

SQL Server 2005
Reporting Services in Action

SQL Server 2005
Reporting Services
in Action

Revised Edition of
Microsoft Reporting Services in Action

BRET UPDEGRAFF

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Specail Sales Department
Manning Publications Co.
Cherokee Station
PO Box 20386 Fax: (609) 877-8256
New York, NY 10021 email: orders@manning.com

©2007 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co.
Cherokee Station Copyeditor: Liz Welch
PO Box 20386 Typesetter: Denis Dalinnik
New York, NY 10021 Cover designer: Leslie Haimes

ISBN 1-932394-76-1

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 10 09 08 07 06

To Daniel, for your inspiration

brief contents

1 Introducing SQL Server 2005 Reporting Services 1

2 Report authoring basics 41

3 Working with data 64

4 Designing reports 104

5 Using expressions and functions 150

6 Using custom code 185

7 Ad hoc reporting with the Report Builder application 215

8 Managing the Reporting Services environment 259

9 Securing Reporting Services 311

10 On-demand report delivery 341

11 Mastering the ReportViewer controls 389

12 Subscribed report delivery 420

13 Extending Reporting Services 453

14 Performance and scalability 497

appendix A Installing SQL Server Reporting Services 524

appendix B Understanding .NET code access security 531
vii

contents
foreword xvii

foreword to the first edition xix

preface xxi

preface to the first edition xxii

acknowledgments xxiv

about this book xxvi

about the source code xxix

about the authors xxxiv

about the cover illustration xxxv

1 Introducing SQL Server 2005 Reporting Services 1
1.1 What is Reporting Services? 2

Solving reporting problems with Reporting Services 3
Choosing a Reporting Services edition 4
Reporting Services and the Microsoft SQL Server platform 6

1.2 Reporting Services at a glance 7
Authoring features 8 ✦ Management features 10
Delivery features 11 ✦ Extensibility features 11
Scalability features 12 ✦ Security features 12
Deployment features 12

1.3 RS architecture 13
The Report Server engine 15 ✦ The Report Server
database 16 ✦ The Report Manager 17

1.4 Understanding report processing 19
Execution stage 20 ✦ Rendering stage 20

1.5 Delivering reports 22
On-demand delivery 22 ✦ Subscribed delivery 23

1.6 What is the report lifecycle? 24
ix

1.7 RS in action 25
About the Adventure Works Reporter 26
Your first report 26

1.8 Evaluating RS 36

1.9 Summary 37

Part 1 Authoring reports 39

2 Report authoring basics 41
2.1 The report-authoring process: step by step 42

Analysis 43 ✦ Construction 43 ✦ Testing 44
Deployment 44

2.2 Authoring reports in VS .NET 44
Authoring reports with the Report Wizard 45
Authoring reports with the Report Designer 46
Importing reports from Microsoft Access 55

2.3 Creating reports programmatically 57
Generating RDL: The AW Ad Hoc Reporter 59
Implementation details 60

2.4 Summary 62

3 Working with data 64
3.1 Working with data sources 64

Connecting to the database 65 ✦ Choosing an authentication
mechanism 70 ✦ Deploying data sources 78

3.2 Working with report datasets 78
Understanding the dataset definition 79 ✦ Creating a report
dataset 80 ✦ Using multiple datasets 84

3.3 Authoring dataset queries 85
Using the Graphical Query Designer 85 ✦ Using the Generic
Query Designer 87

3.4 Parameter-driven reports 90
The role of parameters 90 ✦ Building parameter-driven
queries 91 ✦ Setting up the report-level parameters 93

3.5 Working with stored procedures 98
Using a stored procedure as a dataset query 98
Defining query-based lookup parameter values 100
Creating cascading parameters 101 ✦ Working with
multivalued parameters 102

3.6 Summary 102
x CONTENTS

4 Designing reports 104
4.1 Anatomy of a report 105

Getting started with a new report 106 ✦ Understanding report
sections 106 ✦ Understanding report items 107
Understanding data regions 110

4.2 Designing tabular reports 112
Tabular reports with groups 113 ✦ Parameterized tabular
reports 116 ✦ Tabular reports with interactive features 121
Table region limitations 123

4.3 Designing freeform reports 123
Freeform reports with nested regions 123
Grouping freeform data 125
Freeform reports with side-by-side data regions 127

4.4 Designing chart reports 128
The chart data region 129 ✦ Working with charts 129
Nesting chart regions 132

4.5 Designing crosstab (matrix) reports 133
Matrix region advantages 133 ✦ Working with the matrix
region 134 ✦ Adjusting the report layout 138

4.6 Using other design features in your reports 140
Setting up multiple columns 140 ✦ Adding interactive
sort 142 ✦ Passing multivalued parameters into a stored
procedure 144 ✦ Designing subreports 145

4.7 Summary 148

5 Using expressions and functions 150
5.1 Understanding expressions 151

Using the Expression Editor 152 ✦ Expression syntax 153
Determining expression execution order 154 ✦ Understanding
expression scope 154 ✦ Dealing with expression errors 156

5.2 Exploring the Report Object Model 157
Using the ReportItems collection 159 ✦ Using the Fields
collection 163 ✦ Using the Parameters collection 166
Using the Globals collection 166 ✦ Using the User
collection 167

5.3 Working with functions 167
Referencing external functions 168 ✦ Using aggregate
functions 168 ✦ Using other internal functions 173

5.4 Designing reports with navigational features 175
Reports with hyperlinks 176 ✦ Reports with
document maps 178
CONTENTS xi

5.5 Report rendering considerations 181
Exporting reports to HTML 181 ✦ Exporting reports to
MHTML 182 ✦ Exporting reports to other formats 182

5.6 Summary 183

6 Using custom code 185
6.1 Understanding custom code 186

Using embedded code 186 ✦ Using external assemblies 189

6.2 Custom code in action: implementing report forecasting 193
Forecasting with OpenForecast 194 ✦ Implementing report
forecasting features 194

6.3 Using XML-based reports 207
Understanding XML exporting 208 ✦ Exposing the report
content as an RSS feed 209

6.4 Summary 213

7 Ad hoc reporting with the Report Builder application 215
7.1 About the Report Builder application 216

A quick tour of the Report Builder 217 ✦ Setting up
for ad hoc reporting 218 ✦ The Developer toolset for
ad hoc reporting 220

7.2 Building the Report Model using BIDS 221
Building a report model project 222 ✦ Setting up
the data source 223 ✦ Creating a data source view 227
Building the report model 233 ✦ Deploying report
models 241

7.3 Ad hoc reporting in action 242
Launching the Report Builder 242 ✦ Creating the Product
Profit Margin report 244 ✦ Getting more with infinite
drill-through reporting 247 ✦ Advanced filtering with the
Report Builder 249

7.4 Implementing Report Builder security 252
Securing the Report Builder with roles 252 ✦ Securing report
model items 253

7.5 Summary 255
xii CONTENTS

Part 2 Managing reports 257

8 Managing the Reporting Services environment 259
8.1 Managing RS with the Report Manager 260

How the Report Manager works 260 ✦ Managing Report Server
settings 263 ✦ Managing content 268 ✦ Managing report
execution 275 ✦ Managing linked reports 286

8.2 Managing RS with the Web service 288
Using the Web service management API 288 ✦ Tracing calls to
the SOAP API 289 ✦ Deploying reports
programmatically 292 ✦ Batching methods together 295

8.3 Managing RS with the WMI provider 296
Understanding the WMI provider 296 ✦ Implementing an RS
management console 297

8.4 Other ways to manage Reporting Services 299
Managing RS with SQL Management Studio 299 ✦ Managing
RS with the script host 300 ✦ Using the Reporting Services
configuration tool 302

8.5 Analyzing report execution 305
Analyzing the Report Server execution log 305 ✦ Analyzing
trace log files 307

8.6 Summary 309

9 Securing Reporting Services 311
9.1 Role-based security basics 312

The purpose of role-based security 312 ✦ Authentication
models: using Windows or creating your own 312

9.2 Windows authentication: a closer look 313
Exploring the Client-to-Report Server model 314 ✦ Exploring
the Client-to-Façade-to-Report Server model 316

9.3 Using role-based authorization 318
Understanding tasks 319 ✦ Defining roles 320
Understanding securable items 321 ✦ Defining policies 322

9.4 Managing role-based security with the Report Manager 324
Creating Windows user accounts and groups 325 ✦ Creating
custom roles 326 ✦ Defining security policies 327

9.5 Managing role-based security with the Web service 329
Determining role-based security policies 329 ✦ Calling security-
related Web service methods 330 ✦ Implementing “pseudo”
report events 332
CONTENTS xiii

9.6 Techniques for advanced security issues 333
Filtering data 334 ✦ Using dynamic dataset queries 335
Hiding data 337 ✦ Implementing custom security
models 337 ✦ Enforcing a secured connection to the
Report Server 337

9.7 Summary 338

Part 3 Delivering reports 339

10 On-demand report delivery 341
10.1 How RS provides on-demand report delivery 342

10.2 URL-based report access 343
Understanding URL syntax 344 ✦ Requesting resources
by URL 345 ✦ Requesting reports by URL 347
Working with report commands 348 ✦ Working with the
HTML Viewer 351

10.3 URL access in action 354
URL Access with WinForms: AccessOptions 355 ✦ URL Access
with WebForms: AWReporterWeb 358

10.4 Web service-based report access 366
Requesting reports with SOAP 368 ✦ Rendering images 370
Handling report sessions 373

10.5 Web service access (SOAP) in action 376
Generating report requests with SOAP on the client side 376
An automation solution: AW Campaigner 379

10.6 Evaluating URL and Web service access options 383
Evaluating URL access 384 ✦ Evaluating Web service
access 385 ✦ Choosing an integration approach 386

10.7 Summary 387

11 Mastering the ReportViewer controls 389
11.1 How the .NET ReportViewer controls work 390

Controls for web and Windows applications 390 ✦ Choosing
remote or local mode 391 ✦ Managing properties of the
ReportViewer controls 392

11.2 Using ReportViewer in remote mode 394
Creating, configuring, and running the control 394
Additional customizations for the ReportViewer control 397
xiv CONTENTS

11.3 Using ReportViewer in local mode 397
Creating a local report with a database as the data source 398
Creating a local report with an object as the data source 401

11.4 Custom validation with the ReportViewer control 406
Creating a parameters section 407 ✦ Creating event
methods 407 ✦ Write validation code 410

11.5 Converting report files 411
Converting RDL files into RDLC files 412
Converting RDLC files into RDL files 415

11.6 Deploying applications that use ReportViewer controls 416
Redistributing the ReportViewer controls 416 ✦ ReportViewer
deployment for Windows applications 417 ✦ ReportViewer
deployment for web applications 418 ✦ Using the
ReportViewer web server control in a web farm 418

11.7 Summary 418

12 Subscribed report delivery 420
12.1 Understanding subscribed report delivery 421

Subscription-based reporting scenarios 421 ✦ The subscriber-
publisher design pattern 422 ✦ How the RS subscription-based
model works 422

12.2 Configuring subscribed report delivery 425
Creating a new subscription 426 ✦ Choosing the
subscription type 427 ✦ Configuring delivery extensions 430
Managing subscriptions 432

12.3 Subscribed report delivery in action 434
“Pushing” reports via standard e-mail subscriptions 434
Archiving reports to a file share 437 ✦ Sending reports to a data-
driven list of recipients 440 ✦ Triggering subscriptions
programmatically 446

12.4 Summary 450

Part 4 Advanced reporting 451

13 Extending Reporting Services 453
13.1 Understanding Reporting Services extensibility 454

Interface-based programming 454 ✦ Working with interface
inheritance 456 ✦ Extending RS with interface
inheritance 459
CONTENTS xv

13.2 Reporting with a custom dataset data extension 460
Identifying design goals and trade-offs 461 ✦ Authoring dataset-
bound reports 462 ✦ Implementing the custom dataset
extension 469 ✦ Debugging dataset extensions 473

13.3 Distributing reports to Web services using custom delivery extensions 473
Design goals and trade-offs 474 ✦ Using the custom delivery
extension 475 ✦ Implementing the custom delivery
extension 476 ✦ Debugging custom delivery extensions 480

13.4 Implementing custom security 482
Design goals and trade-offs 485 ✦ Intranet reporting
with custom security 486 ✦ Implementing the custom
security extension 488 ✦ Debugging the custom security
extension 495

13.5 Summary 496

14 Performance and scalability 497
14.1 Understanding capacity planning 498

Capacity-planning fundamentals 498 ✦ The capacity-planning
process 503

14.2 Capacity planning for Reporting Services in action 508
Determining requirements 508 ✦ Setting up the testing
environment 511 ✦ Performance testing 515 ✦ Analyzing
performance results 516 ✦ Identifying resource
constraints 519 ✦ Eliminating resource constraints 520

14.3 Summary 523

appendix A Installing SQL Server Reporting Services 524
A.1 Software requirements 524

A.2 Installing SQL Server Reporting Services 525

appendix B Understanding .NET code access security 531
B.1 Code access security basics 532

B.2 Understanding code access terminology 532

B.3 Exploring the RS default security policy 536

B.4 Managing RS code access security 538

resources 542

index 549
xvi CONTENTS

foreword

In my foreword to the first edition, I wrote about the process of creating software at
Microsoft, specifically the first version of SQL Server Reporting Services. Although
the organic style of software development we used for the initial release of the prod-
uct had proven to be a success, creating the follow-on version would have its own set
of challenges.

After launching the product in early 2004, we turned to planning for the new
release, which was synchronized with the rest of SQL Server. The release was on track
for a delivery in 2005, which meant we had comparatively little time for development
of new features. In addition, joining the SQL Server mainline product required the
team to adopt new versions of Visual Studio and the .NET Framework, and we had
to merge our setup with a new, integrated setup engine. To accommodate this accel-
erated schedule, our original plan was to provide a small set of incremental improve-
ments over the original version. The broad adoption of the product had already given
us a good amount of feedback about what customers felt was missing from the initial
release. From an architectural standpoint, we wouldn’t change the core of Reporting
Services, allowing us to safely add selected features.

At the same time, we also realized that something major was missing from the first
version of the product. While developers and IT professionals liked the fact that
Report Designer integrated fully into Visual Studio, the most frequent question we
received was, “How can nondevelopers build their own reports?” We knew we had to
address this need with a tool that was easy to use and that didn’t require users to under-
stand a database query language. Fortunately, we didn’t have to start from scratch and
were able to acquire a small company called ActiveViews to provide the core technol-
ogy. The result of this acquisition was Report Builder (discussed in chapter 7). As we
had in our adoption of the .NET Framework in the first release, we took a gamble
again in adoption of the new ClickOnce technology for Report Builder.

The last piece of the puzzle was to continue our investment in a rich platform for
reporting. Many customers told us that they wanted to easily embed reporting func-
tionality into their applications. So we separated the report viewing components from
the Report Server and provided a rich set of report controls in the release of Visual Stu-
dio 2005. These are covered in depth in chapter 11. We actually rebuilt both the
xvii

Report Manager web application and the Report Designer to leverage the new con-
trols. The end user of these tools will see little difference in the new release, but build-
ing them with the new controls helped us validate their functionality and usability.

Even more than with the first release, books such as Bret Updegraff’s SQL Server
2005 Reporting Services in Action are critical for helping you get the most out of
Reporting Services. As the capabilities of the product have increased, the information
and guidance that this book provides will help you leverage the Reporting Services
platform to the fullest in your own environment. There are many parts of the product
that we weren’t fully able to expose or document, and this book will help you unlock
some of these hidden gems.

BRIAN WELCKER

Group Program Manager
Microsoft SQL Server Reporting Services
xviii FOREWORD

foreword to the first edition

May I let you in on a little secret: creating software at Microsoft is pretty similar to
creating software at any other company. I think many people’s perception is that
Microsoft designs products by having an army of market researchers carefully exam-
ine competitive products and survey consumers to determine exactly what features to
include in the next release.

The reality is that most of the ideas that go into Microsoft products are the result
of small teams of people brainstorming in front of whiteboards or chatting in hall-
ways. I’m not saying we don’t know what competitors are doing or what customers
are asking for, but the process of translating real-world scenarios to requirements and
designs is much more organic than you might think. This flexible approach allows
teams to take a fresh look at existing problems, as well as adapt to industry trends
and customer demands.

Case in point: when we started building Reporting Services, we didn’t set out to
copy what other companies had already done. Instead, we asked questions like “What
does it mean to build an enterprise reporting product?” “How do we enable people to
create powerful data visualizations without writing code?” and, most important of all,
“How can we build a platform that people can leverage in their own applications?” The
answer to this final question ended up driving a major portion of the product’s design.

Building a platform is not something to be taken lightly. It requires that you spend
extra time factoring and documenting the interfaces between software components. It
means that your components should not use any “back doors” that are not available
to other developers using the platform. It also can change the order in which you build
the product—you have to focus on the nonvisual parts of the product before you work
on the user-facing ones. For example, the Reporting Services report processing engine
was up and running about a year before the graphical report design tool was ready.
During this time, report definition files had to be hand-coded in order to test any new
report processing features.

The decision to build a platform also means that you will have to spend time on
infrastructure and interfaces at the expense of end-user features. We knew that this
trade-off would mean the first version of Reporting Services might look less feature-rich
than other more “mature” reporting products. We believed this was the right long-term
xix

strategy, as a strong platform would enable others to fill the gaps instead of having to
wait for us to add every feature. When asked about this approach, I sometimes pose
the question, “Is it better to build a car with a powerful engine and fewer lights on the
dashboard, or one with lots of lights that can’t go anywhere?”

One decision we made for our new platform was to bet on another new platform:
.NET. As we had no legacy code to support, we decided early on to make Reporting
Services a 100 percent .NET application. While this may seem like a no-brainer today,
when we started building Reporting Services the CLR and the .NET Framework had
not yet been released. Although building an enterprise-quality server product on such
a new technology stack was a little risky at the time, the decision has paid major div-
idends in developer productivity and product quality.

Ultimately, the barometer of whether we have succeeded is what our customers and
partners are able to build on the platform. Since we released the first version of the
product earlier this year, I have seen applications built by customers leveraging the
Reporting Services platform in ways I never imagined. But a platform isn’t useful if
all developers don’t have the know-how to take advantage of it. Because the product
is so new, detailed information and good examples have been sparse and hard to find.

That’s where resources like Teo’s excellent book come in. This book starts by pro-
viding a solid foundation for using the built-in tools included with Reporting Services,
but quickly takes you to the next level by focusing on the programmability and exten-
sibility aspects of the product. The focus on these parts of Reporting Services will help
you leverage and extend the product feature set in your own applications. Teo’s
approach is to provide real-world examples and useful scenarios that walk you through
the details and give you new ideas to explore. Teo has the ability to take complex topics
and break them into smaller sections that can be easily understood. I enjoyed being
one of the book’s technical reviewers as I was able to see how various parts of the prod-
uct came to life on the page. I encourage you to use the ideas in this book and take
Reporting Services to the next level.

BRIAN WELCKER

Group Program Manager
Microsoft SQL Server Reporting Services
xx FOREWORD TO THE FIRST EDITION

preface

Never say never!
About five years ago, I had the unfortunate task of modifying existing reports for

an e-commerce application. I use the word unfortunate because I did not enjoy the
work. My employer at the time was using a reporting application that required writing
Visual Basic 6.0 code to create reports. The idea of programming reports in Visual
Basic was strange to me. I felt I could have simply created web pages to generate the
reports with less effort. After several weeks of working with this application, I vowed
that I would never work with a reporting application again.

For a few years, I managed to successfully avoid any sort of report writing. Then,
about two years ago as I was preparing for one of my exams for my MSDBA certifica-
tion, an executive at Crowe Chizek, my current employer, came up to me and said
something along the lines of, “Since you are working on your SQL exam, why don’t
you also spend some time looking into product called Reporting Services?” I admit
that I was hesitant to spend any time with this product. But what I found over time
was not what I expected: I really enjoyed working with Reporting Services—so much,
in fact, that over the next year I made presentations to numerous user groups in three
states touting my newfound knowledge of Reporting Services. This excitement
brought me to TechEd 2005 in Florida, where I met Bill Baker (Microsoft) and his
SQL Server Business Intelligence team. I was motivated by what I learned about SQL
Server 2005 and the Business Intelligence tools, such as Reporting Services, Integra-
tion Services, and Analysis Services.

After returning from TechEd, I helped start a successful SQL Server user group that
meets monthly in Indianapolis. I spent the last 12 months at Crowe Chizek working
on applications built around Reporting Services. And now, I have coauthored on this
second edition of a book on Reporting Services, a reporting application!

Never say never!

BRET UPDEGRAFF
xxi

preface to the first edition

In archeology, the Rosetta stone was the key that solved the mysteries of Egyptian
hieroglyphics. I believe that with the release of Microsoft SQL Server 2000 Reporting
Services, code-named Rosetta, Microsoft gives organizations the key they need to
unlock the secrets of enterprise data and unleash the power hidden within.

Looking retrospectively, Microsoft’s reporting strategy has been confusing, at least
for me. Microsoft Access debuted in the early ’90s with a powerful report designer that
made desktop reporting child’s play.

Enterprise developers, however, have not been that lucky. The lack of comprehen-
sive native reporting capabilities continues even today in the .NET Framework. True,
some progress has been made with the advent of print-related controls, such as Print-
Document, PrintPreviewControl, and so on, but still, dealing with the GDI+ (Graphics
Device Interface) API is usually the last thing a developer wants to tackle when creating
the next line-of-business application. For reasons such as these, report-enabling
Microsoft-centric solutions has been traditionally regarded as a tedious chore.

To address this problem, many of us defected to third-party tools. Others chose to
fill the void with homegrown, customized solutions. While these solutions address
particular needs, they can also be costly, time-consuming, and difficult to implement.

I remember with nostalgia a project that I worked on about five years ago. It called
for developing a reporting solution for a major Fortune 100 company. I implemented
the solution as a server-based framework, following a design pattern similar to the one
discussed in chapter 13. I used Microsoft Access as a reporting tool to generate reports
and save them as snapshot files. Once the report was ready, the Report Server would
e-mail it back to the user or send the user a link to the snapshot file.

Implementing this solution was a lot of fun, but it took a significant development
effort. I wouldn’t have had to go through all this if I had had Reporting Services back
then. Instead of implementing a homegrown solution, I could have used RS to report-
enable the applications.

For this reason, I was very excited when I heard about Reporting Services in late
2003. Finally, there was an easy way to report-enable different types of applications.
Subsequently, I was involved in a project where I was able to confirm to myself that,
indeed, RS was the reporting platform I had been dreaming about for years.
xxii

To share my enthusiasm I decided to write a book about Reporting Services. While
I contemplated what the book’s scope would be, it dawned on me that I could bring
the most value by following my heart and approaching Reporting Services from a
developer’s point of view. I put myself in a position that many developers could relate
to. Here I am, a developer, consultant, and architect, who is tasked with adding report-
ing features to a given application. How would I go about this?

To answer this question, my book takes a solution-oriented approach, and more
than half of it is devoted to integrating different types of applications with RS. As you
read this book, you will discover a common pattern. It starts by discussing the require-
ments and design goals of a given reporting scenario. Then it discusses the implemen-
tation choices, and finally it explains how the solution is implemented.

I firmly believe that a technical book should go beyond rehashing the product doc-
umentation. I tried my best to follow this path and take up where the RS documenta-
tion (which, by the way, is excellent) leaves off. For this reason, my book should be used
in conjunction with it. When you read the book, you will notice that sometimes, when
I believe I can’t explain things any better, I refer you to the product documentation.

Microsoft Reporting Services in Action is written for report authors, administrators, and
developers who need a detailed and practical guide to the functionality provided by RS.
In the first half, report authors will master the skills they need to create versatile reports.
Administrators will learn the ropes of managing and securing the report environment.

The second half of the book is primarily aimed at intermediate-to-advanced .NET
developers who are planning to leverage RS to add reporting capabilities to their Win-
dows Forms or web-based applications. However, because of the service-oriented
architecture of Reporting Services, the book will also benefit developers who target
other platforms but want to integrate their applications with RS.

Microsoft SQL Server 2000 Reporting Services is a great piece of technology. With
RS, report authors can create reports as easily as they would in Microsoft Access. Make
no mistake, though. RS is a sophisticated server-based platform, and its feature set goes
well beyond that of a desktop reporting tool. To use RS effectively, you need to have
a solid grasp of how it works and how it can be integrated with different types of client
applications. I hope this book makes it easier.

TEO LACHEV
PREFACE TO THE FIRST EDITION xxiii

acknowledgments

Writing the second edition of this book has been exciting and yet challenging for me.
Many people have helped me meet those challenges.

Most important, I want to thank my wife Jane for sticking with me through the
numerous evenings, late nights, and weekends that it took to finish the book. SQL
Server 2005 Reporting Services in Action could not have been written without her tre-
mendous support. Jane, I love you for what you endured for me.

The Manning team has been amazing throughout the process of writing, editing,
and publishing this book. Thanks to publisher Marjan Bace and editor Michael
Stephens for finding me and believing in me. Your support has been instrumental. I
want to thank my development editor, Lianna Wlasiuk, for her help in converting my
disorganized thoughts into organized writing. Lianna, I appreciate your above-and-
beyond dedication to this book. As project editor, Mary Piergies has been outstanding
in orchestrating the production process. My copyeditor, Liz Welch, did a great job of
polishing my manuscript. Special thanks to my technical editor, Monte Holyfield,
for verifying that the book is technically correct. Thanks also to Karen Tegtmeyer for
managing the review process; the book’s publicists, Helen Trimes and Ron Tomich,
for getting the word out; and Denis Dalinnik for his deft typesetting and page layout.
I am grateful to the rest of the Manning team for their many contributions to this book.

Brian Welcker, Microsoft Group Product Manager for SQL Server Reporting Ser-
vices, has been phenomenal in helping me with my project on several fronts, includ-
ing reviewing the book and providing valuable technical feedback, as well as writing
the foreword.

I am grateful to the many reviewers of this book. Your comments and reviews
helped to shape and tweak the final manuscript. Thanks to Dave Corun, Steve
Wright, Aleksey Nudelman, Robbe Morris, Berndt Hamboeck, Andrew Grothe, Nuo
Yan, Richard Xin, Dan Hounshell, Vipul Patel, Vinita Paunikar, Arul Kumaravel, and
Sergey Koshcheyev.

I would like to thank my parents for always believing in me—and the rest of my
family and friends for encouraging and supporting me through the writing of this book.

I would also like to thank my coworkers at Crowe Chizek and Company LLC. I am
grateful to Tim Landgrave for introducing me to Manning. Thanks to Paul Thomas,
xxiv

Mindy Herman, Mark Strawmyer, Caleb Decker, and Derek Bang for creating a fun
yet professional environment that has challenged me to be the best person I can be.
I am honored to work with such a group of talented and dedicated individuals.

A few others contributed indirectly to the book. Thanks to Steven Gould for his
Open Source OpenForecast package that we used in chapter 6 for the report-forecasting
example. Thanks to Dino Esposito for his CodeDom sample. Kudos to Peter Bromberg
for the ASP.NET menu control, and to Christian Weyer for the dynamic Web services
invocation sample.

Finally, thank you for purchasing this book! I sincerely hope that you will find it
as enjoyable to read as it has been for me to write.

Thanks and happy reporting!
ACKNOWLEDGMENTS xxv

about this book

Following the report lifecycle’s logical path, this book explains how you can author,
manage, and deliver RS-based reports.

Part 1, “Authoring reports,” teaches you the skills that you will need as a report
author to create Reporting Services–based reports. Part 1 encompasses chapters 1–7.

Chapter 1 provides a panoramic overview of Reporting Services. The chapter is
intended to provide you with a firm grounding in what Reporting Services really is.
We look at how RS addresses the reporting problem area, its feature set, and its archi-
tecture. To round out the chapter, we jump right in and create our first report. The
chapter concludes with discussing RS’s strengths and weaknesses.

Chapter 2 focuses on discussing various options for authoring reports. We start by
explaining the report-authoring process. We continue by looking at how you can author
reports with Visual Studio .NET by using the Report Wizard and the Report Designer,
and by importing from Microsoft Access. We also discuss how developers can leverage
the open nature of the report definition schema by creating reports programmatically.

Chapter 3 gets to the gist of the report-authoring process by teaching you how to
work with report data. It discusses the RS data architecture and shows you how to
work with data sources, datasets, and report queries. It emphasizes the role of param-
eters and walks you through the steps for creating parameterized reports.

Chapter 4 teaches you the practical skills needed for authoring different types of
reports with the Report Designer. We create various report samples to complement
our discussion, including tabular, freeform, chart, crosstab, subreports, and multicol-
umn reports.

Chapter 5 shows you how to use expressions and functions to extend your reports
programmatically. It starts by emphasizing the role of expressions and how they can
be used to manipulate the report item properties. It continues by giving you an in-
depth understanding of the RS object model and its collections. Next, we look at the
Reporting Services internal functions and how they can be leveraged to add interactive
features to our reports, such as reports with navigational features and document maps,
as well as localized reports.

Chapter 6 explains how you can supercharge the capabilities of your reports by using
embedded Visual Basic .NET code and external code in the form of .NET assemblies.
xxvi

It presents an end-to-end example that demonstrates how you can leverage custom
.NET code to add forecasting features to your reports.

Chapter 7 shows how to enable ad hoc reporting by using the new Report Builder
application. This chapter covers how to create report models using Visual Studio as
well as how to configure these models. We cover the security around report models
and Report Builder. We conclude this chapter by creating both simple and complex
ad hoc reports with the Report Builder application.

Part 2, “Managing reports,” explains how report administrators can manage and
secure the report repository. It includes chapters 8–9.

Chapter 8 discuses different ways of managing the report catalog. It starts by
explaining how report administrators can use the Report Manager to perform various
management activities. Then it presents other management options, including using
the RS Web service, WMI provider, RS script host, SQL Server Management Studio,
and other utilities.

Chapter 9 teaches you how to secure the report catalog. It explores the RS role-
based security model and the ways it can be leveraged to enforce restricted access to
the Report Server.

Part 3, “Delivering reports,” discusses how developers can integrate RS with dif-
ferent application scenarios. This part includes chapters 10–12.

Chapter 10 provides an overview of the two application integration options avail-
able with RS, URL, and Web services, and how they compare with one another. This
chapter teaches you the skills necessary to report-enable WinForm-based applications
as well as web-based applications. The chapter walks you through an end-to-end sam-
ple, the Report Wizard, that demonstrates various practical techniques you can use to
integrate a WinForm application with RS. This chapter also covers various techniques
for generating reports on both the client and server sides of a web application. Here
we create an enhanced version of the Report Viewer sample control that facilitates
server-side web reporting.

Chapter 11 features the ReportViewer controls that are new with Visual Studio
2005. You learn how to use, configure, and program against the different modes of
these controls for both Windows and web applications. We show you how to use these
controls to help create custom validation for the parameters of your RS reports. We
also look into the steps required to deploy these controls into your applications.

Chapter 12 demonstrates how you can distribute reports via subscriptions. It starts
by explaining how the RS subscribed-delivery process works. Then, it looks at how you
can distribute reports via e-mail and file-share delivery extensions.

Part 4, “Advanced reporting,” provides you with advanced techniques so you can
make the most out of Reporting Services. It consists of chapters 13–14.

Chapter 13 discusses the implementation details of three custom extensions that
can be used to extend the features of RS. It starts by implementing a custom dataset
extension to report off ADO.NET datasets. Then, we discuss a custom delivery exten-
sion that can be used to distribute reports to an arbitrary Web service. Next, we author
ABOUT THIS BOOK xxvii

a custom security extension. Finally, we show you how to plug in custom HTTP mod-
ules to implement preprocessing tasks before the request reaches the Report Server.

Chapter 14 shows you how to conduct a capacity-planning study to evaluate RS
in terms of performance and scalability. You learn how to establish performance goals,
how to create test scripts with the Application Center Test, and how to stress-test your
Report Server installation. You can apply the skills you harvest in this chapter for stress
testing not only the Report Server, but any web-based application.

CODE CONVENTIONS

All source code in listings or in text is in a fixed-width font like this to sep-
arate it from ordinary text. We make use of many languages and markups in this
book—C#, Visual Basic .NET, JavaScript, HTML, CSS, XML, and Java—but we try
to adopt a consistent approach. Method and function names, object properties, XML
elements, and attributes in text are presented using this same font.

In many cases, the original source code has been reformatted: we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases even this was not enough, and listings include line-continuation
markers. Additionally, many comments have been removed from the listings.

Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered bullets link to explanations that follow the listing.

AUTHOR ONLINE

Your purchase of SQL Server 2005 Reporting Services in Action includes free access to a
private web forum run by Manning Publications, where you can make comments
about the book, ask technical questions, and receive help from the author and from
other users. To access the forum and subscribe to it, point your web browser to
www.manning.com/updegraff. This page provides information on how to get
onto the forum once you are registered, what kind of help is available, and the rules of
conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue among individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions, lest his interest stray! The
Author Online forum and the archives of previous discussions will be accessible from
the publisher’s website as long as the book is in print.
xxviii ABOUT THIS BOOK

about the source code

The book’s source code can be downloaded from Manning’s website at www.man-
ning.com/updegraff.

Instead of partitioning the source code on a per-chapter basis, we decided to con-
solidate most of it in two applications: a WinForm-based AWReporterWin application
and a web-based AWReporterWeb application. This approach has several advantages:

• It simplifies the setup—for example, you need only one virtual folder to host
the AWReporterWeb web application.

• It allows the reader to launch the samples conveniently from a single applica-
tion menu.

• It simulates real-world applications—for example, you can encapsulate the code
logic in a set of common classes.

SOFTWARE REQUIREMENTS

Table 1 outlines the software requirements needed to run all code samples.

Table 1 Software requirements

Software Reason
Used in

chapters...

Reporting Services 2.0
(Developer or Enterprise
edition)

The Standard edition doesn’t include custom
security extensions and data-driven
subscriptions.

All

Microsoft Visual Studio 2005 Required by Reporting Services 2005 for
development.

All

Microsoft SQL Server 2005 Required by Reporting Services. You will
need to install the AdventureWorks database
from the SQL Server media.

All

Microsoft WebService Behavior For invoking Web services on the client side
of a web application. Can be downloaded for
free from MSDN.

10

Application Center Test ACT is included with Visual Studio. 14

continued on next page
xxix

SETTING UP THE SOURCE CODE

Once you download the source code archive, you can extract the zip file to any folder of
your hard drive. Once this is accomplished, the folders listed in table 2 will be created.

Most of the code samples include README files with specific step-by-step instruc-
tions that you follow to set up the code sample.

Running the sample reports in Visual Studio .NET

Most of you will be eager to run the sample reports immediately. To execute the reports
successfully under the Visual Studio .NET Report Designer, follow these steps:

Analog Web Analyzer For analyzing IIS logs. Can be downloaded for
free from www.analog.cx/.

14

Report Magic For reporting off analog files. Can be down-
loaded for free from www.reportmagic.org/.

14

Table 1 Software requirements (continued)

Software Reason
Used in

chapters...

Table 2 Source code folders

Folder Purpose Used in chapters...

AWReporterWeb An ASP.NET web-based application that demon-
strates various web-based reporting techniques.
You will need to set up an IIS virtual folder point-
ing to this folder.

10, 11, 13

AWReporterWin A WinForm-based application that demonstrates
how you can add reporting features to WinForm
applications.

2, 8, 10, 11

AWModel A simple project used for creating Report Models
against the AdventureWorks sample database.

7

AWRsLibrary For report forecasting. 6

Database A database projects that includes SQL scripts to
create stored procedures and views in the
AdventureWorks database.

As dictated by the code
sample setup instructions

Extensions Includes the custom data, delivery, and security
extensions.

13

OpenForecast The OpenForecast package, converted to J#. 6

Performance Testing Includes the test scripts for performance-
testing RS.

14

Reports Includes the sample reports that we author in
this book.

All
xxx ABOUT THE SOURCE CODE

Step 1 Copy AWC.RS.Library.dll and OpenForecast.dll to the Report
Designer binary folder, C:\Program Files\Microsoft Visual Stu-
dio 8\Common7\IDE\PrivateAssemblies.

Step 2 Open AWReporter.rptproj (found under the Reports folder) in Visual
Studio .NET 2003.

Step 3 Change the data source credentials of the AW Shared DS data source by dou-
ble-clicking the AW Shared DS.rds file and switching to the Credentials
tab. Enter the username and password of a database login that has at least
Read permissions to the tables in the AdventureWorks database.

At this point, you should be able to run most of the reports.
Some reports require a more involved setup process. For example, some reports

require that additional assemblies, such as AWC.RS.Extensions.dll and
AWC.RS.Library.dll, be configured properly. The README files that accom-
pany the sample code include specific step-by-step instructions on how to configure
these assemblies.

Deploying the reports to the Report Server

To run most of the code samples successfully, you need to deploy the sample reports
to the Report Server. Assuming that you have Administrator rights to the report cata-
log, the easiest way to do this is to follow these steps:

Step 1 Copy AWC.RS.Library.dll and OpenForecast.dll to the Report
Server binary folder, C:\Program Files\Microsoft SQL Server\
MSSQL.3\Reporting Services\ReportServer\bin. This step is
needed because some reports reference these assemblies, and the deploy-
ment process will fail if these assemblies are not found in the Report Server
binary folder.

Step 2 If you haven’t done this already, copy AWC.RS.Library.dll and Open-
Forecast.dll to the Report Designer binary folder, C:\Program
Files\Microsoft Visual Studio 8\Common7\IDE\Private-
Assemblies.

Step 3 Open the AWReporter.rptproj project (found under the Reports
folder) in Visual Studio .NET 2003.

Step 4 Right-click the AWReporter project in the Visual Studio .NET Solution
Explorer and choose Properties to open the project’s properties.

Step 5 Verify that TargetFolder is set to AWReporter and that TargetServerURL is set
to http://<servername>/ReportServer, in which <servername> is the com-
puter name where the Report Server is installed. If RS is installed locally, the
TargetServerURL setting should be http://localhost/ReportServer.
SETTING UP THE SOURCE CODE xxxi

If you installed RS as a named instance the path will be http://<server-
name>/ReportServer$<instance name>, where <instance name> is the name
you provided during installation.

Step 6 Click the Configuration Manager button and verify that both the Build and
Deploy check boxes are selected for Debug configuration. Click OK to dis-
miss the Property Pages dialog box.

Step 7 Right-click the AWReporter project again and choose Deploy. This will build
the reports and then deploy them to the report catalog.

Step 8 To verify the setup, open the Report Manager web portal. If RS is installed
locally, the default Report Manager URL will be http://localhost/reports
(http://localhost/reports$<instance name> for nondefault instance installa-
tions). Under the Home folder, verify that the AWReporter folder exists.
Click its link and run the Sales By Territory report. If everything is OK, the
report will render in the browser.

Configuring the AWReporterWeb application

To configure the web-based samples, you need to set up the AWReporterWeb virtual
folder by following these steps:

Step 1 Right-click the AWReporterWeb folder in Windows Explorer and choose
Properties.

Step 2 Select the Web Sharing tab.

Step 3 Click the Share This Folder radio button.

Step 4 In the Edit Alias dialog box, enter AWReporterWeb as an alias.

Step 5 Make sure that the Read Access Permission check box and the Scripts radio
button are selected. Click OK to close the Edit Alias dialog box.

Step 6 Open the Internet Information Manager (IIS) console. Right-click the
AWReporterWeb folder, choose Properties, and then select the Directory
Security tab. Click the Edit button in the Authentication and Access Control
panel. Deselect the Enable Anonymous Access check box. Make sure that the
Integrated Windows Authentication check box is selected, and click OK.

WHAT’S NEW WITH SQL REPORTING
SERVICES 2005?

Reporting Services 2000 was a great product and provided a complete platform for
authoring, managing, and distributing reports. However, because it was a first release
of the product, it came with common side effects, such as limitations in features that
many developers expected to see. The Microsoft RS team did a superb job of listening
to the developer audience who used RS 2000, and we saw some exciting additions
xxxii ABOUT THE SOURCE CODE

and enhancements with the RS 2005 release. Table 3 shows some of these additions
and enhancements.

Table 3 New features in SQL RS 2005

Feature Purpose

Direct client printing Allows you to send a report directly to a printer without having to
export to printable format first.

End-user sort You can provide the ability for an end user to re-sort the data
within the report.

Multivalued parameters Allows you to use multiple values for parameters.

Custom Report Items Enables ISVs to extend report processing by building custom
server controls and embedding them into reports.

Report Designer improvements There are many improvements to the Designer. We discuss
these further in chapter 3.

Analysis Services Query Builder Lets you easily build complex multidimensional queries using
a slick UI.

Web Parts for SharePoint Lets you easily integrate reports into your SharePoint Portal
Server 2003 or Windows SharePoint Services environment.

Report Viewer controls for
window forms or ASP.NET

Allows for better integration for .NET web and Windows
development.

Report Builder Allows end users to create ad hoc reports in an easy-to-use
Microsoft Office-like environment tool.
WHAT’S NEW WITH SQL REPORTING SERVICES 2005? xxxiii

about the authors

An experienced software designer and developer, Bret Updegraff works as a manager
with the Mid Market Microsoft practice of Crowe Chizek and Company LLC. Bret
was honored with the MVP status from Microsoft in the category of Windows Server
System—SQL Server. He is also a Microsoft Certified Solution Developer, a Microsoft
Certified Application Developer, and a Microsoft Certified Database Administrator.
Bret, who lives in Fishers, Indiana, is president of the Indianapolis Professional Asso-
ciation of SQL Server (PASS) users group. You can contact him through Manning’s
Author Online forum or by sending him e-mail at bretupdegraff@yahoo.com.

Teo Lachev, the author of the first edition, has many years of experience designing and
developing Microsoft-centered solutions. He works as a technology consultant for the
Enterprise Application Services practice of Hewlett-Packard. Teo is a Microsoft Certi-
fied Solution Developer and Microsoft Certified Trainer. He lives in Atlanta, Georgia.
xxxiv

about the cover illustration

The illustration on the cover of SQL Server 2005 Reporting Services in Action is taken
from a French travel book, Encyclopedie des Voyages by J. G. St. Saveur, published in
1796. Travel for pleasure was a relatively new phenomenon at the time and travel
guides such as this one were popular, introducing both the tourist as well as the arm-
chair traveler to the inhabitants of other regions of France and abroad.

The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other. The travel guide brings
to life a sense of isolation and distance of that period and of every other historic period
except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life two cen-
turies ago brought back to life by the pictures from this travel guide.
xxxv

C H A P T E R 1

Introducing SQL Server
2005 Reporting Services

1.1 What is Reporting Services? 2
1.2 Reporting Services at a glance 7
1.3 RS architecture 13
1.4 Understanding report processing 19
1.5 Delivering reports 22

1.6 What is the report lifecycle? 24
1.7 RS in action 25
1.8 Evaluating RS 36
1.9 Summary 37
“So much information, so little time...” the character Poison Ivy would likely say if
the Batman saga were taking place in today’s enterprise.

Organizations tend to spend much of their IT budgets on streamlining internal
processes to gain a competitive advantage. Various data is pulled into Microsoft Excel
and passed around departments; mainframe data is exported and loaded into flat files,
Excel spreadsheets, and Microsoft Access databases. If users don’t have the data they
need, they typically have to issue a request for this data to be made available in a new
report. In many organizations, these requests consume significant IT and develop-
ment resources. Too often, Excel spreadsheets are the prevalent reporting tools today,
and inaccurate data, and thus wrong decisions, often result from manual data entry,
or “pencil pushing.” According to Microsoft, today’s information workers spend as
much as 80 percent of their time gathering information, with only 20 percent left to
analyze it and make a decision. Aware of these issues, Microsoft initiated the
Microsoft SQL Server 2000 Reporting Services project at the beginning of the new
millennium, with a bold vision to “enable employees at all levels of an organization
1

to realize the promise of Business Intelligence to promote better decision making.”
Now in its second release, Reporting Services 2005 offers you an even more robust
feature set.

This chapter provides a panoramic view of Reporting Services (RS). Throughout
the rest of this book we use the terms Reporting Services and RS interchangeably. You
will learn:

• Why RS is such a compelling choice for enterprise reporting

• The main parts of the RS architecture

• The report-generation process and report lifecycle

• The steps for creating your first RS report

1.1 WHAT IS REPORTING SERVICES?

Microsoft SQL Reporting Services is a full-featured, server-based, end-to-end report-
ing application that includes services, tools, and APIs to create, publish, and manage
reporting solutions. SQL Reporting Services was originally slated for an initial release
with SQL Server 2005. Thanks to the convergence of customer demand and product
readiness, RS was introduced as an add-on to SQL Server 2000 at the beginning of
2004. This revised edition book covers the SQL Server 2005 release of Reporting Ser-
vices, and compares, when relevant, the changes from the SQL Server 2000 release.

Let’s consider a typical scenario that Reporting Services can address effectively.
Let’s say that an organization has built a web portal for submitting orders online. As
the business grows, the same organization may need to implement a reporting infra-
structure to analyze sales data and understand its business; for example, to identify the
top-selling products, customer demographics, and so forth. To accomplish this goal,
the organization could leverage RS.

We use the term report to refer to the web-based or saved-to-file counterpart of a
standard paper-oriented report. For example, an organization may want to give its
customers an option to generate various reports online—an Order History report, for
instance. Web reporting has traditionally been difficult to implement. Even more dif-
ficult has been exporting reports to different file formats. RS solves both problems ele-
gantly by providing an out-of-the-box web-enabled reporting platform, and by
providing the ability to manually or programmatically generate exports in the most
popular export formats.

Let’s get started. In this section we do the following:

• Take a look at the problems that Reporting Services helps us solve

• Learn about the different versions and editions of Reporting Services

• Find out where Reporting Services fits into the SQL Server platform
2 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

1.1.1 Solving reporting problems with Reporting Services

Ironically, despite the important role that reporting plays in today’s enterprises, creat-
ing and distributing reports have traditionally been painstaking and laborious chores.
To understand why we need RS, let’s analyze the reporting problem space.

Table 1.1 lists some of the most pressing issues surrounding the reporting arena
and how RS addresses them.

Depending on your particular situation you may find other compelling reasons to tar-
get RS as your reporting platform of choice. We revisit these RS features throughout
this chapter.

Multiple report type support

Your reporting requirements may call for authoring various types of reports that differ
in complexity. For example, your users may request that a large report include a doc-
ument map for easy navigation. RS lets you design a variety of report types, as listed in
table 1.2.

Table 1.1 How Microsoft RS deals with the reporting problem space

Reporting issue How RS addresses it

Report authoring can be labor intensive. By using the powerful Report Designer, you can author
reports as easily as you can with Microsoft Access.

There is high demand for centralized
report management.

RS enables you to save and manage your reports in a
single report repository.

Reports need to be distributed to
various destinations.

RS supports both on-demand and subscription-based
reporting. Reports can be requested on-demand by
WinForm and web-based applications. Alternatively,
reports can be distributed to a list of subscribers.

Reports often need to be exported
in different electronic formats.

RS supports many popular export formats out of the box.
If the format you need is not available out of the box, you
can create your own custom format extensions. Report
authors have extensive control over the format of the
report content.

The proprietary nature of reporting tools
doesn’t allow you to extend them.

RS has a flexible architecture that allows you to extend RS
capabilities by writing custom code.

Reports need to be secured. RS offers a comprehensive security model that
administrators can leverage to enforce secured access to
reports by assigning users to roles. When the default
Windows-based authentication is not a good fit, it can be
replaced with custom security implementations.

Enterprise reporting solutions can be
costly.

To minimize cost, RS is bundled and licensed with SQL
Server. If you have a licensed copy of SQL Server, you may
run RS on the same server for no additional license fee.
WHAT IS REPORTING SERVICES? 3

Although most popular reporting tools support many of the report types shown in
table 1.2, RS makes the report-authoring process very simple. For example, report
authors can drag and drop items to define the report’s appearance.

1.1.2 Choosing a Reporting Services edition

At a very high level, RS can be defined as a server-based platform for authoring, man-
aging, and distributing reports. We discuss the RS architecture in more detail in a
moment. For now, note that RS is integrated with and requires several other Microsoft
products. Here are the installation requirements for both RS 2000 and RS 2005:

SQL Reporting Services 2000

• Windows 2000 or above as a server operating system

• Microsoft SQL Server 2000 (with Service Pack 3a) and above

• Internet Information Server (IIS) 5.0 or above

• .NET Framework 1.1

• Visual Studio .NET 2003 (any edition) for report authoring and testing

SQL Reporting Services 2005

• Microsoft Windows Installer 3.0

• Windows 2000 SP4 or above as a server operating system

Table 1.2 Various report types supported by RS

Report type Purpose Example

Tabular Displays data in a table format with a
fixed number of columns.

Excel-type reports

Freeform Data regions are positioned arbitrarily on
the page by the report author.

Invoice details reports

Chart Presents data graphically. Employee performance chart

Crosstab (matrix) The Crosstab (matrix) allows data to be
summarized by two or more facts. The
columns and rows can be dynamically
generated, and/or they can be static and
defined by the report author.

A report that shows products in rows
and time in columns to summarize
sales by product and quarter

Drilldown Includes expandable sections. A company performance crosstab
report where product can be
expanded by category and brand

Drill-through Link content from one report to another
report or website. Clicking the hyperlink
executes and displays the linked report.

Customer Order History with
hyperlinks on the order identifier to
show the order details report

Interactive Includes interactive features, such as
document maps, hyperlinks, visible-on-
demand sections, and so forth.

Adobe Acrobat–type reports with
document maps on the left side
4 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

• Microsoft SQL Server 2005 (included)

• Internet Information Server (IIS) 5.0 or above

• .NET Framework 2.0 (included)

• Microsoft Data Access Components (MDAC) 2.8 for systems running Win-
dows 2000

NOTE With RS 2005 you do not need to have a licensed version of Visual Stu-
dio installed. If you do not have Visual Studio, RS will install a shell ver-
sion of Visual Studio 2005, called the Business Intelligence Development
Studio (BIDS).

For more information about installing RS, refer to appendix A.
To address different user needs, RS is available in several editions, as you can see

by looking at table 1.3. The release of SQL Server 2005 introduces two new edi-
tions, called Workgroup and Express. While these new editions offer limited fea-
tures and functionality of RS, they allow for more flexibility and options across the
RS product set.

For more information about how the RS editions differ, refer to the product docu-
mentation or the “Reporting Services Features Comparison” section in the RS official
website at http://www.microsoft.com/hk/sql/reportingservices/
productinfo/features.mspx (RS 2000) or www.microsoft.com/sql/
2005/productinfo/rsfeatures.mspx (RS 2005).

Table 1.3 RS editions to meet various reporting needs

Edition Choose when…

Express You only need basic functionality on a single computer. Express only supports limited
rendering formats. Also, you can only use a local and relational database with
Express. Security roles are fixed with Express and you cannot use the Management
Studio or Report Builder with this edition.

Workgroup You only need basic functionality on a single computer. Workgroup only supports
limited rendering formats. Also, you can only use a local and relational database with
Workgroup.

Standard You need to install RS on a single computer. The Standard edition doesn’t support
clustered deployment to load-balance multiple RS instances.

Enterprise You need all RS features, including load balancing, data-driven subscriptions, and
Report Builder infinite drill-through.

Developer You have to integrate RS with client applications or extend its capabilities by writing
.NET code. The Developer edition supports the same feature set as the Enterprise
edition, but it is for use as a test and development system, not as a production server.

Evaluation You need to evaluate RS. The Evaluation edition expires after 180 days. This trial
edition supports all of the features of the Enterprise edition.
WHAT IS REPORTING SERVICES? 5

For information about RS licensing requirements, visit the Microsoft Reporting
Services page at www.microsoft.com/sql/reporting/.

Now that we understand what RS is, let’s see how it fits into the Microsoft Busi-
ness Intelligence vision.

1.1.3 Reporting Services and the
Microsoft SQL Server platform

With the release of SQL Server 2005, Microsoft added some feature-rich tools to SQL
Server. Many of these new tools fit into the area of Business Intelligence (BI). With
this focus, some new tools are available that enable developers to easily build and
deploy applications that address the most common data management and analysis
challenges facing many organizations every day, such as analysis of vast volumes of
data, trend discovery, data management, and of course, comprehensive reporting.
Given that, RS is positioned as an integral part of Microsoft’s data management and
analysis platform. Figure 1.1 shows the placement of RS in the Microsoft SQL Server
platform offering.

Table 1.4 outlines the purpose of the major building blocks within the Microsoft
SQL Server platform.

Figure 1.1 The Microsoft SQL Server platform consists of several products

layered on top of the SQL Server database engine and addresses various data

management and reporting needs.
6 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

Most of you have probably used more than one of these products in the past to solve
your data management and analysis needs. Some of these products are new with SQL
2005, while some of them have been around for quite some time. What has been
missing is a product for authoring, managing, and generating reports that can easily
be integrated with all types of applications. RS fills the bill nicely.

Having introduced you to RS, let’s take a panoramic view of its features to under-
stand why it can be such a compelling choice for enterprise reporting.

1.2 REPORTING SERVICES AT A GLANCE

Reporting Services offers a broad array of features that can address various reporting needs:

• Information workers can leverage RS to author both standard (“canned”) reports and
reports with interactive features—Here we use the term standard to refer to
reports that display static data. An interesting aspect of RS is that your reports
can include a variety of features that provide interactivity to users. For example,
the end user can show or hide items in a report and click links that launch other
reports or web pages.

• Third-party vendors can target RS to package reports as a part of their applica-
tions—With RS 2000 and RS 2005, if customers have RS installed, the vendor
setup program can upload the report files to the Report Server. RS 2005
includes stand-alone controls for generating reports directly from report files,

Table 1.4 The key Microsoft SQL Server platform components

Component Purpose

Microsoft SQL Server
Relational Database Engine

A relational database to store data

Integration Services Tools for extracting, transforming, and loading data

Analysis Services An analytical processing (OLAP) and data mining engine

Reporting Services A full-featured, server-based, end-to-end reporting application that
includes services, tools, and APIs to create, publish, and manage
reporting solutions

Notification Services A development platform that lets you build “push” functionality of
your applications quickly

Replication Services Replicates data to heterogeneous data sources

Microsoft Office Desktop applications for data analysis and reporting

SharePoint Portal Server Business Intelligence collaboration

Visual Studio 2005 A development tool to create .NET-based applications, including
analytical and reporting solutions

Management Tools Windows and web-based tools for managing and configuring the
various services of SQL Server
REPORTING SERVICES AT A GLANCE 7

and does not require RS to be installed. Microsoft is partnering with a number
of independent software vendors (ISVs) to create add-ons to RS to extend its
capabilities. For a full list of the Microsoft partners for RS, visit www.
microsoft.com/sql/reporting/partners/default.asp.

• Organizations can use RS to report-enable their business-to-business (B2B) or business-
to-consumer (B2C) applications—For example, an organization can selectively
expose some of its data in the form of reports to its business partners.

• Business workers can use Report Builder, which is bundled with RS 2005, to create
ad hoc reports without having to understand the relational or multidimensional
data structure that they are reporting against—Report Builder provides a
Microsoft Office–like report-authoring tool that allows end users to create their
own reports in a very simple environment.

Let’s now take a look at the RS landscape and observe some of RS’s most prominent
landmarks. Don’t worry if you find you are not getting the Big Picture yet. In sec-
tion 1.3, we take a closer look at the main pieces of the RS architecture.

1.2.1 Authoring features

As a report author, with RS you have several choices for creating reports. We discuss
each of these options in detail in chapters 2 and 7. For now, we’d like to introduce you
to the Report Designer and the Report Builder application. For advanced report
authoring, the Report Designer will likely be your tool of choice. The Report Builder
application is an Office-like application that is used to create on-the-fly reports.

Introducing the Report Designer

Using the Report Designer graphical environment, you can create reports of different
types, such as drilldown crosstab reports, like the one shown in figure 1.2.

RS doesn’t restrict your report-authoring options to static paper-oriented reports.
Instead, you can make your reports more versatile and easy to use by adding interac-
tive features, such as expandable sections, hyperlinks, and document maps. Given its
tight integration with the Visual Studio integrated development environment (IDE),
the Report Designer provides you with access to all report design features as well as
team development features, such as source code management.

About the Report Definition Language

At this point, you may be wondering what an RS-based report file looks like and how
it is stored. RS saves the report as an Extensible Markup Language (XML) file that is
described using the Report Definition Language (RDL) schema.
8 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

DEFINITION A report definition contains report data retrieval and layout information.
The report definition is described in an XML schema, called the Report
Definition Language (RDL).

Saving reports as XML-based report definition files offers two main advantages:

• It makes the report format open and extensible—Using the XML-based RDL for-
mat is beneficial for achieving interoperability among applications and vendors.
Microsoft is working with other industry leaders to promote RDL as an XML-
based standard for report definitions. Visit the RS official website (check
“Resources” at the end of this book) to see a list of Microsoft RS partners.

• It makes the report portable—For example, you can easily save the report to a file
and upload it to another Report Server.

If you use the Report Designer to create your report, its definition will be automati-
cally generated for you. However, just as you don’t have to use Visual Studio to write
.NET applications, you can write the report definition using an editor of your choice,
such as Notepad, or generate it programmatically (as you will see in chapter 2). Of
course, the Report Designer makes authoring reports a whole lot easier.

Figure 1.2 With RS you can create various types of reports, including drilldown crosstab

reports like this one.
REPORTING SERVICES AT A GLANCE 9

Introducing the Report Builder

The Report Builder is an application that runs on the client machine and provides a
user interface for creating ad hoc (on-the-fly) reports. The application is similar in
look and feel to the Office suite of products. It is meant to be an easy-to-use applica-
tion for creating reports and will typically be used by power business users. As you
learn in chapter 7, the Report Builder application enables drag-and-drop report build-
ing functionality for nondevelopers.

1.2.2 Management features

RS facilitates report management by storing reports and their related items in a central
report catalog. To deploy and manage a report, you need to upload it to the report
catalog. When this happens, it becomes a managed report.

DEFINITIONS Throughout the rest of this book we will use the terms report catalog and
report repository interchangeably to refer to the RS Configuration Database.
For more information about this database, refer to section 1.3.2.

A managed report is a report that is uploaded to the report catalog.

For .NET developers, the term managed here has nothing to do with .NET managed
code, although the pattern is the same. While .NET managed code runs under the
supervision of the .NET common language runtime (CLR), a managed report is gen-
erated under the control of the Report Server.

You may wonder what really happens when a report is uploaded to the report cat-
alog. At publishing time, the Report Server parses the report definition (RDL), gen-
erates a .NET assembly, and stores the assembly in the Report Configuration
Database for the report. The RDL file is never used again. When the report is proc-
essed, the assembly is loaded and executed by the Report Server.

A report can include other items, such as images and data source–related informa-
tion. These report-related items are also stored in the report catalog. Finally, the
report catalog captures additional information, called metadata, associated with
reports. For example, just as you can organize physical files in folders, RS allows you
to organize reports in folders.

DEFINITION The report metadata describes additional configuration information asso-
ciated with a report, such as security permissions, the parent folder, and
so forth.

RS offers centralized report management that administrators will appreciate. To sim-
plify the administration of the report catalog, RS comes with a tool called the Report
Manager. The Report Manager is implemented as a web-based application, and as
such it is easily accessible. This tool empowers you to manage just about any aspect of
the report repository, including:

• Report information and metadata, such as the folder structure and report properties

• Data sources from which the report will draw data
10 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

• Report parameters (for parameterized reports)

• Security

You learn more about the Report Manager in chapter 8.

1.2.3 Delivery features

Reports hosted under RS can be delivered using on-demand (“pulled”) delivery or
subscribed (“pushed”) delivery. The more common scenario is on-demand delivery,
where the user requests the report explicitly. As a report author, you don’t have to do
anything special to web-enable your report because RS does this for you once it is
uploaded to the report catalog.

The “pushed” delivery option alone can justify implementing RS. This option
provides end users with the ability to subscribe to reports, so reports will be sent to
them when a certain event is triggered—when a timing event triggers, for instance,
report subscriptions based on a schedule. As another example, a financial institution
could allow its customers to opt in and subscribe to certain reports of interest, such
as a monthly bank statement. Then, at the end of the month, the bank statement
report could be generated and sent to users via e-mail.

We discuss the report-delivery process in more detail in section 1.5; on-demand
delivery is the topic of chapter 10, and subscribed delivery is detailed in chapter 12.

1.2.4 Extensibility features

An important characteristic of every enterprise-oriented product, such as RS, is that it
has to be easily extended. Simply put, extensibility relates to the system’s ability to
accommodate new features that are built out of old ones. One of the things I like
most about RS is the extensibility features it includes by virtue of its open and flexible
architecture. Developers can easily extend RS by writing .NET code in their preferred
.NET language. Specifically, you can extend RS in the following areas:

• Custom .NET code—.NET developers can enhance reports programmatically
by writing .NET custom code. Chapter 6 demonstrates how you can add
forecasting features to your reports by using prepackaged code in the form of
.NET assemblies.

• Data processing extensions—Out of the box, RS can connect natively to SQL Server,
Oracle, or any data source that has an ODBC or OLE DB provider. RS 2005 adds
Analysis Services databases, Integration Services projects, XML files, and XML Web
services as sources of data. In addition, you can write your own custom data exten-
sions to report off other data structures, as chapter 13 illustrates.

• Delivery extensions—Out of the box, subscribed reports can be delivered via e-
mail or file share delivery extensions. Developers can write their own delivery
extensions to deliver the report to other destinations, such as to web services, as
you learn in chapter 13.
REPORTING SERVICES AT A GLANCE 11

• Security extensions—By default, RS uses the Windows-based security model to
enforce restricted access to the report catalog. If Windows-based security is not
an option, you can replace it with custom security models. You see an example
of how this may be done in chapter 13, where we implement custom authenti-
cation and authorization for Internet-oriented reporting.

• Rendering extensions—Generating reports in export formats other than the ones
supported natively can be accomplished by writing custom rendering extensions.
See section 1.4.2 for more information about the supported export formats.

• Custom report items—ISVs can embed custom server controls that provide addi-
tional functionality which RS can’t provide out of the box. Some examples of
custom report items are custom charts, gauges, and maps. These controls are
added to the Report Designer Toolbox and have their own set of property pages
and dialog boxes.

1.2.5 Scalability features

A scalable application responds well under increased loads. RS can scale up and out to
address the high-volume reporting requirements of large organizations. It is designed
from the ground up to process reports efficiently. For example, it supports several
report-caching options, such as report execution caching, snapshots, and report ses-
sions, as we discuss in chapter 8.

Reporting Services Enterprise Edition supports clustered deployment, which you
can use to load-balance several RS servers on multiple machines. This allows enter-
prise organizations with high-scalability requirements to scale out RS and provides
fault tolerance. RS performance is the subject of chapter 14.

1.2.6 Security features

RS is designed to provide a secured environment from the ground up. It offers a com-
prehensive security model for accessing reports that leverages Windows authentica-
tion. This model maps the user Windows account or group to a role, and the role
describes what permissions the user has to access items in the report catalog. Report
administrators can add Windows users to predefined roles or create new ones.

Once again, when the default Windows-based security model is not a good fit, you
can replace it by plugging in your own custom authentication and authorization
implementations in the form of custom security extensions. You learn how to do this
in chapter 13.

To promote trustworthy computing, RS leverages the .NET code-based security to
“sandbox” custom code based on configurable security policies. We discuss the RS
security model in chapter 9.

1.2.7 Deployment features

Because it is server based, RS has zero deployment requirements for integrating with
client applications. For this reason, any type of client applications can target RS, not
12 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

only .NET-based applications. Because you can access RS through the two most pop-
ular web protocols, HTTP-GET and Simple Object Access Protocol (SOAP), any web-
capable application can be integrated with RS, regardless of the targeted platform and
development language. You see both of these protocols in action in chapter 10.

DEFINITIONS The Hypertext Transfer Protocol (HTTP), on which the Internet is based,
comes in two flavors: HTTP-GET and HTTP-POST. While HTTP-GET
passes request parameters as a part of the URL, HTTP-POST passes them as
name/value pairs inside the actual message.

Simple Object Access Protocol (SOAP) is a lightweight XML-based pro-
tocol, layered on top of HTTP, for exchanging structured and type infor-
mation on the Web. In recent years, SOAP has become the industry-
standard protocol for communicating with web services.

Integrating your applications with RS requires a good grasp of its architecture. The
next section outlines the major RS building blocks.

1.3 RS ARCHITECTURE

An important feature of the RS architecture is that it is service oriented as opposed to object
oriented. Don Box, a prominent Microsoft architect working on the next-generation web
services, outlines the following four characteristics of a service-oriented architecture:

• Boundaries are explicit—Cross-application communication uses explicit messag-
ing rather than implicit method call invocation.

• Services are autonomous—The lifetime of a service-oriented application is not
controlled by its clients.

• Services share schema and contract, not class—Service-oriented applications adver-
tise their functionality to the outside world using XML-based schemas.

• Service compatibility is determined based on policies—By using policies, service-
oriented applications indicate which conditions must be true in order for the
service to function properly.

You may have used object-oriented reporting tools in the past in which the report
consumer instantiates an object instance of the report provider. A characteristic of this
model is that both the report consumer and the report provider instances share the
same process space. For example, to render an Access report, you need to instantiate
an object of type Access.Application. Then, you use OLE automation to
instruct Access to open the report database and render the report.

You no doubt agree that as useful and widespread as the object-oriented model is, it
is subject to some well-known shortcomings. For example, both the consumer and pro-
vider are usually installed on the same machine. Consequently, the reports hosted by the
report provider are not easily accessible by geographically dispersed clients. For instance,
only Component Object Model (COM)-capable clients can interface with Access.
RS ARCHITECTURE 13

A second shortcoming involves application interdependencies. Object-oriented appli-
cations are typically deployed as a unit. All Access clients, for example, need to have
the Access type library installed locally to establish a reference to it.

To address these shortcomings, RS departs radically from the object-oriented par-
adigm. In terms of reporting, the RS service-oriented architecture offers two distinct
advantages: (1) Administrators can centralize the report storage and management in
one place, and (2) it promotes application interoperability—report consumers can
request reports over standard web protocols, such as HTTP-GET and SOAP.

The RS service-oriented architecture can be better explained in the context of a
three-tier application deployment view, as shown in figure 1.3.

The RS architecture includes the following main components:

• The Report Server engine, whose main task is to generate reports

• The Report Configuration Database (the report catalog), which serves as a cen-
tralized report repository

• The Report Manager, a web-based tool for managing the report catalog and
requesting reports.

Figure 1.3
Report consumers submit

report requests to the Report

Server, which queries data

sources to retrieve the report

data and generate the report.
14 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

In the current release of RS we have two complementary tools that are not shown in
figure 1.3, but we cover them in detail in chapter 8:

• Reporting Services Configuration Tool, a client configuration tool used to man-
age virtual directories, service accounts, databases, and e-mail settings

• SQL Server Management Studio, a Windows-based tool for managing SQL
Server, including Reporting Services

Let’s explain the role of the first three components in more detail, starting with the
Report Server. The last two components are covered in detail in chapter 8.

1.3.1 The Report Server engine

At the heart of the RS architecture is the Report Server engine. The Report Server per-
forms the following main tasks:

• Handles the report requests sent by the report consumers. We use the term
report consumer to describe any client application that requests reports from the
Report Server. Once again, this could be any application regardless of the lan-
guage in which it was written or the platform it runs on.

• Performs all chores needed to process the report, including executing and ren-
dering the report, as we discuss in detail shortly.

• Provides additional services, such as snapshots and report caching, authoriza-
tion and security policy enforcement, session management, scheduling, and
subscribed delivery. Do not confuse the Report Server engine with the Report
Server database. This is easy to do since the Report Server repository database
is named ReportServer.

DEFINITION We will use the term report request to refer to the set of input arguments
that the report consumer has to pass to the Report Server to generate a
report successfully. At minimum, the report request must specify the path
to the report and the report name. Other arguments can be passed as report
parameters, including rendering format, whether the report should include
the standard toolbar, and so forth.

Looking at figure 1.3, you can see that the Report Server encompasses several compo-
nents, including the Report Processor, Windows Service, and extensions. From an
implementation standpoint, perhaps the best way to describe the Report Server is to
say that it is implemented as a set of .NET assemblies located in the C:\Program
Files\Microsoft SQL Server\MSSQL.3\Reporting Services\Report-
Server folder.

As you know, the Report Server’s main role is to generate reports. To accomplish
this, the server retrieves the report definition from the report catalog, combines it
with data from the data source, and generates the report.
RS ARCHITECTURE 15

Figure 1.3 and the product documentation indicate that the Report Processor
component is responsible for report processing. The implementation details of the
processor are not disclosed at the time of this writing, but most likely the majority of
its functionality is encapsulated in the Microsoft.ReportingServices.Processing-
Core.dll assembly. For the remainder of this book we use the terms Report Processor
and Report Server interchangeably.

Section 1.4 explains the purpose of each of the Report Server components and
shows how they relate to report processing.

From an integration standpoint, perhaps the most important observation that you
need to draw from figure 1.3 is that the Report Server has two web-based communi-
cation façades that expose its functionality to external clients: HTTP Handler, which
accepts URL-based report requests submitted via HTTP-GET, and the Web service
(shown in figure 1.3 as RS WS), which handles SOAP requests. You will see how these
façades impact the report-delivery process in section 1.5.

1.3.2 The Report Server database

When you install RS, the setup program creates the Report Server database structure.
This structure is implemented as two physical SQL Server databases: Database #1 is
the Report Configuration Database (ReportServer), and it hosts the report catalog
and metadata. Database #2, ReportServerTempDB, is used for caching reports. In this
section, we’ll take a closer look at each.

The Report Configuration Database

The Report Configuration Database, called ReportServer, hosts the report catalog and
metadata. As mentioned earlier, in order for a report to be available to the end users,
its report definition file must be uploaded (published) to the catalog.

If you open the ReportServer database in the SQL Server Management Studio, you
will be able to deduce the purpose of most of its tables. For example, the Report Con-
figuration Database keeps the catalog items in the Catalog table, the data source
information in the Data-Source table, and so forth. Note that Microsoft discour-
ages querying the report catalog directly. Instead, the recommended way to access the
report catalog is through the Report Server APIs. Microsoft also discourages you from
making data changes directly to the catalog. The reason behind this is that Microsoft
may change the catalog schema in the future but will maintain backward compatibil-
ity through the Report Server API.

As you may recall, RS can be deployed in a load-balanced cluster environment.
In this deployment model, the ReportServer database is shared among all nodes of
the cluster.

The Reporting Services Temporary Database

The RS setup program also creates a second SQL Server database named Report-
ServerTempDB, which is used by RS for caching purposes. For example, once the
16 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

report is executed, the Report Server saves a copy of the report in the ReportServer-
TempDB database.

DEFINITION Report caching describes the Report Server feature of keeping the report
intermediate format in the Report Server database for a certain duration.

We return to the topic of report caching in chapter 8.
Let’s take a look at the web application used to manage the Report Server.

1.3.3 The Report Manager

Implemented as an ASP.NET web application, the Report Manager performs two
main tasks: report management and requests for reports. You can think of the Report
Manager as an application façade that communicates with the Report Server via the
Report Server APIs. From the Report Server perspective, the Report Manager is no
different than any other client application.

Report management

Users familiar with SharePoint Portal Server will find the Report Manager similar to
this product both in terms of user interface and purpose. As with SharePoint, you can
use the Report Manager to create folders, upload resources, manage subscriptions,
and set up security.

For example, figure 1.4 shows that we used the Report Manager to navigate to a
folder, AWReporter, and retrieved a list of the catalog items under this folder. You
can click on a report link to run a report or access and change the report properties.

Figure 1.4 Users can use the Report Manager portal to generate or manage reports.
RS ARCHITECTURE 17

In case you’re wondering where the items shown in figure 1.4 come from, we create
them in the next few chapters when we discuss the report-authoring process.

Keep in mind that in RS you work with virtual folders. Neither the folders nor the
report definition files actually exist in a file system. Instead, they exist in the Report
Server database as metadata, but they appear as folders and items when you access the
Report Server through the Report Manager.

Requesting reports

Sometimes, building a reporting application might be overkill. Small companies
might not have the IT resources to do so quickly or simply cannot afford the effort. In
such cases, the Report Manager can be used as a reporting tool. Users can navigate to
the Report Manager portal and request reports on the spot, as figure 1.5 shows.

Even better, users can use the handy toolbar, which the Report Server generates
automatically, to perform various report-related tasks, including specifying parameter
values for reports that take parameters (more on this in chapter 3), paging, zooming,
searching, and exporting the report to different formats.

Figure 1.5 Small organizations that don’t need to create report-enabled applications can use

the Report Manager to request reports. Here we show the Employee Sales Freeform with Chart

report generated in HTML.
18 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

Now that we’ve taken a quick tour of the major building blocks of Reporting Services,
let’s peek under its hood to see how it processes, renders, and delivers reports.

1.4 UNDERSTANDING REPORT PROCESSING

Report processing encompasses all activities performed by the Report Server to gener-
ate a report. To understand how the Report Server processes a report, let’s see what
happens when the report is requested on demand. Figure 1.6 depicts what happens
when a report consumer requests a report hosted under the Report Server.

First, the consumer submits b a report request to the Report Server. Once the
report request is intercepted by the Report Server, it is forwarded c to the Report
Processor. The Report Processor parses the request and retrieves d the report defini-
tion and metadata from the Report Server database. The Report Processor checks
whether the user is authorized to access this report. If so, the Report Processor proc-
esses the report, which involves three stages: query, execution, and rendering.

Let’s get more insight into the execution and rendering stages.

Figure 1.6
Report processing involves

querying (5), execution (6),

and rendering (7). You can

integrate your applications

with RS by using the two

web communication façades:

HTTP Handler and the RS

Web service.
UNDERSTANDING REPORT PROCESSING 19

1.4.1 Execution stage

The report-execution stage starts when the Report Server begins processing the report
and finishes when the report is ready for rendering. For the sake of simplicity, let’s
assume that the report is requested for the first time.

As we explained earlier, when the report is published, the Report Server parses its
report definition (the RDL file), generates a .NET assembly, and saves the assembly in
the catalog for the report. During the execution stage, the Report Server loads and
executes the assembly. Referring back to figure 1.6, you can see that the Report Server
uses a data extension e to query f the data source to retrieve the report data, com-
bines the resulting dataset and report layout information, and produces g the report
in a raw form, called intermediate format (IF).

Having the report generated in an IF before it is finally rendered is beneficial in
terms of performance. It allows the Report Server to reuse the same IF, regardless of
the requested export format. Developers who are familiar with the intermediate lan-
guage (IL) code execution model in .NET can think of IF in a similar way. IL abstracts
the platform on which the code executes, while IF abstracts the rendering format. For
example, one report consumer can request the report in an HTML format, while
another can request the same report as PDF. In either case, the Report Server already
has the raw report; the only thing left is to transform it into its final presentation for-
mat. During the rendering stage, the Report Server loads the report IF and renders h
the report in the requested format using a rendering extension.

Once the report IF is generated, it is saved (cached) in the Report Server Tempo-
rary Database (ReportServerTempDB). Note that if the report is cached, the report
execution stage may be bypassed completely for subsequent requests because the
Report Server decides to use the cached IF. We postpone discussing report caching
until chapter 7.

1.4.2 Rendering stage

As shown in figure 1.6, the report-rendering stage represents the second (and last)
stage in the report-processing pipeline. After the Report Server has the report IF, it
renders the report in its final presentation format as per the export format requested by
the user. You will be pleasantly surprised to see the plethora of natively supported for-
mats that a report can be exported to. My favorites are HTML and PDF. For example, as
figure 1.7 shows, I have loaded a report exported to a PDF file in Adobe Acrobat.

The Report Server delegates the report-rendering process to rendering extensions.
RS comes with various rendering extensions that correspond to supported export for-
mats. If the report consumer does not specify the export format explicitly, the report
will be rendered in HTML 3.2 or 4.0, depending on the browser capabilities.
Table 1.5 lists each out-of-the box RS-supported rendering format.

As we’ve said before, when the supported formats are not enough, you can write
your own rendering extensions.
20 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

Table 1.5 Report-rendering options

Rendering extension Description

HTML HTML 4.0 (Internet Explorer 5.0 and above), Netscape (6.2 and above),
HTML 3.2 otherwise.

MHTML MIME encapsulation of the Aggregate HTML Documents standard, which
embeds resources such as images, documents, or other binary files as
MIME structures within the report. This is a good option to minimize the
number of round-trips between the browser and server to fetch resources.
MHTML is most useful for sending reports through e-mail, as we see in
chapter 14.

PDF Portable document format (PDF) files viewable using the Acrobat Reader.

Excel Creates a visual representation of the report in an Excel workbook and
translates Excel formulas whenever possible. Users can open the report in
Excel to change it.

XML Creates an XML document containing the data in the report. The schema
of the XML document generated is determined by the contents and layout
of the report. Users can use the Data Output tab in the Report Designer to
control how the XML will be rendered.

CSV Comma-separated value file, with no formatting.

continued on next page

Figure 1.7 With RS you can export your reports to many formats, including Adobe Acrobat

PDF. Here, I have exported this report to Adobe PDF and loaded it in Adobe Reader.
UNDERSTANDING REPORT PROCESSING 21

Once the report is generated it is ready to travel to its final destination: the report user.
RS gives you a lot of flexibility to distribute your reports, as you see in the next section.

1.5 DELIVERING REPORTS

As we mentioned earlier, RS supports both on-demand (pull) and subscribed (push)
report delivery. To view a report on demand, the user explicitly requests the report
from the Report Server. Alternatively, the user can choose to subscribe to a report.
With this option, the report is pushed to the subscribers when the report data is
refreshed or on a specified schedule.

Let’s take a closer look at each delivery option.

1.5.1 On-demand delivery

One of the most important decisions you will make when integrating RS reports in
your application is how the application will access the Report Server to request
reports. Although in some cases the system design may dictate the integration option,
occasionally the choice won’t be so straightforward and you may have to carefully
evaluate the application requirements to determine the best approach. We revisit the
on-demand delivery options in more detail in chapter 10. For now, note that reports
can be requested on demand in two ways: URL access and the Web service.

URL-based report access

The report consumer requests a report by URL by submitting an HTTP-GET request
to the Report Server. The advantages of URL access are its simplicity and better perform-
ance. In the simplest case, the consumer can embed the report URL into a hyperlink.

For example, a web-based application can have a drop-down Reports menu, where
each link targets an RS report. With the URL access option, the report arguments are
passed as query parameters in the report URL. For example, assuming that you have
installed the sample reports included with the book source code, the following URL
will run the Territory Sales Crosstab sample report with the start date 3/1/2003 and
an end date of 4/30/2004.

http://localhost/ReportServer?/AWReporter/Territory Sales
 Crosstab&StartDate=3/1/2003&EndDate=4/30/2004

Image Renders reports to bitmaps or metafiles, including any format that GDI+
supports:
BMP, EMF, GIF, JPEG, PNG, RIFF, and WMF.
By default, the image is rendered in TIFF, which can be displayed with an
image viewer.
Image rendering ensures the report looks the same on every client.
Rendering occurs on the server; all fonts used in the report must be
installed on the server.

Table 1.5 Report-rendering options (continued)

Rendering extension Description
22 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

Web service

With RS, reports can also be requested by submitting SOAP-based requests to the
Report Server Web service. The main advantage of this service is that its feature set
goes well beyond just report rendering. It also encompasses an extensive set of meth-
ods to manage all aspects of the Report Server, such as uploading reports, retrieving a
list of resources from the report catalog, and securing RS.

You can think of the Report Server Web service as a façade to the Report Server
that allows RS to be integrated with a broad array of platforms. For example, if you
are building an enterprise application integration (EAI) solution, a BizTalk schedule
might invoke the Web service Render() method, get the XML representation of the
report, retrieve some data from it, and pass it on to another application. Or, if your
reporting application is B2B oriented and your partner has a Web service, you can
send the report results to it in XML.

In some cases, a report consumer will use a combination of both access options to
integrate with RS. For example, a report consumer can use the RS Web service to find
out what parameters a report takes. Then, the application presentation layer can
present the parameters to the user so that the user can enter the parameter values.
When the user submits the report request, the application can use URL access to send
the request to the Report Server.

Report Viewer controls

If you are building applications with Visual Studio 2005 (.NET Framework 2.0), you
will want to take advantage of the Report Viewer controls. These controls take the
work out of adding RS reports to your applications. The Report Viewer controls not
only help you pull reports from the RS server (remote mode), but also allow you to
create reports that work outside of the RS server (local mode). Local mode eliminates
the need for your applications to communicate with a report server to take advantage
of Reporting Services features. However, using the Report Viewer control outside of a
report server has both benefits and limitations. We learn all about the Report Viewer
controls in chapter 11.

1.5.2 Subscribed delivery

In the “push” report-delivery scenario, the reports are generated and delivered automat-
ically by the Report Server to a delivery target. Reports can also be delivered at a sched-
uled time. For example, a financial institution can set up a portfolio balance report to be
generated and delivered through e-mail to its customers at the end of each month.

The Report Server Windows service (ReportingServicesService.exe)
works in tandem with the SQL Server Agent service to generate and deliver sub-
scribed reports.

NOTE SQL Server Agent is a component of Microsoft SQL Server, and it is respon-
sible for running scheduled SQL Server tasks.
DELIVERING REPORTS 23

For example, if the report is to be generated according to a set schedule, the SQL
Server Agent will create a job and move the subscription to the Subscriptions table
when the time is up. The RS Windows service periodically polls the Report Configu-
ration Database to find out whether there are any new subscription jobs. If this is the
case, the Windows service picks up the job, generates the report, and delivers it to the
end users through a delivery extension.

Out of the box, RS comes with two delivery extensions:

• E-mail delivery extension

• File share delivery extension

The e-mail delivery extension delivers the report via e-mail. The report can be deliv-
ered to either subscribed users (opt-in subscription) or to a data-driven list of recipi-
ents. The file share extension delivers reports to a network share. When these two
options are not enough, you can write custom delivery extensions.

Note that the Report Server Windows service doesn’t communicate with the
Report Server through the HTTP Handler or Web service façades. Instead, because it
is installed on the same machine as the Report Server, the Windows service directly
loads and calls the Report Server assemblies. This is beneficial for two reasons. The
first relates to availability. Even if the IIS server is down, the Windows service will still
execute scheduled tasks and deliver reports to subscribers. The other reason is better
performance—the web façades are completely bypassed.

Another task that the Report Services Windows service is responsible for is per-
forming background database integrity checks, as well as other administrative tasks.

Before we see RS in action, let’s analyze the report lifecycle. A good high-level
understanding of the lifecycle is important because the remaining chapters of this
book follow an identical flow.

1.6 WHAT IS THE REPORT LIFECYCLE?

By now, you probably realize that the Report Server is a sophisticated reporting plat-
form with a feature set that goes well beyond a desktop reporting tool. To minimize
the learning curve, this book follows a logical path based on the report lifecycle. The
report lifecycle is the process that you typically follow to work with reports, and it
involves the three stages as shown in figure 1.8: authoring, management, and delivery.

In the report-authoring stage, you create the RDL file through the use of report-
authoring tools. For example, you can use the Visual Studio Report Designer to lay
out the report. Recall that both report data retrieval and layout information are
described in the RDL file. We’ll discuss many more details of the report-authoring
stage in chapters 2 through 7.

In the report-management stage, you manage the report catalog. As you recall, the
report catalog is stored in the Report Configuration Database. The report catalog
keeps the report and all related items. Typical management tasks include organizing
24 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

reports in folders, uploading reports, and granting users access to run reports. We take
a closer look at report management in chapters 8 and 9.

The report-delivery stage is concerned with distributing the reports to their final
destinations, including end users, printers, or archive folders. A managed report can
be delivered either on-demand or pushed to the subscribed users. Report delivery is
discussed in detail in chapters 10 through 12.

Enough theory! Let’s put into practice what we have learned so far and get our
hands on RS.

1.7 RS IN ACTION

This section has two main objectives. First, we introduce an imaginary company,
Adventure Works Cycles (AWC), which we reference throughout the rest of this book.
We discuss various hypothetical reporting challenges that AWC faces and implement
solutions to address them.

Second, we get our feet wet and create our first report using the Visual Studio
Report Wizard and the AdventureWorks sample database. Granted, this is going to
be a simple tabular-style report, but as simple as it is, it showcases all the stages of the
report lifecycle. We also use this report in the next three chapters as a practical exam-
ple to expand our knowledge about RS.

Figure 1.8
Report lifecycle phases include

report authoring, management,
and delivery. In the report-authoring

stage, you lay out the report.
In the report-management stage,

you deploy and manage the report.

Finally, RS provides many ways
to distribute your reports to their

final destination.
RS IN ACTION 25

The Adventure Works sample database

Finally, if you install the SQL Server 2005 samples, the setup program installs a sample
database called AdventureWorks. This database is also used by other Microsoft prod-
ucts, such as Commerce Server. To install the AdventureWorks, you need to select the
advanced options during the installation. See appendix A for more details.

The AdventureWorks database includes a much more “realistic” sales ordering data-
base model than the SQL Server sample databases, Northwind or Pubs. You quickly
realize this by surveying the data held in the more than 60 tables. We work with this
sample database in this section, and you have a chance to create a report using RS.

1.7.1 About the Adventure Works Reporter

Let’s start with a hypothetical problem statement. You are a developer with AWC,
which manufactures and sells goods to individuals and retailers. The company has
enjoyed tremendous success the last few years. Sales are going up exponentially and
the customer base is growing fast. Today, AWC has customers both in the United
States and overseas. It has already implemented a web-based ordering online transac-
tion processing (OLTP) system to capture sales orders online.

However, success does not come cheap. Data inaccuracy and slow decision mak-
ing are among the top complaints by the sales managers. Often, data is captured and
consolidated in the form of Excel spreadsheets. A reporting system is needed to
present the company with data in a format that’s both easy to understand and analyze,
and to allow AWC’s management to discover trends and see how the company is per-
forming. You have been designated as a lead developer for the new Adventure Works
(AW) Reporter system. Fascinated by Microsoft SQL Server 2005 RS, you decide to
base your reporting system on it.

NOTE In the real world, you should abstain from reporting off an OLTP database
for performance reasons. As the name suggests, OLTP systems must scale to
meet large transaction volumes and handle hundreds and even thousands
of users. Reporting applications usually submit queries to retrieve and ana-
lyze substantial sets of data, which impose data locks on many records in
the database. This can severely tax your OLTP system performance. For this
reason, reporting and OLTP are usually two mutually exclusive options. A
typical solution involves consolidating OLTP data and then uploading it to
a data warehouse database that is optimized and designated for reporting
purposes only.

1.7.2 Your first report

One crucial piece of information that the AWC management would probably like to
know is what the yearly products sales per territory are. With such a report in hand,
managers can determine how well AWC is doing in each sales region.

To meet this requirement, let’s create the Sales by Territory report. Figure 1.9
shows the final version of the report that we’ll create in this section.
26 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

This is just one of the many sample reports we design throughout the course of this
book. We use the Sales by Territory report in subsequent chapters to demonstrate
other RS features.

Table 1.6 shows the list of tasks that we need to accomplish to create the report
organized by the report lifecycle stages.

As you’ll recall, the first stage of the report lifecycle is authoring the report.

Table 1.6 The task map for creating our first report

Stage Task Description

Authoring Create BI project. Create a new BI project in Visual Studio.

Create the report data source. Use the Report Designer Data tab to configure
a database connection to the AdventureWorks
database.

Set the report dataset. Define a dataset query to retrieve the
report data.

Lay out the report. Use the Report Wizard and Report Designer to
author the report.

Test the report. Use the Report Designer Preview tab to
preview and test the report.

Management Deploy the report. Use Visual Studio to deploy the report to the
Report Server catalog.

Delivery Ensure on-demand report delivery. Use the Report Manager to navigate and
render the report.

Figure 1.9 Our first report is Sales by Territory.
RS IN ACTION 27

Authoring the report

Let’s develop our first report using the Report Designer. To do so, we need to create a
new Visual Studio Business Intelligence (BI) project.

Task: Create a Business Intelligence Project

To create a project, complete the following steps (see figure 1.10):

Step 1 Open Visual Studio and choose File ➔ New ➔ Project.

Step 2 From Project Types, select Business Intelligence Projects.

Step 3 From Templates, select Report Project.

Step 4 In the Location field, enter AWReporter, specify a location, and click OK.

Step 5 Once the project is created, right-click on the AWReporter project node in
the Solution Explorer window and select Properties. The Property Pages dia-
log box appears, as shown in figure 1.11.

Step 6 Verify that TargetReportFolder is set to AWReporter. This specifies the
folder name in the report catalog where all reports defined in the project will
be deployed.

Figure 1.10 Use Visual Studio to create a new BI project.
28 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

Step 7 In the TargetServerURL field, enter the Report Server URL. If RS is installed
locally on your machine and you have accepted the defaults during setup, the
URL of the Report Server should be http://localhost/reportserver.
Click OK to close the Property Pages dialog box.

Task: Create the Report Data Source

Next, we create a shared data source pointing to the AdventureWorks sample data-
base. Don’t worry if the concept of a shared data source is not immediately clear.
When we get to chapter 3 it all begins to make sense.

Step 1 Right-click on the Shared Data Sources node in the Solution Explorer and
choose Add New Data Source. The Shared Data Source property window
appears, as shown in figure 1.12. By default, RS names the data source
with the same name as the database. Since we are going to use this data
source for most of the sample reports in this book, let’s make the name
more descriptive.

Step 2 Enter AW Shared Datasource in the Name field. Be sure that Microsoft SQL
Server is selected for the Type field, and click the Edit button.

Step 3 When the Connection Properties dialog box appears (see figure 1.13), enter
the following information:

Figure 1.11 Use the report property page to set up the project properties.
RS IN ACTION 29

• Server Name—The name of the SQL Server that you use to install RS.
In my case, the database is installed locally on a named instance (DEV),
which is why the data source name is 16371XP\DEV (16371XP is the
name of my computer.).

• Use SQL Server Authentication—Enter a valid username and password
combination for a SQL Server account that has permissions to query
the tables in the AdventureWorks database. Select the Save My Pass-
word check box. Note: You can also select Use Windows Authentica-
tion for this example (shown in figure 1.13).

• Select the AdventureWorks database from the Select Or Enter a Data-
base Name drop-down list. Test the connection by clicking the Test
Connection button. If all is well, click OK.

Now it’s time to author the report. We use the handy Visual Studio Report Wizard to
save some time.

Task: Set the Report Dataset

Step 1 Right-click on the Reports node in the Solution Explorer and choose Add
New Report.

Step 2 On the Report Wizard welcome screen, click Next.

Figure 1.12 The Shared Data Source window allows you to use the same

data source for multiple reports.
30 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

Step 3 On the Select the Data Source screen, make sure that AW Shared Datasource
is selected under the Shared Data Source section. Click Next.

Step 4 In the Design the Query screen, enter the following SQL statement in the
query pane, then click Next:

SELECT ST.Name AS Territory, PC.ProductCategoryID,
 PC.Name AS ProductCategory,
 SUM(SOD.UnitPrice * SOD.OrderQty) AS Sales
FROM Sales.SalesOrderDetail SOD
INNER JOIN Production.Product P ON SOD.ProductID = P.ProductID
INNER JOIN Sales.SalesOrderHeader SOH ON
 SOD.SalesOrderID = SOH.SalesOrderID
INNER JOIN Sales.SalesTerritory ST ON
 SOH.TerritoryID = ST.TerritoryID
INNER JOIN Production.ProductSubCategory PSC ON
 P.ProductSubCategoryID = PSC.ProductSubCategoryID
INNER JOIN Production.ProductCategory PC ON PSC.ProductCategoryID =
 PC.ProductCategoryID
WHERE DATEPART(YY, SOH.OrderDate) = DATEPART(yy, '1/1/2003')
GROUP BY ST.Name, PC.Name, PC.ProductCategoryID
ORDER BY ST.Name, PC.Name

Figure 1.13
The Connection Properties window
RS IN ACTION 31

This query retrieves the product sales orders grouped by territory and product cate-
gory. The AW database groups products in subcategories, which are then rolled up to
product categories. For the purposes of this report, we summarize the sales data by
product categories since this represents the most consolidated level in the product
hierarchy, which is exactly what upper management is interested in seeing. The sales
amount is retrieved from the Sales.SalesOrderDetail table. In addition, the
query filters the orders created for 2003. In chapter 3, we make the report parameter
driven by allowing the user to pass an arbitrary date.

NOTE We have hardcoded January 1, 2003, in the query. While this query would
make sense to use GetDate() instead of hardcoding the date for the cur-
rent year’s data, the AW database only has data through 2004.

Task: Lay Out the Report

To lay out the report, perform the following steps:

Step 1 On the Select the Report Type screen, leave the report type set to Tabular.
Click Next.

Step 2 On the Design the Table screen, select all fields except ProductCategoryID
and click Details so the fields appear in the report details section, as shown in
figure 1.14. Click Next.

Step 3 On the Choose the Table Style screen, click Corporate, then click Next.

Figure 1.14
Choose which fields

will appear on the

report and how data

will be grouped.
32 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

Step 4 Finally, on the Completing the Report Wizard screen, enter Sales by Terri-
tory as the name of the report. Click Finish, and we’re done!

Visual Studio displays the Report Designer with the Layout tab selected, as shown in
figure 1.15.

The integration with Visual Studio Report Designer allows you to easily preview and
test your reports without leaving the Visual Studio IDE.

Task: Test the Report

Let’s make some cosmetic changes to enhance our report.

Step 1 Click on the Report Designer Preview tab to see the HTML representation of
the report. Notice the report toolbar at the top, which allows you to zoom,
print, and save the report in different formats. The Sales field needs some
formatting work.

Step 2 Click the Layout tab again to go back to design mode.

Step 3 Right-click on the Sales textbox and choose Properties. Specify the format
settings, as shown in figure 1.16. Click OK to close the Textbox Properties
dialog box.

Step 4 Increase the width of the Territory and Product Category columns; stretch
them out as far as there is space within the report width.

Step 5 Right-click again on the Territory textbox and select Properties.

Step 6 On the Font tab, change the font weight to Bold and the style to Italic.
Click OK.

Step 7 Back in the Textbox Properties dialog box, hide the repeating territory names
by selecting the Hide Duplicates check box, as shown in figure 1.17.

Step 8 From the report, click on the Sales field. In the properties window enter c2 as
the format property. This will format our Sales field as currency.

Figure 1.15 Use the Report Designer Layout tab to lay out your report.
RS IN ACTION 33

Figure 1.16
Use the Textbox

Properties dialog
box to set up
format settings.

Figure 1.17
Select the Hide

Duplicates check box

to hide the territory

name duplicates.
34 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

Preview the report again. Now it should look like the one shown in figure 1.9. Still not
very pleasing to the eye, but not bad for a few minutes of work!

Report management

Once you are satisfied with the report, you will need to deploy it to make it available
to all users. This is a report-management task that you can accomplish by using the
Report Manager. However, if your Windows account has local administrator rights on
the computer where the Report Server is installed, you can deploy the report straight
from within Visual Studio. Let’s do just that.

Task: Deploy the Report

Save your changes.
In the Solution Explorer, right-click on Sales by Territory.rdl and choose

Deploy. This compiles the report and uploads the report to the report catalog.

NOTE The report RDL includes the report query and layout information. Since we
chose to create a shared data source, the data source information is not
included in the report RDL. To see this, select the Sales by Territory.
rdl file from the Solution Explorer, right-click, and select View Code.
Visual Studio shows you the report definition of the report.

Report delivery

Once the report has been promoted to a managed report, it can be delivered to your
end users. Let’s see how users can request the report on-demand by using the Report
Manager as a quick-and-easy report-delivery tool.

Task: On-Demand Report Delivery

Open the browser and navigate to the Report Manager URL, which by default is
http://<reportservername>/reports. Notice that below the Report Man-
ager Home folder there is a new folder, AWReporter, and that its name matches the
TargetReportFolder setting which you specified in the report project settings.

Step 1 Click on the AWReporter folder link to see its contents. You should find
the Sales by Territory report link. Under the data sources folder you should
see the AW Shared DS data source.

Step 2 Click on the Sales by Territory report link to request the report with the
Report Manager.

As you can see, authoring, managing, and delivering reports with RS is straightfor-
ward. At this point, you may decide to compare RS at a high level with other report-
ing tools you’ve used in the past. The next section discusses how RS stacks up against
the competition.
RS IN ACTION 35

1.8 EVALUATING RS

Throughout my career as a software consultant, I have had the opportunity to turn
many clients on to Reporting Services. I am continually impressed by how quickly
most developers have learned to effectively build reports and enable end users to get
the data they need. Not only is RS easy to use and deploy, it is also surprisingly feature
rich. My favorite top ten features, where I believe RS excels, are as follows:

1 Report Builder—Adds ad hoc reporting capabilities to your business users. This
tool will allow business users to create amazingly complex queries for reports by
dragging and dropping fields and selecting filters for the data. In addition, infi-
nite drill-through reporting will change the way you think about ad hoc reports.

2 Natively exposed as a Web service—The RS reports are widely accessible, and you
don’t have to do anything special to publish your reports as web services because
they are hosted under the Report Server, which provides a web service façade.

3 Support of plethora of export formats—You may be delighted to learn that the
ability to export reports to PDF and Excel is provided out of the box. In addi-
tion, reports can be delivered in many other popular formats, including web
formats (HTML), popular image formats (such as TIFF and JPEG), and data for-
mats (Excel, XML, and CSV).

4 On-demand and subscribed report delivery—Another huge plus is the subscribed
report delivery option, which allows developers to implement opt-in report fea-
tures in their applications.

5 Documented report definition format—Developers can create reports to be pub-
lished to the Report Server using Microsoft or third-party design tools that sup-
port the RS XML RDL.

6 .NET Framework integration—In the extensibility area, you’ll appreciate the fact
that you are not locked out from a programmability standpoint. As we men-
tioned earlier, when built-in features are not enough, you can reach out and
borrow from the power of the .NET Framework by integrating your reports
with .NET code. In addition, the Report Services programming model is
100 percent .NET based.

7 Extensible architecture—The RS architecture is fully extensible and allows devel-
opers to plug in their own security, data, delivery, and rendering extensions.

8 Zero deployment—Thanks to its service-oriented architecture, RS has no client
footprint and offers true zero deployment for all application types.

9 Scalability—RS can scale better, since it is designed from the ground up to scale
in web farm environments.

10 Cost—From a cost perspective, it is hard to beat the bundled-with-the-SQL-
Server RS pricing model, especially if you compare it with the five-digit price
tag of third-party reporting tools.
36 CHAPTER 1 INTRODUCING SQL SERVER 2005 REPORTING SERVICES

1.9 SUMMARY

This chapter took you on a whirlwind tour of the RS platform. We discussed its space
in the SQL Server platform and addressed how it fits into the Microsoft BI initiative.
We also looked at its features and high-level architecture. You even had a chance to
use RS and create a simple report based on the AdventureWorks sample database.
Now that you have a workable, high-level understanding of its features, you can begin
using RS to report-enable your own applications.

By now, you should understand the major components of RS and their role in the
report lifecycle. In addition, you should see the advantages that the service-oriented
and web-enabled RS architecture has to offer.

Perhaps most important, you should be familiar with the three stages of the report
lifecycle: report authoring, management, and delivery. The remaining chapters
explore each of these stages in this order. In the next chapter, we discuss different
ways to create RS reports.
SUMMARY 37

1
P A R T
Authoring reports
The report lifecycle starts with the report-authoring phase. Part 1 teaches you the
skills that you as a report author will need to master when creating Reporting
Services—based reports.

We start by discussing the options Reporting Services offers for creating reports.
Since most report authors probably rely on the integrated Visual Studio Report
Designer, we explore its report-authoring features in detail.

We explain how to set up the report data source and work with datasets. We also
introduce best practices for data management.

The best way to acquire report-authoring skills is by example. For this reason, we
author various reports, including tabular, freeform, crosstab, chart, and multicolumn
reports, as well as reports with navigational features.

You may often need to enhance your report features programmatically. We show
how you can accomplish this by using expressions and functions.

One of the most prominent features of Reporting Services that many developers,
including myself, appreciate is its extensible nature. One way you can extend the capa-
bilities of your reports is to integrate them with custom .NET code that you or some-
one else has written. In this part, you learn how to leverage custom code to supercharge
the capabilities of your reports.

Among the many new and exciting features available in Reporting Services 2005 is
the Report Builder application. This application allows end users to author their own
reports in an ad hoc fashion. We explore the process of setting up the environment for
the Report Builder application as well as using this application to create ad hoc reports.

C H A P T E R 2

Report authoring basics

2.1 The report-authoring process: step by step 42
2.2 Authoring reports in VS .NET 44
2.3 Creating reports programmatically 57
2.4 Summary 62
In chapter 1 we discussed the report lifecycle and identified the first stage as the
report-authoring process. Recall that in this stage, you set up the report data and lay
out the report itself. The report data and layout information are described in a report
definition file.

You may wonder what options are available to you as report authors with RS. As
you will see shortly, RS offers not one but several ways to create reports. In this chap-
ter we discuss:

• The report-authoring process

• Authoring reports using Visual Studio Report Designer

• Generating the report definition language (RDL) report manually

Although you will probably rely most of the time on the Report Designer to author
reports, it is important to understand when and how to use the other options. In this
chapter, we provide a panoramic view of report-authoring techniques. In chapter 4 we
discuss how you can use the Report Designer to lay out different types of reports.

NOTE In chapter 7, you learn how to use the new Report Builder application,
which enables users to author reports on the fly.
41

Before we discuss specific report-authoring options, it may make sense to step back
and reflect on the authoring process to learn how you can create reports that meet
user requirements.

2.1 THE REPORT-AUTHORING PROCESS:
STEP BY STEP

Although there is no magic formula for creating successful reports, I recommend that
you follow a process for authoring reports similar to the software development meth-
odology in general. Figure 2.1 shows the four steps you should follow when authoring
your reports.

Experienced developers will probably recognize these steps immediately. Just as
with software projects, you should resist the temptation to jump into “construction”
(report authoring) before you have a good understanding of what your users want.
Once the report is ready, it has to be meticulously tested before it is deployed to the
report catalog.

Below the name of each step, figure 2.1 lists the typical ways to accomplish that
step. For example, you can author a report using VS .NET by generating the report
definition programmatically, or using third-party tools.

Let’s explain each step in more detail.

Figure 2.1
The report-authoring process

typically consists of analysis,

construction, testing, and

deployment steps.
42 CHAPTER 2 REPORT AUTHORING BASICS

2.1.1 Analysis

The objective of the analysis step is to collect the user requirements and prototype the
report. In this stage, you typically examine existing report artifacts and other data
sources, such as paper reports, spreadsheets, and standard forms, to understand what
data is needed and how it is related. In addition, you conduct joint application devel-
opment (JAD) sessions with your users to clarify the reporting requirements, create
throwaway report prototypes, and, in general, do whatever possible to reach a consen-
sus with your users about what the report should look like.

For example, in chapter 1 we created the Sales by Territory report requested by the
Adventure Works Cycles (AWC) management. Here, we’ve assumed that the analysis
step has been completed and we know exactly what our users want. If that were not
the case, however, we would’ve started with prototyping the report. First, we could have
determined what reporting sources the AWC managers currently use to obtain the
same data. Perhaps they use Excel spreadsheets that we can use to see what the report
looks like. Once we’ve determined the report layout, we need to find where the
report data originates. In this case, we must find out where the sales data resides—in
mainframe, Oracle, SQL Server databases, or XML Web Services.

Sometimes, you find that you don’t have all the data you need to satisfy the user
requirements. For example, you might discover that some of the information is bur-
ied deep within the mainframe abyss and that getting it out to daylight will require
another project or two altogether.

A good approach at the end of this stage is to come up with a paper prototype of
the report that defines the report look and feel. Next, during the report-design stage,
you can use this prototype to flesh out the actual report.

Discussing the Analysis step in any greater detail is outside the scope of this book.
However, to emphasize the importance of requirements gathering and analysis, we
use a common pattern for the reporting solutions that we build in subsequent chap-
ters. Each reporting solution starts with first, defining the user requirements and sec-
ond, defining high-level design goals. These issues must be addressed before moving
on to the actual implementation.

2.1.2 Construction

If you make it successfully out of the analysis, you graduate to the report-
construction phase.

NOTE In an ad hoc tool like the Report Builder, analysis and construction happen
at the same time.

The main deliverable of the construction step is the RS-based report. You will gener-
ally use one of the report-authoring options described in this chapter to create the
report. As we’ve mentioned, you can use several techniques to create a report, ranging
from taking advantage of the integration with VS .NET Report Designer, to generat-
ing the report definition programmatically.
THE REPORT-AUTHORING PROCESS: STEP BY STEP 43

If you create your reports interactively by using the reporting tools we discuss in
this chapter, report construction is typically a two-stage process: (1) setting up report
data, and (2) arranging report items on the report canvas.

With RS, to set up the report data you first specify a data source and define one
or more queries, as we discuss in detail in chapter 3. Next, to display the data on the
report and add other report items to the layout, you can use data regions (such as
tables, matrices, lists, and charts). Chapter 4 shows you how to do just that.

2.1.3 Testing

Just as you test software projects, you should perform unit testing with your reports,
as well as quality assurance (QA) testing. With VS .NET you can easily preview the
report to ensure that its layout meets the requirements and executes successfully. Once
you are satisfied with the layout, inside the VS .NET IDE you can fully simulate the
production Report Server environment and determine whether the report will render
under given configurations. You see how the Report Designer facilitates the report
unit-testing process in section 2.2.2.

Once you have finished unit testing, the report goes to QA for final preproduction
testing. If possible, you should designate a separate staging test Report Server for per-
formance and logistics reasons.

2.1.4 Deployment

As we mentioned in chapter 1, to make your report available to end users you have to
deploy it to the report catalog. RS provides several options for uploading your reports:

• Upload the report definition (RDL) file manually using the Report Manager.
We’ve already seen how in chapter 1.

• Upload the report from within the VS .NET IDE. We explain this technique in
section 2.2.2.

• Upload the report definition programmatically by calling the Report Server
Web service (see chapter 8 for more on this approach).

The focus of this chapter is to discuss the available options for authoring RS reports.
Let’s begin by finding out how we can do that with VS .NET.

2.2 AUTHORING REPORTS IN VS .NET

Reporting Services 2005 includes a VS .NET shell for report authoring. If you already
have VS .NET 2005 installed, RS will install a new set of Business Intelligence (BI)
projects into VS .NET. If you do not have VS .NET 2005, the installation will install
the Business Intelligence Development Studio (BIDS). Throughout the rest of this
book we refer to VS .NET and the BIDS interchangeably.

Visual Studio provides several options for authoring RS reports:
44 CHAPTER 2 REPORT AUTHORING BASICS

• Using the Report Wizard

• Using the development environment to create complex reports

• Importing reports from Microsoft Access

Let’s take a closer look at each of these tools, starting with the Report Wizard.

2.2.1 Authoring reports with the Report Wizard

You are already familiar with the Report Wizard because we used it in chapter 1 to
create our first report. To start the Report Wizard within VS .NET, right-click on the
project node and choose Add New Item. Alternatively, as a shortcut you can right-
click on the Reports node and select Add New Report.

As figure 2.2 shows, the Report Wizard supports two report types:

• Tabular—The report data is laid out in a tabular format. Optionally, you can
define one or more report groups. Grouping allows you to logically organize the
data into different sections, as well as provide subtotals or other summary infor-
mation in the group footer.

• Matrix (crosstab)—The report data can be grouped both in rows and columns.
With matrix reports, you can define dynamic (expanding) columns to give the
user an option to “drill down” for analyzing data further. We discuss this type of
report in more detail in chapter 4.

The Report Wizard uses report styles to format the report in one of several predefined
styles, including Slate, Forest, Corporate, Bold, Ocean, and Generic. If for some reason

Figure 2.2
The report types

supported by the

Report Wizard
AUTHORING REPORTS IN VS .NET 45

you want to modify the existing styles or create new ones, you can do so by changing the
StyleTemplates.xml file, located by default in C:\Program Files\Microsoft
Visual Studio 8\Common7\IDE\PrivateAssemblies\Business Intel-
ligence Wizards\Reports\Styles. This file enumerates the report styles as XML
elements, which you can change using your favorite text editor.

NOTE The styles that the Report Wizard lets you choose from are used only once,
during the process of generating the report definition file, to define the
report appearance. Currently, RS does not support style templates (or skins)
that define a common look and feel across reports, similar to the way web
developers would use Cascading Style Sheets (CSS) or themes to control the
page appearance. This feature has been slated for a future RS version.

Most of you will probably agree that the Report Wizard is a good starting point when
you need to generate a report quickly. It saves you time by automating some of the
mundane report-authoring tasks, such as laying out the dataset fields. But, as with any
wizard, it has its own limitations. For example, the Report Wizard design options are
limited to Tabular and Matrix reports only. In addition, the Report Wizard doesn’t
support multiple regions, region nesting, or multiple datasets. To get the full design
feature set supported by RS, you need to switch to the more robust Report Designer.

2.2.2 Authoring reports with the Report Designer

Most of us will rely exclusively on the powerful Report Designer to create and design
reports. Therefore, I would like to give you a thorough overview of the essentials.
Chapter 3 shows you how to use the Report Designer to set up the report data source
and query. In chapters 4 and 5 you’ll learn how the Report Designer makes authoring
different types of reports a breeze.

If you haven’t done this already, start BIDS and open the AWReporter project
(AWReporter.rptproj) that we created in chapter 1. (If you skipped this step, you
can find the AWReporter project included with the book source code.) Then, double-
click on the Sales by Territory report in the Solution Explorer pane to open the report
in layout mode inside the Report Designer, as shown in figure 2.3.

The Report Designer itself has a tabbed user interface with Data, Layout, and Pre-
view tabs. Their display order corresponds to the sequence of steps you typically fol-
low to author the report:

• Data tab—First, you use the Data tab to set up the report data. We discuss this
further in chapter 3.

• Layout tab—Second, you design the report layout. Chapters 4 and 5 examine
designing reports.

• Preview tab—Finally, you test report changes using the Preview tab.
46 CHAPTER 2 REPORT AUTHORING BASICS

Working with BI projects

You may wonder how business intelligence (BI) projects differ from other types of
projects supported by VS .NET. When you open a BI project, the VS IDE changes to
accommodate the new project type, as follows:

• Two new menu items (Report and Format) are added to the main menu.

• When the report is in layout mode (the Layout tab is selected), several new tool-
bars appear to facilitate report formatting, such as Layout, Report Borders,
Report Formatting, and Standard.

• A new Datasets toolbox lets you display the report dataset fields. Don’t worry if its
purpose is not immediately clear—we discuss working with data in chapter 3.

• The Report Items section is added to the toolbox (not shown in figure 2.3). You
learn how to work with report items in chapter 4.

As with any other VS .NET solution, you can add more than one project as a part of a
single solution. One scenario where this could be useful is when you need to step
through custom code executed by a given report, as you see in chapter 6.

You manage the BI project items using the VS .NET Solution Explorer. Each
project has two folders: Shared Data Sources and Reports. As its name suggests, the
Shared Data Sources folder holds the definitions of the data sources—in other
words, the connections, which are shared among all reports and projects. The shared

Figure 2.3 The Report Designer’s tabbed window allows you to switch easily from one mode

to another.
AUTHORING REPORTS IN VS .NET 47

data sources are saved in XML files with the extension .rds. Again, don’t worry if
the concept of shared data sources is not immediately clear. It will all make sense in
chapter 3.

As we explained in chapter 1, the report definition file describes the report in an
XML-based format called Report Definition Language (RDL). The Reports folder
holds the report definition (*.rdl) files. It is important to note that when you make
changes to the report, you are actually changing the report definition file. To view the
underlying report definition, right-click on the report item and choose View Code. If
you have a brave heart, you can modify the report definition file directly. This could
be useful to quickly propagate changes. For instance, if you change the name of a
dataset column, it is much faster to open the RDL file and perform search and replace,
as opposed to locating all affected fields and making the changes in the layout mode
by trial and error.

If you make errors in the report schema, the Report Designer tells you about the
problem promptly, with an informative message such as this one:

Microsoft Development Environment is unable to load this document.
Deserialization failed: This is an unexpected token. The expected
token is 'NAME'. Line 7, position 9.

Besides the report definition files, you can add other external resources to the BI
project, such as image files and Extensible Stylesheet Language Transformations
(XSLT) transformation files. We talk more about images and exporting reports to
XML in chapters 4 and 5, respectively. Although we call them external, note that when
you upload the report to the report catalog, its associated resources get uploaded to
the Catalog table in the Report Configuration Database.

Strangely, VS .NET doesn’t allow you to create new folders below the Reports
folder, although the Report Manager does not prevent you from creating nested fold-
ers within a project folder. We don’t consider this to be a disadvantage because you
want to keep the folder structure as flat as possible. We recommend that you either
stick with one folder per project or organize the folder structure logically and physi-
cally per application. For example, an HR and Payroll application can have separate
report folders to hold application-specific reports. We discuss folder management in
chapter 8.

Previewing reports

As we mentioned earlier, you can unit-test a report on your development machine by
previewing the report. The Report Designer provides two ways to preview a report:
the Preview tab and Preview window. Both modes render the report locally. By locally,
we mean outside the Report Server. In fact, you don’t even need the Report Server to
preview a report. Being able to work in an offline, “disconnected” mode is useful for
several reasons. The report administrator may enforce secured access to the Report
Server. All new reports may have to go through a verification and approval process
48 CHAPTER 2 REPORT AUTHORING BASICS

before they are deployed to the production Report Server. For this reason, you could
install only the Business Intelligence Development Studio on your development
machine. The Report Designer allows you to execute the whole report-authoring proc-
ess on your computer. Once you are ready, you can ask the report administrator to
publish the report.

You might be curious to know how it is possible to preview the report outside the
Report Server because we mentioned in chapter 1 that a report is processed by the
Report Server. You see, when you install the Report Designer, it installs the report-
processing engine used on the Report Server into the Report Designer installation
folder. The Report Designer simply delegates the report rendering to the Report Proc-
essing binaries, without asking the Report Server explicitly to do so, as shown in fig-
ure 2.4.

As figure 2.4 shows, when a report consumer requests a managed report, it asks the
Report Server to generate and return the report. However, when the report is pre-
viewed with the Report Designer, no request is made to the Report Server. Instead,
the Report Designer calls the Report Server binaries that are copied during the RS
setup process in the Report Designer folder. For this reason, you can think of the
Report Designer as a scaled-down Report Server. Of course, its capabilities are limited
to report processing and rendering only.

Previewing reports using the Preview Tab

During the report-design process, you will often find yourself switching to the Pre-
view tab to quickly see what the report looks like in its rendered form. The Preview
tab is a mini Report Server by itself, as shown in figure 2.5.

Just as it does when you render a report through the Report Server, the Preview
tab adds the standard report toolbar at the top of the report. The standard toolbar auto-
matically generates parameter placeholders for parameterized reports. In addition, it

Figure 2.4 When the report is previewed, the Report Designer calls the Report

Server binaries directly.
AUTHORING REPORTS IN VS .NET 49

provides zooming, paging, and printing of the report. Preview mode also allows you
to export the report as a file to any supported rendering formats.

Note that previewing a report using the Preview tab bypasses the custom code
security policy rules defined in the Report Designer configuration file (rspreview-
policy.config). As a result, all custom code is granted the FullTrust permission
set. If this security jargon doesn’t make sense, check out appendix B, where we discuss
code access security in detail.

Previewing reports using the Preview window

To preview a report in the Preview window, do one of the following:

• Right-click on the report, then choose Run.

or

• Set the StartItem property in the project settings to the name of the report you
want to preview, then press F5.

Why do we need another option for previewing the report? The Preview window offers
two additional features that the Preview tab doesn’t have:

Figure 2.5 The Report Designer Preview tab allows you test the report in the VS

.NET IDE.
50 CHAPTER 2 REPORT AUTHORING BASICS

• It facilitates debugging external code by loading the report in a stand-alone
report host process.

• It gives the report author an option to simulate the targeted Report Server envi-
ronment.

As you see in chapter 6, debugging custom code can be tricky. To facilitate the debug-
ging process, the Preview window loads the report and the custom assembly inside a
separate process, called ReportHost. This makes debugging a lot easier because
developers can add the custom assembly to the BI solution, set the StartItem project
setting to the report that uses the custom code, and press F5 to debug the project.
When the report calls the custom code, the breakpoints will be hit.

The second reason why the Preview window could be useful is that it can be used
to simulate the Report Server environment as closely as possible. The Report
Designer settings are stored in a few configuration files, which mirror the Report
Server configuration files. For example, the Report Designer code access security pol-
icy is stored in the rspreviewpolicy.config file, while the Report Server reads
its policy from the rssrvpolicy.config file.

NOTE The default locations for these files are:

C:\Program Files\Microsoft SQL Server\MSSQL.3\
Reporting Services\ReportServer\ rssrvpolicy.config
C:\Program Files\Microsoft Visual Studio 8\ Common7\IDE\
PrivateAssemblies\RSPreviewPolicy.config

Unlike the Preview tab, when the report is rendered (or run) in the Preview window,
the Report Designer applies the settings from these configuration files. If the Report
Designer and the Report Server settings are identical, the report will be subject to the
same security checks as it would if run on the Report Server. For example, although
previewing the Sales by Product Category report (which we create in chapter 6) under
the Preview tab succeeds, it fails when run in the Preview window (figure 2.6).

In case you are curious, the reason for the failure is that this report references cus-
tom assemblies that require more elevated code security rights than those defined by
the default permission set. We discuss code access security in appendix B.

What happens when you press F5 to run the report depends on the Configuration
Manager properties, defined for the active project configuration. Figure 2.7 shows
these properties for the AWReporter project.

In our case, both the Build and the Deploy check boxes are selected. As a result,
when we press F5, VS .NET will build and deploy all reports within our BI project.

TIP If both the Build and the Deploy options are on, VS .NET will build and
redeploy all reports inside your BI project before the report is loaded in the
Preview window. This could take a substantial amount of time. Once the
reports are uploaded to the report catalog, you typically don’t want to rebuild
and redeploy them each time you press F5. To skip these two steps and get to
the Preview window faster, clear the Build and Deploy check boxes.
AUTHORING REPORTS IN VS .NET 51

Figure 2.6 You can use the Report Designer Preview window to find out if the report will

render successfully in production.

Figure 2.7 Configuration Manager properties determine what happens when you run a

BI project. If the Build option is selected, VS .NET will build the project. If the Deploy option

is selected, VS .NET will deploy the report items to the report catalog.
52 CHAPTER 2 REPORT AUTHORING BASICS

Once you’ve tested the report successfully, you can promote it to a managed report by
deploying it to the Report Server.

Building reports

As a part of the testing process, you need to check whether the report can be generated
successfully by building the report. Using the Report Designer, you can do this in
two ways:

• Explicitly—To build the whole project, use the Build menu or right-click on the
project node in the Solution Explorer and choose Build. To build specific
reports, you can select multiple reports by holding the Ctrl key and then build
them by right-clicking on the report and selecting Build.

• Implicitly—Switching to any of the preview modes or deploying the report
causes the Report Designer to build the report automatically.

Building a report doesn’t result in a binary, as you would expect when working with
.NET development projects. Instead, the build process simply verifies that the report
is structured properly and that all field references and expressions are resolvable. If the
Report Designer determines that a validation rule is broken, it reports an exception in
the Task List. For example, if you misspell a field name, the Report Designer will
complain with the following exception:

The value expression for the textbox '<textbox name>' refers
to the field '<field name>'. Report item expressions can only
refer to fields within the current data set scope or, if inside
an aggregate, the specified data set scope.

Only a report that compiles successfully can be uploaded to the report catalog. Upon
deploying the report, the Report Server enforces this rule by performing the same
checks that the Report Designer does when you build the report. For example, you
may try to upload a report with syntax errors directly to the report catalog using the
Report Manager. However, the attempt will fail with the same error as the one that
the Report Designer would report in the Task List if you build the report.

Finally, once the report is tested successfully it is ready to be promoted to a man-
aged report.

Deploying reports

If you have rights to update the report catalog, you can publish the report straight
from VS .NET. As a prerequisite for this to happen, you have to set the TargetReport-
Folder and TargetServerURL settings in the project properties, as shown in figure 2.8.

The TargetReportFolder setting specifies the name of the catalog folder that the
report will be uploaded to. If the folder doesn’t exist, it will be created. The Target-
ServerURL setting defines the Report Server URL.

BI projects in VS .NET support separate configurations to address different deploy-
ment scenarios. For example, during the QA testing lifecycle, you would typically use a
AUTHORING REPORTS IN VS .NET 53

staging Report Server. Once the report is tested, you would deploy to production. To
address these deployment needs, the project settings include several predefined con-
figurations, among them Debug, DebugLocal, Release, and Production. Clicking the
Configuration Manager button from the project property page will expose this in the
Configuration Manager. You can use these configurations any way you want. In fact,
you can create your own configurations to meet your needs. For this example let’s cre-
ate a new configuration and name it staging. To do this from the Configuration
Manager, select New from the Configurations drop-down list. This will open the
New Solution Configuration dialog box. Name the new configuration staging and
select DebugLocal from the Copy Setting From drop-down list. Assuming that you
have set up separate staging and production environments, you can set your configu-
rations as shown in table 2.1.

Table 2.1 Using different configurations to address different deployment needs

Configuration Environment Purpose

DebugLocal Local machine For unit testing with a local instance of Report Server. For
example, TargetServerURL set to http://localhost/
ReportServer

Staging Staging For QA testing

Production Production The production Report Server

Figure 2.8 Using the project properties, you can specify different configurations to

address various deployment needs.
54 CHAPTER 2 REPORT AUTHORING BASICS

You can also define additional configurations if needed by clicking the Configuration
Manager button.

To deploy a single report from VS .NET, right-click on its file in the Solution
Explorer and choose Deploy. The Deploy command first builds the report. Then, it
invokes the Report Server Web service to deploy the report to the Report Server. Sim-
ilar to building reports, you can deploy multiple reports by selecting them and choos-
ing Deploy from the context menu.

Finally, just as with any other development project, we strongly suggest that you put
your BI projects under source control, for example, by using Microsoft Visual Source-
Safe or, even better, by using Microsoft Visual Studio Team System. To accomplish
this, right-click on the project node and choose Add Solution to Source Control.

You will obtain greater insight into the Report Designer because we use it
throughout the next few chapters to author various sample reports.

2.2.3 Importing reports from Microsoft Access

There is a good chance that you may be using Microsoft Access for your reporting
needs. Although Access is a great reporting tool and it is becoming more enterprise-
oriented with each new release, you may find that moving to Reporting Services could
be beneficial for several reasons:

• RS is designed from the ground up for scalability and performance under high
loads. As we explained in chapter 1, the Reporting Services architecture is ser-
vice oriented and facilitates integrating RS with all types of client applications.
If you want to integrate Access reports with other applications, you have to rely
on legacy technologies, such as OLE Automation, or create your own home-
grown solutions, which can entail significant up-front development efforts.

• Some RS features simply do not have Access equivalents, such as report schedul-
ing and delivery, report management, and so forth. For example, with RS you
can export reports to many different formats, while Access restricts you to view-
ing reports with the Access viewer, and exporting is limited to HTML.

• The RS architecture is extensible, while the Access one is proprietary.

There may be other reasons for upgrading from Access to RS, depending on your situation.
Reporting Services supports importing reports from Access 2002 and above only.

Microsoft claims that importing from Access preserves 80 percent of the Access
report features. For a full list of the supported features, consult the “Importing
Reports from Access” topic in the RS documentation. The most noticeable unsup-
ported feature, which will probably cause quite a bit of pain and suffering during the
migration process, is Access custom modules and events. Since the report-generation
process in RS is not event driven, any custom events that you have defined in your
Access report will be lost. As a remedy, you need to find ways to replace your custom
code with expressions.
AUTHORING REPORTS IN VS .NET 55

Importing Northwind reports

If you decide to move to RS, you can speed the report-migration process by importing
your Access reports. For the time being, Access is the only importing option natively
provided by RS.

To demonstrate how this report-authoring option works, let’s import reports from
the Northwind database that comes with the Access samples.

NOTE The Importing from Access feature is only available if Access 2002 or later
is installed.

Step 1 Create a new BI project and name it Northwind.

Step 2 Right-click on the project (or Reports) node in the Solution Explorer, choose
Import Reports from the context menu, and then select Microsoft Access.

Step 3 Specify the location of the Northwind database and click OK.

You will see the imported reports added one by one to the Northwind BI project. Because
VS .NET doesn’t allow you to pick individual reports, all reports will be imported.

Let’s open the Alphabetical List of Products report in the Report Designer by double-
clicking on its file. The Report Designer opens the report in a layout mode, as shown
in figure 2.9.

As you can see, VS .NET has preserved the report layout. Now, try to preview the
report. The Preview window complains about compilation errors. A look at the Task List
reveals that the culprit is the expression defined in the FirstLetterOfName field,
which references the ProductName textbox as a report item. Change the expression to

=Left(Fields!ProductName.Value,1)

Now the report runs fine, as shown in figure 2.10.

Figure 2.9 The Alphabetical List of Products report (in layout mode) after importing

it from Access
56 CHAPTER 2 REPORT AUTHORING BASICS

Strictly speaking, this report could be rendered more efficiently by using a table
region instead of using a rectangle item and a list region, but still, that’s not bad for a
few minutes of work.

If you are experienced in Access, you can use the import feature not only to facil-
itate the upgrade process but also to minimize the learning curve and come up to
speed quickly with RS. For instance, RS automatically converts Access expressions to
their RS VB .NET equivalents; for example, [Page] to Globals.PageNumber. It
is not perfect, but it will save you quite a bit of effort to just lay out the report in the
Report Designer.

With RS you are not limited to creating reports interactively. Instead, thanks to
the open XML nature of the report definition schema, you can produce reports pro-
grammatically.

2.3 CREATING REPORTS PROGRAMMATICALLY

If you need to author reports on the fly, creating reports programmatically by generating
the report definition can be a useful technique. Recall that the report definition of an RS-
based report is described in a specification called Report Definition Language (RDL).

Imagine that you need to design a multisection report, where each section shows
the sales performance of a particular AWC office. A client front-end application could
let the user select arbitrary sections to be included in the report. How would you
implement this?

Figure 2.10 The Alphabetical List of Products in Preview mode
CREATING REPORTS PROGRAMMATICALLY 57

One implementation approach could be to filter the report sections at the data
source. Then, you can use a data-bound list region to repeat the sections returned by the
report query. But what if the database-driven approach is not an option? Ideally, in this
case you would want to generate the report sections programmatically, similar to the
way you can create dynamic controls in WinForm or web-based .NET applications.
Unfortunately, dynamically generating report items is currently not supported by RS.

As a workaround, you can programmatically generate the report definition. Once
you get the list of the selected sections by the user, you can load the report RDL in an
XML Document Object Model (DOM) and create as many report list items as the
number of the selected sections. Next, you can make a call to the report execution
SOAP endpoint, which can run a report without publishing.

NOTE See the “Resources” section at the end of this book for a URL to the RDL
schema on the Microsoft website. You can also view the RDL XSD through
the Report Server by navigating your browser to http://server-
name/reportserver/reportdefinition.xsd. RDL is com-
posed of XML elements that conform to an XML grammar, which
Microsoft created specifically for RS. Microsoft has worked with other
industry leaders to promote this grammar as an XML-based standard for
report definitions.

Widespread RDL adoption will increase the level of interoperability
among report vendors and consumers, just like XML today facilitates
interoperability between different platforms. This will open a new world of
possibilities. Customers will be able to choose the best-of-breed products
without having to worry about vendor lock-in. Vendors can add reporting
capabilities to their applications without having to distribute report engines
for report rendering. As long as the reports conform to RDL, any RDL-
compliant tool can be used as a report generator. For example, a report ven-
dor can create an ad hoc reporting tool which generates RDL files. Once
the user is ready with the report, the report definition can be rendered by
any reporting tool that understands RDL.

Because the RDL schema is XML based, every developer who is familiar with manipu-
lating XML documents with the XML DOM can generate RS report definitions pro-
grammatically. Before you attempt this exercise, though, take some time to review the
RDL schema specification, which is described in the RS documentation.

The RDL schema is open and allows developers and vendors to extend it by adding
custom elements and namespaces. For example, you might need to develop a custom
rendering extension to render a report in a format not supported by RS—for instance,
a fixed text format—and you need to pass the name of the output file to it. Microsoft
has already thought about this and provided a Custom element defined in the
schema, which can be used as a placeholder to pass additional information. You can
add your custom extension parameters to the Custom element. This element is
ignored by RS, which allows you to add whatever you need to it.
58 CHAPTER 2 REPORT AUTHORING BASICS

NOTE RS 2000 doesn’t support stand-alone reporting from the report defini-
tion file. Instead, to generate the report you need to upload the report def-
inition to the report catalog. If you are a third-party vendor, this means that
your customers must have RS installed to run your reports. However, RS
2005 does include WinForm and web-based ReportViewer controls for
stand-alone reporting. We discuss these controls in detail in chapter 11.

In this section you learn, by example, how to generate RDL in an ad hoc manner.
This example highlights the flexibility and extensibility of RS. However, note that the
new Report Builder application included with RS 2005 is a full-featured client tool
for creating ad hoc reports; we learn more about it in chapter 7.

2.3.1 Generating RDL: The AW Ad Hoc Reporter

A common reporting need for many organizations is to empower its information
workers by providing them options to generate reports ad hoc. For this functionality
we strongly suggest using the Report Builder application that comes with Reporting
Services 2005; however, if the Report Builder application does not meet your needs
for ad hoc reporting, you may find you need to create your own ad hoc tool. To dem-
onstrate how this could be done, we’ve developed the world’s poorest ad hoc report gen-
erator, the AW Ad Hoc Reporter. The design goals of the AW Ad Hoc Reporter are to:

• Allow the user to report off an arbitrary database table

• Allow the user to define a tabular report ad hoc by dragging and dropping columns

• Generate the report definition programmatically

You can find the AW Ad Hoc Reporter under the chapter 2 menu in the AWReport-
erWin sample application included in the book’s source code. Figure 2.11 shows the
AW Ad Hoc Reporter in action.

Figure 2.11
The AW Ad Hoc Reporter

allows you to create very

simple ad hoc reports by

generating the report

definition file. RS 2005 now

comes with its own ad hoc

reporting tool, called the

Report Builder.
CREATING REPORTS PROGRAMMATICALLY 59

Here we used the Ad Hoc Reporter to author a simple report that has four fields. Once
the Get RDL button is clicked, the Ad Hoc Reporter generates the report definition.

Using the Ad Hoc Reporter

The user specifies the connection string and the full path to the output RDL file.
Once you change the settings, the application “remembers” by storing them in the
.NET isolated storage.

After the connection string is specified, you can list the tables in the requested cat-
alog by clicking the Get Schema button. At this point, a call to the database is made
to retrieve the table schema from the requested database.

The list of table names is loaded in the Tables drop-down list. Each time you
change the table in the drop-down list, its column schema is fetched from the data-
base and shown in the Columns list.

To specify which columns to include on the report, you drag them from the Col-
umns list and drop them on the panel below. Once a column is dropped, the appli-
cation creates a textbox to display the column name and adds it to the panel. You can
drop as many columns as there is space available in the panel (about four columns).
Removing columns from the panel is currently not supported.

Once the report layout is defined, you can generate the report definition by click-
ing the Get RDL button. Before doing so, make sure that the predefined RDL
schema (Schema.xml) is located in the application build folder, which by default is
bin\debug.

Uploading the report definition file

After the report definition file is generated, you can upload the report to the report
catalog and make it available to your end users. You can do this manually by using the
Report Manager. Alternatively, you can use the Report Server Web service API to
upload it programmatically. You see an example of the latter approach in chapter 8.

Now that you’ve seen how you can use the Ad Hoc Reporter to author report def-
initions programmatically, let’s peek under its hood to find out how it is implemented.

2.3.2 Implementation details

Table 2.2 lists some of the RDL schema elements that we are dealing with for the pur-
poses of this example. It by no means provides full coverage of RDL schema. See the
“Resources” section for a link to the RDL section in the RS online documentation.

Let’s now see how the Ad Hoc Reporter generates the actual report.

Creating the report table region

To simplify authoring the actual report, we don’t generate the report definition file
from scratch. Instead, we use a template in the form of a pregenerated RDL file,
60 CHAPTER 2 REPORT AUTHORING BASICS

Schema.xml, located in the AWReporterWin/bin/debug folder. This file origi-
nated from the report definition of a very basic tabular report that we authored using
the Report Designer, as shown in listing 2.1.

 <Table Name="table1">
 <Height>0.25in</Height>
 <Details>
 <TableRows>
 <TableRow>
 <Height>0.25in</Height>
 <TableCells>
 <TableCell>
 <ReportItems>
 <Textbox Name="textbox1">
 <Style />
 <Value />

 </Textbox>
 </ReportItems>
 </TableCell>
 </TableCells>
 </TableRow>
 </TableRows>
 </Details>
 <DataSetName>AWReporter</DataSetName>
 <Top>0.375in</Top>
 <Width>1.66667in</Width>
 <Style />
 <TableColumns>
 <TableColumn>
 <Width>1.66667in</Width>
 </TableColumn>
 </TableColumns>
 </Table>

Table 2.2 The RDL schema elements used in the Ad Hoc Reporter sample

Element name XPath Description

ReportItems /Report/Body/
ReportItems

Contains the report items that define the contents of a
report region. The region may have its own
ReportItems collection, which lists the report
items that belong to this region.

DataSources /Report/
DataSources

Lists the data sources for the report. If the report uses
a shared data source, the datasource element will
contain a reference to the shared data source.
Otherwise, it will contain DataProvider and
ConnectionString elements.

DataSets /Report/DataSets Contains the datasets defined in this report.

Listing 2.1 The predefined tabular report schema

Defines a table with the name “table1”

Defines the
table cells

Defines the table dataset

Defines the table columns
CREATING REPORTS PROGRAMMATICALLY 61

As you can see, the predefined schema has a table region with one column and one
cell only. For the first column that the user drags and drops, we have to update only
the name of the cell. For any subsequent columns, we generate a new column and cell
in the table region.

Generating RDL

Let’s now put on our developers’ hats and write some .NET code to generate the
report definition. The bulk of the report-generation logic is encapsulated in the Cre-
ateRDL function, as shown in listing 2.2.

private void CreateRDL()
{
 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.Load (System.IO.Path.Combine(Application.StartupPath,
 "Schema.xml"));

XmlNamespaceManager xmlnsManager =
 new XmlNamespaceManager(xmlDoc.NameTable);
xmlnsManager.AddNamespace("rs","http://schemas.microsoft.com" _
 & "/sqlserver/reporting/2003/10/reportdefinition");
xmlnsManager.AddNamespace("rd","http://schemas.microsoft.com" _
 & "/sqlserver/reporting/reportdesigner");

 GenerateColumns(xmlDoc, xmlnsManager);
 GenerateCells (xmlDoc, xmlnsManager);
 UpdateDataSource(xmlDoc, xmlnsManager);
 xmlDoc.Save(txtRDLPath.Text);
}

The application loads the schema using the XML DOM. Because the schema defines
XML namespaces, we use the XmlNamespaceManager to add the namespaces to the
XML document. Then we generate the table region columns and cells. For each cell,
we set the field name to be the same as the column name. After that, we embed the
data source information into the report definition, which includes the connection
string and dataset schema. Finally, we save the RDL file to a location specified by the
user in the Path to RDL textbox. Once the report definition is generated, we can test
the report by loading the file in a BI project and previewing the report.

2.4 SUMMARY

In this chapter we explored the report-authoring process. This process encompasses
several stages: analyzing reporting requirements, authoring, and testing and deploying
the report. We emphasized that you should resist the temptation of jumping into

Listing 2.2 Creating the report definition programmatically by loading the

report schema in the XML DOM

Adds the
namespaces
used in
the RDL
schema

Generates the table
region columns

Generates the table region cells

Defines the report
data source
62 CHAPTER 2 REPORT AUTHORING BASICS

report creation without a good understanding of what your users want. After all, the
success of reports is measured by how close they match the user requirements.

In this chapter we also discussed different ways to create reports. The options pro-
vided by RS are the Report Wizard, the VS .NET Report Designer, and importing
reports from Microsoft Access.

Finally, we emphasized the advantages of the RDL schema as an interoperable
report storage medium. Thanks to its XML syntax, RDL allows us to generate the
report definition programmatically, as we demonstrated with the AW Ad Hoc
Reporter sample.

In the next chapter, we continue to explore the report-authoring process by learn-
ing how to set up the report data.
SUMMARY 63

C H A P T E R 3

Working with data

3.1 Working with data sources 64
3.2 Working with report datasets 78
3.3 Authoring dataset queries 85

3.4 Parameter-driven reports 90
3.5 Working with stored procedures 98
3.6 Summary 102
By now, you know that the report-authoring process involves working with the report
data. Specifically, you set up the data in the construction phase of the process.

In this chapter, we provide more in-depth coverage about the Report Designer.
You learn how to use the Report Designer Data tab to set up the report data. We
cover the following topics:

• Setting up the data source

• Defining report datasets

• Creating dataset queries with the Graphical and Generic Query Designers

• Creating parameter-driven reports

3.1 WORKING WITH DATA SOURCES

In the simplest scenario, you won’t need to integrate your report with a database at all.
Before ruling out this possibility, consider an e-mail campaign in which you need to
send reports to subscribers. For example, Adventure Works Cycles (AWC) may want
to notify its customer base about a new product. In this case, the report will not be
data driven at all, because it needs only static text and images. If this is the case, you
can proceed to laying out the report itself, as discussed in chapter 4.
64

Most reporting requirements, however, call for data-driven reports. With the pro-
liferation of database standards and providers, reporting off heterogeneous databases
has traditionally been difficult, even with the most popular reporting tools. For exam-
ple, Microsoft Access is limited to supporting only ODBC-compliant databases. One
of the most prominent strengths of RS is that it can draw data from any data source
that has an ODBC or OLE DB driver. Don’t despair if your data source doesn’t sup-
port ODBC or OLE DB. Developers can extend RS to report off pretty much any data
source that exposes data in a tabular format, as you see in chapter 13.

While we aren’t excluding the possibility of reporting off less popular data sources,
such as flat files or Excel spreadsheets, usually your reports will draw data from des-
ignated Online Transaction Processing (OLTP) or Online Analytical Processing
(OLAP) databases.

NOTE The RS documentation uses the term data source to refer to the definition
of a database connection, which may be confusing because the name “data
source” is usually associated with the database itself. Perhaps the reason
behind this is to differentiate between the connection specification (con-
nection string, credentials, etc.) and the actual physical connection. For the
sake of simplicity, we use the terms data source and connection interchangeably.

In this section, we show you how to define a data source, how to configure an authen-
tication option for it, and how to deploy it. The first step to creating a data-driven
report is to set up a connection to the database where the report data resides.

3.1.1 Connecting to the database

Before we show you how to define a database connection, note that with RS your
reports are not limited to drawing data from a single data store. Instead, data can orig-
inate from multiple heterogeneous databases. For example, let’s say you need to create
an Employee Sales Summary report that shows salespeople’s performance alongside
human resources (HR)-related data. You may have the sales data captured in a SQL
Server database, whereas the HR data is stored in an Oracle database. One way to con-
solidate data from these two data sources is to link the Oracle database to the SQL
Server. In this case, you need to connect to the SQL Server database only.

NOTE Microsoft SQL Server allows you to attach (link) to OLE DB-compliant
data sources called linked servers. Once the linked server is set up, you can
create stored procedures or statements that span both servers.

When using linked servers is not possible, you can define two database connections
that your report will use to draw data from each database, as shown in figure 3.1.

Whether you need to fetch data from one database or several, you have to make
some decisions when setting up the database connection. First, you must decide
whether the connection will be set up as report specific or shared.
WORKING WITH DATA SOURCES 65

Report-specific data source

A report-specific connection is embedded into the report definition (RDL) file. Use a
report-specific connection when:

• You need to encapsulate the database information inside the RDL file.

• You want to simplify the report distribution and setup.

A report-specific connection makes it possible to distribute both the report layout and
connection information in one file. For example, a third-party vendor might choose
to store database connection information in the RDL file to simplify the process of
distributing the report to its customers. In this case, the connection should be defined
as report specific.

You create a report-specific connection as a part of setting up the report dataset
(more on this in section 3.2). The process of creating a report-specific connection is
similar to setting up a shared connection, as we discuss in the next section. The only
difference is that you need to deselect the Make This a Shared Data Source check box
in the Select the Data Source page of the Report Wizard, as shown in figure 3.2.

To get to the window shown in figure 3.2, start from the data tab of the Report
Designer and select a dataset in the Dataset drop-down list and click the ellipsis (…)
button. This opens the Dataset Properties dialog box. On the Query tab, click the
ellipsis button located to the right of the Data Source drop-down.

Once you finish configuring the data source, its definition will be embedded in
the report, as you can see by inspecting the DataSources element in the report def-
inition file. As you’ll recall from the Employee Sales Summary example at the begin-
ning of this chapter, one report can draw its data from more than one data source
(report specific or shared).

Shared data source

As its name suggests, a shared data source can be used by all reports within the same
Visual Studio .NET (VS .NET) Business Intelligence (BI) project. A shared data source
offers the following advantages over a report-specific connection:

Figure 3.1
With Reporting Services your

report can draw data from

different databases using multiple

database connections (as shown)

or by using linked servers.
66 CHAPTER 3 WORKING WITH DATA

• It ensures that all physical connections that use the same shared data source specifica-
tion utilize identical connection strings—This is a prerequisite for connection
pooling (more on this in section 3.1.2).

• It centralizes connection management—For example, the report administrator can
use the Report Manager to change the connection authentication settings, and all
reports in the project that share the connection will pick up the new settings.

• A shared connection is a securable item—The report administrator can enforce a
role-based security policy to control which users can change the connection
information.

• When working with data-driven report subscriptions, a shared connection can be
used to retrieve the list of subscribers from the subscriber store—More on this in
chapter 12.

To create a new shared connection, right-click on the project node and choose Add
New Item. Then, select Data Source in the Add New Item dialog box. Otherwise, as
a shortcut, you can right-click on the Shared Data Sources folder and select Add
New Data Source.

Figure 3.2
To create a report-

specific connection,

be sure that the

Make This A Shared

Data Source option is

not selected.
WORKING WITH DATA SOURCES 67

Setting up the connection properties

To set up a report-specific or shared connection, you use the Connection Proper-
ties dialog box, shown in figure 3.3. Depending on which data provider selected,
the options will vary in this dialog box. Figure 3.3 shows the options for the
ODBC provider.

NOTE The ability to create connection strings based on expressions is a new RS
2005 feature that we explore further in chapter 5. If you are still using RS
2000, you may need to change the connection string manually when mov-
ing from a development to a production environment. To minimize the
migration impact, consider defining data sources as shared.

Regardless of the provider choice you make, the Report Server will use one of the
available data extensions to talk to the provider.

Working with data extensions

The supported data extensions for the report data source correspond to the .NET data
providers included in the .NET Framework. RS 2005 provides several new extensions
that you will find very useful and interesting. Figure 3.4 shows the out-of-the-box
data extensions. Table 3.1 lists all of the supported extensions with the new RS 2005
extensions in bold type.

Behind the scenes, the Report Server maps your provider choice to one of the sup-
ported RS data extensions, as shown in figure 3.5.

The Report Server data extensions are wrappers on top of the .NET data providers.
You can think about them as the Report Server Data layer. The data extensions are imple-
mented in the Microsoft.ReportingServices.DataExtensions assembly.

Figure 3.3
Use the Connection Properties

dialog box to set the properties

of the data source.
68 CHAPTER 3 WORKING WITH DATA

NOTE We mention the Microsoft.ReportingServices.DataExtensions
assembly for completeness only. You don’t need to reference it explicitly in
your BI project.

The extensions supported by the Report Server are enumerated in the Reporting Ser-
vices configuration files. For example, only the extensions listed under the <Data>
element in the RSReportDesigner.config configuration file will appear in the
Report Designer Data Source dialog box.

Similarly, the Report Server will allow only the extensions listed under the
<Data> element in the RSReportServer.config file to execute.

Table 3.1 The available .NET data providers

Extension Description

SQL Server Data extension for SQL Server

OLE DB Data extension for OLE DB-compatible data sources

Oracle Data extension for Oracle

ODBC Data extension for ODBC

Report Server Model Data extension using a Report Server Model (see
chapter 8)

SQL Server Analysis Services Data extension for SQL Analysis Services

XML Data extension for XML (Web Services)

SAP Data extension for SAP (this is an optional download and
not available out of the box)

Figure 3.4
The Report Server will use

one of these supported

data extensions to

communicate with the

data provider.
WORKING WITH DATA SOURCES 69

Note that the Report Server data access options are not restricted to the eight data
extensions shown in table 3.1. Developers can extend the Report Server by creating
custom data extensions, as you see in chapter 13.

Once the data provider is selected, you have to decide how the user will be authen-
ticated against the data source.

3.1.2 Choosing an authentication mechanism

The second decision that you have to make when setting up the report data source is
what authentication mechanism RS will use to establish the connection. RS provides
four credential options that the Report Server can use to log into the database.

Use the Credentials tab in the Shared Data Source dialog box to specify the
authentication settings, as shown in figure 3.6. During design time, the Report
Designer will use the credentials settings to authenticate against the data source. Note
that for security reasons the credential settings are not saved in the data source defi-
nition. Instead, VS .NET caches these settings in memory. If you need to save the cre-
dentials in the data source definition, you can manually change the report RDL file
(for a report-specific data source) or the report data source (RDS) file (for a shared
data source).

The Report Designer Shared Data Source dialog box (shown in figure 3.6) is
somewhat inadequate and doesn’t display all the authentication options that RS sup-
ports. For this reason, let’s discuss the full-blown Report Manager Data Source Prop-
erties tab, as shown in figure 3.7.

As shown in figure 3.7, you can choose one of the following data source authen-
tication options:

• Credentials Supplied by the User Running the Report

• Credentials Stored Securely in the Report Server

• Windows Integrated Security

• Credentials Are Not Required

Figure 3.5 The RS Data Extensions are wrappers for .NET Data Providers.
70 CHAPTER 3 WORKING WITH DATA

Figure 3.6
Use the Credentials tab

to set the connection

authentication settings.

Figure 3.7 Use the Report Manager to specify authentication settings

that the Report Server will use to connect to the data source.
WORKING WITH DATA SOURCES 71

To access the screen shown in figure 3.7, use the Report Manager web application or
SQL Server Management Studio. Assuming that you have deployed the shared data
source to the AWReporter folder, you can see the share data source properties by
requesting the Report Manager URL in your browser (e.g., http://localhost/
reports), navigating to the AWReporter folder, and clicking on the AW Shared
DS link.

NOTE You can also use SQL Server Management Studio to manage the shared
data source.

These authentication choices might seem bewildering at first, so let’s spend some time
exploring each one.

Credentials Supplied by the User Running the Report

This first option prompts the user for the login credentials. It will cause the Report
Server to generate two fields, Log In Name and Password, in the standard report tool-
bar. If the Use as Windows Credentials… check box is not selected, the Report Server
will attempt to authenticate the user through standard database authentication. Other-
wise, Windows Authentication will be used.

The Credentials Supplied By the User Running the Report option is useful for
testing purposes because you can run the report under different login credentials—for
example, to troubleshoot end-user authentication issues. However, in a production
environment, we recommend you avoid this option. In this case, asking the users to
supply the database login credentials may present a security risk. In addition, this
option cannot be used with subscribed “pushed” reports because they are generated in
an unattended mode.

Credentials Stored Securely in the Report Server

The second option is Credentials Stored Securely in the Report Server. The login cre-
dentials you enter here are persisted in an encrypted format inside the DataSource
table in the ReportServer database. Again, if the Use as Windows Credentials… check
box is not selected, standard database authentication will be attempted; otherwise,
Windows Integrated Authentication will be used. This second option is most likely
your best bet because it:

• Promotes database connection pooling since all connections will use the same
connection string.

• Centralizes the credentials maintenance in one place.

• Allows the report to be cached—for more details on caching, refer to chapter 7.

As you can see in figure 3.7, there is an interesting option called Impersonate the
Authenticated User after a Connection Has Been Made. This option works only for
logins with admin rights and database servers that support user impersonation. In the
72 CHAPTER 3 WORKING WITH DATA

case of SQL Server, behind the scenes this option executes the SETUSER system func-
tion to impersonate the database connection, so it runs under the identity of the Win-
dows account of the user requesting the report.

For example, imagine that you log into Windows as AWDomain\Bob. The report
administrator has chosen the Credentials Stored Securely… option and has entered
User Name and Password credentials of an account that belongs to the sysadmin SQL
Server role. Now, you request the Sales by Territory report. The Report Server calls
SETUSER AWDomain\bob. From a database point of view, this is exactly the same
as if Integrated Authentication were used.

Windows Integrated Security

Next, we have the Windows Integrated Security option. When you use this option,
the Report Server will attempt to establish the connection under the context of the
Windows account of the user requesting the report. If you are a .NET developer, this
is the exactly the same as if you’d specified the Integrated Security=SSPI set-
ting in the connection string. The important thing to remember here is that the
Report Server impersonates the call to the database to run under the context of
the report user.

For example, in the previous scenario where Bob is requesting a report, the call to
the database goes under the AWDomain\Bob account. Of course, in order for this
to work, the database administrator has to create a database login for this Windows
account and grant the right privileges. Using the Windows identity for database
authentication is convenient because it allows the database administrator to simplify
the database security model by using existing Windows accounts.

However, for performance reasons, we don’t recommend you use this option for
large reporting applications. Because the connection string for each user will be dif-
ferent (Windows account names and passwords are different), the connections will
not be pooled. Actually, to be more accurate, you will end up with as many connec-
tion pools as the number of users requesting the report. Not good! This also could
open up a security issue in that someone could publish a rogue report with integrated
security and trick an administrator into running the report.

Credentials Are Not Required

Finally, the Credentials Are Not Required option allows you to configure a data source
connection to use no credentials. This could be useful in the following circumstances:

• The data source doesn’t support authentication—For example, in chapter 15 we
create a custom dataset extension to report off ADO.NET datasets. Because in
this case we won’t have a database to connect to, we can use the Credentials Are
Not Required option.
WORKING WITH DATA SOURCES 73

• The credentials are specified in the connection string—As we mentioned at the
beginning of this section, you can store the credentials in the connection string
by manually changing the data source definition.

• The report is a subreport that use the credentials of the parent report to connect to its
data source—In this case the subreport will inherit the data source credentials
from the parent and there is no reason to set up specific credentials.

When you select the Credentials Are Not Required option, the Report Server uses a
special account to make the connection. For more information on how to set up this
account, refer to the “Configuring an Account for Unattended Report Processing”
section in the product documentation.

Monitoring database connection pooling

If you have experience in writing Microsoft-centric, data-driven applications, you
have probably heard about database connection pooling. Database connections are
expensive resources. Many database providers, such as the .NET SqlClient provider,
perform connection pooling behind the scenes to minimize the number of open data-
base connections. When a connection is closed, it is returned to the pool. When the
application needs to connect to the database again, the provider checks the pool for
available connections. If it finds one, it uses that connection; otherwise, it creates a
new one.

So, connection pooling makes your application (in our case, the Report Server)
more scalable. The catch is that two connections can share the same pool only if their
connection strings are exactly the same, including the login credentials. The Creden-
tials Stored Securely in the Report Server option enforces this rule and enables con-
nection pooling. Therefore, this is our preferred option for better performance results.

To see how each authentication option affects the number of open database con-
nections, open the Performance console from the Administrative Tools program
group, as shown in figure 3.8.

Let’s first experiment with the Credentials Stored Securely in the Report Server
option. Before we start, you may want to change the Report Server session timeout
from its default value of 600 to the minimum allowed value of 60 (the Session-
Timeout column in the ConfigurationInfo table in the ReportServer SQL
Server database). This causes the report session to expire sooner, which in turn forces
the Report Server to query the database when processing the report.

NOTE When you experiment with different authentication options, you might be
surprised to find that no connection to the database is created with the new
credentials. In the case of SQL Server, you may not see the connection when
using the Process Info screen in Enterprise Manager or executing the
sp_who system procedure. The reason for this is most likely the report ses-
sion caching that the Report Server does behind the scenes. The default
74 CHAPTER 3 WORKING WITH DATA

session timeout specified in the SessionTimeout field in the Configu-
rationInfo table (ReportServer database) is 600 seconds. This means
that if the Report Server decides to reuse the report intermediate format
when the report is requested again, it won’t query the data source within
that period. Instead, it will use the report IF serialized in the Report Server
Temporary Database.

We discuss report caching in detail in chapter 8. For the time being,
when you experiment with different authentication connection options,
you may want to decrease the SessionTimeout value so that the report
session expires sooner. Our experiments show that you cannot completely
disable the ReportServer session caching. The minimum value you can
set the SessionTimeout field to is 60 seconds. If you decide to change
SessionTimeout, don’t forget to restart IIS. Alternatively, you can man-
ually delete the record in the table SessionData (ReportServerTempDb
database) or set its Expiration column to a date in the past.

To monitor database connection pooling, follow these steps:

Figure 3.8 Use the SqlClient: Current # Pooled Connections counter found under the .NET CLR

DATA category to monitor database connection pooling.
WORKING WITH DATA SOURCES 75

Step 1 Assuming that RS is installed locally on your computer, open the Report Man-
ager by navigating to http://localhost/reports in the browser. Nav-
igate to the AWReporter folder and click on the AW Shared DS data source.

Step 2 Select the Credentials Stored Securely… option and specify the credentials of
a database login that has rights to query the AdventureWorks database.

Step 3 Open the Performance Console and add the SqlClient:Current # Pooled
Connections counter found under the .NET CLR Data performance cate-
gory for the _global_ domain.

Step 4 Open another instance of the browser and request the Sales by Territory
report (the encoded report URL should be http://localhost/Reports/
Pages/Report.aspx?ItemPath=%2fAWReporter%2fSales+By+
Territory). Assuming that there is no other connection with the same
credentials, you should see the pooled connection counter going up. Wait for
one minute or remove the session record from the SessionData table in
ReportServerTempDB.

Step 5 Repeat the process by opening up another instance of the browser and
requesting the report again. The pooled connection counter should remain
unchanged. This means that the .NET SqlClient provider uses connection
pooling behind the scenes and reuses the already existing connection.

Let’s now change the authentication options of the data source to Windows Integrated
Security. For the new test, you need two Windows user accounts, which are members
of the Administrator group. You can use regular user accounts, but you have to specif-
ically give them rights to the database, while members of the Administrator group
automatically get admin privileges. Fire up the browser again and request the Sales by
Territory report.

Observe the pooled connection performance counter. Now, right-click on the
Internet Explorer shortcut and choose Run As. Specify the username and password
for the second user account. Run the report again, and you will see the counter
going up instead of remaining unchanged. This proves that the Report Server
doesn’t pool connections.

Let’s wrap up our overview of authentication options with some recommendations.

Authentication best practices

To summarize, we recommend that you follow these guidelines for data source
authentication:

• Use shared data sources. For example, almost all reports from the AWReporter
project use the AW Shared DS.rds shared data source.

• Use the Credentials Stored Securely in the Report Server option with standard
or Windows-based authentication.
76 CHAPTER 3 WORKING WITH DATA

• Don’t use an account with admin database privileges! Instead, create a new data-
base login and assign it to a role that has read-only permissions to the database
you need to report off.

If you use SQL Server, you can assign the login to the db_datareader role, as
shown in figure 3.9. In our case, we created a new SQL Server login, named it “rs”,
and assigned it to the db_datareader role. Also, we granted the new login rights
to the AdventureWorks database.

As we explained in chapter 2, before end users can run the report, it has to be
uploaded to the report catalog. As a part of the deployment process, you must also
deploy all data sources that the report uses to the report catalog.

Figure 3.9 With SQL Server you can set up a database login with restricted read-only rights by

assigning it to the db-datareader role.
WORKING WITH DATA SOURCES 77

3.1.3 Deploying data sources

Now that we’ve defined the data source and specified an authentication option, we’re
ready to deploy it. You don’t need to take any extra steps to upload a report-specific
data source. As you’ll recall, its definition is a part of the report RDL file and travels
with it.

Because a shared data source is saved in a separate file, it must be uploaded to the
report catalog so it is available to all reports that use it. Assuming that you have Man-
age Data Sources rights, you can deploy a shared data source straight from VS .NET
by right-clicking on its file and choosing the Deploy command. Alternatively, the
report administrator can upload the file manually using the Report Manager or the
SQL Server Management Studio.

What happens when you redeploy the shared data source from the VS .NET IDE
depends on the OverwriteDataSources project setting (click on the project
node in the VS .NET Solution Explorer and choose Properties). If this setting is false
(the default), once the new data source has been created, any subsequent changes
made to that data source inside the VS .NET project will not be propagated (will not
overwrite) to the data source settings in the Report Server database.

Setting OverwriteDataSources to false can be both useful and dangerous. It
can be useful because during the design phase you can change the data source to point
to a local or staging database. You don’t have to know the login credentials for the
production reporting database. You can use your own set of credentials or use Win-
dows Authentication. It is also dangerous because your development data source may
have more rights to that database than the account that will be used in production
environment. As a result, when you deploy your report to the production Report
Server, it may fail to execute when attempting to retrieve data.

If OverwriteDataSources is false, then you will see the following warning
when you try to deploy the project within VS .NET:

Cannot deploy data source <data source name> to the server
because it already exists and OverwriteDataSources is not specified.

Once you have the data source connection all set, it is time to craft the dataset(s) that
the report will use.

3.2 WORKING WITH REPORT DATASETS

Just as .NET datasets are used as data carriers in .NET applications, RS datasets are
used to expose data to your report. However, the term dataset as used by RS has noth-
ing to do with ADO.NET datasets. Instead, it refers to the specification that describes
how the data from the database is retrieved, and what that data schema looks like. In
this fashion, an RS dataset can be loosely related to a hybrid between a .NET dataset
and the data adapter used to fill it in with data. Specifically, in Reporting Services a
dataset is made up of:
78 CHAPTER 3 WORKING WITH DATA

• The SQL query or statement that will be used to retrieve the report data

• The data source (connection) that the query will use

• The list of database fields (columns) to be used by the report

• Other information that you specify when you set your dataset, such as the
options on the Data Options, Parameters, and Filters tabs

You use the Report Designer to set up one or more datasets. As with all report-related
elements, the dataset definition is stored in the report definition file.

3.2.1 Understanding the dataset definition

The dataset specification becomes a part of the report definition file and can be found
under the <DataSets> element. For example, listing 3.1 shows the abbreviated
dataset definition for the Sales by Territory report that we created in chapter 1. To
open the report definition, right-click on the Sales by Territory.rdl item in the VS
.NET Solution Explorer and choose the View Code command.

 <DataSets>
 <DataSet Name="AW_Shared_DS">
 <Fields>
 <Field Name="Territory">
 <DataField>Territory</DataField>
 <rd:TypeName>System.String</rd:TypeName>
 </Field>
 <Field Name="ProductCategoryID">
 <DataField>ProductCategoryID</DataField>
 <rd:TypeName>System.Byte</rd:TypeName>
 </Field>
<!--more dataset fields…-->

 <Query>
 <DataSourceName>AW Shared DS</DataSourceName>
 <CommandText>
SELECT ST.Name AS Territory, PC.ProductCategoryID, PC.Name AS
<!--the rest of the SQL statement here-->
</CommandText>
 </Query>
 </DataSet>
 </DataSets>
</DataSet>

Unfortunately, you can’t define a dataset as shared inside a VS .NET BI project. There-
fore, the dataset definition is always report specific. It would be nice if you could reuse
the dataset definition among reports, similar to the way you can create typed datasets
in .NET development projects, but this is not possible with the current versions of
Reporting Services.

Listing 3.1 The <DataSet> element, which contains the report dataset definition

Defines the dataset fields

Defines the dataset
data source

Defines the
dataset query
WORKING WITH REPORT DATASETS 79

NOTE Microsoft hints that shared queries, where definitions can be shared among
reports, will be supported in a future release of Reporting Services.

Let’s now see how to set up a report dataset.

3.2.2 Creating a report dataset

To create a report dataset, you will use the Report Designer Data tab. Select New
Dataset from the Dataset drop-down control to bring up the Dataset dialog box,
shown in figure 3.10.

Let’s discuss briefly each tab, starting with the Query tab.

The Query tab

The Query tab contains the following fields:

• Name—Consider changing the dataset name to something more meaningful,
especially if you need more than one dataset for your report.

• Data source—Clicking the ellipsis button brings you to the Data Source dialog
box (figure 3.11) that you can use to set up a report-specific or shared data source.

• Command type—The command type can be Text if the query string you enter is
a SQL statement; a stored procedure; or TableDirect, in case you want to specify
just the table name and get all data from that table (currently TableDirect is not
supported by the .NET SqlClient provider, so this option cannot be used with
SQL Server).

• Query string—You can type the query text (or stored procedure name) here or
copy and paste it from somewhere else. Otherwise, if you prefer to author your

Figure 3.10
Use the Query tab in

the Dataset dialog box

to specify the dataset

name, data source, and

query string.
80 CHAPTER 3 WORKING WITH DATA

query in a civilized manner, you can leave the Query String text box blank and
later use the Graphical Query Designer.

• Timeout—You can define a timeout value for the query execution. If you leave
it empty, the query doesn’t time out.

NOTE Interestingly, when you open a report in the Report Designer and switch
to the Data tab, the Report Designer will query the database to retrieve the
schema for the underlying datasets. In this way, the Report Designer
detects any changes that might have occurred in the database and synchro-
nizes the report dataset(s) accordingly.

The ellipsis button (next to the Data Source field) allows you to create a new data
source, or connection, or to use an existing shared data source (figure 3.11).

The interesting setting here is Use Single Transaction, which is not checked by
default. If you select it, the Report Server will execute the report queries within a
scope of a database transaction. Selecting this option can be useful if you report off an
OLTP database and you want to prevent reading uncommitted “dirty” data. To under-
stand how transactions can be useful, consider the following example.

Let’s say you have a report with a summary and a details section—for example, a
summary section showing the overall company performance and a details section that
breaks down sales by territory. To create this report you’ve decided to use two queries:
one for the summary section and another for the report details. By default the Report
Server will execute these two report queries in parallel. Let’s also assume that you are
reporting off an OLTP database and data is volatile. What will happen if the data

Figure 3.11
You can use a

shared data source

as a reference.
WORKING WITH REPORT DATASETS 81

changes while the report is executing? The numbers in both sections may not match
at all, right? To ensure data consistency, you may want to enclose both queries in a
single transaction.

There is a good reason for having the Use Single Transaction option disabled by
default. Transactions enforce data integrity by means of database locks, and the
higher the transaction isolation level, the more locks are imposed. Database locks and
performance are mutually exclusive things, so leave that option deselected unless you
have a good reason to enable it.

The Fields tab

The Fields tab in the Dataset dialog box shows the dataset fields once the query is exe-
cuted. Sometimes you may notice that the field list doesn’t get refreshed after the
underlying query is changed. If this happens, you have to manually synchronize
the dataset fields. To synchronize the dataset and database schema, you click the Refresh
Fields button. Alternatively, you can use the Datasets toolbox to change the fields
manually. The Datasets toolbox and the Fields tab of the Dataset dialog box both
offer the same functionality with a different interface. To see the Datasets toolbox,
simply press Ctrl-Alt-D on the Data tab or the Layout tab of the Report Designer. (If
you’ve worked with Reporting Services 2000, you should be aware that this Dataset
toolbox used to be called the Fields toolbox.)

For example, let’s say you add a new field to your SQL statement and the field
doesn’t appear in the Report Designer. To fix this, right-click on any field in the
Fields toolbox and select Add to open the dialog box shown in figure 3.12.

Figure 3.12
Add a new dataset

field using the Add

New Field dialog box.
82 CHAPTER 3 WORKING WITH DATA

You can also create calculated dataset fields. A calculated field is a field based on an
expression. Because expressions can reference methods in external .NET assemblies,
the sky is the limit as to what the content of a calculated field can be. (We cover
expressions in chapter 5.) Of course, if the expression involves only database columns,
you are better off using expressions supported by the targeted data source for perfor-
mance reasons.

If for some reason you want to change the dataset field name to something other
than the database column name, you can do this by changing the value of the Field
Name property.

The Data Options tab

The Data Options tab allows you to set additional data options for the query, such as
case sensitivity, as shown in figure 3.13.

For example, when you set the Case Sensitivity option to True, the clause where
FirstName = 'john' will not bring up records where the first names start with
capital J.

By default, RS will attempt to derive the values of data options from the data pro-
vider when the report runs. For more information about the query data options, see
the product documentation.

The Parameters tab

The Parameters tab allows you to define parameters for your query. We discuss work-
ing with dataset parameters in section 3.4.

Figure 3.13
You can use the Data

Options tab to define

additional options for

the dataset query.
WORKING WITH REPORT DATASETS 83

The Filters tab

Use the Filters tab in the Dataset dialog box to limit the data fetched by the query. A
dataset filter works like a SQL WHERE clause, but an important distinction exists.
While you can use a WHERE clause in your SQL statement to filter data at a data-source
level, a dataset filter limits the data after it has been retrieved from the data source.

For example, if you want to filter a Products Sales by Quarter report to show prod-
uct sales only in 2004, you can do so in one of two ways:

• Use a SQL WHERE clause to filter the results at the data source.
• Get the product sales for all years and then eliminate the unwanted records dur-

ing the report generation using a dataset filter.

As you can imagine, filtering at the data source is much more efficient, so report filters
should be used with caution. One possible scenario where filtering can be useful is
when you need to enforce security. Let’s say that the Sales by Territory report takes a
parameter that allows privileged users to request the report for a given territory. How-
ever, you want to prevent regional managers who will run the report from requesting
a territory they don’t supervise. To implement this, create a lookup dataset for avail-
able parameter values. Then, set a filter based on an expression, which restricts the
parameter choices based on the user’s Windows identity. We implement such an
example in chapter 9.

Another scenario where filters can be useful is when you need to work with data
sources that don’t support filtering. If you wonder which data sources don’t support
filtering, check out chapter 13 where we write a custom dataset data extension. The
extension allows you to “bind” a report to a .NET dataset. ADO.NET datasets don’t
currently support a SQL-like WHERE clause, so you cannot easily filter data at the
dataset level. However, you can use a report filter to limit the dataset rows.

Sometimes, one dataset may not be enough to meet the data requirements of your
report. Fortunately, with RS you can define more than one dataset per report.

3.2.3 Using multiple datasets

To add another dataset to your report, return to the Data tab, expand the Dataset
drop-down list, and select New Dataset. This opens the Dataset dialog box shown
earlier in figure 3.10.

Having multiple datasets can be useful for two main reasons:

• For parameterized reports you can make the report parameters data driven from
a separate dataset. For example, a typical reporting requirement is to restrict the
parameter choice to a predefined set of values. To accomplish this with RS, you
can use one dataset for the report data and a second one for the parameter
lookup values. You’ll see an example of this in section 3.4.4.

• Different sections of the report can be driven by different datasets, as you’ll see
in chapter 4. As we mentioned earlier, multiple datasets don’t have to fetch their
data from the same data source.
84 CHAPTER 3 WORKING WITH DATA

There are a few important points about multiple datasets that we would like to men-
tion. You cannot join datasets as you could join database tables by using relations,
even if they have the same fields. As a result, you cannot mix fields from different
datasets in a single report region. We look at report regions in chapter 4, but for the
time being note that RS supports various report items called regions for different
report types, including charts, tables, pivots, and other regions. To display data in a
region, you need to associate (bind) it with exactly one dataset.

While the Report Designer allows you to drag fields from one dataset to a region
bound to another, you can use only aggregate functions, such as First(), Sum(),
and Avg(), when referencing its fields. If you try to reference the field directly (out-
side an aggregate function), then you will see the following exception during the
report-compilation process:

Report item expressions can only refer to fields within the
current data set scope or, if inside an aggregate, the
specified data set scope.

Chapter 5 details the expression scope rules.
For best performance results, we suggest you minimize the number of the report

datasets in your reports. In the best case, you will need only one dataset as an under-
lying source for the report data. You should carefully evaluate whether you need addi-
tional datasets for the available values of report parameters.

One scenario in which you may require an additional dataset is when you have to
restrict the parameter choices in the report toolbar for reports requested by URL.
With other integration scenarios, the client application may be responsible for collect-
ing and validating parameters. If this is the case, you won’t need another dataset to
define the parameter lookup values.

To fill in a dataset with data, you need to set up a dataset query. One dataset can
be associated with exactly one query. When the report is processed, the Report Server
will execute the dataset query statement against the data source and load the dataset.
We’ll take a closer look at this process next.

3.3 AUTHORING DATASET QUERIES

To help you with setting up the database queries, the Report Designer comes with not
one, but two Query Designers: Graphical and Generic. Whereas the main character-
istic of the Graphical Query Designer is convenience, the Generic Query Designer
excels in flexibility. In this section, you learn how to use both.

3.3.1 Using the Graphical Query Designer

Figure 3.14 shows the Sales by Territory dataset open in the Reporting Services
Graphical Query Designer. You may be familiar with the Graphical Query Designer
because it is the same one that SQL Server Enterprise Manager, VS .NET, and a pleth-
ora of other development tools use. It makes authoring complex SQL statements a
AUTHORING DATASET QUERIES 85

breeze. Even users unfamiliar with the intricacies of SQL can create sophisticated que-
ries in a matter of minutes.

The Graphical Query Designer also has SQL syntax checking to make sure that
any query text you specify makes sense and conforms to the SQL grammar supported
by the targeted database. Once you craft your query and execute it, the dataset fields
will be shown in the Datasets toolbar on the left, as well as on the Fields tab of the
dataset properties.

Authoring a dataset query with the Graphical Query Designer is a matter of com-
pleting the following steps:

Step 1 Right-click on the Diagram pane empty area and choose Add Table. Add as
many tables from the data source as needed.

Step 2 Select table columns as needed. The Graphical Query Designer shows the
resulting SQL statement in the SQL pane.

Step 3 Modify the statement as per your requirements using the SQL pane or the
Grid pane.

Step 4 Run the query by clicking the Run button (the one with the exclamation
point) to see the results in the Results pane.

Figure 3.14 Use the Graphical Query Designer to author, test, and run queries.
86 CHAPTER 3 WORKING WITH DATA

3.3.2 Using the Generic Query Designer

Sometimes you will reach the limits of the Graphical Query Designer, as in the fol-
lowing two situations:

• You need to execute multiple SQL statements—for example, to perform some
preprocessing at the data source.

• You need to work with SQL statements generated on the fly.

This is where the Generic Query Designer comes in. To learn how to use this Query
Designer, let’s discuss each of these scenarios in more detail.

Executing multiple SQL statements

Say you need to run an update query to the SalesOrderDetail table before the
sales order data is retrieved, as shown in listing 3.2.

DECLARE @SalesOrderID int
SET @SalesOrderID = 1

UPDATE Sales.SalesOrderDetail
SET UnitPrice = 100
WHERE (SalesOrderID = @SalesOrderID)

SELECT *
FROM Sales.SalesOrderDetail

NOTE In the real world, you should avoid retrieving all table columns using the *
wildcard in your queries. Instead, for performance reasons you should limit
the number of columns to the ones you need.

Granted, using multiple queries could be accomplished by encapsulating both state-
ments inside a stored procedure, but sometimes you may not have this choice.

You may try using the Graphical Query Designer to execute this batch, but you
wouldn’t get too far. The Graphical Query Designer complains with the following error:

The Declare cursor SQL Construct or statement is not supported.

Our example doesn’t use a SQL cursor at all, but in any case, the Graphical Query
Designer refuses to cooperate.

As a workaround, we can switch to the Generic Query Designer (figure 3.15) by
clicking on its button (the one to the right of the Refresh Fields button).

If the data source credentials have update rights to the database, the SQL block will
execute fine and the dataset fields will be populated based on the columns defined in
the select statement (in this case, all columns from the SalesOrderDetail table).

Listing 3.2 Using batches of statements to update and retrieve data
AUTHORING DATASET QUERIES 87

The Graphical Query Designer is great for creating SQL queries by selecting tables
and columns in a graphical manner. The usefulness diminishes if you are creating
complex queries that update, use temp tables, or use cursors.

NOTE The previous query requires UPDATE rights to the AdventureWorks data-
base. If the data source account is restricted, the report will fail to execute
even if the report doesn’t use any of the dataset fields. The reason for this
is that when a report is requested, the Report Server executes all report que-
ries to populate the report datasets. For this reason, we recommend that
you delete this dataset as soon as you are finished experimenting so that it
doesn’t interfere with report processing.

Using expression-based queries

A second scenario where you will need to use the Generic Query Designer is when
you are working with expression-based queries. Unlike the Graphical Query Designer,
the Generic Query Designer doesn’t attempt to parse the query text to ensure it is syn-
tactically correct. Instead, it allows you to type whatever you want, and once the
query is constructed, it passes the query directly to the data source. For users familiar
with Microsoft Access, the Access equivalent is a pass-through query.

We haven’t covered expressions yet (see chapter 5), but consider the case in which
you want to restrict the results returned from the SalesOrderDetail table only
if the OrderID is specified. To achieve this, use a Visual Basic .NET (VB .NET)
expression, similar to this one:

Figure 3.15 You can execute multiple SQL statements in the Generic Query Designer.
88 CHAPTER 3 WORKING WITH DATA

= "select * from Sales.SalesOrderDetail " & _
Iif(Parameters!OrderID.Value Is Nothing, "", _
" where SalesOrderID =" & Parameters!OrderID.Value)

NOTE Expression-based queries are susceptible to SQL injection attacks. SQL injec-
tion happens when some (malicious) SQL code is appended to the legiti-
mate SQL statement contained within the report query. For example, the
SQL statement we’ve just discussed is vulnerable to a SQL injection attack.
A hacker could pass another SQL statement to the OrderID report param-
eter—for example, a data modification statement to update, insert, or
delete data; or a statement to alter or even drop database objects. As a result,
the expression-based statement may look like this:

= "select * from Sales.SalesOrderDetail where
SalesOrderID = 1;UPDATE Sales.SalesOrderDetail
(SET // perform data changes here

There are a number of strategies for using expression-based statements safely
in your reports. One is to filter out the report parameters for valid SQL
characters—for example, the semicolon delimiter character in our case.

When the Generic Query Designer determines that expressions are used, it doesn’t
give you a choice to execute the query by clicking on the exclamation point. As a
result, you won’t be able to get the dataset fields. Instead, you need to add the fields
manually, using either the Fields toolbox or the Fields tab in the dataset properties.
Next, drag the fields to the report layout and execute the report. Finally, if the query
is based on an expression, as in the above case, don’t forget to prefix the text with “=”.

We would like to fast-forward a bit and mention that the ability to use an expres-
sion to generate the SQL statement on the fly opens a whole new world of opportu-
nities. Your report can call a piece of code defined as an expression or in an external
assembly to get the query statement custom-tailored, based on certain conditions.
The example that follows is simple but illustrates the expression’s flexibility. Say you
have a function that returns a SQL statement, like the one shown here:

Function GetSQL (ByVal orderID as Integer) as String
 Return "select * from Sales.SalesOrderDetail where " _
 & "SalesOrderID = " _ & orderID
End Function

The GetSQL function can be defined as an embedded function in the report or
located in an external assembly—for example, in the application data layer. We dis-
cuss extending RS with custom code in detail in chapter 6.

Once the GetSQL function is ready, you can use the Generic Query Designer to
set your query text to

= Code.GetSQL(Parameters!OrderID.Value)

In this case, you are calling the GetSQL function and passing the value of the
OrderID report parameter. Once you manually define the fields that the query
AUTHORING DATASET QUERIES 89

returns, you can base our report on the results of this generated on-the-fly query. Talk
about flexibility!

Now that you know how to use the Query Designers to create basic dataset que-
ries, let’s see how to make them more flexible by using parameters.

3.4 PARAMETER-DRIVEN REPORTS

Your dataset queries won’t be very useful if they don’t allow users to pass parameters.
Report and query parameters allow users to alter the report execution to return a sub-
set of data in the report. For example, you can add a parameter to the Sales by Terri-
tory report to enable users to specify the sales year rather than defaulting to the
current year. We’ll see exactly how to do this in section 3.4.2.

3.4.1 The role of parameters

Recall from chapter 1 that the Report Server enjoys a service-oriented architecture
that is entirely server based, and also recall that Reporting Services reports can be
requested by both URL and SOAP methods.

The Report Server doesn’t offer an object model that can be instantiated and
manipulated locally by the report consumer, as you would have probably done in the
past with other reporting tools—for example, using OLE Automation to control
Microsoft Access. Instead, the only way to control the report-generation process from
outside is by using parameters, as shown in figure 3.16.

If you are accustomed to object-oriented programming, this may seem strange at
first. But consider the benefits. The service-oriented architecture of the Report Server
eliminates tight coupling between the consumer and server. If the Report Server had
an object model that could be instantiated locally by the report consumer, then most
likely its client base would have been restricted to .NET-based applications only.
Instead, thanks to its service-oriented architecture, RS can be integrated with any type

Figure 3.16 From the report consumer perspective, the Report Server can be viewed

as a black box that accepts report requests and, optionally, parameters, and also

returns reports.
90 CHAPTER 3 WORKING WITH DATA

of consumer. Developers familiar with designing stateless web services will find the
Report Server programming model similar.

The RS report-processing model is stateless because once the report is generated,
the Report Server discards any state associated with the report request. As far as the
report-generation process is concerned, you can think of the Report Server as a black
box that accepts a report request (optionally parameterized) and returns the generated
report. Do you want to sort the report data in a different way? Do you want to filter
out the data that the data source returns? Do you want to show or hide certain report
items based on runtime conditions?

By using parameters, coupled with custom expressions inside the report, you can
achieve just about anything you can otherwise accomplish with an object model. For
example, hardcoding criteria in your queries is convenient for the developer, but not
very useful for the end users. Often, you will need to make the report interactive by
allowing the users to pass report parameters. To accomplish this, a parameter value
can be passed to the dataset query or stored procedure to filter out the report data.

Let’s see how we can make our Sales by Territory report interactive by allowing
users to specify the sales year instead of always defaulting to the current year.

3.4.2 Building parameter-driven queries

We can easily change the Sales by Territory report’s dataset query to use a query param-
eter. Since we are using SQL Server as a database, we need to use named parameters.

NOTE The named parameter syntax is specific to the data extension. In the SQL
.NET provider you use named parameters (@varname). With the Oracle
data extension you use named parameters but with a different prefix
(:varname). The OLE DB provider doesn’t support named parameters,
but you can use the question mark (?) for parameter placeholders.

To make the query parameter-driven, complete these steps:

Step 1 Start by saving the Sales by Territory report to Sales by Territory Interactive
report. The easiest way to accomplish this is to right-click on the Sales by
Territory report in the Solution Explorer and choose Copy.

Step 2 Right-click on the project node (AWReporter) and choose Paste. Rename the
new report to Sales by Territory Interactive.

Step 3 From the Graphical Query Designer, open the AW_Shared_DS dataset and
replace the DATEPART(yy, DATEADD(year, - 1,'1/1/2003')) cri-
teria with @Year, as shown in listing 3.3 (in bold). In the dataset, we specify
a named report parameter called Year.

SELECT ST.Name AS Territory, PC.ProductCategoryID,
 PC.Name AS ProductCategory,
 SUM(SOD.UnitPrice * SOD.OrderQty) AS Sales

Listing 3.3 Using a query parameter to filter the query data
PARAMETER-DRIVEN REPORTS 91

FROM Sales.SalesOrderDetail AS SOD
 INNER JOIN Production.Product AS P ON
SOD.ProductID = P.ProductID
 INNER JOIN Sales.SalesOrderHeader AS SOH ON
SOD.SalesOrderID = SOH.SalesOrderID
 INNER JOIN Sales.SalesTerritory AS ST ON
SOH.TerritoryID = ST.TerritoryID
 INNER JOIN Production.ProductSubcategory AS PSC ON

P.ProductSubcategoryID = PSC.ProductSubcategoryID
 INNER JOIN Production.ProductCategory AS PC ON
PSC.ProductCategoryID = PC.ProductCategoryID
WHERE (DATEPART(YY, SOH.OrderDate) = @Year)
GROUP BY ST.Name, PC.Name, PC.ProductCategoryID
ORDER BY ST.Name, PC.Name

Step 4 Now run the query. When the Graphical Query Designer parses the query, it
discovers the Year parameter and displays the Query Parameters dialog box,
as shown in figure 3.17.

Step 5 Enter 2003 in the Parameter Value field and click OK. The query retrieves
the sales orders placed in 2003.

Once the Graphical Query Designer parses the parameter, it will add the parameter to
the parameter list defined for this query, which can be seen on the Parameters tab of

Figure 3.17 To set up a parameter-driven query, specify parameter placeholders.
92 CHAPTER 3 WORKING WITH DATA

the Dataset dialog box (figure 3.18). To view the dataset properties, select it in the
Dataset drop-down list and click on the ellipsis button next to it.

At this point, the Year parameter is associated with the dataset query. In addi-
tion, the Report Designer automatically creates a report-level parameter with the
same name and links the query-level and report-level parameters together. The reason
behind this behavior is that the Report Designer assumes that the parameter should
be accessible from external callers.

NOTE To pass the parameter value from outside the report—for example, from
client applications—you need to create a report-level parameter.

Let’s now see how we can work with report-level parameters.

3.4.3 Setting up the report-level parameters

To allow end users to set the value of the query parameter, you need to create a report-
level parameter and associate it with the query-level parameter.

If you want to see all report-level parameters defined for a given report, select the
Report Parameters submenu item from the VS .NET Report menu. The Report menu
is available only in Data or Layout mode (when the Data or Layout Report Designer
tabs are active). Figure 3.19 shows the Report Parameters dialog box for the Sales by
Territory Interactive report.

As we said earlier, by default the Graphical Query Designer assumes that the
report parameter will be publicly accessible and pairs each query-level parameter with
a report-level parameter. However, you can manually add or remove report-level
parameters if needed.

Figure 3.18
Use the Dataset dialog

box’s Parameters tab to

see all parameters defined

in the dataset query.
PARAMETER-DRIVEN REPORTS 93

One scenario that calls for adding parameters manually is when you need more
parameters than the report query (or queries) takes. For example, you may need a
parameter to pass some value that is used in an expression.

Why would you want to remove a report-level parameter? This can be useful if you
don’t want the users to pass values to it. For example, the query parameter may be
derived internally using an expression and it may not make sense to expose it to the
end user. New in RS 2005 is a hidden property that you can set to hide the parameter.

NOTE When you remove a query parameter, the Report Designer doesn’t assume
that you want to remove the report parameter as well. It leaves the report
parameter in the report, which may result in an orphaned publicly accessi-
ble parameter. To “fix” this, open the Report Parameters dialog box and
remove the parameter.

Let’s walk through the Report Parameters dialog box.

Specifying a parameter label

The Prompt field allows you to specify a parameter label that will appear on the stan-
dard report toolbar. Enter Year: for the Year prompt.

Figure 3.19 Use the Report Parameters dialog box to set up the report parameters.
94 CHAPTER 3 WORKING WITH DATA

Leaving the Prompt field empty results in a read-only parameter that will not show
in the standard report toolbar when the report is requested by URL. Moreover, trying
to set the parameter explicitly when requesting the report either by URL or SOAP will
result in an error. A read-only parameter must have a default value associated with it.

Read-only parameters can be useful for reports that require fixed parameter values.
For example, you may have a “Sales by Quarter” report that shows the data for a given
quarter that is passed as a parameter value. Let’s say that at some point you want to
prevent users from running this report for an arbitrary quarter. Instead, you decide
to default the parameter value to the current quarter. One way to hide the parameter
is to remove it from the report-level parameters. Another option to hide the parame-
ter temporarily is to select the hidden check box.

Specifying the parameter data type

The Data type drop-down list restricts the available choices to Boolean, DateTime,
Integer, Float, and String. If you wonder why no other types are available, recall the
fact that RS runs in its own isolated process. This requires all parameter values to be
serialized between the report consumer and the Report Server. For this reason, the
choice of the parameter data types is restricted only to .NET primitive types that can
be passed by value.

When you choose a DateTime data type, Reporting Services will place a calendar
control next to this parameter for easy selection of dates. This calendar control is
much nicer when used by a Windows application rather than applications built for
the Web. There is a limitation in selecting past years, however. To go back to a pre-
vious year, you need to navigate back one month at a time until you reach the year
you would like. We hope that this will be fixed in a future release. We’ve found that in
order to select a data in the past, such as a birth date, it is easiest to choose the data
in the calendar for the current year, and then go into the textbox and change the year
to the appropriate year. Of course, you can simply ignore the calendar control and
type the date into the textbox.

Note that the Report Server automatically casts the parameter values to the data
type you specify. For this reason, you can use the methods of the .NET data type
structure to retrieve or set the parameter value. For example, if you set the parameter
type to DateTime, you can use the DateTime.Year property to get to the year
because the values of data type in .NET are represented by the DateTime structure.

We see more expression examples in chapter 5.

Specifying parameter attributes

The parameter attributes show up as a set of check boxes in the Report Parameters
dialog box. By changing the value of these attributes, we can change the appearance
and behavior of each parameter. Table 3.2 defines the parameter attributes. In RS
2005, there are several new attributes (shown in bold).
PARAMETER-DRIVEN REPORTS 95

The Allow Null Value attribute indicates if NULL can be passed as a report value. If a
default parameter value is not specified, clearing the check box in effect makes the
parameter required. The Allow Blank Value attribute is available only for the String
data type and means that an empty string can be passed as a report value.

Let’s go back to the Sales by Territory Interactive report and change the data type
of the Year parameter to Integer. Finally, to make the parameter required, make sure
that the Allow Null Value check box is cleared. Now, let’s preview the report
(figure 3.20).

Table 3.2 The available report parameter attributes

Attribute Description

Hidden The user is not prompted for a value, but it can be
supplied externally through URL access or the web
service API.

Internal Value cannot be supplied externally. Value can only be
set through management API / tools.

Multi-Value Allows multiple values (e.g., SQL IN clause). We cover
this in detail in section 3.5.4.

Allow Null Value Indicates if NULL can be passed as a report value.

Allow Blank Value Means that an empty string can be passed as a report
value. Available only for the String data type.

Figure 3.20 The parameterized version of the report takes the year as a

parameter.
96 CHAPTER 3 WORKING WITH DATA

The report toolbar changes to accommodate the Year parameter. Note that if
you leave the year field empty, the report is not generated because the year is a
required parameter.

So far, so good. But what if you want to restrict the user to select a year from a
predefined list of years? For example, it doesn’t make sense to allow the user to type
2005 if there are no sales orders placed in that year. To accomplish this, you can
define parameter available (lookup) values.

Defining nonqueried lookup parameter values

You’re going to provide a drop-down list of valid years from which your users can
select. The default value will be 2004.

In the Report Parameters dialog box, make sure that the Non-queried radio but-
ton is selected in the Available Values radio group. Then, type the allowed years in the
grid, as shown in figure 3.21. Let’s also default the Year parameter to 2004 by select-
ing Non-queried under Default Values and entering this value in the accompanying
text box.

Figure 3.21 Use the Non-queried option to specify a fixed list of report parameter
available values.
PARAMETER-DRIVEN REPORTS 97

Preview the report again using the Preview tab and note that the report is generated
for the default year of 2004, and the Select Year field is now a drop-down list from
which the user can pick one of the available values.

With RS you are not restricted to static available values. You can make the list data
driven by basing it on a query or expression. If it is query based, you can specify which
dataset column to use for the default value. If the query results in more than one row,
the first one is used.

Next, let’s see how to implement a data-driven lookup list based on a dataset
retrieved from a stored procedure call.

3.5 WORKING WITH STORED PROCEDURES

As you’ve seen, the Graphical Query Designer makes generating free SQL statements
easy. However, the easy way is not always the right way. We highly recommend that in
real life you use stored procedures instead of free SQL statements. Stored procedures
offer the following advantages:

• Faster performance—The database servers parse and compile the stored proce-
dure statements.

• Reuse—The SQL statements are located in one place and can be easily reused by
other reports and applications.

• Encapsulation—As long as you keep the input and output the same, you can
change the stored procedure inner implementation as much as you like.

• Security—Stored procedures can be secured at a database level. In addition,
using stored procedures could help prevent SQL injection attacks.

Using SQL Server, a stored procedure can be used as a substitute for an expression-
based query. Instead of using expression-based queries—for example, to generate SQL
WHERE clauses conditionally—you can do this inside stored procedures. For these rea-
sons, we use stored procedures in this book wherever it makes sense to do so.

In this section, we see how to use a stored procedure to query the values in a
lookup list.

3.5.1 Using a stored procedure as a dataset query

Let’s pretend that users have requested the ability to filter out product sales for a par-
ticular territory. To provide this feature, you add a lookup list of valid sales territories
to the Sales by Territory Interactive report. To make the list data driven, you create a
second dataset that is generated by a stored procedure. In addition, you synchronize
the Year and Territory parameters so that only territories that have sales in that
year are shown.

We wrote a simple stored procedure called spGetTerritory that takes an
@Year input argument. You can find the spGetTerritory source code in the
sp.sql script in the Database.dbp project. For Datasets with the Command Type
98 CHAPTER 3 WORKING WITH DATA

set to Stored Procedure, you can use the Graphical Query Designer to select a stored
procedure and fill your report dataset with data from the stored procedure. Alterna-
tively, you can set the Command Type to Text and call a stored procedure using the
following code in the Query String. Using this approach limits you to the Generic
Query Designer.

Exec spGetTerritory

Once you install the spGetTerritory stored procedure, be sure to grant
EXECUTE permissions to the database login that the AW Shared DS shared data
source uses.

The spGetTerritory procedure retrieves the list of the sales territories that
have orders placed in a given year, as shown here:

CREATE PROCEDURE spGetTerritory (@Year int)
AS
SET NOCOUNT ON
SELECT DISTINCT ST.TerritoryID, ST.Name AS Territory
FROM Sales.SalesTerritory ST INNER JOIN
 Sales.SalesOrderHeader SOH ON ST.TerritoryID = SOH.TerritoryID
WHERE DATEPART(YY, SOH.OrderDate) = @Year
ORDER BY ST.Name

To use this stored procedure as a source for the lookup dataset, follow these steps:

Step 1 Create a new dataset dsTerritory and set the command type to StoredProce-
dure, as shown in figure 3.22.

Step 2 Enter spGetTerritory in the Query String text box or leave the query string
blank at this point and click OK to select it later. The Graphical Query
Designer shows the Stored Procedure drop-down list, which lists all stored

Figure 3.22
To use a stored procedure

as a query statement,

enter its name in the

Query String text box.
WORKING WITH STORED PROCEDURES 99

procedures that the AW Shared DS database login has permissions to execute.
Select spGetTerritory, as shown in figure 3.23, and run the query. The
designer displays the familiar Query Parameters dialog box.

Step 3 Enter 2004 and click OK to see the stored procedure call results.

Step 4 Next, open the dataset properties. Switch to the Parameters tab and observe
that there is an @Year parameter and its value is set to Parameters!
Year.Value. Because we already have the Year report parameter, which
we needed for the first dataset, the designer has correctly linked the dsTerri-
tory Year parameter to the Year report parameter.

Now, it is time to set up the available values for the Territory parameter.

3.5.2 Defining query-based lookup parameter values

Open the Report Parameters dialog box from the Reports menu at the top of the
Report Designer and specify the settings for the Territory parameter, as shown in
figure 3.24.

Go back to the Report Designer’s Data tab, select the report dataset in the
Datasets drop-down list, and in the Query pane of the Graphical Query Designer,
change the SQL WHERE clause of the dataset query to filter data by the Territory
parameter, as follows:

WHERE (DATEPART(YY, SOH.OrderDate) = @Year) AND
 (ST.TerritoryID = @Territory)

Now you have created parameter placeholders for the year and territory in your main
dataset. This means that the report will not show any data until you have selected
both the Year and Territory parameters. Let’s take a closer look at how your
parameters interact with each other.

Figure 3.23 When a stored procedure is used as a query text, the Graphical Query Designer

shows the list of stored procedures.
100 CHAPTER 3 WORKING WITH DATA

3.5.3 Creating cascading parameters

When creating the dsTerritory dataset, you used the spGetTerritory stored pro-
cedure. This stored procedure has an input parameter of @Year. This matches your
report parameter of Year, so when the dataset was created, the designer automatically
bound your report parameter to your dtTerritory dataset. This means that when you
enter a year into the Year parameter, your report will call the spGetTerritory
stored procedure and pass in the year that was entered. This way, your Territory drop-
down list will only have valid values available. This is called cascading parameters.
When you preview the report, you will see that changing the year results in refreshing
the Territory drop-down list so that only territories associated with that year are dis-
played, as shown in figure 3.25.

You may think that the parameter settings (available, default, and null values) that
you set using the Report Parameters dialog box are useful only if the report includes
the standard report toolbar. Actually, this is not the case. Before the report is proc-
essed, the Report Server parses the report request, validates the report parameters, and
matches them against the list of available values. For example, if you request the Sales

Figure 3.24 Use the From Query settings to define data-driven lookup parameter datasets.
WORKING WITH STORED PROCEDURES 101

by Territory report via the Report Server Web service and pass 2010 as the Year
parameter, the Report Server will throw an Invalid Parameter exception.

Now that you have seen cascading parameters in action, let’s visit a new feature in
RS 2005 called multivalued parameters.

3.5.4 Working with multivalued parameters

New in SQL Reporting Services 2005, multivalued parameters allow you to choose
more than one value for a particular parameter and use the results in your SQL query.
With RS 2000 you had to work hard to get this functionality to work. As you saw in
table 3.2 in section 3.4.3, each report level parameter has five attributes that let you
alter a parameter’s functionality. The Multi-Value attribute will change the way
that the parameter field works when the report is rendered. If you are working with a
text field, the parameter field will allow you to enter multiple values by entering data
and pressing Enter between values. Typically you’ll select the Multi-Value check
box when you are working with a drop-down list of items, such as Territories. We see
some examples of how to use multivalued parameters in chapter 4.

3.6 SUMMARY

In this chapter, you learned how to set up report data, which is a prerequisite for cre-
ating data-driven reports. We emphasized the fact that with RS you can report off vir-
tually any data store that exposes its data in a tabular format.

We began by showing you how to set up the report data source. Then, we
explored how to create one or more datasets to feed the report with data.

You saw how to use the Graphical and Generic Query Designers to author queries,
and we examined the role that parameters play in custom-tailoring report queries.
Along the way, we showed you how to create parameter-driven reports. We examined

Figure 3.25
The Sales by Territory

report contains Year and

Territory parameters.
102 CHAPTER 3 WORKING WITH DATA

the various attributes that affect the functionality and behavior of report parameters.
Throughout the rest of this book, the knowledge you have harvested in this chapter
will be put into practice to create many interactive parameter-driven reports. In addi-
tion, you have probably started seeing the advantages of the RS service-oriented archi-
tecture in terms of deployment, such as zero client deployment requirements and
interoperability with a wide range of clients.

Now that you have a good grasp of working with report data, it is time to see how
you can use the Report Designer to lay out reports. The next chapter demonstrates
how to design various kinds of professional-looking reports with the Report Designer.
SUMMARY 103

C H A P T E R 4

Designing reports

4.1 Anatomy of a report 105
4.2 Designing tabular reports 112
4.3 Designing freeform reports 123
4.4 Designing chart reports 128

4.5 Designing crosstab (matrix)
reports 133

4.6 Using other design features in your
reports 140

4.7 Summary 148
Once you’ve set up the report data, you can proceed with laying out the report itself.
To accomplish this task with the Report Designer, use the Layout tab. As you learned
in chapter 1, Reporting Services supports various report types. In this chapter, you see
how the Report Designer can help you design many versatile and professional-looking
reports. In the following sections, we:

• Discuss the main parts of the report layout

• Explain how to use data regions and report items

• Create many sample reports to put what you’ve learned into practice

Because the report design process is very interactive, the best way to present this chap-
ter is by example. After each report type explanation, we create a sample report. At the
end, we will have worked through creating tabular, freeform, chart, and matrix
reports, as well as subreports, multicolumn reports, and reports with the new interac-
tive sort feature.

Unlike chapter 1, where we used the Report Wizard to quickly create the Sales by
Territory report, we create the sample reports in this chapter using the Report Designer.
104

4.1 ANATOMY OF A REPORT

To be an effective report author, you need to have a good grasp of a report’s anatomy.
Reporting Services (RS) reports consist of sections (also called bands) that can contain
report elements. Report elements include data regions and report items. Take, for exam-
ple, the Sales by Territory report, shown in figure 4.1.

The Page Header and Page Footer bands are visible because we’ve enabled the Page
Header and Page Footer options from the Visual Studio .NET (VS .NET) Reports menu.

The report sections are the page header, report
body, and page footer. To lay out a report, you
drag and drop report elements from the Report
Items toolbar (shown in figure 4.2) to the report
body section.

NOTE In our opinion, the Report Items toolbar
should have been named Report Ele-
ments because it contains not only
report items but data regions as well. To
avoid confusion, we use the term report
elements to refer to both report items and
data regions.

For example, instead of using the Report Wizard, we
could have authored the Sales by Territory tabular
report from scratch by dragging the table region

Figure 4.1 A report includes header, body, and footer sections.

Figure 4.2 You can drag data

regions and items from the

Report Items toolbar to the

report body.
ANATOMY OF A REPORT 105

from the Report Items toolbar and dropping it into the body section. Then, we could
have dragged and dropped the report dataset fields inside the table region. If we had
done this, the table region would have created textbox report items behind the scenes
to display the dataset data.

4.1.1 Getting started with a new report

Before you start laying out a new report, we suggest that you review the report-level
properties and make the appropriate changes right from the beginning. For example,
you may want to change the page size and margins settings. Experiment with the
GridSpacing properties to set up the layout grid so you can “snap” the report items to
the grid as you position them on the report canvas.

To view the report properties, select the report by clicking the Report Selector (the
top leftmost square shown in figure 4.1). Then, right-click and choose Properties, or
work directly with the VS .NET Properties window. In the VS .NET Properties win-
dow, you will recognize some of the report properties, such as the ReportParameters
property, which, when selected, opens the familiar Report Parameters dialog box that
we discussed in Chapter 3. Leave the rest of the properties alone for now; we discuss
them on an as-needed basis.

Let’s look at each of the parts of the report anatomy in more detail.

4.1.2 Understanding report sections

An RS-based report consists of three main sections:

• Page header—The page header content is displayed at the top of each page.

• Report body (optional)—A report always has a body section, which is where most
of the report content is located.

• Page footer (optional)—The page footer content is displayed at the bottom of
each page.

By default, the page header and footer content appear on every report page, including
the first and the last. You can suppress the header and footer on the first and last page
of the report by changing the PrintOnFirstPage and PrintOnLastPage properties.

RS reports don’t have designated report header and footer elements. Instead, you
can use the Report Body band to place items that need to appear once at the begin-
ning or end of the report.

Let’s now discuss the various building blocks included with the Report Designer
and how they can be used to lay out different types of reports. By no means will we
try to enumerate each property of every report element. For this, you need to turn to
the RS documentation, which provides excellent step-by-step instructions. Instead,
after providing a high-level overview of the report structure and elements, we walk
you through the process of creating various reports by example.
106 CHAPTER 4 DESIGNING REPORTS

4.1.3 Understanding report items

With RS you can use the report items shown in table 4.1 to display data and graph-
ical elements.

Some of the report items shown in table 4.1 deserve more attention. Let’s take a
closer look.

Working with images

The Report Server supports the following image formats: JPEG, BMP, GIF, and PNG.
To display the actual image in the image report item, you set the Source property. The
image source can be defined as:

• Embedded—In this case, the image data is serialized (MIME-encoded) and
embedded in the report definition file. When the report is uploaded to the
report catalog, the image is saved in the Report Server database. If you embed
the same image in different reports, each report gets its own copy of the image.
Similar to working with report-specific data sources, you use the embedded
image option when you want to distribute all report-related items in one file.

• External—The image refers to an image file that is located in the same project
or to a fully qualified URL. If you specify an image that is in the same project,
only the name of the image is stored in the report definition file. The actual
image is shared across all reports that use it. This simplifies image maintenance
because if the image is updated, the change will propagate through all reports
that reference the image. You typically use external images for implementing
report banners and logos. For example, all the reports inside the AWReporter
project use an external image (AWC.jpg) to display the company logo. If you
specify a fully qualified URL, the image is stored on a server and accessed

Table 4.1 Report items you can use to display data and graphical elements

Report Item Description

Textbox The textbox is the report item that you will use most often to display text
information. Textbox elements can contain static text or data from the underlying
data source. You can use expressions for the textbox content.

Image You use the image item to display binary images for visual effects (backgrounds,
logos, etc.) or to display data stored as images from the report data source.

Subreport The subreport item defines a placeholder that points to another report.

Line The line item is a graphical element that you can use to enhance the presentation
of your report, e.g., to separate a report group from its details.

Rectangle Rectangles can be used in two ways: as a graphical element and as a container for
other report items. Users familiar with .NET development can make an analogy to
the panel element. Similar to the panel, you can place report items within a
rectangle and you can move them with the rectangle.
ANATOMY OF A REPORT 107

through a URL. When you drop an image item from the toolbox, the Image
Wizard appears, as shown in figure 4.3. To enter a valid URL path to an image,
choose Web. The wizard validates the URL for you so you will know if you
typed the path correctly. To select an image that is located in your project,
choose Project. Both of these options set the Source property to External.

NOTE When a report is previewed in the Report Designer, external image items
are displayed using the credentials of the user. When the report is run on
the Report Server, the Report Server uses the unattended execution
account. When an unattended execution account is not specified, the
Report Server uses the Anonymous user account. If either of these accounts
does not have proper rights, the image will not be displayed. For more
information on setting up the unattended execution account, see the sec-
tion “Configuring an Account for Unattended Report Processing” in the
RS documentation.

• Database—The image is bound to an image column from the report dataset.
For example, the Product Catalog report included in the RS samples uses this
option to show the product image for each product.

The External option deserves additional attention. We usually shy away from storing
images in the database for performance and maintenance reasons. A better approach
is to store just the image URL that points to the image file located on a network share
or another web server.

Figure 4.3
The Image Wizard

lets you specify

how you want to

store and retrieve

the images used in

your reports.
108 CHAPTER 4 DESIGNING REPORTS

For example, let’s say you have an employee table that stores the employees’ pictures,
among other employee-related data. You have two implementation options:

• You can define that column as an image type and store the employee pictures in
binary format.

• Better yet, you can store just the image URL path, for example, http://www.
imageserver.com/images/empid.gif or http://imageserver/
images/empid.gif.

Working with subreports

The subreport item defines a placeholder that points to another report. Usually, you
opt for subreports when you need to reuse an existing report. Subreports are a popular
reporting technique used to display separate groups of data with many reporting
tools, such as Microsoft Access.

With RS, you should consider using nested data regions instead of subreports for
performance reasons. If you use a subreport within your report, the Report Server has
to process both reports separately. This is less efficient than using a single report with
two regions. However, sometimes you won’t have a choice. For example, nested data
regions have a restriction that they must use the same dataset. If you want to use dif-
ferent datasets that need to display correlated data, then the only choice is to create a
subreport. We look at subreports in more detail in section 4.6.

NOTE If you do not need to display the report content in a nested fashion, you can
use multiple data regions that each use a different data source and dataset.

Working with rectangles

An important (but not so obvious) use for the rectangle item is to group things
together so that they move as a unit. In this respect, the rectangle item represents a
WinForm panel control that can be used to enclose other controls.

Sometimes, items will get pushed out of alignment with other items on the page.
You can group them together with an invisible rectangle and they will be moved
together. Section 4.3.1 provides an example of when this could be useful.

NOTE The table region will not allow you to place a line element directly in a col-
umn or cell. We have often found the need to place a line under a group
heading in order to separate groups of data visually. If you are working with
the table or matrix region, you need to use the Rectangle as a holder for this
line element. To do this you merge all the cells in a given row and place a
rectangle in this cell. You can then place the line in this rectangle. Alterna-
tively, you can accomplish this by setting the border properties of the table
or matrix region.
ANATOMY OF A REPORT 109

4.1.4 Understanding data regions

Besides report items, the Report Items toolbar includes more sophisticated report ele-
ments referred to as data regions.

While you can use stand-alone textbox and image report items to display data,
they are most useful when they display repeating rows of data from a report dataset.
In chapter 3 you saw how RS uses datasets to represent the results of queries returned
by data providers. To bind report items to datasets, you use data regions. In this
respect, .NET developers may relate RS data regions to ASP.NET data-bound controls,
such as the data repeater control.

Table 4.2 lists the data regions that RS supports and describes how they can be
used to create different types of reports.

To fill in a data region with data, you bind the data region to a dataset by setting its
DataSetName property.

NOTE If you have already created one or more report datasets, the Report
Designer automatically associates a dataset with a data region when you
drag and drop a dataset field to the data region. By default, the data region
is associated to the first dataset defined.

Data regions are designed to generate repeating sections of data. For example, to dis-
play the sales numbers of the Adventure Works Cycles (AWC) sales territories in the
Sales by Territory report, you can use a table region. During the report processing
stage, the Report Server executes the dataset query, populates the dataset, and passes it
to all data regions bound to it so they can render themselves.

Table 4.2 RS-supported data regions for different types of reports

Region Report Type Description

Table Tabular The table data region generates as many rows as the number of
records in the underlying dataset. You can optionally group or sort
data by fields or expressions. For example, for the Sales by
Territory report, the Report Wizard automatically generated a table
data region to render the report data in tabular format.

List Freeform When using the list region, you are not restricted to static columns
as with the table region. Instead, you can arrange report items any
way you want. Microsoft Access users will find that the list region
allows them to place items arbitrarily, similar to how they lay out a
report in Access.

Matrix Matrix (crosstab) The matrix region can include dynamic columns. Dynamic columns
can be configured as hidden. The user can expand a hidden
dynamic column to see more data, i.e., drill down into the data.

Chart Chart As its name suggests, the chart region displays the report data in
chart format. Various kinds of chart types are supported, such as
bar, pie, graph, and many more.
110 CHAPTER 4 DESIGNING REPORTS

All data regions except the chart region can act as containers for other report items.
Considering again the Sales by Territory report, you can see that the table data region
is a container for the textbox report items that generate the data in the table columns.

At this point, you may ask, “Why do we need data regions at all, when we can
place report items directly onto the report?” The short answer is flexibility. The next
section should make this clear.

Data region advantages

The advantages of using data regions are as follows:

• They can be used as “supercharged” subreports, as we explain next.

• They can be placed side by side and draw data from separate datasets.

Reports can vary greatly in their layout and complexity. A very simple report might
need to display the data in a tabular format only. A more complicated report, how-
ever, may include different sections, each of which might be rendered in a different
way. Those of you familiar with Access know that complex reports need to be broken
into subreports. We discuss subreports in more detail in section 4.6.

With RS, you will find that in most cases you don’t need subreports. Instead, you
can use individual data regions. This is possible because the data regions can be nested
inside other data regions, as you’ll see shortly in this chapter. In addition, you can
place a data region anywhere you want inside the report body.

You can also position data regions side by side, and each can have its own dataset
and be independent from the others. For example, you can place a chart and table
region side by side. The chart region can display the company sales per territory in chart
format, while the table region can provide a breakdown per product and territory.

Another example where side-by-side data regions could be useful is in a multisec-
tion report. For example, imagine that you need to author a sophisticated report that
includes a few sections. Based on some business rules, the report may not show certain
sections. One way to achieve this requirement would be to break down the report data
in sections and implement each section as a separate data region. Then, you could pro-
grammatically hide the sections during the report runtime using expressions.

Binding data regions to report datasets

In order for the data regions to display data, they must be associated with a dataset.
You don’t have to manually bind a data region to a dataset. Once you drag and drop a
dataset field to the data region, the Report Designer links that region to the dataset, as
you can see by inspecting the DataSetName property of the region. You can also
manually associate a region to a dataset. This could be useful, for example, if you
change the dataset name.

You can customize the message that is displayed inside a data region if the
underlying dataset has no rows by using the NoRows property, which every data
ANATOMY OF A REPORT 111

region has. The default setting is an empty string. For example, if the report query
results in no rows, you can let the user know by setting the NoRows property to No
Data to Display.

Setting up paging

As explained in chapter 1, a report can be requested in any RS-supported rendering
format. Some formats, such as image and PDF, support page sizes and will repaginate
the report based on the page size you specify. Others, such as HTML, will not honor
the page size settings and render all data in one page (see the “Working with Multiple
Pages” topic in the RS documentation for more information). In such cases, you can
use page breaks to improve the report performance; Reporting Services will only have
to render the HTML for the page and not for the entire report.

It may seem strange at first that RS doesn’t specifically include a page break ele-
ment that allows you to arbitrarily force a page break at a specific point of the report.
Instead, each data region has several page break–related properties that you can use to
force a page break before or after the region. You can also enforce page breaks before
and after region groups. You see how to use region groups to group related data in
section 4.2.1.

Reporting Services doesn’t support predefined page layouts and sizes. Instead, you
have to explicitly define the page size in units on the Report Properties dialog box.

TIP Sometimes you may need to have control over the number of rows per page
for tabular reports. You can accomplish this by using detail groupings
(discussed in section 4.2.1) based on expressions. For example, to display
25 rows per page, follow these steps:

1 Add a group to the table and group on the following expression:
=Ceiling(RowNumber(Nothing)/25)

2 Turn off the group header and footer.
3 Turn on PageBreakAtEnd on the group.

If you need web-style paging, you could try using report hyperlinks, the
approach we describe in chapter 5.

Now that you’ve learned about the report layout at a high level, let’s see how to put
this knowledge into practice by creating different types of reports, starting with tabu-
lar reports.

4.2 DESIGNING TABULAR REPORTS

You create tabular reports by using the table data region. You can optionally define
report groups by grouping the table region data by fields or expressions, as you see
next. In this section, we also look at examples of how to use parameters and interac-
tive features in a tabular report. We round out the discussion by mentioning some
limitations of the table region.
112 CHAPTER 4 DESIGNING REPORTS

4.2.1 Tabular reports with groups

The first report that we created in chapter 1, the Sales by Territory report, is an exam-
ple of a tabular report. Let’s enhance it by grouping data.

If you preview this report, you’ll notice that we didn’t quite meet the original
requirements. The sales management team requested that we group the sales data by
territory. However, we’ve just hidden the duplicated territory names. Let’s fix this
by using table region groups. The final version of the report is shown in figure 4.4.

Creating a table region group

To group the report data by territory, complete the following steps:

Step 1 Open the Sales by Territory report.

Step 2 Click the table so that the row and column handles appear next to and above
the table region.

Step 3 Right-click the handle of any row and select Insert Group. The Grouping
and Sorting Properties dialog box appears, as shown in figure 4.5.

Step 4 Change the group name to grpTerritory.

NOTE We highly recommend that you come up with a good naming convention
for report item names and use it consistently. It doesn’t matter what it is;
what does matter is that you have one. You will realize its benefits when you
start referencing the report items in expressions. We try to use three-letter
prefixes, for example, txt for textboxes, grp for groups.

Figure 4.4
This Sales by Territory

report is grouped
by territory.
DESIGNING TABULAR REPORTS 113

Step 5 From the Group On field, select the Fields!Territory.Value field from the
drop-down list.

Step 6 Select the Include Group Footer check box to generate group footers after
each group to include the sales totals per territory, and then click OK.

Step 7 Next, move the Fields!Territory.Value to the group header by dragging the
field (select the field and click on the selection border) from the group detail
section to the group header. At this point, your report layout should look like
the one shown in figure 4.6. Moving the textbox to the group header displays
the territory name only once, at the beginning of each new group.

Creating group subtotals

A common requirement for report groups is to include group subtotals. Let’s create a
group subtotal that shows the sales per territory.

Figure 4.5
The Grouping and

Sorting Properties

dialog box allows

you to set group

properties.

Figure 4.6
Adding the territory

name to the group

header will display

the territory name

once at the top of

each group.
114 CHAPTER 4 DESIGNING REPORTS

Step 1 In the group footer cell of the Territory column (see figure 4.7), type the fol-
lowing Visual Basic .NET expression:
= Fields!Territory.Value & " Totals:"

Step 2 To create a subtotal for the territory group, enter the following expression in
the group footer cell of the Sales column:
= Sum(Fields!Sales.Value)

Now, let’s create a grand total footer for the whole table.

Step 3 Select the table. Right-click the handle of any row and choose Table Footer.
In the Territory cell, type Grand Totals:. In the Sales cell, type the same
expression as in the group footer:
= Sum(Fields!Sales.Value)

At this point, your report layout should look like the one shown in figure 4.7.

Using details grouping

The table region grouping capabilities are not limited to group headers and footers;
you can also group the table details data. For example, imagine that the table dataset
contains the daily sales data, but you need to consolidate it by quarters. One option is
to perform the consolidation at the database by changing your dataset query. This is
also the best option in terms of performance.

When this is not possible, you can group the details by using the Details Grouping
button on the Groups tab of the table region properties. In our case, to consolidate
the data in quarters, we need to add two expressions to the Group On grid: one to
group the data by years and one by quarters. If the dataset field that contains the sales
date is named Date, then the expressions will be Fields!Date.Value.Year and
DatePart("q", Fields!Date.Value), respectively.

Using image items

While image items don’t have much to do with grouping, we can use the Sales by Ter-
ritory report to demonstrate how you can use an external image file as a background
image. The report uses the Confidential.jpg image as a background image of

Figure 4.7
You can also place

fields in the footer

that will show up

once at the end of

each group.
DESIGNING TABULAR REPORTS 115

the table region. Once we created the image, we used the table region properties to set
the BackgroundImage Source property to External, Value to Confiden-
tial.jpg, and BackgroundRepeat to NoRepeat.

Finally, you might want to experiment with borders, fonts, colors, and formatting
to make the report more eye-catching.

4.2.2 Parameterized tabular reports

OK, we can almost feel the resentment growing for the now ubiquitous Sales by Ter-
ritory report. You can relax—we’re going to create a new report from scratch to learn
more about working with table regions.

Let’s say that the AWC management has requested a report that tracks employee
performance for a given period of time. To allow users to see the sales data filtered for
a given time period and salesperson, the report needs to be designed as parameterized.
The employee sales data must be grouped by employee and then by product subcat-
egory and sorted by the employee sales total in descending order.

In its final version, the report will look like the one in figure 4.8.
Because you are already familiar with the table region, we’ll highlight a few things

worth mentioning, rather than provide step-by-step implementation instructions.

Figure 4.8 The Employee Sales Tabular report showcases how to build reports with query-

based Employee parameters
116 CHAPTER 4 DESIGNING REPORTS

Setting up the report parameter lookup values

Let’s start by setting up the report data. For this report, we’ve defined two datasets.
First, we’ve set up a dataset (dsEmployeeSales) to retrieve the available parameters

for the Employee parameter. This dataset gets its results from a SQL query called
dsEmployeeSales.sql that can be found in the Database project included with
the book’s source code.

Normally, you would want to use a stored procedure for this dataset; however, RS
does not directly support passing multivalued parameter values into stored proce-
dures. For the sake of keeping this demo simple, let’s stay focused on how RS supports
multivalued parameters with a SQL query. Later in section 4.6 we visit some more
advanced techniques for using multivalued parameters with stored procedures.

The dsEmployeeSales.sql query has start date, end date, and
EmployeeID as parameters. Notice that in the WHERE clause we are using the T-SQL
IN syntax for our @EmployeeIDs parameter, as shown here:

E.EmployeeID in (@EmployeeIDs)

Next we’ve created the dsSalesPerson dataset to retrieve a list of all employees from the
Employee table who are also salespeople. This dataset defines the available values for
the Employee parameter.

Once you’ve defined the lookup dataset, use the Report Parameters dialog box to
configure the report parameters. First, set up the defaults for the date field. Configure
the default value of the start date parameter to 1/1/2003 and the end date to 12/1/
2003 by placing these dates in the Non-queried default value fields. Also, be sure to
set the data type for these date parameters to DateTime. This will enable the date
picker control in our report for these parameters. Once the date parameters are set up,
set up the Employee parameter as shown in figure 4.9.

Notice that we have selected the Multi-value property for the Employee
parameter and that we have selected Integer as the data type.

NOTE One common situation that we have seen developers struggle with is want-
ing to use stored procedures for the dataset and still use multivalued param-
eters. Case in point: with this report we have an Integer parameter
(EmployeeId) that maps to an integer field in the database. When we use
a SQL query for our dataset, RS handles the splitting of our EmployeeId
parameters into a list for the IN part of our WHERE clause. So, how do we
pass a list of integers into a stored procedure? You learn how in section 4.6.

To set up the available values for the Employee parameter, select the From Query
option and choose the dsSalesPerson dataset from the Dataset drop-down list. We use
the EmployeeID column from the dataset as a parameter in our dsEmployee-
Sales query.
DESIGNING TABULAR REPORTS 117

Setting up the report header

After we set up the report data, the next step is to design the report as a tabular report.
First, create the report header by adding two textboxes to the report header sec-

tion: one for the name of the report and another to display the parameter informa-
tion. The second textbox is based on the following VB .NET expression:

="Sales for " & JOIN(Parameters!EmployeeID.Label,",") & " from "
& Parameters!StartDate.Value & " to " & Parameters!EndDate.Value

Let’s postpone discussing expressions until the next chapter. For now, this is a simple
VB .NET expression, which concatenates the label (the visible text) of the Employee
parameter with the requested date range. Also, note that we use a JOIN function to
get all of the values from the multivalued parameter.

In addition, we’ve dragged and dropped the AWC.jpg image file, which you can
find included in the project. Because this image can potentially be used by all corpo-
rate reports, for easier maintenance we’ve decided to reference the image as an exter-
nal project image. The easiest way to do that is to add the image file to the project.
Then, you drag and drop the image to your report. Another option is to drag and
drop the image item from the report toolbox, which starts the Image Wizard. Note

Figure 4.9 You can set up a parameter’s available values from a dataset using the Report

Parameters dialog box.
118 CHAPTER 4 DESIGNING REPORTS

that as a part of the report-deployment process, you have to deploy all external images
that the report uses.

Laying out the tabular report

Now it’s time for the fun part. For the tabular portion of the report, we use a table
region called tblEmployeeSales. First, we drag and drop a table region from the tool-
box, as shown in figure 4.10. By default, the table region has a table header, details,
footer rows, and three columns.

Once we’ve dragged and dropped the table region below the header rectangle, let’s
populate it with the dataset fields, as shown in figure 4.11.

The easiest way to accomplish this is by dragging and dropping the fields from the
Datasets window to the appropriate cells. Once you drag the first field and drop it
onto the table region, the Report Designer associates the data region and the dataset,
as you can see by looking at the DataSetName region property.

It may seem a bit odd that the top header row and the details row don’t match,
but once we add the groups in the next section it will make more sense.

You can manually associate a region with a dataset by expanding the DataSet-
Name drop-down list and specifying a dataset explicitly. Manually associating a
region with a dataset is necessary when you rename the region dataset and when you
want to replace the dataset with another one. The Report Designer automatically gen-
erates a textbox report item once the field is dropped into a cell.

Next, we need to create the appropriate table region groups that will be used to
group data by employee and product subcategory.

Figure 4.10 The table region initially displays 3 columns of Header, Detail, and

footer rows by default.

Figure 4.11 To populate a table region, drag and drop these dataset fields.
DESIGNING TABULAR REPORTS 119

Grouping the table region data

Let’s define two groups: grpEmployee and grpProductSubcategory. If you are looking
at the finished report in the source code, you can view the group definitions by click-
ing anywhere within the table region, selecting the group selector located on the left
row handle, and choosing Edit Group from the context menu.

Alternatively, to get to the Group tab of the Table Properties dialog box, follow
these steps:

Step 1 Once the table is selected, click on the table selector square (the top leftmost
square). At this point, the table selection border changes, as shown in
figure 4.12. This puts the table region in Edit mode, so you can resize it or
drag it to a new location.

Step 2 Now, you can right-click anywhere on the border and choose Properties to
view the table region properties.

Step 3 Select the Group tab in the Table Properties dialog box, as shown in
figure 4.13.

When you add the grpEmployee and grpProductSubcategory groups to your report,
you’ll need to merge some cells together and add fields to your newly created group
rows. You’ll also want to format your percent and currency fields appropriately. We’ve
added some borders to make the report more pleasing to the eye. When you are done,
your report should look similar to figure 4.12.

The Groups tab on the Table Properties dialog box shows the defined groups—in our
case, the groups shown in figure 4.13.

If you select the grpEmployee group and click the Edit button, you will see that
the Group On expression for the first group is set to Fields!Employee-
Name.Value. This groups the report data by employee. The second group is set to
Fields!ProductSubcategory.Value; it groups the product data by category
and creates the product subcategory header and footer.

Figure 4.12 To put the table region in Edit mode, click the table selector in the upper

left corner so that the table border selection changes as shown.
120 CHAPTER 4 DESIGNING REPORTS

NOTE In general, if you want to achieve better performance, we recommend that
you delegate as much data manipulation and massaging as possible to the
database. This is what the database is designed for. For example, the
Employee Sales Tabular report does all the grouping and sorting in the
spGetEmployeeSalesByProductSubcategory stored procedure. It
sorts the data by employee name in ascending order and then by sales
amount in descending order. We use report grouping only to define labels
for the columns and totals in the footers.

4.2.3 Tabular reports with interactive features

The visible-on-demand group is another interactive feature that you can add to your
tabular reports. For example, if the table region has two groups nested one within the
other, the parent group can act as a toggle to show or hide the nested group. The table
region automatically generates an image that the user can click to expand or collapse
the nested group. This visible-on-demand technique can give your tabular reports a
“briefing” look. The Employee Sales Tabular Interactive report shown in figure 4.14
demonstrates the visible-on-demand interactive feature.

The new version of the report hides the product subcategory group by default.
The user can click the plus indicator to expand the Product Subcategory section and
see its details. Users experienced with designing web content will probably agree that
designing collapsible sections using JavaScript code and DHTML is not that straight-
forward. The process usually involves wrapping the section in a DIV element and call-
ing client-side JavaScript code to show or hide the section.

Figure 4.13
For tabular reports, you

can view and manage

groups from the Table

Properties dialog box.
DESIGNING TABULAR REPORTS 121

Using the Report Designer, creating a visible-on-demand section is a matter of setting
the nested group visibility to be toggled by the parent group, as shown in figure 4.15.

Figure 4.14 This tabular report has visible-on-demand groups that can be expanded by

clicking the plus sign next to them.

Figure 4.15
Creating visible-on-

demand groups can

be done from the

Grouping and Sorting

Properties dialog box.
122 CHAPTER 4 DESIGNING REPORTS

NOTE To view the appropriate the Grouping and Sorting Properties window, you
must start from the Groups tab on the Table Properties window. On this
tab select the grpProductSubCategory group and then click the Edit button.

The choice of which textbox item you select in the Report Item drop-down list is
important because the expandable plus image will be placed immediately before this
item. In this case, in the Report Item drop-down list we select lblProductSubCate-
gory, which is the name of the textbox with a value of Product Subcategory.

4.2.4 Table region limitations

To summarize, the table region works great for simple tabular reports. However, when
report complexity increases, you might find the tabular layout restrictive. For exam-
ple, with the table region, your layout options are restricted to static columns. If the
group header and table details have the same number of columns, everything is great.
Otherwise, you will find yourself creating new columns and merging existing ones.

For example, the Employee Sales Tabular report sample needs three columns for
the Employee group, while it needs four for the Product subcategory group. To solve
this, we define four columns at the table level. Then, for the Employee group, we
merge the last two columns by selecting both of them, right-clicking, and choosing
Merge Cells from the context menu. As you can see, as the complexity of report lay-
out increases, the table region might soon get in the way.

4.3 DESIGNING FREEFORM REPORTS

When the table region is not enough, you can use the list region to create freeform
reports. As their name suggests, freeform reports allow you to arrange items arbitrarily
inside the list region. In this section, you see examples of how to nest regions, how to
nest lists for grouping data, and how to use more than one dataset via side-by-side
data regions.

4.3.1 Freeform reports with nested regions

Figure 4.16 shows an enhanced version of the Employee Sales report (Employee Sales
Freeform), which now uses list and table regions, with the table region nested inside
the list region.

At first glance, the report looks the same. However, the employee information sec-
tion is now located to the left of the product sales section and its textboxes are
arranged in a freeform way, one below the other. Let’s see how to author the report.

Working with list regions

First, drag and drop a list region from the toolbox and name it lstEmployeeSales.
Then, group the list by employee name, similar to how you grouped the table region
earlier. To accomplish this, select the list region, right-click, and choose Properties.
Then, click the Edit Details Group button, as shown in figure 4.17.
DESIGNING FREEFORM REPORTS 123

Figure 4.16 Use freeform reports when you need to lay out items arbitrarily on the

report canvas.

Figure 4.17 The Grouping and Sorting Properties dialog box is also used to view and

manage groups for List reports.
124 CHAPTER 4 DESIGNING REPORTS

This brings us to the familiar Grouping and Sorting Properties dialog box, where you
define a new group based on the following grouping expression:

=Fields!EmployeeName.Value

In the same dialog box, also select the Page Break At End option to generate a page
break after the employee group is generated. Then, move the tblEmployeeSales region
inside the list region and remove all groups from it. As a result, the table region is now
nested inside the list region, so both regions are synchronized.

Laying out the report

Given that we are no longer confined to static columns, we can choose to lay out the
employee fields anywhere we want. We can also add as many fields as desired without
being restricted to static columns. For instance, we’ve added the Bonus field from the
report dataset. Had the AdventureWorks sample database stored pictures of the
employees, we could have added an image report item to display the employee photos
as well.

Finally, we enclose all employee fields in a rectangle to prevent some of the fields
from being pushed down by the table region. Because the list region now groups
the data by employee, the table region needs to show only the product sales in a
tabular form. We define a table header and footer to show the table region labels
and totals, respectively.

NOTE As we noted earlier, the rectangle report item can serve as a container for
other items. When enclosing other items, it prevents the table region from
pushing down other items. For example, if we hadn’t used a rectangle to
enclose the employee fields, the last field would have been pushed down
when the report was generated.

4.3.2 Grouping freeform data

While table and matrix regions provide multiple levels of grouping within a single data
region, lists can have only one group. This limitation might not be that obvious from
the Grouping Properties dialog box because it allows you to define multiple Group On
expressions. It is important to note, though, that this will not result in true nested
groups because you won’t be able to aggregate the results at a group level. Instead, to
create two nested groups using lists, you must place a list within another list.

Let’s consider an example. What if, for the Employee Sales report, we want to
group by territory first and then by salesperson so that we can see the total sales
amount per territory? Figure 4.18 shows the Employee Sales by Territory report with
this capability implemented.

We now have a new group that breaks down the employee sales data by territory.
Although figure 4.18 doesn’t show it, before the end of each territory group there is
a textbox that totals the sales by that territory.
DESIGNING FREEFORM REPORTS 125

On your first attempt, you might think that to create the new group you could define
a new Group On expression using the Grouping Properties dialog box. If you did this,
however, you would find out that you couldn’t create subtotals on the territory level.
Instead, what you need to do is add a new list (lstTerritory) and nest the lstEmployee
list within it. The prior list will group the data per territory and the latter per
employee. Figure 4.19 shows lstEmployee nested inside lstTerritory.

Figure 4.18 To achieve additional levels of grouping with freeform reports, you can nest

data regions within other data regions.

Figure 4.19 Nested lists provide additional levels of grouping.
126 CHAPTER 4 DESIGNING REPORTS

TIP As you add items to the report, you might find it difficult to select items.
For example, it is almost impossible to select an enclosing rectangle by try-
ing to click on its boundaries. You can tab among fields until you select the
item you need, but a better way is to use the VS .NET Properties window
and select the item from the drop-down list. This will select the item in the
Report Designer as well.

Another even faster way to select the item container is to press the Esc key object
when the child is selected.

4.3.3 Freeform reports with side-by-side data regions

As we said at the beginning of this chapter, data regions can coexist peacefully next to
one another and each of them can be bound to its own dataset. This can be useful
when you need to have sections in your report that draw data from separate datasets.

One practical application of using side-by-side regions is creating summary
reports. The Employee Sales by Territory with Summary report does exactly this, as
shown in figure 4.20.

Figure 4.20 To work with more than one dataset, use side-by-side data regions.
DESIGNING FREEFORM REPORTS 127

The report has a summary section at the top to summarize territory sales data. To
design the report, we created a new dataset (dsTerritorySummary). Then, we added a
new table region (tblSummary) before the lstTerritory region and populated it with
the fields from the dataset, as shown in figure 4.21.

With RS, one report can have many regions of different types placed side by side.
However, as we mentioned in chapter 3, you should try to limit the number of the
report datasets for performance reasons.

Giving only text-oriented reports to users may not be enough. For example, mar-
keting people love charts so that they can spot business trends more easily. The next
section teaches you how to design chart reports.

4.4 DESIGNING CHART REPORTS

Chart reports display data in an easy-to-understand graphical format. With RS, you
can add different types of charts to your reports, including column, bar, area, line, pie,
doughnut, scatter, bubble, and stock chart types.

Figure 4.21 Your reports can have data regions of different types placed side
by side.
128 CHAPTER 4 DESIGNING REPORTS

4.4.1 The chart data region

The chart data region is a sophisticated control, and explaining it in detail could easily
fill in a whole chapter. Most of you who have experience in authoring chart reports,
using other reporting tools such as Microsoft Graph for charting with Access-based
reports, will probably find the RS chart region similar. In this section we give you only
the essential knowledge for working with the RS chart region. If you need more infor-
mation, refer to the product documentation.

NOTE If you have experience using the Dundas Software chart control, you’ll find
yourself in familiar waters, since RS uses this control for charting.

To set up a chart report, you drag and drop the chart data region. Figure 4.22 shows
the default appearance of the chart region.

Once the chart region is placed on the report canvas, you can change the chart type by
right-clicking it and using the context menu or by selecting the General tab in the
Chart Properties dialog box, as shown in figure 4.23.

Once you have selected the chart type, you need to set up the chart data by defin-
ing the chart values, categories, and series.

4.4.2 Working with charts

To demonstrate a practical example of a chart report, let’s assume that the AWC sales
management has requested that we change the Employee Sales by Territory with
Summary report. Instead of having the report display the territory sales in a tabular
fashion, management has requested that the data be presented in a chart format, so
they can easily see which countries are performing best.

Figure 4.22
The chart region has data,

series, and category fields.
DESIGNING CHART REPORTS 129

Figure 4.24 shows the Employee Sales by Territory with Summary Chart report. This
report uses an exploded pie chart. Once we change the chart type, we drag the Terri-
tory field from the dsTerritorySummary dataset and drop it into the data fields sec-
tion. Then, we drag and drop the Sales YTD field into the data fields section, as
shown in figure 4.25. As a result, we’ve configured the chart to display Sales YTD as
values and grouped the sales data by territory. Then, using the Category Groups prop-
erties, we sort the data by Sales YTD so that the countries will appear on the top of the
chart legend.

Next, we enable the chart point labels (the numbers on the slices) by going to the
Data tab in the Chart Properties dialog box and clicking the Edit button in the Values
section. We define the data labels as shown in figure 4.26.

Because of the limited space on the chart, we use an expression to show the sales
value in millions. In addition, we enable the chart legend and set the chart display
type to 3D by making changes to the Legend and 3D Effect tabs, respectively.

Figure 4.23 Changing the chart type to a pie chart is simple.
130 CHAPTER 4 DESIGNING REPORTS

Figure 4.24 You can use a chart report to display the report data in an-easy-to-

understand graphical format.

Figure 4.25 Set up the chart data by dragging and dropping fields into the data fields section.
DESIGNING CHART REPORTS 131

4.4.3 Nesting chart regions

Let’s look at another example. This time we need to include a chart in each employee
section showing the employee performance at a glance. The performance metrics (the
chart data fields) will consist of the sales amount and number of orders and will be
grouped by product subcategory. Figure 4.27 shows the new Employee Sales Freeform
with Chart report.

Figure 4.26
Set up the chart point

labels to define how the

chart displays the data.

Figure 4.27 You can nest the chart region inside another region.
132 CHAPTER 4 DESIGNING REPORTS

For the purposes of this report, we change the data source to use a free SQL statement
that includes an additional Group By clause to group the data by product category.
In addition, we simplify the report by removing the employee filter. This reduces the
report datasets to one because we’ve removed the dsEmployee dataset, which was used
to define the available values for the Employee parameter.

Next, we add a chart region inside the recEmployee rectangle and change the chart
type to Column, Simple Column. Then, we select both the Sales and NoOrders
fields and drop them on the chart data fields section. After that, we drag and drop the
ProductSubCategory field to the chart category fields section. We also enable
the point labels for both values and make a few other minor formatting changes.

Because both the list and chart regions draw their data from the same dataset, they
are in sync with each other. If the chart region needs to fetch its data from a different
dataset, you have to take an extra step to synchronize both regions, for example, by
passing the EmployeeID value from the list region to the chart dataset query.

Sometimes it is necessary to rotate results in your reports so that columns are pre-
sented horizontally and rows are presented vertically. This is known as creating a
crosstab (pivot) report, or a matrix report according to the RS terminology.

4.5 DESIGNING CROSSTAB (MATRIX) REPORTS

To create crosstab reports with RS, you use the matrix data region. Those of you who
are familiar with Microsoft Access will find the matrix region similar to Access
crosstab queries. Many of you who have created crosstab reports in the past will prob-
ably agree that rotating the data to create this type of report is not easy. The matrix
region takes the burden away from developers by allowing even inexperienced users to
create crosstab reports in minutes.

4.5.1 Matrix region advantages

This control brings this type of report to a whole new level by:

• Supporting virtual columns to rotate data automatically

• Including interactive features by supporting expanding rows and columns to
allow the user to drill down into the data

Rotating data with the matrix region

Retrieving data from the database in a crosstab format is not an easy endeavor. In the
case of SQL Server, you have to be well versed in SQL to craft complicated statements
using CASE expressions. This is what a possible SQL Server query might look like if
you want to transpose the sales data from the AdventureWorks sample database in
quarters as columns:

SELECT SUM(CASE DATEPART(QQ, OrderDate)
 WHEN 1 THEN UnitPrice*OrderQty ELSE 0 END) AS Q1,
 SUM(CASE DATEPART(QQ, OrderDate)
DESIGNING CROSSTAB (MATRIX) REPORTS 133

 WHEN 2 THEN UnitPrice*OrderQty ELSE 0 END) AS Q2,
 SUM(CASE DATEPART(QQ, OrderDate)
 WHEN 3 THEN UnitPrice*OrderQty ELSE 0 END) AS Q3,
 SUM(CASE DATEPART(QQ, OrderDate)
 WHEN 4 THEN UnitPrice*OrderQty ELSE 0 END) AS Q4
FROM Sales.SalesOrderDetail AS SOD INNER JOIN
Sales.SalesOrderHeader AS SOH ON SOH.SalesOrderID = SOD.SalesOrderID
WHERE DATEPART(YY,OrderDate) = 2003

GROUP BY DATEPART(yy, OrderDate)

And this is what the result looks like:

Q1 Q2 Q3 Q4
--------------- --------------- --------------- -------------
6682509.7732 8365316.6368 13944911.6542 13315837.1621

Now, imagine that you need to display the data in a crosstab report not by quarter but
by month, within a user-defined date range. Try creating this report with a SQL state-
ment and you will start appreciating the work that the matrix region does behind the
scenes for you! The matrix region makes crafting sophisticated queries to rotate data
unnecessary. Instead, once you’ve defined the virtual columns, the matrix region
transposes and aggregates data automatically.

Interactive crosstab reports

Making crosstab reports interactive allows users to drill down through data. For
instance, top managers are usually interested in the high-level view of the company
performance, such as sales by country. The mid-level management is concerned with
a more detailed view of information, specific to their domain, such as sales by stores.

Crosstab reports with expandable groups allow each tier of users to see the level of
detail they need. In this respect, developers who have used Microsoft Office Web
Components in the past will find the matrix region similar (although less powerful)
to the Pivot Table component.

The best way to explain how the matrix region works is by example, as the next
section demonstrates.

4.5.2 Working with the matrix region

Going back to our fictitious scenario, the AWC sales management has requested that
you create a Territory Sales report, which will be used by the company’s top- and mid-
level sales managers. The top management wants to see the territory sales consolidated
by country on a yearly basis, while the mid-level management needs a breakdown by
salesperson per month. Instead of creating two reports, you prudently decide to lever-
age the power of the matrix region and author only one dynamic report. Figure 4.28
shows the Territory Sales Crosstab report.

The users can expand both rows (territories) and columns (time) to drill down
into employees’ sales data and months, respectively. For example, the snapshot shows
that the user has expanded Canada to see the sales data broken down by all salespersons
134 CHAPTER 4 DESIGNING REPORTS

who handle the Canada region. In addition, the user has decided to see the monthly
sales data for 2004, while the sales data for 2003 is displayed consolidated.

Let’s discuss the essential points of this report design process.

Setting up the report data

First, we set up the dsTerritorySales report dataset with the following SQL statement:

SELECT ST.TerritoryID, ST.Name AS Territory, SP.SalesPersonID,
 C.LastName + N', ' + C.FirstName AS EmployeeName,
 SOH.OrderDate AS Date,SUM(SOD.UnitPrice*SOD.OrderQty)AS
 Sales, COUNT(SOH.SalesOrderID) AS NoOrders
FROMSales.SalesOrderDetail SOD
 INNER JOIN Sales.SalesOrderHeader SOH
 ON SOD.SalesOrderID = SOH.SalesOrderID
 INNER JOIN Sales.SalesPerson SP
 ON SOH.SalesPersonID = SP.SalesPersonID
 INNER JOIN HumanResources.Employee E
 ON SP.SalesPersonID = E.EmployeeID
 INNER JOIN Person.Contact C
 ON C.ContactID = E.EmployeeID
 INNER JOIN Sales.SalesTerritory ST
 ON SP.TerritoryID = ST.TerritoryID
WHERE (SOH.OrderDate BETWEEN @StartDate AND @EndDate)
GROUP BY
 ST.TerritoryID,ST.Name,SOH.OrderDate,
 SP.SalesPersonID, C.LastName + N', ' + C.FirstName
ORDER BY ST.Name, SOH.OrderDate

Since the matrix rows of this report summarize the information in territories and
salespersons, the query statement provides these groups. Drilldown per year is achieved
with expressions based on the OrderDate field inside the report. The query also takes
start and end dates as parameters.

Figure 4.28 Creating crosstab reports is easy using the matrix region.
DESIGNING CROSSTAB (MATRIX) REPORTS 135

Adding the matrix region

Next, we switch to the layout mode and drag and
drop the matrix region into the report, as shown
in figure 4.29.

The upper-left cell of the matrix region is the
corner cell. You can use it to display a title for the
matrix region. In our case, we’ve used that cell as
a container for the AWC logo image.

The matrix data region makes defining the
rows and columns in the crosstab easy. To group
the data into rows and columns, you must define
the row and column dynamic groups.

Defining dynamic groups

Dynamic row and column groups can nest within other dynamic row and column
groups. You add dynamic groups by dragging and dropping dataset fields to the Rows
and Columns areas. The Report Designer displays a helpful bar hint when you drag
the field over the row or column headers to show you valid places where you can drop
the field to nest the new group inside an existing group.

For example, to drill down by territory and salesperson, we drag and drop the
Territory and EmployeeName fields from the dsTerritorySales dataset into the
Rows section. As a result, the matrix region creates two dynamic row groups, which we
rename rowTerritory and rowEmployee, respectively, as shown in figure 4.30.

Figure 4.29 You define dynamic

and static matrix groups by

dragging and dropping dataset

fields into the respective areas.

Figure 4.30
You can achieve data

drilldown with the matrix

region by creating nested

column and row dynamic

groups.
136 CHAPTER 4 DESIGNING REPORTS

The Columns section is little bit trickier. Here we need to define dynamic columns
for years and months. To achieve this we create two column groups, colYear and col-
Month, and set them to be based on the Fields!Date.Value.Year and
Format(Fields!Date.Value, "MMM") expressions, respectively. Because the
Date field from the report dataset is of type DateTime, you could use the methods
and properties of the .NET DateTime structure to retrieve the year and month por-
tions. We also format the month value to show the abbreviated version of the month,
for example, Jan for January.

Defining static groups

To display the actual data (intersected cells for dynamic row and column groups), you
define static rows or column groups. You are not restricted to one static group. When
you add more than one static group under a given dynamic column, the dynamic
header splits to accommodate the new group. To demonstrate this, let’s drag and drop
both the Sales and NoOrders dataset fields to the matrix region data section, so that
users can see the sales dollar amount alongside the number of orders placed per terri-
tory segment.

To get the expand/collapse magic working, we have to change the visibility for
the rowEmployee and colMonth groups. Figure 4.31 shows the visibility settings for the
rowEmployee group.

These settings make the rowEmployee group invisible initially. Only when the
user expands the higher-level Territory group does the Employee group become

Figure 4.31
You can toggle the

group visibility by

changing the

Visibility settings.
DESIGNING CROSSTAB (MATRIX) REPORTS 137

visible. In a similar way, we can set the visibility of colMonth to be toggled by the
txtYear field.

Creating subtotals

With many crosstab reports you may want to sum numeric data horizontally and ver-
tically. The matrix region also allows you to define subtotals to sum the data on row
and column groups. The only aggregate operation supported is summing. You create
subtotals by right-clicking the header of a row or column dynamic group and select-
ing Subtotal from the context menu. For the Territory Sales report, let’s define subto-
tals on the Territory and Year levels. Formatting changes, such as setting border styles
and background colors, make the report look better, as shown in figure 4.32.

Currently, the matrix region doesn’t support headers and footers per grouping. It is
designed for a traditional crosstab layout, which has only subtotals. There are rumors
that Microsoft might hybridize the table and matrix regions (most likely by adding
table-like features to the matrix) in the next version.

4.5.3 Adjusting the report layout

The matrix region doesn’t confine you to a fixed row and column layout. For example,
you can get an inverted mirrored layout by changing the Direction property from
LTR (left to right) to RTL (right to left). Also, you can move a given number of col-
umns before the row header by using the GroupsBeforeRowHeaders property.
For example, if you request sales data that falls in between two years and set
GroupsBeforeRowHeaders to 1, the row header will be positioned between the
year columns, as shown in figure 4.33.

Another feature of the Matrix report type that affects layout is group header lock-
ing. Typical implementations of matrix reports tend to show a lot of data. In fact,

Figure 4.32 The Territory Sales Crosstab report uses the Matrix subtotal.
138 CHAPTER 4 DESIGNING REPORTS

since the number of columns is dynamic, there is no ideal way to enforce a standard
width for your report. If you are looking at the column on the far end of the report
and you cannot see the row information, your experience may not be very good. This
is where group header locking becomes very helpful. We implement group header
locking for both the row and column headers in this report by navigating to the
Groups tab of the Matrix report properties and then editing the rowTerritory group,
as shown in figure 4.34. By selecting the Group Header Should Remain Visible
When Scrolling property, we ensure that the group header will not scroll off the
screen in our report. We only need to set this value for one of the column groupings
since doing this for one column grouping will affect all column groupings.

One interesting performance optimization detail about the matrix region inner
workings is that, as we mentioned in chapter 1, it doesn’t render all the data at once
when the report is rendered in HTML. Instead, you will notice that each time you
expand a section, a round-trip (HTTP-GET request) occurs to the Report Server to fetch
the data for the expanded section. To be more specific, a matrix report retrieves all data
from the data source when the query is executed, produces the report in intermediate
format, and serializes it into data chunks in the ReportServerTempDb database. This
process is known as report session caching, and we discuss this topic in detail in chapter 8.

When a report row or column is expanded, the matrix region posts back to the
server to retrieve the report for that section. This improves the report performance
because sections are rendered on an as-needed basis. The session management occurs
only when the Report Server renders the report in HTML.

You see more of the matrix region in chapter 6 when we discuss how to use expres-
sions in crosstab reports to see forecasted data.

Figure 4.33 This shows what happens when you enter 1 in the GroupsBeforeRowHeaders

property.
DESIGNING CROSSTAB (MATRIX) REPORTS 139

4.6 USING OTHER DESIGN FEATURES
IN YOUR REPORTS

As you have seen, you can create several types of reports with RS. Also, several features
are available to make your reports more interactive or simply more user friendly. We
spend some time in this section checking out some of these features. We take a close
look at how to set up multicolumned reports, add interactive sort functionality, pass
multivalued parameters into stored procedures, and use subreports.

Let’s first see how we can display report data in multiple columns.

4.6.1 Setting up multiple columns

The Report Designer allows you to easily create multicolumn reports. Just like a
newspaper, a multicolumn report can conserve space by displaying the report data in
more than one column. The Products by Subcategory report demonstrates how you
can author such reports, as shown in figure 4.35.

The report shows the product inventory data arranged in three columns to con-
serve paper space. The trick to creating this report is to make sure that the report data
width doesn’t exceed the column width, as shown in figure 4.36.

Figure 4.34 You can lock the group headers so that they do not scroll off the page for

your matrix reports.
140 CHAPTER 4 DESIGNING REPORTS

NOTE To see the report rendered correctly in multiple columns, make sure that
you preview the report by clicking the Print Preview button. If you just pre-
view the report, you won’t see the data flowing in columns because the
preview mode doesn’t take into consideration the page settings.

To create the report, use a list region for the subcategory section and a nested table
region for the product details. Set the body width of the report to 2.75 in. To set up
the multicolumn layout, set the number of columns to 3 in the Report Properties dia-
log box (figure 4.37).

Figure 4.35 Creating multicolumn reports with Reporting Services is easy.

Figure 4.36 The Products by Subcategory report in print mode shows the multiple
columns feature.
USING OTHER DESIGN FEATURES IN YOUR REPORTS 141

Currently, RS supports defining multiple columns only at the report level. You can-
not, for example, define a multicolumn layout per region, for example, a table region.

When setting up the column widths, you must ensure that you have enough page
space to accommodate the number of columns, per the following formula:

Page width-(left margin + right margin) >= number of columns *
column width + (number of columns - 1) * column spacing

The Report Designer eliminates the trial-and-error fitting game by showing you the
outline of the columns in layout mode. This allows you to easily see whether the report
width exceeds the page width.

4.6.2 Adding interactive sort

Interactive sort is a new feature with the 2005 release of Reporting Services. While
you could build in sort functionality in previous versions of Reporting Services, it
took quite a bit of customization and coding. Interactive sort enables the end user to
re-sort data on the report without going back to the server. Let’s take a closer look at
this feature.

Interactive sort: providing sort on a single field

Let’s create a report that uses the new interactive sort feature. We’ll base this report on
the Sales By Territory report.

Step 1 To start, copy the Sales By Territory report in the Business Intelligence
Designer and rename it to Sales By Territory Interactive.rdl.

Step 2 On the Layout tab, right-click on the Territory cell in the header row and
select Properties.

Figure 4.37
Specify the number of

columns in the Report

Properties dialog box (select

the report by clicking the

Report Selector, right-click,

and choose Properties).
142 CHAPTER 4 DESIGNING REPORTS

Step 3 In the Textbox Properties dialog box, select the Interactive Sort tab (fig-
ure 4.38).

Step 4 Check Add an Interactive Sort Action to this Textbox and select the Territory
field from the Sort Expression drop-down list.

Step 5 Click OK and preview the report in the designer.

You will see that RS added an icon to the right of the Territory text in the header. This
icon will initialize as a double arrow (one arrow pointing up and one arrow pointing
down). This signifies that the data is not yet sorted. Clicking on this icon will sort the data
ascending by the Territory field. Note that the icon changes to an image representing this
sort. If you click on this image again, it will re-sort descending. This demonstrates the
interactive sort in its simplest form. Now let’s look at some more advanced sorting.

Interactive sort: providing sorting on multiple fields

Let’s add another sort-able field to our Sales By Territory report.

Step 1 From the Layout tab, right-click on the Territory cell in the header row and
select Properties.

Step 2 In the Textbox Properties dialog box, select the Interactive Sort tab.

Step 3 Check Add an Interactive Sort Action to this Textbox and select the Sales
field from the Sort Expression drop-down list. Then click OK.

Preview the report in the designer. You should now see two sort icons. If you hold
down the Shift key and select both icons, you can sort by Facility ascending and Sales
(within the Territory) descending.

Figure 4.38
The interactive sort

features allow you to

set up the ability for

report users to easily

sort the data.
USING OTHER DESIGN FEATURES IN YOUR REPORTS 143

Notice in figure 4.38 that there are options to choose the data region or grouping
to sort by, as well as the data region or grouping that define the scope for the sort
expressions. These options will allow you to do advanced interactive sorting so that
you can have the sort expression only sort in a particular grouping instead of affecting
the entire dataset in the report.

4.6.3 Passing multivalued parameters
into a stored procedure

In section 4.2, when we created the Employee Sales Tabular report, we explained that
out of the box it is easier to use a free SQL query to accept our multivalued parameter
Employee than it is to use a stored procedure. In case you want to use a stored proce-
dure and not a free SQL query, you will need to do a little more work.

Let’s start with the Employee Sales Tabular report where we left off in section 4.2.2
(at that point, we’d added interactive functionality). In this section we:

• Write a SQL function to convert a list of EmployeeIds from a string to a table
returning integer fields.

• Write a stored procedure to accept the EmployeeIds and call our function.

• Change the report to use our new stored procedure.

Writing the SQL conversion function

In the Database folder in this book’s source code you will find a file called
functions.sql. This script file contains a function called fn_ParseEmployee-
IDsToTable, which takes one input parameter, @vc_EmployeeIds. This param-
eter is a varchar(1000), which should be plenty big for our needs. Our
Employee parameter will ultimately fill this function’s input parameter based on the
user’s action. While we won’t spend time looking in depth at how this function works,
feel free to pull up the code and investigate on your own. For the purposes of this
example, it is important to understand that this function accepts the employee infor-
mation the form of a comma-separated string of IDs. This function returns a T-SQL
table with one integer column, EmployeeId.

Writing the stored procedure

The Database folder in the source code also contains a file called spGetEmployee-
SalesByProductSubcategoryMultiple.sql. This file contains the script to
create the stored procedure that will be used by this report. Here’s an abbreviated sam-
ple of this script:

SELECT . . .

WHERE (SOH.OrderDate BETWEEN @StartDate AND @EndDate)
 AND E.EmployeeID IN (select * from _
fn_ParseEmployeeIDsToTable(@EmployeeIDs))
GROUP BY ST.NAME, E.EmployeeID, C.LastName + N', '+ C.FirstName,
144 CHAPTER 4 DESIGNING REPORTS

C.FirstName, E.LoginID, SP.SalesYTD, SP.CommissionPct, SP.Bonus,
PSC.ProductSubCategoryID,PSC.Name
ORDER BY ST.NAME, EmployeeName, Sales DESC

Here you can see the three parameters that our report uses in the WHERE clause of our
query. The part that changed from our original free SQL query appears in the WHERE
clause on the second line. As you can see, our original parameter variable, @Employee-
IDs, has been replaced by a query to our new function.

Modifying the report

Let’s now change our report to use our new stored procedure and function. This is as
simple as clicking on the Data tab and selecting the dsEmployeeSales dataset. Then
delete the query, change the Command type to StoredProcedure, and enter the name
of our stored procedure (spGetEmployeeSalesByProductSubcategory-
Multiple) in the query window.

That’s it! Now let’s take a look at a way to embed one report into another by
using subreports.

4.6.4 Designing subreports

A subreport is a report item that points to another report. As you have seen, RS gives
you plenty of design choices, and in many cases you won’t need to use subreports at
all. There are two main situations, however, that will necessitate using subreports:

• Reusing existing reports—You can use the subreport region as a placeholder to
host an existing report. For example, you may already have a company sales
summary report, like one of the summary reports we created earlier. For easier
maintenance, you might want to reuse the report. Each time you change the
report, the change propagates to all reports of which this report is part. Also, in
some cases you simply have no other choice.

• Nesting report sections that use different datasets—This will be the case when you
need to nest a data region inside another region and each region uses a different
dataset, as in the following example.

Imagine that the AWC management has requested that we change the Employee Sales
Freeform with Chart report to show an Employee Performance Summary chart that
outlines employee sales for the past 12 months. In other words, the Employee Perfor-
mance Summary chart needs to ignore the start date parameter and show the sales
summary for the previous 12 months relative to the end date parameter.

For example, if the user has requested to see the Employee Sales report from
10/1/2003 to 12/1/2003, the Employee Performance Summary needs to show the
monthly breakdown of employee sales starting with 1/1/2003, as shown in
figure 4.39.

The report requirements call for creating a new dataset for the Employee Perfor-
mance Summary chart. Our first impulse might be to base a chart region on the new
USING OTHER DESIGN FEATURES IN YOUR REPORTS 145

dataset and nest it inside the list region. However, the chart region needs to follow
the employee breakdown of the list region. In other words, the chart needs to be
synchronized with the employee grouping of the list region. This presents a prob-
lem, though, because synchronized nested regions, which use the same groupings,
must use the same dataset.

The solution is to create a new subreport for the chart and synchronize the subre-
port with the main report. Let’s create the Employee Performance subreport. There
is nothing different about creating a subreport. As you know by now, we’ll start by
setting up the report data.

Setting up the report data

To create the report dataset, use a free SQL statement as your dataset source, as
shown here:

SELECT E.EmployeeID, C.LastName + N', ' + C.FirstName AS EmployeeName,
 SUM(SOD.UnitPrice * SOD.OrderQty) AS Sales,
 COUNT(SOH.SalesOrderID) AS NoOrders,
 DATEPART(yy, SOH.OrderDate) AS Year,
 DATEPART(m, SOH.OrderDate) AS Month
FROM Sales.SalesPerson SP
 INNER JOIN Sales.SalesOrderHeader SOH
 ON SP.SalesPersonID = SOH.SalesPersonID
 INNER JOIN HumanResources.Employee E
 ON SP.SalesPersonID = E.EmployeeID

Figure 4.39 Use subreports when you need to nest report sections that draw data from

separate datasets.
146 CHAPTER 4 DESIGNING REPORTS

 INNER JOIN Person.Contact C
 ON C.ContactID = E.EmployeeID
 INNER JOIN Sales.SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
WHERE (SOH.OrderDate
 BETWEEN DATEADD(mm, - 12, @Date) AND @Date)
 AND (E.EmployeeID = @EmployeeID)
GROUP BY E.EmployeeID, C.LastName + N', ' + C.FirstName,

 DATEPART (m, SOH.OrderDate),
 DATEPART(yy, SOH.OrderDate)
ORDER BY DATEPART(yy, SOH.OrderDate),DATEPART(m, SOH.OrderDate)

This statement groups the sales data per employee for the past year relative to the
@Date parameter. It defines two parameters: @EmployeeID and @Date b. In
addition, the statement breaks down the order date by month and year c. This is
needed to summarize the sales data per month. To achieve this, create a new calcu-
lated dataset field called Date, which is based on the following expression:

= new DateTime (Fields!Year.Value, Fields!Month.Value,1)

This expression simply converts the month and year back to a date that starts at 12:00
A.M. We could have converted the date in the statement itself using SQL expressions,
but we wanted to demonstrate calculated dataset fields.

Configuring the subreport

Next, let’s use a chart region to present the data in graphical format. Figure 4.40
shows the subreport in a layout mode. You have already seen how to configure a chart,
but this time the chart type is Line.

Once you’ve created the subreport, you are ready to place it inside a subreport region.
The easiest way to do that is to drag the report from the Solution Explorer and drop it

Specifies parameter
placeholders

b

Groups the data per employeec

Figure 4.40
Creating a subreport is

no different than creating

an ordinary report.
USING OTHER DESIGN FEATURES IN YOUR REPORTS 147

inside the main report. Because you want to nest the subreport inside the lstEmployee-
Sales region, make sure you drop the subreport into the recEmployee rectangle.

Synchronizing the subreport with the master report

Finally, you need to synchronize both reports by passing the required parameters to the
subreport. You can set the subreport parameters by using the VS .NET Properties win-
dow. Alternatively, you can right-click on the subreport, choose Properties, and select
the Parameters tab in the Subreport Properties dialog box, as shown in figure 4.41.

In this example, for the @Date parameter of the subreport we pass the @EndDate
parameter of the main report. We link the @EmployeeID subreport parameter to
the EmployeeID field of the main report dataset. As a result, each time the main
report initiates a new Employee group, it passes the EmployeeID to the subreport
to display the summary data for that employee only.

Set up all required subreport parameters carefully. If you miss some or set them up
incorrectly, the subreport will not be shown. Instead, the subreport region will report
an exception: “Error: the subreport could not be shown.”

4.7 SUMMARY

One of the main strengths of RS is that it gives you the right tools to easily design
many different types of reports. The Report Designer enables even novice users to cre-
ate professional-looking reports in a matter of minutes. As you’ve seen, the report data
regions give you a lot of flexibility for laying out your reports. In this chapter, we dis-
cussed the effects of data region nesting and using regions side by side.

Figure 4.41 Integrate the main report with a subreport.
148 CHAPTER 4 DESIGNING REPORTS

We also showed you how to create a variety of reports using regions:

• Tabular reports use the table region.

• Freeform reports use the list region.

• Chart reports use the chart region.

• Crosstab reports use the matrix region.

Finally, we looked at how you can add several features to your reports, such as multi-
ple columns and interactive sort. We also explained how to pass multivalued parame-
ters into stored procedures, and how and when you should create subreports.

Now, it is time to add more advanced report-authoring techniques to your arsenal
that will help you create even more sophisticated reports. In the next chapter you
learn how to enhance reports with expressions and functions.
SUMMARY 149

C H A P T E R 5

Using expressions
and functions

5.1 Understanding expressions 151
5.2 Exploring the Report

Object Model 157
5.3 Working with functions 167

5.4 Designing reports with navigational
features 175

5.5 Report rendering considerations 181
5.6 Summary 183
Sometimes, reporting requirements may call for advanced techniques that go beyond
the scope of the Report Designer. For example, you may need to implement condi-
tional formatting to change the color of report items based on some conditions.

Most modern reporting tools support programming primitives of some sort that
developers can use to write expressions and programmatically manipulate report ele-
ments. In this chapter, we explore how you can use expressions and functions with
Reporting Services to enhance the report capabilities.

Our discussion covers the following topics:

• Writing expressions

• Working with the Report Object Model global collections

• Using functions

• Using expressions to author reports with interactive features

• Examining RS export formats and how formatting can impact the interactive
features of a report
150

To round out this chapter, we show how you can use expressions to add interactive
features to your reports, including reports with navigational features and reports with
document maps.

5.1 UNDERSTANDING EXPRESSIONS

An RS expression is a formula written in Visual Basic .NET syntax that uses a combina-
tion of keywords, operators, functions, and constant values to calculate the value of a
report item or its properties during runtime. You are already familiar with one of most
basic types of inline expressions: the field expression. We used field expressions on
many occasions to display the value of a dataset field by referencing the Fields collec-
tion; for example:

=Fields!Sales.Value

Table 5.1 shows some examples of field expressions and describes each.

You have probably used expressions with other reporting tools to achieve some degree
of runtime customization, such as implementing calculated fields. For example, say
you want to combine the employees’ first and last names into one string to set the
value of a textbox report item called txtEmployeeName. With RS, you can achieve
this by using the following inline expression for the Value property of the textbox:

= Fields!FirstName.Value & " " & Fields!LastName.Value

RS allows you to use built-in functions that include your basic standard aggregates as well
as some RS-specific functions. RowNumber is an example of an RS-specific function.

RS does not limit your use of expressions to setting values of textbox report items.
Instead, by using expressions you can manipulate programmatically just about any
property of a report item and region. In this section, we cover all aspects of using

Table 5.1 Field expressions

Example Description

=Fields!Territory.Value Returns a dataset field

=Sum(Fields!Bonus.Value) Returns a sum of the values of the specified
expression

=Avg(Fields!Bonus.Value) Returns the average of all non-null values from
the specified expression

=Fields!LastName.Value & ", " &
Fields!FirstName

Concatenates multiple fields together

RunningValue(Fields!Cost.Value, Sum,
Nothing)

Uses a specified function to return a running
aggregate of the specified expression

RowNumber(Nothing) Returns a running count of all rows in the
specified scope
UNDERSTANDING EXPRESSIONS 151

expressions, starting with the Expression Editor. Next, we look at the syntax of
expressions, and then we explore expression order and scope. Lastly, we learn how to
deal with expression errors. Memorizing expression syntax can be tedious. To address
this, the Report Designer offers you a helping hand with the Expression Editor.

5.1.1 Using the Expression Editor

The Report Designer allows you to write report expressions by typing the expression
text manually or using the Expression Editor. You will probably find the first method
handy when you want to quickly change the expression text or enter simple expres-
sions. For example, you can click inside a textbox and directly type a field expression
to bind the textbox to a dataset field, for example, =Fields!Sales.Value.

Alternatively, you can use the Expression Editor. If you used RS 2000 you will
find a welcoming change in the Expression Editor. In the previous version of RS it
was tough to know whether your expressions contained syntax errors. The Expression
Editor in this release will evaluate expressions and check for syntax errors, and it also
provides us with IntelliSense.

To open the editor, use one of the following options from within the Report
Designer:

• Using the item’s VS .NET Properties window, choose the Expression item from
the available options for any property that can be manipulated by an expression,
for example, the TextBox.Value property.

• In the item’s Properties dialog box (right-click the item and choose Properties),
click the (fx) button located to the right of any property that supports expressions.

• As a shortcut when entering an expression for the textbox Value property, you
can right-click the textbox and choose Expression from the context menu.

Figure 5.1 shows the Expression Editor using the code completion feature. We
invoked the Expression Editor by right-clicking one of the textboxes inside the
Employee Sales Freeform report and selecting Expression from the context menu.

As shown in figure 5.1, in this case the Expression Editor shows the fields of the
dsEmployeeSales dataset using IntelliSense. You can also view the fields by clicking
on the Fields label in the tree view on the left.

For your convenience, the three most-used collections from the Report Server
object model (Globals, Parameters, and Fields) are shown on the left side of the dialog
box, so you don’t have to memorize the names of their members. We revisit these col-
lections in section 5.2. This dialog box will also provide access to the Datasets collec-
tion, Common Functions, Operators, and Constants for easy selection.
152 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

5.1.2 Expression syntax

As we explained in chapter 3, the Report Designer verifies the expression syntax dur-
ing the report-building process. Just as with any programming environment, you
need to learn to play by the compiler’s rules. There are a few syntax-related rules about
expressions worth mentioning before we see some examples.

First, because you author expressions in VB .NET, the expression syntax is not
case-sensitive. For this reason, fields!Sales.value and Fields!Sales.Value
are interchangeable. Be aware, though, that for some reason RS requires that the field
names match exactly the dataset field names despite the fact that Visual Basic is not
case-sensitive. If they don’t, a compilation exception is thrown. For example, if the
dataset field is SalesYTD but you use Fields!salesYTD in your expression,
the Report Designer errors out with the following exception:

The value expression for the textbox 'txtTerritorySalesYTDTotal'
refers to the field 'salesYTD'. Report item expressions can only
refer to fields within the current data set scope or, if inside
an aggregate, the specified data set scope.

Second, to tell RS that you want to use an expression, you must prefix the expression
text with an equal sign (=). The Report Designer reacts in different ways to remind
you about this rule. For example, if you type the expression without the equal sign in

Figure 5.1 Use the Expression Editor to create expressions.
UNDERSTANDING EXPRESSIONS 153

the Properties window, an invalid property exception dialog box appears. If you type
an expression without an equal sign directly in a textbox, the designer won't complain
at all. In this case, it will assume that you are entering static text, which will be shown
as is when the report is rendered.

In addition to these two rules, your expression syntax needs to comply with the
syntax of VB .NET. For a VB .NET language reference, check the VS .NET product
documentation.

5.1.3 Determining expression execution order

The Report Server has a rule processor that involves some sophisticated decision making
to determine the order in which expressions are executed. For lack of a better term, we
refer to it as an expression sequence processor. This processor bases its execution decisions
on interdependencies between expressions and the location of expressions in a report.

When the processor parses expressions, it discovers any existing interdependencies
and ranks the expressions accordingly. For example, say you have three textbox items,
A, B, and C, inside a list region. A gets its value from a dataset field. B references A,
and C references B. The expression sequence processor will discover that these expres-
sions are interdependent and sort their execution order accordingly. In our example,
the value of A will be set first, followed by the values of B and then C.

If the expressions are not interdependent, our experiments show that they are exe-
cuted sequentially according to their location in the report. For example, expressions
that set properties of the Body band are executed before the expressions in items
located in the body section.

Is execution order important? Well, knowing the order in which the expression
will be executed allows you to write “pseudo” events to do some preprocessing to
compensate for the lack of “real” events in RS.

Say you want to initialize some class-level variables in custom code before you call
a custom function inside an expression. Also assume that the expression is used to set
the value of a textbox item in a table region. Because RS doesn’t support events, you
may think that you are of out of luck. However, you can use an expression in the
Body band, for example, an expression to set the BorderStyle property, which will
fire before the table region is rendered.

Because there is only one Body band inside the report, this expression will fire
once, which, to perform the initialization tasks, is exactly what you want. Inside the
expression you can call a method in the custom code, which will set the required state.
As you’ll see in chapter 9, this is exactly the approach we take to author the Show
Security Policy report, so we can initialize the Report Server web service proxy before
we call its methods.

5.1.4 Understanding expression scope

One of the things that you need to consider when referencing report items in expres-
sions is the concept of expression scope. Simply put, the expression scope defines the
boundaries in which the expression can operate. Each dataset, region, and grouping
154 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

defines a scope. The scope rules can get complicated, but the simple rule of thumb is
that an expression cannot reference other items outside its current or containing
(outer) scope.

The following example should make this clear. Consider the report layout shown
in figure 5.2.

You may find this layout similar to that of the Employee Sales by Territory with
Summary report we created in chapter 4. Here, we have a table region A placed side
by side with a textbox and another table region B nested inside a list. This layout
defines several scopes:

• A scope of the report body section

• A scope of table region A

• A scope of the list region

• A scope of table region B

There may be other scopes, such as those for groups defined inside a region. Based on
the current or containing scope rule we mentioned earlier, there are some valid and
invalid reference combinations, as shown in table 5.2.

Table 5.2 Expression reference examples

Valid references Invalid references

An expression for the value of textbox3 that
references textbox2.

An expression for the value of textbox2 that
references textbox3. (Table region B is nested in
the list region and it is not in the list’s current or
containing scope.)

An expression for the value of textbox3 that
references textbox4. (Table region B is inside
the body region.) However, an expression for
the value of textbox4 cannot reference
textbox3.

An expression for the value of textbox3 that
references textbox1 and vice versa; an expression
for the value of textbox1 that references
textbox3; neither can it reference textbox2.

Figure 5.2
Each dataset, region,

and grouping defines

an expression scope.
UNDERSTANDING EXPRESSIONS 155

How about referencing the SUM() aggregate in table region A from either the list
region or table region B? At first, you might think that this is not possible because
table A is not in the containing scope of both regions. But as with every rule there are
exceptions, and the truth is that this combination is allowed. The exception here
seems to be a result of the fact that an expression can reference an aggregate value
regardless of its scope.

At first, the scope rules may seem mind-boggling, but with some experience it gets
easier. Besides, the Report Designer is kind enough to remind us each time we fail to
comply with this rule with one of the following two exceptions:

The value expression for the textbox '<textboxname>' refers to
the report item '<reportitemname>'. Report item expressions
can only refer to other report items within the same grouping
scope or a containing grouping scope.

Or, if the referenced textbox gets its value from a dataset field:

The value expression for the textbox '<textboxname>' refers to the
field '<reportitemname>'. Report item expressions can only refer
to fields within the current data set scope or, if inside an
aggregate, the specified data set scope.

5.1.5 Dealing with expression errors

Similar to programming in other languages, report expression code goes through
compilation and execution phases. When you build the report or just request to pre-
view it, the Report Designer parses the report expressions to ensure that the code you
entered makes sense and that the code will work with the order of execution. If there
are syntax and reference errors, the Report Designer informs you about them by
showing an error message in the Preview tab, as shown in figure 5.3.

The compilation errors are shown in the Task List. The error messages seem to be
very descriptive and informative. For example, if we misspell the name of the Sales
dataset field as Sale (Fields!Sale.Value), the exception text pinpoints the
exact problem:

Figure 5.3 If an expression cannot be compiled, an error message is shown in the

Preview tab.
156 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

The value expression for the textbox 'txtSales' refers to the
field 'Sale'. Report item expressions can only refer to fields
within the current data set scope or, if inside an aggregate,
the specified data set scope.

When the exception references a report item, you can double-click on the exception
text to navigate to the item and inspect it.

Some error conditions are discovered only during runtime. For example, you may
have an expression for a calculated field that results in a division-by-zero exception.
The way in which runtime errors are reported depends on how the expression is used.
If the expression is used to get the value of a textbox, #Error is shown in the text-
box. Otherwise, the exception is ignored. For example, if you have an expression to
conditionally change the color of a line item from black to red, and the expression
errors out, it will be ignored and the line will be shown in black.

The most common source of runtime errors, which will probably bite you at the
beginning, is omitting the Value property when you reference dataset fields, for exam-
ple, Fields!Sales as opposed to Fields!Sales.Value. Because Fields!
Sales references an object of type field, you will get a runtime error with #Error
as the textbox value without any other complaints from the Report Designer.

Circular references are not allowed even if the expression scope is valid. For
example, if textbox A references textbox B and textbox B references textbox A, you
won’t get a compilation error, but when the report is rendered, the value of B will be
set to #Error.

To make programming with expressions easier, RS exposes report items as collec-
tions referred to as the Report Object Model.

5.2 EXPLORING THE REPORT OBJECT MODEL

To use expressions in your reports, you must have a good grasp of the Report Object
Model. RS offers a simplified object model, exposed in the form of global object col-
lections that you can reference in your expressions.

The Report Object Model can be referenced only internally, that is, from code
running inside the report. You cannot instantiate a report object externally, as you
might have been accustomed to doing with other reporting tools and applications.
For example, Microsoft Access exposes its object model as an externally creatable
object of type Access.Application that external callers can instantiate using
OLE Automation.

At first, the inability to create and manipulate the Report Object Model from out-
side might seem restrictive. However, we view it as a compromise, given the other
advantages that the RS architecture has to offer. You may understand this better if you
consider the fact that the RS architecture is entirely server based. The RS process life-
time is not controlled by the client application. Instead, Reporting Services runs in its
own process and, thanks to its service-oriented architecture, any consumer capable of
EXPLORING THE REPORT OBJECT MODEL 157

submitting HTTP GET and SOAP requests can access it. Because RS runs in its own
process, it is not possible to instantiate an RS object locally.

The object model is implemented in the Microsoft.ReportingServices.
ProcessingObjectModel assembly, under the Microsoft.Reporting-
Services.ReportProcessing.ReportObjectModel namespace, as shown
in figure 5.4.

You can find the Microsoft.ReportingServices.ProcessingObject-
Model assembly in the Report Server binary folder (C:\Program Files\
Microsoft SQL Server\MSSQL.3\Reporting Services\ReportServer\
bin) or in the Report Designer folder (C:\Program Files\Microsoft
Visual Studio 8\Common7\IDE\PrivateAssemblies). To browse the
object model using the VS .NET Object Browser, create a new C# or VB .NET
project, reference this assembly, and press Ctrl-Alt-J.

NOTE How do we know where the Report Object Model is implemented? When
we were experimenting with the object model, we wrote a simple but useful
function called ShowItem, which you can find in the AWC.RS.Library
assembly, as shown in the following:

public static string ShowItem(object item){
return "Success";
}

The idea was to put a breakpoint inside the body of the function, so we
could break when we called it from expressions inside the report. For exam-
ple, to inspect the properties of a dataset field, we could drag and drop a

Figure 5.4 The Report Object Model is implemented in the Microsoft.ReportingServices.

ProcessingObjectModel assembly. It contains five object collections that you can access

programmatically in expressions or custom code.
158 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

field from the report dataset on the report and use the following expression
for the textbox value:

=AWC.RS.Library.RsLibrary.ShowItem(Fields!<field name>)

Once we break inside the ShowItem function, we can explore the item
argument in the Watch window. In the case of passing a dataset field, the
type of the argument was Microsoft.ReportingServices.Report-
ProcessingObjectModel.ReportObjectModel.Field. Follow-
ing this hint, we open the Microsoft.ReportingServices.

ProcessingObject assembly, which reveals the object model shown in
figure 5.4. Later in this chapter, we show you how to debug code in an
external assembly.

As we said in chapter 3, the only two ways to control the report output are externally
by using parameters and internally by using expressions. The Report Object Model
exposes five collections that are accessible to you as a developer, as listed in table 5.3.

You can access the items in these collections using all variations of the standard Visual
Basic collection syntax:

• Collection!ItemName

• Collection("ItemName")

• Collection.Item("ItemName")

Because the Collection!ItemName syntax is the shortest of the three you’ll use it
the most. The items inside the Globals and User collections are also exposed as prop-
erties and can be accessed by Collection.ItemName.

Let’s now discuss each of these collections and how you can use them.

5.2.1 Using the ReportItems collection

The ReportItems collection contains all textbox report items of the type Microsoft.
ReportingServices.ReportProcessingObjectModel.ReportObject-
Model.ReportItem. It allows the report author to reference the values of other
textbox items subject to the scope rules we discussed previously. Note that we said
textbox items, because the collection contains nothing else.

Table 5.3 Read-only collections exposed by the Report Object Model

Collection Purpose

ReportItems Exposes the textbox items in the report

Fields Wraps the fields of a report dataset

Globals Encapsulates some global report properties, such as the number of pages

Parameters Represents the report parameters

User Includes user-related properties
EXPLORING THE REPORT OBJECT MODEL 159

NOTE Strictly speaking, the ReportItem class serves as a base type, from which
the objects inside the ReportItems collection are derived. For example, if you
pass a textbox item to the ShowItem function, mentioned previously, you
will see that its type is Microsoft.ReportingServices.Report-
ProcessingObjectModel.ReportObjectModel.TextBox and it
inherits from ReportItem. In addition, if you examine the Microsoft.
ReportingServices.ReportProcessingObjectModel.Report-
ObjectModel namespace in the Object Browser or .NET Reflector, you
will find out that there is a CheckBox type defined, which is not currently
used. We expect the Report Object Model to evolve in the future and Report-
Items collections to include additional report items besides textboxes.

You would expect the ReportItems collection to include all report items placed on the
report (not just textboxes), but this is not the case. Why? Because the report item
properties can be changed only by expressions and the textbox values are read-only,
there is really no good reason to do so. We hope a future version will enhance the
object model to expose not only all report items but also their properties (in read-
write mode) similar to the WinForm and ASP.NET object models.

Even better, a future RS object model could support creating report items
dynamically in code. This would make it possible to generate report sections condi-
tionally. For instance, a Body_OnLoad event handler could check some business
rules and generate different report regions based on the result, such as a chart or tab-
ular region. For now, the best you can do is to hide a region pragmatically by using
an expression.

Implementing conditional formatting

A common requirement is to add conditional formatting features to reports, where
the visual appearance of report items (font, color, size, and so on) changes based on
some runtime conditions. Consider an example to demonstrate how the ReportItems
collection could be used to customize the appearance of textbox report items.

Let’s change the Employee Sales by Territory with Summary report to check
whether the salesperson has exceeded a certain goal, for example, $2,500,000. If she
has exceeded her goal, the report will show an indicator and highlight the person’s
name in bold. We saved the revised version of the report as Employee Sales by Terri-
tory with Summary Advanced.

Figure 5.5 shows what the report looks like when a salesperson has exceeded the
goal. When the goal has been exceeded, the text “Exceeded Goal!” shows up in italics.
Note that the conditional formatting is based on the Sales total amount (not shown
on figure 5.5) and not on the Sales YTD amount.

To implement the new report features, let’s add a new textbox called txtExceed-
edGoal inside the recEmployee rectangle and set its value to Exceeded Goal! and its
foreground color to red. Then, in the Advanced Textbox Properties dialog box (right-
click txtExceededGoal, choose Properties, and in the TextBox Properties dialog box
160 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

click the Advanced button), set its initial visibility to be based on the expression
shown in figure 5.6.

To retrieve the employee sales total, we can use the txtSalesTotal textbox, which
happens to be the one that holds the sales total amount in the tblEmployeeSales
table. In terms of performance, this is also the fastest way to get to the aggregate fig-
ure, because we don’t have to recalculate it. We used the 2,500,000 threshold to tog-
gle the visibility of txtExceededGoal. Strangely, the Boolean logic for the initial
visibility is reversed. If the expression evaluates to false, the item is visible; otherwise
it is hidden.

Similarly, to change the font of the txtEmployeeName field to bold, we imple-
ment this expression:

=Iif(ReportItems!txtSalesTotal.Value < 2500000, "Normal", "Bold")

Figure 5.5 You can use expressions to implement conditional

formatting.

Figure 5.6
Use an expression
to conditionally format

the visibility of the

txtExceededGoal textbox.
EXPLORING THE REPORT OBJECT MODEL 161

Figure 5.7 shows this expression in the Weight field of the Font tab of the Textbox
Properties dialog box.

The VB .NET Iif operator is probably the one you will use most often in your
expressions. In this case, if the sales total is less than the targeted amount, the font
weight is normal; otherwise it is bold.

The example in figure 5.7 uses what is called a nested Iif. This allows us to man-
age a three-part condition. In theory you could manage many more conditions in one
statement. The side effect of nesting Iifs is hard-to-read code. When the three-part
Iif syntax gets in the way, you may find the Switch function useful. For example,
if we wanted to check for more than one condition and change the color of txtSales-
Total accordingly, we could have used the Switch function, as shown here:

=Switch(ReportItems!txtSalesTotal.Value < 2500000, "Red",
ReportItems!txtSalesTotal.Value >= 250000 AND
ReportItems!txtSalesTotal.Value < 500000, "Yellow",
ReportItems!txtSalesTotal.Value >= 500000, "Green")

The Switch function will return the first value that evaluates to true. You need to be
careful with the Switch function as you can set up cases where it will not return any
value. This may cause problems with the report, depending on where you are using it.

NOTE For some reason, the font color is not available on the Font tab in the Text-
Box Properties dialog box. It is available only on the VS .NET Properties
window. To change the font color programmatically, expand the Color
property drop-down list and select its first item, <Expression…>.

Figure 5.7
Use an expression to

set the font weight of

the txtEmployeeName

textbox.
162 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

An interesting note about the ReportItem.Value property is that although it ref-
erences the value in a textbox item, it preserves the underlying data type. For this rea-
son, we were able to reference the sales total amount without any type casting.

Report items limitations

These two expressions get the work done. However, as any seasoned developer will
point out, our implementation is not very maintainable for two primary reasons:

• We’ve hardcoded the threshold figure twice.

• We’ve coded the same business rule twice.

The first issue could be easily corrected by defining a constant in custom-embedded
code for this report. The second issue could be addressed by moving the business logic
inside a VB .NET function defined in embedded code or an external assembly, as we
discuss in chapter 6. The custom function could then return a Boolean value that
we can evaluate in both expressions.

What if we want to get rid of expressions altogether? For instance, can we replace
both expressions in our case with a call to a single function or use an internal event
to centralize all formatting and data manipulation logic in a single place? We’ve
already said that RS doesn’t support events, so the event option is out. What about the
first option? Can we write a function and pass the whole ReportItems collection?
Unfortunately, the answer is no.

First, the ReportItems collection exposes only the textbox items inside the report,
so we don’t have access to data regions and other report items. You might say that in
our case this is not an issue, because we want to manipulate only textboxes anyway.
However, it so happens that the Value property is the only property available to us.

Second, to make things even more difficult, the Value property is read-only. In
other words, if we decide to get innovative and pass the txtExceededGoal and txtEm-
ployeeName items as objects to a custom function, we won’t get too far because we
cannot change the textbox value inside the function.

So, to recap, the ReportItems collection contains all textbox report items inside
the report, and each ReportItem object has one read-only, publicly accessible prop-
erty, Value. This means that the only way to change the textbox value programmat-
ically is to attach an expression to the Value property inside the Report Designer. By
the way, to reference the value of the current textbox item, you can use Me.Value
or just Value.

5.2.2 Using the Fields collection

The Fields collection exposes the fields (columns) from a given row of the report
dataset as objects of the type Microsoft.ReportingServices.Report-
ProcessingObjectModel.ReportObjectModel.Field. .NET developers
can draw an analogy between the RS Field object and DataColumn of the
ADO.NET DataTable class. Unlike the DataColumn class, however, each Field
EXPLORING THE REPORT OBJECT MODEL 163

object inside the Fields collection has only two public read-only properties: Value
and IsMissing.

The Value property can return one of the following:

• Nothing (null in C#), in case there is missing data or the data is NULL. To
check for Nothing you can use the VB .NET function IsNothing() or
<fieldname.Value> Is Nothing.

• The field value, whose type is cast to one of the standard .NET data types, such
as Int32, DateTime, and so on. The type translation that RS performs behind
the scenes is really helpful because it allows you to reference the field value
directly in strongly typed .NET functions. For example, you might recall that
for the Year column in the Territory Sales Crosstab report we used the expres-
sion Fields!Date.Value.Year. This was possible because the value of the
Date field was exposed as a .NET DateTime structure.

Dealing with null and missing values

Unfortunately, the automatic conversion that RS does to translate NULL values and
missing data to Nothing may be more trouble than it is worth because sometimes you
do need to differentiate between both conditions. For example, in a matrix report
you may need to react in a different way when there is no data for a given row and col-
umn combination and when the aggregate value is NULL.

One workaround is to replace the NULL values at the data source or in the report
query statement with whatever value makes sense, for example, NULL. Then, you can
write a simple VB .NET function like the one here to check for both conditions:

Function GetValue(value As Object) As Object
 If value is Nothing Then
 Return "N/A" ' missing data
 Else
 Return value ' has value or 'NULL'
 End If
End Function

Another way to differentiate between missing data and NULL values is to base the
textbox on an expression that uses the CountRows() function. You see an example
of how this could be implemented in chapter 6.

Checking for missing fields

To make dealing with missing values more confusing, the Field object exposes a
property called IsMissing. It is important to note that it doesn’t check for missing
values. Instead, it returns true if the field is not found in the report dataset. If you are
trying to understand the practical use of this, consider the case when the report
dataset is returned by a call to a stored procedure.

For example, consider the Employee Sales by Territory report that we developed
in the previous chapter to show employee performance. Users belonging to various
164 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

security roles, such as administrators and clerks, can request this report. In the second
case, you might not want to reveal the employee-sensitive information, such as com-
missions and bonuses.

You can hide these fields using expressions, or you can pass a parameter to the
spGetEmployeeSalesByProductSubcategory stored procedure to exclude
these fields entirely. If you use the latter approach, you can use the IsMissing
property to exclude these fields from expressions that use them. If you don’t check
whether they are available, they will show #Error.

Finally, the Field object also implements an indexer. Currently, its implemen-
tation returns NULL. The next version of Reporting Services may include additional
properties that data providers, such as the SQL Server .NET provider, could return.

Using the Fields collection in expressions

Here’s an example showcasing the Fields collection. We’ll change the Employee
Sales by Territory with Summary Advanced report and replace the # Orders column
with the Percentage of Employee’s Total column. The new column will show the
sales amount for each product subcategory as a percentage of the sales total, as shown
in figure 5.8.

To implement the new requirements, we have to change the expression of the cor-
responding textbox item to

=Fields!Sales.Value/ReportItems!txtSalesTotal.Value

To express the data as a percentage, we change the format settings of the textbox prop-
erties accordingly.

Another way of implementing Percentage of Employee’s Total is to rewrite the
previous expression using the txtSales report item, as follows:

= ReportItems!txtSales.Value/ReportItems!txtSalesTotal.Value

Figure 5.8 We can use the Fields collection to implement the calculated field Percentage of

Employee’s Total.
EXPLORING THE REPORT OBJECT MODEL 165

So, should we use the ReportItems or Fields collection? In terms of performance,
there is not that much difference, because both are exposed internally as collections.
However, if we need to use an aggregate or calculated result that is already available in
a textbox, we would reference it using the ReportItems collection. For example, the
previous expression will produce the same result, if it is changed to:

=Fields!Sales.Value/Sum(Fields!Sales.Value)

This expression, however, will calculate the sales total for each row in the
tblEmployeeSales table, which is less efficient than getting the value from the
txtSalesTotal textbox because the work has already been done to calculate the total.

5.2.3 Using the Parameters collection

The Parameters collection exposes the report parameters as objects of the type
Microsoft.ReportingServices.ReportProcessing.ReportObject-
Model.Parameter. Each Parameter object has two publicly accessible read-
only properties: Label and Value.

Using parameter labels and values

As we saw in chapter 3, you can define a list of available values for a report parame-
ter, and the list could be explicitly set or dataset driven. Similar to implementing a
drop-down control, if you decide to set available values, you can use a pair of values
for each report parameter: a label for the visible portion and a value for the actual
parameter value.

For example, in the Sales by Territory Interactive report, we used the
TerritoryID column from the dsTerritory dataset as the parameter value, and
the Territory column as the parameter value. In this case, the Label and Value
parameters map to the parameter Label and Value properties, respectively. If you
don’t use available values, the Label property returns Nothing, while the Value
property returns the parameter value.

5.2.4 Using the Globals collection

The Report Server exposes some useful global report properties in the Globals collec-
tion, as shown in table 5.4.

Table 5.4 The Globals collection, which includes some common report properties

Property .NET data type Purpose

ExecutionTime DateTime The date and time when the Report Server started
processing the report

PageNumber Int32 The current page number

ReportFolder String The full path to the report, e.g., /AWReporter (excluding
the ReportServerURL)

ReportName String The report name, e.g., Territory Sales

continued on next page
166 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

The ExecutionTime property can come in handy when you experiment with
report caching. We discuss how caching affects the report execution process in chapter 8.
When the Report Server determines that it can use the cached report copy, the report
is not processed at all. Instead, the cached copy of the report is returned to the user.
Hence, the ExecutionTime property will not change within the expiration period.

We have already used the ReportName property in some of the reports we cre-
ated so far to display the report name as a report title.

The PageNumber and TotalPages properties can be used only inside the
report page header and footer. For example, the Products by Category multicolumn
report displays the current page in the page footer using the following expression:

="Page " & Globals.PageNumber

5.2.5 Using the User collection

Finally, the User collection contains information about the user who is currently request-
ing the report. Specifically, the User collection exposes the following two properties:

• UserID—When Windows authentication is used, UserID returns the Win-
dows domain account of the user who runs the report. For example, if Terri has
logged in as Terri to the adventure-works domain, then User.UserID
will return adventure-works\Terri. If custom authentication is used,
then UserID will return whatever the extension sets as a user principal. We see
an example of how we can use this property to enforce a secured access to report
data in the next chapter.

• Language—The language ID of the user running the report, for example,
en-US, if the language is set to English (United States). The Language prop-
erty allows us to localize our reports.

Often, to increase expression power, you will need to call some piece of prepackaged
code, exposed as a function, as we discuss next.

5.3 WORKING WITH FUNCTIONS

Reporting Services allows you to reference external and internal (native) functions.
You can use external functions located in .NET standard or custom assemblies.

In addition, RS comes with some native functions that encapsulate commonly
used programming logic, such as functions that produce aggregate values, count
dataset rows, and so forth. We discuss the RS native functions in section 5.3.2.

ReportServerUrl String The Report Server URL, e.g.,
http://servername/Reports

TotalPages Int32 The number of pages

Table 5.4 The Globals collection, which includes some common report properties (continued)

Property .NET data type Purpose
WORKING WITH FUNCTIONS 167

5.3.1 Referencing external functions

How you reference external functions depends on where the function is located. RS
has two commonly used .NET assemblies pre-referenced for you: Microsoft.
VisualBasic and mscorlib. Microsoft.VisualBasic contains the types
that form the Visual Basic runtime. mscorlib is a special .NET assembly that
defines the .NET data types, such as System.String and System.Int32, as well
as many frequently used functions and types defined under namespaces starting with
System, such as System.Collections and System.Diagnostics.

The following namespaces from these two assemblies have been already imported
by RS, so you can use their types and methods without having to specify namespaces:

• Microsoft.VisualBasic—This namespace allows you to access many of
the common VB runtime functions. For example, in the Territory Sales report,
we used the VB.NET Format function located in the Microsoft.Visual-
Basic assembly to create a dynamic group, so we can group the report data by
month. The expression we used for this purpose was =Format(Fields!
Date.Value, "MMM"). Or, you can use the MsgBox function to help you
while debugging your embedded code. As you see in chapter 6, the Report
Designer Code Editor has left a lot to be desired and doesn’t provide debugging
capabilities. Remember, though, to remove the MsgBox calls before you deploy
your report to the Report Server. If you don’t, you will get #Error in all text-
boxes that reference functions with MsgBox in your embedded code.

• System.Convert—Allows you to perform runtime conversion between
types, for example, from string to double using System.Convert.
ToDouble().

• System.Math—Provides constants and static methods for trigonometric, log-
arithmic, and other common mathematical functions.

To reference the rest of the System namespaces, you need to specify the fully quali-
fied class name, including the namespace. For example, if you need to use a collection
of the type ArrayList in an expression, you have to use its fully qualified name,
System.Collections.ArrayList.

To use functions located in other .NET assemblies, you must reference the assem-
bly first. We discuss working with custom code in detail in chapter 6.

RS comes with a number of native functions that you can use in your expressions.
Most of these functions are aggregate functions.

5.3.2 Using aggregate functions

Aggregate functions perform a calculation on a set of values from data in datasets,
data regions, and groupings and return a single value. Aggregate functions are often
used with data region groups to produce data aggregates in the group footer.
168 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

We have already seen many examples where we used the most common aggregate
function, Sum(), to get an aggregated total of the data, such as the Sales Total per
employee or product category in the Employee Sales by Territory report.

Another aggregate function that we used to implement conditional formatting was
the RowNumber() function. The RowNumber() function produces a running
count of the rows within a specified scope. For example, in the Employee Sales by
Territory report, we used RowNumber()to alternate the background color for the
rows in the tblEmployeeSales table region between white and beige. To achieve
this effect, we used the following expression for the BackgroundColor property of
the tblEmployeeSales table row to determine whether the row number is odd or
even and to format it accordingly:

=Iif(RowNumber("tblEmployeeSales") Mod 2, "White", "Beige")

Understanding the aggregate scope

When you look at the syntax of the RS aggregate functions, notice that all of them
take the argument Scope. Scope can be set to the name of a group, data region, or
dataset. We have already talked about the expression scope, but we want to discuss
this concept once again in the context of aggregate functions.

To understand how scopes affect aggregates, recall that a report can have multiple
datasets and data regions. The data regions can coexist side by side or be nested one
within the other. But how does an aggregate function determine which dataset or
region provides the data for the aggregate calculation? For example, if you look at the
Employee Sales by Territory Advanced report, we have several expressions that use
the Sum() function to calculate the total sales amount.

• First, we used it in the expression that defines the txtTerritorySalesYTDTotal
textbox value inside the tblSummary table region to show the sales total for all
sales territories.

• Second, we used it inside lstTerritory to get the sales total per territory.

• Finally, we used the same expression inside tblEmployeeSales to get the
sales total per salesperson.

How does Sum() resolve to the right scope?
Obviously, the Sum() function has some intelligence built into it to determine

the right scope of operation. It so happens that if a scope is not explicitly specified, it
defaults to the innermost containing data region or grouping in which the aggregate
is defined. So, in our example, the scope of the Sum() function defaulted to tbl-
Summary, lstTerritory, and tblEmployeeSales, in that order.

Setting the aggregate scope explicitly

Let’s look at one more example. We’ll change the Employee Sales by Territory with
Summary Advanced report and add another column to tblEmployeeSales that
WORKING WITH FUNCTIONS 169

will show the percentage of the salesperson’s total relative to the territory total. To
achieve this, we can copy and paste the third table column (Percentage of Employee’s
Total) and use the following expression for the new column:

=Fields!Sales.Value/Sum(Fields!Sales.Value, "grpTerritory")

Now, we explicitly set the aggregate scope to the grpTerritory group scope of the
lstTerritory list region, which groups the data by territory. In this way, we can
get to the territory sales total. Figure 5.9 shows the new version of the Employee Sales
by Territory with Summary Advanced report.

Of course, in this particular case, we could have used the value in the txtTerritory-
Total textbox, which conveniently displays the territory total, but we wanted to show
you how the scope affects the aggregate calculation.

Understanding aggregate scope rules

Rules exist that govern the valid use of scopes. Failure to follow those rules results in
the following exception, which you will probably run into quite often at the beginning:

The value expression for the textbox 'txtTerritoryGrandTotal'
uses an aggregate expression without a scope. A scope is required
for all aggregates used outside of a data region unless the report
contains exactly one data set.

As the exception text says, one of the rules is that you can specify only an aggregate
scope of a containing group, region, or dataset. To demonstrate this, let’s change the
Employee Sales by Territory with Summary Advanced report to show the grand total
for all territories for the given time period. At first attempt, you might think that you
can accomplish this by adding a new textbox outside the lstTerritory list region
and setting its value to Sum(Fields!Sales.Value). However, when you run the
report, you will get the “wrong scope” exception that we just discussed. The problem
is that because there is no containing scope, the Sum() function has no idea how to
calculate the expression.

Figure 5.9 With aggregate functions, you can set the aggregate scope explicitly.
170 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

You may try to solve this issue by changing the expression to Sum(Fields!
Sales.Value, "lstTerritory") so you “tell” the function to use the lst-
Territory list region. This won’t work either, because you can request only a con-
taining scope. In our case, because the textbox is outside any region, there is no
containing scope.

The right expression in this scenario is Sum(Fields!Sales.Value, "dsEm-
ployeeSales"), so the Sum() function calculates the total for the whole dataset,
as shown in figure 5.10.

Note that if the report uses only one dataset, you don’t have to explicitly specify
the dataset name, because the aggregate will default to it if it has no containing scope.

The Report Designer helps you to adopt the scope mentality. When you drag and
drop a dataset field from another dataset to a region, it automatically generates an
aggregate expression for the textbox value. If the field is numeric, the following
expression is generated:

=Sum("<field name>", "<dataset name>")

As you can see, the Report Designer explicitly sets the scope to the dataset name that
the field belongs to. If the field is the numeric Sum(), the Report Designer defaults
to Sum(); otherwise it uses the First() aggregate function to retrieve the field
value from the first data row.

Implementing running totals

A few other aggregate functions are available with RS that allow you to perform vari-
ous aggregate calculations, such as counting (Count(), CountDistinct(),
CountRows()) and getting the minimum, average, and maximum values, as well as
variance and deviation values. Consult the documentation for a full list of all aggre-
gate functions supported by RS. Those of you familiar with SQL will find the RS

Figure 5.10 You can create a grand total by using aggregate functions

and specifying the scope of the calculation.
WORKING WITH FUNCTIONS 171

aggregate functions similar to the ones supported by most databases. The SQL speci-
fication defines five aggregate functions that databases must support (MAX, MIN, AVG,
SUM, and COUNT).

An interesting function that we would like to mention is RunningValue().
This function allows you to implement running total aggregate calculations, as the
Monthly Sales by Product Category report shown in figure 5.11 demonstrates.

The Running Totals column carries over the total from the previous months so
the user can see the accumulated-by-month amount. Running totals reports are not
easily done using straight SQL. With the helpful RunningValue() function,
though, authoring this report with RS takes just a matter of minutes. The only thing
that you have to do is set the Running Total column expression to:

 =RunningValue(Fields!Sales.Value, Sum, "dsSales")

Of course, if you need aggregate operations other than summing, replace the Sum
function in RunningValue with any other aggregate function with the exception of
RunningValue, RowNumber, or Aggregate.

The Aggregate() function returns a custom aggregate if the database provider
supports user-defined aggregates. SQL Server 2000 does not support custom aggre-
gates. However, with SQL Server 2005 developers can create user-defined aggregate
functions. Similar to user-defined functions (UDF), custom aggregates return a single
value and they can be written in any of the supported .NET languages.

Figure 5.11 Use the RunningTotal() function to implement running totals.
172 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

5.3.3 Using other internal functions

RS provides three other helpful functions that you can use in your expressions:
InScope, Level, and Previous.

The InScope() function indicates whether the current report item is within the
specified scope. This is especially useful with matrix regions, as you see in section 5.4.1
when we discuss reports with navigational features.

Implementing recursive hierarchies

The Level() function returns the level offset as an integer value for recursive hierar-
chy reports. Recursive hierarchy reports are based on self-referential data, which has a
parent-child relationship already defined. A typical example is an organizational hier-
archy, where each employee record in the database has a ManagerID column point-
ing to the employee supervisor record. RS allows us to quickly generate reports that
take advantage of such recursive data relationships.

For example, let’s create a report that displays the AWC organizational structure.
Figure 5.12 shows the Corporate Hierarchy report.

Figure 5.12 Use the Level() function to create recursive hierarchy reports.
WORKING WITH FUNCTIONS 173

The report shows the employee name, his title, and the name and title of his direct
supervisor. In addition, the report gives the user two options to filter the report data.
First, the user can choose to see whom a given employee reports to, and second, it
allows the user to see the employee’s subordinates.

The trick to creating a recursive hierarchy report with RS is to configure the Parent
Group setting on the region Grouping and Sorting Properties dialog box, as shown
in figure 5.13.

In our case, we set the Parent Group to the employee’s manager. Once this is
done, RS walks recursively through the employee data, starting with the top manager
and going all the way down. To offset the table region rows in accordance with the
employee hierarchical level, we use the following expression for the left padding set-
ting of the Employee Name textbox (txtName):

=Convert.ToString(2 + (Level()*10)) & "pt", 2pt, 2pt, 2pt

The Level() function returns an integer value indicating the hierarchical level of a
row. Thus, for the top manager, Level() returns 0; its subordinates have a level of
1, and so on. We simply use the return value from the Level() function to offset
the text accordingly. To give the user an option to switch between employees and
managers, we add the Filter parameter with two available values, Employee
and Manager, respectively.

Finally, we base the report dataset query on an expression that appends the appro-
priate WHERE clause accordingly.

Figure 5.13
Use the Parent

Group setting to

establish the parent-

child relationship.
174 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

Implementing data differentials

The Previous() function is useful for returning the previous aggregate value from
the current or another scope. For example, we can enhance the Monthly Sales by
Product Category and add a % Change column to show the change in percentage
from one month to the next. Figure 5.14 shows the new version of the report.

Looking at the report, the user can see that, for example, the sales were up 71 percent
from July to August. We use the following expression for the value of the txtPer-
Change textbox:

=Iif(Previous(Fields!Sales.Value)>0, _
(Fields!Sales.Value - Previous(Fields!Sales.Value)) _
/Previous(Fields!Sales.Value), "N/A")

First, this expression checks to see whether we have data from the previous month. If
not, N/A is displayed. Otherwise, we use the Previous() function to get the sales
amount for the previous month and calculate the difference.

Now that you know how to use expressions and functions, you can make your reports
more interactive by taking advantage of the navigational features that RS provides.

5.4 DESIGNING REPORTS
WITH NAVIGATIONAL FEATURES

With Reporting Services you can add navigational features to your reports in the form
of hyperlinks and document maps. Document maps enable the report user to jump
quickly to a specific area of a large report; hyperlinks allow users to navigate to an
external URL-addressable resource.

Figure 5.14 Use the Previous() function to implement the percentage change.
DESIGNING REPORTS WITH NAVIGATIONAL FEATURES 175

5.4.1 Reports with hyperlinks

All data regions (including the chart region) support hyperlinks. Hyperlinks in
reports can be used to allow the user to navigate to:

• Another report

• A bookmark inside a report, similar to the way you can use bookmarks in
Microsoft Word documents

• A URL address; the currently supported options are mailto, http, https, news,
and ftp. The URL address can be defined as static text or produced by an expres-
sion. For example, in a report that shows a list of vendors, the vendor name
hyperlink could navigate the user to the vendor’s website.

NOTE Unfortunately, to prevent executing client-side malicious code, Reporting
Services doesn’t support calling JavaScript functions from hyperlinks.

One common use of hyperlinks is to navigate the user to a URL address.

Using hyperlinks to send e-mail

The Territory Sales Drillthrough report (shown in figure 5.15) demonstrates how you
can incorporate navigation capabilities in your reports with hyperlinks.

Now the report displays the salesperson’s name as a hyperlink, so the user can con-
veniently click it to send the salesperson an e-mail message. You can define hyperlinks
for textbox and image report items from the Navigation tab of the item’s Advanced
Properties dialog box, as shown in figure 5.16.

Figure 5.15 Use hyperlinks to navigate the user to a URL address.
176 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

In this example, we’ve defined the following expression for the Jump to URL hyper-
link action property:
="mailto:" & Fields!EmailAddress.Value

Once you set the hyperlink action, RS automatically changes the mouse cursor to a
hand when the user hovers on top of an item with a hyperlink. In addition, we’ve
implemented conditional formatting to underline the person’s name only if the
EmailAddress field is not null.

Finally, we’ve implemented a tooltip to show the person’s e-mail address by set-
ting the Tooltip property (VS .NET Properties window) of txtEmployee to the fol-
lowing expression:
= Fields!EmailAddress.Value

Hyperlinks are frequently used to create drill-through reports.

Creating drill-through reports

The same sample report, Territory Sales Drillthrough, also demonstrates how you can
add drill-through features to your reports by setting the hyperlink action to open
another report that could show more detailed data for the currently selected item.
With RS, you are not restricted to hardcoding the name of the drill-through report.
Again, you can use expressions to evaluate a condition and return the report name.

For example, the Territory Sales Drillthrough report evaluates the row grouping
scope of the matrix region using the InScope() function. If the user has expanded
the Employee row group (to drill down and see the salesperson’s data), the sales
amount hyperlink navigates the user to the Employee Sales Freeform report so the

Figure 5.16
To add navigational

features to your reports,

use the Navigation tab of

the report item’s Advanced

Properties dialog box.
DESIGNING REPORTS WITH NAVIGATIONAL FEATURES 177

user can see the sales breakdown per product category. If the Employee row group is
collapsed, the hyperlink opens the Employee Sales by Territory with Summary Chart
report to show the sales data broken down by territory.

To accomplish this we set the Jump to report navigation action of txtSales to

=Iif(
InScope("rowEmployee"),
"Employee Sales Freeform",
"Employee Sales By Territory with Summary Chart")

To understand what this expression evaluates to, recall that we have two row groups
defined in the matrix region: rowTerritory and rowEmployee.InScope
("rowTerritory") always returns true, because the sales territory represents the
outermost row grouping. InScope("rowEmployee") returns false if the
Employee row group is collapsed and true otherwise. InScope() allows you to
determine which row or column group has been expanded and react accordingly.

Using hyperlinks to implement web-style paging

With a bit of creativity and programming effort, you can use links in your reports to
implement various custom actions. For example, say you have a large report that takes
a very long time to execute and displays hundreds of records. To improve the user
experience, you may want to implement custom paging similar to the familiar web-
based application-paging concept.

The report could retrieve the report data in chunks, for example, a hundred
records at a time. At the end of the report, you can add a textbox with the text “Next
page….” You can make the textbox clickable by defining a link that will point to the
same report. You can use an expression for the link URL to “remember” the current
selection criteria and send it back to the report when a new page is requested.

5.4.2 Reports with document maps

When reports become large, and they often do, it becomes difficult to navigate
through them and find the right information easily. For example, suppose that Adven-
ture Works Cycles would like to expose its product catalog report online. This strat-
egy could be beneficial for several reasons:

• Customers and salespersons would be able to access the company product cata-
log over the Internet.

• The catalog would always contain the up-to-date product information.

• Exposing the product catalog as a report would save substantial time compared
with authoring it and maintaining it using web pages, not to mention that the
users would be able to export the product catalog to one of the many sup-
ported formats.

One potential implementation area of concern is that the product catalog may
include hundreds of products and the user may not be able to find the information of
178 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

interest quickly. RS solves this issue elegantly by allowing report authors to implement
document maps with links to report areas.

What is a document map?

Similar to a book’s table of contents, report document maps present an outline of the
report data. In the previous example, the product catalog map could organize the prod-
uct data in categories, subcategories, and products for faster navigation. By the way,
this is exactly what the Product Catalog report, which is included in the Reporting
Services samples, does.

Let’s look at an example to showcase the advantages of using document maps. We
assume that the AWC management would like to see the company sales quarterly per-
formance for a given period broken out by sales territory and store. Because a sales ter-
ritory could potentially include many stores, the management has requested that we
implement some sort of navigational feature that enables users to find a particular
store easily. There are at least two possible implementation approaches:

• Pass the store name as a parameter. However, this implementation would
require regenerating the report for each store needed.

• Create a document map to organize the sales data in territories and stores.

Figure 5.17 shows the Territory Sales by Store with Map report, which includes a data
map for easier navigation.

Figure 5.17 Adding a document map to the Territory Sales by Store report makes it easy for

users to view and navigate to a store in any given territory.
DESIGNING REPORTS WITH NAVIGATIONAL FEATURES 179

As you can see, the report displays a hierarchical document map on the left side listing
territories and stores alphabetically. The user doesn’t have to page through the report
to find a particular store. Instead, he can expand the document map and locate the
store quickly.

Implementing document maps

Authoring the actual report is nothing we haven’t seen so far. We used three regions,
one table, and two list regions, to group the data by country, store, and quarter. The
table region (tblStoreSales) is nested inside the store list (lstStore), which in
turn is nested inside the territory list (lstTerritory).

Now comes the fun part. You may think that implementing a document map
might require creating new datasets and expressions. Actually, it really can’t be sim-
pler. The only thing that we had to do was to associate the Label property of the
lstTerritory and lstStore groups to the corresponding document map label,
as shown in figure 5.18.

To achieve the two-level hierarchy of territory and store, for the Territory list we
set the document map label to Fields!Territory.Value, while for the Store
list we set it to the Fields!Store.Value. That’s all there is to it! RS does the
heavy lifting to parse the data recursively and generate the document map when
the report is processed.

As you’ve seen in this section as well as in chapter 4, RS allows you to add a variety
of interactive features to your reports, such as a report toolbar, toggled visibility, nav-
igational features, interactive sorting, and document maps. One thing that may not

Figure 5.18
Implement a document

map in your reports by

associating the Label

property of the group to

a document map label.
180 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

be clear is how different export formats impact these features. Let’s round out this dis-
cussion by looking at some considerations that you need to keep in mind with regard
to report rendering.

5.5 REPORT RENDERING CONSIDERATIONS

The area of functionality that is most impacted by exporting is the report interac-
tive features. Table 5.5 shows the interactive features that are supported for each
export format.

With Reporting Services, export formats are not securable items. In other words, if
the user has rights to render the report, she can export it in any registered format. If
you need to limit the export options, the simple solution will be to do this in your cli-
ent application. The disadvantage is that an adept user can bypass the client applica-
tion and export the report directly from the Report Server. If this is an issue, you can
implement a façade layer between the client application and the Report Server to val-
idate the report requests.

Alternatively, you can also remove the rendering extension elements in the
RSReportServer.config configuration file (found under the <Render> sec-
tion) to eliminate the possibility that the export format can be used altogether.

5.5.1 Exporting reports to HTML

The Report Server uses the HTML rendering extension to render the report to HTML
by default if a rendering format is not specified. HTML 4.0 is used for up-level brows-
ers, such as Internet Explorer 4.0 or above or Netscape 7.0 or above; otherwise,
HTML 3.2 is used.

The report-formatting settings, such as fonts, colors, and borders, are encapsulated
in an inline stylesheet included in the page. Charts are always saved as image files.

If not already cached by the browser, images are fetched via additional requests to
the Report Server. In essence, the browser asks the Report Server to send the image
by submitting a URL request to the server, such as the following:

http://localhost/ReportServer?/AWReporter/Employee Sales Freeform with
 Chart&rs:Format=HTML4.0&rs:ImageID=0b326371-9aec-4705-87bf-1af02b3d5e78

Table 5.5 Interactive features that are supported for each export format

Feature HTML MHTML Excel Image PDF CSV XML

Report toolbar ✓

Toggled visibility ✓

Navigational features ✓ ✓ ✓*

Document maps ✓ ✓ ✓

* Hyperlinks to static URLs in rows and column groups only
REPORT RENDERING CONSIDERATIONS 181

One interesting option that exporting to HTML supports is autorefreshing reports.
For example, you can author a company stock performance report that automatically
refreshes itself on a set schedule to get the latest stock value. You can set up the report
to automatically refresh itself at a certain interval by using the AutoRefresh report
property. You can find this property both on the General tab of the Report Properties
dialog box (select the report by clicking the Report Selector, right-click the report,
and choose Properties) and on the report’s Properties window. Behind the scenes, this
property emits a meta browser tag, for example, <META HTTP-EQUIV="Refresh"
CONTENT="5"> if you set the AutoRefresh property to 5 seconds.

In terms of preserving the report fidelity, HTML is your best choice because it sup-
ports all interactive features, such as hyperlinks, document maps, and expandable
crosstab reports.

There’s one performance consideration when exporting reports to HTML. To ren-
der an HTML report, the browser loads the report in memory. For large reports, this
could result in an “out of memory” exception. To prevent this and display HTML
reports faster, you can define page breaks wherever it makes sense. For example, you
can place a page break at the beginning or end of region groupings.

To enhance the report performance, the Report Server automatically generates a
soft page break after the first page when repaginating HTML reports. Therefore, the
first page of report loads quickly even with large reports.

5.5.2 Exporting reports to MHTML

The MHTML (MIME Encapsulation of Aggregate HTML Documents) format, listed
as Web Archive in the standard report toolbar, encapsulates the report and its images
in a single file. This eliminates the round-tripping to the Report Server to fetch the
report images.

Because MHTML is based on MIME, rendering reports in MHTML format will
be probably the best export option when you need to push the report to the users
via e-mail subscribed delivery, as we discuss in more detail in chapter 12. MHTML
is more compact than PDF and TIFF formats. Note, though, that all interactive fea-
tures except hyperlinks (drill-through reports) will be disabled when you export
to MHTML.

5.5.3 Exporting reports to other formats

Here’s a quick recap about the rest of the export formats.

Excel

This format could be useful when you want to manipulate the report data offline in
Microsoft Excel XP or later versions. Exporting to Excel doesn’t require the use of
Office Web Components for matrix and charts regions. Consult the documentation
about other considerations when exporting reports to Excel.
182 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

Image

Exporting a report as an image allows the report to be rendered in BMP, EMF, GIF,
JPEG, PNG, TIFF, and WMF image formats. The default option is TIF. Different for-
mats can be requested by passing device settings parameters.

Exporting a report as an image could be useful if you want to show the report eas-
ily on a web page or print it consistently regardless of the printer capabilities. On the
downside, all interactive report features will be lost. Another disadvantage of export-
ing to image files is that it substantially increases the report size.

PDF

If the report has a document map, it can be found under the Bookmark tab in Adobe
Reader. All other interactive features are lost.

CSV

You can export reports to comma-delimited files. The field delimiter, record delimiter,
and text qualifier can be fine-tuned by passing specific switches. See the documenta-
tion for all considerations regarding exporting reports to CSV.

XML

As you have just seen, reports can be exported to XML. Only the report data is
exported and the report layout information is not preserved.

NOTE Microsoft will probably provide a rendering extension for exporting
reports to RTF format with the next release of Reporting Services. If you
don’t want to wait until then, you have two options. First, you can use
third-party rendering extensions, such as the SoftArtisians’s OfficeWriter,
to export the report to Word format (for more information refer to chap-
ter 14). Or, with the persisting to XML feature available with Office 2003,
another option for exporting to Word will be to render the report in XML
format, compliant with the Word schema.

5.6 SUMMARY

You can greatly enhance your report features by using expressions coupled with func-
tions. You can write expressions manually or use the Expression Editor. The Reporting
Services object model exposes five collections that you can reference in expressions:

• The Fields collection allows you to reference the report’s dataset fields.

• The ReportItems collection exposes all textbox items.

• The Parameters collection allows you to reference the parameter values passed
to the report.

• The Globals and User collections contain some useful global and user-
specific values.
SUMMARY 183

To expand your expression capabilities, you can use native functions that come from
RS or external functions from the pre-referenced standard .NET assemblies.

Finally, you can use expressions to add interactive features to your reports, such as
links and document maps. You need to be aware of how different export formats
impact the report’s interactive features. The richest format that offers the most inter-
active features is HTML.

With RS, you can accomplish much more with expressions than creating calcu-
lated fields and calling a limited number of functions. In chapter 6 you learn how to
unleash the expression capabilities by integrating them with custom code.
184 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

C H A P T E R 6

Using custom code

6.1 Understanding custom code 186
6.2 Custom code in action: implementing report forecasting 193
6.3 Using XML-based reports 207
6.4 Summary 213
Reporting Services doesn’t limit your programming options to using inline expres-
sions and functions. In this chapter, we show you how to supercharge the expression
capabilities of your reports by integrating them with custom code. Writing custom
code allows you to use advanced programming techniques to meet the most demand-
ing reporting needs.

In this chapter, you:

• See what custom code options RS offers

• Learn how to write embedded code

• Find out how to integrate reports with external .NET assemblies

• Use XSL Transformations (XSLT) to produce XML reports

We show you how to put your custom code knowledge into practice by creating an
advanced report that shows forecasted sales data.

With the widespread adoption of XML as an interoperable data exchange format,
you also see how you can export reports to XML and custom-tailor the report output
by using XSLT.
185

6.1 UNDERSTANDING CUSTOM CODE

As we mentioned in chapter 1, one of the most prominent features of Reporting Ser-
vices is its extensible architecture. One way you can extend the RS capabilities is by
integrating your reports with custom code that you or somebody else wrote. In gen-
eral, you have two options for doing so:

• Write embedded (report-specific) code using Visual Basic .NET.

• Use custom code located in an external .NET assembly.

Let’s discuss each custom code option in more detail.

6.1.1 Using embedded code

As its name suggests, embedded code gets saved inside the Report Definition Language
(RDL) file. Before we jump to a code example, here are some limitations that embed-
ded code is subject to:

• You can call embedded code only from within the report that contains the code.
Because embedded code is saved in the RDL file, it is always scoped at the report
level. For this reason, code embedded in one report cannot be referenced from
another report. To create global and reusable functions that could be shared
among reports, you have to move them to an external .NET assembly.

• You are restricted to using only Visual Basic .NET as a programming language
for writing embedded code.

• As we pointed out in chapter 5, from within custom code you cannot directly
reference the report object collections, such as Fields, ReportItems, and so on.
Instead, you have to pass them to your embedded methods as arguments.

To call embedded code in your report, you reference its methods using the globally
defined Code member. For example, if you have authored an embedded code func-
tion called GetValue(), you can call it from your expressions by using the follow-
ing syntax:

=Code.GetValue()

DEFINITION Shared (called static in C#) methods can be invoked directly through the
class name without first creating an instance of the class. To designate a
method as shared, you use the VB .NET Shared modifier. The embedded
code option does not support shared methods. On the other hand, instance
methods are accessed through instances of the class and don’t require a spe-
cial modifier.

With the exception of shared methods, your embedded code can include any VB
.NET–compliant code. In fact, if you think of the embedded code as a private class
inside your project, you won’t be far from the truth. You can declare class-level mem-
bers and constants, private or public methods, and so on.
186 CHAPTER 6 USING CUSTOM CODE

Maintaining state

One not-so-obvious aspect of working with embedded code is that you can maintain
state in it. For example, you can use class-level members to preserve the values of the
variables between calls to embedded code methods from the moment the report proc-
essing starts until the report is fully processed. We demonstrate this technique in the
forecasting example that we explore in section 6.2.

Note that state can be maintained within the duration of a single report request
only. As we explained in chapter 2, the RS report-processing model is stateless. For
this reason, the report state gets discarded at the end of the report processing. Report-
ing Services is a web-based application, and just like any other web application, once
the request is handled, its runtime state gets released. For this reason, subsequent
requests to the same report cannot share state stored in class-level variables. You need
to be careful, though, as all executions share state. This means that in order to do this
correctly you need to index your variables by user ID. If you do not manage the state
correctly you may start seeing unexpected results that are due to other processes shar-
ing this same state.

Let’s now look at a practical example where embedded code can be useful.

Writing embedded code

You can write embedded code to create reusable utility functions that can be called
from several expressions in your report. Let’s examine an example of how we can do
just that.

Suppose that Adventure Works Cycles (AWC) has requested that we change the
Territory Sales Crosstab report to display N/A when data is missing, as shown in fig-
ure 6.1.

Figure 6.1 You can use embedded code to implement useful utility functions scoped at the

report level.
UNDERSTANDING CUSTOM CODE 187

Further, let’s assume that we need to differentiate between missing data and NULL
values. When the underlying value is NULL, we translate it to zero. To meet this
requirement, we can write a simple embedded function called GetValue().

Using the Code Editor

To write custom embedded code, you use the Report Designer Code Editor, which
you can invoke from the Report Properties dialog box. You can open this dialog box
in one of three ways:

• Select the report by right-clicking the Report Selector and choosing Properties.

• Right-click anywhere on the report outside the body area, and choose Properties.

• Select Report Properties from the Report menu.

Then, in the Report Properties dialog box, select the Code tab, as shown in figure 6.2.
The function GetValue() can easily be replaced with an Iif-based expression;

however, encapsulating the logic in an embedded function has two advantages. First,
it centralizes the logic of the expression in one place instead of using Iif functions
for every field in the report. Second, it makes the report more maintainable because
if you decide to make a logical change to your function, you do not have to track
down and change every Iif function in the report.

As you can see, the Code Editor is nothing to brag about. It is implemented as a
simple text area control, and its feature set does not go beyond copying and pasting
text. For this reason, we highly recommend that you use a standard VB Windows
Forms or Console application to write your VB .NET code in a civilized manner and
then copy and paste it inside the Code Editor.

Figure 6.2
Use the Code Editor for

writing embedded code.

The GetValue() function,

shown in the Code Editor,

determines whether a

value is missing or NULL.
188 CHAPTER 6 USING CUSTOM CODE

The Report Designer saves embedded code under the <Code> element in the RDL
file. When doing so, the Report Designer URL-encodes the text. Be aware of this if
you decide to change the <Code> element directly for some reason.

Handling missing data

Once the GetValue() function is ready, to differentiate between NULL and miss-
ing data in our report, you can base the txtSales and txtNoOrders values on
the following expressions:

=Iif(CountRows()=0, "N/A", Code.GetValue(Sum(Fields!Sales.Value)))

and

=Iif(CountRows()=0, "N/A", Code.GetValue(Sum(Fields!NoOrders.Value)))

respectively.
The CountRows() function returns the count of rows within a specified scope.

If no scope is specified, it defaults to the innermost scope, which in our case resolves
to the static group that defines the values in the data cells. Both expressions first check
for missing data (no rows) by using CountRows() and display N/A if no missing
data is found. Otherwise, they call the GetValue() embedded function to translate
the NULL values.

We recommend that you use embedded code for writing simple report-specific
utility-like functions. When your programming logic gets more involved, consider
moving your code to external assemblies, as we discuss next.

6.1.2 Using external assemblies

The second way of extending RS programmatically is by using prepackaged logic
located in external .NET assemblies that can be written in any .NET-supported lan-
guage. The ability to integrate reports with custom code in external assemblies
increases your programming options dramatically. For example, by using custom
code, you can do the following:

• Leverage the rich feature set of the .NET Framework. For example, let’s say you
need a collection to store crosstab data of a matrix region in order to perform
some calculations. You can “borrow” any of the collection classes that come
with .NET, such as Array, ArrayList, Hashtable, and so on.

• Integrate your reports with custom .NET assemblies, written by you or
third-party vendors. For example, to add forecasting features to the Sales by
Product Category report in section 6.2, we leverage the Open Source Open-
Forecast package.

• More easily write code by leveraging the powerful Visual Studio .NET IDE
instead of the primitive Code Editor available in RS.
UNDERSTANDING CUSTOM CODE 189

We hope that at some point in the future, RS will become better integrated with the
Visual Studio .NET IDE and support other .NET languages besides VB .NET. Ideally,
RS should allow developers to add custom classes to their business intelligence
projects and write code using the Visual Studio .NET editor. If this is implemented,
enhancing RS programmatically will be no different than writing code in traditional
.NET development projects.

Based on preliminary feedback that we received from Microsoft, this seems to be
the long-term direction that RS will follow.

Referencing external assemblies

To use types located in an external assembly, you have to first let the Report Designer
know about it by using the References tab in the Report Properties dialog box, as
shown in figure 6.3.

Assuming that our report needs to use the custom AWC.RS.Library assembly
(included with this book’s source code), we must first reference it using the References
tab. While this tab allows you to browse and reference an assembly from an arbitrary
folder, note that when the report is executed, the .NET common language runtime
(CLR) will try to locate the assembly according to CLR probing rules. In a nutshell,
these rules give you two options for deploying the custom assembly:

• Deploy the assembly as a private assembly.

• Deploy the assembly as a shared assembly in the .NET Global Assembly Cache
(GAC). As a prerequisite, you have to strong-name your assembly. For more
information about how to do this, refer to the .NET documentation.

Figure 6.3
Use the Report Properties

dialog box to reference an

external assembly.
190 CHAPTER 6 USING CUSTOM CODE

If you choose the first option, you need to deploy the assembly to the Private Assem-
blies folder so that the assembly is available during the report-testing process. Assum-
ing that you have accepted the default installation settings, to deploy the assembly to
the Private Assemblies folder, copy the assembly to C:\Program Files\
Microsoft Visual Studio 8\Common7\IDE\PrivateAssemblies. Once
you have done this, you can build and render the report in preview mode inside
VS .NET.

Before the report goes live, you need to deploy the assembly to the Report Server
binary folder. Specifically, you need to copy the assembly to the Report Server binary
folder, which by default is C:\Program Files\Microsoft SQL Server\
MSSQL.3\Reporting Services\ReportServer\bin.

Note that deploying the custom assembly to the right location is only half of the
deployment story. Depending on what your code does, you may need also to adjust
the code access security policy so the assembly code can execute successfully. We dis-
cuss the code access security model in chapter 9. If you need more information about
deploying custom assemblies, refer to the “Using Custom Assemblies with Reports”
section in the RS documentation.

NOTE The default location for RS 2000 Private Assemblies folder is C:\Program
Files\Microsoft SQL Server\80\Toos\Report Designer and
the default directory for the RS 2000 Report Server binary folder is C:\
Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin.

Calling shared methods

When using custom code in external assemblies, you can call both instance and shared
methods. If you need to call only shared methods (also called static in C#) inside the
assembly, you are ready to go because shared methods are available globally within
the report.

You can call shared methods by using the fully qualified type name using the fol-
lowing syntax:

<Namespace>.<Type>.<Method>(argument1, argument2, …, argumentN)

For example, if we need to call the GetForecastedSet shared method located in
the RsLibrary class (AWC.RS.Library assembly) from an expression or embed-
ded code, we would use the following syntax:

=AWC.RS.Library.RsLibrary.GetForecastedSet(forecastedSet, forecastedMonths)

where AWC.RS.Library is the namespace, RsLibrary is the type, Get-
ForecastedSet is the method, and forecastedSet and forecasted-
Months are the arguments.

If the custom assembly is your own, how can you decide whether to define your
methods as shared or instance? My short answer is to use shared methods if you don’t
UNDERSTANDING CUSTOM CODE 191

need instance methods. Shared methods are convenient to call. However, instance
methods allow you to maintain state within the duration of the report request. For
example, you can preserve the class-level variable values between multiple method
invocations of the same type. The state considerations for using code in external .NET
assemblies are the same as the ones we discussed in section 6.1.1 for embedded code.

One thing to watch for is using shared class-level fields to maintain state because
their values are shared across all instances of the same report. So, depending on how
many users are accessing a single report at any one time, the value of a shared field
may be changing. In addition, the values of shared fields are not private to a report
user, so sensitive user-only data should never be accessed through a shared field or
property. Finally, static class-level fields are subject to multithreading locking issues.
To avoid these issues, create your classes as stateless classes that do not have class-level
shared fields or use instance class-level fields and methods. For more information
about shared versus instance methods, see the Visual Studio .NET documentation.

Sometimes, you simply won’t have a choice and your applications requirements
will dictate the type of method invocation. For example, if the method needs to be
invoked remotely via .NET Remoting, it has to be an instance method.

Calling instance methods

To invoke an instance method, you have some extra work left to do. First, you have to
enumerate all instance classes (types) that you need to instantiate in the Classes grid
(see figure 6.3). For each class, you have to assign an instance name. Behind the
scenes, RS will create a variable with that name to hold a reference to the instance of
the type.

NOTE When you specify the class name in the Classes grid, make sure that you
enter the fully qualified type name (namespace included). In our example
(shown previously in figure 6.3), the namespace is AWC.RS.Library
while the class name is RsLibrary. When you are in doubt as to what the
fully qualified class name is, use the VS .NET Object Browser or another
utility, such as Lutz Roeder’s excellent .NET Reflector (see the Resources
section at the end of this book for information on this utility), to browse to
the class name and find out its namespace.

For example, assuming that we need to call an instance method in the AWC.RS.
Library assembly, we have to declare an instance variable m_Library, as shown in
figure 6.3. In our case, this variable will hold a reference to the RsLibrary class.

If you declare more than one variable pointing to the same type, each will reference
a separate instance of that type. Behind the scenes, when the report is processed, RS will
instantiate as many instances of the referenced type as the number of instance variables.

Once you have finished with the reference settings, you are ready to call the
instance methods via the instance type name that you specified. Just as with embedded
code, you use the Code keyword to call an instance method. The difference between
192 CHAPTER 6 USING CUSTOM CODE

a shared and an instance method is that instead of using the class name, you use the
variable name to call the method.

For example, if the RsLibrary type had an instance method named Dummy-
Method(), we could invoke it from an expression or embedded code like this:

Code.m_Library.DummyMethod()

Having seen what options we have as developers for programmatically expanding
our report features, let’s see how we can put them into practice. In the next section,
we show you how to use embedded and external code to add advanced features to
your reports.

6.2 CUSTOM CODE IN ACTION:
IMPLEMENTING REPORT FORECASTING

Here is our fictitious scenario. Imagine that the AWC management has asked to see
forecasted monthly sales data grouped by product category. These are the design goals
of the sample report that we are going to create:

• Allow the user to generate a crosstab report of sales data for an arbitrary period.

• Allow the user to specify the number of forecasted columns.

• Use data extrapolation to forecast the sales data.

To make these more interesting, let’s allow the report users to specify a data range to
filter the sales data, as well as the number of forecasted months. To accomplish our
requirements, we author a crosstab report, Sales by Product Category, as shown in fig-
ure 6.4.

Figure 6.4 The Sales by Product Category report uses embedded and external custom code
for forecasting.
CUSTOM CODE IN ACTION: IMPLEMENTING REPORT FORECASTING 193

The user can enter a start date and an end date to filter the sales data. In addition, the
user can specify how many months of forecasted data will be shown on the report.
The report shows the data in a crosstab fashion, with product categories in rows and
time periods in columns. The data portion of the report shows first the actual sales
within the requested period, followed by the forecasted sales in bold font.

For example, if the user enters 4/30/2003 as a start date and 3/31/2004 as an end
date and requests to see three forecasted months, the report will show the forecasted
data for April, May, and June 2004 (to conserve space, figure 6.4 shows only one
month of forecasted data).

In this section, we show you how to implement these forecasting features. As you
probably agree, implementing forecasting features on your own is not an easy under-
taking. But what if we had prepackaged code that does this for us? If this code can run
on .NET, our report can access it as custom code. Enter OpenForecast.

6.2.1 Forecasting with OpenForecast

Forecasting is a science in itself. Generally speaking, forecasting is the process used to
predict the unknown. Instead of looking at a crystal ball, forecasting practitioners use
mathematical models to analyze data, discover trends, and make educated conclu-
sions. In our example, the Sales by Product Category report will predict future sales
data by using the data extrapolating method.

There are number of well-known mathematical models for extrapolating a set of
data, such as polynomial regression and simple exponential smoothing. Implement-
ing one of those models, though, is not a simple task. Instead, for the purposes of our
sales forecasting example, we use the excellent open source OpenForecast package,
written by Steven Gould.

OpenForecast is a general-purpose package that includes Java-based forecasting
models applicable to any data series. The package requires no knowledge of forecast-
ing, which is great for those of us who have decided to focus on solving pure business
problems and kissed mathematics goodbye a long time ago.

OpenForecast supports several mathematical forecasting models, including single-
variable linear regression, multivariable linear regression, and so on. Let’s now see
how we can implement our forecasting example and integrate with OpenForecast by
writing some embedded and external code.

6.2.2 Implementing report forecasting features

Creating a crosstab report with forecasting capabilities requires several implementa-
tion steps. Let’s start with a high-level view of our envisioned approach and then drill
down into the implementation details.
194 CHAPTER 6 USING CUSTOM CODE

Choosing an implementation approach

Figure 6.5 shows the logical architecture view of our solution. Our report uses embed-
ded code to call a shared method in a custom assembly (AwRsLibrary) and get the
forecasted data. AwRsLibrary loads the existing sales data into an OpenForecast
dataset and obtains a forecasting model from OpenForecast. Then, it calls down to
OpenForecast to get the forecasted values for the requested number of months.
AwRsLibrary returns the forecasted data to the report, which in turn displays it.

We have at least two implementation options for passing the crosstab sales data
to AwRsLibrary:

• Fetch the sales data again from the database. To accomplish this, the report
could pass the selected product category and month values on a row-by-row
basis. Then, AwRsLibrary could make a database call to retrieve the match-
ing sales data.

• Load the existing sales data in a structure of some kind using embedded code
inside the report and pass the structure to AwRsLibrary.

The advantages of the latter approach are as follows:

• The custom code logic is self-contained—We don’t have to query the database again.

• It uses the default custom code security policy—We don’t have to elevate the default
code access security policy for the AwRsLibrary assembly. If we choose the
first option, we won’t be able to get away with the default code access security
setup, because RS only grants our custom assemblies Execution rights, which
are not sufficient to make a database call. Actually, in the case of OpenForecast,
we had to grant both assemblies FullTrust rights because any J# code requires
FullTrust to execute successfully. However, we wouldn’t have had to do this if
we had chosen C# as a programming language.

• No data synchronization is required—We don’t have to worry about synchroniz-
ing the data containers, the matrix region, and the AwRsLibrary dataset.

Figure 6.5 The Sales by Product Category report uses embedded code to call the AwRsLibrary

assembly, which in turn calls the J# OpenForecast package.
CUSTOM CODE IN ACTION: IMPLEMENTING REPORT FORECASTING 195

For these reasons, we choose the second approach. To implement it, we use an expres-
sion to populate the matrix region data values. The expression calls our embedded
code to load an array structure on a row-by-row basis. Once a given row is loaded, we
pass the array to AwRsLibrary to obtain the forecasted data.

Now, let’s discuss the implementation details, starting with converting OpenFore-
cast to .NET.

Migrating OpenForecast to .NET

OpenForecast is written in Java, so one of the first hurdles we have to overcome is to
integrate it with .NET. We have two options for doing so:

• Use a third-party Java-to-.NET gateway to integrate both platforms—Given the
complexities of this approach, we quickly dismiss it.

• Port OpenForecast to one of the supported .NET languages—Microsoft provides
two options for this. First, we can use the Microsoft Java Language Conversion
Assistant (see section 6.5 for more information) to convert Java-language code
to C#. Second, we could convert OpenForecast to J#. The latter option pre-
serves the Java syntax, although that code executes under the control of the
.NET common language runtime instead of the Java Virtual Machine.

We decide to port OpenForecast to J#. The added benefit to this approach is that the
open source developers could maintain only one Java-based version of OpenForecast.

Porting OpenForecast to J# turns out to be easier than we thought. We create a
new J# library project, name it OpenForecast, and load all *.java source files
inside it. We include the .NET version of OpenForecast in the source code that
comes with this book. Figure 6.6 shows the J# version of OpenForecast open in
Visual Studio .NET.

We have to take care of only a few compilation errors inside the Multiple-
LinearRegression class, because several Java hashtable methods are not sup-
ported in J#, such as keySet(), entries(), and hashtable cloning. We also
include a WinForm application (TestHarness) that you may use to test the converted
OpenForecast. We include the OpenForecast DLL so you can still run the report even
if you don’t have J# installed.

Implementing the AwRsLibrary assembly

The next step is to create the custom .NET assembly, AwRsLibrary, that will bridge
the report-embedded code and OpenForecast. We implement AwRsLibrary as a
C# class library project. Inside it we create the class RsLibrary that exposes a static
(shared) method, GetForecastedSet(). The abbreviated code of this method is
shown in listing 6.1.
196 CHAPTER 6 USING CUSTOM CODE

public static void GetForecastedSet(double[] dataSet,
 int numberForecastedPoints) {
 DataSet observedData = new DataSet();

 Observation dp;
 for (int i=0;i<dataSet.Length-numberForecastedPoints;i++) {
 dp = new Observation(dataSet[i]);
 dp.setIndependentValue("x", i);
 observedData.add(dp);
 }

 ForecastingModel forecaster = new MultipleLinearRegressionModel();
 forecaster.init(observedData);
 DataSet requiredObservations = new DataSet();
for (int i=dataSet.Length-numberForecastedPoints;
 i < dataSet.Length; i++) {
 dp = new Observation(0.0);
 dp.setIndependentValue("x", i);

Figure 6.6 To convert Java-based OpenForecast to .NET, we migrate its code to J#.

Listing 6.1 The report-embedded code, which calls the AwRsLibrary

GetForecastedSet method, which in turn calls OpenForecast

Defines OpenForecast
dataset

Obtains a forecasting
model from

OpenForecast

Specifies placeholders
for the forecasted data
CUSTOM CODE IN ACTION: IMPLEMENTING REPORT FORECASTING 197

 requiredObservations.add(dp);
 }

 forecaster.forecast(requiredObservations);

 int index = dataSet.Length - numberForecastedPoints;
 Iterator it = requiredObservations.iterator();
 while (it.hasNext()) {

 dataSet[index] = ((DataPoint)it.next()).getDependentValue();
 index++;
 }
}

The GetForecastedSet() method receives the existing sales data for a given
product category in the form of a dataSet array, as well as the number of the
requested months for forecasted data.

Next, integrating with OpenForecast is a matter of five steps.

Step 1 We create a new OpenForecast dataset and load it with the existing data from
the matrix row array.

Step 2 We obtain a given forecasting model. OpenForecast allows developers to get the
optimal forecasting mathematical model based on the given data series by call-
ing the getBestForecast() method. This method examines the dataset
and tries a few forecasting models to select the most optimal. If the returned
model is not a good fit, you can request a forecasting model explicitly by
instantiating any of the classes found under the model’s project folder.

NOTE When testing the report with our sales data, we noticed that getBest-
Forecast() returns the PolynomialRegressionModel model, which
returns negative values when the sales data varies considerably. For this rea-
son, we explicitly request the MultipleLinearRegressionModel model. We
recommend that you try getBestForecast() first for your forecasting
applications, and only if the returned model doesn’t meet your needs
should you request a model explicitly.

Step 3 We prepare another dataset to hold the forecasted data and initialize it with
as many elements as the number of forecasted months.

Step 4 We call the forecast method to extrapolate the data and return the fore-
casted results.

Step 5 We load the forecasted data back to the dataSet array so we can pass it
back to the report’s embedded code.

Once we have finished with both the AwRsLibrary and OpenForecast .NET
assemblies, we need to deploy them.

Performs
forecasting

Populates the
input array
198 CHAPTER 6 USING CUSTOM CODE

Deploying custom assemblies

As we explained in section 6.1, we need to deploy custom assemblies to both the Pri-
vate Assemblies and Report Server binary folders. The custom assembly deployment
process consists of the following steps:

Step 1 Copy the assemblies to the Report Designer and Report Server binary folders.

Step 2 Adjust the code-based security if the custom code needs an elevated set of
code access security permissions.

To make both assemblies, AwRsLibrary and OpenForecast, available during
design time, we have to copy AWC.RS.Library.dll and OpenForecast.dll
to the Report Designer folder, which by default is C:\Program Files\
Microsoft Visual Studio 8\Common7\IDE\PrivateAssemblies.

Similarly, to successfully render the deployed report under the Report Server,
we have to deploy both assemblies to the Report Server binary folder, which by
default is C:\Program Files\Microsoft SQL Server\MSSQL.3\Reporting
Services\ReportServer\bin. In fact, the Report Server will not let you
deploy a report from within the VS .NET IDE if all referenced custom assemblies are
not already deployed.

The default RS code access security policy grants Execution rights to all custom
assemblies by default. However, J# assemblies require FullTrust code access rights.
Because the .NET common language runtime walks up the call stack to verify that all
callers have the required permission set, we need to elevate the code access security
policy for both assemblies to full trust. This will require changes to the Report
Designer and Report Server security configuration files.

For more details about how code access security works and how it can be config-
ured, see appendix B. You can also find a copy of our rssrvpolicy.config con-
figuration file enclosed with the AwRsLibrary project. Toward the end of the file, you
will see two CodeGroup XML elements that point to the AwRsLibrary and
OpenForecast files. You will need to copy these elements to the Report Server
security configuration file (rssrvpolicy.config).

In addition, as we discussed in chapter 2, if you want to preview (run) the
report in the Preview window from the Report Designer, you will have to propa-
gate the changes to the Report Designer security configuration file (rspre-
viewpolicy.config) as well.

Once the custom assemblies are deployed, we must write some VB .NET embed-
ded code in our report to call the AwRsLibrary assembly, as we discuss next.
CUSTOM CODE IN ACTION: IMPLEMENTING REPORT FORECASTING 199

Writing report embedded code

To integrate the report with AwRsLibrary we add an embedded function called
GetValue() to the Sales by Product Category report, as shown in listing 6.2.

Dim forecastedSet() As Double ' array with sales data
Dim productCategoryID As Integer = -1
Dim bNewSeries As Boolean = False
Public m_ExString = String.Empty

Function GetValue(productCategoryID As Integer, _
 orderDate As DateTime, _
sales As Double, reportParameters as Parameters, _
txtRange as TextBox) As Double

 Dim startDate as DateTime = reportParameters!StartDate.Value
 Dim endDate as DateTime = reportParameters!EndDate.Value
 Dim forecastedMonths as Integer = _
 reportParameters!ForecastedMonths.Value

 If (forecastedSet Is Nothing) Then
 ReDim forecastedSet(DateDiff(DateInterval.Month, _
 startDate, endDate) + forecastedMonths)
 End If

 If Me.productCategoryID <> productCategoryID Then
 Me.productCategoryID = productCategoryID
 bNewSeries = True
 Array.Clear(forecastedSet, 0, forecastedSet.Length - 1)
 End If

 Dim i = DateDiff(DateInterval.Month, startDate , orderDate)
 'Is this a forecasted value?
 If orderDate <= endDate Then
 ' No, just load the value in the array
 forecastedSet(i) = sales
 Else
 If bNewSeries Then
 Try
 AWC.RS.Library.RsLibrary.GetForecastedSet(_
 forecastedSet, _
 forecastedMonths)
 bNewSeries = False
 Catch ex As Exception
 m_ExString = "Exception: " & ex.Message
 System.Diagnostics.Trace.WriteLine(ex.ToString())
 throw ex
 End Try
 End If

Listing 6.2 The embedded GetValue() function, which calls the
AwRsLibrary assembly

Redims the array to hold
existing sales data

Holds sales data per
product category

Calls AwRsLibrary
to get the
forecasted set
200 CHAPTER 6 USING CUSTOM CODE

 End If ' is it forecasted value
 Return forecastedSet(i)
End Function

Because the matrix region data cells use an expression that references the
GetValue() function, this function gets called by each data cell. Table 6.1 lists
the input arguments that the GetValue() function takes.

To understand how GetValue() works, note that each data cell inside the matrix
region is fed from the forecastedSet array. If the cell doesn’t need forecasting (its
corresponding date is within the requested date range), we just load the cell value in
the array and pass it back to display it in the matrix region. To get this working, we
need to initialize the array to have a rank equal to the number of requested months
plus the number of forecasted months. Once the matrix region moves to a new row
and calls our function, we are ready to forecast the data by calling the AwRs-
Library.GetForecastedSet method.

Implementing the Sales by
Product Category crosstab report

The most difficult part of authoring the report itself is setting up its data to ensure
that we always have the correct number of columns in the matrix region showing the
forecasted columns. By default, the matrix region won’t show columns that don’t have
data. This will interfere with calculating the right offset to feed the cells from the
array. Therefore, we must ensure that the database returns records for all months
within the requested data range. To implement this, we need to preprocess the sales
data at the database. This is exactly what the spGetForecastedData stored pro-
cedure does. Inside the stored procedure, we prepopulate a custom table with all
monthly periods within the requested date range, as shown in listing 6.3.

Table 6.1 Input arguments that the GetValue() function takes

Argument Purpose

productCategoryID The productCategoryID value from the rowProductCategory row
grouping corresponding to the cell.

orderDate The orderDate value from the colMonth column grouping
corresponding to the cell.

sales The aggregated sales total for this cell.

reportParameters To calculate the array dimensions, GetValue() needs the values of the
report parameters. Instead of passing the parameters individually using
Parameters!ParameterName.Value, we pass a reference to the
report Parameters collection.

txtRange A variable that holds the error message in case an exception occurs when
getting the forecasted data.
CUSTOM CODE IN ACTION: IMPLEMENTING REPORT FORECASTING 201

CREATE PROCEDURE [dbo].[spGetForecastedData]
(
 @StartDate smalldatetime,
 @EndDate smalldatetime
)

AS

SET NOCOUNT ON

DECLARE @tempDate smalldatetime

DECLARE @dateSet TABLE
 (
 ProductCategoryID tinyint,
 OrderDate smalldatetime
)

SET @tempDate = @EndDate

WHILE (@StartDate <= @tempDate)
BEGIN
 INSERT INTO @dateSet
 SELECT ProductCategoryID, @tempDate
 FROM Production.ProductCategory

 SET @tempDate = DATEADD(mm, -1, @tempDate)
END

SELECT DS.ProductCategoryID, PC.Name as ProductCategory,
 OrderDate AS Date, NULL AS Sales
FROM @dateSet DS INNER JOIN Production.ProductCategory PC ON
 DS.ProductCategoryID = PC.ProductCategoryID
UNION ALL
SELECT PC.ProductCategoryID,
PC.Name AS ProductCategory,
SOH.OrderDate AS Date,
SUM(SOD.UnitPrice * SOD.OrderQty) AS Sales
FROM Production.ProductSubCategory PSC
INNER JOIN
 Production.ProductCategory PC ON
PSC.ProductCategoryID = PC.ProductCategoryID
INNER JOIN
 Production.Product P ON
PSC.ProductSubCategoryID = P.ProductSubCategoryID
INNER JOIN
 Sales.SalesOrderHeader SOH INNER JOIN
 Sales.SalesOrderDetail SOD ON
SOH.SalesOrderID = SOD.SalesOrderID ON P.ProductID = SOD.ProductID

Listing 6.3 The spGetForecastedData stored procedure, which ensures that
the returned rowset has the correct number of columns

Defines a custom
table to store months

Inserts the
month records

Returns actual sales data
plus dummy records
202 CHAPTER 6 USING CUSTOM CODE

WHERE (SOH.OrderDate BETWEEN @StartDate AND @EndDate)
GROUP BY SOH.OrderDate, PC.Name, PC.ProductCategoryID
ORDER BY PC.Name, OrderDate

Finally, we union all records from the @dateSet table (its Sales column values are
set to NULL) with the actual SQL statement that fetches the sales data.

Once the dataset is set, authoring the rest of the report is easy. We use a matrix
region for the crosstab portion of the report. To understand how the matrix region
magic works and how it invokes the embedded GetValue() function, you may
want to replace the expression of the txtSales textbox with the following expression:

= Fields!ProductCategoryID.Value & "," & Fields!Date.Value _
 & "," & Format(Fields!Sales.Value, "C")

Figure 6.7 shows what the Sales by Product Category crosstab report looks like when
this expression is applied.

As you see, we can easily get to the corresponding row and column group values that
the matrix region uses to calculate the aggregate values in the region data cells. Now
we have a way to identify each data cell. The matrix region is set up as shown in
table 6.2.

Table 6.2 Expressions used in the matrix region

Matrix area Name Expression

Rows rowProductGroup =Fields!ProductCategory.Value

Columns colYear =Fields!Date.Value.Year

colMonth =Fields!Date.Value.Month

Data txtSales =Code.GetValue(Fields!ProductCategoryID.Value,
Fields!Date.Value, Sum(Fields!Sales.Value),
Parameters, ReportItems!txtRange)

Figure 6.7
The Sales by Product

Category report with

debug data placed in

the expression
CUSTOM CODE IN ACTION: IMPLEMENTING REPORT FORECASTING 203

To implement conditional formatting for the forecasted columns (in this case, to
show them in bold), we use the following expression for the font property of the txt-
Sales textbox:

=Iif(Code.IsForecasted
(Fields!Date.Value, Parameters!EndDate.Value), "Bold", "Normal")

This expression calls the IsForecasted() function located in the report-embedded
code. The function simply compares the sales monthly date with the requested end
date and, if the sales date is before the end date, it returns false.

The only thing left for us to do is to reference the AwRsLibrary assembly
using the Report Properties dialog box’s References tab, as shown earlier in figure 6.3.
Note that for the purposes of this report, we don’t need to set up an instance name
(there’s no need to enter anything in the Classes grid), because we don’t call any
instance methods.

Debugging custom code

You may find debugging custom code challenging. For this reason, we want to share
with you a few techniques that we have found useful for custom code debugging.

There aren’t many options for debugging embedded code. The only one we have
found so far is to use the MsgBox() function to output messages and variable values
when the report is rendered inside the Report Designer. Be sure to remove the calls
to MsgBox() before deploying the report to the Report Server. If you don’t, all
MsgBox() calls will result in an exception. For some reason, trace messages using
System.Diagnostics.Trace (the OutputDebugString API) inside embed-
ded code get “swallowed” and don’t appear either in the VS .NET Output window or
by using an external tracing tool.

When working with external assemblies, you have at least two debugging options:

• Output trace messages.

• Use the VS .NET debugger to step through the custom code.

Tracing

For example, in the AwRsLibrary.GetForecastedSet method, we are output-
ting trace messages using System.Diagnostics.Trace.WriteLine to display
the observed and forecasted values. To see these messages when running the report
inside VS .NET or Report Server, you can use Mark Russinovich’s excellent Debug-
View tool, shown in figure 6.8.

For more information about DebugView, see section 6.5.

Debugging custom code

You can also step through the custom assembly code using the VS .NET debugger by
attaching to the Report Designer process, as follows:
204 CHAPTER 6 USING CUSTOM CODE

Step 1 Open the custom assembly that you want to debug in a new instance of VS
.NET. Set breakpoints in your code as usual.

Step 2 Open your Business Intelligence project in another instance of VS .NET.

Step 3 Back at the custom assembly project, click on the Debug menu and then
choose Attach to Processes. Locate the devenv process that hosts the Business
Intelligence project and attach to it. At this point, your Processes dialog box
should look like the one shown in figure 6.9. In this case, we want to debug
the code in the AwRsLibrary assembly when it is invoked by the Sales by
Product Category report. For this reason, in the AwRsLibrary project we
attach to the RSInAction devenv process. RSInAction is the name of our solu-
tion that contains the AWReporter project.

Step 4 In the Business Intelligence project, preview the report that calls the custom
assembly. Or, if you have already been previewing the report, click the
Refresh Report button on the Preview Tab toolbar. At this point, your break-
points should be hit by the VS .NET debugger.

Figure 6.8 You can output trace messages from external assemblies in DebugView.
CUSTOM CODE IN ACTION: IMPLEMENTING REPORT FORECASTING 205

As you will soon find out, if you need to make code changes and recompile the cus-
tom assembly, trying to redeploy it to the Report Designer folder results in the follow-
ing exception:

Cannot copy <assembly name>: It is being used by another person or program.

The problem is that the VS .NET IDE holds a reference to the custom assembly. You
will need to shut down VS .NET and then redeploy the new assembly. To avoid this sit-
uation and make the debugging process even easier, you could debug the custom assem-
bly code by using the Report Host (Preview window). To do this, follow these steps:

Step 1 Add the custom assembly to the VS .NET solution that includes your BI project.

Step 2 Change the BI project start item to the report that calls the custom code, as
shown in figure 6.10.

Step 3 Press F5 to run the report in the Preview window. When the report calls the
custom code, your breakpoints will be hit.

Figure 6.9 To debug custom assemblies, attach to the Visual Studio instance that hosts your

BI project.
206 CHAPTER 6 USING CUSTOM CODE

NOTE As explained in chapter 2, what happens when you press F5 to debug a
report depends on your project settings. If both the Build and Deploy
options are selected in Configuration Manager, VS .NET will build and
deploy all reports in your Business Intelligence project before the report is
displayed in the Preview window. To avoid this problem and launch your
report faster, clear these options or switch to the DebugLocal configura-
tion. This configuration doesn’t include the Deploy option by default.

When you’re using the Preview window approach, VS .NET doesn’t lock the custom
assemblies. This allows you to change the build location of your assembly to the
Report Designer folder so that it always includes the most recent copy when you
rebuild the assembly. As we explained in chapter 2, running your projects in the Pre-
view window is a result of the code access security policy settings specified in the
Report Designer configuration file (rspreviewpolicy.config).

Let’s now look at another way of using custom code in reports in the form of XSL
transformations.

6.3 USING XML-BASED REPORTS

You’ve seen how to use custom code to extend report capabilities programmatically,
but, for all its flexibility, custom code has its limitations. For example, besides hiding
report items, you cannot control the report output programmatically. However,
if you export your reports to XML, you can use custom code in the form of XSL

Figure 6.10 Use the Report Host debug option to avoid locking assemblies.
USING XML-BASED REPORTS 207

Transformations (XSLT) to precisely control the XML presentation of the report, as
you’ll see in this section.

Strictly speaking, from an implementation standpoint, exporting a report to XML
is no different than exporting it to any other rendering format, because the actual
work is performed by the XML rendering extension (Microsoft.Reporting-
Services.XmlRendering.dll), which happens to be one of the supported RS
extensions. However, we decided to devote a section to this export option because this
is an extremely useful and important option.

Because the IT industry has embraced XML as the de facto standard for data
exchange between heterogeneous platforms, exporting a report to XML opens a whole
new world of opportunity. For example, in the business-to-business (B2B) scenario,
an organization could expose an inventory report to its vendors. A vendor could
request the report in XML to find out the current inventory product levels. The XML
document could then be sent to a BizTalk server, which could extract the product
information and send it to the manufacturing department.

6.3.1 Understanding XML exporting

The content of the following report elements can be exported to XML: textbox, rect-
angle, subreport, table region, list region, and matrix region. As a report author, you
have full control over the XML presentation of these elements.

To customize the XML-rendered output of the report, you use the Data Output
tab of the report element’s property pages. Which settings can be customized depends
on the type of the element. In general, you can specify the following:

• Whether the report element and its content (for regions, groups, and rectangles)
will be exported

• The XML element name

• Whether the report element will be rendered as an XML attribute or element

For example, at a report level, you can specify the root node name and XML schema.
At the region level, you can specify whether the region and its items will be rendered
at all. At the textbox level, you can tell the Report Server whether the textbox content
will be rendered as an XML attribute or element.

When the Data Output settings are not enough, you can further fine-tune the
XML output by using custom XSL transformations. For example, while skipping
report elements is easy, adding additional XML nodes is not. In cases such as this, you
can write an XSL transformation that will be applied by the Report Server after the
report is rendered to XML.

Let’s now look at a practical example that demonstrates how exporting to XML
could be useful.
208 CHAPTER 6 USING CUSTOM CODE

6.3.2 Exposing the report content as an RSS feed

RSS (which stands for all of the following: RDF Site Summary, Rich Site Summary,
or Really Simple Syndication) is an XML-based format that allows information
workers to describe and syndicate web content. Many organizations and individuals
use RSS for blogging. To give our example a touch of reality, let’s say that Adventure
Works Cycles (AWC) would like to take advantage of the increasing popularity of
blogging with RSS feeds. In particular, the company management has requested
these requirements:

• Future promotional campaigns must be exposed as an RSS feed. The AWC cus-
tomers could subscribe to the feed using their favorite RSS newsreader and be
notified about future product promotions.

• Each promotional item must include a hyperlink that will show more details
about the campaign, such as discounted products and their sale prices.

Implementation options

How can we implement these requirements? One approach is to add the promotional
information as static or dynamic web content to the company’s web portal. For exam-
ple, the products page could include a section that lists the current promotions. As far
as exporting the promotional data as XML for the purposes of the RSS feed, we could
create a Web service that would query the AdventureWorks database, retrieve the pro-
motion details in XML, and write them into an RSS blog file.

Another implementation option could be to author an RS report that would sup-
ply both the HTML and XML content. The RSS Web service could then request the
report as XML and append the promotional information to the RSS blog file. The RSS
item hyperlink could bring the customer to the HTML version of same report. Of
course, the latter option assumes that you are willing to allow web users to access your
Report Server directly by URL. This is not as bad as it sounds. If Windows authenti-
cation is an issue, you can replace it with a custom security extension to authenticate
and authorize your web users, as we discuss in chapter 13.

Which approach will work better for you depends on your particular needs and
limitations. In our case, let’s go for the latter to demonstrate the exporting-to-XML
feature. To recap, our design goals for the new report sample are as follows:

• Export the report to RSS-compliant XML format.
• Append the report XML to an RSS feed (we postpone the actual implementa-

tion until chapter 8).

Implementing the report

Let’s start by creating a new report called Sales Promotion. The report gets the promo-
tional data from the SpecialOffer and SpecialOfferProduct tables. In
addition, it takes one parameter, Campaign ID, which the user can use to request a
specific campaign.
USING XML-BASED REPORTS 209

For example, figure 6.11 shows the second page of the Sales Promotion report when
the user requests a campaign with an ID of 2.

As you can see, this report is very similar to the RS Product Catalog report sample,
so we won’t spend much time discussing its implementation details. Instead, let’s
focus on explaining how to export the report’s content to XML.

Understanding the RSS schema

What the report’s XML output needs to be depends on which version of the RSS spec-
ification you have to support. For example, listing 6.4 shows what the sales promotion
RSS feed should look like if it conforms to RSS version 2.0.

<rss version="2.0">
<channel>
 <title>AWC Promotions</title>
 <link>http://www.adventure-works.com/</link>
 <description>Great discounted deals!</description>
 <language>en-us</language>
 <ttl>1440</ttl>
 <item xmlns:n1="http://www.awc.com/sales" xmlns:xs="http://www.w3.org/
2001/XMLSchema">

Figure 6.11 The Sales Promotion report serves as both the RSS feed source and the

HTML campaign details page.

Listing 6.4 The Sales Promotion RSS feed for notifying AWC subscribers
about promotions

General feed-
related header

Feed item
210 CHAPTER 6 USING CUSTOM CODE

 <title>LL Road Frame Sale!!!</title>
 <link>http://localhost/reportserver?/AWReporter/Sales
Promotion&SpecialOfferID=2&rs:Command=Render&rs:Format=XML
 </link>
 <description>Great LL Road Frame Sale!!!</description>
 <pubDate>Saturday, January 10, 2004</pubDate>
 </item>
 <item xmlns:n1="http://www.awc.com/sales"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <!-Another item information here-
 </item>
</channel>
</rss>

Given the feed in listing 6.4, figure 6.12 shows how it is rendered in the IntraVNews
RSS Reader, which is integrated with Outlook:

Let’s now examine what needs to be done to massage the report output to make it
compliant with the RSS schema.

Defining the report XML output

The first step required to export the report to an RSS-compliant format is to fine-tune
its XML output. We’ve made a few changes using the Data Output tab for various ele-
ments, so the report renders to the abbreviated XML schema shown in listing 6.5.

<SalesPromotion xmlns=http://www.awc.com/sales xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="..."
Name="Sales Promotion" Date="2004-01-10T00:00:00.0000000-05:00">
 <Promotions>
 <Promotion Description="LL Road Frame Sale!!!">
 <ProductInfo>
 <Products>
 <Product ProductNumber="FR-T98U-44"
 Product="HL Touring Frame - Blue, 44" Color="Blue"
 Size="44" Weight="2.92" ListPrice="1003.9100"/>

➥

Figure 6.12
The AWC

Promotions feed

is rendered in

IntraVNews.

Listing 6.5 The Sales Promotion report rendered in XML

Represents an item
in the RSS feed
USING XML-BASED REPORTS 211

 <Product ProductNumber="FR-T98R-44"
 Product="HL Touring Frame – Red, 44" Color="Red"
 Size="44" Weight="2.92" ListPrice="1003.9100"/>
 </Products>
 </ProductInfo>
 </Promotion>
 </Promotions>
</SalesPromotion>

The most important change you have to make is to explicitly set the XML Schema set-
ting at the report level, as shown in figure 6.13. If the Data Schema setting is not spec-
ified, the Report Server will autogenerate the XML document global namespace to
include the date when the report is processed. This will interfere with referencing the
document elements from an XSL transformation, so make sure you explicitly set
the schema namespace.

Writing the XSL transformation

Once you have finished making adjustments to the XML schema, the next step will be
to write an XSL transformation to transform the XML output to an RSS-compliant
format. To fit the Sales Promotion output to the RSS schema, we wrote the simple
XSL transformation, as an XSLT file, shown in listing 6.6.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"

➥

Figure 6.13
Use the Data Output report

settings to define the report

XML root element name

and namespace.

Listing 6.6 Using XSL transformations to fine-tune the report’s XML output
212 CHAPTER 6 USING CUSTOM CODE

xmlns:n1="http://www.awc.com/sales"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xsl:template match="/">
 <xsl:for-each select="n1:SalesPromotion/n1:Promotions/
 n1:Promotion">
 <item>
 <title><xsl:value-of select="./@Description"/></title>
 <link>http://www.adventure-workds.com/promotions</link>

 <description>Great <xsl:value-of select="./@Description"/>
 Items discounted
 <xsl:value-of select="./@DiscountPct"/> percent! Offer
 expires on
 <xsl:value-of select="./@StartDate"/>
 </description>
 <pubDate><xsl:value-of select="./@StartDate"/></pubDate>
 </item>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

The XSL transformation simply loops through all sales promotions and outputs them
in XML according to the RSS item specification. Strictly speaking, in our case there is
always going to be only one XML sales promotion node, because we use a report
parameter to select a single campaign. Finally, we need to add the XSLT file to our
project. Similar to working with images, we have to add the XSLT file to the same
report project and subsequently upload it to the report catalog when the report is
deployed. The Report Server cannot reference external XSLT files.

The last implementation step is to take care of appending the current sales promo-
tion item to the RSS blog file. The easiest way to accomplish this is to manually
update the RSS feed XML file on the web server when there is a new promotional cam-
paign. RSS newsreaders could reference this file directly, for example, by going to
www.adventure-works.com/promotions.rss. Of course, if the require-
ments call for it, the process could also be fully automated. We see how this could be
accomplished in chapter 10, where we implement a table trigger that invokes a cus-
tom web service when a new sales promotion record is added to the database.

To subscribe to the RSS feed, AWC customers can configure their favorite RSS
readers to point to the blog file. Once they do so, they are notified each time the blog
file is updated.

6.4 SUMMARY

In this chapter we learned how to integrate our reports with custom code that we or
someone else wrote.

For simple report-specific programming logic, you can use embedded VB .NET
code. When the code complexity increases or you prefer to use programming lan-
guages other than VB .NET, you can move your code to external assemblies.

Loops through
all promotion
elements

Generates
an RSS
item
SUMMARY 213

For interoperability with different platforms and languages, you can export your
reports to XML. You can control precisely the report output by using the Data Out-
put tab coupled with custom XSL transformations.

By now, you should have enough knowledge to be able to author reports with
Reporting Services. We’ll now move on to one of our favorite features of Reporting
Services 2005: the ad hoc reporting tool Report Builder.
214 CHAPTER 6 USING CUSTOM CODE

C H A P T E R 7

Ad hoc reporting with the
Report Builder application

7.1 About the Report Builder application 216
7.2 Building the Report Model using BIDS 221
7.3 Ad hoc reporting in action 242
7.4 Implementing Report Builder security 252
7.5 Summary 255
Mary in accounting is looking at some of her end-of-month reports and finds some-
thing out of the ordinary with a particular transaction type. Because her aggregated
report shows very little detail, Mary is unable to resolve the problem with this partic-
ular transaction grouping.

Bob works as a sales manager and has access to reports that show his monthly sales
activity. He is interested in locating a list of customers who purchased bikes two years
ago and also purchased accessories for their bike last year, and who have not made any
accessory purchases this year. Unfortunately, Bob does not have a tool that enables
him to filter his data in this manner.

Information workers like Mary and Bob may often need information that does not
show up in any of their “canned” reports. As developers, it is unlikely that we could
design a set of reports to cover every situation and every business need. Information
workers often need to make effective and timely decisions based on the business data.
A common problem is that the data they need can only be found by mixing
and matching multiple reports, or simply that the data cannot be found at all in any
215

available reports. What do information workers do in this case? Where will they get
the answers they need? Will they have to wait for this data to be made available
through a new report? And, if so, how long before this report is made available?

In our experience in the consulting world, and especially working with Reporting
Services, these questions are asked frequently. Historically, the solution to these prob-
lems has not been simple, and in fact, has created more problems. One problem is
that information workers usually do not have Visual Studio available to them (even
if they did, they probably would not feel very comfortable using this tool). A second
problem is that while information workers probably understand the business model
for their company, they would likely struggle to understand the data model where the
data resides.

The real solution is to provide information workers with a simple-to-use tool that
hides the complexity of the underlying data source. This tool must also provide them
with the ability to create their own reports to explore corporate data whenever they
need the information. This is known as ad hoc or self-service reporting. With ad hoc
reporting, Mary can track down that troublesome transaction by requesting, on the
fly, a report that shows all account activity for that transaction type that falls within
a particular time range. She can also specify that the report show customer informa-
tion which is tied to this account. Bob can also benefit from ad hoc reporting by cre-
ating a report with a simple means of doing advanced filtering. We see this in action
in section 7.3.4. This capability is now possible with the Report Builder application
that comes with RS 2005.

In this chapter we’ll introduce you to the Report Builder, show you how to set it
up, how to manage it, and how to create both simple and complex reports in an ad
hoc fashion. After reading this chapter, you’ll understand the architecture of the
Report Builder and know how to expose your SQL Server data to privileged end users
who can then build secure, ad hoc reports. You’ll also be able to teach and train end
users in creating their own reports. You’ll be the star of the show when you introduce
infinite drill-through reporting, which we cover in section 7.3.3.

7.1 ABOUT THE REPORT BUILDER APPLICATION

The Report Builder is by far the biggest addition to Reporting Services since its origi-
nal release in 2004. The Report Builder is an application that runs on the client
machine and provides the user interface for creating ad hoc reports. This application
is similar in look and feel to the Microsoft Office suite of products. It is meant to be
an easy-to-use application for creating reports and is typically used by so-called power
business users.

The Report Builder is a “ClickOnce” application. This is a new technology from
Microsoft that allows you to manage the application at the server level. ClickOnce
technology is a Windows Forms application that is deployed through a website. The
application is installed and loaded on the client but it can only be opened by requesting
216 CHAPTER 7 AD HOC REPORTING

it first from the server. This allows you to manage future releases on the server, and
it means that the clients will automatically get the new release when they launch the
Report Builder.

In this section, we’ll show you the Report Builder UI, describe the process for set-
ting up the Report Builder environment and requesting ad hoc reports, and discuss
the tools available for completing this process.

7.1.1 A quick tour of the Report Builder

Later in this chapter you’ll see how business users can easily create complex reports
without having to build queries in code. The Report Builder is not a replacement for
using the Visual Studio design tools; it can create complex queries but not complex
reports. The Report Builder derives its power from being easy for nondevelopers to
use. As shown in figure 7.1, the UI lets users build and filter reports in an ad hoc fash-
ion by dragging and dropping data fields (shown on the left) directly onto the report
design area (shown on the right).

The Report Builder application provides the UI for designing and viewing reports,
saving them to the Report Server, and opening existing Report Builder–created reports.

Throughout this chapter, you’ll get a good jump-start on creating ad hoc reports
and understanding the Report Builder environment. As the examples demonstrate,
Microsoft created the Report Builder with ease of use in mind since they expected non-
developers would be the ones using the application. However, the main focus of this

Figure 7.1 The Report Builder application provides a simple environment for creating
ad hoc reports.
ABOUT THE REPORT BUILDER APPLICATION 217

chapter is not learning to use the Report Builder. We spend more time showing you
how to set up and prepare the Reporting Services environment for ad hoc capabilities.
While the Report Builder is likely the only tool covered in this chapter that most busi-
ness users will see, the application by itself is not sufficient enough to create ad hoc
reports. Developers or database administrators must do the up-front work of estab-
lishing the Reporting Services environment before any ad hoc reports can be created.

NOTE The Report Builder is not intended to be used as a new tool for developers
to create reports as it certainly has its limitations, specifically in the area of
creating complex reports.

7.1.2 Setting up for ad hoc reporting

Building simple ad hoc reports against business data without the use of complex
report-creation tools is not a new concept. It is, however, new to Reporting Services,
and in our opinion it is by far the best addition in this release. In this section, we
explore the steps you need to complete before end users can create ad hoc reports
using the Report Builder. Table 7.1 summarizes the six-step process for creating ad
hoc reports.

The first three steps will be taken by you, the developer, to set up the environment;
the last three steps can be repeated and completed as needed by your end users. These
high-level steps may seem pretty simple, but as developers we spend quite a bit of time
in step 2.

Step 1 Choose a source database for building ad hoc reports. The first thing you
need to do is choose a database that you want to expose to your end users for
ad hoc reporting. With the current release of Reporting Services, you must
choose a SQL Server database or a SQL 2005 Analysis Services database. This
is more limiting than what is available for creating and designing reports
using the Business Intelligence Development Studio (BIDS).

Table 7.1 Steps for creating ad hoc reports with Reporting Services

Step Description See Section

Developer Steps

1 Choose a source database for building ad hoc reports. 7.2

2 Build a report model. 7.2

3 Deploy the report model. 7.2.5

End-User Steps

4 Launch the Report Builder. 7.3.1

5 Use the Report Builder to select the model and build a report. 7.3.2

6 Run or save the report. 7.3.2
218 CHAPTER 7 AD HOC REPORTING

NOTE Using only SQL Server is a limitation of the report model designer within
BIDS. We expect that future releases will support ad hoc reporting against
other data sources.

Step 2 Build a report model. The second and most involved step is building a report
model. A report model is a business description of the underlying data
source. The model will abstract the complexities of the database from the
end user, thus making it easier for business users to create their own reports.
The model describes the source database in terms of entities, attributes, and
relationships, and exposes them to the end user within the Report Builder.
Report models are typically built by developers who have a good understand-
ing of the source database and are usually built using the BIDS environment.
As you see in section 7.2, this is a very detailed process with a number of
configurable parts and is the heart and soul of building ad hoc reports.

Step 3 Deploy the report model. Once you have built the model, you need to
deploy it to the Report Server. This process is similar to the process we use to
deploy reports (see chapter 1). We cover report model deployment in section
7.2.5. As developers, our work is typically completed after this step, though
you may play a role in training the end users how to use the Report Builder.
In steps 4 through 6, we finally get to see the Report Builder in action.

Step 4 Launch the Report Builder. The most common way to launch the Report
Builder application is to navigate to the Report Manager portal (http://
[servername]/reports/) and click the Report Builder button, shown
in figure 7.2. In section 7.3.1 you learn some other options for launching the
Report Builder application.

The Report Builder is the application that our business users will use to cre-
ate and manage ad hoc reports. As we mentioned in section 7.1.1, the Report
Builder is a ClickOnce application, so the installation will occur if needed
when they click the button.

Step 5 Select the model and build a report. When you click the Report Builder but-
ton, the application opens and presents you with options to choose a report
model and type. Once you make your selections and click OK, you see the
design window of the Report Builder (see figure 7.1 earlier in this chapter).
As you can see, the report model exposes entities and fields on the left that

Figure 7.2
You can launch

the Report Builder

application from

the Report

Manager.
ABOUT THE REPORT BUILDER APPLICATION 219

you can drag onto the design surface. You learn all about entities and fields
in section 7.2.

Step 6 Run or save the report. Once you’ve created a report, you can run it, save it,
or both. Running the report will render the report inside the Report Builder,
and toggling between preview and design is very clean. Saved reports are saved
to the Report Server and can be managed in the same way as other non–ad hoc
reports that are stored in the Report Server. Reports that are saved to the
Report Server can later be opened from the Report Builder application as well.

We went through these six steps pretty quickly and in little detail, but don’t worry—
we cover many of the details throughout the rest of the chapter. Before you can build
your model and construct your first report, you need to understand the tools available
to you.

7.1.3 The Developer toolset for ad hoc reporting

To complete the first four steps outlined in the previous section, you have three tool
options for setting up the environment and creating and managing report models. In
this section, we’ll take a look at these tools; all are included with SQL Server 2005:

• Business Intelligence Development Studio (BIDS)
• Report Manager
• SQL Server Management Studio

Business Intelligence Development Studio (BIDS)

BIDS is the design environment that developers use when creating Business Intelli-
gence (BI) applications. This includes such applications as SQL Server Integration
Services (SSIS) applications for extracting, transforming, and loading data; SQL Server
Analysis Services (SSAS) applications for building data warehouses; Reporting Services
applications for complex “canned” reports; and report model applications for building
and managing report models. As developers and architects, the BIDS environment is
where we spend most of our time and energy setting up our environment for ad hoc
reporting. Section 7.2 covers using the BIDS environment to build Report Model
projects detail.

Report Manager

As you learned back in chapter 1 (section 1.3.3), the Report Manager is an ASP.NET
web portal application that performs two main tasks: report management and
requests for reports. You can think of the Report Manager as an application façade
that communicates with the Report Server via the Report Server APIs. You learn more
about using and interacting with the Report Manager in chapter 8, but for now just
understand that you can use this environment to build and deploy report models.

The Report Manager environment is very limited compared with the BIDS envi-
ronment. With the Report Manager you can create a data model by simply choosing
220 CHAPTER 7 AD HOC REPORTING

a data source and instructing the Report Manager to build a model from that data
source. This technique creates a model based on the data source without offering you
any opportunity to tweak and configure that model. In other words, if you use the
Report Manager to build a report model, you are stuck with all of the defaults that
are created during this process. You can, however, open this model in the BIDS envi-
ronment and make any changes to it as if you’d created it in the BIDS environment.

SQL Server Management Studio

The SQL Server Management Studio is an integrated environment used both by devel-
opers and database administrators for accessing, configuring, managing, administering,
and developing all things SQL Server. If you’ve worked with SQL Server in the past,
you’re already familiar with the SQL Server Enterprise Manager. The Management Stu-
dio replaces the previous versions of the SQL Server Enterprise Manager. In fact, you
can use the new Management Studio to manage older versions of SQL Server as well.

To say that the Management Studio is simply the next version of the Enterprise
Manager does not do it justice. The new Management Studio allows developers and
administrators to manage relational databases (like our AdventureWorks database),
SSIS, SSAS, SQL Mobile databases, and Reporting Services.

Similar to the Report Manager, you use the Management Studio to build report mod-
els in two steps: 1) select a data source and 2) instruct the tool to create a report
model. This builds a very basic model with all configurations set to defaults. To mod-
ify these defaults, you need to open the model in the BIDS environment. This tool
provides you with an easy way to build and deploy simple report models in a short
amount of time.

Building simple models using the Report Manager or the SQL Server Manage-
ment Studio is pretty straightforward. For more information on this topic, see the
SQL Server Books Online documentation. To build models that are more complex
(and, therefore, more useful to the end user), you can use the BIDS environment. In
fact, let’s take a look at how to build report models next.

7.2 BUILDING THE REPORT MODEL USING BIDS

Report models are the heart and soul of ad hoc reporting with RS. In section 7.1.1
you learned about the tools available for building report models. You saw how to
build basic report models using the Report Manager and SQL Server Management
Studio. You also learned that if you want full control of the creation and maintenance
of your report models, you need to use BIDS. In this section, you learn how to take
full control of your report models and all the steps involved by using the BIDS envi-
ronment. Of the six steps that we outlined earlier, the first three belong to the devel-
oper, and what better tool to use than BIDS? The first step is simple: choose a database
that you want to model. This step also involves understanding how your end users
want to use this database, what information they need from it, and planning the
BUILDING THE REPORT MODEL USING BIDS 221

model. Since in this chapter we’re living in a hypothetical world, we work for AWC
and have to model our favorite database, AdventureWorks! Well, step 1 is complete
and now comes the fun part: steps 2 and 3. We spend the rest of this section executing
these steps. Put your developer hat on and let’s get to work.

7.2.1 Building a report model project

To get started building a report model, we need to first create a report model project.
This is a new Visual Studio BI project type available with SQL Server 2005 and BIDS,
the main tools used to build and edit report models. Once created, the report model
project environment breaks the report model into three layers:

• Data Sources

• Data Source Views

• Report Models

Throughout the rest of this section we explore these three layers in detail so that you
will fully understand how to best configure report models against your unique data
sources. To understand the report model project, let’s walk through an example.

To begin, start a new project in the VS .NET BIDS environment by selecting the
Report Model Project template, as shown in figure 7.3.

Figure 7.3 Report Model Project is a new template found under the Business Intelligence

Projects in Visual Studio.
222 CHAPTER 7 AD HOC REPORTING

The source code for this walkthrough can be
found in the AWCModel project in the solu-
tion available with this book. Once you create
the project, you see a folder that represents
each of the three main layers of a report
model in the Solution Explorer (figure 7.4).

In the next sections you gain a better
understanding of each of these layers. If you’ve
worked with SSIS or SSAS, then you should see
a pattern here. The first two layers of these
projects also consist of Data Sources and Data
Source Views. This is certainly not a coincidence. In fact, as BI developers, we appre-
ciate the ability to share and reuse these layers among the various project types.

7.2.2 Setting up the data source

The first layer of the report model represents setting up the data source. A report
model data source is a file with a .ds extension that contains connection information
in an XML format. While the file extension and XML schema are unlike the data
sources used in RS Report projects, it is exactly the same file and schema used in other
BI projects such as SSAS and SSIS. In fact, later in this section we explore how you can
use these other data sources in your report model projects. Unlike the data sources in
our RS report projects, the report model data sources can only reference SQL Server
2000 and above, or Analysis Services 2005.

Now that you have an understanding of report model data sources, let’s get our
feet wet and explore the details.

Creating a data source

To create a data source in our project, right-click on the Data Sources folder and select
Add New Data Source, or you could select Add New Item from the Project menu (or
press Ctrl-Shift-A). This launches the Data Source Wizard. This wizard is shared by SSAS,
SSIS, and Report Model Projects. It’s a little different from the wizard we used in chapter
3 to create our Report Server data sources, and presents us with some additional options.

The first screen is a splash screen telling us that we’ve launched a wizard and
describes a little bit about the process. The second screen is where we define our data-
base connection for this project.

Define the database connection

At this point, the Data Source Wizard screen displays database connections that we’ve
already created, even connections from the other BI projects (figure 7.5).

In figure 7.5 you can see that there are three options for creating our database con-
nection. You can click the New button to create a connection from scratch, or you
can choose one of these options:

Figure 7.4 The three layers of a report

model project are Data Sources, Data

Source Views, and Report Models.
BUILDING THE REPORT MODEL USING BIDS 223

• Create a Data Source Based on an Existing or New Connection

• Create a Data Source Based on Another Object

Let’s examine each option.
If you’ve already created a database connection in an SSAS, SSIS, or report model

project and this is the same connection that you want to use for this wizard, then you
can leave the Create a Data Source Based on an Existing or New Connection option
selected, select the available connection, and click Next. The final screen will show
you what you’ve entered and prompt you to name this data source.

To create a new connection from scratch, simply click the New button. This
opens the Connection Manager, shown in figure 7.6.

This window is similar to the Connection Properties window in report projects,
with some minor differences. The first and most important difference is the inability
to select a non-SqlClient provider. In this version of the Report Builder, you can only
build models on SQL Server databases. Although you are limited to SQL Server data-
bases, thankfully you are not forced to use SQL Server 2005.

The second difference is merely cosmetic. The Connection Manager includes an
All button. This is the same as the Advanced button in the Connection Properties
window in report projects. Clicking the All button exposes all of the properties for the
connection. This allows you to modify some of the advanced options, from connec-
tion pooling to packet size to timeout values.

The third option is to create a data source based on another object. If you select
this option and click Next, you are presented with the two choices shown in figure 7.7.

Figure 7.5
Create a data source

based on an existing

connection, from

scratch, or based on

another object.
224 CHAPTER 7 AD HOC REPORTING

Figure 7.6
The Connection

Manager window
is similar to the

Connection

Properties window

in report projects.

Figure 7.7
You can create

data sources

based on existing

data sources in the

current solution
or based on an

Analysis Services

project.
BUILDING THE REPORT MODEL USING BIDS 225

Here we have selected an already existing data source from the current project. If your
solution (not just the current project) contains any data sources that use the
System.Data.SqlClient provider, then they appear as options. These could be
from SSAS, SSIS, or report model projects.

At this point the only thing we can do is click Next or Finish and provide a name
for this new data source. This creates an exact copy with ties to the original data
source and places it in the Data Sources folder of our report model project.

While you may not want an exact copy, you can go back into the data source and
edit some additional properties that the wizard did not expose.

View the data source in the Data Source Designer

Figure 7.8 shows what happens if you double-click on the newly created data source.
Notice that the Edit button is disabled when the Maintain a Reference to Another

Object in the Solution check box is selected. This means that the connection infor-
mation is managed from the original data source and cannot be changed for the new
data source unless you deselect this box.

Figure 7.8
The Data Source

Designer allows

you to manage

properties such as

Query Timeout and

Maximum Number

of Connections.
226 CHAPTER 7 AD HOC REPORTING

The other interesting options in the Data Source Designer are Isolation, Query Time-
out, and Maximum Number of Connections.

• You can change the Isolation setting from ReadCommitted to Snapshot. For
more information, see “Working with Snapshot Isolation” in the “Resources”
section at the end of this book.

• The Query Timeout setting allows you to manage your resources in the case of
a long-running query. The default is 0, which tells the data source not to time out.

• You can also limit the number of connections that use this data source.

Congratulations, you have made it through creating and configuring data sources for
report models. For the purpose of this walkthrough, be sure to create a data source
that uses the AdventureWorks database. Although this may seem like a lot of work, it
really isn’t. With an understanding of the Data Sources layer of report models, you are
now ready for a new concept: the data source view.

7.2.3 Creating a data source view

The second layer of a report model is called Data Source View, and is a representation
of tables and views in the underlying database defined by a data source. The data
source view shows the tables not as they are in the database, but more as we would like
them to appear. Creating a data source is a prerequisite for creating a data source view.

Let’s get started by right-clicking on the Data Source Views folder in our report
model project and selecting Add New Data Source View. This fires up the Data
Source View Wizard. The first step in this wizard after the splash screen prompts you
to select a data source. This screen, shown in figure 7.9, lists the data sources that exist
in your current project. In case you were anxious and skipped the previous section,
you can create a data source on the fly using the same method that we mentioned ear-
lier by clicking the New Data Source button.

Clicking the Advanced button displays some additional options, as shown in
figure 7.10. We discuss these options in the next section, but for this walkthrough be
sure that you leave the advanced options in the default state.

Using the advanced options

The advanced options provide you with a couple of settings for managing the way
that the wizard will configure your data source view. While in most cases you won’t
have to change the defaults, you may find yourself in a situation where it’s necessary.

The first advanced property is the Restrict to Schema(s) option. One of the many
exciting changes to SQL Server 2005 is the separation of user and schema: there is no
implicit connection between the database users and the schema. For more informa-
tion on this change, see “User-Schema Separation” in the “Resources” section at the
end of this book. If you want to limit the objects that are retrieved in the next step,
you can limit them by schema by entering a comma-delimited list of schemas. The
example in figure 7.10 will limit the results to tables and views in the Sales and Pro-
duction schemas.
BUILDING THE REPORT MODEL USING BIDS 227

The other advanced property is the Retrieve Relationships option, which is selected
by default. To understand why you would want to use this option, it is important to
see how and why the wizard uses relationships in creating the data source view. Rela-
tionships are critical in the design of a report model. Without relationships a model
would not add much value. As you see later, the relationships drive the functionality
and features of creating ad hoc reports in an easy fashion. If the database you are ref-
erencing has foreign keys, the wizard uses these keys to manage relationships in the
data source view. If you don’t have keys set up, you have a couple additional options
that allow you to specify the necessary relationships.

Select tables and views

Once you have selected a data source and optionally filled out the advanced options,
click the Next button. At this point the wizard retrieves a list of tables and views for
the data source that you specified and applies any filters indicated by the Restrict to

Figure 7.9
You can select an

existing data source

or create one on the

fly on the Select a

Data Source page of

the wizard.

Figure 7.10
You can limit data source

view tables by schema in the

Advanced Data Source View

Options dialog box.
228 CHAPTER 7 AD HOC REPORTING

Schema(s) advanced option. Second, the wizard looks at the foreign keys for the tables
that are returned. If the tables don’t have foreign keys, you see the Name Matching
page, shown in figure 7.11. This page provides options that instruct the wizard to cre-
ate relationships based on the names of our database objects.

NOTE The Name Matching screen is only available in the Enterprise Edition of
SQL Server 2005. If you are using the Standard or Workgroup Edition, you
have to define the relationships outside the wizard.

Since we’re using the AdventureWorks database, whose relationships are managed
through the use of foreign keys, we don’t see this screen. Instead we see a screen dis-
playing all tables and views in the AdventureWorks database. At this step in the wiz-
ard we can select the tables and views that we want to use in our report model. If we
had limited the schema in the advanced section, the wizard would have used this
information to limit the tables and views returned to the Available Objects area.

Find the Sales.SalesOrderDetail table and move it to the Included
Objects area either by double-clicking on the table name or by selecting the table
name and clicking the > button. Do the same for the Sales.SalesOrderHeader
table. You should see a screen similar to figure 7.12.

Press and hold the Ctrl key and select both of the tables in the Included Objects area.
With both tables selected, click the Add Related Tables button. This adds ten tables to
this list that have a relationship to the originally selected tables. The relationships are
defined either by foreign keys or by logical relationships that were detected from selec-
tions in the Name Matching step of the wizard. After you’ve moved over the tables that

Figure 7.11
This screen allows

you to configure the

wizard to detect

relationships if your

tables don’t have

foreign keys.
BUILDING THE REPORT MODEL USING BIDS 229

you want to use in your model, click Next. The wizard shows you all the objects you’ve
selected and prompts you for a name. Name this data source view Sales Order, and click
the Finish button. This is as far as the wizard will take you, but there is a lot more that
you can do to modify your data source view from within the designer.

NOTE The Add related Tables button is not enabled when using Views, nor is it
enabled when using MSDE as a data source.

After the wizard finishes, double-click on AWC.dsv in the Data Source Views, folder
to see a diagram listing your tables in the designer. This is the design view of the data
source view that we created.

Viewing the data source view diagram

As mentioned earlier, the .dsv file is simply an XML file describing the data source
view. To view the XML, you can right-click on the .dsv file and choose View Code.

If you’ve completed the previous steps correctly, you should see a diagram repre-
senting all of the tables and their relationships. From the data source view diagram,
you can modify the tables and views.

The wizard did a pretty good job of adding the tables that we wanted, but after
further investigation we realize that we are missing a very important table, the
Production.Product table. To add this table, follow these steps:

Figure 7.12 The wizard allows you to select the tables that you want to

represent in the data source view.
230 CHAPTER 7 AD HOC REPORTING

Step 1 Right-click anywhere in the open space of the Data Source View Designer and
choose Add/Remove Table. This opens the same screen we saw in the wizard.

Step 2 Choose the Production.Product table and the Production.Pro-
ductCategory table and add it to the list of included objects by clicking
the > button.

Step 3 Click OK. This adds the Product and ProductCategory tables to our
data source view.

NOTE This table wasn’t added by the wizard because the AdventureWorks data-
base doesn’t have a physical key representing the relationship between our
starting table, Sales.SalesOrderDetail, and the Production.
Product table. However, this missing relationship will provide a great
opportunity for you to learn how to manually add physical keys later.

Let’s explore some of the options in the Data Source View Designer. By clicking on
tables and columns and viewing the properties window, you can see that they all have an
attribute named FriendlyName. Modifying this attribute allows the Report Builder
to interpret the column and table names so that they are more useful to the end user.
Figure 7.13 shows the options available by right-clicking on the Production.
Product table.

Named calculations are logical columns added to data source view tables that are built
using expressions. Suppose you need to show reports with the profit margin of prod-
ucts. Simply right-click on the header of the Production.Product table, select
New Named Calculation, and enter the information as shown in figure 7.14. Named
calculations show up in the diagram as the last column in the table with a calculator
icon to the left of the column name.

During the wizard phase of this walkthrough, we mentioned that the wizard creates
your data source view relationships based on physical keys in the database. We also
mentioned that in cases where you don’t have physical keys, you can create them man-
ually. Let’s add a missing relationship from the Product table to the Sales.Sales-
OrderDetail table.

Figure 7.13
You can create named

calculations and logical

relationships, explore data,

and more from the Data

Source View Designer.
BUILDING THE REPORT MODEL USING BIDS 231

Step 1 Right-click on the Sales.SalesOrderDetail table and select New
Relationship. This opens the Create Relationship window.

Step 2 Specify the Source and Destination tables for your relationships. The Source
table is your foreign key table, or your “many” table in a many-to-one rela-
tionship. The Destination table is the table that typically contains the pri-
mary key, or the “one” side of a many-to-one relationship.

Step 3 As shown in figure 7.15, select the ProductID column from both the
Sales.SalesOrderDetail and Product tables. For those of us who

Figure 7.14
Named calculations are

added to data source view

tables using expressions.

Figure 7.15 The Create Relationship window allows you to create logical

relationships without changing physical database objects.
232 CHAPTER 7 AD HOC REPORTING

struggle with remembering which table to start with in order to specify the
relationship, the Create Relationship window provides a Reverse button that
flips the source and destination for you.

The Replace Table option shown in figure 7.13 lets you change the table view to derive
from a SQL query instead of directly from a database table. This allows you to join
tables or even perform custom calculations within your query. Let’s add Product-
Name to our Sales.SalesOrderHeader table.

Step 1 Right-click the Sales.SalesOrderDetail table, select Replace Table,
and then select With New Named Query.

Step 2 Enter the following query in the SQL pane:

SELECT Sales.SalesOrderDetail.SalesOrderID,
 Sales.SalesOrderDetail.SalesOrderDetailID,
 Sales.SalesOrderDetail.CarrierTrackingNumber,
 Sales.SalesOrderDetail.OrderQty,
 Sales.SalesOrderDetail.ProductID,
 Sales.SalesOrderDetail.SpecialOfferID,
 Sales.SalesOrderDetail.UnitPrice,
 Sales.SalesOrderDetail.UnitPriceDiscount,
 Sales.SalesOrderDetail.LineTotal,
 Sales.SalesOrderDetail.rowguid,
 Sales.SalesOrderDetail.ModifiedDate,
 Production.Product.Name AS ProductName
FROM Sales.SalesOrderDetail INNER JOIN
 Production.Product ON
 Production.Product.ProductID = Sales.SalesOrderDetail.ProductID

This query joins the SalesOrderDetail with the Product table and adds the
ProductName to the result set. It is important to note that by converting this table
to a named query, you lose the ability to add any calculated columns. This should not
be a problem because you can simply add any expressions using T-SQL in your query.

Finally, you can explore the data from the data source view diagrams by right-
clicking on the table and selecting Explore Data. This allows you to see the data in
four views: Standard Table, Pivot Table, Chart, and Pivot Chart.

This section covered a lot of information, and while we probably could have
devoted an entire chapter to data source views, this should provide you with enough
information to build some pretty complex and detailed views. The knowledge you
gained from this section will prepare you for building data source views for Analysis
Services as well as Integration Services projects. It is now time to focus on the final
layer that we will deploy out to the Report Server.

7.2.4 Building the report model

Report Models is the final and main layer of a report model project. End users (non-
developers) don’t necessarily understand the relationships between related tables in
BUILDING THE REPORT MODEL USING BIDS 233

the underlying database. However, we as developers understand these relationships
and can abstract the complexities by building report models.

When you build a model, it derives its information from the data source view. The
Report Models layer is also referred to as the semantic layer. The Semantic Model
Definition Language (SMDL) is the language that defines a report model. When you
build a model using any of the tools we discussed in section 7.1.1, you create an XML
file with the .smdl file extension—the report model. Rather than forcing you to
understand and memorize this definition language, the BIDS environment allows you
to manipulate the XML in a graphical design environment. The Report Models layer
can be broken up into three main components:

• Entities

• Attributes

• Roles

Let’s build our first model using the Report Model Wizard and then discuss how you
can edit and configure this model using the designer.

The five steps in creating a report model using the wizard are:

1 Start the Report Model Wizard.

2 Choose a data source.

3 Select report model generation rules.

4 Update statistics.

5 Choose a model name and run the wizard.

Similar to creating the data source and data source view, we begin by right-clicking
on the Report Models folder and selecting Add New Report Model from the con-
text menu.

The first screen after the splash screen prompts you to choose a data source view.
The view we created in the earlier section should show up here. Also notice that there
is a New Data Source View button. Clicking this button launches the Data Source
Wizard we covered earlier. For this example, choose the AWC data source view that
we created and click Next. You should see the Select Report Model Generation Rules
screen, shown in figure 7.16. This step allows you to select the rules used in building
your report model. The rules are listed and described in figure 7.16. Accept the
default values and click Next.

Next you see the Model Statistics screen, which lets you choose whether or not the
wizard will update the model statistics. For those of you familiar with database statis-
tics, you may be concerned that this will update them. However, model statistics and
database statistics are not the same and the database statistics will not be modified in
any way by choosing this option. The wizard uses these statistics to determine the
unique count of values for particular attributes, to determine the cardinality of the data
structure, and to help generate settings that you see later. Since this is the first time
234 CHAPTER 7 AD HOC REPORTING

you’re seeing this screen, leave the default setting of Update Model Statistics Before
Generating checked.

The next step in the wizard prompts you for a model name. Let’s call this model
AWC. Click on Run to start the Report Model wizard engine. It begins by checking
the column uniqueness and width, and then starts processing the rules on the tables
and columns in our data source view.

As figure 7.17 shows, the wizard makes two passes in building the model. The first
pass creates your entities, attributes, and roles. The second pass takes information col-
lected in the first pass and applies it to the newly created items. This second step
applies formatting, modifies properties of your entities and attributes, chooses and
creates drop-down lists for attributes, and identifies large groups of data. Figure 7.18
shows what the model looks like in the BIDS environment.

Now that you’ve built your first model, let’s dive in and see what you have.

Entities

The Report Model Wizard automatically creates a set of entities for you based on the
data source view that you selected. Entities are logical collections of model items and
are most easily matched to the tables in your database. It is important to understand
that entities can be derived from one table or many tables in the database. An entity is
an object that contains attributes or roles that further describe the entity. An example
would be a Customer entity, which may contain attributes such as CustomerName or

Figure 7.16 Report model generation rules allow you to control the rules that the Report

Model Wizard follows when building a report model.
BUILDING THE REPORT MODEL USING BIDS 235

Figure 7.17
The Report Model

Wizard makes two

passes against our

data source view to

process rules for

the model.

Figure 7.18 Editing the report model in the designer is as simple as modifying properties.
236 CHAPTER 7 AD HOC REPORTING

CustomerType. This same entity might also have roles, such as Address or Sales
Orders. We discuss roles later, but for now just keep in mind that roles are contained
within an entity. Entities will be the starting point for creating ad hoc reports with the
Report Builder. Typically an ad hoc report creator will want to see customers, orders,
and employees, and then filter the results by attributes of the entities. Although the
wizard creates entities and sets the entity properties, we are not limited to keeping
the default settings that the wizard creates. In this section you learn about some of the
properties that you can modify which affect the entity in the resulting report model.
You can find each of these properties by selecting the entity on the left side of the
BIDS designer and modifying the properties in the properties window. Figure 7.18
shows the report model in the BIDS environment.

Table 7.2 shows some properties of the Entity object. This is not a comprehensive
list, but it does include the most commonly modified properties. For example, you
may want to modify the DefaultDetailAttributes property to contain a dif-
ferent set of fields. The Report Model Wizard takes a best guess at the fields that you
want to have as default attributes. As you learn later on in our examples, you can
select and drag an entire entity or simply select and drag attributes of an entity onto
the design surface of the Report Builder. If you drag the entire entity, the attributes
that will show up on the design surface are those defined in the DefaultDetail-
Attributes property.

Table 7.2 Comment entity properties

Property Description

IdentifyingAttributes Specifies the attribute(s) that uniquely identify the entity.

DefaultDetailAttributes This is a collection of attributes that will be placed in the Report
Builder when the entity is dragged to the design area.

SortAttributes Specifies the attribute(s) by which this entity will be sorted.

IsLookup This property indicates that the Report Builder should treat this
entity as a lookup table instead of a full-fledged entity. In some
cases you may have an entity that has only one attribute of value
to the end users who are building reports. A good example of this
is the Product SubCategory entity. If you set the IsLookup
property of the Product SubCategory entity to true and then set the
IdentifyingAttribuites property to the name field (this is
the subcategory name), this will allow the product subcategory to
appear as an attribute of the product entity. This makes it possible
for the users to easily select a product subcategory without having
to navigate to a related entity in the designer. It is important to note
that if you change this value to true, you can only specify one field
in the IdentifyingAttributes property.

Hidden If you do not want to expose a certain entity in your model, you can
set this property to true and it will not be available to your ad hoc
report builders.

continued on next page
BUILDING THE REPORT MODEL USING BIDS 237

If you do not want an entity to show up in the model, you can use the Hidden prop-
erty. Now that you’ve seen what you can do to modify the properties of the Entity
object, let’s dig a little further down the tree and check out your options for modifying
the attribute properties.

Attributes

Attributes are simply fields of an entity that you want to expose in your model. These
may be directly mapped to database fields or based on expressions or calculated data. If
Customer is an entity, then CustomerName might be an attribute of that entity.
Table 7.3 shows some of the common properties of the Attribute object that you
may want to modify in creating your report model. Once again, this is not a compre-
hensive list but simply some of the most commonly modified properties. For a complete
list, look in the SQL Server Books Online documentation that comes with SQL Server.

InstanceSelection This specifies the type of selection control that is used in the
Report Builder when the entity is selected in the Report Builder.
The Report Model Wizard will set this value based on the number
of available options for the entity. Four choices are available for this
property. We see examples of how this affects the Report Builder
application in section 7.3.
The four available options are:
Dropdown: This value should only be used for small lists. If the
number of instances of this entity is more than 25 or so, you may
want to use a list instead.
List: This value is best used when the number of instances is too
large for a drop-down and when the list does not require filtering.
FilteredList: This value should be used when you are working with
a large number of instances and you want the users to be able to
filter the list in the Report Builder application.
MandatoryFilter: This property will force users to provide
additional filters if they are using this entity in a report. This value is
used when the number of instances is very large and is used to
keep the end users from creating reports that will return too much
data that will take a long time to query.

Table 7.3 Comment attribute properties

Property Description

Binding Specifies which underlying table column this attribute is bound to (not
applicable for expression-based attributes).

Expression Specifies the expression for expression-based attributes. SMDL defines
various aggregate (SUM, COUNT, etc.), conditional (IF), conversion,
date (YEAR, DAY, etc.), logical (AND, OR), mathematical (MOD), and
text functions.

continued on next page

Table 7.2 Comment entity properties (continued)

Property Description
238 CHAPTER 7 AD HOC REPORTING

Just like with the Entity object, the Attribute object has a Hidden property
that is used to hide an attribute from the ad hoc report builder. The
DiscourageGrouping property is used to keep ad hoc report builders from
using this field for grouping. Another important property is the Format property.
The Report Model Wizard examines the data in your database in addition to look-
ing at the data type that you have provided, and defaults this property to a “best
guess” as to how you’d like this field to be formatted. If the wizard’s best guess
doesn’t meet your requirements, you can modify this property to properly format
the attribute. The properties of the Attribute object give you a powerful level of
control. Let’s now examine the Roles object and see how you can modify the
default properties when building your report model.

Roles

What are roles and how do they fit into your report models? Roles are objects that
describe how one entity is related to another. Roles can define one-to-one, one-to-
many, or many-to-many relationships. Roles are how the report model defines the
relationships between entities. You could say that a role is the glue that holds
the model together. Table 7.4 shows some of the most common properties that you
will find yourself working with.

IsAggregate Informs the client application if this attribute can be aggregated. For
example, you would typically set this property to false for attributes such
as phone numbers or names.

Hidden A hidden attribute is not directly displayed to the end user, but you could
use the field in expressions when building your model.

EnableDrillthrough Lets end users see entity details.

DiscourageGrouping This is a Boolean field that if set to true will discourage end users from
grouping on this field. You will want to set this to true for fields that are
typically unique, such as phone numbers, Social Security numbers, or
fields holding dollar values.

Format This uses the .NET format strings to instruct the Report Builder how to
format the field. There are additional format strings besides the standard
.NET formats that can be used for Booleans and dates. For more
information see the “Attribute Object (Report Model)” section in the SQL
Server Books Online documentation.

ValueSelection This determines the behavior of the Report Builder for selecting values of
this attribute. The possible values are none, list, and dropdown. If none is
selected, the user will have to specify a value by typing it; dropdown and
list provide a user interface for the users to select values. It is important
to note that if the IsAggregate property is set to true for this attribute,
then the value of this property is ignored.

Table 7.3 Comment attribute properties (continued)

Property Description
BUILDING THE REPORT MODEL USING BIDS 239

The HiddenFields property is very interesting. It allows you to take attributes that
are exposed through an entity and hide them from being exposed through a role. Let’s
look at an example with our AdventureWorks model. Let’s say that you have an
Account entity and an AccountTransaction entity. The AccountTransaction would
likely be specified as a role to the Account entity. The AccountTransaction entity has
an attribute called TransactionCode. If you set the HiddenFields property to
false, then when you are viewing the AccountTransaction as a role (or subentity) of
the account, you won’t see the TransactionCode field. If you were to look at the
top-level entity of AccountTransaction, you would see this field.

Now that you’ve seen the power of modifying properties of the Entity,
Attribute, and Roles objects, let’s see how you can use folders to help you orga-
nize your model.

Using folders to organize entities

You can create folders in your model to better organize your model entities. These
folders show up in the Report Builder just as they do here in the BIDS designer. Once
you’ve added a folder to your model, you’ll be able to drag entities into the folder.
This can be a useful way to put similar entities together for better organization of your
model, especially when you have a large number of entities. Adding folders is as sim-
ple as right-clicking the root node (Model) in your report model and choosing New >
Folder, as shown in figure 7.19.

You see an example of how folders can be used in report models in section 7.3.4.
You have now created your first report model and are ready to make it available to
your end users.

Table 7.4 Common role properties

Property Description

Binding This is the database object that represents this role.

Cardinality Choices are One, Many, OptionalOne, and OptionalMany.

ExpandInline Indicates that the client application should not show the role to the user and that
the fields of the related entity should be displayed instead as if they were part of
this entity.

Hidden Similar to the Hidden property of the Entity or Attribute object, this property
determines whether this role is visible in the Report Builder.

HiddenFields This property allows you to specify fields that you do not want to be available for
this role. This means that by setting fields as hidden through this property, you
could allow attributes to be available from the entity level but not available when
viewed through a role

Linguistics The Linguistics properties of the role contain properties for SingularName
and PluralName. This element is not allowed if Name is omitted. In this case,
SingularName and PluralName default to the Name and Collection of the
related entity, respectively.
240 CHAPTER 7 AD HOC REPORTING

7.2.5 Deploying report models

Once you’ve built and configured your models, you need to deploy them to the
Report Server so that the Report Builder can use it. This is as simple as deploying your
Report Server reports. The first step in deploying report models is ensuring that the
project properties are configured properly. Figure 7.20 shows the properties window
for our report model project.

To understand the options, refer to table 7.5. Once you’ve configured your report
model project properties, deploy the model by simply right-clicking on the model and
choosing Deploy. If you make changes to your model, you need to deploy the model
before end users can see these changes.

If you make changes to your data source view and you need these changes to be
reflected to your model, you have to autogenerate your model by selecting Autogenerate

Figure 7.19
You can add folders to help organize

your entities in your model.

Figure 7.20 The report model properties allow you to set up the Report Server and folder

to which the model will be deployed.
BUILDING THE REPORT MODEL USING BIDS 241

from the Reporting Model menu in the BIDS report model project. Doing this over-
writes your existing model, so you should be careful.

As you can see, deployment of report models is pretty straightforward. Now that
you’ve completed the first three steps for setting up the Report Builder, it is now time
to see how you can use this new model.

7.3 AD HOC REPORTING IN ACTION

We have completed steps 1 through 3. We have our database selected, we’ve built a
model, and we’ve deployed our model to the Report Server. We have now done every-
thing needed to allow business users to start building reports. We can now take off our
database developer hat and put on a different developer hat: the ad hoc report builder
hat—which looks a lot like the one on the cover of this book.

Prepare yourself! In this section we walk through the entire process of creating an
ad hoc report from the business user’s perspective.

7.3.1 Launching the Report Builder

We first looked at launching the Report Builder in section 7.1.2; in this section, you
also see some advanced options for launching this application.

The first thing you need to do is navigate to the Report Manager (http://
[servername]/reports). If you have permission to use the Report Builder, you
should see the Report Builder button on the home page. (If this button is not show-
ing up, see section 7.4 to enable the Report Builder.) Clicking this button launches
the Report Builder application. The Report Builder is different from most client
applications your end users will be used to. When you click the Report Builder button

Table 7.5 Deployment properties for the report model project

Property Description

OverwriteDataSources If this is true, the data source will be overwritten every time you
deploy a report model from this project.

TargetDataSourceFolder This is the path to the folder to which the data sources will be
deployed for this project starting from the root of the Report
Manager. If you enter a folder that does not currently exist, when
you deploy the process will create the folder for you.

TargetModelFolder This is the path to the folder to which the models will be deployed
for this project starting from the root of the Report Manager. If you
enter a folder that does not currently exist, when you deploy the
process will create the folder for you.

TargetServerURL This is the URL to the Report Server that you want to deploy to. By
default this path is http://[servername]/reportserver. In
the case of a nondefault instance of SQL Server, the path is http://
[servername]$[instance]/reportserver. An example of a
nondefault instance is http://DEVSERVER$SQL1/
reportserver.
242 CHAPTER 7 AD HOC REPORTING

for the first time, it prompts you to install the Report Builder. Figure 7.21 shows the
installation dialog box.

The next time you click the button, the system will check your version and if it is
the same as the version on the Report Server, then the application will simply open.
If the server has been updated, the system will install this new version and then run it.

Once the Report Builder is launched, you should see a screen similar to the one
shown in figure 7.22. Here you can see a list of the report models that have been
deployed to the Report Server.

You have now seen how simple it is to launch the Report Builder from the Report
Manager. This is not the only way to launch this application. Alternatively, you can
launch the Report Builder by navigating to the following URL:

http://<localhost>/reportserver/reportbuilder/reportbuilder.application

Any application that can communicate with your Report Server can provide a link or
button that points to this URL. Let’s examine the Report Builder application as it
appears when it is first launched.

As shown in figure 7.21, when the Report Builder opens you see the Getting
Started pane to the right of some empty gray space. This pane provides a user inter-
face for opening saved reports and creating new ones.

The New section displays a list of all of reports from the Report Server models that
you have access to. The Report Layout section allows you to choose one of three
report types: Table, Matrix, or Chart. You should recognize these from chapter 4.

For now, select the AWC report model, then choose Table (columnar) as the
Report Type, and click OK. You’re now ready to create your first table report.

Figure 7.21 As long as the client has the .NET Framework 2.0 installed, the

Report Builder will automatically install onto their computer.
AD HOC REPORTING IN ACTION 243

7.3.2 Creating the Product Profit Margin report

Once you choose your model, select a report type, and click OK, the Report Builder
opens in design mode. You can make the following selections:

• Click in the title bar and name this report Product Profit Margin.

• Select the Product entity from the Entities list box (on the left side of the
designer). This selection populates the Fields list box with Product-related fields.

• Drag and drop these fields onto the designer, as shown in figure 7.23: Name,
Product Number, Finished Goods Flag, and Total Profit Margin.

Once you’ve added fields from an entity, the Entities list box will only show entities
that are related to the one in use on the design surface. This keeps users from creating
reports that don’t work by only allowing related fields to be added to the design surface.

Figure 7.22 The starting screen for the Report Builder allows you to choose your

report model and type of report.
244 CHAPTER 7 AD HOC REPORTING

You have now created your first ad hoc report. You can run this report by clicking the
Run Report button. This creates a report with about 12 pages listing products and
their profit margin.

Modifying the report

Let’s make the following modifications to our report:

• The Profit Margin field does not make sense for products that are not finished
goods. So let’s filter this report to show only finished goods.

• If we are limiting this to only finished goods, then the Finished Goods Flag field
is not necessary on this report. This provides us an opportunity to learn how to
remove fields and filter reports.

• Finally, we want to format the Profit Margin field as currency.

If you are still viewing the report after running it, click the Design Report button to
return to the design mode. To remove the Finished Goods Flag field, right-click on
the field and select Delete. To format the Profit Margin field, select both the detail
and total cells for the field by holding the shift key while selecting both cells, right-
click the selected cells, and click Format. Select the currency format, as shown in fig-
ure 7.24. The default options for formats vary based on the type of field selected.

To add a filter to your report, simply click the Filter button in the BIDS
designer. This opens the Filter Data window. Just like the main design window, the

Figure 7.23 The Report Builder designer allows us to drag entities and fields onto the
design surface.
AD HOC REPORTING IN ACTION 245

Figure 7.24
You can format fields in

the Report Builder by

right-clicking on the cells

and choosing Format.

Figure 7.25 The report model provides the filter box with a list of possible values to filter by.
246 CHAPTER 7 AD HOC REPORTING

Filter Data window shows the entities and fields on the left and allows you to drag
and drop fields to the right side. With the Product entity selected, drag the Fin-
ished Goods Flag field from the Fields list box onto the filter area at the right. Fig-
ure 7.25 shows that our model is smart enough to know what the possible options
are for filtering.

By clicking on the field in the filter area, you see
three options: Edit as Formula, Prompt, and
Remove Condition. Edit as Formula allows you to
make more advanced calculations for formatting
when the available options are not enough. The
Prompt option lets you to select this filter item as
a prompt field. That way, this field becomes a
parameter in the resulting report. The Remove
Condition option lets you delete filters that you
don’t want. Filters default to the Equals compari-
son. If you click on the Equals entry, you’re pre-
sented with a list of options. Since Finished Goods
Flag is a Boolean field, we only see Not or Equals.
Figure 7.26 shows the options that are available for
numeric and string fields.

Select TRUE from the drop-down list and click
OK. You now have a report showing only the fin-
ished goods. If you run the report, you should see that the number of pages went from
12 to 7.

7.3.3 Getting more with infinite drill-through reporting

With infinite drill-through reporting, the report you create in the Report Builder is
simply a starting point for further inquiry. Reports authored with the Report Builder
automatically provide end users with infinite drill-through functionality.

Infinite drill-through reporting is the ability to start with the results of a report
and continue to “drill through” to a new layer of the data. This can be done contin-
uously until there are no other logical paths to follow. These paths are directly
linked to the roles (relationships) in the data model. In many situations, the data
model will create a circular path of information; thus the term infinite drill-through.

But what does this mean exactly?
Suppose we create a report, using the Report Builder, that shows all of the sales

from a particular region, and that also shows the order number. If the model is set up
correctly, when we run this report we can click on the order number and it will load
up a new report showing the details of that order. If those details include a product,
we can then click on the product and see the details of that product. If the product
details report shows us a product category, this category can link us to a list of all

Figure 7.26 There are a number of

options for filtering data in the

Report Builder
AD HOC REPORTING IN ACTION 247

products in that category; this report can then take us to another report. You get the
idea. Imagine the power your business users will feel when they spend 5 minutes cre-
ating a report that gives them access to this type of drill-through.

Notice that earlier we warned you that this will work only if the model is set up
correctly; that is, the model must understand the relationships between entities. As
you learned in section 7.2, relationship management operates through roles. A model
isn’t of much value without roles, so as long as you relate your entities to one another
through roles, you won’t need to do anything else to enable infinite drill-through.

NOTE Be warned that infinite drill-through is only available with the Enterprise
version of SQL Server 2005. After receiving a free copy of SQL Server Stan-
dard Edition at the Chicago SQL Launch, it didn’t take long for me to
install it and start building report models. Imagine my surprise when I cre-
ated my first Report Builder report and the infinite drill-through didn’t
work. I looked for ways to make it work by exploring my model project.
Finally, I remembered that I was using the Standard Edition.

Temporary drill-through reports

Temporary drill-through reports are automatic with the Enterprise edition of SQL
Server. When a user creates a report by using the Report Builder, the infinite drill-
through features are built in. These reports are called temporary reports because they
are automatically created by the Report Server when they are requested and aren’t
saved like traditional reports.

When a user clicks on a data item, the Report Server determines the entity that
belongs to the item that was clicked on and creates a report on the fly. The server uses
the report model information to build these reports based on one of two templates:

• Single Instance Data—For a single instance of an entity such as information on
a customer

• Multi Instance Data—For a list of entity items such as a list of products in a par-
ticular category

These templates are very basic and therefore the reports will not be particularly nice
looking. Because the templates can’t be modified, you are stuck with the layout and
color of these temporary reports. This might seem like a real downer, especially if you
create a nice-looking report in the Report Builder and then the drill-through reports
don’t match this look and feel. But what if you could create your own detailed reports,
complete with your own branding look and feel, and then assign them to particular
entities in your model? Well, you can—with static drill-through reports.
248 CHAPTER 7 AD HOC REPORTING

Static drill-through reports

Static drill-through reports are simply predefined, published reports that you can map
to specific parts of a report model. You must create static drill-through reports in the
Report Builder and save them to the Report Server. Once you’ve done this, you can go
into SQL Server Management Studio and assign the reports to specific parts of your
model. These reports will replace the temporary drill-through reports. For more infor-
mation on assigning published Report Builder reports to specific entities, search for
“How to Map a Predefined Report in a Report Model” in the SQL Server Books
Online documentation.

Keep in mind that access to these static drill-through reports is managed through
the role security. If you map a static drill-through report to a particular entity and the
user who selects this entity does not have access to your report, they will see a tempo-
rary drill-through report instead.

7.3.4 Advanced filtering with the Report Builder

Remember Bob from the introduction of this chapter? Bob is a sales manager who is
interested in creating an ad hoc report that shows a list of names and emails addresses
for his customers who

• Purchased bikes two years ago

• Purchased accessories for their bike last year

• Have not purchased any accessories this year

For this example, let’s use the completed Adventure Works report model (included
with the source code for this book) and use 2004 as the current year. Be sure to open
and deploy this project before starting the Report Builder. Once the project has been
deployed, launch the Report Builder from the Report Manager. When the Report
Builder opens, select the Adventure Works report model, choose the Table (Colum-
nar) option, and click the Open button.

Let’s start by placing on the design surface the data fields that we want displayed
on the report. Select the Customer entity on the left. This ensures that the Customer
Attributes appear in the Fields section at the bottom left of the Report Builder. Move
the Customer Name and Email Address fields onto the report. Notice that the fields
in use by the report are shown in bold in the Fields selection list.

Once you have the fields on the main design surface, click the Filter button.
This displays the Filter Data window. Table 7.6 lists the steps for specifying our
advanced filter.

Once you’ve completed the steps in table 7.6, your screen should look similar to
figure 7.27. The current report will now show Bob all customers who purchased
bikes in 2002 and accessories in 2003. This is close to meeting his requirements—
but not quite.
AD HOC REPORTING IN ACTION 249

Table 7.6 Advanced filter steps

Step
Advanced filter

setting
Details

1 Deselect the When
Adding A New
Condition, Apply To
All Data In My
Report check box.

In our previous example, the product profit margin report, we kept
the When Adding A New Condition, Apply To All Data In My Report
checkbox selected. For this example be sure that this check box
is not selected. This allows us to create distinct grouping within
our filter.

2 Filter by
Customer Type.

With the Customer entity selected, drag Customer Type from the
Fields section onto the filter design surface. Choose I from the drop-
down list. In the AdventureWorks database two customer types are
defined: Individual (I) and Store (S).

3 Filter by Order State/
Province.

Select the Sales Order entity and then the Bill To Address entity.
From the Fields list drag the State Province field under the Customer
Type filter. Bob’s territory is the state of Washington, so choose
Washington from the drop-down list.

continued on next page

Figure 7.27 Advanced filtering can be very simple.
250 CHAPTER 7 AD HOC REPORTING

Bob wants to see all of his customers who purchased bikes in 2002, accessories in
2003, and nothing in 2004. To complete this, we must create a new grouping for the
Order Year 2004 and alter the default way it filters. So there are two more steps, as
table 7.7 shows.

You’ve just seen how easy it is to create complex filtering when creating ad hoc reports
in the Report Builder. While knowing how to create filters for ad hoc reports is
important, understanding the security model around these reports and around the
Report Builder is equally necessary. In the next section, we turn our focus toward
Report Builder security.

4 Create the Order
Year 2002 grouping.

With the Sales Order entity selected, expand the Order Date
attribute and drag the # Order Year field onto the surface. Notice that
the Report Builder put an “and” separator and adds our new
selection in its own filter grouping called Any Sales Order With. The
filter grouping functionality was enabled during the first step when
we deselected the check box at the bottom of the Filter Data
window. Choose 2002 from the # Order Year field drop-down list.

5 Add Product
Category to the
Order Year 2002
grouping.

Choose the Sales entity and then the Product entity. From the Fields
list drag the Product Category into the new grouping that we
created. To add this field to the 2002 Order Year grouping, you
need to drop the field inside the 2002 grouping box. Choose Bikes
for this field.

6 Create the Order
Year 2003 grouping.

Create another grouping by selecting the Sales Order entity and drag
the # Order Year just like we did earlier and choose 2003 as the
Order Year. Be sure to place this field under our 2002 grouping and
not inside it. Also similar to our previous step, choose the Product
Category and place it in the 2003 grouping box, and then select
Accessories from the drop-down list.

Table 7.7 The steps continued…

Step Advanced filter setting Details

7 Create the Order Year
2004 grouping.

In the Filter Data window, select the # Order Year from the Sales
Order entity as we did twice previously and create a new
grouping box. Select 2004 for this # Order Year.

8 Alter the group’s default
filtering.

Now, when you click on the header that currently says Any Sales
Orders With, you will see that you have other options. Choose
No Sales Orders With from the drop-down list. This will fulfill our
requirements.

Table 7.6 Advanced filter steps (continued)

Step
Advanced filter

setting
Details
AD HOC REPORTING IN ACTION 251

7.4 IMPLEMENTING REPORT BUILDER SECURITY

The security for the Report Builder can be done in a variety of ways at different levels
in the architecture. In this section, you’ll get a strong understanding of how to set up
security for the Report Builder application. We cover the various ways that you can
implement security when using the Report Builder application.

7.4.1 Securing the Report Builder with roles

To use the Report Builder, you need the following:

• A system role assignment with the task Execute Report Definitions—When you
install Reporting Services there will be two system roles: System User and System
Administrator, and, by default, these role assignments have this task selected.

• Item-level role assignments for the report model itself—A new role, Report Builder,
will provide viewing and navigation permissions on report models. This permis-
sion may be inherited from a parent folder.

Roles for accessing and using the Report Builder

Let’s start with the first layer of securing the Report Builder: access to the application
itself. As you learned in step 4 of section 7.1.1, there are only two ways to launch the
Report Builder: through the Report Manager or through a URL path. If your user or
group is not assigned to a system role with the task Execute Report Definitions, then
you will not see the Report Builder button in the Report Manager.

A good way to check for this assignment is to create a Windows user on your
machine and place him in a group that is not specified in the System User or System
Administrator roles. If you log in as this user and navigate to the Report Manager,
you should not see the Report Builder button.

To add a user or group to one of the system roles, open the SQL Management Stu-
dio and connect to your Report Server.

NOTE For more information on how to connect to your Report Server using the
SQL Server Management Studio, see chapter 8.

From the main node for your server, right-click and select Properties, as shown in fig-
ure 7.28.

In the Properties window select the Permissions page, which lets you add users or
groups and select the system role that you want to place them in. This can be a very
important step. We have run into many situations where clients have set up Report-
ing Services but can’t figure out how to get the Report Builder button to show up.
We hope reading this will save you some precious time.
252 CHAPTER 7 AD HOC REPORTING

Roles for accessing and using report models

You can also manage security for the models you’ve created by assigning item-level
roles. The Report Builder role provided out of the box in Reporting Services offers
permissions that let users view and work with models. The Publisher role allows
users to upload both reports and models to a Report Server. This is done with the
Publisher-specified tasks Manage Reports and Manage Models.

We cover roles and tasks more thoroughly in chapter 9. You can specify permission
for models at the folder level in the Report Manager or at the model level itself. After
you’ve read chapter 9 you’ll realize that this is similar to managing permissions for
reports and data sources. Although this level of security is nice, it is interesting to see
that you can get more granular with your permissions by securing items in a model.

7.4.2 Securing report model items

Securing items in a model allows you to control the access to specific parts of your
model. You need to use the SQL Server Management Studio to get to this level of
security. When you open the SQL Server Management Studio you will be prompted
for connection information by the Connect to Server window. In order to connect to
the Report Server be sure to select “Reporting Services” from the Server type drop-
down. To do this, navigate to the models in Management Studio and right-click on
the name of the AWC model in the Models folder. In the Model Properties window,
select the Model Item Security page, as shown in figure 7.29.

By selecting the Secure Individual Model Items Independently For This Model
check box, you can take control of the permissions at the item level. After checking
this box, you need to add a group or user at the root node (AWC in figure 7.29). If a

Figure 7.28 You can manage the system roles from the SQL Server Management Studio.
IMPLEMENTING REPORT BUILDER SECURITY 253

user does not have permission to a particular entity, role, or field, they won’t even see
this item when creating reports in the Report Builder. The items in the model sup-
port inheritance, so if you set permission at the model level these permissions will be
defaulted for everything below. With model item security, the Report Server modifies
the query that is sent to the data source to exclude any part of the model that is off
limits to the user.

Disabling the Report Builder

If you do not want users to be able to download the Report Builder application, you
can do this on the server by modifying the system property EnableReportDesign-
ClientDownload. Setting this property to false disables all Report Builder downloads
for the Report Server. To set this property, compile and run the following code in a
VB .NET application.

Figure 7.29 The SQL Server Management Studio allows you to manage permissions on

entities and fields in your model.
254 CHAPTER 7 AD HOC REPORTING

Imports System
Imports System.Web.Services.Protocols
Class Sample
 Public Shared Sub Main()
Dim rs As New ReportingService()

 rs.Credentials = System.Net.CredentialCache.DefaultCredentials
 Dim props(0) As [Property]
 Dim setProp As New [Property]
 setProp.Name = " EnableReportDesignClientDownload"
 setProp.Value = "False"
 props(0) = setProp
 Try
 rs.SetSystemProperties(props)
 Catch ex As System.Web.Services.Protocols.SoapException
 Console.Write(ex.Detail.InnerXml)
 Catch e as Exception
 Console.Write(e.Message)
 End Try
 End Sub 'Main
End Class 'Sample

This code instantiates a ReportingService object so that you can configure its proper-
ties through the object model. Next, you set the credentials to the default credentials.
You then instantiate a Property Collection (props) object and a Property
object (setProp) b. The method SetSystemProperties() expects one
parameter that is a collection of Property objects, and so you set the Name and
Value of your setProp object to EnableReportDesignClientDownload
and False, respectively c. Next, you add this Property object to the props
object. Now that you’ve prepared the objects, you can call the SetSystem-
Properties() method of your ReportingService object.

The Report Builder application provides a means of getting to data that was pre-
viously not available. Although you can manage a list of users who can download the
Report Builder application, some companies may want to ensure that nobody can
download and run it. If this is the case, you may want to run the code in listing 7.1
to secure the ability to download the Report Builder application.

7.5 SUMMARY

We hope you got a lot out of this chapter. We covered the full spectrum of the Report
Builder application, from the developer’s role to that of the information worker. We
started with an overview of the Report Builder application and discussed the six steps
to creating ad hoc reports. These steps covered the roles of both the developer who
sets up the environment as well as the end user who creates and works with ad hoc

Listing 7.1 Setting the EnableReportDesignClientDownload property of the

Reporting Service

b

c

SUMMARY 255

reports. We also covered the tools available for creating and managing report models.
Remember that without report models, there is no ad hoc reporting.

The heart and soul of ad hoc reporting is the report model, and we spent the
majority of this chapter examining this model. You learned that in order to create a
report model, you must first understand the data source and data source views. Once
these are set up, you can run the Report Model Wizard to create a report model. This
process would be powerful enough if it simply stopped here, but as you learned, after
the wizard is finished, you have a number of options for modifying the report model
to work as you want. The report model consists of entities, attributes, and roles, each
with its own set of properties that you can modify. As a developer, your main goal is
to create a report model that will enable your end user to easily create ad hoc reports
while still providing as much flexibility as possible to query the data using this model.
We also looked at ways that you can organize your entities to make it easier for end
users to use your report models.

To help you grasp the full life cycle of ad hoc reporting, we covered the steps
needed to set that up (report models), and showed you how to create some simple and
advanced ad hoc reports.

You learned that the security model for report models is very flexible and can be
managed from a variety of tools. Access to the Report Builder application is managed
through role-based security. You learned how to enable or disable the ability for users
to access the Report Builder and how you can maintain security for the data once the
Report Builder is launched. You saw that by using the SQL Server Management Stu-
dio you can manage permissions at the field level. This allows you to control who sees
what data in your report models. If used properly, this can be a powerful way to man-
age the security of the data behind your models.

We could write an entire book on ad hoc reporting with SQL Reporting Services.
This chapter covered most, but certainly not all, of the functionality available with
the Report Builder. We encourage you to take the knowledge that you gained from
reading this chapter and use it to kick-start a deeper focus on report modeling and ad
hoc reporting.
256 CHAPTER 7 AD HOC REPORTING

2
P A R T
Managing reports
Once your report is ready, you will need to make it available to your end users. A
common requirement posed to enterprisewide reporting frameworks such as Report-
ing Services is to facilitate report access and management by keeping all report config-
uration in a single place. To respond to this need, RS captures reports and their
related items in a centralized report catalog.

In part 2 we put on our report manager’s hat to find out what techniques are avail-
able for carrying out the second phase of the report lifecycle—report management.
Most of our time is spent discussing how we can leverage the Report Manager web
application to perform various management tasks, such as uploading reports, organiz-
ing reports in folders, configuring and working with server-side settings, configuring
report caching, and so forth.

As a versatile reporting platform, RS provides ways to address various management
needs. We explore other management options supported by RS, such as the RS Web
service, WMI provider, RS Scripting Host, and specialized utilities.

An important task that every report manager needs to master is securing the report
catalog. We look at how the RS role-based security mechanism works and how it can
be configured to enforce restricted access to the report catalog. Finally, you learn the
way to configure RS code access security to grant the minimum number of permissions
that reports with custom code need to execute successfully.

C H A P T E R 8

Managing the Reporting
Services environment

8.1 Managing RS with the Report

Manager 260
8.2 Managing RS with the

Web service 288
8.3 Managing RS with the

WMI provider 296

8.4 Other ways to manage Reporting
Services 299

8.5 Analyzing report execution 305
8.6 Summary 309
Reporting Services provides all the tools you need to support the full lifecycle of a
report. In a typical enterprise environment, there are usually three groups of people
who get involved with each of the three phases of a report’s lifecycle:

• Report authors focus on authoring reports using the Report Designer, or busi-
ness users author reports using the Report Builder.

• Administrators are concerned with managing the report repository.

• Developers report-enable their applications to allow users to request reports on
demand or via subscriptions.

In this chapter, we put on our administrators’ hats and discuss how we can manage
the report environment. As you’ll see, Reporting Services provides not one, but several
maintenance options for performing various administration tasks. We discuss each
option as follows:
259

• The Report Manager

• The RS Web service

• The Reporting Services WMI Provider

• SQL Server Management Studio

• The Scripting Host

• Other administration utilities

Let’s start our tour by looking at how report administrators can leverage the Report
Manager web portal to manage the report catalog.

8.1 MANAGING RS WITH THE REPORT MANAGER

As a report administrator, your responsibilities typically include performing various
day-to-day tasks to maintain the report catalog. For example, you may want to grant
rights to certain users or Windows groups to run a given report.

To reduce the management effort, Reporting Services includes a user-friendly
web-based tool called the Report Manager.

The Report Manager serves the following main tasks:

• Report delivery—End users can use the Report Manager to request reports on
demand or subscribe to reports for delivery.

• Report management—You can use the Report Manager to manage all aspects of
the report catalog.

• Report Builder—As you learned in chapter 7, the Report Manager can be a central
place where users launch the Report Builder (the ad hoc report-building client).

In this section we show you how to manage Reporting Services with the Report Man-
ager. First we explore what makes the Report Manager work and learn how to install
and configure it. We then spend some time focusing on the settings of the Report
Manager. This is where you learn how to manage the My Reports feature as well as
jobs and schedules. Once you understand those settings, we look at managing folders
and uploading resources. We also describe how to manage linked reports from within
the Report Manager.

As you can see, we cover quite a bit in this section, so grab your favorite caffeinated
beverage and let’s get started with a 10,000-foot view of its architecture.

8.1.1 How the Report Manager works

From an implementation perspective, the Report Manager is simply a web-based
front end to the Report Server, as shown in figure 8.1.

From an application standpoint, the Report Manager is implemented as an
ASP.NET application, consisting of maintenance pages, styles, images, and other
web resources.
260 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

In this section we explore how to:

• Configure the Report Manager

• Access the Report Manager

• Use the Report Manager for delivery

Configuring the Report Manager

When you installed Reporting Services the Report Manager was set up for you. The
Report Manager’s default installation settings are listed in table 8.1.

The Reporting Services Setup program doesn’t allow you install the Report Manager
separately from the Report Server, which forces you to have both components
installed on the same box. This is because deploying the Report Manager on a sepa-
rate computer requires that you use Kerberos as an authentication protocol so that
the user credentials are properly delegated between the Report Manager and the
Report Server.

NOTE The Kerberos protocol originated at MIT more than a decade ago. The
Windows implementation of Kerberos allows an application to flow an
authenticated identity across multiple physical tiers of the application. For
more information about how to configure Kerberos, refer to section 8.7.

If enabling Kerberos is not a problem, moving the Report Manager to a separate
machine is not difficult. Thanks to the Xcopy ASP.NET deployment, this is as easy as

Table 8.1 The Report Manager’s default installation settings

Setting Value

Virtual Directory Reports

Physical Folder C:\Program Files\Microsoft SQL Server\MSSQL.3\Reporting
Services\ReportManager

URL http://<reportserver>/reports

Figure 8.1 The Report Manager is implemented as an ASP.NET application that accesses the

Report Server via HTTP-GET and XML SOAP. HTTP-GET requests are used to render reports;

XML SOAP requests are used for all other report-management tasks.
MANAGING RS WITH THE REPORT MANAGER 261

creating a new IIS virtual root and copying all Report Manager files to it. Once you
have done this, you should verify that the ReportServerUrl setting in the
RSWebApplication configuration file points to the correct Report Server URL.

The ASP.NET and Report Manager–specific configuration settings are defined in
the web.config and RSWebApplication.config configuration files, respec-
tively. Some of the configuration settings worth mentioning are listed in table 8.2.

The Report Manager uses ASP.NET sessions to maintain folder view preferences, such
as showing or hiding folder details. For this reason, you cannot disable the Report
Manager ASP.NET session state.

The Report Manager is configured to use Windows-based authentication to
authenticate users. We explore Windows-based authentication in detail in chapter 9.
In addition, the Report Manager is configured by default to impersonate the user, as
you can see by examining the <identity> element in the web.config configu-
ration file. As a result, all requests to the Report Web Server for both report rendering
and management go out under the identity of the Windows user.

Accessing the Report Manager web portal

To access the Report Manager portal, enter its URL address in a browser, which by
default is http://<servername>/reports, where <servername> is the
name of the computer where the Report Manager is installed.

NOTE If you installed SQL Server as a named instance, the URL address will need
to contain the instance name. The format of the URL for named instances
is http://<servername>/reports$<instance name>. So if your
server name is devserver and the SQL instance is Dev, then your
Report Manager would be accessed by going to http://devserver/
reports$Dev.

Figure 8.2 shows the Contents tab of Report Manager Home page. Your Contents tab
may differ from the one shown in the figure, depending on what custom folders you
have created below the Home folder and whether the My Reports feature has been
enabled (see section 8.1.2).

Table 8.2 The Report Manager configuration settings

Setting File Description

DefaultTraceSwitch web.config Defines the level of tracing
information output.

ReportServerUrl RSWebApplication.config Specifies the URL address of the
Report Server.

MaxActiveReqForOneUser RSWebApplication.config Limits the number of open
HTTP requests by user. Useful
for preventing denial-of-service
attacks.
262 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

Users familiar with Microsoft SharePoint will find the Report Manager look and feel
similar. The UI interface is very intuitive, so we won’t spend much time discussing
each individual page. Instead, let’s focus on a few topics that warrant more explana-
tion. If you need more information about working with the Report Manager, consult
the Reporting Services documentation.

Using the Report Manager for report delivery

The Report Manager can be used as a quick-and-easy report-delivery tool. Organiza-
tions that cannot afford or don’t need customized reporting applications will appreci-
ate this option.

To render a report using the Report Manager, navigate through the folder struc-
ture and click the Report link. Behind the scenes, report rendering is accomplished
through client-side URL (HTTP-GET) requests to the Report Server. To accomplish
all tasks other than report rendering, the Report Manager calls the RS Web service on
the server side using XML SOAP requests. We look into both URL and SOAP requests
in more detail in chapter 10.

Now that we’ve covered the basics of the Report Manager portal, let’s explore the
Site Settings menu.

8.1.2 Managing Report Server settings

The Site Settings menu of the Report Manager allows you to manage some important
Report Server settings and tasks, including role-based security, shared schedules, exe-
cution logging, and report history. The Site Settings page is shown in figure 8.3.

The changes that you make on the Site Settings page are saved in the
ConfigurationInfo table in the Report Configuration Database. Some of the set-
tings are self-explanatory. For example, the Report Execution timeout setting limits
the report-execution time to the specified number of seconds.

Figure 8.2 The Report Manager portal is used for rendering reports and managing the
report catalog.
MANAGING RS WITH THE REPORT MANAGER 263

We explain how to manage the My Reports, schedule, and job features here, but we
postpone discussing role-based security to chapter 9. If you need more information
about the system settings, check the “Report Server System Properties” section in the
product documentation.

Enabling My Reports

An interesting Reporting Services feature is My Reports. My Reports provides a per-
sonal, private workspace for each user. In a typical enterprise environment, you may
restrict public access to report folders but grant users restricted rights to upload, man-
age, and view their own reports in the “sandboxed” My Reports area.

To enable the My Reports feature (it is disabled by default), select the Enable My
Reports to Support User-Owned Folders for Publishing and Running Personalized
Reports check box.

You can specify which security role will be mapped to My Reports to further
restrict the allowable tasks that users can perform. The choices are the Browser, Con-
tent Manager, My Reports, Publisher, and Report Builder roles. We postpone dis-
cussing these roles to chapter 9. For the time being, note that the default role (My
Reports) grants the users rights to create and manage reports, folders, and resources
in their private workspace.

Figure 8.3 Use the Site Settings page to manage server-side settings, to enable the My

Reports feature, and to manage shared schedules, jobs, and so on.
264 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

When My Reports is enabled, two things happen. First, the Report Manager cre-
ates a catalog folder called Users Folders. This folder contains a personal folder for
each Windows user. Next, a My Reports link is added to the home page of the Report
Manager. To activate My Reports, a report user must click this link, which in turn
creates a private catalog folder for this user.

After the personal folder is created, clicking My Reports on the home page navi-
gates the user to her personal folder.

Managing schedules

Using the Report Manager, you can schedule certain report activities to run in an
unattended mode once or on a recurring basis. For example, you may need to distrib-
ute a report on a regular basis to subscribed users. To accomplish this, you can create
a shared schedule to trigger the subscription event.

You can schedule the following activities:

• Delivering reports through subscriptions (“pushed” reports)—We look at subscribed
report delivery in chapter 12.

• Generating report snapshots—We explain what report snapshots are in sec-
tion 8.1.4.

• Adding report snapshots to the report history—We discuss report snapshot history
in section 8.1.4.

• Expiring a cached report copy—Caching is also explained in section 8.1.4.

Similar to working with data sources, which we covered in chapter 3, you can create
two types of schedules:

• Report-specific schedules—A report-specific schedule is associated with a single
report. You can create a report-specific schedule from the report’s Execution
property page.

• Shared schedules—As its name suggests, a shared report schedule can be shared
by reports and subscriptions that need to occur at the same time. Once the
shared schedule is created, you can select its name from a drop-down list during
the process of scheduling the activity, as we explain in section 8.1.4.

We encourage you to use shared schedules whenever possible because of the following
advantages they offer:

• Centralized maintenance—Let’s say the employees of the Sales department have
subscribed to some monthly summary reports to be e-mailed to them on the
first day of each month. To simplify report maintenance, you decide to use a
shared schedule to initiate the subscribed delivery. If the users later change their
mind and request the reports to be delivered on the last day of the month, you
need only update the shared schedule.
MANAGING RS WITH THE REPORT MANAGER 265

• Security—Similar to a shared data source, a shared schedule is a securable item
and can be managed by users who have rights to execute the Manage Shared
Schedules task. You learn all about securing items and assigning tasks later in
chapter 9.

You create or manage shared schedules using the Manage Shared Schedules link under
the Other section of the Site Settings page. This brings you to the Schedule page, as
shown in figure 8.4. The SQL Server Agent service must be running to make changes
to a schedule.

In figure 8.4, we have created a schedule that runs on a quarterly basis. Notice that we
also have the option to manage the start and end dates for this schedule. To see all
reports that depend on the shared schedule, click the Reports link.

NOTE The Start and End Dates section forces you to use the asp.net calendar date
picker in order to select dates by disabling the textbox that holds these
dates. While this is nice for enforcing valid dates into the textboxes, it is

Figure 8.4 Use the Schedule page to specify the shared schedule settings.
266 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

very annoying when you want to choose a date that is more than one year
in the future. For example, if you want to select a date that is 18 months in
the future, you need to click the Go to the next month link 18 times.

The RS Windows service, ReportingServicesService.exe (not to be con-
fused with the RS Web service) works with the SQL Server Agent to coordinate the
running of scheduled tasks. This is what happens behind the scenes: when a schedule
is created, the Report Server creates a SQL Server Agent job and schedules it to run
when the event is due. When the time is up, the SQL Server Agent creates a record in
the Event table in the Report Server database.

The RS Windows service periodically polls this table for new events. The polling
interval can be controlled by the PollingInterval setting in the RSReport-
Server.config configuration file. The default value is 10 seconds. In case there is
a new event, the Windows service queries the report catalog to get a list of the sched-
uled tasks that are up. Then, it calls down to the Report Server (directly, not via the
web façades) to execute the tasks. Finally, if the schedule is recurring, the Windows
service creates a new SQL Server Agent job and schedules it to run according to the
specified schedule interval.

As a developer, you can programmatically log an event in the Report Server data-
base by invoking the FireEvent SOAP API. This could be useful if you want to dis-
regard the schedule and initiate the execution of a certain task explicitly. For example,
as a report administrator, you may have set up the product catalog report to be
e-mailed automatically to Internet customers on a monthly basis. However, you may
also need to send the report immediately when a new product is entered into the sales
database. To meet this objective, you can use a table trigger attached to the Product
table to invoke FireEvent when a new record is added to this table. We see an
example of how this scenario could be implemented in chapter 12.

Managing jobs

Sometimes, you may need to examine the current task activity of the Report Server.
For example, users may complain that reports are taking a long time to execute and
you need to find out how many report requests are pending.

To see the list of all running jobs, click the Manage Jobs link in the Other section
of the Site Settings page. For example, figure 8.5 shows that we are currently execut-
ing the Sales By Territory Interactive report.

The Report Server supports two types of running jobs: user jobs and system jobs.
A user job is any job that is explicitly initiated by a user, such as all actions that the
user can initiate through the Report Manager. These include requesting a report,
viewing the report history, subscribing to a report, and so on. A system job is a job
running in unattended mode and initiated by the Report Server. System jobs include
scheduled snapshots and data-driven subscriptions.

The list of running jobs is retrieved from the RunningJobs table in the Report
Server database. When the Report Server initiates a new user or system job, it creates
MANAGING RS WITH THE REPORT MANAGER 267

a record in this table. The RS Windows service periodically scans this table at an inter-
val specified under the RunningRequestsDbCycle setting in the RSReport-
Server.config configuration file.

You can attempt to cancel a running job by selecting the job and clicking the Can-
cel button. This in turns invokes the CancelJob web method of the RS Web ser-
vice, which attempts to terminate the background thread servicing the report request.
Canceling a job doesn’t guarantee that the job will be immediately terminated. Some-
times, hung jobs may require you to manually restart the Report Server. Because the
Report Server’s lifetime is controlled by IIS, to restart it you will need to restart IIS.

We’ve taken a quick look at how to manage a few Report Server settings with the
Report Manager. Let’s now see how we can use the Report Manager to manage
the report catalog.

8.1.3 Managing content

In a typical enterprise environment, report administrators will spend most of their
time managing content. Content-management tasks include creating folders, upload-
ing resources in these folders, and managing resources. For example, just as you would
avoid saving all your files in the root folder of your hard drive, you would stay away
from uploading all reports to the Home folder. Instead, from the home page you
could use the New Folder button to create subfolders below the Home folder.

Although how you organize folder content on your PC hard drive is a matter of
personal preference, the RS folder namespace is publicly accessible. Therefore, as a
responsible administrator you need to carefully plan its structure before reports go
“live.” If you don’t, you risk breaking client applications or links that have dependen-
cies on the report folders.

Figure 8.5 Use the Manage Jobs page to see a list of all running user and system jobs.
268 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

Understanding the folder namespace

Similarly to an OS file system, the Report Manager organizes reports in folders. The
RS folder namespace is a hierarchy that contains predefined (Home and My Reports)
folders and user-defined folders that the administrator creates. For example, figure 8.2
shows that we have created two folders, AWReporter and SampleReports.

The main purpose of having a folder namespace is to uniquely identify a resource
in the report catalog. For example, just as you could have many files named
readme.doc on your PC hard drive, you could have many reports named the same in
the report catalog. However, you cannot have two reports with the same name
uploaded to the same folder.

Although you may find the folder concept similar to the Windows folder struc-
ture, note that the folders you create in the Report Manager are virtual and they do
not map to physical folders. Instead, the folders and their contents are uploaded to
the Report Configuration Database and stored in the report catalog (the Catalog
table). This table defines a self-referential integrity relationship where each record ref-
erences its parent. The top folder is predefined and is called Home. When you click
a folder link, the Report Manager simply calls down to the RS SOAP API to query the
Report Configuration Database and find out which child records are linked to this
folder. Using the Report Manager, you can perform the folder tasks listed in table 8.3.

Table 8.3 Management tasks report administrators perform using the Report Manager

Task Example

Upload content
to a folder

Once a new report is created, you have to upload it to the report catalog to
make the report globally available.

Move content
between folders

Sometimes, you may need to reorganize report content just as you may need
to use Windows Explorer to move files from one folder to another.

Create subfolders Establishing a good hierarchical structure is an important task that every
administrator must carefully evaluate. For example, one of the decisions that
you must make as early as possible before setting up the report catalog is how
the folder namespace should be organized, i.e., per department, application,
and so on.

Move folders and
all of their content
to another folder

The Report Manager allows you to move all the contents of a folder to another
folder. For example, a company may go through a reorganization in which
some departments are consolidated into one department. Using the Report
Manager, you could update the report catalog to reflect the new organizational
structure.

Delete folders and
all of their content

With the Report Manager you delete resources when they are no longer
needed.

Hide folders and
resources

To reduce folder clutter, users can exclude resources from the folder view by
hiding them.

Modify folder
names

Similar to using Windows Explorer, you can rename folders.
MANAGING RS WITH THE REPORT MANAGER 269

To perform these folder tasks, you would access the folder or resource properties and
initiate the appropriate action from there. For example, figure 8.6 shows the Proper-
ties page of the AWReporter folder that contains our sample reports.

Use the folder’s Properties page to perform various management tasks. For exam-
ple, to delete the folder, click the Delete button.

For some reason, copying folders and resources is not supported. You could
upload the files manually as a workaround.

Uploading resources

Once you’ve established the folder structure, you can upload report content manually
using the Upload File link (see figure 8.2). As we mentioned in chapter 2, if the report
author has the appropriate security permissions, the Report Designer will create the
project folder straight from the VS .NET IDE when the project is deployed. As a part
of the deployment process, the Report Designer links the project folder to the root
(Home) folder and names it according to the TargetFolder setting you specified
on the project’s properties.

The Report Designer doesn’t allow you to create additional folders below the root
project folder. However, the Report Manager doesn’t expose this restriction. You can
create as many nested folders as you like.

Figure 8.6 Use the folder properties to perform various management tasks, including

renaming, deleting, and moving the folder.
270 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

There are two common situations when uploading files manually may be neces-
sary: when the report author doesn’t have the rights to upload the reports directly
from the Report Designer and when the report definition file is authored by an out-
side party.

What resources can be uploaded to a folder? The Report Server doesn’t enforce
special rules and allows any file to be uploaded to the report catalog. However, it only
makes sense to upload the following resources:

• Report definition (*.RDL) files

• Shared data source (*.RDS) files

• Image files

• XSL transformation files (*.XSL)

• HTML pages

But wait, you might ask, what if the report needs other types of files, for example, an
XML file from which to read some settings? Should you upload it to the Report Server
catalog so you don’t have to specify the absolute or relative file path when you need to
load it in XML DOM using custom code?

The answer is, unfortunately, no. Just like any other resource, the file gets serial-
ized and saved to the Report Server database, so it is not physically present in the
Report Server virtual root or elsewhere on the file system. For this reason, it makes
sense to upload only external resources that Reporting Services supports, which cur-
rently include images, XSLT files, and HTML pages.

For example, for the purposes of the AWReporter sample reports, besides the
report definition files and the shared data source files, you need to upload to the
report catalog the awc.jpg logo image file and the confidential.jpg image
file, as well as the SalesPromotion.xsl file that we used to fine-tune the XML
output of the Sales Promotion report in chapter 6.

Uploading HTML pages could be useful for reports with navigational features. For
example, you may have a report with hyperlinks that display context-sensitive help for
different sections of the report. You can put the help content in HTML pages and
upload them with the report.

By the way, the file size limit for external files is 4 MB. The 4-MB limit is a browser
upload control limitation. You can post larger resources through the SOAP manage-
ment API.

Managing folders

How should you partition the folder structure so it is well organized and yet simple to
maintain? Our advice is to keep it as flat as possible. The advantages of having a flat
physical structure are twofold:
MANAGING RS WITH THE REPORT MANAGER 271

• It simplifies the folder maintenance.

• It shortens the report path, which, in turn, makes it easier to request reports
programmatically or manually (how do you feel when you have to type in those
long URLs in the browser?).

In general, two considerations affect the folder structure: logical partitioning (for
example, you may need to organize your reports in such a way that they reflect orga-
nizational hierarchy, client applications, and so on) and security.

There may be other factors that affect the folder organization, such as which orga-
nizational segment a given Report Server instance serves, how to deal with shared
resources, and so forth. Let’s look at an example to clarify the last point. To simplify
things, let’s assume that our hypothetical company, Adventure Works Cycles (AWC),
has only one instance of the Report Server installed in its headquarters.

The AWC management has requested the following:

• Reports should be organized logically per department and then per application.

• Cross-department reporting is not permitted.

Given these requirements, figure 8.7 shows what a possible folder structure might
look like.

To meet the logical organization requirements, we could create subfolders for each
department. Then, we could break the folder namespace down further into subfolders
per application. As we see in chapter 9, folders and resources are securable items. To
meet the security requirements, we can grant the sales employees permissions to
browse the Sales folder but revoke their access to the HR folder.

Figure 8.7
You could organize your

folder namespace to

reflect your company’s

organizational

structure. Here, the

folder namespace is

organized hierarchically

by department and then

by application. The

Shared folder is for

shared resources.
272 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

Subject to security permissions, a report in one folder can reference resources from
another folder. For example, we can upload the AWC company logo to the Shared
folder. Then, we can ensure that all reports reference the logo by setting the image
item’s Value property to /Shared/AWC.JPG.

Those of you familiar with web development may think that to reference a parent
folder you can use the ../ specifier. RS simplifies folder navigation by allowing you to
reference a folder by its relative path to the root Home folder. For example, reports under
the App1 folder can reference Resource 2 under the App2 folder as /Sales/App2/
Resource 2. When in doubt, make sure that your folder reference matches the value
in the Path column of the Catalog table in the Report Server database.

Managing reports

To manage a published (managed) report, you use the report’s Properties page, as
shown in figure 8.8. Use the links on the left of the Properties page to manage various
report properties.

For example, you can use the General link to complete the following tasks:

• Change the report name and description.

• Hide the report from the folder view.

Figure 8.8 Use the report’s Properties page to manage the report.
MANAGING RS WITH THE REPORT MANAGER 273

• Download or change the report definition (RDL) file by clicking the Edit and
Update links, respectively.

• Create a linked report, as we discuss in section 8.1.5.

To avoid confusion and clutter, you can hide folders or resources by selecting the Hide
in List View check box. For example, it is unlikely that you want your users to see
shared data source definitions and resources other than the reports in the folder list
view. They might confuse these items for reports and attempt to execute them.

No special security permission is required to see a hidden item. The item is simply
excluded from the folder view, but the user can see all items by clicking the Show
Details button. The Show Details mode also displays the last time the reports were run.

Use the Parameters link to manage the report parameters (figure 8.9). Unfortunately,
the Parameters page is limited to maintaining existing parameters only. Table 8.4 dis-
plays and describes the options for this page.

Table 8.4 Options on the Parameters page

Option Description

Has Default Select this check box when you want to specify a default value. If this option is
checked, the text in the Default Value textbox will be displayed for this parameter
when the report is first displayed.

Default Value If the Has Default checkbox is selected, the value in this textbox will be displayed for
this parameter when the report is first displayed.

Null Select this check box to specify null as the default value. A null value means that the
report runs even if the user does not provide a parameter value. If there is no check
box in this column, the parameter does not accept null values. See figure 8.9 for an
example of this.

Hide Select this check box to hide the parameter in the parameter area that appears at the
top of the report. The parameter will still appear in subscription definition pages and
it can still be specified on a report URL. Hiding the parameter is useful when you
want to always run the report with a default value that you specify.

continued on next page

Figure 8.9 Use the Parameters link to manage the report parameters, including the

parameter’s default value and prompt settings.
274 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

Use the Data Sources link to manage the report’s data source, which could be set up as
report-specific or shared. We emphasized the advantages of using shared data sources
back in chapter 3.

Use the Execution link to control the report execution by using one of the two
mutually exclusive report-caching options: execution and snapshot caching. The
report-caching options are rather complex topics that we discuss next.

8.1.4 Managing report execution

As we explained in chapter 1, the Report Server processes reports in two stages: execu-
tion and rendering. During the report execution stage, the Report Server retrieves the
report data, combines the resulting dataset with the report layout information, and
generates the report’s intermediate format (IF), which can be cached for fast retrieval.
The report administrator can manage report caching via the Execution link of the
report’s Properties page.

Typically, report data doesn’t change that often. For example, to allow client
applications to access report data efficiently, an OLAP database could be created exclu-
sively for reporting purposes. In this scenario, report data could be bulk uploaded on a
regular basis (e.g., daily) from the OLTP to the OLAP database.

To make report processing more efficient, you can take advantage of the relatively
static nature of report data by caching the report’s intermediate format. RS supports
three forms of caching, as listed in table 8.5.

Note that all options cache the report’s intermediate format (IF), not the final ren-
dered output. Having so many caching options may be confusing, so let’s discuss each
option in more detail.

Report session caching

It turns out that while the last two caching options are user-configurable and can be
turned off (disabled by default), report session caching is not. Judging by the questions
posted on the RS discussion list, report session caching is confusing for many people.
For this reason, we’ll explain why report session caching is needed and how it works.

For nonsnapshot reports, the Report Server always caches the report’s IF implicitly
for the duration of the report session.

Prompt User Select this check box to display a text box used that prompts users for a parameter
value. Clear this check box if you want to run the report in unattended mode (for
example, to generate report history or report execution snapshots), if you want to use
the same parameter value for all users, or if you do not require user input for the value.

Display Text Provide a text string that appears next to the parameter text box. This string provides
a label or descriptive text. There is no limit on string length. Longer text strings wrap
within the space provided.

Table 8.4 Options on the Parameters page (continued)

Option Description
MANAGING RS WITH THE REPORT MANAGER 275

DEFINITION A report session is a configurable time period within which the Report Server
can serve subsequent report requests from the same client and for the same
report from the cached report IF. A report session is always associated with
exactly one client. In this respect, .NET developers can relate report sessions
to ASP.NET sessions. However, the Report Server doesn’t use ASP.NET ses-
sions at all.

The premise here is that it is likely that the report’s consumer may request the same
report again within a certain period of time, for example, to export the report to a dif-
ferent format or for report paging. When a report is processed, the Report Server
stores its IF in the ReportServerTempDB database and uses the cached copy until the
report session expires, as shown in figure 8.10.

The important observation that you can make by looking at figure 8.10 is that
with report session caching, the Report Server caches the report’s IF per client and the
cached report copy is correlated with the client.

Why do we need report sessions? Report session caching ensures data consistency
and improves performance; the main reason for having report session caching is to
ensure that the report data doesn’t change within a given period of time. To under-
stand the need for this, consider the following example. Imagine that you have a pre-
sentation and you run a multipage Sales Summary report. Each page displays the sales

Table 8.5 Three forms of caching supported by RS

Caching

Option
Purpose How Does It Work?

Default

Setting
How To Configure

Report
session
caching

Ensures data
consistency within a
configurable time
window (report
session) by
correlating the client
with the cached
report IF.

RS executes the report each
time a request from a
different client arrives and
caches the report’s IF per
client in the ChunkData
table. For each subsequent
request from the same client
that includes the session
identifier, RS uses the cached
IF until the report session
expires.

By default,
the
session
duration is
600
seconds.

Cannot be turned
completely off. The
session duration is
controlled by the
SessionTimeout
setting in the
Configuration-
Info table.

Report
execution
caching

Improves
performance by
potentially serving all
report requests from
the same cached IF
instance.

RS serves all requests for the
same report from a single
cached IF instance stored in
the ChunkData table.

Off Use the report’s
Execution
properties in the
Report Manager.

Snapshot
caching

Captures the report
execution at a
specific point of time,
usually on a regular
basis.

RS stores the report IF in the
SnapshotData table and
serves all requests from it.

Off Use the report’s
Execution
properties in the
Report Manager.
276 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

data for a given company branch. When you navigate from one page to another, the
browser asks the server to return the next page of the report. Now, let’s imagine that
while you are paging from branch A to branch B, the sales data for branch A changes.
You navigate back to the page that displays the details for branch A, and all of sudden
the report shows different numbers. Not a very compelling presentation, right?

Another unfavorable outcome may happen when you try to export the report and
you realize later that the exported copy has different data. To ensure data consistency
within a configurable period of time, the Report Server always performs report session
caching for non-snapshot reports by saving the report’s IF in the ReportServer-
TempDB database.

Report session caching is also useful for processing reports more efficiently. Let’s
say you’ve authored a crosstab report with interactive features such as the Territory
Sales Crosstab report we created in chapter 4. The user can expand the report sections
to see more data. To process interactive reports more efficiently, the Report Server
does not render the whole report at once. Instead, it renders different portions on an
as-needed basis.

Finally, because the report session state is stored in the database, it could survive
the lifetime of the Report Server application domain. For example, if IIS is restarted,
the session state is not lost.

You cannot completely turn off report session caching. However, you can specify
the session expiration interval and how the Report Server correlates the report’s con-
sumer with the session.

You can manage the report session timeout by changing the value of the
SessionTimeout setting in the ConfigurationInfo table in the Report Server
database. Based on our experiments, the minimum value seems to be 60 seconds. The
UseSessionCookies setting from the same table determines how the report’s con-
sumer application will be correlated to the report session. By default, the Report Server
will use a session cookie to match the client application with the report session.

Figure 8.10 With report session caching, the Report Server caches the report’s

intermediate format as many times as the number of the client applications

requesting the same report.
MANAGING RS WITH THE REPORT MANAGER 277

If using cookies is not an option when reports are requested by URL, you can con-
figure the Report Server to use cookie-less report sessions by setting UseSession-
Cookies to false. In this case, instead of sending a cookie, the Report Server adds the
session identifiers to the report’s URL address. This is also called URL munging.

When a new report request arrives, the Report Server looks for a session identifier.
The Report Server does some decision making to determine whether to serve the
report from the report session, if available, or process the report anew. Specifically,
the Report Server checks the following:

• Does the report session match the session identifier included in the report
request? We see how a client application can specify the session identifier in
chapter 9.

• Has the report session expired?

• Are the report parameter values the same as the ones passed with previous
report requests?

If the Report Server decides to service the report from the same report session, the ses-
sion expiration timeout is renewed. For this reason, don’t be surprised if the report
doesn’t show the most current data for subsequent requests. This situation may lead to
data inaccuracy because data has become outdated (“stale”).

NOTE In general, all caching techniques result in outdated data. As a developer
and administrator, you have to carefully evaluate how much “staleness”
is acceptable.

As we mentioned, the default report session duration is 10 minutes. If
the Report Server decides to use the report session, it will serve the report
from the cached copy within the report session duration. But is 10 minutes
acceptable? If you configure the session duration to expire too soon, you
will lose the performance benefits of caching. If the report is cached for too
long, data can get stale.

Sometimes, you may want to force the Report Server to abandon the report session
and execute the report anew. As a developer, you can do this in a couple of ways,
depending on how the report is requested. If the report’s consumer requests the report
by URL, you can send the rs:ClearSessionID command to the Report Server, as
we discuss in chapter 10.

If the report is requested by SOAP, you can programmatically abandon the session
by clearing the SessionId property of the SessionHeaderValue proxy class. If
the report’s consumer doesn’t support cookies, the session ID can be explicitly speci-
fied in the request URL or as an argument to the Render method call, as we also dis-
cuss in chapter 10.

From the end-user perspective, if the report includes the standard toolbar, the end
user can click the Refresh Report button (or press Ctrl-F5) to clear the session.
278 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

Report execution caching

Optionally, you can turn on report execution caching using the report execution page.
To access this page, click the Execution link (see figure 8.8). Report execution caching
is another big area of confusion. It is important to note that when report execution
caching is enabled, the report’s IF is not cached in memory.

Just like report sessions, report execution caching uses the report’s IF cached in the
ReportServerTempDB database. So what’s the difference? While report session cach-
ing is correlated with the client, report execution caching is global. In other words,
with the latter form of caching, several client applications (or users, for that matter)
may access the same cached instance of a given report, as shown in figure 8.11.

How is report execution caching implemented? As we’ve just seen, with report session
caching, when different clients request the same report the Report Server executes the
report for each client and caches as many instances of the report’s IF in the
ChunkData table as the number of clients. If report execution caching is on, only
one instance of the report’s IF is cached in the ChunkData table. All subsequent
requests will use that instance.

Therefore, while report sessions guarantee data consistency within the duration
of the report session, the main goal of report execution caching is better perfor-
mance. If the report doesn’t have parameters, only one instance of the report is
cached. Otherwise, several instances of the report are cached, a separate instance for
each set of parameters.

The following conditions have to be met to enable report execution caching:

• The report cannot use Windows authentication in expressions or to connect to
the database. For example, you cannot use User.UserID in your expressions,
nor can you use Windows authentication to log in to the database by imperson-
ating the user (the Windows NT Integrated Security option on the data source
properties). However, if the data source connection uses Windows Authentication

Figure 8.11 With report execution caching, one cached IF instance can be used by

more than one client.
MANAGING RS WITH THE REPORT MANAGER 279

with stored credentials (the Use As Windows Credentials When Connecting to
the Data Source option), then the report can be cached in the execution cache.

• The report doesn’t prompt the user for database login credentials.

Let’s see an example that demonstrates the effect that this form of caching has on the
report’s execution. Suppose that the AWC management has requested a report that
shows the territory sales by quarter. The Territory Sales by Quarter report meets this
requirement (figure 8.12).

The report accepts a parameter so that the user can filter the report data by quarter.
For simplicity’s sake, we restricted the available parameter values to the 2003 quarters
only, with Q1 as the default quarter. To demonstrate how execution caching affects
the report’s execution, the report shows the report’s execution time below the title. If
the report is not cached, each time you request the report the execution time changes,
which means that the Report Server does indeed process the report.

Because it is likely that data for past quarters will be relatively static, let’s change
the execution options to cache the report in the execution cache for 10 minutes by
using the Execution link in the Report Manager, as shown in figure 8.13.

Now, request the report several times for the same quarter. Notice that the execu-
tion time doesn’t change, which means the report is effectively cached.

Figure 8.12 Once report execution caching is enabled, it doesn’t get

processed by the Report Server when requested with the same

parameters.
280 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

When the report has parameters, a separate copy of the report is cached for each set of
parameters. To see this, change the quarter to Q2 and run the report again. Observe
that the execution time changes because the Report Server needs to process the report
to reflect the new parameter value. If you run the report again for Q2, the Report
Server will use the cached copy for Q2. If you request to see the report for Q1, you’ll
notice that the cached copy is served. This means that now there are two cached
instances for the same report.

When is the cached instance removed from the execution cache? There could be
several reasons that cause the Report Server to swap the report out of the cache,
including the following:

• The Report Server application domain is restarted, for example, by stopping
and starting IIS.

• The cached instance has expired based on the expiration options you specified.

• The cache instance is explicitly invalidated by calling the RS Web service Flush-
Cache method.

• The report’s execution options have changed.

• Other events have taken place, such as a change to the report definition file and
data source.

You can force the Report Server to expire the report’s cached instance (if any) on a set
schedule. This is useful when you want to ensure that the Report Server will process
the report at a specified time. Consider again the Territory Sales by Quarter report;
you could set the execution cache to expire at the beginning of every quarter by set-
ting the Quarterly Schedule shared schedule. This ensures that the report requested
for the previous quarter reflects the latest changes.

Snapshot caching

The Report Server manages the first two caching options internally, and so you have
little control over them. For example, you don’t know when the report will be
requested for the first time and when the Report Server will start the cache expiration
stopwatch. Sometimes, it makes more sense to save report instances at a specific point

Figure 8.13 Use report execution caching for more efficient report processing.
MANAGING RS WITH THE REPORT MANAGER 281

by configuring the report for snapshot execution. Snapshot caching offers the follow-
ing advantages:

• It improves the report performance by serving the report from the cached copy
in the Report Server database. This could be especially useful for large reports
that might take a long time to execute. Such reports can be scheduled to be gen-
erated during off-peak hours.

• It allows you to maintain a snapshot history log and compare different snapshot
runs of the report.

When a report is configured to be executed as a snapshot, the Report Server saves the
report’s IF in the Report Configuration Database (the SnapshotData table), as
shown in figure 8.14.

At this point you may wonder how snapshot caching differs from execution caching.
Unlike reports configured to use execution caching, snapshots:

• Are usually executed in unattended mode—Typically, snapshots are generated as a
result of a time event. However, you can explicitly create a snapshot using the
Report Manager portal, or developers can call the UpdateReportExecution-
Snapshot SOAP API to generate it programmatically.

• Refresh the report cached copy at a specific point of time—Unlike with execution
caching, you can control exactly when the snapshot cache is refreshed.

• Require default parameter values in the case of parameter-driven reports

• Are not interactive—Snapshots don’t allow the user to change the report parame-
ters if the report is parameter driven.

• Save the report’s IF in the Report Server Configuration database, as opposed to the
Report Server Temporary database

Figure 8.14 With snapshot caching, the Report Server stores the report’s IF in the

Report Configuration Database.
282 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

Snapshot caching is subject to the same limitations as execution caching. In addition,
because the snapshot execution is unattended, the user cannot set the parameter val-
ues if the report accepts parameters. For example, if you schedule the Territory Sales
by Quarter report for a snapshot execution, you will see that the Quarter parameter is
disabled. If the report is parameter driven, the Report Server will use the parameter
default values. In fact, the Report Server will refuse to schedule the report for snap-
shot execution if default values are not specified for all parameters.

To explain how snapshots can be useful, let’s revisit the Territory Sales by Quarter
report. Let’s assume that once the quarter is up, the data for the previous quarter
doesn’t change. In addition, we assume that the users want to run the report to see the
sales results for the previous quarter only (users can’t specify the quarter interactively).

Given the new set of requirements, we can optimize our report by capturing a
snapshot of the report on a quarterly basis. As a prerequisite, we need to default the
Quarter parameter to a given quarter, for example, Q1. Rather than hardcoding the cur-
rent quarter value, it would be best to calculate the default value of the current quarter
by using an expression. However, in order to keep this example simple, we will just
hardcode the default value. Figure 8.15 shows how we can set the snapshot execution
using the Report Manager.

Of course, instead of waiting for the current quarter to end, for testing purposes
we could see the effect of the snapshot execution sooner by changing the schedule
interval to a minute or two. Alternatively, we could manually generate the snapshot
by selecting the Create a Snapshot of the Report When the Apply Button Is Selected
check box on the report’s Execution Properties page and clicking the Apply button.
This would create the snapshot immediately. If the Store All Report Execution Snap-
shots in History option is checked on the History tab, we must remember to cancel
the snapshot execution after we finish experimenting to prevent filling up the
History table.

Once you have finished setting the execution options, run the report. Notice that
the report data is filtered by the default quarter and the parameter is disabled. Similar
to execution caching, the report’s executing time doesn’t change and reflects the time
when the snapshot was created.

Figure 8.15 You can trigger the snapshot execution from a report-

specific or shared schedule.
MANAGING RS WITH THE REPORT MANAGER 283

By default, only one snapshot run is kept in the Report Configuration Database, and
it gets replaced each time a new snapshot is generated. You can keep a historical log of
the snapshot executions by enabling the snapshot history. This allows you to compare
snapshot executions, similar to how Microsoft Project allows you to create and com-
pare project baselines.

For example, in our scenario as the administrator you can decide to keep the snap-
shot executions for the past four quarters so that management can compare the sales
performance from one quarter to the next. You can use the Report History tab (not
the Properties tab) to see or delete the snapshot executions.

To change the snapshot history options, click the History link on the Properties
tab, as shown in figure 8.16. If the Allow Report History to Be Created Manually check
box is selected, a New Snapshot button will appear on the report’s History tab that
you can use to create snapshots manually. The rest of the options are self-explanatory.

NOTE Figure 8.16 is showing the History Properties; the New Snapshot button
will show up by clicking on the History tab at the top of the page.

Let’s recap our discussion about caching by exploring how all three forms of caching
impact the report’s execution.

How caching affects the report’s execution

The Report Server goes through some decision making to find out whether to serve
subsequent report requests from the cached report copy or to generate the report
anew. Figure 8.17 depicts a simplified diagram that shows how report caching affects
the report’s execution phase.

As the diagram in figure 8.17 depicts, the Report Server first checks to see if there
is a valid report session associated with the report request. To do so, the Report Server

Figure 8.16 Use the History links to manage the snapshot history.
284 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

examines the client request for a session identifier and queries the SessionData
table in the Report Server Temporary database in an attempt to find a match. If there
is one, the Report Server serves the report from the report session cache. Otherwise,
the Report Server checks the report execution options.

If the report is configured to be executed as a snapshot and a snapshot-cached
instance is available, the Report Server uses it. If snapshot caching is turned off, the
Report Server checks to see if the report is configured for execution caching. If this is
the case, the Report Server serves the report from the execution cache (if the execution
cache is available and can be used).

Finally, if the report is not cached or the cached copy cannot be used, the Report
Server executes the report and caches it according to its execution settings. If the
report is configured for snapshot execution, the Report Server stores the report’s IF in
the Report Configuration Database. Otherwise, the Report Server saves the report’s
IF in the Report Server Temporary database.

Figure 8.17 RS supports three caching options: report session, execution, and snapshot

caching. Report caching may bypass the execution phase completely.
MANAGING RS WITH THE REPORT MANAGER 285

To recap, the report can be serviced potentially from one of the following
three places:

• Source database—If the report is requested for the first time or has been invali-
dated, for example, the report session has timed out.

• ReportServerTempDB—If the Report Server decides to reuse the report IF from
the report session or execution cache.

• Report Configuration Database—For snapshots only, if a snapshot instance has
been generated.

It is important that you evaluate when you should cache and what method you should
use. Let’s switch gears a little and learn how to create linked reports.

8.1.5 Managing linked reports

Reporting Services allows you to create “wrappers” on top of existing reports in the
form of linked reports. You can think of a linked report as a shortcut to another
report. Similar to a file shortcut, a linked report is not a copy of the original report.
Instead, it simply points to the original report. You can manage these linked reports
with the Report Manager. In this section, we describe linked reports, explain why you
would create them, and then we see how to manage these in the Report Manager. Let’s
get started!

Understanding linked reports

Linked reports inherit the following information from the report they are associated
with: report definition, report data source, and report datasets. You cannot change
these items in a linked report because they are inherited from the base report. How-
ever, you can change the following items:

• Role-based security policy

• Parameters

• Properties

• Catalog location

While the parameter default values can be different, and you can change whether or
not they are prompted, you can’t add parameters to the report, nor can you change
their available values.

Why would you ever want to create linked reports? The simple answer is flexibil-
ity. Let’s see a concrete example to demonstrate how linked reports can be useful.

Implementing linked reports

In the previous section, we set up the Territory Sales by Quarter report for snapshot
execution. Although snapshots can be very useful for generating reports according to
a schedule, they impose some restrictions, including the fact that the user cannot
286 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

change the report parameters. However, what if we want the best of both worlds?
What if some users would like to see the report for an arbitrary quarter, while others
want the report to show the data from the previous quarter only?

One approach would be to clone the Territory Sales by Quarter report. But this
would present a maintenance issue. Each time we needed to make changes to the
report layout, we would have to remember to propagate the changes to the report
copy as well. A more elegant approach is to create a linked report pointing to the orig-
inal. We can easily accomplish this with the Report Manager by performing a couple
of steps:

Step 1 Navigate to the Properties page of the Territory Sales by Quarter report.

Step 2 Click the Create Linked Report button. Enter a name and optionally a
description for the linked report, as shown in figure 8.18. You can also
change the location of the linked report if you want to place it in a different
folder than AWReporter.

By default, the linked report inherits all properties from the original, including the
execution properties. To cancel the snapshot execution for the linked report, go to
the linked report’s Execution tab and select the Render This Report with the Most
Recent Data radio button. Once this is done, the users can render the report for any
available quarter.

Another practical use for linked reports is security, because the linked report can
have a different role-based security policy than the report it is linked to.

As the report administrator, you will most likely rely on the Report Manager por-
tal to interactively manage the RS environment. Some application integration scenar-
ios, however, may require managing RS programmatically. In these cases, you can use
the RS Web service.

Figure 8.18 You can use a linked report as a shortcut to an existing report.
MANAGING RS WITH THE REPORT MANAGER 287

8.2 MANAGING RS WITH THE WEB SERVICE

As we explained, the Report Manager is just a presentation façade to the Report Server.
Behind the scenes, the RS Web service receives SOAP requests from the Report Man-
ager and forwards them to the Report Server. When the Report Manager is not
enough, you can build client applications that call the SOAP management API
directly. For example, you can create an ad hoc reporting tool that calls down to the
RS Web service to upload the generated report definition file to the report catalog.

In this section we take a look at the following:

• Using the Web service management API

• Tracing calls to the SOAP API

• Deploying reports programmatically

• Batching methods together

8.2.1 Using the Web service management API

To allow external applications to manage the report environment, the RS Web service
provides a number of web methods, which can be logically grouped in the categories
shown in table 8.6.

The RS Web service also provides a set of web methods for report rendering that we
will discuss in chapter 10. For a full list of the Report Server web service methods that
the RS Web service provides, see the product documentation.

To become more familiar with these web methods, you can capture all HTTP traf-
fic between the Report Manager and the Report Server using a tracing utility. We’ll
show you how next.

Table 8.6 Methods for performing various management-related tasks

Category Purpose Web method examples

Content Management Manage site settings, folders,
reports and resources

CreateFolder,
SetReportDefinition

Role-Based Security Manage tasks, roles, and policies CreateRole, ListTasks

Data Source Manage report data sources CreateDataSource,
SetDataSourceContents

Report Parameters Manage report parameters GetReportParameters,
SetReportParameters

Report History Manage report history CreateReportHistorySnapshot,
ListReportHistory

Report Scheduling Manage shared schedules CreateSchedule, ListSchedules

Subscribed Delivery Manage subscriptions CreateSubscription,
ListSubscriptions

Linked Reports Manage linked reports CreateLinkedReport,
ListLinkedReports
288 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

8.2.2 Tracing calls to the SOAP API

When incorporating RS management capabilities in your applications, you may not
know which Web service method you need to call and how to call it. In most cases,
you will be able to easily find the web method you need to accomplish a given task
programmatically just by looking at its name.

When in doubt, you can use the Report Manager as a learning tool. Because the
Report Manager calls down to the RS Web service for all management tasks, you can
use a tracing utility (such as SOAP Trace or tcpTrace) to intercept the SOAP traffic
between the Report Manager and Report Server.

We will show you how to use the SOAP Trace utility to accomplish this. The steps
to use tcpTrace are similar. Both utilities work by capturing the HTTP traffic to a vir-
tual port.

You can download the SOAP Toolkit Version 3 by searching for “SOAP Toolkit
Version 3 at www.microsoft.com. You can download tcpTrace for free from
www.pocketsoap.com/tcptrace/.

Using SOAP Trace

For example, let’s assume that you need to write a client application that lists all
resources located in a given catalog folder. You are not sure which web method to call
and which arguments to pass, but you know the Report Manager does this already.
You want to find out what happens behind the scenes when you click on a folder in
the Report Manager to see the folder content.

As we mentioned, to get started with SOAP Trace, you first need to set up a virtual
port to capture the SOAP traffic.

To create a virtual port, change the ReportServerUrl setting in the
RSWebApplication.config file to include a virtual port number such as

http://<servername>:8080/ReportServer

The RSWebApplication.config file is found in the C:\Program Files\
Microsoft SQL Server\MSSQL.3\Reporting Services\ReportManager
directory by default.

Once this is done, you can open the SOAP Trace utility and create a new format-
ted trace, as shown in figure 8.19.

The settings shown in figure 8.19 assume that the Report Server is installed
locally. If this is not the case, then you must replace localhost with the name of the
computer on which the Report Server is installed.

Now, open your browser and request the ReportServerURL, as specified in
RSWebApplication.config. At this point, SOAP Trace should capture the SOAP
requests that the Report Manager sends to the Report Server. Navigate to the folder
in question and explore the SOAP messages captured, as shown in figure 8.20.

Among the captured message calls, you will find a call to the ListChildren
method that looks promising. A quick look at the documentation confirms that
MANAGING RS WITH THE WEB SERVICE 289

ListChildren “gets a list of children of a specified folder.” As you can see, in this
case ListChildren passes the name of the folder to the Item argument and false
to the Recursive argument to indicate that it needs a “shallow” traversal, where the
resources in the subfolders are excluded.

You can use the tracing technique we’ve just shown you to watch the entire con-
versation between the Report Manager and the Report Server and mimic it in your
applications. If you need a code sample that demonstrates how you can call the SOAP
API to manage programmatically the report catalog, have a look at the RS Catalog
Explorer application that comes with RS.

Figure 8.19
Trace the Report Manager to Report Server

traffic using the SOAP Trace utility.

Figure 8.20 Once the Report Manager submits a SOAP request, the SOAP Trace utility will

capture it and show the request/response message.
290 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

Using the RS Catalog Explorer

The RS team has provided a useful WinForm .NET-based application called the RS
Catalog Explorer. You can find the RS Catalog Explorer sample application under the
Samples folder, which by default is C:\Program Files\Microsoft SQL
Server\90\Samples\Reporting Services\Application Samples\
RSExplorer Sample.

NOTE If you have not installed the SQL Server 2005 samples, you will need to
navigate from the Start menu to All Programs > SQL Server 2005 > Docu-
mentation and Tutorials > Samples and run the samples installation file.

Just like its web-based counterpart, the Report Manager, the RS Catalog Explorer can
be used as a report rendering and management tool. For example, figure 8.21 shows
that we used the RS Catalog Explorer to navigate to the AWReporter folder and
launch the Employee Sales Freeform with Chart report.

The report properties window displays some report-related properties that you can
update, such as the report name. When you do so, RS Catalog Explorer calls the RS

Figure 8.21 You can add management features to your applications, as the RS Catalog

Explorer sample demonstrates.
MANAGING RS WITH THE WEB SERVICE 291

SOAP API to propagate the change to the report catalog. The source code is included
in both VB .NET and C#. We highly recommend that you carefully examine this sam-
ple, especially if you need to integrate RS with WinForms client applications pre–VS
.NET 2005.

Now that you’ve been introduced to the Report Server management API, let’s see
how you can use this to perform management tasks.

8.2.3 Deploying reports programmatically

Thanks to the fact that the Report Server exposes its functionality through a series of
SOAP APIs, you can easily create client applications to manage the report catalog. Let’s
write some code to demonstrate how this could be done.

The RDL deployment sample

Back in chapter 2, you saw how to create
report definitions programmatically. Now,
let’s see how easy it is to upload the gener-
ated definition to the report catalog to cre-
ate a new report. You can find the sample
under the chapter 8 menu in the AWRe-
porterWin application that comes with this
book’s code. Once you click on the RDL
Deployment menu, you are presented with
the options shown in figure 8.22.

You need to specify the full path to the
report definition language (RDL) file. If
you have run the AdHoc sample, the Cata-
log Folder Path textbox will default to the path where the AWReporter.rdl file is
located. If you don’t want to run the AdHoc sample, you’ll have to specify a valid
path to any RDL file.

You also need to specify the path of the folder where the report will be uploaded
to in the RS report catalog, as well as the report name. Once this is done, you can click
the Deploy RDL button to upload the file and create the report. Let’s now discuss the
implementation details.

Setting up the Web service proxy

When accessing XML Web services in managed code, you typically use a proxy class to
let the .NET Framework handle all of the SOAP invocation and plumbing details. VS
.NET makes it easy to create a Web service proxy class by allowing you to create a
web reference to the Web service. In our case, this is what we have to do to establish a web
reference to the Reporting Web service:

Step 1 Right-click the References node in the Solution Explorer and choose Add
Web Reference. The Add Web Reference dialog box appears.

Figure 8.22 The RDL Deployment sample

demonstrates how to deploy reports

programmatically.
292 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

Step 2 Specify the RS Web service endpoint (the URL to the ReportService-
2005.asmx page) in the URL field, for example, http://<servername>/
ReportServer/ReportService2005.asmx. If the Report Server is
deployed on your local machine, you can click the Web Services on the Local
Machine link and choose RS Web Service. VS .NET parses the Web service
description and lists all web methods.

Step 3 Specify the Web Reference Name, as shown in figure 8.23. This defines the
namespace for the proxy class. For the purposes of the AWReporterWin
application, we changed the reference name from localhost to RS. Once you
click the Add Reference button, the proxy class will be generated.

To see the proxy class, make sure that the Solution Explorer shows all files (the Show
All Files button is activated). Then, you can expand the web reference node. The proxy
class name is named Reference.cs if it is a C# project, or Reference.vb in the
case of a VB .NET project.

In case you want to trace the SOAP requests going out of the application using a
trace utility, you can modify the URL address in the proxy constructor in the proxy
class to include a virtual port, for example:

this.Url = "http://localhost:8080/ReportServer/ReportService2005.asmx";

Figure 8.23 Add a web reference to the Report Server Web service.
MANAGING RS WITH THE WEB SERVICE 293

Then, you can use tcpTrace or SOAP Trace to capture the SOAP traffic, as we dis-
cussed earlier. Don’t forget to take out the virtual port of the URL when you’ve fin-
ished tracing.

Implementing the sample

To centralize the proxy management in one place, we created the RsHelpers
wrapper, which encapsulates the proxy instantiation and sets up the authentication
credentials. When the application needs the proxy, it gets it from the RsHelpers.
Proxy accessor.

The actual report deployment takes place in the DeployRDL function. Listing 8.1
shows the abbreviated code.

private void DeployRDL() {
 string[] permissions = {"Create Report"};
 StringBuilder sb = new StringBuilder();
 Byte[] definition = null;
 Warning[] warnings = null;

 if (!RsHelpers.HasPermissions(PermissionType.Item,
 txtFolderPath.Text, permissions)) {
 MessageBox.Show(String.Format("You don't have sufficient
 rights to …"))
 return;
 }

 FileStream stream = File.OpenRead(txtRDLPath.Text);
 definition = new Byte[stream.Length];
 stream.Read(definition, 0, (int) stream.Length);
 stream.Close();

 ReportingService rs = RsHelpers.Proxy;
 warnings = rs.CreateReport(txtReportName.Text,
 txtFolderPath.Text,true, definition, null);
}

First, we check to see whether the user has permissions to create reports in the speci-
fied folder by calling the HasPermissions helper function b. This function
accepts as arguments the type of the permissions we want to check (item or system),
the report item path, and an array of the permissions we want to check. In this case,
checking for Create Report rights is sufficient. The HasPermissions wrapper calls
the GetPermissions web method, which returns a string array of all permissions
that the user has to a given report item. HasPermissions then enumerates
through both arrays (requested and granted permissions) and returns true only if all
requested permissions are successfully matched.

Listing 8.1 Using the RS Web service API to deploy the report definition

Checks
permissions
for creating
reports

b

Loads
the report
definition

c

Uploads the
report to the
report catalog

d

294 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

If the user has the rights to create reports, the report definition is uploaded via a
call to the CreateReport web method. Next, we load the report definition to a
byte array c. Then, we invoke CreateReport by passing the report name, folder
path, and the report definition d. We also specify that we want to overwrite the
report if it exists. CreateReport optionally takes an array of properties you can
pass to the last parameter, for example, the report description.

That’s it! Once you execute the code, the report will be uploaded to the report cat-
alog and you can use the Report Manager to navigate to it and run it.

Sometimes, when executing a series of interrelated web methods, you want to
ensure that all of them will complete successfully or be rolled back in case of a failure.
With RS, this can be achieved by encapsulating the web method calls in a batch.

8.2.4 Batching methods together

The RS Web service supports executing management-related web methods within the
scope of a single database transaction with a READ COMMITTED isolation level. If
any of the batch methods fails, the transaction will be rolled back and all catalog
changes will be undone.

For example, let’s say that you want to distribute several reports to your customers
and these reports are interdependent, such as subreports and related drill-through
reports. You want to make sure that the report deployment is an all-or-nothing oper-
ation and you don’t leave the catalog database in an inconsistent state.

To achieve this you might take advantage of method batching. You can write a
simple application or a script that executes all deployment methods in a transactional
batch, as follows:

try {
 BatchHeader bh = new BatchHeader();
 bh.BatchID = rs.CreateBatch();
 rs.BatchHeaderValue = bh;
 rs.CreateReport ("Report1", …);
 rs.CreateReport ("Report2", …);
 rs.ExecuteBatch();
}
catch (SoapException ex) {
 rs.CancelBatch();
}

Developers experienced in writing transaction code will find the batch semantics
familiar. When you group web method calls in a batch, the Report Server logs the
methods in a Batch table in the Report Server database but doesn’t execute them.
When the ExecuteBatch method is executed, the Report Server creates an explicit
transaction and executes all methods within its scope.

If all methods execute successfully, the Report Server commits the database trans-
action. If the transaction errors out, you can call CancelBatch to delete the batch
records from the Batch table.
MANAGING RS WITH THE WEB SERVICE 295

One final note about batching: After you execute or cancel the batch, you need to
clear out the batch header after ExecuteBatch (or CancelBatch); otherwise the
proxy will continue to send the header and you will still be operating under a batch.

Using the RS Web service is not the only way to programmatically manage the
report catalog. RS also offers a Windows Management Instrumentation (WMI) pro-
vider that can be used to manage the settings of multiple RS installations.

8.3 MANAGING RS WITH THE WMI PROVIDER

As useful as the Report Manager is for administering the report environment, it has its
limitations. For example, it allows you to manage only the site settings of one Report
Server (the one specified in the Report Manager configuration file).

In a typical enterprise environment, however, there may be multiple installed
instances of Report Server. For example, you might have one instance serving the
reporting needs of customers on the Web and another for intranet use. Or, to scale
out, you can have a web farm of report servers. As an administrator, you might need
to manage the server settings from a single location. This is exactly the purpose of the
RS WMI provider.

8.3.1 Understanding the WMI provider

The WMI provider is built on top of the Windows Management Instrumentation
infrastructure baked into the Windows operating system.

NOTE WMI is a system management infrastructure embedded in the Windows
OS. It provides an object-oriented interface that developers can use to inter-
act with system management information and the underlying WMI APIs.

With the WMI provider, developers can write code to programmatically access the
configurations settings of a given installation instance of the Report Server and
Report Manager in an object-oriented way. Specifically, it offers the MSReport-
Server_ConfigurationSetting and MSReportServerReportManager_
ConfigurationSetting classes.

The first class wraps the Report Server configuration settings stored in the
RSReportServer.config file. The second represents the Report Manager con-
figuration settings located in the RSWebApplication.config file. Consult the
documentation for a detailed coverage of the WMI provider functionality.

Let’s demonstrate how the WMI provider can be useful. This example was origi-
nally written for Reporting Services 2000 before there was a Report Server Configu-
ration Manager. We discuss the Configuration Manager in section 8.4.3. While there
isn’t much use for this tool in RS 2005, it still provides a great example of how you
can work with the WMI Provider. The RS Console is shown in figure 8.24.

Empowered with the RS Console, you can manage the settings of an arbitrary
Report Server instance installed in your enterprise by specifying the Report Server
name. The RS Console shows you the settings for a given Report Server and allows
296 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

you to make changes. This could be particularly useful when you need to change the
Report Server database settings. These settings are stored in encrypted format, as you
can see by looking at the RSReportServer.config file.

For this reason, making changes to the Report Server database settings is not an
easy task. In fact, the Report Server provides a utility, rsconfig.exe, whose sole
purpose is to manage the encrypted database settings. If you are like us, you won’t be
too excited about working with this command-line utility and messing with switches,
which makes the RS Console an even more appealing choice.

8.3.2 Implementing an RS management console

Working with the WMI provider is straightforward. Listing 8.2 shows the abbreviated
code of the GetServerProperties function, which populates the grid with the
configuration settings of the specified server.

private void GetServerProperties()
{
 string WmiNamespace = @"\\" + txtServer.Text +
 @"\root\Microsoft\SqlServer\ReportingServices\v9\Admin";
string WmiRSClass = @"\\" + txtServer.Text +
 @"\root\Microsoft\SqlServer\ReportingServices\" +
 "v9:MSReportServer_ConfigurationSetting";
 ManagementClass serverClass;
 ManagementScope scope;
 scope = new ManagementScope(WmiNamespace);

 scope.Connect();
 serverClass = new ManagementClass(WmiRSClass);
 serverClass.Get();
 ManagementObjectCollection instances=serverClass.GetInstances();
 IEnumerator enumerator = instances.GetEnumerator();
 bool result = enumerator.MoveNext();

Figure 8.24
Use this sample RS Console to make

changes to the RS configuration files of

multiple Report Server installations.

Listing 8.2 Getting the server settings

Instantiates the
WMI provider

b

MANAGING RS WITH THE WMI PROVIDER 297

 m_instance = (ManagementObject)enumerator.Current;

 PropertyDataCollection instProps = m_instance.Properties;
 EntityProperty ds = new EntityProperty ();
 ds.Property.RowChanged += new
 DataRowChangeEventHandler(this.grdProperties_ChangedEvent);

 foreach(PropertyData prop in instProps)
 {
 ds.Property.AddPropertyRow(prop.Name,
 prop.Value!=null?prop.Value.ToString():"<null>");
 }
 ds.AcceptChanges();
 ds.Property.DefaultView.AllowNew = false;
 ds.Property.DefaultView.AllowDelete = false;
 grdProperties.DataSource = ds.Property;
}

First, we initialize the WMI namespace and class name b. Because we are interested
in managing the Report Server settings, we use the MSReportServer_Confi-
gurationSetting class. Then, we instantiate the WMI provider and retrieve all
Report Server instances installed on the specified server. For simplicity’s sake, we
default to the first instance.

Next, we get all settings and load them in a grid c. For easier data binding and
filtering, we decided to create a typed dataset, EntityProperty, to hold the set-
tings. The dataset defines a table called Property with two columns, Name and
Value. After we instantiate the typed dataset, we hook its RowChanged event to an
event handler. This event will be triggered when a dataset row is modified, which in
turn enables the Save Config button.

Next, we load the dataset with all configuration settings returned by the WMI pro-
vider and bind it to the grid control d, e. As you can see in figure 8.24, the provider
decrypts the database authentication settings for us.

Once the grid is loaded, the user can change settings at will. Currently, the WMI
provider doesn’t support deleting existing settings or creating new ones. The
SaveServerProperties function writes the changes back to the configuration
file, as shown here:

private void SaveServerProperties() {
 EntityProperty.PropertyDataTable ds =

 (EntityProperty.PropertiesDataTable)grdProperties.DataSource;
 DataView view = new DataView(ds);

 view.RowStateFilter = DataViewRowState.ModifiedCurrent;

 PropertyDataCollection instProps = m_instance.Properties;
 for(int i = 0;i < view.Count ;i++) {

Instantiates a .NET
dataset to hold settingsc

Loads the datasetd

Binds the dataset to the gride

➥

298 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

 string name = view[i]["Name"].ToString();
 instProps[name].Value = view[i]["Value"].ToString();
 }
 m_instance.Put();
}

Here, we filter out only the changed settings by using a filtered view on top of the
typed dataset. Then, we write the changed values back to the WMI provider settings
collection. Finally, we call the provider Put() method to persist the settings into the
configuration file.

Sometimes, writing a full-fledged application to automate maintenance tasks may
be overkill. RS provides other options that savvy administrators can add to their belt
of management tools, as we discuss in the next section.

8.4 OTHER WAYS TO MANAGE
REPORTING SERVICES

RS provides several other options for performing management tasks:

• SQL Management Studio

• Configuration tool

• Executing scripts with the RS script host

• Using specialized management utilities

Let’s round out our report management discussion with a high-level overview of
these options.

8.4.1 Managing RS with SQL Management Studio

The SQL Server Management Studio (SSMS),
as its name implies, is the management tool
for all things SQL Server. This of course
includes Reporting Services. Those of you
who have used SQL Server in the past (SQL
2000 or older) will remember the SQL Server
Enterprise Manager. With the launch of SQL
Server 2005, SQL Server Enterprise Manager is
no more. It has been replaced, thankfully, by
SSMS. Figure 8.25 shows the connection
options for SSMS. You can connect to and
manage much more than just the database
engine, as you can see.

Outside of being an all-in-one manage-
ment environment, SSMS resolves a lot of the

Figure 8.25 The new SQL Server

Management Studio allows you to

connect to and manage more than just

the database engine.
OTHER WAYS TO MANAGE REPORTING SERVICES 299

annoyances of the old SQL Server Enterprise Manager, most importantly the modal
windows. When you worked with Enterprise Manager and you opened a window to
execute some task, you had to wait for the task to finish before you could open
another window. SSMS introduces nonmodal windows, which allow you to open a
window, start a process, and move on to other windows without affecting the first
process. Though there are a few windows that are modal, most of them are not. While
this tool does a lot more than help you manage RS, we only focus on how this tool
applies to RS. Figure 8.26 shows the SSMS user interface.

You can see that the top level for our reports is Home and that all of the folders
under Home are what we would see if we navigated to the web-based Report
Manager (http://[servername]/reports). Also notice that we have a
Security folder as well as Shared Schedules. After further investigation, this
seems to be a Windows client version of the Report Manager—which in fact it is.
SSMS mirrors the same structure and much of the functionality that is available in
the web-based Report Manager. Since SSMS is the tool of choice for the SQL data-
base administrators, they will find themselves right at home in managing the Report-
ing Services environment.

Now that you have seen the SQL Server Management Studio, let’s take a look at
some other ways in which you can manage your Reporting Services environment
with scripts.

8.4.2 Managing RS with the script host

Traditionally, administrators have relied on scripts to perform routine day-to-day
chores. Responding to this common need, RS comes with a script host that can be
used to run scripts written in VB .NET. Scripting offers several advantages, including
the following:

Figure 8.26 SQL Server Management Studio provides you with full management

capabilities for RS.
300 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

• It doesn’t require advanced development skills.

• Scripts can be easily executed from the command line, batch files, or login scripts.

• Scripts can be easily scheduled to run at specific times.

Exploring RS scripting

RS provides a script host utility (rs.exe), which can process and run a script file you
pass in. You write RS scripts in VB .NET and you store them as files with the .RSS
extension. Inside the script you can call any of the RS Web service methods.

The RS script host automatically connects to the requested Report Server, creates
a proxy class, and exposes it as a global variable, rs. The host accepts command-line
switches, which you can use to specify input parameters, including the Report Server
URL, the script file, the user credentials to log on to the Report Server, variables, and
so on.

Let’s now look at a quick example of how scripting with the RS script host can
facilitate the management effort. For a detailed discussion of the RS script host, refer
to the product documentation.

Scripting with the RS script host

The RS team has provided two sample scripts that demonstrate how you can use
scripting to cancel a given running job and publish reports. These scripts should be
enough to get you going. For example, we were able to quickly retrofit the Publish-
SampleReports sample and create a useful script to deploy a report. The RDL-
Deploy script uploads a given report definition file to the report catalog. You can
find the DeployRDL.rss in the chapter 7 folder in the AWReporterWin sample
application. To keep things simple, we excluded the role-based security verification.

The bulk of the work is performed by the PublishReport function, whose
abbreviated code is shown here:

Public Sub PublishReport(ByVal reportName As String)
 Dim stream As FileStream = File.OpenRead(filePath)
 definition = New [Byte](stream.Length) {}
 stream.Read(definition, 0, CInt(stream.Length))
 stream.Close()
 warnings = rs.CreateReport(reportName, parentPath, True, _
 definition, Nothing)
End Sub

The code should look familiar to you because the RDLDeploy sample we discussed
in this chapter serves the same purpose. You can execute the RDLDeploy script from
the command prompt using the following syntax:

rs -i RdlDeploy.rss -s http://servername/reportserver -v
filePath=

 "C:\Books\RS\Code\AWReporterWin\bin\Debug\AWReporter.rdl" -v

folderPath="AWReporter" -v reportName="AdHocReport"

➥

OTHER WAYS TO MANAGE REPORTING SERVICES 301

where

-i specifies the input filename
-s specifies the Report Server URL
-v specifies an input variable

In this case, similarly to the RDLDeploy sample, we upload the AWReporter report
definition file to the AWReporter catalog folder and name the new report
AdHocReport.

8.4.3 Using the Reporting Services configuration tool

Reporting Services provides an additional management tool for managing your
Reporting Services environment. When you open the Reporting Services Configura-
tion tool, you’ll see the following tabs on the left, as shown in figure 8.27:

• Server Status

• Report Server Virtual Directory

• Report Manager Virtual Directory

• Windows Service Identity

• Web Service Identity

• Database Setup

• Encryption Keys

• Initialization

• Email Settings

• Execution Account

Each of these tabs has an icon associated with it that indicates its status (Configured,
Not Configured, Optional Configuration, or Recommended Configuration). Let’s
take a closer look at each of these tabs and learn when and how to use them.

Server Status

The Server Status page shows the SQL Server instance that Reporting Services is run-
ning under; for default instances, this will be MSSQLSERVER. You can also see the
instance ID for RS; with a default installation, this will be MSSQL.3. This is also
the directory that contains your Reporting Services–specific files. If you have installed
multiple instances of SQL Server, this directory will be different.

By looking at this page you’ll also learn whether this instance of RS has been ini-
tialized and the status of the service. The only configuration that you can do from this
page involves stopping and starting the service. Since this is the default page that the
configuration tool displays when opened, it also contains the legend for the icons that
show up for each tab on the left.
302 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

Report Server Virtual Directory

The Report Server Virtual Directory page shows the virtual directory that the
RS ASP.NET web service runs in. As you learned in chapter 1, the Report Server
URL provides access to the SOAP endpoints of the Report Server. You can create a
new virtual directory from this page as well as manage your SSL settings and certif-
icate information.

Report Manager Virtual Directory

The Report Manager Virtual Directory page displays the virtual directory that the RS
Report Manager runs in. You can also create a new virtual directory from this page.

Figure 8.27 Use the configuration tool to manage your RS services, directories, keys, email

settings, and more.
OTHER WAYS TO MANAGE REPORTING SERVICES 303

Windows Service Identity

The Windows Service Identity page defines the service account that is used to run the
RS Windows service. This service is configured during setup, but you can modify it
from this page if you update the password or want to use a different account.

Web Service Identity

The Web Service Identity page defines the service account that is used to run the RS
Web service. Just like its Windows counterpart, this service is configured during
setup, but you can modify it from this page if you update the password or want to use
a different account. Note that this service cannot be configured if you are using Win-
dows XP or Windows 2000 servers; these operating systems will always use the
ASP.NET security identity to run the service.

Database Setup

Since the Report Server is a stateless server, it requires a place for internal storage; for
this it uses SQL Server. The Database Setup page allows you to create and configure a
connection to a Report Server database. You can connect to an existing database as
long as it uses the schema for RS 2005. If you have an RS 2000 database, this page
provides an upgrade option that will upgrade it to the 2005 schema.

Encryption Keys

The use and management of symmetric keys for encryption deserves special attention.
RS uses this key to encrypt and decrypt sensitive data such as stored credentials and
database connection information. We recommend that after installing RS, you use
this utility to extract and back up the public encryption key.

What is the purpose of the encryption key? Chances are that you may need to
change the account that the RS Windows service (ReportingServicesService.
exe) runs under. Or, when deploying RS on a web farm environment, you may need
to set up a new RS installation that points to an existing report catalog. If the encryp-
tion key is different, the Report Server will not initialize. Therefore, it is absolutely
crucial that you back up and store the encryption key in a safe place.

Initialization

The Initialization page displays the initialization status of the Report Server. This
page allows you to initialize and remove Report Servers. Report Servers that are ini-
tialized can store encrypted data on the Report Server.

Email Settings

In chapter 1 you learned that Reporting Services comes with two out-of-the-box deliv-
ery extensions: one of them is a File Share extension, which requires no configurations.
The other out-of-the-box extension is an e-mail extension, which allows subscribers to
304 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

have reports delivered to them through e-mail. This extension uses Simple Mail Trans-
port Protocol (SMTP) to deliver the report. You can use the Email Settings page to
specify which SMTP server or gateway on your network you want to use for the deliv-
ery. Previously, in RS 2000, you had to go into the configuration files and modify the
XML directly. Now you have an easier way to manage your SMTP server.

Execution Account

The Execution Account page allows you to set up the account that RS uses to perform
unattended operations. You should set up an account with low privileges to perform
these operations.

Analyzing the report execution statistics is an essential task that all report admin-
istrators worth their salt will need to perform on a regular basis. To assist you in your
effort to analyze and troubleshoot report processing, RS performs detailed logging.
Let’s see how you can use the RS logs to analyze report execution.

8.5 ANALYZING REPORT EXECUTION

Reporting Services maintains a variety of log files that capture the output from the
three RS server-side components: the Report Server, the Report Manager, and the RS
Windows service. Table 8.7 summarizes these log files.

Let’s discuss in more detail the first two logging options, starting with the Report
Server execution log.

8.5.1 Analyzing the Report Server execution log

By analyzing the historical log, you should be able to answer such questions as
“Which are the top requested reports by day, month, and user?” “Which reports
didn’t execute successfully, and why?” “How long does it take on average for a given
report to execute?” You can set the Report Server to store report execution statistics in
the ExecutionLog table. The execution log is turned on by default and keeps the
log data for 60 days. You can modify these settings from the Site Settings menu in
the Report Manager.

Table 8.7 Log files maintained by RS

Log Purpose

The Report Server execution log Captures report execution statistics useful for auditing purposes.

Trace logs Stores essential statistics for monitoring and troubleshooting RS.

The Microsoft Windows Event log Records RS events, such as startup and shutdown events.

Setup logs Created by the RS Setup program, these logs can be used to
troubleshoot setup issues. For more information about these
logs, consult the product documentation.
ANALYZING REPORT EXECUTION 305

Retrieving the execution log data

There’s really nothing stopping you from querying the ExecutionLog table and its
related tables directly. But to save you time and effort, the RS team has provided a use-
ful SSIS package and set of reports, which you can find in the SQL Server 2005 sam-
ples. From the C:\Program Files\Microsoft SQL Server\90\Samples\
Reporting Services\Report Samples\Server Management Sample
Reports directory, open the readme_ServerManagementReports.htm file
and follow the setup directions.

Interpreting the execution log data

This SSIS package will assist you in setting up an automatic process to keep your log
files in a new database called RSExecutionLog. Once you install and run the package
and deploy the Execution Log Sample Reports report project, you will have some use-
ful reports to analyze the execution log data. For example, the Report Execution Sum-
mary (figure 8.28) shows you the report activity and top requested reports per day.
Glancing at the chart, you can easily see that the Report Server took the most hits on
Tuesday during the requested week.

Figure 8.28 Use the Execution Log Sample Reports Project to analyze the

statistics captured in the execution log.
306 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

Another report that can help you troubleshoot specific report executions is called
Report Summary and is shown in figure 8.29. Figure 8.29 reveals that the Territory
Sales by Quarter report succeeded 18 times out of 18 times. You can also see that this
report has only one parameter (Date) and that 07/01/2003 00:00:00 is the most pop-
ular choice.

8.5.2 Analyzing trace log files

Each of the RS server-side main components—the Report Server, the Report Man-
ager, and the Windows service—maintains its own trace log file. The information
captured in these files conveys vital statistics, which are useful for auditing and trou-
bleshooting the report execution.

For example, by examining the log files you can find out who has accessed the
Report Server and what action has been requested.

Figure 8.29 The Report Summary report shows that the Territory Sales by Quarter

report succeeded 18 times out of 18 times
ANALYZING REPORT EXECUTION 307

Managing trace log files

The trace log files can be found in the C:\Program Files\Microsoft SQL
Server\MSSQL.3\Reporting Services\LogFiles folder. Table 8.8 outlines
their purpose.

Reporting Services starts a new log file under two conditions: at the start of a new day
and when the server-side component is started. For example, if you restart IIS and
then navigate to the Report Manager, new log files will be created to capture the
Report Manager and Report Server trace output.

As an administrator, you can specify the level of details for the logged data by adjust-
ing the DefaultTraceSwitch setting in the configuration files. The supported val-
ues range from 0 (no tracing) to verbose. In addition, you can instruct the Report
Server to purge the old log files by using the KeepForFiles configuration setting.

Examining trace content

The log data is stored in plain text so that you can use your favorite text editor to open
and search the logs. For example, this is what the log entry looks like after a user has
requested the Sales by Territory report:

w3wp!runningrequests!7bc!03/24/2004-22:20:17:: v VERBOSE: User
map'<Users><User><Name>"user identity"</Name><Paths><Path>
http://localhost/ReportServer/reportservice.asmx
</Path><NrReq>1</NrReq></Paths></User></Users>'
w3wp!library!7bc!03/24/2004-22:20:17:: i INFO: Call to GetPermissions:/
AWReporter/Sales By Territory

Performing runtime tracing

Sometimes, you may want to watch the tracing output in real time—for example, to
see the sequence of events before an exception is thrown. Or you may need to see the
tracing output from all three components in one place.

Fortunately, the information captured in the log files is also output to the default
trace listener. This allows you to watch the tracing output using tools such as Mark
Russinovich’s DebugView trace monitor, as shown in figure 8.30.

Table 8.8 The trace log files, one for each server-side component

Log Filename Description

ReportServerService_<timestamp>.log Trace log for the Report Server Windows service
and Web service

ReportServerWebApp_<timestamp>.log Trace log for the Report Manager

ReportServer_<timestamp>.log Trace log for the Report Server
308 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

In this way, not only will you be able to get a consolidated picture of how the different
components interact, but you will also be able to watch the tracing statements output
by custom code and extensions.

8.6 SUMMARY

In this chapter we showed you how to manage the Report Server environment. Most
of the time, you’ll rely on the Report Manager or the SQL Server Management Studio
to perform day-to-day administration activities, such as managing folders, reports,
and resources.

We emphasized the fact that behind the scenes the Report Manager performs
management tasks using the RS SOAP APIs. You can call these APIs programmatically
in your applications to query and manage the report repository.

If you need to manage multiple Report Servers from a single location, you can
use the RS WMI provider. We showed you how this could be done in the RS Con-
sole sample.

You learned that the SQL Server Management Studio mirrors much of the admin-
istrative features of the Report Manager, thus giving you a comfortable tool to man-
age Reporting Services items.

You can write script files in VB .NET and execute them with the RS script host.
This option doesn’t require advanced development skills. Scripts can be easily exe-
cuted and scheduled to run at specific time.

RS also provides a few management utilities that you can use to perform specific
tasks, such as activating a Report Server instance, changing database settings, and sav-
ing the encryption keys.

Figure 8.30 Use DebugView to watch the tracing output during runtime.
SUMMARY 309

To keep track of report execution, we recommend that you turn on report execu-
tion logging and analyze its statistics on a daily basis. To do so, follow the instruc-
tions in the readme_ServerManagementReports.htm file found with the
SQL Server samples.

Our report management journey would not be complete if we didn’t discuss secu-
rity. Securing the Report Server environment is, arguably, the most important aspect
of RS management, and chapter 9 teaches you how to do exactly this.
310 CHAPTER 8 MANAGING THE REPORTING SERVICES ENVIRONMENT

C H A P T E R 9

Securing Reporting Services

9.1 Role-based security basics 312
9.2 Windows authentication:

a closer look 313
9.3 Using role-based authorization 318
9.4 Managing role-based security with

the Report Manager 324

9.5 Managing role-based security with
the Web service 329

9.6 Techniques for advanced
security issues 333

9.7 Summary 338
Security can no longer be downplayed. Ironically, if you read computer books pub-
lished in the not-so-distant past, you will usually find the security chapter pushed
toward the end of the book, if not in the appendix. It’s sort of like, “You will probably
never need this stuff, but just in case…” Things have certainly changed! The explo-
sion of viruses and hacker attacks in recent years has pushed security concerns to the
forefront of development and application design. To address this issue, the common
language runtime (CLR) and .NET Framework include classes that enable developers
to write secure code easily.

You won’t get far with Reporting Services if you don’t have a good grasp of how
its security works. In this chapter, you’ll gain a strong understanding of how to use
role-based security with reporting services. As you’ll learn, a system administrator can
leverage the role-based security model to secure access to report resources, as well as
define the permitted actions that a given user is allowed to perform. We also discuss
various strategies for securing reports, such as data filtering, dynamic queries, and
data hiding.

Let’s begin with an overview of the role-based security model.
311

9.1 ROLE-BASED SECURITY BASICS

Role-based security is simply a type of authorization process that allows a user to
access certain resources and not others. It provides the user with the ability to perform
specific tasks, based on the user’s “role.” You will probably find the RS role-based
model similar to the security models of other Microsoft and third-party products or
homegrown solutions you have come across in the past.

In this section, we describe the purpose of role-based security and how it works
with an authentication model.

9.1.1 The purpose of role-based security

In a nutshell, role-based security provides the necessary infrastructure for the following:

• User authentication—During the authentication stage the role-based security
model determines who the user is by obtaining her identity from a trusted
authority. For example, let’s say a user called Terri logs in to her machine as
AW\Terri (AW is Terri’s login domain) and runs a report. If Windows authenti-
cation is used, at the end of the authentication phase the Report Server will
know that the identity of the user is AW\Terri.

• User authorization—Authorization occurs after authentication and determines
what the user can do. Given the previous example, during the authorization
process the Report Server would verify whether Terri has sufficient rights to run
the report by checking the role-based security policy established for her.

In .NET security terminology, the terms user and principal are used interchangeably.
For example, if you want to obtain the security context of the current user when Win-
dows authentication is used, you can retrieve the current principal from Thread.
CurrentPrincipal. The IPrincipal object returned from the call implements
the IIdentity interface. You can query IIdentity.Name to obtain the user’s
identity after the user is authenticated.

Once the user’s identity is verified, the user can execute tasks or request RS
resources subject to the authorization rules set up by the report administrator.

The RS role-based security model serves two purposes:

• It provides the infrastructure to define user roles and assign users to these roles.

• It grants or revokes access to a specific task or resource based on the user’s
role membership.

9.1.2 Authentication models: using Windows
or creating your own

A distinguishing feature of RS role-based security is that it is fully customizable. By
default, RS relies on Windows authentication to authenticate users. This configura-
tion will probably meet the security needs of most intranet-based applications. For
312 CHAPTER 9 SECURING REPORTING SERVICES

example, Windows authentication allows the report administrator to leverage the pre-
established user and group accounts in Active Directory.

However, when Windows authentication is not an option, developers can replace
it with a custom security model in the form of a security extension. For example,
using Windows accounts to authenticate web users is often impractical with most
Internet-oriented applications. Instead, with this type of application, once the user
enters her credentials, the application typically authenticates the user via a database
lookup. To add reporting features to such applications, you can write a custom secu-
rity extension to pass the user’s identity to the Report Server. We see how to do just
that in chapter 13.

In this chapter, we focus on the RS role-based security model in the context of the
default authentication mechanism, which, once again, is Windows authentication.

9.2 WINDOWS AUTHENTICATION: A CLOSER LOOK

For networks running Active Directory, implementing role-based permissions with
Windows authentication is simple. How does Reporting Services work with Win-
dows authentication?

The Report Server delegates the security-related tasks to a security extension. A
security extension is a .NET assembly that handles the authentication and authori-
zation of users or groups in RS. When the Report Server needs to authenticate the
user or verify that the user is allowed to perform a given task, it asks the extension
to do so.

Because the Report Server web application is configured for Integrated Windows
authentication, the security extension gets the Windows identity of the user from
Internet Information Services (IIS). IIS authenticates the user and passes the Windows
access token to the Report Server.

Although IIS provides several authentication mechanisms, RS supports the Basic
and Integrated (NTLM or Kerberos) authentication options only.

NOTE Strictly speaking, although you are discouraged from doing so, you can con-
figure the Report Server virtual root to allow anonymous access. This could
be useful in situations when you don’t care about the identity of the user;
for example, when you want to allow any user to access the Report Server
with the same level of permissions. The net effect of enabling anonymous
access is that you disable the RS role-based security policy. The reason for
this is that the Report Server sees all requests as coming under a single Win-
dows account, which by default is IUSR_<computer name>.

Therefore, the role-based security policies cannot be enforced per user,
which is a sure recipe for chaos. Note that you still have to establish a secu-
rity policy for this Anonymous account (or the Windows groups it is a
member of) in the Report Server and map it to a role. Because the Report
Server will be unable to differentiate the user requests, to be able to manage
WINDOWS AUTHENTICATION: A CLOSER LOOK 313

the report catalog you will need to grant this account system administrator
rights. This means that any user will be able to change the Report Server
configuration at will. When anonymous access is mandatory, we strongly
suggest that you use custom security authentication performed by the
application or a custom security extension.

By default, RS is installed in a locked-down mode, and only members of the Windows
local administrators group can manage the report environment and run reports.
Similar to the Windows NTFS model, to prevent an accidental lockout, this security
policy cannot be removed. As a result, Reporting Services will always allow local
administrators on the Report Server machine the right to view items and change secu-
rity policies, even if they’re not explicitly defined in a role-based security policy.

To allow other users to request reports or manage RS, you must create additional
security policies and add Windows built-in accounts or groups to them. Typically, to
simplify the role assignment management, you will organize the Windows user
accounts into groups. This will require that you work hand in hand with the network
administrator to define the appropriate Windows group memberships and create new
groups if needed.

To understand how Windows authentication can be used for securing client appli-
cations, consider two common integration scenarios:

• Client-to-Report Server

• Client-to-Façade-to-Report Server

NOTE Another common way to describe the above scenarios is to use the “tier”
paradigm. Because the Report Server can be viewed as a separate tier, the
first scenario could also be named “three-tiered,” while the second could be
called “multitiered.” You choose.

Let’s discuss how security relates to each of these models, starting with the Client-to-
Report Server model.

9.2.1 Exploring the Client-to-Report Server model

The Client-to-Report Server scenario is better suited for intranet-based report con-
sumers. With this model, the report consumer, which could be WinForm or web-
based, accesses the Report Server on the client side of the application, and the call
goes out under the Windows identity of the user. Figure 9.1 depicts the Client-to-
Report Server integration approach.

By the way, this is the model that the Report Manager uses for report rendering.
When the user clicks the report link inside the Report Manager, an HTTP-GET
request is made to the Report Server under the identity of the interactive user.

In figure 9.1 Terri is logged into the AW domain as AW/Terri. Terri then goes to
the Report Manager portal to run a report. IIS authenticates Terri as AW/Terri and
314 CHAPTER 9 SECURING REPORTING SERVICES

passes the security token to the Report Server. Next, the Report Server checks the
role-based security policy for Terri and grants or refuses access to the requested report.

Let’s assume that Terri is granted permissions to run the report, and the report
needs to access a data source to display some data. How the database authenticates the
request depends on which data source authentication options have been set for this
report, as we discussed in chapter 3. Here are the possible outcomes:

• Credentials Stored Securely in the Report Server—If the Use as Windows Creden-
tials When Connecting to the Data Source option is set, the database will use
Windows Integrated authentication to authenticate the call using the Windows
account credentials the administrator has set up. Otherwise, the data source will
use standard authentication. In both cases, the call to the database will go under
a designated account (depicted as uid/pwd in figure 9.1), which facilitates
connection pooling.

• Windows NT Integrated Security—If the database is installed on the same
machine as the Report Server or on another machine with Kerberos delegation
enabled, the call to the database will go out under AW/Terri. If the database is
on another machine and Kerberos is not enabled, the remote call will use a
NULL session and it will fail. As we pointed out in chapter 3, in general you
should avoid impersonating the user so you don’t lose the benefits of connec-
tion pooling.

For the Client-to-Report Server scenario, we recommend the following security con-
figuration:

• Use the default Windows-based authentication coupled with role-based security
to enforce restricted access to the Report Server.

• Use the Credentials Stored Securely in the Report Server data source option
with Windows or standard authentication for accessing the data source.

Figure 9.1 The Client-to-Report Server model is most suitable for intranet-based applications

and promotes direct access to the Report Server.
WINDOWS AUTHENTICATION: A CLOSER LOOK 315

Sometimes, this scenario won’t be that simple and your integration requirements may
rule out the possibility of direct access to the Report Server. In such cases, the Client-
to-Façade-to-Report Server model may be a better fit.

9.2.2 Exploring the Client-to-Façade-to-Report Server model

The system gets trickier when an additional layer is introduced between the report
consumer and the Report Server. We refer to this as a façade to emphasize the fact that
it is located in front of the Report Server, as shown in figure 9.2.
Why would you add yet another layer? Besides increasing the complexity, such a layer
can serve the following purposes:

• It may encapsulate the application’s business rules—For example, it may represent
the business layer of a WinForm three-tiered application, which could be
exposed either as Web services or as a set of .NET remote objects. We discuss
this approach in more detail in chapter 10.

• It may represent the server-side web layer of the report consumer for both intranet
and Internet web-based applications—For example, the Report Manager can be
viewed as a façade to the Report Server.

• It may be needed to isolate the report consumer from the Report Server—For exam-
ple, in the business-to-business extranet scenario, it is unlikely that an organiza-
tion will allow direct access to the Report Server. Instead, a Web service façade
could be built to expose some of the RS functionality.

• It may enforce custom security rules to extend or replace the Report Server role-based
security model when the latter is not enough.

For simplicity’s sake, the scenario shown in figure 9.2 assumes that the report con-
sumer runs under the Windows identity of the user. This is the typical case with intra-
net applications. Things can get more complicated with other implementation
approaches. For instance, in the extranet scenario, the report consumers can use client

Figure 9.2 In the Client-to-Façade-to-Report Server model, an additional layer is introduced

between the report consumer and the Report Server.
316 CHAPTER 9 SECURING REPORTING SERVICES

certificates for authentication, which can be mapped to Windows accounts. Or, an
Internet-based application can use ASP.NET Forms Authentication.

From the Report Server standpoint, how the report consumer is implemented is
not important. All the Report Server sees are incoming requests under a given Win-
dows identity. From the report consumer façade standpoint, however, which identity
will be passed to the Report Server is very important. Basically, the façade layer has
two choices:

• Impersonate the user by passing the user’s identity to the Report Server.

• Pass its identity. This model is sometimes referred to as a trusted subsystem.

Impersonating the user

If the façade decides to impersonate the user, the original user’s security context and
identity will flow to IIS and then to the Report Server. This is the approach the Report
Manager takes for submitting SOAP requests to the Report Server on the server side of
the application.

To impersonate the user in ASP.NET applications, you can use the <imper-
sonate> element in the web.config configuration file. You can impersonate the
user’s identity or use a specific Windows account. If the façade and the Report Server
are located on separate machines, you must enable Kerberos authentication to man-
age the user identity between the Façade and the Report Server because NTLM
doesn’t support delegation. Then the authentication works as we described in the
Client-to-Report Server scenario.

Passing the façade identity

Instead of impersonating the user, the façade can pass its own identity. To accomplish
this, you would typically change the identity of the ASP.NET worker process to run
under a designated domain account. If you decide to use a local computer account,
you’ll have to clone this account to the Report Server machine to keep the security
gods happy.

As figure 9.2 shows, the ASP.NET worker process runs under a domain account
AW/UID, which is passed on to the Report Server. If the façade layer runs under IIS
5 (Windows 2000), this will require that you change the <processModel> ele-
ment in machine.config. If IIS 6 is used (Windows 2003), you can change the
identity of the application pool to which the application belongs. In addition, you
need to add the account that you used for the pool identity to the Windows 2003
IIS_WPG group.

Once the façade identity is set up, you must map it to the appropriate role in the
Report Server so that it has proper access to RS resources. If the façade will fulfill
report-rendering tasks only, you could create a security policy to grant the façade
account Browser role permissions.
WINDOWS AUTHENTICATION: A CLOSER LOOK 317

While the trusted subsystem approach simplifies the authentication process
between the façade and the Report Server, you need to take care of authenticating the
end users and authorizing them at the façade layer.

Authenticating the user represents one half of the security equation. After the
authentication, the user must be authorized to access a given resource from the report
catalog. We explore how to do that next.

9.3 USING ROLE-BASED AUTHORIZATION

Regardless of which authentication model is used, Windows or custom authentica-
tion, Reporting Services authorizes requests based on the membership that the user
has in one or more RS roles. RS offers a comprehensive role-based security model to
authorize user requests. In this section, we discuss the theory behind this model and
then demonstrate how you can manage the role-based security infrastructure with the
Report Manager and the Report Server Web service.

To understand the RS role-based model and see how its pieces fit together, look
at the database diagram shown in figure 9.3. Note that this diagram doesn’t exactly
match the Report Server physical database model. You’ll find only the Users,
Roles, and Policies tables in the Report Server database; the rest are fictitious.
Where, then, does the Report Server store the rest of the role-based security items? If
you examine the actual Policies table, you’ll notice that it uses proprietary struc-
tures to define the role assignment relationship. When the administrator creates a new
security policy for a given user to a securable item, a new record is added to the
Policies table. This record specifies the item that is secured, the user’s Windows
account, and the role-based security policy stored as an XML fragment.

Figure 9.3 Reporting Services comes with a comprehensive role-based security model based

on the user’s membership in one or more roles.
318 CHAPTER 9 SECURING REPORTING SERVICES

Note that the diagram in figure 9.3 doesn’t exactly match the Report Server physical
database model. You will find only the Users, Roles, and Policies tables in the
Report Server database; the rest are fictitious. Where, then, does the Report Server
store the rest of the role-based security items? If you examine the actual Policies
table, you will notice that it uses proprietary structures to define the role assignment
relationship. When the administrator creates a new security policy for a given user to
a securable item, a new record is added to the Policies table. This record specifies
the item that is secured, the user’s Windows account, and the role-based security pol-
icy stored as an XML fragment.

Strictly speaking, although not so obvious, tasks in RS are further broken out and
consist of entities called permissions. However, for simplicity, permissions are not
exposed in the Report Manager UI, so you can’t see them. The reason for this is that
a task is a fixed collection of permissions and can’t be changed.

How do you find out what permissions are available with RS? In section 9.5.1 we
author a sample report called Show Security Policy, which lists the permissions asso-
ciated with a given user and report item. To accomplish this, we use the Get-
Permissions SOAP API, which returns a collection of permissions, such as Create
Data Source, Create Folder, and so forth.

At this point you may be curious as to how permissions can be used if tasks are fixed
entities. RS permissions could be useful if you need to write a custom security exten-
sion and you need to deal with permissions—for example, if you want the Report
Manager to disable controls according to the security policy associated with the inter-
active user. We show you how to write a custom security extension in chapter 13.

9.3.1 Understanding tasks

A task defines a set of permissions that can be enforced through role-based security.
For example, RS defines a task called View Reports, which allows users to run reports.

RS defines two types for tasks:

• System-level tasks

• Item-level tasks

System-level tasks represent maintenance actions, such as Define Roles. Item-level
tasks define user permissions—View Reports, View Folders, and so on. Another way
to differentiate between these two types is to note that system-level tasks work on glo-
bal items (which do not have catalog paths), while item-level tasks work on items
with paths.

You can find the full list of predefined tasks under the Site Settings menu. Cur-
rently, RS doesn’t support custom tasks. For this reason, you won’t find a Task table
in the Report Server database. In addition, you cannot map users directly to tasks.
Instead, to use a task, you first need to assign it to a role.
USING ROLE-BASED AUTHORIZATION 319

9.3.2 Defining roles

As its name suggests, the role-based security infrastructure in RS uses the concept of
roles to assign a set of permissions to users with the same security requirements. Sim-
ply put, a role is a named set of tasks. Currently, RS doesn’t support nested roles. For
example, you cannot set up a Content Manager role to include the Browser role.

Because the relationship between roles and tasks is many-to-many, the documen-
tation uses the term role definition to represent the tasks-to-role membership. For
example, RS includes the predefined item-level Browser and Content Manager roles,
and both of them include the View Reports task.

NOTE Strictly speaking, Reporting Services implements the roles-to-tasks rela-
tionship by a bit-masked value defined in the TaskMask column in the
Roles table. For this reason, the terms role and role definition are inter-
changeable. However, we broke it down into two tables to make the con-
cept easier to understand.

Similar to the task types, RS classifies roles in two categories: system roles and item-
level roles.

System-level roles

Most applications need an Administrator role that has unrestricted access to the appli-
cation to perform application-wide maintenance tasks. Reporting Services is no
exception. It defines two system roles, as shown in table 9.1.

System-level roles can include only system-level tasks. When you install RS, the
Setup program maps the Windows local administrators group to the System Admin-
istrator role.

Item-level roles

Item-level roles contain item-level tasks. Table 9.2 shows the predefined item-level roles.
Unlike working with tasks, you can define custom system- and item-level roles, as

well as modify the predefined roles. Let’s say that you don’t like the predefined task
mapping for the Content Manager role; you don’t want members of this role to be
able to view reports. You can use the Site Settings menu to either change the role def-
inition or create a new item-level role.

Table 9.1 Predefined system roles

System-Level Role Rights

System User View system properties and shared schedules

System Administrator System User rights plus the rights to view and modify system role
assignments and role definitions
320 CHAPTER 9 SECURING REPORTING SERVICES

9.3.3 Understanding securable items

With RS you can secure resources to meet the requirements of your company. For
example, say that you don’t want your users to be able to view or modify Shared
Data Sources. Table 9.3 lists the RS resources that can be secured through role-
based security.

Table 9.2 Predefined item-level roles

Item-Level Role Rights

Browser View folders and reports and subscribe to reports

Content Manager All item-level permissions

My Reports Publish reports and linked reports; manage folders, reports, and resources in
a user’s My Reports folder

Publisher Publish reports and linked reports to the Report Server

Report Builder Read report definitions, manage subscriptions, view folders, models, reports,
and resources.

Table 9.3 RS-securable resources

Securable resource Description

Folders Viewing folders and navigating through the folder hierarchy requires the
rights to execute the View Folders task. If the user doesn’t have the rights to
view a folder, the folder is excluded from the folder view. Requesting the
folder explicitly through URL access or Web service results in a security
exception. Managing folders requires the Manage Folders task.

Reports To view a report, the user must have the rights to execute the View Reports
task. To manage the report, the user must have the Manage Reports rights.

Shared data sources The user needs the Manage Reports rights to change the report data source.
After that, no special permissions are required to render reports that use a
shared data source. To view the shared data source definition, the user must
have the View Data Sources permission. To manage it, the rights to execute
the Manage Data Sources tasks are required.

Other catalog items The View Resources permission is required to view an image item. Similarly,
View Resources is required to apply an XSL transformation.

Report History Managing the report snapshot history requires the rights to execute the
Manage Report History task.

Subscriptions Managing user report subscriptions requires the rights to execute the
Manage Individual Subscriptions task. Managing report subscriptions of other
users requires the rights to execute the Manage All Subscriptions task.

Models The Models permission is required to create ad hoc reports as discussed in
chapter 7. This allows the user to view models in the folder hierarchy, use
models as data sources for a report, and run queries against the model to
retrieve data.
USING ROLE-BASED AUTHORIZATION 321

Tasks and roles are useful only when they are associated with users in order to enforce
restricted access to the Report Server. To accomplish this, the administrator defines
role-based security policies.

9.3.4 Defining policies

A policy defines the relationship among
users, roles, and securable items. In other
words, a policy determines the permitted
tasks that the user can perform on a given
securable item, such as a folder or report.
The RS role-based security policy is additive,
which means that the user is granted the
union of the permitted tasks defined in the
roles to which the user is mapped. Let’s con-
sider the example shown in figure 9.4.

In this example, David Campbell is
assigned to both the Sales Managers and
Sales Windows groups of the AW domain.
The RS administrator assigned the Sales
Managers group to the Content Manager
role when defining the role-based security
for the AWReporter folder. The AW Sales
group is mapped to the Browser role.

What will be the resultant set of permit-
ted tasks that David Campbell gets? The
answer is that he will be able to execute all
tasks defined for the Content Manager and
Browser roles. If these two roles include the
default set of tasks, David will be able to
manage the AWReporter folder (create and delete folders, add reports), as well as see
all reports and folders in the AWReporter folder.

Overriding security policy inherited
from the parent folder

You can enforce role-based security on folders and their contents. By default, the secu-
rity policy propagates through the children of the parent folder. This is similar to the
way Windows access control list (ACL) permissions are inherited from the parent
folder by its descendants. However, the inheritance chain can be overridden if the
subfolders or resources must have different permissions than their parent.

For example, considering again the scenario shown in figure 9.4, what if the
AWReporter folder contains some sensitive reports that only the members of the Sales

Figure 9.4 The RS role-based security

model is additive, and the user is granted

the union of the permitted tasks.
322 CHAPTER 9 SECURING REPORTING SERVICES

Managers group should see? To accomplish this requirement, we can remove the AW/
Sales group from the policy list of restricted reports.

What happens when you break the policy inheritance chain at a specific securable
item? The Report Server simply assigns a new policy list to this item, which by default
gives Content Manager rights to members of the Windows local administrators group.

It is not difficult to understand how the Report Server determines whether the
user is permitted to execute a given task on a secured item. First, the Report Server
determines whether the item inherits the security policy of its parent. If the security
chain is broken at the item level, the Report Server evaluates its policy list to find out
which tasks have been assigned to the role(s) the user belongs to. If the security policy
is inherited, the Report Server walks recursively up the inheritance chain to find out
which of the item ascendants define the security policy.

Simplifying security policy management

To simplify the folder permissions, we suggest that you stick to policy inheritance as
much as possible. The approach we recommend is to enforce the minimum set of per-
missions at the top Home folder. Then, work your way down by adding or taking out
permissions on its children on an as-needed basis.

Let’s consider a more involved example. Let’s say you want to organize your RS
folder namespace per department and application, similar to the one shown in fig-
ure 9.5.

First, under the Home folder you create department folders, for example, Sales
and HR. Then, you create application folders under the department folders, for
example, AWReporter for the Sales department to contain all of the sample reports
from this book. How can you minimize role-based security maintenance and yet
ensure that you enforce a comprehensive level of security? Let’s say you don’t
want users from other departments to be able to browse the Sales folder and see
its contents.

Figure 9.5
You can simplify
role-based security

management by using

policy inheritance.
USING ROLE-BASED AUTHORIZATION 323

To simplify the security infrastructure, you can take advantage of the inheritance fea-
ture of the role-based security policy. You can allow only AWC domain administrators
to manage the full folder namespace by assigning them to the Content Manager role.
You can assign all other domain users to the Browser role so they can browse the
Home folder. For the Sales folder you can break the folder’s inheritance chain. You
can remove the Users group from the Browser role and grant the Sales Managers and
Sales groups the Content Manager and Browser roles, respectively. You don’t have to
perform any extra steps if you want the same permissions to propagate to the AWRe-
porter folder.

When the user doesn’t have permissions to view a given securable item, the item
is excluded from the results of the Web service method call. For example, if the user
clicks on the Home folder to see its subfolders, the Report Server will return only the
subfolders to which the user has View permissions. Behind the scenes, the Report
Manager invokes the ListChildren SOAP API, which excludes restricted resources.
This makes developing client applications a lot easier because you don’t have to filter
out the results to enforce restricted access—one less thing to worry about when writ-
ing custom applications that target RS.

Now that we’ve explained the theory behind the RS role-based security model,
let’s see how we can manage it using the Report Manager.

9.4 MANAGING ROLE-BASED SECURITY
WITH THE REPORT MANAGER

It is important to note that when you use the Report Manager to set up a role-based
security infrastructure, you are securing not the Report Manager but the Report
Server. The policy changes that you make using the Report Manager are persisted in
the Report Server database. For this reason, these changes affect all report consumers
that use the same instance of the Report Server.

Managing the role-based security infrastructure with the Report Manager is easy.
We convince you of this by way of example. In this section, we show you how to
secure the resources in the AWReporter folder. Our fictitious scenario is similar to the
examples you have already seen in this chapter. Using the Report Manager, you are
going to complete the following tasks:

• Create a few Windows user accounts and assign them to Windows groups

• Assign the Windows groups to predefined and custom roles

• Enforce a role-based security policy on the AWReporter folder and its resources

To make this example more realistic, let’s define the new accounts and groups to cor-
respond with the AWC organizational structure. Back in chapter 5, you created a Cor-
porate Hierarchy report that you can use to get started, as shown in figure 9.6.
324 CHAPTER 9 SECURING REPORTING SERVICES

Your security requirements are as follows:

• Only the members of the Sales Managers and Sales groups can access the
AWReporter folder.

• The members of the Sales Managers group have unrestricted access to the
AWReporter folder.

• The members of the Sales group are able to run reports only.

• The AWC network administrator can manage the AWReporter folder and its
resources but cannot view any reports in this folder.

9.4.1 Creating Windows user accounts and groups

The HumanResources.Employee table in the AdventureWorks database can give
you the necessary details to set up the Windows accounts, as shown in table 9.4.

Figure 9.6 Use the Corporate Hierarchy report to see the AWC organizational structure.

Table 9.4 Test accounts and groups needed to run the role-based security sample

Username Login ID Password Description Windows group

Michael Blythe Michael9 Michael9 Sales Manager AW Sales Managers, Users

David Campbell David8 David8 Sales Representative AW Sales, Users

Ashvini Sharma Ashvini0 Ashvini0 Network Administrator AW Sales Admin, Users
MANAGING ROLE-BASED SECURITY WITH THE REPORT MANAGER 325

To set up these accounts, open the Computer Management console and create the
three Windows groups (AW Sales Managers, AW Sales, and AW Sales Admin) listed in
table 9.4. In the process of doing so, don’t forget to uncheck the User Must Change
Password at Next Logon check box.

Then, create the three Windows user accounts (Michael9, David8, and Ashvini0)
and assign them to the appropriate groups.

9.4.2 Creating custom roles

To meet the last of your requirements, you need to create a new role because none of
the predefined roles includes only management tasks. To create a custom role with the
Report Manager, follow these steps:

Step 1 Click the Site Settings menu.

Step 2 Click the Configure Item-Level Role Definitions link.

Step 3 Click the New Role button. The New Role screen appears (figure 9.7).

Step 4 Name the new role Sales Admin and assign to it all management tasks shown
in figure 9.7.

You now have a custom role that you can use to define the role-based security policy
for the network administrator.

Figure 9.7 With RS you can create a custom role that includes one or more predefined tasks.
326 CHAPTER 9 SECURING REPORTING SERVICES

9.4.3 Defining security policies

Next, let’s enforce restricted access to the AWReporter folder. Using the Report Man-
ager, navigate to the AWReporter folder and click the Security tab on the folder’s
Properties page. If you haven’t made any changes to the default security policy, you
will see a single button named Edit Item Security. When you click it, you see the con-
firmation prompt shown in figure 9.8.

Click OK to confirm your intention to override the security policy inherited from the
Home folder. The user interface changes and now shows two buttons (figure 9.9).

The default security policy allows only local administrators to access this folder by
granting them permissions to execute all tasks of the Content Manager role. Let’s now
define three additional security policies that will grant different levels of access to the
AWReporter folder for the Sales Managers, Sales, and Sales Admin Windows groups.

Let’s start with granting the members of the Sales Managers group the Content
Manager rights to the AWReporter folder. Click New Role Assignment to create a
new security policy, as shown in figure 9.10.

Create two more role assignments to assign the members of the AW Sales group
to the Browser role and the members of the AW Sales Admin group to the Sales
Admin role. When you return to the Security tab, your screen should look like the
one shown in figure 9.11.

You’ve finished! You can test the role-based security policies by logging onto Win-
dows as each of the three users. For example, if you log on as Ashvini0, you will be
able to manage the AWReporter folder and its resources, but you won’t be able to run
any of the reports. When you click the report’s link, the Report Manager will not ren-
der the report. Instead, the report’s Properties page will be open.

Figure 9.8 When the security policy inherited from the item parent is not a good fit,

you can override it. You will see this warning message when breaking the inherited

security for an item.

Figure 9.9
Use the report’s

Security tab to create

new role-based

security policies.
MANAGING ROLE-BASED SECURITY WITH THE REPORT MANAGER 327

But wait, you say, what if you need to enforce a more restrictive policy on specific
resources? For example, what if you want to prevent the members of the AW Sales
group from running the Sales by Territory report? To accomplish this, you can enforce
a report-specific security policy by overriding the AWReporter folder policy. To do so,
you can click the Edit Item Security button found on the Security tab of the report’s
Properties page. When you do this, you are presented again with the confirmation
prompt shown in figure 9.8, asking whether you really want to break the security pol-
icy inheritance.

Once you confirm your intention, you can delete the AW Sales group from the
policy list, which, in turn, prevents its group members from rendering the report. If
you later change your mind, you can always restore the policy inheritance by clicking
the Revert to Parent Security button.

Figure 9.10 You create a new role-based security policy by assigning Windows user or

group accounts to roles.

Figure 9.11 Based on your security requirements, you may need to create

several security policies to provide restricted access to the report based on

the users’ role membership.
328 CHAPTER 9 SECURING REPORTING SERVICES

As we explained in chapter 8, the Report Manager is just a user-friendly application
layer on top of the Report Server. The Report Manager calls down to the RS Web ser-
vice to perform all management tasks behind the scenes. In a similar way, you can
manage programmatically the RS role-based security in your applications by invoking
the Web service’s security-related methods, as we discuss next.

9.5 MANAGING ROLE-BASED SECURITY
WITH THE WEB SERVICE

As we discussed in chapter 8, the RS Web service provides a series of security-related
methods that you can use to manage programmatically all aspects of the role-based
security infrastructure. When the Report Manager is not enough, you can create cus-
tom applications (or reports) that call the security API directly.

For example, as an administrator, you may be interested in authoring a report that
lists the permissions a given user has to all resources within a given folder. Or, you
may have defined resource-specific security policies already, and you need a report
that shows you where the role assignment takes place.

In this section we show you how to use the RS Web service to determine role-
based security policies, call security-related methods, and implement “pseudo”
report events.

9.5.1 Determining role-based security policies

Requirements like the ones discussed in the previous section go beyond the Report
Manager feature set. However, with a little bit of programming effort, you can author
such reports easily by directly calling the Web service authorization APIs. In figure 9.12
we see the Show Security Policy report, which fulfills your requirements.

The Show Security Policy report takes as parameters the user’s Windows login
name and password, as well as the Report Server Web service URL. If the Item Name
parameter is left NULL, the report will show which permissions the user has to all
securable resources. For example, figure 9.12 shows that we wanted the report to indi-
cate which permissions Ashvini has to the resources located in the AWReporter folder.

Alternatively, as the administrator you can enter the name of a resource (in the
Item Name parameter) to filter the report for a single resource. That way, you see the
security policy defined for this item only.

TIP In the real world you will rarely know the user’s password. If you don’t need
the user’s permission set but only want to see the user’s roles, then you can
use the approach suggested by Tudor Trufinesco, a Microsoft engineer
from the RS team. You can use an account with Admin rights to call
GetPolicies on all the items in the catalog and find out which ones are
not inherited. Then you can display or parse the XML policy in the report.

Let’s look at how this report is implemented.
MANAGING ROLE-BASED SECURITY WITH THE WEB SERVICE 329

9.5.2 Calling security-related Web service methods

Implementing the Show Security Policy report is straightforward. The report takes
advantage of the self-referential integrity defined in the Catalog table in the Report
Server database and the RS recursive hierarchy-reporting feature, which we discussed
back in chapter 5. The report traverses recursively the Report Server folder namespace
and checks the type of the item. If the item is a folder, the item name is shown in
bold. For each securable item, the report shows the name of the parent from which
the security policy is inherited, as well as the set of permissions that the user has to
this item.

To obtain this information, the Show Security Policy report calls down to the
AwRsLibrary custom assembly. Specifically, it calls the PolicyInherited-
From method to get the inheritance information and the GetPermissions
method to get the list of allowed permissions. Listing 9.1 shows the abbreviated cus-
tom code.

Figure 9.12 You can query and manage the role-based security infrastructure by calling the RS

Web service in your applications and reports.
330 CHAPTER 9 SECURING REPORTING SERVICES

public string SetProxy (string uid, string pwd, string rsUrl) {
 m_rs = new ReportingService2005();
 m_rs.Url = rsUrl;
 m_uid = uid;
 m_pwd = pwd;
 return "None";
}

public string GetPermissions(string itemPath) {
 string result = null;

 m_rs.Credentials = new NetworkCredential(m_uid, m_pwd);
 String[] permissions = m_rs.GetPermissions(itemPath);
 System.Array.Sort(permissions);
 result = String.Join(",", permissions);

 return result;
}

public string PolicyInheritedFrom(string itemPath) {
 bool inheritParent;
 string rolePath = itemPath;
 m_rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 m_rs.GetPolicies(rolePath, out inheritParent);
 while (inheritParent) {
 rolePath = GetParentPath(rolePath);
 m_rs.GetPolicies(rolePath, out inheritParent);
 }
 return FormatPath(itemPath, rolePath);
}

The GetPermissions method calls the RS Web service’s GetPermissions web
method under the context of the user whose security policy you need to check. The
method returns a string array of the allowed permissions, which you sort and flatten
to a string.

The PolicyInheritedFrom method invokes the GetPolicies web
method to find out which ascendant in the catalog hierarchy defines the security pol-
icy for each item displayed in the table region. To accomplish this, Policy-
InheritedFrom calls GetPolicies recursively until inheritParent is false.
Finally, it evaluates the item path and returns one of the following values:

• Self—If the item defines its own policy

• Parent—If the security policy is inherited from the item parent

• Home—If the item inherits the root folder security policy

• In all other cases, the path to the ascendant item that defines the security policy

Listing 9.1 The Show Security Policy custom code

Gets permissions
associated with

the resource

Gets role-based
policies recursively
for report items
MANAGING ROLE-BASED SECURITY WITH THE WEB SERVICE 331

Besides showing how you can use the security-related Web service API, this example
also demonstrates how you can implement “pseudo” events in your reports.

9.5.3 Implementing “pseudo” report events

To initialize the Web service proxy and some class-level variables inside the custom
code, you use an expression for the Body BorderStyle property. Placing code here
will ensure that the SetProxy method is called only once and before the other two
custom methods. Use the following expression for the BorderStyle property of
the Report Body band:

=Code.m_Library.SetProxy(Parameters!Uid.Value,
 Parameters!Pwd.Value, Parameters!Url.Value)

Strictly speaking, you could have made the class stateless by passing the user creden-
tials to the GetPermissions method, but we wanted to demonstrate how you can
execute custom methods in a specific order.

This expression will be executed before the expressions in the table region, and it
can be safely used to initialize the custom code state. Because you are calling instance
methods in the custom assembly, you reference the assembly in the Report Properties
dialog box, as shown in figure 9.13.

Before testing the report, don’t forget to follow the steps for deploying the
RsLibrary assembly and elevating its code access security to the Report Designer
and Report Server folders, as we discussed in chapter 6.

So far, you’ve seen how to enforce secured access to the Report Server catalog
based on the user’s role membership. As we explained in chapter 6, developers can
expand the report capabilities by using custom code. When this happens, you, as an

➥

Figure 9.13
Referencing assemblies
in the Report Properties dialog

box allows you to call these

assemblies from your reports.
332 CHAPTER 9 SECURING REPORTING SERVICES

administrator, need to know how to properly configure the RS code access security.
This topic is covered in appendix B.

Let’s round out this chapter with a look at some techniques for securing reports
with reporting services.

9.6 TECHNIQUES FOR ADVANCED
SECURITY ISSUES

If everything we’ve discussed so far has been mind-boggling, here is what we would
like for you to take from this chapter. Your specific application needs dictate which
authentication options you’ll use. However, as with almost any architecture design,
you should carefully weigh the different implementation approaches and make a
trade-off between flexibility and simplicity.

Unless you are architecting an enterprise-wide reporting services infrastructure,
don’t try to make your security implementation too sophisticated. Try to take advan-
tage of the RS role-based security model as much as possible. Some of the questions
that you should ask yourself are

• What is the application architectural model? WinForm or web-based? Intranet,
extranet, or intranet?

• How strict are the security requirements? How sensitive is the report information?

• How granular does the security policy level need to be? For example, do you have
to enforce restricted access at the report level, or do you need a more granular level
of security? Do you need to secure some portion of the data inside the report?

• Can you use Windows-based authentication?

• To simplify the role-based security setup with Windows-based authentication,
can you group the accounts into Windows groups?

Sometimes, you may find the RS role-based security model too coarse. Such will be
the case when you need to secure sensitive data inside the report, or what we refer to
as “horizontal security.”

Take, for instance, the Employee Sales Freeform report you created in chapter 4.
This report shows sensitive data, such as salesperson performance, bonus, and com-
mission. What if you want each salesperson to be restricted to seeing their own sales
data without being able to request the report for other sales representatives? Further,
what if you want only the members of a certain Windows group, such as Sales Man-
agers, to be able to see the sales data for the sales representatives of whom the manager
is in charge?

In such cases, you need to take extra steps to supplement the role-based security
model or, in more extreme cases, to replace it altogether. Let’s consider some tech-
niques that you can use to provide a more granular level of security policy.
TECHNIQUES FOR ADVANCED SECURITY ISSUES 333

9.6.1 Filtering data

This technique involves filtering the sensitive data at the data source or by using
dataset filters. Let’s say you want to restrict a salesperson to view his sales performance
data only when requesting the Employee Sales Freeform report. Let’s assume also that
the HumanResources.Employee table in the database defines a column for the
user login ID, which is exactly the case with the HumanResources.Employee
table in the AdventureWorks database. It defines a LoginID column, which you can
use to filter the available values for the Employee parameter. Save the modified ver-
sion of the report as Employee Sales Freeform Secured.

In this example, we demonstrate data filtering at the data source. To implement this,
replace the dataset query of the Employee parameter with the following statement:

SELECT s.SalesPersonID, c.LastName + N','
 + c.FirstName AS EmployeeName, e.LoginID
FROM Sales.SalesPerson s
 INNER JOIN HumanResources.Employee e ON
 e.EmployeeID = s.SalesPersonID
 INNER JOIN Person.Contact c ON
 c.ContactID = e.EmployeeId
WHERE LoginID = @LoginID
ORDER BY EmployeeName

The LoginID parameter is defined as dataset specific, as shown in figure 9.14.
As we discussed in chapter 5, the User.UserID property returns the Windows

login ID if the default Windows-based authentication is used. Therefore, after the
lookup dataset is filtered, the user will see his name only in the Employee parameter
drop-down list. In fact, in this scenario, you can go one step further and take out the
Employee parameter entirely.

Figure 9.14
By setting a dataset

parameter to the value of

User.UserID, you can filter

the results of your query.
334 CHAPTER 9 SECURING REPORTING SERVICES

NOTE The AdventureWorks database uses adventure-works as a domain
name in the LoginID column of the HumanResources.Employee
table. To test the Employee Sales Freeform Secured report, replace the
domain name with your login domain name or your computer name, if
the Report Server is installed locally.

For example, assuming that you created the test accounts shown in
table 9.4 as local computer accounts and the Report Server is installed
locally, make sure that you replace the domain name in the LoginID col-
umn with the name of your computer, that is, <mycomputer-
name>\Michael9. Then, to test the report, you can either log in locally
or establish a remote connection to your computer from another box using
the test account credentials.

9.6.2 Using dynamic dataset queries

A variation of the data-filtering technique is to use dynamic queries, where a stored pro-
cedure or an expression determines what data will be fetched based on the user’s identity.

Let’s consider a more complicated scenario than those already discussed. This time
say you want to factor in the user’s Windows group membership. For example, you
want to allow members of the Sales Managers Windows group to be able to select any
salesperson. However, you still want to allow members of the Sales Windows group
to be able to see their sales data only.

Determining the user’s Windows group membership

With a little bit of embedded custom code, implementing these more complex
requirements is straightforward. You could write a simple function to tell you whether
the user is a member of a given Windows group. A possible implementation of such a
function is the IsInRole function:

Function IsInRole(ByVal roleName as String) As Boolean
 Dim myPrincipal As WindowsPrincipal =
 New WindowsPrincipal(WindowsIdentity.GetCurrent())

 Return myPrincipal.IsInRole(roleName)
End Function

You can find this function as embedded code in the Employee Sales Freeform
Secured report sample. The IsInRole function calls the WindowsPrincipal.
IsInRole method and returns true if the user is a member of the passed role, or
false otherwise.

Implementing the dataset query

The next step is trivial. You can pass the Boolean flag to the parameter (or report)
dataset stored procedure, which can filter the data accordingly. If the user is a sales
manager, the stored procedure will return all salespersons, just as the original version
TECHNIQUES FOR ADVANCED SECURITY ISSUES 335

of this report (Employee Sales Freeform) does. Otherwise, the Employee parameter
will contain only the name of the user.

Of course, if needed, you can call the GetPolicies method of the RS Web ser-
vice to find out to which role(s) this user or Windows group has been mapped. You
saw an example of how to call this method in the Show Security Policy report. The
GetPolicies method returns an array of Policy objects, which represents the
security policies associated with a given item, as shown in figure 9.15.

To see the definition of the policy object, step through the PolicyInherited-
From method in the AwRsLibrary assembly, and once you’ve invoked the Get-
Policies SOAP API, display the policies collection in the Object Browser (Ctrl-Alt-J).

Once you know the user’s association with a given Windows group, you can find
out what role the user is mapped to by enumerating the report’s security policy.

Figure 9.15 The GetPolicies SOAP API returns an array of Policy objects.
336 CHAPTER 9 SECURING REPORTING SERVICES

9.6.3 Hiding data

Sometimes you might need a technique to hide some report elements. For example,
let’s say you have a report that shows the employee’s salary, and only users of the HR
department can see it. Similar to the Dynamic Queries technique, you can determine
whether the report user is a member of the HR group.

Then you can use an expression for the salary item’s visibility to hide it if the user
is not a member. For example:

= Not Code.IsInRole("HR")

9.6.4 Implementing custom security models

Occasionally, RS role-based security is not sufficient and you need to replace it with
your own solution. There are two main scenarios that may call for a custom secu-
rity implementation.

First, the application may need to check some business rules before granting the
user the rights to view a report. For example, let’s say you have a report that shows
the consolidated sales data from all the company’s branches. The users can see the
report only after all branches have submitted their data. In a typical three-tier model,
this rule will be evaluated in the application business layer.

In this scenario, the business layer can serve as a façade to the Report Server. The
added benefit of this approach is that it simplifies the role-based security maintenance,
as we discussed in the Client-to-Façade-to-Report Server scenario. Instead of imper-
sonating the user, the request to the Report Server could go out under the Windows
account of the business layer’s process identity. If this is the case, the report adminis-
trator is concerned with setting up the appropriate security for this account only.

Second, the Report Server security model needs to be integrated with the application
security model. The application may already have a custom security implementation in
place. For example, the application might use the Windows 2003 Authorization Man-
ager to implement secured access to areas of the application based on predefined roles.
Supporting two role-based security models may present a challenge for the report
administrator. In this case, the application will be responsible for enforcing restricted
access to the Report Server.

9.6.5 Enforcing a secured connection to the Report Server

Sometimes a report might contain sensitive information, such as a customer’s credit
card number. This is especially true when reports are requested over the Internet. In
this case, the report data must be encrypted when it is transmitted between the Report
Server and the report consumer to prevent hackers from sniffing the data. For imple-
menting secure data transfer, you can use Secure Sockets Layer (SSL).

With RS, the report administrator can configure which Report Server operations
require an SSL connection by using the SecureConnectionLevel setting in the
RSReportServer.config file. The allowable range of values is between zero
(no SSL required) and three (all access to the Report Server must be encrypted). For
TECHNIQUES FOR ADVANCED SECURITY ISSUES 337

example, let’s say you want to enforce that all reports must be viewed over an SSL con-
nection. To accomplish this, you can elevate SecureConnectionLevel to two. It
is important to note that if a secured connection is enforced, the Report Server will
demand that both the HTTP-GET and SOAP types of requests use SSL. Because the
RS folders do not correspond to physical folders, you cannot enforce SSL on a per-
folder or report basis. It is an all-or-nothing proposition.

Sometimes, you may need to enable SSL selectively. For example, an organization
might need an encrypted connection for web reporting only. One possible solution
would be to use separate Report Servers—one to serve Internet customers with a secure
SSL connection and another for internal reporting needs. For more information about
the SecureConnectionLevel setting, refer to the product documentation.

9.7 SUMMARY

As a report administrator, you shouldn’t take report security lightly. Reports often con-
tain sensitive data that must be safeguarded. You can use the RS role-based security
model to restrict user access to RS resources based on the Windows identity of the user.
To set up a comprehensive role-based security infrastructure, you define policies that
spell out which tasks a given user or group is permitted to execute on a given resource.

The Report Manager makes managing role-based security easy. Alternatively, you
can manipulate the role-based model programmatically by calling the Web service
security management APIs.

Finally, to implement a more granular security level to the report data, you can use
several techniques, including data filtering, dynamic queries, and data hiding. When
they are not enough, you can implement custom security techniques, some of which
we discuss in subsequent chapters.

With part 2 now under your belt, you should feel comfortable managing Report-
ing Services. Now it is time to learn about the third phase of the report lifecycle:
report delivery. In the next chapter, we examine how on-demand delivery works.
338 CHAPTER 9 SECURING REPORTING SERVICES

3
P A R T
Delivering reports
Often, your reporting requirements call for integrating Reporting Services with
custom applications. The focus of part 3 is the third and final phase of the report life-
cycle—report delivery. Here, we implement various reporting solutions to demon-
strate how you can integrate RS with different application scenarios.

We start by exploring the two access options available with RS: URL and Web ser-
vice. You learn how these options compare in the context of different deployment
needs, such as intranet, Internet, and extranet applications.

In this part we implement an end-to-end code sample that demonstrates how you
can report-enable a WinForm application. We also discuss various techniques for
requesting RS reports on the client and server sides of a web application. You will learn
how to use the new ReportViewer controls to easily integrate Reporting Services
reports into your .NET applications.

We round out this part by exploring the second option that RS offers for distrib-
uting reports—through subscriptions.

C H A P T E R 1 0

On-demand report delivery

10.1 How RS provides on-demand

report delivery 342
10.2 URL-based report access 343
10.3 URL access in action 354
10.4 Web service-based report access 366

10.5 Web service access (SOAP)
in action 376

10.6 Evaluating URL and Web service
access options 383

10.7 Summary 387
Once a report is deployed to the report catalog and configured properly, it is ready to
fulfill its ultimate purpose: delivery of requested information to the end users. In this
chapter we examine on-demand report delivery, in which the user takes an explicit
action to view a report. In chapter 12, you learn about subscribed report delivery, in
which reports are “pushed” to the user.

We discuss the controls that you can use to add reports to your .NET 2.0 applica-
tions in chapter 11, but this chapter focuses on the core architectural access options
that make these controls work. By the time you finish reading this chapter, you’ll
know how consumers can use these access options to submit report requests to the
Report Server.

Let’s start with a look at how on-demand report delivery works.
341

10.1 HOW RS PROVIDES ON-DEMAND
REPORT DELIVERY

Let’s say you have authored a set of reports and deployed them to the report catalog.
Now you want to provide users with a way to request reports on demand. You could
use the Report Manager (you saw how to use the Report Manager as a quick-and-easy
report-rendering tool in chapter 8), but that might not always provide the functional-
ity you are looking for. Although useful, the Report Manager will sometimes be insuf-
ficient to fully meet your report delivery needs, as in the following use cases:

• You need to integrate RS with custom applications—Many application scenarios
call for report-enabling existing or new applications. In most cases, these scenar-
ios rule out using the Report Manager because the application will be responsi-
ble for supplying the details of the report request, such as the parameter values,
export format, and so on.

• Your reporting needs go beyond the Report Manager feature set—For example, you
may need to validate the report parameters before the user submits the report
request. As we mentioned in chapter 3, the standard report toolbar that the
Report Server generates when reports are requested by URL provides limited
parameter validation capabilities.

• You do not have access to a Report Server—For example, you may have field
agents that need to run reports based on data from their local machines.

In these cases, a more flexible approach to report-enabling is to integrate the Report
Server with your custom applications. Integrating the Report Server with your appli-
cation requires that you use one of the following access options:

• URL access—The request is submitted via the HTTP-GET protocol.

• Web service access —The request is submitted via the SOAP protocol.

Figure 10.1 depicts these two integration options. The figure shows the two options
that can be used to access reports from the Report Server.

NOTE In the next chapter we discuss the ReportViewer controls. Don’t confuse
the ReportViewer controls with these access methods. The ReportViewer
controls are not an additional access method; rather, they simply use one or
both of these options to consume reports from the Report Server and make
the access methods transparent to the developer who is using them.

A key benefit to integrating reports into your applications is that your end users do
not have to pull up a separate application or browser to view these reports. This pro-
vides a smooth experience for the users of your application.

In the rest of this chapter, we describe URL-based report access and Web
service–based report access. We investigate the various properties of these methods as
well as show you how to implement the methods through example.
342 CHAPTER 10 ON-DEMAND REPORT DELIVERY

10.2 URL-BASED REPORT ACCESS
A report consumer can request a resource from the Report Server by submitting an
HTTP-GET request that specifies the resource URL. For example, you can request the
Sales by Territory report in the browser by navigating to the following URL:

http://localhost/reportserver?/AWReporter/Sales By Territory

The Report Server’s entry point for HTTP-GET requests is the ReportService-
HttpHandler HTTP handler. The handler intercepts HTTP-GET requests, parses
them, and forwards them to the Report Server for processing.

NOTE If your reporting requirements rule out URL access, you can set up the
Report Server to reject incoming HTTP-GET requests by commenting out
the <httpHandlers> section in the Report Server web.config file.

As a developer, you can use different techniques in your applications to programmat-
ically request reports by URL. At its simplest, a WinForm-based client could allow the
end user to request a report by clicking a hyperlink. For example, a .NET-based Win-
Form application could use a LinkLabel control with the report’s hyperlink embedded
in the control’s label. When static hyperlinks cannot be used, a WinForm client can
shell out to the browser or use the Microsoft WebBrowser ActiveX control to render
the report, as we demonstrate in section 10.3.

The web-based reporting model of RS integrates well with browser-based applica-
tions. You have already seen an example of a web-based application that requests
reports by URL: the Report Manager.

Finally, both WinForm applications and web-based applications can leverage
other techniques to meet more exotic integration requirements. For example, you
may need to implement an application that crawls and parses the report’s content
similarly to the way web robots and crawlers, such as Google and Yahoo, index web

Figure 10.1 The Report Server supports two access options: URL and SOAP.
URL-BASED REPORT ACCESS 343

content. To accomplish this requirement, a legacy WinForm client can use the
XMLHTTP component on the client side or the ServerXMLHTTP component on the
server side of the application to programmatically submit web requests and “scrape”
the received report payload. Both components are included with Internet Explorer. A
.NET-based client can accomplish the same thing by using the System.Net.Web-
Request object. Table 10.1 summarizes these techniques.

To report-enable your applications by URL, you need to learn the URL syntax sup-
ported by the Report Server.

10.2.1 Understanding URL syntax

The URL access option uses a typical HTTP-GET syntax, where additional arguments
can be passed as query parameters, as follows:

http://<ComputerName>/<ReportServerVroot>?[/<ResourcePath>]
 &prefix:param=value[&prefix:param=value]...n]

Table 10.2 lists the supported URL arguments.

Table 10.1 Techniques for integrating report consumers with the Report Server by URL

Application type Implementation approaches

WinForm LinkLabel buttons pointing to the URL address of the report; Microsoft Web
Browser ActiveX Control; shell to the browser

Web-based Client-side report generation: all anchor-capable elements, such as hyperlinks,
images, and frames; server-side report generation; HTML fragments;
Response.Write

Both XMLHTTP; ServerXMLHTTP (native code); WebRequest (managed code)

Table 10.2 URL arguments for HTTP-GET requests

Argument Description Example

ComputerName Specifies the name of the computer hosting the
Report Server.

localhost

ReportServerVroot Specifies the Report Server’s virtual root name. ReportServer

ResourcePath Specifies the catalog path to the resource
relative to the root (Home) folder. Cannot be
longer than 260 characters.

/AWReporter/Sales
By Territory

prefix Specifies the command type. Can be one of the
following values:
rs—For commands targeting the Report Server
rc—For commands targeting the HTML Viewer
dsu and dsp—For specifying the username and
password when the The Credentials Supplied by
the User Running the Report data source option
is used.
blank—A report parameter is assumed.

http://localhost/
reportserver?/
AWReporter/Sales
By Territory
Interactive&Year=
2006&Territory=
1&rs:Command=
Render

continued on next page

➥

344 CHAPTER 10 ON-DEMAND REPORT DELIVERY

The URL syntax is not case sensitive. Note the question mark that prefixes the
ResourcePath argument. It is easy to miss (we’ve done it many times), but if you
omit it, the URL request will fail.

Notice that when you submit URL requests from the browser, the browser URL-
escapes the string. For example, / is encoded as %2f. You don’t have to do this explic-
itly when you define static hyperlinks or submit URL requests programmatically,
because the browser (or the Web Browser ActiveX control) handles this automatically
for you.

Now that you’re familiar with the URL syntax, let’s see how to request RS
resources by URL.

10.2.2 Requesting resources by URL

With RS you are not limited to requesting just reports. Instead, you can ask the
Report Server to return any resource stored in the report catalog, such as folders and
data sources. For example, you may have a web page that needs to show the Adventure
Works Cycles (AWC) logo, which is stored as an image file in the report catalog. To
accomplish this, you can set the image source to the URL address of the image item,
as shown here:

NOTE We are far from advocating that you use the report catalog as a document
repository—it should be used only to store report-related items.

The response that the Report Server sends back depends on the type of requested
resource.

Requesting folders

Just as you would use Windows Explorer to see the files a given folder contains, you
may want to see the contents of an RS folder. To see the folder contents using the URL
access options, use the syntax

http://<ComputerName>/ReportServer?/<FolderPath>

where <FolderPath> is the path to the folder in the report catalog.
Optionally, for faster performance, you can tell the Report Server that you mean

to view the folder contents by using the ListChildren command. If you don’t use
this command, the Report Server has to determine the type of the resource being
requested and uses the default command.

param Specifies the name of the command or
parameter.

See the previous
example, where Year
and Territory are
report parameters,

Table 10.2 URL arguments for HTTP-GET requests (continued)

Argument Description Example
URL-BASED REPORT ACCESS 345

For example, to view the contents of the AWReporter folder, use the following syntax:

http://localhost/ReportServer?/AWReporter&rs:Command=ListChildren

If a folder is requested, the Report Server renders the folder’s contents, as shown in
figure 10.2.

When you request a folder, the names of the resources contained in that folder
appear as hyperlinks. When the link points to another folder, the user can click the
hyperlink to drill down further in the folder namespace. Otherwise, the hyperlink will
render the resource. As with the Report Manager, the Report Server will show only
resources that the user has the rights to view (at minimum, Browser rights are
required to view a resource).

Requesting data sources

Although we do not recommend this for security reasons, you can allow users to view
the definition of a shared data source using the following syntax:

http://<ComputerName>/ReportServer?/<FolderPath>/
 <DataSourceName>

where <FolderPath> is the folder path of the folder where the shared data source
resides and <DataSourceName> is the name of the shared data source. Optionally,

Figure 10.2 You request the AWReporter folder resources by URL.
346 CHAPTER 10 ON-DEMAND REPORT DELIVERY

as a performance enhancement technique, you can let the Report Server know that
you indeed mean to view the data source definition by using the GetDataSource-
Contents command, as follows:

http://localhost/ReportServer?/AWReporter/AW Shared DS&
rs:Command=GetDataSourceContents

This request asks for the contents of the AW Shared DS shared data source. When a
shared data source is requested, the Report Server will stream its definition in XML, as
shown here:

<DataSourceDefinition>
 <Extension>SQL</Extension>
 <ConnectString>data source=.;…</ConnectString>
 <!-The rest of the data source definition-
 </DataSourceDefinition>

Even though the password is not returned, you should avoid allowing users to see the
data source definition for security reasons. To prevent users from doing so, exclude
the View Data Sources task from their security policy, as we discussed in chapter 9.

Requesting other resources

If a report is requested, the Report Server renders the report in the specified format.
We discuss this in detail in section 10.2.3.

If an image is requested, the image will be rendered in the browser. For other
resource requests, the Report Server will stream the file content to the browser.

In most cases, your applications will request reports by URL. To custom-tailor the
report output, you can use a variety of commands, which we discuss in section 10.2.4.
First, though, let’s take a closer look at how to request a report.

10.2.3 Requesting reports by URL

When requesting reports, at minimum you need to specify the report path and the
name of the report, for example:

http://localhost/reportserver?/AWReporter/Sales By Territory

Here, we are requesting the Sales by Territory report located in the AWReporter
folder. As we mentioned in section 10.2.1, you can also optionally pass other argu-
ments to control the report processing (see table 10.2).

One of the most common uses of the URL arguments is to pass parameter values
when requesting parameterized reports.

Passing report parameters

To request a report that takes parameters, you append them to the URL string in the
form of query parameters. For example, the URL string to request the Sales by Terri-
tory Interactive report for the year 2004 and Northwest is:
URL-BASED REPORT ACCESS 347

http://localhost/reportserver?/AWReporter/Sales By Territory
Interactive&Year=2004&Territory=1

There are a few rules worth mentioning when requesting parameterized reports,
as follows:

• Default values—If the parameter has a default value and you want to use it when
requesting the report, you don’t have to pass the parameter value explicitly.

• Parameters with labels and values—If the parameter is defined with a label and a
value, the value must be passed. The previous example adheres to this rule by
using the value of the Territory parameter (1), not its label (Northwest).

• Missing parameter value—If you don’t pass the parameter value in the URL
request and the parameter doesn’t have a default value, the Report Server will
react to this condition differently, depending on the export format requested. If
HTML is requested and the report toolbar is not suppressed, the Report Server
will generate the parameter area of the report toolbar so that the user can enter
the report parameters. In all other cases, an exception will be thrown.

• Parameter validation—The parameter validation and type casting are performed
on the server side. If a parameter doesn’t validate successfully, the Report Server
throws an exception, for example:

The value provided for the report parameter 'Territory'
is not valid for its type. (rsReportParameterTypeMismatch).

The Report Server doesn’t set any specific HTTP response codes when reporting
errors. Instead, the error string is shown in the browser. Therefore, you cannot pro-
grammatically react to error conditions when requesting reports via URL.

10.2.4 Working with report commands

The Report Server recognizes several commands that you can specify by using the
rs argument, such as commands for exporting reports and requesting report his-
tory snapshots.

For a full list of all supported commands, refer to the product documentation.

Rendering commands

For better performance, you can explicitly tell the Report Server that you mean to
render a report by using the rs:Command=Render argument, for example:

http://localhost/reportserver?/AWReporter/Sales By Territory&
rs:Command=Render

If you don’t specify this argument, the Report Server will incur a slight performance
hit to find out what type of resource you are requesting.
348 CHAPTER 10 ON-DEMAND REPORT DELIVERY

Exporting commands

Another useful command that you will frequently need is the Format command,
which lets you export reports in a given format. For example, to export the Sales by
Territory report as PDF, you can send the following URL to the Report Server:

http://localhost/ReportServer?/AWReporter/Sales By Territory&
rs:Command=Render&rs:Format=PDF

When the Report Server receives a request to export a report, it renders the report in
the specified format and streams it back to the report consumer. It notifies the con-
sumer about the export format by using the ContentType header. For example, the
previous request will produce an HTTP response with a content type of
application/pdf. If the request is initiated within a browser, the browser will
pop up the all-too-familiar prompt to ask the user whether to open or save the
streamed content.

If the export format is not explicitly specified, the report is rendered in HTML. If
the Report Server can determine the type of browser (if the Accept HTTP header is
specified), it renders the report in HTML 4.0 for up-level browsers (e.g., Internet
Explorer 4.x and later) or HTML 3.2 otherwise.

All export formats support additional parameters that can be passed to control
their output. The documentation refers to these parameters as device settings. For
example, let’s say you want to export a report as an image in a format other than the
default image format, which happens to be TIFF. You can achieve this by using
the OutputFormat device setting, as follows:

http://localhost/ReportServer?/AWReporter/Sales By Territory&
rs:Command=Render&rs:Format=IMAGE&rc:OutputFormat=JPEG

Another useful device setting is HTMLFragment, which you can use to render a report
as an HTML fragment (without the HTML, HEAD, and BODY HTML tags), as follows:

http://localhost/ReportServer?/AWReporter/Sales By Territory&
rs:Command=Render&rc:HTMLFragment=true&rc:Toolbar=false

For a full list of supported device settings, see the product documentation.

Snapshot history commands

As you’ll recall from chapter 8, a report can be executed and cached as a snapshot on
a regular basis. The Report Server can be configured to save the snapshot runs in the
snapshot history.

You can use the Snapshot command to request a specific snapshot run from the
report history, based on the date it was generated, for example:

http://localhost/ReportServer?/AWReporter/Territory Sales
by Quarter&rs:Snapshot=2004-01-16T02:28:01
URL-BASED REPORT ACCESS 349

The Snapshot command accepts as a parameter value the date and time when the
snapshot was generated. The snapshot time has to be converted to GMT.

Commands for interactive features

One of the most valuable aspects of URL access is that it supports all of the interactive
features that we discussed in chapters 4 and 5. There are a few commands that you
can use to control these interactive features.

For example, in chapter 4 we authored a report (Employee Sales Tabular
Interactive.rdl) that demonstrated visible-on-demand sections. Specifically,
the Product Subcategory sections are hidden when the report is initially requested but
can be expanded by clicking the plus sign (+).

Instead of hiding all items, sometimes you may need to show a certain section
expanded. To accomplish this, you can use the ShowHideToggle command,
for example:

http://localhost/reportserver?/AWReporter/Employee Sales Tabular
Interactive&StartDate=1/1/2003&EndDate=12/1/2003&Employee=-1
&rs:Format=HTML4.0&rs:Command=Render&rs:ShowHideToggle=29

The net effect of using the ShowHideToggle command in this example is that the
first Product Subcategory section (the one for Tsoflias, Lynn) will be expanded when
the report is requested. As its names suggests, ShowHideToggle toggles the section
visibility with each subsequent request (if the item is hidden, it will be expanded, and
vice versa).

How do you get the section identifier? Unfortunately, there is currently no way to
programmatically find out what the section identifiers are. Instead, you need to look
at the source of the rendered report. Each expandable section is assigned an ID num-
ber when the report is requested. The section identifiers are formatted as ID=
"<section identifier">.

The inability to determine the section identifiers in advance makes the commands
that target interactive features by section identifiers (ShowHideToggle for expand-
able sections, BookmarkID to jump to a report bookmark, and DocMapID to scroll
to a particular document map section) of limited use to developers.

Managing report sessions

As we explained in chapter 8, to ensure data consistency and optimize report perform-
ance, the Report Server uses report sessions. When the Report Server creates a session
for a given report, it caches the report’s intermediate format (IF) in the Report Server
Temporary Database (ReportServerTempDB) for a configurable period of time.

By default, to correlate the report consumer with the session, the Report Server
uses cookies. If cookies are used to track sessions, you don’t have to do anything spe-
cial from a programming standpoint to manage sessions. The Report Server will auto-
matically generate a cookie for each report session and add it to the HTTP response
350 CHAPTER 10 ON-DEMAND REPORT DELIVERY

header. The cookie will then ping-pong between the browser and the Report Server
with each subsequent report request.

For example, the following trace excerpt shows the cookie’s HTTP header after we
requested several reports using the same instance of the browser:

Cookie:%2fAWReporter%2fSales+By+Territory+Interactive=
52v13e55bfox0zisan0rsqjy; %2fAWReporter%2fzzTest=
gbsyl4mapuz0m555spbbdsje; %2fAWReporter%2fCorporate+Hierarchy=
gqn5cn5543bjmy45bak5al55;

Sometimes the report session caching may get in the way. For example, you may need
to view the report with the most recent data. As we learned in chapter 8, you cannot
turn off report session caching. However, you can use either of the following
approaches to clear the report session so that the report is processed anew:

• If the standard report toolbar is not suppressed, you can click the Refresh
Report button (not the browser’s Refresh button) or press Ctrl-F5. When you
do this, the HTML Viewer intercepts the request and sends the Clear-
Session command (rs:ClearSession=true) to the Report Server to
clear the report session. The Report Server will then process the report again.

• Send the ClearSession command explicitly as a part of the URL request.

Refreshing the report in the browser (by pressing F5) doesn’t clear the session. This
means that if the report session is valid (hasn’t expired, has the same set of parameters,
and so on), the Report Server will serve the report from the same report session.

For browsers that are configured to not support cookies, you can use cookie-less
report sessions by setting the UseSessionCookies setting in the Configura-
tionInfo table in the RS Configuration Database to false. In this case, instead of
sending a cookie, the Report Server adds a parameter to the URL to identify the session.

One of the main advantages of requesting reports by URL is the handy report tool-
bar that the Report Server generates by default, as we discuss next.

10.2.5 Working with the HTML Viewer

When a report is requested by URL and rendered in HTML, the Report Server gener-
ates a useful toolbar, called the HTML Viewer, at the top of the report, as shown in
figure 10.3.

With the breadth of features that this toolbar provides, you can really appreciate
the effort that the RS team has gone to on your behalf. It is a mini-application by
itself! The RS documentation refers to the HTML framework that hosts both the tool-
bar and the report as the HTML Viewer.
URL-BASED REPORT ACCESS 351

HTML Viewer features

You will find the HTML Viewer very similar to the report toolbar, which the Report
Designer generates in report preview mode. Table 10.3 outlines the interactive fea-
tures supported by the HTML Viewer.

Table 10.3 Interactive features supported by the HTML Viewer

Feature Description

Show/hide
Document Map

Toggles the document map’s visibility for reports with document maps.

Parameter
placeholders

Generates parameter placeholders for parameterized reports. For example, the
screenshot in figure 10.3 shows that the Territory Sales by Store with Map
report takes two parameters, Start Date and End Date. If a parameter has a list
of available values, the HTML Viewer will automatically generate a drop-down
list. If a parameter has a default value, its placeholder will be set accordingly.
Only parameters that are set to prompt the user are shown.

Zooming Zooms the report in or out.

Finding text For example, as figure 10.3 shows, after we performed a search for the word
Bike, if a match is found, the browser scrolls and highlights the match. For
multipage reports, clicking Next to search subsequent pages causes the HTML
Viewer to submit additional requests to the Report Server.

continued on next page

Figure 10.3 When reports are rendered via URL, the Report Server generates the
HTML Viewer toolbar.
352 CHAPTER 10 ON-DEMAND REPORT DELIVERY

The HTML Viewer is also somewhat customizable. As a part of the URL report
request, you can include HTML Viewer–specific commands to customize certain
aspects of the HTML Viewer.

Customizing the HTML Viewer

The Report Server supports a series of commands that are specifically targeted to the
HTML Viewer. These commands can be classified in two categories:

• Commands for controlling the visibility of the toolbar or its items

• Commands for performing an action, for example, zoom at a specified level, go
to a specified page, and so on

With so many URL commands available, you may find it difficult to construct the
right syntax of the URL report request. You may be tempted to try URL request trac-
ing of the requests submitted by the HTML Viewer, similar to the technique you saw
in chapter 8 for tracing SOAP calls. Unfortunately, we haven’t been very successful in
our attempts to set a virtual port in SOAP Trace or tcpTrace that we can use for tracing
URL requests, either from the Report Manager or from the browser. The problem
stems from the fact that when the Report Server renders the HTML page for the
report, it defaults to the computer name where the Report Server is installed. For this
reason, you can capture the first URL request by redirecting it to a virtual port, such
as http://servername:8080/reports..., but rendering the report subse-
quently by clicking the View Report button from the report toolbar will bypass the
virtual port.

As you can see by looking at the HTML source of the page, the reason for this is
that the action URL of the form that includes the report’s rendered presentation
doesn’t include the port number. As a workaround, you can examine the IIS web logs
to find out what URL requests have been sent by the browser.

An example of the first category of commands is the Toolbar command. You can
use this command to request that the report toolbar not be rendered at all, as follows:

http://localhost/reportserver?/AWReporter/
Sales by Territory&rc:Toolbar=false

Exporting Exports the report to all of the formats supported by the Report Server, e.g., PDF.

Refresh Report Refreshes the report by resubmitting the URL request and clears the
report session.

Online help Navigates to the HTML Viewer online help.

Client side printing Prints the report without the need to export first.

Table 10.3 Interactive features supported by the HTML Viewer (continued)

Feature Description
URL-BASED REPORT ACCESS 353

Or, let’s say you want to instruct the Report Server not to render the toolbar parame-
ter area. This could be useful when you embed the parameters programmatically in
the report URL and you don’t want the user to see the report parameter area at all. You
can accomplish this by using the Parameters command.

For example, the following command will render Sales by Territory report and
will exclude the parameter section from the HTML Viewer toolbar:

http://localhost/reportserver?/AWReporter/
Sales by Territory Interactive&Year=2004&Territory=1&rc:Parameters=false

An example of an action command is Zoom. Use this command to zoom the report
in or out before it is rendered. The following URL request zooms the report to its
page width:

http://localhost/reportserver?/AWReporter/
Sales by Territory Interactive&Year=2004&Territory=1&rc:Zoom=Page Width

For a full list of all HTML Viewer–targeted commands, see the product documentation.

HTML Viewer limitations

The HTML Viewer saves you a lot of effort when integrating applications with RS. It
is one of the biggest selling points for choosing the URL access option to render
reports. However, it may also be its Achilles’ heel. Why? You see, outside the sup-
ported commands, the HTML Viewer is not customizable. The area that takes the
most criticism and requests for enhancements is the parameters section.

For example, what if you want to implement your custom parameter validation?
Or, what if you want to validate the parameters on the client side before the report is
submitted? All of these are valid questions and concerns, but currently they go beyond
the HTML Viewer feature set.

You can expect Microsoft to make the HTML Viewer more flexible and customi-
zable in the future. For example, there are plans that the toolbar will support custom
validation by the virtue of ASP.NET user controls in the next release. Until that time,
however, you have to take the HTML Viewer as it is or provide your own custom
application front end to replace it.

Now that we’ve covered the theory behind URL access, let’s see a code sample that
demonstrates how a client application can be integrated with the Report Server by URL.

10.3 URL ACCESS IN ACTION

To demonstrate how both a WinForm-based report consumer and a Web-based
report consumer can leverage the URL access option to request reports, let’s look at a
couple of sample applications from the source code available with this book.
354 CHAPTER 10 ON-DEMAND REPORT DELIVERY

10.3.1 URL Access with WinForms: AccessOptions

The code sample for this section can be launched from the chapter 10 menu in the
AWReporterWin project.

This one-form sample application actually uses both access options (URL and
SOAP), but for the purposes of our discussion in this section, we describe only the
URL access option. We cover the SOAP access methods that this sample code uses
later in section 10.5.

This code sample demonstrates two possible implementation approaches to inte-
grate a WinForm-based report consumer with Reporting Services by URL:

• Using the Microsoft WebBrowser ActiveX control

• Shelling out to the browser

We kept the code simple on purpose. For now, the design goals for the AccessOptions
application are to show you the minimum steps needed to access reports using the
URL access option. Figure 10.4 shows the AccessOptions form.

To run a report by URL, the user has to specify the Report Server URL, the report
path, and the export format. In the case of parameterized reports, the user must also
enter all parameters (name and value) in the Parameters grid, that do not have default
values specified.

Figure 10.4 The AccessOptions application demonstrates how a WinForm application can

request reports via URL or the RS Web service (SOAP).
URL ACCESS IN ACTION 355

Let’s first see how this code sample integrates with the Report Server by URL. Then in
section 10.5 you’ll learn how to do this by using the RS Web service.

Using the Microsoft WebBrowser ActiveX control

To request reports by URL, a WinForm application can leverage the Microsoft Web
Browser ActiveX control to embed the report inside a form. One possibility where
embedding the report can be useful is when your requirements call for implementing
a Report Search form. Once the user selects a report, you may want to display the
report inside the search form instead of navigating to a new form.

If you haven’t used the Microsoft WebBrowser control in the past, you will be
happy to find that it allows you to add browsing, document viewing, and data down-
loading capabilities to your applications. Because the WebBrowser control is COM-
based, this approach is also suitable for classic Windows-based applications, for exam-
ple, Visual Basic 6 clients.

The WebBrowser control is found in the Common Controls section of the Win-
dows Application Project toolbox in Visual Studio 2005. If you need more informa-
tion about this control, check the “Resources” section at the end of this book.

Loading the export formats

When the AccessOptions form is loaded, the Format drop-down is populated with
the rendering formats that the Report Server supports. Rather than hardcoding the
drop-down items, the AccessOptions application calls the ListExtensions
method of the RS Web service. Although the method call incurs a performance hit,
the advantage of not hardcoding the list is flexibility, because you don’t have to redis-
tribute the application if new rendering extensions have been added. Listing 10.1
shows how the LoadFormats function calls ListExtensions.

 private void LoadFormats()
 {
 ReportingService2005 rs = RsHelpers.Proxy;
 Extension[] extensions = null;
 extensions = rs.ListExtensions(ExtensionTypeEnum.Render);

 foreach (Extension extension in extensions) {
 if (extension.Name.ToLower()!="null")
 cmbFormat.Items.Add(extension.Name);
 }
 cmbFormat.SelectedText = "HTML4.0";
}

Listing 10.1 Using the ListExtensions SOAP API to populate the drop-down list
with export formats

Calls the
ListExtensions API

Loads the export
formats in the
drop-down

Skips the NULL
rendering extensionb
356 CHAPTER 10 ON-DEMAND REPORT DELIVERY

Because this method is executed when the form loads, be sure to update the Report
Server URL, which defaults to localhost, before running the sample. The List-
Extension method returns an array of all supported rendering extensions as speci-
fied in the RSReportServer.config file. Each rendering extension is exposed as
of type Extension.

Note that the code specifically ignores the NULL rendering extension b. This
extension is not a rendering extension per se because it doesn’t render reports in any
specific format. Instead, it is useful for prepopulating the report session cache for sub-
scribed report delivery, as we explain in more detail in chapter 12. Because this is a
“dummy” extension and cannot be used for report rendering, we skip it.

For the sake of simplicity, we don’t retrieve the list of report parameters from the
RS Web service, nor do we validate the parameters in any way. For the purposes of
this example, the user is responsible for setting up the parameters correctly. To show
the parameters in the grid, we use a typed dataset, EntityParameter, which we bind
to the grid.

Requesting the report

Once the user has filled in the report parameters (if any), we are ready to request the
report by calling the RunByURL function, whose abbreviated code is shown in
listing 10.2.

private void RunByURL()
 {
 StringBuilder urlBuilder = new StringBuilder();
 urlBuilder.Append(txtServer.Text);
 urlBuilder.Append ("?");
 urlBuilder.Append (txtReportPath.Text);
 EntityParameter.ParametersDataTable table =
 EntityParameter.ParametersDataTable)grdParams.DataSource;
 foreach (EntityParameter.ParametersRow row in table.Rows){
 urlBuilder.Append (String.Format("&{0}={1}",
 row.Name, row.Value));
 }
 urlBuilder.Append (@"&rs:Format=" + cmbFormat.Text);
 urlBuilder.Append (@"&rs:Command=Render");

 ReportBrowser reportBrowser = new ReportBrowser();
 reportBrowser.RenderReport(urlBuilder.ToString());
 reportBrowser.Show();
 }

Listing 10.2 The Microsoft WebBrowser control, which WinForm clients can use

to place the report inside a form

Constructs the
report URL

Appends the report
parameters

Uses the
ReportBrowser
form
URL ACCESS IN ACTION 357

First, the code crafts the report URL programmatically according to the URL syntax
rules that we discussed in section 10.2. We set up the report path, followed by the
report parameters and the specified export format.

Once the URL string is constructed, we instantiate the ReportBrowser form to
render the report using the Microsoft WebBrowser control. Inside the ReportBrowser
form, we call the Microsoft WebBrowser control’s Navigate method and pass the
report URL:

public void RenderReport(string url){
 Object optional = System.Reflection.Missing.Value;
 webBrowser.Navigate(url, ref optional, ref optional,
 ref optional,ref optional);
}

At this point the report is displayed. If there are any errors, they are shown in the
WebBrowser control.

Shelling out to the browser

Sometimes you may just need a quick way to show the report in the browser by nav-
igating to the report’s URL address. You can do this by simply shelling out the report
request to the browser. To accomplish this task, .NET developers can use the
Process.Start method to start the application associated with a file extension.

When the Shell to IE option is selected on the AccessOptions form, once the
report URL is ready, displaying the report in the browser takes one line of code:

Process.Start ("IExplore", url).

When you don’t need to embed the report in a form, you should consider shelling out
to the browser as a more lightweight implementation approach of requesting a report
by URL.

Now that we have seen how to integrate the Report Server in our WinForm appli-
cations, let’s examine some practical web-reporting techniques. We refer collectively
to our web samples as the Adventure Works Web Reporter, or AWReporterWeb
for short.

10.3.2 URL Access with WebForms: AWReporterWeb

Once you’ve authored your report in RS, there are myriad ways to get it to your web-
based users. From an implementation standpoint, you can organize the web reporting
techniques into two categories: client-side reporting techniques and server-side
reporting techniques. This breakdown reflects the location from which the report
request originates.

In the case of client-side reporting, the report request is initiated on the client side
of the application, for example, by clicking a hyperlink on a page rendered in the
browser. Most of the techniques in this category follow the Client-to-Report Server
pattern and request reports by URL.
358 CHAPTER 10 ON-DEMAND REPORT DELIVERY

In the latter case, the report is requested and rendered on the server side of the appli-
cation, for example, by using ASP.NET server-side code. In general, the techniques
under this category follow the Client-to-Façade-to-Report Server approach and
request reports by SOAP.

The AWReporterWeb code examples can be found under the Chapter10 folder
in the AWReporterWeb project. Once you request the default.aspx page, you are
presented with the drop-down main menu, as shown in figure 10.5.

The main menu is implemented as a drop-down menu. The client-side reporting
samples can be initiated from the client-side Reporting menu, while the server-side
reporting samples can be launched from the server-side Reporting menu.

NOTE We used Peter Bromberg’s excellent ASP.NET menu sample to easily inte-
grate his menu control with our web application. The menu items are spec-
ified in the menu.xml file. The menu control loads the menu definition
and applies an XSLT transformation to render the menu in DHTML.

For more implementation details about the menu control, check the
“Resources” section at the end of this book.

Let’s now discuss the AWReporterWeb client-side reporting samples in the order in
which they appear on the menu.

Figure 10.5 The main menu of the AWReporterWeb project displays two menus:

one for the client-side reporting samples and one for the server-side reporting

samples. To see the server-side menu items, hover your mouse cursor on top of

the Server-side Reporting menu.
URL ACCESS IN ACTION 359

Requesting reports from hyperlinks

A very simple technique that allows users to request a report from a web-based appli-
cation is to provide a hyperlink that points to a URL report address. In this section, we
discuss three techniques for using hyperlinks to access reports:

• In its simplest implementation, you can use static hyperlinks to run reports. A
static hyperlink contains a hardcoded URL report address.

• Or you can use dynamic hyperlinks to run reports. Unlike a static hyperlink,
which contains a fixed address, a dynamic hyperlink contains a URL report address
that is generated on the fly on the client side of the web application.

• Finally, you can also use server-side generated hyperlinks, in which the hyperlinks
are generated on the server side of the web application.

The AWReporterWeb project employs
all three types of hyperlinks. The
Requesting Reports from Hyperlinks
(Hyperlinks.aspx) page shown in
figure 10.6 allows users to click a
report name to open the report. You
can’t tell which hyperlink technique is
used just by looking at the figure, but
we cover each technique in the follow-
ing sections.

Let’s take a look at the syntax for each of the hyperlinks listed in figure 10.6. We’ll
start with the static hyperlinks.

Technique 1: using static hyperlinks

By using static hyperlinks you can easily integrate your reports with other web-based
applications. For example, a SharePoint-based web portal can have web parts that use
static hyperlinks to render reports of interest.

The Requesting Reports from Hyperlinks page lists several reports that you navi-
gate to based on a static hyperlink. Table 10.4 shows the syntax for the first three
hyperlinked reports in the list (see figure 10.6):

• The Sales by Territory report URL generates the Sales by Territory report in the
default format, which is HTML4.0 for up-level browsers or HTML3.2 for
down-level browsers.

• The Employee Sales Freeform report URL demonstrates how to request a
parameterized report from a hyperlink.

• The Sales by Territory with Chart report URL demonstrates how to embed
Report Server commands and device settings into a static hyperlink.

Figure 10.6 You can use static and dynamic

hyperlinks to requests reports by URL.
360 CHAPTER 10 ON-DEMAND REPORT DELIVERY

Although the static hyperlink approach excels in simplicity, it falls short in terms of
customization and security. For example, when using static hyperlinks, you have little
control over the appearance of the browser window. At most, you can request the
report to be rendered in a new instance of the browser or a particular frame by setting
the hyperlink’s target property to _blank. Using static hyperlinks may also present a
security risk because the user can see and change the report’s URL at will to request
another report or modify the report’s parameters.

Fortunately, with RS you are not limited to using only static hyperlinks. Often,
your application requirements may rule out hardcoding the report’s URL address in
the hyperlink. In such cases, you can dynamically construct the link on the client or
server side of the application.

Technique 2: using dynamic hyperlinks

Dynamic hyperlinks can be useful when you need to custom-tailor the browser win-
dow and hide the report request’s details by using familiar client-side web techniques.

For example, the Territory Sales Drillthrough report URL demonstrates how you
can use JavaScript code to customize the browser window:

<A onclick='window.open("http://localhost/reportserver?/
 AWReporter/Territory Sales Drillthrough&

 StartDate=1/1/2003 12:00:00 AM&

 EndDate=12/1/2003 12:00:00 AM&

 rs:Command=Render", "_blank",

 "location=no,toolbar=no,left=100,top=100,height=600,width=800")'>

The onclick JavaScript handler displays the report in a customized browser win-
dow, as shown in figure 10.7.

To hide the report’s URL from the end user, the window doesn’t have a toolbar or
address bar. In addition, the JavaScript code sizes and positions the window explicitly.
This approach may offer a good compromise between simplicity and security for
intranet-based applications.

Table 10.4 Syntax for URL access

Report name Hyperlink syntax

Sales by
Territory

http://localhost/reportserver?/AWReporter/
Sales by Territory

Employee
Sales
Freeform

http://localhost/reportserver?/AWReporter/Employee Sales
Freeform&StartDate=1/1/2003 12:00:00 AM&
EndDate=12/1/2003 12:00:00 AM&Employee=-1

Sales by
Territory
with Chart

http://localhost/reportserver?/AWReporter/Employee Sales
Freeform with Chart&StartDate=1/1/2003 12:00:00 AM&
EndDate=12/1/2003 12:00:00 AM&rs:Format=PDF&rs:Command=Render

➥

➥

➥

➥

➥

URL ACCESS IN ACTION 361

The Territory Sales Crosstab report URL extends the dynamic hyperlink technique by
allowing the user to enter the report’s parameters and then encapsulates the report
request in a client-side JavaScript function, as shown in figure 10.8. In this example,
the onclick event handler attached to the hyperlink toggles the visibility of the
parameter section. Once the parameters are entered, the user can request the report by
clicking the Run Report button.

The button event handler invokes the requestReport client-side function and
passes the start and end date parameters as arguments:

Figure 10.7 Use dynamic hyperlinks when you need to customize the browser window.

Figure 10.8 You can use client-side JavaScript to generate the report’s hyperlink.
362 CHAPTER 10 ON-DEMAND REPORT DELIVERY

function requestReport(startDate, endDate) {
 window.open("http://localhost/reportserver?/
 AWReporter/Territory Sales
 Crosstab&StartDate=" + startDate + "&EndDate=" + endDate+
 "&rs:Command=Render", "_blank", "location=no,toolbar=no,
 left=100, top=100, height=600,width=800")
}

The reportRequest function renders the report in a customized browser window,
as was done for the Territory Sales Drillthrough report (figure 10.7).

Technique 3: using server-side generated hyperlinks

Most web-based applications require some server-side preprocessing before the page is
rendered. For example, it is a common requirement to generate HTML tables on the
server side of the application that include clickable hyperlinks to bring the user to
another page or report that shows more details.

To see how to integrate a report’s hyperlinks
with a server-side-generated ASP.NET grid, click
the Employee Orders link from the main menu
of AWReporterWeb. The Salesperson Orders
(EmployeeOrders.aspx) page is shown in
figure 10.9.

The EmployeeOrders.aspx page retrieves
the sales order information from the Adventure-
Works database using a data reader. The user can
click the Details hyperlink to see the order
details. This action displays the Sales Order
Details report, which happens to be one of the
Reporting Services sample reports.

The hyperlink passes the order number from the same grid row as the report
parameter. This is accomplished by defining the Details column as a grid tem-
plate column:

<asp:TemplateColumn HeaderText="Details">
 <ItemTemplate>
 <a href="#" onclick="javascript:requestReport
 ('<%#DataBinder.Eval(Container.DataItem,"SalesOrderNumber")
 %>');">Details
 </ItemTemplate>
</asp:TemplateColumn>

For those of you not familiar with the ASP.NET data-binding model, the odd-looking
DataBinder expression retrieves the SalesOrderNumber field from the underly-
ing data reader row and injects it into the page. As a result, when the page is rendered,
the onclick event for the first record will be set to something like this:

onclick="javascript:requestReport('SO5812');"

Figure 10.9 Report hyperlinks can

be generated on the server side.
URL ACCESS IN ACTION 363

The requestReport JavaScript client-side function submits the report request as
we’ve just seen.

We have now covered the techniques for requesting reports through the use of
hyperlinks. Let’s take a look at how you request reports by using HTTP-POST.

Submitting report requests with HTTP-POST

All of the examples so far in this chapter have used HTTP-GET to submit the report
request to the Report Server on the client side of the application. The important dif-
ference between HTTP-GET and HTTP-POST is that the request details are not
passed in the URL; therefore they are not seen in the address toolbar of the browser.
Sometimes, using HTTP-POST as a web protocol may be a better choice because of
the following advantages it has over HTTP-GET:

• The report URL address is less exposed than with HTTP-GET—The report request
details are more hidden from prying eyes and cannot be easily changed.

• Unlimited parameter length—Many browsers impose limitations on the length
of the URL string in the case of the HTTP-GET protocol. In contrast, with
HTTP-POST, the length of the request parameters (report parameters, com-
mands, and device settings) is unlimited, because the name/value pairs are
transferred in the request’s HTTP header, not in the URL.

Let’s take a look at requesting reports by using HTTP-POST in our AWReporter-
Web example.

To view a report requested by HTTP-POST, click the Report Picker link from the
main menu of the AWReporterWeb. The Report Picker page is shown in figure 10.10.

Figure 10.10 Use HTTP-POST to hide the URL address details and unlimited
parameter length.
364 CHAPTER 10 ON-DEMAND REPORT DELIVERY

NOTE Because the Report Picker and the samples that follow use the credentials
of the interactive user to invoke the RS SOAP API, make sure that the
AWReporterWeb application is configured for Integrated Windows secu-
rity and that Anonymous access is disabled.

The Reports drop-down is set to post back the page automatically. When the report selec-
tion changes, the page posts back to itself to retrieve and display the report parameters.

The page gets the report parameters on the server side by invoking the Get-
ReportParameters RS web method; then the page loops through the report
parameters and loads them into a DataTable object. Finally, the page binds the
parameter table to the Parameter grid control. The grid’s Value column is imple-
mented as a template column similar to that in the Sales Orders sample report.

To request the report via HTTP-POST on the client side of the application, the
page defines a second form that includes a few hidden fields to capture the report
request’s details and post them back to the Report Server:

<FORM id="frmRender" action="http://localhost/reportserver?"
 method="post" target="report">
 <INPUT type="hidden" value="Render" name="rs:Command">
 <INPUT type="hidden" value="HTML4.0" name="rs:Format">
 <INPUT type="hidden" value="_blank" name="rc:LinkTarget">
</FORM>

The hidden fields serve as placeholders for Report Server commands and device settings.
As part of submitting the report request via HTTP-POST, we need to send the

parameter values. We discuss how that’s done next.

Handling parameters

Handling the report parameters is tricky because a report could have an arbitrary
number of parameters. For this reason, you need to generate the parameters’ place-
holders dynamically. This is done inside the runReport client-side JavaScript func-
tion, as shown in listing 10.3.

var reportServerUrl = null;
function runReport() {
 frmRender.action = reportServerUrl +
 frmReports.drpReports.value;
 frmRender.Format.value = frmReports.drpExport.value;

 var parameters = frmReports.txtParameter;
 var paramUrl ="";
 var oldParameters = frmRender.Parameter;
 if (oldParameters!=undefined) {
 var count = parameters.length
 for (i=0;i<count;i++) {
 oldParameter = oldParameters[i];

Listing 10.3 Submitting a report via HTTP-POST

Generates the action
target of the form

b

Gets a reference to the
parameter textboxesc
URL ACCESS IN ACTION 365

 frmRender.removeChild(oldParameter);
 i--;count--;
 } // end for
 } // end if

 if (parameters.length>0) {
 for (i=0;i<parameters.length;i++) {
 var newParam = document.createElement("INPUT");

 newParam.type = "hidden";
 newParam.id = "Parameter";
 newParam.name = parameters[i].name;
 newParam.value = parameters[i].value;
 frmRender.appendChild(newParam);
 } // end for
 } // end if

 window.open("about:blank", "report",
 "location=yes,toolbar=no,left=100,
 top=100,height=600,width=800")

 frmRender.submit();
}

The runReport function is invoked from the onclick event of the Run Report
hyperlink. First, you set the form’s action to the report’s URL b. Next, you set the
hidden field, Format, to the selected export format. Next, you remove the parame-
ters from the previous report run c. Then, you loop through all parameter textbox
controls in the grid d. For each parameter, you create a new hidden input element
and set its name and value. To render the report, you create a new named browser
window. Finally, you submit frmRender to the Report Server e and display the
report in a custom-tailored browser window.

Now that you have seen examples of requesting reports from the client side of your
applications, let’s explore how you might do your requests from the server side of
your applications using SOAP.

10.4 WEB SERVICE-BASED REPORT ACCESS

Requesting reports on demand via SOAP calls to the RS Web service is your second
option for accessing reports from the Report Server. The entry point for SOAP
requests is the ReportService2005.asmx page. We covered the RS Web Service
in full detail in chapter 8.

Here are some application scenarios that might require that you use this integra-
tion option:

• When you need to come up with a hybrid approach that encompasses both the URL
and Web service access options—For example, you may need to implement both
report rendering and management features in your applications, similar to the

Generates hidden fields
for report parameters

d

Submits the form
via HTTP-POSTe
366 CHAPTER 10 ON-DEMAND REPORT DELIVERY

feature set supported by the Report Manager. While your application could
request reports by URL, only the Web service supports the management API.

• When direct access to the Report Server is not an option—For example, an Intra-
net-oriented application may rule out direct access to Report Server for secu-
rity reasons.

• When a distributed application needs to validate the report request against some
business rules before the request is handed out to the Report Server—This calls for
server-side report generation, which rules out the URL access option.

• When you need to generate one or more reports in unattended mode—The AWC
Campaigner example that we look at in section 10.5.2 demonstrates this scenario.

The widespread adoption of SOAP facilitates integrating Reporting Services with
many types of report consumers and platforms. Because SOAP has been embraced as
an industry standard for communication with Web services, most platforms provide
programmatic ways for handling SOAP messages and invoking web methods. For
example, a web-based application running on UNIX can send a SOAP request to the
RS Web service and then generate the report on the server side of the application.

Table 10.5 outlines some common techniques that developers writing Microsoft-
centric applications can use to integrate their applications with the RS Web service.

Invoking the Report Server SOAP API is easy with .NET clients (both WinForm and
web-based) because .NET provides native support for calling Web services. .NET
developers are for the most part abstracted from the SOAP message complexities when
using Visual Studio .NET. As we saw in chapter 8, in VS .NET you can establish a web
reference to the Web service. Once this is done, invoking the RS Web service is not
much different than invoking a local object. We see a code sample that demonstrates
requesting a report by SOAP in section 10.4.1.

Legacy clients, for example, Visual Basic 6.0 clients, can integrate with the RS
Web service by using the Microsoft SOAP toolkit (see section 10.5). Finally, other
types of clients can use whatever infrastructure the programming language and plat-
form support for Web service calls.

Next, let’s see how a report consumer can request reports with SOAP.

Table 10.5 Techniques to integrate report consumers with the RS Web Service

Client type Application example Implementation approaches

WinForm .NET-based applications
Legacy applications
written in Visual Basic 6.0

Web service proxy (.NET)
Microsoft SOAP Toolkit (legacy applications, e.g.,
Visual Basic 6.0)

Web-based .NET-based applications
Other web-based
applications

Web service proxy (.NET) to submit the report request
on the server side
Microsoft Web service behavior for Internet Explorer to
submit the report request on the client side
WEB SERVICE-BASED REPORT ACCESS 367

10.4.1 Requesting reports with SOAP

As we saw in chapter 8, the RS Web service provides a series of methods that you can
use to query and manage the report catalog. It also provides methods related to report
rendering and execution. The pivotal method is the Render method, which you can
use to render reports on demand. It takes several arguments that you have to set before
invoking the method, such as an array of parameters for parameterized reports, the
export format, specific device settings, and so on.

If the method succeeds, it returns the report payload as a byte array. In most cases,
this means that an extra step is needed on your part, as the developer, to render the
report to the user. For example, this may involve saving the byte array to a file and
shelling out to it.

Invoking the Render method

To understand how you can call the Render method, let’s return to the Access-
Options application we used in section 10.3. This time we will see how we can request
the report with SOAP. To do so, select the second radio button called Web Service.

When you click the Run Report button, AccessOptions invokes RunByWS func-
tion, whose abbreviated code is shown in listing 10.4.

private void RunByWS()
 {
 ReportingService2005 rs = RsHelpers.Proxy;
 rs.Url = txtServer.Text + @"/ReportService2005.asmx";
 byte[] result = null;
 string reportPath = txtReportPath.Text;
 string historyID = null;
 string format = cmbFormat.Text;
 string devInfo = null;
 DataSourceCredentials[] credentials = null;
 string showHideToggle = null;
 string encoding;
 string mimeType;
 Warning[] warnings = null;
 ParameterValue[] reportHistoryParameters = null;
 string[] streamIDs = null;
 ParameterValue[] proxyParameters = null;

 EntityParameter.ParametersDataTable userParameters =
 (EntityParameter.ParametersDataTable)grdParams.DataSource;

 if (userParameters.Rows.Count > 0) proxyParameters = new
 ParameterValue[userParameters.Rows.Count];

 for (int i = 0; i<userParameters.Rows.Count;i++) {
 proxyParameters[i] = new ParameterValue();

Listing 10.4 Calling the Render Report SOAP API

Gets the
parameters
from the
data grid

b

Prepares the
parameter array

c

368 CHAPTER 10 ON-DEMAND REPORT DELIVERY

 proxyParameters[i].Name = userParameters[i].Name;
 proxyParameters[i].Value = userParameters[i].Value;
 }

 result = rs.Render(reportPath, format, historyID, devInfo,
 proxyParameters, credentials, showHideToggle,
 out encoding, out mimeType,
 out reportHistoryParameters,

 out warnings, out streamIDs);

 string filePath = Util.GetFileForReport(reportPath,
 cmbFormat.Text);
 FileStream stream = File.Create(filePath, result.Length);
 stream.Write(result, 0, result.Length);
 stream.Close();
 Process.Start(filePath);
}

One of the benefits of using the RS Web service is that it allows you to request the
report in an object-oriented way. First, you obtain a reference to the Web service
proxy by calling the RsHelpers.Proxy utility function. This function also takes
care of setting the proxy credentials. Next, you set up the Web service URL to the
ReportService.asmx end point. Then, you initialize the Render arguments to
their default values.

The Render method is an all-encompassing method for report rendering. For
example, by setting appropriate arguments, you can request a cached report from the
snapshot history. You saw how to do this in section 10.2.4. For now, let’s ignore
the report history parameters as well as the device settings.

To specify the report parameters for parameterized reports, you load an array of
the ParameterValue structures b, c, then, you call the Render method d to
request the report.

Finally, you need to take an extra step for showing the report. When a report is
requested by URL, the browser does this automatically for you. However, when
requesting reports via SOAP, you are on your own. To display the report, you save the
report payload to a file with the appropriate extension. For example, if the report is
requested in HTML, the file extension is .HTML; if it is IMAGE, then the extension
is .TIF (the default image format), and so on.

You save the report file in the Application Data folder under the user called Doc-
ument and in the Setting folder e, f. To get the file path and name right, you use
a simple GetFileForReport helper function that takes the report name and
export format and returns the full path to the file.

Once the file is saved, you shell out to it using Process.Start g. This will
start the application associated with the file extension to load the file and display
the report.

Calls the Web service to render the report d

Gets the file path for saving report payloade

Persists
the report
payload to
a file

f

Shells out to the applicationg
WEB SERVICE-BASED REPORT ACCESS 369

Dealing with errors

Unlike the URL access option, using SOAP allows you to deal gracefully with error
conditions. The Report Server exposes exceptions as SOAP faults. The common lan-
guage runtime (CLR) subsequently maps them to a .NET exception of type System.
Web.Services.Protocols.SoapException. This allows developers to code
defensively using Try…Catch blocks, as the following example shows:

try {
…Invoke a web method
}
catch (SoapException ex){
 // RS exception
 switch (ex.Detail["ErrorCode"].InnerText)
 {
 case "rsReportParameterValueNotSet":
 Util.ShowErrorMessage("The report parameters do not
 match.\n" + ex.Detail.InnerText); return;
 case "rsItemNotFound":
 Util.ShowErrorMessage("Wrong report name."); return;
 default: throw;
 }
}
catch (System.Exception ex) {
 // something else is wrong
}

The bulk of the exception information is exposed as an XML string under the Detail
property of the SoapException class. For this reason, you can get to the error code
using the SoapException.Detail property and to the error message itself using
the Detail.InnerText or Detail.InnerXml (to get as XML) property. For a
full list of the RS error codes, see the product documentation.

As you have begun to see, requesting reports by SOAP is more involved than the
URL option. Another area that requires additional effort on your part is rendering
reports that include images.

10.4.2 Rendering images

When you export such reports to multistream exporting formats, such as all HTML
flavors besides MIME HTML (MHTML), the report images and charts are not rendered
by default. The reason for this odd behavior is that when the web browser renders an
HTML page, it spawns additional requests to the web server to download the images
included in the page. This presents an issue for dynamically generated images, such
as charts.

To address this dilemma, when generating the report, the Report Server serializes
the images in the report session cache associated with the report. Unfortunately, in
the case of rendering reports by SOAP, the image URLs don’t include the session iden-
tifier of the report session that the Report Server has created for the report. As a result,
370 CHAPTER 10 ON-DEMAND REPORT DELIVERY

the Report Server is unable to match the request with the report session, and the
image download request fails. Even if the session identifier were included in the image
URL, it would be of little help because direct access to the Report Server is usually not
an option when requesting reports by SOAP.

Handling images for exported-to-HTML reports could be quite a hassle. Cur-
rently, there are three workarounds for this problem:

• For external images, use the HTMLFragment setting.

• Download the images explicitly using the RenderStream method.

• Use cookie-less report sessions. In this case, the image URLs will have the ses-
sion ID on them.

Let’s look at the first two options in more detail.

Rendering external images

As you recall from chapter 4, you can use the image report item to reference external
images by specifying their relative path in the report catalog. This is what we did to
display the AWC company logo in our reports. One option to display external images
when requesting reports via SOAP is to render the report as an HTML fragment by
setting the HTMLFragment Device Info setting to true.

When this setting is used, the web server will include the SessionID in the
image URL string. Then the HTTP-GET request to the Report Server that the browser
will spawn to download the image will succeed. This is as simple as it gets but requires
direct HTTP access from the browser to the Report Server. Besides, it doesn’t work
with chart reports because the Report Server generates the chart images dynamically.

Let’s see if we can derive to a “universal” image-handling solution that works for
all types of images and integration scenarios.

Downloading the images explicitly

For intranet-oriented applications you can explicitly download and save the report
images using the RenderStream web method. This approach involves two imple-
mentation steps:

• Setting the StreamRoot device setting to a location where the images will
be downloaded

• Enumerating through the image streams and downloading the images explicitly

Rendering images by using the RenderStream method is simple. You can set the
StreamRoot device setting to a common folder on the user’s hard drive, for exam-
ple, the Documents and Settings folder. This is the approach we demonstrate in the
Access Options sample, as shown in listing 10.5.
WEB SERVICE-BASED REPORT ACCESS 371

devInf="<DeviceInfo><StreamRoot>" + Application.UserAppDataPath+
 "/</StreamRoot></DeviceInfo>";

result = rs.Render(…) // render the report

// render the images when report is exported to HTML
if ("html" == format.Substring(0, 4).ToLower()){
 foreach (string streamID in streamIDs) {
 byte [] image = rs.RenderStream(reportPath, format,
 streamID, null, null, proxyParameters,
 out optionalString, out optionalString);

 FileStream stream=File.OpenWrite(Application.UserAppDataPath
 + Path.DirectorySeparatorChar + streamID);
 stream.Write(image, 0, image.Length);
 stream.Close();
 }
}

First, you use the StreamRoot device b setting to set the image URLs to point to
the user’s application folder. Then, you render the report. When the Report Server
processes the report, it will see the StreamRoot setting and will adjust the report
image URLs accordingly. In our example, the image URL will be set like so:

file:///C:/Documents and Settings/<user>
 /Application Data/AWC/Win/1.0.0.0/<streamID>

The last argument of the Render method takes a StreamIds c argument in the
form of a string array. When the Render method returns, the array will be loaded
with the stream identifiers of all report images and charts that the report includes. You
may think that the stream identifiers correspond to the report item identifiers as
defined in the Report Server catalog, but such is not the case. The Report Server
assigns them during report processing.

NOTE The Report Server prefixes the chart stream identifiers with C_. You can
take advantage of this naming convention if you want to render only the
chart images.

Next, you loop through all image identifiers and download the images by calling the
RenderStream web method d. One thing that we want to bring to your attention
is that you must pass the report parameters when calling the RenderStream
method for parameterized reports so that the Report Server can correlate the report
request with the right report session. If you don’t, you will get the “Stream could not
be found” exception.

When RenderStream returns e, you save the image as a binary file to the
folder specified by the StreamRoot device setting.

Listing 10.5 Downloading the images explicitly by using the RenderStream API

Specifies the download location b

Handles images when
exporting to HTML

c

Gets the
image
payloadd

Downloads the
image to a folder e

➥

372 CHAPTER 10 ON-DEMAND REPORT DELIVERY

So, as you’ve seen, using RenderStream to render report images is not that dif-
ficult. Unfortunately, this approach is often impractical with web-based applications,
as we discuss next.

Proposing a universal image handler approach

Dealing with images gets trickier for web-based applications. In this case, you don’t
have access to the user’s local environment to save the image files. Instead, your only
option is to download the images to a globally accessible file store.

For intranet-based applications, you can set the StreamRoot device setting to a
network file share. Needless to say, you must take care of deleting the image files on
a regular basis to avoid filling up the server.

What about Internet-based applications? In this case, storing files on a network
share is not an option because it won’t be accessible to your web users. You may think
that you can get around this predicament by setting StreamRoot to a virtual root
on your web server. Unfortunately, this doesn’t always work. To understand the
problem, consider the following example.

Let’s say your application’s virtual folder is AWReporterWeb and that it has a sub-
folder called temp. If you set StreamRoot to

http://<servername>/AwReporterWeb/temp

the image URLs will be adjusted to

http://<servername>/AwReporterWeb/temp/<streamID>

where streamID is the image identifier.
There’s one last and important consideration about the RenderStream method.

The Render and RenderStream calls need to share the same report session. Han-
dling report sessions with SOAP access requires more programming effort on your
part, as we discuss next.

10.4.3 Handling report sessions

Recall our discussion in chapter 8 that when a new non-snapshot report request
arrives, the Report Server caches the report’s IF in the RS Temporary Database in the
form of a report session.

NOTE Ensuring data consistency by using report sessions is more of a concern
with URL access than with SOAP. When the report is requested via SOAP,
the whole report payload is streamed back to the client. This means that
you will get all pages of a multipage report, and no additional requests to
the Report Server are necessary when the user pages from one page to the
next. On the other hand, when the report is request by URL, only the first
page is rendered. Navigating to another page initiates a new URL request.
That said, you might still want to consider leveraging report sessions with
SOAP as a performance-enhancement technique.
WEB SERVICE-BASED REPORT ACCESS 373

Unlike the automatic report session management that the browser provides when the
report is rendered by URL, you have to take care of correlating the report sessions
yourself when requesting the report by SOAP. The reason for this is that the Web ser-
vice proxy keeps only one session identifier, so each subsequent report request over-
rides the report session identifier set by the previous request.

There are two cases when you may need to take care of handling the report ses-
sions by yourself:

• Rendering the report images via calls to RenderStream—Note that this is
needed only if the session identifier is overridden by another report request.
Typically, you will download the report images via calls to RenderStream
immediately after the report is rendered. If this is the case, you don’t have to
handle report sessions explicitly because the proxy will already have the session
identifier associated with the report.

• Optimizing the Report Server’s performance—As we explained in chapter 8, if the
Report Server can correlate the report request with a session, it will bypass the
execution phase and use the cached copy. As you see in chapter 14, report ses-
sion caching can boost the Report Server’s performance considerably. If the
report data is not volatile and some data “staleness” is tolerable, we recommend
that you leverage report session caching.

To understand how to handle report sessions when requesting reports via SOAP, you
need to know how the Web service proxy stores the session identifiers.

How SOAP access handles report sessions

When the report is requested via SOAP, the Report Server exposes the report ses-
sion–related properties under the SessionHeader proxy class. The SessionId
member of this class returns the report session identifier that matches the
SessionID primary key in the SessionData table from the ReportServer-
TempDB database. You can check the IsNewExecution property to find out
whether the call to the Render method has resulted in a new execution. If
IsNewExecution is false, the Report Server has served the report request from an
already existing report session.

The Report Server overwrites the SessionID member after each call to the
Render method. Therefore, if you are not proactive, two subsequent report requests
will share the same sessions only if they ask for the same report (assuming that the
parameter set is the same).

For example, let’s say you run report A, then report B, and then report A again.
When report B is rendered, its session identifier will overwrite the previous session
identifier, which means that you will lose report A’s session identifier. When report
A is run again, even if the parameter set is the same, its execution will create a new
report session and IsNewExecution will return true.
374 CHAPTER 10 ON-DEMAND REPORT DELIVERY

Therefore, if you need to leverage report sessions, you need to write some code to
store the report session identifiers and correlate them with the requested reports. Next
we’ll discuss a possible implementation approach that does this.

Correlating the report request with a report session

You could keep the reports-to-session association in a collection of some kind. For
example, a hashtable collection, as shown in listing 10.6, can do this by storing the
report names and session identifiers as name-value pairs.

Hashtable sessionCollection = new Hashtable();
rs.Render("reportA"….);
sessionCollection.Add("reportA", rs.SessionId);
rs.Render("reportB ");
sessionCollection.Add("reportB ", rs.SessionId);
// need to call report A again
SessionHeader sessionHeader = new SessionHeader();
sessionHeader.SessionId=sessionCollection["reportA"].ToString();
rs.SessionHeaderValue=sessionHeader;
rs.Render("reportA"….);

Each time you render a report you retrieve the session identifier from the Web service
proxy and stuff it into the hashtable collection. When the same report needs to be
rendered again, you set the proxy’s SessionId accordingly.

Now that you’ve learned the SOAP access basics, let’s see how SOAP affects the
interactive features of your reports.

SOAP and report interactive features

One important limitation that you will inevitably discover when requesting reports by
SOAP is that most interactive features, such as drilldown, drill-through, document
maps, toggled visibility, and document maps, rely on URL access.

For example, request the Sales by Territory Crosstab report using the Access-
Options application. As you recall from chapter 4, this report allows the end user to drill
down by expanding row or column groups. At first glance, when this report is requested
by SOAP, it appears that the drilldown interactive feature is unaffected. Don’t be
fooled, though! This feature relies on direct access to the Report Server by URL.

The way this works is that when the interactive feature is requested by the end user
(in this case by clicking the + indicator) the HTML Viewer framework fires an HTTP-
GET request to the Report Server to refresh the report. Once again, in order for the
request to succeed, the Report Server must be directly accessible by HTTP-GET. In
many cases, this presents a problem because you would typically choose SOAP over
HTTP-GET when direct access to the Report Server by URL is not an option, for
example, to generate reports on the server side of an Internet web-based application.

Listing 10.6 Correlating the report request with the report session
WEB SERVICE-BASED REPORT ACCESS 375

As a developer, there is nothing you can do to change this behavior and avoid
using HTTP-GET for interactive features. This poses an interesting dilemma, which
may further complicate your decision-making process when you are pondering
which access option to choose. How important are the report’s interactive features to
your end users? If interactivity is a must, then your choice is predetermined and it is
URL access. Of course, we are not excluding the possibility of a hybrid approach in
which the report is rendered initially by SOAP but URL access is used to support the
interactive features.

But what about security if URL access is the only option? This is an especially valid
question for Internet-oriented web applications. The good news is that you can have
the best of both worlds: URL access to provide a rich user experience and a compre-
hensive level of security that doesn’t rely on Windows authentication. To accomplish
the second objective, you may need to write a custom security extension to replace the
default RS Windows-based security mechanism.

At this point you are probably ready to throw SOAP out the window. After all, it
is more difficult to implement and cannot be used for reports with interactive features.
Not so fast! As you see next, requesting reports by SOAP can actually be very useful.

10.5 WEB SERVICE ACCESS (SOAP) IN ACTION

While URL access is more suitable for interactive applications when the user can ini-
tiate the report request explicitly, it falls short when the report needs to be generated
in an unattended mode, such as for automating the report generation as a result of an
event. For example, in a business-to-business situation, a vendor may need to pull a
report on a regular basis to find out the customer’s inventory level. If the inventory
level falls below a certain threshold, the vendor system can send a notification to the
manufacturing department.

Thanks to its object-oriented nature, when reports need to be generated in an
unattended mode, SOAP may be a better choice than URL. Let’s examine a simple
code demo to emphasize this point.

10.5.1 Generating report requests with SOAP
on the client side

There are at least two good reasons for generating reports via SOAP with web-
based applications:

• URL access to the Report Server is not allowed—For example, security require-
ments may force the report administrator to disallow requesting reports via
HTTP-GET or POST. As we mentioned in chapter 9, you can do this by remov-
ing the ReportServiceHttpHandler declaration from the Report Server’s
web.config file.

• “Pseudo” web-based rich clients—The web application can be designed to behave
like a WinForm stateful application, where the data retrieval and rendering are
376 CHAPTER 10 ON-DEMAND REPORT DELIVERY

done entirely on the client side, for example, by using XSL transformations.
This approach has been popular with “fat” DHTML clients that don’t post their
pages back to the web server.

To submit the report request via SOAP on the client side of a web-based application,
you can use the Microsoft WebService behavior.

Calling web methods with the
Microsoft WebService behavior

If your target browser is Internet Explorer, you can use the Microsoft WebService
behavior to call web methods on the client side of the application using your favorite
scripting language. To learn more about the WebService behavior, see the “Resources”
section at the end of this book.

The Web Behavior sample builds on the Report Picker sample to demonstrate
how reports can be requested via SOAP. At first look, the WebBehavior.aspx page
appears identical to the ReportPicker.aspx page. However, the client-side
reporting model is very different. Now, when the report request is submitted, the
page doesn’t post to itself. Instead, it invokes the RS Web service to request the report
via SOAP and render it on the client side of the application.

Once you’ve downloaded the WebService behavior file (webservice.htc)
from the Microsoft web site, configure it as follows.

First, create a DIV element to expose the WebService behavior as a DHTML element:

<div id="proxy" style="BEHAVIOR: url(webservice.htc)"></div>

Next, change the page body element to invoke the JavaScript init() function so
that you can initialize the behavior to point to the RS Web service by calling the
useService method:

<body onload="init()">
function init() {
 proxy.useService("http://localhost/reportserver/
 reportservice.asmx?WSDL","RS");
}

The second argument of the useService method allows you to specify a friendly
name for the Web service.

After you’ve configured the Web service behavior file, you’re ready to make the
actual request for your report.

Requesting reports

Listing 10.7 shows the implementation details for requesting a report using the Web-
Service behavior.
WEB SERVICE ACCESS (SOAP) IN ACTION 377

function runReport() {
 var optional;
 var objCall = proxy.createCallOptions();
 objCall.funcName = "Render";
 objCall.params = new Array();
 objCall.params.Report = frmReports.drpReports.value;
 objCall.params.Format = "XML";
 objCall.params.HistoryID = optional;
 var parameters = frmReports.txtParameter;
 if (parameters.length>0)
 objCall.params.Parameters = getParameters(parameters)

 proxy.RS.callService (fnHandler, objCall);
}

function parameter() {
 this.Name = null;
 this.Value = null;
 return true;
}

function getParameters(parameters) {
 reportParams = new Array();
 for (i=0;i<parameters.length;i++) {
 var newParam = new parameter();
 newParam.Name = parameters[i].name;
 newParam.Value = parameters[i].value;
 reportParams[i] = newParam;
 }
 return reportParams;
}

function fnHandler(res) {
 if (!res.error) {
 var decodedResult = decode(res.value.Result);
 OpenReport (decodedResult);
 }
 else alert(res.errorDetail.string);
}

Clicking the Run Report hyperlink triggers a call to the runReport JavaScript function.
You start by defining your report request to the Render web method b. We

decided it was best to hardcode the report format as XML so that you could save the
report’s payload as a disk file. To accomplish this, use the FileSystemObject
object, which currently doesn’t provide the ability to save binary data to a file.

NOTE You may need to adjust the browser’s security settings to prevent client-side
JavaScript errors when using FileSystemObject.

Listing 10.7 JavaScript functions for requesting reports

Prepares
the report
request

 b

Sets the
report
parametersc

Defines the report
parameter

 d

Enumerates the
report parameters

e

Decodes resultsf

Calls the OpenReport
functiong
378 CHAPTER 10 ON-DEMAND REPORT DELIVERY

Next you populate the report parameters c by calling the getParameters func-
tion e, which loops through the parameter elements on the page and adds them to
an array object.

Because the Render method defines the parameter argument as of the Para-
meterValue type, you need to define a JavaScript structure that matches the
ParameterValue layout. This is exactly what the parameter() function d does.

Next, you call the Render method asynchronously and pass a pointer to the
fnHandler callback function f, which is called automatically when the web
method returns something. If the call completes successfully, you decode the results
from Base64 encoding.

Finally, you call the OpenReport function g to save the report’s payload to a
text file and shell out to the browser so that you can see the file’s contents.

While intranet-based applications can generally enjoy the simplicity and the rich
feature set of the Client-to-Report Server reporting model, other scenarios require
server-side report generation via the Client-to-Façade-to-Report Server pattern. The
next section shows you how you can do just that.

10.5.2 An automation solution: AW Campaigner

Back in chapter 6 we demonstrated how to export the Sales Promotion report to an
RSS-compliant XML format. When there is a new campaign, the report’s author could
run the report by passing the offer identifier, export the report to the XML, and
update the RSS blog file manually.

Let’s enhance this example by implementing the AW Campaigner solution for
automating the whole process. To fulfill the new requirements, our implementation
approach involves these steps:

Step 1 Create a table trigger that will fire when a campaign record is inserted into
the Sales.SpecialOffer table and invoke the stored procedure.

Step 2 Create a SQL Server stored procedure that will invoke a custom Web ser-
vice façade.

Step 3 Create a Web service façade that will run the report and update the RSS file.

Figure 10.11 shows the sequence diagram of our solution.
The AW Campaigner process is initiated when a record is inserted into the

Sales.SpecialOffer table. This causes the trgSpecialOffer trigger to fire.
The trigger calls the spUpdateRssFeed stored procedure. The stored procedure in
turn invokes our StartCampaign web method of the Campaigner Web service.

The Campaigner Web service then requests the Sales Promotion report via SOAP.
It asks the report to be exported as XML. Finally, the Campaigner Web service
updates the RSS blog file.

The source code of the Campaigner Web service can be found under the
Chapter10 folder in the AWReporterWeb web project, while the stored procedure
and trigger script files are included in the Database project.
WEB SERVICE ACCESS (SOAP) IN ACTION 379

First we explore the details of how to start the campaign process, and then we explain
how each component is implemented. We round out our discussion by showing you
how to set up security for the AW Campaigner.

Triggering the process

The campaign process starts when a new offer record is inserted into the Special-
Offer table. The trgSpecialOffer trigger is implemented as an AFTER
INSERT trigger on the Sales.SpecialOffer table, as shown in listing 10.8.

CREATE TRIGGER trgSpecialOffer ON [Sales].[SpecialOffer]
AFTER INSERT
AS

/* Get the new special offer id. */
DECLARE @SpecialOfferID int
SELECT @SpecialOfferID = SpecialOfferID
FROM inserted

DECLARE @Result varchar(8000)
EXEC spUpdateRssFeed @SpecialOfferID, @Result OUT

The trigger gets the identifier of the record from the inserted table and calls the
spUpdateRssFeed stored procedure, passing the special offer identifier to it.

One thing to watch for when you work with triggers is that all database operations
inside the trigger are performed within the scope of an implicit transaction. This bit

Figure 10.11 The AW Campaigner Web service sequence diagram shows

that a table-level trigger initiates the blog file update process.

Listing 10.8 The trgSpecialOffer trigger
380 CHAPTER 10 ON-DEMAND REPORT DELIVERY

me quite badly at first. I wondered why the web method call inside the spUpdate-
RssFeed stored procedure never succeeded. Upon further investigation, I realized
that the trigger locks the new record. When the Sales Promotion report tries to read
it, the SELECT statement gets deadlocked and the web method call inside
spUpdateRssFeed eventually times out.

To solve this issue, I added the NOLOCK table hint in the report query. The
NOLOCK table hint permits the report to read “dirty” data that has not yet been com-
mitted. For the purposes of the Campaigner scenario, this is fine, because the trigger
is defined as AFTER INSERT, which means that the record has been inserted success-
fully. In other cases, however, you have to take into account the fact that the update
operation may fail, in which case the database changes will get rolled back.

Invoking the Campaigner Web service

The main role of the spUpdateRssFeed stored procedure is to invoke the AW
Campaigner web service. The abbreviated spUpdateRssFeed stored procedure
code (excluding the error-handling logic) is shown in listing 10.9.

CREATE PROCEDURE spUpdateRssFeed(@SpecialOfferID int,
 @Response varchar(8000) out)
AS
DECLARE
 @Url varchar(1000)
 ,@obj int
 ,@hr int
 ,@status int
 ,@msg varchar(255)

 set @Url =
 'http://localhost/AWReporterWeb/Chapter10/Campaigner.asmx/
 StartCampaign?CampaignID='
 + CAST(@SpecialOfferID AS VARCHAR(10))

 exec @hr = sp_OACreate 'MSXML2.ServerXMLHttp', @obj out
 exec @hr = sp_OAMethod @obj, 'Open', NULL, 'GET', @Url, false
 exec @hr = sp_OAMethod @obj, 'send'
 exec @hr = sp_OAGetProperty @obj, 'status', @status OUT
 exec @hr = sp_OAGetProperty @obj, 'responseText', @response OUT
 exec @hr = sp_OADestroy @obj
 return

The stored procedure uses the XMLHTTP component included with the Microsoft
XML Parser (MSXML) to invoke the Campaigner Web service. (If you need more
background information about this technology, see the “Resources” section at the end
of this book.)

Listing 10.9 The spUpdateRssFeed stored procedure, which uses the XMLHTTP
component to invoke the Campaigner Web service

➥
➥
➥

WEB SERVICE ACCESS (SOAP) IN ACTION 381

Once the XMLHTTP object is instantiated, you invoke the StartCampaign
method of the Campaigner Web service and pass the new record identifier.

Implementing the Campaigner Web service

The StartCampaign web method renders the Sales Promotion report as XML for
the given special offer identifier. You have already seen how to request a report by
SOAP in the Access Options sample.

Next, StartCampaign calls the AddSpecialOffer method. This method
uses XML DOM to load the XML report payload. To do this, you use a memory
stream to wrap the payload array and load the XmlDocument from it:

MemoryStream stream = new MemoryStream(specialOffer);
XmlDocument specialOfferDoc = new XmlDocument();
specialOfferDoc.Load(stream);

Finally, StartCampaign updates the RSS blog file (AWCSpecialDeals.xml).
This is the file that the RSS newsreaders need to reference when subscribing to the
AWC feed. The StartCampaign method simply appends the XML definition of
the new special offer item to the end of the file. This should be enough to trigger a
new item notification in the newsreader.

Securing AW Campaigner

Setting up security for the Campaigner sample warrants more explanation. In real life,
it is likely that its three components (the SQL Server database, Campaigner Web ser-
vice, and Report Server) will be located on separate machines. Table 10.6 shows the
Windows authentication setup that we used for testing.

In this test environment, the SQL Server runs under the context of the Local System
account. Because this is a local account, its identity cannot cross the machine bound-
ary when the web method invocation occurs. For this reason, you have at least two
choices for authenticating the SQL Server call to the Campaigner Web service:

Table 10.6 Setting up Windows authentication

Component Authentication Identity

SQL Server Standard or Windows Integrated Local system

AWReporterWeb
(Campaigner Web service)

Anonymous access
(rights to write to
AWCSpecialDeals.xml)

Application pool identity changed to
a domain account (or member of
Users for local machine testing)

Report Server Windows Integrated The Campaigner application pool
identity mapped to the Browser role
for the Sales Promotion report and
SalesPromotion.xslt
382 CHAPTER 10 ON-DEMAND REPORT DELIVERY

• Change the SQL Server process identity to a domain account or a local account
that is duplicated on the machine where the Campaigner Web service is
installed (this has the same name and password).

• Set up the AWReporterWeb vroot to allow anonymous access.

For testing purposes, we’ll adopt the latter approach, but in real life you should care-
fully consider the ramifications of using Anonymous access. When Anonymous
access is enabled, IIS authenticates all users using a low-privileged Windows account
(IUSR_computername by default), which is a member of the Guest Windows group.
All requests to access local resources go under the identity of this account. In this
case, the StartCampaign method needs to write to the blog file. For this reason,
you need to grant the Anonymous account write permissions to this file. Alterna-
tively, you can change the Anonymous identity to an account that has an elevated set
of permissions.

Finally, you need to take care of setting the identity of the cross-machine call from
the Campaigner Web service to the Report Server. Here, again you have two options:

• Impersonating the user—Assuming that Anonymous access is enabled, this
means that we will pass the identity of the Anonymous account to the Report
Server. Again, in order for the cross-machine call to succeed between the Cam-
paigner machine and the Report Server machine, this account has to be a
domain account or a duplicated local account, which exists on both machines.

• Using the trusted subsystem approach by passing the Campaigner Web service iden-
tity to the Report Server—You can change the identity of the ASP.NET worker
process on the machine where the Campaigner Web service is running to a
domain account.

In both cases, you have to set up a role-based security policy in the Report Server to
grant the Campaigner account sufficient rights to view the Sales Promotion report
and SalesPromotion.xsl file.

Now that you have a good high-level overview of both access options available for
requesting reports, let’s wrap up our discussion by comparing these options.

10.6 EVALUATING URL AND WEB SERVICE
ACCESS OPTIONS

Choosing the right integration scenario for report-enabling your applications can be
challenging. You need to make a careful decision between the ease of use in the case of
URL access and the flexibility offered by the RS Web service. Here are some of the
questions that you need to ask yourself:

• Is this an intranet or Internet-oriented application?—While both access options
can be used with intranet-oriented applications, unless you use a custom secu-
rity extension, Internet reporting in most cases will require requesting reports
by SOAP.
EVALUATING URL AND WEB SERVICE ACCESS OPTIONS 383

• Can the Report Server be accessed directly by the client application?—If the answer
is no (for security, or other reasons), then SOAP is the only choice.

• Does the report request need to be validated before it is handed out to the Report
Server?—If business rules need to be validated before the report request is
authorized, SOAP may be the better choice.

• How will the report parameters be handled?—If the HTML Viewer fits the bill, it
would be naive not to take advantage of URL access.

In general, we recommend that you evaluate URL access first and only if it doesn’t
meet your integration requirements should you settle on Web service access. As you’ve
seen in this chapter, there are good reasons to keep things simple, and simplicity is the
biggest strength of URL access.

Let’s enumerate the pros and cons of each option in more detail to help you with
the decision-making process.

10.6.1 Evaluating URL access

In general, URL access is best suited for interactive, intranet-oriented applications
where the report request can originate on the client side of the application.

Pros of URL access

The advantages of this approach are as follows:

• Simplicity—Compared to requesting reports by SOAP, URL access is far easier.
No postprocessing steps are required to render the report payload. The
browser handles report sessions automatically. In case of HTML reports, you
don’t have to worry about downloading the image files. If you are using SOAP,
taking care of the report images and charts could be a hassle, especially for
Internet-based reports.

• Relatively easy to integrate with client applications—Due to the venerable history
of the HTTP protocol, most development tools and platforms can handle
HTTP-GET requests and responses.

• No client footprint—Usually, there will be nothing that you need to install to
integrate a client application with RS by URL. It could be as easy as embedding
the report’s URL in a hyperlink. For example, you can have a SharePoint Web
part that references a report by URL.

• Interactive features—You can leverage URL access to provide a rich user experi-
ence by adding interactive features to your reports, such as drilldown, toggled
visibility, document maps, navigational features, and the HTML Viewer. When
a report with interactive features is requested in HTML, the Report Server
embeds the request-specific details, such as the parameter values, in the report
page. When the interactive feature is requested by the end user, for example to
perform a drilldown, the report spawns an HTTP-GET request to the Report
Server to refresh itself.
384 CHAPTER 10 ON-DEMAND REPORT DELIVERY

• Performance—The performance advantages of URL access are several. First, the
report payload is smaller compared to requesting a report by SOAP. When
the report is requested by URL, the Report Server doesn’t have to serialize the
report payload to a byte array before sending it to the consumer. Second, URL
access doesn’t require any preprocessing by the report consumer to render the
report. By contrast, if you request the report from the Web service, in most
cases you will need to save the report payload to a disk file and shell out to it so
that the user can see it. Finally, report sessions are handled automatically by the
browser, which can speed up subsequent requests to render the same report.

Cons of URL access

The disadvantages of this approach are as follows:

• Restricted to report rendering—You can only render reports using URL access to
the Report Server. For all other tasks, you will need to use the RS Web service.

• Not object-oriented—Crafting these query parameters can be difficult! However,
you can get around it by creating a wrapper, which will generate the right URL
syntax for you. For example, the RS Catalog Explorer demonstrates this
approach by using a helper class, called URLAccessBuilder.

• Not suitable for server-side report rendering—The URL access option is more suit-
able for interactive applications that generate reports on the client side. For
example, you cannot programmatically catch exceptions and react to error con-
ditions. In addition, requesting reports by URL requires direct access to the
Report Server. This could be an issue in cases where there is a façade between
the consumer and the Report Server and you need to validate business rules,
provide custom security, or abstract the Report Server.

• URL length limitations—Many browsers impose restrictions on the maximum
length of the URL address. For example, Internet Explorer has a maximum URL
length of 2 KB (2,048 characters). This makes passing large data structures as
report parameters impossible. For instance, you won’t be able to pass applica-
tion datasets as a report parameter from a WinForm front end to a report.
Although the custom dataset extension (which we create in chapter 13) allows
you to report off application datasets, the serialized dataset payload may often
exceed 2 KB. As a workaround to this limitation, you can use HTTP-POST.

10.6.2 Evaluating Web service access

On the other hand, the Web service access option may be more suitable for generating
reports on the server side of the application.
EVALUATING URL AND WEB SERVICE ACCESS OPTIONS 385

Pros of Web service access

Here are the advantages:

• Broad set of features—Unlike the URL access option, the RS Web service is not
limited to report rendering. It exposes the full functionality of the Report Server
as a series of web methods.

• An industry standard for exchanging messages between heterogeneous platforms—
This increases the RS client base to applications running on other platforms.

• Object-oriented access—Requesting a report via SOAP is as easy as instantiating
the Web service proxy and calling its methods. In addition, the Report Server
exposes exceptions as SOAP faults, which allows developers to code defensively.

• Flexible invocation—As you’ve seen, interfacing with the Web service doesn’t
require user interaction.

Cons of Web service access

And here are the disadvantages:

• HTML Viewer not available—Unlike the URL option, a report rendered via
SOAP doesn’t include the HTML Viewer toolbar. For this reason, development
effort will typically be required up front for interactive client applications—for
example, to get the report parameters, export format, and so on.

• Interactive features rely on URL access—In general, you’ll find that requesting
reports from the Web service gives you a reduced interactive feature set. For
example, although interactive features, such as drilldown, hyperlinks, and docu-
ment maps, are available when reports are rendered via SOAP, they rely on URL
access to the Report Server. This could be a problem if the Report Server is
behind a façade and direct HTTP-GET access to the Report Server is impossible.

• More involved report rendering—Extra steps are required for report rendering
and maintaining report sessions.

• Slower performance—Report serialization results in an increased report payload.
The percentage of increase varies based on the export format and the report
itself, but experiments show an added overhead of about 20–30 percent. This
could be an issue with low-speed connections between the client and the
Report Server.

10.6.3 Choosing an integration approach

So, where does this chapter’s discussion leave you in terms of integrating client appli-
cations with Reporting Services? You saw that two access options are available when
adding on-demand reporting capabilities to client applications: URL and SOAP. How
would you choose between them? In some cases, the application requirements dictate
the access option and you won’t have much choice. For example, the AW Campaigner
386 CHAPTER 10 ON-DEMAND REPORT DELIVERY

requirements mandate the use of the RS Web service for report rendering in unat-
tended mode.

In other cases, you have to carefully weigh the pros and cons of each option before
deciding which one will be better suited for your particular situation. Once again, we
recommend that you consider the URL access option first. It supports all interactive
features, and it is easier to integrate with client applications.

The main advantages of using the Web service are its flexible invocation options
and extensive set of web methods. However, introducing additional layers and using
SOAP for report rendering will often necessitate extra development effort and com-
promises in the interactive feature set.

One excellent approach would be to take the best of both worlds by using URL for
report rendering and SOAP for everything else. There may be other factors that might
influence your decision, including the type of the application (WinForm or web-
based) and restrictions that the application’s requirements might impose. For this rea-
son, we revisit this topic in subsequent chapters and make more specific recommen-
dations as we examine various application scenarios.

10.7 SUMMARY

In this chapter we examined the core architectural options that the Report Server
offers for integrating with client applications.

First, we discussed the URL access option. We explored its syntax and discussed
the HTML Viewer, which is available only with this option. Then we saw a practical
example, the AccessOptions application, which demonstrated how a WinForm-based
application could submit a report request by URL.

Second, we examined the RS Web service access option. You saw how you can
address some of its complexities, such as handling report sessions and images. Again,
we looked at the AccessOptions application to find out how a client application could
leverage this option to request reports by SOAP.

Finally, we rounded off our discussion by comparing both integration options.
We pointed out that URL access is the fastest and easiest way to request reports and
that it supports all of a report’s interactive features. For these reasons, we recommend
that you consider URL access first when choosing an integration approach for report-
enabling your applications.

However, URL access may not be a good fit with more involved integration sce-
narios, such as when you need to generate reports in an unattended mode, as we dem-
onstrated in the AW Campaigner code sample. In this case, consider integrating your
applications with the RS Web service by SOAP.

In the next chapter, you’ll be introduced to the ReportViewer controls, which are
available with the 2.0 version of the .NET Framework. Use these controls to integrate
Reporting Services reports into your Windows or Web applications that use the .NET
2.0 framework. Although they use both the URL and SOAP methods under the hood,
SUMMARY 387

they do not require a strong understanding of either the URL or SOAP methods. The
ReportViewer controls let developers focus on more important things than coding to
render reports in their applications.
388 CHAPTER 10 ON-DEMAND REPORT DELIVERY

C H A P T E R 1 1

Mastering the
ReportViewer controls

11.1 How the .NET ReportViewer

controls work 390
11.2 Using ReportViewer in

remote mode 394
11.3 Using ReportViewer in local

mode 397

11.4 Custom validation with the Report-
Viewer control 406

11.5 Converting report files 411
11.6 Deploying applications that use

ReportViewer controls 416
11.7 Summary 418
ReportViewer controls are part of Visual Studio 2005 and, when used, are guaranteed
to change the way you integrate RS reports into your applications. The ReportViewer
controls are built into the toolbox of Visual Studio 2005 and don’t require any down-
loads or additional installation. When you want to place an RS report in your win-
dows or web application, you can simply drag the control into the design
environment, configure the control with properties for your report, and run your
application. It’s that easy. Why dedicate an entire chapter to these controls if it’s that
easy, you may ask? Let’s just say it can be that easy, but as with any of the .NET con-
trols, there are many ways to configure and tweak them to meet your needs.

In this chapter you learn how these controls work. We examine the different
modes of these controls, and explain when you’ll want to use each mode. You also see
how these controls can be used to integrate the reports that have been deployed to the
Report Server (in remote mode), as well as how these controls can be used to render
reports into your applications without the use of a Report Server (in local mode). In
389

addition, we explore how to implement custom validation of your report parameters
and how to convert your Report Server reports so that they can be used in an envi-
ronment that is disconnected from a Report Server. Finally, we discuss deploying
applications that use the ReportViewer controls and what you need to do for your
deployments to be successful.

Let’s get started by learning how these controls work.

11.1 HOW THE .NET REPORTVIEWER
CONTROLS WORK

In chapter 10 we covered the architecture for pulling reports out of the Report Server.
While that information is very important for the report developer, .NET application
developers won’t need this level of understanding to add reports to their applications
using the ReportViewer controls. Because the ReportViewer controls mask the RS
architecture from application developers, developers can add existing reports to their
applications without having a strong background in Reporting Services.

Using these controls should be your method of choice when integrating RS reports
into your Visual Studio 2005 Windows and web applications for two reasons:

• Ease of use

• The ability to completely manage the report properties through these controls

Using the ReportViewer controls allows you to spend more time focusing on the busi-
ness logic of your applications and less time integrating reports into your applications.

Let’s look first at how the ReportViewer controls work for web applications versus
Windows applications.

11.1.1 Controls for web and Windows applications

There is a ReportViewer control for both Windows and web applications. Depend-
ing on the type of application you are working with, the Visual Studio toolbox will
contain the appropriate control. While at first glance these controls seem to be iden-
tical, there are actually a few subtle differences between them. Table 11.1 showcases
these differences.

Table 11.1 Differences between the Windows and web ReportViewer controls

ReportViewer

control feature
Web Windows

Presentation Uses HTML formatting to
display a report.

Uses a Graphical Device Interface (GDI) to
provide a visual experience that is consistent
with Windows user interface styles.

Processing Local report processing can be
configured for asynchronous
processing.

Local report processing is always performed as
an asynchronous process.

continued on next page
390 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

The ReportViewer controls each have two processing modes: remote and local. Let’s
take a closer look at these modes so that you’ll know when to use each mode and also
understand the differences as well as limitations of each.

11.1.2 Choosing remote or local mode

The ReportViewer controls can process and render a report with or without Report
Server access. If you have server access (and this is more common), you choose remote
mode. Remote mode allows the application developer to select a Report Server and
path to a report as well as control most of the properties and features of RS by chang-
ing properties of this control. We explore these properties in section 11.1.3.

In some cases, you might not want to access the Report Server, or you may not
have access to it, so you choose local mode. Local mode provides some additional
options that take Reporting Services to the next level from its original version. You are
no longer tied to the Report Server, which means that you can create reports that run
from local data sources in a disconnected environment. Local mode also enables you
to use objects and Web services as data sources for your reports. This opens a whole
new world of reporting for you.

Printing Printing reports from the web
server control uses an ActiveX
print control if the report is
processed on a remote server.

If you want to print a locally
processed report from the
web server control, you can
export the report to another
output format before you
print.

Printing reports from the Windows Forms
control uses the print functionality of the
operating system.

Deployment The deployment strategy for
reports hosted in the Web
server control in an ASP.NET
application must take session
state and web farm
configuration into account.

If you are using the web
server control to process a
report on a remote Report
Server, you must consider
how to authenticate
application users to access
the server and any external
data sources that provide data
to reports.

If you are deploying the ReportViewer with a
Windows application, you will need to use the
bootstrap features in Visual Studio to be sure
that ReportViewer is installed on the client
machine along with your application. See
section 11.6 of this chapter for more
information.

Table 11.1 Differences between the Windows and web ReportViewer controls (continued)

ReportViewer

control feature
Web Windows
HOW THE .NET REPORTVIEWER CONTROLS WORK 391

Regardless of the processing mode, ReportViewer-generated reports look and
function in a very similar way. To help you better appreciate the differences between
processing modes, table 11.2 lists several ReportViewer features and how these fea-
tures are affected by the mode used.

Before you see each processing mode in action, let’s learn about some of the Report-
Viewer properties that you’ll encounter most often.

11.1.3 Managing properties of the ReportViewer controls

Both modes of the ReportViewer controls share a number of common properties that
can be set. For example, you might want to change the color for the links in the tool-
bar (LinkActiveColor and LinkActiveHoverColor) or the height and
width of the ReportViewer (Height and Width). Another common configuration is
to hide or show the toolbar itself by using the ShowToolbar property. We explore
this in more detail in section 11.2.2.

Table 11.3 lists the properties you will use most of the time. Two of the properties
that we cover in our examples later in this chapter are the ShowToolbar and the
ShowContextMenu properties.

Table 11.3 does not contain the complete list of properties; for that, see the SQL
Server Books Online documentation or search for “ReportViewer Controls (Visual
Studio)” in the Visual Studio product documentation. The best way to understand
how these properties affect the ReportViewer controls is through example. In the next
section, we walk you through an example of using the ReportViewer in remote mode,
and we also configure many of the properties that are shown in table 11.3.

Table 11.2 Differences between remote and local modes

ReportViewer

control feature
Remote mode Local mode

RDL Management Report definition (RDL) is supplied and
rendered by the Report Server.

The RDL is supplied by the host
application instead of being
retrieved from a Report Server.

Report Engine Uses the Report Server engine. Uses the same engine as the Report
Server but is embedded into the
application.

DataSet Supplies the data as SQL Server DataSet. Supplies the data as an ADO.NET
DataTable to the report engine.

Export Formats Full Export options (see chapter 1). Only exports to Excel or PDF format.

Report Creation Report Creation is done in the Business
Intelligence Development Studio with the
Reporting Services project.

Report creation is integrated into
the Windows application VS 2005
project instead of having a separate
Reporting Services project.
392 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

Table 11.3 Commonly used properties of the ReportViewer controls

Member Description

ProcessingMode Gets or sets the processing mode for the control. Possible values
are Remote and Local.

DocumentMapWidth Gets or sets the document map width in pixels.

LinkActiveColor Gets or sets the active color for links in the toolbar. Note that this
does not have any effect on links in your reports.

LinkActiveHoverColor Gets or sets the hover color for links in the toolbar. Note that this
does not have any effect on any links in your reports.

LinkDisabledColor Gets or sets the color for disabled links in the toolbar. Note that
this does not have any effect on any links in your reports.

PromptAreaCollapsed Gets or sets a Boolean value that determines whether the
parameter area is initially collapsed or expanded. You must specify
a default value for all parameters if you are going to set this to
true. If you do not specify default values, you will receive an error
similar to the following: The 'Customer Name’ parameter is
missing a value.

ShowParameterPrompts Gets or sets a Boolean value that determines whether the
parameter area is shown in the control. You must specify a default
value for all parameters if you are going to set this property to
false. If you do not specify default values, you will receive an error
similar to the following: The 'Customer Name’ parameter is
missing a value.

ShowToolbar Gets or sets a Boolean value that enables or disables the HTML
Viewer toolbar. If you are disabling the toolbar as a means to limit
the end user’s functionality for Windows applications, you should
also set the ShowContextMenu to false.

ShowContextMenu Gets or sets a Boolean value that enables or disables the context
menu for the ReportViewer control. This property is only available
in the Windows ReportViewer control. The context menu will
expose many of the features in the toolbar such as print, export,
zoom, and page properties.

ShowProgress Gets or sets a Boolean value that determines whether a progress
animation is shown while waiting for the report to render.

Height and Width These properties allow you to get or set the height and width
properties of the ReportViewer control. For the Windows control
you need to specify this value as number of pixels (without adding
px at the end of the number). For the web control you can use
both pixels or percentages for the width column. While the
width property works well with both pixels and percentages,
the height property does not seem to function well
with percentages.
HOW THE .NET REPORTVIEWER CONTROLS WORK 393

11.2 USING REPORTVIEWER IN REMOTE MODE

As we stated earlier, using the ReportViewer controls in remote mode forces you to
pull the reports directly from the Report Server. This means that the reports have
already been created and deployed to the Report Server and you use the ReportViewer
controls in remote mode to get the reports and render them into your applications.

In this section, you see some examples of using the ReportViewer control to pull
data from objects. Also, we cover some of the many properties of the ReportViewer
controls and explore some real-world examples. For these walkthrough examples, we
encourage you to create your own Windows or web projects and use the code pro-
vided with the book as a reference. You’ll find the code samples in the chapter 11
folder in the AWReporterWin and AWReporterWeb projects.

11.2.1 Creating, configuring, and running the control

In this section you learn how to create and configure the ReportViewer controls in
remote mode by doing the following:

• Create a Windows Form and add the ReportViewer to it.
• Configure the properties of the ReportViewer.
• Run the Windows Form and view the Sales By Territory report from part 1 in

the ReportViewer.

Adding the ReportViewer control to a Windows Form

The example code for this section is in the chapter 11 folder of the AWReporterWin
project. We recommend you create your own Windows application project for this
walkthrough. Once you have a project to work with, follow these steps:

Step 1 Create a Windows Form project and name it ReportViewerRemote.cs. If
you created a new project for this walkthrough, you can use the default form
in the project named Form1.cs and rename it to ReportViewerRemote.cs.
You can find the ReportViewer control within the data controls of the tool-
box (see figure 11.1).

Step 2 Drag and drop this control onto the Windows Form.

Figure 11.1
The ReportViewer

Control is shown here

in a Windows Form.
394 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

Configuring the ReportViewer control

Now you need to enter all of the required information to integrate an RS report into
a Windows application. Follow these steps:

Step 1 Set the size properties and dock the control to the form. For this example
you want to set the size properties to about 600 pixels wide by 450 pixels
high. When the ReportViewer control is dropped onto the form, the smart
tag window appears. Dock the ReportViewer control to your form by clicking
on the dock to parent form… link in the smart tag window. If you don’t see
the smart tag window, you can get to it by selecting the ReportViewer con-
trol and clicking on the small arrow icon, as shown in figure 11.1.

Step 2 Set the control properties. First, expose the properties by selecting the con-
trol and viewing the properties window for the control. Let’s set the
ShowZoomControl property to false, as shown in figure 11.2. You can see
that there are a number of items in the toolbar that can be shown or hidden
when the report is rendered. We work with these properties a little later on,
but for now let’s switch our attention to configuring the control to process
the Sales By Territory Interactive report that you created in chapter 4.

Step 3 Configure the control. To view configuration properties, click on the smart
tag icon found in the upper right of the control. Since we are exploring the
remote mode of the ReportViewer, select <Server Report> from the
Choose Report field.

Figure 11.2
You can hide or show toolbar

buttons by modifying properties
of the ReportViewer control.
USING REPORTVIEWER IN REMOTE MODE 395

NOTE Choosing <Server Report> automatically sets the Processing
Mode property to Remote. We could have simply gone through the prop-
erty settings to configure this control, but the smart tags settings are an eas-
ier way to accomplish our goal.

Step 4 Enter a valid Report Server URL and
report path (shown in figure 11.3). Be
sure to include the full path for the report
starting with a slash (/). Also be sure to
leave the extension off the report name.
For this example, the report path should
be /AWReporter/Sales By Territory.

Running and viewing your report

You are now ready to see the results of your work.
When you run the application, you should see the
report shown in figure 11.4.

Let’s take a look at how you might customize the ReportViewer.

Figure 11.3 The smart tag

window exposes a great starting

point for configuring the

ReportViewer control.

Figure 11.4 In the Sales By Territory report, the Zoom functionality is hidden from

the toolbar.
396 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

11.2.2 Additional customizations for
the ReportViewer control

Let’s say you don’t want your end users to see the HTML toolbar. Maybe you have
your own toolbar in your application, or maybe you just don’t want your users to have
the functionality provided in the HTML toolbar. Simply set the ShowToolbar
property to false from the ReportViewer control property window (figure 11.2). The
toolbar is shown right above the report title in figure 11.4.

If you are trying to disable functionality from the end user, hiding the toolbar
won’t enforce this. Users can simply right-click on the rendered report to show the
context menu, which exposes the toolbar functionality. To truly disable all toolbox
functionality, you need to either set both ShowToolbar and ShowContextMenu
to false or set the properties for the functionality that you want to disable.

What if you want to disable some of the functionality, but not all of it? In this
hypothetical situation, you don’t want your users to be able to export or print this
particular report, but you do want them to have the ability to zoom in and out.
Therefore, you need to expose the toolbar, but to disable the export or print function-
ality, you have to set ShowExportButton and ShowPrintButton to false. Not
only will the control hide the buttons, but if users right-click on the control they
won’t see the option to export or print.

Using remote mode allows you to add the reports that you created and deployed
to your Report Server in part 1 of this book. Using this mode is the easiest and quick-
est way to add existing reports to your applications. After reading this section, you
should be armed with the knowledge needed to integrate, configure, and customize
existing reports into your .NET 2.0 applications.

NOTE Even though there are separate controls for Windows applications versus
web applications, it is important to understand that the differences are
minor. If we had demonstrated this in an ASP.NET web application, you
would have seen that all of the steps are virtually the same.

In the next section, we examine the other side of the ReportViewer controls:
local mode.

11.3 USING REPORTVIEWER IN LOCAL MODE

The local mode of the ReportViewer controls provides rich reporting without the use
of a Report Server by embedding the report definition inside the application. This is
a great way to use Reporting Services when you can’t access a Report Server.

To use local mode, you first have to create a report using Visual Studio 2005 from
within your Windows or web application project. This is different from remote
mode, in which you used reports that were created using the Report Designer and
deployed to a Report Server. This means that with local mode you cannot natively use
reports that you have already created and deployed to your Report Server.
USING REPORTVIEWER IN LOCAL MODE 397

Report Server (remote mode) reports have an .rdl extension whereas local reports
used by the ReportViewer controls use the .rdlc extension. Later in section 11.5.1
you learn how to convert your RDL files for use with local mode.

In this section, you learn how to create the RDLC from your Windows or web
applications by creating local reports from a variety of data sources. Let’s start off by
using the ReportViewer control to get information from a database.

As before, for this walkthrough example you can reference the sample code in the
Chapter 11 folder of the AWReporterWin project.

11.3.1 Creating a local report with a database
as the data source

As stated earlier, in local mode the report file is created as an RDLC file instead of an
RDL file. A second difference is that the report is created from within your application
projects instead of a separate Reporting Services project. For the most part, everything
else will feel the same as it did with remote mode, but there are some minor differ-
ences. We showcase many of these differences in our examples.

For this hypothetical situation, you’ve been asked to make the AWC employee
directory available to field sales agents who don’t typically have access to the AWC
network. Let’s assume that there is a process built that replicates or syncs the data
from the AWC database to a database on the sales agent’s local machine.

NOTE We chose to run this from the same local database that the other examples
run from. In a real-world scenario, the client computer would likely be run-
ning SQL Express and would also not have an exact replica of the original
database. To simplify the code setup for this book, we simply pretend this
is a separate database.

Step 1 Create a new Windows Form and call it ReportViewerLocal.cs. Stretch the
form, add the ReportViewer, and anchor the control just as you did in the
ReportViewer remote example earlier. Instead of choosing <Server
Report> from the Choose Report property of the smart tag window
(figure 11.3), click the design new report link. This creates a new RDLC file
and opens it up in your project. On the left side of your design window you
should see a Data Sources tab; if not, you can add it by selecting Data >
Show Data Sources from the top menu. You can also toggle the Data Sources
view by pressing Shift-Alt-D.

Step 2 Create a data source for your report by right-clicking in the Data Sources
section or by selecting Data > Add New Data Source from the top menu.
This opens the Data Source Configuration Wizard, as shown in figure 11.5.

Step 3 Select Database and click the Next button. The next screen lets you choose
your data connection by either selecting an existing connection or creating a new
connection. Let’s set this data source up for our AdventureWorks database.
398 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

Step 4 Once you’ve set up the data connection and clicked the Next button, you’ll see
a screen that prompts you to name your dataset and choose which database
objects you want to include. Figure 11.6 shows the high level of the available
database objects. For this example, name your dataset EmployeeDirectory
and select a database view to retrieve the data. To use the database view, you
must expand the views by clicking on the plus sign and then select the
vEmployee(HumanResources) view. Then click Finish. Figure 11.7
shows the design environment after you’ve created the dataset for your report.
Notice that EmployeeDirectory is created as an XSD file in your project,
which allows you to reuse this dataset in other reports, forms, or code if needed.

Step 5 Because reports are created in the Business Intelligence Development Studio
environment, you should be comfortable creating your report from this
point on. For this report we created a simple table report with six columns:

• Name
• Job Title
• Phone
• Email
• City
• State

Figure 11.5 The Data Source Configuration Wizard allows you to create data

sources from a database, Web service, or an object.
USING REPORTVIEWER IN LOCAL MODE 399

Figure 11.6
You can add tables,

views, stored

procedures, and

functions to your

dataset for use in

local reports.

Figure 11.7 The dataset EmployeeDirectory shows up in the Data Sources section as

well as in your project code as an XSD file.
400 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

NOTE For more information on creating tabular reports, see part 1 of this book.

One problem with creating local reports is that you can’t preview the report
in the Visual Studio IDE as you could if you were designing in a Reporting
Services project. To preview your report you will need to complete step 5.
For now, apply any formatting and save this report.

Step 6 Now we’ll add the report to the form. First,
open the ReportViewerLocal Windows
Form, and in the smart tag window, select
the report that you created to add it to the
form. Figure 11.8 shows the ReportViewer
task’s smart tag window after you’ve created
a local report in your project.

You have now created your first local report, which
you can run without using a Report Server. If you
doubt that this report is completely local, try stopping the SQL Server Reporting Ser-
vices service and rerunning the report.

11.3.2 Creating a local report with an object
as the data source

You are not limited to getting data directly from a database. Using local mode, you
can get data for your reports from your .NET business objects or data objects. In fact,
you may not have to do any special coding to your business objects in order to use
them. Let’s take a look. The chapter 11 folder in the AWReporterWin project con-
tains a sample of a business object that gets all of the products and aggregates the sales
by category and subcategory. First we will go through the objects that have been cre-
ated for this example.

Business object code

The Product.cs file has two classes: Product and ProductInformation.
Listing 11.1 shows the code for the Product class.

namespace AWC.Reporter.Win
{
 public class Product
 {

 private string productName;
 public string ProductName
 {
 get{return productName;}
 set { this.productName = value; }
 }

Figure 11.8 The ReportViewer

lets you choose the local reports.

Listing 11.1 AWC.Reporter.Win product object
USING REPORTVIEWER IN LOCAL MODE 401

 private string productCategory;
 public string ProductCategory
 {
 get { return productCategory; }
 set { this.productCategory = value; }
 }
 private string productSubCategory;
 public string ProductSubCategory

 {
 get { return productSubCategory; }
 set { this.productSubCategory = value; }
 }

 private decimal productSales;
 public decimal ProductSales
 {
 get { return productSales; }
 set { this.productSales = value; }
 }
 }

The Product class contains four properties: ProductName, CategoryName,
SubCategoryName, and ProductSales. You’ll use this object when you set up
your dataset for your report. Listing 11.2 shows the code for the Product-
Information class.

 public class ProductInformation
 {
 public static List<Product> GetProducts()
 {
 SqlDataReader rdr = null;
 SqlCommand cmd = null;
 SqlConnection conn = new SqlConnection
 (global::AWC.Reporter.Win.Properties.Settings.
 Default.AdventureWorksConnectionString);
 List<Product> ProductList = new List<Product>();
 try
 {
 conn.Open();
 cmd = new SqlCommand("spGetProductSalesByCategory",conn);
 cmd.CommandType = CommandType.StoredProcedure;
 rdr = cmd.ExecuteReader();
 Product prod = null;
 while (rdr.Read())
 {
 prod = new Product();
 prod.ProductName = rdr.GetString
 (rdr.GetOrdinal("ProductName"));

Listing 11.2 The ProductInformation object, which uses .NET generics to return

a list of product objects

Returns generic list
of Product objectsb

➥

Instantiates a new
Generic object c

Puts returned dataset
into SqlDataReaderd
402 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

 prod.ProductCategory = rdr.GetString
 (rdr.GetOrdinal("ProductCategory"));
 prod.ProductSubCategory = rdr.GetString
 (rdr.GetOrdinal("ProductSubCategory"));
 prod.ProductSales = rdr.GetDecimal
 (rdr.GetOrdinal("Sales"));
 ProductList.Add(prod);
 }

 }
 catch(SqlException ex)
 {
 throw ex;
 }
 finally
 {
 conn.Close();
 }
 return ProductList;
 }
 }

The code here is pretty straightforward. The ProductImport object has a static
class called GetProducts() b. You’ve created this as a static method so that you
can simply call this method without having to instantiate the object first. Note that
this method returns a new type of object that is available in the 2.0 version of the
.NET Framework. This <List>Product states that you will return a list of objects,
but not just any type of object. The only type of object that you’ll be able to put in
this list is a Product object. This is not a requirement for your objects to work with
Reporting Services, but it does provide a level of safety that was not available by using
an ArrayList, for example. (For more information on .NET generics, see the
“Resources” section at the end of this book.) The first thing this method does is set up
the objects that you’ll use to connect to the database. You also instantiate a new
generic list (ProductList) that contains your product objects c. This Pro-
ductList object is the object that you’ll return to the caller. You open a connection
to the database and put the result set into a SqlDataReader object d. Once you
have your data, you loop through each row of data in your SqlDataReader.
Within this loop you set the properties of your Product object and then add the
Product object to your list e. Once the loop is finished, you simply return your list
to the caller f.

Adding and configuring the ReportViewer
to use a business object data source

As in our previous examples, begin by creating a new Windows Form and this time
name it ReportViewerLocalObject.cs. Next, stretch the form to an appropriate size
for your report and add a ReportViewer control. From the ReportViewer task smart

Adds product objects to
generic ProductList objecte

Returns list of product
objects to callerf
USING REPORTVIEWER IN LOCAL MODE 403

tag window, choose Design a New Report. From the Data menu select Add New Data
Source to open the Data Source Configuration Wizard. Select Object as the Data
Source type and click Next.

This brings up a screen that lets you select an object from assemblies on your
machine as well as objects in your project. Expand the AWReporterWin project and
the AWC.Reporter.Win namespace, as shown in figure 11.9.

Once you click Next you see a screen that displays the objects that will be added.
Click Finish to complete the wizard. You should see the new Product object in the
Data Sources Explorer, as shown in figure 11.10.

Now you’re ready for the next step: creating the report.

Creating the report using business object fields

Creating a report using fields from a business object is similar to what you’ve done in
previous chapters using database fields from a dataset. Figure 11.11 shows the report
that we created by simply dragging the dataset fields onto a table entity.

As long as the properties (fields) are at the top level, you will be able to drag them
just as you can with the database datasets. If you have nested objects, you have to set
the path to the property by editing the expression at the field level. We show an exam-
ple of this later on.

You are now ready to add your object-based report to your Windows Form. From
the ReportViewer smart tag window, select the report that you just created. This not

Figure 11.9 The Product object is found in the AWC.Reporter.Win namespace.
404 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

only adds the report to the ReportViewer but also adds a BindingSource object to
your code. In the Load event of your ReportViewer on the Windows Form, add one
line of code:

this.ProductBindingSource.DataSource =
 ProductInformation.GetProducts();

This code will set the data source of your BindingSource object to the return
value of the GetProducts() method of your ProductInformation object.
Remember that GetProducts() was a static method—that’s why you can simply
call this method and you don’t need to instantiate the object first. This method
returns a list of Product objects.

NOTE The ProductBindingSource was created when you added the report to
your ReportViewer, and since it is dynamically named, it may not be
named ProductBindingSource.

Assuming you added the color and format to your report, after you run it your report
should look similar to figure 11.12.

You’ve now learned how to build a simple business object and use it to create a
report using the local mode of the ReportViewer control. You can now build on this
example and configure a suite of business objects that makes creating reports a breeze.

Figure 11.10
The Product object appears

in the Data Sources panel.

Figure 11.11 The Product Sales Report is shown here in the Visual Studio Designer.

➥

USING REPORTVIEWER IN LOCAL MODE 405

Finally, we take a look at an example of implementing custom validation of report
parameters with the ReportViewer controls.

11.4 CUSTOM VALIDATION WITH THE
REPORTVIEWER CONTROL

The ReportViewer control adds a toolbar that provides navigation, search, export,
and print functionality so that you can work with reports in a deployed application.
This toolbar exposes the report parameters that you add to your reports. As you
learned in chapters 3 and 10, you don’t have a lot of control over parameter validation
outside of simple checks. This means that by using the toolbar, you are unable to per-
form advanced validation of your report parameters. Let’s explore one method of
using custom validation of report parameters by hiding the toolbar and creating your
own parameters section.

One common situation that we have run into is having to validate begin and end
dates that feed the report query. Let’s say that you need to make sure that the begin
date is earlier than the end date for your parameters. You can implement this func-
tionality in the following steps:

Figure 11.12 The Product Sales Report appears in the Visual Studio Designer.
406 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

1 Create a parameters section on your WinForm and add some controls to cap-
ture date information.

2 Create event methods.

3 Write validation code.

The code for this section can be found in the ReportViewerRemote.cs file in
the code samples provided with this book.

11.4.1 Creating a parameters section

First you must make room for your new parameters section. In section 11.2 you
added a ReportViewer control to your WinForm. In this WinForm you’ll move the
ReportViewer control down so that you have about an inch available at the top of
the form.

After you create space for the parameters section, you can start dragging labels,
date-time pickers, textboxes, and buttons on the form, as shown in figure 11.3. Use
the information listed in table 11.4 to add eight controls. Be sure to name the con-
trols appropriately to match the source code.

When you are done, the form should look like figure 11.13. Notice that the Begin
Date, End Date, and # of Forecasted Months parameters are located outside of the
ReportViewer control.

Now that you have created the controls, you need to create a couple of event methods.

11.4.2 Creating event methods

The first event method you’ll create is the event for when your Windows Form is invoked.
This event method, ReportViewerRemote_Load(), shown in listing 11.3, pro-
vides you with a place to set the properties of the ReportViewer control at runtime.

Table 11.4 Adding controls for custom parameter validation with the ReportViewer

Name Type Value

lblBeginDate Label Begin Date

lblEndDate Label End Date

lblForcasted Label # of Forecasted Months

dtBeginDate DateTimePicker

dtEndDate DateTimePicker

txtForcasted Textbox

btnRunReport Button Run Report

lblError Label
CUSTOM VALIDATION WITH THE REPORTVIEWER CONTROL 407

private void ReportViewerRemote_Load(object sender, EventArgs e)

{
 lblError.Text = "";
 reportViewer1.ShowParameterPrompts = false;
 reportViewer1.Visible = false;
}

The ReportViewerRemote_Load event method does the following three things:

• It clears the error label to ensure that this label is instantiated as blank.

• It sets the ShowParameterPrompts property to false. This hides the
HTMLViewer parameters section, as you wouldn’t want this exposed to the user.

• It sets the visibility of the ReportViewer control to false. You want to hide the
control until you’ve validated and collected all of the required parameters.

The second event method that you’ll create will be for the action of clicking the Run
Report button that you added to the form, as shown in listing 11.4. This provides you
with a place to manage the validation of your parameter controls.

Figure 11.13 The anchor property of the ReportViewer control allows you to anchor this

control to your form.

Listing 11.3 The ReportViewerRemote_Load method
408 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

private void button1_Click(object sender, EventArgs e)
{
 if (IsValid())
 {
 lblError.Text = "";
 //Set Parameter Values
 ReportParameter param1 = new ReportParameter("StartDate",
 dtBeginDate.Value.ToString());
 ReportParameter param2 = new ReportParameter("EndDate",
 dtEndDate.Value.ToString());
 ReportParameter param3 =

 new ReportParameter("ForecastedMonths", txtForcasted.Text.ToString());
 this.reportViewer1.ServerReport.SetParameters

 (new ReportParameter[] { param1,
 param2, param3 });
 reportViewer1.Visible = true;
 reportViewer1.RefreshReport();
 }
 else
 {
 reportViewer1.Visible = false;
 }
 }

The method shown in listing 11.4 first checks the validity of the entered parameters
by calling the IsValid() method. (We cover the IsValid() method later in this
section.) If the parameters entered on your form are valid, then the code creates and
populates the ReportParameter objects and adds these objects to your Report-
Viewer control. If the user entered parameters that are not valid, you set the visibility
of the ReportViewer control to false.

You can easily create these event methods from the design view of your report by
using one of two techniques. The first approach consists of the following three steps:

1 Go to the property tabs for the form and the button.

2 Click the Event icon in the property toolbar (indicated by arrow 1 in fig-
ure 11.14).

3 Double-click the text area of the Load event for the ReportViewerRemote
form (indicated by arrow 2 in figure 11.14). Do the same for the Click event
of the btnRunReport properties. This will create the event handler bindings
as well as a skeleton method for your code. You can type in (or copy) your code
at this point

The second technique for creating event methods is to copy the code from listings 11.3
and 11.4 into the code-behind page and then choose the pasted methods from the
Load and Click drop-down lists in the property window.

Listing 11.4 The button1_Click() method

Creates and populates
ReportParameter objects

➥

➥

➥

➥
➥ Adds ReportParameters to report

Refreshes
ReportViewer
control

Hides display
of report
CUSTOM VALIDATION WITH THE REPORTVIEWER CONTROL 409

In order for these methods to work, you need to add the Microsoft.Report-
ing.WinForms namespace to the ReportViewerRemote.cs file with the fol-
lowing line of code:

using Microsoft.Reporting.WinForms;

After you’ve created and correctly bound the event methods, the next step is to
create the IsValid() method that will handle your custom validation for the
report parameters.

11.4.3 Write validation code

As you saw earlier, the button_1_Click() method calls the IsValid() method
shown in listing 11.5 to check the validity of the entered parameters.

private bool IsValid()
{
 if (dtBeginDate.Value > dtEndDate.Value)
 {
 lblError.Text = _
"Begin Date must be earlier than the End Date.";
 return false;

Figure 11.14
From the Events mode of the properties

window, you can select existing methods

for various behaviors from the drop-down

list, or create an empty method by double-

clicking on the drop-down itself.

Listing 11.5 The IsValid method
410 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

 }
 if (txtForecasted.Text.Length == 0)
 {
 lblError.Text = _
 "You must enter a value for # of Forecasted Months.";
 return false;
 }
 return true;
}

The IsValid() method returns a Boolean that tells you whether the parameters are
valid. If they are valid, the code in the button1_Click method sets the parameters
by creating three ReportParameter objects: param1, param2, and param3.
The ReportParameter object belongs to the Microsoft.Reporting.Win-
Forms namespace that you added earlier. These three ReportParameter objects
are holders for the valid parameter values and are added to the ReportViewer through
the SetParameters() call.

You then set the visible property of the ReportViewer control to true and
refresh the control. You must call the RefreshReport method to render the report.

This was a simple example of doing custom parameter validation with the Report-
Viewer control. We hope this will give you a jump-start on creating powerful reports
with full control of parameter validation in your Windows applications.

In the next section, you learn how to use this control to add reporting to your
applications when you don’t have access to a Report Server.

11.5 CONVERTING REPORT FILES

As you’ll recall, the local mode of the ReportViewer control uses the .rdlc file exten-
sion when it creates the report definition file. Reporting Services now offers you the
ability to convert a local report file (.rdlc) to a Report Server file (.rdl), and vice
versa. In this section, you’ll see working examples in each direction. But, you may ask,
when would this type of file conversion be necessary?

Let’s say you created a report that was deployed to the Report Server. Now you
have a Windows application that will be working with a local set of the data and will
not be able to access the Report Server. This would be a good time to convert the
Report Server file (.rdl) into a local report file (.rdlc).

NOTE Only SQL Server 2005 RDL files can be converted into RDLC files. If you
want to convert a SQL Server 2000 RDL file, you must first upgrade it to
SQL Server 2005.

Conversely, say you had some local report files that you wanted to deploy to the
Report Server to take advantage of some of the features that are only available with
Report Server reports, such as subscriptions or caching. In this case, you’d convert the
local report file (.rdlc) to a Report Server file (.rdl).
CONVERTING REPORT FILES 411

NOTE Both the ReportViewer control and the Report Server use the same Report
Definition Language schema to generate their respective report files, but
the RDLC file does not contain a <Query> element. Even if it did, the
ReportViewer would ignore it since it gets its data from the dataset defined
from within the ReportViewer.

Let’s explore some examples of converting these files.

11.5.1 Converting RDL files into RDLC files

For this example let’s take the Sales By Territory report (Sales By Territory.rdl)
from chapter 4 and convert it to work in the local mode of the ReportViewer. The sam-
ple project, AWConvertRDLToRDLC, is available with the source code for this book.
In this section we go through the steps listed in table 11.5 to re-create this project.

As you’ll see, the conversion process is pretty straightforward.

Setting up the RDLC file

The first step in converting your file is renaming it. Find the Sales By
Territory.rdl file, copy it into a temporary location, and rename it to Sales By
Territory.rdlc. You’ll come back to this file a little later in the process.

Creating a new project

To keep the deployment simple, create a new project for this conversion. Open Visual
Studio 2005, and select File > New > Project. Create a new Windows Form applica-
tion and give it a name. When the project opens, you’ll be presented with the default
form (Form1.cs). For this example, let’s keep this name (of course, in the real world
you’d provide a more meaningful name).

Creating the dataset for your project

This step is where the “trick” comes in. In order for our RDLC file to work properly
without having to modify the report code, you need to be sure that the dataset

Table 11.5 Steps to convert RDL files into RDLC files

Task Description

1 Set up the RDLC file.

2 Create a new project.

3 Create a DataSet for your project.

4 Add a ReportViewer control to your form.

5 Add an RDLC file to the project.

6 Choose the report and data source for your report.

7 Configure additional properties.
412 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

matches the dataset that was specified for the Report Server version of the file. To do
this, create a dataset and use the same SQL query that you used originally. The steps
to create a dataset are as follows:

Step 1 Choose Project > Add New Item to open a screen similar to the one shown in
figure 11.15. Name this new dataset SalesByTerritory and click Add.

Step 2 With the SalesByTerritory.xsd file open in Visual Studio, drag a
TableAdapter from the toolbox and drop it in right on the page. Doing this
launches the TableAdapter Configuration Wizard.

Step 3 In the first wizard screen, set up a proper connection string and click Next.

Step 4 The second screen prompts you to name the connection. For this example
keep the default.

Step 5 The next screen offers some choices for configuring how the TableAdapter
will access the database. For this example, you want to use a SQL statement,
so select that option and click Next.

Step 6 On the next screen (figure 11.16), enter the exact SQL statement that you
used in the original report, and then click Next.

You can find this SQL statement in the example project; it’s titled
SalesByTerritory.sql. Or, you could copy this statement from the
original project code. Copy and paste the SQL statement into the available
space and click Next.

Figure 11.15 Create a dataset for a local ReportViewer report.
CONVERTING REPORT FILES 413

Step 7 On the next screen, Choose Methods to Generate, keep the defaults and
click Finish.

You have now finished creating your dataset. Let’s move on and add the RDLC file to
your project.

Adding the RDLC file to your project

From the Project menu, select Add Existing Item. Browse to the Sales By
Territory.rdlc file that you created earlier and add it to your project.

Adding a ReportViewer control to your form

Next, open the Form1.cs file and stretch the form out so that there is room for your
ReportViewer control. For this report, 530 pixels wide by 432 pixels high should be
fine. Next, drag a ReportViewer control onto the form.

Figure 11.16 Using the same SQL statement (or stored procedure) helps keep

the conversion simple.
414 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

Choosing the report and data source

In the smart tag window, select the report that you
added to your project and then click the Choose
Data Sources link. Open the Data Source Instance
drop-down list and you should see something simi-
lar to figure 11.17.

It is very important that you navigate all the way
down to and click on DataTable1. If you choose
SalesByTerritory you won’t get an error, but you’ll
find that your report won’t render. At this point for
many report conversions, you would be done. How-
ever, we selected this report to work with in order to
show you some additional properties that you’ll
need to set in certain circumstances.

Configuring additional properties

The Sales By Territory report uses an external image for the logo. Therefore, you need
to modify two properties:

• EnableExternalImages—Set this property to true.

• EnforceConstraints—Set this property of the dataset to false.

If you don’t modify these properties the report won’t render in the ReportViewer con-
trol. Listing 11.6 shows these properties set in the Form1_load method.

private void Form1_Load(object sender, EventArgs e)

 {
 salesByTerritory.EnforceConstraints = false;
 reportViewer1.LocalReport.EnableExternalImages = true;
 this.dataTable1TableAdapter.Fill(
 this.salesByTerritory.DataTable1);
 this.reportViewer1.RefreshReport();
 }

You are now ready to see the finished product. Simply run the application and the
ReportViewer will show you your newly converted report. To prove that this local
report is not dependent on the Report Server, try stopping the ReportServer service
(ReportingServicesService.exe) and running the application.

11.5.2 Converting RDLC files into RDL files

You may find yourself wanting to convert a local client report file (.rdlc) into an
.rdl file so that you can deploy it to the Report Server and take advantage of server

Figure 11.17 Once you have

created a matching data source,

you can add this to your local

report

Listing 11.6 The Load event of the form

➥

CONVERTING REPORT FILES 415

features such as caching, scheduling, or snapshots. Let’s take the report that you cre-
ated in section 11.3.1 and convert it into a format that you can deploy to the Report
Server. This is a simple three-step process.

Step 1 Copy the RDLC file from the file system into a temporary directory and
rename it with an .rdl extension. If you didn’t rename the RDLC file from
the example earlier, it is called Report1.rdlc.

Step 2 From an RS Project in Visual Studio, add the file from step 1 to the project
by right-clicking on the Project menu, selecting Add Existing Item, and nav-
igating to and adding the file you renamed in step 1.

Step 3 When the file has been imported, open it in the designer, select the Data tab,
and click the Edit (…) button, as shown in figure 11.18. Update the connec-
tion information to point to the database that you want (AdventureWorks)
and you are done. You can now click the Run (!) button and verify that the
dataset can be retrieved.

You’ve now converted a local report file (.rdlc) to a Report Server file (.rdl) and
vice versa. There are pros and cons for using local mode or remote mode with the
ReportViewer. After absorbing the content in this section, switching between modes
will seem simple.

You’re now ready to investigate what you need to do to successfully deploy appli-
cations that use the ReportViewer controls.

11.6 DEPLOYING APPLICATIONS THAT USE
REPORTVIEWER CONTROLS

Deployment requirements vary depending on what type of control (web or Windows)
you are working with and what mode (remote or local) you use. Quite simply, you
need to run the ReportViewer redistributable file (ReportViewer.exe) in the
environment where the ReportViewer will execute. This section discusses the Report-
Viewer-specific requirements for deploying your web and Windows applications.

11.6.1 Redistributing the ReportViewer controls

Microsoft has provided a redistributable, self-extracting component called Report-
Viewer.exe that includes an MSI file along with other files required for a proper
installation. This redistributable file can be found at C:\Program Files\
Microsoft Visual Studio 8\SDK\v2.0\BootStrapper\Packages\
ReportViewer\ReportViewer.exe.

Figure 11.18
You will need to configure

the dataset connection

when converting RDLC

files to RDL files.
416 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

When you run this redistributable component, the files listed in table 11.6 are
copied to the Global Assembly Cache folder on the deployment computer.

11.6.2 ReportViewer deployment for Windows applications

For Windows applications, be sure to include the controls as application prerequisites
so that they can be automatically installed with your application.

You choose prerequisites in the Prerequisites dialog box. To open this dialog box:

1 Select your Windows project in the Solution Explorer and then select Properties.

2 From the Properties window, select the Publish tab to open the Publish page.

3 From the Publish page, select Prerequisites.

Figure 11.19 shows the Prerequisites dialog box.
Simply select the Microsoft Visual Studio 2005 ReportViewer check box and click

OK. Now when your application is installed, a check is performed by the installation

Table 11.6 Files installed by the ReportViewer redistributable component

File Description

Microsoft.ReportViewer.
WebForms

ReportViewer control for ASP.NET pages.

Microsoft.ReportViewer.
WinForms

ReportViewer control for Windows applications.

Microsoft.ReportViewer.
Common

Both the Windows forms and Web server control use this for the
main reporting functionality that is common in these controls.

Microsoft.ReportViewer.
ProcessingObjectModel

This exposes the report object model to allow expressions in the
report definition and access it programmatically at runtime.

Figure 11.19
Setting the

ReportViewer

redistributable

component will allow

the bootstrapping

application to

automate the

installation of the

ReportViewer controls

for Windows

applications.
DEPLOYING APPLICATIONS THAT USE REPORTVIEWER CONTROLS 417

to see if the ReportViewer is already installed. If it is not installed, the Setup program
installs it.

11.6.3 ReportViewer deployment for web applications

If you are using the ReportViewer controls in a web application, be sure that the web
server has the ReportViewer controls loaded. If you have installed Visual Studio on
your web server, you won’t need to take any further action. Typically, though, Visual
Studio is not installed on a web server unless it is a development server. In most
cases, then, you have to run the redistributable file (ReportViewer.exe) on your
web server.

11.6.4 Using the ReportViewer web server control
in a web farm

You must take some additional steps if you’re deploying an ASP.NET application in a
web farm to ensure that view state is maintained across the farm. You’ll have to mod-
ify your web application’s Web.config file by setting the machineKey element.
Setting the machineKey element forces all nodes in the web farm to use the same
process identity. This is an important step to ensure that the interactive features such
as drill-through will work properly.

For more information on setting the machineKey element, see the Microsoft
.NET Framework 2.0 documentation.

11.7 SUMMARY

We covered a lot of material in this chapter and hope you have realized that your life
has been made much easier with the ReportViewer control. No more adding browser
controls to your Windows applications; no more adding iFrames to your web pages...

We started out with an overview of the ReportViewer control and how it works.
We learned that the ReportViewer is a very handy control available with the 2.0 ver-
sion of the .NET framework. The nice thing is that there is a ReportViewer control
for both Windows and web applications. While there are two different controls for
the two types of applications, the design UI, properties, and look and feel are virtually
identical. This makes it easy for developers to switch between Windows and web
applications with ease when it comes to adding Reporting Services reports. We spent
a little time comparing the differences between the two controls.

We also learned that each of the controls has two processing modes: remote and
local. The remote mode is used to pull reports from a Report Server and integrate
them into the .NET 2.0 applications. This allows you to take advantage of the server
features such as subscriptions, history, and centralized management. This works great
for your applications where you have a dedicated access to a Report Server. If you do
not have access to a Report Server, you can use the local mode of the ReportViewer.
This means you can “unplug” yourself from the Report Server and create reports that
access data from databases, business objects, and even Web services. We compared the
418 CHAPTER 11 MASTERING THE REPORTVIEWER CONTROLS

difference between these two modes by looking at how several features of the Report-
Viewer are affected by each mode. We rounded out our overview by looking at many
of the properties available with the ReportViewer, and you saw when and why you
might want to modify these properties.

We walked through an example of how to do custom validation with the report
parameters by using the ReportViewer control. This works for both the Windows and
web control and also works for both modes of these controls. Specifically, we showed
you how to hide the parameters section and create your own parameter so that you
can have full control of the validation and placement of your parameter controls. We
modified our application to validate two date fields and ensure that the first date was
chronological before the second date.

You learned in the first chapters of this book that Report Server reports that are
deployed to the Report Server use the .rdl file extension for the report files. In this
chapter we introduced a new type of report file: the local (client) report file, which
uses the .rdlc extension. The .rdlc file extension is used by the local mode of the
ReportViewer. You learned that both of these files hold XML defined by the same
RDL schema. Since there will certainly be a need for some organizations to share
reports between these formats, we found it worthwhile to spend some time showing
how you can convert one format into the other.

Finally, we looked at the deployment of applications that use the ReportViewer
control. You must be sure that the environment that the ReportViewer will execute
in has been prepared before running the ReportViewer. You can accomplish this
with a redistributable file called ReportViewer.exe. This is pretty simple for
web applications. We covered the details of how to include the redistributable file
with the application prerequisites so that they will be automatically installed with
your application.

It is our hope that you learned enough from this chapter to start using the Report-
Viewer control in your .NET 2.0 applications. You’ll see that using these controls is
very simple and will save you and your organization a lot of time in integrating
reports into your code.
SUMMARY 419

C H A P T E R 1 2

Subscribed report delivery

12.1 Understanding subscribed report delivery 421
12.2 Configuring subscribed report delivery 425
12.3 Subscribed report delivery in action 434
12.4 Summary 450
In this fast-paced information age, we all know the value of having access to accurate,
relevant, and up-to-the-minute data. Most of us enjoy various subscription-based ser-
vices, such as magazine or e-mail subscribed delivery. Regardless of the type of infor-
mation being delivered, these services share the same common model; the subscriber
initiates the subscription service for a given period of time. The service provider deliv-
ers the service either on a regular basis or as a result of an event.

In chapter 10 we provided an overview of how RS provides on-demand delivery,
and we showed how to implement on-demand reporting features for various types of
client applications. With on-demand report delivery, the interactive user explicitly
initiates the report request.

In this chapter, we discuss the second report delivery scenario supported by
Reporting Services, where the reports are “pushed” to the user automatically by the
Report Server. As you will see, RS offers a flexible and extensible subscription-based
reporting model, suitable for both Internet and intranet-based reporting solutions.

Our discussion covers the following main topics:

• Overview of the subscribed report delivery process

• Creating standard subscriptions
420

• Creating data-driven subscriptions

• Triggering the subscribed report delivery process programmatically

12.1 UNDERSTANDING SUBSCRIBED
REPORT DELIVERY

I love subscription-based information delivery! As I type this chapter, several subscription-
based applications are running on my computer. Microsoft Outlook lets me know
when a new e-mail arrives. My favorite RSS aggregator, IntraVNews, notifies me when
my feeds are updated. The Microsoft Messenger Alerts service interrupts me every
now and then to tell me how much value my favorite stocks have lost during the
course of the day’s trading session.

The subscription-based delivery model is great because I don’t have to poll the
information sources to find out when data has changed. Instead, as long as I am sub-
scribed, information is delivered to me. This saves me a lot of time and, as the famous
adage says, time is money.

How does all this translate to reporting? There are many reporting scenarios that
may call for delivering reports via subscription, as we discuss next.

12.1.1 Subscription-based reporting scenarios

You can use subscribed report delivery to meet various reporting requirements,
including the following:

• “Pushing” reports to users on a regular basis—There could be many valid reasons
why an organization might want to implement automatic report delivery. For
example, a sales manager may want his subordinates to receive an employee per-
formance report on a quarterly basis. The company’s CEO may require that the
company sales report be sent to the top managers periodically. A financial insti-
tution may want to distribute the monthly statement report to its customers.

• Generating reports when the underlying data changes—For example, an organiza-
tion may want to e-mail the updated product catalog report when a new prod-
uct is introduced.

• Offloading long-running reports—Some reports may take substantial time and
resources to be processed. Such reports could be scheduled to be generated dur-
ing off-peak hours.

• Report archiving—You may need to periodically archive reports to a network
share for auditing purposes.

Now that you’ve seen some popular subscription possibilities, let’s discuss how the RS
subscribed delivery process works.
UNDERSTANDING SUBSCRIBED REPORT DELIVERY 421

12.1.2 The subscriber-publisher design pattern

The RS subscribed delivery model follows the subscriber-publisher (also called
observer) design pattern. This pattern is very popular with many modern program-
ming frameworks. For example, one of the main reasons for the immense success of
Microsoft Windows is its event-driven architecture. Figure 12.1 shows how you can
use the subscriber-publisher programming model in your applications.

The process is initiated by the subscriber b when it informs the publisher of its intent
to be notified when a certain event of interest takes place.

When the event occurs c, the publisher notifies the subscriber d about the
event’s occurrence.

The publisher typically runs in unattended mode, such as a background service lis-
tening to incoming events. For example, as I type on my laptop keyboard, each key-
stroke generates a hardware interrupt request. The CPU intercepts the request and
generates a software interrupt. The event traverses the operating system and applica-
tion layers to output the character on the screen. In this example, you can view the
keystroke as an event source, the CPU as a publisher, and the OS and application lay-
ers as subscribers.

Let’s now see how the subscriber-publisher pattern applies to the RS subscription-
based delivery mechanism.

12.1.3 How the RS subscription-based model works

In a nutshell, when a report is scheduled for subscribed delivery, report processing is
triggered as a result of an event, such as a timing event from a schedule. The generated
report is then delivered asynchronously to its subscribers, as shown in figure 12.2.

With RS, here’s how the subscriber-publisher pattern applies: the subscriber is typ-
ically the report’s end user who subscribes himself or other users on their behalf. For
example, a manager could subscribe herself and her subordinates to receive a report.
The publisher is the Report Server, and the event source is the SQL Server Agent.

Figure 12.1 In the subscriber-publisher model, the client (subscriber) subscribes to one or

more events. When the event occurs, the publisher notifies the subscriber.
422 CHAPTER 12 SUBSCRIBED REPORT DELIVERY

To better understand the process flow, we could break down subscribed report deliv-
ery into two phases:

• Creating the report subscription interactively by the user

• Processing and delivering the report asynchronously

In the sections that follow, we refer back to figure 12.2 to explain each phase.

Creating report subscriptions

While we are not excluding the possibility of more sophisticated ways to generate sub-
scriptions, such as by applications running in unattended mode, typically the user will
create the subscription interactively by using a client application, which we call a
report consumer. For example, the user could access b the Report Manager to ini-
tiate the subscription process.

Once user has entered the subscription details, the report consumer invokes c
one of the CreateSubscriptionXXX RS Web service SOAP APIs to save d the
subscription details in the Report Catalog and schedule the subscription.

NOTE Some of you may need to create subscriptions programmatically using the
SOAP API. The documentation has good examples of how this could be
done for both subscription types supported by RS. For this reason, we
decided not to include a code sample to demonstrate this concept. If the
documentation samples are not enough, you can use the tracing technique
we showed you in chapter 8 to find out how the Report Manager uses the
Web service API to create and schedule subscriptions.

At this point, the Report Server has saved the subscription details in the Subscriptions
table in the report catalog, and control is returned to the report consumer. This step
concludes the interactive, synchronous part of the subscription process.

Figure 12.2 With the subscription-based report delivery model, the report processing is

triggered by an event and the generated report is delivered asynchronously to its subscribers.
UNDERSTANDING SUBSCRIBED REPORT DELIVERY 423

Executing report subscriptions

RS supports two kinds of events that can trigger the subscribed delivery:

• Time-based events, such as events generated by a subscription-specific or
shared schedule

• Snapshot refreshes (for snapshot reports only), where the subscription process-
ing is initiated when the snapshot data is updated

Going back to figure 12.2, here is a simplified version of the process flow for execut-
ing subscriptions. Once the subscription event is up, the SQL Agent job inserts e a
record into the Event table. As you saw in chapter 8, the Reporting Services Win-
dows Service (ReportingServicesService.exe) scans this table on a regular
basis to see if any new events have been published. As you probably recall, the polling
interval can be configured by adjusting the PollingInterval setting in the
RSReportServer.config configuration file.

In case there is a new event, the Reporting Services Windows Service picks it up
f and handles the event. Specifically, for a time-based subscription this means cre-
ating a notification record in the Notifications table. The Windows Service
polls the Notifications table periodically. When it discovers a new entry, the
Windows Service creates g a notification object. If the subscription is data driven
(more on this in section 12.2.2), the Windows Service creates as many notifications
as the number of recipients.

Next, the Report Server instantiates the delivery extension associated with the sub-
scription and passes h the notification object to it.

DEFINITION Delivery extensions are .NET assemblies that implement the Reporting Services
delivery extension API. Delivery extensions are able to receive notifications
from the Report Server and distribute reports to various destinations. Out
of the box, RS comes with two delivery extensions for e-mail and file share
delivery. Developers can write custom delivery extensions to distribute
reports to other destinations, as we demonstrate in chapter 13.

Finally, the delivery extension distributes the report to its final destination—for exam-
ple, by sending an e-mail to the recipient in the case of e-mail delivery or saving the
report’s payload to a network share for file share delivery.

As you’ve just seen, the second phase of subscribed report delivery is executed
entirely in unattended mode. Therefore, subscribed reports are subject to the same
limitations as report snapshots, which we discussed in chapter 8. Specifically, these
limitations are as follows:

• The identity of the interactive user is not available during the report’s process-
ing stage.

• Report parameter values must be specified when the subscription is created.

• Stored data source credentials must be used for database authentication.
424 CHAPTER 12 SUBSCRIBED REPORT DELIVERY

Let’s explain each of these limitations in more detail.
First, the user-specific information is not available when reports are delivered via

subscriptions. Specifically, this means that it is not possible to access the properties of
the User global collection, for example, to get the user’s identity or the language
identifier. Failure to abide by this rule results in the following error message when an
attempt is made to create a new subscription:

Subscriptions cannot be created because the credentials used to
run the report are not stored, the report is using user-defined
parameter values, or if a linked report, the link is no longer
valid.

Second, because the report is generated in unattended mode, the report parameter
values have to be known by the time the report is processed. Look at the signatures of
both subscription-related web methods, CreateSubscription and Create-
DataDrivenSubscription, and you notice that they take a Parameters array
of type ParameterValue, which you can use to fill in and pass the report parame-
ters. If you use the Report Manager to create the subscription, notice that it generates
parameter placeholders for each parameter on the Subscriptions page.

NOTE If a user creates a subscription with a certain parameter, and then you set
the report to snapshot execution but choose a new parameter value, if the
subscription is run, it will be deactivated. Deactivating the subscription
provides an indication that the report has been modified. To reactivate the
subscription, the user needs to open and then save the subscription.

If the parameter has a default value, you can use it if you don’t want to specify the
value explicitly.

Finally, stored credentials must be used for authenticating against the data source,
because subscriptions are processed in an unattended mode and it is not possible to
supply the credentials interactively.

Having discussed subscribed report delivery at a high level, let’s now see how the
end user can configure and manage subscriptions using the Report Manager.

12.2 CONFIGURING SUBSCRIBED REPORT DELIVERY

Subject to security permissions, with RS each end user can use the Report Manager
web portal to subscribe to a report of interest. For example, a sales manager can sub-
scribe to receive the Territory Sales Crosstab report that we authored in chapter 4 on
a regular basis, for example, each quarter.

To create a new subscription, the user must specify the following:

• The report that the subscription will be attached to; a subscription is always
associated with exactly one user and one report.

• The subscription type, for example, standard or data driven; we discuss the sup-
ported subscription types in section 12.2.2.
CONFIGURING SUBSCRIBED REPORT DELIVERY 425

• The delivery extension type, for example, e-mail or file share delivery.

• The event that will trigger the subscription, such as a timing event based on
a schedule.

• The report parameter values for parameterized non-snapshot reports.

Although the process of creating subscriptions looks involved, the Report Manager
makes it easy, as you see next.

12.2.1 Creating a new subscription

In the typical scenario, enterprise users access the Report Manager portal to create and
manage the subscriptions they own, as shown in figure 12.3.

To create a new standard subscription with the Report Manager, the end user per-
forms the following steps:

Step 1 Navigate to the report the user wants to subscribe to.

Step 2 Click the New Subscription button found on the View and Subscrip-
tions tabs.

Step 3 Enter the subscription details.

These steps require that the user is in a role with the Manage Individual Sub-
scriptions task assigned to it. Refer to section 9.3 of chapter 9 to review configur-
ing the tasks assigned to roles.

Some delivery extensions may call for a more involved setup process. For example,
most organizations will be cautious about letting users send reports via e-mail to an
arbitrary list of recipients. For this reason, the Report Server is set up by default to
require a two-phase setup process for configuring e-mail subscriptions, as follows:

• Creating the subscription—This phase can be performed by individual users and
requires only the Manage Individual Subscription task. During this phase the
Report Manager prevents the user from entering the recipients’ addresses by

Figure 12.3 End users can use the Report Manager to create subscriptions.
426 CHAPTER 12 SUBSCRIBED REPORT DELIVERY

disabling the To field and hiding the Cc (Carbon copy) and Bcc (Blind carbon
copy) fields.

• Finalizing the subscription—By default, only users with rights to execute the
Manage All Subscriptions task can enter the recipients’ addresses.

NOTE The availability of the e-mail address fields (To, Cc, and Bcc) is controlled
by the SendEmailToUserAlias setting in the Report Server configura-
tion file (RSReportServer.config). If this setting is True (the default),
only users who have rights to the Manage All Subscriptions task can change
these fields. If the setting is False, these fields are enabled for any user who
has rights to the Manage Individual Subscriptions task. For better security,
we suggest that you leave this setting set to True so that you can control the
e-mail recipient list.

Let’s now discuss what types of subscriptions are natively supported by Report-
ing Services.

12.2.2 Choosing the subscription type

With RS you can create two types of subscriptions:

• Standard subscriptions—With this type of subscription, the subscription con-
figuration details are fixed and must be known at the time the subscription is
set up.

• Data-driven subscriptions—With data-driven subscriptions, many aspects of the
subscription can be dynamic. For example, a data-driven e-mail subscription
can retrieve the list of recipients from a database. The Report Server retrieves
them from a data store when the subscription is processed.

These two types correspond to the CreateSubscription and CreateData-
DrivenSubscription SOAP APIs, respectively. Let’s find out how to create and
manage both types of subscriptions.

Setting up standard subscriptions

The configuration details of standard subscriptions, such as the report’s export for-
mat, list of recipients, and so forth, are static. For example, with standard e-mail sub-
scriptions you enter a fixed list of e-mail recipients by specifying each recipient’s
e-mail address. Standard subscriptions require only rights to the Manage Individual
Subscriptions task, which the predefined Browser role already includes.

To create a standard subscription using the Report Manager, the end user follows
these steps:

Step 1 Navigate to the report of interest.

Step 2 Click the Subscriptions tab, as shown in figure 12.4.

Step 3 Click New Subscription.
CONFIGURING SUBSCRIBED REPORT DELIVERY 427

Clicking New Subscription opens the Report Delivery Options screen. The options
on this screen vary depending on the selected delivery extension; you see an example
in section 12.3.

You use standard subscriptions when the subscription details for all recipients are
the same. For example, you may want to push a report by e-mail to a small list of
recipients. All recipients will receive the report in a single format, such as PDF. No
personalization is necessary, meaning you don’t have to greet the recipient by first
name. In this case, a standard e-mail subscription is a good choice.

Sometimes your requirements may call for more flexible subscription options,
such as when you want to allow the recipients to specify their preferred report format.
In this case, you can use data-driven subscriptions.

Setting up data-driven subscriptions

As its name suggests, data-driven subscriptions permit certain subscription properties
to be retrieved from the database during runtime, including:

• The list of recipients

• The report rendering format

• The report parameters

• Extension-specific properties, such as Priority and Subject for reports delivered
via e-mail

As you can probably imagine, data-driven subscriptions offer a lot of flexibility by
allowing you to customize the report’s content and destination. Here are some scenar-
ios where data-driven subscriptions could be useful:

• An organization can e-mail the product catalog report to its customers who
have placed orders in the past six months.

• Reports can be personalized by synchronizing the report parameters with the
results from the subscription query. For instance, an Order History report could
greet the user by his name.

Figure 12.4 To create a standard subscription with the Report Manager, click the

New Subscription button found on the report’s Subscriptions tab.
428 CHAPTER 12 SUBSCRIBED REPORT DELIVERY

• An organization could permit the report’s users to customize certain aspects of
the report delivery during the subscription process. For example, a customer
could be given an option to specify the preferred report format, such as
MHTML or PDF, during the subscription process.

Data-driven subscriptions mandate having rights to the Manage All Subscriptions
task. If the role-based security policy of the interactive user includes this task, then the
New Data-driven Subscription button is visible in the Report Manager interface, as
shown in figure 12.4.

Data-driven subscriptions require a data store that holds the subscriber’s data. As
a part of setting up a data-driven subscription, you need to specify a database query
to retrieve the recipient list. This query could be one of the following:

• A non-parameterized SQL SELECT statement that retrieves the recipient list
from a database table or view, for example:
 select * from recipients where type='individual'

• A stored procedure call prefixed with EXEC, for example:
 EXEC spGetRecipients 1, '2006',…

You cannot use input parameters for this query; however, you can use the results from
this query to determine the delivery extension settings in the next step.

The statement must produce a rowset with as many rows as the number of recip-
ients. The Report Manager Subscription Wizard facilitates the query setup process, as
shown in figure 12.5.

In this case, we omitted the EXEC command from the stored procedure call,
which resulted in an error when Validate was clicked. The validation logic checks to
determine whether the query is syntactically correct by parsing and sending the query
to the data source. It doesn’t validate whether the returned data is semantically correct
or whether the call has resulted in an empty dataset.

The Subscription Wizard is kind enough to list the delivery extension’s publicly
available properties. You can use fields from the query to set these properties, as you
see in a data-driven subscription example in section 12.3.3. During runtime, the
Report Server executes the query to get the list of recipients. For each recipient row,
the Report Server sets the data-driven properties of the delivery extension and asks the
extension to distribute the report.

Developers writing custom delivery extensions appreciate the data-driven sub-
scription model because querying the database and setting up the subscription prop-
erties are responsibilities of the Report Server, not the extension. This allows
developers to focus only on implementing the delivery logic by shifting the task of
generating the list of recipients to the Report Server. Once the delivery extension is
ready, it can be used as both a standard and a data-driven extension. You learn how
this can be done in chapter 13.
CONFIGURING SUBSCRIBED REPORT DELIVERY 429

12.2.3 Configuring delivery extensions

As a part of the subscription configuration process, you select the extension responsi-
ble for delivering the report to its final destination. If you use the Report Manager,
you define the subscription-delivery extension association using the Report Delivery
Options page (see figure 12.7 later in this chapter), which is the first page shown after
you click either New Subscription or New Data-Driven Subscription.

Out of the box, RS comes with two extensions to address two of the most common
delivery scenarios:

• E-mail delivery extension—Sends reports to one or more recipients via e-mail

• File share delivery extension—Persists reports as disk files to a target folder, such
as a network share

Figure 12.5 The Report Manager Subscription Wizard makes setting up the subscription
query easy.
430 CHAPTER 12 SUBSCRIBED REPORT DELIVERY

When these two extensions are not enough, you can extend RS by plugging in custom
extensions. We show how to accomplish this by creating a Web service delivery exten-
sion in chapter 13, which can be used to send reports to a Web service.

When you set up your subscription, you may wonder why none of the HTML-
based export flavors appear in the Format drop-down list. This can be explained by
the fact that all HTML formats except MHTML are multistream rendering formats
and require additional trips to the Report Server to fetch the report’s images.

Although a delivery extension can render the report’s image streams on the server,
“shredding” the report in this way may be unacceptable. For example, in the case of
e-mail report delivery, using an HTML-based format may result in several mail attach-
ments: one for the report body and one for each report image. Therefore, if you need
to send reports in HTML format, consider the MHTML export option, which embeds
the images inside the report’s payload.

Configuring the e-mail delivery extension

Delivering reports successfully via the e-mail delivery extension requires a preconfig-
ured and functioning mail server.

NOTE Windows 2000 and 2003 include SMTP services that you can use to send
e-mail. Windows 2003 also comes with a POP3 service that you can lever-
age to receive e-mail in your applications if they need this functionality. For
more information about how to set up these services, refer to your operat-
ing system documentation.

Once the e-mail server is ready, you need to configure the Report Server to use it for
e-mail delivery. To accomplish this, change the e-mail extension settings found under
the <Report Server Email> element in the RSReportServer.config con-
figuration file. The RS documentation explains the role of these settings in detail, so
we won’t discuss them here.

TIP Many organizations use Microsoft Exchange Server as an e-mail server. If
you want to use an existing Exchange Server for e-mail report delivery,
here’s how to configure the Report Server. First, find the fully qualified
domain name (FQDN) of the Exchange Server. One way to accomplish
this, besides harassing the network administrator, is to look at the message
header of any of the e-mail messages received in your Outlook Inbox. To
do so, open a received e-mail and select Options from the View menu. In
the Internet Headers textbox you see something like this:

Microsoft Mail Internet Headers Version 2.0
Received: from <exchange server FQDN> ([xxx.xx.xxx.xxx]) by
<exchange Server FQDN > with Microsoft SMTPSVC(xxx.xx.xxx.xxx);
 Sat, 13 Mar 2006 11:44:49 -0600

In my case, the first Exchange Server FQDN gave me the fully qualified
name of the Exchange Server responsible for servicing the outgoing e-mail
in my domain.
CONFIGURING SUBSCRIBED REPORT DELIVERY 431

Sometimes the FQDN of the Exchange Server that you will get from the message
headers may point to an incoming mail server that may not necessarily be the server
responsible for outbound mail messages. Check with your network administrator to
verify whether this is the case. In addition, an outbound Exchange Server may require
authentication to avoid relaying.

NOTE Once you get the name of the Exchange Server, you can change the
SMTPServer setting in RSReportServer.config to point to that
Exchange Server. In my case, changing this setting and setting the “From”
e-mail account were sufficient to send reports via e-mail successfully.

It is important to note that the RS e-mail extension doesn’t verify the status of the
e-mail delivery. For example, the Report Server has no way of knowing whether
the e-mail delivery to a given recipient address has failed. Developers who have writ-
ten code in the past to send e-mail programmatically should be able to relate to this
limitation easily.

As far as the Report Server is concerned, the execution of the subscribed delivery
task is successful as long as the e-mail is relayed successfully to the mail server. There-
fore, you must work with the mail server’s administrator to ensure that the report has
indeed been delivered successfully to all subscribers.

Configuring the file share delivery extension

Configuring file share delivery is easy. As a part of the subscription process, you spec-
ify the file share location and credentials in order to access the file share.

The file share path must be specified in Uniform Naming Convention (UNC) for-
mat. The UNC format requires the following syntax:

\\<computername>\<sharename>

Make sure that the shared folder exists because the file delivery extension doesn’t cre-
ate the folder, so the delivery process will fail otherwise.

You also need to enter the credentials (username and password) of the Windows
account that will be used to access the file share. Once the subscription is configured,
it can be managed via the Report Manager UI.

12.2.4 Managing subscriptions

As the report administrator, you configure the role-based security policies that dictate
which rights a given user has for managing report subscriptions. For example, typi-
cally end users have rights to manage the subscriptions they own, while you are
responsible for managing all subscriptions.
432 CHAPTER 12 SUBSCRIBED REPORT DELIVERY

Using My Subscriptions

End users who have rights to the Manage Individual Subscriptions task can view and
use the options on the Report Manager’s My Subscriptions page. This page lists the
subscriptions they own, as shown in figure 12.6.

The My Subscriptions page is similar to the screen linked to the Subscriptions tab, but
it doesn’t give the user an option to create new subscriptions. Using My Subscriptions
or the Subscriptions tab from the report properties allow users to:

• Make changes to an existing subscription

• See the last date and time when the subscription was run

• Verify the subscription status

• Delete the subscription

Managing all subscriptions

Users with rights to the Manage All Subscriptions task can manage the subscriptions
they own plus those of other users. The Report Manager doesn’t include a screen that
shows a single view of all subscriptions. Instead, you need to drill down to individual
reports to see the subscriptions associated with each report.

For example, to see all time-based subscriptions, follow these steps:

Step 1 Click the Manage Shared Schedules link from the Site Settings menu.

Step 2 Select the schedule of interest.

Step 3 View the reports linked to that schedule.

Step 4 Click the Subscriptions tab for each report to get to the subscriptions associ-
ated with that report.

As a workaround, if you want to see all subscriptions, you can create a database view
that links the Subscriptions, Catalog, and Users tables to return the report
and usernames.

Figure 12.6 Users can use the My Subscriptions page to manage the subscriptions they own.

Here, the user is subscribed to the Sales by Territory report.
CONFIGURING SUBSCRIBED REPORT DELIVERY 433

You can prevent individual users from creating subscriptions by setting up a new
role that doesn’t include the Manage Individual Subscriptions task and assigning
users to this role. Alternatively, assuming that the users belong to the Browser role,
you can exclude the Manage Individual Subscriptions task from this role.

Sometimes you may want to prevent users from selecting specific delivery options.
For example, strict security requirements may disallow sending reports via e-mail.
You can disable delivery extensions by removing their definitions from the configu-
ration files. In the previous scenario, to prevent the Report Manager from showing
the Report Server Email delivery option in the Deliver By drop-down list, simply
remove or comment out the corresponding element from the RSWebApplica-
tion.config configuration file.

NOTE Removing a delivery extension from the RSWebApplication.config
file only prevents this extension from showing in the Report Manager UI.
You can still use the SOAP subscription-related APIs to create subscriptions
associated with the excluded extension. If you want to prevent users from
creating subscriptions with a given delivery extension, remove it from the
RSReportServer.config file.

Now that we’ve covered the theory behind subscribed report delivery, let’s put it into
action to address some common subscription-based needs.

12.3 SUBSCRIBED REPORT DELIVERY IN ACTION

In this section, we implement the following examples:

• A standard e-mail subscription

• A standard file-based subscription

• A data-driven e-mail subscription

• Triggering a subscription programmatically

12.3.1 “Pushing” reports via standard e-mail subscriptions

In our fictitious scenario, the AWC North American Sales Manager, Michael Blythe,
will subscribe his subordinates to receive the Employee Sales Freeform with Chart
report, which you created in chapter 4. Let’s assume that Michael has rights to execute
the Manage Individual Subscriptions task included by default in the Browser role. To
simulate this scenario, you could reuse Michael’s Windows account that you created
in chapter 9. If you decide to do so, remember to grant this account Browser permis-
sions to the AWReporter folder.

To make things more interesting, let’s also assume that Michael doesn’t have
rights to the Manage All Subscriptions task and that SendEmailToUserAlias is
set to True (the default value). As a result, the e-mail address fields (To, Cc, and Bcc)
will appear disabled for Michael. Therefore, you will need to finalize the subscription
that was initiated by Michael by entering the recipients’ e-mail addresses.
434 CHAPTER 12 SUBSCRIBED REPORT DELIVERY

Creating a standard e-mail subscription

Start by logging into Windows with Michael’s login credentials. Next, perform the
following steps:

Step 1 Use your favorite browser to open the Report Manager web application.

Step 2 Navigate to the Employee Sales Freeform with Chart report.

Step 3 Select New Subscription from the View or Subscriptions tab. This initiates
the process of creating a new subscription, as shown in figure 12.7.

As you can see, the Report Manager adjusts the user interface to reflect the fact that
Michael doesn’t have rights to execute the Manage All Subscriptions task. Specifically,
the following changes are made:

Figure 12.7 Use the Report Manager to create an individual e-mail subscription.
SUBSCRIBED REPORT DELIVERY IN ACTION 435

• The To field is disabled, so Michael can’t enter the recipients’ e-mail addresses.

• The Cc, Bcc, and Reply-To fields are missing.

• The screen doesn’t give the user an option to run the subscription on a
shared schedule.

Some of the available fields deserve more attention. The default Subject field has two
predefined variable placeholders, @ReportName and @ExecutionTime. During
runtime, the Report Server will replace them with their counterparts from the Global
object collection, ReportName and ExecutionTime. While you may think that
you can use the rest of the Global variables, for example, TotalPages or Report-
ServerUrl, this is not the case. Why? We don’t know. A good case could be made
to support parameter values, results from a call to custom code, and so on.

Checking the Include Report check box will embed the report in the e-mail
when the export format is a Web archive (MHTML) or else it will enclose it as an
e-mail attachment.

If selected, the Include Link check box will add the report’s URL to the body of
the e-mail. This could be useful when you want to let the user conveniently request
the report to see the latest data.

The Priority field reflects the status under which the e-mail will be sent. For exam-
ple, if the subscription is created with a high priority, Microsoft Outlook will show
an exclamation mark in the Importance field.

Finally, for parameter-driven reports, the Report Manager generates placeholders
for each report parameter. For nonsnapshot reports, the user can enter the parameter
values or opt to use the default values.

Although Michael can create a subscription-specific schedule to trigger the sub-
scribed delivery, he won’t get very far. The e-mail server will error out when trying to
resolve the recipients’ addresses. In short, the security-conscious user interface of
Report Manager is good enough to log the subscription request, but not to execute it
successfully. Doing so requires intervention by you, the report administrator.

Finalizing the e-mail subscription

Let’s now assume that Michael has notified you of his intention to distribute the
report to a fixed number of sales representatives. At this point, ensure that you are
logged in as the administrator, navigate to the report, and override Michael’s subscrip-
tion, as shown in figure 12.8. In our scenario, you would enter the e-mail addresses of
Michael’s subordinates.

TIP You will probably recall that in chapter 5 we authored the Corporate Hier-
archy report. You can create similar reports to find out who reports
to whom.

The e-mail addresses shown in figure 12.8 are taken from the AdventuresWorks data-
base and are fictitious. To test the example successfully, you may want to enter valid
436 CHAPTER 12 SUBSCRIBED REPORT DELIVERY

e-mail addresses in the To field. In addition, you may want to change the schedule
duration to a shorter interval, such as every five minutes. Don’t forget to stop the
schedule or dissociate the report from it when you have finished experimenting to
prevent filling up your e-mail box.

That’s it! At this point the standard e-mail subscription is scheduled and ready for
execution. When the schedule is up, the Report Server generates the Employee Sales
Freeform with Chart report and mails it to the specified recipients.

12.3.2 Archiving reports to a file share

In this scenario, you archive the Territory Sales by Quarter report that you authored
in chapter 8 each time its underlying data is refreshed. As you probably recall, you
configured this report to be executed as a snapshot that is refreshed on a quarterly
basis. You set the snapshot execution process to be triggered by a shared schedule.

This time you’ll extend this example by creating a subscription that runs each time
the snapshot is refreshed. The subscription exports the report in PDF and uses the file
share delivery extension to save the report as a file to a network share.

Figure 12.8 As report administrator, you can finalize the report subscription by entering the

recipients’ addresses.
SUBSCRIBED REPORT DELIVERY IN ACTION 437

Setting up the target folder

Start by choosing the target folder where the report archive will be created. The file
share delivery extension doesn’t create the specified folder if it doesn’t exist, so you
need to specify an existing folder. For the purposes of this demo, choose to export the
report to the C:\Reports folder. In real life, you would probably want to use a glo-
bally accessible network share. As we’ve discussed, the target folder must be specified
in the Uniform Naming Convention (UNC) format that includes the computer’s net-
work name. In our example, the UNC format for C:\Reports is \\<computer-
name>\C$\Reports.

NOTE In our case we use an administrative share (indicated by the $ sign). In real
life, you should use network shares that are off the root of the server, for
example, <computername>\Reports.

As we’ve said, to create file share subscriptions, the user must have rights to the Man-
age Individual Subscriptions task. Unlike working with e-mail subscriptions, however,
the Report Manager doesn’t enforce any additional security rules. Therefore, users
with rights to the Manage Individual Subscriptions task will be able to configure exe-
cution-ready file share subscriptions.

You may wonder why file share subscriptions are more relaxed in terms of security.
The reason for this laissez faire approach is that file share delivery is naturally more
restricted than e-mail delivery because the report cannot be exported outside the orga-
nization’s boundaries. In addition, access to UNC shares can be controlled by other
means, such as using Windows access control lists (ACLs).

Configuring file share delivery

Once you’ve decided on the target folder, follow these steps to configure the Territory
Sales by Quarter report for file-share delivery:

Step 1 Using the Report Manager, navigate to the Territory Sales by Quarter report.

Step 2 Verify that the report is scheduled for a snapshot execution by checking the
Execution tab’s properties. If it isn’t, follow the directions in chapter 8 to
configure the report for snapshot execution that is triggered by the shared
Quarterly Schedule.

Step 3 Click the New Subscription button on the View or Subscriptions tab. Con-
figure the file share delivery as shown in figure 12.9.

To export the report to a target folder, use the Report Server File Share delivery option,
which delegates the report distribution to the file share extension. To append the
export format extension, select the Add a File Extension When the File Is Created
check box. This allows the user to double-click on the file and load the report in the
application that is associated with the file extension, for example, Adobe Acrobat for
files with the .PDF extension.
438 CHAPTER 12 SUBSCRIBED REPORT DELIVERY

In my case, the share UNC path is \\16371xp\c$\reports because my computer is
named 16371xp. The export format is set to Adobe Acrobat (PDF). The file share
extension requires you to specify the credentials of a Windows account that has write
access to the target folder. The overwrite options are self-explanatory.

To trigger the subscription when the report snapshot is refreshed, choose the
When the Report Content Is Refreshed option. This option is available only for snap-
shot reports.

Parameter limitations

Finally, note that the parameter placeholders are disabled. As we discussed in chapter
8, once the snapshot parameter values have been defined, they cannot be changed
prior to the report’s execution. In our case, this means that the report will filter the
report data for the third quarter.

Remember to change the parameter value on the report’s Parameters tab before
the next quarterly execution. Of course, you could avoid having to do this by

Figure 12.9 To configure a file share subscription for report archiving, specify the file share

path in UNC and the account credentials.
SUBSCRIBED REPORT DELIVERY IN ACTION 439

changing the report to filter the underlying data using the system date instead of using
a report parameter.

Observing the subscription results

Once you’ve defined the file share subscription, you’re ready to put it into action.
Instead of waiting for the next quarter, let’s change the Quarterly shared schedule

interval to five minutes. Then, switch to the Territory Sales by Quarter report’s Sub-
scriptions tab, as shown in figure 12.10.

Note that the Trigger column shows SnapshotUpdated to signify that the sub-
scription will be triggered by a snapshot refresh.

Once the schedule is up, the Report Server processes the report and asks the file
share extension to deliver the report. As a result, the report is saved to the specified
target folder.

12.3.3 Sending reports to a data-driven list of recipients

While distributing reports to a fixed list of recipients may be useful for intranet-ori-
ented reports, it may be impractical when reports need to be delivered to web-based
subscribers. For example, imagine that Adventure Works Cycles (AWC) would like
to send the Product Catalog report to its web customers on a regular basis. Hardcod-
ing hundreds and thousands of customers’ e-mail addresses would present a mainte-
nance challenge.

In addition, a common requirement for Internet-oriented applications is to sup-
port report personalization features and customize the report to meet the specific
requirements of the user. For example, it is unlikely that all customers would like to
receive the Product Catalog report exported in the same format. Instead, a better
approach is to allow the subscribers to specify the export format, such as PDF or
HTML. All of these requirements call for a more flexible subscribed delivery option.

On the provider side, many organizations may want to implement custom deliv-
ery rules to filter out the list of recipients who will receive the report. For example, to

Figure 12.10 Use the Subscriptions tab to observe the subscription run.
440 CHAPTER 12 SUBSCRIBED REPORT DELIVERY

fight the recent proliferation of spam e-mail, government regulations in the United
States dictate that all commercial e-mail must allow the subscribers to be able to opt
out at will from e-mail distribution lists.

Another common scenario that requires validating business rules is when an orga-
nization wants to deliver reports only to recipients who meet specific criteria. For
example, AWC may want to distribute the product catalog report only to subscribers
who have placed orders in the past six months.

To address needs such as these, RS supports data-driven subscriptions. In this
section, you implement a data-driven e-mail subscription to meet the following
design goals:

• Create a data store to capture the subscribers’ data. In real life, the AWC cus-
tomers would typically use a web-based front end to opt in for subscribed report
delivery. The data store could also save the customers’ subscription preferences.

• Configure an e-mail data-driven subscription to send the Customer Order His-
tory report to all subscribers. As you’ll probably recall, you created this report in
chapter 11 to show the orders placed by the customer in the past.

• Allow the report’s recipients to customize the report by specifying the export
format and e-mail priority.

Creating the subscriber data store

The AdventureWorks database model supports several types of customers, includ-
ing individuals, stores, and retail. The individuals’ profile data is captured in the
Individual table. If you look at the definition of this table you will see that,
among other things, it stores the customers’ names and e-mail addresses, which makes
this table suitable for a recipient data store. Unfortunately, the AdventureWorks data
is not consistent. Specifically, the orders placed by individuals don’t have matching
records in the Individual table.

To fix this, you need to add customer records to the Individual table with
identifiers matching the CustomerID column in the SalesOrderHeader table.
To make your life easier, we’ve provided a SQL script that you can run to insert a few
customer records. The script is called Recipients.sql and it is located in the
Database.dbp project. If you want to test the e-mail delivery end to end, be sure
to change the customers’ e-mail addresses to valid e-mail addresses.

To simulate an opt-in distribution list, we created a database view, called Recipi-
ents, which you can find in the Views.sql script located in the same project. The
view simply filters out data in the Sales.Individual table to return only the cus-
tomers whom we’ve added using the Recipients.sql script. In real life, instead
of a view, you may want to use a stored procedure to implement additional business
rules. Figure 12.11 shows what the subscriber data looks like as returned by the view.

To implement the view, we decided to reuse the CreditCardNumber and
EmailPromotion columns from the Individual table to store the report format
SUBSCRIBED REPORT DELIVERY IN ACTION 441

and e-mail priority data, respectively. We did so to avoid adding columns to the
Individual table.

Once you’ve created the view, don’t forget to grant permissions to it for the
database login that the AW Shared DS data source uses to log in to the Adventure-
Works database.

Configuring the e-mail data-driven extension

Now it is time to create the subscription. Open the Report Manager portal and navi-
gate to the Customer Orders report. Click the Subscriptions tab and choose New
Data-Driven Subscription to launch the Data-Driven Subscription Wizard. For our
example, choose to distribute the report via e-mail (figure 12.12). In addition, specify
that the subscriber data store will be queried using a shared data source; you’ll specify
that data source in the next step. Click Next.

Because you chose the shared data source option in Step 1, you need to tell
the wizard where it is located, as shown in figure 12.13. In this example, select the

Figure 12.11 Create a view to serve as a subscriber data source.

Figure 12.12 The first step of the Data-Driven Subscription Wizard allows you to name your

subscription and choose the subscription type.
442 CHAPTER 12 SUBSCRIBED REPORT DELIVERY

AW Shared DS data source because the Recipient view is located in the Adventure-
Works database.

Next, you need to set up the query that will return the list of recipients, as shown
in figure 12.14. To follow along with our example, select all records from the Recip-
ient view.

The next step is the most important: setting up the data-driven subscription.
Here, you map the recipients’ addresses and optionally other extension-specific prop-
erties to the query fields, as shown in figure 12.15. Set the extension properties as
shown in table 12.1.

As you can see, data-driven subscriptions provide a lot of flexibility to customize
the report’s execution. Any delivery extension property can be set to get its value from
the recipients’ rowset. In our scenario, your web customers could specify the report’s
format and e-mail priority.

In the next step, you must take care of the report parameters, as shown in
figure 12.16. The Customer Orders report takes a single parameter, CustomerID.
To synchronize the report with the recipients’ rowset, link this parameter to the
CustomerID column returned by the query.

Finally, let’s set this subscription to be triggered on a quarterly basis by using the
predefined Quarterly Schedule, as shown in figure 12.17.

That’s it! You’ve managed to set up an automated data-driven report delivery in
six easy steps. You can apply a similar approach to implement an e-mail campaigner

Figure 12.13 In Step 2 of the wizard, specify the data source that will be used to get the

subscriber data.
SUBSCRIBED REPORT DELIVERY IN ACTION 443

Figure 12.14 In Step 3 of the data-driven subscription wizard, specify the query statement

used to return the recipient list.

Figure 12.15 In Step 4 of the data-driven subscription wizard, specify the

delivery extension settings.
444 CHAPTER 12 SUBSCRIBED REPORT DELIVERY

Table 12.1 Mapping extension properties to query fields

Extension Property Setting Comment

To EmailAddress (database field) Data-driven from the recipient query.

Cc No Value We won’t cc the e-mail to another
recipient.

Bcc No Value We won’t bcc the e-mail to another
recipient.

Reply-To No Value There is no need to specify an explicit
return address.

Include Report True The report will be embedded when the
report format is MHTML or attached
otherwise.

Render Format Format (database field) Data-driven from the recipient query.

Priority Priority (database field) Data-driven from the recipient query.

Subject @ReportName was executed at
@ExecutionTime

Will be replaced automatically by the
Report Server to read “Customer Order
was executed at <the time when the
schedule is triggered>”.

Comment No Value There is no need for comments.

Include Link False Web-based recipients won’t normally have
URL access to the Report Server, so there
is no need to give them an option to
request the report by URL

Figure 12.16 In Step 5 of the wizard, filter the customer orders per recipient. Do this by setting

the CustomerID report parameter to the CustomerID column from the recipients’ rowset.
SUBSCRIBED REPORT DELIVERY IN ACTION 445

service to send the product catalog by e-mail to a list of subscribers when there is a new
product promotion. Or a spam service? (Just kidding to see if you are still here!) You
can further enhance this scenario to add more personalization features. For example,
you could easily modify the Customer Orders report to greet the user by name.

You can use any delivery extension with data-driven subscriptions. For example,
with file share subscriptions, the recipient’s data source could keep the target folders
where the reports need to be saved.

With RS you are not limited to triggering your subscriptions on a fixed schedule.
Instead, you can programmatically fire subscriptions, as we discuss next.

12.3.4 Triggering subscriptions programmatically

While running subscriptions at a reoccurring scheduled interval can be very useful,
sometimes you may need to programmatically trigger the subscribed delivery process.

For example, say you have scheduled an e-mail delivery of the Adventure Works
product catalog to a list of subscribers on a quarterly basis. However, the company
management has requested the report to also be distributed when a new product is
added to the catalog. How would you implement this?

Publishing events programatically

One option to trigger a subscription programmatically is to reset the subscription
schedule to run when a new product is added. Although this will work, it requires
manual intervention. Ideally, what you need is the ability to automate the process
by being able to programatically fire the subscription event. Can you do this with RS?
You bet.

Figure 12.17 In Step 6 of the wizard, specify how the data-driven subscription will
be triggered.
446 CHAPTER 12 SUBSCRIBED REPORT DELIVERY

The RS Web service already includes a web method for this task. It is called
FireEvent, and it has the following signature:

public void FireEvent(string EventType, string EventData);

It is one of the event types listed under the EventProcessing element in the
RSReportServer.config configuration file. The event data is the identifier of
the item that triggered the event and can be of the following values:

• For subscriptions based on shared schedules, the EventData is the schedule
identifier, as specified in the ScheduleID column in the Schedule table.

• For subscriptions with private schedules, the EventData corresponds to the
subscription identifier, which is the value of the SubscriptionID column
from the Subscriptions table.

In a nutshell, triggering the subscription programmatically involves inserting an event
record into the Event table in the Report Server database. There’s nothing stopping
you from writing a table trigger on the Adventure Works Product table to insert a
new record in the Event table when a new product has been added, but the recom-
mended way is to use the FireEvent API.

TIP If you decide to log the event directly into the Event table, you may won-
der how to get the event type and data. One way to obtain them is to wait
for the subscription schedule to run, and then query the Event table in the
Report Server catalog. To avoid racing with the Reporting Services Win-
dows Service to determine who will get to the logged event first, you can
stop the Reporting Services Windows Service.

Among other things, when the FireEvent API is used, the Report Server could ver-
ify that the call is permitted as configured by the administrator’s role-based security
policy. Only callers who have rights to execute the Generate Events system-level task
are trusted to fire events programmatically, as shown in figure 12.18.

Interestingly, by default the System Administrator role doesn’t include this task.
Therefore, as a prerequisite for running our sample successfully, you need to grant the
FireEvent caller the Generate Events task.

Implementing the solution

Once the security policy is set up, you are ready to implement the code sample.
Table 12.2 lists the task map of the solution.

Similarly to the Campaigner example discussed in chapter 10, you use a table trig-
ger to call a web method, which in turn calls the FireEvent API. Why don’t you
call the FireEvent method directly from the trigger? If you did this, it would require
hardcoding the event type and data inside the trigger, which is something that you
should avoid. Instead, you write a new web method, called FireSubscription
SUBSCRIBED REPORT DELIVERY IN ACTION 447

(found in the Campaigner Web service source code under the Chapter09 folder in the
AWReporterWeb project). The FireSubscription source code is shown in list-
ing 12.1.

Table 12.2 The task map for programmatically firing a subscription

Component Task Description

Table Trigger Create INSERT table trigger. Write an ON INSERT table trigger attached
to the Product table that will fire when a
new product is added.

Call the web method
FireSubscription.

Inside the trigger, call a custom web
method called FireSubscription. Pass
the report and user identity with which the
subscription is associated.

Web method Fire-
Subscription

Call ListSubscriptions. Get the list of subscriptions associated
with the report-user combination.

Call GetDataDriven-
SubscriptionProperties.

Retrieve the subscription properties to get
to the event details.

Call FireEvent. Call FireEvent to publish the event
programmatically.

Figure 12.18 Calling FireEvents requires the Generate Events task.
448 CHAPTER 12 SUBSCRIBED REPORT DELIVERY

[WebMethod]
public void FireSubscription(string reportPath, string userName) {
 ReportingService2005 rs = new ReportingService2005();
 rs.Credentials=System.Net.CredentialCache.DefaultCredentials;

 DataRetrievalPlan dataRetrievalPlan = null;
 ExtensionSettings extSettings;
 string desc;
 ActiveState active;
 string status;
 string eventType;
 string matchData;
 Subscription[] subscriptions = null;
 ParameterValueOrFieldReference[] extensionParams = null;

 subscriptions = rs.ListSubscriptions(reportPath, userName);

 if (subscriptions != null) {
rs.GetDataDrivenSubscriptionProperties(
 subscriptions[0].SubscriptionID,
 out extSettings, out dataRetrievalPlan, out desc, out active,
 out status, out eventType, out matchData,
 out extensionParams);

 rs.FireEvent(eventType, matchData);
 }
}

To make the FireSubscription method more generic, pass the report path of the
report that needs to be delivered as well as the owner’s name in the format DOMAIN\
USERNAME. The latter argument is needed because, as you probably recall, a sub-
scription is associated with exactly one user and one report.

The call to the ListSubscription web method returns a list of subscriptions
associated with the requested report-user combination. For the sake of simplicity,
default to the first subscription. If you need to support reports that have more than
one subscription per given user, you may want to pass the subscription identifier as a
third argument to FireSubscription.

Next, you get the subscription properties by calling the GetDataDriven-
SubscriptionProperties web method. This is needed to get the event type
and data before the call to FireEvent. Because there are two types of sub-
scriptions, standard and data-driven, the RS Web service API includes two web
methods: GetSubscriptionProperties and GetDataDrivenSubscrip-
tionProperties.

In this example, assume that you need to trigger a data-driven subscription. Once
the GetDataDrivenSubscriptionProperties call executes successfully, the

Listing 12.1 Triggering a subscription programmatically using the FireEvent API

Gets the list of
subscriptions

Gets the subscription properties

Fires the
event
SUBSCRIBED REPORT DELIVERY IN ACTION 449

event type and data are exposed under the eventType and matchData arguments,
respectively. Finally, you call the FireEvent method to log the event that will trig-
ger the subscription processing.

The only piece left to implement is the INSERT trigger attached to the Products
table. This trigger will invoke the FireSubscription method when a new prod-
uct is added to the Products table in the AdventureWorks database. It will be very
similar to the trgSpecialOffer trigger discussed in chapter 10, so let’s leave its
implementation details to you.

12.4 SUMMARY

In this chapter we explored the second option for distributing reports with Reporting
Services—via subscriptions. Coupled with requesting reports on demand, subscribed
report delivery should address the most common distribution requirements for mak-
ing the reports available to your users.

Once you’ve read this chapter along with chapter 8, you should know when and
how to use both delivery options appropriately. When the report’s requirements call
for immediate synchronous access to the report, the on-demand option could be a
better fit. Alternatively, when a report needs to be executed on a regular basis in unat-
tended mode, it can be scheduled and “pushed” to recipients via subscribed delivery.

With subscribed report delivery, users can subscribe to reports that are distributed
to them or other destinations as a result of an event. RS supports standard and data-
driven subscriptions. Standard subscription options are fixed, while data-driven sub-
scription options can be set during runtime when the subscription is executed.

We put these concepts into practice by implementing various examples. We
showed how you can create standard e-mail and file share delivery subscriptions.
Then, we demonstrated how data-driven subscriptions work to deliver reports to a
data-driven list of recipients. Finally, you saw how developers can programmatically
trigger subscriptions using the FireEvent API.

By now, you would probably agree that RS offers a lot of flexibility in all three
phases of the report’s lifecycle: authoring, management, and delivery. But, as flexible
as it is, there will be cases in which RS may not fit all reporting needs out of the box.

In such cases, you will probably appreciate the extensible nature of the RS archi-
tecture that allows developers to plug in programming logic in the form of custom
extensions, as we discuss in chapter 13.
450 CHAPTER 12 SUBSCRIBED REPORT DELIVERY

4
P A R T
Advanced reporting
One of the most appealing features of Reporting Services is that it can be easily
extended by writing custom add-ons in the form of extensions. Part 4 discusses
the implementation details of three custom extensions that you can use to extend the
RS features.

You’ll learn how to author a dataset data extension to report off ADO.NET datasets.
You’ll also see how to distribute reports to Web services by means of a custom delivery
extension. In addition, we’ll show you how to replace the RS Windows-based security
model with a custom security extension.

Aside from being feature-rich, your reporting solutions must also perform and scale
well under increased user loads. To ensure that these objectives are met, you need to
know how to evaluate the Report Server performance and capacity before “going live”
in a production environment. In this part, you’ll learn how to establish performance
goals, how to create test scripts with the Application Center Test, and how to stress-
load your Report Server installation.

C H A P T E R 1 3

Extending Reporting
Services

13.1 Understanding Reporting Services extensibility 454
13.2 Reporting with a custom dataset data extension 460
13.3 Distributing reports to Web services using custom delivery extensions 473
13.4 Implementing custom security 482
13.5 Summary 496
An important characteristic of every enterprise-oriented framework, such as Report-
ing Services, is that it has to be easily extensible. Simply put, extensibility relates to the
system’s ability to accommodate new features that are built out of old ones. When a
software platform is extensible, it allows developers to customize it to meet their spe-
cific needs. For example, when your reporting requirements rule out Windows-based
security, RS allows you to replace it with custom security models.

One of the most prominent and appealing aspects of RS is its modular architec-
ture, which is designed for extensibility. You’ve already witnessed this in chapter 6
when you saw how to supercharge your reports by writing custom code. In this chap-
ter, we explore additional ways to take advantage of the unique extensibility model of
RS by writing custom extensions. Specifically, we develop the following extensions:

• A dataset data extension to report off ADO.NET datasets

• A Web service delivery extension to distribute reports to Web services

• A security extension to implement custom authentication and authorization
453

By the time you finish reading this chapter, you should have enough knowledge to
develop, install, and manage custom extensions. First, though, let’s discuss the essen-
tial concepts that you need to know to effectively leverage the extensibility features
of RS.

13.1 UNDERSTANDING REPORTING SERVICES
EXTENSIBILITY

You can extend RS by plugging in custom extensions written in .NET code. To do
that, you need to be familiar with the concept of interface-based programming. Based
on our experience, many developers find working with interfaces difficult to grasp.

For this reason, let’s make a little detour at the beginning of this chapter and
explain the basic concepts and benefits of this style of programming. First we provide
you with an understanding of interface-based programming and then focus on work-
ing with interface inheritance.

By no means will our discussion attempt to afford exhaustive coverage of these
topics. If you need more information, refer to the .NET product documentation,
which includes many technical articles on object-oriented programming.

13.1.1 Interface-based programming

Suppose that you are an architect on the Microsoft RS team and you are responsible
for designing a flexible model for plugging in delivery extensions. As you saw in chap-
ter 12, RS comes with two delivery extensions out of the box: e-mail and file share
extensions. As useful as these extensions are, it is unlikely that they will meet all sub-
scription-based distribution requirements. For example, what if an organization wants
to automate the report-printing process by sending reports directly to a printer?
Instead of enduring the Herculean effort of creating and supporting all possible deliv-
ery scenarios out there, you prudently decide to let customers author and plug in their
own extensions.

What implementation pattern will you choose? Obviously, you must establish
some standardization to which other developers will have to conform. Once you’ve
come up with an easy-to-follow standard pattern, you could use generic code logic to
load and execute custom extensions. As a seasoned architect, you set the following
high-level design goals for the envisioned extensibility model:

• It must allow developers to write and plug in their own extensions.

• It shouldn’t require an intimate knowledge of how the extension is imple-
mented, or what it does for that matter. In other words, as long as the extension
adheres to the standard, it can be treated as a “black box.”

• It should be as robust as possible. For example, the model should be able to
determine at runtime whether a given custom extension follows the standard
design pattern and, if it doesn’t, the Report Server will not attempt to load it.
454 CHAPTER 13 EXTENDING REPORTING SERVICES

Let’s now discuss how to implement these requirements. To enforce a common stan-
dard for report delivery, you can lay out the following rules:

• Each custom extension type must expose a method that the Report Server will
invoke to distribute the report.

• This method must have at least one argument that the Report Server will use to
pass the report notification object.

Given the above specifications, figure 13.1 shows how two custom delivery extensions
could be implemented.

Let’s say that the first extension supports report delivery to a printer, similar to the
sample that comes with RS, while the second can be used to distribute reports to
a Web service. In the first case, you’ve decided to encapsulate the delivery logic in a
method called Deliver, while in the latter, in a method called Distribute.

Once the custom extensions are registered with the Report Server, you can define
subscriptions that use these extensions, as we discussed in chapter 12. During run-
time, the Report Server will instantiate the appropriate extension and delegate the
report delivery to it. Everything looks great! Or does it?

Upon further inspection, several issues surface:

• Method names—First, the Report Server has to know beforehand not only the
type name of the extension but also the name of the method responsible for
the report delivery. One possible workaround would be to save the method
name in the configuration file too, but this would present a maintenance issue.
Another solution would be to change the specification and stipulate that all deliv-
ery methods must have the same name, for example, Deliver. However, this

Figure 13.1 Without interfaces, it is difficult to achieve standardization. For

example, this figure shows two possible implementation approaches to

implement custom delivery extensions. Because they don’t follow a single

standard, it is difficult for the Report Server to integrate them.
UNDERSTANDING REPORTING SERVICES EXTENSIBILITY 455

approach is not easily enforceable, especially by people who are as opinionated
and strong-willed as developers tend to be.

• Signatures—Second, the Report Server won’t be able to easily inspect the signa-
ture of the delivery method in advance to check to see if it follows the specifica-
tion. For example, what if the developer has neglected to specify an argument
for the notification object? This will certainly result in a runtime exception.

• Invoking methods—Finally, there is no easy way for the Report Server to invoke
the delivery method.

These issues can be easily overcome by using interface inheritance. In object-oriented
programming, interface inheritance is a type of inheritance wherein one or more
classes share a set of messages.

13.1.2 Working with interface inheritance

At this point, you may be curious as to what an interface really is. We can loosely
define an interface as a set of methods, properties, and events that define an object’s
characteristics and behavior. You define an interface similarly to the way you define a
class. For example, in the previous scenario, this is what the delivery extension inter-
face may look like in C#:

interface IDeliveryExtension {
 void Deliver (Notification notification);
}

By convention, the interface name is prefixed with a capital I. Note that an interface
contains only the method’s signatures, not their implementation. In addition, unlike
working with objects, an interface cannot be instantiated. In fact, the whole purpose
of having an interface is to inherit from it, as shown in figure 13.2.

Figure 13.2 Use interface inheritance to enforce a specification. Now both

extensions follow the same standard. The Report Server can load them by using

the factory design pattern.
456 CHAPTER 13 EXTENDING REPORTING SERVICES

Now both extension classes inherit from the IDeliveryExtension interface,
which in C# is denoted by the colon (:). When a class inherits from an interface, we
say that the class implements this interface.

Interface inheritance offers the following benefits:

• Standardization

• Dynamic type discovery

• Polymorphism

• Multiple inheritance

Achieving standardization by using interfaces

Once a class inherits from an interface, it must implement all methods included in the
interface definition. In addition, the implementation of the method names and signa-
tures must match those defined in the interface. The compiler enforces these rules
during code compilation.

Therefore, to enforce a common standard, you can change your specification to
stipulate that all custom extensions must inherit from the IDelivery interface.
This means that all custom extensions will expose a method called Deliver, which
takes exactly one parameter of the type Notification, as required by the definition of
the interface.

Dynamic type discovery

But what if the developer forgets to inherit the custom extension class from your
interface? After all, a standard is only good when it is followed. You see, the second
advantage of using interface inheritance, as well as object inheritance for that matter,
is that the caller can easily discover whether an object implements a given interface
during runtime. For example, you can write the following code in the Report Server
to find out if the custom extension indeed adheres to your specification:

// instantiate the custom extension using Factory design pattern.
if (typeof(customExtension) is IDeliveryExtension)
 // do something with the extension
else
 throw new Exception("This custom extension doesn't
 implement IDeliveryInterface");

Here, you use the C# type of operator (the VB .NET equivalent is TypeOf) to check
whether the extension class implements the required interface after the custom exten-
sion object is instantiated. If this is not the case, you can react to this condition by
throwing an exception.
UNDERSTANDING REPORTING SERVICES EXTENSIBILITY 457

Polymorphism

Interface inheritance allows you to use another powerful object-oriented technique
called polymorphism. It allows the caller to treat different objects in the same way. Let’s
say that you implemented two pluggable report adapters that inherited from a com-
mon IReportAdapter interface. Then, you use the factory design pattern to
instantiate the requested adapter and cast its reference to IReportAdapter.

In this situation, polymorphism helps to expand the earlier example and work
with the custom extension objects in this way:

// instantiate the custom extension using Factory design pattern.
if (typeof(customExtension) is IDeliveryExtension)
 // cast to IDeliveryExtension to call Deliver
 ((IDeliveryExtension) customExtension).Deliver(notification);
else
 throw new Exception("This custom extension doesn't
 implement IDeliveryInterface");

Once you make sure that the extension object is of the right type, you can cast to its
base interface and call the Deliver method. As you can see, if you use interface
inheritance, the caller can easily discover the type of the object during runtime and
treat all objects that implement the required interface in the same way.

Implementing multiple interfaces

Finally, unlike class inheritance, with interface inheritance you can implement as
many interfaces as you’d like. For example, to introduce a common standard that all
custom delivery extensions will follow when retrieving the configuration information,
we could use this interface:

interface IExtension {
 void SetConfiguration(string);
}

Once a custom extension implements the IExtension interface, the Report Server
can call its SetConfiguration method to pass the extension’s configuration set-
tings that can be defined in the Report Server configuration file. This looks like a cool
feature, so let’s enhance our printer delivery extension to implement both the
IDeliveryExtension and IExtension interfaces, as follows:

public class WebServiceDeliveryProvider : IDeliveryExtension, IExtension {
 public void Deliver (Notification notification) {…}
 public void SetConfiguration (string configSettings) {…}
}

Note that, in most cases, the Report Server makes multiple interface inheritance
unnecessary because the more “specialized” interfaces inherit from the IExtension
interface. This means that all custom extensions indirectly inherit from IExtension.

Now that you have a good grasp of interface inheritance, you are ready to extend
the RS features by writing custom data, delivery, rendering, and security extensions.
458 CHAPTER 13 EXTENDING REPORTING SERVICES

13.1.3 Extending RS with interface inheritance

To make your life easier, Microsoft has encapsulated all RS-related interface defini-
tions into a single Microsoft.ReportingServices.Interfaces library. Fig-
ure 13.3 shows the publicly available type definitions included in this library.

Therefore, as a prerequisite for writing a custom extension, in your project you need
to set up a reference to this library, which can be found in both the Report Server
binary folder (C:\Program Files\Microsoft SQL Server\MSSQL.3\
Reporting Services\ReportServer\Bin) and the Report Manager binary
folder (C:\Program Files\Microsoft SQL Server\MSSQL.3\Reporting
Services\ReportManager\Bin).

For your convenience, we have encapsulated all custom extensions in this chapter
into a single project called AWC.RS.Extensions. This setup also simplifies configuring
the code access security for the custom extensions because you need to grant full trust
permission to this assembly only. This project also includes our versions of both the
Report Server and Report Manager configuration files to help you configure the sam-
ple extensions properly.

Now, let’s put interface-based programming into action by creating our first cus-
tom extension.

Figure 13.3 The Microsoft.ReportingServices.Interfaces library includes all interface

definitions.
UNDERSTANDING REPORTING SERVICES EXTENSIBILITY 459

13.2 REPORTING WITH A CUSTOM DATASET
DATA EXTENSION

Knowing that RS can retrieve its data from virtually any database, why would you
want to write a custom data extension? One good reason would be to report off cus-
tom data structures, such as ADO.NET datasets and XML documents. Reporting Ser-
vices does support binding and reporting off application ADO.NET datasets through
the use of the ReportViewer control. However, if you are not using the ReportViewer
control, you can write a custom data extension to expose an ADO.NET dataset as a
report’s data source.

There are at least two approaches to implementing this process:

• The custom extension calls an external .NET assembly to get the dataset—This is
the approach that the product documentation demonstrates. The advantage is
better performance because the dataset doesn’t have to cross process boundaries.
However, this comes at the expense of flexibility. For example, this approach
cannot be easily retrofitted to support the situation in which a three-tier appli-
cation needs to report off datasets returned from the data tier layer. In addition,
the application cannot preprocess the dataset before the report is generated.

• The application passes the copy of the dataset that has been serialized to XML to the
Report Server—This approach allows a report consumer’s application to obtain a
dataset during runtime, for example, from a data layer, and “bind” it to a report.
This is the design pattern that our dataset extension will follow.

Figure 13.4 depicts a typical integration scenario for requesting a report that uses the
custom dataset extension.

The report consumer will typically obtain the dataset from the application data
layer. Then, the report consumer will serialize the dataset to XML and request the
report by passing the serialized dataset copy as a report parameter. Assuming that
the report is configured to use the custom dataset extension, the Report Server will

Figure 13.4 A report consumer can use a custom dataset extension to report off

application datasets.
460 CHAPTER 13 EXTENDING REPORTING SERVICES

ask the extension to provide the report data. To do this, the extension reconstructs
the dataset and exposes its data through a well-defined set of interfaces. During the
report-processing phase, the report draws its data from the dataset. Finally, the gen-
erated report is sent back to the report consumer.

An alternative usage scenario could be reporting off datasets that are persisted as
XML files. In such a case, the application is responsible for saving the dataset to a file
and passing the file’s location as a report parameter.

We break this section into four parts:

1 Identifying design goals and trade-offs

2 Authoring dataset-bound reports

3 Implementing the custom dataset extension

4 Debugging dataset extensions

Let’s get started by focusing on what our design goals are and identify some of the
trade-offs for this custom extension.

13.2.1 Identifying design goals and trade-offs

The high-level design goals for our custom dataset data extension are as follows:

• The custom dataset extension should be integrated seamlessly with the RS data archi-
tecture—From the report design point of view, the use of datasets should be
transparent to the report’s author.

• Dataset table columns should be exposed as fields in the Report Designer to facilitate
the familiar drag-and-drop technique for laying out the report—For this reason,
the custom dataset extension promotes the use of XML schemas and typed
datasets during the report’s design phase.

• The dataset data extension should support reporting off an arbitrary table from a
multitable dataset—This will provide options and not limit the extension to
using a dataset with only one table.

• The dataset data extension should support reporting from serialized datasets, as well
as datasets saved to XML files—The latter option could be useful for reports with
interactive features.

NOTE Adding interactive features to dataset-bound reports presents an unusual
challenge. As we explained in chapter 10, these features rely on HTTP-GET,
which cannot be used with large parameters. As a workaround, consider sav-
ing the dataset as an XML file and passing the file path as a report parameter.

Our implementation of the custom extension will be subject to the following
trade-offs:

• Performance overhead is incurred from serializing and marshaling the dataset
between the application and the Report Server—When a .NET dataset crosses the
REPORTING WITH A CUSTOM DATASET DATA EXTENSION 461

application’s domain boundary, the .NET Framework automatically serializes it
to XML. The dataset is subsequently deserialized into the receiving application’s
domain (the Report Server process).

• Data relations are not supported—An ADO.NET dataset can include several
tables joined with data relations. Unfortunately, ADO.NET datasets currently
don’t support SQL-like SELECT statements to fetch data from joined tables. As
a result, supporting queries from multiple tables linked with data relationships
could become rather involved. If this is a definite requirement, you may try
to extend the sample by implementing row filtering, for example, by using
the GetChildRows method of the DataRow object. That said, note that the
report’s author can configure your extension and specify which table from a
multitable dataset will be used for reporting.

• Requesting a dataset-bound report via HTTP-GET is impractical—Due to the
query parameter’s size limitation of the HTTP-GET protocol, the report con-
sumer would typically use SOAP for passing the serialized dataset copy to the
Report Server. If URL access is the preferred option, you have two choices. First,
you could use HTTP-POST to pass the ADO.NET dataset. As we mentioned in
chapter 10, HTTP-POST enjoys almost unlimited parameter length because the
parameter name/value pairs are transferred in the request’s HTTP header instead
of in the form of a URL query string. The Report Picker code sample that we
discussed in chapter 10 demonstrated how a web application can leverage
HTTP-POST to request reports. Another option for getting around the HTTP-
GET request limitations is to save the dataset to a file on the server side of the
application and pass the file path as a report parameter.

Now, let’s see how to use the custom dataset extension to report off application
datasets. Inside the AWReporter BI project, you’ll find the TestDS report that we’ll use
to demonstrate creating dataset-bound reports.

13.2.2 Authoring dataset-bound reports

Before using the custom dataset extension to create dataset-bound reports, you need to
configure it properly. We included detailed setup instructions in the README file found
under the DataExtensions\Dataset folder in the AWC.RS.Extensions project.

Once the extension is set up, you can follow the task map shown in table 13.1 to
author a dataset-bound report.

As noted in the table, the first task for creating a dataset-bound report is to define
the schema.
462 CHAPTER 13 EXTENDING REPORTING SERVICES

Creating the dataset schema

Although there’s nothing stopping you from hardcoding the dataset field names inside
report items, a better approach is to expose the dataset schema in the Report Designer.
Once this is done, the report’s author can drag and drop dataset fields to the report
canvas, as she would do when working with extensions natively supported by RS.

With the custom dataset extension, you can expose the dataset schema in one of
the following ways:

• Create a typed dataset—With VS .NET, you can create typed datasets easily.
The end result is a file with the .xsd extension. The Test Harness application
includes a typed dataset called EntitySalesOrder.xsd. It was created by
using the SQL Data Adapter component found on the Data tab of the VS
.NET toolbox.

• Infer the schema from a persisted dataset—The custom extension can be config-
ured to infer the dataset schema from a dataset that has been saved to a file. For
example, the Test Harness application includes the DatasetSalesOrder.
xml file, which contains the XML presentation of a dataset. The file could
include only the schema, only the data, or both the dataset schema and the
data. The custom extension uses the ReadXml method of the dataset to load
the dataset and infer its schema.

Now that we have the dataset schema, we are ready to author the dataset-bound report.

Setting the report dataset

Let’s start by setting up a new private data source that points to the dataset schema
file. Begin by creating a new report. Flip to the Report Designer Data tab and create a
new dataset.

Table 13.1 The task map for creating a dataset-bound report

Phase Task

Create the dataset schema. Create a typed dataset.
Alternatively, infer the schema from a persisted-to-file dataset.

Set up the report dataset. Create a private data source.
Set up the query parameters.
Retrieve the dataset fields.
Configure the DataSource report-level parameter.

Lay out the report. Use the Report Designer’s Layout tab to drag and drop dataset fields.

Test the report. Use the Report Designer’s Preview tab to test the report.

Deploy the report. Use VS .NET or the Report Manager to deploy the report to the
Report Server.

Request the report. Request the report programmatically on demand via SOAP.
REPORTING WITH A CUSTOM DATASET DATA EXTENSION 463

Creating a private data source

Start by adding a new report to your project. From the Data tab in the Report
Designer choose New Dataset from the Dataset prompt. This opens the Dataset dia-
log box. On the Query tab, select New Data Source from the Data Source prompt.
This will open the Data Source configuration window and allow you to create a new
data source, as shown in figure 13.5.

If the dataset extension is configured properly, it will be listed in the Type drop-down
list. Set the data source type to Dataset Extension.

Leave the Connection String blank, because the dataset extension doesn’t establish
a database connection. Remember, the report’s data will be encapsulated inside the
dataset that will be passed as a report parameter. The Credentials tab is also not appli-
cable in this case because the extension doesn’t establish a database connection. To
move past the Report Wizard validation, choose the Windows Authentication (Inte-
grated Security) option on the Credentials tab.

Back in the Dataset dialog box, in the Query String text area of the Query tab,
enter the name of the dataset table from which you want to report, as shown in
figure 13.6.

NOTE If the Dataset dialog box does not open as shown in figure 13.6, then click
the ellipsis (…) button to the right of the DataSet selection drop-down list.

A dataset can have multiple tables. In case there is only one table or you want to
default to the first table, you can enter Nothing as a query string. Initially, we were
planning to default to the first table in case the query text was left blank, but the

Figure 13.5
Use the dataset

extension to set up the

report’s data source.
464 CHAPTER 13 EXTENDING REPORTING SERVICES

Report Designer insisted that we specify a query string. For the purposes of the
TestDS report, enter SalesOrderHeader (or Nothing) as the query text because this is
the name of the first (and only) dataset table.

Setting up the query parameters

Now, you’re ready to set up the query parameters. Because the query string you just
entered is not a valid SQL statement, you need to switch to the Generic Query
Designer. Now, run the query by clicking the exclamation (!) button. The Generic
Query Designer will ask the data extension to parse the query text and return a list of
query parameters.

The custom dataset extension is wired to prompt for a parameter named
DataSource. When designing the report, you need to set this parameter to the path
pointing to the dataset schema file. During runtime, you will use this parameter to
pass the serialized copy of the dataset or the path to the persisted dataset file.

As shown in figure 13.7, enter the full path to the EntitySalesOrder.xsd
typed dataset file as a parameter value.

Retrieving the dataset fields

Now, click OK so that the data extension can parse the dataset schema and return the
fields of the requested table, as shown in figure 13.8.

TIP You may wonder why the Generic Query Designer doesn’t show any data
after you click the ! button. The reason for this is that a typed dataset
schema contains only the dataset’s definition, not its data. However, if you
use a dataset that has been saved to a file instead of only its schema, then
the Generic Query Designer will show the table records in the query pane.

Figure 13.6
Set the query string
to the dataset table
used for reporting.
REPORTING WITH A CUSTOM DATASET DATA EXTENSION 465

At this point, the Fields toolbar should show all table columns, as defined in the
dataset schema. In addition, the Parameter tab of dataset properties should include
the DataSource parameter.

Configuring the DataSource report-level parameter

Next, you need to verify that the DataSource parameter is linked to the
DataSource report-level parameter, as shown in figure 13.9.

This is perhaps the most crucial step of the dataset-driven report-authoring proc-
ess. As we noted earlier, during runtime the report consumer will pass the dataset as
a report-level parameter. By linking the DataSource report-level parameter to its
query counterpart, we ensure that the dataset will indeed be passed to the dataset
extension. If your report needs more parameters, you can define them using the
Report Parameters dialog box.

Figure 13.7 You set up the DataSource parameter by entering the file path to

the dataset schema file

Figure 13.8
The dataset extension will

parse the dataset schema and

retrieve a list of table fields
466 CHAPTER 13 EXTENDING REPORTING SERVICES

Laying out the report

Now that the report dataset is set up, you can proceed to laying out the report itself
using the familiar drag-and-drop approach. Switch to the Report Designer’s Layout
tab and lay out the report as you normally would. For example, figure 13.10 shows
that we used a table region to create a tabular report. Then we dragged and dropped
some dataset fields into the table region.

Figure 13.9
Verify that the

DataSource parameter is

linked to the DataSource

report-level parameter.

Figure 13.10 You can use the Report Designer’s Layout tab to lay out the report.
REPORTING WITH A CUSTOM DATASET DATA EXTENSION 467

Testing the report

To successfully preview the report in the Report Designer, you have to feed it data by
setting the report’s DataSource parameter. During design time, you may find it
more convenient to use one of the following techniques:

• Copy and paste an XML snippet from the dataset’s serialized copy.

• Specify the path to the dataset that was saved to disk.

For example, figure 13.11 shows that we used the first approach and entered the fol-
lowing XML string as the DataSource value:

 <SalesOrderHeader>
 <SalesOrderID>5001</SalesOrderID>
 <CustomerID>304</CustomerID>
 <PurchaseOrderNumber>PO29199294</PurchaseOrderNumber>
 <OrderDate>2003-09-01</OrderDate>
</SalesOrderHeader>

Once you have finished with the report, you can deploy it to the Report Server so that
it is available for delivery.

Deploying the report

As you know by now, the easiest way to deploy the report (if you have Content Man-
ager permissions to the Report Server repository) is to deploy it straight from the
Visual Studio IDE by right-clicking the report file and choosing the Deploy command
from the context menu.

Alternatively, you can deploy the report manually by uploading its report defini-
tion file using the Report Manager web application.

Requesting the report

When requesting a dataset-bound report, the client application must set the Data-
Source parameter as follows:

Figure 13.11 You can use an XML snippet as a report’s data source during

design time.
468 CHAPTER 13 EXTENDING REPORTING SERVICES

• If the report is accessed by SOAP, the application can pass the serialized
dataset or the path to the dataset file (if the application has persisted the
dataset beforehand).

• Due to the size limitations of the HTTP-GET query string, passing a large
dataset as a query parameter is not possible. For this reason, this protocol will
seldom be used to request dataset-bound reports. As noted before, if the URL
method must be used, the report consumer can save the dataset to a file and
pass the file path to the DataSource parameter. Otherwise, the report con-
sumer can leverage HTTP-POST.

The implementation pattern that a client application will typically follow when
requesting a dataset-bound report by SOAP is shown in listing 13.1.

ReportingService2005 rs = new ReportingService2005();
// Set the Render method arguments
ParameterValue[] proxyParameters = new ParameterValue[1];

DataSet ds = new DataSet();
sqlDataAdapter.Fill(ds);
proxyParameters[0] = new ParameterValue();
proxyParameters[0].Name = "DataSource";
proxyParameters[0].Value = entitySalesOrder.GetXml();
result = rs.Render(…);

First, you create at least one parameter placeholder b for the DataSource parame-
ter. In this case, the application uses a plain-vanilla dataset c. However, there’s noth-
ing stopping you from using typed datasets if your application’s design supports them.

Next, the application serializes the dataset to XML and passes the serialized copy
under the DataSource parameter d.

To facilitate the TestDS report testing, we enclose a simple WinForm-based client
that takes the Report Server’s URL and report path and uses similar code to request
the report by SOAP.

Now that you’ve seen how to use the custom dataset extension to create dataset-
bound reports, let’s discuss its implementation.

13.2.3 Implementing the custom dataset extension

Armed with the FsiDataExtension source code (included with the RS samples)
and the RS product documentation, you’ll find the process of implementing the cus-
tom dataset extension straightforward.

Listing 13.1 Passing a dataset to Reporting Services

Creates a
parameter
placeholder

b

Gets the datasetc
Passes the
dataset’s
serialized-to-
XML copy

d

REPORTING WITH A CUSTOM DATASET DATA EXTENSION 469

Custom dataset extension types

Table 13.2 lists the types used to implement the custom dataset extension. At first, you
may find dealing with so many interfaces mind-boggling. Your requirements may call
for implementing many of these interface methods as simple passthroughs.

Runtime conversation map

Figure 13.12 shows a simplified version of the conversation map between the Report
Server and the custom extension during runtime. First, the Report Server instructs
the dataset extension to establish a database connection by passing the connection
string to it. Then, the Report Server asks the Connection object to return a reference
of type IDbCommand.

Next, the Report Server calls the IDbCommand.CreateParameter method as
many times as the number of parameters in the report query. The Command object
responds by returning an object of type IDataParameter for each parameter.

NOTE The Report Server will pass only the query parameter to the data extension
and not the report-level parameters. If a report-level parameter is not linked
to the query parameter, it won’t be passed. An important consequence of
this rule is that you can’t get a reference to the report-level parameters
inside the dataset extension if they are not linked to the query parameters.

Because each parameter is of a common base type, the Report Server knows how to set
it up. After the parameter is initialized, the Report Server invokes the IData-
ParameterCollection.Add method so that you can append this parameter to
the parameter collection. Once the parameters have been taken care of, the Report

Table 13.2 Types used to implement the custom dataset extension

Type Inherit from Purpose Implemented?

DsConnectionWrapper IDbConnection,
IDbConnection-
Extension,
IExtension

Responsible for
establishing a database
connection

No

DsTransaction IDbTransaction Enlists the database
commands in the data
source transaction

No

DsCommand IDbCommand,
IDbCommandAnalysis

Responsible for handling
the report query string

Yes

DsDataParameter IDataParameter Represents a query
parameter

Yes

DsDataParameter-
Collection

ArrayList,
IDataParameter-
Collection

Holds a collection of query
parameters

Yes

DsDataReader IDataReader Handles the access to the
dataset data

Yes
470 CHAPTER 13 EXTENDING REPORTING SERVICES

Server calls the ExecuteReader method of the Command object to get a reference
to an object of type IDataReader.

For each report dataset field, the Report Server calls the IDataReader.Get-
Ordinal to get the positional index of each field in the reader’s field collection. This
is needed because later the Report Server will ask for the value of the field by its posi-
tional index. Once the fields are matched, the Report Server asks the reader repeatedly
to advance to the next row of the rowset until the end of the rowset is reached. For
each field, the Report Server calls the IDataReader.GetValue method to retrieve
the field’s value.

Now that we’ve discussed the high-level interaction between the Report Server
and the extension, let’s talk about some implementation sketches.

Implementing IDbConnection

You can relate the IDbConnection interface to the ADO.NET connection wrap-
pers, for example, SqlConnection. The main purpose of this object is to establish
a database connection to the data source, if this is needed. As noted earlier, in our case
we have nothing to connect to because all data is either passed as a dataset during
runtime or is retrieved from a dataset file.

If you do need to connect to a data source, you use the IDbConnection.Open
method to establish a database connection. Prior to calling this method, the Report
Server calls the IDbConnectionExtension public properties to pass the user’s
credentials that you set on the Data Source Credentials property. Strictly speaking, in
our example, you didn’t have to implement the IDbConnectionExtension

Figure 13.12 This is a sequence diagram of custom dataset extension processing. The Report

Server calls the implemented interface methods to configure the extension and retrieve
the data.
REPORTING WITH A CUSTOM DATASET DATA EXTENSION 471

interface at all, but we set up the example to do this so that you could see the sequence
of events when you step through the extension code.

Implementing IDbCommand

The main tasks of the object that implements the IDbCommand interface are to pop-
ulate the query parameters and to execute the report query, and then return a refer-
ence to a data reader object that allows the caller to process the results.

In this respect, you can relate the IDbCommand interface to the ADO.NET Com-
mand objects, such as SqlCommand. The Report Server passes the query text prior
to executing the ExecuteReader method. In our example, the query text repre-
sents the name of the table off of which you want to report. Then, ExecuteReader
instantiates the reader object and calls LoadDataset to retrieve the rowset.

Implementing IDataReader

This step is where the crux of the data retrieval and processing logic is. Similar to the
ADO.NET IDataReader, an object that implements this interface is responsible for
providing a means to read the rowset in a forward-only fashion. The bulk of the data
retrieval and manipulation logic (exception handling excluded) is shown in listing 13.2.

internal void LoadDataset() {
 string dataSource = null;
 DsDataParameter parameter = m_parameters.GetByName(Util.DATA_SOURCE)
 as DsDataParameter;
 dataSource = parameter.Value.ToString();
 m_dataset = GetDataSet(dataSource);
 if (m_cmdText.Trim().ToLower()=="nothing")
 m_datatable = m_dataset.Tables[0];
 else {
 m_datatable = m_dataset.Tables[m_cmdText];
 }
 m_ie = m_datatable.Rows.GetEnumerator();
}
private DataSet GetDataSet(string dataSource) {
 DataSet dataset = new DataSet();
 if (dataSource.IndexOf("<")>=0) {
 StringReader reader = new StringReader(dataSource);
 dataset.ReadXml(reader);
 }
 else {
 FileIOPermission permission = new
 FileIOPermission(FileIOPermissionAccess.Read, dataSource);
 permission.Assert();
 dataset.ReadXml(dataSource);
 }
 return dataset;
}

Listing 13.2 Retrieving the rowset

Gets DataSource
parameterb

References
requested tablee

Sets up row
enumerator

f

Contains
serialized copy
of dataset

c

Contains path to
persisted-to-file dataset

d

472 CHAPTER 13 EXTENDING REPORTING SERVICES

First, you attempt to find a parameter named DataSource b. As you probably
recall, the value passed to this parameter can be one of the following: the serialized-to-
XML dataset copy or a file path to the persisted-to-file dataset. GetDataSet deter-
mines what the value of the DataSource represents by inspecting its payload. In the
first case, you deserialize the dataset from its XML payload c. In the latter, you read
the dataset’s content from the file d. Note that you are specifically demanding a read
permission to the physical file. Regardless of the fact that the code access policy of the
dataset extension assembly is configured for Full Trust rights, Code Access Security
(CAS) is layered on top of the OS security. For this reason, if you decide to use per-
sisted datasets, make sure you grant the ASP.NET worker process identity at least read
permissions to their files.

Once the dataset is successfully deserialized, you reference the table specified by
the query text e. Finally, you save the row enumerator to a class-level variable f to
save its state between subsequent calls to IDataReader.Read.

13.2.4 Debugging dataset extensions

The easiest way to debug a custom dataset extension is to follow these steps:

Step 1 Add the custom dataset extension project to your Business Intelligence (BI)
solution in VS .NET.

Step 2 Set the StartItem setting of your BI project to the name of the report that
uses the extension.

Step 3 Set breakpoints in the data extension code.

Step 4 Run the report in Debug mode (press F5). Once you click the ViewReport
button, your breakpoints should be hit.

As you’ll probably agree, authoring custom data extensions is not that difficult. Once
you get used to interface-based programming, you’ll find writing different types of
extensions similar. Let’s now see how you can create custom delivery extensions.

13.3 DISTRIBUTING REPORTS TO WEB SERVICES
USING CUSTOM DELIVERY EXTENSIONS

In chapter 10 we discussed how RS could be used in the B2B scenario. We talked
about an Inventory Level report as a Web service that the Adventure Works Cycles
(AWC) partners could use to request the report on demand. Instead of “pulling” the
report, you’ll now implement a mechanism that will allow AWC to “push” the report
to the vendor’s Web service on a regular basis through subscribed report delivery. Fig-
ure 13.13 depicts the high-level architectural view of this solution.

In this hypothetical scenario, the report’s administrator could configure one or
more reports for subscribed delivery to the vendor’s Web service. As part of the sub-
scription setup process, the report’s administrator will specify the following Web ser-
vice particulars:
DISTRIBUTING REPORTS TO WEB SERVICES 473

• The endpoint URL

• The Web service name (type name)

• The web method name responsible for receiving the report’s payload

As figure 13.13 shows, once the subscription is triggered, the Report Server instanti-
ates your extension and passes the notification object to it. Next, the custom delivery
extension asks the Report Server to render the report and serializes the report’s pay-
load to an XML document. Finally, the custom extension dynamically invokes the
Web service and passes the report’s payload to the web method.

13.3.1 Design goals and trade-offs

The high-level design goals for your custom delivery extension are as follows:

• The custom delivery extension should plug seamlessly into the presentation layer of
the Report Manager—To accomplish this requirement, the extension imple-
ments an intuitive user interface to help the end user configure the extension.

• The custom delivery extension must validate the user’s input on the client and server
sides—This will allow this extension to work from both web forms and from cus-
tom applications.

• The custom delivery extension should support dynamic binding to the Web service by
constructing the web service proxy during runtime—This will allow the extension to
send the report to an arbitrary Web service.

Your implementation of the custom delivery extension will be subject to the following
trade-offs:

• The custom extension will pass the report’s payload (exported as XML) to the first
argument of the web method—Therefore, the target web method must be param-
eterized, and the first argument must be a string data type. Enhancing the cus-
tom delivery extension to fit your specific Web service requirements should
be simple.

Figure 13.13 You can use a custom delivery extension to distribute reports to a

Web service.
474 CHAPTER 13 EXTENDING REPORTING SERVICES

• Currently, the extension doesn’t provide a user interface for configuring the export for-
mat; it renders the report as XML before passing it to the Web service—Enhancing the
custom delivery extension to let the user choose the export format should be easy.
For example, as with the e-mail and file share extensions, the custom extension
web control could include a drop-down list that is populated with the results
from a call to the ListExtensions SOAP API, as you saw in chapter 10.

Now that you have a high-level understanding of what the custom delivery extension
does, let’s see how to put it into action.

13.3.2 Using the custom delivery extension

Before using the custom delivery extension to distribute reports to Web services, you
need to configure it properly. We included detailed setup instructions in the
README file found under the DeliveryExtensions\WebService folder in
the AWC.RS.Extensions project.

Once the custom delivery extension is configured, you can use the Report Man-
ager to create a report subscription that uses the extension. We’ve already shown how
to do this in chapter 12, so we’ll discuss only the custom delivery extension specifics.

After you’ve decided on the subscription type, either a standard or data-driven
subscription, you choose a delivery extension, as shown in figure 13.14.

Figure 13.14 To use the custom Web service delivery extension, select it from the Delivered By

drop-down list in the Report Manager UI.
DISTRIBUTING REPORTS TO WEB SERVICES 475

If the custom delivery extension is registered properly, it will appear in the Delivered
By drop-down as Web Service Delivery. In case you are wondering where this name
comes from, it is returned by our implementation of the IExtension.Localized-
Name property inside the extension’s source code. As its names suggests, this property
lets the developer localize the extension name based on the user’s language settings.

The user interface of the custom delivery extension consists of three text place-
holders for the Web service description language URL, its type, and its method name.
The default settings are retrieved from the RSReportServer.config configura-
tion file but can be overwritten by the user.

13.3.3 Implementing the custom delivery extension

To understand how the custom Web service extension works, it may be beneficial to
break its functionality into two stages:

• Design time, when the extension is hosted in the Report Manager and used for
setting up the subscription

• Runtime, when the Report Server asks the extension to deliver the report

To mirror the above stages, we’ve separated the extension logic into two source files:
WebServiceDeliveryUIControl, which encapsulates the extension UI, and Web-
ServiceDeliveryProvider, which hosts the runtime functionality.

Implementing the user interface

The Report Manager will ask your extension to render itself as a part of the subscrip-
tion setup process. From an implementation standpoint, this requires writing a custom
web control that is implemented in the WebServiceDeliveryUIControl class.

This control implements the ISubscriptionBaseUIUserControl inter-
face, which in turn inherits from IExtension. Figure 13.15 shows a simplified ver-
sion of the conversation map between the Report Manager and the custom delivery
extension during design time.

When the Web service delivery extension is selected on the Subscription setup
page, the Report Manager instantiates the WebServiceDeliveryUIControl web control
and calls the IExtension.SetConfiguration method first. When you register
a custom delivery extension, you can optionally specify configuration settings in both
the Report Server and Report Manager configuration files. As noted earlier, you use
the Report Server settings to specify the default Web service specifics. You can also
use the Report Manager’s configuration file to define any UI-related settings. In our
example, the custom delivery extension doesn’t need any UI-specific settings. For this
reason, the SetConfiguration call passes an empty string.

Next, the Report Manager sites the control that invokes the control’s Init
method. At this point, the web control is supposed to render itself. This boils down
to creating three textbox controls and some validation controls to validate the user-
entered values on the client side. Because the web control has access to all of the
476 CHAPTER 13 EXTENDING REPORTING SERVICES

ASP.NET functionality, you can use any ASP.NET-compatible control for the user
interface. For example, if you decide to expand the extension to allow the user to spec-
ify the report’s format, you can use a drop-down control that contains the supported
export formats.

Each control gets its default value by calling the GetValue private member. To
retrieve the configuration settings defined in RSReportServer.config, Get-
Value accesses the ISubscriptionBaseUIUserControl.ReportServer-
Information.ServerSettings. This call triggers the invocation of
IExtension.SetConfiguration by the Report Manager to pass the server-side
configuration settings in XML. The ServerSide property exposes them as an array
of Settings objects. The code iterates through this array to find the setting that
corresponds to the textbox. At this point, the web control is rendered on the screen.

Once the user posts the page back to the server, the Report Manager calls the
ISubscriptionBaseUIUserControl.UserData property to pass the user-
entered values. Finally, the Report Manager calls IDeliveryExtension.Vali-
dateUserData to give the control a chance to inspect the user-entered values and
throws an exception if they are not valid.

If everything is fine, the Report Manager calls to the Report Server Web service
API to persist the subscription configuration in the Report Server database.

Implementing the runtime functionality

The runtime interaction is much simpler. When the subscription is triggered, the
Report Server first calls IExtension.SetConfiguration to pass the user-
entered extension-specific values. Then, the Report Server prepares a notification
object and invokes the Deliver method.

Figure 13.15 This diagram shows the conversation map between the Report Manager and the

custom delivery extension.
DISTRIBUTING REPORTS TO WEB SERVICES 477

In the case of a data-driven subscription, the Report Server invokes IDelivery-
Extension.Deliver for each recipient. The notification object encapsulates
everything the extension needs to deliver the reports and notifies the Report Server
about the delivery status.

First, the code retrieves the user-entered values from the Notification.
UserData property. Then, it calls the DeliverReport method, which is where
the bulk of the custom delivery logic resides, as shown in listing 13.3.

private void DeliverReport(Notification notification,
 SubscriptionData data) {
 StringWriter stringWriter = null;
 m_files = notification.Report.Render("XML", @"<DeviceInfo/>");

 if (m_files[0].Data.Length > 0) {
 byte[] reportPayload = new byte[m_files[0].Data.Length];
 m_files[0].Data.Position = 0;
 m_files[0].Data.Read(reportPayload, 0, reportPayload.Length);
 m_files[0].Data.Flush();
 string payload = Convert.ToBase64String(reportPayload);
 StringBuilder stringBuilder = new StringBuilder();
 stringWriter = new StringWriter(stringBuilder);
 XmlTextWriter writer = new XmlTextWriter(stringWriter);
 writer.Formatting = Formatting.Indented;
 writer.WriteStartElement("Report");
 writer.WriteElementString("ReportPayload", payload);
 writer.WriteEndElement();

 DynamicWebServiceProxy ws = new DynamicWebServiceProxy();
 ws.WSDL = data.WSDL;
 ws.TypeName = data.typeName;
 ws.MethodName = data.methodName;
 ws.AddParameter(stringBuilder.ToString());
 string result = ws.InvokeCall() as string;

 if (result==null) throw new Exception(…);
 }

 notification.Status=String.Format("Report delivered to {0}",
 data.WSDL);
 }

First, the code instructs the Report Server to render the report in XML b. As
listing 13.3 shows, rendering the report is as simple as calling the Notification.
Report.Render method. It really can’t be simpler!

Once the report is rendered, its payload is exposed as one or more streams c. As
we noted in chapter 12, if you request the report in one of the HTML multistream
rendering formats (all HTML formats except MHTML), the first stream will include

Listing 13.3 Implementing the report delivery

Renders the report b

Gets the first stream c

Processes
the report’s
payload

d

Sends
payload to
the Web
service

e

Notifies the Report
Server status
478 CHAPTER 13 EXTENDING REPORTING SERVICES

the report’s payload, while the subsequent streams will include the report’s images.
Single-stream rendering formats will always produce only one stream with the images
embedded in it. Because you are rendering the report in XML, you can get the entire
report results from the first stream.

Next, you create a simple XML document to contain the Base64-encoded ver-
sion of the report’s payload d, so that it can be sent over the Web to the target
Web service.

Finally, you send the XML payload to the target Web service e.

Delivering the report to a Web service

Now for the fun part! As we’ve mentioned, our custom delivery extension supports
sending the report’s payload to an arbitrary Web service. This presents an implemen-
tation challenge, though. Because the Web service’s endpoint is not known until run-
time, you cannot “early bind” to it by establishing a web reference. Instead, you need
to generate the Web service proxy dynamically.

How should you go about implementing this? Before I decided to write my
own dynamic Web service invocation using CodeDom, it dawned on me that
someone else might have already done this. Indeed, a quick Google search con-
firmed my hypothesis.

It turned out that there is already a great Dynamic Web Service invocation library,
DynWSLib, written by Christian Weyer (see the “Resources” section at the end of
this book). As the author says, “Given the URL to the Web Service WSDL file, the
type and method name, DynWSLib uses CodeDom to generate the proxy. For better
performance, DynWSLib caches the generated proxy library as a file in the system
temp folder.” A quick DynWSLib test convinced me that this is exactly what I needed
to dynamically invoke an arbitrary web method.

As you can see in listing 13.3, you instantiate DynWSLib and pass the user-
entered WSDL URL, type, and method name. Next, you pass the report’s payload as
a parameter to the proxy. Finally, you invoke the web method. Under the
Chapter13 folder in the AWReporterWeb project, you’ll find a simple Web service,
Reporter.asmx, which the default extension configuration settings point to. It
simply gets the report’s payload and outputs it using Trace.WriteLine.

Note that you won’t get far testing the custom extension if you don’t adjust the
code access security policy for both the AWC.RS.Extensions and DynWS-
Library assemblies to full trust. In addition, you need to grant Full Trust rights to
the cached Web service proxy library. This presents a challenge because DynWSLib
generates a unique name for the temporary file for each Web service. You must grant
Full Trust rights to all assemblies in that folder, as the setup instructions for the cus-
tom delivery extension explain.

NOTE For some obscure reason that I wasn’t able to figure out, the system Temp
folder appears to be treated differently by the RS code access security policy.
DISTRIBUTING REPORTS TO WEB SERVICES 479

Despite the fact that I assigned Full Trust rights to folder and its contents
(by using the * wildcard), I wasn’t able to get past code access security. I was
getting a target invocation exception. Strangely, switching to another folder
seemed to keep the CAS gods happy. Therefore, as a workaround, you may
want to change the DynWSLib source code to save the temporary file to
another folder, for example, C:\Temp. Let me know if you find a way to
get CAS working with the system Temp folder.

13.3.4 Debugging custom delivery extensions

Debugging a custom delivery extension is tricky because it isn’t loaded when the
report is generated, so using the dataset extension debugging approach won’t work.
Because a custom delivery extension could be invoked from both the Report Manager
and the Report Server Windows service, the debug instructions vary.

Design time debugging

During design time, the Report Manager process invokes the custom extension. To be
able to debug your custom extension, start the Report Manager and manually attach
to its process from the Debug > Attach to Process menu in VS .NET, as shown in fig-
ure 13.16.

Figure 13.16 To debug your custom extension during design time, attach to the Report

Manager process.
480 CHAPTER 13 EXTENDING REPORTING SERVICES

In our example, we used Windows XP as the operating system, so we attached to the
aspnet_wp.exe worker process (if you are using Windows 2000, use the same proc-
ess). If you use Windows 2003, you’ll need to attach to the IIS worker process,
w3wp.exe. Finally, to step through the extension code, create a new subscription in
the Report Manager that uses your extension, or edit an existing one. At this point,
your breakpoints should be hit.

Runtime debugging

To debug a custom delivery extension during runtime, for instance, when the sub-
scription is triggered by a schedule, follow the design time debugging steps shown
previously, but this time attach to the Report Server’s Windows Service process
(ReportingServicesService.exe), as shown in figure 13.17.

This should come as no surprise to you, if you recall that it is the Report Server’s
Windows service that monitors the report catalog for the event’s occurrence and ini-
tiates the subscribed report delivery. For this reason, the delivery extension is loaded
during runtime in the ReportingServicesService.exe process.

Figure 13.17 To debug a custom delivery extension during runtime, attach to the

ReportingServicesService.exe Windows Service process.
DISTRIBUTING REPORTS TO WEB SERVICES 481

TIP I’ve found that the easiest way to trigger the subscription execution for
debugging purposes is to base the subscription on a schedule that’s config-
ured to run once. To use this approach, stop the ReportingServices-
Service.exe Windows service and wait until the event record is inserted
into the Event table in the Report Server database. Then, start the Win-
dows service and attach your extension to its process, as explained previ-
ously. To trigger the subscription’s execution, paste the event record in the
Event table. The next time the Windows service polls this table, it will
pick up the event and run your extension.

There is an issue associated with debugging custom delivery extensions in successfully
calling the Notification.Render method to render the report. To do this you
need to be logged in to your login domain controller. If you are logged in using a dis-
connected session, the call results in the following exception:

Report Server has encountered a configuration error;
more details in the log files, AuthzInitializeContextFromSid:
Win32 error: 1053

13.4 IMPLEMENTING CUSTOM SECURITY

As we explained in chapters 9 and 10, with some types of applications, the default
Windows-based security model of RS may become impractical. This will typically be
the case with Internet-oriented web-based applications serving hundreds and often
thousands of users. This typically leaves you with two implementation choices:

• Request the report on the server-side of the web application by calling to the RS Web
service—The advantage of this approach is better security because the report is
rendered entirely on the server side.

• Request the report on the client-side of the application by URL—As you know by
now, URL access offers a number of benefits, including support for all interac-
tive features, the HTML Viewer toolbar, and so forth.

Requesting reports by URL with Internet-oriented applications almost always requires
that you replace the default RS Windows-based security model. Fortunately, the
extensible RS architecture allows you to replace the default security model with cus-
tom security extensions. This enables you to configure the Report Server for Anony-
mous access and route the authentication and authorization checks through the
custom security extension. I personally don’t know of many other products that sup-
port pluggable authentication and authorization modules.

TIP If you haven’t done this already, before going any further, read the “Using
Forms Authentication in Reporting Services” white paper listed in the
resources at the end of this book. This article, as well as the accompanying
code sample, will give you the essential knowledge that every developer
must have before implementing custom security extensions with RS.
482 CHAPTER 13 EXTENDING REPORTING SERVICES

Using custom security with Internet-oriented applications can be a good option for
these reasons:

• The application can request reports by URL on the client side by directly accessing the
Report Server—For example, a web page can include a View My Reports hyper-
link with the URL address of the report.

• The Report Server can discriminate among web users—For example, an online
hotel portal can assign users to Silver, Gold, and Platinum roles and give users
different levels of access based on their user membership. In this respect, custom
security is no different than the default Windows-based security model.

Figure 13.18 depicts how your applications can leverage a custom security extension
to implement your own authentication and authorization rules.

Although the RS custom security architecture is most suitable for and works best with
web-based applications, any type of application can take advantage of it, including
WinForm clients and Web services.

NOTE Bending the custom security model to work with non-web clients boils
down to writing additional code for storing the session cookie returned by
the LogonUser method and sending it back with each request to the
Report Server. This requires that you overwrite the RS Web service proxy.
For more information, check the LogonUser documentation.

.NET developers familiar with the ASP.NET Forms Authentication will probably find
the RS custom security model to be familiar. Here is the sequence flow (shown in
figure 13.18) between the client and the Report Server, configured to use a custom
security extension:

The client application displays a login form to prompt the user for credentials,
such as the username and password. In the case of ASP.NET applications, Forms
Authentication can be used to redirect the user to the login form automatically. Once

Figure 13.18 You can use a security extension for custom authentication and

authorization.
IMPLEMENTING CUSTOM SECURITY 483

the user’s credentials are collected, the application invokes b the LogonUser RS
web method to log the user on to RS. For example, a web application that leverages
Forms Authentication can call the LogonUser SOAP API once the user is authenti-
cated in the logon page.

Next, the Report Server asks c the custom security extension to authenticate the
user. How the custom security extension does this is of no concern to the Report
Server. Typically, with a large number of users, a database store will be used to store
the user’s profile and credentials.

If the user is successfully authenticated, the LogonUser method returns d a
ticket in the form of a session cookie, which the Report Server expects to find in sub-
sequent calls from the client. When a browser is used as a client, the session cookie
will be automatically passed back when a URL request is made to render a report.
When other types of clients are used, you need to take an extra step to pass the cookie
explicitly with the call to the Report Server.

The client submits e the report request by URL to the Report Server.
The Report Server asks f the custom security extension to authorize the

user request.
If the request is successfully authorized, the Report Server generates the report and

sends g it back to the client.
Although the sequence depicted in figure 13.18 specifically refers to requesting

reports, any type of action against the report catalog is subject to custom authoriza-
tion checks. For example, if the client is the Report Manager, each time the user ini-
tiates a new action from the portal, the Report Server calls the custom authentication
to authorize it.

NOTE Before you jump onto the custom security bandwagon, carefully evaluate
the implications of doing so, including the following:

• RS doesn’t support a mixed-security mode—As a consequence, once you
switch to custom security, you won’t be able to use Windows-based
security anymore, even for administrator access to the Report Server.

• You may need to implement features that you take for granted when Win-
dows authentication is used—For example, if you need to assign users to
groups for easier maintenance, you will have to roll off your own group
membership infrastructure. You may consider using the Microsoft
Authorization Manager when your requirements call for a more
involved application security model.

• Because the report consumers will access the Report Server directly, you may
need to secure the connection to the Report Server using SSL—This is espe-
cially important for Internet-oriented applications. If you don’t, a
hacker may sniff the network traffic and intercept the login credentials.

• Configuring RS for custom security is an involved process that requires a
number of steps to set up the Report Server and Report Manager—Going
484 CHAPTER 13 EXTENDING REPORTING SERVICES

back to Windows-based security and “undoing” all steps could be quite
a hassle, so make sure that you know what you’re getting yourself into.

Because in most cases the main purpose of using custom security is to allow
reports to be requested by URL, you may have to take extra steps to protect
the data. For example, you will need to ensure that a customer can see only
her order history data by filtering the orders at the data source.

There may be other trade-offs applicable to your particular situation.

Now that you’ve seen at a high level how custom security works, let’s examine its
implementation details.

13.4.1 Design goals and trade-offs

Here is our hypothetical scenario. AWC wants to implement a report that lets web-
based customers log in and view their order history. You’ve created a report called
Customer Orders Custom Auth. To ensure secure access to the Report Server, you use
a custom security extension to authenticate and authorize the report requests. Here
are the high-level requirements for this solution:

• Allow customers to access reports by URL.

• Enforce restricted access to the Report Server by implementing a custom secu-
rity extension.

• Authenticate users against a user profile store. In this case, the profile store will
be represented by the Individuals table in the AdventureWorks database.

• Implement horizontal data filtering at the data source based on the user’s iden-
tity to ensure that a customer can see only her own orders.

• Implement the necessary infrastructure to provide administrator-level access to
the Report Server using a designated admin account.

• Support assigning customers to groups for easier maintenance. Creating role-
based security policies for hundreds and thousands of web customers is imprac-
tical. Instead, a better approach is to assign customers to groups; for example,
Individual or Store groups, to reflect the existing customer types in the Adventure-
Works database.

The implementation will be subject to the following trade-offs:

• To keep the solution as lightweight as possible, you won’t require the customer to
enter a password—Needless to say, in real life, you should provide authentication
that’s as robust as possible. The Microsoft custom security sample shows you
some practical techniques for using strong passwords. Once again, consider
using SSL to secure the connection to the Report Server.

• For the sake of simplicity, you won’t provide the database infrastructure needed to
support organizing customers in groups—Instead, you will use the customer’s
identifier as a username and a hardcoded group name called Individual. During
IMPLEMENTING CUSTOM SECURITY 485

the authorization stage, you check the name and, if it is a valid number, you
assume that the customer belongs to the Individual group. In real life, your
authorization logic typically makes a database call to determine the level of
access the user has based on his group membership.

• Unlike with the Microsoft custom security sample, you won’t be implementing a
login form to log the user into the Report Server in case the session has expired or the
user has bypassed the application authentication—Having too many login screens
might be confusing for the user and could present a security risk. Instead, this
design pattern promotes a single logon to both the application and the Report
Server, which will be the responsibility of the application. In cases where the
user requests an RS resource without being authenticated or the RS cookie ses-
sion has expired, you display an error page and prompt the user to log in again
to the web application.

Now, let’s see how this solution works from an end-user perspective.

13.4.2 Intranet reporting with custom security

Let’s assume that AWC customers have been already registered and their profile data is
captured in the Individual table. The first step that you as the report administra-
tor need to take is to grant the users access to view the appropriate reports.

Setting up role-based security policies

This step should look familiar to you. You use the Report Manager portal to create
role-based security policies for AWC customers. In real life, the Report Manager por-
tal won’t be configured for Internet access, and only a few privileged users are assigned
as administrators. Ideally, you should be able to configure the Report Manager with
Windows-based security for user authentication, while the Report Server could be
configured with custom security.

However, as we’ve mentioned, currently RS doesn’t support a mixed security
model. For this reason, once we switch to custom security, we need to take care of
authenticating the user’s access to the Report Manager, as well as the Report Server.
Therefore, once the user accesses the Report Manager, the authentication screen
shown in figure 13.19 is displayed.

Figure 13.19
The authentication screen

enforces secured access to

the Report Manager portal
486 CHAPTER 13 EXTENDING REPORTING SERVICES

If you have followed the setup instructions (readme.htm) in the source code folder,
there will be a predefined admin account, rstester, which you can use to log into the
Report Manager portal.

Next, you must grant rights to those web customers who will be able to access the
Customer Orders Custom Auth report. The custom security extension supports cre-
ating role-based security policies using individual and group accounts. For the pur-
poses of this demo, let’s grant Browser role rights for the Home and AWReporter
folders to the accounts shown in figure 13.20.

In figure 13.20 we’ve created one group-based security policy (the Individual
group) and three individual security policies that correspond to three of the customer
identifiers created by the Recipients.sql script (see the README file for setup
instructions). The Individual-based security policies are for demonstration only. Even
if you don’t set them up, all customers listed in the Individual table will be
authenticated successfully because they belong to the Individual group. When creat-
ing a new security policy, the Report Server asks the custom security extension to val-
idate the user, so make sure that the customer identifiers you use exist in the
Individual table.

Requesting reports

Once the security policies have been set up, customers can request reports using the
AWReporterWeb web application by navigating to the default page. To simulate this,
expand the client-side Reporting menu and choose Custom Security. If the applica-
tion is set up correctly to use Forms Authentication, at this point you should see the
Adventure Works Portal Login form, as shown in figure 13.21.

Figure 13.20
You can set up the security policies for

your non-Active Directory users and

groups with the Report Manager.

Figure 13.21
To request a report,
the customer has to be

authenticated by the

application.
IMPLEMENTING CUSTOM SECURITY 487

The Custom Security menu points to the MyOrders page located under the Chapter13
folder. Because this page is defined in the application’s configuration file as secured,
the ASP.NET Forms Authentication security framework automatically navigates to the
designated login page, Login.aspx. Once the customer posts to the page, it calls the
LogonUser method to pass the customer’s credentials to the Report Server.

Next, the MyOrders page is displayed. This page features a URL link to the Cus-
tomer Orders Custom Auth report. Using the link, the user can see his order history
by requesting the report by URL, as shown in figure 13.22.

This report filters the data based on the identity of the authenticated user. In our
case, we set the user’s identity to match the customer’s identifier. In this way, we
enforce at the data source the security-related business rule that customers can see
only their own orders.

Having seen how this demo works, let’s delve into the technical details to find out
how it is implemented.

13.4.3 Implementing the custom security extension

You can find the custom security extension code under the SecurityExtensions
folder in the AWC.RS.Extensions project. Detailed setup instructions can be found in
the README file located in this folder. Because setting up the custom extension
requires changing almost all configuration files, we copied our version of the Report
Server and Report Manager configuration files to the ConfigurationFiles/
CustomSecurity folder.

The custom security extension was built on the Microsoft sample extension. Once
again, read the white paper if you feel that you need more background information.

Figure 13.22 With custom security, web users can request reports by URL.
488 CHAPTER 13 EXTENDING REPORTING SERVICES

Custom security extension types

Table 13.3 lists the most significant security extension components and their purpose.

Our custom authentication logic is encapsulated in the Authentication-
Extension class, which implements the IAuthenticationExtension inter-
face. It includes code for validating the user against the user profile’s database store.

The Authorization class implements the IAuthorizationExtension
interface. Its main task is to authorize the user’s actions against the predefined role-
based security policy. The Authorization class includes several overloaded ver-
sions of CheckAccess that will be called by the Report Server. Which version of
CheckAccess will be called depends on the type of action attempted.

Why do we need two login pages? The UILogon page is meant to authenticate the
user when the user tries to access the Report Manager portal, as shown in figure 13.19.
The second login screen, Logon, is used to authenticate the user when she tries to
browse the report catalog. As we’ve said, in this example, you don’t allow bypassing
the application’s authentication and hitting the Report Server directly, so the imple-
mentation of this page is very simple. It prompts the user to log in again by clicking
a hyperlink that will bring her to the application’s login screen.

Let’s now see how the custom security extension works by looking at the processes
of authentication and authorization in detail.

Runtime conversation map

As we explained in chapter 9, when implementing custom security models, you need
to differentiate between the processes of authentication and authorization. During the
authentication phase, you determine the identity of the user, while the authorization
phase is concerned with verifying the user’s rights to the requested resource.
Figure 13.23 shows the simplified sequence of events for both phases.

As figure 13.23 depicts, authentication must take place before the request is
authorized. After a successful authentication handshake, the Report Server sends the

Table 13.3 Security extension components

Source file Inherit from Purpose

AuthenticationExtension IAuthentication-
Extension

Include custom authentication
implementation

Authorization IAuthorization-
Extension

Include custom authorization
implementation

Logon page System.Web.UI.Page The login page for authenticating the
user if direct browsing of the report
catalog is permitted. Our
implementation simply returns an error
message.

UILogon page System.Web.UI.Page The login page for authenticating the
user for access to the Report Manager
IMPLEMENTING CUSTOM SECURITY 489

application a ticket in the form of a session cookie. The Report Server automatically
checks this cookie during subsequent requests to the Report Server catalog. If the
cookie is not found or it is invalidated, the Report Server displays the Logon page.

NOTE Although you can use the same settings in the Report Server web.config
file to configure the cookie (name, expiration, and so on) as you would
when using ASP.NET Forms Authentication, the two cookies are not com-
patible. In other words, if you have a web application that needs to support
both ASP.NET Forms Authentication and custom security, you will end up
with two cookies—one generated by the ASP.NET Forms Authentication
APIs and another generated by the Report Server when the LogonUser
API is called. As a consequence, you will typically need to synchronize both
cookies to expire at the same time by using the same timeout setting in the
configuration files.

If the cookie is valid, authorization takes place. Here, the request is validated against
the predefined role-based security policy you set up. Your custom authorization logic
has the final say when the request is authorized successfully. This adds a lot of flexibil-
ity because developers can implement custom rules to validate the request, as you will
see shortly.

Figure 13.23 As this map shows, authentication must take place before the request
is authorized.
490 CHAPTER 13 EXTENDING REPORTING SERVICES

Implementing custom authentication

From the client perspective, the first task that the application has to do to grant the
user access to the Report Server is to call the RS LogonUser web method and pass
the user’s credentials.

NOTE The RS documentation states that the LogonUser method should be
called over a secured (SSL) connection. While you must definitely consider
securing the connection to the Report Server with your real-life applica-
tions, you don’t need SSL when calling this method.

Another consideration to watch for, which bit me at the beginning, is
that when using the Report Manager with custom security, you need to
enter the portal’s URL exactly as specified under the ReportServerUrl
element in the RSWebApplication.config Report Manager configu-
ration file. If you don’t do this, for example, if you use localhost as a server
name, you will get an exception and custom security won’t work. However,
you can request reports using localhost.

After the LogonUser call, the Report Server invokes the IAuthentication-
Extension methods in the sequence shown in figure 13.23.

First, the Report Server invokes the IAuthenticationExtension.Set-
Configuration method to give the authentication extension a chance to configure
itself by passing the configuration XML fragment from the RSReportServer.
config configuration file. In our example, the configuration section includes the
connection string to the user’s profile store as well as the credentials that the report
administrator can use to log in to the Report Manager. The premise here is that, in
real life, you will typically keep the administrator’s credentials and the user’s profile
store separate. Of course, there’s nothing stopping you from putting the administra-
tor’s credentials in the user’s profile store if your application’s design calls for it.

Once the extension is initialized, the Report Server calls GetUserInfo to obtain
the user’s identity. This method is also called with each request to the Report Server.
Set the user identity as follows:

userIdentity = HttpContext.Current.User.Identity;

When the user is not yet authenticated (IAuthenticationExtension.Logon-
User is not yet called), the Report Server sets the user’s identity to a temporary user.
The userIdentity object passed as an out argument to GetUserInfo is of the
type System.Security.Principal.IIdentity interface, so it can be set to
any valid object that implements this interface.

NOTE I was initially tempted to implement the user-to-group membership assign-
ment in GetUserInfo. My envisioned approach was to check the user’s
profile store and assign the user to one or multiple roles as you could do
when using ASP.NET Forms Authentication, for example:
IMPLEMENTING CUSTOM SECURITY 491

// check the group membership and assign user to the Individual
role
HttpContext.Current.User = new GenericPrincipal (userIdentity,
 new string[] { "Invididual" });

Then, my plan called for verifying the user group in CheckAccess by
using the IPrincipal.IsInRole() method and authorizing the user
based on the group membership. Unfortunately, while this approach will
work, GetUserInfo is called repeatedly within a single request, and per-
forming a database lookup each time may very well hinder the application’s
performance. For this reason, I abandoned my original plan in favor of per-
forming the database lookup in the CheckAccess overloads, as suggested
by a Microsoft engineer from the RS group.

After several SetConfiguration and GetUserInfo calls, the Report Server
eventually calls the LogonUser method to ask you to validate the user’s credentials.
The Report Server conveniently passes the username and password that were sent in
the LogonUser web method call. This implementation of LogonUser performs a
database lookup against the Individual table in an attempt to find a customer
identifier that matches the username. If this is the case, you consider the user valid
and set the method’s return value to true.

Note that the Report Server calls IAuthentication.LogonUser only once
during the lifetime of the user’s session as a result of the call to the LogonUser web
method. As we’ve noted earlier, if the user is authenticated successfully, the Report
Server will issue a ticket in the form of a cookie that will be checked automatically
with each request to determine if authentication has already taken place. The cookie’s
details are specified in the Report Server’s web.config configuration file. Set the
cookie to expire after one hour, as shown here:

<authentication mode="Forms">
 <forms loginUrl="logon.aspx" name="sqlAuthCookie"
 timeout="60" slidingExpiration="true" path="/">
 </forms>
</authentication>

ASP.NET developers familiar with the ASP.NET Forms Authentication model will find
this syntax familiar. For example, you can use the same declaration attributes to con-
figure the RS custom authentication.

You may wonder how the Report Server validates the username when the admin-
istrator creates a new role-based security policy using the Report Manager portal.
When an attempt is made to change the role-based security policy of a given item in
the report catalog, the Report Server calls IAuthenticationExtension.
IsValidPrincipalName (not shown in the sequence diagram). The Report
Server will pass only the username (not the password) and ask your authentication
extension to verify that the username is valid.
492 CHAPTER 13 EXTENDING REPORTING SERVICES

You can view the call to IsValidPrincipalName as a safeguard against the
possibility that some malicious code could try to exploit the RS role-based security
policy to gain access to the report catalog. Interestingly, the Report Server calls
IAuthenticationExtension.IsValidPrincipalName for each user or
group assigned to the catalog item. If a match is not found, an exception is raised and
the attempt to change the role-based security policy won’t succeed.

Implementing custom authorization

Once authenticated, our custom authorization model needs to verify that the user has
adequate rights to perform the attempted action. How involved this gets will depend
on your security requirements. In the simplest case, you won’t have to change the
authorization code included in the Microsoft sample at all. Its authorization imple-
mentation checks to see whether the user has permissions to perform the requested
action. If you don’t need to support assigning users to groups, the sample authoriza-
tion implementation will most likely suffice for your needs.

Similarly to the authentication model, the authorization process starts when the
Report Server calls IAuthorizationExtension.SetConfiguration to give
your custom authorization extension a chance to configure itself using the setting in
the configuration file. In our example, the configuration section includes only the
administrator’s name. This is needed because you want to bypass the authorization
check if the user has admin rights.

Depending on the type of attempted action, the Report Server will call different
CheckAccess overloads. For example, if a report is requested, the Report Server
will call the following overload:

public bool CheckAccess(string userName, IntPtr userToken,
 byte[] secDesc, ReportOperation requiredOperation)

If the report includes images, the Report Server will also call the CheckAccess
overload that takes ResourceOperation as the last argument:

// Overload for Report operations
public bool CheckAccess(string userName, IntPtr userToken,
 byte[] secDesc, ReportOperation requiredOperation) {

 if (0 == String.Compare(userName, m_adminUserName, true,
 CultureInfo.CurrentCulture)) return true;

 IPrincipal user = HttpContext.Current.User;
 if (Util.IsNumeric(userName)) userName = "individual";

 AceCollection acl = DeserializeAcl(secDesc);
 foreach(AceStruct ace in acl) {
 if (0 == String.Compare(userName, ace.PrincipalName,
 true, CultureInfo.CurrentCulture) {)
 foreach(ReportOperation aclOp in ace.ReportOperations)
 if (aclOp == requiredOperation) return true;

Allows
unrestricted access for

administrator

Assigns user
to group

Determines user’s access to resource
IMPLEMENTING CUSTOM SECURITY 493

 }
 }
 return false;
}

All CheckAccess variations take as an argument the security descriptor of the
requested item in the form of a serialized array. In your CheckAccess implementa-
tion, you can deserialize the item’s security descriptor in the form of an Ace-
Collection class to find out which role-based security policies have been defined
for this item. The Report Server passes all role-based security policies defined for the
requested catalog item, not just the ones defined for the interactive user. It simply tells
you, “Here are all role-based policies defined in the report catalog for this item.” This
is great because it can dramatically simplify your authorization implementation, as
you see in the next section. It is important to note that your authentication extension
can take the stand and have a final say before the Report Server grants or revokes
access to the requested resource. Our default implementation is to loop through the
role-based policies and find out whether the user has been associated at all with
the requested resource. If this is the case, the code verifies whether the user indeed has
rights to the requested operation.

NOTE If you change the CheckAccess overloads you may need to change also the
implementation of the IAuthorizationExtension.GetPermissions
method. GetPermissions returns the list of permissions available to a
given user and it is only called by the Report Manager. Although the
sequence diagram on figure 13.23 doesn’t show it, the Report Manager
calls AuthorizationExtension.GetPermissions to adjust its UI
based on the security policy defined for the logged-on user.

Assigning users to groups

But wait—do you have to create a role-based policy for each user? Just imagine the
nightmare that would follow if you had to maintain hundreds and thousands of role-
based security policies with large sites that support many registered users, such as
AWC. In such cases, groups provide a practical solution for implementing more gran-
ular security assignments because rights are granted to groups, not individual users.

Can groups be used with custom security? You bet, provided that you are willing
to write some code. Currently, the Report Server doesn’t have any notion about
assigning users into application groups. Although you may implement a custom infra-
structure to support assigning users to one or more application groups, for example,
database-driven or based on the Authorization Manager, the Report Server doesn’t
have the means to differentiate users and groups. However, because it will pass all
security policies defined to the requested item to the CheckAccess overloads, you
can easily perform additional lookups to resolve the user-role relationship. For exam-
ple, if the user is not explicitly granted permissions to request reports, you can find
494 CHAPTER 13 EXTENDING REPORTING SERVICES

out which roles she belongs to and iterate through the AceCollection collection
to find out whether these roles have been given the rights to do so.

There are at least two approaches for supporting group assignments. As we men-
tioned before, assigning the user to groups in GetUserInfo is impractical because
it is called many times within each request. One approach is to use a custom HTTP
handler, similar to the one we discuss shortly, to perform the database lookup based on
the user’s identity; create a new GenericPrincipal object; and assign the groups
(roles) to that user. The advantage of this approach is that it centralizes the group
assignments in one place. In addition, it allows the developer to use IPrincipal.
IsInRole to simplify the authorization checks. The disadvantage is that it requires
a custom HTTP handler. Microsoft doesn’t officially support using HTTP handlers to
extend RS.

Another approach is to use the CheckAccess overloads for additional authori-
zation rules, such as group membership. This is the approach we decided to imple-
ment for both report and resource authorization checks. We kept our implementation
simple on purpose. The code checks only to see if the username is a valid number,
because the custom identifiers are numeric. If this is the case, we reset the username
to Individual. In other words, we assume that the user can belong to only one group.
Then, we leave the rest of the authorization logic to find out if a principal named
Individual has been assigned the rights to request the resource.

If you want, you could extend our sample by allowing accounts defined in the
Store table to log into the Adventure Works portal. You could assign these accounts
to a group called Store, which could have a different level of access to the report cat-
alog. Your application requirements may call for assigning users to multiple groups.
Thanks to the fact that the authorization checks are performed in the custom security
extension, you can make them as flexible and sophisticated as needed.

13.4.4 Debugging the custom security extension

Debugging the custom security extension is easy when you follow these steps:

Step 1 Request the MyOrders.aspx page from the AWReporterWeb application.
This will start the aspnet_wp (w3wp in IIS6) process. Or you can open
the Internet Information Services (IIS) management console and browse the
ReportService2005.asmx page.

Step 2 Open the AWC.RS.Extensions project and set your breakpoints.

Step 3 From the Debug menu in VS .NET select Attach to Process, find the
aspnet_wp (w3wp) process, and attach to it.

Step 4 Log in using the Login form in AWReporterWeb. At this point, the call to
the LogonUser web method will be made, and the breakpoints in your cus-
tom authentication extension should be hit.
IMPLEMENTING CUSTOM SECURITY 495

Step 5 Click the My Order History link found in the MyOrders.aspx page. This
will request the Customer Orders report. At this point, the breakpoints in
your custom authorization extension should be hit.

13.5 SUMMARY

Having read this chapter, you should view Reporting Services as a reporting frame-
work that you can use to create versatile reporting solutions. No matter how hard
Microsoft works to enhance RS, it will not be able to meet all possible integration
requirements. In cases such as these, you need to take the road less traveled and cus-
tomize RS to meet your particular needs.

Thanks to the extensible architecture of RS, .NET developers can easily extend or
replace RS’s “canned” features by writing add-ons in the form of custom extensions.
In this chapter, we showed you how you can do just that by enhancing the RS data
processing, delivery, and security features.

To demonstrate how you can extend the RS data processing features, we authored
a custom dataset extension that you can use to report off ADO.NET datasets. Also, to
explain how you can distribute your reports in flexible ways, we created a custom
delivery extension. You can use it to send reports to Web services.

When Windows-based security is not a good fit, you can replace it by writing a
custom security extension. We did this to show how custom security extensions can
be leveraged in the Internet reporting scenario.

Finally, although we didn’t demonstrate it, to export reports to formats not sup-
ported by RS, you can write custom rendering extensions.

Another important and often-neglected requirement posed to enterprise-oriented
applications is that they need to perform and scale well under heavy loads. The next
chapter discusses practical techniques you can use to ensure that your report-enabled
solutions are well prepared to meet the anticipated request loads.
496 CHAPTER 13 EXTENDING REPORTING SERVICES

C H A P T E R 1 4

Performance and
scalability

14.1 Understanding capacity planning 498
14.2 Capacity planning for Reporting Services in action 508
14.3 Summary 523
To realize the full potential of a report-enabled application, developers must meet the
users’ demands, which typically consist of quality of service, quality of content, and
efficient access to the application’s resources. So far, this book has shown you how
applications integrated with RS can meet the first two objectives.

In this chapter, we discuss how you can ensure that your reporting solutions also
perform and scale well to meet increased user loads. To guarantee that these objectives
are met, you must learn how to evaluate the application’s performance and capacity
before “going live” in a production environment. The specific areas of focus in this
chapter are as follows:

• Explaining the capacity-planning process

• Establishing a performance goal

• Stress-testing the Report Server

• Identifying performance bottlenecks

• Optimizing the application’s performance
497

Although this chapter specifically targets evaluating the Report Server’s performance
and scalability, you can use the same principles to plan the capacity requirements of
other web-based applications.

14.1 UNDERSTANDING CAPACITY PLANNING

Reading the messages posted on the Reporting Services discussion list, we frequently
come across questions related to RS scalability and performance. Usually people ask,
“Is Reporting Services capable of supporting x number of users?” or “What are the
recommended hardware and software specifications to handle high loads?”

Answering questions like these is not easy. It is difficult to predict how variables
in application design, database schema, user behavior, and architecture will combine
to affect the application’s performance. Because no exact formulas can be given, the
burden of ensuring that your reporting solutions will meet the anticipated load is
shifted to you. This is known as capacity planning. Microsoft has done its job by giv-
ing you a platform that can scale up and out. Your job is to prove that your reporting
solutions meet your specific performance and capacity requirements. In this section,
we explore some basic capacity-planning concepts and look at the specific stages
involved in applying capacity planning.

14.1.1 Capacity-planning fundamentals

Conducting a capacity-planning study is not difficult. While discussing this subject in
detail is beyond the scope of this book, our goal is to give you the essential knowledge
and techniques needed to get you started. If you need more information, refer to the
“Resources” section at the end of this book.

Let’s start by examining some essential capacity-planning concepts.

Performance vs. scalability

The terms performance and scalability are often used interchangeably, but an impor-
tant distinction exists. Performance usually measures how fast the application’s code
executes; scalability is concerned with how the application responds under increased
user loads.

An application that scales well usually performs well. The reverse is not necessarily
true. An application may exhibit excellent performance with a small number of users
but may grind to a halt in a high-volume environment. Take, for example, Microsoft
Access database applications. When serving a handful of clients, this type of applica-
tion performs well. However, due to the file-based nature of the Access Jet engine
database, the application’s performance deteriorates quickly as the number of users
increases. In this respect, the application is not scalable.

When conducting a capacity-planning study of Reporting Services, you are trying
to understand how the Report Server responds at various user load levels. In general,
498 CHAPTER 14 PERFORMANCE AND SCALABILITY

you want to measure the latency, throughput, and utilization of the Report Server by
simulating simultaneous report requests by virtual users. Ideally, you find that your
Report Server site exhibits low latency, high throughput, and low utilization.

Understanding latency

Latency is the delay experienced between the time when the client makes a report
request and the Report Server receives the report’s payload. Latency is typically mea-
sured in terms of seconds or milliseconds. Some stress-testing tools, such as the Visual
Studio .NET Application Center Test, use the time to last byte (TTLB) metric to repre-
sent latency. The request-response trip delay depends on two major latency factors:
network and application latencies. Network latency characterizes the time spent to
move data through the wire. Application latency refers to the delay incurred to process
the report request on the server side. Figure 14.1 depicts how the application and net-
work latencies impact the overall report request’s round-trip in a typical on-demand
reporting solution.

As shown in figure 14.1, the total latency time from the point of requesting the report
to rendering it on the screen can be calculated with the following formula:

Total latency (response time) = (A1+A2+A3+A4+A5) + (N1+N2+
N3+N4), where An represents application latencies and Nn stands for network laten-
cies, as explained in table 14.1. The report request’s round-trip incurs application and
network latencies. To improve the performance and scalability of your reporting envi-
ronment, you need to find ways to minimize these latencies.

How much the network delays impact the report request’s total latency depends
to a great extent on the type of the reporting application and your deployment sce-
nario. For example, with intranet-based reporting applications deployed on a 100Mb
corporate network, network latency may not be an issue at all. However, it may
become a constraining factor with Internet-oriented solutions, where slow dial-up
connections are still prevalent.

Figure 14.1 The report’s request-response trip incurs network and
application latencies.
UNDERSTANDING CAPACITY PLANNING 499

One way to reduce the network delays on the trip from the Report Server back to the
client is to minimize the network traffic by requesting reports by URL instead of
SOAP. As we discussed in chapter 10, the latter access option adds about 20–30 per-
cent overhead for serializing the report’s payload to a binary array.

Minimizing the application’s latencies is often more of an art than a science. With
custom applications, you would typically use code profilers to determine which code
sections take up the most time and seek ways to optimize them. Of course, with RS,
this is not an option because you don’t have access to its source code. Instead, you
need to focus on optimization techniques within your reach. For example, as we dis-
cussed in chapter 8, you can use several report-caching techniques to minimize the
report’s processing time. If caching doesn’t conflict with your particular reporting
requirements, we recommend that you use it abundantly. For instance, the easiest
way to reduce the time spent on the Report Server to generate a report is not to gen-
erate it at all but to serve it from a cached copy.

Another potential area that may negatively affect the latency of the server-side
application is the time required to process the report query. If you determine that the
database is a constraining factor, you can use query profilers, such as the Microsoft
SQL Server Query Analyzer, to find out how you can optimize your report queries.
Alternatively, you can use the report’s execution log (see section 14.2.1) to determine
how much time the Report Server has spent on processing the query and executing
and rendering the report.

“How can I get a latency breakdown of the request-response round-trip?” we
hear you ask. We’ve used a third-party tool, Compuware Application Expert
(which is now packaged with ApplicationVantage), to address similar questions
with our performance-related projects. To use this tool, you first need to capture
the network traffic of the request-response round-trip using network-tracing tools,
such as the Microsoft Network Monitor. For the best results, you may want to
obtain network traces from all nodes involved in your reporting solution, such as

Table 14.1 Application and network latencies

Latency Reason

A1 Prepare the report request on the client, e.g., validate the report request, prepare the
report parameters, etc.

A2 Process the report request.

A3 Process the report query.

A4 Generate the report.

A5 Render the report, e.g., in the case of a SOAP call save the report’s payload to a file
and shell out to it.

N1, N4 Network delays between the client and the Report Server.

N2, N3 Network delays between the Report Server and the database server.
500 CHAPTER 14 PERFORMANCE AND SCALABILITY

the client application, the Report Server, and the database server where the report
data resides.

Once you have captured the network traffic, you can import it into the Applica-
tion Expert to get a conversation map showing you the network and application
latencies. This tool also supports what-if analysis. Let’s say you need to find out how
a 56K dial-up connection will impact the report’s response time. Application Expert
includes a predictor component that uses sophisticated algorithms to extrapolate the
latency map for factoring in various network connection speeds.

Understanding throughput

In the context of planning the capacity of your RS environment, the term throughput
is the number of report requests that the Report Server can process within a given unit
of time. No matter how scalable a given application is, its throughput-versus-load
graph will eventually reach its peak, as shown in figure 14.2.

In this respect, you can visualize your reporting application as a highway. When traffic
is light, vehicles move quickly. However, as most big-city dwellers can relate, once all
highway lines are saturated, traffic jams follow and throughput decreases. Therefore,
when you evaluate the capacity of a given RS installation, you apply increasing loads
to the Report Server to find out the point of maximum throughput.

How do you measure the application’s throughput? Often, people want to know
how many concurrent users a given web application, in this case the Report Server,
can handle. Trying to quantify the application’s throughput using concurrent users
could be highly inaccurate for a couple of reasons.

First, it is not clear within what time frame the users are considered to be concur-
rent. Second, “concurrent users” is an ambiguous term that may mean different
things to different people. For example, many people use this term to refer to the
number of users logged on to the application. But should a user who has logged on
to the Report Manager to request five reports and then has gone on a one-hour lunch
break be considered a concurrent user?

Figure 14.2
When measuring the

application’s throughput,

you must find at what

point its graph peaks.
UNDERSTANDING CAPACITY PLANNING 501

Instead, you typically measure throughput in requests per second (RPS) or pages per
second (PPS). What’s the difference between the two? Readers experienced with web
development will probably recall that rendering one page in a browser can result in
several round-trips to the server. For example, when you request a report that includes
images in HTML, the browser will spawn additional requests to fetch the images.
Therefore, a page is more granular than a request because one page (report) may
require several requests.

NOTE For the purposes of stress-testing the Report Server, you need to differenti-
ate between requests and pages only when the report is requested in a mul-
tistream format. The multistream formats supported natively by the Report
Server are all HTML options except MHTML. Because browsers tend to
cache images, you may find it easier to ignore the image requests, especially
with high-speed networks.

But wait, all reports are not created equal, right? Although some may take seconds to
render, others may need significant processing resources. What, then, does a request
really mean, and how can you use it to represent various reports? These are excellent
questions that deserve more attention. The short answer is that there isn’t an exact
rule to correlate requests with the actual reports. Let’s go back to our highway example
to clarify this.

Imagine that you need to measure the highway throughput for a given period of
time. One way to do this is to count how many vehicles of different types, such as
tractor-trailers, minivans, cars, and so on, have gone down the highway during the
time period in question. The advantage of this approach is its accuracy. On the neg-
ative side, it is more involved because it is difficult to work with multiple units. For
example, how many cars can be substituted for a tractor-trailer? What car models are
we talking about? As they say, the devil is in the details. To simplify things, you can
introduce an abstraction metric called a “vehicle” that you would use to represent an
average vehicle on the highway. This simplifies your task considerably because now
you are not concerned with the type of vehicles. In fact, you can use automatic count-
ing equipment to count the vehicles for you.

In a similar way, you can use requests per second to represent the number of suc-
cessfully completed report requests that the Report Server can handle within a second.
Instead of requests per second, you may prefer to use other metrics. For example,
another common stress-testing metric is the number of virtual users that the applica-
tion can handle before its utilization exceeds the specific threshold values. Note,
though, that this approach is more involved to set up because you need to simulate
the users’ request patterns. For instance, once the user has requested the report, she
will typically analyze it or print it before requesting another report. When using vir-
tual users, you need to examine the report’s execution history and factor in the user’s
think time. Another disadvantage of this method is that it may require a significant
number of test client machines to “saturate” the web server.
502 CHAPTER 14 PERFORMANCE AND SCALABILITY

If you want, you can conduct two sets of tests to use both approaches—requests
per second and virtual users. Ideally, in this case, your test findings should match.

Understanding utilization

While determining the maximum load that the Report Server can handle is useful,
often you need to find out how your report-enabled applications can scale better to
meet your performance goal. In other words, an essential objective of every capacity-
planning study is to find what performance bottlenecks cause the throughput graph
to decline, as shown in figure 14.2.

You can determine resource constraints by examining the utilization of your sys-
tem. You typically do this by monitoring a set of performance counters. Specifically,
you must monitor the utilization of the following resources at minimum:

• CPU

• Memory

• Database server

Table 14.2 lists the most frequently used Windows performance counters to track the
utilization of these resources.

RS comes with its own performance counters that you can use to track the utilization
of the RS Web service and Windows Service. For more information about RS-related
counters, see the product documentation.

Let’s turn now to the actual process of capacity planning.

14.1.2 The capacity-planning process

A successful capacity-planning study necessitates a guided process that shouldn’t be
much different than the software development methodology in general. The capacity-
planning process consists of several stages, as shown in figure 14.3.

Table 14.2 Windows performance counters that you can use to monitor the Report
Server’s usage

Resource Performance Counter Purpose

CPU Processor(_Total)\% Processor Time Represents the average CPU utilization. The
average CPU utilization on any processor
should not exceed 60–70%.

CPU Process(aspnet_wp)\% Processor
Time (or Process(w3wp)\%
Processor Time for Windows 2003)

The percentage of the CPU utilization spent in
the ASP.NET worker thread

SQL Server Process(sqlservr)\% Processor Time The percentage of the CPU utilization
consumed by SQL Server

Memory Memory\Available Bytes The amount of available RAM memory in bytes
UNDERSTANDING CAPACITY PLANNING 503

As you can see, the capacity-planning process is an iterative one. At the end of each
iteration, you compare the performance results against preestablished performance
goals. If our objectives are not met, you need to find out why and think of ways to
improve the system’s scalability.

Let’s discuss each of the stages in more detail.

Determining requirements

This is, arguably, the most important stage of the capacity-planning effort. As with
any software project, you shouldn’t underestimate the importance of getting and doc-
umenting the application’s performance requirements. My overall impression is that
developers tend to ignore establishing performance goals for their applications. In
most cases, the result of this optimistic approach is poor scalability, which necessitates
total redesign of the application.

NOTE I was once involved in a large-scale web-based project. My first task was to
find out why the application was performing poorly. After stress-testing the
system, I found out that it couldn’t handle more than one request per

Figure 14.3 The capacity-planning process consists of several stages and

may include more than one iteration until the performance goals are met.
504 CHAPTER 14 PERFORMANCE AND SCALABILITY

second! For a web-based application this was clearly unacceptable. After a
long and painstaking process of running tests against each application tier,
I found several performance bottlenecks. The most significant were related
to the poor throughput when requesting data from the mainframe database.
In addition, I discovered that, enamored with XML, the application develop-
ers had used XML DOM manipulations and XSL transformations abundantly
in each tier of the application. The application was moving ever-growing
XML payloads between the web server and the browser. XSL transforma-
tions were used on the client side to render the presentation screens.

“Fixing” the application to scale better wasn’t easy. It had to be totally
redesigned and rewritten in ASP.NET. After several iterations, the applica-
tion finally met the performance goals and was deployed to the high-
volume production environment. The moral of this story is that you must
plan for performance as early as possible in the application’s lifecycle.

After you determine the application’s performance requirements, you need to quantify
them in performance metrics. For applications integrated with RS, these metrics
could include the following:

• Requests per second—This is the total number of report requests that the web
server (or cluster) can handle.

• Utilization counters—For example, the average CPU utilization of any of the
web server’s processors should stay below 70 percent, the memory consumption
shouldn’t top 80 percent, and so on.

• Response time—The industry standard response time for web-based applications
is no more than 10 seconds measured from the time the request is made until
the page is rendered to the browser or the response is received from the web
server. This is a reasonable latency time for report rendering as well.

• Application availability—For example, your reporting requirements may call for
99.9 percent availability. Aside from scalability, this is one of the main reasons
to use a cluster or web servers, as we discuss in section 14.2.6.

While the last three of the above-mentioned metrics are easy to formulate, establish-
ing a throughput benchmark may require more effort. Basically, to accomplish this
you can use the following two approaches:

• Empirical—If RS is deployed and running in a production environment, this
will be the preferred method because it is more realistic and accurate. This
method involves analyzing the report’s execution log to gather some statistics
about the application’s usage. This is the method that we demonstrate shortly.

• Theoretical—If production data is not available, you can derive the throughput
metrics by calculating the envisioned load. For example, say you determine that
your user base will consist of 5,000 users and each user may request up to 100
reports per day. Assuming that the report requests are distributed evenly
UNDERSTANDING CAPACITY PLANNING 505

throughout the day, this means that the Report Server needs to handle about six
requests per second ((5,000 x 100)/(24 x 3600) = 6 requests/sec.).

The performance goal you establish at the end of the “Determining requirements”
phase will serve as a benchmark against which you will measure the actual perfor-
mance and determine whether additional performance optimization work is required.

Establishing a testing environment

This stage typically involves the following steps:

• Understanding the application architecture—In general, you need to have an inti-
mate knowledge about the architecture of the reporting application. This neces-
sitates working hand-in-hand with the application’s developers and report
authors throughout the entire capacity-planning effort.

• Setting up the testing environment—You should get a dedicated test server with
hardware and software specifications matching as closely as possible the produc-
tion server setup. Otherwise, your test results will be skewed.

• Creating test use cases—In a typical web application, you should create test use
cases that you will later script and stress test. For example, you may come up
with a use case called User Login that involves two web pages: the home page
and the login page. For reporting applications, you could identify a representa-
tive set of reports that need to be tested. You can analyze the RS Execution Log
to find out the most requested reports.

• Preparing test scripts—This is where you will put on your developer’s hat and
create test scripts using your favorite stress-testing tool. You will use the scripts
to apply an ever-increasing load to the Report Server to determine its maxi-
mum throughput.

Once the test environment is set up, it is time to find out whether your specific RS
installation can stand up to the test and deliver what is expected of it.

Performance testing

This is our favorite sit-and-watch stage. Most stress tools are designed to simulate
multiple users submitting requests via HTTP-GET or HTTP-POST. For example,
Microsoft Application Compatibility Toolkit (ACT) can be used to generate customi-
zable loads and offers a rich set of reporting features for analyzing performance data.

The main objective of this stage is to produce the graph shown previously in
figure 14.2. Our favorite method to accomplish this is to increase the number of the
Application Center Test’s virtual users (connections) by a factor of 2; for example, 1,
2, 4, 8, and so on. Eventually, the web server utilization will max out. At this point,
you will know the maximum throughout that your particular RS installation can han-
dle expressed in requests per second.
506 CHAPTER 14 PERFORMANCE AND SCALABILITY

Next, you compare these results against the previously established performance
benchmark. If the results meet or exceed your expectations, you can congratulate
yourself. Otherwise, you need to cancel your vacation and go back to the drawing
board and identify the performance bottlenecks.

Identifying performance bottlenecks

A bottleneck is a resource constraint, either hardware or software, that prevents per-
formance from improving. As noted earlier, you determine the performance bottle-
necks at a high level by examining the performance counters. Identifying performance
bottlenecks is not always easy, but here are some tips you may find useful:

• Often, with web-based applications such as Reporting Services, the web server
processor will become the first resource constraint. The Processor: % Processor
Time/Total is the best counter for viewing processor saturation. If the processors
are running between 90 and 100 percent, then they are most likely the bottleneck.

• If there is heavy disk activity, then the memory is likely to be the bottleneck.
The Memory: Available Bytes performance counter can tell you how much
physical memory is remaining and available for use.

• If the database server’s processor is highly utilized, this is an indication that the
database may be a resource constraint. In the case of the SQL Server, check the
Process(sqlservr)\% Processor Time counter to find out whether this is the case.

• If the ASP.NET Applications/Requests Queued counter fluctuates considerably
during the test run, and the processor utilization remains low, this is an indica-
tion that the report is most likely calling custom code that is receiving more
calls than it can handle.

• If none of these resources is a problem, yet the requests/second still do not
increase despite the increased load, then the network card bandwidth should be
examined. The best counter to use to examine the network card saturation bot-
tlenecks is Network Interface: Bytes Total/sec. The bytes/sec should be less than
40 percent of the total available bandwidth.

Once you identify the resource contention area, you can focus on finding ways to
eliminate it.

Eliminating performance bottlenecks

There are a number of performance-enhancing techniques you can try based on your
particular situation. For example, if the CPU utilization is high, you may want to con-
sider using report execution or session caching. As we discussed in chapter 10, when
reports are requested via URL, report sessions are handled automatically. With SOAP
access, you have to go an extra step to correlate the report with the session.

Another potential area that may lead to a high CPU utilization is if your reports
use resource-intensive custom code. If you suspect this to be the case, you can use
UNDERSTANDING CAPACITY PLANNING 507

third-party profilers, such as the Compuware DevPartner, to find which portions of
your code are the most processor-intensive.

If your report queries process vast volumes of data, you may want to explore
options to decrease the amount of data displayed. For example, consider implement-
ing web-style paging to display one page of a report at a time with a handful of
records. Finally, when performance-optimization techniques don’t yield results, you
can add more processing power by scaling RS up and out.

Now that we’ve covered both the fundamentals and process of capacity planning,
let’s see how you might apply it in practice.

14.2 CAPACITY PLANNING FOR
REPORTING SERVICES IN ACTION

Here is our hypothetical scenario that will drive the capacity-planning effort for
Adventure Works. As we’ve mentioned on several occasions throughout this book,
Adventure Works Cycles (AWC) is blessed with success. The company is expanding
by acquiring some of its competitors. As a part of this process, the IT management
needs to plan for growth. You’ve been tasked with determining whether the reporting
infrastructure can handle an increased load that is expected to be 10 times greater
than before. To estimate the impact, you decide to perform a capacity-planning study
by following the steps we just discussed.

You can find the ACT scripts we used in this chapter included in the book’s source
code under the Performance Testing folder.

14.2.1 Determining requirements

In this stage you determine the capacity-planning requirements and establish a perfor-
mance goal. The bulk of the effort will be spent on quantifying the anticipated load in
requests per second (reports per second). In our hypothetical scenario, RS has already
been deployed and is running in production. Therefore, as a first step, you need to
analyze the RS Execution Log to find out the following:

• How many report requests has the Report Server handled for a given period?

• How were these requests distributed?

Once you answer these questions, you can easily extrapolate the increased load.

Determining the number of report requests

By far, the easiest way to find out how many reports the Report Server has handled
within a given period of time is to analyze the report’s execution log.

NOTE If you are evaluating web-based applications other than Report Server, you
can determine the number of report requests by examining the web server
logs. There are many third-party commercial and free tools you can use to
analyze web server log files. For example, for our real-world projects we
508 CHAPTER 14 PERFORMANCE AND SCALABILITY

have used the Analog log analyzer with a great deal of success. Among the
several analyzers that we’ve tried in the past, we’ve found the Analog’s out-
put to be the most accurate. The tool is also free of charge. If you need glitz-
ier and more convincing presentation formats than those produced by
Analog, you may want to try another free tool, ReportMagic. See the
“Resources” section to find out how to obtain Analog and ReportMagic.

As we discussed in chapter 8, RS stores important execution statistics in the
ExecutionLog table in the RS Configuration Database (ReportServer). We also
said that to convert the statistics to a format that is easy to understand, you can use
the Execution Log DTS package (RSExecutionLog_Update.dts) included with the RS
Setup CD. This package extracts the report’s execution log data, transforms it, and
uploads it to a separate SQL Server database called RSExecutionLog.

The data captured in the RSExecutionLog database includes a wealth of informa-
tion associated with the report’s execution, as well as vital performance-related met-
rics. For example, the ExecutionLogs table in the RSExecutionLog database
includes report response times as well as times spent in retrieving data (the Time-
DataRetrieval column) and in executing (the TimeProcessing column) and
rendering (the TimeRendering column) the report. For this reason, the report’s
execution log should be your first resource when troubleshooting performance issues
with your reports.

Finding out the number of reports handled by the Report Server from the report’s
execution log is a matter of running the following simple query against the Execu-
tionLogs table:

SELECT COUNT(*) AS ReportCount
FROM ExecutionLog INNER JOIN
 [Catalog] ON ExecutionLog.ReportId = [Catalog].ItemId
WHERE [Type] = 2 /*reports only*/
AND TimeStart BETWEEN <start date> AND <end date>

where <start date> and <end date> specify the time period you are inter-
ested in.

If you are running the Report Server in a web farm environment and you need to
find out how many reports a particular node in the cluster has handled, you can filter
the query further by the MachineKey column.

To derive the number of requests per second, a weekly time period should be suf-
ficient. Let’s say that after you run this query you determine that for a given week
your Report Server handled 2,000 reports. This number includes both on-demand
(user) and subscribed (system) report requests.

You need to account for the extra load incurred by the web server to handle
images for multistream rending formats, Report Manager pages, and so on. To be on
the safe side, increase this number by 50 percent. As a result, you come up with the
estimate that, for that week, the Report Server handled about 3,000 report requests.
CAPACITY PLANNING FOR REPORTING SERVICES IN ACTION 509

If the web server where RS is installed hosts other web applications, you must account
for their load as well. As you’ve already guessed, determining the Report Server’s
load, as well as that of any other type of application, is not an exact science but rather
an educated guess.

Determining request distribution statistics

One more thing you need to account for is the fact that it is unlikely that all requests
were distributed evenly during the day. For example, typically more requests are sub-
mitted within normal working hours. To find out the request distribution statistics,
use the ReportsExecutedByHour.rdl chart report, which you can find included
with the book’s source code (in the Performance Testing folder).

The Reports Executed By Hour chart report accepts a start date parameter and
breaks down the report’s execution statistics per hour for all report requests handled
after that date, as shown in figure 14.4.

Examining the distribution chart shown in figure 14.4, we determined that all of the
activity for the given week occurred within the period 7 a.m.–10 p.m.

NOTE As attentive readers will probably point out, the report count shown in the
chart report doesn’t total to our hypothetical metric of 2,000 report requests.
This is because we ran the report against our local report execution log,
which, of course, doesn’t represent a real-world production environment.

Therefore, within that week, the web report server has handled about 0.07 requests
per second (3,000/(13 hrs. x 3600 sec.). As you can tell, our web server hasn’t
been very busy, but your production load will likely be many times that number.

As the new capacity requirements state, your web server is expected to handle a
tenfold increase in load in the future. This means that the anticipated load will be
about 0.7 requests per second (0.07 requests per sec. x 10). Finally, let’s

Figure 14.4 To account for the load distribution pattern, use the Reports

Executed By Hour sample report.
510 CHAPTER 14 PERFORMANCE AND SCALABILITY

account for the unexpected, such as holiday seasons, end-of-quarter activity, and so
on, by tossing in another 50 percent increase. This means that your throughput per-
formance goal will be about one request per second.

As we’ve discussed before, besides throughput, there are other important perfor-
mance metrics to consider. Table 14.3 lists all performance goals for the AWC scenario.

Now that you’ve established your performance goals, you can continue with the next
phase of the capacity-planning effort: setting up the testing environment.

14.2.2 Setting up the testing environment

The prerequisite for successfully executing this phase is setting up the machines used
for testing. You should have dedicated machines for the client and the test server. You
will use the client machine to run the ACT tests, while the server will host RS. Once
again, the server configuration should match the production server setup as closely as
possible to avoid skewing the results. On the other hand, you don’t need a beefed-up
client because it will spend most of its time waiting for the server to respond.

Table 14.4 lists the configuration details of the client and server machines that
we used for testing. Both the Report Server and SQL Server were installed on the
server machine.

As you can see, our server configuration is somewhat modest. We recommend that
you consider a more powerful server machine, for example, a two-way server with sev-
eral gigabytes of RAM.

Table 14.3 Performance goals for the AWC scenario

Metric Goal

Latency Less than 10 seconds to render a report

Throughput 1 request/sec.

Utilization (CPU) Less than 70% on average

Utilization (memory) Less than 80%

Table 14.4 The configuration specifications of the test machines

Client Server

Make Dell Dimension 4550 Compaq Evo N610c

OS Windows Server 2003 Windows Server 2003

CPU Speed 2.5GHz 2.5GHz

RAM 512MB 1GB
CAPACITY PLANNING FOR REPORTING SERVICES IN ACTION 511

Creating use cases

Creating use cases for testing reports usually involves identifying a good representative
set of reports that will be stress-tested. Again, the easiest way to accomplish this is to
examine the RS execution log. Although there isn’t a precise formula for determining
a good representative set, scripting the top 10 reports is sufficient in most cases. To
find the most popular reports, you can create a query that retrieves this information
from the Execution Logs and Reports table, as shown here:

SELECT TOP 10 COUNT([Catalog].Name) AS ReportCount,
 [Catalog].Name AS ReportName
FROM ExecutionLog INNER JOIN
 [Catalog] ON ExecutionLog.ReportID=[Catalog].ItemID
WHERE [Catalog].[Type]= 2
GROUP BY [Catalog].Name, [Catalog].[Type]
ORDER BY COUNT([Catalog].Name) DESC

For the sake of simplicity and for the purposes of our hypothetical capacity-planning
study, let’s limit the number of scripted reports to three, as follows:

• Employee Sales Summary

• Territory Sales Drillthrough

• Purchase Orders

In addition, let’s assume that the types of requests for these reports are divided equally
between URL and SOAP access.

TIP If you need to do so, you can account for disproportional request access dis-
tributions (URL versus SOAP) programmatically in your test scripts. One
reason why you may want to do so is to simulate as closely as possible your
production environment, for example, to account for the increased size of
the report’s payload in the case of SOAP. Unfortunately, the report’s execu-
tion log doesn’t capture the type of request access. However, you can exam-
ine the IIS log files to find out the URL-to-SOAP access ratio. For example,
let’s say that after analyzing the IIS logs you find that only 10 percent of the
report requests have been submitted via the RS Web service (SOAP) and the
rest via URL (HTTP-GET). You can simulate these distribution statistics by
adding scripting logic to fire a SOAP request after nine HTTP-GET requests.

Having identified the reports to be tested, it is time to use your favorite stress-testing
tool to craft a script that will be used to simulate the request load.

Creating test scripts

To stress-test the Report Server, we created an ACT script that you can find in the
AWReporter.act Application Center Test project. Although ACT doesn’t have ambi-
tions to be a high-level stress-testing package, it is our tool of choice because of the
following advantages it has to offer:
512 CHAPTER 14 PERFORMANCE AND SCALABILITY

• Flexibility—We’ve used ACT on several real-life projects and found it to be very
flexible. Because you can write tests using your preferred scripting language, you
can do with ACT anything that can be done with scripting, such as manipulat-
ing files using the File System Object, reading environment variables, logging,
and so on.

• Ease of use—Many stress-testing tools require that you use C++ or proprietary
language derivatives for scripting. Most Visual Basic or Java programmers will
find themselves instantly at home using VBScript or JScript languages.

• Excellent reporting capabilities—ACT provides some great reporting on the
results of your tests.

• Cost—ACT is bundled with Visual Studio .NET.

NOTE At the time of the writing of this chapter Microsoft is working on a new
and improved version of Application Center. Visit the Application Center
website at www.microsoft.com/applicationcenter/default.
mspx for current details.

Of course, ACT is far from perfect. One feature that we hope a future release will
bring is tighter integration with the VS .NET IDE environment for easier debugging.
Another welcome addition would be the ability to write scripts in managed code
instead of using script languages.

The best way to get started creating scripts is to use the New Test Wizard’s auto-
record feature. This starts an instance of the Internet Explorer browser so that you can
request the desired report by URL. Then, you can examine the produced script and
customize it to meet your particular needs.

Most Visual Basic programmers will find our report-testing script easy to under-
stand. The only area that deserves more attention is generating SOAP requests, as
shown in listing 14.1.

Sub SendRequestSoap(payloadFile)
 Set oRequest = Test.CreateRequest
 oRequest.Path = "/ReportServer/ReportService2005.asmx"
 oRequest.Verb = "POST"
 oRequest.HTTPVersion = "HTTP/1.1"
 set oHeaders = oRequest.Headers
 oHeaders.RemoveAll
 oHeaders.Add "Accept", "image/gif, image/x-xbitmap, …"
 oHeaders.Add "Accept-Language", "en-us"
 oHeaders.Add "User-Agent", "…"
 oHeaders.Add "Host", "(automatic)"
 oHeaders.Add "Content-Length", "(automatic)"
 oHeaders.Add "Content-Type", "text/xml; charset=utf-8"
 RemoveCookies()

Listing 14.1 Generating SOAP report requests with the Application Center
Test project

Sets the
path to Web
service

Sets the
request
content
type

Removes all browser cookies
CAPACITY PLANNING FOR REPORTING SERVICES IN ACTION 513

 oHeaders.Add "SOAPAction", _
 "http://schemas/.../reportingservices/Render"
 oRequest.Body = GetXMLRequest(payloadFile)

 Set oResponse = g_oConnection.Send(oRequest)
 CheckResponse oResponse, payloadFile
End Sub

SOAP requests can become rather verbose, so embedding them in the script page may
be impractical. Instead, you can follow these steps to facilitate submitting report
requests to the RS Web service:

Step 1 Use the AccessOptions sample (chapter 10) and your favorite tracing tool to
capture the SOAP report request’s payload.

Step 2 Save the payload to a disk file.

Step 3 To submit a report request, read the contents of the file using the file system
object and set the request body.

This is exactly the design pattern that SendRequestSoap follows. It accepts the full
path to the report request file. First, the code creates a report request using the ACT
object model. Next, it sets the request path to point to the RS Web service endpoint.
Because the Report Server relies on Windows authentication, you need to change the
HTTP version from the default 1.0 to 1.1. When this is done, ACT will handle the
authentication handshake between the browser and the server automatically.

Next, you need to set the required HTTP headers. You start by clearing the
browser’s cookies collection. For URL requests, this is done to prevent the automatic
report session caching that the Report Server automatically performs behind the
scenes. While in real life you should use caching techniques abundantly, we wanted
to avoid report sessions so they won’t skew the results. As we’ve said, when requesting
reports via SOAP, this is not required because you have to set explicitly the session
identifier anyway.

The code continues by defining the SOAP action attribute, which is mandatory
for SOAP-based calls. Then, you call the GetXmlRequest helper function to read
the report’s payload from the file and set the request body accordingly. Once the
request is submitted, you check the response code to find out whether the request has
resulted in an exception and, if so, log the exception accordingly.

TIP Dealing with SOAP exceptions is easy if you follow this tip. When a SOAP
exception is thrown, the Report Server will set the response code to indicate
that an error condition has occurred. However, the actual exception mes-
sage is in the SOAP response’s payload and it won’t be logged by default.
To find out more about what went wrong, you can intercept the ACT
request using a tracing tool, such as MSSoapT or tcpTrace. To redirect the
request to the virtual port, you will need to change the RS_PORT constant

Sets the SOAP
action

Gets the report’s
payload
514 CHAPTER 14 PERFORMANCE AND SCALABILITY

in the ACT script accordingly, for example, to 8080. Now, you can run the
script to fire a single request and look at the SOAP response’s payload to get
to the exception message. Alternatively, you can use DebugView to trace
the Report Server’s output.

Once the script is ready, you can run it and verify that it runs successfully. In our
script, we implemented a logging feature that you can use to examine the status of the
request by setting the g_iDebugMode variable to 1. When you have finished debug-
ging the script, don’t forget to reset it to 0 to avoid additional performance overhead
and filling up your hard drive.

14.2.3 Performance testing

Let’s put our test script into action to find out how scalable our web server is. To
accomplish this, you need to apply an ever-increasing load to the web server until its
throughput graph peaks. Let’s start by defining only one virtual user using the script
properties, as shown in figure 14.5.

Don’t forget to specify some time for warming up the web server. After a certain
period of inactivity, the Report Server’s web application will time out and shut down.
By warming up the web server, you ensure that the initialization tasks don’t skew
your results.

Now comes the fun part! Run the script and enjoy the show, as figure 14.6 depicts.

Figure 14.5
Determining the throughput

graph’s peak requires that

you gradually apply an ever-

increasing load to the web

server by incrementing the

number of simultaneous

browser connections.
CAPACITY PLANNING FOR REPORTING SERVICES IN ACTION 515

NOTE ACT runs scripts under a designated Windows user account called
ACTUser. Based on our experience, the default permissions assigned to this
account are insufficient to execute scripts successfully. You will know that
this is the case when you receive an “Access Denied” error when you start
the script. If this happens, elevate the ACTUser account’s permissions, for
example, by assigning it to the local Administrators group.

You may want to configure the script to run for at least five minutes to get stable sta-
tistics. When a script is run, ACT displays valuable metrics in the Status area. The
most interesting measure of these is perhaps the Requests Per Second (RPS) indicator,
which reflects the throughput capacity. Note, though, that this indicator is updated
on a regular basis, and it may not reflect the final RPS result.

14.2.4 Analyzing performance results

Once the script is run, you may want to analyze its execution by examining the ACT
Overview Summary report, as shown in figure 14.7.

Figure 14.6 While the script is running, ACT displays performance metrics in the Test

Status window.
516 CHAPTER 14 PERFORMANCE AND SCALABILITY

In figure 14.7, you can see that the web server has processed 40 requests and the RPS
ratio is 0.67 with one virtual user. In addition, the Average Time to Last Byte
(TTLB) metric tells us that ACT has received the complete report payload within
about 1.5 seconds.

Another interesting report is the Requests: Summary report shown in figure 14.8.
Using this report, you can see how both report access options, SOAP and URL, stack
up against each other. For example, when requesting the Employee Sales Freeform
report, you can see that accessing the report via SOAP adds about 20 percent more
overhead to the report’s payload. This stems from the fact that when a report is
requested by SOAP, the report’s payload is serialized to a binary array.

Surprisingly, despite the increased payload, requesting reports via SOAP is some-
what faster than URL access, as you can see by looking at the Time to Last Byte

Figure 14.7
Analyze the script

results with the

Overview Summary

report.
CAPACITY PLANNING FOR REPORTING SERVICES IN ACTION 517

(TTLB) column. For high-speed 100Mbit networks, such as our LAN, the SOAP over-
head should be negligible. However, it may be a constraining factor for low-speed
networks, such as 56K dial-up connections.

Now run a few more iterations by increasing the number of connections by a fac-
tor of 2. When you do this, ACT creates additional threads to simulate concurrent
users. ACT may not create as many threads as the number of connections. Instead, it
is intelligent enough to adjust the thread pool on an as-needed basis. For example, if
the web server doesn’t return responses quickly, new threads won’t be created.

You don’t have to plot the throughput graph manually because ACT does this for
you. In our case, for the six report requests we scripted, the server throughput graph
maxed out with about five simultaneous users, as shown in figure 14.9.

Before you jump to conclusions, note that the point of this chapter is not to show
how scalable (or not scalable, for that matter) Reporting Services is. Instead, its goal
is to teach you how to conduct a comprehensive capacity-planning study to deter-
mine whether your particular reporting environment meets the anticipated load. As
we’ve said, there are many hardware- and software-related factors that will affect the
server throughput, so your results may be completely different from ours.

Analyzing the throughput graph, you conclude that the results don’t meet your
performance goal. Specifically, the maximum requests/sec. ratio of 0.7 is less than the
benchmark—one request/sec. Therefore, you need to identify the source of the per-
formance bottleneck.

Figure 14.8 To compare SOAP versus URL access statistics, use the Requests:
Summary report.
518 CHAPTER 14 PERFORMANCE AND SCALABILITY

14.2.5 Identifying resource constraints

You can use the ACT Performance Counters report, shown in figure 14.10, to identify
the resource constraints at a high level.

A quick look at this report reveals the following:

• Even with one connection, the average CPU utilization of 75 percent is above
the targeted threshold of 70 percent.

• The memory is not a constraint.

• The processor time spent on carrying out SQL Server activities (not shown in
figure 14.10) is low; therefore, the database is not a constraint either.

As we expected, due to the processor-intensive report-generation activities, CPU utili-
zation is a major resource constraint. Analyzing the results from the successive runs
reveals that the CPU utilization reaches 85 percent when the throughput graph peaks
at five concurrent users. Therefore, you need to find ways to eliminate this perfor-
mance bottleneck.

Figure 14.9 This throughput graph depicts requests/sec. versus browser connections.
CAPACITY PLANNING FOR REPORTING SERVICES IN ACTION 519

14.2.6 Eliminating resource constraints

When CPU utilization is a constraining factor, you basically have two ways to increase
the web server’s throughput: 1) optimize report performance or 2) add more process-
ing power by scaling up or out.

These two approaches are not mutually exclusive. The best approach is to opti-
mize the application’s performance before scaling up or out.

Optimizing report performance

With custom applications, determining the code bottlenecks requires meticulous and
painstaking profiling using code profilers. When doing so, a useful approach is to fol-
low the method of the biggest returns. In a nutshell, this entails identifying the 10
slowest code areas and seeking ways to optimize them. However, with off-the-shelf
applications such as Reporting Services, this is not an option, unless your reports
make extensive use of custom code. Instead, you can try other ways to take some of
the burden off the CPU, such as using different forms for report caching.

Let’s see how report execution caching affects server utilization by changing the
execution options for all three scripted reports. As we discussed in chapter 8, this

Figure 14.10 Use the ACT Performance Counters report to identify
high-level performance bottlenecks.
520 CHAPTER 14 PERFORMANCE AND SCALABILITY

option causes the Report Server to cache the report’s intermediate format in the data-
base and to serve subsequent requests from the cached copy. Figure 14.11 shows what
the new throughput graph looks like when you rerun the tests after turning on report
execution caching.

Not bad for a few seconds of work! All of a sudden, you can now scale to 15
requests per second. But don’t get us wrong. We’re not advocating that you fire the
Report Manager and turn on report execution caching for all reports. For example, if
a report needs to display the most recent data, it may not be a good candidate for cach-
ing. But definitely do consider all three forms of report caching—report execution
caching, snapshots, and report sessions—as performance-enhancement techniques.

Scaling up

Sometimes, there may not be much you can do to improve the web server’s perfor-
mance. If this is the case, you can scale Reporting Services up (vertical scalability) and
out (horizontal scalability).

NOTE Microsoft has released a white paper about RS performance and scalability.
The white paper includes performance tests comparing scaling up and out
approaches. This document is meant to help customers understand the

Figure 14.11 Using report caching is the easiest way to increase the Report Server’s scalability.
CAPACITY PLANNING FOR REPORTING SERVICES IN ACTION 521

scalability characteristics of RS and determine hardware and software
requirements needed to support planned deployments.

You scale RS up by beefing up your server hardware, that is, by adding memory or
CPU power. The memory capacity recommended by Microsoft for a production
report server is 4GB of RAM.

When scaling up by adding more processors, you shouldn’t expect linear scalabil-
ity. For example, adding a second CPU may result in a 60 percent increase in perfor-
mance, while adding a third CPU may result in only 30 percent more.

When scaling up becomes counterproductive, you can scale out RS by deploying
it in a web farm environment.

Scaling out

You scale out RS by distributing the processing load across multiple report servers.
Scaling out offers the following advantages:

• Allows you to incrementally add (or remove) resources as needed

• Makes it possible to balance heavy workloads across multiple servers configured
in a web farm environment

• Offers fault tolerance, because even if one of the clustered servers fails, the rest
of the cluster is unaffected

Figure 14.12 depicts a typical scale-out scenario where the Report Server is deployed
in a web farm environment.

Scaling out works well because it results in almost linear scalability to the point
where another resource is pushed past its limits, such as database, memory, or network

Figure 14.12 A typical enterprise deployment model uses a cluster of Report Servers and

clustered Report Server databases.
522 CHAPTER 14 PERFORMANCE AND SCALABILITY

utilization. In general, even if only one web server meets your performance objectives,
we suggest that you pair it with a second server for fault-tolerance reasons.

The Reporting Services Enterprise and Developer editions support scaling out.
When you scale out RS, multiple report servers share a single Report Server database
(or a cluster of Report Server databases). When the RS Setup program detects that the
Report Server database already exists, it assumes a web farm deployment and doesn’t
create the Report Server database.

For more information about setting up RS, read appendix A. For more informa-
tion about configuring RS in a clustered web farm environment, read the “SQL Server
Reporting Services Deployment Guide” document and the “Installing Reporting Ser-
vices” section of the RS product documentation (see the “Resources” section at the
end of this book).

14.3 SUMMARY

Thanks to its web-oriented stateless architecture, RS is well positioned to meet the
high-volume reporting requirements of today’s enterprises. This chapter has given you
the necessary skills to find out whether your specific reporting infrastructure will meet
your capacity needs.

Specifically, we discussed the capacity-planning process and learned how to estab-
lish performance goals. Next, we showed how you can stress-test the Report Server
with the Visual Studio .NET Application Center Test.

Finally, we looked at ways to identify performance bottlenecks and increase the
Report Server’s capacity by scaling up and out.

Well, we are at the end of the RS journey! We’ve traveled a long and, we hope,
enjoyable road to see how Reporting Services can help you author, manage, and inte-
grate reports with your applications. We trust you have found this product to be a
well-rounded, comprehensive reporting platform.
SUMMARY 523

A P P E N D I X A

Installing SQL Server
Reporting Services

A.1 Software requirements 524
A.2 Installing SQL Server Reporting Services 525
For those of you who have installed SQL Server Reporting Services 2000, you will
notice that the installation is different. First of all, SQL Server Reporting Services
2005 must be installed from the SQL Server media, and is not available as a separate
installation. Also, the installation has been made much simpler. This appendix cov-
ers the installation of SQL Server Reporting Services. We won’t go into detail about
setting up other services such as Analysis Services, Integration Services, or Notifica-
tion Services.

Let’s start by examining the software requirements.

A.1 SOFTWARE REQUIREMENTS

Before you install SQL Server Reporting Services, make sure that you have the correct
software setup. The following operating systems are supported by SQL Server Report-
ing Services 2005:

• Microsoft Windows Server 2000

• Microsoft Windows Server 2003

• Microsoft Windows XP Professional
524

In addition to the correct operating system, the server must have IIS 5.0 or greater
installed and must be configured to use the Microsoft .NET Framework version 2.0
or later.

A.2 INSTALLING SQL SERVER
REPORTING SERVICES

This section covers the preinstallation setup and installation steps for Reporting Ser-
vices. After reading through these steps, you should have a good understanding of
how to set up and configure Reporting Services to meet your needs.

A.2.1 Setting up the service account

Later in the installation setup, you will be asked to enter a service account for running
the SQL Server Reporting Services service. You will need to set up this user before
starting the wizard. To set up a local service account, follow these steps:

1 Open the Computer Management console.

2 Expand the Local Users and Groups node.

3 Right-click the Users folder and select New User.

4 Enter a username, description, and a strong password.

5 Clear the User Must Change Password at Next Logon check box and select the
User Cannot Change Password check box.

6 Click Create.

A.2.2 Starting the setup wizard

To start the installation of Reporting Services, follow these steps:

1 Start the setup wizard from the installation CD.

2 Once you run Setup, the first screen you will be presented with is the End User
License Agreement. Once you review the agreement, select the I Accept The
Licensing Terms and Conditions check box, and click Next.

3 Review the required components from the Installing Prerequisites screen and
click Install. At this point the SQL Server wizard will scan your computer’s con-
figuration. This step may take a few minutes. When it has finished successfully,
click Next.

4 On the SQL Server Installation Welcome screen, click Next. The wizard will
then do a system configuration check on your computer. If all checks are suc-
cessful, the setup will continue. Otherwise you will need to fix any listed prob-
lems. Click Next.

5 On the Registration Information screen, enter your name and optionally your
company. Then enter your 25-character Product Key and click Next.
INSTALLING SQL SERVER REPORTING SERVICES 525

A.2.3 Installing the components

The Components to Install screen is where you will select the components (or ser-
vices) that you want to install. Figure A.1 shows the features that you should choose if
you want to follow along with the examples provided in this book.

This example assumes that you do not already have SQL Server installed. If you do
you will not need to select the SQL Server Database Services check box.

1 Click the check boxes as shown in figure A.1.
2 You will see the Feature Selection screen displayed. Click the plus sign next to

the Documentation, Samples, and Sample Databases. Then click the arrow next
to Sample Databases and select Entire Feature Will Be Installed on Local Hard
Drive. Then click the arrow next to Sample Code and Applications and select
Entire Feature Will Be Installed on Local Hard Drive (figure A.2). Once you
have selected the features, click Next.

NOTE The Reporting Services samples and Adventure Works database is not
installed by default. You will need the AdventureWorks database for the
code samples and walkthroughs in this book.

3 The next screen is the Instance Name screen (figure A.3). If you have not
installed SQL Server yet, you can select the Default instance; otherwise you will
need to enter an instance name for this installation. Either select the Default
instance option and click Next or select Named instance, enter a name, and
click Next.

Figure A.1
The Components to

Install screen lets

you choose the

components that

you want for your

installation.
526 APPENDIX A INSTALLING SQL SERVER REPORTING SERVICES

Figure A.2
You can choose the

features of each

component that you

want installed on your

local hard drive.

Figure A.3
The instance Name

screen allows you
to name the instance

for this installation of

SQL Server.
INSTALLING SQL SERVER REPORTING SERVICES 527

NOTE If you name the instance TestInstance you will need to change the URL for
the Report Manager and the Report Web Service

from http://localhost/reports and http://localhost/

reportserver to

http://localhost/reports$TestInstance and http://

localhost/reportserver$TestInstance, respectively.

4 If the wizard finds any existing components on the machine, it will prompt you
to select an upgrade option. In figure A.4 some components are already
installed. To avoid upgrading this instance of SQL Server and Reporting Ser-
vices, be sure to create a new Named instance in the previous step. It is worth
mentioning here that it is possible to have installations of SQL Server 2000 and
SQL Server 2005 on the same machine. It is also possible to have RS 2000 run-
ning side by side with RS 2005.

5 Choose a service account for your services to run under, as shown in figure A.5.
You should create this service account before running the wizard.

6 If you are installing the Database Services, the next two screens will ask you to
enter the authentication mode for connecting to SQL Server and the collation
settings. Complete these screens and click Next.

7 The next screen (figure A.6) provides the choice of installing with the Default
settings or installing without configuring the server. Choose Install the Default
Configuration and click Next. If you want to change the default settings or if

Figure A.4
If you have previous

versions of components,

the wizard will prompt

you to upgrade them.
528 APPENDIX A INSTALLING SQL SERVER REPORTING SERVICES

Figure A.5
You should have
a dedicated service

account to run
the services.

Figure A.6
The Report Server

Installation Options

allow you to choose

how you want to

configure Reporting

Services.
INSTALLING SQL SERVER REPORTING SERVICES 529

you select Install But Do Not Configure the Server, you can use the Reporting
Services Configuration tool that is described in chapter 8.

8 The next screen asks you to select whether you want information sent to
Microsoft in the event that an error occurs. Make your selection and click Next.

9 The last wizard screen (figure A.7) is the Ready to Install screen, which shows
you the components you selected. Click Install.

Figure A.7
The Ready to Install

screen shows you the

components that you

are installing.
530 APPENDIX A INSTALLING SQL SERVER REPORTING SERVICES

A P P E N D I X B

Understanding .NET code
access security

B.1 Code access security basics 532
B.2 Understanding code access terminology 532
B.3 Exploring the RS default security policy 536
B.4 Managing RS code access security 538
Code access security is security that has no knowledge of the individual user and deals
solely with the permissions management of your custom code. It can be used to
“sandbox” custom code by taking advantage of the code access security infrastructure
baked into the .NET CLR.

In chapters 6 and 13 you learned that you can execute virtually any piece of code
from Reporting Services. The Report Server is an ASP.NET application that can exe-
cute custom code through the Code element of the report definition language. This
includes calling existing assemblies as well as custom assemblies. Because of this tre-
mendous flexibility, you need to be careful when managing security around this exe-
cution. With code access security, a user may have access to specific resources, but if
the code the user executes is not trusted, access to the resource will be denied.

Because RS is written entirely in .NET-managed code, it can take full advantage of
the code access security infrastructure built into the .NET CLR. To understand how
you can manage the RS code access security model, you first need to learn how it
works. By no means will we attempt to provide thorough coverage on this topic,
which could easily fill a whole book.
531

B.1 CODE ACCESS SECURITY BASICS

As long as you don’t plan to extend RS with custom code, you can live a happy and
oblivious life without worrying about RS code access security (CAS). In fact, even if
you decide to use custom code, for example, to call code in an external assembly or to
create a custom data extension, you may find that in most cases the default CAS set-
tings defined in the Report Server configuration files fulfill your needs. If this is the
case, the only code access–related management task you need to learn is how to regis-
ter the custom assemblies with the Report Server and Report Designer. You saw how
to do this in chapter 6.

Sometimes, however, you may need to adjust the default code access policy. Usu-
ally, this will happen when the custom assembly needs more rights than the default
permissions granted by the Report Server. You will know that this is the case when
the Report Server complains with a SecurityException error. As a responsible
administrator, you should learn how to solve this issue by giving the failing assembly
the minimum set of permissions it needs to execute successfully. If you elevate the
code access security too much, you open security holes that could be exploited by
malicious code.

CAS is one of the most valuable, and arguably most misunderstood, services that
the .NET Common Language Runtime (CLR) provides. In a nutshell, this security
model grants permissions to code, not users. This is important because even if the
Report Server runs under a highly privileged account, the CLR will sandbox custom
code to restrict the actions it can execute. For example, the default RS code access
security policy prevents custom code from writing to the Windows file system.

Let’s turn now to common code access terminology.

B.2 UNDERSTANDING CODE ACCESS
TERMINOLOGY

When RS loads an assembly, the .NET CLR goes through some decision making to
determine what the assembly can do. As a part of this process, the CLR gathers some
information about the assembly, which is called evidence. The assembly evidence is then
passed to the CLR code access security policy for evaluation. Finally, the assembly is
given a set of permissions, as shown in figure B.1.

Let’s now discuss evidence, code access security, and permissions in more detail.

Figure B.1 The CLR code access security policy takes the assembly evidence as

input and produces a permission set as output.
532 APPENDIX B UNDERSTANDING .NET CODE ACCESS SECURITY

B.2.1 Exploring evidence

The assembly evidence provides the CAS policy with the following information about
the assembly:

• The assembly origin, which tells the CLR where the assembly is loaded from,
including the site, URL, zone, and application directory

• For strongly named assemblies, the assembly author information, which includes
the assembly’s strong name and publisher information

For example, as we saw in chapter 6, the Sales by Product Category report uses cus-
tom code located in the AWC.RS.Library.dll assembly. When RS processes the
report, it gathers the following evidence about the assembly:

• Zone—MyComputer, because the code is loaded from the local file system

• URL—file://C:\Program Files\Microsoft SQL Server\MSSQL\
Reporting Services\ReportServer\bin\AWC.RS.Library.dll

Because the assembly is not strongly named, there will be no evidence about its pub-
lisher and strong name.

Once the assembly evidence is obtained, this evidence is evaluated based on the
security policy configured by the administrator.

B.2.2 Understanding code access security policies

The administrator can set up the security policy at the hierarchical levels listed in
table B.1.

The first three security policy levels are defined in configuration files under the C:\
WINDOWS\Microsoft.NET\Framework\<version number>\CONFIG folder.
An application can override these settings by using an application-specific configura-
tion file to scope the policy at the application level (more on this in a moment).

The recommended way to make changes to .NET configuration policy files is to
use the CasPol utility or the .NET Configuration management console (shown in fig-
ure B.2).

The fourth policy level, AppDomain, is not shown in the .NET Configuration
console and must be set programmatically. An application can use the AppDomain

Table B.1 Code access security policy levels

Security level Purpose

Enterprise Applies to all machines that are part of an Active Directory installation.

Machine Specifies the machine-wide policy settings.

User Spells out the user-specific policy settings.

AppDomain Includes settings specific to the application host domain. In case of RS, this is the
Report Server host domain.
UNDERSTANDING CODE ACCESS TERMINOLOGY 533

policy level to dynamically sandbox the .NET code by further restricting the set of
permissions granted by the other three policy levels.

To use the AppDomain policy level, an application creates a separate application
domain and calls AppDomain.SetAppDomainPolicy. The security policy con-
figuration file can be loaded via a call to SecurityManager.PolicyLevel-
FromFile.

B.2.3 Overriding code access security policy

Now you know why the Enterprise, Machine, and User policies don’t seem to apply to
the RS code access security model. When the Report Server is initialized, it reads the
securityPolicy element from the Report Server web.config file to determine
the name of the configuration file that contains the CAS policies. By using the App-
Domain policy level, the Report Server overrides the three levels with the policy set-
tings from this file.

Figure B.2
To manage the .NET code access security

policy, use the .NET Configuration console.
534 APPENDIX B UNDERSTANDING .NET CODE ACCESS SECURITY

NOTE Although we highly discourage you from doing so, you can entirely
bypass the Report Server CAS policy by commenting out the security-
Policy element. The net effect of doing so is reverting to the CAS pol-
icies defined in the .NET configuration files that you can manage using
the .NET Configuration management console.

When the CLR evaluates the security policies, it starts from the enterprise-level policy
and works its way down to determine the intersection of the permissions grants. Each
policy level consists of three elements: a code group hierarchy, a list of predefined per-
mission sets, and a list of fully trusted assemblies at this policy level.

Defining code groups

Policy levels can be further broken down into code groups. Most code groups are
instances of System.Security.Policy.UnionCodeGroup. The CLR run-
time comes with a number of predefined code groups. Four of them—Local Intranet,
Internet, Restricted, and Trusted—correspond to Internet Explorer security zones. In
fact, one of the easiest ways to elevate (or decrease) the allowed permissions in these
zones is to use the Internet Explorer security-related settings. From the RS point of
view, the only zone of interest is the MyComputer zone, because all custom code is
loaded from the local file system.

To filter out the allowable permissions, each code group has a membership con-
dition. For example, if you look at the properties of the My Computer code group,
you will see that it defines a Zone membership condition, which applies the security
policy to assemblies from the MyComputer zone only and assigns the FullTrust
named permission set to it. As a result, if an assembly is evaluated as belonging to this
code group and no further restrictions are imposed, its code can execute unrestricted.

To further restrict the security policy, each code group can contain nested code
groups. When the CLR evaluates the code group membership of a given assembly, it
traverses the code group hierarchy to find the right match for the assembly.

Using permission sets

Each code group can have a predefined set of permissions, also known as a named per-
mission set. You can think of permission sets as equivalent to the role definition con-
cept we discussed in the role-based security section. Similarly, you can relate the code
access permissions to role tasks.

For example, figure B.3 shows the predefined permissions for the Execution per-
mission set. To bring up this dialog box, click the Execution permission set in the
.NET Configuration console (see figure B.2); then right-click the Security permission
item in the right pane and choose View Permission from the context menu.

As you can see, the only allowable permission here is to execute code. This means
that if a custom assembly needs to write to a file under the default Execution permis-
sion set, the method call will fail with a security exception.
UNDERSTANDING CODE ACCESS TERMINOLOGY 535

Most permission sets are instances of the System.Security.NamedPermis-
sionSet class. The predefined permission sets cannot be modified. Instead, if they
don’t meet your security needs, you can create new permission sets. You may find this
process similar to working with the RS role-based security model when you create new
roles that include different sets of tasks.

B.3 EXPLORING THE RS DEFAULT
SECURITY POLICY

How does our code access discussion relate to RS? As we mentioned, any custom code
executed under the Report Server and Report Designer (in the Preview window) is
subject to CAS restrictions. Not all custom code is created equal, though. To deter-
mine which permissions need to be assigned to the executing code, the Report Server
categorizes the code by mapping it to a specific code access security policy.

In this section we will:

• Define the default code access permissions

• Explain the configuration files

B.3.1 Defining default code access permissions

RS defines default code access security policies for each category of custom code, as
shown in table B.2.

For example, looking at table B.2, you can see that if a report calls external code
in a custom assembly, code in this assembly will be assigned the Execution permission
set by default. This is fine if this assembly is self-contained and doesn’t access external
resources that require a more restrictive set of permissions, for example, writing to

Figure B.3
By default, the Report Server

is configured to grant custom

code Execution rights only.
536 APPENDIX B UNDERSTANDING .NET CODE ACCESS SECURITY

files, opening database connections, and so on. If it does, then you need to adjust its
code access policy accordingly.

B.3.2 Understanding configuration files

The default RS security policy is defined in policy configuration files. RS has three
policy configuration files, one per each component, as shown in table B.3.

Why do you need to enforce CAS policy for the Report Designer? As you recall from
our discussion in chapter 2, the Report Designer gives you the option to run the
report in the Preview window. You can use the Preview window to simulate the
Report Server environment by cloning its code access settings to the rspreview-
policy.config configuration file. When you run the report (by pressing F5), the
Report Host will read and apply these settings to sandbox the custom code that
the report uses.

The Preview window mode allows the author of the report to change the CAS pol-
icy locally, and once the custom code executes properly, to propagate the configura-
tion changes to the Report Server policy file. Note that previewing reports using the
Report Designer’s Preview tab bypasses the Report Designer’s security policy and
grants the Full Trust permission set to custom assemblies. Once again, to see the
effect of the policy settings from the rspreviewpolicy.config configuration
file, preview the report in the Preview window by running the report in Debug mode
(press F5).

Table B.2 RS default code access security policies

Code category Membership condition Permission set

Report Server native assemblies Strong name Full Trust

Custom extensions MyComputer zone Require Full Trust

Expressions MyComputer zone Execution

Custom assemblies MyComputer zone Execution

Table B.3 Policy configuration files

Component Configuration file Path

Report Server rssrvpolicy.
config

C:\Program Files\Microsoft SQL Server\
MSSQL.3\Reporting Services\ReportServer

Report
Manager

rsmgrpolicy.
config

C:\Program Files\Microsoft SQL Server\
MSSQL.3\Reporting Services\ReportManager

Report
Designer

rspreviewpolicy.
config

C:\Program Files\Microsoft Visual Studio
8\Common7\IDE\PrivateAssemblies
EXPLORING THE RS DEFAULT SECURITY POLICY 537

B.4 MANAGING RS CODE ACCESS SECURITY

The report administrator can easily adjust the CAS policies by making changes to
the appropriate configuration files. For example, let’s say our custom assembly,
MyAssembly, requires the ability to read from the file C:\MyFile.xml. Because
the default code access policy gives custom assemblies only Execution rights, when the
assembly attempts to read from the file, it will fail.

As an administrator, you can rectify this situation in two ways. The first one is easier
and not recommended. You can modify the Report Server policy file to give all custom
assemblies Full Trust execution rights by making the following changes to rssrv-
policy.config (and rspreviewpolicy.config for testing purposes):

<CodeGroup class="FirstMatchCodeGroup" version="1"
 PermissionSetName="FullTrust" Description="This code group
 grants MyComputer code Execution permission. ">

The important change here is that instead of Execution rights, now all custom code
will be given Full Trust rights. Of course, the net effect of doing this will be kissing
code access security good-bye for custom code execution. Therefore, you should resist
the temptation to take the easy way and open security holes.

B.4.1 Defining custom permission sets and code groups

When you need to elevate the CAS policy, the recommended approach is to grant per-
missions on an as-needed basis. First, you can define a named permission set that
includes the FileIOPermission permission to read from the file, as follows:

<PermissionSet class="NamedPermissionSet"
 version="1"
 Name="MyFilePermissionSet"
 Description="Grant access to read from myfile.xml.">
 <IPermission class="FileIOPermission"
 version="1"
 Read="C:\MyFile.xml"/>
</PermissionSet>

Once the permission set is defined, you can then create code groups to associate cus-
tom assemblies with the named permission set. For example, the code group defini-
tion might look like this:

 <CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="MyFilePermissionSet"
 Name="MyAssemblyCodeGroup"
 Description="A code group specifically created for
 myassembly.dll">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL.3\Reporting
 Services\ReportServer\bin\myassembly.dll"/>
</CodeGroup>
538 APPENDIX B UNDERSTANDING .NET CODE ACCESS SECURITY

Note also that the CAS security is layered on top of the OS security. Therefore, in addi-
tion to the CAS settings, you need to grant the appropriate ACL permissions to any
files that the custom assembly needs. In this case, the custom assembly requires at least
Read permissions to MyFile.xml. To satisfy this requirement, open the file (or its
containing folder) properties and grant the Report Server process account (by default,
ASP.NET with IIS 5 or Network Service with IIS 6) Read permissions to this file.

How do you know which code access permissions a given assembly requires? Well,
if the assembly developer has taken the effort to declare the required permissions
using attributes, you can use the .NET Framework Permissions View tool, Perm-
view.exe. Most often, though, you will find that this is not the case and you will
have to rely on other sources, such as the product documentation or your peers from
newsgroups. This entails the trial-and-error approach, which can be painful.

NOTE We struggled quite a bit to find out why the OpenForecast assembly,
which we discussed in chapter 6, was failing to execute regardless of the fact
that it was given Full Trust permission rights. We went through all possible
permutations but to no avail. The strange thing was that neither Open-
Forecast nor its caller was accessing external resources. We went to the
trouble of converting it to C# only to realize that the C# version was exe-
cuting properly. Finally, we resorted to using System.Diagnostics.
Trace.WriteLine to find out at what point the code was failing. Using
the DbgView utility we were able to pinpoint the security violation to an
overridden implementation of the toString method inside the Open-
Source DataSet structure. Our code was calling this method to output the
observed and forecasted values. Removing the tracing calls fixed the prob-
lem. The exact reason for the security violation was beyond us, but the
moral of this story is this. If giving your custom code Full Trust permissions
doesn’t help, you should start exploring your code to find out at what point
it fails. Once you manage to identify the offending line, the next step will
be to find out which code access security permissions it requires. As a last
resort, if nothing else works, you could bypass the Report Server CAS policy
by commenting out the securityPolicy element in web.config, as
we noted earlier. Before you decide to do this, however, make sure that you
have a convincing story when you are asked to stand before the CAS court.

Currently, to the best of our knowledge, there is no tool to help you troubleshoot code
access security problems. In future versions of the .NET Framework we’d like to see
clearer error descriptions when a security exception is thrown. At least the exception
message should spell out the name of the failing permission and the offending line of
code. Our experience is that often this information is missing.

B.4.2 Granting custom assemblies Full Trust rights

Back in chapter 6 we said that AWC.RS.Library and OpenForecast assemblies
require Full Trust permissions to execute successfully. Let’s see what changes are
MANAGING RS CODE ACCESS SECURITY 539

required to accomplish this. The assemblies don’t require any custom permission sets.
To elevate the CAS policy for both assemblies from Execution to Full Trust, we need
to add the following lines to the Report Designer (rspreviewpolicy.config)
and Report Server (rssrvpolicy.config) security configuration files:

<CodeGroup
 class="UnionCodeGroup"
 version="1"
 PermissionSetName="FullTrust"
 Name="SharePoint_Server_Strong_Name"
 />
</CodeGroup>
<CodeGroup class="UnionCodeGroup" version="1"
 PermissionSetName="FullTrust" Name="AWCLibrary">
 <IMembershipCondition class="UrlMembershipCondition" version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL.3\Reporting
 Services\ReportServer\bin\AWC.RS.Library.dll"/>
</CodeGroup>
<CodeGroup class="UnionCodeGroup" version="1"
 PermissionSetName="FullTrust" Name="OpenForecast">
 <IMembershipCondition class="UrlMembershipCondition" version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL.3\Reporting
 Services\ReportServer\bin\OpenForecast.dll"/>
</CodeGroup>

It is important to note that when elevating the code access rights for custom code, you
need to do so for all custom assemblies where this code resides, because CLR will
check the entire call stack. This is why we specifically granted full rights to both the
AWC.RS.Library and OpenForecast assemblies.

B.4.3 Dealing with unmanaged resources

Sometimes, granting your custom code the Full Trust permission set may not be
enough. This may be the case when you need to deal with unmanaged resources.

For example, you could have authored a custom dataset extension that opens a
database connection through the .NET System.Data.SqlClient.SqlCon-
nection managed wrapper to a SQL Server database. A database connection is an
unmanaged resource, and your custom code requires explicit permissions to execute
unmanaged code. Specifically, you declare a new permission set, as shown here:

 <PermissionSet class="NamedPermissionSet" version="1"
 Unrestricted="true" Name="MyPermission">
 <IPermission
 class="SecurityPermission"
 version="1"
 Flags="UnmanagedCode" />
</PermissionSet>

Then you assert the permission needed in your custom code before accessing the
unmanaged resource:

Grants Full Trust to
AWC.RS.Library.dll

Grants Full Trust to
OpenForecast.dll
540 APPENDIX B UNDERSTANDING .NET CODE ACCESS SECURITY

SqlClientPermission permission = new
 SqlClientPermission(PermissionState.Unrestricted);
try {
 permission.Assert(); // Assert security permission!
 SqlConnection con = new SqlConnection("...");
 con.Open();
 //do something with the connection
}

When the custom code is called from a report expression, you need to always assert
the permission because the code access security checks walk up each stack frame and
expect permissions at each level. The default CAS policy grants report expressions
Execution rights only, so the security check will fail. Assert will short-circuit the
stack walk at the current frame.

The MSDN documentation specifically states which permissions are needed by
certain method calls. For example, in the case of the SqlConnection class, the doc-
umentation says, “SqlConnection makes security demands using the SqlClientPer-
mission object.” The CodeAccessSecurityPermission.Assert method call
instructs CLR to grant your code the requested permission, regardless of the fact that
its callers might not have rights to this permission.

For more information about code access security considerations, check out the
security chapter in the product documentation.
MANAGING RS CODE ACCESS SECURITY 541

resources

Here we provide additional resources and links to dive more deeply into specific topics from this
book. The resources are organized by chapter and direct you to more information beyond the text
of this book.

CHAPTER 1

• Microsoft RS website (www.microsoft.com/sql/technologies/reporting/
default.mspx)—First stop for the latest on RS.

• Microsoft Business Intelligence Platform website (www.microsoft.com/sql/evalua-
tion/BI/default.asp)—The Microsoft BI portal home page.

• A Guide to Developing and Running Connected Systems with Indigo (http://msdn.
microsoft.com/msdnmag/issues/04/01/Indigo/)—In section 1.3 I emphasized
the role of the RS service-oriented programming model. Read Don Box’s article for more informa-
tion about SOA.

CHAPTER 2

• Report Definition Language Specification (www.microsoft.com/sql/technologies/
reporting/rdlspec.mspx)—Report Definition Language (RDL) is an XML-based schema
for defining reports.

• Cizer’s home page (www.cizer.com)—Cizer Software specializes in Microsoft-platform data-
base reporting solutions.

• Hitachi’s RDL Generator (www.hitachiconsulting.com/page.cfm?ID=pdfRepos-
itory&pdfId=251)—Hitachi Consulting provides services for converting Crystal Reports
into the Reporting Services RDL format.

• Report Services Partners (www.microsoft.com/sql/technologies/reporting/
partners.mspx)—A list of partner solutions that expand the benefits of SQL Server Report-
ing Services.
542

CHAPTER 3

• Connecting to a Data Source Using ADO.NET (http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/cpguide/html/cpconConnec-
tionPoolingForSQLServerNETDataProvider.asp)—A chapter from the VS .NET
documentation that discusses database connection pooling.

• Designing Data Tier Components and Passing Data Through Tiers (http://msdn.
microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/
BOAGag.asp)—A good best practices read from the MSDN .NET Architecture Center that
might be interesting for .NET developers. Learn how to best expose your data to Microsoft .NET
applications and how to implement an effective strategy for passing data between the tiers in a dis-
tributed application.

CHAPTER 4

• The Dundas Software website (www.dundas.com)—Dundas is the creator of the charting fea-
tures in Reporting Services. They also provide a wealth of charting products and add-ons for
Reporting Services.

CHAPTER 5

• Globalizing and Localizing Applications (http://msdn2.microsoft.com/en-us/
library/1021kkz0.aspx)—A chapter from the Visual Studio .NET documentation that
introduces you to the internationalization features built into .NET.

CHAPTER 6

• The OpenForecast website (http://openforecast.sourceforge.net/)—Open-
Forecast is a package of general-purpose forecasting models written in Java that can be applied to
any data series.

• Microsoft Java Language Conversion Assistant (http://msdn.microsoft.com/vstu-
dio/downloads/tools/jlca/default.aspx)—Converts Java-language code to C#.

• Mark Russinovich’s DebugView tool (www.sysinternals.com/Utilities/Debug-
View.html)—DebugView is an application that lets you monitor debug output on your local
system or any computer on the network that you can reach via TCP/IP.

• What Is RSS? (www.xml.com/pub/a/2002/12/18/dive-into-xml.html)—A good
introduction to RSS.

• Lutz Roeder’s .NET Reflector (www.aisto.com/roeder/dotnet/)—Similar to the VS
.NET Object Browser, Reflector is a class browser for .NET components.

CHAPTER 7

• Introduction to ClickOnce Deployment (http://msdn.microsoft.com/vbasic/
learning/clickonce/)—ClickOnce is a deployment technology that allows you to
RESOURCES 543

create self-updating Windows-based applications that can be installed and run with minimal
user interaction.

• Working with Snapshot Isolation (http://msdn2.microsoft.com/en-us/library/
ms130975.aspx)—New with SQL Server 2005, Snapshot Isolation is intended to enhance
concurrency for online transaction processing (OLTP) applications.

• User-Schema Separation (http://msdn2.microsoft.com/en-us/library/
ms190387.aspx)—An explanation of the changes in User and Schema in SQL Server 2005.

CHAPTER 8

• SOAP Toolkit version 3.0 (http://msdn.microsoft.com/webservices/webser-
vices/building/soaptk/default.aspx)—Download the SOAP Toolkit, which
includes the SOAP Trace utility, from the Microsoft MSDN download center.

• TcpTrace (www.pocketsoap.com/tcptrace/)—A great utility that captures the TCP traf-
fic between a client and a server.

• How To: Implement Kerberos Delegation for Windows 2000 (http://msdn.microsoft.
com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNet-
HT05.asp)—This article lists the steps required to configure Kerberos authentication.

CHAPTER 9

• Microsoft Security Development Center (http://msdn.microsoft.com/security/)—
Tons of excellent information to help you secure your applications, including entire books.

• Building Secure ASP.NET Applications: Authentication, Authorization, and Secure Communica-
tion (http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnet-
lpMSDN.asp)—This guide presents a practical, scenario-driven approach to designing and
building secure ASP.NET applications.

CHAPTER 10

• WebBrowser Control Overviews and Tutorials (http://msdn.microsoft.com/work-
shop/browser/webbrowser/browser_control_ovw_entry.asp)—Provides an
overview and tutorial articles for the Microsoft WebBrowser control.

• Microsoft XML Parser (MSXML) (http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/xmlsdk/html/7e831db8-9d0a-43ff-87e9-
11382721eb99.asp)—The MSXML Software Development Kit (SDK) provides conceptual
and reference information for developers using MSXML.

• Building Secure ASP.NET Applications: Authentication, Authorization, and Secure Communi-
cation (http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dnnetsec/html/secnetlpmsdn.asp)—This guide presents a practical, sce-
nario-driven approach to designing and building secure ASP.NET applications.
544 RESOURCES

• Web Services Enhancements (WSE) 1.0 SP1 for Microsoft .NET (www.microsoft.com/
downloads/details.aspx?FamilyId=06255A94-2635-4D29-A90C-
28B282993A41&displaylang=en)—Web Services Enhancements for Microsoft .NET
(WSE) is an add-on to Microsoft Visual Studio .NET and the Microsoft .NET Framework, provid-
ing developers with the latest advanced Web services capabilities to keep pace with the evolving
Web services protocol specifications, such as WS-Security, WS-Routing, WS-Attachments, and
DIME specifications.

• Generic ASP.NET XML/XSL DHTML Menu ServerControl (www.gotdotnet.com/Commu-
nity/UserSamples/Details.aspx?SampleGuid=175796d4-d08b-4130-
8bbf-8d1a7fa94d85)—Generic ServerControl takes your custom XML, XSL, JavaScript, and
CSS files and renders your DHTML drop-down or other menu. A sample implementation is
included along with the article and documentation.

• About the WebService Behavior (msdn.microsoft.com/workshop/author/webser-
vice/overview.asp)—The WebService behavior enables client-side script to invoke remote
methods exposed by Web services, or other web servers, that support the SOAP and Web Services
Description Language (WSDL) 1.1.

CHAPTER 11

• Web.config Settings for ReportViewer (http://msdn2.microsoft.com/en-us/
library/ms251661.aspx)—There are several settings and options that can be configured
in the web.config file for the ReportViewer control.

• Converting RDL and RDLC Files (http://msdn2.microsoft.com/en-us/library/
ms252109.aspx)—If you use both the ReportViewer controls and Microsoft SQL Server 2005
Reporting Services, you can reuse the reports that you create in both reporting technologies.

CHAPTER 12

• SMTP (Simple Mail Transfer Protocol) Server (http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/smtpevt/html/5c031f56-
29bf-4fcb-abf6-3eab6789a5bf.asp)—Learn how to configure an e-mail server using
the Windows 2003 SMTP and POP3 services.

• Delivering Reports Through Subscriptions (http://msdn2.microsoft.com/en-us/
library/ms159762.aspx)—SQL Server Reporting Services distributes reports through sub-
scriptions. Reporting Services provides two ways to deliver reports: you can send reports through
e-mail, or you can deliver reports to a file share on the file system. When you create a subscription,
you specify which delivery mode to use.

CHAPTER 13

• Custom Dataset Data Extension for Microsoft Reporting Services (www.gotdotnet.com/
Community/UserSamples/Details.aspx?SampleGuid=B8468707-56EF-4864-
AC51-D83FC3273FE5)—My custom dataset extension uploaded to the GotDotNet site.
RESOURCES 545

• Christian Weyer’s Dynamic XML Web Services Invocation sample (www.gotdotnet.com/
Community/UserSamples/Details.aspx?SampleGuid=e9c2f46f-449b-4344-
b796-7d8b63a2f954)—Dynamically creates a proxy from the Web service WSDL file.

• “Authentication in Reporting Services” white paper on MSDN (http://msdn2.
microsoft.com/en-us/library/ms152899.aspx)—A must-read for implementing
custom security extensions.

• Securely Implement Request Processing, Filtering, and Content Redirection with HTTP Pipe-
lines in ASP.NET (http://msdn.microsoft.com/msdnmag/issues/02/09/http-
pipelines/)—A great article by Tim Ewald and Keith Brown that introduces you to the
architecture of the ASP.NET pipeline and shows you how to create your own HTTP modules
and handlers.

• The SoftArtisans OfficeWriter (http://officewriter.softartisans.com/office-
writer-250.aspx)—Reporting Services reports can now be designed directly in Microsoft
Word and Excel; business users can thus avoid report design tools that may be unfamiliar
to them.

CHAPTER 14

• Performance Testing Microsoft .NET Web Applications (www.amazon.com/exec/obidos/
tg/detail/-/0735615381/qid=1080272077/sr=8-1/ref=sr_8_xs_ap_i1_
xgl14/104-6183135-6491931?v=glance&s=books&n=507846)—Direct from a
Microsoft team that has analyzed hundreds of web-based and .NET-based applications, this
book shows developers how to plan and execute performance tests, configure profile tools, ana-
lyze data from Microsoft Internet Information Services, analyze transaction costs, and more.

• The “Performance” chapter from the Visual Studio .NET documentation (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/
html/vxconperformanceoverview.asp)—Discusses how to write efficient and scalable
.NET applications.

• The Compuware Application Expert tool (www.compuware.com/products/vantage/
appexpert.htm)—An excellent tool that you can use to find out how changes in network
bandwidth, latency, load, and TCP window size affect the application’s response time.

• The Analog analyzer (www.analog.cx)—Analog is a tool that is good for measuring the
usage on your web server. It tells you which pages are most popular, from which countries
people are visiting, from which sites they tried to follow broken links, and all sorts of other
helpful information.

• ReportMagic for Analog (www.reportmagic.org)—By harnessing the power of Analog and
building readable, compelling reports, Report Magic can help you and the rest of your organiza-
tion understand how your website is used.
546 RESOURCES

http://officewriter.softartisans.com/officewriter-296.aspx
http://officewriter.softartisans.com/officewriter-296.aspx

APPENDIX A

• Installing SQL Server Reporting Services (http://msdn2.microsoft.com/en-us/
library/ms143736.aspx)—This article provides an overview of installing and configuring
Reporting Services.

APPENDIX B

• Code Access Security (http://msdn.microsoft.com/library/en-us/cpguide/
html/cpconcodeaccesssecurity.asp)—From the .NET Framework Developer’s Guide.

• Introducing Code Access Security in Reporting Services (http://msdn2.microsoft.com/
fr-fr/library/ms154658.aspx)—This article outlines the new code access security pol-
icies of Microsoft SQL Server 2000 Reporting Services.

• The Security Infrastructure of the CLR Provides Evidence, Policy, Permissions, and Enforce-
ment Services (http://msdn.microsoft.com/msdnmag/issues/02/09/Securi-
tyinNET/)—In this article, Don Box explains how code access security works in the CLR.

• Security in .NET: Enforce Code Access Rights with the Common Language Runtime (http://
msdn.microsoft.com/msdnmag/issues/01/02/CAS/)—Keith Brown’s article on the
same topic.
RESOURCES 547

index
Symbols

@ExecutionTime 436
@ReportName 436

A

Accept HTTP header 349
access control list 322, 539
access options

evaluating 383
ACL. See access control list 539
ACT 506, 512
ACTUser account 516
ad hoc 59, 217
Add New Report 30
ad-hoc reporting 218

developer tools 220
Ad-Hoc reports

introduced 8
ADO.NET

custom dataset extension 460
dataset reporting 73, 84
reporting approaches 460

advanced technique 150
Advanced Textbox Properties 162
Adventure Works Cycles 25, 43,

187, 345
Adventure Works Reporter 26
AdventureWorks 26
AdventureWorks2000 441
aggregate functions 168–169,

171
aggregate scope 169–170

aggregate values 167
Allow null value option 96
Analog analyzer 546
Analog log analyzer 509
Analysis Services

defined 7
analyzing report execution 305
anonymous access 313, 383, 482
AppDomain CAS policy 533
AppDomain policy level. See code

access security 533
AppDomain.SetAppDomainPol-

icy 534
Application Center Test 499,

506, 512, 523
advantages 512
New Test Wizard 513
Overview report 516
Performance Counters report

519
Requests Summary report 517

application pool 317
argument Scope 169
ASP.NET

Forms Authentication 492
menu sample 359
worker process 317

asserting permissions 541
asynchronous report delivery

with subscriptions 422
Authentication 482

and data sources 70
defined 312

vs. data source authentication
315

authorization
creating policies 327
creating roles 326
defined 312
policies 322
policy inheritance 322
policy management 323
roles 320
tasks 319

Authorization Manager 337, 484
auto-refreshing reports 182
availability 505
available values

data-driven 98
non-queried 97

Avg function 85
AW2000 Shared DS data source

442
AWC. See Adventure Works

Cycles
AWCModel project 223
AWC.RS.Extensions assembly

459
AWC.RS.Library 158
AWC.RS.Library assembly 190
AWReporter 28
AwRsLibrary 196
549

B

BackgroundImage Source property
116

BackgroundRepeat property 116
bands. See report sections 105
Base64-encoding 479
based reporting applications

and latency 499
Basic authentication 313
batching 295
BIDS. See Business Intelligence

Development Studio
binding data regions 110
BindingSource object 405
BizTalk 23, 208
blogging 209
BookmarkID command 350
BorderStyle property 332
breakpoint 158
Browser role 264, 320–322, 327,

487
built-in functions 151
Business Intelligence 6, 44, 205
Business Intelligence Development

Studio 44, 220, 399
Business Intelligence Project 28
business intelligence projects 47
Business Object Data Source 403
business-to-business 208

C

caching 167
and effect on report execution

284
report sessions 275

calculated fields 83, 147
Campaigner Web service 379
capacity planning

determining requirements 504
overview 498
process 503

cascading parameters 101
case sensitivity and datasets 83
Caspol utility 533
Catalog Explorer sample applica-

tion 291

Catalog table 269, 273, 330, 433
Ceiling() function 112
centralized report management 10
Chartchart report

defined 4
charts 145

data fields section 130
data region 129
Data tab 130
designing reports 128
image identifiers 372
legend 130
nesting reports 132
point labels 130
region 133
reports 110
types 129

CheckAccess 493
ChunkData table 279
class-level members 187
ClearSession command 351
Click Once application 216
client-side reporting 358

dynamic hyperlinks 361
hyperlinks 360
server-side generated hyperlinks

363
static hyperlinks 360

Client-to-Report Server 314, 379
CLR. See Common Language

Runtime 311
code access policy 473
code access security 199, 531, 547

and custom delivery extensions
480

bypassing 535
code groups 535
configuration files 537
custom assembly 191
custom permission sets 538
dealing with unmanaged re-

sources 540
default RS settings 536
elevating 539
managing 538
overriding 534
permission sets 535
policies 479, 532–533

code editor 188
code groups 535

creating 538
Code member 186
code profilers 500, 520
code sample

Access Options 514
Adventure Works Web Report-

er 359
AW Campaigner 379
Campaigner 447
Campaigner Web service 382
RDL deployment 292
Report Picker 364, 462
RS Console 296
standard e-mail subscription

434
triggering subscription 447
Using rs.exe 301
Web Behavior 377

code-based security 12
CodeDom 479
CodeGroup 199
collections 152
column groups 137
Common Language Runtime

190
Computer Management console

326
Compuware Application Expert

500, 546
Compuware DevPartner 508
concurrent users 501
conditional formatting 160–161
configuration files 459
Configuration Manager 51
configuration tool

Database Setup 304
defined 302
Email Settings 304–305
Encryption Keys 304
Execution Account 305
Initialization 304
Report Manager Virtual Direc-

tory 303
Report Server Virtual Directory

303
server status 302
550 INDEX

configuration tool (continued)
Web Service Identity 304
Windows Service Identity 304

ConfigurationInfo table 74, 263,
277, 351

connection
database connection 65

Connection Manager 224
connection pooling 315
Connection Properties 29, 68
connection string 74
Content Manager role 264,

321–322, 327
Converting report files 411–413,

415
cookie management

and custom security 490
cookie-less report sessions 351
cookies, for report session manage-

ment 351
CPU utilization 503, 507
Credentials Stored Securely in the

Report Server 315
Credentials tab 464
crosstab reports 45, 134, 201

defined 4
designing 133
dynamic groups 136
static groups 137
subtotals 138

CSV 183
CurrentPrincipal 312
custom application security 337
custom applications

integrating reports 342
custom assemblies 167

deploying 191
custom authentication

implementing 491
custom authorization

implementing 493
custom code 47, 186, 453
custom code security 50
custom data extensions

debugging 473
custom dataset data extension

and typed datasets 463
download location 545

implementing 469
testing 468

custom delivery extension 24,
424, 473
debugging 480
implementing 476

custom .NET code 11
custom parameters

validation 354
Custom Report Item 12
custom security 313

GenericPrincipal 495
group assignments 494
IPrincipal.IsInRole 495
limitations 484
vs. anonymous access 314

custom security extension 482
debugging 495
implementing 488

custom XSL transformations 208

D

data differentials 175
Data element

RSReportDesigner.config 69
RSReportServer.config 69

data extension 20, 460
defined 68
supported 68

data hiding 337
data model 220
Data Output tab 208
data processing extensions 11
data reader 363
data regions 105, 176

advantages 111
and multi-section reports 111
binding 111
chart 110
defined 110
list 110
matrix 110
overview 110
placing side by side 111
table 110
using in place of subreports

109

Data relations 462
data source 29, 64–65

authentication options 70
defined 65
deploying 78
properties 68
report specific 66
shared 66

data source authentication
best practices 76
credentials stored securely in

the report 72
credentials supplied by the user

running report 72
no credentials 73
Windows NT Integrated Secu-

rity 73
Data Source Configuration Wizard

404
Data Source Designer 226
Data Source dialog 80
Data Source Instance 415
Data Source tab

Report Manager 70
data source view 227

adding relationships 231
adding tables 230
exploring data 233
Replace Table 233

data source view diagram 230
Data Source View wizard 227
Data Source Wizard 223
Data Sources Explorer 404
Data Sources page 275
Data tab 46, 64, 81, 93
data type casting 95
database authentication

and Client-to-Report Server
model 315

database connection pooling 72,
74–75, 543
monitoring 75
prerequisites 74

Database Engine 7
database functions 144
Database server utilization 503
Database.dbp 441
DataBinder 363
INDEX 551

data-bound controls 110
data-driven subscription 424,

428, 441
defined 427
example 440
recipient query 429
scenarios 428

dataset 110
accessing bound reports 468
creating 80
creating a schema 463
creating queries 85
definition 78–79
fields 82
filters 84

Dataset dialog 82, 93
dataset-bound reports 462
DataSetName property 110–111,

119
DataSource parameter

and custom dataset extension
465

DataSource table
ReportServer database 72

DataSources element 66
DatePart function 115
DateTime structure 95
db_datareader role 77
DbgView

utility 539
Debug menu 495
debugging 159
debugging custom code 51, 204
debugging embedded code 204
DebugView 515
DebugView tool 204, 308
DefaultTraceSwitch setting 262,

308
delivery extensions 11, 24, 424

configuring 430
deploy 35
deploying custom assemblies 199
deploying reports 53

programmatically 292
deployment configurations 54
deployment features 12
deployment guide 523
Design the Table screen 32

Details Grouping button 115
developer edition 523
device settings

overview 349
Direction property 138
disconnected mode 48
DocMapID 350
document maps 178–180
drill down 45
drilldown report

defined 4
drillthrough report

defined 4
drillthrough reports 177
Dundas Software 129, 543
dynamic columns 137
dynamic connection strings 68
dynamic hyperlinks 360–361
Dynamic Web Service invocation

479
Dynamic XML Web Services Invo-

cation sample 546
DynWSLib 479

E

Edit Details Group button 123
Edit Item Security 327
e-mail data-driven extension

configuring 442
e-mail delivery 24
e-mail delivery extension 430

configuring 431
embedded code 163, 186–187,

195
embedded functions 188

expression-based queries 89
Employee Performance Summary

chart 145
Employee Sales Freeform 152
EnableExternalImages 415
EnableReportDesignClientDown-

load 254
encryption key 304
EnforceConstraints 415
enterprise application integration

23
Enterprise CAS policy 533

enterprise edition 523
Entities listbox 244
Entity object 237

DefaultDetailAttributes 237
errors, dealing with for SOAP

access 370
event

subscriber-publisher design pat-
tern 422

event methods 407
Event table 424, 447, 482
EventData 447
EventProcessing 447
evidence 532
Excel 182
Exchange Server

using as mail server 431
ExecuteReader 471
execution caching 276, 279–280,

521
example 280
how is affected by parameters

281
invalidating 281
prerequisites 279

execution log 305
defined 305

Execution Log DTS package 509
execution order 154
Execution page 265, 275, 280
Execution permission set

535–536
execution stage 20, 275
Execution tab 438
ExecutionLog Business Intelli-

gence project 510
ExecutionLog DTS package 306
ExecutionLog table 305, 509, 512
ExecutionTime 166
exploded pie chart type 130
export formats 20, 36, 181
exporting

using HTML Viewer 353
exporting reports 181–182
Expression Editor 152
expression errors 156
expression execution order 154
expression scope 154
552 INDEX

expression syntax 153
expression-based queries 88, 98
expressions 151, 153–154, 157,

231
using for calculated fields 83

extensibility
defined 453

Extensible architecture 36
Extensible Stylesheet Language

Transformations 48
Extension object 357
external assemblies 189–190
external functions 167–168
external .NET assemblies 189

F

field expressions 151
Fields 152
Fields collection 151, 163, 165
Fields tab 82
Fields toolbox 47, 89
Fields window 119
file share delivery 24
File Share delivery option 438

configuring extension 430,
432

example 437
FileSystemObject 378
filtering data 84
Filters tab 84
finding text

using HTML Viewer 352
First() function 85
folder namespace 346

defined 269
logical partitioning 272
organizing 324
overview 269

folder Properties page 270
folders

requesting by URL 345
Forcasted Months parameters 407
forecasting 193
foreign keys 229
Format command 349
Format function 137
format property 33

Forms Authentication 317, 483,
487, 491, 546

FQDN 431
freeform reports 110

defined 4
designing 123
grouping data 125
with nested regions 123
with side-by-side data regions

127
FullTrust 199
FullTrust permission 50, 535,

537–538
functions

CountDistinct() 171
CountRows() 164, 171
First() 171
Iif 161, 169
IsMissing 164
IsNothing() 164
RowNumber() 169
RunningValue() 172
Sum() 169, 171
Switch 162

G

Generate events
task 447

generating RDL 59, 62
Generic Query Designer 87, 465

expression-based queries 88
GetChildRows method 462
GetDataSourceContents com-

mand 347
Global Assembly Cache 417
global object collections 157
Globals 152
Globals collection 159, 166
Globals.PageNumber 57
Graphical Query Designer 85, 93

and parameters 92
Diagram pane 86
Grid pane 86
limitations 87
Results pane 86
SQL pane 86
stored procedures 99

Group dialog 120
group on expressions 126
group-based security policy

custom security 487
grouping

nested group visibility 122
Grouping and Sorting Properties

dialog 113, 125–126
groups

creating 113
Groups tab, table region 120
GroupsBeforeRowHeaders prop-

erty 138

H

hide fields 165
History tab 283–284
History table 283
Home folder 269–270, 323–324,

327
horizontal data filtering 485
horizontal security 333
HTML

and subscriptions 431
HTML Viewer 384, 386–387

commands 353
features 352
limitations 354
overview 351

HTMLFragment device setting
349, 371

HTMLToolbar
hiding the toolbar 397

HTTP. See Hypertext Transfer
Protocol

HTTP 1.1 514
HTTP Handler 495
HTTP Pipelines 546
HTTP-GET 13, 22, 158, 469

requests 343
HTTP-POST 13, 364, 385, 462,

469
advantages for requesting re-

ports 364
Also see web reporting

hyperlinks 176–177
Hypertext Transfer Protocol 13
INDEX 553

I

IAuthentication interface
LogonUser 492

IAuthenticationExtension inter-
face 489, 491
GetUserInfo 491
IsValidPrincipalName 492
SetConfiguration 491

IAuthorizationExtension interface
489
CheckAccess 489
SetConfiguration 493

IDataParameter interface 470
IDataParameterCollection inter-

face 470
IDataReader interface 470–472

GetValue 471
implementing 472

IDataReader interfaceGetOrdinal
471

IDbCommand interface 470, 472
CreateParameter 470
ExecuteReader 472

IDbCommandAnalysis interface
470

IDbConnection interface
470–471

IDbConnectionExtension inter-
face 471

IDbTransaction interface 470
IDelivery interface 457
IDeliveryExtension interface

Deliver 478
ValidateUserData 477

IdentifyingAttributes 237
IExtension interface 458

SetConfiguration 476–477
IExtension.LocalizedName 476
IF. See intermediate format
IIdentity interface 312, 491
Iif() operator 89
IIS logs 512
Image (exporting) 183
image files 271

used as background 115
image report item 107

used to display logos 118

Image Wizard 118
images

and web applications 373
approaches for handling with

SOAP 371
database 108
embedded 107
external 107
rendering external images 371
rendering via RenderStream

371
rendering with SOAP 370

impersonate element 317
impersonating the authenticated

user
and data sources 72

impersonating the user 317, 383
disadvantages for data source

authentication 73
implementing interfaces 457
Include Group Header 114
independent software vendors 8
Infinite Drillthrough reporting

247
InScope() 177–178
instance methods 192
instance variable 192
InstanceSelection 238
integrated security 315
Integrated Windows authentica-

tion 313
integration approach

choosing 386
Integration Services

defined 7
Intellisense 152
interactive features 121, 133,

180–181, 384
interactive reports 277

defined 4
interactive sort 142–143
interface

achieving standardization 457
casting 458
definition 456
inheritance 459
multiple inheritance 458
type discovery 457

interface-based programming 454
benefits 457
overview 454
the need of 454

intermediate format 17, 20, 275
internal functions 173

CountRows() 189
InScope 173
Level 173–174
Previous 173, 175

Internet-oriented applications
and latency 499

Internet-oriented reporting
and security 482

intranet applications
and Client-to-Report Server

model 314
intranet reporting

custom security 486
IntraVNews 421
IPrinicipal interface 312
IsInRole 335
IsNewExecution property 374
Isolation 227
ISubscriptionBaseUIUserControl

interface 476
UserData 477

ISV. See independent software ven-
dors

Item-level role assignments 252
item-level roles 320
item-level tasks 319

J

Java 196
JavaScript 361

generate the report’s hyperlink
362

Jump to report 178

K

KeepForFiles setting 308
Kerberos 261, 313, 315, 317,

544
554 INDEX

L

latency
application 499
defined 499
getting a breakdown of 500
network 499
total latency time 499
what-if analysis 501

Layout tab 33, 46, 93
report properties 141

LinkActiveColor 392
LinkActiveHoverColor 392
linked reports 274, 286

defined 286
linked servers 65
list region example 123
list report region 146
ListChidren command 345
ListExtension method 357
load-balanced 16
local report file 411
locks database 82
log files 305
logos 107

M

Machine CAS policy 533
machineKey 418, 509
maintaining state 187
Manage all subscriptions

task 429
Manage individual subscriptions

task 433–434
Manage Jobs 267
Manage Shared Schedules task

266
managed report 10, 53
management API 288
Management Tools

defined 7
management with Web service

288
managing content 268
managing folders 271
managing jobs 267
managing reports 273

margins settings 106
matrix region

advantages 133
interactive features 134
rotating data 133

matrix report region 110
columns section 137
rendering 139
Rows section 136
subtotals 138
virtual columns 133

matrix report. See crosstab report
MaxActiveReqForOneUser set-

ting 262
Maximum number of connec-

tions 227
memory capacity recommenda-

tions 522
Memory utilization 503
menu control for ASP.NET 545
method batching 295
MHTML 182, 370, 431, 436,

478, 502
advantages for e-mail delivery

431
Microsoft Access 45, 55, 157

importing from 55
Microsoft Graph 129
Microsoft Messenger 421
Microsoft Network Monitor 500
Microsoft Office

defined 7
Microsoft Outlook 421
Microsoft SOAP toolkit 367
Microsoft SQL Server platform 6
Microsoft WebBrowser control

356
Microsoft WebService behavior

377
Microsoft XML Parser 381
Microsoft XML Parser SDK

544
Microsoft.ReportingSer-

vices.DataExtensions 68
Microsoft.ReportingServices.Inter-

faces 459
Microsoft.ReportingServices.Pro-

cessingCore.dll 16

Microsoft.ReportingServices.
ProcessingObject 159

Microsoft.ReportingServices.
ProcessingObjectModel 158

Microsoft.Reporting.WinForms
410

Microsoft.ReportViewer.Com-
mon 417

Microsoft.ReportViewer.Process-
ingObjectModel 417

Microsoft.ReportViewer.Web-
Forms 417

Microsoft.ReportViewer.Win-
Forms 417

Microsoft.VisualBasic 168
missing data 189
missing fields 164
missing parameter value

URL access 348
mixed-security mode 484
mixed-security model 486
model designer

limitations 219
MsgBox 168, 204
MSReportServer_Configuration-

Setting 298
MSSoapT 514
multicolumn report 167
multiple columns 140
multiple datasets 84

limitations 85
when to use 84

multiple SQL statements
executing 87

multi-stream exporting formats
370

multi-stream rendering formats
478, 509

multithreading locking issues
192

My Reports 262, 264
My Reports folder 269
My Reports role 264, 321
My Subscriptions 433
MyComputer zone 535
INDEX 555

N

Named Calculations 231
named instance 30, 262
named parameters 91
NamedPermissionSet class 536
naming convention

for report items 113
nested groups 125
nesting regions 126
.NET assemblies 168
.NET Configuration console 533
.NET Framework integration 36
.net generics 402
.NET SqlClient provider 74
network capture 501
network delays and latency 499
New Data-driven Subscription

button 430
New Subscription button 430
newsreaders 213
NoRows property 111
notification object 424, 474, 478

UserData property 478
Notification Services

defined 7
Notification.Render 482
Notifications table 424
NULL rendering extension 357
NULL session 315
NULL values 188
null values 164

O

Object Browser 336
object-oriented 13
object-oriented programming

454
observer design patter 422
ODBC provider 68
ODBC-compliant databases 65
OfficeWriter 546
OLAP 65
OLE DB-compliant databases 65
OLTP. See online transaction pro-

cessing
On-demand 36

on-demand delivery 11, 22, 420
overview 342

On-Demand Report Delivery 35
online transaction processing 26,

65
OpenForecast 196
opt-in subscription 24
Oracle data extension 91
OutputFormat

device setting 349
OverwriteDataSources

setting 78

P

page body 106
Page Break property 112
page breaks 112, 125, 182
Page Footer 106

menu 105
section 105

Page Header 106
menu 105
section 105

page size property 106
PageBreakAtEnd property 112
PageNumber 166–167
pages per second 502
paging

explicit 112
parameter

Multi-value 117
parameter default values

URL access 348
parameter lookup values 117
parameter placeholders 49, 352
parameter settings 101
parameter type validation 101
parameter validation 411

URL access 348
parameter-driven queries 91
parameter-driven reports 90

and subscriptions 436
parameterized reports

and multiple datasets 84
parameters 152

advanced validation 406
and snapshots 439

and subscriptions 425
data type 95
date 117
handing with HTTP-POST

365
Multi-value 96, 102
Multi-value with stored proce-

dure 117
Multi-valued 144
Multi-valued with stored proce-

dures 144
non-queried available values 97
prompt 94
query-based available values

100
Parameters collection 166
Parameters command 354
Parameters page 274
parameters section

creating a custom section 407
Parameters tab 83, 92, 100
ParameterValue object 369, 379,

425
PDF 20, 183

URL access 349
performance

bottlenecks, identifying and
eliminating 503, 507

defined 498
scalability white paper 521

Performance Console 74
performance counter 503

ASP.NET Applications/
Requests Queued 507

memory\
available bytes 507

network interface\
Bytes Total/sec 507

Process(aspnet_wp)\%
Processor Time 503

Process(sqlservr)\% Processor
Time 503, 507

Processor(_Total)\% Processor
Time 503

Processor\
% Processor Time/Total 507

performance counters 503
performance metrics 511
556 INDEX

performance testing 515
permission set 319

creating 538
defined 535

persisted to files datasets 461
personalizing subscriptions 428,

440
pivot reports 133
PivotTable

vs. matrix region 134
Policies table 318–319
policy inheritance 323, 328
PollingInterval setting 424
polymorphism 458
POP3 545
POP3 service 431
predefined styles 45
Preview tab 33, 46, 49, 98, 156
Preview window 536

and CAS 537
principal 312
PrintOnFirstPage

property 106
PrintOnLastPage property 106
Private Assemblies folder 191
processModel

model 317
Process.Start

method 358, 369
Product Catalog report 179
Product Category crosstab report

203
Product.cs 401
profile store 485
Properties dialog

code tab 188
Property Collection 255
pseudo events 332
publisher 422
Publisher role 264, 321
pushing reports 421
Put() WMI method 299

Q

QA testing 44
query hints, using to prevent locks

381

query parameters and custom
dataset extension 465

Query tab 80
query timeout 81, 227

R

RDL schema 58, 60
RDL XSD 58
.rdlc

adding to a project 414
.rdlc extension 398, 419
.rdlc file 398, 411–412, 414,

416, 419
.rds extension 48
read-only parameters 95
recipient data store 441
rectangle report item 109, 125,

133
used to enclose fields 125
using to enclose other items

109
recursive hierarchy report

174
reference settings 192
Refresh Report button 351
refreshing fields 82
Render command 348
rendering extensions 20, 181
rendering page 275
rendering stage 20
Replication Services

defined 7
report authoring 44
Report Builder 10, 36, 59

advanced filtering 249
defined 216
disabling 254
downloading 243
filtering 245, 247
formatting fields 246
introduced 8, 10
launching 217, 219,

242–243, 260
quick tour 217
roles 252
saving reports 220
security 252

report caching 275, 507
using to minimize RS latencies

500
report catalog 10, 14, 24
report consumer 15
report definition 274
report definition file 16, 48
Report Definition Language 20,

36, 48, 57
defined 8
introduced 8

Report Definition Language
schema 412

report definition schema 57
Report delivery 35
Report Delivery Options screen

428
report design 43
Report Designer 33, 46, 104,

106, 110–111, 119, 127, 142,
148, 537
configuration file 50
introducing 8

Report Designer folder 158
report executing time 283
report execution log 500, 505,

508–510, 512
analyzing 509
determining the number of re-

port requests 508
finding out the most popular re-

ports 512
report execution SOAP endpoint

58
report execution statistics 305
Report Execution timeout setting

263
report exporting commands

349
report expressions 156
Report History tab 284
Report item dropdown

using for visible on-demand
groups 123

Report Items 47, 163
Report Items toolbar 105
report lifecycle 24–25, 27
Report management 17, 35
INDEX 557

Report Manager 14, 18, 35, 220,
242
and Client-to-Server model

314
and impersonating the user

317
and subscriptions 423
configuring 261
deployment 261
described 17
hide folders 269
how it works 260
implementation 260
introduced 10
main tasks 260
modify folder names 269
move content 269
overview 260
session state 262
upload content 269
url 35
using for report delivery

263
Report Manager portal 219
Report menu 93
report mode

defined 219
report model

attributes 234, 238
auto generate 241
building 221, 233
data source 223
deploying 219, 241
deployment properties 242
entities 234–235
folders 240
generation rules 234
project 222
roles 239, 253

Report model Items 253
report model layers 234

Data Source Views 222
Data Sources 222
Report Models 222

report model wizard 234
Report Object Model 157–159
report parameters 166, 406

creating 93

data-driven subscriptions 443
role of 90

Report Parameters submenu 93
Report Processing binaries 49
Report Processor 15

Also see Report Server
Report Properties dialog 112,

142, 188
references tab 190

Report rendering 23, 181
report repository. See report catalog
report request 15

explained 502
vs. page requests 502

report sample
Corporate Hierarchy 324, 436
Customer Orders 446
Customer Orders Custom Auth

487
Employee Sales by Territory

with Summary 127
Employee Sales by Territory

with Summary Chart 130
Employee Sales Freeform 123,

291, 333, 336, 361
Employee Sales Freeform Se-

cured 334
Employee Sales Freeform with

Chart 132, 434
Employee Sales Tabular Inter-

active 121, 350
My Orders 488
Report Picker 377
ReportsExecutedByDay 306
ReportsExecutedByHour 510
Sales by Product Category

533
Sales by Territory 79, 105,

113, 343, 361
Sales by Territory Crosstab

375
Sales by Territory Interactive

113
Sales by Territory with Chart

361
Sales Order Details 363
Sales Orders 365
Sales Promotion 271, 379

Show Security Policy 319,
329, 336

Territory Sales by Quarter 280,
283, 286, 437–438

Territory Sales Crosstab 134,
362

Territory Sales Drillthrough
361

TestDS 462
The Employee Sales Tabular

116
Report Selector 106
Report Server 14, 16

binary folder 459
configuring for e-mail delivery

431
engine 15
url 29, 53

Report Server APIs 16
Report Server binary folder 158,

191
Report Server Configuration Data-

base 48, 286
Also see report catalog

Report Server database 16
Report Server Email element 431
report server file 411
Report Server Temporary Database

350
Report Server Windows Service

24, 480–481
report session caching 350, 374,

514
and matrix regions 139
clearing the session 351
effect on database connections

74
report session state 277
report sessions 371

and images 370
and SOAP 373
correlating with SOAP 375
definition 276

report specific data source
advantages of 66
creating 66

report toolbar 97, 123, 348
Report Type screen 32
558 INDEX

Report Viewer Controls
introduced 23

Report Wizard 25, 30, 45,
104–105, 110

report-authoring
analysis 43
construction 43

report-authoring deployment 44
report-authoring process 42
report-authoring stage 24
report-authoring Testing 44
report-authoring tools 24
ReportFolder 166
reporting challenges 25
Reporting Services 36

architecture 13
choosing an edition 4
cost 36
defined 2, 7
editions 5
evaluating 36
extensibility 454
installation requirements 4
management features 10
top ten list 36

Reporting Services Configuration
Tool 15

Reporting Services Windows Ser-
vice 24
running scheduled tasks 267

ReportingService object 255
.Reporting.WinForms 411
ReportItem class 160
ReportItems collection 159–160,

163, 166
report-level parameter 93, 470

and custom dataset extension
466

creating manually 93
orphaned 94
removing 94
using for passing data 93

ReportMagic 509, 546
report-management stage 24
ReportName 166–167
ReportParameter objects 409,

411
ReportParameters property 106

reports 105
access 25
advanced sorting 143
anatomy 105
archiving 421
authoring 24, 27
bookmarks 176
building 53
caching 15–16
catalog 260
creating programmatically 57
data sources 10
defined 2
definition 66, 271
delivery 11, 22, 24, 27, 260
deployment 55
elements 105
execution 20, 275, 279
execution caching and its effect

on performance 520
extensibility 11
extensions 15
folders 18, 25
footer 106
header 106, 118
images 10, 107
interactive features and SOAP

375
interactive sort 142
intermediate format 75, 521
lifecycle 259
line 107
management 24, 27, 259–260
metadata 10, 16, 19
multiple columned 140–142
navigation features 175
overview 107
paging 50, 112
previewing 48
printing 50
processing 10, 19
properties 106
publishing 10, 53
rectangle 107
rendering 20
rendering commands 348, 350
request 19
requested over the internet 337

requesting 18
response times 509
scheduling 15
sections 105–106
selecting 127
session management 15
snapshots 15
subreport 107
subscribed delivery 15
subscription 24
table 512
testing 53
textbox 107
toolbar 18, 49
type of reports 3
URL syntax 344
zooming 50

Reports folder 48
Reports menu 105
ReportServer 16
ReportServerTempDB 16, 286
ReportServerTempDB database

277
ReportServerUrl 167, 436

setting 289
ReportServerUrl setting 262, 491
ReportService.asmx 293, 366,

369
ReportServiceHttpHandler 343
ReportViewer controls

choosing data connection 398
choosing process mode 391
configuring 394
creating local reports 398
custom validation 406–410
customizing 397
data set 399
data sources tab 398
deploying 416
disabling functionality 397
introduction 389
Load event 405
local data sources 391
local mode 397–404
object data source 403–404
previewing reports 401
processing modes 391
properties 392
INDEX 559

ReportViewer controls (continued)
redistributing 416
refreshing 409
remote mode 394
remote mode vs. local mode

392
Server Report 395
setting the Url and Report Path

396
toolbar 406
visibility property 411
webfarms 418
Windows vs. Web 390

ReportViewer controls remote
mode 391

ReportViewer Deployment
Web applications 418
Windows applications 417

ReportViewer object as data source
401

ReportViewer redistributable file
416, 418

ReportViewer.exe 416, 418
ReportViewerLocal.cs 398
request distribution 510
requesting reports by SOAP 368
requesting reports by URL 347
requests per second 502, 505
resources

and the report catalog 271
response time 505
Revert to Parent Security button

328
role

and custom security 486
defined 320

role-based authorization
overview 318

role-based security 312
and the Web service 329
defined 322
managing with Report Manager

324
overview 312
purpose 312

Roles table 318–320
row groups 137
RowNumber 151

RowNumber() function 112
RPS 516
RS Catalog Explorer 291, 385
RS landscape 8
RS Windows Service

subscribed report delivery 424
rs.exe 301
RSExecutionLog database 509
rskeymgmt utility

purpose 304
rsmgrpolicy.config 537
rspreviewpolicy.config 50–51,

199, 207, 537
RSReportServer.config 181, 431,

447
SMTP 432

RSS 210–212, 379, 421
RSS feed 209
rssrvpolicy.config 51, 199, 537
running jobs 267

cancelling 268
types of 267

running totals 171
RunningJobs table 267
RunningRequestsDbCycle setting

268
runtime errors 157

S

Sales by Product Category 193
Sales by Territory 35, 46
Sales By Territory Interactive

report 395
Sales By Territory report 26, 412
Sales Promotion 209
sample reports

Employee Sales by Territory
with Summary Advanced
160

Employee Sales by Territory
with Summary report 160

Sales by Territory Interactive
91, 93

sample, RS management console
297

scalability 12, 36, 498
defined 498

scalability linear
achieving by scaling out 522

scaling out 522
scaling up 521
Schedule page 266
schedules

overview 265
report-specific 265
shared 265

script host 300
scripting 301
securable items 321
securable resources 329
secure data transfer 337
SecureConnectionLevel setting

337–338
securing reports 333

filtering data 334
hiding data 337
with dynamic queries 335

security
enforcing restricted access 337
evaluating requirements 333
overriding policy 328

security configuration files 199
security extension 313

defined 313
security features 12
security policy 195
SecurityException 532
SecurityManager.PolicyLevel-

FromFile 534
securityPolicy element 534, 539
semantic layer 234
Semantic Model Definition Lan-

guage 234
SendEmailToUserAlias setting

427, 434
Server name 30
server-side generated 360

hyperlinks 363
server-side report generation 358
ServerXMLHTTP 344

component 344
service-oriented 13
service-oriented architecture 13,

90
benefits for integrating 90
560 INDEX

session caching 276–277
configuring 277
how it works 276
overview 276
using cookies 277

session cookie and custom security
483–484, 490

session identifier 278
SessionData table 374
SessionHeader proxy class 374
SessionHeaderValue proxy class

278
SessionId member 374
SessionID property 278
SessionTimeout setting 74, 277
SetParameters() 411
setting

PollingInterval 267
UseSessionCookies 278

Settings object 477
setup logs 305
SETUSER system function 73
shared connection 66
shared data source 29, 47, 65,

271, 274
advantages of 66
creating 67
definition 347
folder path 346
requesting by URL 346

shared methods 186, 191
shared queries 80
shared schedules

advantages 265
using for subscriptions 438

SharePoint Portal Server
defined 7

Show Details button 274
Show/hide Document Map 352
ShowContextMenu 392
ShowHideToggle command 350
ShowToolbar 392
side-by-side data regions 111,

127
Simple Object Access Protocol 13
site settings 263, 319
Site Settings menu 326
Site Settings page 263

smart tag 401, 404, 415
ReportViewer controls 395

.smdl file extension 234
SMDL. See Semantic Model Defi-

nition Language
SMTP 545
SMTP service 431
SMTPServer setting 432
snapshot caching 276, 281, 349

advantages 282
limitations 283
options 274
vs. execution caching 282

Snapshot command 349–350
snapshot history 265, 283, 349
Snapshot refreshes 424
snapshot reports 285, 424

and subscriptions 437
SnapshotData table 282
snapshots 265
SnapshotUpdated status 440
SOAP 158

overhead 500, 517
role of 367
Also see Simple Object Access

Protocol
SOAP API

calling from client-side script
376

CancelBatch() 295
CancelJob() 268
CreateDataDrivenSubscrip-

tion() 425, 427
CreateReport() 295, 301
CreateSubscription() 423,

425, 427
ExecuteBatch() 295
FireEvent() 267, 447
FlushCache() 281
GetDataDrivenSubscription-

Properties() 449
GetPermissions() 294, 319,

330
GetPolicies() 329, 331, 336
GetReportParameters() 365
GetSubscriptionProperties()

449
ListChildren() 289, 324

ListExensions() 356, 475
ListSubscription() 449
LogonUser() 484, 488,

491–492
Render() 369, 378
RenderStream() 371–372,

374
UpdateReportExecutionSnap-

shot() 282
SOAP exceptions

dealing with when using ACT
514

SOAP requests 514
SOAP Toolkit 289, 544
SOAP Trace 289, 294, 353
SOAP-based requests 23
SoapException 370
SoapException.Detail property

370
Solution Explorer 28, 47, 147,

223
SortAttributes 237
source control 55
Source property

image report item 107
SQL Agent, subscribed report

delivery 424
SQL Data Adapter 463
SQL Injection attacks 89, 98
SQL Management Studio

managing Reporting Services
299

SQL Server 2005 samples 26, 291
SQL Server Agent 23, 422

used for scheduled tasks 267
SQL Server Authentication 30
SQL Server Integration Services

220
SQL Server Management Studio

15, 220–221
Security folder 300

SQL Server Query Analyzer 500
SQL Server Reporting Services ser-

vice 401
SqlClient, Current # pooled con-

nections counter 76
SqlDataReader 403
SSAS 69
INDEX 561

SSL 338, 485
SSL connection 337, 491
standard database authentication

72
standard e-mail subscription

example 435
standard subscriptions 427
StartItem setting 473
static drillthrough reports 249
static groups 137
static hyperlinks 360–361
stem.Convert 168
stored credentials 425
stored data source credentials 424
stored procedures 165

advantages 98
calling web services from 381
creating 99
used for data sources 98
using for queries 98

StreamIds argument 372
StreamRoot device setting 371,

373
StyleTemplates.xml 46
subreport item 109
subreport report item

Properties dialog 148
subreports

configuring 147
defined 145
designing 139
synchronizing with master 148
when to use 145

subscribed delivery 11, 23, 182
and shared schedules 265
triggering programatically 446

subscribed report delivery 36
and Internet applications 440
configuring 425
events 424
how it works 422
overview 421
restrictions 424
scenarios 421

subscriber 422
subscriber-publisher design pattern

422
Subscription Wizard 429, 442

subscriptions 423
creating 425
creating with Report Manager

426
deactivated 425
managing with Report Manager

432–433
Subscriptions tab 427
Subscriptions table 433
Subtotal menu 138
Sum() function 85
System Administrator role 320
system jobs 267
system role assignment 252
System User role 320
System.Data.Odbc 69
System.Data.OleDb 69
System.Data.SqlClient 69
System.Diagnostics.Trace 204
system-level roles 320
system-level tasks 319
System.Math 168

T

Table Footer property 115
table region 119

creating groups 120
limitations 123

table region groups
creating 113
creating totals 114
details grouping 115

table region selector 120
table triggers

used to call web services 379
TableAdapter 413
tabular reports 45, 110

defined 4
designing 112
parameterized 116
with interactive features 121

TargetFolder 28, 35, 53
TargetFolder setting 270
TargetServerURL 29, 53
Task table 319
tcpTrace 289, 294, 353, 514,

544

templates 28, 46
temporary drillthrough reports

248
Territory Sales Crosstab report

187
test scripts 506

creating 512
test use cases 506, 512
testing environment

for performance testing 506,
511

the Ad Hoc Reporter 60
the Generic Query Designer

executing multiple statements
87

Third-party vendors 7
throughput 501, 505–506

and virtual users 502
concurrent users 501
establishing benchmark 505
establishing benchmark empiri-

cally 505
establishing benchmark theo-

retically 505
finding the peak 501
requests per second 502

tight coupling 90
time to last byte 499, 517
Time-based events, 424
TimeDataRetrieval time

509
TimeProcessing time 509
TimeRendering time 509
Toolbar command 353
tooltip 177
TotalPages 167, 436
trace log files

analyzing 307
managing 308

trace logs 305
tracing 204

DebugView 308
utilities 289
web methods 289

transactions 81
triggering subscriptions 482
trusted subsystem 317, 383
TTLB 499
562 INDEX

typed datasets
and custom dataset extension

461
TypeOf operator 457

U

unattended report processing 108
UNC 432
Uniform Naming Convention

definition 438
UnionCodeGroup 535
unit testing 44
unit-test 48
uploading reports 25
uploading resources 270
URL access 22, 342

and custom security extensions
483

and security 376
commands 348
cons 385–386
disabling 343
evaluating 384
integration techniques 344
overview 343
passing parameters 347
performance advantages 385
programming techniques 343
pros 384–386
report session management

350
requesting images 345
rs argument 348
shelling out to the browser 358
syntax 344
url encoding 345
using LinkLabel 344

URL length limitations 385
URL munging 278
Use single transaction option 81
User CAS policy 533
User collection 159, 167, 425
user identity 312
user job 267

definition 267
user-defined aggregate functions

172

UserID property 279
Users Folders 265
Users table 318–319, 433
User-Schema Separation 227
User.UserID 167, 334
UseSessionCookies setting

277–278, 351
utilization 503, 506

V

validate begin and end dates 406
validating parameter controls

408
View Code command 79
View Data Sources task 347
ViewReport button 473
virtual users 506
visible-on-demand groups 121
Visual Studio 2005

defined 7
Visual Studio Report Designer 24,

33
Visual Studio Team System 55

W

Watch window 159
web access 386
Web applications

integrating reports 390
Web Browser control 343, 345,

355–356, 358
referencing 356

web farm 522
Web Method

CreateDataSource 288
CreateFolder 288
CreateReportHistorySnapshot

288
CreateRole 288
CreateSchedule 288
FireEvent 267
GetReportParameters 288
ListSchedules 288
ListSubscriptions 288
LogonUser 483
Render 368

web reporting
using HTTP POST 364

web server logs 508
Web service 22, 36

creating a reference to 367
delivering reports to 479
evaluating 385
referencing 293

Web service access 342
integration scenarios 366
integration techniques 367
overview 366
report session management

373
Web service API 60
Web service proxy 292, 367

and report sessions 374
setting 292

Web service report delivery 473
Web Services Enhancements 545
WebBrowser control

documentation 544
Navigate method 358

WebRequest object 344
WebService Behavior

download location 545
webservice.htc 377
web-style paging 178
Windows

authentication 262, 279, 312,
382

event logs 305
group membership

determining 335
Management Instrumentation

defined 296
NT Integrated Security option

effect on connection pooling
76

Windows applications
integrating reports 390

Windows Authentication 30
Windows Service 15
WindowsPrincipal.IsInRole 335
WMI provider 296

advantages for management
296

WSE 545
INDEX 563

X

XML 69
Also see Extensible Markup Lan-

guage
XML (exporting) 183
XML attribute 208
XML Document Object Model

58
XML DOM 382

XML element 208
XML output 211–212
XML rendering extension 208
XML schema 212, 463

and custom dataset extension
461

XML-based reports 207
XMLHTTP 381

component 344
XSD. See XML schema 463

XSL transformation 208, 212
XSLT 213, 271

Also see Extensible Stylesheet
Language Transformations

Z

Zero deployment 36
Zoom command 354
zooming 352
564 INDEX

	SQL Server 2005 Reporting Services in Action
	contents
	preface
	about this book
	Code conventions
	Author Online

	about the authors
	Introducing SQL Server 2005 Reporting Services
	1.1 What is Reporting Services?
	1.1.1 Solving reporting problems with Reporting Services
	1.1.2 Choosing a Reporting Services edition
	1.1.3 Reporting Services and the Microsoft SQL Server platform

	1.2 Reporting Services at a glance
	1.2.1 Authoring features
	1.2.2 Management features
	1.2.3 Delivery features
	1.2.4 Extensibility features
	1.2.5 Scalability features
	1.2.6 Security features
	1.2.7 Deployment features

	1.3 RS architecture
	1.3.1 The Report Server engine
	1.3.2 The Report Server database
	1.3.3 The Report Manager

	1.4 Understanding report processing
	1.4.1 Execution stage
	1.4.2 Rendering stage

	1.5 Delivering reports
	1.5.1 On-demand delivery
	1.5.2 Subscribed delivery

	1.6 What is the report lifecycle?
	1.7 RS in action
	1.7.1 About the Adventure Works Reporter
	1.7.2 Your first report

	1.8 Evaluating RS
	1.9 Summary

	Part 1 - Authoring reports
	Report authoring basics
	2.1 The report-authoring process: step by step
	2.1.1 Analysis
	2.1.2 Construction
	2.1.3 Testing
	2.1.4 Deployment

	2.2 Authoring reports in VS .NET
	2.2.1 Authoring reports with the Report Wizard
	2.2.2 Authoring reports with the Report Designer
	2.2.3 Importing reports from Microsoft Access

	2.3 Creating reports programmatically
	2.3.1 Generating RDL: The AW Ad Hoc Reporter
	2.3.2 Implementation details

	2.4 Summary

	Working with data
	3.1 Working with data sources
	3.1.1 Connecting to the database
	3.1.2 Choosing an authentication mechanism
	3.1.3 Deploying data sources

	3.2 Working with report datasets
	3.2.1 Understanding the dataset definition
	3.2.2 Creating a report dataset
	3.2.3 Using multiple datasets

	3.3 Authoring dataset queries
	3.3.1 Using the Graphical Query Designer
	3.3.2 Using the Generic Query Designer

	3.4 Parameter-driven reports
	3.4.1 The role of parameters
	3.4.2 Building parameter-driven queries
	3.4.3 Setting up the report-level parameters

	3.5 Working with stored procedures
	3.5.1 Using a stored procedure as a dataset query
	3.5.2 Defining query-based lookup parameter values
	3.5.3 Creating cascading parameters
	3.5.4 Working with multivalued parameters

	3.6 Summary

	Designing reports
	4.1 Anatomy of a report
	4.1.1 Getting started with a new report
	4.1.2 Understanding report sections
	4.1.3 Understanding report items
	4.1.4 Understanding data regions

	4.2 Designing tabular reports
	4.2.1 Tabular reports with groups
	4.2.2 Parameterized tabular reports
	4.2.3 Tabular reports with interactive features
	4.2.4 Table region limitations

	4.3 Designing freeform reports
	4.3.1 Freeform reports with nested regions
	4.3.2 Grouping freeform data
	4.3.3 Freeform reports with side-by-side data regions

	4.4 Designing chart reports
	4.4.1 The chart data region
	4.4.2 Working with charts
	4.4.3 Nesting chart regions

	4.5 Designing crosstab (matrix) reports
	4.5.1 Matrix region advantages
	4.5.2 Working with the matrix region
	4.5.3 Adjusting the report layout

	4.6 Using other design features in your reports
	4.6.1 Setting up multiple columns
	4.6.2 Adding interactive sort
	4.6.3 Passing multivalued parameters into a stored procedure
	4.6.4 Designing subreports

	4.7 Summary

	Using expressions and functions
	5.1 Understanding expressions
	5.1.1 Using the Expression Editor
	5.1.2 Expression syntax
	5.1.3 Determining expression execution order
	5.1.4 Understanding expression scope
	5.1.5 Dealing with expression errors

	5.2 Exploring the Report Object Model
	5.2.1 Using the ReportItems collection
	5.2.2 Using the Fields collection
	5.2.3 Using the Parameters collection
	5.2.4 Using the Globals collection
	5.2.5 Using the User collection

	5.3 Working with functions
	5.3.1 Referencing external functions
	5.3.2 Using aggregate functions
	5.3.3 Using other internal functions

	5.4 Designing reports with navigational features
	5.4.1 Reports with hyperlinks
	5.4.2 Reports with document maps

	5.5 Report rendering considerations
	5.5.1 Exporting reports to HTML
	5.5.2 Exporting reports to MHTML
	5.5.3 Exporting reports to other formats

	5.6 Summary

	Using custom code
	6.1 Understanding custom code
	6.1.1 Using embedded code
	6.1.2 Using external assemblies

	6.2 Custom code in action: implementing report forecasting
	6.2.1 Forecasting with OpenForecast
	6.2.2 Implementing report forecasting features

	6.3 Using XML-based reports
	6.3.1 Understanding XML exporting
	6.3.2 Exposing the report content as an RSS feed

	6.4 Summary

	Ad hoc reporting with the Report Builder application
	7.1 About the Report Builder application
	7.1.1 A quick tour of the Report Builder
	7.1.2 Setting up for ad hoc reporting
	7.1.3 The Developer toolset for ad hoc reporting

	7.2 Building the Report Model using BIDS
	7.2.1 Building a report model project
	7.2.2 Setting up the data source
	7.2.3 Creating a data source view
	7.2.4 Building the report model
	7.2.5 Deploying report models

	7.3 Ad hoc reporting in action
	7.3.1 Launching the Report Builder
	7.3.2 Creating the Product Profit Margin report
	7.3.3 Getting more with infinite drill-through reporting
	7.3.4 Advanced filtering with the Report Builder

	7.4 Implementing Report Builder security
	7.4.1 Securing the Report Builder with roles
	7.4.2 Securing report model items

	7.5 Summary

	Part 2 - Managing reports
	Managing the Reporting Services environment
	8.1 Managing RS with the Report Manager
	8.1.1 How the Report Manager works
	8.1.2 Managing Report Server settings
	8.1.3 Managing content
	8.1.4 Managing report execution
	8.1.5 Managing linked reports

	8.2 Managing RS with the Web service
	8.2.1 Using the Web service management API
	8.2.2 Tracing calls to the SOAP API
	8.2.3 Deploying reports programmatically
	8.2.4 Batching methods together

	8.3 Managing RS with the WMI provider
	8.3.1 Understanding the WMI provider
	8.3.2 Implementing an RS management console

	8.4 Other ways to manage Reporting Services
	8.4.1 Managing RS with SQL Management Studio
	8.4.2 Managing RS with the script host
	8.4.3 Using the Reporting Services configuration tool

	8.5 Analyzing report execution
	8.5.1 Analyzing the Report Server execution log
	8.5.2 Analyzing trace log files

	8.6 Summary

	Securing Reporting Services
	9.1 Role-based security basics
	9.1.1 The purpose of role-based security
	9.1.2 Authentication models: using Windows or creating your own

	9.2 Windows authentication: a closer look
	9.2.1 Exploring the Client-to-Report Server model
	9.2.2 Exploring the Client-to-Façade-to-Report Server model

	9.3 Using role-based authorization
	9.3.1 Understanding tasks
	9.3.2 Defining roles
	9.3.3 Understanding securable items
	9.3.4 Defining policies

	9.4 Managing role-based security with the Report Manager
	9.4.1 Creating Windows user accounts and groups
	9.4.2 Creating custom roles
	9.4.3 Defining security policies

	9.5 Managing role-based security with the Web service
	9.5.1 Determining role-based security policies
	9.5.2 Calling security-related Web service methods
	9.5.3 Implementing “pseudo” report events

	9.6 Techniques for advanced security issues
	9.6.1 Filtering data
	9.6.2 Using dynamic dataset queries
	9.6.3 Hiding data
	9.6.4 Implementing custom security models
	9.6.5 Enforcing a secured connection to the Report Server

	9.7 Summary

	Part 3 - Delivering reports
	On-demand report delivery
	10.1 How RS provides on-demand report delivery
	10.2 URL-based report access
	10.2.1 Understanding URL syntax
	10.2.2 Requesting resources by URL
	10.2.3 Requesting reports by URL
	10.2.4 Working with report commands
	10.2.5 Working with the HTML Viewer

	10.3 URL access in action
	10.3.1 URL Access with WinForms: AccessOptions
	10.3.2 URL Access with WebForms: AWReporterWeb

	10.4 Web service-based report access
	10.4.1 Requesting reports with SOAP
	10.4.2 Rendering images
	10.4.3 Handling report sessions

	10.5 Web service access (SOAP) in action
	10.5.1 Generating report requests with SOAP on the client side
	10.5.2 An automation solution: AW Campaigner

	10.6 Evaluating URL and Web service access options
	10.6.1 Evaluating URL access
	10.6.2 Evaluating Web service access
	10.6.3 Choosing an integration approach

	10.7 Summary

	Mastering the ReportViewer controls
	11.1 How the .NET ReportViewer controls work
	11.1.1 Controls for web and Windows applications
	11.1.2 Choosing remote or local mode
	11.1.3 Managing properties of the ReportViewer controls

	11.2 Using ReportViewer in remote mode
	11.2.1 Creating, configuring, and running the control
	11.2.2 Additional customizations for the ReportViewer control

	11.3 Using ReportViewer in local mode
	11.3.1 Creating a local report with a database as the data source
	11.3.2 Creating a local report with an object as the data source

	11.4 Custom validation with the ReportViewer control
	11.4.1 Creating a parameters section
	11.4.2 Creating event methods
	11.4.3 Write validation code

	11.5 Converting report files
	11.5.1 Converting RDL files into RDLC files
	11.5.2 Converting RDLC files into RDL files

	11.6 Deploying applications that use ReportViewer controls
	11.6.1 Redistributing the ReportViewer controls
	11.6.2 ReportViewer deployment for Windows applications
	11.6.3 ReportViewer deployment for web applications
	11.6.4 Using the ReportViewer web server control in a web farm

	11.7 Summary

	Subscribed report delivery
	12.1 Understanding subscribed report delivery
	12.1.1 Subscription-based reporting scenarios
	12.1.2 The subscriber-publisher design pattern
	12.1.3 How the RS subscription-based model works

	12.2 Configuring subscribed report delivery
	12.2.1 Creating a new subscription
	12.2.2 Choosing the subscription type
	12.2.3 Configuring delivery extensions
	12.2.4 Managing subscriptions

	12.3 Subscribed report delivery in action
	12.3.1 “Pushing” reports via standard e-mail subscriptions
	12.3.2 Archiving reports to a file share
	12.3.3 Sending reports to a data-driven list of recipients
	12.3.4 Triggering subscriptions programmatically

	12.4 Summary

	Part 4 - Advanced reporting
	Extending Reporting Services
	13.1 Understanding Reporting Services extensibility
	13.1.1 Interface-based programming
	13.1.2 Working with interface inheritance
	13.1.3 Extending RS with interface inheritance

	13.2 Reporting with a custom dataset data extension
	13.2.1 Identifying design goals and trade-offs
	13.2.2 Authoring dataset-bound reports
	13.2.3 Implementing the custom dataset extension
	13.2.4 Debugging dataset extensions

	13.3 Distributing reports to Web services using custom delivery extensions
	13.3.1 Design goals and trade-offs
	13.3.2 Using the custom delivery extension
	13.3.3 Implementing the custom delivery extension
	13.3.4 Debugging custom delivery extensions

	13.4 Implementing custom security
	13.4.1 Design goals and trade-offs
	13.4.2 Intranet reporting with custom security
	13.4.3 Implementing the custom security extension
	13.4.4 Debugging the custom security extension

	13.5 Summary

	Performance and scalability
	14.1 Understanding capacity planning
	14.1.1 Capacity-planning fundamentals
	14.1.2 The capacity-planning process

	14.2 Capacity planning for Reporting Services in action
	14.2.1 Determining requirements
	14.2.2 Setting up the testing environment
	14.2.3 Performance testing
	14.2.4 Analyzing performance results
	14.2.5 Identifying resource constraints
	14.2.6 Eliminating resource constraints

	14.3 Summary

	Installing SQL Server Reporting Services
	A.1 Software requirements
	A.2 Installing SQL Server Reporting Services
	A.2.1 Setting up the service account
	A.2.2 Starting the setup wizard
	A.2.3 Installing the components

	Understanding .NET code access security
	B.1 Code access security basics
	B.2 Understanding code access terminology
	B.2.1 Exploring evidence
	B.2.2 Understanding code access security policies
	B.2.3 Overriding code access security policy

	B.3 Exploring the RS default security policy
	B.3.1 Defining default code access permissions
	B.3.2 Understanding configuration files

	B.4 Managing RS code access security
	B.4.1 Defining custom permission sets and code groups
	B.4.2 Granting custom assemblies Full Trust rights
	B.4.3 Dealing with unmanaged resources

	resources
	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

