to four dimensions
	16-15 CrossTab queries with more dimensions
	16-16 CrossTab to show who is attending each lunch
	16-17 CrossTab to show the foods for each lunch

	CrossTab Queries in Oracle
	16-18 CrossTab queries in Oracle — Part 1
	16-19 CrossTab queries in Oracle — Part 2

	Key Points

	Chapter 17 COMBINING TABLES IN A PRODUCTION DATABASE
	Methods of Joining Three or More Tables
	17-1 Joining several tables in a series of steps
	17-2 Joining several tables at once in the where clause
	17-3 Joining several tables at once in the from clause

	Losing Information
	17-4 Be careful with an inner join
	17-5 Be careful with a left and right outer join
	17-6 A full outer join preserves all the information
	17-7 A full outer join of several tables

	Caring about the Efficiency of Your Computer
	17-8 Monitor your queries
	17-9 Use the indexes
	17-10 Select the data you want early in the process
	17-11 Use a table to save summarized data
	17-12 Try several ways of writing the SQL

	Standardizing the Way That Tables Are Joined
	17-13 The joins are part of the database design
	17-14 A view can standardize the way tables are joined
	17-15 Ad hoc reporting

	Key Points

	Chapter 18 IF-THEN-ELSE, PARAMETER QUERIES, AND SUBQUERIES
	If-Then-Else Logic
	18-1 The case and decode functions in Oracle
	18-2 The Immediate If (iif) function in Access
	18-3 Attaching messages to rows
	18-4 Dividing data from one column into two different columns
	18-5 Applying two functions to different parts of the data

	Parameter Queries
	18-6 A parameter query in Oracle
	18-7 Using a parameter more than once in Oracle
	18-8 More ways to define parameters in Oracle
	18-9 A parameter query in Access
	18-10 A query in Access with two parameters
	18-11 Limitations on parameters in Access

	Subqueries
	18-12 Introduction to subqueries
	18-13 Subqueries that result in a list of values
	18-14 Subqueries that result in a single value
	18-15 Avoid using not in with nulls

	Applications of Subqueries
	18-16 Subqueries used in an update command
	18-17 Finding the difference between two tables
	18-18 Using the most current data

	Older Features of Subqueries
	18-19 Correlated subqueries
	18-20 Subqueries using exists
	18-21 Using a subquery to write an outer join
	18-22 Nested subqueries
	18-23 Subqueries can be used in limited locations
	18-24 Many subqueries can also be written as a join

	Key Points

	Chapter 19 THE MULTIUSER ENVIRONMENT
	Database Configurations
	19-1 The single-user environment
	19-2 The multiuser environment
	19-3 The distributed environment
	19-4 Connecting via the Internet

	Operating in a Multiuser Environment
	19-5 How to use a table you do not own
	19-6 Synonyms
	19-7 Snapshots

	Security and Privileges
	19-8 Identifying the user
	19-9 Privileges
	19-10 Roles
	19-11 Several people can use the same table at the same time

	The Oracle Data Dictionary and the Multiuser Environment
	19-12 ALL versus USER
	19-13 How to find the tables youwant in the Data Dictionary
	19-14 How to find the meaning of the columns

	Key Points

	Chapter 20 THE DESIGN OF SQL
	Original SQL Design Objectives
	20-1 Do one thing and do it well
	20-2 Focus on information
	20-3 Keep it simple
	20-4 Coordinate people to work together

	Newer Interfaces
	20-5 Forms
	20-6 Reports
	20-7 Web tools

	Typical Applications
	20-8 Smaller databases
	20-9 OLTP
	20-10 Data warehouses

	Key Points

	Appendix A: ORACLE IS FREE: HOW TO GET YOUR COPY
	Getting Current Information
	Which Version of Oracle Should You Get?
	System Requirements
	Downloading Oracle from the Internet
	Installing Oracle
	Setup to Run the Examples in This Book
	A-1 Create a new database user
	A-2 Download the files to build the Oracle tables
	A-3 Build the Oracle tables by running an SQL script
	A-4 Disaster recovery if you need it

	How to Stop Running Oracle
	What to Do if Oracle Slows Down Your Computer
	A-5 The official Oracle solution
	A-6 My own solution

	Appendix B: QUICK START WITH ORACLE
	Log in to Your Computer
	Go to the Database Home Page
	Log in to the Oracle Database
	Go to the SQL Commands Page
	Enter and Run an SQL Query
	Optional: Print Your Query and the Results

	Appendix C: QUICK START WITH ACCESS
	You May Use Access 2007, 2003, 2002, or 2000
	How to Start Access
	Entering an SQL Query
	Dealing with Errors in Access
	Printing from Access
	Using the Access Trust Center

	Appendix D: DIAGRAM OF THE LUNCHES DATABASE
	Join Conditions
	Data Validation Rules

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

