

Joseph Sack

SQL Server 2005
T-SQL Recipes
A Problem-Solution Approach

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page i

SQL Server 2005 T-SQL Recipes: A Problem-Solution Approach

Copyright © 2006 by Joseph Sack

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-570-X

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Tony Davis
Technical Reviewer: Evan Terry
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Beth Christmas
Copy Edit Manager: Nicole LeClerc
Copy Editor: Julie M. Smith
Assistant Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor and Artist: Kinetic Publishing Services, LLC
Proofreader: Patrick Vincent
Indexer: Brenda Miller
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.
You will need to answer questions pertaining to this book in order to successfully download the code.

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page ii

Contents at a Glance

About the Author. xxiii

About the Technical Reviewer. xxv

Acknowledgments. xxvii

Introduction . xxix

■CHAPTER 1 SELECT. 1

■CHAPTER 2 INSERT, UPDATE, DELETE . 61

■CHAPTER 3 Transactions, Locking, Blocking, and Deadlocking 83

■CHAPTER 4 Tables . 109

■CHAPTER 5 Indexes . 155

■CHAPTER 6 Full-Text Search . 173

■CHAPTER 7 Views . 191

■CHAPTER 8 SQL Server Functions . 209

■CHAPTER 9 Conditional Processing, Control-Of-Flow, and Cursors 255

■CHAPTER 10 Stored Procedures . 271

■CHAPTER 11 User-Defined Functions and Types . 289

■CHAPTER 12 Triggers . 313

■CHAPTER 13 CLR Integration . 337

■CHAPTER 14 XML . 355

■CHAPTER 15 Web Services . 375

■CHAPTER 16 Error Handling . 393

■CHAPTER 17 Principals . 407

■CHAPTER 18 Securables and Permissions . 433

■CHAPTER 19 Encryption. 459

■CHAPTER 20 Service Broker . 485

■CHAPTER 21 Configuring and Viewing SQL Server Options 517

■CHAPTER 22 Creating and Configuring Databases . 523

iii

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page iii

■CHAPTER 23 Database Integrity and Optimization. 571

■CHAPTER 24 Maintaining Database Objects and Object Dependencies 589

■CHAPTER 25 Database Mirroring . 595

■CHAPTER 26 Database Snapshots . 615

■CHAPTER 27 Linked Servers and Distributed Queries . 621

■CHAPTER 28 Performance Tuning . 637

■CHAPTER 29 Backup and Recovery . 683

INDEX . 717

iv

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page iv

Contents

About the Author . xix

About the Technical Reviewer . xxi

Acknowledgments . xxiii

Introduction . xxv

■CHAPTER 1 SELECT . 1

The Basic SELECT Statement . 1

Selecting Specific Columns for Every Row . 2

Selecting Every Column for Every Row . 3

Selective Querying Using a Basic WHERE Clause . 3

Using the WHERE Clause to Specify Rows Returned
in the Result Set . 3

Combining Search Conditions . 4

Negating a Search Condition . 5

Keeping Your WHERE Clause Unambiguous . 6

Using Operators and Expressions. 7

Using BETWEEN for Date Range Searches . 8

Using Comparisons . 8

Checking for NULL Values . 9

Returning Rows Based on a List of Values . 10

Using Wildcards with LIKE . 10

Ordering Results . 11

Using the ORDER BY Clause . 12

Using the TOP Keyword with Ordered Results 13

Grouping Data . 15

Using the GROUP BY Clause . 15

Using GROUP BY ALL . 17

Selectively Querying Grouped Data Using HAVING. 17

v

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page v

SELECT Clause Techniques . 18

Using DISTINCT to Remove Duplicate Values 19

Using DISTINCT in Aggregate Functions . 19

Using Column Aliases . 20

Using SELECT to Create a Script . 21

Performing String Concatenation . 22

Creating a Comma Delimited List Using SELECT 22

Using the INTO Clause . 23

SubQueries . 25

Using Subqueries to Check for the Existence of Matches 25

Querying from More Than One Data Source. 26

Using INNER Joins . 26

Using OUTER Joins . 28

Using CROSS Joins . 29

Performing Self-Joins . 29

Using Derived Tables . 30

Combining Result Sets with UNION . 31

Using APPLY to Invoke a Table-Valued Function for Each Row 33

Using CROSS APPLY . 33

Using OUTER APPLY. 35

Data Source Advanced Techniques . 36

Using the TABLESAMPLE to Return Random Rows 37

Using PIVOT to Convert Single Column Values into Multiple
Columns and Aggregate Data. 38

Normalizing Data with UNPIVOT . 40

Returning Distinct or Matching Rows Using EXCEPT and
INTERSECT . 42

Summarizing Data. 45

Summarizing Data with WITH CUBE . 45

Using GROUPING with WITH CUBE . 46

Summarizing Data with WITH ROLLUP. 46

Hints. 47

Using Join Hints . 47

Using Query Hints . 49

Using Table Hints . 51

Common Table Expressions. 53

Using a Non-Recursive Common Table Expression (CTE) 53

Using a Recursive Common Table Expression (CTE) 56

■CONTENTSvi

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page vi

■CHAPTER 2 INSERT, UPDATE, DELETE . 61

INSERT. 61

Inserting a Row into a Table . 62

Inserting a Row Using Default Values. 63

Explicitly Inserting a Value into an IDENTITY Column 64

Inserting a Row into a Table with a Uniqueidentifier Column. 65

Inserting Rows Using an INSERT...SELECT Statement. 66

Inserting Data from a Stored Procedure Call. 67

UPDATE . 69

Updating a Single Row . 69

Updating Rows Based on a FROM and WHERE Clause 70

Updating Large Value Data Type Columns. 71

Inserting or Updating an Image File Using OPENROWSET
and BULK . 73

DELETE . 75

Deleting Rows . 76

Truncating a Table . 77

The OUTPUT Clause . 78

Using the OUTPUT Clause with INSERT, UPDATE, DELETE 78

Chunking Data Modifications with TOP . 81

Deleting Rows in Chunks . 81

■CHAPTER 3 Transactions, Locking, Blocking, and Deadlocking 83

Transaction Control . 83

Using Explicit Transactions. 85

Displaying the Oldest Active Transaction with
DBCC OPENTRAN . 88

Locking . 90

Viewing Lock Activity. 91

Transaction, Locking, and Concurrency. 93

Using SET TRANSACTION ISOLATION LEVEL . 94

Blocking . 99

Identifying and Resolving Blocking Processes 99

Using SET LOCK TIMEOUT . 102

Deadlocking . 103

Identifying Deadlocks with a Trace Flag. 103

Setting Deadlock Priority . 106

■CONTENTS vii

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page vii

■CHAPTER 4 Tables . 109

Table Basics . 109

Creating a Table . 112

Adding a Column to an Existing Table . 112

Changing a Column Definition . 113

Creating a Computed Column . 114

Dropping a Table Column . 115

Reporting Table Information . 116

Dropping a Table . 116

Collation Basics . 116

Viewing Collation Metadata . 117

Designating a Column’s Collation . 118

Keys . 118

Creating a Table with a Primary Key. 120

Adding a Primary Key Constraint to an Existing Table 121

Creating a Table with a Foreign Key Reference 121

Adding a Foreign Key to an Existing Table. 122

Creating Recursive Foreign Key References 123

Allowing Cascading Changes in Foreign Keys 124

Surrogate Keys. 126

Using the IDENTITY Property During Table Creation 126

Using DBCC CHECKIDENT to View and Correct IDENTITY
Seed Values . 127

Using the ROWGUIDCOL Property . 129

Constraints . 129

Creating a Unique Constraint . 130

Adding a UNIQUE Constraint to an Existing Table. 131

Using CHECK Constraints . 132

Adding a CHECK Constraint to an Existing Table 133

Disabling and Enabling a Constraint. 134

Using a DEFAULT Constraint During Table Creation 135

Adding a DEFAULT Constraint to an Existing Table. 136

Dropping a Constraint from a Table . 137

Temporary Tables and Table Variables . 137

Using a Temporary Table for Multiple Lookups Within
a Batch . 138

Creating a Table Variable to Hold a Temporary Result Set 140

■CONTENTSviii

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page viii

Manageability for Very Large Tables. 141

Implementing Table Partitioning . 142

Determining the Location of Data in a Partition 145

Adding a New Partition . 146

Removing a Partition . 148

Moving a Partition to a Different Table . 149

Removing Partition Functions and Schemes. 151

Placing a Table on a Filegroup. 151

■CHAPTER 5 Indexes . 155

Indexes Overview . 155

Create a Table Index . 158

Enforce Uniqueness on Non-Key Columns . 159

Create a Composite Index . 160

Define Index Column Sort Direction . 161

View Index Meta Data . 161

Disable an Index. 163

Dropping Indexes . 163

Change an Existing Index with DROP_EXISTING 164

Controlling Index Build Performance and Concurrency. 164

Intermediate Index Creation in Tempdb . 165

Controlling Parallel Plan Execution for Index Creation. 165

Allowing User Table Access During Index Creation 166

Index Options . 166

Using an Index INCLUDE. 166

Using PAD_INDEX and FILLFACTOR . 167

Disabling Page and/or Row Index Locking . 168

Managing Very Large Indexes . 169

Creating an Index on a Filegroup . 169

Implementing Index Partitioning . 170

■CHAPTER 6 Full-Text Search . 173

Full-Text Indexes and Catalogs . 173

Creating a Full-Text Catalog. 174

Creating a Full-Text Index. 175

Modifying a Full-Text Catalog . 177

Modifying a Full-Text Index . 178

Dropping a Full-Text Catalog . 180

Dropping a Full-Text Index . 181

ta. 181

■CONTENTS ix

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page ix

Basic Searching . 182

Using FREETEXT to Search Full-Text Indexed Columns 183

Using CONTAINS for Word Searching . 184

Advanced Searching . 185

Using CONTAINS to Search with Wildcards . 185

Using CONTAINS to Search for Inflectional Matches 185

Using CONTAINS for Searching Results by Term Proximity 186

Ranked Searching . 187

Returning Ranked Search Results by Meaning. 187

Returning Ranked Search Results by Weighted Value. 188

■CHAPTER 7 Views . 191

Regular Views. 192

Creating a Basic View . 192

Querying the View Definition . 194

Reporting on Database Views . 194

Refreshing a View’s Definition . 196

Modifying a View . 196

Dropping a View . 197

Modifying Data Through a View. 197

View Encryption . 198

Encrypting a View . 198

Indexed Views . 199

Creating an Indexed View. 200

Forcing the Optimizer to Use an Index for an Indexed View 202

Partitioned Views . 203

Creating a Distributed-Partitioned View. 203

■CHAPTER 8 SQL Server Functions . 209

Aggregate Functions . 209

Returning the Average of Values . 210

Returning Row Counts . 210

Finding the Lowest and Highest Values from an Expression 211

Returning the Sum of Values . 212

Using Statistical Aggregate Functions . 212

Mathematical Functions . 213

Using Mathematical Functions . 214

■CONTENTSx

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page x

String Functions. 215

Converting a Character Value to ASCII and Back to Character. . . . 216

Returning Integer and Character Unicode Values. 216

Finding the Start Position of a String Within Another String 217

Finding the Start Position of a String Within Another String
Using Wildcards . 217

Determining the Similarity of Strings . 218

Taking the Leftmost or Rightmost Part of a String 219

Determining the Number of Characters or Bytes in a String 220

Replacing a Part of a String with Another String 220

Stuffing a String into a String . 221

Changing Character Values to Lower, Upper, and Proper
Case . 221

Removing Leading and Trailing Blanks . 224

Repeating an Expression N Number of Times. 224

Repeating a Blank Space N Number of Times 224

Outputting an Expression in Reverse Order. 225

Returning a Chunk of an Expression . 225

Working with NULLs . 226

Replacing a NULL Value with an Alternative Value 226

Performing Flexible Searches Using ISNULL. 226

Returning the First Non NULL Value in a List of Expressions 228

Returning a NULL Value When Two Expressions Are Equal:
Otherwise Return the First Expression . 228

Date Functions . 229

Returning the Current Date and Time. 230

Incrementing or Decrementing a Date’s Value 230

Finding the Difference Between Two Dates. 231

Displaying the String Value for Part of a Date 232

Displaying the Integer Value for Part of a Date Using
DATEPART . 233

Displaying the Integer Value for Part of a Date Using
YEAR, MONTH, and DAY. 233

Converting Data Types Using Convert and Cast . 234

Converting Data Types . 234

Performing Date Conversions . 235

Evaluating Whether an Expression Is a Date or Is Numeric 236

■CONTENTS xi

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xi

Ranking Functions. 237

Using an Incrementing Row Number . 237

Returning Rows by Rank . 238

Returning Rows by Rank Without Gaps . 240

Using NTILE. 241

Probing Server, Database, and Connection-Level Settings
Using System Functions . 241

Using SQL Server’s First Day of the Week Setting 242

Viewing the Language Used in the Current Session 242

Viewing and Setting Current Connection Lock Timeout
Settings . 242

Displaying the Nesting Level for the Current Stored
Procedure Context . 243

Returning the Current SQL Server Instance Name and
SQL Server Version. 244

Returning the Current Connection’s Session ID (SPID) 244

Returning Number of Open Transactions . 244

Retrieving the Rows Affected by the Previous Statement. 245

Using System Statistical Functions. 246

Displaying Database and SQL Server Settings 248

Returning the Current Database ID and Name 248

Returning a Database Object Name and ID. 249

Returning the Application and Host for the Current User
Session. 249

Reporting Current User and Login Context . 250

Viewing User Connection Options . 250

IDENTITY and uniqueidentifier Functions . 251

Returning the Last Identity Value. 251

Returning an Identity Column’s Seed and Incrementing
Value . 252

Creating a New uniqueidentifier Value . 253

■CHAPTER 9 Conditional Processing, Control-of-Flow, and Cursors . . 255

Conditional Processing . 255

Using CASE to Evaluate a Single Input Expression. 256

Using CASE to Evaluate Boolean Expressions. 257

Using IF...ELSE . 258

■CONTENTSxii

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xii

Control-of-Flow . 260

Using RETURN . 260

Using WHILE . 262

Using GOTO. 264

Using WAITFOR. 265

Cursors . 266

Creating and Using Transact-SQL Cursors . 268

■CHAPTER 10 Stored Procedures . 271

Stored Procedure Basics . 271

Creating a Basic Stored Procedure. 272

Creating a Parameterized Stored Procedure. 274

Using OUTPUT Parameters . 276

Modifying a Stored Procedure . 277

Dropping Stored Procedures . 278

Executing Stored Procedures Automatically at SQL Server
Startup . 278

Reporting Stored Procedure Metadata. 280

Documenting Stored Procedures . 280

Stored Procedure Security . 281

Encrypting a Stored Procedure . 281

Using EXECUTE AS to Specify the Procedure’s Security
Context . 282

Recompilation and Caching . 285

RECOMPILE(ing) a Stored Procedure Each Time It Is
Executed . 285

Flushing the Procedure Cache. 286

■CHAPTER 11 User-Defined Functions and Types . 289

UDF Basics . 289

Creating Scalar User-Defined Functions . 290

Creating Inline User-Defined Functions . 293

Creating Multi-Statement User-Defined Functions 295

Modifying User-Defined Functions . 298

Viewing UDF Metadata . 300

Dropping User-Defined Functions . 300

Benefiting From UDFs . 301

Using Scalar UDFs to Maintain Reusable Code. 301

Using Scalar UDFs to Cross Reference Natural Key Values 303

tement UDFs 306

■CONTENTS xiii

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xiii

UDT Basics . 308

Creating and Using User-Defined Types. 308

Identifying Columns and Parameters That Use
User-Defined Types . 310

Dropping User-Defined Types . 311

■CHAPTER 12 Triggers . 313

DML Triggers . 314

Creating an AFTER DML Trigger . 314

Creating an INSTEAD OF DML Trigger . 318

Using DML Triggers and Transactions . 321

Controlling DML Triggers Based on Modified Columns 323

Viewing DML Trigger Metadata . 324

DDL Triggers. 325

Creating a DDL Trigger That Audits Database-Level Events. 326

Creating a DDL Trigger That Audits Server-Level Events 328

Viewing DDL Trigger Metadata . 329

Managing Triggers. 330

Modifying a Trigger . 330

Enabling and Disabling Table Triggers . 330

Limiting Trigger Nesting . 332

Controlling Trigger Recursion. 333

Setting Trigger Firing Order . 334

Dropping a Trigger . 336

■CHAPTER 13 CLR Integration . 337

CLR Overview. 338

When (and When Not) to Use Assemblies . 338

CLR Objects Overview . 340

Creating CLR Database Objects . 340

Enabling CLR Support in SQL Server 2005 . 341

Writing an Assembly for a CLR Stored Procedure 341

Compiling an Assembly into a DLL File . 344

Loading the Assembly Into SQL Server . 345

Creating the CLR Stored Procedure . 346

Creating a CLR Scalar User-Defined Function 347

Creating a CLR Trigger . 350

■CONTENTSxiv

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xiv

Administering Assemblies . 352

Viewing Assembly Metadata . 352

Modifying an Assembly’s Permissions . 352

Removing an Assembly from the Database 353

■CHAPTER 14 XML . 355

XML and Related Technologies . 356

Working with Native XML. 358

Creating XML Data Type Columns . 358

Inserting XML Data into a Column . 359

Validating XML Data Using Schemas . 360

Retrieving XML Data . 362

Modifying XML Data . 365

Using XML Indexes . 366

Converting Between XML Documents and Relational Data 367

Using FOR XML. 368

Using OPENXML . 372

■CHAPTER 15 Web Services . 375

Web Service Technologies . 375

HTTP Endpoints . 377

Creating an HTTP Endpoint . 379

Managing HTTP Endpoint Security . 382

Modifying an HTTP Endpoint . 383

Removing an HTTP Endpoint . 385

Reserving Namespaces . 385

Creating a .NET Client That Uses a Web Service . 387

■CHAPTER 16 Error Handling . 393

System-Defined and User-Defined Error Messages 393

Viewing System Error Information . 393

Creating a User-Defined Error Message . 394

Dropping a User-Defined Error Message . 396

Using RAISERROR . 396

Invoking an Error Message Using RAISERROR 397

Using TRY...CATCH. 399

Old Style Error Handling . 400

Error Handling with TRY...CATCH . 402

■CONTENTS xv

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xv

Applying TRY...CATCH Error Handling Without Recoding
a Stored Procedure. 404

Nesting TRY...CATCH Calls . 404

■CHAPTER 17 Principals . 407

Windows Principals . 407

Creating a Windows Login . 408

Viewing Windows Logins . 409

Altering a Windows Login . 410

Dropping a Windows Login . 411

SQL Server Principals . 412

Creating a SQL Server Login . 414

Viewing SQL Server Logins . 415

Altering a SQL Server Login . 415

Dropping a SQL Login . 417

Managing Server Role Members. 417

Reporting Fixed Server Role Information . 418

Database Principals . 420

Creating Database Users . 420

Reporting Database User Information . 422

Modifying a Database User . 422

Removing a Database User from the Database 423

Fixing Orphaned Database Users . 423

Reporting Fixed Database Roles Information 425

Managing Fixed Database Role Membership 427

Managing User-Defined Database Roles . 427

Managing Application Roles. 430

■CHAPTER 18 Securables and Permissions . 433

Permissions Overview . 434

Reporting SQL Server 2005 Assignable Permissions 435

Server-Scoped Securables and Permissions . 437

Managing Server Permissions . 439

Database-Scoped Securables and Permissions. 440

Managing Database Permissions . 441

Schema-Scoped Securables and Permissions. 442

Managing Schemas. 444

Managing Schema Permissions . 446

■CONTENTSxvi

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xvi

Object Permissions . 447

Managing Object Permissions . 450

Managing Permissions Across Securable Scopes 451

Determining a Current Connection’s Permissions to
a Securable . 451

Reporting the Permissions For a Principal by Securable
Scope . 453

Changing Securable Ownership . 456

Allowing SQL Logins to Access Non-SQL Server Resources 457

■CHAPTER 19 Encryption . 459

Encryption by Passphrase . 459

Using a Function to Encrypt by Passphrase 459

Master Keys . 461

Backing Up and Restoring a Service Master Key 462

Creating, Regenerating, and Dropping a Database Master Key. 463

Backing Up and Restoring a Database Master Key 464

Removing Service Master Key Encryption from the Database
Master Key. 465

Asymmetric Key Encryption. 466

Creating an Asymmetric Key . 466

Viewing Asymmetric Keys in the Current Database. 467

Modifying the Asymmetric Key’s Private Key Password 468

Encrypting and Decrypting Data Using an Asymmetric Key 468

Dropping an Asymmetric Key . 471

Symmetric Key Encryption. 471

Creating a Symmetric Key . 471

Viewing Symmetric Keys in the Current Database. 473

Changing How a Symmetric Key Is Encrypted 473

Using Symmetric Key Encryption and Decryption 474

Dropping a Symmetric Key. 478

Certificate Encryption . 478

Creating a Database Certificate. 478

Viewing Certificates in the Database . 479

Backing Up and Restoring a Certificate . 480

Managing a Certificate’s Private Key . 481

Using Certificate Encryption and Decryption. 482

■CONTENTS xvii

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xvii

■CHAPTER 20 Service Broker . 485

Example Scenario: Online Bookstore . 486

Creating a Basic Service Broker Application. 486

Enabling Databases for Service Broker Activity 487

Creating the Database Master Key for Encryption 487

Managing Message Types . 488

Creating Contracts . 490

Creating Queues . 491

Creating Services. 493

Initiating a Dialog . 494

Querying the Queue for Incoming Messages 496

Receiving and Responding to a Message . 497

Ending a Conversation . 499

Creating a Stored Procedure to Process Messages 501

Creating the Bookstore Stored Procedure . 501

Remote-Server Service Broker Implementations. 504

Enabling Transport Security . 506

Enabling Dialog Security. 509

Creating Routes and Remote Service Bindings 511

Event Notifications. 514

Capturing Login Commands . 514

■CHAPTER 21 Configuring and Viewing SQL Server Options 517

Viewing SQL Server Configurations . 517

Changing SQL Server Configurations . 519

■CHAPTER 22 Creating and Configuring Databases . 523

Creating, Altering, and Dropping Databases . 523

Creating a Database with a Default Configuration 524

Viewing Database Information. 524

Creating a Database Using File Options. 525

Creating a Database with a User-Defined Filegroup 528

Setting Database User Access. 530

Renaming a Database . 532

Dropping a Database. 534

Detaching a Database. 534

Attaching a Database . 536

■CONTENTSxviii

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xviii

Configuring Database Options. 537

Viewing Database Options . 537

Configuring ANSI SQL Options . 538

Configuring Automatic Options . 540

Creating or Modifying a Database to Allow External Access 542

Creating or Changing a Database to Use a Non-Server
Default Collation . 543

Configuring Cursor Options . 544

Enabling Date Correlation Optimization . 545

Modifying Database Parameterization Behavior. 546

Enabling Read Consistency for a Transaction 549

Configuring Database Recovery Models . 551

Configuring Page Verification. 552

Controlling Database Access and Ownership . 554

Changing a Database State to Online, Offline, or Emergency 554

Changing a Database Owner . 555

Managing Database Files and Filegroups . 556

Adding a Data File or Log File to an Existing Database. 556

Removing a Data or Log File from a Database 558

Relocating a Data or Transaction Log File . 559

Changing a File’s Logical Name . 560

Increasing a Database’s File Size and Modifying Its
Growth Options . 561

Adding a Filegroup to an Existing Database 562

Setting the Default Filegroup . 562

Removing a Filegroup . 563

Making a Database or Filegroup Read-Only 564

Viewing and Managing Database Space Usage. 565

Viewing Database Space Usage . 565

Shrinking the Database or a Database File . 567

■CHAPTER 23 Database Integrity and Optimization . 571

Database Checking . 571

Checking Consistency of the Disk Space Allocation Structures
with DBCC CHECKALLOC. 572

Checking Allocation and Structural Integrity of All Database
Objects with DBCC CHECKDB. 573

■CONTENTS xix

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xix

Tables and Constraints . 576

Checking Allocation and Structural Integrity of All Tables
in a Filegroup Using DBCC CHECKFILEGROUP. 576

Checking Data Integrity for Tables and Indexed Views Using
DBCC CHECKTABLE . 578

Checking Table Integrity with DBCC CHECKCONSTRAINTS 580

Checking System Table Consistency with DBCC
CHECKCATALOG . 582

Index Maintenance . 583

Rebuilding Indexes . 583

Defragmenting Indexes. 586

■CHAPTER 24 Maintaining Database Objects and Object
Dependencies . 589

Database Object Maintenance . 589

Changing the Name of a User-Created Database Object 589

Changing an Object’s Schema. 591

Object Dependencies . 592

Displaying Information on Database Object Dependencies 592

Viewing an Object’s Definition . 593

■CHAPTER 25 Database Mirroring . 595

Database Mirroring in Context . 596

Database Mirroring Architecture. 597

Setting Up Database Mirroring . 598

Creating Mirroring Endpoints . 598

Backing Up and Restoring Principal Databases 602

Creating a Database Mirroring Session . 604

Setup Summary . 607

Operating Database Mirroring . 608

Changing Operating Modes . 608

Performing Failovers . 609

Pausing or Resuming a Mirroring Session. 610

Stopping Mirroring Sessions and Removing Endpoints. 611

Monitoring and Configuring Options. 611

Monitoring Mirror Status. 612

Reducing Failover Time. 612

Configuring the Connection Timeout Period 613

■CONTENTSxx

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xx

■CHAPTER 26 Database Snapshots . 615

Snapshots Basics . 615

Creating and Querying Database Snapshots 616

Removing a Database Snapshot . 617

Recovering Data with a Database Snapshot 618

■CHAPTER 27 Linked Servers and Distributed Queries 621

Linked Server Basics . 622

Creating a Linked Server to Another SQL Server Instance 622

Configuring Linked Server Properties. 623

Viewing Linked Server Information. 625

Dropping a Linked Server. 625

Linked Server Logins . 626

Adding a Linked Server Login Mapping . 626

Viewing Linked Logins . 627

Dropping a Linked Server Login Mapping . 628

Executing Distributed Queries . 628

Executing Distributed Queries Against a Linked Server 628

Creating and Using an Alias to Reference Four-Part Linked
Server Names . 630

Executing Distributed Queries Using OPENQUERY 631

Executing Ad Hoc Queries Using OPENROWSET 631

Reading Data from a File Using OPENROWSET BULK Options 633

■CHAPTER 28 Performance Tuning . 637

Query Performance Tips . 638

Capturing and Evaluating Query Performance . 639

Capturing High Duration Queries Using SQL Server Profiler 639

Capturing Executing Queries Using sys.dm_exec_requests 644

Viewing a Query’s Graphical Execution Plan 645

Viewing Estimated Query Execution Plans Using
Transact-SQL Commands . 650

Forcing SQL Server 2005 to Use a Query Plan 653

Viewing Execution Runtime Information . 655

Viewing Performance Statistics for Cached Query Plans 657

■CONTENTS xxi

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xxi

Statistics . 659

Manually Creating Statistics . 659

Updating Statistics. 660

Generating and Updating Statistics Across All Tables 661

View Statistics Information. 662

Removing Statistics. 664

Index Tuning . 664

Displaying Index Fragmentation . 665

Displaying Index Usage. 668

Using the Database Engine Tuning Advisor . 669

Miscellaneous Techniques . 675

Using an Alternative to Dynamic SQL. 675

Applying Hints Without Modifying Application SQL 677

■CHAPTER 29 Backup and Recovery . 683

Creating a Backup and Recovery Plan. 683

Backups . 685

Performing a Basic Full Backup . 687

Naming and Describing Your Backups and Media 689

Configuring Backup Retention . 691

Striping Backup Sets. 692

Using a Named Backup Device . 693

Mirroring Backup Sets . 694

Performing a Transaction Log Backup . 696

Using COPY ONLY Backup Sets . 698

Performing a Differential Backup . 698

Backing Up Individual Files or Filegroups . 699

Performing a Partial Backup . 701

Viewing Backup Metadata . 702

Restoring a Database . 705

Restoring a Database from a Full Backup . 705

Restoring a Database from a Transaction Log Backup 709

Restoring a Database from a Differential Backup 712

Restoring a File or Filegroup . 713

Performing a Piecemeal (PARTIAL) Restore. 714

Restoring a Page . 715

■INDEX . 717

■CONTENTSxxii

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xxii

About the Author

■JOSEPH SACK is an independent consultant based in Minneapolis,
Minnesota. Since 1997, he has been developing and supporting SQL
Server environments for clients in the financial services, multimedia
distribution, IT consulting, manufacturing, and real estate industries.
Joseph received his bachelor’s degree in psychology from the Univer-
sity of Minnesota. He is the author of SQL Server 2000 Fast Answers for
DBAs and Developers and is a Microsoft Certified Database Adminis-
trator (MCDBA). For questions or consulting needs, he can be reached
at joe.sack@gmail.com.

xxiii

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xxiii

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xxiv

About the Technical Reviewer

■EVAN TERRY has been in the IT industry for over 15 years, serving the
government and the private sector as a Programmer/Analyst, Systems
Engineer, Custom Software Consultant, Senior Developer, Data Analyst,
and Data Architect. He firmly believes that in order to succeed at devel-
oping complex systems, the IT professional must truly understand the
business processes we support. Evan also tries to bridge the gap
between the technical and the non-technical by understanding
the perspectives of both and by helping the two groups communi-
cate effectively. Evan is also the co-author of Apress’ Beginning
Relational Data Modeling.

xxv

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xxv

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xxvi

Acknowledgments

This book is dedicated to David Hatch. His continuing help, encouragement, advice, and
support made it all possible.

Thank you to Tony Davis for his ability to see the big picture, for providing insight and
clarity, and for helping me formulate a meaningful narrative. Tony gave me the straight truth,
and as a result, pushed me to do my very best.

Thank you to Evan Terry, who took an amazing amount of care in making sure that not only
the technical side of the book was reviewed, but made sure to look at the content as a whole.
Evan has a gift for clarity and for asking the right questions. It was a comfort knowing that I had
both Tony and Evan watching over my shoulder.

Also, thank you to Beth Christmas for her wonderful attitude, her talent for keeping things
rolling, and her rapid responses to my burning questions. Beth cared just as much as I did about
keeping this book on schedule, and I’m very grateful for that.

Thank you to the very talented Julie Smith, who helped me find the right words, stay con-
sistent, and make the narrative flow. Like Evan, Julie also went above and beyond her role by
evaluating the text at multiple levels.

Thank you also to Katie Stence, Kari Brooks, and the rest of the Apress team—some of
whom I didn’t get to meet, but whose contributions I’m thankful to have received. It is nice to
know I had so many people watching out for me.

Lastly, thank you to Gary Cornell, who purchased the rights to my last book, made good
on the previous publisher’s commitments, and continues to show integrity and support for
my future projects. If all publishing companies were run by people like Gary, there would be
a lot more happy technical authors out there!

xxvii

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xxvii

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xxviii

Introduction

When it comes to performing your daily SQL Server tasks, technical documentation tends to
tell you more than you need to know.

Let’s say that you’re in a hurry, and you want to add a unique constraint to a table before
someone inserts a duplicate value into it. Where do you look?

One obvious choice is SQL Server Books Online. With its massive amounts of useful informa-
tion, you know that the answer has to be there somewhere. Unfortunately, finding this information
may involve several click-throughs and red herrings. Once you do arrive at the correct page, the
information you need may be integrated into a larger syntax block, with unrelated functionality or
examples.

SQL Server 2005 T-SQL Recipes was written in order to address the need for fast information
retrieval and use. Topics are presented in a task-based format. Each topic (recipe) provides the
necessary background to get you started, presents one or more examples, and then concisely
explains how it all works.

Whether you need to brush up on a topic you haven’t used for a while, or whether you’re
new to Transact-SQL, you can easily pick and choose the areas you need to work on. This book
covers the basics and beyond, demonstrating the more complex techniques and functionality
offered in SQL Server 2005’s flavor of Transact-SQL.

Want to learn more about what’s new in SQL Server 2005? This book will also demonstrate
the new Transact-SQL features and functionality introduced in SQL Server 2005, allowing you
to quickly test out features with a minimal amount of fuss.

Written to be index-friendly, the book does not need to be read front to back in order for
readers to benefit from it. Whether you are a novice, part-time, or seasoned SQL Server profes-
sional, SQL Server 2005 T-SQL Recipes will provide you with the fast facts needed to help you
get the job done.

xxix

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xxix

570Xch00FMFINALQ6.qxd 11/7/05 10:08 AM Page xxx

SELECT

In this chapter, I include recipes for returning data from a SQL Server database using the SELECT
statement. At the beginning of each chapter you’ll notice that most of the basic concepts are covered
first. This is for those of you who are new to the SQL Server 2005 Transact-SQL query language. In
addition to the basics, I’ll also provide recipes that can be used in your day-to-day development and
administration. These recipes will also help you learn about the new functionality introduced in
SQL Server 2005. A majority of the examples in this book use the AdventureWorks database, which is
an optional install with SQL Server 2005.

■Tip The AdventureWorks database is a sample database provided with SQL Server 2005. It’s similar to the
Northwind and Pubs databases found in previous versions of SQL Server. For instructions on installing this database,
see SQL Server 2005 Books Online's topic, “Running Setup to Install AdventureWorks Sample Databases and
Samples.”

You can read the recipes in this book in almost any order. You can skip to the topics that inter-
est you, or read it through sequentially. If you see something that is useful to you, perhaps a code
chunk or example that you can modify for your own purposes or integrate into a stored procedure
or function, then this book has been successful.

The Basic SELECT Statement
The SELECT command is the cornerstone of the Transact-SQL language, allowing you to retrieve data
from a SQL Server database (and more specifically from database objects within a SQL Server database).
Although the full syntax of the SELECT statement is enormous, the basic syntax can be presented in
a more boiled down form:

SELECT select_list
FROM table_list

The select_list argument shown in the previous code listing is the list of columns that you
wish to return in the results of the query. The table_list arguments are the actual tables and or
views that the data will be retrieved from.

The next few recipes will demonstrate how to use a basic SELECT statement.

1

C H A P T E R 1

■ ■ ■

570Xch01.qxd 11/4/05 1:53 PM Page 1

CHAPTER 1 ■ SELECT2

Selecting Specific Columns for Every Row
This example demonstrates a very simple SELECT query against the AdventureWorks database,
whereby four columns are returned, along with several rows. Explicit column naming is used in the
query:

USE AdventureWorks
GO

SELECT ContactID,
Title,
FirstName,
LastName

FROM Person.Contact

The query returns the following abridged results:

ContactID Title FirstName LastName
----------- -------- -- ------------
1 Mr. Gustavo Achong
2 Ms. Catherine Abel
3 Ms. Kim Abercrombie
4 Sr. Humberto Acevedo
5 Sra. Pilar Ackerman
...

(19972 row(s) affected)

How It Works
The first line of code sets the context database context of the query. Your initial database context,
when you first login to SQL Server Management Studio (SSMS), is defined by your login’s default
database. USE followed by the database name changes your connection context:

USE AdventureWorks
GO

The SELECT query was used next. The next five lines of code define which four columns to dis-
play in the query results:

SELECT ContactID,
Title,
FirstName,
LastName

The next line of code is the FROM clause:

FROM Person.Contact

The FROM clause is used to specify the data source, which in this example is a table. Notice the
two-part name of Person.Contact. The first part (the part before the period) is the schema and the
second part (after the period) is the actual table name. In SQL Server 2000, the first part of the two
part name was called the object owner. Now, with SQL Server 2005, users are separated from direct
ownership of database objects. Instead of owning the object directly, a schema contains the object,
and that schema is then owned by a user. In SQL Server 2000, if an object was owned by Jane, and Jane
left the company, you would not be able to drop her login until you reassigned all of the objects that
Jane owned to another user. Now with users owning a schema instead, and the schema containing
the object, you can change the owner of the schema and drop Jane’s login without having to modify

570Xch01.qxd 11/4/05 1:53 PM Page 2

Selecting Every Column for Every Row
If you wish to show all columns from the data sources in the FROM clause, you can use the following
query:

USE AdventureWorks
GO

SELECT *
FROM Person.Contact

The abridged column and row output is shown here:

ContactID NameStyle Title FirstName MiddleName LastName
1 0 Mr. Gustavo NULL Achong
2 0 Ms. Catherine R. Abel
3 0 Ms. Kim NULL Abercrombie
...

How It Works
The asterisk symbol (*) returns all columns for every row of the table or view you are querying. All
other details are as explained in the previous recipe.

Please remember that, as good practice, it is better to explicitly reference the columns you want
to retrieve instead of using SELECT *. If you write an application that uses SELECT *, your application
may expect the same columns (in the same order) from the query. If later on you add a new column
to the underlying table or view, or if you reorder the table columns, you could break the calling
application, because the new column in your result-set is unexpected. Using SELECT * can also
negatively impact performance, as you may be returning more data than you need over the network,
increasing the result set size and data retrieval operations on the SQL Server instance.

Selective Querying Using a Basic WHERE Clause
In a SELECT query, the WHERE clause is used to restrict rows returned in the query result set. The
simplified syntax for including the WHERE clause is as follows:

SELECT select_list
FROM table_list
[WHERE search_conditions]

The WHERE clause uses search conditions which determine the rows returned by the query.
Search conditions use predicates, which are expressions that evaluate to TRUE, FALSE, or UNKNOWN.
UNKNOWN values can make their appearance when NULL data is used in the search conditions. A NULL
value doesn’t mean that the value is blank or zero—only that the value is unknown.

The next few recipes will demonstrate how to use the WHERE clause to specify which rows are
and aren’t returned in the result set.

Using the WHERE Clause to Specify Rows Returned in the Result Set
This basic example demonstrates how to select which rows are returned in the query results:

SELECT Title,
FirstName,
LastName

FROM Person.Contact
WHERE Title = 'Ms.'

CHAPTER 1 ■ SELECT 3

570Xch01.qxd 11/4/05 1:53 PM Page 3

This example returns the following (abridged) results:

Title FirstName LastName
-------- -- ---------------------
Ms. Catherine Abel
Ms. Kim Abercrombie
Ms. Frances Adams
Ms. Margaret Smith
...

(415 row(s) affected)

How It Works
In this example, you can see that only rows where the person’s title was equal to “Ms.” were returned.
This search condition was defined in the WHERE clause of the query:

WHERE Title = 'Ms.'

Only one search condition was used in this case; however, an almost unlimited number of search
conditions can be used in a single query, as you’ll see in the next recipe.

Combining Search Conditions
This recipe will demonstrate connecting multiple search conditions by utilizing the AND, OR, and NOT
logical operators. The AND logical operator joins two or more search conditions and returns the row
or rows only when each of the search conditions is true. The OR logical operator joins two or more
search conditions and returns the row or rows in the result set when any of the conditions are true.

In this first example, two search conditions are used in the WHERE clause, separated by the AND
operator. The AND means that for a given row, both search conditions must be true for that row to be
returned in the result set:

SELECT Title,
FirstName,
LastName

FROM Person.Contact
WHERE Title = 'Ms.' AND

LastName = 'Antrim'

This returns the following results:

Title FirstName LastName
-------- -- ------------------------
Ms. Ramona Antrim

(1 row(s) affected)

In this second example, an OR operator is used for the two search conditions instead of an AND,
meaning that if either search condition evaluates to TRUE for a row, that row will be returned:

SELECT Title,
FirstName,
LastName

FROM Person.Contact
WHERE Title = 'Ms.' OR

LastName = 'Antrim'

CHAPTER 1 ■ SELECT4

570Xch01.qxd 11/4/05 1:53 PM Page 4

This returns the following (abridged) results:

Title FirstName LastName
-------- -- ------------------------
Ms. Ramona Antrim
Ms. Frances Adams
Ms. Margaret Smith
Ms. Carla Adams
Ms. Kim Akers
...
(415 row(s) affected)

How It Works
In the first example, two search conditions were joined using the AND operator:

WHERE Title = 'Ms.' AND
LastName = 'Antrim'

As you add search conditions to your query, you join them by the logical operators AND and OR.
For example, if both the Title equals Ms. and the LastName equals Antrim, that row or rows will be
returned. The AND operator dictates that both joined search conditions must be true in order for the
row to be returned.
The OR operator, on the other hand, returns rows if either search condition is TRUE, as the third
example demonstrated:

WHERE Title = 'Ms.' OR
LastName = 'Antrim'

So instead of a single row as the previous query returned, rows with a Title of Ms. or a LastName
of Antrim were returned.

Negating a Search Condition
The NOT logical operator, unlike AND and OR, isn’t used to combine search conditions, but instead is
used to negate the expression that follows it.

This next example demonstrates using the NOT operator for reversing the result of the following
search condition and qualifying the Title to be equal to ‘Ms.’ (reversing it to anything but ‘Ms.’):

SELECT Title,
FirstName,
LastName

FROM Person.Contact
WHERE NOT Title = 'Ms.'

This returns the following (abridged) results:

Title FirstName LastName
-------- -- ------------------------
Mr. Gustavo Achong
Sr. Humberto Acevedo
Sra. Pilar Ackerman
...

(594 row(s) affected)

CHAPTER 1 ■ SELECT 5

570Xch01.qxd 11/4/05 1:53 PM Page 5

How It Works
This example demonstrated the NOT operator:

WHERE NOT Title = 'Ms.'

NOT specifies the reverse of a search condition, in this case specifying that only rows that don’t
have the Title = ‘Ms.’ be returned.

Keeping Your WHERE Clause Unambiguous
You can use multiple operators (AND, OR, NOT) in a single WHERE clause, but it is important to keep your
intentions clear by properly embedding your ANDs and ORs in parentheses. The AND operator limits the
result set, and the OR operator expands the conditions for which rows will be returned. When multi-
ple operators are used in the same WHERE clause, operator precedence is used to determine how the
search conditions are evaluated. For example, the NOT operator takes precedence (is evaluated first)
before AND. The AND operator takes precedence over the OR operator. Using both AND and OR operators
in the same WHERE clause without using parentheses can return unexpected results.

For example, the following query may return unintended results:

SELECT Title,
FirstName,
LastName

FROM Person.Contact
WHERE Title = 'Ms.' AND

FirstName = 'Catherine' OR
LastName = 'Adams'

This returns the following (abridged) results:

Title FirstName LastName
-------- -- ------------------------
Ms. Catherine Abel
Ms. Frances Adams
Ms. Carla Adams
Mr. Jay Adams
...

Was the author of this query’s intention to return results for all rows with a Title of Ms., and of
those rows, only include those with a FirstName of Catherine or a LastName of Adams? Or did the
author wish to search for all people named Ms. with a FirstName of Catherine, as well as anyone
with a LastName of Adams?

A query that uses both AND and OR should use parentheses to clarify exactly what rows should
be returned. For example, this next query returns anyone with a Title of Ms. and a FirstName equal
to Catherine. It also returns anyone else with a LastName of Adams—regardless of Title and FirstName:

SELECT ContactID,
Title,
FirstName,
MiddleName,
LastName

FROM Person.Contact
WHERE (Title = 'Ms.' AND

FirstName = 'Catherine') OR
LastName = 'Adams'

CHAPTER 1 ■ SELECT6

570Xch01.qxd 11/4/05 1:53 PM Page 6

How It Works
Use parentheses to clarify multiple operator WHERE clauses. Parentheses assist in clarifying a query
as they help SQL Server identify the order that expressions should be evaluated. Search conditions
enclosed in parentheses are evaluated in an inner to outer order, so in the example from this recipe,
the following search conditions were evaluated first:

(Title = 'Ms.' AND
FirstName = 'Catherine')

before evaluating the outside OR search expression:

LastName = 'Adams'

Using Operators and Expressions
So far this chapter has used the = (equals) operator to designate what the value of a column in the
result set should be. The = comparison operator tests the equality of two expressions. An expression
is a combination of values, identifiers, and operators evaluated by SQL Server in order to return
a result (for example, return TRUE or FALSE or UNKNOWN).

Table 1-1 lists some of the operators you can use in a search condition.

Table 1-1. Operators

Operator Description

!= Tests two expressions not being equal to each other.

!> Tests that the left condition is not greater than the expression to the right.

!< Tests that the right condition is not greater than the expression to the right.

< Tests the left condition as less than the right condition.

<= Tests the left condition as less than or equal to the right condition.

<> Tests two expressions not being equal to each other.

= Tests equality between two expressions.

> Tests the left condition being greater than the expression to the right.

>= Tests the left condition being greater than or equal to the expression to the right.

ALL When used with a comparison operator and subquery, if all retrieved values
satisfy the search condition, the rows will be retrieved.

ANY When used with a comparison operator and subquery, if any retrieved values
satisfy the search condition, the rows will be retrieved.

BETWEEN Designates an inclusive range of values. Used with the AND clause between the
beginning and ending values.

CONTAINS Does a fuzzy search for words and phrases.

ESCAPE Takes the character used prior to a wildcard character to designate that the
literal value of the wildcard character should be searched, rather than use the
character as a wildcard.

EXISTS When used with a subquery, EXISTS tests for the existence of rows in the subquery.

FREETEXT Searches character-based data for words using meaning, rather than literal values.

IN Provides an inclusive list of values for the search condition.

IS NOT NULL Evaluates if the value is NOT null.

IS NULL Evaluates whether the value is null.

(Continued)

CHAPTER 1 ■ SELECT 7

570Xch01.qxd 11/4/05 1:53 PM Page 7

Table 1-1. (Continued)

Operator Description

LIKE Tests character string for pattern matching.

NOT BETWEEN Specifies a range of values NOT to include. Used with the AND clause between the
beginning and ending values.

NOT IN Provides a list of values for which NOT to return rows for.

NOT LIKE Tests character string, excluding those with pattern matches.

SOME When used with a comparison operator and subquery, if any retrieved values
satisfy the search condition, the rows will be retrieved.

As you can see from Table 1-1, SQL Server 2005 includes several operators which can be used
within query expressions. Specifically, in the context of a WHERE clause, operators can be used to
compare two expressions, and also check whether a condition is TRUE, FALSE, or UNKNOWN. The next
few recipes will demonstrate how the different operators are used within search expressions.

Using BETWEEN for Date Range Searches
This example demonstrates the BETWEEN operator, used to designate sales orders that occurred
between the dates 7/28/2002 and 7/29/2002:

SELECT SalesOrderID,
ShipDate

FROM Sales.SalesOrderHeader
WHERE ShipDate BETWEEN '7/28/2002' AND '7/29/2002'

The query returns the following (abridged) results:

SalesOrderID ShipDate
------------ -----------------------
46845 2002-07-28 00:00:00.000
46846 2002-07-28 00:00:00.000
46847 2002-07-28 00:00:00.000
more rows
46858 2002-07-29 00:00:00.000
46860 2002-07-29 00:00:00.000
46861 2002-07-29 00:00:00.000

(17 row(s) affected)

How It Works
The exercise demonstrated the BETWEEN operator, which tested whether or not a column’s ShipDate
value fell between two dates:

WHERE ShipDate BETWEEN '7/28/2002' AND '7/29/2002'

Using Comparisons
This next example demonstrates the < Less Than operator which is used in this query to only show
products with a standard cost below $110.00:

SELECT ProductID,
Name,

CHAPTER 1 ■ SELECT8

570Xch01.qxd 11/4/05 1:53 PM Page 8

StandardCost
FROM Production.Product
WHERE StandardCost < 110.0000

This query returns the following (abridged) results:

ProductID Name StandardCost
----------- -- ---------------------
1 Adjustable Race 0.00
2 Bearing Ball 0.00
3 BB Ball Bearing 0.00
4 Headset Ball Bearings 0.00
more rows
952 Chain 8.9866
994 LL Bottom Bracket 23.9716
995 ML Bottom Bracket 44.9506
996 HL Bottom Bracket 53.9416
more rows
(317 row(s) affected)

How It Works
This example demonstrated the < Less Than operator, returning all rows with a StandardCost less
than 110.0000:

WHERE StandardCost < 110.0000

Checking for NULL Values
This next query tests for the NULL value of a specific column. A NULL value does not mean that the
value is blank or zero—only that the value is unknown. This query returns any rows where the value
of the product’s weight is unknown:

SELECT ProductID,
Name,
Weight

FROM Production.Product
WHERE Weight IS NULL

This query returns the following (abridged) results:

ProductID Name Weight
----------- -- ---------------------
1 Adjustable Race NULL
2 Bearing Ball NULL
3 BB Ball Bearing NULL
4 Headset Ball Bearings NULL
more rows
(299 row(s) affected)

How It Works
This example demonstrated the IS NULL operator, returning any rows where the Weight value was
unknown (not available):

WHERE Weight IS NULL

CHAPTER 1 ■ SELECT 9

570Xch01.qxd 11/4/05 1:53 PM Page 9

Returning Rows Based on a List of Values
In this example, the IN operator validates the equality of the Color column to a list of expressions:

SELECT ProductID,
Name,
Color

FROM Production.Product
WHERE Color IN ('Silver', 'Black', 'Red')

This returns the following (abridged) results:

ProductID Name Color
----------- -- -----
317 LL Crankarm Black
318 ML Crankarm Black
319 HL Crankarm Black
more results
988 Mountain-500 Silver, 52 Silver
790 Road-250 Red, 48 Red

How It Works
This example demonstrated the IN operator, returning all products that had a Silver, Black, or Red
color:

WHERE Color IN ('Silver', 'Black', 'Red')

Using Wildcards with LIKE
Wildcards are used in search expressions to find pattern matches within strings. In SQL Server 2005,
you have the following wildcard options described in Table 1-2.

Table 1-2. Wildcards

Wildcard Usage

% Represents a string of zero or more characters.

_ Represents a single character.

[] Specifies a single character, from a selected range or list.

[^] Specifies a single character not within the specified range.

This example demonstrates using the LIKE operation with the % wildcard, searching for any
product with a name starting with the letter B:

SELECT ProductID,
Name

FROM Production.Product
WHERE Name LIKE 'B%'

This returns the following results:

CHAPTER 1 ■ SELECT10

570Xch01.qxd 11/4/05 1:53 PM Page 10

ProductID Name
----------- --
3 BB Ball Bearing
2 Bearing Ball
877 Bike Wash - Dissolver
316 Blade
(4 row(s) affected)

What if you want to search for the literal value of the % percentage sign or an _ underscore in
your character column? For this, you can use the ESCAPE operator.

This next query searches for any product name with a literal _ underscore value in it. The
ESCAPE operator allows you to search for the wildcard symbol as an actual character:

SELECT ProductID,
Name

FROM Production.Product
WHERE Name LIKE '%/_%' ESCAPE '/'

How It Works
Wildcards allow you to search for patterns in character-based columns. In the example from this
recipe, the % percentage sign was used to represent a string of zero or more characters:

WHERE Name LIKE 'B%'

If searching for a literal value that would otherwise be interpreted by SQL Server as a wildcard,
you can use the ESCAPE keyword. The example from this recipe searched for a literal underscore in
the Name column:

WHERE Name LIKE '%/_%' ESCAPE '/'

A backslash embedded in single quotes was put after the ESCAPE command. This designates the
backslash symbol as the escape character. If an escape character precedes the underscore within
a search condition, it is treated as a literal value instead of a wildcard.

Ordering Results
The ORDER BY clause orders the results of a query based on designated columns or expressions. The
basic syntax for ORDER BY is as follows:

SELECT select_list
[INTO new_table_name]
FROM table_list
[WHERE search_conditions]
[GROUP BY group_by_list]
[HAVING search_conditions]
[ORDER BY order_list [ASC | DESC]]

ORDER BY must appear after the required FROM clause, as well as the optional WHERE, GROUP BY,
and HAVING clauses.

CHAPTER 1 ■ SELECT 11

570Xch01.qxd 11/4/05 1:53 PM Page 11

Using the ORDER BY Clause
This example demonstrates ordering the query results by columns ProductID and EndDate:

SELECT p.Name,
h.EndDate,
h.ListPrice

FROM Production.Product p
INNER JOIN Production.ProductListPriceHistory h ON

p.ProductID = h.ProductID
ORDER BY p.Name, h.EndDate

This query returns:

Name EndDate ListPrice
-- ----------------------- ---------
All-Purpose Bike Stand NULL 159.00
AWC Logo Cap NULL 8.99
AWC Logo Cap 2002-06-30 00:00:00.000 8.6442
AWC Logo Cap 2003-06-30 00:00:00.000 8.6442
more rows
Women's Tights, L 2003-06-30 00:00:00.000 74.99
Women's Tights, M 2003-06-30 00:00:00.000 74.99
Women's Tights, S 2003-06-30 00:00:00.000 74.99

(395 row(s) affected)

The default sorting order of ORDER BY is ascending order, which can be explicitly designated as
ASC too. In this next example, DESC is used to return the results in reverse (descending) order:

SELECT p.Name,
h.EndDate,
h.ListPrice

FROM Production.Product p
INNER JOIN Production.ProductListPriceHistory h ON

p.ProductID = h.ProductID
ORDER BY p.Name DESC, h.EndDate DESC

This returns the following abridged results:

Name EndDate ListPrice
-- ----------------------- ---------
Women's Tights, S 2003-06-30 00:00:00.000 74.99
Women's Tights, M 2003-06-30 00:00:00.000 74.99
Women's Tights, L 2003-06-30 00:00:00.000 74.99
...
AWC Logo Cap 2002-06-30 00:00:00.000 8.6442
AWC Logo Cap NULL 8.99
All-Purpose Bike Stand NULL 159.00

(395 row(s) affected)

This third example demonstrates ordering results based on a column that is not used in the
SELECT clause:

SELECT p.Name
FROM Production.Product p

CHAPTER 1 ■ SELECT12

570Xch01.qxd 11/4/05 1:53 PM Page 12

This returns the following abridged results:

name
Guide Pulley
LL Grip Tape
ML Grip Tape
HL Grip Tape
Thin-Jam Hex Nut 9
...

How It Works
Although queries sometimes appear to return data properly without an ORDER BY clause, the natural
ordering of results is determined by the physical key column order in the clustered index (see Chapter 5
for more information on clustered indexes). If the row order of your result sets is critical, you should
never depend on the implicit physical order.

In the first example, the Production.Product and Production.ProductListPriceHistory tables
were queried to view the history of product prices over time.

■Note The full details of INNER JOIN are provided later in the chapter.

The following line of code sorted the results first alphabetically by product name, and then by
the end date:

ORDER BY p.Name, h.EndDate

You can designate one or more columns in your ORDER BY clause, so long as the columns do not
exceed 8,060 bytes in total.

The second example demonstrated returning results in descending order (ascending is the default
order). The DESC keyword was referenced behind each column that required the descending sort:

ORDER BY p.Name DESC, h.EndDate DESC

The third example demonstrated ordering the results by a column that was not used in the
SELECT statement:

ORDER BY p.Color

One caveat when ordering by unselected columns is that ORDER BY items must appear in the
select list if SELECT DISTINCT is specified.

Using the TOP Keyword with Ordered Results
The TOP keyword allows you to return the first n number of rows from a query based on the number
of rows or percentage of rows that you define. The first rows returned are also impacted by how your
query is ordered.

■Note SQL Server 2005 also provides new ranking functions which can be used to rank each row within the
partition of a result set. For a review of ranking functions, see Chapter 8.

CHAPTER 1 ■ SELECT 13

570Xch01.qxd 11/4/05 1:53 PM Page 13

In this example, the top ten rows are retrieved from the Purchasing.Vendor table for those rows
with the highest value in the CreditRating column:

SELECT TOP 10 v.Name,
v.CreditRating

FROM Purchasing.Vendor v
ORDER BY v.CreditRating DESC, v.Name

This returns:

Name CreditRating
-- ------------
Merit Bikes 5
Victory Bikes 5
Proseware, Inc. 4
Recreation Place 4
Consumer Cycles 3
Continental Pro Cycles 3
Federal Sport 3
Inner City Bikes 3
Northern Bike Travel 3
Trey Research 3

(10 row(s) affected)

The next example demonstrates limiting the percentage of rows returned in a query using
a local variable (using local variables in TOP is a new feature in SQL Server 2005):

DECLARE @Percentage float

SET @Percentage = 1

SELECT TOP (@Percentage) PERCENT
Name

FROM Production.Product
ORDER BY Name

This returns the top 1 percent of rows from the Production.Product table, ordered by product
name:

Name
--
Adjustable Race
All-Purpose Bike Stand
AWC Logo Cap
BB Ball Bearing
Bearing Ball
Bike Wash - Dissolver
(6 row(s) affected)

How It Works
In previous versions of SQL Server, developers used SET ROWCOUNT to limit how many rows the query
would return or impact. In SQL Server 2005, you should use the TOP keyword instead of SET ROWCOUNT,
as the TOP will usually perform faster. Also, not having the ability to use local variables in the TOP clause
was a major reason why people still used SET ROWCOUNT over TOP in previous versions of SQL Server.

eason not to start using TOP.

CHAPTER 1 ■ SELECT14

570Xch01.qxd 11/4/05 1:53 PM Page 14

■Tip The TOP keyword can also now be used with INSERT, UPDATE, and DELETE statements—something that
will not be supported with SET ROWCOUNT future versions of SQL Server. For more information about TOP used in
conjunction with data modifications, see Chapter 2.

The key to the first example was the TOP keyword, followed by the number of rows to be
returned:

SELECT TOP 10 v.Name

Also important was the ORDER BY clause, which ordered the results prior to the TOP n rows being
returned:

ORDER BY v.CreditRating DESC, v.Name

The second example demonstrated how to use the new local variable assignment functionality
with TOP PERCENT:

DECLARE @Percentage float

SET @Percentage = 1

SELECT TOP (@Percentage) PERCENT

The new local variable functionality allows you to create scripts, functions, or procedures that
can determine the number of rows returned by a query based on the value set by the caller, instead
of having to hardcode a set TOP number or percentage of rows.

Grouping Data
The GROUP BY clause is used in a SELECT query to determine the groups that rows should be put in.
The simplified syntax is as follows:

SELECT select_list
FROM table_list
[WHERE search_conditions]
[GROUP BY group_by_list]

GROUP BY follows the optional WHERE clause, and is most often used when aggregate functions
are referenced in the SELECT statement (aggregate functions are reviewed in more detail in Chapter 8).

Using the GROUP BY Clause
This example uses the GROUP BY clause to summarize total amount due by order date from the
Sales.SalesOrderHeader table:

SELECT OrderDate,
SUM(TotalDue) TotalDueByOrderDate

FROM Sales.SalesOrderHeader
WHERE OrderDate BETWEEN '7/1/2001' AND '7/31/2001'
GROUP BY OrderDate

This returns the following (abridged) results:

CHAPTER 1 ■ SELECT 15

570Xch01.qxd 11/4/05 1:53 PM Page 15

OrderDate TotalDueByOrderDate
----------------------- ---------------------
2001-07-01 00:00:00.000 665262.9599
2001-07-02 00:00:00.000 15394.3298
2001-07-03 00:00:00.000 16588.4572
2001-07-04 00:00:00.000 7907.9768
2001-07-05 00:00:00.000 16588.4572
...
2001-07-27 00:00:00.000 30985.659
2001-07-28 00:00:00.000 21862.8284
2001-07-29 00:00:00.000 19545.3176
2001-07-30 00:00:00.000 15914.584
2001-07-31 00:00:00.000 16588.4572

(31 row(s) affected)

How It Works
In this recipe’s example, the GROUP BY clause was used in a SELECT query to determine the groups
that rows should be put in.

Stepping through the first line of the query, the SELECT clause designated that the OrderDate should
be returned, as well as the SUM total of values in the TotalDue column. SUM is an aggregate function.
An aggregate function performs a calculation against a set of values (in this case TotalDue), returning
a single value (the total of TotalDue by OrderDate):

SELECT OrderDate,
SUM(TotalDue) TotalDueByOrderDate

Notice that a column alias for the SUM(TotalDue) aggregation was used. A column alias returns
a name for a calculated, aggregated, or regular column. This is another method of sending informa-
tion to the calling application—allowing you to change the underlying source column without the
application being aware. Aside from application situations, providing a separate interface from the
table structures can also be useful to other referencing database objects (such as views, functions,
and stored procedures, which are demonstrated in future chapters).

In the next part of the query, the Sales.SalesOrderHeader table was referenced in the FROM clause:

FROM Sales.SalesOrderHeader

Next, the OrderDate was qualified to return rows for the month of July, and the year 2001:

WHERE OrderDate BETWEEN '7/1/2001' AND '7/31/2001'

The result set was grouped by OrderDate:

GROUP BY OrderDate

Note that grouping can occur against one or more columns.
Had the GROUP BY clause been left out of the query, using an aggregate function in the SELECT

clause would have raised the following error:

Msg 8120, Level 16, State 1, Line 1
Column 'Sales.SalesOrderHeader.OrderDate' is invalid in the select list because
it is not contained in either an aggregate function or the GROUP BY clause.

This error is raised because any column that is not used in an aggregate function in the SELECT
list must be listed in the GROUP BY clause.

CHAPTER 1 ■ SELECT16

570Xch01.qxd 11/4/05 1:53 PM Page 16

Using GROUP BY ALL
By adding the ALL keyword after GROUP BY, all row values are used in the grouping, even if they were
not qualified to appear via the WHERE clause.

This example executes the same query as the previous recipe’s example, except it includes the
ALL clause:

SELECT OrderDate,
SUM(TotalDue) TotalDueByOrderDate

FROM Sales.SalesOrderHeader
WHERE OrderDate BETWEEN '7/1/2001' AND '7/31/2001'
GROUP BY ALL OrderDate

This returns the following (abridged) results:

OrderDate TotalDueByOrderDate
----------------------- ---------------------
2001-07-22 00:00:00.000 42256.626
2004-06-15 00:00:00.000 NULL
2002-01-07 00:00:00.000 NULL
more rows
2002-11-14 00:00:00.000 NULL
2002-08-12 00:00:00.000 NULL
Warning: Null value is eliminated by an aggregate or other SET operation.

(1124 row(s) affected)

How It Works
In the results returned by the GROUP BY ALL example, notice that TotalDueByOrderDate was NULL for
those order dates not included in the WHERE clause. This does not mean they have zero rows, but
instead, that data is not displayed for them.

This query also returned a warning along with the results:

Warning: Null value is eliminated by an aggregate or other SET operation.

This means the SUM aggregate encountered NULL values and didn’t include them in the total. For
the SUM aggregate function, this was okay, however NULL values in other aggregate functions can cause
undesired results. For example, the AVG function ignores NULL values but the COUNT function does not.
If your query uses both these functions, you may think that the NULL value included in COUNT helps
make up the AVG results—which it doesn’t.

Selectively Querying Grouped Data Using HAVING
The HAVING clause of the SELECT statement allows you to specify a search condition on a query using
GROUP BY and/or an aggregated value. The syntax is as follows:

SELECT select_list
[INTO new_table_name]
FROM table_list
[WHERE search_conditions]
[GROUP BY group_by_list]
[HAVING search_conditions]

CHAPTER 1 ■ SELECT 17

570Xch01.qxd 11/4/05 1:53 PM Page 17

The HAVING clause is used after the GROUP BY clause. The WHERE clause, in contrast, is used to qualify
the rows that are returned before the data is aggregated or grouped. HAVING qualifies the aggregated
data after the data has been grouped or aggregated.

This example queries two tables, Production.ScrapReason and Production.WorkOrder. The
Production.ScrapReason is a lookup table that contains manufacturing failure reasons, while the
Production.WorkOrder table contains the manufacturing work orders that control which products
are manufactured in the quantity and time period, in order to meet inventory and sales needs.

This example reports to management which “failure reasons” have occurred fifty or more
times:

SELECT s.Name,
COUNT(w.WorkOrderID) Cnt

FROM Production.ScrapReason s
INNER JOIN Production.WorkOrder w ON

s.ScrapReasonID = w.ScrapReasonID
GROUP BY s.Name
HAVING COUNT(*)>50

This query returns:

Name Cnt
-- -----------
Gouge in metal 54
Stress test failed 52
Thermoform temperature too low 63
Trim length too long 52
Wheel misaligned 51

(5 row(s) affected)

How It Works
In this recipe, the SELECT clause requested a count of WorkOrderIDs by failure name:

SELECT s.Name,
COUNT(w.WorkOrderID)

Two tables were joined by the ScrapReasonID column:

FROM Production.ScrapReason s
INNER JOIN Production.WorkOrder w ON

s.ScrapReasonID = w.ScrapReasonID

Since an aggregate function was used in the SELECT clause, the non-aggregated columns must
appear in the GROUP BY Clause:

GROUP BY s.Name

Lastly, using the HAVING query determines that, of the selected and grouped data, only those
rows in the result set with a count of fifty or higher will be returned:

HAVING COUNT(*)>50

SELECT Clause Techniques
The SELECT clause is primarily used to define which columns are returned in the result set, but its
functionality isn’t limited to just that. This next set of queries will detail a number of SELECT clause

CHAPTER 1 ■ SELECT18

570Xch01.qxd 11/4/05 1:53 PM Page 18

• Using the DISTINCT keyword to remove duplicate values

• Renaming columns using column aliases

• Concatenating string values into a single column

• Creating a SELECT statement that itself creates an executable Transact-SQL script

• Creating a comma-delimited array list of values

Using DISTINCT to Remove Duplicate Values
The default behavior of a SELECT statement is to use the ALL keyword (although because it is the
default, you’ll rarely see this being used in a query), meaning that duplicate rows will be retrieved and
displayed if they exist. Using the DISTINCT keyword instead of ALL allows you to only return unique
rows in your results.

This example shows you how to use the DISTINCT keyword to remove duplicate values from
a set of selected columns, so that only unique rows appear:

SELECT DISTINCT HireDate
FROM HumanResources.Employee

The results show all unique hire dates from the HumanResources.Employee table:

HireDate

1996-07-31 00:00:00.000
1997-02-26 00:00:00.000
1997-12-12 00:00:00.000
1998-01-05 00:00:00.000
more rows
2002-11-01 00:00:00.000
2003-04-15 00:00:00.000
2003-07-01 00:00:00.000

(164 row(s) affected)

How It Works
Use the DISTINCT keyword to return distinct values in the result set. In this recipe, DISTINCT was
used to return unique HireDate column values. Be sure to only use DISTINCT when actually needed
or necessary, as it can slow the query down on larger result sets.

Using DISTINCT in Aggregate Functions
You can also use DISTINCT for a column that is used within an aggregate function (aggregate func-
tions are reviewed in more detail in Chapter 8). You may wish to do this in order to perform
aggregations on only the unique values of a column.

For example, if you wanted to calculate the average product list price, you could use the following
query:

SELECT AVG(ListPrice)
FROM Production.Product

CHAPTER 1 ■ SELECT 19

570Xch01.qxd 11/4/05 1:53 PM Page 19

This returns:

438.6662

(1 row(s) affected)

But the previous query calculated the average list price across all products. What if some product
types are more numerous than others? What if you are only interested in the average price of unique
price points?

In this case you would write the query as:

SELECT AVG(DISTINCT ListPrice)
FROM Production.Product

This returns the unique set of price points first, and then averages them:

437.4042

(1 row(s) affected)

How It Works
DISTINCT can be used to return unique rows from a result set, as well as force unique column values
within an aggregate function. In this example, the DISTINCT keyword was put within the parentheses
of the aggregate function.

Using Column Aliases
For column computations or aggregate functions, you can use a column alias to explicitly name the
columns of your query output. You can also use column aliases to rename columns that already have
a name, which helps obscure the underlying column from the calling application (allowing you to swap
out underlying columns without changing the derived column name). You can designate a column
alias by using the AS keyword, or by simply following the column or expression with the column alias
name.

This example demonstrates producing column aliases using two different techniques:

SELECT Color AS 'Grouped Color',
AVG(DISTINCT ListPrice) AS 'Average Distinct List Price',
AVG(ListPrice) 'Average List Price'

FROM Production.Product
GROUP BY Color

This returns the following abridged results:

Grouped Color Average Distinct List Price Average List Price
--------------- --------------------------- ---------------------
Silver 726.2907 850.3053
Grey 125.00 125.00
...
Silver/Black 61.19 64.0185

(10 row(s) affected)

CHAPTER 1 ■ SELECT20

570Xch01.qxd 11/4/05 1:53 PM Page 20

How It Works
This example shows three examples of using column aliasing. The first example demonstrated how
to rename an existing column using the AS clause. The AS clause is used to change a column name in
the results, or add a name to a derived (calculated or aggregated) column:

SELECT Color AS 'Grouped Color',

The second example demonstrated how to add a column name to an aggregate function:

AVG(DISTINCT ListPrice) AS 'Average Distinct List Price',

The third example demonstrated how to add a column alias without using the AS keyword (it
can simply be omitted):

AVG(ListPrice) 'Average List Price'

Using SELECT to Create a Script
As a DBA or developer, you sometimes need a Transact-SQL script to run against several objects
within a database or against several databases across a SQL Server instance. Or perhaps you have
a very large table with several columns, which you need to validate in search conditions, but you
don’t want to have to hand type each column.

This next recipe offers a time-saving technique, using SELECT to write out Transact-SQL for you.
You can adapt this recipe to all sorts of purposes.

In this example, assume that you wish to check for rows in a table where all values are NULL.
There are many columns in the table, and you want to avoid hand-coding them. Instead, you can
create a script to do the work for you:

SELECT column_name + ' IS NULL AND '
FROM INFORMATION_SCHEMA.columns
WHERE table_name = 'Employee'
ORDER BY ORDINAL_POSITION

This returns code that you can integrate into a WHERE clause (after you remove the trailing AND at
the last WHERE condition):

EmployeeID IS NULL AND
NationalIDNumber IS NULL AND
ContactID IS NULL AND
LoginID IS NULL AND
ManagerID IS NULL AND
Title IS NULL AND
BirthDate IS NULL AND
MaritalStatus IS NULL AND
Gender IS NULL AND
HireDate IS NULL AND
SalariedFlag IS NULL AND
VacationHours IS NULL AND
SickLeaveHours IS NULL AND
CurrentFlag IS NULL AND
rowguid IS NULL AND
ModifiedDate IS NULL AND

(16 row(s) affected)

CHAPTER 1 ■ SELECT 21

570Xch01.qxd 11/4/05 1:53 PM Page 21

How It Works
The example used string concatenation and the INFORMATION_SCHEMA.columns system view to gener-
ate a list of columns from the Employee table. For each column, IS NULL AND was concatenated to its
name. The results can then be copied to the WHERE clause of a query, allowing you to query for rows
where each column has a NULL value.

This general technique of concatenating SQL commands to various system data columns can
be used in numerous ways, including for creating scripts against tables or other database objects.
Do be careful when scripting an action against multiple objects or databases—make sure that the
change is what you intended, and that you are fully aware of the script’s outcome.

Performing String Concatenation
String concatenation is performed by using the + operator to join two expressions, as this example
demonstrates:

SELECT 'The ' +
p.name +
' is only ' +
CONVERT(varchar(25),p.ListPrice) +
'!'

FROM Production.Product p
WHERE p.ListPrice between 100 AND 120
ORDER BY p.ListPrice

This returns:

--
The ML Bottom Bracket is only 101.24!
The ML Headset is only 102.29!
The Rear Brakes is only 106.50!
The Front Brakes is only 106.50!
The LL Road Rear Wheel is only 112.57!
The Hitch Rack - 4-Bike is only 120.00!

(6 row(s) affected)

How It Works
When used with character data types, the + operator is used to concatenate expressions together. In
this example, literal values were concatenated to columns from the Production.Product table. Each
row formed a sentence celebrating the low price of each row’s product.

String concatenation is often used when generating end-user reports (such as displaying the
First and Last Name in a single column), or when you need to combine multiple data columns into
a single column (as you’ll see in the next recipe).

Creating a Comma Delimited List Using SELECT
This next recipe demonstrates how to create a comma delimited list using a SELECT query. You can
use this recipe in several ways. For example, you could integrate it into a user-defined function that
returns a comma delimited list of the regions that a salesperson sells to into a single column (see
Chapter 11).

This example demonstrates returning one-to-many table data into a single presentable string:

CHAPTER 1 ■ SELECT22

570Xch01.qxd 11/4/05 1:53 PM Page 22

DECLARE @Shifts varchar(20)
SET @Shifts = ''

SELECT @Shifts = @Shifts + s.Name + ','
FROM HumanResources.Shift s
ORDER BY s.EndTime

SELECT @Shifts

This query returns:

Night,Day,Evening,

(1 row(s) affected)

How It Works
In the first part of this script, a local variable was created to hold a comma delimited list:

DECLARE @Shifts varchar(20)

After a variable is declared, but before it is set, it is given a NULL value. Because we cannot con-
catenate NULL values with strings, the variable should be set to an initial blank value instead, as was
done in the recipe:

SET @Shifts = ''

In the query itself, a list of shifts are gathered from the HumanResources.Shift table, ordered by
EndTime. At the core of this example, you see that the local variable is assigned to the value of itself
concatenated to the shift name, and then concatenated to a comma. The query loops through each
value ordered by EndTime, appending each one to the local variable:

SELECT @Shifts = @Shifts + s.Name + ','
FROM HumanResources.Shift s
ORDER BY s.EndTime

SELECT is used to display the final contents of the local variable:

SELECT @Shifts

Using the INTO Clause
The INTO clause of the SELECT statement allows you to create a new table based on the columns and
rows of the query results. Ideally you should be creating your tables using the CREATE TABLE command:
however using INTO provides a quick-and-dirty method of creating a new table without having to
explicitly define the column names and data types.

The INTO clause allows you to create a table in a SELECT statement based on the columns and
rows the query returns. The syntax for INTO is as follows:

SELECT select_list
[INTO new_table_name]
FROM table_list

The INTO clause comes after the SELECT clause but before the FROM clause, as the next recipe will
demonstrate.

In this first example, a new table is created based on the results of a query:

CHAPTER 1 ■ SELECT 23

570Xch01.qxd 11/4/05 1:53 PM Page 23

SELECT CustomerID,
Name,
SalesPersonID,
Demographics

INTO Store_Archive
FROM Sales.Store

The query returns the number of rows inserted into the new Store_Archive table, but does not
return query results:

(701 row(s) affected)

In the second example, a table is created without inserting rows into it:

SELECT CustomerID,
Name,
SalesPersonID,
Demographics

INTO Store_Archive
FROM Sales.Store
WHERE 1=0

This returns the number of rows inserted into your new Store_Archive table (which in this case
is zero):

(0 row(s) affected)

How It Works
This recipe’s example looked like a regular SELECT query, only between the SELECT and FROM clauses
the following instructions were inserted:

INTO Store_Archive

The INTO clause is followed by the new table name (which must not already exist). This can be a per-
manent, temporary, or global temporary table (See Chapter 4 for more information). The columns
you select determine the structure of the table.

This is a great technique for quickly “copying” the base table structure and data of an existing
table. Using INTO, you are not required to pre-define the new table’s structure explicitly (for example,
you do not need to issue a CREATE TABLE statement).

■Caution Although the structure of the selected columns is reproduced, the constraints, indexes, and other
separate objects dependent on the source table are not copied.

In the second example, a new table was created without also populating it with rows. This was
achieved by using a WHERE clause condition that always evaluates to FALSE:

WHERE 1=0

Since the number 1 will never equal the number 0, no rows will evaluate to TRUE, and therefore no
rows will be inserted into the new table. However, the new table is created anyway.

CHAPTER 1 ■ SELECT24

570Xch01.qxd 11/4/05 1:53 PM Page 24

SubQueries
A subquery is a SELECT query that is nested within another SELECT, INSERT, UPDATE, or DELETE state-
ment. A subquery can also be nested inside another subquery. Subqueries can often be re-written
into regular JOINs, however sometimes an existence subquery (demonstrated in this recipe) can
perform better than equivalent non-subquery methods.

A correlated subquery is a subquery whose results depend on the values of the outer query.

Using Subqueries to Check for the Existence of Matches
This first example demonstrates checking for the existence of matching rows within a correlated
subquery:

SELECT DISTINCT s.PurchaseOrderNumber
FROM Sales.SalesOrderHeader s
WHERE EXISTS (SELECT SalesOrderID

FROM Sales.SalesOrderDetail
WHERE UnitPrice BETWEEN 1000 AND 2000 AND

SalesOrderID = s.SalesOrderID)

This returns the following abridged results:

PurchaseOrderNumber

PO8410140860
PO12325137381
PO1160166903
PO1073122178
...
PO15486173227
PO14268145224

(1989 row(s) affected)

This second example demonstrates a regular non-correlated subquery:

SELECT SalesPersonID,
SalesQuota CurrentSalesQuota

FROM Sales.SalesPerson
WHERE SalesQuota IN

(SELECT MAX(SalesQuota)
FROM Sales.SalesPerson)

This returns the three salespeople who had the maximum sales quota of 300,000:

SalesPersonID CurrentSalesQuota
------------- ---------------------
275 300000.00
279 300000.00
287 300000.00
Warning: Null value is eliminated by an aggregate or other SET operation.

(3 row(s) affected)

CHAPTER 1 ■ SELECT 25

570Xch01.qxd 11/4/05 1:53 PM Page 25

How It Works
The critical piece of the first example was the subquery in the WHERE clause, which checked for the
existence of SalesOrderIDs that had products with a UnitPrice between 1000 and 2000. A JOIN was
used in the WHERE clause of the subquery, between the outer query and the inner query, by stating
SalesOrderID = s.SalesOrderID. The subquery used the SalesOrderID from each returned row in the
outer query.

In the second example, there is no WHERE clause in the subquery used to join to the outer table.
It is not a correlated subquery. Instead, a value is retrieved from the query to evaluate against in the
IN operator of the WHERE clause.

Querying from More Than One Data Source
The previous recipes retrieved data from a single table. Most normalized databases have more than
one table in them, so more often than not you’ll need to retrieve data from multiple tables using
a single query. The JOIN keyword allows you to combine data from multiple tables and/or views into
a single result set. It joins a column or columns from one table to another table, evaluating whether
there is a match.

With the JOIN keyword, you join two tables based on a join condition. Most often you’ll see
a join condition testing the equality of one column in one table compared to another column in the
second table (joined columns do not need to have the same name, only compatible data types).

■Tip As a query performance best practice, try to avoid having to convert data types of the columns in your join
clause (using CONVERT or CAST, for example). Opt instead for modifying the underlying schema to match data types
(or convert the data beforehand in a separate table, temp table, table variable, or Common Table Expression (CTE)).

SQL Server 2005 join types fall into three categories: inner, outer, and cross. Inner joins
use the INNER JOIN keywords. INNER JOIN operates by matching common values between two tables.
Only table rows satisfying the join conditions are used to construct the result set. INNER JOINs are the
default JOIN type, so if you wish, you can use just the JOIN keyword in your INNER JOIN operations.

Outer joins have three different join types: LEFT OUTER, RIGHT OUTER, and FULL OUTER joins. LEFT
OUTER and RIGHT OUTER JOINs, like INNER JOINs, return rows that match the conditions of the join
condition. Unlike INNER JOINs, LEFT OUTER JOINs return unmatched rows from the first table of the
join pair, and RIGHT OUTER JOINs return unmatched rows from the second table of the join pair. The
FULL OUTER JOIN clause returns unmatched rows on both the left and right tables.

A lesser used join type is CROSS JOIN. A CROSS JOIN returns a Cartesian product when a WHERE
clause isn’t used. A Cartesian product produces a result set based on every possible combination of
rows from the left table, multiplied against the rows in the right table. For example, if the Stores
table has 7 rows, and the Sales table has 22 rows, you would receive 154 rows (or 7 times 22) in the
query results (each possible combination of row displayed).

The next few recipes will demonstrate the different join types.

Using INNER Joins
This inner join joins three tables in order to return discount information on a specific product:

SELECT p.Name,
s.DiscountPct

FROM Sales.SpecialOffer s
INNER JOIN Sales.SpecialOfferProduct o ON

CHAPTER 1 ■ SELECT26

570Xch01.qxd 11/4/05 1:53 PM Page 26

s.SpecialOfferID = o.SpecialOfferID
INNER JOIN Production.Product p ON

o.ProductID = p.ProductID
WHERE p.Name = 'All-Purpose Bike Stand'

The results of this query:

Name DiscountPct
-- ---------------------
All-Purpose Bike Stand 0.00

(1 row(s) affected)

How It Works
A join starts after the first table in the FROM clause. In this example, three tables were joined together:
Sales.SpecialOffer, Sales.SpecialOfferProduct, and Production.Product.

Sales.SpecialOffer, the first table referenced in the FROM clause, contains a lookup of sales
discounts:

FROM Sales.SpecialOffer s

Notice the letter “s” which trails the table name. This is a table alias. Once you begin using
more than one table in a query, it is important to understand the data source of the individual
columns. If the same column names exist in two different tables, you could get an error from the
SQL compiler asking you to clarify which column you really wanted to return.

As a best practice, it is a good idea to use aliases whenever column names are specified in
a query. For each of the referenced tables, a character was used to symbolize the table name—sav-
ing you the trouble of spelling it out each time. This query used a single character as a table alias,
but you can use any valid identifier. A table alias, aside from allowing you to shorten or clarify the
original table name, allows you to swap out the base table name if you ever have to replace it with
a different table or view, or if you need to self-join the tables. Table aliases are optional, but recom-
mended when your query has more than one table. A table alias follows the table name in the
statement FROM clause.

But back to the example... The INNER JOIN keywords followed the first table reference, then the
table being joined to it, followed by its alias:

INNER JOIN Sales.SpecialOfferProduct o

After that, the ON keyword prefaces the column joins:

ON

This particular INNER JOIN is based on the equality of two columns—one from the first table
and another from the second:

s.SpecialOfferID = o.SpecialOfferID

Next, the Production.Product table is INNER JOIN'd too:

INNER JOIN Production.Product p ON
o.ProductID = p.ProductID

Lastly, a WHERE clause is used to filter rows returned:

WHERE Name = 'All-Purpose Bike Stand'

CHAPTER 1 ■ SELECT 27

570Xch01.qxd 11/4/05 1:53 PM Page 27

Using OUTER Joins
This recipe compares the results of an INNER JOIN versus a LEFT OUTER JOIN. This first query dis-
plays the tax rates states and provinces using the Person.StateProvince table and the
Sales.SalesTaxRate table. The following query uses an INNER JOIN:

SELECT s.CountryRegionCode,
s.StateProvinceCode,
t.TaxType,
t.TaxRate

FROM Person.StateProvince s
INNER JOIN Sales.SalesTaxRate t ON

s.StateProvinceID = t.StateProvinceID

This returns the following (abridged) results:

CountryRegionCode StateProvinceCode TaxType TaxRate
----------------- ----------------- ------- ---------------------
CA AB 1 14.00
CA ON 1 14.25
CA QC 1 14.25
CA AB 2 7.00
more rows

But with the INNER JOIN, you are only seeing those records from Person.StateProvince that
have rows in the Sales.SalesTaxRate table. In order to see all rows from Person.StateProvince,
whether or not they have associated tax rates, LEFT OUTER JOIN is used:

SELECT s.CountryRegionCode,
s.StateProvinceCode,
t.TaxType,
t.TaxRate

FROM Person.StateProvince s
LEFT OUTER JOIN Sales.SalesTaxRate t ON

s.StateProvinceID = t.StateProvinceID

This returns the following (abridged) results:

CountryRegionCode StateProvinceCode TaxType TaxRate
----------------- ----------------- ------- ---------------------
CA AB 1 14.00
CA AB 2 7.00
US AK NULL NULL
US AL NULL NULL
more rows

How It Works
This recipe’s example demonstrated an INNER JOIN query versus a LEFT OUTER JOIN query. The LEFT
OUTER JOIN query returned unmatched rows from the first table of the join pair. Notice how this
query returned NULL values for those rows from Person.StateProvince that didn’t have associated
rows in the Sales.SalesTaxRate table.

CHAPTER 1 ■ SELECT28

570Xch01.qxd 11/4/05 1:53 PM Page 28

Using CROSS Joins
In this example, the Person.StateProvince and Sales.SalesTaxRate tables are CROSS JOIN’d:

SELECT s.CountryRegionCode,
s.StateProvinceCode,
t.TaxType,
t.TaxRate

FROM Person.StateProvince s
CROSS JOIN Sales.SalesTaxRate t

This returns the following (abridged) results:

CountryRegionCode StateProvinceCode TaxType TaxRate
----------------- ----------------- ------- ---------------------
FR 01 1 14.00
FR 01 1 14.25
FR 01 1 14.25
...
CA YT 3 19.60
CA YT 3 17.50

(5249 row(s) affected)

How It Works
A CROSS JOIN without a WHERE clause returns a Cartesian product. The results of this CROSS JOIN show
StateProvince and SalesTaxRate information that doesn’t logically go together. Since the Person.
StateProvince table had 181 rows, and the Sales.SalesTaxRate had 29 rows, the query returned
5249 rows.

Performing Self-Joins
Sometimes you may need to treat the same table as two separate tables. This may be because the
table contains nested hierarchies of data (for example, employees reporting to managers in the
Employees table), or perhaps you wish to reference the same table based on different time periods
(compare sales records from the year 1999 versus the year 2005). You can achieve this joining of
a table with itself through the use of table aliases.

In this example, a self-join is demonstrated by joining the Employee table’s ManagerID with the
Employee table’s EmployeeID:

SELECT e.EmployeeID,
e.Title,
m.Title AS ManagerTitle

FROM HumanResources.Employee e
LEFT OUTER JOIN HumanResources.Employee m ON

e.ManagerID = m.EmployeeID

This returns the following (abridged) results:

CHAPTER 1 ■ SELECT 29

570Xch01.qxd 11/4/05 1:53 PM Page 29

EmployeeID Title ManagerTitle
----------- ---
1 Production Technician - WC60 Production Supervisor - WC60
2 Marketing Assistant Marketing Manager
3 Engineering Manager Vice President of Engineering
4 Senior Tool Designer Engineering Manager
more rows
288 Pacific Sales Manager Vice President of Sales
289 Sales Representative European Sales Manager
290 Sales Representative Pacific Sales Manager

(290 row(s) affected)

How It Works
This example queried the HumanResources.Employee table, returning the EmployeeID of the employee,
the employee’s title, and the title of his or her manager. The HumanResource.Employee table has
a recursive foreign key column called ManagerID, which points to the manager’s EmployeeID , and
which is the key to another row in the same table. Managers and employees have their data stored
in the same table.

Almost all employees have a manager in this table, so using a recursive query, you can establish
a nested hierarchy of employees and their managers. There is only one employee that does not have
a manager, and that’s the Chief Executive Officer.

In the example, the EmployeeID and Title were both taken from the first table aliased with an e.
The third column was the title of the Manager, and that table was aliased with an m:

SELECT e.EmployeeID,
e.Title,
m.Title AS ManagerTitle

The two tables (really the same table, but represented twice using aliases) were joined by
EmployeeID to ManagerID using a LEFT OUTER JOIN, so that the Chief Executive Officer would be
returned too:

FROM HumanResources.Employee e
LEFT OUTER JOIN HumanResources.Employee m ON

e.ManagerID = m.EmployeeID

Although the same table was referenced twice in the FROM clause, by using a table alias, SQL
Server treats them as separate tables.

■Tip New to SQL Server 2005, Comment Table Expressions (CTEs) are also reviewed in this chapter, and provide
a more sophisticated method of handling recursive queries.

Using Derived Tables
Derived tables are SELECT statements that act as tables in the FROM clause. Derived tables can sometimes
provide better performance than using temporary tables (see Chapter 4 for more on temporary tables).

This example demonstrates how to use a derived table in the FROM clause of a SELECT statement:

SELECT DISTINCT s.PurchaseOrderNumber
FROM Sales.SalesOrderHeader s
INNER JOIN (SELECT SalesOrderID

FROM Sales.SalesOrderDetail
WHERE UnitPrice BETWEEN 1000 AND 2000) d ON

CHAPTER 1 ■ SELECT30

570Xch01.qxd 11/4/05 1:53 PM Page 30

This returns the following abridged results:

PurchaseOrderNumber

PO8410140860
PO12325137381
PO1160166903
PO1073122178
...
PO15486173227
PO14268145224

(1989 row(s) affected)

How It Works
This example’s query searches for the PurchaseOrderNumber from the Sales.SalesOrderHeader table
for any order containing products with a UnitPrice between 1000 and 2000.

The query joins a table to a derived table using INNER JOIN. The derived table query is encapsu-
lated in parentheses, and followed by a table alias. The derived table is a separate query in itself, and
doesn’t require the use of a temporary table to store the results. Thus, queries that use derived tables
can sometimes perform significantly better than temporary tables, as you eliminate the steps needed
for SQL Server to create and allocate the temporary table prior to use.

Combining Result Sets with UNION
The UNION operator is used to append the results of two or more SELECT statements into a single
result set. Each SELECT statement being merged must have the same number of columns, with the
same or compatible data types in the same order, as this example demonstrates:

SELECT SalesPersonID, GETDATE() QuotaDate, SalesQuota
FROM Sales.SalesPerson
WHERE SalesQuota > 0
UNION
SELECT SalesPersonID, QuotaDate, SalesQuota
FROM Sales.SalesPersonQuotaHistory
WHERE SalesQuota > 0
ORDER BY SalesPersonID DESC, QuotaDate DESC

This returns the following (abridged) results:

SalesPersonID QuotaDate SalesQuota
------------- ----------------------- ---------------------
290 2005-02-27 10:10:12.587 250000.00
290 2004-04-01 00:00:00.000 421000.00
290 2004-01-01 00:00:00.000 399000.00
289 2004-01-01 00:00:00.000 366000.00
289 2003-10-01 00:00:00.000 566000.00
...
268 2002-01-01 00:00:00.000 91000.00
268 2001-10-01 00:00:00.000 7000.00
268 2001-07-01 00:00:00.000 28000.00

(177 row(s) affected)

CHAPTER 1 ■ SELECT 31

570Xch01.qxd 11/4/05 1:53 PM Page 31

How It Works
This query appended two result sets into a single result set. The first result set returned the
SalesPersonID, the current date function (see Chapter 8 for more information on this) and the
SalesQuota. Since GETDATE() is a function, it doesn’t naturally return a column name—so a QuotaDate
column alias was used in its place:

SELECT SalesPersonID, GETDATE() QuotaDate, SalesQuota
FROM Sales.SalesPerson

The WHERE clause filtered data for those salespeople with a SalesQuota greater than zero:

WHERE SalesQuota > 0

The next part of the query was the UNION operator, which appended the distinct results with the
second query:

UNION

The second query pulled data from the Sales.SalesPersonQuotaHistory, which keeps history
for a salesperson’s sales quota as it changes through time:

SELECT SalesPersonID, QuotaDate, SalesQuota
FROM Sales.SalesPersonQuotaHistory
WHERE SalesQuota > 0

The ORDER BY clause sorted the result set by SalesPersonID and QuotaDate, both in descending
order. The ORDER BY clause, when needed, must appear at the bottom of the query and cannot
appear after queries prior to the final UNION'd query. The ORDER BY clause should also only refer to
column names from the first result set:

ORDER BY SalesPersonID DESC, QuotaDate DESC

Looking at the results again, for a single salesperson, you can see that the current QuotaDate of
‘2005-02-27’ is sorted at the top. This was the date retrieved by the GETDATE() function. The other
rows for SalesPersonID 290 are from the Sales.SalesPersonQuotaHistory table:

SalesPersonID QuotaDate SalesQuota
------------- ----------------------- ---------------------
290 2005-02-27 10:10:12.587 250000.00
290 2004-04-01 00:00:00.000 421000.00
290 2004-01-01 00:00:00.000 399000.00
290 2003-10-01 00:00:00.000 389000.00

Keep in mind that the default behavior of the UNION operator is to remove all duplicate rows,
and display column names based on the first result set. For large result sets, this can be a very costly
operation, so if you don’t need to de-duplicate the data, or if the data is naturally distinct, you can
add the ALL keyword to the UNION:

UNION ALL

With the ALL clause added, duplicate rows are NOT removed.

CHAPTER 1 ■ SELECT32

570Xch01.qxd 11/4/05 1:53 PM Page 32

Using APPLY to Invoke a Table-Valued Function for
Each Row
New to SQL Server 2005, APPLY is used to invoke a table-valued function for each row of an outer
query. A table-valued function returns a result set based on one or more parameters. Using APPLY,
the input of these parameters are the columns of the left referencing table. This is useful if the left
table contains columns and rows that must be evaluated by the table-valued function.

CROSS APPLY works like an INNER JOIN in that unmatched rows between the left table and the
table-valued function don’t appear in the result set. OUTER APPLY is like an OUTER JOIN, in that non-
matched rows are still returned in the result set with NULL values in the function results.

The next two recipes will demonstrate both CROSS and OUTER APPLY.

■Note This next example covers both the FROM and JOIN examples, and user-defined table-valued functions
functionality. Table-valued functions are reviewed in more detail in Chapter 11.

Using CROSS APPLY
In this example, a table-valued function is created that returns work order routing information
based on the WorkOrderID passed to it:

CREATE FUNCTION dbo.fn_WorkOrderRouting
(@WorkOrderID int) RETURNS TABLE

AS
RETURN
SELECT WorkOrderID,

ProductID,
OperationSequence,
LocationID

FROM Production.WorkOrderRouting
WHERE WorkOrderID = @WorkOrderID

GO

Next, the WorkOrderID is passed from the Production.WorkOrder table to the new function:

SELECT w.WorkOrderID,
w.OrderQty,
r.ProductID,
r.OperationSequence

FROM Production.WorkOrder w
CROSS APPLY dbo.fn_WorkOrderRouting
(w.WorkOrderID) AS r

ORDER BY w.WorkOrderID,
w.OrderQty,
r.ProductID

This returns the following (abridged) results:

CHAPTER 1 ■ SELECT 33

570Xch01.qxd 11/4/05 1:53 PM Page 33

WorkOrderID OrderQty ProductID OperationSequence
----------- ----------- ----------- -----------------
13 4 747 1
13 4 747 2
13 4 747 3
13 4 747 4
13 4 747 6
13 4 747 7
14 2 748 1
14 2 748 2
...
72585 6 802 1
72585 6 802 6
72586 1 803 1
72586 1 803 6
72587 19 804 1
72587 19 804 6

How It Works
The first part of this example was the creation of a table-valued function. The function accepts a single
parameter, @WorkOrderID, and when executed, returns the WorkOrderID, ProductID, OperationSequence,
and LocationID from the Production.WorkOrderRouting table for the specified WorkOrderID.

The next query in the example returned the WorkOrderID and OrderQty from the
Production.WorkOrder table. In addition to this, two columns from the table-valued function were
selected:

SELECT w.WorkOrderID,
w.OrderQty,
r.ProductID,
r.OperationSequence

The heart of this example comes next. Notice that in the FROM clause, the Production.WorkOrder
table is joined to the new table-valued function using CROSS APPLY, only unlike a JOIN clause, there
isn’t an ON followed by join conditions. Instead, in the parentheses after the function name, the
w.WorkOrderID is passed to the table-valued function from the left Production.WorkOrder table:

FROM Production.WorkOrder w
CROSS APPLY dbo.fn_WorkOrderRouting
(w.WorkOrderID) AS r

The function was aliased like a regular table, with the letter “r.”
Lastly, the results were sorted:

ORDER BY w.WorkOrderID,
w.OrderQty,
r.ProductID

In the results for WorkOrderID 13, each associated WorkOrderRouting row was returned next to
the calling tables WorkOrderID and OrderQty:

CHAPTER 1 ■ SELECT34

570Xch01.qxd 11/4/05 1:53 PM Page 34

WorkOrderID OrderQty ProductID OperationSequence
----------- ----------- ----------- -----------------
13 4 747 1
13 4 747 2
13 4 747 3
13 4 747 4
13 4 747 6
13 4 747 7

Each row of the WorkOrder table was duplicated for each row returned from fn_WorkOrderRouting—
all were based on the WorkOrderID.

Using OUTER APPLY
In order to demonstrate OUTER APPLY, a new row is inserted into Production.WorkOrder:

INSERT INTO [AdventureWorks].[Production].[WorkOrder]
([ProductID]
,[OrderQty]
,[ScrappedQty]
,[StartDate]
,[EndDate]
,[DueDate]
,[ScrapReasonID]
,[ModifiedDate])

VALUES
(1,
1,
1,
GETDATE(),
GETDATE(),
GETDATE(),
1,
GETDATE())

Because this is a new row, and because Production.WorkOrder has an IDENTITY column for the
WorkOrderID, the new row will have the maximum WorkOrderID in the table. Also, this new row will
not have an associated value in the Production.WorkOrderRouting table, because it was just added.

Next, a CROSS APPLY query is executed, this time qualifying it to only return data for the newly
inserted row:

SELECT w.WorkOrderID,
w.OrderQty,
r.ProductID,
r.OperationSequence

FROM Production.WorkOrder AS w
CROSS APPLY dbo.fn_WorkOrderRouting
(w.WorkOrderID) AS r

WHERE w.WorkOrderID IN
(SELECT MAX(WorkOrderID)
FROM Production.WorkOrder)

This returns nothing, because the left table’s new row is unmatched:

CHAPTER 1 ■ SELECT 35

570Xch01.qxd 11/4/05 1:53 PM Page 35

WorkOrderID OrderQty ProductID OperationSequence
----------- ----------- ----------- -----------------

(0 row(s) affected)

Now an OUTER APPLY is tried instead, which then returns the row from WorkOrder in spite of
there being no associated value in the table-valued function:

SELECT w.WorkOrderID,
w.OrderQty,
r.ProductID,
r.OperationSequence

FROM Production.WorkOrder AS w
OUTER APPLY dbo.fn_WorkOrderRouting
(w.WorkOrderID) AS r

WHERE w.WorkOrderID IN
(SELECT MAX(WorkOrderID)
FROM Production.WorkOrder)

This returns:

WorkOrderID OrderQty ProductID OperationSequence
----------- ----------- ----------- -----------------
72592 1 NULL NULL

(1 row(s) affected)

How It Works
SQL Sever 2005 has increased the expressiveness of the Transact-SQL language with CROSS and OUTER
APPLY, providing a new method for applying lookups against columns, using a table-valued function.

CROSS APPLY was demonstrated against a row without a match in the table-valued function
results. Since CROSS APPLY works like an INNER JOIN, no rows were returned. In the second query of
this example, OUTER APPLY was used instead, this time returning unmatched NULL rows from the
table-valued function, similar to an OUTER JOIN.

Data Source Advanced Techniques
This next set of recipes shows you a few advanced techniques for sampling, manipulating, and com-
paring data sources (a data source being any valid data source reference in a FROM clause), including:

• Returning a sampling of rows using TABLESAMPLE

• Using PIVOT to convert values into columns, and using an aggregation to group the data by
the new columns

• Using UNPIVOT to normalize repeating column groups

• Using INTERSECT and EXCEPT operands to return distinct rows that only exist in either the left
query (using EXCEPT), or only distinct rows that exist in both the left and right queries (using
INTERSECT)

These recipes all happen to be new features introduced in SQL Server 2005.

CHAPTER 1 ■ SELECT36

570Xch01.qxd 11/4/05 1:53 PM Page 36

Using the TABLESAMPLE to Return Random Rows
Introduced in SQL Server 2005, TABLESAMPLE allows you to extract a sampling of rows from a table in
the FROM clause. This sampling can be based on a percentage of number of rows. You can use TABLESAMPLE
when only a sampling of rows is necessary for the application instead of a full result set.

This example demonstrates a query that returns a percentage of random rows from a specific
data source using TABLESAMPLE:

SELECT FirstName,LastName
FROM Person.Contact TABLESAMPLE SYSTEM (1 PERCENT)

This returns the following (abridged) results:

FirstName LastName
-- ---------------------------------
Pat Coleman
Takiko Collins
John Colon
Scott Colvin
more rows
Gerald Lopez
Sydney Johnson
Gerald Martinez

(216 row(s) affected)

Executing it again returns a new set of (abridged) results:

FirstName LastName
-- ---------------------------------
Reinout Hillmann
Mike Hines
Matthew Hink
Nancy Hirota
more rows
Jason Ross
Jake Zhang
Jason Coleman

(291 row(s) affected)

How It Works
TABLESAMPLE works by extracting a sample of rows from the query result set. In this example, 1 per-
cent of rows were sampled from the Person.Contact table. However don’t let the “percent” fool you.
That percentage is the percentage of the table’s data pages. Once the sample pages are selected, all
rows for the selected pages are returned. Since the fill-state of pages can vary, the number of rows
returned will also vary—you’ll notice that the first time the query is executed in this example there
were 216 rows, and the second time there were 291 rows.

If you designate the number of rows, this is actually converted by SQL Server into a percentage,
and then the same method used by SQL Server to identify the percentage of data pages is used.

CHAPTER 1 ■ SELECT 37

570Xch01.qxd 11/4/05 1:53 PM Page 37

Using PIVOT to Convert Single Column Values into Multiple
Columns and Aggregate Data
Introduced in SQL Server 2005, the new PIVOT operator allows you to create cross-tab queries that
convert values into columns, using an aggregation to group the data by the new columns.

PIVOT uses the following syntax:

FROM table_source
PIVOT (aggregate_function (value_column)

FOR pivot_column
IN (<column_list>)

) table_alias

The arguments of PIVOT are described in the Table 1-3.

Table 1-3. PIVOT arguments

Argument Description

table_source The table where the data will be pivoted.

aggregate_function

(value_column) The aggregate function that will be used against the specified column.

pivot_column The column that will be used to create the column headers.

column_list The values to pivot from the pivot column.

table_alias The table alias of the pivoted result set.

This next example shows you how to PIVOT and aggregate data similar to Microsoft Excel
functionality—such as shifting values in a single column into multiple columns, with aggregated
data shown in the results.

The first part of the example displays the data pre-pivoted. The query results show employee
shifts, as well as the departments that they are in:

SELECT s.Name ShiftName,
h.EmployeeID,
d.Name DepartmentName

FROM HumanResources.EmployeeDepartmentHistory h
INNER JOIN HumanResources.Department d ON

h.DepartmentID = d.DepartmentID
INNER JOIN HumanResources.Shift s ON

h.ShiftID = s.ShiftID
WHERE EndDate IS NULL AND

d.Name IN ('Production', 'Engineering', 'Marketing')
ORDER BY ShiftName

Notice that the varying departments are all listed in a single column:

CHAPTER 1 ■ SELECT38

570Xch01.qxd 11/4/05 1:53 PM Page 38

ShiftName EmployeeID DepartmentName
-- ----------- ---------------------
Day 3 Engineering
Day 9 Engineering
Day 11 Engineering
Day 12 Engineering
Day 267 Engineering
Day 270 Engineering
...
Night 234 Production
Night 245 Production
Night 262 Production
Night 252 Production

(194 row(s) affected)

The next query moves the department values into columns, along with a count of employees
by shift:

SELECT ShiftName,
Production,
Engineering,
Marketing

FROM
(SELECT s.Name ShiftName,

h.EmployeeID,
d.Name DepartmentName

FROM HumanResources.EmployeeDepartmentHistory h
INNER JOIN HumanResources.Department d ON

h.DepartmentID = d.DepartmentID
INNER JOIN HumanResources.Shift s ON

h.ShiftID = s.ShiftID
WHERE EndDate IS NULL AND

d.Name IN ('Production', 'Engineering', 'Marketing')) AS a
PIVOT
(
COUNT(EmployeeID)
FOR DepartmentName IN ([Production], [Engineering], [Marketing]))
AS b
ORDER BY ShiftName

This returns:

ShiftName Production Engineering Marketing
-- ----------- ----------- ---------
Day 79 6 9
Evening 54 0 0
Night 46 0 0

(3 row(s) affected)

How It Works
The result of the PIVOT query returned employee counts by shift and department. The query began
by naming the fields to return:

CHAPTER 1 ■ SELECT 39

570Xch01.qxd 11/4/05 1:53 PM Page 39

SELECT ShiftName,
Production,
Engineering,
Marketing

Notice that these fields were actually the converted rows, but turned into column names.
The FROM clause referenced the subquery (the query used at the beginning of this example. The

subquery was aliased with an arbitrary name of “a”:

FROM
(SELECT s.Name ShiftName,

h.EmployeeID,
d.Name DepartmentName

FROM HumanResources.EmployeeDepartmentHistory h
INNER JOIN HumanResources.Department d ON

h.DepartmentID = d.DepartmentID
INNER JOIN HumanResources.Shift s ON

h.ShiftID = s.ShiftID
WHERE EndDate IS NULL AND

d.Name IN ('Production', 'Engineering', 'Marketing')) AS a

Inside the parentheses, the query designated which columns would be aggregated (and how).
In this case, the number of employees would be counted:

PIVOT
(COUNT(EmployeeID)

After the aggregation section, the FOR statement determined which row values would be converted
into columns. Unlike regular IN clauses, single quotes aren’t used around each string character,
instead using square brackets. DepartmentName was the data column where values are converted into
pivoted columns:

FOR DepartmentName IN ([Production], [Engineering], [Marketing]))

■Note The list of column names cannot already exist in the query results being pivoted.

Lastly, a closed parenthesis closed off the PIVOT operation. The PIVOT operation was then
aliased like a table with an arbitrary name (in this case “b”):

AS b

The results were then ordered by ShiftName:

ORDER BY ShiftName

The results took the three columns fixed in the FOR part of the PIVOT operation and aggregated
counts of employees by ShiftName.

Normalizing Data with UNPIVOT
The UNPIVOT command does almost the opposite of PIVOT by changing columns into rows. It also
uses the same syntax as PIVOT, only UNPIVOT is designated instead.

This example demonstrates how UNPIVOT can be used to remove column-repeating groups often
seen in denormalized tables. For the first part of this example, a denormalized table is created with
repeating, incrementing phone number columns:

CHAPTER 1 ■ SELECT40

570Xch01.qxd 11/4/05 1:53 PM Page 40

CREATE TABLE dbo.Contact
(EmployeeID int NOT NULL,
PhoneNumber1 bigint,
PhoneNumber2 bigint,
PhoneNumber3 bigint)

GO

INSERT dbo.Contact
(EmployeeID, PhoneNumber1, PhoneNumber2, PhoneNumber3)
VALUES(1, 2718353881, 3385531980, 5324571342)

INSERT dbo.Contact
(EmployeeID, PhoneNumber1, PhoneNumber2, PhoneNumber3)
VALUES(2, 6007163571, 6875099415, 7756620787)

INSERT dbo.Contact
(EmployeeID, PhoneNumber1, PhoneNumber2, PhoneNumber3)
VALUES(3, 9439250939, NULL, NULL)

Now using UNPIVOT, the repeating phone numbers are converted into a more normalized form
(re-using a single PhoneValue field instead of repeating the phone column multiple times):

SELECT EmployeeID,
PhoneType,
PhoneValue

FROM
(SELECT EmployeeID, PhoneNumber1, PhoneNumber2, PhoneNumber3
FROM dbo.Contact) c
UNPIVOT

(PhoneValue FOR PhoneType IN ([PhoneNumber1], [PhoneNumber2], [PhoneNumber3])
) AS p

This returns:

EmployeeID PhoneType PhoneValue
----------- ---------------- ----------
1 PhoneNumber1 2718353881
1 PhoneNumber2 3385531980
1 PhoneNumber3 5324571342
2 PhoneNumber1 6007163571
2 PhoneNumber2 6875099415
2 PhoneNumber3 7756620787
3 PhoneNumber1 9439250939

(7 row(s) affected)

How It Works
This UNPIVOT example began by selecting three columns. The EmployeeID came from the subquery.
The other two columns, PhoneType and PhoneValue—were defined later on in the UNPIVOT statement:

SELECT EmployeeID,
PhoneType,
PhoneValue

Next, the FROM clause referenced a subquery. The subquery selected all four columns from the
contact table. The table was aliased with the letter “c” (table alias naming was arbitrary however):

CHAPTER 1 ■ SELECT 41

570Xch01.qxd 11/4/05 1:53 PM Page 41

FROM
(SELECT EmployeeID, PhoneNumber1, PhoneNumber2, PhoneNumber3
FROM dbo.Contact) c

A new column called PhoneValue (referenced in the SELECT) holds the individual phone num-
bers across the three denormalized phone columns:

UNPIVOT
(PhoneValue FOR PhoneType IN ([PhoneNumber1], [PhoneNumber2], [PhoneNumber3])

FOR references the name of the pivot column, PhoneType, which holds the column names of the
denormalized table. The IN clause following PhoneType lists the columns from the original table to
be narrowed into a single column.

Lastly, a closing parenthesis is used, then alias it with an arbitrary name, in this case “p”:

) AS p

This query returned the phone data merged into two columns, one to describe the phone type,
and another to hold the actual phone numbers. Also notice that there are seven rows, instead of
nine. This is because for EmployeeID “3”, only non-NULL values were returned. UNPIVOT does not
process NULL values from the pivoted result set.

Returning Distinct or Matching Rows Using EXCEPT and
INTERSECT
Introduced in SQL Server 2005, the INTERSECT and EXCEPT operands allow you to return distinct rows
that only exist in either the left query (using EXCEPT), or only distinct rows that exist in both the left
and right queries (using INTERSECT).

INTERSECT and EXCEPT are useful in dataset comparison scenarios; for example, if you need to
compare rows between test and production tables, you can use EXCEPT to easily identify and popu-
late rows that existed in one table and not the other. These operands are also useful for data recovery,
because you could restore a database from a period prior to a data loss, compare data with the
current production table, and then recover the deleted rows accordingly.

For this example, demonstration tables are created which are partially populated from the
Production.Product table:

-- First two new tables based on ProductionProduct will be
-- created, in order to demonstrate EXCEPT and INTERSECT.
-- See Chapter 8 for more on ROW_NUMBER

-- Create TableA
SELECT prod.ProductID,

prod.Name
INTO dbo.TableA
FROM
(SELECT ProductID,

Name,
ROW_NUMBER() OVER (ORDER BY ProductID) RowNum

FROM Production.Product) prod
WHERE RowNum BETWEEN 1 and 20

-- Create TableB
SELECT prod.ProductID,

prod.Name
INTO dbo.TableB

CHAPTER 1 ■ SELECT42

570Xch01.qxd 11/4/05 1:53 PM Page 42

FROM
(SELECT ProductID,

Name,
ROW_NUMBER() OVER (ORDER BY ProductID) RowNum

FROM Production.Product) prod
WHERE RowNum BETWEEN 10 and 29

This returns:

(20 row(s) affected)

(20 row(s) affected)

Now the EXCEPT operator will be used to determine which rows exist only in the left table of the
query, TableA, and not in TableB:

SELECT ProductID,
Name

FROM TableA
EXCEPT
SELECT ProductID,

Name
FROM TableB

This returns:

ProductID Name
----------- --
1 Adjustable Race
2 Bearing Ball
3 BB Ball Bearing
4 Headset Ball Bearings
316 Blade
317 LL Crankarm
318 ML Crankarm
319 HL Crankarm
320 Chainring Bolts

(9 row(s) affected)

To show distinct values from both result sets that match, use the INTERSECT operator:

SELECT ProductID,
Name

FROM TableA
INTERSECT
SELECT ProductID,

Name
FROM TableB

This returns:

CHAPTER 1 ■ SELECT 43

570Xch01.qxd 11/4/05 1:53 PM Page 43

ProductID Name
----------- --
321 Chainring Nut
322 Chainring
323 Crown Race
324 Chain Stays
325 Decal 1
326 Decal 2
327 Down Tube
328 Mountain End Caps
329 Road End Caps
330 Touring End Caps
331 Fork End

(11 row(s) affected)

How It Works
The example started off by creating two tables (using INTO) that contain overlapping sets of rows.
The first table, TableA, contained the first twenty rows (ordered by ProductID) from the Production.
Product table. The second table, TableB, also received another twenty rows, half of which overlapped
with TableA’s rows.

To determine which rows exist only in TableA, the EXCEPT operand was placed after the FROM
clause of the first query and before the second query:

SELECT ProductID,
Name

FROM TableA
EXCEPT
SELECT ProductID,

Name
FROM TableB

In order for EXCEPT to be used, both queries must have the same number of columns. Those
columns also need to have compatible data types (it’s not necessary that the column names from
each query match). The power of EXCEPT is that all columns are evaluated to determine if there is
a match, which is much more efficient than using INNER JOIN (which would require explicitly join-
ing the tables on each column in both data sources).

The results of the EXCEPT query show the first nine rows from TableA that were not also populated
into TableB.

In the second example, INTERSECT was used to shows rows that overlap between the two tables.
Like EXCEPT, INTERSECT is placed between the two queries:

SELECT ProductID,
Name

FROM TableA
INTERSECT
SELECT ProductID,

Name
FROM TableB

The query returned the eleven rows that overlapped between both tables. The same rules about
compatible data types and number of columns apply to INTERSECT as for EXCEPT.

CHAPTER 1 ■ SELECT44

570Xch01.qxd 11/4/05 1:53 PM Page 44

Summarizing Data
In these next three recipes, I will demonstrate summarizing data within the result set using the fol-
lowing operators:

• Use WITH CUBE to add summarizing total values to a result-set based on columns in the GROUP BY
clause.

• Use WITH ROLLUP with GROUP BY to add hierarchical data summaries based on the ordering of
columns in the GROUP BY clause.

I also demonstrate the GROUPING function. GROUPING is used to determine which of these sum-
marized total value rows are based on the summarized or original data set data.

Summarizing Data with WITH CUBE
WITH CUBE adds rows to your result-set, summarizing total values based on the columns in the GROUP BY
clause.

This example demonstrates a query that returns the total quantity of a product, grouped by the
shelf the product is kept on:

SELECT i.Shelf,
SUM(i.Quantity) Total

FROM Production.ProductInventory i
GROUP BY i.Shelf
WITH CUBE

This returns the following (abridged) results:

Shelf Total
---------- -----------
A 26833
B 12672
C 19868
D 17353
E 31979
F 21249
G 40195
H 20055
more rows
W 2908
Y 437
NULL 335974

How It Works
Because the query in this example groups by Shelf, a total will be displayed, displaying the total for
all shelves in the final row. With WITH CUBE added after the GROUP BY clause, an extra row with a NULL
Shelf value is added at the end of the results, along with the SUM total of all quantities in the Total
column.

If you added additional columns to the query, included in the GROUP BY clause, WITH CUBE would
attempt to aggregate values for each grouping combination. WITH CUBE is often used for reporting
purposes, providing an easy method of reporting totals by grouped column.

CHAPTER 1 ■ SELECT 45

570Xch01.qxd 11/4/05 1:53 PM Page 45

■Note In SQL Server 2000, you may have used COMPUTE BY to also provide similar aggregations for your query.
Microsoft has deprecated this functionality for SQL Server 2005 backward compatibility. Unlike WITH CUBE,
COMPUTE BY created an entirely new summarized result set after the original query results which were often diffi-
cult for calling applications to consume.

Using GROUPING with WITH CUBE
In the previous example, WITH CUBE was used to aggregate values for each grouping combination. Extra
NULL values were included in the result set for those rows that contained the WITH CUBE aggregate totals.

What if one of the values in the SHELF column was actually NULL? In order to distinguish between
a NULL that comes from the source data versus a NULL generated by a WITH CUBE aggregation, you can
use the GROUPING function. This function returns a “0” value when the data is derived from the data,
and a “1” when generated by a WITH CUBE.

This example modifies the previous recipe’s example to include GROUPING:

SELECT i.Shelf,
GROUPING(i.Shelf) Source,
SUM(i.Quantity) Total

FROM Production.ProductInventory i
GROUP BY i.Shelf
WITH CUBE

This returns the following (abridged) results:

Shelf Source Total
---------- ------ -----------
A 0 26833
B 0 12672
Y 0 437
NULL 1 335974

How It Works
In this recipe, GROUPING was used to discern a natural NULL versus a NULL generated by the WITH CUBE
function. You can also use the GROUPING function with the ROLLUP function, which is reviewed next.

Summarizing Data with WITH ROLLUP
WITH ROLLUP is used in conjunction with GROUP BY to add hierarchical data summaries based on the
ordering of columns in the GROUP BY clause.

This example retrieves the shelf, product name, and total quantity of the product:

SELECT i.Shelf,
p.Name,
SUM(i.Quantity) Total

FROM Production.ProductInventory i
INNER JOIN Production.Product p ON

i.ProductID = p.ProductID
GROUP BY i.Shelf, p.Name
WITH ROLLUP

This returns the following (abridged) results:

CHAPTER 1 ■ SELECT46

570Xch01.qxd 11/4/05 1:53 PM Page 46

Shelf Name Total
---------- -- -----------
A Adjustable Race 761
A BB Ball Bearing 909
A Bearing Ball 791
...
A NULL 26833
...
W Rear Derailleur Cage 121
W Reflector 121
W Touring Pedal 388
W NULL 2908
Y HL Spindle/Axle 228
Y LL Spindle/Axle 209
Y NULL 437
NULL NULL 335974

How It Works
The order you place the columns in the GROUP BY impacts how WITH ROLLUP aggregates the data. The
WITH ROLLUP in this query aggregated total quantity for each change in Shelf. Notice the row with
Shelf “A” and the NULL name; this holds the total quantity for Shelf A. Also notice that the final row
was the grand total of all product quantities.

Hints
SQL Server’s query optimization process is responsible for producing a query execution plan when
a SELECT query is executed. The goal of the query optimizer is to generate an efficient (but not always
the best) query execution plan. Under rare circumstances SQL Server may choose an inefficient plan
over a more efficient one. If this happens you would be advised to investigate the query execution
plan, table statistics, and other factors that are explored in more detail in Chapter 28.

After researching the query performance, you may decide to override the decision making
process of the SQL Server query optimizer by using hints. The next three recipes will demonstrate
three types of hints: query, table, and join.

Using Join Hints
A join “hint” is a misnomer in this case, as a join hint will force the query optimizer to join the tables
in the way you command. Join hints force the internal JOIN operation used to join two tables in a query.
Available join hints are described in Table 1-4.

Table 1-4. Join Hints

Hint Name Description

LOOP LOOP joins operate best when one table is small and the other is large, with indexes on
the joined columns.

HASH HASH joins are optimal for large unsorted tables.

MERGE MERGE joins are optimal for medium or large tables that are sorted on the joined column.

REMOTE REMOTE forces the join operation to occur at the site of the table referenced on the right
(the second table referenced in a JOIN clause). For performance benefits, the left table
should be the local table, and should have fewer rows than the remote right table.

CHAPTER 1 ■ SELECT 47

570Xch01.qxd 11/4/05 1:53 PM Page 47

Before showing how the join hint works, the example starts off with the original, non-hinted query:

-- (More on SHOWPLAN_TEXT in Chapter 28)
SET SHOWPLAN_TEXT ON
GO

SELECT p.Name,
r.ReviewerName,
r.Rating

FROM Production.Product p
INNER JOIN Production.ProductReview r ON

r.ProductID = p.ProductID
GO

SET SHOWPLAN_TEXT OFF
GO

This returns the following abridged results (SHOWPLAN_TEXT returns information about how the
query may be processed, but it doesn’t actually execute the query):

StmtText

--
|--Nested Loops(Inner Join, OUTER REFERENCES:([r].[ProductID]))

|--Clustered Index
Scan(OBJECT:([AdventureWorks].[Production].[ProductReview].[PK_ProductReview_
ProductReviewID] AS [r]))

|--Clustered Index
Seek(OBJECT:([AdventureWorks].[Production].[Product].[PK_Product_ProductID]
AS [p]), SEEK:([p].[ProductID]=[AdventureWorks].[Production].[ProductReview].
[ProductID] as [r].[ProductID]) ORDERED FORWARD)

The next example submits the same query, only this time using a join hint:

SET SHOWPLAN_TEXT ON
GO

SELECT p.Name,
r.ReviewerName,
r.Rating

FROM Production.Product p
INNER HASH JOIN Production.ProductReview r ON

r.ProductID = p.ProductID
GO

SET SHOWPLAN_TEXT OFF
GO

This returns the following abridged results:

StmtText
--
|--Hash Match(Inner Join, HASH:([p].[ProductID])=([r].[ProductID]))

|--Index Scan(OBJECT:([AdventureWorks].[Production].[Product].
[AK_Product_Name] AS [p]))

|--Clustered Index Scan(OBJECT:([AdventureWorks].[Production].
[ProductReview].

CHAPTER 1 ■ SELECT48

570Xch01.qxd 11/4/05 1:53 PM Page 48

How It Works
In the first, non-hinted query, SET SHOWPLAN_TEXT was used to view how the query may be executed
by SQL Server.

■Caution You should almost always let SQL Server do the decision-making for the join type. Even if your hint
works for the short term, there is no guarantee that in the future there may be more efficient query plans that
could be used, but won’t be, because you have overridden the optimizer with the specified hint. Also, the validity of
or effectiveness of a hint may change when new service packs or editions of SQL Server are released.

The StmtText section, shown next, tells us how the query will be executed. For this example, the
most important information was in the first line of the results, telling us that a Nested Loop would be
used to join the two tables:

|--Nested Loops(Inner Join, OUTER REFERENCES:([r].[ProductID]))

In the second query, a hint was added to force the nested loop join to perform a hash join oper-
ation instead. To do this, HASH was added between the INNER and JOIN keywords:

INNER HASH JOIN Production.ProductReview r ON
r.ProductID = p.ProductID

Now in the second SHOWPLAN_TEXT results, the query execution now uses a hash join to join the
two tables:

|--Hash Match(Inner Join, HASH:([p].[ProductID])=([r].[ProductID]))

Using Query Hints
Some query hints, like the join hints discussed in the previous recipe, are instructions sent with the
query to override SQL Server’s query optimizer decision-making. Using query hints may provide
a short term result that satisfies your current situation, but may not always be the most efficient
result over time. Nonetheless, there are times when you may decide to use them, if only to further
understand the choices that the query optimizer automatically makes.

Query hints can be used in SELECT, INSERT, UPDATE, and DELETE statements, described in Table 1-5.

Table 1-5. Query Hints

Hint Name Description

{HASH | ORDER} GROUP When used in conjunction with the GROUP BY clause,
specifies whether hashing or ordering is used for GROUP
BY and COMPUTE aggregations.

{CONCAT | HASH | MERGE} UNION Designates the strategy used to join all result sets for
UNION operations.

{LOOP | MERGE | HASH} JOIN Forces all join operations to perform the loop, merge,
or hash join in the entire query.

FAST integer Speeds up the retrieval of rows for the top integer value
designated.

FORCE ORDER When designated, table joins are performed in the
order in which the tables appear.

(Continued)

CHAPTER 1 ■ SELECT 49

570Xch01.qxd 11/4/05 1:53 PM Page 49

Table 1-5. (Continued)

Hint Name Description

MAXDOP number_of_processors This option overrides the “max degree of parallelism”
server configuration option for the query. See Chapter 21
for more information on this server option.

OPTIMIZE FOR (@variable_name The OPTIMIZE FOR option directs SQL Server to use
= literal_constant) [,...n] a particular variable value or values for a variable when

the query is compiled and optimized . You could, for
example, plug in a literal constant that returns the best
performance across the range of expected parameters.

ROBUST PLAN Creates a query plan with the assumption that the row
size of a table will be at maximum width.

MAXDOP integer This determines the max degree of parallelism for your
query (overriding the server level setting).

KEEP PLAN The recompile threshold for the query is “relaxed”
when this hint is used.

KEEPFIXED PLAN When this hint is used, the query optimizer is forced
NOT to recompile due to statistics or indexed column
changes. Only schema changes or sp_recompile will
cause the query plan to be recompiled.

EXPAND VIEWS This hint keeps the query optimizer from using
indexed views when the base table is referenced.

MAXRECURSION number Designates the maximum number of recursions (1 to
32757) allowed for the query. If 0 is chosen, no limit is
applied. The default recursion limit is 100. This option
is used in conjunction with Common Table
Expressions (CTE).

USE PLAN 'xml_plan' USE PLAN directs SQL SERVER to use a potentially better
performing query plan (provided in the xml_plan
literal value) that you know can cause the query to
perform better. See Chapter 28 for more detail.

PARAMETERIZATION { SIMPLE | FORCED } This hint relates to the new PARAMETERIZATION database
setting which controls whether or not all queries are
parameterized (literal values contained in a query get
substituted with parameters in the cached query plan).
When PARAMETERIZATION SIMPLE is chosen, SQL Server
decides which queries are parameterized or not. When
PARAMETERIZATION FORCED is used, all queries in the
database will be parameterized. For more information
on this database setting, see Chapter 28.

RECOMPILE This forces SQL Server 2005 to throw out the query
execution plan after it is executed, meaning that the
next time the query executes, it will be forced to
recompile a new query plan. Although usually SQL
Server re-uses effective query plans—sometimes a less
efficient query plan is re-used. Recompiling forces SQL
Server to come up with a fresh plan (but with the
overhead of a recompile).

This example uses a new SQL Server 2005 RECOMPILE query hint to recompile the query, forcing
SQL Server to discard the plan generated for the query after it executes. With the RECOMPILE query
hint, a new plan will be generated the next time the same or similar query is executed. You may

CHAPTER 1 ■ SELECT50

570Xch01.qxd 11/4/05 1:53 PM Page 50

decide you wish to do this for volatile query plans, where differing search condition values for the
same plan cause extreme fluctuations in the number of rows returned. In that scenario, using
a compiled query plan may hurt, not help the query performance. The benefit of a cached and
reusable query execution plan may occasionally be outweighed by a fresh, recompiled plan.

■Note SQL Server 2005 has introduced statement-level stored procedure recompilation. Now instead of an entire
stored procedure recompiling when indexes are added or data is changed to the referenced tables, only individual
statements within the procedure impacted by the change are recompiled. See Chapter 10 for more information.

Typically, you will want to use this RECOMPILE query hint within a stored procedure—so that you
can control which statements automatically recompile—instead of having to recompile the entire
stored procedure. Now for the example:

SELECT SalesOrderID,
ProductID,
UnitPrice,
OrderQty

FROM Sales.SalesOrderDetail
WHERE CarrierTrackingNumber = '5CE9-4D75-8F'
ORDER BY SalesOrderID,

ProductID
OPTION (RECOMPILE)

This returns:

SalesOrderID ProductID UnitPrice OrderQty
------------ ----------- --------------------- --------
47964 760 469.794 1
47964 789 1466.01 1
47964 819 149.031 4
47964 843 15.00 1
47964 844 11.994 6

(5 row(s) affected)

How It Works
This query demonstrated using a query hint, which was referenced in the OPTION clause at the end
of the query:

OPTION (RECOMPILE)

SQL Server 2005 should be relied upon most of the time to make the correct decisions when
processing a query; however query hints provide you with more control for those exceptions when
you need to override SQL Server’s choices.

Using Table Hints
Table hints, like query hints, can be used to override SELECT, INSERT, UPDATE, and DELETE default pro-
cessing behavior. You can use multiple table hints for one query, separated by commas, so long as
they do not belong to the same category grouping. Be sure to test the performance of your queries
with and without the query hints (see Chapter 28 for more details on examining query performance).

Table 1-6 lists available table hints. Some hints cannot be used together, so they have been grouped
NOLOCK and HOLDLOCK for the same query:

CHAPTER 1 ■ SELECT 51

570Xch01.qxd 11/4/05 1:53 PM Page 51

Table 1-6. Table Hints

Hint Name Description

FASTFIRSTROW This hint optimizes the query to pull the first row of the result
set very quickly. Whether or not this hint will work depends on
the size of your table, indexing used, and the type of data you
are returning. Test your results with and without the hint, to be
sure that the hint is necessary. Use this hint in order to begin
returning results to the client faster – not to improve the speed
of the entire result set.

INDEX (index_val [,... n]) Overrides SQL Server’s index choice and forces a specific index
for the table to be used.

NOEXPAND When an indexed view is referenced, the query optimizer will
treat the view like a table with a clustered index.

HOLDLOCK. Selecting one of these hints determines the isolation level for
SERIALIZABLE. the table. For example, designating NOLOCK means that the
REPEATABLEREAD. operation (SELECT for example) will place no locking on the table.
READCOMMITTED.
READCOMMITTEDLOCK.
READUNCOMMITTED.
NOLOCK

ROWLOCK. Designates the granularity of locking for the table, for example,
PAGLOCK. selecting ROWLOCK to force only row locks for a query.
TABLOCK.
TABLOCKX.
NOLOCK

READPAST Skips locked rows, and does not read them.

UPDLOCK The hint will force update locks instead of shared locks to be
generated (not compatible with NOLOCK or XLOCK).

XLOCK This hint forces exclusive locks on the resources being
referenced (not compatible with NOLOCK or UPDLOCK).

KEEPIDENTITY This option applies to the OPENROWSET function’s new SQL
Server 2005 BULK insert functionality (see Chapter 27) and
impacts how rows are inserted into a table with an IDENTITY
column. If you use this hint, SQL Server will use the identity
values from the data file, instead of generating its own. For
more on the IDENTITY column, see Chapter 4, “Tables.”

KEEPDEFAULTS Like KEEPIDENTITY, this table hint applies to the OPENROWSET
function. Using this hint specifies that columns not included in
the bulk-load operation will be assigned to the column default.
For more on default columns, see Chapter 4.

IGNORE_CONSTRAINTS Another OPENROWSET hint, IGNORE_CONSTRAINTS directs SQL
Server to ignore CHECK constraints when importing data. See
Chapter 4 for more on CHECK constraints.

IGNORE_TRIGGERS This query hint directs INSERT triggers not to fire when
importing using the new SQL Server 2005 BULK option of
OPENROWSET.

CHAPTER 1 ■ SELECT52

570Xch01.qxd 11/4/05 1:53 PM Page 52

This example returns the DocumentID and Title from the Production.Document table where the
Status column is equal to “1.” It uses the NOLOCK table hint, which means the query will not place
shared locks on the Production.Document table (for a review of locking, see Chapter 3):

SELECT DocumentID,
Title

FROM Production.Document
WITH (NOLOCK)
WHERE Status = 1

How It Works
The crux of this example is the WITH keyword, which uses the NOLOCK table hint in parentheses:

WITH (NOLOCK)

NOLOCK causes the query not to place shared locks on the impacted rows/data pages—allowing
you to read without being blocked or blocking others (although you are now subject to “dirty reads”).

Common Table Expressions
A Common Table Expression (CTE) is similar to a view or derived query, allowing you to create
a temporary query that can be referenced within the scope of a SELECT, INSERT, UPDATE, or DELETE
query. Unlike a derived query, you don’t need to copy the query definition multiple times each time
it is used. You can also use local variables within a CTE definition—something you can’t do in a view
definition.

The basic syntax for a CTE is as follows:

WITH expression_name [(column_name [,...n])]
AS (CTE_query_definition)

The arguments of a CTE are described in the Table 1-7.

Table 1-7. CTE Arguments

Argument Description

expression_name The name of the common table expression.

column_name [,...n] The unique column names of the expression.

CTE_query_definition The SELECT query that defines the common table expression.

A non-recursive CTE is one that is used within a query without referencing itself. It serves as
a temporary result set for the query. A recursive CTE is defined similarly to a non-recursive CTE,
only a recursive CTE returns hierarchical self-relating data. Using a CTE to represent recursive data
can minimize the amount of code needed compared to other methods.

The next two recipes will demonstrate both non-recursive and recursive CTEs.

Using a Non-Recursive Common Table Expression (CTE)
This example of a common table expression demonstrates returning vendors in the Purchasing.Vendor
table—returning the first five and last five results ordered by name:

WITH VendorSearch (RowNumber, VendorName, AccountNumber)
AS

CHAPTER 1 ■ SELECT 53

570Xch01.qxd 11/4/05 1:53 PM Page 53

SELECT ROW_NUMBER() OVER (ORDER BY Name) RowNum,
Name,
AccountNumber

FROM Purchasing.Vendor
)

SELECT RowNumber,
VendorName,
AccountNumber

FROM VendorSearch
WHERE RowNumber BETWEEN 1 AND 5
UNION
SELECT RowNumber,

VendorName,
AccountNumber

FROM VendorSearch
WHERE RowNumber BETWEEN 100 AND 104

This returns:

RowNumber VendorName AccountNumber
-------------------- --- ------------
1 A. Datum Corporation ADATUM0001
2 Advanced Bicycles ADVANCED0001
3 Allenson Cycles ALLENSON0001
4 American Bicycles and Wheels AMERICAN0001
5 American Bikes AMERICAN0002
100 Vista Road Bikes VISTARO0001
101 West Junction Cycles WESTJUN0001
102 WestAmerica Bicycle Co. WESTAMER0001
103 Wide World Importers WIDEWOR0001
104 Wood Fitness WOODFIT0001

(10 row(s) affected)

The previous example used UNION, however non-recursive CTEs can be used like any other
SELECT query too:

WITH VendorSearch (VendorID, VendorName)
AS
(
SELECT VendorID,

Name
FROM Purchasing.Vendor
)

SELECT v.VendorID,
v.VendorName,
p.ProductID,
p.StandardPrice

FROM VendorSearch v
INNER JOIN Purchasing.ProductVendor p ON

v.VendorID = p.VendorID
ORDER BY v.VendorName

This returns the following (abridged) results:

CHAPTER 1 ■ SELECT54

570Xch01.qxd 11/4/05 1:53 PM Page 54

VendorID VendorName ProductID StandardPrice
----------- -- ----------- ---------
32 Advanced Bicycles 359 45.41
32 Advanced Bicycles 360 43.41
32 Advanced Bicycles 361 47.48
...
91 WestAmerica Bicycle Co. 363 41.26
28 Wide World Importers 402 45.21
57 Wood Fitness 2 39.92

(406 row(s) affected)

How It Works
In this example, WITH defined the CTE name and the columns it returned. This was a non-recursive
CTE because CTE data wasn’t being joined to itself. The CTE in this example was only using a query
that UNION'd two data sets:

WITH VendorSearch (RowNumber, VendorName, AccountNumber)

The column names defined in the CTE can match the actual names of the query within—or
you can create your own alias names. For example in this example, the Purchasing.Vendor column
Name has been referenced as VendorName in the CTE.

Next in the recipe, AS marked the beginning of the CTE query definition:

AS
(

Inside the parentheses, the query used a new SQL Server 2005 function that returned the
sequential row number of the result set—ordered by the vendor name (see Chapter 8 for a review of
ROW_NUMBER):

SELECT ROW_NUMBER() OVER (ORDER BY Name) RowNum,
Name,
AccountNumber

FROM Purchasing.Vendor)

The Vendor Name and AccountNumber from the Purchasing.Vendor table were also returned.
The CTE definition finished after marking the closing parentheses.

Following the CTE definition was the query that used the CTE. Keep in mind that a SELECT,
INSERT, UPDATE, or DELETE statement that references some or all the CTE columns must follow the
definition of the CTE:

SELECT RowNumber,
VendorName,
AccountNumber

FROM VendorSearch
WHERE RowNumber BETWEEN 1 AND 5

The SELECT column names were used from the new VendorSearch CTE. In the WHERE clause, the
first query returns rows 1 through 5. Next the UNION operator was used prior to the second query:

UNION

This second query displayed the last five rows in addition to the first five rows. The VendorSearch
CTE was referenced twice—but the full query definition only had to be defined a single time (unlike
derived queries)—thus reducing code.

CHAPTER 1 ■ SELECT 55

570Xch01.qxd 11/4/05 1:53 PM Page 55

In the second example of the recipe, a simple CTE was defined without using any functions,
just VendorID and VendorName from the Purchasing.Vendor table:

WITH VendorSearch (VendorID, VendorName)
AS
(
SELECT VendorID,

Name
FROM Purchasing.Vendor)

In the query following this CTE definition, the CTE “VendorSearch” was joined just like a regular
table (only without specifying the owning schema):

SELECT v.VendorID,
v.VendorName,
p.ProductID,
p.StandardPrice

FROM VendorSearch v
INNER JOIN Purchasing.ProductVendor p ON

v.VendorID = p.VendorID
ORDER BY v.VendorName

One gotcha that you should be aware of—if the CTE is part of a batch of statements, the state-
ment before its definition must be followed by a semicolon.

■Note With SQL Server 2005, you can use a semicolon as a SQL Server statement terminator. Doing so isn’t
mandatory, but is ANSI compliant, and you’ll see it being used in some of the documentation coming from Microsoft.

Using a Recursive Common Table Expression (CTE)
In this example, the new Company table will define the companies in a hypothetical giant mega
conglomerate. Each company has a CompanyID and an optional ParentCompanyID. The example will
demonstrate how to display the company hierarchy in the results using a recursive CTE. First, the
table is created:

CREATE TABLE dbo.Company
(CompanyID int NOT NULL PRIMARY KEY,
ParentCompanyID int NULL,
CompanyName varchar(25) NOT NULL)

Next, rows are inserted into the new table:

INSERT dbo.Company (CompanyID, ParentCompanyID, CompanyName)
VALUES (1, NULL, 'Mega-Corp')
INSERT dbo.Company (CompanyID, ParentCompanyID, CompanyName)
VALUES (2, 1, 'Mediamus-Corp')
INSERT dbo.Company (CompanyID, ParentCompanyID, CompanyName)
VALUES (3, 1, 'KindaBigus-Corp')
INSERT dbo.Company (CompanyID, ParentCompanyID, CompanyName)
VALUES (4, 3, 'GettinSmaller-Corp')
INSERT dbo.Company (CompanyID, ParentCompanyID, CompanyName)
VALUES (5, 4, 'Smallest-Corp')
INSERT dbo.Company (CompanyID, ParentCompanyID, CompanyName)
VALUES (6, 5, 'Puny-Corp')
INSERT dbo.Company (CompanyID, ParentCompanyID, CompanyName)
VALUES (7, 5, 'Small2-Corp')

CHAPTER 1 ■ SELECT56

570Xch01.qxd 11/4/05 1:53 PM Page 56

Now the actual example:

WITH CompanyTree(ParentCompanyID, CompanyID, CompanyName, CompanyLevel)
AS
(

SELECT ParentCompanyID,
CompanyID,
CompanyName,
0 AS CompanyLevel

FROM dbo.Company
WHERE ParentCompanyID IS NULL
UNION ALL
SELECT c.ParentCompanyID,
c.CompanyID,
c.CompanyName,
p.CompanyLevel + 1

FROM dbo.Company c
INNER JOIN CompanyTree p
ON c.ParentCompanyID = p.CompanyID

)
SELECT ParentCompanyID, CompanyID, CompanyName, CompanyLevel
FROM CompanyTree

This returns:

ParentCompanyID CompanyID CompanyName CompanyLevel
--------------- ----------- ------------------------- ------------
NULL 1 Mega-Corp 0
1 2 Mediamus-Corp 1
1 3 KindaBigus-Corp 1
3 4 GettinSmaller-Corp 2
4 5 Smallest-Corp 3
5 7 Small2-Corp 4
5 6 Puny-Corp 4

(7 row(s) affected)

How It Works
In this example, the CTE name and columns are defined first:

WITH CompanyTree(ParentCompanyID, CompanyID, CompanyName, CompanyLevel)
The CTE query definition began with AS and an open parenthesis:

AS
(

The SELECT clause began with the “anchor” SELECT statement. When using recursive CTEs,
“anchor” refers to the fact that it defines the base of the recursion—in this case the top level of the
corporate hierarchy (the parentless “Mega-Corp”). This SELECT also includes a CompanyLevel column
alias, preceded with the number zero. This column will be used in the recursion to display how many
levels deep a particular company is in the company hierarchy:

SELECT ParentCompanyID,
CompanyID,
CompanyName,
0 AS CompanyLevel

FROM dbo.Company

CHAPTER 1 ■ SELECT 57

570Xch01.qxd 11/4/05 1:53 PM Page 57

Next was the UNION ALL, to join the second, recursive query to the anchor member (UNION ALL,
and not just UNION, is required for the last anchor member and the first recursive member in
a recursive CTE):

UNION ALL

After that was the recursive query. Like the anchor, the SELECT clause references the ParentCompanyID,
CompanyID, and CompanyName from the dbo.Company table. Unlike the anchor, the CTE column references
p.CompanyLevel (from the anchor query), adding + 1 to its total at each level of the hierarchy:

SELECT c.ParentCompanyID,
c.CompanyID,
c.CompanyName,
p.CompanyLevel + 1

The dbo.Company table was joined to the CompanyTree CTE, joining the CTE’s recursive query’s
ParentCompanyID to the CTE’s CompanyID:

FROM dbo.Company c
INNER JOIN CompanyTree p
ON c.ParentCompanyID = p.CompanyID

)

After the closing of the CTE’s definition, the query selected from the CTE based on the columns
defined in the CTE definition.

SELECT ParentCompanyID, CompanyID, CompanyName, CompanyLevel
FROM CompanyTree

In the results, for each level in the company hierarchy, the CTE increased the CompanyLevel column.
With this useful new feature come some cautions, however. If you create your recursive CTE

incorrectly, you could cause an infinite loop. While testing, and to avoid infinite loops, use the
MAXRECURSION hint mentioned earlier in the chapter.

For example, you can stop the previous example from going further than 2 levels by adding the
OPTION clause with MAXRECURSION at the end of the query:

WITH CompanyTree(ParentCompanyID, CompanyID, CompanyName, CompanyLevel) AS
(

SELECT ParentCompanyID, CompanyID, CompanyName, 0 AS CompanyLevel
FROM dbo.Company
WHERE ParentCompanyID IS NULL
UNION ALL
SELECT c.ParentCompanyID, c.CompanyID, c.CompanyName, p.CompanyLevel + 1
FROM dbo.Company c

INNER JOIN CompanyTree p
ON c.ParentCompanyID = p.CompanyID

)
SELECT ParentCompanyID, CompanyID, CompanyName, CompanyLevel
FROM CompanyTree
OPTION (MAXRECURSION 2)

This returns:

CHAPTER 1 ■ SELECT58

570Xch01.qxd 11/4/05 1:53 PM Page 58

ParentCompanyID CompanyID CompanyName CompanyLevel
--------------- ----------- ------------------------- ------------
NULL 1 Mega-Corp 0
1 2 Mediamus-Corp 1
1 3 KindaBigus-Corp 1
3 4 GettinSmaller-Corp 2
Msg 530, Level 16, State 1, Line 1
Statement terminated. Maximum recursion 2 has been exhausted
before statement completion

As a best practice, set the MAXRECURSION based on your understanding of the data. If you know
that the hiearchy cannot go more than 10 levels deep, for example, then set MAXRECURSION to that value.

CHAPTER 1 ■ SELECT 59

570Xch01.qxd 11/4/05 1:53 PM Page 59

570Xch01.qxd 11/4/05 1:53 PM Page 60

INSERT, UPDATE, DELETE

In this chapter, I review how to modify data using the Transact-SQL INSERT, UPDATE, and DELETE
commands. I’ll review the basics of each command and cover specific techniques such as inserting
data from a stored procedure, and importing an image file into a table using the new OPENROWSET
BULK functionality (added to OPENROWSET in SQL Server 2005.) The new SQL Server 2005 features
I cover in this chapter include:

• The new OUTPUT clause, which allows you to capture inserted and deleted rows from a data
modification into a table for reporting.

• The TOP clause, which in previous versions of SQL Server was only useable within a SELECT
statement. Now it can be used in conjunction with data modification commands.

• Easier data modification methods for large object data type data (SQL Server 2005 introduces
new, large object data types intended to replace the deprecated text, ntext, and image data
types).

Before going into the new features, however, I’ll start the chapter off by reviewing basic INSERT
concepts.

INSERT
The simplified syntax for the INSERT command is as follows:

INSERT
[INTO]
table_or_view_name
[(column_list)]
VALUES ({DEFAULT | NULL | expression } [,...n])

The arguments of this command are described in Table 2-1:

61

C H A P T E R 2

■ ■ ■

570Xch02.qxd 11/4/05 1:55 PM Page 61

CHAPTER 2 ■ INSERT, UPDATE, DELETE62

Table 2-1. INSERT Command Arguments

Argument Description

table_or_view_name The name of the table or updateable view that you are
inserting a row into.

column_list The explicit comma-separated list of columns on the insert
table which will be populated with values.

(DEFAULT | NULL | expression } The comma-separated list of values to be inserted as a row
[,...n]) into the table. Each value can be an expression, NULL

value, or DEFAULT value (if a default was defined for the
column). Defaults are described later in the chapter.

Inserting a Row into a Table
In this recipe, I demonstrate the use of INSERT to add new rows into a table (as specified by table_name),
specifying a column_list of columns into which the data should be inserted, and a corresponding
comma-separated list of values to be inserted, [,....n], in the VALUES clause. Specifically, a single
row is inserted into the AdventureWorks Production.Location table:

INSERT Production.Location
(Name, CostRate, Availability)
VALUES ('Wheel Storage', 11.25, 80.00)

This returns:

(1 row(s) affected)

This next query then searches for any row with the name “Wheel Storage”:

SELECT Name,
CostRate,
Availability

FROM Production.Location
WHERE Name = 'Wheel Storage'

This returns:

Name CostRate Availability
-- ------------
Wheel Storage 11.25 80.00

(1 row(s) affected)

How It Works
In this recipe, a new row was inserted into the Production.Location table.

The query began with the INSERT command and the name of the table that will receive the
inserted data (the INTO keyword is optional):

INSERT Production.Location

The next line of code explicitly lists the columns of the destination table that we wish to insert
the data into:

(Name, CostRate, Availability)

570Xch02.qxd 11/4/05 1:55 PM Page 62

A comma must separate each column. Columns don't need to be listed in the same order as
they appear in the base table—as long as the order in which you specify the values in the VALUES
clause exactly matches the order of the column list. Column lists are not necessary if your INSERT
statement provides all values in the same internal physical order as they appear in the table. However,
using column lists should be required for your production code, particularly if the base schema
undergoes periodic changes. This is because explicitly listing columns allows you to add new
columns to the base table without changing the referencing code (assuming the new column has
a default value).

The next line of code is the VALUES clause, and a comma-separated list of values (expressions)
to insert:

VALUES ('Wheel Storage', 11.25, 80.00)

As I’ve noted previously, the values in this list must be provided in the same order as the listed
columns, or, if no columns are listed, the same order of the columns in the table.

Inserting a Row Using Default Values
In this recipe, I’ll show you how to load a row into a table such that it takes a default value for a cer-
tain column (or columns), using the DEFAULT keyword. In the previous recipe, the
Production.Location table had a row inserted into it. The Production.Location table has two other
columns which were not explicitly referenced in the INSERT statement. If you look at the column
definition of Table 2-2, you'll see that there is also a LocationID and a ModifiedDate column that
were not included in the previous example's INSERT:

■Note See Chapter 4 for more information on the CREATE TABLE command, IDENTITY columns, and DEFAULT values.

Table 2-2. Production.Location Table Definition

Column Name Data Type Nullability Default Value Identity Column?

LocationID smallint NOT NULL Yes

Name dbo.Name NOT NULL No
(user-defined data type)

CostRate smallmoney NOT NULL 0.00 No

Availability decimal(8,2) NOT NULL 0.00 No

ModifiedDate datetime NOT NULL GETDATE() No
(function to
return the
current date
and time)

The ModifiedDate column has a default value which populates the current date and time for
new rows if the column value wasn't explicitly inserted. The INSERT could have been written to
update this column too. For example:

INSERT Production.Location
(Name, CostRate, Availability, ModifiedDate)
VALUES ('Wheel Storage 2', 11.25, 80.00, '1/1/2005')

When a column has a default value specified in a table, you can use the DEFAULT keyword in the
VALUES clause, in order to explicitly trigger the default value.

CHAPTER 2 ■ INSERT, UPDATE, DELETE 63

570Xch02.qxd 11/4/05 1:55 PM Page 63

For example:

INSERT Production.Location
(Name, CostRate, Availability, ModifiedDate)
VALUES ('Wheel Storage 3', 11.25, 80.00, DEFAULT)

If each column in the table uses defaults for all columns, you can trigger an insert that inserts
a row using only the defaults by using DEFAULT VALUES option. For example:

INSERT dbo.ExampleTable
DEFAULT VALUES

How It Works
The DEFAULT keyword allows you to explicitly set a column's default value in an INSERT statement.
The DEFAULT VALUES keywords can be used in your INSERT statement to explicitly set all the column's
default values (assuming the table is defined with a default on each column).

The LocationID column from the Production.Location table, however, is an IDENTITY column
(not a defaulted column). An IDENTITY property on a column causes the value in that column to
automatically populate with an incrementing numeric value. Because LocationID is an IDENTITY
column, an INSERT statement cannot explicitly add its value (unlike with a default). You can, how-
ever, explicitly insert values into an IDENTITY column, but only after performing the steps detailed in
the next recipe.

Explicitly Inserting a Value into an IDENTITY Column
In this recipe, I’ll demonstrate how to explicitly insert values into an IDENTITY property column.
A column using an IDENTITY property automatically increments, based on a numeric seed value and
incrementing value for every row inserted into the table. IDENTITY columns are often used as surro-
gate keys (a surrogate key is a unique, primary key generated by the database that holds no
business-level significance other then to ensure uniqueness within the table).

In data load or recovery scenarios, you may find that you need to manually insert explicit val-
ues into an IDENTITY column. For example, if a row with the key value of “4” was deleted
accidentally, and you need to manually reconstruct that row preserving the original value of “4”
with the old business information, you'll need to be able to explicitly insert this value into the table.

To explicitly insert a numeric value into a column using an IDENTITY property, you must use the
SET IDENITTY_INSERT command. The syntax is as follows:

SET IDENTITY_INSERT [database_name . [schema_name] .] table { ON | OFF }

The arguments of this command are described in Table 2-3:

Table 2-3. SET IDENTITY_INSERT Command

Argument Description

[database_name . The optional database name, optional schema name, and required
[schema_name] .] table name for which explicit values will be allowed to be inserted into
table an IDENTITY property column.

ON | OFF When set ON, explicit value inserts are allowed. When OFF, explicit value
inserts are not allowed.

In this recipe, I’ll demonstrate how to explicitly insert the value of an IDENTITY column into
a table. The following query first demonstrates what happens if you try to do an explicit insert into
an identity column without first using IDENTITY_INSERT:

CHAPTER 2 ■ INSERT, UPDATE, DELETE64

570Xch02.qxd 11/4/05 1:55 PM Page 64

INSERT HumanResources.Department
(DepartmentID, Name, GroupName)
VALUES (17, 'Database Services', 'Information Technology')

This returns an error, keeping you from inserting an explicit value for the identity column:

Msg 544, Level 16, State 1, Line 2
Cannot insert explicit value for identity column in table 'Department' when
IDENTITY_INSERT is set to OFF.

Using SET IDENTITY_INSERT removes this barrier, as this next example demonstrates:

SET IDENTITY_INSERT HumanResources.Department ON

INSERT HumanResources.Department
(DepartmentID, Name, GroupName)
VALUES (17, 'Database Services', 'Information Technology')

SET IDENTITY_INSERT HumanResources.Department OFF

How It Works
In the recipe, this property was set ON prior to the insert:

SET IDENTITY_INSERT HumanResources.Department ON

The INSERT was then performed, using a value of “17.” When inserting into an identity column,
you must also explicitly list the column names after the INSERT table_name clause:

INSERT HumanResources.D epartment
(DepartmentID, Name, GroupName)
VALUES (17, 'Database Services', 'Information Technology')

IDENTITY_INSERT should be set OFF once you are finished explicitly inserting values:

SET IDENTITY_INSERT HumanResources.Department OFF

You should set this OFF once you are finished, as only one table in the session (your database
connection session) can have IDENTITY_INSERT ON at the same time (assuming that you wish to
insert explicit values for multiple tables). Closing your session will remove the ON property.

Inserting a Row into a Table with a Uniqueidentifier Column
In this recipe, I’ll show you how to insert data into a table that uses a uniqueidentifier column.

A uniqueidentifier data type stores a 16-byte globally unique identifier (GUID) that is often
used to ensure uniqueness across tables within the same or a different database. GUIDs offer an
alternative to integer value keys, although their width compared to integer values can sometimes
result in slower query performance for bigger tables.

To generate this value for a new INSERT, the NEWID system function is used.
NEWID generates a unique uniqueidentifier data type value, as this recipe demonstrates:

INSERT Purchasing.ShipMethod
(Name, ShipBase, ShipRate, rowguid)
VALUES('MIDDLETON CARGO TS1', 8.99, 1.22, NEWID())

SELECT rowguid, name
FROM Purchasing.ShipMethod

CHAPTER 2 ■ INSERT, UPDATE, DELETE 65

570Xch02.qxd 11/4/05 1:55 PM Page 65

This returns:

(1 row(s) affected)
rowguid name
------------------------------------ ---
174BE850-FDEA-4E64-8D17-C019521C6C07 MIDDLETON CARGO TS1

(1 row(s) affected)

How It Works
The rowguid column in the Purchasing.ShipMethod table is a uniqueidentifier data type column.
Here is an excerpt from the table definition:

rowguid uniqueidentifier ROWGUIDCOL NOT NULL DEFAULT (newid()),

To generate a new, unique uniqueidentifier data type value for this inserted row, the NEWID()
function is used in the VALUES clause:

VALUES('MIDDLETON CARGO TS1', 8.9 9, 1.2 2, NEWID())

Selecting the new row that was just created, the rowguid was given a uniqueidentifier value of
174BE850-FDEA-4E64-8D17-C019521C6C07 (although when you test it yourself, you'll get a different
value because NEWID creates a new value each time it is executed).

Inserting Rows Using an INSERT...SELECT Statement
The previous recipes showed you how to insert a single row of data. In this recipe, I’ll show you how
to insert multiple rows into a table using INSERT..SELECT. The syntax for performing an INSERT..SELECT
operation is as follows:

INSERT
[INTO]
table_or_view_name
[(column_list)]
SELECT column_list FROM data_source

The syntax for using INSERT...SELECT is almost identical to inserting a single row, only instead
of using the VALUES clause, you designate a SELECT query that will populate the columns and rows
into the table or updateable view. The SELECT query can be based on one or more data sources, so
long as the column list conforms to the expected data types of the destination table.

For the purposes of this example, a new table will be created for storing the rows. The example
populates values from the HumanResources.Shift table into the new dbo.Shift_Archive table:

CREATE TABLE [dbo]. [Shift_Archive](
[ShiftID] [tinyint] NOT NULL,
[Name] [dbo]. [Name] NOT NULL,
[StartTime] [datetime] NOT NULL,
[EndTime] [datetime] NOT NULL,
[ModifiedDate] [datetime] NOT NULL DEFAULT (getdate()),
CONSTRAINT [PK_Shift_ShiftID] PRIMARY KEY CLUSTERED
([ShiftID] ASC)
)
GO

CHAPTER 2 ■ INSERT, UPDATE, DELETE66

570Xch02.qxd 11/4/05 1:55 PM Page 66

Next, an INSERT..SELECT is performed:

INSERT Shift_Archive
(ShiftID, Name, StartTime, EndTime, ModifiedDate)
SELECT ShiftID, Name, StartTime, EndTime, ModifiedDate
FROM HumanResources.Shift
ORDER BY ShiftID

The results show that three rows were inserted:

(3 row(s) affected)

Next, a query is executed to confirm the inserted rows in the Shift_Archive table:

SELECT ShiftID, Name
FROM Shift_Archive

This returns:

ShiftID Name
------- --
1 Day
2 Evening
3 Night

(3 row(s) affected)

How It Works
Using the INSERT...SELECT statement, you can insert multiple rows into a table based on a SELECT
query. Just like a regular, single-value INSERTs, you begin by using INSERT table_name and the list of
columns to be inserted into the table (in parentheses):

INSERT Shift_Archive
(ShiftID, Name, StartTime, EndTime, ModifiedDate)

Following this is the query used to populate the table. The SELECT statement must return columns
in the same order as the columns appear in the new table. The columns list must also have data type
compatibility with the associated INSERT column list:

SELECT ShiftID, Name, StartTime, EndTime, ModifiedDate
FROM HumanResources.Shift
ORDER BY ShiftID

When the column lists aren't designated, the SELECT statement must provide values for all the
columns of the table into which the data is being inserted.

Inserting Data from a Stored Procedure Call
In this recipe, I demonstrate how to insert table data by using a stored procedure. A stored procedure
groups one or more Transact-SQL statements into a logical unit, and stores it as an object in a SQL
Server database. Stored procedures allow for more sophisticated result set creation (for example you
can use several intermediate result sets built in temporary tables before returning the final result set).
Reporting system stored procedures (those that come with SQL Server 2005) that return a result set
can also be used for INSERT...EXEC, which is useful if you wish to retain SQL Server information in
tables.

CHAPTER 2 ■ INSERT, UPDATE, DELETE 67

570Xch02.qxd 11/4/05 1:55 PM Page 67

This recipe also teaches you how to add rows to a table based on the output of a stored proce-
dure. A stored procedure can only be used in this manner if it returns data via a SELECT command
from within the procedure definition—it can’t be used if it performs data modifications or database
object operations.

■Note For more information on stored procedures, see Chapter 10.

The syntax for inserting data from a stored procedure is as follows:

INSERT
[INTO]
table_or_view_name
[(column_list)]
EXEC stored_procedure_name

The syntax is almost identical to the previously demonstrated INSERT examples, only this time
the data is populated via an executed stored procedure.

In this example, a stored procedure is created that returns rows from the Production.
TransactionHistory table, based on the begin and end dates passed to the stored procedure.
These results returned by the procedure also only return rows that don't exist in the Production.
TransactionHistoryArchive:

CREATE PROCEDURE usp_SEL_Production_TransactionHistory
@ModifiedStartDT datetime,
@ModifiedEndDT datetime

AS

SELECT TransactionID, ProductID, ReferenceOrderID, ReferenceOrderLineID,
TransactionDate, TransactionType, Quantity, ActualCost, ModifiedDate
FROM Production.TransactionHistory
WHERE ModifiedDate BETWEEN @ModifiedStartDT AND @ModifiedEndDT AND

TransactionID NOT IN
(SELECT TransactionID

FROM Production.TransactionHistoryArchive)

GO

Next, this example tests the stored procedures to pre-check which rows will be inserted:

EXEC usp_SEL_Production_TransactionHistory '6/2/04', '6/3/04'

This returns 568 rows based on the date range passed to the procedure. In the next example,
this stored procedure is used to insert the 568 rows into the Production.TransactionHistoryArchive
table:

INSERT Production.TransactionHistoryArchive
(TransactionID, ProductID, ReferenceOrderID, ReferenceOrderLineID, TransactionDate,
TransactionType, Quantity, ActualCost, ModifiedDate)
EXEC usp_SEL_Production_TransactionHistory '6/2/04', '6/3/04'

How It Works
This example demonstrated using a stored procedure to populate a table using INSERT and EXEC.
The INSERT began with the name of the table to be inserted into:

INSERT Production.TransactionHistoryArchive

CHAPTER 2 ■ INSERT, UPDATE, DELETE68

570Xch02.qxd 11/4/05 1:55 PM Page 68

Next was the list of columns to be inserted into:

(TransactionID, ProductID, ReferenceOrderID, ReferenceOrderLineID,
TransactionDate, TransactionType, Quantity, ActualCost, ModifiedDate)

Last was the EXEC statement, which executed the stored procedures. Any parameters the stored
procedure expects follow the stored procedure name:

EXEC usp_SEL_Production_TransactionHistory '6/2/04', '6/3/04'

UPDATE
The following is basic syntax for the UPDATE statement:

UPDATE <table_or_view_name>
SET column_name = {expression | DEFAULT | NULL} [,...n]
WHERE <search_condition>

The arguments of this command are described in Table 2-4:

Table 2-4. UPDATE Command Arguments

Argument Description

table_or_view_name The table or updateable view containing data
to be updated.

column_name = {expression | DEFAULT | NULL} The name of the column or columns to be
updated. The column can be set to an
expression, the DEFAULT value of the column, or
a NULL.

search_condition The search condition that defines what rows
are modified. If this isn't included, all rows
from the table or updateable view will be
modified.

Updating a Single Row
In this recipe, I’ll demonstrate how to use the UPDATE statement to modify data. With the UPDATE state-
ment, you can apply changes to single or multiple columns, as well as to single or multiple rows. In
this example, a single row is updated by designating the SpecialOfferID, which is the primary key of
the table (for more on primary keys, see Chapter 4):

UPDATE Sales.SpecialOffer
SET DiscountPct = 0.15
WHERE SpecialOfferID = 10

Querying that specific row after the update confirms that the value of DiscountPct was indeed
modified:

SELECT DiscountPct
FROM Sales.SpecialOffer
WHERE SpecialOfferID = 10

This returns:

DiscountPct

0.15

CHAPTER 2 ■ INSERT, UPDATE, DELETE 69

570Xch02.qxd 11/4/05 1:55 PM Page 69

How It Works
In this example, the query started off with UPDATE and the table name Sales.SpecialOffer:

UPDATE Sales.SpecialOffer

Next, SET was used, followed by the column name to be modified, and an equality operator to
modify the DiscountPct to a value of 0.15. Relating back to the syntax at the beginning of the recipe,
this example is setting the column to an expression value, and not a DEFAULT or NULL value:

SET DiscountPct = 0.15

Had this been the end of the query, all rows in the Sales.SpecialOffer table would have been
modified, because the UPDATE clause works at the table level, not the row level. But the intention
of this query was to only update the discount percentage for a specific product. The WHERE clause
was used in order to achieve this:

WHERE SpecialOfferID = 10

After executing this query, only one row is modified. Had there been multiple rows that met the
search condition in the WHERE clause, those rows would have been modified too.

■Tip Performing a SELECT query with the FROM and WHERE clauses of an UPDATE, prior to the UPDATE, allows
you to see what rows you will be updating (an extra validation that you are updating the proper rows).

Updating Rows Based on a FROM and WHERE Clause
In this recipe, I’ll show you how to use the UPDATE statement to modify rows based on a FROM clause
and associated WHERE clause search conditions. The basic syntax, elaborating from the last example, is:

UPDATE <table_or_view_name>
SET column_name = {expression | DEFAULT | NULL} [,...n]
FROM <table_source>
WHERE <search_condition>

The FROM and WHERE clauses are not mandatory, however you will find that they are almost always
implemented in order to specify exactly which rows are to be modified, based on joins against one or
more tables.

In this example, assume that a specific product, “Full-Finger Gloves, M” from the Production.
Product table has a customer purchase limit of two units per customer. For this query's requirement,
any shopping cart with a quantity of more than two units for this product should immediately be
adjusted back to the required limit:

UPDATE Sales.ShoppingCartItem
SET Quantity =2,
ModifiedDate = GETDATE()

FROM Sales.ShoppingCartItem c
INNER JOIN Production.Product p ON
c.ProductID = p.ProductID

WHERE p.Name = 'Full-Finger Gloves, M ' AND
c.Quantity > 2

CHAPTER 2 ■ INSERT, UPDATE, DELETE70

570Xch02.qxd 11/4/05 1:55 PM Page 70

How It Works
Stepping through the code, the first line shows the table to be updated:

UPDATE Sales.ShoppingCartItem

Next, the columns to be updated are designated in the SET clause:

SET Quantity =2,
ModifiedDate = GETDATE()

Now here comes the optional FROM clause where the Sales.ShoppingCartItem and
Production.Product tables are joined by ProductID. As you can see, the object being updated can
also be referenced in the FROM clause. The reference in the UPDATE and in the FROM are treated as the
same table:

FROM Sales.ShoppingCartItem c
INNER JOIN Production.Product p ON
c.ProductID = p.P roductID

Using the updated table in the FROM clause allows you to join to other tables. Presumably, those
other joined tables will be used to filter the updated rows, or to provide values for the updated rows.

The WHERE clause specifies that only the “Full-Finger Gloves, M” product in the
Sales.ShoppingCartItem should be modified, and only if the Quantity is greater than 2 units:

WHERE p.Name = 'Full-Finger Gloves, M ' AND
c.Quantity > 2

Updating Large Value Data Type Columns
In this recipe, I’ll show you how to modify large value data type column values. SQL Server 2005 has
introduced new large value data types intended to replace the deprecated text, ntext, and image
data types in SQL Server 2000. These new data types include:

• varchar(max), which holds non-Unicode variable length data.

• nvarchar(max), which holds Unicode variable length data.

• varbinary(max), which holds variable length binary data.

These data types can store up to 2^31-1 bytes of data (for more information on data types, see
Chapter 4).

One of the major drawbacks of the old text and image data types is that they required you to
use separate functions such as WRITETEXT and UPDATETEXT in order to manipulate the image/text
data. Using the new large value data types, you can now use regular INSERT and UPDATEs instead.

The syntax for inserting a large value data type is no different from a regular insert. For updat-
ing large value data types, however, the UPDATE command now includes the .WRITE method:

UPDATE <table_or_view_name>
SET column_name = .WRITE (expression , @Offset , @Length)

FROM <table_source>
WHERE <search_condition>

The parameters of the .WRITE method are described in Table 2-5:

CHAPTER 2 ■ INSERT, UPDATE, DELETE 71

570Xch02.qxd 11/4/05 1:55 PM Page 71

Table 2-5. UPDATE Command With .WRITE Clause

Argument Description

expression The expression defines the chunk of text to be placed in the column.

@Offset @Offset determines the starting position in the existing data the new text should
be placed. If @Offset is NULL, it means the new expression will be appended to the
end of the column (also ignoring the second @Length parameter).

@Length @Length determines the length of the section to overlay.

This example starts off by creating a table called RecipeChapter:

CREATE TABLE RecipeChapter
(ChapterID int NOT NULL,
Chapter varchar(max) NOT NULL)

Next, a row is inserted into the table. Notice that there is nothing special about the string being
inserted into the Chapter varchar(max) column:

INSERT RecipeChapter
(ChapterID, Chapter)
VALUES
(1, 'At the beginning of each chapter you’ll notice that basic concepts are covered
first.')

This next example updates the newly inserted row, adding a sentence to the end of the existing
sentence:

UPDATE RecipeChapter
SET Chapter .WRITE (' In addition to the basics, this chapter will also provide recipes
that can be used in your day to day development and administration.' , NULL, NULL)
WHERE ChapterID = 1

Next, for that same row, the phrase “day to day” is replaced with the single word “daily”:

UPDATE RecipeChapter
SET Chapter .WRITE('daily', 178, 10)
WHERE ChapterID = 1

Lastly, the results are returned for that row:

SELECT Chapter
FROM RecipeChapter
WHERE ChapterID = 1

This returns:

Chapter
--

At the beginning of each chapter you’ll notice that basic concepts are covered
first. In addition to the basics, this chapter will also provide recipes that can
be used in your daily development and administration.

How It Works
The recipe began by creating a table where book chapter descriptions would be held. The Chapter
column used a varchar(max) data type:

CHAPTER 2 ■ INSERT, UPDATE, DELETE72

570Xch02.qxd 11/4/05 1:55 PM Page 72

CREATE TABLE RecipeChapter
(ChapterID int NOT NULL,
Chapter varchar(max) NOT NULL)

Next, a new row was inserted. Notice that the syntax for inserting a large object data type doesn't
differ from inserting data into a regular non-large value data type:

INSERT RecipeChapter
(ChapterID, Chapter)
VALUES
(1, 'At the beginning of each chapter you’ll
notice that basic concepts are covered first.')

Next, an UPDATE was performed against the RecipeChapter table to add a second sentence after
the end of the first sentence:

UPDATE RecipeChapter

The SET command was followed by the name of the column to be updated (Chapter), and the
new .WRITE command. The .WRITE command is followed by an open parenthesis, a single quotation,
and the sentence to be appended to the end of the column:

SET Chapter .WRITE(' In addition to the basics,
this chapter will also provide recipes that can be
used in your day to day development and administration.' ,
NULL, NULL)

The WHERE clause specified that only ChapterID “1” be modified:

WHERE ChapterID = 1

The next example of .WRITE demonstrated replacing data within the body of the column. In the
example, the expression day to day was replaced with daily. The bigint value of @Offset and @Length
are measured in bytes for varbinary(max) and varchar(max) data types. For nvarchar(max), these
parameters measure the actual number of characters. For the example, the .WRITE had a value for
@Offset (178 bytes into the text) and @Length (10 bytes long):

UPDATE RecipeChapter
SET Chapter .WRITE('daily', 178, 10)
WHERE ChapterID = 1

Inserting or Updating an Image File Using OPENROWSET and
BULK
In this recipe, I demonstrate how to insert or update an image file from the file system into a SQL
Server table. Adding images to a table in SQL Server 2000 usually required the use of external appli-
cation tools or scripts. There was no elegant way to insert images using just Transact-SQL. With new
functionality added in SQL Server 2005, UPDATE and OPENROWSET can be used together to import an
image into a table.

OPENROWSET can be used to import a file into a single row, single column value. The basic syntax
for OPENROWSET as it applies to this recipe is as follows:

OPENROWSET
(BULK 'data_file' ,

| SINGLE_BLOB | SINGLE_CLOB | SINGLE_NCLOB)

The parameters for this command are described in Table 2-6:

CHAPTER 2 ■ INSERT, UPDATE, DELETE 73

570Xch02.qxd 11/4/05 1:55 PM Page 73

Table 2-6. The OPENROWSET Command Arguments

Parameter Description

data_file The name and path of the file to read.

SINGLE_BLOB | Designate the SINGLE_BLOB object for importing into a varbinary(max) data
SINGLE_CLOB | type, SINGLE_CLOB for ASCII data into a varchar(max) data type, and
SINGLE_NCLOB SINGLE_NCLOB for importing into a nvarchar(max) UNICODE data type.

See Chapter 27 for a detailed review of the syntax of OPENROWSET.

The first part of the recipe creates a new table which will be used to store gif image files:

CREATE TABLE StockGifs
(StockGifID int NOT NULL,
Gif varbinary(max) NOT NULL)

Next, a row containing the image file will be inserted into the table:

INSERT StockGifs
(StockGifID, Gif)
SELECT 1,

BulkColumn
FROM OPENROWSET(BULK
'C:\Program Files\Microsoft SQL Server\90\Tools\Binn\VSShell\Common7\
IDE\DataWarehouseDesigner\KPIsBrowserPage\Images\Gauge_Asc0.gif',
SINGLE_BLOB) AS x

This next query selects the row from the table:

SELECT Gif
FROM StockGifs
WHERE StockGifID = 1

The returns:

Gif
--
0x47494638396130001800E6FF00FFFFFFC0C0C0FF0000F7F7F7F70000EFEFEFEF0000E7E7E7E7DE00E7
D600E7C600E70000DEC600DEBD00DEAD00DE0000D6D6D6D6A5A5D6A500D69C00D69400D68C00D60000CE
CECECEA500CE0000C6C6C6C6B500C68400C67B73C60000BDBDBDBD8400BD5A5ABD0000B5B5B5B
5AD00B50000

The last example in this recipe updates an existing gif, changing it to a different gif file:

The second part of the recipe demonstrates how to update an existing gif:

UPDATE StockGifs
SET Gif =
(SELECT BulkColumn
FROM OPENROWSET(BULK
'C:\Program Files\Microsoft SQL Server\90\Tools\Binn\VSShell\Common7\IDE\
DataWarehouseDesigner\KPIsBrowserPage\Images\Cylinder2.gif',
SINGLE_BLOB) AS x)
WHERE StockGifID =1

CHAPTER 2 ■ INSERT, UPDATE, DELETE74

570Xch02.qxd 11/4/05 1:55 PM Page 74

How It Works
In this recipe, I’ve demonstrated using OPENROWSET with the BULK option to insert a row containing
a gif image file, and then the way to update it to a different gif file.

First, a table was created to hold the gif files using a varbinary(max) data type:

CREATE TABLE StockGifs
(StockGifID int NOT NULL,
Gif varbinary(max) NOT NULL)

Next, a new row was inserted using INSERT:

INSERT #StockGifs
(StockGifID, Gif)

The INSERT was populated using a SELECT query against the OPENROWSET function to bring in the
file data. The BulkColumn referenced in the query represents the varbinary value to be inserted into
the varbinary(max) row from the OPENROWSET data source:

SELECT 1,
BulkColumn

In the FROM clause, OPENROWSET was called. OPENROWSET allows you to access remote data from
a data source:

FROM OPENROWSET(BULK 'C:\Program Files\Microsoft SQL
Server\90\Tools\Binn\VSShell\Common7\IDE\
DataWarehouseDesigner\KPIsBrowserPage\Images\Gauge_Asc0.gif', SINGLE_BLOB) AS x

The BULK option was used inside the function, followed by the file name, and the SINGLE_BLOB
keyword. The BULK option within OPENROWSET means that data will be read from a file (in this case the
gif file specified after BULK). The SINGLE_BLOB switch tells OPENROWSET to return the contents of the
data file as a single-row, single-column varbinary(max) rowset.

This recipe also demonstrates an UPDATE of the varbinary(max) column from an external file.
The UPDATE designated the StockGifs table, and used SET to update the Gif column:

UPDATE StockGifs
SET Gif =

The expression to set the new image to Cylinder2.gif from the previous Gauge_Asc0.gif occurs
in a subquery. It uses almost the same syntax as the previous INSERT, only this time the only value
returned in the SELECT is the BulkColumn column:

(SELECT BulkColumn
FROM OPENROWSET(BULK 'C:\Program Files\Microsoft SQL
Server\90\Tools\Binn\VSShell\Common7\IDE\DataWarehouseDesigner\
KPIsBrowserPage\Images\Cylinder2.gif', SINGLE_BLOB)
AS g)
WHERE StockGifID =1

The image file on the machine is then stored in the column value for that row as varbinary
data.

DELETE
The simple syntax for DELETE is as follows:

DELETE [FROM] table_or_view_name
WHERE search_condition

The arguments of this command are described in Table 2-7:

CHAPTER 2 ■ INSERT, UPDATE, DELETE 75

570Xch02.qxd 11/4/05 1:55 PM Page 75

Table 2-7. The DELETE Command Arguments

Argument Description

table_or_view_name The name of the table or updateable view that you are deleting rows from.

search_condition The search condition(s) in the WHERE clause defines which rows will
be deleted from the table or updateable view.

Deleting Rows
In this recipe, I show you how to use the DELETE statement to remove one or more rows from a table.
First, take an example table this is populated with rows:

SELECT *
INTO Production.Example_ProductProductPhoto
FROM Production.ProductProductPhoto

This returns:

(504 row(s) affected)

Next, all rows are deleted from the table:

DELETE Production.Example_ProductProductPhoto

This returns:

(504 row(s) affected)

This next example demonstrates using DELETE with a WHERE clause. Let's say that the relationship
of keys between two tables gets dropped, and the users were able to delete data from the primary key
table and not the referencing foreign key tables (see Chapter 4 for a review of primary and foreign
keys). In this example search condition, only rows that do not exist in the Production.Product table
are deleted from the Production.ExampleProductProductPhoto table (which in this example, there
are none that do not exist):

-- Repopulate the Example_ProductProductPhoto table
INSERT Production.Example_ProductProductPhoto
SELECT *
FROM Production.ProductProductPhoto

DELETE Production.Example_ProductProductPhoto
WHERE ProductID NOT IN

(SELECT ProductID
FROM Production.Product)

This third example demonstrates the same functionality of the previous example, only the
DELETE has been re-written to use a FROM clause, instead of a subquery:

DELETE Production.ProductProductPhoto
FROM Production.Example_ProductProductPhoto ppp
LEFT OUTER JOIN Production.Product p ON
ppp.ProductID = p.ProductID

WHERE p.ProductID IS NULL

CHAPTER 2 ■ INSERT, UPDATE, DELETE76

570Xch02.qxd 11/4/05 1:55 PM Page 76

How It Works
In the first example of the recipe, all rows were deleted from the Example_ProductProductPhoto table:

DELETE Production.Example_ProductProductPhoto

This is because there was no WHERE clause to specify which rows would be deleted.
In the second example, the WHERE clause was used to specify rows to be deleted based on

a subquery lookup to another table:

WHERE ProductID NOT IN
(SELECT ProductID
FROM Production.Product)

The third example used a LEFT OUTER JOIN instead of a subquery, joining the ProductID of the
two tables:

FROM Production.Example_ProductProductPhoto ppp
LEFT OUTER JOIN Production.Product p ON
ppp.ProductID = p.ProductID

Because the same object that is being deleted from Production.ProductProductPhoto is also
the same object in the FROM clause, and since there is only one reference to that table in the FROM
clause, it is assumed that rows identified in the FROM and WHERE clause will be one and the same—it
will associate to the rows deleted from the Production.ProductProductPhoto table.

Because a LEFT OUTER JOIN was used, if any rows did not match between the left and right
tables, the right table would have NULL values for the unmatched ProductIDs. Thus, to show rows in
Production.Example_ProductProductPhoto that don't have a matching ProductID in the Production.
Product table, you can qualify the Production.Product as follows:

WHERE p.ProductID IS NULL

Any rows without a match to the Production.Product table will be deleted from the Production.
Example_ProductProductPhoto table.

Truncating a Table
In this recipe, I show you how to delete rows from a table in a minimally logged fashion (hence, much
quicker). Generally you should use DELETE for operations that should be fully logged, however for
test or throw-away data, this is a fast technique for removing the data. Minimal logging references
how much recoverability information is written to the database's transaction log (see Chapter 22).
To achieve this, use the TRUNCATE command.

The syntax is as follows:

TRUNCATE TABLE table_name

This command takes just the table name to truncate. Since it always removes all rows from
a table, there is no FROM or WHERE clause, as this recipe demonstrates:

-- First populating the example
SELECT *
INTO Sales.Example_StoreContact
FROM Sales.StoreContact

-- Next, truncating ALL rows from the example table
TRUNCATE TABLE Sales.Example_StoreContact

Next, the table's row count is queried:

CHAPTER 2 ■ INSERT, UPDATE, DELETE 77

570Xch02.qxd 11/4/05 1:55 PM Page 77

SELECT COUNT(*)
FROM Sales.Example_StoreContact

This returns:

0

How It Works
The TRUNCATE TABLE statement, like the DELETE statement, can delete rows from a table. TRUNCATE
TABLE deletes rows faster than DELETE, because it is minimally logged. Unlike DELETE however, the
TRUNCATE TABLE must be used to remove ALL rows in the table (no WHERE clause).

Although TRUNCATE TABLE is a faster way to delete rows, you can’t use it if the table columns are
referenced by a foreign key constraint (see Chapter 4 for more information on foreign keys), if the
table is published using transactional or merge replication, or if the table participates in an indexed
view (see Chapter 7 for more information). Also, if the table has an IDENTITY column, keep in mind
that the column will be reset to the seed value defined for the column (if no seed was explicitly set,
it is set to 1).

The OUTPUT Clause
The syntax for using OUTPUT in a data modification operation is as follows:

OUTPUT { DELETED | INSERTED | from_table_name } . { * | column_name } [,...n]
INTO { @table_variable | output_table }

The arguments of this command are described in Table 2-8:

Table 2-8. OUTPUT Clause Arguments

Argument Description

DELETED | Like triggers (see Chapter 12), two “virtual” tables exist for
INSERTED | the OUTPUT to use - INSERTED and DELETED, which hold the
from_table_name original and modified values for the updated table. The

INSERTED and DELETED virtual tables share the same column
names of the modified table.

* | You can select all columns from the updated table using *
column_name or one or more specified columns.

@table_variable | output_table The table variable or regular table that will receive the rows
from the OUTPUT operation.

Using the OUTPUT Clause with INSERT, UPDATE, DELETE
In this recipe, I show you how to return information about rows that are impacted by an INSERT,
UPDATE, or DELETE operation using the new OUTPUT clause introduced in SQL Server 2005. In this first
example, an UPDATE statement modifies the name of a specific product. OUTPUT is then used to return
information on the original and updated column names:

DECLARE @ProductChanges TABLE
(DeletedName nvarchar(50),
InsertedName nvarchar(50))

CHAPTER 2 ■ INSERT, UPDATE, DELETE78

570Xch02.qxd 11/4/05 1:55 PM Page 78

UPDATE Production.Product
SET Name = 'HL Spindle/Axle XYZ'
OUTPUT DELETED.Name,

INSERTED.Name
INTO @ProductChanges
WHERE ProductID = 524

SELECT DeletedName,
InsertedName

FROM @ProductChanges

This query returns:

DeletedName InsertedName
-- ---------------------------------
HL Spindle/Axle HL Spindle/Axle XYZ

This next example uses OUTPUT for a DELETE operation. First, an example table to hold the data is
created:

SELECT *
INTO Sales.Example_SalesTaxRate
FROM Sales.SalesTaxRate

Next, this batch creates a table variable to hold the data, deletes rows from the table, and then
selects from the table variable to see which rows were deleted:

DECLARE @SalesTaxRate TABLE(
[SalesTaxRateID] [int] NOT NULL,
[StateProvinceID] [int] NOT NULL,
[TaxType] [tinyint] NOT NULL,
[TaxRate] [smallmoney] NOT NULL,
[Name] [dbo]. [Name] NOT NULL,
[rowguid] [uniqueidentifier] ,
[ModifiedDate] [datetime] NOT NULL)

DELETE Sales.Example_SalesTaxRate
OUTPUT DELETED.*
INTO @SalesTaxRate

SELECT SalesTaxRateID,
Name

FROM @SalesTaxRate

This returns the following abridged results:

SalesTaxRateID Name
-------------- --
19 California State Sales Tax
5 Canadian GST
1 Canadian GST + Alberta Provincial Tax
12 Canadian GST
...
29 Germany Output Tax
8 Canadian GST
2 Canadian GST + Ontario Provincial Tax

CHAPTER 2 ■ INSERT, UPDATE, DELETE 79

570Xch02.qxd 11/4/05 1:55 PM Page 79

In the third example, an INSERT is demonstrated with OUTPUT. A new row is inserted into a table
and the operation is captured to a table variable table:

DECLARE @NewDepartment TABLE
(DepartmentID smallint NOT NULL,
Name nvarchar(50) NOT NULL,
GroupName nvarchar(50) NOT NULL,
ModifiedDate datetime NOT NULL)

INSERT HumanResources.Department
(Name, GroupName)
OUTPUT INSERTED.*
INTO @NewDepartment
VALUES ('Accounts Receivable', 'Accounting')

SELECT DepartmentID,
ModifiedDate

FROM @NewDepartment

This returns:

DepartmentID ModifiedDate
------------ ----------------------------
18 2005-03-06 12:46:40.653

How It Works
The first example used a temporary table variable to hold the OUTPUT results (See Chapter 4 for more
information on temporary table variables):

DECLARE @ProductChanges TABLE
(DeletedName nvarchar(50),
InsertedName nvarchar(50))

Next, the first part of the UPDATE changed the product name to “HL Spindle/Axle XYZ”:

UPDATE Production.Product
SET Name = 'HL Spindle/Axle XYZ'

After the SET clause, but before the WHERE clause, the OUTPUT defined which columns to return:

OUTPUT DELETED.Name,
INSERTED.Name

Like triggers (covered in Chapter 12), two “virtual” tables exist for the OUTPUT to use—INSERTED
and DELETED—both of which hold the original and modified values for the updated table. The
INSERTED and DELETED virtual tables share the same column names of the modified table—in this
case returning the original name (DELETED.Name), and the new name (INSERTED.Name).

The values of this OUTPUT are placed into the temporary table variable by using INTO, followed
by the table name:

INTO @ProductChanges

The UPDATE query qualified that only ProductID 524 would be modified to the new name:

WHERE ProductID = 524

After the update, a query was executed against the @ProductChanges temporary table variable to
show the before/after changes:

CHAPTER 2 ■ INSERT, UPDATE, DELETE80

570Xch02.qxd 11/4/05 1:55 PM Page 80

SELECT DeletedName,
InsertedName

FROM @ProductChanges

The DELETE and INSERT examples were variations on the first example, where OUTPUT pushes the
deleted rows (for DELETE) or the inserted rows (for INSERT) into a table variable.

Chunking Data Modifications with TOP
I demonstrated using TOP in Chapter 1. In SQL Server 2005, TOP can also be used in DELETE, INSERT,
or UPDATE statements. This recipe further demonstrates using TOP to “chunk” data modifications;
meaning instead of executing a very large operation, you can break the modification into smaller
pieces, potentially increasing performance and improving database concurrency for larger, highly-
accessed tables. This technique is often used for large data loads to reporting or data warehouse
applications.

Large, single set updates can cause the database transaction log to grow considerably. When
processing in chunks, each chunk is committed after completion, allowing SQL Server to potentially
reuse that transaction log space. In addition to transaction log space, on a very large data update, if
the query must be cancelled, you may have to wait a long time while the transaction rolls back. With
smaller chunks, you can continue with your update more quickly. Also, chunking allows more con-
currency against the modified table, allowing user queries to jump in, instead of waiting several
minutes for a large modification to complete.

Deleting Rows in Chunks
In this recipe, I show you how to modify data in blocks of rows in multiple executions, instead of an
entire result set in one large transaction. First, I create an example deletion table for this example:

SELECT *
INTO Production.Example_BillOfMaterials
FROM Production.BillOfMaterials

Next, all rows will be deleted from the table in 500 row chunks:

WHILE (SELECT COUNT(*)FROM Production.Example_BillOfMaterials)> 0
BEGIN

DELETE TOP(500)
FROM Production.Example_BillOfMaterials

END

This returns:

(500 row(s) affected)

(500 row(s) affected)

(500 row(s) affected)

(500 row(s) affected)

(500 row(s) affected)

(179 row(s) affected)

CHAPTER 2 ■ INSERT, UPDATE, DELETE 81

570Xch02.qxd 11/4/05 1:55 PM Page 81

How It Works
In this example, I used a WHILE condition to keep executing the DELETE while the count of rows in the
table was greater than zero (see Chapter 9 for more information on WHILE):

WHILE (SELECT COUNT(*)FROM Production.Example_BillOfMaterials)> 0
BEGIN

Next was the DELETE, followed by the TOP clause, and the row limitation in parentheses:

DELETE TOP(500)
FROM Production.BillOfMaterials

This recipe didn't use a WHERE clause, so no filtering was applied and all rows were deleted from
the table—but only in 500 row chunks. Once the WHILE condition no longer evaluated to TRUE, the loop
ended. After executing, the row counts affected in each batch were displayed. The first five batches
deleted 500 rows, and the last batch deletes the remaining 179 rows.

This “chunking” method can be used with INSERTs and UPDATEs too. For INSERT and UPDATE, the
TOP clause follows right after the INSERT and UPDATE keyword, for example:

INSERT TOP(100)
...

UPDATE TOP(25)
...

The expanded functionality of TOP adds a new technique for managing large data modifications
against a table.

CHAPTER 2 ■ INSERT, UPDATE, DELETE82

570Xch02.qxd 11/4/05 1:55 PM Page 82

Transactions, Locking, Blocking,
and Deadlocking

In the last two chapters, I covered Data Modification Language, and provided recipes for SELECT,
INSERT, UPDATE, and DELETE statements. Before moving on to Data Definition Language (creating/
altering/dropping tables, indexes, views, and more), in this chapter I’ll review recipes for handling
transactions, lock-monitoring, blocking, and deadlocking. I’ll demonstrate the new SQL Server 2005
snapshot isolation level, as well as dynamic management views that are used to monitor and trou-
bleshoot blocking and locking.

Transaction Control
Transactions are an integral part of a relational database system and they help define a single unit
of work. This unit of work can include one or more Transact-SQL statements, which are either com-
mitted or rolled-back as a group. This all-or-none functionality helps prevent partial updates or
inconsistent data states. A partial update occurs when one part of an interrelated process is rolled
back or cancelled without rolling back or reversing all of the other parts of the interrelated processes.

A transaction is bound by the ACID test. ACID stands for Atomicity, Consistency, Isolation (or
Independence), and Durability:

• Atomicity means that the transactions are an all-or-nothing entity—carrying out all steps or
none at all

• Consistency ensures that the data is valid both before and after the transaction. Data
integrity must be maintained (foreign key references, for example) and internal data struc-
tures need to be in a valid state.

• Isolation is a requirement that transactions not be dependent on other transactions that
may be taking place concurrently (either at the same time or overlapping). One transaction
can’t see another transaction’s data that is in an intermediate state, but instead sees the data
as it was either before the transaction began or after.

• Durability means that the transaction’s effects are permanent after the transaction has com-
mitted, and any changes will survive system failures.

83

C H A P T E R 3

■ ■ ■

570Xch03.qxd 11/4/05 1:56 PM Page 83

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING84

In this chapter, I demonstrate and review the SQL Server 2005 mechanisms and functionality
that are used to ensure ACID test compliance, namely locking and transactions.

There are three possible transactions types in SQL Server 2005: autocommit, explicit, or implicit.
Autocommit is the default behavior for SQL Server 2005, where each separate Transact-SQL

statement you execute is automatically committed after it is finished. For example, if you have two
INSERT statements, with the first one failing and the second one succeeding, the second change is
maintained because each INSERT is automatically contained in its own transaction. Although this
mode frees the developer from having to worry about explicit transactions, depending on this mode
for transactional activity can be a mistake. For example if you have two transactions, one that cred-
its an account, and another that debits it, and the first transaction failed, you'll have a debit without
the credit. This may make the bank happy, but not necessarily the customer, who had their account
debited! Autocommit is even a bit dangerous for ad hoc administrative changes—for example if you
accidentally delete all rows from a table, you don’t have the option of rolling back the transaction
after you’ve realized the mistake.

Implicit transactions occur when the SQL Server session is in implicit transaction mode, and
when one of the following statements is first executed:

ALTER TABLE FETCH REVOKE

CREATE GRANT SELECT

DELETE INSERT TRUNCATE TABLE

DROP OPEN UPDATE

A new transaction is automatically created (opened) once any of the aforementioned state-
ments are executed, and remains open until either a ROLLBACK or COMMIT statement is issued. The
initiating command is included in the open transaction. Implicit mode is activated by executing
the following command in your query session:

SET IMPLICIT_TRANSACTIONS ON

To turn this off (back to explicit mode), execute:

SET IMPLICIT_TRANSACTIONS OFF

Implicit mode can be very troublesome in a production environment, as application designers
and end-users could forget to commit transactions, leaving them open to block other connections
(more on blocking later in the chapter).

Explicit transactions are those that you define yourself. This is by far the recommended mode
of operation when performing data modifications for your database application. This is because
you explicitly control which modifications belong to a single transaction, as well as the actions that
are performed if an error occurs. Modifications which must be grouped together are done using
your own instruction.

Explicit transactions use the following Transact-SQL commands and keywords described in
Table 3-1:

570Xch03.qxd 11/4/05 1:56 PM Page 84

Table 3-1. Explicit Transaction Commands

Command Description

BEGIN TRANSACTION Sets the starting point of an explicit transaction.

ROLLBACK TRANSACTION Restores original data modified by a transaction, and brings
data back to the state it was in at the start of the transaction.
Resources held by the transaction are freed.

COMMIT TRANSACTION Ends the transaction if no errors were encountered and makes
changes permanent. Resources held by the transaction are
freed.

BEGIN DISTRIBUTED TRANSACTION Allows you to define the beginning of a distributed
transaction to be managed by Microsoft Distributed
Transaction Coordinator (MS DTC). MS DTC must be
running locally and remotely.

SAVE TRANSACTION SAVE TRANSACTION issues a savepoint within a transaction,
which allows one to define a location to which a transaction
can return if part of the transaction is cancelled. A transaction
must be rolled back or committed immediately after rolling
back to a savepoint.

@@TRANCOUNT Returns the number of active transactions for the connection.
BEGIN TRANSACTION increments @@TRANCOUNT by 1, and ROLLBACK
TRANSACTION and COMMIT TRANSACTION decrements @@TRANCOUNT
by 1. ROLLBACK TRANSACTION to a savepoint has no impact.

Using Explicit Transactions
This recipe’s example demonstrates how to use explicit transactions to commit or rollback the data
modification depending on the return of an error in a batch of statements:

-- Before count
SELECT COUNT(*) BeforeCount FROM HumanResources.Department

-- Variable to hold the latest error integer value
DECLARE @Error int

BEGIN TRANSACTION

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Accounts Payable', 'Accounting')

SET @Error = @@ERROR
IF (@Error<> 0) GOTO Error_Handler

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Engineering', 'Research and Development')

SET @Error = @@ERROR
IF (@Error <> 0) GOTO Error_Handler

COMMIT TRAN

Error_Handler:
IF @Error <> 0

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 85

570Xch03.qxd 11/4/05 1:56 PM Page 85

BEGIN
ROLLBACK TRANSACTION

END

-- After count
SELECT COUNT(*) AfterCount FROM HumanResources.Department

This returns:

BeforeCount

18

(1 row(s) affected)

(1 row(s) affected)

Msg 2601, Level 14, State 1, Line 14
Cannot insert duplicate key row in object 'HumanResources.Department'
➥ with unique index 'AK_Department_Name'.
The statement has been terminated.

AfterCount

18

(1 row(s) affected)

How It Works
The first statement in this example validated the count of rows in the HumanResources.Department
table, returning 18 rows:

-- Before count
SELECT COUNT(*) BeforeCount FROM HumanResources.Department

A local variable is created to hold the value of the @@ERROR function (which captures the latest
error state of a SQL statement):

-- Variable to hold the latest error integer value
DECLARE @Error int

Next, an explicit transaction was started:

BEGIN TRANSACTION

The next statement attempted an INSERT into the HumanResources.Department table. There was
a unique key on the department name, but because the department name didn’t already exist in the
table, the insert succeeded:

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Accounts Payable', 'Accounting')

Next was an error handler for the INSERT:

SET @Error = @@ERROR
IF (@Error <> 0) GOTO Error_Handler

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING86

570Xch03.qxd 11/4/05 1:56 PM Page 86

This line of code evaluates the @@ERROR function. The @@ERROR system function returns the last
error number value for the last executed statement within the scope of the current connection. The
IF statement says that if an error occurs, the code should jump to (using GOTO) the Error_Handler
section of the code.

■Note For a review of GOTO, see Chapter 9. For a review of @@Error, see Chapter 16. Chapter 16 also intro-
duces a new error handling command, TRY...CATCH.

GOTO is a keyword that helps you control the flow of statement execution. The identifier after
GOTO, Error_Handler, is a user-defined code section.

Next, another insert is attempted, this time for a department that already exists in the table.
Because the table has a unique constraint on the name column, this insert will fail:

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Engineering', 'Research and Development')

The failure will cause the @@ERROR following this INSERT to be set to a non-zero value. The IF
statement will then evaluate to TRUE, which will invoke the GOTO, thus skipping over the COMMIT TRAN
to the Error_Handler section:

SET @Error = @@ERROR
IF (@Error <> 0) GOTO Error_Handler

COMMIT TRAN

Following the Error_Handler section is a ROLLBACK TRANSACTION:

Error_Handler:
IF @Error <> 0
BEGIN

ROLLBACK TRANSACTION
END

Another count is performed after the rollback, and again, there are only 18 rows in the database.
This is because both INSERTs were in the same transaction, and one of the INSERTs failed. Since
a transaction is all-or-nothing, no rows were inserted:

-- After count
SELECT COUNT(*) AfterCount FROM HumanResources.Department

Some final thoughts and recommendations regarding how to handle transactions in your
Transact-SQL code or through your application:

• Keep transaction time short as possible for the business process at hand. Transactions that
remain open can hold locks on resources for an extended period of time, which can block
other users from performing work or reading data (see later on in the chapter for a review of
locking and blocking).

• Minimize resources locked by the transaction. For example, update only tables that are
related to the transaction at hand. If the data modifications are logically dependent on each
other, they belong in the same transaction. If not, the unrelated updates belong in their own
transaction.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 87

570Xch03.qxd 11/4/05 1:56 PM Page 87

• Add only relevant Transact-SQL statements to a transaction. Don’t add extra lookups or
updates that are not germane to the specific transaction. Executing SELECT statement within
a transaction can create locks on the referenced tables, which can in turn block other
users/sessions from performing work or reading data.

• Do not open new transactions that require user or external feedback within the transaction.
Open transactions can hold locks on resources, and user feedback can take an indefinite
amount of time to receive. Instead, gather user feedback before issuing an explicit transaction.

Displaying the Oldest Active Transaction with DBCC OPENTRAN
If a transaction remains open in the database, whether intentionally or not, this transaction can
block other processes from performing activity against the modified data. Also, backups of the
transaction log can only truncate the inactive portion of a transaction log, so open transactions can
cause the log to grow (or reach the physical limit) until that transaction is committed or rolled back.

In order to identify the oldest active transactions in a database, you can use the DBCC OPENTRAN
command. The syntax is as follows:

DBCC OPENTRAN
[(['database_name' | database_id | 0])]
[WITH TABLERESULTS
[, NO_INFOMSGS]
]

The arguments of this command are described in Table 3-2:

Table 3-2. DBCC OPENTRAN Command Arguments

Argument Description

'database_name' | The database name or database id to check for the oldest active
database_id | 0 transaction. If 0 is designated, the current database is used.

WITH TABLERESULTS When designated, the results are returned in a tabular format.

NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses
informational messages from the DBCC output.

This example demonstrates using DBCC OPENTRAN to identify the oldest active transaction in the
database:

BEGIN TRANSACTION

DELETE Production.ProductProductPhoto
WHERE ProductID = 317

DBCC OPENTRAN('AdventureWorks')

ROLLBACK TRAN

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING88

570Xch03.qxd 11/4/05 1:56 PM Page 88

This returns:

(1 row(s) affected)
Transaction information for database 'AdventureWorks'.

Oldest active transaction:
SPID (server process ID): 52
UID (user ID) : -1
Name : user_transaction
LSN : (44:6363:17)
Start time : Mar 9 2005 8:46:49:610PM
SID : 0x010500000000000515000000527a777bf094b3850ff83d06eb030000

DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

How It Works
The recipe started off by opening up a new transaction, and then deleting a specific row from the
Production.ProductProductPhoto table:

BEGIN TRANSACTION

DELETE Production.ProductProductPhoto
WHERE ProductID = 317

Next, the DBCC OPENTRAN was executed, with the database name in parentheses:

DBCC OPENTRAN(AdventureWorks)

Last, the transaction containing a DELETE was rolled back:

ROLLBACK TRAN

These results showed information regarding the oldest active transaction, including the server
process id, user id, and start time of the transaction:

Oldest active transaction:
SPID (server process ID): 52
UID (user ID) : -1
Name : user_transaction
LSN : (44:6363:17)
Start time : Mar 9 2005 8:46:49:610PM
SID : 0x010500000000000515000000527a777bf094b3850ff83d06eb030000

DBCC execution completed. If DBCC printed error messages,
➥ contact your system administrator.

The key pieces of information from the results are the SPID (server process id) and Start time.

■Note SQL Server 2005 has renamed server process id to server session id. Not all references to “server
process id” have been purged from command and documentation references yet.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 89

570Xch03.qxd 11/4/05 1:56 PM Page 89

Using these, you can check the Transact-SQL that the process is executing using DBCC INPUTBUFFER
(demonstrated later in the chapter), figure out how long the process has been running for, and if neces-
sary, shut down the process. DBCC OPENTRAN is very useful for troubleshooting orphaned connections
(connections still open in the database but disconnected from the application or client), and the identi-
fication of transactions missing a COMMIT or ROLLBACK.

This command also returns the oldest distributed and undistributed replicated transactions, if
any exist within the database. If there are no active transactions, no data will be returned.

Locking
Locking is a normal and necessary part of a relation database system, ensuring the integrity of the
data by not allowing concurrent updates to the same data. Locking can also prevent users from
reading data while it is being updated. SQL Server 2005 manages locking dynamically; however it
is still important to understand how Transact-SQL queries impact locking in SQL Server. Before
proceeding to the recipe, I’ll describe SQL Server 2005 locking fundamentals briefly.

Locks help prevent concurrency problems from occurring. Concurrency problems (discussed
in detail in the next section on Transaction, Locking, and Concurrency) can occur when one user
attempts to read data that another is modifying, modify data that another is reading, or modify
data that another transaction is trying to modify.

Locks are placed against SQL Server resources. How a resource is locked is called its lock mode.
Table 3-3 reviews the main lock modes that SQL Server 2005 has at its disposal:

Table 3-3. SQL Server 2005 Lock Modes

Name Description

Shared lock Shared locks are issued during read, non-modifying queries. They allow
data to be read, but not updated by other processes while being held.

Intent lock Intent locks effectively create a lock queue, designating the order of
connections and their associated right to update or read resources. SQL
Server uses intent locks to show future intention of acquiring locks on
a specific resource.

Update lock Update locks are acquired prior to modifying the data. When the row is
modified, this lock is escalated to an exclusive lock. If not modified, it is
downgraded to a shared lock. This lock type prevents deadlocks if two
connections hold a Shared (S) lock on a resource, and attempt to convert
to an Exclusive (X) lock, but cannot because they are each waiting for
the other transaction to release the Shared (S) lock.

Exclusive lock Issues a lock on the resource that bars any kind of access (reads or writes).
Issued during INSERT, UPDATE, or DELETE statements.

Schema modification Issued when a DDL statement is executed.

Schema stability Issued when a query is being compiled. Keeps DDL operations from
being performed on the table.

Bulk update This type of lock is issued during a bulk-copy operation. Performance is
increased for the bulk copy operation, but table concurrency is reduced.

Key-range Key-range locks protect a range of rows (based on the index key). For
example, protecting rows in an UPDATE statement with a range of dates
from '1/1/2005' to '12/31/2005'. Protecting the range of data prevents
row inserts into the date range that would be missed by the current
data modification.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING90

570Xch03.qxd 11/4/05 1:56 PM Page 90

You can lock all manner of objects in SQL Server, from a single row in a database, to a table, to
the database itself. Lockable resources vary in granularity, from small (at the row level) to large (the
entire database). Small grain locks allow for greater database concurrency, because users can exe-
cute queries against specified unlocked rows. Each lock placed by SQL Server requires memory,
however, so thousands of individual row locks can also affect SQL Server performance. Larger grained
locks reduce concurrency, but take up fewer resources. Table 3-4 details the resources SQL Server
2005 can apply locks to:

Table 3-4. SQL Server 2005 Lock Resources

Resource Name Description

RID Row Identifier, designating a single table row.

Key Index row lock, helping prevent phantom reads. Also called Key-range lock,
this lock type uses both a range and a row component. The range represents
the range of index keys between two consecutive index keys. The row
component represents the lock type on the index entry.

Page Referring to an 8KB data or index page.

Extent Allocation unit of eight 8KB data or index pages.

HOPT A heap (table without a clustered index) or B-tree.

Allocation unit A set of related pages grouped by data type, for example data rows, index
rows, and large object data rows.

Table Entire table, data, and indexes locked.

Object A database object (for example a view, stored procedure, function).

File The database file.

DB Entire database lock.

Application An application-specified resource.

Metadata System metadata.

Not all lock types are compatible with each other. For example, no other locks can be placed
on a resource that has already been locked by an Exclusive lock. The other transaction must wait
or time out until the exclusive lock is released. A resource locked by an Update lock can only have
a Shared lock placed on it by another transaction. A resource locked by a Shared lock can have other
Shared or Update locks placed on it.

Locks are allocated and escalated automatically by SQL Server. Escalation means that finer
grain locks (row or page locks) are converted into coarse-grain table locks. SQL Server will attempt
to initialize escalation when a single Transact-SQL statement has more than 5,000 locks on a single
table or index, or if the amount of locks on the SQL Server instance exceeds the available memory
threshold. Locks take up system memory, so converting many locks into one larger lock can free
up memory resources. The drawback to freeing up the memory resources, however, is reduced
concurrency.

Viewing Lock Activity
This recipe shows you how to monitor locking activity in the database using the new SQL Server
2005 sys.dm_tran_locks dynamic management view. It uses a table locking hint (for a review of
hints, see Chapter 1’s “Using Table Hints” section).

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 91

570Xch03.qxd 11/4/05 1:56 PM Page 91

■Note The sys.dm_tran_locks view is a replacement of the deprecated sp_lock system stored procedure
used to monitor activity in SQL Server 2000.

In the first part of this recipe, a new query editor window is opened, and the following com-
mand is executed:

USE AdventureWorks

BEGIN TRAN
SELECT ProductID, DocumentID, ModifiedDate
FROM Production.ProductDocument
WITH (TABLOCKX)

In a second query editor window, the following query is executed:

SELECT request_session_id sessionid,
resource_type type,
resource_database_id dbid,
OBJECT_NAME(resource_associated_entity_id) objectname,
request_mode rmode,
request_status rstatus

FROM sys.dm_tran_locks

This returns information about the locking session identifier (server process id spid), the
resource being locked, the database, object, resource mode, and lock status:

sessionid rtype dbname objectname rmode rstatus
----------- ---------- --------------- --------------- ----- -----------------------
53 DATABASE AdventureWorks NULL S GRANT
52 DATABASE AdventureWorks NULL S GRANT
52 OBJECT AdventureWorks ProductDocument X GRANT

(3 row(s) affected)

How It Works
The example began by starting a new transaction and executing a query against the
Production.ProductDocument table using a TABLOCKX locking hint (this hint places an exclusive lock
on the table). In order to monitor what locks are open for the current SQL Server instance, the
sys.dm_tran_locks dynamic management view was queried. It returned a list of active locks in the
AdventureWorks database. The exclusive lock on the ProductDocument table could be seen in the
third row of the results.

Use sys.dm_tran_locks to troubleshoot unexpected concurrency issues. For example, a query
session may be holding locks longer than desired, or issuing a lock resource granularity or lock
mode that you hadn’t expected (perhaps a table lock instead of a finer grained row or page lock).
Understanding what is happening at the locking level can help you troubleshoot your queries more
effectively.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING92

570Xch03.qxd 11/4/05 1:56 PM Page 92

Transaction, Locking, and Concurrency
One of the listed ACID properties was isolation. Transaction isolation refers to the extent to which
changes made by one transaction can be seen by other transactions occurring in the database (i.e.,
under conditions of concurrent database access). At the highest possible degree of isolation, each
transaction occurs as if it was the only transaction taking place at that time. No changes made by
other transactions are visible to it. At the lowest level, anything done in one transaction, whether
committed or not, can been seen by another transaction.

The ANSI/ISO SQL standard defines three types of interactions between concurrent transac-
tions. These are:

• Dirty Reads. These occur while a transaction is updating a row, and a second transaction
reads the row before the first transaction is committed. If the original update rolls back, the
data read by the second transaction is not the same, hence a “dirty” read has occurred

• Nonrepeatable reads. These occur when a transaction is updating data while a second trans-
action is reading the same data, both before and after a change. Data retrieved from the first
query does not match the second query (this presumes that the second transaction reads the
data twice: once before, and once after).

• Phantom reads. These occur when a transaction retrieves a set of rows once, another trans-
action inserts or deletes a row from that same table, and the first transaction re-executes the
query again only to find a row that wasn’t there before, or see that a row retrieved in the orig-
inal query is no longer returned in consecutive result sets. The “phantom” is the missing or
new row.

• Lost updates. This occurs when two transactions update a row’s value, and the transaction
to last update the row “wins.” Thus the first update is lost.

The SQL standard also identifies four isolation levels, read uncommitted, read committed,
repeatable read, and serializable. These levels determine which of these interactions are allowed, as
described in Table 3-5 (note that SQL Server 2005 adds additional isolation levels to this standard):

Table 3-5. SQL Standard Isolation Levels

Isolation Level Dirty Read Non-Repeatable Read Phantom Read

READ UNCOMMITTED YES YES YES

READ COMMITTED NO YES YES

REPEATABLE READ NO NO YES

SERIALIZABLE NO NO NO

SQL Server uses locking mechanisms to control the competing activity of simultaneous trans-
actions. In order to avoid the concurrency issues such as dirty read, non-repeatable reads, and so
on, it implements locking to control access to database resources and to impose a certain level of
transaction isolation. Table 3-6 describes the available isolation levels in SQL Server 2005:

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 93

570Xch03.qxd 11/4/05 1:56 PM Page 93

Table 3-6. SQL Server 2005 Isolation Levels

Isolation level Description

READ COMMITTED (this is the While READ COMMITTED is set, uncommitted data modifications
default behavior of SQL Server) can’t be read. Shared locks are used during a query, and data

cannot be modified by other processes while the query is
retrieving the data. Data inserts and modifications to the same
table are allowed by other transactions, so long as the rows
involved are not locked by the first transaction.

READ UNCOMMITTED This is the least restrictive isolation level, issuing no locks on
the data selected by the transaction. This provides the highest
concurrency but the lowest amount of data integrity, as the
data that you read can be changed while you read it (these
reads are known as “dirty reads”), or new data can be added or
removed that would change your original query results. This
option allows you to read data without blocking others but
with the danger of reading data “in flux” that could be
modified during the read itself (including reading data
changes from a transaction that ends up getting rolled back).
For relatively static and unchanging data, this isolation level
can potentially improve performance by instructing SQL
Server not to issue unnecessary locking on the accessed
resources.

REPEATABLE READ When enabled, dirty and nonrepeatable reads are not allowed.
This is achieved by placing Shared locks on all read resources.
New rows that may fall into the range of data returned by your
query can, however, still be inserted by other transactions.

SERIALIZABLE When enabled, this is the most restrictive setting. Range locks
are placed on the data based on the search criteria used to
produce the result set. This ensures that actions such as
insertion of new rows, modification of values, or deletion of
existing rows that would have been returned within the
original query and search criteria are not allowed.

SNAPSHOT New to SQL Server 2005, this isolation level allows you to read
a transactionally consistent version of the data as it existed at
the beginning of a transaction. Data reads do not block data
modifications—however, the SNAPSHOT session will not detect
changes being made.

Transactions and locking go hand in hand. Depending on your application design, your trans-
actions can significantly impact database concurrency. Concurrency refers to how many people
can query and modify the database and database objects at the same time. For example, the READ
UNCOMMITTED isolation level allows the greatest amount of concurrency since it issues no locks—with
the drawback that you can encounter a host of data isolation anomalies (dirty reads, for example).
The SERIALIZABLE mode, however, offers very little concurrency with other processes when query-
ing a larger range of data.

Using SET TRANSACTION ISOLATION LEVEL
This recipe demonstrates how to use the SET TRANSACTION ISOLATION LEVEL command to set the
default transaction locking behavior for Transact-SQL statements used in a connection. You can
only have one isolation level set at a time and the isolation level does not change unless explicitly
set. SET TRANSACTION ISOLATION LEVEL allows you to change the locking behavior for a specific data-
base connection. The syntax for this command is as follows:

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING94

570Xch03.qxd 11/4/05 1:56 PM Page 94

SET TRANSACTION ISOLATION LEVEL
{ READ UNCOMMITTED
| READ COMMITTED
| REPEATABLE READ
| SNAPSHOT
| SERIALIZABLE
}

In this first example, SERIALIZABLE isolation is used to query the contents of a table. In the first
query editor window, the following code is executed:

USE AdventureWorks
GO

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
GO

BEGIN TRAN

SELECT AddressTypeID, Name
FROM Person.AddressType
WHERE AddressTypeID BETWEEN 1 AND 6

This returns the following results (while still leaving a transaction open for the query session):

AddressTypeID Name
------------- --
1 Billing
2 Home
3 Main Office
4 Primary
5 Shipping
6 Archive

In a second query editor, the following query is executed to view the kinds of locks generated by
the SERIALIZABLE isolation level:

SELECT resource_associated_entity_id, resource_type,
➥ request_mode, request_session_id
FROM sys.dm_tran_locks

This shows several key locks being held for request_session_id 52 (which is the other session’s id):

resource_associated_entity_id resource_type request_mode request_session_id
0 DATABASE S 52
0 DATABASE S 53
72057594043039744 PAGE IS 52
101575400 OBJECT IS 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 95

570Xch03.qxd 11/4/05 1:56 PM Page 95

Back in the first query editor window, execute the following code to end the transaction and
remove the locks:

COMMIT TRAN

In contrast, the same query is executed again in the first query editor window, this time using
the READ UNCOMMITTED isolation level to read the range of rows:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
GO

BEGIN TRAN

SELECT AddressTypeID, Name
FROM Person.AddressType
WHERE AddressTypeID BETWEEN 1 AND 6

In a second query editor, the following query is executed to view the kinds of locks generated
by the READ UNCOMMITTED isolation level:

SELECT resource_associated_entity_id, resource_type,
➥ request_mode, request_session_id
FROM sys.dm_tran_locks

This returns:

resource_associated_entity_id resource_type request_mode request_session_id
0 DATABASE S 52
0 DATABASE S 53

Unlike SERIALIZABLE, the READ UNCOMMITTED isolation level creates no additional locks on the
keys of the Person.AddressType table.

Returning back to the first query editor with the READ UNCOMMITTED query, the transaction is
ended for cleanup purposes:

COMMIT TRAN

SQL Server 2005 introduced a new SNAPSHOT isolation level, and it is this level that will be
demonstrated here in this example. In the first query editor window, the following code is executed:

ALTER DATABASE AdventureWorks
SET ALLOW_SNAPSHOT_ISOLATION ON
GO

USE AdventureWorks
GO

SET TRANSACTION ISOLATION LEVEL SNAPSHOT
GO

BEGIN TRAN

SELECT CurrencyRateID,
EndOfDayRate

FROM Sales.CurrencyRate
WHERE CurrencyRateID = 8317

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING96

570Xch03.qxd 11/4/05 1:56 PM Page 96

This returns:

CurrencyRateID EndOfDayRate
-------------- ---------------------
8317 0.6862

(1 row(s) affected)

In a second query editor, the following query is executed:

USE AdventureWorks
GO

UPDATE Sales.CurrencyRate
SET EndOfDayRate = 1.00
WHERE CurrencyRateID = 8317

Now back to the first query editor, the following query is re-executed:

SELECT CurrencyRateID,
EndOfDayRate

FROM Sales.CurrencyRate
WHERE CurrencyRateID = 8317

This returns:

CurrencyRateID EndOfDayRate
-------------- ---------------------
8317 0.6862

(1 row(s) affected)

The same results are returned as before, even though the row was updated by the second query
editor query. The SELECT was not blocked from reading the row, nor was the UPDATE blocked from mak-
ing the modification.

How It Works
In this recipe, I demonstrated how to change the locking isolation level of a query session by using
the SET TRANSACTION ISOLATION LEVEL. Executing this command isn’t necessary if you wish to use
the default SQL Server 2005 isolation level, which is READ COMMITTED. Otherwise, once you set an
isolation level, it remains in effect for the connection until explicitly changed again.

The first example in the recipe demonstrated using the SERIALIZABLE isolation level:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
GO

An explicit transaction was then started and a query was executed against the
Person.AddressType table for all rows that fell between a specific range of AddressTypeID values:

BEGIN TRAN

SELECT AddressTypeID, Name
FROM Person.AddressType
WHERE AddressTypeID BETWEEN 1 AND 6

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 97

570Xch03.qxd 11/4/05 1:56 PM Page 97

In a separate connection, a query was then executed against the sys.dm_tran_locks dynamic
management view, which returned information about active locks being held for the SQL Server
instance. In this case, we saw a number of key range locks, which served the purpose of prohibiting
other connections from inserting, updating, or deleting data that would cause different results in
the query’s search condition (WHERE AddressTypeID BETWEEN 1 AND 6).

In the second example, the isolation level was set to READ UNCOMMITTED:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
GO

Querying sys.dm_tran_locks again, we saw that this time no row, key, or page locks were held
at all on the table, allowing the potential for other transactions to modify the queried rows while
the original transaction remained open. With this isolation level, the query performs “dirty reads,”
meaning that the query could read data with in-progress modifications, whether or not the actual
modification is committed or rolled back later on.

In the third example from the recipe, the database setting ALLOW_SNAPSHOT_ISOLATION was enabled
for the database (see Chapter 22, “Creating and Configuring Databases” for more information on ALTER
DATABASE):

ALTER DATABASE AdventureWorks
SET ALLOW_SNAPSHOT_ISOLATION ON
GO

This option had to be ON in order to start a snapshot transaction. In the next line of code, the
database context was changed and SET TRANSACTION ISOLATION LEVEL was set to SNAPSHOT:

USE AdventureWorks
GO
SET TRANSACTION ISOLATION LEVEL SNAPSHOT
GO

A transaction was then opened and a query against Sales.CurrencyRate was performed:

BEGIN TRAN

SELECT CurrencyRateID,
EndOfDayRate

FROM Sales.CurrencyRate
WHERE CurrencyRateID = 8317

In the second query editor session, the same Sales.CurrencyRate row being selected in the first
session query was modified:

USE AdventureWorks
GO

UPDATE Sales.CurrencyRate
SET EndOfDayRate = 1.00
WHERE CurrencyRateID = 8317

Back at the first query editor session, although the EndOfDayRate was changed to 1.0 in the sec-
ond session, executing the query again in the SNAPSHOT isolation shows that the value of that column
was still 0.6862. This new isolation level provided a consistent view of the data as of the beginning of
the transaction.

What if you decide to UPDATE a row in the snapshot session that was updated in a separate session?
Had the snapshot session attempted an UPDATE against CurrencyRateID 8317 instead of a SELECT, an
error would have been raised warning you that an update was made against the original row while in
snapshot isolation mode:

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING98

570Xch03.qxd 11/4/05 1:56 PM Page 98

Msg 3960, Level 16, State 1, Line 2
Cannot use snapshot isolation to access table 'Sales.CurrencyRate'
directly or indirectly in database 'AdventureWorks'.
Snapshot transaction aborted due to update conflict.
Retry transaction.

Blocking
Blocking occurs when one transaction in a database session is locking resources that one or more
other session transactions wants to read or modify. Short term blocking is usually OK, depending on
your application requirements. However, poorly designed applications can cause long term blocking,
unnecessarily keeping locks on resources and blocking other sessions from reading or updating them.

In SQL Server 2005, a blocked process remains blocked indefinitely or until it times-out (based
on SET LOCK_TIMEOUT), the server goes down, the process is killed, the connection finishes its updates,
or something happens to the original transaction to cause it to release its locks on the resource.

Some reasons why long term blocking can happen:

• Without proper indexing, blocking issues can grow. Excessive row locks on a table without an
index can cause SQL Server to acquire a table lock, blocking out other transactions.

• Applications that open a transaction then request user feedback or interaction while the
transaction stays open. This is usually when an end user is allowed to enter data in a GUI
while a transaction remains open. While open, any resources referenced by the transaction
may be held with locks.

• Transactions that BEGIN and then look up data that could have been referenced prior to the
transaction starting.

• Queries that use locking hints inappropriately, for example if the application uses only a few
rows, but uses a table lock hint instead (for a review of locking hints, see Chapter 1, “SELECT,”
in the recipe “Use Table Hints,” which include a list of the available locking hints).

• The application uses long-running transactions that update many rows or many tables
within one transaction (chunking large updates into smaller update transactions can help
improve concurrency).

Identifying and Resolving Blocking Processes
In this recipe, I’ll demonstrate how to identify a blocking process, view the Transact-SQL being exe-
cuted by the process, and then forcefully shut down the active sessions connection (thus rolling
back any open work not yet committed by the blocking session). First, however, let’s go to a quick
background on the commands used in this example...

This recipe demonstrates how to identify blocking processes with the new SQL Server 2005
dynamic management view, sys.dm_os_waiting_tasks. This view is intended to be used instead of
the sp_who system stored procedure, which was used in previous versions of SQL Server.

After identifying the blocking process, this recipe will then use DBCC INPUTBUFFER to view the
query that is being executed—and then as a last resort, forcefully end the process. The syntax for
DBCC INPUTBUFFER is as follows:

DBCC INPUTBUFFER (session_id [, request_id])
[WITH NO_INFOMSGS]

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 99

570Xch03.qxd 11/4/05 1:56 PM Page 99

The arguments for this command are described in Table 3-7:

Table 3-7. DBCC INPUTBUFFER Command Arguments

Argument Description

session_id The session id associated with the active database connection.

request_id The batch to identify within the session.

WITH NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses
informational messages from the DBCC output.

To forcefully shut down a wayward active query session, the KILL command is used. KILL
should only be used if other methods can’t be, including waiting for the process to stop on its own
or shutting down or canceling the operation via the calling application. The syntax for KILL is as fol-
lows:

KILL {spid | UOW} [WITH STATUSONLY]

The arguments for this command are described in Table 3-8:

Table 3-8. KILL Command arguments

Argument Description

spid The session id associated with the active database connection to be shut down.

UOW The unit-of-work identifier for a distributed transaction. This is the unique
identifier of a specific distributed transaction process.

WITH STATUSONLY Some KILL statements take longer to roll back a transaction than others
(depending on the scope of updates being performed by the session). In
order to check the status of a rollback, you can use WITH STATUSONLY to get
an estimate of rollback time.

Beginning the example, the following query is executed in the first query editor session in order
to set up a blocking process:

BEGIN TRAN

UPDATE Production.ProductInventory
SET Quantity = 400
WHERE ProductID = 1 AND
LocationID = 1

Next, in a second Query Editor window, the following query is executed:

BEGIN TRAN

UPDATE Production.ProductInventory
SET Quantity = 406
WHERE ProductID = 1 AND
LocationID = 1

Now in a third query editor window, the following query is executed:

SELECT blocking_session_id, wait_duration_ms, session_id
FROM sys.dm_os_waiting_tasks
WHERE blocking_session_id IS NOT NULL

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING100

570Xch03.qxd 11/4/05 1:56 PM Page 100

This returns:

blocking_session_id wait_duration_ms session_id
------------------- -------------------- ----------
52 158568 53

(1 row(s) affected)

This query identified that session id "52" is blocking session "53." To see what session id 52 is
doing, execute the following query in the same window as the previous query:

DBCC INPUTBUFFER(52)

This returns:

EventType Parameters EventInfo
-------------- ---------- --
Language Event 0 BEGIN TRAN

UPDATE Production.ProductInventory
SET Quantity = 400
WHERE ProductID = 1 AND

LocationID = 1

(1 row(s) affected)

DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

Next, to forcibly shut down the session, execute this query:

KILL 52

This returns:

Command(s) completed successfully.

The second session’s UPDATE is then allowed to proceed once the other session’s connection is
removed.

How It Works
The recipe demonstrated blocking by executing an UPDATE against the Production.ProductInventory
table with a transaction that was opened but not committed. In a different session, a similar query
was executed against the same table and the same row. Because the other connection’s transaction
never committed, the second connection must wait in line indefinitely before it has a chance to
update the record.

In a third Query Editor connection, the sys.dm_os_waiting_tasks dynamic management view
was queried, returning information on the session being blocked by another session:

blocking_session_id wait_duration_ms session_id
------------------- -------------------- ----------
52 158568 53

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 101

570Xch03.qxd 11/4/05 1:56 PM Page 101

This query identified that session id 52 was blocking session 53.
When troubleshooting blocks, you’ll want to see exactly what the blocking spid is doing. To

view this, the recipe used the DBCC INPUTBUFFER function, putting the blocking spid in parentheses.
The DBCC INPUTBUFFER command was used to view the last statement sent by the client connection
to SQL Server.

■Note Sometimes blocks “pile up,” and you must work your way through each blocked process up to the origi-
nal blocking process using the blocking_session_id and session_id columns.

KILL was then used to forcibly end the blocking process, but in a production scenario, you’ll
want to see if the process is valid, and if so, whether it should be allowed to complete, or if it can be
shut down using the application (by the application end-user, for example). Prior to stopping the
process, be sure that you are not stopping a long-running transaction that is critical to the business,
like a payroll update, for example. If there is no way to stop the transaction (for example, the appli-
cation that spawned it cannot commit the transaction), you can use the KILL command (followed
by the spid to terminate).

Using SET LOCK TIMEOUT
When a transaction or statement is being “blocked,” this means it is waiting for a lock on a resource
to be released. This recipe demonstrates the SET LOCK_TIMEOUT option, which specifies how long the
blocked statement should wait for a lock to be released before returning an error.

The syntax is as follows:

SET LOCK_TIMEOUT timeout_period

The timeout period is the number of milliseconds before a locking error will be returned. This
example demonstrates setting up a lock timeout period of one second (1000 milliseconds):

SET LOCK_TIMEOUT 1000

UPDATE Production.ProductInventory
SET Quantity = 406
WHERE ProductID = 1 AND
LocationID = 1

How It Works
In this recipe, the lock timeout is set to 1000 milliseconds (1 second). This setting doesn’t impact
how long a resource can be held by a process, only how long it has to wait for another process to
release access to the resource.

If the lock timeout threshold is exceeded, you’ll get the following error:

Msg 1222, Level 16, State 51, Line 3
Lock request time out period exceeded.
The statement has been terminated.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING102

570Xch03.qxd 11/4/05 1:56 PM Page 102

Deadlocking
Deadlocking occurs when one user session (let’s call it Session 1) has locks on a resource that
another user session (let’s call it Session 2) wants to modify, and Session 2 has locks on resources
that Session 1 needs to modify. Neither Session 1 nor Session 2 can continue until the other releases
the locks, so SQL Server chooses one of the sessions in the deadlock as the “deadlock victim”:

■Note A deadlock victim has its session killed and transactions rolled back.

Some reasons why deadlocks can happen:

• The application accesses tables in different orders. For example, Session 1 updates Customers
and then Orders, whereas Session 2 updates Orders and then Customers. This increases the
chance of two processes deadlocking, rather than them accessing and updating a table in
a serialized (in order) fashion.

• The application uses long-running transactions, updating many rows or many tables within
one transaction. This increases the surface area of rows that can cause deadlock conflicts.

• In some situations, SQL Server issues several row locks, which it later decides must be esca-
lated to a table lock. If these rows exist on the same data pages, and two sessions are both
trying to escalate the lock granularity on the same page, a deadlock can occur.

Identifying Deadlocks with a Trace Flag
If you are having deadlock trouble in your SQL Server instance, this recipe demonstrates how to
make sure deadlocks are logged to the SQL Server Management Studio SQL log appropriately using
the DBCC TRACEON, DBCC TRACEOFF, and DBCC TRACESTATUS commands. These functions enable, disable,
and check the status of trace flags.

■Tip There are other methods in SQL Server 2005 for troubleshooting deadlocks, such as
SQL Profiler, but since this book is Transact-SQL focused, they are out of scope.

Trace flags are used within SQL server to enable or disable specific behaviors for the SQL Server
instance. By default, SQL Server doesn’t return significant logging when a deadlock event occurs.
Using trace flag 1222, information about locked resources and types participating in a deadlock are
returned in an XML format, helping you troubleshoot the event.

The DBCC TRACEON command enables trace flags. The syntax is as follows:

DBCC TRACEON (trace# [,...n][,-1]) [WITH NO_INFOMSGS]

The arguments for this command are described in Table 3-9:

Table 3-9. DBCC TRACEON Command Arguments

Argument Description

trace# One or more trace flag numbers to enable.

-1 When -1 is designated, the specified trace flags are enabled globally.

WITH NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses
informational messages from the DBCC output.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 103

570Xch03.qxd 11/4/05 1:56 PM Page 103

The DBCC TRACESTATUS command is used to check on the status (enabled or disabled) for a spe-
cific flag or flags. The syntax is as follows:

DBCC TRACESTATUS ([[trace# [,...n]] [,] [-1]]) [WITH NO_INFOMSGS]

The arguments for this command are described in Table 3-10:

Table 3-10. DBCC TRACESTATUS Command Arguments

Argument Description

trace# One or more trace flag numbers to check the status of.

-1 Shows globally enabled flags.

WITH NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses
informational messages from the DBCC output.

The DBCC TRACEOFF command disables trace flags. The syntax is as follows:

DBCC TRACEOFF (trace# [,...n] [, -1]) [WITH NO_INFOMSGS]

The arguments for this command are described in Table 3-11:

Table 3-11. DBCC TRACEOFF Command Arguments

Argument Description

trace# One or more trace flag numbers to disable.

-1 Disables the globally set flags.

WITH NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses
informational messages from the DBCC output.

In order to demonstrate this recipe, a deadlock will be simulated. In a new query editor win-
dow, the following query is executed:

SET NOCOUNT ON
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

WHILE 1=1
BEGIN
BEGIN TRAN

UPDATE Purchasing.Vendor
SET CreditRating = 1
WHERE VendorID = 2

UPDATE Purchasing.Vendor
SET CreditRating = 2
WHERE VendorID = 1

COMMIT TRAN
END

In a second query editor window, the following query is executed:

SET NOCOUNT ON
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING104

570Xch03.qxd 11/4/05 1:56 PM Page 104

WHILE 1=1
BEGIN
BEGIN TRAN

UPDATE Purchasing.Vendor
SET CreditRating = 2
WHERE VendorID = 1

UPDATE Purchasing.Vendor
SET CreditRating = 1
WHERE VendorID = 2

COMMIT TRAN
END

After a few seconds, check each query editor window until the following error message appears
on one of the query editors:

Msg 1205, Level 13, State 51, Line 9
Transaction (Process ID 53) was deadlocked on lock
resources with another process and has been chosen
as the deadlock victim. Rerun the transaction.

Looking at the SQL Log in SQL Server Management Studio, the deadlock event was not logged.
A third query editor window is opened and the following command is executed:

DBCC TRACEON (1222, -1)
GO
DBCC TRACESTATUS

DBCC TRACESTATUS shows the active traces running for both the local session and globally:

DBCC execution completed. If DBCC printed error messages, contact your system
administrator.
TraceFlag Global Session
--------- ------ -------
1222 1 0

(1 row(s) affected)

DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

To simulate another deadlock, the “winning” connection query (the one that wasn’t killed in
the deadlock) is restarted, and then the deadlock losing session is restarted, causing another dead-
lock after a few seconds.

After the deadlock has occurred, stop the other executing query. Now the SQL log in SQL
Server Management Studio contains a detailed error message from the deadlock event, includ-
ing the database and object involved, the lock mode, and the Transact-SQL statements involved
in the deadlock.

For example, when deadlocks occur, you’ll want to make sure to find out the queries that are
involved in the deadlock, so you can troubleshoot them accordingly. The following excerpt from the
log shows a deadlocked query:

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 105

570Xch03.qxd 11/4/05 1:56 PM Page 105

07/28/2005 20:20:00,spid20s,Unknown,
UPDATE [Purchasing].[Vendor] set [CreditRating] = @1
WHERE [VendorID]=@2

From this we can tell which query was involved in the deadlocking, which is often enough to
get started with a solution. Other important information you can retrieve by using trace 1222 includes
the login name of the deadlocked process, the client application used to submit the query, and the
isolation level used for its connection (letting you know if that connection is using an isolation level
that doesn’t allow for much concurrency):

... clientapp=Microsoft SQL Server Management Studio -
Query hostname=JOEPROD hostpid=3884
loginname=JOEPROD\Owner isolationlevel=serializable
(4) xactid=223338311933 currentdb=5 lockTimeout=4294967295
clientoption1=673187936 clientoption2=390200

After examining the SQL Log, disable the trace flag in the query editor:

DBCC TRACEOFF (1222, -1)
GO
DBCC TRACESTATUS

How It Works
In this recipe, I simulated a deadlock using two separate queries that updated the same rows repeat-
edly: updating two rows in the opposite order. When a deadlock occurred, the error message was
logged to the query editor window, but nothing was written to the SQL Log.

To enable deadlock logging to the SQL log, the recipe enabled the trace flag 1222. Trace 1222
was introduced in SQL Server 2005 and returns detailed deadlock information to the SQL log.
The -1 flag indicated that trace flag 1222 should be enabled globally for all SQL Server connections.
To turn on a trace flag, DBCC TRACEON was used, with the 1222 flag in parentheses:

DBCC TRACEON (1222, -1)

To verify that the flag was enabled, DBCC TRACESTATUS was executed:

DBCC TRACESTATUS

After encountering another deadlock, the deadlock information was logged in the SQL log.
The flag was then disabled using DBCC TRACEOFF:

DBCC TRACEOFF (1222, -1)

Setting Deadlock Priority
You can increase a query session’s chance of being chosen as a deadlock victim by using the SET
DEADLOCK_PRIORITY command. The syntax for this command is as follows:

SET DEADLOCK_PRIORITY { LOW | NORMAL | HIGH | <numeric-priority> }

The arguments for this command are described in Table 3-12:

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING106

570Xch03.qxd 11/4/05 1:56 PM Page 106

Table 3-12. SET DEADLOCK_PRIORITY Command Arguments

Argument Description

LOW | LOW | makes the current connection the likely deadlock victim.

NORMAL | NORMAL | lets SQL Server decide based on which connection seems least
expensive to roll back.

HIGH | HIGH | lessens the chances of the connection being chosen as the victim,
unless the other connection is also HIGH or has a numeric priority
greater than 5.

<numeric-priority> The numeric priority allows you to use a range of values from -10 to 10,
where -10 is the most likely deadlock victim, up to 10 being the least
likely to be chosen as a victim. The higher number between two
participants in a deadlock wins.

For example, had the first query from the previous recipe used the following deadlock priority
command, it would almost certainly have been chosen as the victim (normally, the default deadlock
victim is the connection SQL Server deems least expensive to cancel and roll back):

SET NOCOUNT ON
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
SET DEADLOCK_PRIORITY LOW

WHILE 1=1
BEGIN
BEGIN TRAN

UPDATE Purchasing.Vendor
SET CreditRating = 1
WHERE VendorID = 2

UPDATE Purchasing.Vendor
SET CreditRating = 2
WHERE VendorID = 1

COMMIT TRAN
END

How It Works
You can also set the deadlock priority to HIGH and NORMAL. HIGH means that unless the other session
is of the same priority, it will not be chosen as the victim. NORMAL is the default behavior, and will be
chosen if the other session is HIGH, but not chosen if the other session is LOW. If both sessions have
the same priority, the least expensive transaction to roll back will be chosen.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 107

570Xch03.qxd 11/4/05 1:56 PM Page 107

570Xch03.qxd 11/4/05 1:56 PM Page 108

Tables

In this chapter, I’ll present recipes that demonstrate table creation and manipulation. Tables are
used to store data in the database and make up the central unit upon which most SQL Server data-
base objects depend. Tables are uniquely named within a database and schema, and contain one or
more columns. Each column has an associated data type that defines the kind of data that can be
stored within it.

As I’ve done in the previous chapters, I’ll provide basic table recipes throughout, and break
them up by more complex functionality as well as new SQL Server 2005 features.

■Caution If you decide to follow along with some of these exercises, consider backing up the AdventureWorks
database beforehand, so that you can restore it back to a clean version once you are finished.

Table Basics
You can create a table using the CREATE TABLE command. The full syntax is quite large, so this
chapter will build upon the different areas of the command as the chapter progresses. The simpli-
fied syntax is as follows:

CREATE TABLE
[database_name . [schema_name] . | schema_name .] table_name

(column_name <data_type> [NULL | NOT NULL] [,...n])

The arguments of this command are described in Table 4-1.

Table 4-1. CREATE TABLE Arguments

Argument Description

database_name . [schema_name] . This argument indicates that you can qualify the new
| schema_name .] table_name table name using the database, schema, and table name

or just the schema and table name.

column_name The name of the column.

data_type The column’s data type (data types are described next).

NULL | NOT NULL The NULL | NOT NULL option refers to the column nullability.
Nullability defines whether a column can contain a NULL
value. A NULL value means that the value is unknown. It
does not mean that the column is zero, blank, or empty.

109

C H A P T E R 4

■ ■ ■

570Xch04.qxd 11/4/05 2:03 PM Page 109

CHAPTER 4 ■ TABLES110

Each column requires a defined data type. The data type defines and restricts the type of data
the column can hold. Table 4-2 details the system data types available in SQL Server 2005:

Table 4-2. SQL Server 2005 Data Types

Data Type Value Range

bigint Whole number from –2^63 (-9,223,372,036,854,775,808) through
2^63-1(9,223,372,036,854,775,807).

binary Fixed-length binary data with a maximum of 8000 bytes.

bit Whole number either 0 or 1.

char Fixed-length character data with maximum length of 8000 characters.

datetime Date and time from January 1, 1753, through December 31, 9999. (1753 was
the year following the adoption of the Gregorian calendar, which produced
a difference in days to the previous calendar of 12 days. Beginning with the
year 1753 sidesteps all sorts of calculation problems.) Decimal or numeric
(no difference between the two) range from –10^38 +1 through 10^38-1.
Decimal uses precision and scale. Precision determines maximum total
number of decimal digits both left and right of the decimal point. Scale
determines maximum decimal digits to the right of the decimal point.

float Floating precision number from - 1.79E + 38 to -2.23E - 38, 0 and 2.23E -38
to 1.79E + 38.

image Variable-length binary data from 0 through 2^31 –1. This data type will be
removed in a future version of SQL Server. Instead of using this data type,
use varbinary(max) instead.

int Whole number from –2^31 (-2,147,483,648) through 2^31-1 (2,147,483,647).

money Monetary value between –2^63 (-922,377,203,685,477.5808) through
2^63-1 (+922,337,203,685,477.5807).

nchar Fixed-length Unicode character data with a maximum length of 4000
characters.

ntext Variable-length Unicode character data with a maximum length of
1,073,741,823 characters. This data type will be removed in a future version
of SQL Server. Instead of using this data type, use nvarchar(max) instead.

nvarchar Variable-length Unicode character data with maximum length of 4000
characters. SQL Server 2005 has also added a “max” option which allows
you to store up to 2^31-1bytes. This new option allows you to use the
regular data types instead of SQL Server 2000’s text, ntext, and image.

real Floating precision number from -1.18E - 38, 0 and 1.18E - 38 to 3.40E + 38.

smalldatetime Date and time from January 1, 1900, through June 6, 2079.

smallint Whole number from –32,768 through 32,767.

smallmoney Monetary value between –214,748.3648 through +214,748.3647.

sql_variant A data type which can store all data types except text, ntext, timestamp,
varchar(max), nvarchar(max), varbinary(max), xml, image, user-defined
types, and another sql_variant.

table The table data type can’t be used in CREATE TABLE as a column type.
Instead it is used for table variables or for storage of rows for a table-
valued function.

text Variable-length data with maximum length of 2,147,483,647 characters.
This data type will be removed in a future version of SQL Server. Instead of
using this data type, use varchar(max) instead.

timestamp Database-wide unique number that is updated when a row is modified.

570Xch04.qxd 11/4/05 2:03 PM Page 110

Data Type Value Range

tinyint Whole number from 0 through 255.

uniqueidentifier Stores a 16-byte GUID (globally-unique identifier).

varbinary Variable-length data with a maximum of 8000 bytes. SQL Server 2005 has
also added a max value, which allows you to store up to 2^31-1bytes. This
new option allows you to use the regular data types instead of SQL Server
2000’s text, ntext, and image.

varchar Variable-length character data with a maximum length of 8,000 characters.
SQL Server 2005 has also added a max value, which allows you to store up
to 2^31-1bytes. This new option allows you to use the regular data types
instead of SQL Server 2000’s text, ntext, and image.

xml New to SQL Server 2005, this data type stores native xml data.

Some basic guidelines when selecting data types for your columns:

• Store character data types in character type columns (char, nchar, varchar, nvarcht), numeric
data in numeric type columns (int, bigint, tinyint, smallmoney, money, decimal\numeric,
float), and date and/or time data in smalldate or datetime data types. For example, although
you can store numeric and datetime information in character-based fields, doing so may slow
down your performance when attempting to utilize the column values within mathematical
or other Transact-SQL functions.

• If your character data type columns use the same or a similar number of characters consis-
tently, use fixed length data types (char, nchar). Fixed length columns consume the same
amount of storage for each row, whether or not they are fully utilized. If, however, you expect
that your character columns length will vary significantly from row to row, use variable length
data types (varchar, nvarchar). Variable length columns have some storage overhead tacked
on, however, they will only consume storage for characters used. Only use char or nchar if you
are sure that you will have consistent lengths in your strings, and that most of your string
values will be present.

• Choose the smallest numeric or character data type required to store the data. You may be
tempted to select data types for columns that use more storage than is necessary, resulting in
wasted storage. Conserving column space, particularly for very large tables, can increase the
number of rows that can fit on an 8KB data page, reduce total storage needed in the database,
and potentially improve index performance (smaller index keys).

A table can have up to 1024 columns, but can’t exceed a total of 8060 actual used bytes per
row. A data page size is 8KB, with a 96-byte header that stores information about the page. This byte
limit is not applied to the large object data types varchar(max), nvarchar(max), varbinary(max),
text, image, or xml.

Another exception to the 8060-byte limit rule is that SQL Server 2005 introduces “over-flow”
functionality for regular varchar, nvarchar, varbinary, and sql_variant data types. If the lengths of
these individual data types do not exceed 8000 bytes, but the combined width of more than one of
these columns together in a table exceeds the 8060 byte row limit, the largest width column will be
dynamically moved to another 8KB page and replaced in the original table with a 24-byte pointer.
Row “overflow” provides extra flexibility for managing large row sizes, but you should still limit your
potential maximum variable data type length in your table definition when possible, as reliance on
page overflow may decrease query performance as more data pages need to be retrieved by a single
query.

CHAPTER 4 ■ TABLES 111

570Xch04.qxd 11/4/05 2:03 PM Page 111

Creating a Table
In this recipe, I create a simple table called EducationType owned by the Person schema:

CREATE TABLE Person.EducationType
(EducationTypeID int NOT NULL,
EducationTypeNM varchar(40) NOT NULL)

GO

How It Works
In this example, a very simple, two-column table was created within the AdventureWorks database
using the Person schema. The first line of code shows the schema and table name:

CREATE TABLE Person.EducationType

The column definition follows on the second line of code within the parentheses:

(EducationTypeID int NOT NULL,
EducationTypeNM varchar(40) NOT NULL)

The first column name, EducationTypeID, was defined with an integer data type and NOT NULL
specified (meaning that NULL values are not allowed for this column). The second column was the
EducationTypeNM column name with a data type of varchar(40) and the NOT NULL option.

In the next recipe, you’ll learn how to add additional columns to an existing table.

Adding a Column to an Existing Table
After a table is created, you can modify it using the ALTER TABLE command. Like CREATE TABLE, this
chapter will demonstrate the ALTER TABLE and CREATE TABLE functionality in task-based parts. In
this recipe, I demonstrate how to add a column to an existing table.

The specific syntax for adding a column is as follows:

ALTER TABLE table_name
ADD { column_name data_type } NULL

Table 4-3 details the arguments of this command.

Table 4-3. ALTER TABLE ADD Column Arguments

Argument Description

table_name The table name you are adding the column to.

column_name The name of the column.

data_type The column’s data type.

This example demonstrates adding a column to an existing table (not that using this method
adds the column to last column position in the table definition):

ALTER TABLE HumanResources.Employee
ADD Latest_EducationTypeID int NULL

How It Works
ALTER TABLE was used to make modifications to an existing table. The first line of code designated
the table to have the column added to:

CHAPTER 4 ■ TABLES112

570Xch04.qxd 11/4/05 2:03 PM Page 112

The second line of code defined the new column and data type:

ADD Latest_EducationTypeID int NULL

When adding columns to a table that already has data in it, you will be required to add the column
with NULL values allowed. You can’t specify that the column be NOT NULL, because you must first add
the column to the table before you can put a value in that column for existing rows.

Changing a Column Definition
In addition to adding new columns to a table, you can also use ALTER TABLE to modify an existing
column’s definition.

The syntax for doing this is as follows:

ALTER TABLE table_name
ALTER COLUMN column_name
[type_name] [NULL | NOT NULL] [COLLATE collation_name]

Table 4-4 details the arguments of this command.

Table 4-4. ALTER TABLE...ALTER COLUMN Arguments

Argument Description

table_name The table name containing the column to be modified.

column_name The name of the column to modify.

type_name The column’s data type to modify.

NULL | NOT NULL The nullability option to modify.

COLLATE collation_name The column collation (for character-based data types) to modify.
Collations define three settings: a code page used to store non-Unicode
character data types, the sort order for non-Unicode character data types,
and the sort order for Unicode data types. Collations are reviewed later
on in the chapter.

This example demonstrates how to change an existing table column’s nullability and data type.
The Gender column in the HumanResources.Employee table is originally NOT NULL and the original
data type of the LoginID column is nvarchar(256):

-- Make it Nullable
ALTER TABLE HumanResources.Employee
ALTER COLUMN Gender nchar(1) NULL

-- Expanded nvarchar(256) to nvarchar(300)
ALTER TABLE HumanResources.Employee
ALTER COLUMN LoginID nvarchar(300) NOT NULL

How It Works
In this recipe, two columns were modified in the HumanResources.Employee table. The ALTER COLUMN
modified the Gender column to allow NULL values, although the data type remained the same:

ALTER COLUMN Gender nchar(1) NULL

In the second ALTER TABLE, the LoginID column’s data type of nvarchar(256) was expanded to
nvarchar(300):

CHAPTER 4 ■ TABLES 113

570Xch04.qxd 11/4/05 2:03 PM Page 113

There are limitations to the kind of column changes that can be made. For example, you can’t alter
a column that is used in an index unless the column data type is varchar, nvarchar, or varbinary—
and even then, the new size of that data type must be larger than the original size. You also can’t use
ALTER COLUMN on columns referenced in a primary key or foreign key constraint. The full list of other
column modification limitations (and there are quite a few) are documented in SQL Server 2005
Books Online.

Creating a Computed Column
A column defined within a CREATE TABLE or ALTER TABLE statement can be derived from a freestanding
or column-based calculation. Computed columns are sometimes useful when a calculation must be
recomputed on the same data repeatedly in referencing queries. A computed column is based on an
expression defined when you create or alter the table, and is not physically stored in the table unless
you use the SQL Server 2005 PERSISTED keyword.

In this recipe, I’ll give a demonstration of creating a computed column, as well as presenting
ways to take advantage of SQL Server 2005’s new PERSISTED option.

The syntax for adding a computed column either by CREATE or ALTER TABLE is as follows:

column_name AS computed_column_expression
[PERSISTED]

The column_name is the name of the new column. The computed_column_expression is the
calculation you wish to be performed in order to derive the column’s value. Adding the PERSISTED
keyword actually causes the results of the calculation to be physically stored.

In this example, a new, calculated column is added to an existing table:

ALTER TABLE Production.TransactionHistory
ADD CostPerUnit AS (ActualCost/Quantity)

The previous example created a calculated column called CostPerUnit. This next query takes
advantage of it, returning the highest CostPerUnit for quantities over 10:

SELECT TOP 1 CostPerUnit, Quantity, ActualCost
FROM Production.TransactionHistory
WHERE Quantity > 10
ORDER BY ActualCost DESC

This returns:

CostPerUnit Quantity ActualCost
--------------------- ----------- ---------------------
132.0408 13 1716.5304

(1 row(s) affected)

The next example creates a PERSISTED calculated column, which means the calculated data will
actually be physically stored in the database (but still automatically calculated by SQL Server):

CREATE TABLE HumanResources.CompanyStatistic
(CompanyID int NOT NULL,
StockTicker char(4) NOT NULL,
SharesOutstanding int NOT NULL,
Shareholders int NOT NULL,
AvgSharesPerShareholder AS (SharesOutStanding/Shareholders) PERSISTED)

CHAPTER 4 ■ TABLES114

570Xch04.qxd 11/4/05 2:03 PM Page 114

How It Works
The first example added a new, non-persisted column called CostPerUnit to the
Production.TransactionHistory table, allowing it to be referenced in SELECT queries like a regular
table column:

ADD CostPerUnit AS (ActualCost/Quantity)

Computed columns can’t be used within a DEFAULT or FOREIGN KEY constraint. A calculated col-
umn can’t be explicitly updated or inserted into (since its value is always derived).

Computed columns can be used within indexes, but must meet certain requirements, such as
being deterministic (always returning the same result for a given set of inputs) and precise (not
containing float values).

The second example demonstrated using a computed column in a CREATE TABLE command:

AvgSharesPerShareholder AS (SharesOutStanding/Shareholders) PERSISTED

Unlike the first example, adding the PERSISTED keyword means that the data is actually physically
stored in the database. Any changes made to columns that are used in the computation will cause
the stored value to be updated again. The stored data still can’t be modified directly—the data is still
computed. Storing the data does mean, however, that the column can be used to partition a table (see
later in the chapter for more on partitioning), or can be used in an index with an imprecise (float-based)
value—unlike its non-persisted version.

Dropping a Table Column
You can use ALTER TABLE to drop a column from an existing table.

The syntax for doing so is as follows:

ALTER TABLE table_name
DROP COLUMN column_name

Table 4-5 details the arguments of this command.

Table 4-5. ALTER TABLE...DROP COLUMN Arguments

Argument Description

table_name The table name containing the column to be dropped.

column_name The name of the column to drop from the table.

This recipe demonstrates how to drop a column from an existing table:

ALTER TABLE HumanResources.Employee
DROP COLUMN Latest_EducationTypeID

How It Works
The first line of code designated the table for which the column would be dropped:

ALTER TABLE HumanResources.Employee

The second line designates the column to be dropped from the table (along with any data
stored in it):

DROP COLUMN Latest_EducationTypeID

CHAPTER 4 ■ TABLES 115

570Xch04.qxd 11/4/05 2:03 PM Page 115

You can drop a column only if it isn’t being used in a PRIMARY KEY, FOREIGN KEY, UNIQUE, or CHECK
CONSTRAINT (these constraint types are all covered in this chapter). You also can’t drop a column
being used in an index or that has a DEFAULT value bound to it.

Reporting Table Information
The system stored procedure sp_help returns information about the specified table, including the
column definitions, IDENTITY column, ROWGUIDCOL, filegroup location, indexes (and keys), CHECK,
DEFAULT, and FOREIGN KEY constraints, and referencing views.

The syntax for this system stored procedure is as follows:

sp_help [[@objname =] ' name ']

This example demonstrates how to report detailed information about the object or table (the
results aren’t shown here as they include several columns and multiple result sets):

EXEC sp_help 'HumanResources.Employee'

How It Works
The sp_help system stored procedure returns several different result sets with useful information regard-
ing the specific object (in this example, it returns data about the table HumanResources.Employee.
This system stored procedure can be used to gather information regarding other database object
types as well.

Dropping a Table
In this recipe, I’ll demonstrate how to drop a table. The DROP command uses the following syntax:

DROP TABLE schema.tablename

The DROP TABLE takes a single argument, the name of the table. In this example, the
HumanResources.EWCompany table is dropped:

DROP TABLE HumanResources.EWCompany

How It Works
The DROP command removes the table definition and its data permanently from the database. In
this example, the DROP command would have failed had another table been referencing the table’s
primary key in a foreign key constraint. If there are foreign key references, you must drop them first
before dropping the primary key table.

Collation Basics
If your database requires international or multilingual data storage, your default SQL Server instance
settings may not be sufficient for the task. This recipe describes how to view and manipulate code
pages and sort order settings using collations. SQL Server collations determine how data is sorted,
compared, presented, and stored.

SQL Server 2005 allows two types of collations: Windows or SQL. Windows collations are the
preferred selection for SQL Server 2005, as they offer more options and match the same support
provided with Microsoft Windows locales. SQL collations are used in earlier versions of SQL Server
and are maintained for backward compatibility.

CHAPTER 4 ■ TABLES116

570Xch04.qxd 11/4/05 2:03 PM Page 116

In addition to SQL Server and database level collation settings, you can also configure individual
columns with their own collation settings. If you need to store character data in a column that uses
a different default collation than your database or server-level collation, you use the COLLATE command
within the column definition.

The Windows or SQL collation can be explicitly defined during a CREATE TABLE or ALTER TABLE
operation for columns that use the varchar, char, nchar, and nvarchar data types.

Collations define three settings:

• A code page used to store non-Unicode character data types

• The sort order for non-Unicode character data types

• The sort order for Unicode data types

Your SQL Server instance’s default collation was determined during the install, where you
either used the default-selected collation, or explicitly changed it. The next two recipes will demon-
strate how to view information about the collations on your SQL Server instance, as well as define
an explicit collation for a table column.

Viewing Collation Metadata
You can determine your SQL Server instance’s default collation by using the SERVERPROPERTY func-
tion and the Collation option. For example:

SELECT SERVERPROPERTY('Collation')

This returns (for this example’s SQL Server instance):

SQL_Latin1_General_CP1_CI_AS

(1 row(s) affected)

In addition to the SQL Server instance’s default collation settings, your database can also have
a default collation defined for it. You can use the DATABASEPROPERTYEX system function to determine
a database’s default collation. For example, this next query determines the default database collation
for the AdventureWorks database (first parameter is database name, second is the Collation option to
be viewed):

SELECT DATABASEPROPERTYEX ('AdventureWorks' , 'Collation')

This returns the following collation information for the database (which in this example is
going to be the same as the SQL Server instance default until explicitly changed):

SQL_Latin1_General_CP1_CI_AS

(1 row(s) affected)

■Note See Chapter 8 for more information on the SERVERPROPERTY and DATABASEPROPERTYEX functions.

But what do the results of these collation functions mean? To determine the actual settings
that a collation applies to the SQL Server instance or database, you can query the table function
fn_helpcollations for a more user-friendly description. In this example, the collation description is
returned from the SQL_Latin1_General_CP1_CI_AS collation:

CHAPTER 4 ■ TABLES 117

570Xch04.qxd 11/4/05 2:03 PM Page 117

SELECT description
FROM fn_helpcollations()
WHERE name = 'SQL_Latin1_General_CP1_CI_AS'

This returns the collation description:

description
--
Latin1-General, case-insensitive, accent-sensitive, kanatype-insensitive, width-
insensitive for Unicode Data, SQL Server Sort Order 52 on Code Page 1252 for non-Unicode
Data

The results show a more descriptive break-down of the collation’s code page, case sensitivity,
sorting, and Unicode options.

How It Works
This recipe demonstrated how to view the default collation for a SQL Server instance and for spe-
cific databases. We also reviewed how to list the collation’s code page, case sensitivity, sorting, and
Unicode options using fn_helpcollations. Once you know what settings your current database
environment is using, you may decide to apply different collations to table columns when interna-
tionalization is required. This is demonstrated in the next recipe.

Designating a Column's Collation
In this recipe, I’ll demonstrate how to designate the collation of a table column using the ALTER TABLE
command:

ALTER TABLE Production.Product
ADD IcelandicProductName nvarchar(50) COLLATE Icelandic_CI_AI,
UkrainianProductName nvarchar(50) COLLATE Ukrainian_CI_AS

How It Works
In this recipe, two new columns were added to the Production.Product table. The query began by
using ALTER TABLE and the table name:

ALTER TABLE Production.Product

After that, ADD was used, followed by the new column name, data type, COLLATE keyword and
collation name (for a list of collation names, use the fn_helpcollations function described earlier):

ADD IcelandicProductName nvarchar(50) COLLATE Icelandic_CI_AI,
UkrainianProductName nvarchar(50) COLLATE Ukrainian_CI_AS

Be aware that when you define different collations within the same database or across databases
in the same SQL Server instance, you can sometimes encounter compatibility issues. Cross-collation
joins don’t always work, and data transfers can result in lost or misinterpreted data.

Keys
A primary key is a special type of constraint, which identifies a single column or set of columns,
which in turn uniquely identifies all rows in the table.

CHAPTER 4 ■ TABLES118

570Xch04.qxd 11/4/05 2:03 PM Page 118

Constraints place limitations on the data that can be entered into a column or columns. A primary
key enforces entity integrity, meaning that rows are guaranteed to be unambiguous and unique. Best
practices for database normalization dictate that every table should have a primary key. A primary
key provides a way to access the record, and ensures that the key is unique. A primary key column
can’t contain NULL values.

Only one primary key is allowed for a table and when a primary key is designated, an underly-
ing table index is automatically created, defaulting to a clustered index (index types are reviewed in
Chapter 5). You can also explicitly designate a nonclustered index be created when the primary key
is created instead, if you have a better use for the single clustered index allowed for a table. An index
created on primary key counts against the total indexes allowed for a table, the limit being one clus-
tered index and up to 249 nonclustered indexes.

To designate a primary key on a single column, use the following syntax in the column definition:

(column_name <data_type> [NULL | NOT NULL] PRIMARY KEY)

The token PRIMARY KEY is included at the end of the column definition.
A composite primary key is the unique combination of more than one column in the table. In order

to define a composite primary key, you must use a table constraint instead of a column constraint.
Setting a single column as the primary key within the column definition is called a column constraint.
Defining the primary key (single or composite) outside of the column definition is referred to as
a table constraint.

The syntax for a table constraint for a primary key is as follows:

CONSTRAINT constraint_name PRIMARY KEY
(column [ASC | DESC] [,...n])

Table 4-6 details the arguments of this command.

Table 4-6. Table Constraint,Primary Key Arguments

Argument Description

constraint_name The unique name of the constraint to be added.

column [ASC | DESC] [,...n] The column or columns that make up the primary key must
uniquely identify a single row in the table (no two rows can
have the same values for all the specified columns). The ASC
(ascending) and DESC (descending) options define the sorting
order of the columns within the clustered or nonclustered
index.

Foreign key constraints establish and enforce relationships between tables and help maintain
referential integrity, which means that every value in the foreign key column must exist in the corre-
sponding column for the referenced table.

Foreign key constraints also help define domain integrity, in that they define the range of
potential and allowed values for a specific column or columns. Domain integrity defines the validity
of values in a column.

The basic syntax for a foreign key constraint is:

CONSTRAINT constraint_name
FOREIGN KEY (column_name)
REFERENCES [schema_name.] referenced_table_name [(ref_column)]

CHAPTER 4 ■ TABLES 119

570Xch04.qxd 11/4/05 2:03 PM Page 119

Table 4-7 details the arguments of this command.

Table 4-7. Foreign Key Constraint Arguments

Argument Description

constraint_name The name of the foreign key constraint.

column_name The column in the current table referencing the
primary key column of the primary key table.

[schema_name.] referenced_table_name The table name containing the primary key being
referenced by the current table.

ref_column The primary key column being referenced.

The next few recipes will demonstrate primary and foreign key usage in action.

Creating a Table with a Primary Key
In this recipe, I’ll create a table with a single column primary key:

CREATE TABLE Person.CreditRating(
CreditRatingID int NOT NULL PRIMARY KEY,
CreditRatingNM varchar(40) NOT NULL)

GO

In the previous example, a primary key was defined on a single column. You can, however, create
a composite primary key.

In this example, a new table is created with a PRIMARY KEY table constraint formed from two
columns:

CREATE TABLE Person.EmployeeEducationType (
EmployeeID int NOT NULL,
EducationTypeID int NOT NULL,
CONSTRAINT PK_EmployeeEducationType
PRIMARY KEY (EmployeeID, EducationTypeID))

How It Works
In the first example of the recipe, I created the Person.CreditRating table with a single column primary
key. The column definition had the PRIMARY KEY keywords following the column definition:

CreditRatingID int NOT NULL PRIMARY KEY,

The primary key column was defined at the column level, whereas the second example defines
the primary key at the table level:

CONSTRAINT PK_EmployeeEducationType
PRIMARY KEY (EmployeeID, EducationTypeID))

The constraint definition followed the column definitions. The constraint was named, and
then followed by the constraint type (PRIMARY KEY), and the columns forming the primary key in
parentheses.

CHAPTER 4 ■ TABLES120

570Xch04.qxd 11/4/05 2:03 PM Page 120

Adding a Primary Key Constraint to an Existing Table
In this recipe, I’ll demonstrate how to add a primary key to an existing table using ALTER TABLE and
ADD CONSTRAINT:

ALTER TABLE Person.EducationType
ADD CONSTRAINT PK_EducationType
PRIMARY KEY (EducationTypeID)

How It Works
In this recipe, ALTER TABLE was used to add a new primary key to an existing table that doesn’t
already have one defined. The first line of code defined the table to add the primary key to:

ALTER TABLE Person.EducationType

The second line of code defined the constraint name:

ADD CONSTRAINT PK_EducationType

On the last line of code in the previous example, the constraint type PRIMARY KEY was declared, fol-
lowed by the column defining the key column in parentheses:

PRIMARY KEY (EducationTypeID)

Creating a Table with a Foreign Key Reference
In this recipe, I’ll demonstrate how to create a table with a foreign key. In this example, a foreign key
reference is included in a CREATE TABLE statement:

CREATE TABLE Person.EmployeeCreditRating(
EmployeeCreditRating int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,
CreditRatingID int NOT NULL,
CONSTRAINT FK_EmployeeCreditRating_Employee
FOREIGN KEY(EmployeeID)
REFERENCES HumanResources.Employee(EmployeeID),
CONSTRAINT FK_EmployeeCreditRating_CreditRating
FOREIGN KEY(CreditRatingID)
REFERENCES Person.CreditRating(CreditRatingID)

)

How It Works
In this example, a table was created with two foreign key references. The first four lines of code
defined the table name and its three columns:

CREATE TABLE Person.EmployeeCreditRating(
EmployeeCreditRating int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,
CreditRatingID int NOT NULL,

On the next line, the name of the first foreign key constraint is defined (must be a unique name
in the current database):

CONSTRAINT FK_EmployeeCreditRating_Employee

The constraint type is defined, followed by the table’s column (which will be referencing an
outside primary key table):

CHAPTER 4 ■ TABLES 121

570Xch04.qxd 11/4/05 2:03 PM Page 121

The referenced table is defined, with that table’s primary key column defined in parentheses:

REFERENCES HumanResources.Employee(EmployeeID),

A second foreign key is then created for the CreditRatingID column, which references the primary
key of the Person.CreditRating table:

CONSTRAINT FK_EmployeeCreditRating_CreditRating
FOREIGN KEY(CreditRatingID)
REFERENCES Person.CreditRating(CreditRatingID)

)

As I demonstrated in this example, a table can have multiple foreign keys—and each foreign
key can be based on a single or multiple (composite) key that references more then one column
(referencing composite primary keys or unique indexes). Also, although the column names needn’t
be the same between a foreign key reference and a primary key, the primary key/unique columns
must have the same data type. Also, you can’t define foreign key constraints that reference tables
across databases or servers.

Adding a Foreign Key to an Existing Table
Using ALTER TABLE and ADD CONSTRAINT, you can add a foreign key to an existing table. The syntax
for doing so is as follows:

ALTER TABLE table_name
ADD CONSTRAINT constraint_name
FOREIGN KEY (column_name)
REFERENCES [schema_name.] referenced_table_name [(ref_column)]

Table 4-8 details the arguments of this command.

Table 4-8. ALTER TABLE...ADD CONSTRAINT Arguments

Argument Description

table_name The name of the table receiving the new foreign key
constraint.

constraint_name The name of the foreign key constraint.

column_name The column in the current table referencing the
primary key column of the primary key table.

[schema_name.] referenced_table_name The table name containing the primary key being
referenced by the current table.

ref_column The primary key column being referenced.

This example adds a foreign key constraint to an existing table:

ALTER TABLE Person.EmergencyContact
ADD CONSTRAINT FK_EmergencyContact_Employee
FOREIGN KEY (EmployeeID)
REFERENCES HumanResources.Employee (EmployeeID)

How It Works
This example demonstrated adding a foreign key constraint to an existing table. The first line of
code defined the table where the foreign key would be added:

CHAPTER 4 ■ TABLES122

570Xch04.qxd 11/4/05 2:03 PM Page 122

The second line defines the constraint name:

ADD CONSTRAINT FK_EmergencyContact_Employee

The third line defines the column from the table that will reference the primary key of the primary
key table:

FOREIGN KEY (EmployeeID)

The last line of code defines the primary key table, and primary key column name:

REFERENCES HumanResources.Employee (EmployeeID)

Creating Recursive Foreign Key References
A foreign key column in a table can be defined to reference its own primary/unique key. This tech-
nique is often used to represent recursive relationships, as I’ll demonstrate in this next example.

In this example, a table is created with a foreign key reference to its own primary key:

CREATE TABLE HumanResources.Company
(CompanyID int NOT NULL PRIMARY KEY,
ParentCompanyID int NULL,
CompanyName varchar(25) NOT NULL,
CONSTRAINT FK_Company_Company
FOREIGN KEY (ParentCompanyID)
REFERENCES HumanResources.Company(CompanyID))

GO

A row specifying CompanyID and CompanyName is added to the table:

INSERT HumanResources.Company
(CompanyID, CompanyName)
VALUES(1, 'MegaCorp')

A second row is added, this time referencing the ParentCompanyID, which is equal to the previ-
ously inserted row:

INSERT HumanResources.Company
(CompanyID, ParentCompanyID, CompanyName)
VALUES(2, 1, 'Medi-Corp')

A third row insert is attempted, this time specifying a ParentCompanyID for a CompanyID that
does not exist in the table:

INSERT HumanResources.Company
(CompanyID, ParentCompanyID, CompanyName)
VALUES(3, 8, 'Tiny-Corp')

The following error message is returned:

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the FOREIGN KEY SAME TABLE constraint
"FK_Company_Company". The conflict occurred in database "AdventureWorks", table
"Company", column 'CompanyID'.
The statement has been terminated.

How It Works
In this example, the HumanResources.Company table was created with the CompanyID column defined as
the primary key, and with a foreign key column defined on ParentCompanyID that references CompanyID:

CHAPTER 4 ■ TABLES 123

570Xch04.qxd 11/4/05 2:03 PM Page 123

CONSTRAINT FK_Company_Company
FOREIGN KEY (ParentCompanyID)
REFERENCES HumanResources.Company(CompanyID)

The foreign key column ParentCompanyID must be nullable in order to handle a parent-child
hierarchy. A company with a NULL parent is at the top of the company hierarchy (which means it
doesn’t have a parent company). After the table was created, three new rows were inserted.

The first row inserted a company without designating the ParentCompanyID (which means the
value for the ParentCompanyID column for this company is NULL):

INSERT HumanResources.Company
(CompanyID, CompanyName)
VALUES(1, 'MegaCorp')

The second insert created a company that references the first MegaCorp Company defined in
the previous INSERT statement. The value of “1” was valid in the ParentCompanyID column, as it refers
to the previously inserted row:

INSERT HumanResources.Company
(CompanyID, ParentCompanyID, CompanyName)
VALUES(2, 1, 'Medi-Corp')

The third insert tries to create a new company with a ParentCompanyID of 8, which does not
exist in the table:

INSERT HumanResources.Company
(CompanyID, ParentCompanyID, CompanyName)
VALUES(3, 8, 'Tiny-Corp')

Because there is no company with a CompanyID of 8 in the table, the foreign key constraint pre-
vents the row from being inserted and reports an error. The row is not inserted.

Allowing Cascading Changes in Foreign Keys
Foreign keys restrict the values that can be placed within the foreign key column or columns. If the
associated primary key or unique value does not exist in the reference table, the INSERT or UPDATE to
the table row fails. This restriction is bi-directional in that if an attempt is made to delete a primary
key, but a row referencing that specific key exists in the foreign key table, an error will be returned.
All referencing foreign key rows must be deleted prior to deleting the primary key or unique value in
question, otherwise an error will be raised.

SQL Server 2005 provides an automatic mechanism for handling changes in the primary
key/unique key column, called cascading changes.

In previous recipes, cascading options weren’t used. You can allow cascading changes for
deletions or updates using ON DELETE and ON UPDATE. The basic syntax for cascading options are as
follows:

[ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
[ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
[NOT FOR REPLICATION]

CHAPTER 4 ■ TABLES124

570Xch04.qxd 11/4/05 2:03 PM Page 124

Table 4-9 details the arguments of this command.

Table 4-9. Cascading Change Arguments

Argument Description

NO ACTION The default setting for a new foreign key is NO ACTION, meaning if an
attempt to delete a row on the primary key/unique column occurs
when there is a referencing value in a foreign key table, the attempt will
raise an error and prevent the statement from executing.

CASCADE For ON DELETE, if CASCADE is chosen, foreign key rows referencing the
deleted primary key are also deleted. For ON UPDATE, foreign key rows
referencing the updated primary key are also updated.

SET NULL New in SQL Server 2005, if the primary key row is deleted, the foreign
key referencing row(s) can also be set to NULL (assuming NULL values are
allowed for that foreign key column).

SET DEFAULT New in SQL Server 2005, if the primary key row is deleted, the foreign
key referencing row(s) can also be set to a DEFAULT value. The new
cascade SET DEFAULT option assumes the column has a default value set
for a column. If not, and the column is nullable, a NULL value is set.

NOT FOR REPLICATION The NOT FOR REPLICATION option is used to prevent foreign key
constraints from being enforced by SQL Server Replication Agent
processes (allowing data to arrive via replication potentially out-of-
order from the primary key data).

In this example, a table is created using cascading options:

CREATE TABLE Person.EmployeeEducationType(
EmployeeEducationTypeID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,
EducationTypeID int NULL,
CONSTRAINT FK_EmployeeEducationType_Employee
FOREIGN KEY(EmployeeID)
REFERENCES HumanResources.Employee(EmployeeID)
ON DELETE CASCADE,
CONSTRAINT FK_EmployeeEducationType_EducationType
FOREIGN KEY(EducationTypeID)
REFERENCES Person.EducationType(EducationTypeID)
ON UPDATE SET NULL)

How It Works
In this recipe, one of the foreign key constraints uses ON DELETE CASCADE in a CREATE TABLE definition:

CONSTRAINT FK_EmployeeEducationType_Employee
FOREIGN KEY(EmployeeID)
REFERENCES HumanResources.Employee(EmployeeID)
ON DELETE CASCADE

Using this cascade option, if a row is deleted on the HumanResources.Employee table, any refer-
encing EmployeeID in the Person.EmployeeEducationType table will also be deleted.

A second foreign key constraint was also defined in the CREATE TABLE using ON UPDATE:

CONSTRAINT FK_EmployeeEducationType_EducationType
FOREIGN KEY(EducationTypeID)
REFERENCES Person.EducationType(EducationTypeID)
ON UPDATE SET NULL

CHAPTER 4 ■ TABLES 125

570Xch04.qxd 11/4/05 2:03 PM Page 125

If an update is made to the primary key of the Person.EducationType table, the EducationTypeID
column in the referencing Person.EmployeeEducationType table will be set to NULL.

Surrogate Keys
Surrogate keys, also called artificial keys, can be used in place of primary keys and have no inherent
business/data meaning. Surrogate keys are independent of the data itself and are used to provide
a single unique record locator in the table. A big advantage to surrogate primary keys is that they
don’t need to change. If you use business data to define your key (natural key), such as first name
and last name, these values can change over time and change arbitrarily. Surrogate keys don’t have
to change, as their only meaning is within the context of the table itself.

The next few recipes will demonstrate methods for generating and managing surrogate keys
using IDENTITY property columns and uniqueidentifier data type columns.

The IDENTITY column property, allows you to define an automatically incrementing numeric
value for a single column in a table. An IDENTITY column is most often used for surrogate primary
key columns, as they are more compact than non-numeric data type natural keys. When a new row
is inserted into a table with an IDENTITY column property, the column is inserted with a unique
incremented value. The data type for an IDENTITY column can be int, tinyint, smallint, bigint,
decimal, or numeric data type. Tables may only have one identity column defined and the defined
IDENTITY column can’t have a DEFAULT or rule settings associated with it.

The basic syntax for an IDENTITY property column is as follows:

[IDENTITY [(seed ,increment)] [NOT FOR REPLICATION]]

The IDENTITY property takes two values: seed and increment. Seed defines the starting number
for the IDENTITY column, and increment defines the value added to the previous IDENTITY column value
to get the value for the next row added to the table. The default for both seed and increment is 1.The
NOT FOR REPLICATION option preserves the original values of the Publisher IDENTITY column data when
replicated to the Subscriber, retaining any values referenced by foreign key constraints (preventing
the break of relationships between tables that may use the IDENTITY column as a primary key and
foreign key reference).

Unlike the IDENTITY column, which guarantees uniqueness within the defined table, the ROWGUIDCOL
property ensures a very high level of uniqueness (Microsoft claims that it can be unique for every data-
base networked in the world). This is important for those applications which merge data from multiple
sources, where the unique values cannot be duplicated across tables. This unique ID is stored in
a uniqueidentifier data type and is generated by the NEWID system function.

The ROWGUIDCOL is a marker designated in a column definition, allowing you to query a table
not only by the column’s name, but by the ROWGUIDCOL designator, as this recipe demonstrates.

Which surrogate key data type is preferred? Although using a uniqueidentifier data type with
a NEWID value for a primary key may be more unique, it takes up more space than an integer based
IDENTITY column. If you only care about unique values within the table, you may be better off using an
integer surrogate key, particularly for very large tables. However if uniqueness is an absolute require-
ment, with the expectation that you may be merging data sources in the future, uniqueidentifier with
NEWID may be your best choice.

The next set of recipes will demonstrate IDENTITY and ROWGUIDCOL properties in action.

Using the IDENTITY Property During Table Creation
In this example, I’ll demonstrate how to create a new table with a primary key IDENTITY column.
The IDENTITY keyword is placed after the nullability option but before the PRIMARY KEY keywords:

CHAPTER 4 ■ TABLES126

570Xch04.qxd 11/4/05 2:03 PM Page 126

CREATE TABLE HumanResources.CompanyAuditHistory
(CompanyAuditHistory int NOT NULL IDENTITY(1,1) PRIMARY KEY,
CompanyID int NOT NULL ,
AuditReasonDESC varchar(50) NOT NULL,
AuditDT datetime NOT NULL DEFAULT GETDATE())

Two rows are inserted into the new table:

INSERT HumanResources.CompanyAuditHistory
(CompanyID, AuditReasonDESC, AuditDT)
VALUES
(1, 'Bad 1099 numbers.', '6/1/2005')

INSERT HumanResources.CompanyAuditHistory
(CompanyID, AuditReasonDESC, AuditDT)
VALUES
(1, 'Missing financial statement.', '7/1/2005')

Even though the CompanyAuditHistory column wasn’t explicitly populated with the two inserts,
querying the table shows that the IDENTITY property on the column caused the values to be populated:

SELECT CompanyAuditHistory, AuditReasonDESC
FROM HumanResources.CompanyAuditHistory

This returns:

CompanyAuditHistory AuditReasonDESC
------------------- --
1 Bad 1099 numbers.
2 Missing financial statement.

(2 row(s) affected)

How It Works
In this example, an IDENTITY column was defined for a new table. The IDENTITY property was designated
after the column definition, but before the PRIMARY KEY definition:

CompanyAuditHistory int NOT NULL IDENTITY(1,1) PRIMARY KEY

After creating the table, two rows were inserted without explicitly inserting the CompanyAuditHistory
column value. After selecting from the table, these two rows were automatically assigned values based
on the IDENTITY property, beginning with a seed value of 1, and incrementing by 1 for each new row.

Using DBCC CHECKIDENT to View and Correct IDENTITY
Seed Values
In this recipe, I’ll show you how to check the current IDENTITY value of a column for a table by using
the DBCC CHECKIDENT command. DBCC CHECKIDENT checks the current maximum value for the speci-
fied table. The syntax for this command is as follows:

DBCC CHECKIDENT
(
'table_name'

[, {
NORESEED | { RESEED [, new_reseed_value] }

}

CHAPTER 4 ■ TABLES 127

570Xch04.qxd 11/4/05 2:03 PM Page 127

]
)
[WITH NO_INFOMSGS]

Table 4-10 details the arguments of this command.

Table 4-10. CHECKIDENT Arguments

Argument Description

table_name The name of the table to check IDENTITY values for.

NORESEED | RESEED NORESEED means that no action is taken other then to report the
maximum identity value. RESEED specifies what the current IDENTITY
value should be.

new_reseed_value The new current IDENTITY value.

WITH NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses
informational messages from the DBCC output.

In this example, the current table IDENTITY value is checked:

DBCC CHECKIDENT('HumanResources.CompanyAuditHistory', NORESEED)

This returns:

Checking identity information: current identity value '2', current column value '2'.
DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

This second example resets the seed value to a higher number:

DBCC CHECKIDENT ('HumanResources.CompanyAuditHistory', RESEED, 50)

This returns:

Checking identity information: current identity value '2',
current column value '50'.
DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

How It Works
The first example demonstrated checking the current IDENTITY value using the DBCC CHECKIDENT
and the NORESEED option. The second example demonstrated actually resetting the IDENTITY value
to a higher value. Any future inserts will begin from that value.

Why make such a change? DBCC CHECKIDENT with RESEED is often used to fill primary key gaps. If
you deleted rows from the table that had the highest value for the IDENTITY column, the used iden-
tity values will not be reused the next time records are inserted into the table. For example if the last
row inserted had a value of “22,” and you deleted that row, the next inserted row would be “23.” Just
because the value is deleted doesn’t mean the SQL Server will backfill the gap. If you need to re-use
key values (which is generally OK to do in the test-phase of your database—as in production you
really shouldn’t reuse primary key values), you can use DBCC CHECKIDENT to re-use numbers after
a large row deletion.

CHAPTER 4 ■ TABLES128

570Xch04.qxd 11/4/05 2:03 PM Page 128

Using the ROWGUIDCOL Property
First, a table is created using ROWGUIDCOL identified after the column data type definition, but before
the default definition (populated via the NEWID system function):

CREATE TABLE HumanResources.BuildingAccess
(BuildingEntryExitID uniqueidentifier ROWGUIDCOL DEFAULT NEWID(),
EmployeeID int NOT NULL,
AccessTime datetime NOT NULL,
DoorID int NOT NULL)

Next, a row is inserted into the table:

INSERT HumanResources.BuildingAccess
(EmployeeID, AccessTime, DoorID)
VALUES (32, GETDATE(), 2)

The table is then queried, using the ROWGUIDCOL designator instead of the original
BuildingEntryExitID column name (although the original name can be used too—ROWGUIDCOL just
offers a more generic means of pulling out the identifier in a query):

SELECT ROWGUIDCOL,
EmployeeID,
AccessTime,
DoorID

FROM HumanResources.BuildingAccess

This returns:

BuildingEntryExitID EmployeeID AccessTime DoorID
------------------------------------ ----------- ----------------------- -----------
4E7B0E4B-BE1C-44B6-80E0-E852B775940C 32 2005-07-04 15:29:39.930 2

(1 row(s) affected)

How It Works
The recipe started by creating a new table with a uniqueidentifier data type column:

BuildingEntryExitID uniqueidentifier ROWGUIDCOL DEFAULT NEWID(),

The column was bound to a default of the function NEWID—which returns a unique,
uniqueidentifier data type value. In addition to this, the ROWGUIDCOL property was assigned.
Only one ROWGUIDCOL column can be defined for a table. You can still, however, have multiple
uniqueidentifier columns in the table.

A SELECT query then used ROWGUIDCOL to return the uniqueidentifier column, although the
column name could have been used instead.

Constraints
Constraints are used by SQL Server to enforce column data integrity. Both primary and foreign keys
are forms of constraints. Other forms of constraints used for a column include:

• UNIQUE constraints, which enforce uniqueness within a table on non-primary key columns.

• DEFAULT constraints, which can be used when you don’t know the value of a column in a row when
it is first inserted into a table, but still wish to populate that column with an anticipated value.

mat and values allowed for a column.

CHAPTER 4 ■ TABLES 129

570Xch04.qxd 11/4/05 2:03 PM Page 129

The next few recipes will discuss how to create and manage these constraint types.

Creating a Unique Constraint
You can only have a single primary key defined on a table. If you wish to enforce uniqueness on
other non-primary key columns, you can use a UNIQUE constraint. A unique constraint, by definition,
creates an alternate key.

Unlike a PRIMARY KEY constraint, you can create multiple UNIQUE constraints for a single table
and are also allowed to designate a UNIQUE constraint for columns that allow NULL values (although
only one NULL value is allowed for a single column key, per table). Like primary keys, UNIQUE con-
straints enforce entity integrity by ensuring that rows can be uniquely identified.

The UNIQUE constraint creates an underlying table index when it is created. This index can be
CLUSTERED or NONCLUSTERED, although you can’t create the index as CLUSTERED if a clustered index
already exists for the table.

As with PRIMARY KEY constraints, you can define a UNIQUE constraint when a table is created
either on the column definition, or at the table constraint level.

The syntax for defining a UNIQUE constraint during a table’s creation is as follows:

(column_name <data_type> [NULL | NOT NULL] UNIQUE)

This example demonstrates creating a table with both a PRIMARY KEY and UNIQUE key defined:

CREATE TABLE HumanResources.EmployeeAnnualReview(
EmployeeAnnualReviewID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,
AnnualReviewSummaryDESC varchar(900) NOT NULL UNIQUE)

You can apply a unique constraint across multiple columns by creating a table constraint:

CONSTRAINT constraint_name UNIQUE
(column [ASC | DESC] [,...n])

Table 4-11 details the arguments of this command.

Table 4-11. UNIQUE Constraint Arguments

Argument Description

constraint_name The unique name of the constraint to be added.

column [ASC | DESC] [,...n] The values stored in the column(s) must uniquely identify
a single row in the table (i.e. no two rows can have the same
values for all the specified columns). The ASC (ascending)
and DESC (descending) options define the sorting order of the
columns within the clustered or nonclustered index.

In this example, a new table is created with a UNIQUE constraint based on three table columns:

CREATE TABLE Person.EmergencyContact (
EmergencyContactID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,
ContactFirstNM varchar(50) NOT NULL,
ContactLastNM varchar(50) NOT NULL,
ContactPhoneNBR varchar(25) NOT NULL,
CONSTRAINT UNQ_EmergencyContact_FirstNM_LastNM_PhoneNBR
UNIQUE (ContactFirstNM, ContactLastNM, ContactPhoneNBR))

CHAPTER 4 ■ TABLES130

570Xch04.qxd 11/4/05 2:03 PM Page 130

How It Works
In the first example, a UNIQUE constraint was defined in the CREATE TABLE for a specific column:

AnnualReviewSummaryDESC varchar(900) NOT NULL UNIQUE

The UNIQUE keyword follows the column definition and indicates that a UNIQUE constraint is to
be created on the column AnnualReviewSummaryDESC.

In the second example, a UNIQUE constraint is created based on three table columns defined in
CREATE TABLE. The constraint is defined after the column definitions. The first line of code defines the
constraint name:

CONSTRAINT UNQ_EmergencyContact_FirstNM_LastNM_PhoneNBR

The second line of code defines the constraint type (UNIQUE) and a list of columns that make
up the constraint in parentheses:

UNIQUE (ContactFirstNM, ContactLastNM, ContactPhoneNBR)

Adding a UNIQUE Constraint to an Existing Table
Using ALTER TABLE, you can add a UNIQUE constraint to an existing table. The syntax is as follows:

ALTER TABLE table_name
ADD CONSTRAINT constraint_name
UNIQUE (column [ASC | DESC] [,...n])

Table 4-12 details the arguments of this command.

Table 4-12. ALTER TABLE...ADD CONSTRAINT (Unique) Arguments

Argument Description

table_name The name of the table receiving the new unique key index.

constraint_name The unique name of the constraint to be added.

column [ASC | DESC] [,...n] The values stored in the column(s) must uniquely identify
a single row in the table (i.e. no two rows can have the same
values for all the specified columns). The ASC (ascending) and
DESC (descending) options define the sorting order of the
columns within the clustered or nonclustered index.

This example demonstrates adding a UNIQUE key to the Production.Culture table:

ALTER TABLE Production.Culture
ADD CONSTRAINT UNQ_Culture_Name
UNIQUE (Name)

How It Works
In this example, the first line of code defined the table to be modified:

ALTER TABLE Production.Culture

CHAPTER 4 ■ TABLES 131

570Xch04.qxd 11/4/05 2:03 PM Page 131

The second line of code defined the name of the constraint:

ADD CONSTRAINT UNQ_Culture_Name

The third line of code defined the constraint type, followed by the column name it will apply to:

UNIQUE (Name)

The columns specified in the UNIQUE constraint definition can’t have duplicate values occurring
in the table, otherwise the operation will fail with an error that a duplicate key value was found.

Using CHECK Constraints
CHECK constraint is used to define what format and values are allowed for a column. The syntax of
the CHECK constraint is as follows:

CHECK (logical_expression)

If the logical expression of CHECK evaluates to TRUE, the row will be inserted. If the CHECK con-
straint expression evaluates to FALSE, the row insert will fail.

This example demonstrates adding a CHECK constraint to a CREATE TABLE definition. The GPA
column’s values will be restricted to a specific numeric range:

CREATE TABLE Person.EmployeeEducationType(
EmployeeEducationTypeID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,
EducationTypeID int NULL,
GPA numeric(4,3) NOT NULL CHECK (GPA > 2.5 AND GPA <=4.0))

In the previous example, the CHECK constraint expression was defined at the column constraint
level. A CHECK constraint can also be defined at the table constraint level—where you are allowed to
reference multiple columns in the expression, as this next example demonstrates:

CREATE TABLE Person.EmployeeEducationType(
EmployeeEducationTypeID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,
EducationTypeID int NULL,
GPA numeric(4,3) NOT NULL,
CONSTRAINT CK_EmployeeEducationType
CHECK (EducationTypeID > 1 AND GPA > 2.5 AND GPA <=4.0))

How It Works
In the first example, a CHECK column constraint was placed against the GPA column in the
Person.EmployeeEducationType table:

GPA numeric(4,3) NOT NULL CHECK (GPA > 2.5 AND GPA <=4.0)

Only a GPA column value greater than 2.5 or less than/equal to 4.0 is allowed in the table—
anything else out of that range will cause any INSERT or UPDATE to fail.

In the second example, the CHECK table constraint evaluates two table columns:

CHECK (EducationTypeID > 1 AND GPA > 2.5 AND GPA <=4.0)

This CHECK constraint requires that the EducationTypeID value must be greater than 1, in addi-
tion to the GPA requirements.

CHAPTER 4 ■ TABLES132

570Xch04.qxd 11/4/05 2:03 PM Page 132

Adding a CHECK Constraint to an Existing Table
Like other constraint types, you can add a CHECK constraint to an existing table using ALTER TABLE
and ADD CONSTRAINT. The syntax is as follows:

ALTER TABLE table_name
WITH CHECK | WITH NOCHECK
ADD CONSTRAINT constraint_name
CHECK (logical_expression)

Table 4-13 details the arguments of this command.

Table 4-13. ALTER TABLE...ADD CONSTRAINT (Check) Arguments

Argument Description

table_name The name of the table receiving the new CHECK constraint.

CHECK | WITH NOCHECK With the CHECK option (the default), existing data is validated against
the new CHECK constraint. NOCHECK skips validation of new data, limiting
the constraint to validation of new values (inserted or updated).

constraint_name The name of the CHECK constraint.

logical_expression The logical expression used to restrict values that are allowed in the
column.

In this example, a new CHECK request is added to the Person.ContactType table:

ALTER TABLE Person.ContactType WITH NOCHECK
ADD CONSTRAINT CK_ContactType
CHECK (Name NOT LIKE '%assistant%')

How It Works
A new constraint was added to the Person.ContactType table to not allow any name like “assistant.”
The first part of the ALTER TABLE statement included WITH NOCHECK:

ALTER TABLE Person.ContactType WITH NOCHECK

Had this statement been executed without WITH NOCHECK, it would have failed because there are
already rows in the table with “assistant” in the name. Adding WITH NOCHECK means that existing values
are ignored going forward, and only new values are validated against the CHECK constraint.

■Caution Using WITH NOCHECK may cause problems later on, as you cannot depend on the data in the table
conforming to the constraint.

The next part of the statement defined the new constraint name:

ADD CONSTRAINT CK_ContactType

The constraint type CHECK was used followed by the logical expression to limit the Name column’s
contents:

CHECK (Name NOT LIKE '%assistant%')

CHAPTER 4 ■ TABLES 133

570Xch04.qxd 11/4/05 2:03 PM Page 133

Disabling and Enabling a Constraint
The previous exercise demonstrated using NOCHECK to ignore existing values that disobey the new
constraints rule when adding a new constraint to the table. Constraints are used to maintain data
integrity, although sometimes you may need to relax the rules while performing a one-off data import
or non-standard business operation.

NOCHECK can also be used to disable a CHECK or FOREIGN KEY constraint, allowing you to
insert rows that disobey the constraints rules.

In the setup of this example, an insert is attempted to the Purchasing.VendorContact table:

INSERT Purchasing.VendorContact
(VendorID, ContactID, ContactTypeID)
VALUES (93, 643, 888)

The insert fails, returning the following error message:

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the FOREIGN KEY constraint
"FK_VendorContact_ContactType_ContactTypeID". The conflict occurred in database
"AdventureWorks", table "ContactType", column 'ContactTypeID'.
The statement has been terminated.

Next, the foreign key constraint that caused the previous error message will be disabled using
NOCHECK:

ALTER TABLE Purchasing.VendorContact
NOCHECK CONSTRAINT FK_VendorContact_ContactType_ContactTypeID

The insert is then attempted again:

INSERT Purchasing.VendorContact
(VendorID, ContactID, ContactTypeID)
VALUES (93, 643, 888)

This time it succeeds:

(1 row(s) affected)

We can then DELETE the newly inserted row, so as not to leave data integrity issues once the
constraint is re-enabled:

DELETE Purchasing.VendorContact
WHERE VendorID = 93 AND
ContactID = 643 AND
ContactTypeID = 888

To re-enable checking of the foreign key constraint, CHECK is used in an ALTER TABLE statement:

ALTER TABLE Purchasing.VendorContact
CHECK CONSTRAINT FK_VendorContact_ContactType_ContactTypeID

To disable or enable all CHECK and FOREIGN KEY constraints for the table, you should use the ALL
keyword, as this example demonstrates:

-- disable checking on all constraints
ALTER TABLE Purchasing.VendorContact
NOCHECK CONSTRAINT ALL

CHAPTER 4 ■ TABLES134

570Xch04.qxd 11/4/05 2:03 PM Page 134

-- enable checking on all constraints
ALTER TABLE Purchasing.VendorContact
CHECK CONSTRAINT ALL

■Caution Disabling all CHECK and FOREIGN KEY constraints for a table should only be performed when
absolutely necessary. Re-enable all constraints when you are finished.

How It Works
In this recipe, an insert was attempted against Purchasing.VendorContact with
a ContactTypeID that didn’t exist in the primary key table. The insert causes a conflict with the
FK_VendorContact_ContactType_ContactTypeID foreign key constraint.

To disable the constraint from validating new values, ALTER TABLE and NOCHECK CONSTRAINT
were used:

ALTER TABLE Purchasing.VendorContact
NOCHECK CONSTRAINT FK_VendorContact_ContactType_ContactTypeID

After disabling the constraint with NOCHECK, the ContactTypeID value was then allowed to be
inserted, even though it doesn’t exist in the primary key table.

The recipe finished by re-enabling the constraint again, and deleting the value just inserted
(using CHECK instead of NOCHECK):

ALTER TABLE Purchasing.VendorContact
CHECK CONSTRAINT FK_VendorContact_ContactType_ContactTypeID

The next example demonstrated disabling all foreign key and check constraints on a table
using the ALL keyword:

NOCHECK CONSTRAINT ALL

All constraints for the table were then re-enabled using the following code:

CHECK CONSTRAINT ALL.

Using a DEFAULT Constraint During Table Creation
If you don’t know the value of a column in a row when it is first inserted into a table, you can use
a DEFAULT constraint to populate that column with an anticipated or non-NULL value. The syntax for
designating the default value in the column definition of a CREATE TABLE is as follows:

DEFAULT constant_expression

The constant_expression is the default value you wish to populate into the column when the
column’s value isn’t explicitly specified in an INSERT.

This example demonstrates setting the default value of the EducationTypeID column to “1”:

CREATE TABLE Person.EmployeeEducationType(
EmployeeEducationTypeID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,
EducationTypeID int NOT NULL DEFAULT 1,
GPA numeric(4,3) NOT NULL)

CHAPTER 4 ■ TABLES 135

570Xch04.qxd 11/4/05 2:03 PM Page 135

How It Works
In this example, the default value of EducationTypeID was set to a default of “1.” The keyword
DEFAULT was placed after the column definition and followed by the default value (which must
match the data type of the column):

EducationTypeID int NOT NULL DEFAULT 1

Since this column has a DEFAULT value, if the value isn’t explicitly inserted with an INSERT statement,
the value “1” will be inserted instead of a NULL value.

Adding a DEFAULT Constraint to an Existing Table
Like other constraint types, you can add a default constraint to an existing table column using ALTER
TABLE and ADD CONSTRAINT. The syntax for doing this is as follows:

ALTER TABLE table_name
ADD CONSTRAINT constraint_name
DEFAULT default_value
FOR column_name

Table 4-14 details the arguments of this command.

Table 4-14. ALTER TABLE...ADD CONSTRAINT (Default) Arguments

Argument Description

table_name The name of the table receiving the new DEFAULT constraint.

constraint_name The name of the DEFAULT constraint.

default_value The default value to be used for the column.

column_name The name of the column the default is being applied to.

This example demonstrates adding a default to an existing table column:

ALTER TABLE HumanResources.Company
ADD CONSTRAINT DF_Company_ParentCompanyID
DEFAULT 1
FOR ParentCompanyID

How It Works
In this example, a new default was applied to an existing table column. The first line of ALTER TABLE
defines the impacted table:

ALTER TABLE HumanResources.Company

The second line of the statement adds a constraint and defines the constraint name:

ADD CONSTRAINT DF_Company_ParentCompanyID

The third line of code defines the constraint type, DEFAULT, followed by the value to use for the
default:

DEFAULT 1

Lastly, the column that the default is applied to is used in the FOR clause:

FOR ParentCompanyID

CHAPTER 4 ■ TABLES136

570Xch04.qxd 11/4/05 2:03 PM Page 136

Dropping a Constraint from a Table
Now that I’ve reviewed several constraints that can be added to a table, in this recipe I’ll demon-
strate how to now drop a constraint using ALTER TABLE and DROP CONSTRAINT. The basic syntax for
dropping a constraint is as follows:

ALTER TABLE table_name
DROP CONSTRAINT constraint_name

The table_name designates the table you are dropping the constraint from, and the constraint_name
designates the name of the constraint to be dropped.

In this example, a default constraint is dropped from the HumanResources.Company table:

ALTER TABLE HumanResources.Company
DROP CONSTRAINT DF_Company_ParentCompanyID

How It Works
In the first line of code in this example, the table to drop the constraint from is designated:

ALTER TABLE HumanResources.Company

In the second line of code, the name of the constraint to drop is designated:

DROP CONSTRAINT DF_Company_ParentCompanyID

Notice that the constraint type wasn’t needed, and that only the constraint name was used. To
find out the constraint name, use the system stored procedure sp_help.

Temporary Tables and Table Variables
Temporary tables are defined just like regular tables, only they are automatically stored in the tempdb
database (no matter which database context you create them in). Temporary tables are often used
in the following scenarios:

• As a replacement to cursors. For example, instead of using a Transact-SQL cursor to loop
through a result set, performing tasks based on each row, you can populate a temporary
table instead. Using a WHILE loop, you can loop through each row in the table, perform the
action for the specified row, and then delete the row from the temp table.

• As an incremental storage of result sets. For example, let’s say you have a single SELECT query
that performs a join against ten tables. Sometimes queries with several joins can perform
badly. One technique to try is to break down the large query into smaller, incremental queries.
Using temporary tables, you can create intermediate result sets based on smaller queries, instead
of trying to execute a single, very large and multi-joined query.

• As a temporary, low-overhead lookup table. For example, imagine that you are using a query
that takes several seconds to execute, but only returns a small result set. You wish to use the
small result set in several areas of your stored procedure, but each time you reference it, you
incur the query execution time overhead. To resolve this, you can execute the query just once
within the procedure, populating the temporary table. Then you can reference the temporary
table in multiple places in your code, without incurring the extra overhead.

CHAPTER 4 ■ TABLES 137

570Xch04.qxd 11/4/05 2:03 PM Page 137

There are two different temporary table types: global and local. Local temporary tables are
prefixed with a single # sign, and global temporary tables with a double ## sign.

Local temporary tables are available for use by the current user connection that created them.
Multiple connections can create the same-named temporary table for local temporary tables with-
out encountering conflicts. The internal representation of the local table is given a unique name, so
as not to conflict with other temporary tables with the same name created by other connections in
the tempdb database. Local temporary tables are dropped by using the DROP statement or are auto-
matically removed from memory when the user connection is closed.

Global temporary tables have a different scope from local temporary tables. Once a connection
creates a global temporary table, any user with proper permissions access to the current database they
are in can access the table. Unlike local temporary tables, you can’t create simultaneous versions of
a global temporary table, as this will generate a naming conflict. Global temporary tables are removed
from SQL Server if explicitly dropped by DROP TABLE. They are also automatically removed after the
connection that created it exits and the global temporary table is no longer referenced by other con-
nections. As an aside, I rarely see global temporary tables used in the field. When a table must be
shared across connections, a real table is created, instead of a global temporary table. Nonetheless,
Microsoft offers this as a choice anyway.

Temporary tables are much maligned by the DBA community due to performance issues—
some of these complaints are valid, and some aren’t. It is true that temporary tables may cause
unwanted disk overhead in tempdb, locking of tempdb during their creation, as well as cause stored
procedure recompilations, when included within a stored procedure’s definition (a recompilation is
when an execution plan of the stored procedure is recreated instead of being reused).

Microsoft recommends table variables as a replacement of temporary tables when the data set
is not very large (which is a vague instruction—in the end it is up to you to test which table types work
best in your environment). A table variable is a data type that can be used within a Transact-SQL batch,
stored procedure, or function—and is created and defined similarly to a table, only with a strictly
defined lifetime scope.

Unlike regular tables or temporary tables, table variables can’t have indexes or FOREIGN KEY
constraints added to them. Table variables do allow some constraints to be used in the table defini-
tion (PRIMARY KEY, UNIQUE, CHECK).

Reasons to use table variables include:

• Well scoped. The lifetime of the table variable only lasts for the duration of the batch, function,
or stored procedure.

• Shorter locking periods (because of the tighter scope).

• Less recompilation when used in stored procedures.

There are drawbacks to using table variables though. Table variable performance suffers when
the result set becomes too large (defined by your hardware, database design, and query). When
encountering performance issues, be sure to test all alternative solutions and don’t necessarily
assume that one option (temporary tables) is less desirable than others (table variables).

Using a Temporary Table for Multiple Lookups Within a Batch
In this example, I’ll demonstrate creating a local temporary table that is then referenced multiple
times in a batch of queries. This technique can be helpful if the query used to generate the lookup
values takes several seconds to execute. Rather then execute the SELECT query multiple times, we
can query the pre-aggregated temp table instead:

CREATE TABLE #ProductCostStatistics
(ProductID int NOT NULL PRIMARY KEY,
AvgStandardCost money NOT NULL,
ProductCount int NOT NULL)

CHAPTER 4 ■ TABLES138

570Xch04.qxd 11/4/05 2:03 PM Page 138

INSERT #ProductCostStatistics
(ProductID, AvgStandardCost, ProductCount)
SELECT ProductID,

AVG(StandardCost) AvgStandardCost,
COUNT(ProductID) Rowcnt

FROM Production.ProductCostHistory
GROUP BY ProductID
GO

SELECT TOP 3 *
FROM #ProductCostStatistics
ORDER BY AvgStandardCost ASC

SELECT TOP 3 *
FROM #ProductCostStatistics
ORDER BY AvgStandardCost DESC

SELECT AVG(AvgStandardCost) Average_of_AvgStandardCost
FROM #ProductCostStatistics

DROP TABLE #ProductCostStatistics

This returns three result sets from the temporary table:

ProductID AvgStandardCost ProductCount
----------- --------------------- ------------
873 0.8565 1
922 1.4923 1
870 1.8663 1

ProductID AvgStandardCost ProductCount
----------- --------------------- ------------
749 2171.2942 1
750 2171.2942 1
751 2171.2942 1

Average_of_AvgStandardCost

423.0001

How It Works
In this recipe, a temporary table called #ProductCostStatistics was created. The table had rows
inserted into it like a regular table, and then the temporary table was queried three times (again,
just like a regular table), and then dropped. The table was created and queried with the same syntax
as a regular table, only the temporary table name was prefixed with a # sign. In situations where the
initial population query execution time takes too long to execute, this is one technique to consider.

CHAPTER 4 ■ TABLES 139

570Xch04.qxd 11/4/05 2:03 PM Page 139

Creating a Table Variable to Hold a Temporary Result Set
Table variables were first demonstrated in Chapter 2, in the “Using the OUTPUT clause with INSERT,
UPDATE, DELETE” recipe. There you learned to use them to hold the results of the OUTPUT command

The syntax to creating a table variable is similar to creating a table, only the DECLARE keyword is
used and the table name is prefixed with an @ symbol:

DECLARE @TableName TABLE
(column_name <data_type> [NULL | NOT NULL] [,...n])

In this example, a table variable is used in a similar fashion to the temporary table of the previ-
ous recipe. This example demonstrates how the implementation differs (including how you don’t
explicitly DROP the table):

DECLARE @ProductCostStatistics TABLE
(ProductID int NOT NULL PRIMARY KEY,
AvgStandardCost money NOT NULL,
ProductCount int NOT NULL)

INSERT @ProductCostStatistics
(ProductID, AvgStandardCost, ProductCount)
SELECT ProductID,

AVG(StandardCost) AvgStandardCost,
COUNT(ProductID) Rowcnt

FROM Production.ProductCostHistory
GROUP BY ProductID

SELECT TOP 3 *
FROM @ProductCostStatistics
ORDER BY ProductCount

This returns:

ProductID AvgStandardCost ProductCount
----------- --------------------- ------------
710 3.3963 1
709 3.3963 1
731 352.1394 1

How It Works
This recipe used a table variable in much the same way as the previous recipe did with temporary
tables. There are important distinctions between the two recipes however.

First, this time a table variable was defined using DECLARE @Tablename TABLE instead of CREATE
TABLE. Secondly, unlike the temporary table recipe, there isn’t a GO after each statement, as tempo-
rary tables can only be scoped within the batch, procedure, or function.

In the next part of the recipe, you’ll use inserts and selects from the table variable as you would
a regular table, only this time using the @tablename format:

INSERT @ProductCostStatistics
...

SELECT TOP 3 *
FROM @ProductCostStatistics
...

No DROP TABLE was necessary at the end of the example, as the table variable is eliminated from
memory after the end of the batch/procedure/function execution.

CHAPTER 4 ■ TABLES140

570Xch04.qxd 11/4/05 2:03 PM Page 140

Manageability for Very Large Tables
These next few recipes will demonstrate methods for managing very large tables (with millions of
rows, for example). Specifically, we’ll discuss SQL Server 2005’s table-partitioning functionality, and
then file group placement.

New to SQL Server 2005, table partitioning provides you with a built-in method of horizontally
partitioning data within a table and/or index while still maintaining a single logical object.
Horizontal partitioning involves keeping the same number of columns in each partition, but reduc-
ing the number of rows. Partitioning can ease management of very large tables and/or indexes,
decrease load time, improve query time, and allow smaller maintenance windows. These next few
recipes in this section will demonstrate how to use new SQL Server 2005 Transact-SQL commands to
create, modify, and manage partitions and partition database objects.

■Note SQL Server 2005 partitioning is only available in the Enterprise and Developer edition.

We’ll also cover filegroup placement. Database data files belong to filegroups. Every database
has a primary filegroup and you can add additional filegroups as needed. Adding new filegroups to
a database is often used for very large databases (VLDB) as they can ease backup administration
and potentially improve performance by distributing data over multiple arrays. I’ll demonstrate
placing a table on a specific filegroup in the last recipe of this chapter.

Before diving in to the partitioning-related recipes, I’ll discuss the two new commands CREATE
PARTITION FUNCTION and CREATE PARTITION SCHEME.

The CREATE PARTITION FUNCTION maps columns to partitions based on the value of a specified
column. For example, if you are evaluating a column with a datetime data type, you can partition
data to separate filegroups based on the year or month.

The basic syntax for CREATE PARTITION FUNCTION is:

CREATE PARTITION FUNCTION partition_function_name(input_parameter_type)
AS RANGE [LEFT | RIGHT]
FOR VALUES ([boundary_value [,...n]])

Table 4-15 details the arguments of this command.

Table 4-15. CREATE PARTITION FUNCTION Arguments

Argument Description

partition_function_name The partition function name.

input_parameter_type The data type of the partitioning column. You cannot use large
value data types (text, ntext, image, xml, timestamp,
varchar(max), varbinary(max), nvarchar(max)), CLR user-
defined data types, or aliased data types. If you wished to
partition table data by a datetime column, you would
designate datetime for the input_parameter_type.

LEFT | RIGHT You also have a choice of LEFT or RIGHT, which defines which
boundary the defined values in the boundary_value argument
belong to (see the upcoming How It Works section for a review
of LEFT versus RIGHT).

[boundary_value [,...n]] This argument defines the range of values in each partition.
You can defined up to 999 partitions (however that many isn’t
recommended due to potential performance concerns). The
number of values you choose in this argument amounts to
a total of n + 1 partitions (again, see the How It Works section
for a more in depth explanation).

CHAPTER 4 ■ TABLES 141

570Xch04.qxd 11/4/05 2:03 PM Page 141

Once a partition function is created, it can be used with one or more partition schemes. A par-
tition scheme maps partitions defined in a partition function to actual filegroups.

The basic syntax for CREATE PARTITION SCHEME is as follows:

CREATE PARTITION SCHEME partition_scheme_name
AS PARTITION partition_function_name
[ALL] TO ({ file_group_name | [PRIMARY] } [,...n])

Table 4-16 details the arguments of this command.

Table 4-16. CREATE PARTITION SCHEME Arguments

Argument Description

partition_scheme_name The name of the partition scheme.

partition_function_name The name of the partition function that the
scheme will bind to.

ALL If ALL is designated, all partitions will map to the
filegroup designated in the file_group_name
argument.

{ file_group_name | [PRIMARY] } [,...n] The filegroup or filegroups assigned to each
partition. When PRIMARY is designated, the
partition will be stored on the primary filegroup.

Implementing Table Partitioning
In this recipe, I’ll show you how to:

• Create a filegroup or filegroups to hold the partitions.

• Add files to each filegroup used in the partitioning.

• Use the CREATE PARTITION FUNCTION command to determine how the table’s data will be
partitioned.

• Use the CREATE PARTITION SCHEME command to bind the PARTITION FUNCTION to the specified
filegroups.

• Create the table, binding a specific partitioning column to a PARTITION SCHEME.

The recipe creates a table called Sales.WebSiteHits, which is used to track each hit to a hypothetical
website. In this scenario, the table is expected to become very large, very fast. Because of the potential
size, queries may not perform as well as they could, and backup operations against the entire data-
base take longer than the current maintenance window allows.

The data from this table will be partitioned horizontally, which means that groups of rows
based on a selected column (in this case HitDate) will be mapped into separate underlying physical
files on the disk. The first part of this example demonstrates adding the new filegroups to the
AdventureWorks database:

ALTER DATABASE AdventureWorks
ADD FILEGROUP hitfg1

ALTER DATABASE AdventureWorks
ADD FILEGROUP hitfg2

ALTER DATABASE AdventureWorks
ADD FILEGROUP hitfg3

CHAPTER 4 ■ TABLES142

570Xch04.qxd 11/4/05 2:03 PM Page 142

ALTER DATABASE AdventureWorks
ADD FILEGROUP hitfg4

Next, for each new filegroup created, a new database file is added to it:

ALTER DATABASE AdventureWorks
ADD FILE
(NAME = awhitfg1,

FILENAME = 'c:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\aw_hitfg1.ndf',

SIZE = 1MB
)
TO FILEGROUP hitfg1
GO

ALTER DATABASE AdventureWorks
ADD FILE
(NAME = awhitfg2,

FILENAME = 'c:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\aw_hitfg2.ndf',

SIZE = 1MB
)
TO FILEGROUP hitfg2
GO

ALTER DATABASE AdventureWorks
ADD FILE
(NAME = awhitfg3,

FILENAME = 'c:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\aw_hitfg3.ndf',

SIZE = 1MB
)
TO FILEGROUP hitfg3
GO

ALTER DATABASE AdventureWorks
ADD FILE
(NAME = awhitfg4,

FILENAME = 'c:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\aw_hitfg4.ndf',

SIZE = 1MB
)
TO FILEGROUP hitfg4
GO

Now that the filegroups are ready for their partitioned data, the partition function will be created
which determines how the table will have its data horizontally partitioned (in this case, by date range):

CREATE PARTITION FUNCTION HitDateRange (datetime)
AS RANGE LEFT FOR VALUES ('1/1/2003', '1/1/2004', '1/1/2005')
GO

After creating the partition function, the partition scheme is created in order to bind the parti-
tion function to the new filegroups:

CREATE PARTITION SCHEME HitDateRangeScheme
AS PARTITION HitDateRange
TO (hitfg1, hitfg2, hitfg3, hitfg4)

CHAPTER 4 ■ TABLES 143

570Xch04.qxd 11/4/05 2:03 PM Page 143

Lastly, a table is created that uses the partition scheme on the HitDate column in the ON clause
of the CREATE TABLE statement:

CREATE TABLE Sales.WebSiteHits
(WebSiteHitID bigint NOT NULL IDENTITY(1,1),
WebSitePage varchar(255) NOT NULL,
HitDate datetime NOT NULL,
CONSTRAINT PK_WebSiteHits
PRIMARY KEY (WebSiteHitID, HitDate))
ON [HitDateRangeScheme] (HitDate)

How It Works
In the first part of the recipe, four new filegroups were added to the AdventureWorks database. After
that, a database file was added to each filegroup.

Next, a partition function was created which defined the partition boundaries for the partition
function and the expected partition column data type. On the first line of the CREATE PARTITION
FUNCTION command, the datetime data type was selected:

CREATE PARTITION FUNCTION HitDateRange (datetime)

The next line defined the ranges for values for the partition function, creating partitions by year:

AS RANGE LEFT FOR VALUES ('1/1/2003', '1/1/2004', '1/1/2005')

You can define up to 999 partitions (however, that many isn’t recommended due to potential
performance concerns). The number of values you choose amounts to a total of n + 1 partitions. You
also have a choice of LEFT or RIGHT, which defines the boundary that the defined values belong to. In
this recipe, LEFT was chosen. Table 4-17 shows the partition boundaries (or partitions where rows
will be placed) in this case.

Table 4-17. LEFT Boundaries

Partition # Lower bound datetime Upper bound datetime

1 Lowest allowed datetime 1/1/2003 00:00:00

2 1/1/2003 00:00:01 1/1/2004 00:00:00

3 1/1/2004 00:00:01 1/1/2005 00:00:00

4 1/1/2005 00:00:01 Highest allowed datetime

Had RIGHT been chosen instead, the partition boundaries would have been as shown in
Table 4-18.

Table 4-18. RIGHT Boundaries

Partition # Lower bound date Upper bound date

1 Lowest allowed datetime 12/31/2002 12:59:59

2 1/1/2003 00:00:00 12/31/2003 12:59:59

3 1/1/2004 00:00:00 12/31/2004 12:59:59

4 1/1/2005 00:00:00 Highest allowed datetime

CHAPTER 4 ■ TABLES144

570Xch04.qxd 11/4/05 2:03 PM Page 144

Once a partition function is created, it can be used with one or more partition schemes. A par-
tition scheme maps the partitions defined in a partition function to actual filegroups. The first line
of the new partition scheme defined the partition scheme name:

CREATE PARTITION SCHEME HitDateRangeScheme

The second line of code defined the partition function of the partition scheme it is bound to
(the function created in the previous step):

AS PARTITION HitDateRange

The TO clause defines which filegroups map to the four partitions defined in the partition func-
tion, in order of partition sequence:

TO (hitfg1, hitfg2, hitfg3, hitfg4)

After a partition scheme is created, it can then be bound to a table. In the CREATE TABLE statement’s
ON clause (last row of the table definition), the partition scheme is designated with the column to
partition in parentheses:

CREATE TABLE Sales.WebSiteHits
(WebSiteHitID bigint NOT NULL IDENTITY(1,1),
WebSitePage varchar(255) NOT NULL,
HitDate datetime NOT NULL,
CONSTRAINT PK_WebSiteHits
PRIMARY KEY (WebSiteHitID, HitDate))
ON [HitDateRangeScheme] (HitDate)

Notice that the primary key is made up of both the WebSiteHitID and HitDate. The partitioned
key column (HitDate) must be part of the primary key.

The Sales.WebSiteHits table is now partitioned—and can be worked with just like a single reg-
ular table. You needn’t do anything special to your SELECT, INSERT, UPDATE, or DELETE statements. In
the background, as data is added, rows are inserted into the appropriate filegroups based on the
partition function and scheme.

Determining the Location of Data in a Partition
Because partitioning happens in the background, you don’t actually query the individual partitions
directly. In order to determine which partition the data belongs to, you can use the $PARTITION function.

The syntax for $PARTITION is as follows:

$PARTITION.partition_function_name(expression)

Table 4-19 details the arguments of this command.

Table 4-19. $PARTITION Function Arguments

Argument Description

partition_function_name The name of the partition function used to partition the table.

expression The column used as the partitioning key.

This example demonstrates how to use this function. To begin with, four rows are inserted into
the Sales.WebSiteHits partitioned table:

INSERT Sales.WebSiteHits
(WebSitePage, HitDate)

CHAPTER 4 ■ TABLES 145

570Xch04.qxd 11/4/05 2:03 PM Page 145

INSERT Sales.WebSiteHits
(WebSitePage, HitDate)
VALUES ('Home Page', '10/2/2001')

INSERT Sales.WebSiteHits
(WebSitePage, HitDate)
VALUES ('Sales Page', '5/9/2005')

INSERT Sales.WebSiteHits
(WebSitePage, HitDate)
VALUES ('Sales Page', '3/4/2003')

The table is then queried using SELECT and the $PARTITION function:

SELECT HitDate,
$PARTITION.HitDateRange (HitDate) Partition

FROM Sales.WebSiteHits

This returns:

HitDate Partition
----------------------- -----------
2001-10-02 00:00:00.000 1
2003-03-04 00:00:00.000 2
2004-10-22 00:00:00.000 3
2005-05-09 00:00:00.000 4

How It Works
The recipe starts out by inserting four rows into the partitioned Sales.WebSiteHits table. Each
insert is for a row with a different HitDate year (in order to demonstrate the function).

Next, a query is executed against the table using the $PARTITION function:

SELECT HitDate,
$PARTITION.HitDateRange (HitDate) Partition

FROM Sales.WebSiteHits

The partition_function_name is the name of the function created in the last recipe. The expres-
sion in parentheses is the HitDate, which is the column used to partition the data.
The $PARTITION function evaluates each HitDate and determines what partition it is stored in based
on the partition function. This allows you to see how data is distributed across the different partitions.
If one partition is uneven with the rest, you can explore creating or removing existing partitions—
both functions of which are demonstrated next.

Adding a New Partition
Over time you may decide that your partitioned table needs additional partitions (for example, you
can create a new partition for each new year). To add a new partition, the ALTER PARTITION SCHEME
and ALTER PARTITION FUNCTION commands are used.

Before a new partition can be created on an existing partition function, you must first prepare
a filegroup for use in holding the new partition data (a new or already used filegroup can be used).
The first step is designating the next partition filegroup to use with ALTER PARTITION SCHEME.

The syntax for ALTER PARTITION SCHEME is as follows:

ALTER PARTITION SCHEME partition_scheme_name
NEXT USED [filegroup_name]

CHAPTER 4 ■ TABLES146

570Xch04.qxd 11/4/05 2:03 PM Page 146

Table 4-20 details the arguments of this command.

Table 4-20. ALTER PARTITION SCHEME Arguments

Argument Description

partition_scheme_name The name of the partition scheme to modify.

NEXT USED [filegroup_name] The NEXT USED keywords queues the next filegroup to be used by
any new partition.

After adding a reference to the next filegroup, ALTER PARTITION FUNCTION is used to create (split)
the new partition (and also remove/merge a partition). The syntax for ALTER PARTITION FUNCTION is
as follows:

ALTER PARTITION FUNCTION partition_function_name()
{

SPLIT RANGE (boundary_value)
| MERGE RANGE (boundary_value)

}

Table 4-21 details the arguments of this command.

Table 4-21. ALTER PARTITION FUNCTION Arguments

Argument Description

partition_function_name The name of the partition function to add or remove
a partition from.

SPLIT RANGE (boundary_value) SPLIT RANGE is used to create a new partition by defining
| MERGE RANGE (boundary_value) a new boundary value. MERGE RANGE is used to remove an

existing partition.

This example demonstrates how to create (split) a new partition. The first step is creating a new
filegroup to be used by the new partition. In this example, the PRIMARY filegroup is used:

ALTER PARTITION SCHEME HitDateRangeScheme
NEXT USED [PRIMARY]

Next, the partition function is modified to create a new partition, defining a boundary of
January 1, 2006:

ALTER PARTITION FUNCTION HitDateRange ()
SPLIT RANGE ('1/1/2006')

After the new partition is created, a new row is inserted to test the new partition:

INSERT Sales.WebSiteHits
(WebSitePage, HitDate)
VALUES ('Sales Page', '3/4/2006')

The table is queried using $PARTITION:

SELECT HitDate,
$PARTITION.HitDateRange (HitDate) Partition
FROM Sales.WebSiteHits

CHAPTER 4 ■ TABLES 147

570Xch04.qxd 11/4/05 2:03 PM Page 147

This shows the newly inserted row has been stored in the new partition (partition number 5):

HitDate Partition
----------------------- -----------
2001-10-02 00:00:00.000 1
2003-03-04 00:00:00.000 2
2004-10-22 00:00:00.000 3
2005-05-09 00:00:00.000 4
2006-03-04 00:00:00.000 5

(5 row(s) affected)

How It Works
In this recipe’s example, the HitDateRangeScheme was altered using ALTER PARTITION SCHEME and the
NEXT USED keywords. The NEXT USED keywords queue the next filegroup to be used by any new
partition. The default PRIMARY filegroup was selected as the destination for the new partition:

ALTER PARTITION SCHEME HitDateRangeScheme
NEXT USED [PRIMARY]

ALTER PARTITION FUNCTION was then used with SPLIT RANGE in order to add a new partition
boundary:

ALTER PARTITION FUNCTION HitDateRange ()
SPLIT RANGE ('1/1/2006')

Only one value was used to add the new partition, which essentially splits an existing partition
range into two, using the original boundary type (LEFT or RIGHT). You can only use SPLIT RANGE for
a single split at a time—and you can’t add multiple partitions in a statement.

This example’s split added a new partition, partition #5, as shown in Table 4-22.

Table 4-22. New Partition Layout

Partition # Lower bound datetime Upper bound datetime

1 Lowest allowed datetime 1/1/2003 00:00:00

2 1/1/2003 00:00:01 1/1/2004 00:00:00

3 1/1/2004 00:00:01 1/1/2005 00:00:00

4 1/1/2005 00:00:01 1/1/2006 00:00:00

5 1/1/2006 00:00:01 Highest allowed datetime

A new row was inserted into the Sales.WebSiteHits table, which used the partition function.
A query was executed to view the partitions that each row belongs in, and it is confirmed that the
new row was inserted into the fifth partition.

Removing a Partition
The previous recipe showed the syntax for ALTER PARTITION FUNCTION, including a description of
the MERGE RANGE functionality which is used to remove an existing partition. Removing a partition
essentially merges two partitions into one, with rows relocating to the resulting merged partition.

This example demonstrates removing the ‘1/1/2004’ partition from the HitDateRange partition
function:

CHAPTER 4 ■ TABLES148

570Xch04.qxd 11/4/05 2:03 PM Page 148

ALTER PARTITION FUNCTION HitDateRange ()
MERGE RANGE ('1/1/2004')

Next, the partitioned table is queried using the $PARTITION function:

SELECT HitDate,
$PARTITION.HitDateRange (HitDate) Partition

FROM Sales.WebSiteHits

This returns the following results:

HitDate Partition
----------------------- -----------
2001-10-02 00:00:00.000 1
2004-10-22 00:00:00.000 2
2003-03-04 00:00:00.000 2
2005-05-09 00:00:00.000 3
2006-03-04 00:00:00.000 4

(5 row(s) affected)

How It Works
ALTER PARTITION FUNCTION is used for both splitting and merging partitions. In this case, the MERGE RANGE
keywords were used to eliminate the ‘1/1/2004’ partition boundary:

ALTER PARTITION FUNCTION HitDateRange ()
MERGE RANGE ('1/1/2004')

A query was executed to view which rows belong to which partitions. After the MERGE, the bound-
aries became the following as shown in Table 4-23.

Table 4-23. New Partition Layout

Partition # Lower bound datetime Upper bound datetime

1 Lowest allowed datetime 1/1/2003 00:00:00

2 1/1/2003 00:00:01 1/1/2005 00:00:00

3 1/1/2005 00:00:01 1/1/2006 00:00:00

4 1/1/2006 00:00:01 Highest allowed datetime

Partition #2 now encompasses the data for two years instead of one.
You can only merge one partition per ALTER PARTITION FUNCTION execution, and you can’t con-

vert a partitioned table into a non-partitioned table using ALTER PARTITION FUNCTION—you can only
reduce the number of partitions down to a single partition.

Moving a Partition to a Different Table
With SQL Server 2005’s new partitioning functionality, you can now transfer partitions between dif-
ferent tables with a minimum of effort or overhead. You can transfer partitions between tables using
ALTER TABLE... SWITCH. Transfers can take place in three different ways: switching a partition from
a partitioned table to another partitioned table (both needing to be partitioned on the same column),
transferring an entire table from a non-partitioned table to a partitioned table, or moving a partition
from a partitioned table to a non-partitioned table.

CHAPTER 4 ■ TABLES 149

570Xch04.qxd 11/4/05 2:03 PM Page 149

The basic syntax for switching partitions between tables is as follows:

ALTER TABLE tablename
SWITCH [PARTITION source_partition_number_expression]
TO [schema_name.] target_table
[PARTITION target_partition_number_expression]

Table 4-24 details the arguments of this command.

Table 4-24. ALTER TABLE...SWITCH Arguments

Argument Description

tablename The source table to move the partition from.

source_partition_number_expression The partition number being relocated.

[schema_name.] target_table The target table to receive the partition.

partition.target_partition_number_expression The destination partition number.

This example demonstrates moving a partition between Sales.WebSiteHits and a new table
called Sales.WebSiteHitsHistory. In the first step, a new table is created to hold historical website
hit information:

CREATE TABLE Sales.WebSiteHitsHistory
(WebSiteHitID bigint NOT NULL IDENTITY(1,1),
WebSitePage varchar(255) NOT NULL,
HitDate datetime NOT NULL,
CONSTRAINT PK_WebSiteHitsHistory
PRIMARY KEY (WebSiteHitID, HitDate))
ON [HitDateRangeScheme] (HitDate)

Next, ALTER TABLE is used to move partition 3 from Sales.WebSiteHits to partition 3 of the new
Sales.WebSiteHitsHistory table:

ALTER TABLE Sales.WebSiteHits SWITCH PARTITION 3
TO Sales.WebSiteHitsHistory PARTITION 3

Next, a query is executed using $PARTITION to view the transferred data in the new table:

SELECT HitDate,
$PARTITION.HitDateRange (HitDate) Partition
FROM Sales.WebSiteHitsHistory

This returns:

HitDate Partition
----------------------- -----------
2005-05-09 00:00:00.000 3

How It Works
The first part of the recipe created a new table called Sales.WebSiteHitsHistory and used the same
partition scheme as the Sales.WebSiteHits table.

The source table and partition number to transfer was referenced in the first line of the ALTER
TABLE command:

ALTER TABLE Sales.WebSiteHits SWITCH PARTITION 3

CHAPTER 4 ■ TABLES150

570Xch04.qxd 11/4/05 2:03 PM Page 150

The TO keyword designated the destination table and partition to move the data to:

TO Sales.WebSiteHitsHistory PARTITION 3

Moving partitions between tables is much faster then performing a manual row operation
(INSERT..SELECT, for example) because you aren’t actually moving physical data. Instead you are
only changing the metadata regarding where the partition is currently stored.

Also, keep in mind that the target partition of any existing table needs to be empty for the des-
tination partition. If it is a non-partitioned table, it must also be empty.

Removing Partition Functions and Schemes
If you try to drop a partition function or scheme while it is still bound to an existing table or index,
you’ll get an error message. You also can’t directly remove a partition scheme or function while it is
bound to a table (unless you drop the entire table as will be done in this recipe). If you had originally
created the table as a heap (a table without a clustered index), and then created a clustered index
bound to a partition scheme, you can use the CREATE INDEX DROP_EXISTING option (see Chapter 5)
to rebuild the index without the partition scheme reference.

Dropping a partition scheme uses the following syntax:

DROP PARTITION SCHEME partition_scheme_name

This command takes the name of the partition scheme to drop.
Dropping a partition function uses the following syntax:

DROP PARTITION FUNCTION partition_function_name

Again, this command only takes the partition function name that should be dropped.
This example demonstrates how to drop a partition function and scheme, assuming that it is

okay in this scenario to drop the source tables (which often times in a production scenario will not
be acceptable!):

DROP TABLE Sales.WebSiteHitsHistory
DROP TABLE Sales.WebSiteHits

-- Dropping the partition scheme and function
DROP PARTITION SCHEME HitDateRangeScheme
DROP PARTITION FUNCTION HitDateRange

How It Works
This example demonstrated dropping a partition scheme and function, which required for this
example that the source tables be dropped beforehand.

One alternative solution was to copy out the results to an external table, drop the tables, drop
the partition scheme and partition function, and then rename the tables that you copied the data
to. If your goal is just to get the table down to a single partition, you can merge all partitions, while
still keeping the partition scheme and function. A single partitioned table is functionally equivalent
to a regular, non-partitioned table.

Placing a Table on a Filegroup
Filegroups are often used for very large databases (VLDB),because they can ease backup adminis-
tration and potentially improve performance by distributing data over multiple arrays. When creating
a table, you can specify that it be created on a specific filegroup. For example if you have a table that
you know will become very large, you can designate that it be created on a specific filegroup.

CHAPTER 4 ■ TABLES 151

570Xch04.qxd 11/4/05 2:03 PM Page 151

■Note This recipe includes some filegroup techniques and concepts covered in more detail in Chapter 22.

The basic syntax for designating a table’s filegroup is as follows:

CREATE TABLE ...
[ON filegroup

| " DEFAULT " }]
[{ TEXTIMAGE_ON { filegroup | " DEFAULT " }]

Table 4-25 details the arguments of this command.

Table 4-25. Arguments for Creating a Table on a Filegroup

Argument Description

filegroup The name of the filegroup on which the table will be
created.

"DEFAULT" This sets the table to be created on the default
filegroup defined for the database.

TEXTIMAGE_ON { filegroup | "DEFAULT" } This option stores in a separate filegroup the data
from text, ntext, image, xml, varchar(max),
nvarchar(max), varbinary(max) data types.

This example demonstrates how to place a table on a non-default, user created filegroup. The
first step involves creating a new filegroup in the AdventureWorks database (see Chapter 22 for more
information on this):

ALTER DATABASE AdventureWorks
ADD FILEGROUP AW_FG2
GO

Next, a new file is added to the filegroup:

ALTER DATABASE AdventureWorks
ADD FILE
(NAME = AW_F2,

FILENAME = 'c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\aw_f2.ndf',
SIZE = 1MB

)
TO FILEGROUP AW_FG2
GO

A table is then created on the new filegroup (and hence its data will be stored in the new file,
contained within the filegroup):

CREATE TABLE HumanResources.AWCompany(
AWCompanyID int IDENTITY(1,1) NOT NULL PRIMARY KEY,
ParentAWCompanyID int NULL,
AWCompanyNM varchar(25) NOT NULL,
CreateDT datetime NOT NULL DEFAULT (getdate())

) ON AW_FG2

In the second example, a table is created by specifying that large object data columns be stored
on a separate filegroup (AW_FG2) from the regular data (on the PRIMARY filegroup):

CHAPTER 4 ■ TABLES152

570Xch04.qxd 11/4/05 2:03 PM Page 152

CREATE TABLE HumanResources.EWCompany(
EWCompanyID int IDENTITY(1,1) NOT NULL PRIMARY KEY,
ParentEWCompanyID int NULL,
EWCompanyName varchar(25) NOT NULL,
HeadQuartersImage varbinary(max) NULL,
CreateDT datetime NOT NULL DEFAULT (getdate())

) ON [PRIMARY]
TEXTIMAGE_ON AW_FG2

How It Works
The recipe starts by creating a new filegroup called AW_FG2. This is done using the ALTER DATABASE
command. After that, a new database file was added to the AdventureWorks database, which was
placed into the new filegroup.

CREATE TABLE was then executed normally, only in the last part of the table definition, ON AW_FG2 is
used in order to place it into the AW_FG2 filegroup:

ON AW_FG2

If an ON filegroup clause isn’t used in a CREATE TABLE, it’s assumed that the table will be placed
on the default filegroup (which if you haven’t changed it, is called PRIMARY).

If this table becomes very large, and you’ve placed it on its own filegroup, a filegroup backup
can be used to specifically back up the table and any other tables or indexes that are placed in it
(see Chapter 5 for more on placing an index into a filegroup and Chapter 29 for a review of file-
group backups).

For the second example, a table was created with filegroup options placing regular data on the
PRIMARY filegroup, and text/image data on the AW_FG2 filegroup (doing so requires that your table
actually have a large value data type):

ON [PRIMARY]
TEXTIMAGE_ON AW_FG2

Separating out large object data may ease database maintenance and improve performance
depending on your database design and physical hardware, the types of queries accessing it, and
the location of the file(s) in the filegroup.

CHAPTER 4 ■ TABLES 153

570Xch04.qxd 11/4/05 2:03 PM Page 153

570Xch04.qxd 11/4/05 2:03 PM Page 154

Indexes

Indexes assist with query processing by speeding up access to the data stored in tables and views.
Indexes allow for ordered access to data based on an ordering of data rows. These rows are ordered
based upon the values stored in certain columns. These columns comprise the “index key columns”
and their values (for any given row) are a row’s “index key.”

This chapter contains recipes for creating, altering, and dropping different types of indexes. SQL
Server 2005 has introduced several new changes to how indexes can be created, including a new
syntax for index options, support for partition schemes, the INCLUDE command, page and row lock
disabling, index disabling, and the ability to perform online operations. For exercises performed in
this chapter, you may wish to back up the AdventureWorks database beforehand, so that you can
restore it to its original state after going through the recipes.

■Note For coverage of index maintenance, re-indexing, and rebuilding (ALTER INDEX), see Chapter 23. Indexed
views are covered in Chapter 7. For coverage of index performance troubleshooting and fragmentation, see
Chapter 31.

Indexes Overview
An index is a database object that, when created on a table, can provide faster access paths to data
and can facilitate faster query execution. Indexes are used to provide SQL Server with a more efficient
method of accessing the data. Instead of always searching every data page in a table, an index facili-
tates retrieving specific rows without having to read a table’s entire content.

By default, rows in a regular un-indexed table aren’t stored in any particular order. A table in an
order-less state is called a heap. In order to retrieve rows from a heap based on a matching set of search
conditions, SQL Server would have to read through all the rows in the table. Even if only one row
matched the search criteria and that row just happened to be the first row the SQL Server database
engine read, SQL Server would still need to evaluate every single table row, since there is no other
way for it to know if other matching rows exist. Such a scan for information is known as a full table
scan. For a large table, that might mean reading hundreds or thousands or millions and billions of
rows just to retrieve a single row.

However, if SQL Server knows that there is an index on a column (or columns) of a table, then it
may be able to use that index to search for matching records more efficiently.

In SQL Server 2005, a table is contained in one or more partitions. A partition is a user-defined
unit of organization which allows you to horizontally partition data within a table and/or index, while
still maintaining a single logical object. When a table is created, by default, all of its data is contained
within a single partition. A partition contains heaps, or, when indexes are created, B-tree structures.

155

C H A P T E R 5

■ ■ ■

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 155

CHAPTER 5 ■ INDEXES156

Figure 5-1. B-tree structure of a clustered index

When an index is created, its index key data is stored in a B-tree structure. A B-tree structure
starts with a root node which is the beginning of the index. This root node has index data which
contains a range of index key values that point to the next level of index nodes, called the intermediate
leaf level.

The bottom level of the node is called the leaf level. The leaf level differs based on whether the
actual index type is clustered or nonclustered. If it is a clustered index, the leaf level is the actual data
pages itself. If a nonclustered index, the leaf level contains pointers to the heap or clustered index
data pages.

A clustered index determines how the actual table data is physically stored. You can only desig-
nate one clustered index. This index type stores the data according to the designated index key
column or columns. Figure 5-1 demonstrates the B-tree structure of the clustered index. Notice that
the leaf level is the actual data pages itself.

Clustered index selection is a critical choice, as you can only have one clustered index for a sin-
gle table. In general, good candidates for clustered indexes include columns that are queried often
in range queries because the data is then physically organized in a particular order. Range queries
use the BETWEEN keyword and the greater than > and less than < operators. Other columns to consider
are those used to order large result sets, those used in aggregate functions, and those that contain
entirely unique values. Frequently updated columns and non-unique columns are usually not
a good choice for a clustered index key, because the clustered index key is contained in the leaf level
of all dependent nonclustered indexes, causing excessive reordering and modifications. For this
same reason you should also avoid creating a clustered index with too many or very wide (many
bytes) index keys.

Nonclustered indexes store index pages separately from the physical data, with pointers to the
physical data located in the index pages and nodes. Nonclustered index columns are stored in the
order of the index key column values. You can have up to 249 nonclustered indexes on a table or
indexed view. For nonclustered indexes, the leaf node level is the index key coupled to a row locater
which points to either the row of a heap or the clustered index row key, as shown in Figure 5-2:

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 156

CHAPTER 5 ■ INDEXES 157

Figure 5-2. B-tree structure of a nonclustered index

When selecting columns to be used for nonclustered indexes, look for those columns that are
frequently referenced in WHERE, JOIN, and ORDER BY clauses. Search for highly selective columns that
would return smaller result sets (less than 20 percent of all rows in a table). Selectivity refers to how
many rows exist for each unique index key value. If a column has poor selectivity, for example only
containing zeros or ones, it is unlikely that SQL Server will take advantage of that query when creat-
ing the query execution plan, because of its poor selectivity.

An index, either clustered or nonclustered, is based on one or more key values. The index key
refers to columns used to define the index itself. SQL Server 2005 also has a new feature which
allows the addition of non-key columns to the leaf level of the index by using the new INCLUDE
clause demonstrated later on in the chapter. This new feature allows more of your query’s selected
columns to be returned or “covered” by a single nonclustered index, thus reducing total I/O, as SQL
Server doesn’t have to access the clustered leaf level data pages at all.

You can use up to 16 key columns in a single index, so long as you don’t exceed 900 bytes of all
index key columns combined. You also can’t use large object data types within the index key, includ-
ing varchar(max), nvarchar(max), varbinary(max), xml, ntext, text, and the image data types.

A clustered or nonclustered index can either be specified as unique or non-unique. Choosing
a unique index makes sure that the data values inserted into the key column or columns are unique.
For unique indexes using multiple keys (called a composite index), the combination of the key val-
ues have to be unique for every row in the table.

As noted earlier, indexes can be massively beneficial in terms of your query performance, but
there are costs associated with them. You should only add indexes based on expected query activity,
and you must continually monitor whether or not indexes are still being used. If not, they should be
removed. Too many indexes on a table can cause performance overhead whenever data modifica-
tions are performed to the table, as SQL Server must maintain the index changes alongside the data
changes.

These next few recipes will demonstrate how to create, modify, disable, view, and drop indexes.

■Note See Chapter 28 to learn how to view which indexes are being used for a query. This chapter also covers
how to view index fragmentation and identify whether or not an index is being used over time. To learn how to
rebuild or reorganize indexes, see Chapter 23.

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 157

Create a Table Index
In this recipe, I’ll show you how to create two types of indexes, one clustered and the other nonclus-
tered. An index is created by using the CREATE INDEX command. This chapter will review the many
facets of this command, however the basic syntax used in this upcoming example is as follows:

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
ON {
[database_name. [schema_name] . | schema_name.]

table_or_view_name}
(column [ASC | DESC] [,...n])

The arguments of this command are described in Table 5-1:

Table 5-1. CREATE INDEX Command Arguments

Argument Description

[UNIQUE] You can only have one primary key on each table.
However, if you wish to enforce uniqueness in other
non-key columns, you can designate that the index be
created with the UNIQUE constraint. You can create
multiple UNIQUE indexes for a single table and can
include columns that contain NULL values (although
only one NULL value is allowed per column combo).

[CLUSTERED | NONCLUSTERED] Specifies the index type, either CLUSTERED or
NONCLUSTERED. You can only have one CLUSTERED index,
but up to 249 NONCLUSTERED indexes.

index_name The name of the new index.

[database_name. [schema_name] . The table or view to be indexed.
| schema_name.] table_or_view_name}

column The column or columns to be used as part of the
index key.

[ASC | DESC] The specific column order of indexing, either ASC for
ascending order or DESC for descending order.

I’ll also show you a few examples of modifying an existing index using the ALTER INDEX command.
This command includes many of the same options of CREATE INDEX, only you cannot use it to change
which columns are used and their ordering. This command is also used to rebuild or reorganize an
index (which is covered in Chapter 23):

ALTER INDEX index_name
ON object_name
...

Starting off this example, a new table is created in the AdventureWorks database:

CREATE TABLE HumanResources.TerminationReason(
TerminationReasonID smallint IDENTITY(1,1) NOT NULL,
TerminationReason varchar(50) NOT NULL,
DepartmentID smallint NOT NULL,

CONSTRAINT FK_TerminationReason_DepartmentID
FOREIGN KEY (DepartmentID) REFERENCES
HumanResources.Department(DepartmentID)

)
GO

CHAPTER 5 ■ INDEXES158

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 158

CHAPTER 5 ■ INDEXES 159

Before I demonstrate how to use CREATE INDEX, it is important to remember that when a primary
key is created on a column using CREATE TABLE or ALTER TABLE, that primary key also creates an
index. In this example, a CLUSTERED index is created on the TerminationReasonID using ALTER TABLE:

ALTER TABLE HumanResources.TerminationReason
ADD CONSTRAINT PK_TerminationReason PRIMARY KEY CLUSTERED (TerminationReasonID)

Next, a nonclustered index is created on the DepartmentID column:

CREATE NONCLUSTERED INDEX NCI_TerminationReason_DepartmentID ON
HumanResources.TerminationReason (DepartmentID)

How It Works
In this exercise, the TerminationReason table was created without a primary key defined, meaning
that initially, the table was a “heap.”

The primary key was then added afterwards using ALTER TABLE. The word CLUSTERED follows the
PRIMARY KEY statement, thus also creating a clustered index with the new constraint:

ALTER TABLE HumanResources.TerminationReason
ADD CONSTRAINT PK_TerminationReason PRIMARY KEY CLUSTERED (TerminationReasonID)

Had the TerminationReasonID column not been chosen as the primary key, you could have still
defined a clustered index on it by using CREATE INDEX:

CREATE CLUSTERED INDEX CI_TerminationReason_TerminationReasonID ON
HumanResources.TerminationReason (TerminationReasonID)

Had a nonclustered index already existed for the table, the creation of the new clustered index
would have caused the nonclustered index to be rebuilt, in order to swap the nonclustered leaf level
row identifier with the clustered key.

The nonclustered index in the example was created as follows:

CREATE NONCLUSTERED INDEX NCI_TerminationReason_DepartmentID ON
HumanResources.TerminationReason (DepartmentID)

The only difference in syntax between the two index types was that the word NONCLUSTERED is
designated between CREATE and INDEX.

Enforce Uniqueness on Non-Key Columns
In this recipe, I’ll show you how to enforce uniqueness for non-key table columns. The syntax for
CREATE INDEX in the previous recipe showed the UNIQUE keyword. This example shows you how to
create a unique index on the HumanResources.TerminationReason table TerminationReason column:

CREATE UNIQUE NONCLUSTERED INDEX UNI_TerminationReason ON
HumanResources.TerminationReason (TerminationReason)

Now, two new rows are inserted into the table with success:

INSERT HumanResources.TerminationReason
(DepartmentID, TerminationReason)
VALUES (1, 'Bad Engineering Skills')

INSERT HumanResources.TerminationReason
(DepartmentID, TerminationReason)
VALUES (2, 'Breaks Expensive Tools')

Attempting to insert a row with a duplicate, already existing TerminationReason value, raises an
error:

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 159

INSERT HumanResources.TerminationReason
(DepartmentID, TerminationReason)
VALUES (2, 'Bad Engineering Skills')

This returns:

Msg 2601, Level 14, State 1, Line 9
Cannot insert duplicate key row in object 'HumanResources.TerminationReason'
with unique index 'UNI_TerminationReason'.
The statement has been terminated.

Selecting the current rows from the table shows that only the first two rows were inserted:

SELECT TerminationReasonID, TerminationReason, DepartmentID
FROM HumanResources.TerminationReason

This returns:

TerminationReasonID TerminationReason DepartmentID
------------------- -- ------------
1 Bad Engineering Skills 1
2 Breaks Expensive Tools 2

How It Works
A unique index was created on the TerminationReason column, which means that each row must
have a unique value. You can choose multiple unique constraints for a single table. NULL values are
permitted in a unique index; however, they must only occur once. Like a primary key, unique indexes
enforce entity integrity by ensuring that rows can be uniquely identified.

Create a Composite Index
In this recipe, I’ll show you how to create a multiple-column index. In previous recipes, I’ve shown
you how to create an index on a single column, however many times you will want more than one
column to be used in a single index. Use composite indexes when two or more columns are often
searched within the same query, or are often used in conjunction with one another.

In this example, we’re assuming that TerminationReason and the DepartmentID will often be
used in the same WHERE clause of a SELECT query. With that in mind, the following NONCLUSTERED
INDEX is created:

CREATE NONCLUSTERED INDEX NI_TerminationReason_TerminationReason_DepartmentID
ON HumanResources.TerminationReason(TerminationReason, DepartmentID)

How It Works
Choosing which columns to index is a bit of an art. You’ll want to add indexes to columns that you’ll
know will be commonly queried, however you must always keep a column’s selectivity in mind.
Selectivity refers to how many rows exist for each unique index key value. If a column has poor
selectivity, for example only containing zeros or ones, it is unlikely that SQL Server will take advan-
tage of that query when creating the query execution plan.

One general rule of thumb when creating a composite index is to put the most selective
columns at the beginning, followed by the other less selective columns. In this recipe’s example, the
TerminationReason was chosen as the first column, followed by the DepartmentID. Both are guaran-
teed to be totally unique in the table, and therefore are equally selective.

CHAPTER 5 ■ INDEXES160

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 160

CHAPTER 5 ■ INDEXES 161

■Tip If you’re new to SQL Server or need assistance in a poorly performing query, use Database Tuning Advisor
to help make index suggestions for you. Also, see Chapter 28 for more information on index usage and performance.

You can use up to 16 columns in a single index, so long as you don’t exceed 900 bytes of all index
key columns combined. You also can’t use large object data types within the index key, including
varchar(max), nvarchar(max), varbinary(max), xml, ntext, text, and the image data types.

The index key refers to columns used to define the index itself. SQL Server 2005 does however,
allow the addition of non-key columns to the leaf level of the index by using the new INCLUDE clause
demonstrated later on in the chapter.

Define Index Column Sort Direction
In this recipe, I’ll show you how to set the sort direction of an index column. The default sort for an
indexed column is ascending order. You can explicitly set the ordering using ASC or DESC in the column
definition of CREATE INDEX:

(column [ASC | DESC] [,...n])

In this example, a new column is added to a table and then indexed in descending order:

ALTER TABLE HumanResources.TerminationReason
ADD ViolationSeverityLevel smallint
GO

CREATE NONCLUSTERED INDEX NI_TerminationReason_ViolationSeverityLevel
ON HumanResources.TerminationReason (ViolationSeverityLevel DESC)

How It Works
In this recipe’s example, a new column ViolationSeverityLevel was added to the TerminationReason
table:

ALTER TABLE HumanResources.TerminationReason
ADD ViolationSeverityLevel smallint
GO

Query authors may want to most commonly sort on this value, showing ViolationSeverityLevel
from highest to lowest. Matching index order to how you think users will use ORDER BY in the query
can improve query performance, as SQL Server isn’t then required to re-sort the data when the query
is processed.

The index is created with the DESC instruction after the column name:

(ViolationSeverityLevel DESC)

If you have multiple key columns in your index, each can have its own separate sort order.

View Index Meta Data
In this recipe, I’ll show you how to view helpful information about indexes. Once you’ve created
indexes on your tables, you’ll need some mechanism for tracking where they are, what their names
are, types, and the columns that define them. For this, use the sp_helpindex system stored procedure
to view the index names, descriptions, and keys for indexes on a specific table. This system stored
procedure only takes a single argument, the name of the table to view indexes on.

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 161

This example demonstrates viewing all indexes on the Employee table:

EXEC sp_helpindex 'HumanResources.Employee'

This returns the following abridged results:

index_name index_description index_keys
--
AK_Employee_LoginID nonclustered, unique located on PRIMARY LoginID
...
AK_Employee_rowguid nonclustered, unique located on PRIMARY rowguid
IX_Employee_ManagerID nonclustered located on PRIMARY ManagerID
PK_Employee_EmployeeID clustered, unique, primary key located on PRIMARY EmployeeID

For more in-depth index analysis of indexes, you can use the sys.indexes system catalog view.
For example the following query shows index options (which will be discussed later in the chapter)
for the HumanResources.Employee table:

SELECT SUBSTRING(name, 1,30) index_name,
allow_row_locks,
allow_page_locks,
is_disabled,
fill_factor

FROM sys.indexes
WHERE object_id = OBJECT_ID('HumanResources.Employee')

This returns:

index_name allow_row_locks allow_page_locks is_disabled fill_factor
------------------------------ --------------- ---------------- ----------- --------
PK_Employee_EmployeeID 1 1 0 0
AK_Employee_LoginID 1 1 0 0
AK_Employee_NationalIDNumber 1 1 0 0
AK_Employee_rowguid 1 1 0 0
IX_Employee_ManagerID 1 1 0 0

How It Works
You can use the system stored procedure sp_helpindex call to list the indexes on a specific table.
The output also returns a description of the indexes, including the type and filegroup location. The
key columns defined for the index are also listed.

The sys.indexes system catalog view can also be used to find out more about the configured
settings of a specific index. Several of the options shown in this system catalog view haven’t been
covered yet, but some of them that I’ve discussed are described in Table 5-2:

Table 5-2. A Sub-Set of the sys.indexes System Catalog Columns

Column Description

object_id The object identifier of the table or view for which the index belongs.
You can use the OBJECT_NAME function to show the table or view name,
or OBJECT_ID to convert a table or view name into its database object
identifier.

name The index name.

index_id When index_id = 0, the index is a heap. When index_id = 1, the index is
a clustered index. When index_id > 1, it is a nonclustered index.

CHAPTER 5 ■ INDEXES162

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 162

CHAPTER 5 ■ INDEXES 163

Column Description

type The index type, which can be 0 for heap, 1 for clustered index, 2 for
nonclustered, and 3 for an XML index (see Chapter 14).

type_desc The index type description.

is_unique When is_unique = 1, the index is a unique index.

is_primary_key When is_primary_key = 1, the index is the result of a primary key
constraint.

is_unique_constraint When is_unique_constraint = 1, the index is the result of a unique
constraint.

Disable an Index
In this recipe, I’ll show you how to disable an index from being used in SQL Server queries. Disabling
an index retains the metadata definition data in SQL Server but makes the index unavailable for use.
Consider disabling an index as an index troubleshooting technique or if a disk error has occurred
and you would like to defer the index’s re-creation. If you disable a clustered index, keep in mind
that the table index data will no longer be accessible. This is because the leaf level of a clustered
index is the actual table data itself.

An index is disabled by using the ALTER INDEX command. The syntax is as follows:

ALTER INDEX index_name ON
table_or_view_name DISABLE

The command takes two arguments, the name of the index, and the name of the table or view
that the index is created on.

In this example, the UNI_TerminationReason index is disabled on the TerminationReason table:

ALTER INDEX UNI_TerminationReason ON
HumanResources.TerminationReason DISABLE

How It Works
This recipe demonstrated how to disable an index. If an index is disabled, the index definition
remains in the system tables, although the user can no longer use the index. For nonclustered
indexes on a table, the index data is actually removed from the database. For a clustered index on
a table, the data remains on disk, but because the index is disabled, you can’t query it. For a clustered
or nonclustered index on the view, the index data is removed from the database.

To re-enable the index, you can use either the CREATE INDEX with DROP_EXISTING command (see
later in this chapter) or ALTER INDEX REBUILD (described in Chapter 23). Rebuilding a disabled non-
clustered index reuses the existing space used by the original index.

Dropping Indexes
In this recipe, I’ll show you how to drop an index from a table or view. When you drop an index, it
is physically removed from the database. If this is a clustered index, the table’s data remains in
an unordered (heap) form. You can remove an index entirely from a database by using the DROP
INDEX command. The basic syntax is as follows:

DROP INDEX <table_or_view_name>.<index_name> [,...n]

This example demonstrates dropping a single index from a table:

DROP INDEX HumanResources.TerminationReason.UNI_TerminationReason
GO

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 163

How It Works
You can drop one or more indexes for a table using the DROP INDEX command. Dropping an index frees
up the space taken up by the index and removes the index definition from the database. You can't use
DROP INDEX to remove indexes that result from the creation of a PRIMARY KEY or UNIQUE CONSTRAINT.
If you drop a clustered index that has nonclustered indexes on it, those nonclustered indexes will
also be rebuilt in order to swap the clustered index key for a row identifier of the heap.

Change an Existing Index with DROP_EXISTING
In this recipe, I’ll show you how to drop and recreate an index within a single execution, as well as
change the key column definition of an existing index. The ALTER INDEX can be used to change index
options, rebuild and reorganize indexes (reviewed in Chapter 23), and disable an index, but it is not
used to actually add, delete, or rearrange columns in the index.

You can, however, change the column definition of an existing index by using
CREATE INDEX...DROP_EXISTING. This option also has the advantage of dropping and recreating an
index within a single command (instead of using both DROP INDEX and CREATE INDEX). Also, using
DROP_EXISTING on a clustered index will not cause existing nonclustered indexes to be automatically
rebuilt, unless the index column definition has changed.

This first example demonstrates just rebuilding an existing nonclustered index (no change in
the column definition):

CREATE NONCLUSTERED INDEX NCI_TerminationReason_DepartmentID ON
HumanResources.TerminationReason
(DepartmentID ASC)
WITH (DROP_EXISTING = ON)
GO

Next, a new column is added to the existing nonclustered index:

CREATE NONCLUSTERED INDEX NCI_TerminationReason_DepartmentID ON
HumanResources.TerminationReason
(ViolationSeverityLevel, DepartmentID DESC)
WITH (DROP_EXISTING = ON)
GO

How It Works
In the first example, the CREATE INDEX didn’t change anything about the existing index definition,
but instead just rebuilds it by using the DROP_EXISTING clause. Rebuilding an index can help defrag-
ment the data, something which is discussed in more detail in Chapter 23.

In the second statement, a new column was added to the existing index, and placed right before the
DepartmentID. The index was recreated with the new index key column, making it a composite index.

You can’t use DROP_EXISTING to change the name of the index, however. For that, use DROP INDEX
and CREATE INDEX with the new index name.

Controlling Index Build Performance
and Concurrency
So far in this chapter I’ve reviewed how an index is defined, but note that you can also determine
under what circumstances an index is built. For example, when creating an index in SQL Server
2005, in order to improve the performance, you can designate that a parallel plan of execution is
used, instantiating multiple processors to help complete a time-consuming build. In addition to

CHAPTER 5 ■ INDEXES164

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 164

CHAPTER 5 ■ INDEXES 165

this, you could also direct SQL Server to create the index in tempdb, instead of causing file growth
operations in the index’s home database.

If you are using SQL Server 2005 Enterprise Edition, you can now also allow concurrent user
query access to the underlying table during the index creation by using the new ONLINE option.

The next three recipes will demonstrate methods for improving the performance of the index
build, as well as improving user concurrency during the operation.

Intermediate Index Creation in Tempdb
In this recipe, I’ll show you how to push index creation processing to the tempdb system database. The
tempdb system database is used to manage user connections, temporary tables, temporary stored
procedures, or temporary work tables needed to process queries on the SQL Server instance. Depend-
ing on the database activity on your SQL Server instance, you can sometimes reap performance
benefits by isolating the tempdb database on its own disk array, separate from other databases. If
index creation times are taking too long for what you expect, you can try to use the index option
SORT_IN_TEMPDB to improve index build performance (for larger tables). This option pushes the
intermediate index build results to the tempdb database instead of using the user database where
the index is housed.

The syntax for this option, which can be used in both CREATE INDEX and ALTER INDEX, is as follows:

WITH (SORT_IN_TEMPDB = { ON | OFF })

The default for this option is OFF. In this example, a new nonclustered index is created with this
option enabled:

CREATE NONCLUSTERED INDEX NI_Address_PostalCode ON
Person.Address (PostalCode)
WITH (SORT_IN_TEMPDB = ON)

How It Works
The SORT_IN_TEMPDB option enables the use of tempdb database for intermediate index results. This
option may decrease the amount of time it takes to create the index for a large table, but with the
trade-off that the tempdb system database will need additional space to participate in this operation.

Controlling Parallel Plan Execution for Index Creation
In this recipe, I’ll show you how to control the number of processors used to process a single query.
If using SQL Server 2005 Enterprise Edition with a multiprocessor server, you can control/limit the
number of processors potentially used in an index creation operation by using the MAXDOP index
option. The use of parallelism, which is the use of two or more processors to fulfill a single query
statement, can potentially improve the performance of the index creation operation.

The syntax for this option, which can be used in both CREATE INDEX and ALTER INDEX, is as follows:

MAXDOP = max_degree_of_parallelism

The default value for this option is 0, which means that SQL Server can choose any or all of the
available processors for the operation. A MAXDOP value of 1 disables parallelism on the index creation.

This example demonstrates how to control the number of processors used in parallel plan exe-
cution (parallelism) during an index creation:

CREATE NONCLUSTERED INDEX NI_Contact_Phone ON
Person.Contact(Phone)
WITH (MAXDOP = 4)

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 165

How It Works
In this recipe, the index creation was limited to 4 processors:

WITH (MAXDOP = 4)

This option overrides the “max degree of parallelism” option discussed in Chapter 21. Just
because you set MAXDOP, doesn’t make any guarantee that SQL Server will actually use the number of
processors that you designate. It only ensures that SQL Server will not exceed the MAXDOP threshold.

Allowing User Table Access During Index Creation
In this recipe, I’ll show you how to allow query activity to continue to access the index even while an
index creation process is executing. If you are using SQL Server 2005 Enterprise Edition, you can
allow concurrent user query access to the underlying table during the index creation by using the
new ONLINE option, which is demonstrated in this next recipe:

CREATE NONCLUSTERED INDEX NCI_ProductVendor_MinOrderQty ON
Purchasing.ProductVendor(MinOrderQty)
WITH (ONLINE = ON)

How It Works
With the new ONLINE option in the WITH clause of the index creation, long-term table locks are not
held during the index creation. This can provide better concurrency on larger indexes that contain
frequently accessed data. When the ONLINE option is set ON, only Intent Share locks are held on the
source table for the duration of the index creation, instead of the default behavior of a longer term
table lock held for the duration of the index creation.

Index Options
The next three recipes cover options which impact performance, although each in their own different
ways.

For example the new INCLUDE keyword allows you to add non-key columns to a nonclustered
index. This allows you to create a covering index which can be used to return data to the user with-
out having to access the clustered index data.

The PAD_INDEX and FILLFACTOR options determine how to set the initial percentage of rows to
fill the index leaf level pages and intermediate levels of an index. The recipe will discuss how the fill
factor impacts not only the performance of queries, but also of insert, update, and delete operations.

The third recipe will cover how to disable certain locking types for a specific index. As will be
discussed in the recipe, using these options allows you to control both concurrency and resource
usage when queries access the index.

Using an Index INCLUDE
In this recipe, I’ll show you how to include non-key columns within a nonclustered index.
A covering query is a query whose referenced columns are found entirely within a nonclustered
index. Often this scenario results in superior query performance, as SQL Server need not retrieve
the actual data from the clustered index or heap—it only needs to read the data stored in the non-
clustered index. The drawback, however, is that you can only include up to 16 columns or up to 900
bytes for an index key.

One solution to this problem is the newly introduced INCLUDE keyword, which allows you to
add up to 1023 non-key columns to the nonclustered index, helping you improve query performance

CHAPTER 5 ■ INDEXES166

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 166

CHAPTER 5 ■ INDEXES 167

by creating a covered index. These non-key columns are not stored at each level of the index, but
instead are only found in the leaf level of the nonclustered index.

The syntax for using INCLUDE with CREATE NONCLUSTERED INDEX is as follows:

CREATE NONCLUSTERED INDEX index_name
ON table_or_view_name (column [ASC | DESC] [,...n])

INCLUDE (column [,... n])

Whereas the first column list is for key index columns, the column list after INCLUDE is for non-
key columns.

In this example, a new large object data type column is added to the TerminationReason table.
An existing index on DepartmentID is dropped and recreated, this time adding the new non-key
value to the index:

ALTER TABLE HumanResources.TerminationReason
ADD LegalDescription varchar(max)

DROP INDEX HumanResources.TerminationReason.NI_TerminationReason_
➥ TerminationReason_DepartmentID

GO

CREATE NONCLUSTERED INDEX NI_TerminationReason_TerminationReason_DepartmentID
ON HumanResources.TerminationReason (TerminationReason, DepartmentID)
INCLUDE (LegalDescription)

How It Works
This recipe demonstrated a new SQL Server 2005 technique for enhancing a nonclustered index’s use-
fulness. The example started off by creating a new varchar(max) data type column. Because of its data
type, it cannot be used as a key value in the index, however using it within the INCLUDE keyword will
allow you to reference the new large object data types. The existing index on the TerminationReason
table was then dropped and recreated using INCLUDE with the new non-key column.

You can only use INCLUDE with a nonclustered index (where a covered query comes in handy)
and you still can’t include the image, ntext, and text data types. Also, if the index size increases too
significantly because of the additional non-key values, you may lose some of the query benefits that
a covering query can give you, so be sure to test comparative before/after performance.

Using PAD_INDEX and FILLFACTOR
In this recipe, I’ll show you how to set the initial percentage of rows to fill the index leaf level pages
and intermediate levels of an index. The fill factor percentage of an index refers to how full the leaf
level of the index pages should be when the index is first created. The default fill factor, if not explic-
itly set, is 0, which equates to filling the pages as full as possible (SQL Server does leave some space
available—enough for a single index row). Leaving some space available, however, allows new rows
to be inserted without resorting to page splits. A page split occurs when a new row is added to a full
index page. In order to make room, half the rows are moved from the existing full page to a new
page. Numerous page splits can slow down INSERT operations. On the other hand, however, fully
packed data pages allow for faster read activity, as the database engine can retrieve more rows from
less data pages.

The PAD_INDEX option, used only in conjunction with FILLFACTOR, specifies that the specified
percentage of free space be left open on the intermediate level pages of an index.

These options are set in the WITH clause of the CREATE INDEX and ALTER INDEX commands. The
syntax is as follows:

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 167

WITH (PAD_INDEX = { ON | OFF }
| FILLFACTOR = fillfactor)

In this example, an index is dropped and recreated with a 50% fill factor and PAD_INDEX
enabled:

DROP INDEX
HumanResources.TerminationReason.NI_TerminationReason_TerminationReason_DepartmentID
GO

CREATE NONCLUSTERED INDEX NI_TerminationReason_TerminationReason_DepartmentID
ON HumanResources.TerminationReason
(TerminationReason ASC, DepartmentID ASC)
WITH (FILLFACTOR=50, PAD_INDEX=ON)

How It Works
In this recipe, the fill factor was configured to 50%, leaving 50% of the index pages free for new rows.
PAD_INDEX was also enabled, so the intermediate index pages will also be left half free. Both options
are used in the WITH clause of the CREATE INDEX syntax:

WITH (FILLFACTOR=50, PAD_INDEX=ON)

Using FILLFACTOR can be a balancing act between reads and writes. For example, a 100% fill fac-
tor can improve reads, but slow down write-activity, causing frequent page splitting as the database
engine must continually shift row locations in order to make space in the data pages. Having too
low of a fill factor can benefit row inserts, but it can also slow down read operations, as more data
pages must be accessed in order to retrieve all required rows. If you’re looking for a general rule of
thumb, use a 100% fill factor for tables with almost no data modification activity, 90% for low activ-
ity, 70% for medium activity, and 50% or lower for high activity.

Disabling Page and/or Row Index Locking
In this recipe, I’ll show you how to change the lock resource types that can be locked for a specific
index. In Chapter 3, I discussed various lock types and resources within SQL Server. Specifically,
various resources can be locked by SQL Server from small (row and key locks) to medium (page locks,
extents) to large (table, database). Multiple, smaller-grained locks help with query concurrency,
assuming there are a significant number of queries simultaneously requesting data from the same
table and associated indexes. Numerous locks take up memory, however, and can lower performance
for the SQL Server instance as a whole. The trade-off is larger-grained locks which increase memory
resource availability but also reduce query concurrency.

Now in SQL Server 2005, you can create an index that restricts certain locking types when it is
queried. Specifically, you can designate whether page or row locks are allowed.

In general you should allow SQL Server to automatically decide which locking type is best;
however, there may be situations where you wish to temporarily restrict certain resource locking
types, for troubleshooting, or a severe performance issue.

The syntax for configuring these options for both CREATE INDEX and ALTER INDEX is as follows:

WITH (ALLOW_ROW_LOCKS = { ON | OFF }
| ALLOW_PAGE_LOCKS = { ON | OFF })

This recipe shows you how to disable the database engine’s ability to place row or page locks on
an index, forcing it to use table locking instead:

-- Disable page locks. Table and row locks can still be used.
CREATE INDEX NI_EmployeePayHistory_Rate ON

CHAPTER 5 ■ INDEXES168

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 168

CHAPTER 5 ■ INDEXES 169

HumanResources.EmployeePayHistory (Rate)
WITH (ALLOW_PAGE_LOCKS=OFF)
GO

-- Disable page and row locks. Only table locks can be used.
ALTER INDEX NI_EmployeePayHistory_Rate ON
HumanResources.EmployeePayHistory
SET (ALLOW_PAGE_LOCKS=OFF,ALLOW_ROW_LOCKS=OFF)
GO

-- Allow page and row locks.
ALTER INDEX NI_EmployeePayHistory_Rate ON
HumanResources.EmployeePayHistory
SET (ALLOW_PAGE_LOCKS=ON,ALLOW_ROW_LOCKS=ON)
GO

How It Works
This recipe demonstrated three variations. The first query created a new index on the table, configured
so that the database engine couldn’t issue page locks against the index:

WITH (ALLOW_PAGE_LOCKS=OFF)

In the next statement, both page and row locks were turned OFF (the default for an index is for
both to be set to ON):

ALTER INDEX NI_EmployeePayHistory_Rate ON
HumanResources.EmployeePayHistory
SET (ALLOW_PAGE_LOCKS=OFF,ALLOW_ROW_LOCKS=OFF)

In the last statement, page and row locking is re-enabled:

SET (ALLOW_PAGE_LOCKS=ON,ALLOW_ROW_LOCKS=ON)

Removing locking options should only be done if you have a good reason to do so—for exam-
ple you may have activity that causes too many row locks, which can eat up memory resources.
Instead of row locks, you may wish to have SQL Server use larger grained page or table locks instead.

Managing Very Large Indexes
The last two recipes for this chapter cover methods for managing very large indexes. For example,
you can designate that an index is created on a separate filegroup. Doing so can provide benefits
from both the manageability and performance sides, as you can then perform separate backups by
filegroup, as well as improving I/O performance of a query if the filegroup has files that exist on
a separate array.

As was initially reviewed in Chapter 4, you can also implement index partitioning. Partitioning
allows you to break down the index data set into smaller subsets of data. As will be discussed in the
recipe, if large indexes are separated onto separate partitions, this can positively impact the perfor-
mance of a query (particularly for very large indexes).

Creating an Index on a Filegroup
In this recipe, I’ll show you how to create an index on a specific filegroup. If not explicitly designated,
an index is created on the same filegroup as the underlying table. This is accomplished using the ON
clause of the CREATE INDEX command:

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 169

CHAPTER 5 ■ INDEXES170

ON filegroup_name | default

This option can take an explicit filegroup name, or the database default filegroup (for more
information on filegroups, see Chapter 22).

This example demonstrates how to explicitly define which filegroup an index is stored on. First,
a new filegroup is added to the database:

ALTER DATABASE AdventureWorks
ADD FILEGROUP FG2
GO

Next, a new file is added to the database and the newly created filegroup:

ALTER DATABASE AdventureWorks
ADD FILE
(NAME = AW2,

FILENAME = 'c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\aw2.ndf',
SIZE = 1MB

)
TO FILEGROUP FG2
GO

A new index is then created, designating that it be stored on the newly created filegroup:

CREATE INDEX NI_ProductPhoto_ThumnailPhotoFileName ON
Production.ProductPhoto (ThumbnailPhotoFileName)
ON [FG2]

How It Works
The first part of the recipe creates a new filegroup in the AdventureWorks database called FG2 using
the ALTER DATABASE command. After that a new database data file is created on the new filegroup.
Lastly, a new index is created on the FG2 filegroup. The ON clause designated the filegroup name for
the index in square brackets:

ON [FG2]

Filegroups can be used to help manage very large databases, both by allowing separate backups
by filegroup, as well as improving I/O performance if the filegroup has files that exist on a separate
array.

Implementing Index Partitioning
In this recipe, I’ll show you how to apply partitioning to a nonclustered index. In Chapter 4,
I demonstrated table partitioning. Partitioning can provide manageability, scalability, and perfor-
mance benefits for large tables. This is because partitioning allows you to break down the data set
into smaller subsets of data. Depending on the index key(s), an index on a table can also be quite
large. Applying the partitioning concept to indexes, if large indexes are separated onto separate par-
titions, this can positively impact the performance of a query. Queries that target data from just one
partition will benefit because SQL Server will target just the selected partition, instead of accessing
all partitions for the index.

This recipe will now demonstrate index partitioning using the HitDateRangeScheme partition
scheme that was created in Chapter 4 on the Sales.WebSiteHits table:

CREATE NONCLUSTERED INDEX NI_WebSiteHits_WebSitePage ON
Sales.WebSiteHits (WebSitePage)
ON [HitDateRangeScheme] (HitDate)

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 170

CHAPTER 5 ■ INDEXES 171

How It Works
The partition scheme is applied using the ON clause.

ON [HitDateRangeScheme] (HitDate)

Notice that although the HitDate column wasn’t a nonclustered index key, it was included in
the partition scheme, matching that of the table. When the index and table use the same parti-
tion scheme, they are said to be “aligned.”

You can choose to use a different partitioning scheme for the index than the table; however
that scheme must use the same data type argument, number of partitions, and boundary values.
Unaligned indexes can be used to take advantage of collocated joins—meaning if you have two
columns from two tables that are frequently joined that also use the same partition function, same
data type, number of partitions and boundaries, you can potentially improve query join performance.
However, the common approach will most probably be to use aligned partition schemes between
the index and table, for administration and performance reasons.

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 171

570Xch05FINALQ6.qxd 11/7/05 10:11 AM Page 172

Full-Text Search

Full-text search functionality allows you to issue intelligent word—and phrase—searches against
character and binary data, using full-text enabled operators, which can perform significantly better
than a regular LIKE operator search. In this chapter, I’ll present recipes that teach you how to enable
full-text search capabilities in your database using Transact-SQL.

■Note In SQL Server 2005, Microsoft deprecated several of the full-text system stored procedures in favor of
more consistent Transact-SQL CREATE/ALTER/DROP commands. Deprecated procedures include:
sp_fulltext_catalog, sp_fulltext_column, sp_fulltext_database, sp_fulltext_table,
sp_help_fulltext_catalogs, sp_help_fulltext_catalogs_cursor, sp_help_fulltext_columns,
sp_help_fulltext_tables, and sp_help_fulltext_table_cursor.

Full-Text Indexes and Catalogs
Full-text indexes allow you to search against unstructured textual data using more sophisticated
functions and a higher level of performance than using just the LIKE operator. Unlike regular B-tree
clustered or nonclustered indexes, full-text indexes are compressed index structures that are comprised
of tokens from the indexed textual data. Tokens are words or character strings that SQL Server has
identified in the indexing process. Using special full-text functions, you can extend word or phrase
searches beyond the character pattern, and search based on inflection, synonyms, wildcards, and
proximity to other words.

Full-text catalogs are used to contain zero or more full-text indexes, and are stored on the local
hard drive of the SQL Server instance server. A full-text catalog can contain full-text indexes that
index one or more tables in a single database.

SQL Server 2005 has two internal components that are used to generate and process the full-
text functionality. The Microsoft Full-Text Engine for SQL Server (MSFTESQL) is used to populate
the full-text indexes and catalogs and facilitate full-text searches against the database tables. The
Microsoft Full-Text Engine Filter Daemon (MSFTEFD) is used to extract textual information from
the document, removing non-textual data and retaining meaningful words and phrases.

SQL Server 2005 introduces a number of new Transact-SQL commands used to create, modify,
and remove full-text catalog and full-text index objects. System-stored procedures used in previous
versions of SQL Server have been deprecated in place of these new commands. Also new in SQL
Server 2005, full-text catalogs are now backed up along with regular database backups, and thus can
be restored with a database RESTORE command as well.

173

C H A P T E R 6

■ ■ ■

570Xch06.qxd 11/4/05 2:10 PM Page 173

CHAPTER 6 ■ FULL-TEXT SEARCH174

Creating a Full-Text Catalog
In its simplest form, you can create a new catalog just by defining its name. There are other options
however, and the extended syntax for CREATE FULLTEXT CATALOG is as follows:

CREATE FULLTEXT CATALOG catalog_name
[ON FILEGROUP 'filegroup']
[IN PATH 'rootpath']
[WITH ACCENT_SENSITIVITY = {ON|OFF}]
[AS DEFAULT]
[AUTHORIZATION owner_name]

The arguments of this command are described in Table 6-1.

Table 6-1. CREATE FULLTEXT CATALOG Arguments

Argument Description

catalog_name The name of the new full-text catalog.

filegroup Designates that the catalog will be placed on a specific
filegroup. If this isn't designated, the default filegroup for the
database is used.

rootpath Allows you to specify a non-default root directory for the
catalog. For example in this recipe, the new catalog will be
created by default on the local C:\Program Files\Microsoft
SQL Server\MSSQL.1\MSSQL\FTData\cat_Production_Document
directory.

ACCENT_SENSITIVITY = {ON|OFF} This option allows you to choose whether the indexes will be
created within the catalog as accent sensitive or accent
insensitive. Accent sensitivity defines whether or not SQL
Server will distinguish between accented and unaccented
characters.

AS DEFAULT This option sets the catalog as the default catalog for all full-text
indexes which are created in the database without explicitly
defining an owning full-text catalog.

owner_name The AUTHORIZATION option determines the owner of the new
full-text catalog, allowing you to choose either a database user
or a role.

In this first example, a new full-text catalog is created in the AdventureWorks database (note
that a full-text catalog only belongs to a single database):

USE AdventureWorks
GO
CREATE FULLTEXT CATALOG cat_Production_Document

In the second example, a new full-text catalog is created designating a non-default file path,
and with accent sensitivity enabled:

USE AdventureWorks
GO
CREATE FULLTEXT CATALOG cat_Production_Document_EX2
IN PATH 'C:\Apress\Recipes\FTC'
WITH ACCENT_SENSITIVITY = ON

570Xch06.qxd 11/4/05 2:10 PM Page 174

How It Works
In this recipe, I demonstrated how to create a new full-text catalog using the CREATE FULLTEXT CATALOG
command. This command creates related files on the local server of the SQL Server instance. Once
it’s created, you’ll see a new folder created with the name of the new full-text catalog. This folder
will contain a subfolder and system files, none of which should be opened or modified outside of
SQL Server.

Once a full-text catalog is created, you can then proceed with full-text indexes, which are
reviewed in the next recipe.

Creating a Full-Text Index
In this recipe, I’ll demonstrate how to create a full-text index on columns in a table, so that you can
then take advantage of the more sophisticated search capabilities shown later on in the chapter.

The command for creating a full-text index is CREATE FULLTEXT INDEX. The syntax is as follows:

CREATE FULLTEXT INDEX ON table_name
[(column_name [TYPE COLUMN type_column_name]
[LANGUAGE language_term] [,...n])]
KEY INDEX index_name
[ON fulltext_catalog_name]
[WITH
{CHANGE_TRACKING {MANUAL | AUTO | OFF [, NO POPULATION]}}
]

The arguments of this command are described in Table 6-2.

Table 6-2. CREATE FULLTEXT INDEX Arguments

Argument Description

table_name The name of the table that you are creating the full-text index
on. There can only be one full-text index on a single table.

column_name The listed column or columns to be indexed, which can be of
the data types varchar, nvarchar, char, nchar, xml, varbinary,
text, ntext, and image.

type_column_name The TYPE COLUMN keyword token is used to designate a column
in the table that tells the full-text index what type of data is held
in the varbinary(max) or image data type column. SQL Server
can interpret different file types, but must know exactly how to
do so. In this case, the FileExtension table has “.doc” in it for
each row. This tells SQL Server that the data held in Document
will be of a Word Document format.

language_term The optional LANGUAGE keyword can also be used within the
column list to indicate the language of the data stored in the
column. Specifying the language will help SQL Server
determine how the data is parsed in the full-text indexing
process and how it will be linguistically interpreted. For a list
of available languages, query the sys.fulltext_languages table.

index_name In order for the full-text index to be created on a table, that
table must have a single-key, unique, non-nullable column.
This can be, for example, a single column primary key, or
a column defined with a UNIQUE constraint that is also non-
nullable. The KEY INDEX clause in the CREATE FULLTEXT INDEX
command identifies the required unique key column on the
specified table.

(Continued)

CHAPTER 6 ■ FULL-TEXT SEARCH 175

570Xch06.qxd 11/4/05 2:10 PM Page 175

Table 6-2. (Continued)

Argument Description

fulltext_catalog_name The ON clause designates the catalog where the full-text index
will be stored. If a default catalog was identified before creation
of the index, and this option isn't used, the index will be stored
on the default catalog. However if no default was defined, the
index creation will fail.

CHANGE_TRACKING {MANUAL | This argument determines how user data changes will be
AUTO | OFF [, NO POPULATION]} detected by the full-text service. Based on this configuration,

indexes can be automatically updated as data is changed in the
table. You also have the option of only manually repopulating
the indexes at a time or on a schedule of your choosing. The
AUTO option is designated to automatically update the full-text
index as table data is modified. The MANUAL option means that
changes will either be propagated manually by the user or
initiated via a SQL Server Agent schedule. The OFF option means
that SQL Server will not keep a list of user changes. Using OFF
with NO POPULATION means that SQL Server will not populate
the index after it is created. Under this option, full-text index
population will only occur after someone executes ALTER
FULLTEXT INDEX, which is reviewed in the next recipe.

In this recipe’s example, a new full-text index is created on the AdventureWorks database’s
Production.Document table (we’ll demonstrate how to query the index in future recipes).
DocumentSummary is the column to be indexed, and FileExtension is the column that contains
a pointer to the column’s document type:

CREATE FULLTEXT INDEX ON Production.Document
(DocumentSummary, Document TYPE COLUMN FileExtension)
KEY INDEX PK_Document_DocumentID
ON cat_Production_Document
WITH CHANGE_TRACKING AUTO

How It Works
In this recipe, a new full-text index was created for the Production.Document table, on the
DocumentSummary column (which has a varchar(max) data type). Note that more than one column
can be designated for one full-text index. Stepping through the code, the first line designated the
table the full-text index would be based on:

CREATE FULLTEXT INDEX ON Production.Document

The second line of code designated the column to be indexed, and then a pointer to the column
that tells SQL Server what document type is stored in the DocumentSummary column:

(DocumentSummary, Document TYPE COLUMN FileExtension)

Keep in mind that the TYPE COLUMN clause is only necessary if you are indexing a varchar(max)
or image type column, as you’ll be assisting SQL Server with interpreting the stored data. Regular
text data types such as char, varchar, nchar, nvarchar, text, ntext and xml don’t require the TYPE COLUMN
clause.

Next, the name of the key, non-null, unique column for the table is identified:

KEY INDEX PK_Document_DocumentID

CHAPTER 6 ■ FULL-TEXT SEARCH176

570Xch06.qxd 11/4/05 2:10 PM Page 176

The ON clause designates which full-text catalog the full-text index will be stored in:

ON cat_Production_Document

Lastly, the method of ongoing index population is designated for the index:

WITH CHANGE_TRACKING AUTO

Once the full-text index is created, you can begin querying it. Before we get to this however,
there are other commands used for modifying or removing indexes and catalogs you should be
aware of.

Modifying a Full-Text Catalog
In this recipe, I’ll demonstrate ALTER FULLTEXT CATALOG, which you can use to:

• Change accent sensitive settings. Accent sensitivity defines whether or not SQL Server will
distinguish between accented and unaccented characters, or treat them as equivalent char-
acters in the search.

• Set the catalog as the default database catalog.

• REBUILD the entire catalog with all indexes in it.

• REORGANIZE the catalog, which optimizes internal index and catalog full-text structures.
Microsoft calls this process a “master merge,” which means that smaller indexes are physi-
cally processed (not logically, however) into one large index in order to improve performance.

The syntax for ALTER FULLTEXT CATALOG is as follows:

ALTER FULLTEXT CATALOG catalog_name
{ REBUILD [WITH ACCENT_SENSITIVITY = {ON|OFF}]

| REORGANIZE
| AS DEFAULT

}

The arguments for this command are described in Table 6-3.

Table 6-3. ALTER FULLTEXT CATALOG Arguments

Argument Description

REBUILD The REBUILD option deletes the existing full-text file
system files and replaces it with a new catalog (with the
indexes still intact).

[WITH ACCENT_SENSITIVITY = {ON|OFF}] The ACCENT_SENSITIVITY option can only be configured
when used in conjunction with a REBUILD.

REORGANIZE This causes SQL Server to optimize catalog structures
and internal indexes, freeing up disk and memory
resources for those full-text indexes based on
frequently updated columns.

AS DEFAULT Sets the catalog as the default database catalog.

In this first example in the recipe, a full-text catalog is optimized using the REORGANIZE keyword:

ALTER FULLTEXT CATALOG cat_Production_Document
REORGANIZE

CHAPTER 6 ■ FULL-TEXT SEARCH 177

570Xch06.qxd 11/4/05 2:10 PM Page 177

In this second example, a full-text catalog is set to be the default full-text catalog for the database:

ALTER FULLTEXT CATALOG cat_Production_Document
AS DEFAULT

In this example, a full-text catalog (and all indexes within), is rebuilt along with disabling
accent sensitivity:

ALTER FULLTEXT CATALOG cat_Production_Document
REBUILD WITH ACCENT_SENSITIVITY = OFF

How It Works
In this recipe, ALTER FULLTEXT CATALOG was used to optimize the indexes and internal data struc-
tures, set the catalog to the default database, and rebuild the catalog and indexes within. This
command is used to maintain existing catalogs, and keep them performing at their best as data
modifications are made to the underlying indexed tables.

Modifying a Full-Text Index
The ALTER FULLTEXT INDEX command can be used both to change the properties of an index and
also control/initiate index population. The syntax is as follows:

ALTER FULLTEXT INDEX ON table_name
{ ENABLE

| DISABLE
| SET CHANGE_TRACKING {MANUAL|AUTO|OFF}
| ADD (column_name
[TYPE COLUMN type_column_name]
[LANGUAGE language_term] [,...n])
[WITH NO POPULATION]
| DROP (column_name [,...n])
[WITH NO POPULATION]
| START {FULL|INCREMENTAL|UPDATE} POPULATION
| STOP POPULATION

}

The arguments of this command are described in Table 6-4.

Table 6-4. ALTER FULLTEXT INDEX Arguments

Argument Description

table_name The name of the table of the index to be modified.

ENABLE | DISABLE The ENABLE option activates the full-text index.
DISABLE deactivates a full-text index. Deactivating
a full-text index means that changes to the table
columns are no longer tracked and moved to the
full-text index (however full-text search conditions
are still allowed against the index).

SET CHANGE TRACKING {MANUAL|AUTO|OFF} MANUAL specifies that change tracking on the source
indexed data will be enabled on a schedule or
manually executed basis. AUTO specifies that the
full-text index is modified automatically when
the indexed column(s) values are modified. OFF
disabled change tracking from occurring on the-
full-text index.

CHAPTER 6 ■ FULL-TEXT SEARCH178

570Xch06.qxd 11/4/05 2:10 PM Page 178

Argument Description

ADD (column_name [,...n]) The name of the column or columns to add to
the existing full-text index.

type_column_name The column used to designate the full-text index
file type of the data stored in the varbinary(max)
or image data type column.

language_term The optional LANGUAGE keyword used within
the column list to indicate the language of the
data stored in the column.

WITH NO POPULATION When designated, the full-text index isn't
populated after the addition or removal of
a table column.

DROP (column_name [,...n]) The name of the column or columns to remove
from the existing full-text index.

START {FULL|INCREMENTAL|UPDATE} POPULATION This option initiates the population of the full-text
index based on the option of FULL, INCREMENTAL,
and UPDATE. FULL refreshes every row from the
table into the index. INCREMENTAL only refreshes
the index for those rows that were modified since
the last population and in order for INCREMENTAL
to be used, the indexed table requires a column
with a timestamp data type. The UPDATE token
refreshes the index for any rows that were inserted,
updated, or deleted since the last index update.

STOP POPULATION For very large tables, full-text index population
can consume significant system resources.
Because of this, you may need to stop a population
process while it is in progress. For indexes created
with the MANUAL or OFF change tracking setting,
you can use the STOP POPULATION option.

In this first example, a new column is added to the existing full-text index on the
Production.Document table:

ALTER FULLTEXT INDEX ON Production.Document
ADD (Title)

Next, a full-text index population is initiated:

ALTER FULLTEXT INDEX ON Production.Document
START FULL POPULATION

This returns a warning because the full-text index population was already underway for the
table (we didn’t designate the WITH NO POPULATION option when adding the new column to the full-
text index):

Warning: Request to start a full-text index population on table or indexed view
'Production.Document' is ignored because a population is currently active for this
table or indexed view.

This next example demonstrates disabling change tracking for the table’s full-text index:

ALTER FULLTEXT INDEX ON Production.Document
SET CHANGE_TRACKING OFF

CHAPTER 6 ■ FULL-TEXT SEARCH 179

570Xch06.qxd 11/4/05 2:10 PM Page 179

This returns the following warning:

Warning: Request to stop change tracking has deleted all changes tracked on table or
indexed view 'Production'.

In this last example for the recipe, the Title column is dropped from the full-text index:

ALTER FULLTEXT INDEX ON Production.Document
DROP (Title)

How It Works
In this recipe, ALTER FULLTEXT INDEX was used to perform the following actions:

• Add a new column to an existing full-text index. This is useful if you wish to add additional
columns to the full-text index which would benefit from more advanced searching functionality.

• Start a full-text index population (which works if the population isn’t already set to automati-
cally update). For very large tables, you may wish to manually control when the full-text
index is populated, instead of allowing SQL Server to manually populate the index over time.

• Disable change tracking. This removes a log of any changes that have occurred to the
indexed data.

• Drop a column from a full-text index. For example, if you have a column which isn’t benefit-
ing from the full-text index functionality, it is best to remove it in order to conserve space
(from the stored indexing results) and resources (from the effort it takes SQL Server to update
the data).

Other actions ALTER FULLTEXT INDEX can perform include disabling an enabled index using the
DISABLE option, thus making it unavailable for us (but keeping the meta data in the system tables).
You can then enable a disabled index using the ENABLE keyword.

Dropping a Full-Text Catalog
In this recipe, I demonstrate how to remove a full-text catalog from the database using the DROP
FULLTEXT CATALOG command. The syntax is as follows:

DROP FULLTEXT CATALOG catalog_name

This command takes a single argument, the name of the catalog to drop. For example:

DROP FULLTEXT CATALOG cat_Production_Document

How It Works
The DROP FULLTEXT CATALOG references the catalog name, and doesn’t require any further informa-
tion to remove it from the database. If the full-text catalog was set as the DEFAULT catalog, you’ll see
the following warning:

Warning: The fulltext catalog 'cat_Production_Document'
is being dropped and is currently set as default.

CHAPTER 6 ■ FULL-TEXT SEARCH180

570Xch06.qxd 11/4/05 2:10 PM Page 180

Dropping a Full-Text Index
In this recipe, I’ll demonstrate how to remove a full-text index from the full-text catalog using the
DROP FULLTEXT INDEX command. The syntax is as follows:

DROP FULLTEXT INDEX ON table_name

This command only takes a single argument, the name of the table on which the full-text index
should be dropped. For example:

DROP FULLTEXT INDEX ON Production.Document

How It Works
The DROP FULLTEXT INDEX ON command references the full-text indexed table. Since only one index
is allowed on a single table, no other information is required to drop the full-text index.

Retrieving Full-Text Catalog and Index Metadata
This recipe shows you how to retrieve useful information regarding the full-text catalogs and
indexes in your database by using system catalog views.

The sys.fulltext_catalogs system catalog view returns information on all full-text catalogs in
the current database. For example,

SELECT name, path, is_default, is_accent_sensitivity_on
FROM sys.fulltext_catalogs

returns this:

is_ is_accent_
name path default sensitivity_on

cat_Production_Document_EX2 C:\Apress\Recipes\FTC\
cat_Production_Document_EX2 0 1

cat_Production_Document C:\Program Files\
Microsoft SQL Server\MSSQL.4\
MSSQL\FTData\
cat_Production_Document 0 1

The sys.fulltext_indexes system catalog view lists all full-text indexes in the database. For
example,

SELECT object_name(object_id) table_name, is_active, change_tracking_state_desc
FROM sys.fulltext_indexes

returns this:

table_name is_active change_tracking_state_desc

Document 1 AUTO

The sys.fulltext_index_columns system catalog view lists all full-text indexed columns in the
database. For example,

SELECT object_name(object_id) tblname, column_id
FROM sys.fulltext_index_columns

CHAPTER 6 ■ FULL-TEXT SEARCH 181

570Xch06.qxd 11/4/05 2:10 PM Page 181

returns the table name, and the indexed columns (using the ordinal position of the column in the
table):

tblname column_id

Document 2

Document 8

Document 9

Also, the FULLTEXTCATALOGPROPERTY system function can be used to return information about
a specific catalog. The syntax is as follows:

FULLTEXTCATALOGPROPERTY ('catalog_name' ,'property')

The function takes two arguments, the name of the catalog, and the name of the property to
evaluate. Some of the more useful options for the property option are described in Table 6-5.

Table 6-5. FULLTEXTCATALOGPROPERTY Property Options

Property Description

AccentSensitivity Returns 1 for accent sensitive, 0 for insensitive.

IndexSize Returns the size of the full-text catalog in megabytes.

MergeStatus Returns 1 when a reorganization is in process, and 0 when it is not.

PopulateStatus Returns a numeric value representing the current population status of
a catalog. For example, 0 for idle, 1 for an in progress population, 2 for
paused, 7 for building an index, and 8 for a full disk.

In this example, the full-text catalog population status is returned:

SELECT FULLTEXTCATALOGPROPERTY ('cat_Production_Document','PopulateStatus')
PopulationStatus

This returns “0” for idle:

PopulationStatus
0

How It Works
This recipe used three different catalog views and a system function to return information about
full-text catalogs and indexes in the current database. You’ll need this information in order to keep
track of their existence, as well as track the current state of activity and settings.

Basic Searching
Once you’ve created the full-text catalog and full-text indexes, you can get down to the business of
querying the data with more sophisticated Transact-SQL predicates. Predicates are used in expres-
sions in the WHERE or HAVING clauses, or join conditions of the FROM clause. Predicates return a TRUE,
FALSE, or UNKNOWN response.

CHAPTER 6 ■ FULL-TEXT SEARCH182

570Xch06.qxd 11/4/05 2:10 PM Page 182

Beginning with the more simple commands, the FREETEXT command is used to search unstruc-
tured text data based on inflectional, literal, or synonymous matches. It is more intelligent than
using LIKE because the text data is searched by meaning and not necessarily the exact wording.

The CONTAINS predicate is used to search unstructured textual data for precise or less precise
word and phrase matches. This command can also take into consideration the proximity of words
to one another, allowing for weighted results.

These next two recipes will demonstrate basic searches using the FREETEXT and CONTAINS predicates.

Using FREETEXT to Search Full-Text Indexed Columns
The FREETEXT predicate is used to search full-text columns based on inflectional, literal, or synony-
mous matches. The syntax is as follows:

FREETEXT ({ column_name | (column_list) | * }
, 'freetext_string' [, LANGUAGE language_term])

The arguments for this predicate are described in Table 6-6.

Table 6-6. FREETEXT Arguments

Argument Description

column_name | column_list | * The name of the column or columns that are full-text
indexed and that you wish to be searched. Designating *
designates that all searchable columns are used.

freetext_string The text to search for.

language_term Directs SQL Server to use a specific language for performing
the search, accessing thesaurus information, and removing
noise words. Noise words are words that, depending on the
language, cause unnecessary index bloat and do not assist
with the search: for example “a” and “the.”

In this example, FREETEXT is used to search data based on the meaning of the search term. SQL
Server looks at the individual words and searches for exact matches, inflectional forms, or extensions/
replacements based on the specific language’s thesaurus:

SELECT DocumentID, DocumentSummary
FROM Production.Document
WHERE FREETEXT (DocumentSummary, 'change pedal')

This returns:

DocumentID DocumentSummary

4 Detailed instructions for replacing pedals with Adventure Works Cycles
replacement pedals. Instructions are applicable to all Adventure Works Cycles
bicycle models and replacement pedals. Use only Adventure Works Cycles
parts when replacing worn or broken components.

How It Works
In this recipe, FREETEXT was used to search the DocumentSummary column for the phrase “change
pedal.” Though neither the exact word “change” nor “pedal” exists in the data, a row was returned
because of a match on the plural form of pedal (“pedals”).

CHAPTER 6 ■ FULL-TEXT SEARCH 183

570Xch06.qxd 11/4/05 2:10 PM Page 183

FREETEXT is, however, a less precise way of searching full-text indexes compared to CONTAINS,
which is demonstrated in the next few recipes.

Using CONTAINS for Word Searching
In this recipe, I demonstrate using the CONTAINS command to perform word searches. The CONTAINS
allows for more sophisticated full-text term searches than the FREETEXT predicate. The basic syntax
is as follows:

CONTAINS
({ column_name | (column_list) | * } ,

'< contains_search_condition >' [, LANGUAGE language_term])

The arguments are identical to FREETEXT, only CONTAINS allows for a variety of search conditions
(some demonstrated later on in the “Advanced Searching” section of this chapter.

This example demonstrates a simple search of rows with a DocumentSummary searching for the
words “replacing” or “pedals”:

SELECT DocumentID, DocumentSummary
FROM Production.Document
WHERE CONTAINS (DocumentSummary, '"replacing" OR "pedals"')

This returns:

DocumentID DocumentSummary

4 Detailed instructions for replacing pedals with Adventure Works Cycles
replacement pedals. Instructions are applicable to all Adventure Works Cycles
bicycle models and replacement pedals. Use only Adventure Works Cycles
parts when replacing worn or broken components.

8 Worn or damaged seats can be easily replaced following these simple
instructions. Instructions are applicable to these Adventure Works Cycles
models: Mountain 100 through Mountain 500. Use only Adventure Works
Cycles parts when replacing worn or broken components.

How It Works
In this recipe, I performed a search against the DocumentSummary finding any summary that contained
either the words “replacing” OR “pedals .” Unlike FREETEXT, the literal words are searched, and not
the synonyms or inflectional form. Any noise words like “a” or “the” are ignored, as well as punctua-
tion. Noise words are defined by the specified language. You can find noise word files under the
SQL Server instance directory $SQL_Server_Install_Path\Microsoft SQL Server\MSSQL.1\MSSQL\
FTDATA\, for filenames prefixed by “noise.” For example the “noiseFRA.txt” contains French noise
words.

OR was used to search for rows with either of the words, but AND could also have been used to
return rows only if both words existed for the DocumentSummary value.

For a single term word, double quotes are not necessary, just the outer single quotes, for example:

SELECT DocumentID, DocumentSummary
FROM Production.Document
WHERE CONTAINS (DocumentSummary, 'pedals')

CHAPTER 6 ■ FULL-TEXT SEARCH184

570Xch06.qxd 11/4/05 2:10 PM Page 184

Advanced Searching
So far this chapter has demonstrated examples of fairly straightforward word searches. However,
using CONTAINS you can perform more advanced searches against words or phrases. Some examples
of this include:

• Using a wildcard search to match words or phrases that match a specific text prefix.

• Search for words or phrases based on inflections of a specific word.

• Search for words or phrases based on the proximity of words near to one another.

These next three recipes will demonstrate these more advanced searches using the CONTAINS
predicate.

Using CONTAINS to Search with Wildcards
In this recipe, I demonstrate how to use wildcards within a CONTAINS search. A prefix term is designated,
followed by the asterisk symbol:

SELECT DocumentID, DocumentSummary
FROM Production.Document
WHERE CONTAINS (DocumentSummary, '"import*"')

This returns:

DocumentID DocumentSummary

7 It is important that you maintain your bicycle and keep it in good repair.
Detailed repair and service guidelines are provided along with instructions for
adjusting the tightness of the suspension fork.

How It Works
This recipe uses the asterisk symbol to represent a wildcard of one or more characters. This is similar
to using LIKE, only you can benefit from the inherent performance of full-text indexing. Any match
on a word that starts with “import” will be returned. In this case, one row that matches on the word
“important” was returned.

When using a wildcard, the term must be embedded in double quotes; otherwise SQL Server
interprets the asterisk as a literal value to be searched for. For example searching for ‘import*’
without the embedded quotes looks for the literal asterisk value as part of the search term.

Using CONTAINS to Search for Inflectional Matches
In this recipe, I’ll demonstrate how to search for rows that match a search term based on inflectional
variations. The syntax for searching for inflectional variations is as follows:

FORMSOF ({ INFLECTIONAL | THESAURUS } , < simple_term > [,...n])

In this example, the inflectional variation of “replace” is searched:

SELECT DocumentID, DocumentSummary
FROM Production.Document
WHERE CONTAINS(DocumentSummary, ' FORMSOF (INFLECTIONAL, replace) ')

CHAPTER 6 ■ FULL-TEXT SEARCH 185

570Xch06.qxd 11/4/05 2:10 PM Page 185

This returns:

DocumentID DocumentSummary

3 Reflectors are vital safety components of your bicycle. Always ensure your
front and back reflectors are clean and in good repair. Detailed instructions
and illustrations are included should you need to replace the front reflector
or front reflector bracket of your Adventure Works Cycles bicycle.

4 Detailed instructions for replacing pedals with Adventure Works Cycles
replacement pedals. Instructions are applicable to all Adventure Works
Cycles bicycle models and replacement pedals. Use only Adventure Works
Cycles parts when replacing worn or broken components.

8 Worn or damaged seats can be easily replaced following these simple
instructions. Instructions are applicable to these Adventure Works Cycles
models: Mountain 100 through Mountain 500. Use only Adventure Works
Cycles parts when replacing worn or broken components.

How It Works
This recipe searches for any rows with the inflectional version of “replace.” Although the literal value
is not always found in that column, a row will also be returned that contains “replaced” or “replacing.”

THESAURUS is the other option for the FORMSOF clause, allowing you to search based on syn-
onymous terms (which are maintained in XML files in the $SQL_Server_Install_Path\Microsoft SQL
Server\MSSQL.1\MSSQL\FTDATA\ directory). For example, the French thesaurus XML file is called
tsFRA.xml. These XML files are updateable, so you can customize them according to your own
application requirements.

Using CONTAINS for Searching Results by Term Proximity
This recipe demonstrates how CONTAINS is used to find rows with specified words that are near one
another. The syntax is as follows:

{ < simple_term > | < prefix_term > }
{ { NEAR | ~ }
{ < simple_term > | < prefix_term > }

In this example, rows are returned where the word “oil” is near to “grease”:

SELECT DocumentSummary
FROM Production.Document
WHERE CONTAINS(DocumentSummary, 'oil NEAR grease')

This returns:

DocumentSummary

Guidelines and recommendations for lubricating the required components of your
Adventure Works Cycles bicycle. Component lubrication is vital to ensuring a smooth
and safe ride and should be part of your standard maintenance routine. Details
instructions are provided for each bicycle component requiring regular lubrication
including the frequency at which oil or grease should be applied.

How It Works
This recipe looked for any text that had the word grease near the word oil.

CHAPTER 6 ■ FULL-TEXT SEARCH186

570Xch06.qxd 11/4/05 2:10 PM Page 186

This example searched for proximity between two words, although you can also test for proximity
between multiple words, for example:

SELECT DocumentSummary
FROM Production.Document
WHERE CONTAINS(DocumentSummary, 'oil NEAR grease AND frequency')

Ranked Searching
The previous examples demonstrated full-text index searches conducted in the WHERE clause of
a SELECT query. SQL Server 2005 also has ranking functions available which are referenced in the
FROM clause of a query instead. Instead of just returning those rows that meet the search condition,
the ranking functions CONTAINSTABLE and FREETEXTTABLE are used to return designated rows by rele-
vance. The closer the match, the higher the system generated rank, as these next two recipes will
demonstrate.

Returning Ranked Search Results by Meaning
In this recipe, I demonstrate FREETEXTTABLE, which can be used to return search results ordered by
rank, based on a search string.

The syntax and functionality between FREETEXT and FREETEXTTABLE is still very similar:

FREETEXTTABLE (table , { column_name | (column_list) | * }
, 'freetext_string'

[, LANGUAGE language_term]
[,top_n_by_rank])

The two additional arguments that differentiate FREETEXTTABLE from FREETEXT are the table
and top_n_by_rank arguments. The table argument is the name of the table containing the full-text
indexed column or columns. The top_n_by_rank argument, when designated, takes an integer value
which represents the top matches in order of rank.

In this example, rows are returned from Production.Document in order of closest rank to the
search term “bicycle seat”:

SELECT f.RANK, DocumentID, DocumentSummary
FROM Production.Document d
INNER JOIN FREETEXTTABLE(Production.Document, DocumentSummary, 'bicycle seat') f

ON d.DocumentID = f.[KEY]
ORDER BY RANK DESC

This returns:

RANK DocumentID DocumentSummary

135 8 Worn or damaged seats can be easily replaced following these
simple instructions. Instructions are applicable to these
Adventure Works Cycles models: Mountain 100 through
Mountain 500. Use only Adventure Works Cycles parts when
replacing worn or broken components.

24 3 Reflectors are vital safety components of your bicycle. Always
ensure your front and back reflectors are clean and in good
repair. Detailed instructions and illustrations are included
should you need to replace the front reflector or front reflector
bracket of your Adventure Works Cycles bicycle.

(Continued)

CHAPTER 6 ■ FULL-TEXT SEARCH 187

570Xch06.qxd 11/4/05 2:10 PM Page 187

RANK DocumentID DocumentSummary

24 6 Guidelines and recommendations for lubricating the required
components of your Adventure Works Cycles bicycle.
Component lubrication is vital to ensuring a smooth and safe
ride and should be part of your standard maintenance routine.
Details instructions are provided for each bicycle component
requiring regular lubrication including the frequency at which
oil or grease should be applied.

15 7 It is important that you maintain your bicycle and keep it in
good repair. Detailed repair and service guidelines are provided
along with instructions for adjusting the tightness of the
suspension fork.

15 4 Detailed instructions for replacing pedals with Adventure Works
Cycles replacement pedals. Instructions are applicable to all
Adventure Works Cycles bicycle models and replacement
pedals. Use only Adventure Works Cycles parts when replacing
worn or broken components.

How It Works
The FREETEXTTABLE is similar to FREETEXT in that it searches full-text indexed columns by meaning,
and not literal value. FREETEXTTABLE is different from FREETEXT however, in that it is referenced like
a table in the FROM clause, allowing you to join data by its KEY. KEY and RANK are two columns that the
FREETEXTTABLE returns in the result set. KEY is the unique/primary key defined for the full index and
RANK is the measure (0 through 1000) of how good a search result the row is estimated to be.

In this recipe, the FREETEXTTABLE result set searched the DocumentSummary column for “bicycle
seat,” and joined by its KEY value to the Production.Document table’s DocumentID column:

INNER JOIN FREETEXTTABLE(Production.Document,
DocumentSummary,
'bicycle seat') f

ON d.DocumentID = f.[KEY]

RANK was returned sorted by descending order, based on the strength of the match:

ORDER BY RANK DESC

Returning Ranked Search Results by Weighted Value
In this recipe, I demonstrate returning search results based on a weighted pattern match value using
the CONTAINSTABLE command. CONTAINSTABLE is equivalent to FREETEXTTABLE in that it acts as a table
and can be referenced in the FROM clause. CONTAINSTABLE also has the same search capabilities and
variations as CONTAINS.

Both CONTAINS and CONTAINSTABLE can be used to designate a row match’s “weight,” giving one
term more importance than another, thus impacting result rank. This is achieved by using ISABOUT
in the command, which assigns a weighted value to the search term.

The basic syntax for this is as follows:

ISABOUT { <search term> } [WEIGHT (weight_value)]

This example demonstrates querying Production.Document by rank, giving the term “bicycle”
a higher weighting than the term “seat”:

SELECT f.RANK, d.DocumentID, d.DocumentSummary
FROM Production.Document d
INNER JOIN CONTAINSTABLE(Production.Document, DocumentSummary,

CHAPTER 6 ■ FULL-TEXT SEARCH188

570Xch06.qxd 11/4/05 2:10 PM Page 188

'ISABOUT (bicycle weight (.9), seat weight (.1))') f
ON d.DocumentID = f.[KEY]

ORDER BY RANK DESC

This returns:

RANK DocumentID DocumentSummary

23 3 Reflectors are vital safety components of your bicycle. Always
ensure your front and back reflectors are clean and in good
repair. Detailed instructions and illustrations are included
should you need to replace the front reflector or front reflector
bracket of your Adventure Works Cycles bicycle.

23 6 Guidelines and recommendations for lubricating the required
components of your Adventure Works Cycles bicycle.
Component lubrication is vital to ensuring a smooth and safe
ride and should be part of your standard maintenance routine.
Details instructions are provided for each bicycle component
requiring regular lubrication including the frequency at which
oil or grease should be applied.

11 7 It is important that you maintain your bicycle and keep it in
good repair. Detailed repair and service guidelines are provided
along with instructions for adjusting the tightness of the
suspension fork.

11 4 Detailed instructions for replacing pedals with Adventure Works
Cycles replacement pedals. Instructions are applicable to all
Adventure Works Cycles bicycle models and replacement
pedals. Use only Adventure Works Cycles parts when replacing
worn or broken components.

How It Works
The CONTAINSTABLE is a result set, joining to Production.Document by KEY and DocumentID. RANK was
returned in the SELECT clause, and sorted in the ORDER BY clause. CONTAINSTABLE can perform the
same kinds of searches as CONTAINS, including wildcard, proximity, inflectional, and thesaurus
searches.

In this example, a weighted term search was performed, meaning that words are assigned values
that impact their weight within the result ranking.

In this recipe, two words were searched, “bicycle” and “seat,” with “bicycle” getting a higher
rank than “weight”:

'ISABOUT (bicycle weight (.9), seat weight (.1))'

The weight value can be a number from 0.0 through 1.0 and impacts how each row’s matching
will be ranked within CONTAINSTABLE. ISABOUT is put within the single quotes and the column defini-
tion is within parentheses. Each term was followed by the word “weight” and the value 0.0 to 1.0
value in parentheses.

CHAPTER 6 ■ FULL-TEXT SEARCH 189

570Xch06.qxd 11/4/05 2:10 PM Page 189

570Xch06.qxd 11/4/05 2:10 PM Page 190

Views

Views allow you to create a virtual representation of table data using a SELECT statement as its
definition. The defining SELECT statement can join one or more tables and can include one or more
columns. Once created, a view can be referenced in the FROM clause of a query.

Views can be used to simplify data access for query writers, obscuring the underlying complex-
ity of the SELECT statement. Views are also useful for managing security and protecting sensitive data.
If you wish to restrict direct table access by the end user, you can grant permissions exclusively to
views, rather than to the underlying tables. You can also use views to expose only those columns
that you wish the end user to see, including just the necessary columns in the view definition. Views
can even allow direct data updates, under specific circumstances that I’ll describe later in the chapter.
Views also provide a standard interface to the back-end data, which shouldn’t need to change unless
there are significant changes to the underlying table structures.

In addition to regular views, you can also create indexed views, which are views that actually
have index (both clustered and nonclustered) data persisted within the database (regular views do
not actually store physical data). Also available are distributed-partitioned views, which allow you
to represent one logical table made up of horizontally-partitioned tables, each located across sepa-
rate SQL Server instances. Table 7-1 shows the three types of views used in SQL Server 2005 (not
including the deprecated local-partitioned view).

Table 7-1. SQL Server 2005 View Types

View Type Description

Regular View Defined by a Transact-SQL query. No data is actually stored in
the database, only the view definition.

Indexed View First defined by a Transact-SQL query, and then, after certain
requirements are met, a clustered index is created on it in order
to materialize the index data similar to table data. Once a clustered
index is created, multiple nonclustered indexes can be created
on the indexed view as needed.

Distributed Partitioned View This is a view that uses UNION ALL to combine multiple, smaller
tables separated across two or more SQL Server instances into
a single, virtual table for performance purposes and scalability
(expansion of table size on each SQL Server instance, for
example).

In this chapter, I’ll present recipes that create each of these types of views, and I’ll also provide
methods for reporting view metadata.

191

C H A P T E R 7

■ ■ ■

570Xch07.qxd 11/4/05 2:10 PM Page 191

CHAPTER 7 ■ VIEWS192

Regular Views
Views are a great way to pre-assemble data before presenting it to end-users. Views can be used to
obscure numerous table joins and column selections. Views can also be used to implement security
by only allowing users authorization access to the view, and not to the actual underlying tables.
For all the usefulness of views, there are still some performance shortcomings to watch out for. When
considering views for your database, consider the following “best practices”:

• Performance-tune your views as you would performance-tune a SELECT query, because a reg-
ular view is essentially just a “stored” query. Poorly performing views can have a huge impact
on server performance.

• Don’t nest your views more than one level deep. Specifically, do not define a view that calls
another view, and so on. This can lead to confusion when you attempt to tune inefficient
queries, not to mention a performance overhead for each nested level.

• Use stored procedures instead of views, if possible. Stored procedures can offer a performance
boost, as the execution plan can reuse them. (In contrast, every time a view is accessed, its
execution plan is recompiled.) Stored procedures can also reduce network traffic, provide
business logic, and have fewer restrictions than a view (see Chapter 10 for more information).

When a view is created, its definition is stored in the database, but the actual data that the view
returns is not stored separately from the underlying tables. The next few recipes will demonstrate
how to create and manage views.

Creating a Basic View
A view is created using the CREATE VIEW command. The syntax is as follows:

CREATE VIEW [schema_name .] view_name [(column [,...n])]
[WITH [ENCRYPTION] [SCHEMABINDING] [VIEW_METADATA] [,...n]]
AS select_statement
[WITH CHECK OPTION]

The arguments of this command are described in Table 7-2. Some of these arguments will also
be reviewed in more detail later on in the chapter.

Table 7-2. CREATE VIEW Arguments

Argument Description

[schema_name .] view_name The schema and name of the new view.

(column [,...n]) This is the optional list of column names to be used for the view.
If not designated, the names used in the SELECT query will be
used instead.

ENCRYPTION Encrypts the Transact-SQL definition in the system tables so
that it cannot be viewed without a saved copy of the original
CREATE VIEW command.

SCHEMABINDING SCHEMABINDING binds the view to the schema of the underlying
tables, restricting any changes in the base table that would
impact the view definition.

VIEW_METADATA When designated, APIs accessing information about the view
will see view information instead of metadata from the
underlying table or tables.

select_statement The SELECT query used to return the rows and columns of the view.

570Xch07.qxd 11/4/05 2:10 PM Page 192

The SELECT statement allows up to 1024 defined columns. You cannot, however, use certain
elements in a view definition, including INTO, OPTION, COMPUTE, COMPUTE BY, or references to table
variables or temporary tables. You also cannot use ORDER BY, unless used in conjunction with the
TOP keyword.

This example demonstrates how to create a view that accesses data from both the
Production.TransactionHistory and the Production.Product tables:

CREATE VIEW dbo.v_Product_TransactionHistory
AS

SELECT p.Name ProductName,
p.ProductNumber,
c.Name ProductCategory,
s.Name ProductSubCategory,
m.Name ProductModel,
t.TransactionID,
t.ReferenceOrderID,
t.ReferenceOrderLineID,
t.TransactionDate,
t.TransactionType,
t.Quantity,
t.ActualCost

FROM Production.TransactionHistory t
INNER JOIN Production.Product p ON

t.ProductID = p.ProductID
INNER JOIN Production.ProductModel m ON

m.ProductModelID = p.ProductModelID
INNER JOIN Production.ProductSubcategory s ON

s.ProductSubcategoryID = p.ProductSubcategoryID
INNER JOIN Production.ProductCategory c ON

c.ProductCategoryID = s.ProductCategoryID
WHERE c.Name = 'Bikes'
GO

Next, the new view is queried to show transaction history for products by product name and
model:

SELECT ProductName, ProductModel, ReferenceOrderID, TransactionDate, ActualCost
FROM v_Product_TransactionHistory
ORDER BY ProductName

This returns the following abridged results:

ProductName ProductModel ReferenceOrderID TransactionDate ActualCost

Mountain-200 Black, 38 Mountain-200 53457 2003-09-01 00:00:00.000 1652.3928
Mountain-200 Black, 38 Mountain-200 53463 2003-09-01 00:00:00.000 1652.3928
Mountain-200 Black, 38 Mountain-200 53465 2003-09-01 00:00:00.000 1652.3928
...
Touring-3000 Yellow, 62 Touring-3000 69467 2004-05-01 00:00:00.000 534.492
Touring-3000 Yellow, 62 Touring-3000 69482 2004-05-01 00:00:00.000 534.492
Touring-3000 Yellow, 62 Touring-3000 66006 2004-05-04 00:00:00.000 0.00

How It Works
In this recipe, I define a view by using a SELECT query that referenced multiple tables in the FROM
clause and qualified a specific product category of “Bikes.” In this case, the view benefits the query
writer, as she or he doesn’t need to specify the many table joins each time they write the query.

CHAPTER 7 ■ VIEWS 193

570Xch07.qxd 11/4/05 2:10 PM Page 193

The view definition also used column aliases, using ProductName instead of just Name—making
the column name unambiguous and reducing the possible confusion with other columns called
Name. Qualifying what data is returned from the view in the WHERE clause also allows you to restrict
the data that the query writer can see—in this case only letting the query writer reference products
of a specific product category.

Querying the View Definition
You can view the Transact-SQL definition of a view by querying the sys.sql_modules system catalog
view.

This example shows you how to query a view’s SQL definition:

SELECT definition FROM sys.sql_modules
WHERE object_id = OBJECT_ID('v_Product_TransactionHistory')

This returns:

definition
CREATE VIEW dbo.v_Product_TransactionHistory AS SELECT p.Name ProductName,
p.ProductNumber, c.Name ProductCategory, s.Name ProductSubCategory, m.Name
ProductModel, t.TransactionID, t.ReferenceOrderID,
t.ReferenceOrderLineID,
t.TransactionDate, t.TransactionType, t.Quantity, t.ActualCost
FROM
Production.TransactionHistory t INNER JOIN Production.Product p ON t.ProductID =
p.ProductID INNER JOIN Production.ProductModel m ON m.ProductModelID =
p.ProductModelID INNER JOIN Production.ProductSubcategory s ON
s.ProductSubcategoryID = p.ProductSubcategoryID INNER JOIN Production.ProductCategory
c ON c.ProductCategoryID = s.ProductCategoryID WHERE c.Name = 'Bikes'

How It Works
As you just saw, the sys.sql_modules system catalog view allows you to view the SQL text of a view.
If the view has been encrypted (see later in the chapter for a review of encryption), the definition
column will return a NULL value. This system catalog view can also be used to view other procedural
code object types described in later chapters, such as triggers, functions, and stored procedures.

Reporting on Database Views
In this recipe, I use three different queries to return information about views in the current database.

The first query shows all views in the current database:

SELECT s.name SchemaName,
v.name ViewName

FROM sys.views v
INNER JOIN sys.schemas s ON

v.schema_id = s.schema_id
ORDER BY s.name,

v.name

CHAPTER 7 ■ VIEWS194

570Xch07.qxd 11/4/05 2:10 PM Page 194

This returns the following (abridged) results:

SchemaName ViewName

HumanResources vEmployee
HumanResources vEmployeeDepartment
HumanResources vEmployeeDepartmentHistory
HumanResources vJobCandidate
HumanResources vJobCandidateEducation
HumanResources vJobCandidateEmployment
...

This second query displays the columns exposed by each view in the current database:

SELECT v.name ViewName,
c.name ColumnName

FROM sys.columns c
INNER JOIN sys.views v ON

c.object_id = v.object_id
ORDER BY v.name,

c.name

This returns the following (abridged) results:

ViewName ColumnName

vEmployee AdditionalContactInfo
vEmployee AddressLine1
vEmployee AddressLine2
vEmployee City
vEmployee CountryRegionName
vEmployee EmailAddress
vEmployee EmailPromotion
...

This next query shows the objects each view is dependent on:

SELECT DISTINCT
s.name SchemaName,
v.name ViewName,
OBJECT_NAME(referenced_major_id) ReferencedObject

FROM sys.sql_dependencies d
INNER JOIN sys.views v ON

d.object_id = v.object_id
INNER JOIN sys.schemas s ON

v.schema_id = s.schema_id
ORDER BY s.name, v.name

This returns the following (abridged) results:

SchemaName ViewName ReferencedObject

HumanResources vEmployeeDepartmentHistory Employee
HumanResources vEmployeeDepartmentHistory EmployeeDepartmentHistory
HumanResources vEmployeeDepartmentHistory Shift
HumanResources vJobCandidate JobCandidate
HumanResources vJobCandidateEducation JobCandidate
HumanResources vJobCandidateEmployment JobCandidate

CHAPTER 7 ■ VIEWS 195

570Xch07.qxd 11/4/05 2:10 PM Page 195

How It Works
The first query in the recipe references the object catalog views sys.views and sys.schemas to return
all views in the database:

FROM sys.views v
INNER JOIN sys.schemas s ON

v.schema_id = s.schema_id

The second query reports on all columns returned by each view by querying the object catalog
views sys.columns and sys.views:

FROM sys.columns c
INNER JOIN sys.views v ON

c.object_id = v.object_id

The last query in the recipe reports on all object dependencies within the view. If a view, for
example, selects from two different tables, both base tables are considered view dependencies. The
sys.sql_dependencies view tracks dependencies that existed when the view was created:

FROM sys.sql_dependencies d
INNER JOIN sys.views v ON

d.object_id = v.object_id
INNER JOIN sys.schemas s ON

v.schema_id = s.schema_id

Refreshing a View’s Definition
When table objects referenced by the view are changed, the view’s metadata can become outdated.
In this recipe, I’ll show you how to refresh a view’s metadata if the dependent objects referenced in
the view definition have changed:

EXEC sp_refreshview 'dbo.v_Product_TransactionHistory'

How It Works
If the underlying object references for the view’s SELECT query definition changes, you can use the
sp_refreshview stored procedure to refresh the view’s metadata. The system stored procedure takes
only one parameter, the view schema and name.

Modifying a View
The ALTER VIEW command is used to modify the definition of an existing view. The syntax is as fol-
lows:

ALTER VIEW [schema_name .] view_name [(column [,...n])]
[WITH [ENCRYPTION] [SCHEMABINDING] [VIEW_METADATA] [,...n]]
AS select_statement
[WITH CHECK OPTION]

ALTER VIEW uses the same arguments as CREATE VIEW. This example demonstrates modifying an
existing view:

-- Add a WHERE clause and remove
-- the ReferenceOrderID and ReferenceOrderLineID columns

ALTER VIEW dbo.v_Product_TransactionHistory
AS

CHAPTER 7 ■ VIEWS196

570Xch07.qxd 11/4/05 2:10 PM Page 196

SELECT p.Name,
p.ProductNumber,
t.TransactionID,
t.TransactionDate,
t.TransactionType,
t.Quantity,
t.ActualCost

FROM Production.TransactionHistory t
INNER JOIN Production.Product p ON

t.ProductID = p.ProductID
WHERE Quantity > 10

GO

How It Works
This recipe was used to remove two columns from the original view and add a WHERE clause—both
by just redefining the SELECT statement after the AS keyword in the ALTER VIEW command. Note that
if you alter an indexed view (reviewed later in the chapter), all indexes will be dropped and will need
to be manually recreated.

Dropping a View
You can drop a view by using the DROP VIEW command. The syntax is as follows:

DROP VIEW [schema_name .] view_name [...,n]

The command just takes one argument, containing the name or names of the views to drop
from the database.

This example demonstrates dropping a view:

DROP VIEW dbo.v_Product_Inventory_Location

How It Works
Dropping a view will remove its definition from the system catalogs, as well as remove any indexes
created for it if it was an indexed view.

Modifying Data Through a View
As I mentioned at the beginning of the chapter, you can perform inserts, updates, and deletes
against a view, just like you would a regular table. In order to do this, any INSERT/UPDATE/DELETE
operations can only reference columns from a single table. Also, the columns being referenced in
the INSERT/UPDATE/DELETE cannot be derived—for example they can’t be calculated, based on an
aggregate function, or be affected by a GROUP BY, DISTINCT, or HAVING clause.

As a real world best practice, view updates may be appropriate for situations where the underlying
data tables must be obscured from the query writer. For example, if you are building a shrink-wrapped
software application that allows users to directly update the data, providing views will allow you to
filter the underlying columns that are viewed, or provide more user-friendly column names than
what you find used in the base tables.

In this example, a view is created that selects from the Production.Location table. A calculated
column is also used in the query definition:

CREATE VIEW Production.vw_Location
AS

CHAPTER 7 ■ VIEWS 197

570Xch07.qxd 11/4/05 2:10 PM Page 197

SELECT LocationID,
Name LocationName,
CostRate,
Availability,
CostRate/Availability CostToAvailabilityRatio

FROM Production.Location
GO

The following insert is attempted:

INSERT Production.vw_Location
(LocationName, CostRate, Availability, CostToAvailabilityRatio)
VALUES ('Finishing Cabinet', 1.22, 75.00, 0.01626)

This returns the following error:

Msg 4406, Level 16, State 1, Line 1
Update or insert of view or function 'Production.vw_Location' failed because it contains
a
derived or constant field.

This next insert is attempted, this time only referencing the columns that exist in the base
table:

INSERT Production.vw_Location
(LocationName, CostRate, Availability)
VALUES ('Finishing Cabinet', 1.22, 75.00)

The results show that the insert succeeded:

(1 row(s) affected)

How It Works
In this recipe I demonstrated performing an insert operation against a view. You can perform data
modifications against views as long as your data modification and view meet the requirements. If
your view can’t meet these requirements, you can use an INSTEAD OF trigger to perform updates
instead (an example of creating a view on a trigger is demonstrated in Chapter 12).

View Encryption
The ENCRYPTION OPTION in the CREATE VIEW and ALTER VIEW commands allows you to encrypt the
Transact-SQL of a view. Once encrypted, you can no longer view the definition in the sys.sql_modules
system catalog view. Software producers who use SQL Server in the back-end often encrypt their
views or stored procedures in order to prevent tampering or reverse-engineering from clients or
competitors. If you use encryption, be sure to save the original, unencrypted definition.

Encrypting a View
This example demonstrates encrypting the view Transact-SQL definition of a new view:

CREATE VIEW dbo.v_Product_TopTenListPrice
WITH ENCRYPTION
AS

CHAPTER 7 ■ VIEWS198

570Xch07.qxd 11/4/05 2:10 PM Page 198

SELECT TOP 10
p.Name,
p.ProductNumber,
p.ListPrice

FROM Production.Product p
ORDER BY p.ListPrice DESC
GO

Next, the sys.sql_modules system catalog view is queried for the new view’s Transact-SQL
definition:

SELECT definition
FROM sys.sql_modules
WHERE object_id = OBJECT_ID('v_Product_TopTenListPrice')

This returns:

definition
--
NULL

How It Works
In this recipe, a new view was created using the WITH ENCRYPTION option. If you’re using this option,
be sure to retain your source code in a safe location, or use a version control program such as Visual
Source Safe. In general, if you must encrypt the view, it should be performed just prior to deployment.

Indexed Views
A view is no more efficient than the underlying SELECT query that you use to define it. However, one
way you can improve the performance of a frequently accessed view is to add an index to it. To do
so, you must first create a unique, clustered index on the view. Once this index on the view has been
built, the data used to materialize the view is stored in much the same way as a table’s clustered
index. After creating the unique clustered index on the view, you can also create additional nonclus-
tered indexes. The underlying (base) tables are not impacted physically by the creation of these view
indexes, as they are separate underlying objects.

Indexed views can be created in any edition of SQL Server 2005, although they require SQL Server
Enterprise Edition in order for the query optimizer to automatically consider using an indexed view
in a query execution plan. In SQL Server 2005 Enterprise Edition, an indexed view can automatically
be used by the query optimizer when it deems it useful, even if it is the underlying table or tables
referenced in a SELECT query instead of the actual view itself. In editions other than Enterprise Edition,
you can manually force an indexed view to be used by the query optimizer by using the NOEXPAND
table hint (reviewed later in the chapter).

Indexed views are particularly ideal for SELECT queries view definitions that aggregate data across
many rows, as the aggregated values remain updated and materialized, ready to be queried without
continuous recalculation. Indexed views are ideal for queries referencing infrequently updated base
tables, but creating them on highly volatile tables may result in performance issues related to keeping
the indexes updated. Base tables with frequent updates will trigger frequent index updates against
the view, meaning that update speed will suffer at the expense of query performance.

CHAPTER 7 ■ VIEWS 199

570Xch07.qxd 11/4/05 2:10 PM Page 199

Creating an Indexed View
In this recipe, I’ll demonstrate how to create an indexed view. First we will create a new view, and
then create indexes (clustered and nonclustered) on it. In order to create an indexed view, you are
required to use the new WITH SCHEMABINDING option, which binds the view to the schema of the
underlying tables. This prevents any changes in the base table that would impact the view definition.
The WITH SCHEMABINDING option also adds additional requirements to the view’s select defini-
tion. Object references in a schema-bound view must include the two-part schema.object naming
convention, and all referenced objects have to be located in the same database.

■Note Keep in mind that there are also several other requirements which can determine whether or not an index
can be created on top of a view. The exhaustive list won’t be rehashed in this chapter, so be sure to check out the
complete requirements in SQL Server 2005 Books Online.

The recipe begins by creating a new view with the SCHEMABINDING option:

CREATE VIEW dbo.v_Product_Sales_By_LineTotal
WITH SCHEMABINDING
AS

SELECT p.ProductID, p.Name ProductName, SUM(LineTotal) LineTotalByProduct, COUNT_BIG(*)
LineItems
FROM Sales.SalesOrderDetail s
INNER JOIN Production.Product p ON

s.ProductID = p.ProductID
GROUP BY p.ProductID, p.Name

GO

Before creating an index, we’ll demonstrate querying the regular view, returning the query I/O
cost statistics using the SET STATISTICS IO command (see Chapter 28 for more info on this command):

SET STATISTICS IO ON
GO

SELECT TOP 5 ProductName, LineTotalByProduct
FROM v_Product_Sales_By_LineTotal
ORDER BY LineTotalByProduct DESC

This returns the following results:

ProductName LineTotalByProduct
Mountain-200 Black, 38 4400592.800400
Mountain-200 Black, 42 4009494.761841
Mountain-200 Silver, 38 3693678.025272
Mountain-200 Silver, 42 3438478.860423
Mountain-200 Silver, 46 3434256.941928

This also returns I/O information reporting the various scanning activites against the underly-
ing base tables used in the view:

CHAPTER 7 ■ VIEWS200

570Xch07.qxd 11/4/05 2:10 PM Page 200

Table 'Product'. Scan count 0, logical reads 10, physical reads 0, read-ahead reads 0, lob
logical reads 0, lob physical reads 0, lob read-ahead reads 0.
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads 0, lob
logical reads 0, lob physical reads 0, lob read-ahead reads 0.
Table 'SalesOrderDetail'. Scan count 1, logical reads 1241, physical reads 0, read-ahead reads
0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Next, a clustered index will be created on the regular view, based on the unique value of the
ProductID view column:

CREATE UNIQUE CLUSTERED INDEX UCI_v_Product_Sales_By_LineTotal
ON dbo.v_Product_Sales_By_LineTotal (ProductID)

GO

Once the clustered index is created, you can then start creating nonclustered indexes as needed:

CREATE NONCLUSTERED INDEX NI_v_Product_Sales_By_LineTotal
ON dbo.v_Product_Sales_By_LineTotal (ProductName)

GO

Next, the query executed earlier against the regular view is now executed against the indexed view:

SELECT TOP 5 ProductName, LineTotalByProduct
FROM v_Product_Sales_By_LineTotal
ORDER BY LineTotalByProduct DESC

This returns the same results as before, but this time the I/O activity is different. Instead of two
base tables being accessed, along with a worktable (tempdb used temporarily to process results),
only a single object is accessed to retrieve results:

Table 'v_Product_Sales_By_LineTotal'. Scan count 1, logical reads 5, physical reads 0,
read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Had this query accessed much larger tables (much larger than our example), the reduction in
I/O would have produced a positive effect on the query’s performance.

How It Works
Indexed views allow you to materialize the results of the view as a physical object, similar to a regular
table and associated indexes. This allows the SQL Server query optimizer to retrieve results from
a single physical area instead of having to process the view definition query each time it is called.

In this example, a view was created using the SCHEMABINDING option:

CREATE VIEW dbo.v_Product_Sales_By_LineTotal
WITH SCHEMABINDING
AS

The remainder of the view was a regular SELECT query which aggregated the sum total of sales
by product:

SELECT p.ProductID, p.Name ProductName, SUM(LineTotal) LineTotalByProduct, COUNT_BIG(*)
LineItems
FROM Sales.SalesOrderDetail s
INNER JOIN Production.Product p ON

CHAPTER 7 ■ VIEWS 201

570Xch07.qxd 11/4/05 2:10 PM Page 201

s.ProductID = p.ProductID
GROUP BY p.ProductID, p.Name

GO

Notice that the query referenced the COUNT_BIG aggregate function. COUNT_BIG is required in
order for SQL Server to maintain the number of rows in each group within the indexed view.

Once the view was successfully created with SCHEMABINDING , a unique clustered index was then
created on it:

CREATE UNIQUE CLUSTERED INDEX UCI_v_Product_Sales_By_LineTotal
ON dbo.v_Product_Sales_By_LineTotal (ProductID)

GO

In order to index a view, you must first create a unique clustered index on it. Once this index
has been built, the view data is stored in much the same way as a clustered index for a table is
stored.

After a clustered index is created, you can also create additional nonclustered indexes, as you
would for a regular table. In the example, a nonclustered index was created on the ProductName col-
umn of the indexed view:

CREATE NONCLUSTERED INDEX NI_v_Product_Sales_By_LineTotal
ON dbo.v_Product_Sales_By_LineTotal (ProductName)

GO

Once a view is indexed, view indexes can then be used by SQL Server Enterprise Edition when-
ever the view or underlying tables are referenced in a query. The SET STATISTICS IO command was
used to demonstrate how SQL Server performs the data page retrieval both before and after the
view was indexed.

Indexed views can provide performance benefits for relatively static data. Frequently updated
base tables, on the other hand, are not an ideal choice for being referenced in an indexed view as
the updates will also cause frequent updates to the view’s indexes, potentially reducing the benefit
of any query performance gained. This is a trade-off between data modification speed and query
speed.

Although indexed views can be created using any edition of SQL Server 2005, they will be auto-
matically considered during queries if you are using Enterprise Edition. To make sure SQL Server uses
it in other editions, you need to use the view hint NOEXPAND, which is reviewed in the next recipe.

Forcing the Optimizer to Use an Index for an Indexed View
Once you’ve created an indexed view, if you’re running on SQL Server 2005 Enterprise Edition, the
query optimizer will automatically decide whether or not to use the indexed view in a query. For
other editions however, in order to make SQL Server use a specific indexed view you must use the
NOEXPAND keyword.

By adding the WITH (NOEXPAND) view hint after the FROM clause, SQL Server is directed not to
look for any indexes other then the indexes available for the view.

The view hint syntax is as follows:

{ NOEXPAND [, INDEX (index_val [,...n])] }

This recipe demonstrates how to force an indexed view’s index to be used for a query:

SELECT ProductID, LocationID, ProductName, LocationName, Shelf
FROM dbo.v_Product_Inventory_Location
WITH (NOEXPAND)
WHERE ProductName = 'Blade'

CHAPTER 7 ■ VIEWS202

570Xch07.qxd 11/4/05 2:10 PM Page 202

Notice in the syntax that NOEXPAND also allows you to specify one or more indexes to be used for
the query, using the INDEX option. For example:

SELECT ProductID, LocationID, ProductName, LocationName, Shelf
FROM dbo.v_Product_Inventory_Location
WITH (NOEXPAND, INDEX(NI_v_Product_Inventory_Location_Names))
WHERE ProductName = 'Blade'

How It Works
For those using non-Enterprise Edition versions of SQL Server 2005, you can still take advantage of
indexed views through the use of the NOEXPAND keyword. The drawback is that you must explicitly
use hints whenever the indexed view must be utilized. Another drawback is that your hint usage
could nullify a better SQL Server query optimizer choice that would have been made had the hint
not been used.

Partitioned Views
In SQL Server 2000, you had two options for horizontally partitioning views: local partitioned views
and distributed partitioned views. With the introduction of horizontal partitioning functionality in
SQL Server 2005 (see Chapter 4), Microsoft no longer recommends that SQL Server 2000 local parti-
tioned views be used.

Distributed partitioned views, however, are alive and well in SQL Server 2005 and allow you to
create a single logical representation (view) of two or more horizontally partitioned tables that are
located across separate SQL Server instances.

In order to set up a distributed partitioned view, a large table is split into smaller tables based
on a range of values defined in a CHECK constraint. This CHECK constraint ensures that each smaller
table holds unique data that cannot be stored in the other tables. The distributed partitioned view is
then created using a UNION ALL to join each smaller table into a single result set.

The performance benefit is realized when a query is executed against the distributed partitioned
view. If the view is partitioned by a date range, for example, and a query is used to return rows that
are only stored in a single table of the partition, SQL Server is smart enough to only search that one
partition instead of all tables in the distributed-partitioned view.

Creating a Distributed-Partitioned View
In this recipe, I’ll demonstrate how to create a distributed-partitioned view that spans two SQL
Server instances. It’s based on the following business scenario. There are two sibling corporations—
MegaCorp and MiniCorp. Each has their own SQL Server instance to house website data, and each
wants a table to track website hits. The numbers of hits are voluminous—and would require more
storage than a single SQL Server instance could handle. The requirement is to create a unified view
that references both tables in a single view. The business wants to be able to query either server, and
either return the same data or data just for its own company.

Since more than one SQL Server instance will be accessed in a distributed-partitioned view recipe,
linked servers are added to both participating SQL Server instances (see Chapter 27 for a review).

The recipe begins by creating a linked server on the first SQL Server instance:

USE master
GO
EXEC sp_addlinkedserver

'JOEPROD',
N'SQL Server'

GO

CHAPTER 7 ■ VIEWS 203

570Xch07.qxd 11/4/05 2:10 PM Page 203

-- skip schema checking of remote tables
EXEC sp_serveroption 'JOEPROD', 'lazy schema validation', 'true'
GO

On the second SQL Server instance, a linked server is created to the first SQL Server instance:

USE master
GO
EXEC sp_addlinkedserver

'JOEPROD\SQL2005',
N'SQL Server'

GO

-- skip schema checking of remote tables
EXEC sp_serveroption 'JOEPROD\SQL2005', 'lazy schema validation', 'true'
GO

Back on the first SQL Server instance, the following table is created to hold rows for MegaCorp
website hits:

Use AdventureWorks
GO

CREATE TABLE dbo.WebHits_MegaCorp
(WebHitID uniqueidentifier NOT NULL,
WebSite varchar(20) NOT NULL ,
HitDT datetime NOT NULL,
CHECK (WebSite = 'MegaCorp'),
CONSTRAINT PK_WebHits PRIMARY KEY (WebHitID, WebSite))

On the second SQL Server instance, the following table is created to hold rows for MiniCorp
website hits:

Use AdventureWorks
GO
CREATE TABLE dbo.WebHits_MiniCorp

(WebHitID uniqueidentifier NOT NULL ,
WebSite varchar(20) NOT NULL ,
HitDT datetime NOT NULL,
CHECK (WebSite = 'MiniCorp') ,
CONSTRAINT PK_WebHits PRIMARY KEY (WebHitID, WebSite))

Back on the first SQL Server instance, the following distributed partitioned view that references
the local WebHits_MegaCorp table and the remote WebHits.MiniCorp table is created:

CREATE VIEW dbo.v_WebHits AS
SELECT WebHitID,

WebSite,
HitDT

FROM AdventureWorks.dbo.WebHits_MegaCorp
UNION ALL
SELECT WebHitID,

WebSite,
HitDT

FROM JOEPROD.AdventureWorks.dbo.WebHits_MiniCorp
GO

On the second SQL Server instance, the following distributed partitioned view is created—this
time referencing the local WebHits_MiniCorp table and the remote WebHits_MegaCorp table:

CHAPTER 7 ■ VIEWS204

570Xch07.qxd 11/4/05 2:10 PM Page 204

CREATE VIEW dbo.v_WebHits AS
SELECT WebHitID,

WebSite,
HitDT

FROM AdventureWorks.dbo.WebHits_MiniCorp
UNION ALL
SELECT WebHitID,

WebSite,
HitDT

FROM [JOEPROD\SQL2005].AdventureWorks.dbo.WebHits_MegaCorp
GO

On the second SQL Server instance, the following batch of queries is executed to insert new rows:

-- For these inserts to work the setting XACT_ABORT must be ON and
-- the Distributed Transaction Coordinator service must be running

SET XACT_ABORT ON

INSERT dbo.v_WebHits
(WebHitID, WebSite, HitDT)
VALUES(NEWID(), 'MegaCorp', GETDATE())

INSERT dbo.v_WebHits
(WebHitID, WebSite, HitDT)
VALUES(NEWID(), 'MiniCorp', GETDATE())

This returns:

(1 row(s) affected)

(1 row(s) affected)

Querying from the distributed-partitioned view returns the two newly inserted rows (from both
underlying tables):

SET XACT_ABORT ON

SELECT WebHitID, WebSite, HitDT
FROM dbo.v_WebHits

This returns:

WebHitID WebSite HitDT

E5994678-6066-45F4-8AE4-9F10CE412D1A MegaCorp 2005-08-06 16:56:29.253
E1444A3F-7A2E-4A54-A156-C04FE742B453 MiniCorp 2005-08-06 16:56:29.353

Querying the MiniCorp table directly returns just the one MiniCorp row, as expected:

SELECT WebHitID, WebSite, HitDT
FROM JOEPROD.AdventureWorks.dbo.WebHits_MiniCorp

This returns:

WebHitID WebSite HitDT

E1444A3F-7A2E-4A54-A156-C04FE742B453 MiniCorp 2005-08-06 16:56:29.353

CHAPTER 7 ■ VIEWS 205

570Xch07.qxd 11/4/05 2:10 PM Page 205

Querying the MegaCorp table also returns the expected, single row:

SELECT WebHitID, WebSite, HitDT
FROM [JOEPROD\SQL2005].AdventureWorks.dbo.WebHits_MegaCorp

This returns:

WebHitID WebSite HitDT

E5994678-6066-45F4-8AE4-9F10CE412D1A MegaCorp 2005-08-06 16:56:29.253

How It Works
Distributed-partitioned views allow you to partition data across more than one SQL Server instance.
This design option can be beneficial for very large databases and SQL Server instances with high
volumes of transactions and read activity.

There’s a lot going on in this recipe, so I’ll walk through each step of the process.
First, linked server references were created on each SQL Server instance so that both instances

could use distributed queries to communicate with one another (again, see Chapter 30). Also, the
linked server option lazy schema validation was enabled for performance reasons. This setting ensures
that schema lookups are skipped prior to query execution.

Next the table dbo.WebHits_MegaCorp was created on SQL Server Instance 1
(JOEPROD\SQL2005) and dbo.WebHits_MiniCorp on SQL Server Instance 2 (JOEPROD). Each was
created with a CHECK constraint that restricted what values could be added to it. So that distributed-
partitioned view updates are allowed, the CHECK constraints must be defined on the same column
and cannot allow overlapping values in the member tables. In addition to this, only the operators
<,>, =, >=, <=, AND, OR, and BETWEEN can be used in the CHECK constraint.

Other requirements you’ll need to remember in order to allow view updates: the partitioning
column, in this case WebSite, cannot allow null values; be a computed column; or be an identity,
default, or timestamp column. The partition key, WebSite, also needed to be part of the primary key.
Since WebSite wasn’t unique by itself, it was added as a composite key with the uniqueidentifier
data type WebHitID. Both partitioned tables were required to have primary keys on an identical
number of columns:

CONSTRAINT PK_WebHits PRIMARY KEY (WebHitID, WebSite))

In the next step, the distributed partitioned views were created on each of the SQL Server
instances. On the instance with the dbo.WebHits_MegaCorp table, the view referenced that table
using the three-part database.schema.viewname format (because the table is local):

SELECT WebHitID,
WebSite,
HitDT

FROM AdventureWorks.dbo.WebHits_MegaCorp

The table was then joined with UNION ALL (another requirement if you wish to perform data
modifications against the distributed partitioned view):

UNION ALL

The columns defined in the SELECT list can’t be referenced more than once in a single list, and
should be in the same ordinal position for each SELECT that is UNIONed. Columns across each SELECT
should also have the same data types and collations, as this recipe did.

In the FROM clause for the remote dbo.WebHits_MiniCorp table, the four-part name
linkedservername.database.schema.viewname was used (since it is a remote table):

CHAPTER 7 ■ VIEWS206

570Xch07.qxd 11/4/05 2:10 PM Page 206

SELECT WebHitID,
WebSite,
HitDT

FROM JOEPROD.AdventureWorks.dbo.WebHits_MiniCorp
GO

In the last batches in the recipe, SET XACT_ABORT was set ON in order to allow for the insert of
rows into the distributed partitioned view. This option terminates and rolls back a transaction if
a runtime error is encountered:

SET XACT_ABORT ON

As noted in the script comments, the Distributed Transaction Coordinator also needs to be
running in order to invoke the distributed transaction of inserting a row across SQL Server instances.

Two inserts were performed against the new distributed partitioned view; the first for a hit to
MegaCorp, and the second for MiniCorp:

INSERT dbo.v_WebHits
(WebHitID, WebSite, HitDT)
VALUES(NEWID(), 'MegaCorp', GETDATE())

INSERT dbo.v_WebHits
(WebHitID, WebSite, HitDT)
VALUES(NEWID(), 'MiniCorp', GETDATE())

Querying the new distributed partitioned views, two rows are returned:

SELECT WebHitID, WebSite, HitDT
FROM dbo.v_WebHits

Querying the underlying horizontally partitioned tables, one row was automatically routed to
the dbo.WebHits_MegaCorp table, and the other to the dbo.WebHits_MiniCorp table.

Based on which view is queried (for example Instance 1 or Instance 2), SQL Server can determine
if a particular query request can be fulfilled from just querying the local partitioned table, or whether
the remote table need also be queried. The end result is that SQL Server minimizes the amount of
data needing to be transferred between the SQL Server instances.

CHAPTER 7 ■ VIEWS 207

570Xch07.qxd 11/4/05 2:10 PM Page 207

570Xch07.qxd 11/4/05 2:10 PM Page 208

SQL Server Functions

In this chapter, I’ll demonstrate how to use SQL Server 2005 built-in functions in your Transact-SQL
code. SQL Server 2005 built-in functions, not to be confused with the user-defined functions covered
in Chapter 11, allow you to perform aggregations, mathematical operations, string manipulation,
row ranking, and much more.

Aggregate Functions
Aggregate functions are used to perform a calculation on one or more values, resulting in a single
value. An example of a commonly used aggregate function is SUM, which is used to return the
total value of a set of numeric values. Table 8-1 lists some of the more commonly used aggregate
functions available in SQL Server 2005.

Table 8-1. Aggregate Functions

Function Name Description

AVG The AVG aggregate function calculates the average of non-NULL values in a group.

COUNT The COUNT aggregate function returns an integer data type showing the count
of rows in a group.

COUNT_BIG Works the same as COUNT, only COUNT_BIG returns a bigint data type value.

MAX The MAX aggregate function returns the highest value in a set of non-NULL values.

MIN The MIN aggregate function returns the lowest value in a group of non-NULL values.

SUM The SUM aggregate function returns the total of all non-NULL values in an
expression.

STDEV The STDEV function returns the standard deviation of all values provided in
the expression based on a sample of the data population.

STDEVP The STDEVP function also returns the standard deviation for all values in the
provided expression, only it evaluates the entire data population.

VAR The VAR function returns the statistical variance of values in an expression
based on a sample of the provided population.

VARP The VARP function also returns the variance of the provided values for the
entire data population of the expression.

The next few recipes will demonstrate these aggregate functions.

209

C H A P T E R 8

■ ■ ■

570Xch08.qxd 11/4/05 2:19 PM Page 209

CHAPTER 8 ■ SQL SERVER FUNCTIONS210

Returning the Average of Values
The AVG aggregate function calculates the average of non-NULL values in a group.

This first example demonstrates how to use the AVG aggregate function to return the average of
non-NULL values in a group:

-- Average Product Review by Product
SELECT ProductID,

AVG(Rating) AvgRating
FROM Production.ProductReview
GROUP BY ProductID

This returns:

ProductID AvgRating
709 5
798 5
937 3

This second example demonstrates averaging the DISTINCT value of the StandardCost column—
meaning that only unique StandardCost values are averaged:

-- Average DISTINCT Standard Cost
SELECT AVG(DISTINCT StandardCost) AvgDistinctStandardCost
FROM Production.ProductCostHistory

This returns:

AvgDistinctStandardCost
287.7111

How It Works
In this recipe, the first example returned the average product rating grouped by ProductID.

The second example took an average of the DISTINCT StandardCost—meaning that only unique
StandardCost values were averaged. Without the DISTINCT keyword, the default behavior of the AVG
aggregate function is to average all values, duplicate values included.

Returning Row Counts
The COUNT aggregate function returns an integer data type showing the count of the rows in a group.

This example demonstrates using the COUNT aggregate function to return row counts by a group:

SELECT Shelf,
COUNT(ProductID) ProductCount

FROM Production.ProductInventory
GROUP BY Shelf
ORDER BY Shelf

570Xch08.qxd 11/4/05 2:19 PM Page 210

This returns the following (abridged) results:

Shelf ProductCount
A 81
B 36
C 55
D 50
E 85
F 59
G 96
...

If you include the DISTINCT keyword within the COUNT function parentheses, you’ll get the count
of distinct values for that column. For example:

SELECT COUNT(DISTINCT Shelf) ShelfCount
FROM Production.ProductInventory

This returns:

ShelfCount
21

How It Works
In the first example of this recipe, the number of products per shelf was counted. COUNT is the only
aggregate function that does not ignore NULL values, so had ProductID been NULL, it would have still
been included in the count. The second example demonstrated counting the number of DISTINCT
Shelf values from the Production.ProductInventory table.

If you need to count a value larger than the integer data type can hold, use the COUNT_BIG
aggregate function, which returns a bigint data type value.

Finding the Lowest and Highest Values from an Expression
The MAX aggregate function returns the highest value and the MIN aggregate function returns the
lowest value in a group of non-NULL values. MIN and MAX can be used with numeric, character, and
datetime columns. The minimum and maximum values for character data types are determined by
using an ASCII alphabetical sort. MIN and MAX for datetime values are based on the earliest date to
the most recent date.

In this example, I’ll demonstrate how to use the MIN and MAX functions to find the lowest and
highest value in the Rating numeric column from the Production.ProductReview table:

SELECT MIN(Rating) MinRating,
MAX(Rating) MaxRating

FROM Production.ProductReview

This returns:

MinRating MaxRating
2 5

How It Works
This recipe demonstrated retrieving the minimum and maximum Rating values from the
Product.ProductReview table. As with other aggregate functions, had there also been non-aggregated

GROUP BY clause.

CHAPTER 8 ■ SQL SERVER FUNCTIONS 211

570Xch08.qxd 11/4/05 2:19 PM Page 211

Returning the Sum of Values
The SUM aggregate function returns the total of all non-NULL values in an expression.

This example demonstrates how to use the SUM aggregate function to total the value of the
TotalDue column for each AccountNumber:

SELECT AccountNumber,
SUM(TotalDue) TotalDueBySalesOrderID

FROM Sales.SalesOrderHeader
GROUP BY AccountNumber
ORDER BY AccountNumber

This returns the following abridged results:

AccountNumber TotalDueBySalesOrderID
10-4020-000001 113098.7351
10-4020-000002 32733.9695
10-4020-000003 479506.3256
10-4020-000004 780035.2121
10-4020-000005 114218.8006

How It Works
In this recipe, the TotalDue column was totaled by AccountNumber. Since AccountNumber wasn’t aggre-
gated itself, it was included in the GROUP BY clause. It was also included in the ORDER BY clause, in
order to order the grouped results.

Using Statistical Aggregate Functions
In this recipe, I’ll demonstrate using the statistical functions VAR, VARP, STDEV, and STDEVP.

The VAR function returns the statistical variance of values in an expression based on a sample
of the provided population (the VARP function also returns the variance of the provided values for
the entire data population of the expression).

This first example returns the statistical variance of the TaxAmt value for all rows in the
Sales.SalesOrderHeader table:

SELECT VAR(TaxAmt) Variance_Sample,
VARP(TaxAmt) Variance_EntirePopulation

FROM Sales.SalesOrderHeader

This returns:

Variance_Sample Variance_EntirePopulation
1177342.57277401 1177305.15524429

The STDEV function returns the standard deviation of all the values provided in the expression,
based on a sample of the data population. The STDEVP function also returns the standard deviation
for all values in the provided expression, only it evaluates the entire data population instead.

This example returns the statistical standard deviation of the UnitPrice value for all rows in the
Sales.SalesOrderDetail table:

SELECT STDEV(UnitPrice) StandDevUnitPrice,
STDEVP(UnitPrice)StandDevPopUnitPrice

FROM Sales.SalesOrderDetail

CHAPTER 8 ■ SQL SERVER FUNCTIONS212

570Xch08.qxd 11/4/05 2:19 PM Page 212

This returns:

StandDevUnitPrice StandDevPopUnitPrice
751.885080772954 751.881981921885

How It Works
Although the use of each statistical function varies, the implementation is similar. Specifically, in
this example, each function takes a value expression, using a column name from the table. The
function then acts on the set of data (zero or more rows) using the column specified in the SELECT
clause, returning a single value.

Mathematical Functions
SQL Server 2005 offers several mathematical functions that can be used in your Transact-SQL code,
as described in Table 8-2.

Table 8-2. Mathematical Functions

Function Description

ABS Calculates the absolute value.

ACOS Calculates the angle, the cosine of which is the specified argument, in radians.

ASIN Calculates the angle, the sine of which is the specified argument, in radians.

ATAN Calculates the angle, the tangent of which is the specified argument, in radians.

ATN2 Calculates the angle, the tangent of which is between two float expressions, in radians.

CEILING Calculates the smallest integer greater than or equal to the provided argument.

COS Calculates the cosine.

COT Calculates the cotangent.

DEGREES Converts radians to degrees.

EXP Calculates the exponential value of a provided argument.

FLOOR Calculates the largest integer less than or equal to the provided argument.

LOG Calculates the natural logarithm.

LOG10 Calculates the Base-10 logarithm.

PI Returns the Pi constant.

POWER Returns the value of the first argument to the power of the second argument.

RADIANS Converts degrees to radians.

RAND Produces a random float type value ranging from 0 to 1.

ROUND Rounds a provided argument's value to a specified precision.

SIGN Returns –1 for negative values, 0 for zero values, and 1 if the provided argument is
positive.

SIN Calculates the sine for a given angle in radians.

SQUARE Calculates the square of a provided expression.

SQRT Calculates the square root.

TAN Calculates the tangent.

CHAPTER 8 ■ SQL SERVER FUNCTIONS 213

570Xch08.qxd 11/4/05 2:19 PM Page 213

Using Mathematical Functions
This recipe will demonstrate four different mathematical functions, including POWER, SQRT, ROUND,
and RAND.

This first example calculates 10 to the 2nd power:

SELECT POWER(10,2) Result

This returns:

Result
100

This next example calculates the square root of 100:

SELECT SQRT(100) Result

This returns:

Result
10

This example rounds a number to the third digit right of the decimal place:

SELECT ROUND(3.22245, 3) RoundedNumber

This returns:

RoundedNumber
3.22200

This example returns a random, float, data-type value between 0 and 1:

SELECT RAND() RandomNumber

This returns:

RandomNumber
0.497749897248417

This last example in the recipe returns a fixed, float, data-type value based on the provided
integer value:

SELECT RAND(22) Result

This returns:

Result
0.713983285609346

How It Works
In this recipe, I demonstrated four different mathematical functions, including POWER, SQRT, ROUND,
and RAND. Each function takes different parameters based on the operation it performs. For some
mathematical functions, such as RAND, an input value is optional.

CHAPTER 8 ■ SQL SERVER FUNCTIONS214

570Xch08.qxd 11/4/05 2:19 PM Page 214

String Functions
This next set of recipes demonstrates SQL Server 2005’s string functions. String functions provide
a multitude of uses for your Transact-SQL programming, allowing for string cleanup, conversion
between ASCII and regular characters, pattern searches, removing trailing blanks, and much more.

Table 8-3 lists the different string functions available in SQL Server 2005.

Table 8-3. String Functions

Function Name(s) Description

ASCII and CHAR The ASCII function takes the leftmost character of a character
expression and returns the ASCII code. The CHAR function converts an
integer value for an ASCII code to a character value instead.

CHARINDEX and PATINDEX The CHARINDEX function is used to return the starting position of a string
within another string. The PATINDEX function is similar to CHARINDEX,
except that PATINDEX allows the use of wildcards when specifying the
string for which to search.

DIFFERENCE and SOUNDEX The two functions DIFFERENCE and SOUNDEX both work with character
strings to evaluate those that sound similar. SOUNDEX assigns a string
a four-digit code, and DIFFERENCE evaluates the level of similarity
between the SOUNDEX outputs for two separate strings.

LEFT and RIGHT The LEFT function returns a part of a character string, beginning at the
specified number of characters from the left. The RIGHT function is like
the LEFT function, only it returns a part of a character string beginning
at the specified number of characters from the right.

LEN and DATALENGTH The LEN function returns the number of characters in a string expression,
excluding any blanks after the last character (trailing blanks). DATALENGTH,
on the other hand, returns the number of bytes used for an expression.

LOWER and UPPER The LOWER function returns a character expression in lowercase and the
UPPER function returns a character expression in uppercase.

LTRIM and RTRIM The LTRIM function removes leading blanks and the RTRIM function
removes trailing blanks.

NCHAR and UNICODE The UNICODE function returns the Unicode integer value for the first
character of the character or input expression. The NCHAR function takes
an integer value designating a Unicode character and converts it to its
character equivalent.

QUOTENAME The QUOTENAME function adds delimiters to a Unicode input string in
order to make it a valid delimited identifier.

REPLACE The REPLACE function replaces all instances of a provided string within
a specified string, and replaces it with a new string.

REPLICATE The REPLICATE function repeats a given character expression
a designated number of times.

REVERSE The REVERSE function takes a character expression and outputs the
expression with each character position displayed in reverse order.

SPACE The SPACE function returns a string of repeated blank spaces, based on
the integer you designate for the input parameter.

STR The STR function converts numeric data into character data.

STUFF The STUFF function deletes a specified length of characters and inserts
a designated string at the specified starting point.

SUBSTRING The SUBSTRING function returns a defined chunk of a specified expression.

w string functions are used.

CHAPTER 8 ■ SQL SERVER FUNCTIONS 215

570Xch08.qxd 11/4/05 2:19 PM Page 215

Converting a Character Value to ASCII and Back to Character
The ASCII function takes the leftmost character of a character expression and returns the ASCII
code, while the CHAR function converts an integer value for an ASCII code to a character value
instead. Again, it should be stressed that ASCII only uses the first character of the string. If the string
is empty or NULL, ASCII will return a NULL value (although a blank value returns 32).

This first example demonstrates how to convert characters into the integer ASCII value:

SELECT ASCII('H'), ASCII('e'), ASCII('l'), ASCII('l'), ASCII('o')

This returns:

72 101 108 108 111

Next, the CHAR function is used to convert the integer values back into characters again:

SELECT CHAR(72), CHAR(101), CHAR(108), CHAR(108), CHAR(111)

This returns:

H e l l o

How It Works
In this recipe, the word “Hello” was deconstructed one character at a time and then converted into
the numeric ASCII value, using the ASCII function. In the second T-SQL statement, the ASCII value
was reversed back into character form using the CHAR function.

Returning Integer and Character Unicode Values
The UNICODE function returns the Unicode integer value for the first character of the character or
input expression. The NCHAR function takes an integer value designating a Unicode character and
converts it to its character equivalent. These functions are useful if you need to exchange data with
external processes using the Unicode standard.

This first example converts single characters into an integer value representing the Unicode
standard character code:

SELECT UNICODE('G'), UNICODE('o'), UNICODE('o'), UNICODE('d'), UNICODE('!')

This returns:

71 111 111 100 33

Next, the Unicode integer values are converted back into characters:

SELECT NCHAR(71), NCHAR(111), NCHAR(111), NCHAR(100), NCHAR(33)

This returns:

G o o d !

CHAPTER 8 ■ SQL SERVER FUNCTIONS216

570Xch08.qxd 11/4/05 2:19 PM Page 216

How It Works
In this recipe, the word “Good!” was deconstructed one character at a time and then converted into
an integer value using the UNICODE function. In the second T-SQL statement, the integer value was
reversed back into character form using the NCHAR function.

Finding the Start Position of a String Within Another String
The CHARINDEX function is used to return the starting position of a string within another string. The
syntax is as follows:

CHARINDEX (expression1 ,expression2 [, start_location])

The expression1 argument is the string to be searched for. The expresssion2 argument is the
string in which you are searching. The optional start_location value indicates the character posi-
tion where you wish to begin looking.

This example demonstrates how to find the starting position of a string within another string:

SELECT CHARINDEX('String to Find', 'This is the bigger string to find something in.')

This returns:

20

How It Works
This function returned the starting character position, in this case the 20th character, where the first
argument expression was found in the second expression. You can’t use wildcards with this function.
Also, note that search matches are based on the rules of your SQL Server instance’s collation.

Finding the Start Position of a String Within Another String
Using Wildcards
The PATINDEX function is similar to CHARINDEX, except that PATINDEX allows the use of wildcards in
the string you are searching for. The syntax for PATINDEX is:

PATINDEX ('%pattern%' ,expression)

PATINDEX returns the start position of the first occurrence of the search pattern, but unlike
CHARINDEX, it doesn’t have a starting position option.

In this example, rows are returned from Person.Address where AddressLine1 contains the word
fragment “olive”:

SELECT AddressID,
AddressLine1

FROM Person.Address
WHERE PATINDEX('%olive%', AddressLine1) > 0

This returns the following abridged results:

AddressID AddressLine1
29048 1201 Olive Hill
11768 1201 Olive Hill
15417 1206 Olive St
24480 1480 Oliveria Road
...

CHAPTER 8 ■ SQL SERVER FUNCTIONS 217

570Xch08.qxd 11/4/05 2:19 PM Page 217

How It Works
This example returned any row where the AddressLine1 column contained the word “Olive.” With
the wild card % on both the left and right of the word (without spaces between), the word “Olive”
could also have been embedded within another word. The pattern can use different wildcard char-
acters too. For a full review of wildcards, see Chapter 1 and the recipe “Using Wildcards with LIKE.”

Determining the Similarity of Strings
The two functions, DIFFERENCE and SOUNDEX, both work with character strings in order to evaluate
those that sound similar, based on English phonetic rules. SOUNDEX assigns a string a four-digit code,
and then DIFFERENCE evaluates the level of similarity between the SOUNDEX outputs for two separate
strings.

DIFFERENCE returns a value of zero to four, with four indicating the closest match in similarity.
This example demonstrates how to identify strings that sound similar—first by evaluating

strings individually, and then comparing them in pairs:

SELECT SOUNDEX('Fleas'),
SOUNDEX('Fleece'),
SOUNDEX('Peace'),
SOUNDEX('Peas')

This returns:

F420 F420 P200 P200

Next, string pairs are compared using DIFFERENCE:

SELECT DIFFERENCE ('Fleas', 'Fleece')

This returns:

4

Next, another string pair is compared:

SELECT DIFFERENCE ('Fleece', 'Peace')

This returns:

2

How It Works
In the first example, SOUNDEX was used to evaluate four similar sounding words. The query results
showed four codes, with “Fleas” and “Fleece” equal to F420, and “Peace” and “Peas” equal to P200.

In the second example, DIFFERENCE was used to evaluate “Fleas” and “Fleece” and “Fleece” and
“Peace.” “Fleas” and “Fleece” were shown to be more similar with a value of 4 than “Fleece” and
“Peace” which had a comparison value of 2.

CHAPTER 8 ■ SQL SERVER FUNCTIONS218

570Xch08.qxd 11/4/05 2:19 PM Page 218

Taking the Leftmost or Rightmost Part of a String
The LEFT function returns a part of a character string, beginning at the specified number of characters
from the left. The RIGHT function is like the LEFT function, only it returns a part of a character string
beginning at the specified number of characters from the right.

This recipe demonstrates how to return a subset of the leftmost and rightmost parts of a string.
Also, a common string padding trick is demonstrated using these functions.

In the first example, the leftmost 10 characters are taken from a string:

SELECT LEFT('I only want the leftmost 10 characters.', 10)

This returns:

I only wan

Next, the rightmost characters of a string:

SELECT RIGHT('I only want the rightmost 10 characters.', 10)

This returns:

haracters.

This next example demonstrates zero-padding the ListPrice column’s value:

-- Padding a number for business purposes
SELECT TOP 3

ProductID, RIGHT('0000000000' + CONVERT(varchar(10), ListPrice),10)
FROM Production.Product
WHERE ListPrice > 0

This returns:

ProductID (No column name)
514 0000133.34
515 0000147.14
516 0000196.92

How It Works
This recipe demonstrated three examples of using LEFT and RIGHT. The first two examples demon-
strated returning the leftmost or the rightmost characters of a string value.

The third example demonstrated the padding of a string in order to conform to some expected
business format. When presenting data to end-users or exporting data to external systems, you may
sometimes need to preserve or add leading values, such as leading zeros to fixed length numbers.
ListPrice was zero-padded by first concatenating ten zeros in a string to the converted varchar(10)
value of the ListPrice. Then, outside of this concatenation, RIGHT was used to grab the last 10 char-
acters of the concatenated string (thus taking leading zeros from the left side with it, when the ListPrice
fell short of ten digits):

RIGHT('0000000000' + CONVERT(varchar(10), ListPrice),10)

CHAPTER 8 ■ SQL SERVER FUNCTIONS 219

570Xch08.qxd 11/4/05 2:19 PM Page 219

Determining the Number of Characters or Bytes in a String
The LEN function returns the number of characters in a string expression, excluding any blanks after
the last character (trailing blanks). DATALENGTH, on the other hand, returns the number of bytes used
for an expression. In this recipe, I’ll demonstrate how to measure the number of characters and
bytes in a string.

This first example returns the number of characters in the string:

SELECT LEN(N'She sells sea shells by the sea shore.')

This returns:

38

This next example returns the number of bytes in the string.

SELECT DATALENGTH(N'She sells sea shells by the sea shore.')

This returns:

76

How It Works
This recipe used a Unicode string, which is defined by prefixing the string with an N as follows:

N'She sells sea shells by the sea shore.'

The number of characters for this string is 38 according to LEN, but since it is a Unicode string,
DATALENGTH returns 76 bytes. Unicode data takes two bytes for each character, whereas non-Unicode
takes only one.

Replacing a Part of a String with Another String
The REPLACE function replaces all instances of a provided string within a specified string, and
replaces it with a new string. One real strength of REPLACE is, unlike PATINDEX and CHARINDEX which
return a specific location where a pattern is found, REPLACE can find multiple instances of a pattern
within a specific character string.

The syntax for REPLACE is:

REPLACE ('string_expression1' , 'string_expression2' , 'string_expression3')

The first string expression argument is the string that will be modified. The second string
expression is the string to be removed from the first string argument. The third string expression is
the string to insert into the first argument.

This example demonstrates how to replace all instances of a provided string with a new string:

SELECT REPLACE('Zenon is our major profit center. Zenon leads the way.',
'Zenon',
'Xerxes')

This returns:

Xerxes is our major profit center. Xerxes leads the way.

CHAPTER 8 ■ SQL SERVER FUNCTIONS220

570Xch08.qxd 11/4/05 2:19 PM Page 220

How It Works
In this recipe, the first string expression was the string to be searched, “Zenon is our major profit
center. Zenon leads the way.” The second expression was the expression to replace (“Zenon”), and
the third expression was the value to substitute “Zenon” with “Xerxes.”

Stuffing a String into a String
The STUFF function deletes a specified length of characters and inserts a designated string at the
specified starting point. The syntax is:

STUFF (character_expression, start, length, character_expression)

The first argument of this function is the character expression to be modified. The second
argument is the starting position of the inserted string. The length is the number of characters to
delete within the character expression. The fourth argument is the actual character expression that
you want to insert.

This example replaces a part of a string and inserts a new expression into the string body:

SELECT STUFF ('My cat's name is X. Have you met him?',
18,
1,
'Edgar')

This returns:

My cat's name is Edgar. Have you met him?

How It Works
The character expression in this recipe was “My cat’s name is X’ING Have you met him?”. The start
value was 18, which means that the replacement will occur at the 18th position within the string
(which is X, in this case). The length value was 1, meaning only one character at position 18 would
be deleted. The last character expression was Edgar which is the value to stuff into the string.

Changing Character Values to Lower, Upper, and Proper Case
The LOWER function returns a character expression in lowercase and the UPPER function returns
a character expression in uppercase. There isn’t a built-in proper case function, so a user-defined
function will be demonstrated in this recipe instead.

Before showing the different functions in action, the following query I’ve presented will show
the value of DocumentSummary for a specific row in the Production.Document table:

SELECT DocumentSummary
FROM Production.Document
WHERE DocumentID = 4

This returns the following sentence case value:

Detailed instructions for replacing pedals with Adventure Works Cycles replacement
pedals. Instructions are applicable to all Adventure Works Cycles bicycle models and
replacement pedals. Use only Adventure Works Cycles parts when replacing worn or broken
components.

CHAPTER 8 ■ SQL SERVER FUNCTIONS 221

570Xch08.qxd 11/4/05 2:19 PM Page 221

This first example demonstrates setting values to lowercase:

SELECT LOWER(DocumentSummary)
FROM Production.Document
WHERE DocumentID = 4

This returns:

detailed instructions for replacing pedals with adventure works cycles replacement
pedals. instructions are applicable to all adventure works cycles bicycle models and
replacement pedals. use only adventure works cycles parts when replacing worn or broken
components.

Now for uppercase:

SELECT UPPER(DocumentSummary)
FROM Production.Document
WHERE DocumentID = 4

This returns:

DETAILED INSTRUCTIONS FOR REPLACING PEDALS WITH ADVENTURE WORKS CYCLES REPLACEMENT
PEDALS. INSTRUCTIONS ARE APPLICABLE TO ALL ADVENTURE WORKS CYCLES BICYCLE MODELS AND
REPLACEMENT PEDALS. USE ONLY ADVENTURE WORKS CYCLES PARTS WHEN REPLACING WORN OR BROKEN
COMPONENTS.

In order to set a string to proper case (capitalizing the letter of each word in the string), a user-
defined function can be used. The CREATE FUNCTION syntax usage is demonstrated in detail in
Chapter 11:

CREATE FUNCTION udf_ProperCase(@UnCased varchar(max))
RETURNS varchar(max)
AS
BEGIN

SET @UnCased = LOWER(@UnCased)

DECLARE @C int
SET @C = ASCII('a')

WHILE @C <= ASCII('z')
BEGIN

SET @UnCased = REPLACE(@UnCased, ' ' + CHAR(@C), ' ' + CHAR(@C-32))
SET @C = @C + 1

END

SET @UnCased = CHAR(ASCII(LEFT(@UnCased, 1))-32) + RIGHT(@UnCased,
LEN(@UnCased)-1)

RETURN @UnCased
END

GO

Once the user-defined function is created, the string to modify to proper case can be used as
the function parameter:

CHAPTER 8 ■ SQL SERVER FUNCTIONS222

570Xch08.qxd 11/4/05 2:19 PM Page 222

SELECT dbo.udf_ProperCase(DocumentSummary)
FROM Production.Document
WHERE DocumentID = 4

This returns:

Detailed Instructions For Replacing Pedals With Adventure Works Cycles Replacement
Pedals. Instructions Are Applicable To All Adventure Works Cycles Bicycle Models And
Replacement Pedals. Use Only Adventure Works Cycles Parts When Replacing Worn Or Broken
Components.

How It Works
The first example demonstrated the LOWER function, which returned a character expression in lower-
case. The second example demonstrated the UPPER function, which returned a character expression
in uppercase.

There isn’t a built-in proper case function, so a user-defined function was created in this recipe
instead.

The first line of the CREATE FUNCTION definition defines the name and parameter expected—in
this case a varchar(max) data type parameter:

CREATE FUNCTION udf_ProperCase(@UnCased varchar(max))

The RETURNS keyword defined what data type would be returned by the function after the logic
has been applied:

RETURNS varchar(max)
AS
BEGIN

Next, the variable passed to the function was first modified to lowercase using the LOWER function:

SET @UnCased = LOWER(@UnCased)

A new integer local variable @C was set to the ASCII value of the letter ‘a’:

DECLARE @C int
SET @C = ASCII('a')

A WHILE loop was initiated to go through every letter in the alphabet, and for each, search for
a space preceding that letter, and then replace each occurrence of a letter preceded by a space with
the uppercase version of the character:

WHILE @C <= ASCII('z')
BEGIN
SET @UnCased = REPLACE(@UnCased, ' ' + CHAR(@C), ' ' + CHAR(@C-32))

SET @C = @C + 1
END

The conversion to uppercase is performed by subtracting 32 from the ASCII integer value of the
lowercase character. For example, the ASCII value for a lowercase “a” is 97, while the uppercase A is 65.

SET @UnCased = CHAR(ASCII(LEFT(@UnCased, 1))-32) + RIGHT(@UnCased, LEN(@UnCased)-1)

The final proper case string value of @UnCased is then returned from the function:

RETURN @UnCased
END
GO

CHAPTER 8 ■ SQL SERVER FUNCTIONS 223

570Xch08.qxd 11/4/05 2:19 PM Page 223

Removing Leading and Trailing Blanks
The LTRIM function removes leading blanks and the RTRIM function removes trailing blanks.

This first example demonstrates removing leading blanks from a string:

SELECT LTRIM(' String with leading blanks.')

This returns:

String with leading blanks.

This second example demonstrates removing trailing blanks from a string:

SELECT RTRIM('"' + 'String with trailing blanks ') + '"'

This returns:

"String with trailing blanks"

How It Works
Both LTRIM and RTRIM take a single argument—a character expression that trims the leading or trail-
ing blanks. Note that there isn’t a TRIM function (as seen in other programming languages) that can
be used to remove both leading and trailing characters. To do this, you must use both LTRIM and
RTRIM in the same expression.

Repeating an Expression N Number of Times
The REPLICATE function repeats a given character expression a designated number of times.

The syntax is:

REPLICATE (character_expression ,integer_expression)

The first argument is the character expression to be repeated. The second argument is the integer
value of the number of times the character expression is to be repeated.

This example demonstrates how to use the REPLICATE function to repeat a character expression
a set number of times:

SELECT REPLICATE ('Z', 30)

This returns:

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

How It Works
In this recipe’s example, the letter Z in the character expression was repeated 30 times. Use REPLICATE
to repeat values rather than having to code the characters manually. The maximum return value is
8,000 bytes.

Repeating a Blank Space N Number of Times
The SPACE function returns a string of repeated blank spaces, based on the integer you designate for
the input parameter.

CHAPTER 8 ■ SQL SERVER FUNCTIONS224

570Xch08.qxd 11/4/05 2:19 PM Page 224

This example demonstrates how to repeat a blank space a defined number of times:

SELECT 'Give me some' + SPACE(6) + 'space.'

This returns:

Give me some space.

How It Works
In this recipe, six blank spaces were concatenated in the middle of two strings. The maximum
return value is 8,000 bytes.

Outputting an Expression in Reverse Order
The REVERSE function takes a character expression, and outputs the expression with each character
position displayed in reverse order.

This example demonstrates how to reverse a string expression:

SELECT TOP 1
GroupName,
REVERSE(GroupName) GroupNameReversed

FROM HumanResources.Department
ORDER BY GroupName

This returns:

GroupName GroupNameReversed
Executive General and Administration noitartsinimdA dna lareneG evitucexE

How It Works
This recipe demonstrated using the REVERSE function to output a string’s characters in reverse order.

Returning a Chunk of an Expression
The SUBSTRING function returns a defined chunk of a specified expression.

The syntax is as follows:

SUBSTRING (expression, start, length)

The first argument of this function is the character expression that you should use to return
a defined chunk. The second argument defines the character starting position of the chunk. The
third argument is the length of the character chunk that you want to extract.

In this example, assume your application receives a bank account number from a customer. It
is your company’s policy to only store a masked representation of the bank number, retaining the
middle four digits only:

DECLARE @BankAccountNumber char(14)
SET @BankAccountNumber = '1424-2342-3536'

SELECT 'XXXX-' + SUBSTRING(@BankAccountNumber, 6,4) + '-XXXX' Masked_BankAccountNumber

This returns:

Masked_BankAccountNumber
XXXX-2342-XXXX

CHAPTER 8 ■ SQL SERVER FUNCTIONS 225

570Xch08.qxd 11/4/05 2:19 PM Page 225

How It Works
In this recipe, the SUBSTRING function was used to get the middle four digits from a longer bank
account number. The expression in the SUBSTRING function call was the bank account number, fol-
lowed by the starting position, and then the number of characters to extract.

Working with NULLs
A NULL value can be tricky to code around because its value is unknown. SQL Server 2005 provides
functions used to handle NULLs in your code, as described in Table 8-4.

Table 8-4. NULL Functions

Function Description

ISNULL ISNULL validates if an expression is NULL, and if so, replaces the NULL value with an
alternate value.

COALESCE The COALESCE function returns the first non-NULL value from a provided list of
expressions.

NULLIF NULLIF returns a NULL value when the two provided expressions have the same value.
Otherwise the first expression is returned.

These next few recipes will demonstrate these functions in action.

Replacing a NULL Value with an Alternative Value
ISNULL validates if an expression is NULL, and if so, replaces the NULL value with an alternate value.

In this example, any NULL value will be replaced with a different value:

SELECT LastName,
ISNULL(Title, 'UNKNOWN') Title

FROM Person.Contact
WHERE LastName LIKE 'Sa%'

This returns the following (abridged) results:

LastName Title
...
Sam Mr.
Samant UNKNOWN
Sandstone Mr.

How It Works
In this example, the LastName column and Samant had a NULL value for the Title column. The ISNULL
function replaced that NULL value with the UNKNOWN string expression in the query results.

Performing Flexible Searches Using ISNULL
In this recipe, I’ll demonstrate how to perform flexible, dynamic searches in a query when the vari-
ables may or may not be populated. This recipe declares three local search variables for ProductID,
StartDate, and StandardCost. By using this technique, your query can return results based on all,

, only a ProductID is supplied:

CHAPTER 8 ■ SQL SERVER FUNCTIONS226

570Xch08.qxd 11/4/05 2:19 PM Page 226

-- Local variables used for searches
DECLARE @ProductID int
DECLARE @StartDate datetime
DECLARE @StandardCost money

-- Only @ProductID is used
SET @ProductID = 711

SELECT ProductID, StartDate, StandardCost
FROM Production.ProductCostHistory
WHERE ProductID = ISNULL(@ProductID, ProductID) AND

StartDate = ISNULL(@StartDate, StartDate) AND
StandardCost = ISNULL(@StandardCost, StandardCost)

This returns:

ProductID StartDate StandardCost
711 2001-07-01 00:00:00.000 12.0278
711 2002-07-01 00:00:00.000 13.8782
711 2003-07-01 00:00:00.000 13.0863

In this second example, a search is performed by a minimum and maximum StandardCost
range:

-- Local variables used for searches
DECLARE @ProductID int
DECLARE @MinStandardCost money
DECLARE @MaxStandardCost money

SET @MinStandardCost = 3.3963
SET @MaxStandardCost = 10.0000

SELECT ProductID, StartDate, StandardCost
FROM Production.ProductCostHistory
WHERE ProductID = ISNULL(@ProductID, ProductID) AND
StandardCost BETWEEN ISNULL(@MinStandardCost, StandardCost) AND
ISNULL(@MaxStandardCost, StandardCost)
ORDER BY StandardCost

This returns the following (abridged) results:

ProductID StartDate StandardCost
709 2001-07-01 00:00:00.000 3.3963
710 2001-07-01 00:00:00.000 3.3963
712 2001-07-01 00:00:00.000 5.7052
846 2002-07-01 00:00:00.000 5.7709
...
932 2003-07-01 00:00:00.000 9.3463
860 2002-07-01 00:00:00.000 9.7136
859 2002-07-01 00:00:00.000 9.7136
858 2002-07-01 00:00:00.000 9.7136

How It Works
The benefit of the method demonstrated in this recipe is that your code will be more flexible, allow-
ing for data to be searched in myriad ways, and keeping each search condition optional. The key to

CHAPTER 8 ■ SQL SERVER FUNCTIONS 227

570Xch08.qxd 11/4/05 2:19 PM Page 227

this recipe is in the WHERE clause. Each search condition uses ISNULL and the local variable name, fol-
lowed by the column name itself:

WHERE ProductID = ISNULL(@ProductID, ProductID) AND
StartDate = ISNULL(@StartDate, StartDate) AND
StandardCost = ISNULL(@StandardCost, StandardCost)

If a parameter is not SET, it will remain NULL, and thus the search condition for each column
will evaluate the column value against itself—always returning TRUE. Only the parameters that have
been specified will be used to filter the results.

Returning the First Non NULL Value in a List of Expressions
The COALESCE function returns the first non-NULL value from a provided list of expressions. The
syntax is:

COALESCE (expression [,...n])

This recipe demonstrates how to use COALESCE to return the first occurrence of a non-NULL value:

DECLARE @Value1 int
DECLARE @Value2 int
DECLARE @Value3 int

SET @Value2 = 22
SET @Value3 = 955

SELECT COALESCE(@Value1, @Value2, @Value3)

This returns:

22

How It Works
In this recipe, three local variables were created: @Value1, @Value2, and @Value3. Only @Value2 and
@Value3 were SET to actual integer values. The variable not SET to a value, @Value2, is NULL. In COALESCE,
the three values were checked, from @Value1 to @Value3. Since the @Value2 variable was the first vari-
able with a non-NULL value, “22” was returned.

Returning a NULL Value When Two Expressions Are Equal:
Otherwise Return the First Expression
NULLIF returns a NULL value when the two provided expressions have the same value; otherwise the
first expression is returned.

This example demonstrates how to use NULLIF to evaluate two expressions. If the two expres-
sions are equal, a NULL value will be returned, otherwise the first evaluated expression is returned:

DECLARE @Value1 int
DECLARE @Value2 int

SET @Value1 = 55
SET @Value2 = 955

SELECT NULLIF(@Value1, @Value2)

CHAPTER 8 ■ SQL SERVER FUNCTIONS228

570Xch08.qxd 11/4/05 2:19 PM Page 228

This returns:

55

The next example tests the values when both are equal:

DECLARE @Value1 int
DECLARE @Value2 int

SET @Value1 = 55
SET @Value2 = 55

SELECT NULLIF(@Value1, @Value2)

This returns:

NULL

How It Works
In this recipe, the first batch had two differing values: 55 and 955. Since @Value1 was evaluated first
and the values were different, the NULLIF condition is FALSE, and the first evaluated value is returned.
In the second batch, both @Value1 and @Value2 were equal, so NULLIF returned a NULL value instead.

Date Functions
As I reviewed earlier in the book, SQL Server 2005 has two different data types used to store date and
time data: datetime and smalldatetime. The datetime data type stores dates between January 1st,
1753, through December 31st, 9999, and measures time up to 3.33 milliseconds. The smalldatetime
data type stores a smaller range of dates, from January 1st, 1900, through June 6th, 2079, and mea-
sures time to the 1 minute granularity. SQL Server 2005 offers several functions used to manipulate
and work with these data types, described in Table 8-5.

Table 8-5. Date Functions

Function(s) Description

DATEADD DATEADD returns a new date that is incremented or decremented based
on the interval and number specified.

DATEDIFF DATEDIFF subtracts the first date from the second date to produce
a value in the format of the datepart code specified.

DATENAME DATENAME returns a string value for the part of a date specified in the
datepart code.

DATEPART This function returns an integer value for the part of a date specified in
the datepart code.

DAY, MONTH, and YEAR DAY returns an integer value for the day, MONTH returns the integer
representing the month, and YEAR returns the integer representing the
year of the evaluated date.

GETDATE, GETUTCDATE, GETDATE and CURRENT_TIMESTAMP both return the current date and time.
and CURRENT_TIMESTAMP GETUTCDATE returns the Greenwich Mean Time (Universal Time Coordinate).

The next few recipes will demonstrate these date functions.

CHAPTER 8 ■ SQL SERVER FUNCTIONS 229

570Xch08.qxd 11/4/05 2:19 PM Page 229

Returning the Current Date and Time
GETDATE and CURRENT_TIMESTAMP both return the current date and time. GETUTCDATE returns the
Greenwich Mean Time (Universal Time Coordinate).

This example demonstrates how to return the current date and time, as well as the Universal
Time Coordinate (Greenwich Mean Time):

SELECT GETDATE(), -- Current Date and Time
CURRENT_TIMESTAMP, -- Current Date and Time
GETUTCDATE() -- Universal Time Coordinate or Greenwich Mean Time

This returns:

2005-08-13 13:15:54.953 2005-08-13 13:15:54.953 2005-08-13 18:15:54.953

How It Works
This recipe demonstrated three methods for retrieving the current date and time. All three functions
can also be used as a DEFAULT value for date data types within a table column definition.

Incrementing or Decrementing a Date’s Value
DATEADD returns a new date, which is the result of having incremented or decremented another date
expression. The syntax is:

DATEADD (datepart , number, date)

The datepart code, used to designate which unit of time the date will be modified by, is described
in Table 8-6.

Table 8-6. Datepart Codes

Code Description

yy or yyyy Year

qq or q Quarter

mm or m Month

dy or y Day of Year

dd or d Day

wk or ww Week

dw or w Weekday

hh Hour

mi or n Minute

ss or s Second

ms Millisecond

The second argument of the DATEADD function is the numeric value to increment or decrement
the date (negative or positive number). The third argument is the date to be modified.

This first example decreases the date by a year:

SELECT DATEADD(yy, -1, '4/2/2005')

CHAPTER 8 ■ SQL SERVER FUNCTIONS230

570Xch08.qxd 11/4/05 2:19 PM Page 230

This returns:

2004-04-02 00:00:00.000

This next example increases the date by a quarter:

SELECT DATEADD(q, 1, '4/2/2005')

This returns:

2005-07-02 00:00:00.000

This example decreases a date by six months:

SELECT DATEADD(mm, -6, '4/2/2005')

This returns:

2004-10-02 00:00:00.000

This example increases a date by 50 days:

SELECT DATEADD(d, 50, '4/2/2005')

This returns:

2005-05-22 00:00:00.000

This example decreases the date and time by 30 minutes:

SELECT DATEADD(mi, -30, '2005-09-01 23:30:00.000')

This returns:

2005-09-01 23:00:00.000

How It Works
This recipe demonstrated using the DATEADD function to modify a date based on several granularities.
The third argument of DATEADD for each of these examples was a literal date value. However, you can
also reference a datetime data type table column or valid date expression.

The first argument, datepart, is also used in different date functions, as you’ll see in the next
recipe.

Finding the Difference Between Two Dates
DATEDIFF subtracts the first date from the second date, to produce a value in the format of the
datepart code specified. The syntax for DATEDIFF is:

DATEDIFF (datepart , startdate , enddate)

The first datepart code uses the same datepart codes as DATEADD. The second and third argu-
ments are the date values that are part of the subtraction.

CHAPTER 8 ■ SQL SERVER FUNCTIONS 231

570Xch08.qxd 11/4/05 2:19 PM Page 231

This example demonstrates how to use the DATEDIFF function to find the difference between
two dates:

-- Find difference in months between now and EndDate
SELECT ProductID,

EndDate,
DATEDIFF(m, EndDate, GETDATE()) MonthsFromNow

FROM Production.ProductCostHistory
WHERE EndDate IS NOT NULL

This returns the following (abridged) results:

ProductID EndDate MonthsFromNow
707 2002-06-30 00:00:00.000 38
707 2003-06-30 00:00:00.000 26
708 2002-06-30 00:00:00.000 38
708 2003-06-30 00:00:00.000 26
...

How It Works
In this recipe, the difference was calculated between the ProductCostHistory table’s EndDate and
today's current date, returning the difference by month.

The next recipe demonstrates another function which also uses the datepart argument.

Displaying the String Value for Part of a Date
DATENAME returns a string value for the part of a date specified in the datepart code. The syntax is:

DATENAME (datepart , date)

The second parameter designates the date to base the string value on.
In this recipe, I’ll demonstrate how to use DATENAME to return the string value for the specified

part of a datetime value:

-- Show the EndDate's day of the week
SELECT ProductID,

EndDate,
DATENAME(dw, EndDate) WeekDay

FROM Production.ProductCostHistory
WHERE EndDate IS NOT NULL

This returns the following (abridged) results:

ProductID EndDate WeekDay
707 2002-06-30 00:00:00.000 Sunday
707 2003-06-30 00:00:00.000 Monday
708 2002-06-30 00:00:00.000 Sunday
708 2003-06-30 00:00:00.000 Monday
709 2002-06-30 00:00:00.000 Sunday

How It Works
In this recipe, the datepart argument was set to dw (week day), and was based on the EndDate column
date, resulting in the day of the week name to be returned.

CHAPTER 8 ■ SQL SERVER FUNCTIONS232

570Xch08.qxd 11/4/05 2:19 PM Page 232

Displaying the Integer Value for Part of a Date Using DATEPART
This function returns an integer value for the part of a date specified in the date part selection. The
syntax for DATEPART is:

DATEPART (datepart , date)

The second parameter, date, designates the date for which the integer value is calculated.
This example demonstrates how to return the integer value from a date based on the date part

selected. The first example returns the year value:

SELECT DATEPART(yy, GETDATE())

This returns:

2005

The next example shows the current month integer value:

SELECT DATEPART(m, GETDATE())

This returns:

8

How It Works
In this recipe, the year, month, and day integer values were extracted from the current date and
time using the DATEPART function. You can also show these values by using canned functions that
don't require the datepart argument, as you'll see in the next recipe.

Displaying the Integer Value for Part of a Date Using YEAR,
MONTH, and DAY
There are single parameter functions that you can also use to display the integer values for day,
month, and year:

This example returns the current year:

SELECT YEAR(GETDATE())

This returns:

2005

This example returns the current month:

SELECT MONTH(GETDATE())

CHAPTER 8 ■ SQL SERVER FUNCTIONS 233

570Xch08.qxd 11/4/05 2:19 PM Page 233

This returns:

8

This example returns the current day:

SELECT DAY(GETDATE())

This returns:

13

How It Works
In this recipe, I demonstrated single argument date functions. DAY returns an integer value for the
day, MONTH returns the integer representing the month, and YEAR returns the integer representing the
year of the evaluated date.

Converting Data Types Using Convert and Cast
The CONVERT and CAST functions are both used to convert multiple data types from one type to
another. The syntax for CAST is:

CAST (expression AS data_type [(length)])

The first argument is the expression to convert (a table column or literal value, for example).
The second argument is the data type to convert the expression to.

The syntax for CONVERT is:

CONVERT (data_type [(length)] ,expression [,style])

The first argument is the data type that you wish to convert the expression to. The second argu-
ment is the expression that you want to be converted. The third argument, style, allows you to
configure specific date presentation formats.

Converting Data Types
In this recipe, I’ll demonstrate how to convert the data type of an integer to a char(4) data type. In
the first example, an integer value is concatenated to a character string:

SELECT 2000 + 'Cannot be concatenated'
GO

This returns the following error:

Msg 245, Level 16, State 1, Line 1
Conversion failed when converting a value of type varchar to type int. Ensure that all
values of the expression being converted can be converted to the target type, or modify
query to avoid this type conversion.

In the next example, CONVERT is used to change the integer value into the char data type:

SELECT CONVERT(char(4), 2005) + ' Can now be concatenated!'

CHAPTER 8 ■ SQL SERVER FUNCTIONS234

570Xch08.qxd 11/4/05 2:19 PM Page 234

This returns:

2005 Can now be concatenated!

This example demonstrates performing the same type of conversion, this time using CAST:

SELECT EmployeeID, CAST(SickLeaveHours AS char(4)) + ' Sick Leave Hours Left'
FROM HumanResources.Employee

This returns the following (abridged) results:

EmployeeID (No column name)
1 30 Sick Leave Hours Left
2 41 Sick Leave Hours Left
3 21 Sick Leave Hours Left
4 80 Sick Leave Hours Left
5 24 Sick Leave Hours Left

How It Works
The first query attempts to concatenate an integer and string value together. This results in an error,
as the two data types must be compatible or of the same data type. The second attempt used CONVERT
to change the data type of the expression to char(4) before concatenating it to the other string. CAST
was also used to convert the data type of the smallint column so that it could be concatenated to
a string.

Performing Date Conversions
As I mentioned earlier, CONVERT has an optional style parameter which allows you to convert datetime
or smalldatetime to specialized character formats. Many people confuse how the date and time is
stored with the actual presentation of the date in the query results. When using the style parameter,
keep in mind that you are only affecting how the date is presented in its character-based form, and
not how it is stored (unless, of course, you choose to store the presented data in a non-datetime
data type column).

Some examples of available style formats using the CONVERT function are shown in Table 8-7.

Table 8-7. CONVERT Style Formats

Style Code Format

101 mm/dd/yyyy

102 yy.mm.dd

103 dd/mm/yy

108 hh:mm:ss

110 mm-dd-yy

112 yymmdd

For example:

SELECT CONVERT(varchar(20), GETDATE(), 101)

CHAPTER 8 ■ SQL SERVER FUNCTIONS 235

570Xch08.qxd 11/4/05 2:19 PM Page 235

returns today’s date formatted as:

08/13/2005

When a function like GETDATE() is executed and stored in a datetime column, both the specific
date and time data is stored with it. If, however, you only wish to store data at the date level (no spe-
cific time), a common trick is to use CONVERT with style to scrub all dates to the 00:00:00.000 time.

The following example converts a datetime value to a character value, and then re-converts it
back to the datetime data type:

SELECT CONVERT(datetime, CONVERT(varchar(11), '2005-08-13 20:37:22.570', 101))

This returns:

2005-08-13 00:00:00.000

How It Works
The 101 value in the style option tells CONVERT to return the date in a mm/dd/yyyy format. Query
authors are usually concerned with the style option when presenting data back to the end-user. This
presentation is used when a datetime or smalldatetime is converted into a character data type. Keep
in mind that if you convert the data type back to datetime and store the reconverted date, you can
lose the precision of the original hour, minute, second, etc. depending on the style you chose for the
character data!

Evaluating Whether an Expression Is a Date or Is Numeric
When converting data types, it is sometimes useful to figure out what SQL Server thinks an expres-
sion’s data type is. In this recipe, I’ll demonstrate using ISDATE and ISNUMERIC functions to test the
data type of an expression:

-- Returns 0
SELECT ISDATE('1/1/20000')

-- Returns 1
SELECT ISDATE('1/1/2000')

-- Returns 0
SELECT ISNUMERIC('123ABC')

-- Returns 1
SELECT ISNUMERIC('123')

How It Works
ISDATE determines whether an expression is a valid datetime value. ISNUMERIC determines whether
or not an expression is a valid numeric data type value. Both ISNUMERIC and ISDATE return a 1 if the
expression evaluates to TRUE and 0 if it is FALSE.

CHAPTER 8 ■ SQL SERVER FUNCTIONS236

570Xch08.qxd 11/4/05 2:19 PM Page 236

Ranking Functions
A very popular feature addition to SQL Server 2005, ranking functions allow you to return values
associated to each row in a result set. Table 8-8 describes the four new ranking functions.

Table 8-8. Ranking Functions

Function Description

ROW_NUMBER Returns an incrementing integer for each row in a set.

RANK Similar to ROW_NUMBER, RANK increments its value for each row in the set. The key
difference is if rows with tied values exist, they will receive the same rank value.

DENSE_RANK DENSE_RANK is almost identical to RANK, only DENSE_RANK doesn't return gaps in
the rank values.

NTILE NTILE divides the result set into a specified number of groups, based on the
ordering and optional partition.

The next four recipes will demonstrate the use of these four ranking functions.

Using an Incrementing Row Number
SQL Server 2005’s new ROW_NUMBER function returns an incrementing integer for each row in a set.
The syntax for ROW_NUMBER is as follows:

ROW_NUMBER () OVER ([<partition_by_clause>] <order_by_clause>)

The first optional argument, partition_by_clause, allows you to restart row numbering for
each change in the partitioned column. The second argument, order_by_clause, determines the
order in which the ROW_NUMBER is applied to the results.

This first example returns the six rows from the middle of the result set, ordered by name:

-- Select the rows 255 through 260 in the middle of the result set
SELECT p.ProductID,

p.Name,
p.RowNumber

FROM
(SELECT ProductID,

Name,
ROW_NUMBER() OVER (ORDER BY Name) RowNumber

FROM Production.Product) p
WHERE p.RowNumber BETWEEN 255 AND 260

This returns:

ProductID Name RowNumber
713 Long-Sleeve Logo Jersey, S 255
716 Long-Sleeve Logo Jersey, XL 256
462 Lower Head Race 257
857 Men's Bib-Shorts, L 258
856 Men's Bib-Shorts, M 259
855 Men's Bib-Shorts, S 260

CHAPTER 8 ■ SQL SERVER FUNCTIONS 237

570Xch08.qxd 11/4/05 2:19 PM Page 237

The optional partition_by_clause allows you to restart row numbering for each change in the
partitioned column. In this example, the results are partitioned by Shelf and ordered by ProductID:

SELECT Shelf,
ProductID,
ROW_NUMBER() OVER

(PARTITION BY Shelf ORDER BY ProductID) RowNumber
FROM Production.ProductInventory

In the returned results, row numbering is incremented by ProductID, but with each change in
Shelf, the row numbering is restarted at 1:

Shelf ProductID RowNumber
A 1 1
A 1 2
A 2 3
...
Shelf ProductID RowNumber
B 1 1
B 2 2
B 3 3
...
Shelf ProductID RowNumber
C 317 1
C 318 2
C 319 3
...

How It Works
In the first example, ROW_NUMBER was used to order the results by Product Name and then add an
incrementing value for each row. ROW_NUMBER was referenced as the third column of the subquery:

SELECT ProductID,
Name,
ROW_NUMBER() OVER (ORDER BY Name) RowNumber

FROM Production.Product

The ORDER BY clause in parentheses ordered the results by Product Name, which impacted in
which order the rows were returned, as well as each row’s associated row number. Each row in the
record set is given a number, incremented by 1 for each row. Since the query sorts the results by
Name, the first product, Adjustable Race will have a row number of “1.” This query appeared as
a sub query so that the ROW_NUMBER column could be referenced in the WHERE clause of the outer
query, returning rows 255 through 260.

The second example demonstrated using the partition_by_clause argument. For each change
in Shelf, the row numbering was restarted with “1.”

With the SQL Server 2005’s ROW_NUMBER ranking function, you can now page through data (for
example, “show me rows 25 through 50”) without having to create excessive amounts of code that
was necessary in SQL Server 2000.

Returning Rows by Rank
In this recipe, I’ll demonstrate SQL Server 2005’s new RANK function, which is similar to ROW_NUMBER
in that it increments its value for each row in the set. The syntax for RANK is as follows:

RANK () OVER ([< partition_by_clause >] < order_by_clause >)

CHAPTER 8 ■ SQL SERVER FUNCTIONS238

570Xch08.qxd 11/4/05 2:19 PM Page 238

The key difference is if rows with tied values exist, they will receive the same rank value, as this
example demonstrates:

SELECT SalesPersonID,
SalesQuota,

RANK() OVER (ORDER BY SalesQuota DESC) as RANK
FROM Sales.SalesPersonQuotaHistory
WHERE SalesQuota BETWEEN 266000.00 AND 319000.00

This returns:

SalesPersonID SalesQuota RANK
280 319000.00 1
287 304000.00 2
280 301000.00 3
282 288000.00 4
283 284000.00 5
287 281000.00 6
278 280000.00 7
283 280000.00 7
283 267000.00 9
278 266000.00 10

The OVER clause contains an optional partition_by_clause and a required order_by_clause,
just like ROW_NUMBER. The order_by_clause determines the order that RANK values are applied to each
row and the optional partition_by_clause is used to further divide the ranking groups, as demon-
strated in the next example:

SELECT h.SalesPersonID,
s.TerritoryID,
h.QuotaDate,

h.SalesQuota,
RANK() OVER (PARTITION BY s.TerritoryID ORDER BY h.SalesQuota DESC) as RANK
FROM Sales.SalesPersonQuotaHistory h
INNER JOIN Sales.SalesPerson s ON

h.SalesPersonID = s.SalesPersonID
WHERE s.TerritoryID IN (5,6,7)

This returns ranking of SalesQuota partitioned by the salesperson’s TerritoryID:

SalesPersonID TerritoryID QuotaDate SalesQuota RANK
279 5 2003-07-01 00:00:00.000 950000.00 1
279 5 2001-10-01 00:00:00.000 917000.00 2
...
282 6 2003-07-01 00:00:00.000 1051000.00 1
282 6 2004-04-01 00:00:00.000 830000.00 2
282 6 2001-10-01 00:00:00.000 767000.00 3
282 6 2003-10-01 00:00:00.000 707000.00 4
282 6 2002-01-01 00:00:00.000 583000.00 5

282 6 2002-04-01 00:00:00.000 583000.00 5

282 6 2004-01-01 00:00:00.000 569000.00 7
...

CHAPTER 8 ■ SQL SERVER FUNCTIONS 239

570Xch08.qxd 11/4/05 2:19 PM Page 239

How It Works
RANK increments its values based on the ordered column, only unlike ROWNUMBER which increments
on each row, RANK will return the same value for matching ordered values.

For example, in this recipe, the query specified a RANK ordered by SalesQuota with a descending
sort. Because two SalesQuota values were equal at 280000.00, they both received a rank of 7:

278 280000.00 7
283 280000.00 7

Also you should notice that the next SalesQuota value had a rank of 9 (not 8). The RANK function
didn’t use the 8th position because there were two rows tied for 7th, meaning that the next rank
value is 9. If there were three rows tied, the next rank value would be 10, and so on:

283 267000.00 9

In the second example, RANK was partitioned by TerritoryID, causing the RANK value to restart
at “1” for each change in TerritoryID.

Returning Rows by Rank Without Gaps
In this recipe, I’ll demonstrate Server 2005’s new DENSE_RANK, which is almost identical to RANK, only
DENSE_RANK doesn’t return gaps in the rank values:

SELECT SalesPersonID,
SalesQuota,

DENSE_RANK() OVER (ORDER BY SalesQuota DESC) as DENSE_RANK
FROM Sales.SalesPersonQuotaHistory
WHERE SalesQuota BETWEEN 266000.00 AND 319000.00

This returns:

SalesPersonID SalesQuota DENSE_RANK
280 319000.00 1
287 304000.00 2
280 301000.00 3
282 288000.00 4
283 284000.00 5
287 281000.00 6
278 280000.00 7
283 280000.00 7
283 267000.00 8
278 266000.00 9

How It Works
The syntax and usage is identical to RANK, only DENSE_RANK doesn’t create a gap in the rank value. In
this recipe’s example, two values were tied with a value of 7 due to the same SalesQuota of 280000.00:

278 280000.00 7
283 280000.00 7
283 267000.00 8

CHAPTER 8 ■ SQL SERVER FUNCTIONS240

570Xch08.qxd 11/4/05 2:19 PM Page 240

Using NTILE
NTILE divides the result set into a specified number of groups based on the ordering and
optional partition. The syntax is very similar to the other ranking functions, only it also includes
an integer_expression:

NTILE (integer_expression) OVER ([< partition_by_clause >] < order_by_clause >)

The integer_expression is used to determine the number of groups to divide the results into.
This example demonstrates the NTILE ranking function against the Sales.SalePersonQuotaHistory
table:

SELECT SalesPersonID,
SalesQuota,

NTILE(4) OVER (ORDER BY SalesQuota DESC) as NTILE
FROM Sales.SalesPersonQuotaHistory
WHERE SalesQuota BETWEEN 266000.00 AND 319000.00

This returns:

SalesPersonID SalesQuota NTILE
280 319000.00 1
287 304000.00 1
280 301000.00 1
282 288000.00 2
283 284000.00 2
287 281000.00 2
278 280000.00 3
283 280000.00 3
283 267000.00 4
278 266000.00 4

How It Works
In this example, the result set was divided into four percentile groups. The results were ordered by
SalesQuota (descending order), and determined the order of NTILE group assignment. Notice that
the first two groups, 1, and 2, both had three rows each, whereas groups 3 and 4 had two rows each.
If the number of rows isn’t divisible by the number of groups, the first few groups will have more
rows than the latter groups. Otherwise, if the rows are divisible by the group number, each group
will have the same number of rows.

Probing Server, Database, and Connection-Level
Settings Using System Functions
SQL Server 2005 includes several system configuration functions that can be used to determine
system settings for the SQL Server instance. Some of these functions are prefixed with @@, and were
called variables in previous versions of SQL Server. Other system functions don’t have the @@ prefix,
and accept parameters that help gather information about the SQL Server instance or database.

The next few recipes will demonstrate these system functions in action.

CHAPTER 8 ■ SQL SERVER FUNCTIONS 241

570Xch08.qxd 11/4/05 2:19 PM Page 241

Using SQL Server’s First Day of the Week Setting
The @@DATEFIRST function returns the value of the specified first day of the week for the SQL Server
Instance. This is important to note because this value defines the calculation for the weekday datepart
used in other date functions such as DATEPART and DATEADD. In this example, I’ll demonstrate returning
the current first day of the week setting for the SQL Server instance:

SELECT @@DATEFIRST 'First Day of the Week'

This returns:

First Day of the Week
7

How It Works
The @@DATEFIRST function shows the first day of the week setting. To change the first day value, you
can use the SET DATEFIRST command. For example:

SET DATEFIRST 7

When changing this value, “7” is Sunday and “1” is Monday, and so on. This impacts the returned
value for the dw (day of week) code for DATEPART and DATEADD functions.

Viewing the Language Used in the Current Session
The @@LANGID system function returns a smallint data type value representing the local language
identifier for the current user session and the @@LANGUAGE system function returns the language name.

This example returns the local language setting currently used in the current query session:

SELECT @@LANGID LanguageID,
@@LANGUAGE Language

This query returns:

LanguageID Language
0 us_english

How It Works
This recipe demonstrated returning the language for the SQL Server instance. This will vary based
on the locale and collation used to set up the SQL Server instance.

Viewing and Setting Current Connection Lock Timeout Settings
The SET LOCK_TIMEOUT command configures the number of milliseconds a statement will wait in the
current session for locks to be released by other connections. The @@LOCK_TIMEOUT function is used
to display the current connection lock timeout setting in milliseconds.

This example demonstrates setting and viewing the current session’s lock timeout value:

-- 1000 milliseconds, 1 second
SET LOCK_TIMEOUT 1000

SELECT @@LOCK_TIMEOUT

-- Unlimited
SET LOCK_TIMEOUT -1

CHAPTER 8 ■ SQL SERVER FUNCTIONS242

570Xch08.qxd 11/4/05 2:19 PM Page 242

This returns:

1000

How It Works
The example in this recipe started by setting the lock timeout to 1000 milliseconds. To view the
change, @@LOCK_TIMEOUT was used. After that, the lock timeout was changed again to -1, which is an
unlimited wait time. A lock timeout value tells us how long a statement will wait on a blocked
resource, canceling the statement automatically if the threshold has been exceeded, and then
returning an error message.

Displaying the Nesting Level for the Current Stored Procedure
Context
@@NESTLEVEL returns the current nesting level for the stored procedure context. A stored procedure
nesting level indicates how many times a stored procedure has called another stored procedure.
SQL Server 2005 allows stored procedures to make up to a maximum of 32 nested (incomplete) calls.

This recipe demonstrates how to capture the current nesting level for the stored procedure
context (see Chapter 10):

-- First procedure
CREATE PROCEDURE usp_QuickAndDirty
AS
SELECT @@NESTLEVEL
GO

-- Second procedure
CREATE PROCEDURE usp_Call_QuickAndDirty
AS
SELECT @@NESTLEVEL
EXEC usp_QuickAndDirty
GO

After creating the two stored procedures, @@NESTLEVEL function is used prior to calling the
usp_Call_QuickAndDirty stored procedure:

-- Returns 0 nest level
SELECT @@NESTLEVEL

-- Returns 1 and 2 nest level
EXEC usp_Call_QuickAndDirty

This returns three result sets:

0

1

2

CHAPTER 8 ■ SQL SERVER FUNCTIONS 243

570Xch08.qxd 11/4/05 2:19 PM Page 243

How It Works
In this recipe, I created two stored procedures. The first stored procedure, in this case usp_QuickAndDirty,
executed @@NESTLEVEL. The second stored procedure also called @@NESTLEVEL, and then executed the
first stored procedure. Before calling the procedure, @@NESTLEVEL returned 0. At each execution-
nesting, the value of @@NESTLEVEL is incremented.

Returning the Current SQL Server Instance Name and SQL
Server Version
@@SERVERNAME displays the local server name and @@VERSION returns the SQL Server instance version,
date, and processor information.

This example returns the current SQL Server instance’s name and version information:

SELECT @@SERVERNAME ServerName,
@@VERSION VersionInformation

How It Works
In this recipe, I demonstrated returning the current SQL Server instance name and version informa-
tion. Like the system configuration functions before it, no parameters were required.

Returning the Current Connection’s Session ID (SPID)
@@SPID returns the current connection’s session ID, which you can use to identify additional infor-
mation in the sp_who system-stored procedure.

This recipe returns the current SQL connection’s server process identifier:

SELECT @@SPID SPID

This returns:

SPID
52

How It Works
In this recipe, I demonstrated returning the SPID of the current connection’s query session. Note
that in previous versions, SPID was referred to as “server process id,” and not “session id.”

Returning Number of Open Transactions
The @@TRANCOUNT system function displays active transactions for the current connection. You can
use this function to determine the number of open transactions within the current session, and based
on that information, either COMMIT or ROLLBACK the transactions accordingly. This recipe demonstrates
how to return the number of active transactions in the current connection:

BEGIN TRAN t1

SELECT @@TRANCOUNT -- Returns 1

BEGIN TRAN t2

SELECT @@TRANCOUNT -- Returns 2

CHAPTER 8 ■ SQL SERVER FUNCTIONS244

570Xch08.qxd 11/4/05 2:19 PM Page 244

BEGIN TRAN t3

SELECT @@TRANCOUNT -- Returns 3

COMMIT TRAN

SELECT @@TRANCOUNT -- Returns 2

ROLLBACK TRAN

SELECT @@TRANCOUNT -- After ROLLBACK, always Returns 0!

This returns:

1

(1 row(s) affected)

2

(1 row(s) affected)

3

(1 row(s) affected)

2

(1 row(s) affected)

0

(1 row(s) affected)

How It Works
In this recipe, each time a BEGIN TRAN was issued, the value of @@TRANCOUNT was incremented. Each
time a COMMIT TRAN occurred, @@TRANCOUNT was decremented. When ROLLBACK TRAN was executed,
@@ TRANCOUNT was set to 0. ROLLBACK TRAN rolls back all open transactions for the session, no matter
how many levels deep the transactions are nested.

Retrieving the Rows Affected by the Previous Statement
@@ROWCOUNT returns the integer value of the number of rows affected by the last Transact-SQL statement
in the current scope. @@ROWCOUNT_BIG returns the bigint value.

In this example, I’ll demonstrate how to return the rows affected by the previous Transact-SQL

CHAPTER 8 ■ SQL SERVER FUNCTIONS 245

570Xch08.qxd 11/4/05 2:19 PM Page 245

SELECT TOP 3 ScrapReasonID
FROM Production.ScrapReason

SELECT @@ROWCOUNT Int_RowCount, ROWCOUNT_BIG() BigInt_RowCount

This returns two result sets:

ScrapReasonID
1
2
4

Int_RowCount BigInt_RowCount
3 3

How It Works
In this example, the first statement returned three rows from the Production.ScrapReason table—so
@@ROWCOUNT returns three rows affected. The ROWCOUNT_BIG function is just like @@ROWCOUNT, only it is
capable of returning bigint data type counts, instead of @@ROWCOUNT’s integer data type.

@@ROWCOUNT and @@ROWCOUNT_BIG are often used for error handling; for example checking to
make sure the desired number of rows were impacted by the previous statement (see Chapter 16).

Using System Statistical Functions
SQL Server 2005 has several built-in system statistical functions, which are described in Table 8-9.

Table 8-9. System Statistical Functions

Function Description

@@CONNECTIONS Returns the number of connections made to the SQL Server instance since
it was last started.

@@CPU_BUSY Shows the number of busy CPU milliseconds since the SQL Server instance
was last started.

@@IDLE Displays the total idle time of the SQL Server instance in milliseconds,
since the instance was last started.

@@IO_BUSY Displays the number of milliseconds spent performing I/O operations
since the SQL Server instance was last started.

@@PACKET_ERRORS Displays the total network packet errors that have occurred since the SQL
Server instance was last started.

@@PACK_RECEIVED Returns the total input packets read from the network since the SQL Server
instance was last started. You can monitor whether the number increments
or stays the same, thus surmising if there is a network availability issue.

@@PACK_SENT Returns the total output packets sent to the network since the SQL Server
instance was last started.

@@TIMETICKS Displays the number of microseconds per tick. A tick is a unit of
measurement designated by a specified number of milliseconds (31.25
milliseconds for Windows 2000).

CHAPTER 8 ■ SQL SERVER FUNCTIONS246

570Xch08.qxd 11/4/05 2:19 PM Page 246

Function Description

@@TOTAL_ERRORS Displays read/write errors encountered since the SQL Server instance was
last started.

@@TOTAL_READ Displays the number of non-cached disk reads by the SQL Server instance
since it was last started.

@@TOTAL_WRITE Displays the number of disk writes by the SQL Server instance since it was
last started.

This example demonstrates using system statistical functions in a query:

SELECT 'Connections' FunctionNM, @@CONNECTIONS
UNION
SELECT 'CPUBusy', @@CPU_BUSY
UNION
SELECT 'IDLE', @@IDLE
UNION
SELECT 'IOBusy', @@IO_BUSY
UNION
SELECT 'PacketErrors', @@PACKET_ERRORS
UNION
SELECT 'PackReceived', @@PACK_RECEIVED
UNION
SELECT 'PackSent', @@PACK_SENT
UNION
SELECT 'TimeTicks', @@TIMETICKS
UNION
SELECT 'TotalErrors', @@TOTAL_ERRORS
UNION
SELECT 'TotalRead', @@TOTAL_READ
UNION
SELECT 'TotalWrite', @@TOTAL_WRITE

This returns:

FunctionNM
------------ -----------
Connections 29374
CPUBusy 3248
IDLE 1135449
IOBusy 901
PacketErrors 0
PackReceived 169
PackSent 574
TimeTicks 31250
TotalErrors 0
TotalRead 1700
TotalWrite 280

How It Works
This recipe demonstrated a SELECT query referencing multiple system statistical functions. You can
use them to track various statistics in your SQL Server instance.

CHAPTER 8 ■ SQL SERVER FUNCTIONS 247

570Xch08.qxd 11/4/05 2:19 PM Page 247

Displaying Database and SQL Server Settings
The DATABASEPROPERTYEX system function allows you to retrieve information about database options.
DATABASEPROPERTYEX uses the following syntax:

DATABASEPROPERTYEX (database , property)

The first argument is the database name you want to probe. The second argument is the database
property you want to look up.

This example demonstrates how to report the collation, status, and recovery mode for the
AdventureWorks database:

SELECT DATABASEPROPERTYEX('AdventureWorks', 'Collation'),
DATABASEPROPERTYEX('AdventureWorks', 'Recovery'),
DATABASEPROPERTYEX('AdventureWorks', 'Status')

This returns:

SQL_Latin1_General_CP1_CI_AS SIMPLE ONLINE

The SERVERPROPERTY system function allows you to retrieve information about your SQL Server
instance. Its syntax, since not database specific, only requires the property name:

SERVERPROPERTY (propertyname)

This example demonstrates returning the instance’s edition and default collation:

SELECT SERVERPROPERTY ('Collation'),
SERVERPROPERTY ('Edition')

This returns:

SQL_Latin1_General_CP1_CI_AS Enterprise Edition

How It Works
Both DATABASEPROPERTYEX and SERVERPROPERTY can be used to retrieve important system configura-
tion settings. In both examples, the function was referenced in the SELECT clause of a query.

■Note I show how these functions are used in this book, but I don’t rehash the list of available properties. For
a complete list, see SERVERPROPERTY and DATABASEPROPERTYEX topics in SQL Server 2005 Books Online.

Returning the Current Database ID and Name
This DB_ID function returns the database integer ID and DB_NAME returns the database name for the
current database (unless there are parameters supplied).

This example demonstrates how to retrieve the current database system ID and name:

SELECT DB_ID() DatabaseID, DB_NAME() DatabaseNM

This returns:

DatabaseID DatabaseNM
5 AdventureWorks

CHAPTER 8 ■ SQL SERVER FUNCTIONS248

570Xch08.qxd 11/4/05 2:19 PM Page 248

How It Works
In this example, the internal database ID (assigned by SQL Server when the database was created) is
returned along with the database name. The functions will return information based on the current
database context.

Both also accept parameters, for example:

SELECT DB_ID('master') DatabaseID, DB_NAME(1) DatabaseNM

which you can use to look up explicit database ID or name values without switching the database
context to the actual database.

Returning a Database Object Name and ID
OBJECT_ID returns the database object identifier number, as assigned internally within the database.
OBJECT_NAME returns the object's name based on its object identifier number.

In this example, I’ll demonstrate how to return a database object’s name and ID:

SELECT OBJECT_ID('Production.Location'), OBJECT_NAME(1253579504)

This returns:

1333579789 DF_Illustration_ModifiedDate

How It Works
Both OBJECT_NAME and OBJECT_ID are often used in conjunction with system catalog views or system
functions that reference a database object’s identifier. The OBJECT_ID function is used to find the
internal database identifier of a specific object. Its single argument is the name of the object.
OBJECT_NAME is used to return the object name given the object identifier. Note that both functions
are database specific—since object ids can be the same for objects across different databases.
Object IDs are only unique to the specified database.

Returning the Application and Host for the Current User Session
In this recipe, I’ll demonstrate the different functions used to return information about the current
connection’s context. APP_NAME returns the name of the application for the current SQL Server con-
nection. HOST_ID returns the workstation identification number for the current connection and HOST_NAME
returns the workstation name for the current connection.

This example shows how to show the current application and host used to connected to the
SQL Server instance:

SELECT APP_NAME() as 'Application', HOST_ID() as 'Host ID', HOST_NAME() as 'Host Name'

This returns:

Application Host ID Host Name
Microsoft SQL Server Management Studio - Query 3388 JOEPROD

How It Works
All three functions used in this example were used without a SELECT clause, and didn’t require any
arguments. This information is useful for tracking information on a client and application connec-
tion, and thus helping you establish identity.

CHAPTER 8 ■ SQL SERVER FUNCTIONS 249

570Xch08.qxd 11/4/05 2:19 PM Page 249

Reporting Current User and Login Context
The SYSTEM_USER function returns the Windows or SQL login name and the USER function returns the
current user’s database user name.

In this first example, I’ll demonstrate how to return the current user and login context:

SELECT SYSTEM_USER, -- Login
USER -- Database User

This returns:

JOEPROD\Owner dbo

These two functions can also be used as table DEFAULT values, as this next example demon-
strates:

CREATE TABLE #TempExample
(ExampleColumn varchar(10) NOT NULL,
ModifiedByLogin varchar(55) NOT NULL DEFAULT SYSTEM_USER,
ModifiedByUser varchar(55) NOT NULL DEFAULT USER)

GO

INSERT #TempExample
(ExampleColumn)
VALUES ('Value A')

SELECT ExampleColumn, ModifiedByLogin, ModifiedByUser
FROM #TempExample

This returns the following results:

ExampleColumn ModifiedByLogin ModifiedByUser
Value A JOEPROD\Owner dbo

How It Works
In this recipe, the SYSTEM_USER and USER functions were used within a regular query, and also as the
DEFAULT value for a table. These functions are ideal for database change auditing—capturing the
current user when a data modification occurs, for example.

Viewing User Connection Options
In this recipe, I’ll demonstrate how to view the SET properties for the current user connection using
the SESSIONPROPERTY function (for information on SET options see Chapter 22):

SELECT SESSIONPROPERTY ('ANSI_NULLS') ANSI_NULLS,
SESSIONPROPERTY ('ANSI_PADDING') ANSI_PADDING,
SESSIONPROPERTY ('ANSI_WARNINGS') ANSI_WARNINGS,
SESSIONPROPERTY ('ARITHABORT') ARITHABORT,
SESSIONPROPERTY ('CONCAT_NULL_YIELDS_NULL') CONCAT_NULL_YIELDS_NULL,
SESSIONPROPERTY ('NUMERIC_ROUNDABORT') NUMERIC_ROUNDABORT,
SESSIONPROPERTY ('QUOTED_IDENTIFIER') QUOTED_IDENTIFIER

CHAPTER 8 ■ SQL SERVER FUNCTIONS250

570Xch08.qxd 11/4/05 2:19 PM Page 250

How It Works
SESSIONPROPERTY allows you to see the various database connection settings for the current
user. It takes one argument, the name of the property to check. In the example, each available
SESSIONPROPERTY option was checked. The function returns a 1 when the option is ON and 0 when it
is OFF.

IDENTITY and uniqueidentifier Functions
With the last three recipes of this chapter, I’ll review how to work with IDENTITY values for a table
and how to generate new uniqueidentifier values.

As you may recall from Chapter 4, the IDENTITY column property is defined on a specific column
of a table and allows you to define an automatically incrementing numeric value for a single column
in a table.

Unlike the IDENTITY column, which guarantees uniqueness within the defined table, the
ROWGUIDCOL property ensures a very high level of uniqueness. This unique ID is stored in
a uniqueidentifier data type and is generated by the NEWID system function.

Returning the Last Identity Value
In this recipe, I’ll demonstrate three methods for returning last generated identity values. In the first
example, the IDENT_CURRENT function is used to return the last generated identity value for a specific
table. This command takes a single argument: the name of the table to evaluate:

SELECT IDENT_CURRENT('Production.Product') LastIdententityValue

This returns:

LastIdententityValue
999

Next, a new row is inserted into a table that has an IDENTITY column defined within it. Imme-
diately after the INSERT, the last identity value generated is retrieved using the SCOPE_IDENTITY and
@@IDENTITY functions (the difference is described after the example):

-- Example insert, generates IDENTITY value in the table
INSERT HumanResources.Department
(Name, GroupName)
VALUES ('TestDept', 'TestGroup')

-- Last identity value generated for any table
-- in the current session, for the current scope
SELECT SCOPE_IDENTITY()

This returns the last identity value generated from a table INSERT in the current session, for the
current scope. Scope means that if this INSERT caused a trigger to fire that inserted another row into
a different IDENTITY-based table, we would still only see the last IDENTITY value for the current ses-
sion (not from the trigger sessions outside our scope):

CHAPTER 8 ■ SQL SERVER FUNCTIONS 251

570Xch08.qxd 11/4/05 2:19 PM Page 251

17

Executing @@IDENTITY generates the last IDENTITY value generated for any table in the current
session, but for any scope:

-- Last identity value generated for any table
-- in the current session, in any scope
SELECT @@IDENTITY

This returns:

17

Although it is the same value for this example query, had a trigger fired off of our INSERT that in
turn caused an INSERT into another IDENTITY-based table, we would see the latest identity value for
the other table in the trigger’s scope.

How It Works
This recipe demonstrated three methods of returning the last identity value generated. The first
query used IDENT_CURRENT, which specified the last generated identity value for a specific table.

The next function demonstrated, SCOPE_IDENTITY, is specific to the current user session, and
returns the last generated value for the current scope. The current scope, for example, refers to the
current batch of SQL statements, current procedure, or current trigger.

In contrast, @@IDENTITY returns the last generated value for any table in the current session,
across any scope. So if an INSERT in the current scope fires a trigger, which in turn inserts a record
into a different table, @@IDENTITY will return the latest value from the inserted row impacted by the
trigger, and not the original insert you may have intended to capture.

In short, use IDENT_CURRENT if you care about retrieving the latest IDENTITY value for a specific
table, across any session or scope. Use SCOPE_IDENTITY if you wish to retrieve the latest IDENTITY
value for any table in the current scope and session. Use @@IDENTITY if you want the last IDENTITY
value for any table in the current session, regardless of scope.

Returning an Identity Column’s Seed and Incrementing Value
The IDENT_INCR function displays the original increment value for the IDENTITY column of a specific
table or referencing view. The IDENT_SEED function displays the originally defined seed value for the
IDENTITY column of a specific table or referencing view. These functions are useful to determine at
what increment and seed an IDENTITY column’s value will progress as rows are inserted.

This example demonstrates returning the identity increment and seed for a specific table:

SELECT IDENT_INCR('Production.Product') IdentIncr,
IDENT_SEED('Production.Product') IdentSeed

This returns:

IdentIncr IdentSeed
1 1

How It Works
In this recipe, the increment and seed for the Production.Product table was returned using
IDENT_INCR and IDENT_SEED.

CHAPTER 8 ■ SQL SERVER FUNCTIONS252

570Xch08.qxd 11/4/05 2:19 PM Page 252

Creating a New uniqueidentifier Value
The NEWID function is used to create a uniqueidentifier data type value. The first example returns
a new uniqueidentifier value in a SELECT statement:

SELECT NEWID()

This returns:

D04ED24F-671E-4559-A205-F6864B9C59A7

Next, a new temporary table is created that uses the NEWID function as a default:

CREATE TABLE #T4
(MyValue uniqueidentifier NOT NULL DEFAULT NEWID())

Next, a new value is inserted into the table:

INSERT #T4 DEFAULT VALUES

Last, the value is retrieved from the table:

SELECT MyValue
FROM #T4

This returns:

MyValue
2DD54CE0-5D26-42F9-A68D-7392DB89D0EF

How It Works
As this recipe shows, NEWID can be used within a SELECT statement or as a DEFAULT column value in
a CREATE or ALTER TABLE statement.

CHAPTER 8 ■ SQL SERVER FUNCTIONS 253

570Xch08.qxd 11/4/05 2:19 PM Page 253

570Xch08.qxd 11/4/05 2:19 PM Page 254

Conditional Processing,
Control-of-Flow, and Cursors

In this chapter, I’ll present recipes that demonstrate SQL Server 2005 Transact-SQL for:

• Conditional processing. You’ll learn how to use the CASE and IF...ELSE statements to evaluate
conditions and return values accordingly. I’ll review how to use the CASE function to evaluate
a single input expression and return a value, and also how to evaluate one or more Boolean
expressions. Finally, I’ll demonstrate returning a value when the expressions are TRUE.

• Control-of-flow functionality. This recipe demonstrates how to control the execution of
Transact-SQL statements or batches based on commands such as RETURN, WHILE, WAITFOR,
and GOTO. RETURN is used to exit the current Transact-SQL batch immediately, and doesn’t
allow any code in the batch that executes after it. The WHILE command is used to repeat
a specific operation or batch of operations while a condition remains TRUE. The WAITFOR
command is used to delay the execution of Transact-SQL code for a specified length of time
or until a specific time. GOTO is used to jump to a label in your Transact-SQL batch, passing
over the code that follows it.

• Creating and using cursors. Here I’ll demonstrate Transact-SQL cursors, which allow you to
work with one row at a time. Cursors can cause significant performance problems due to
memory consumption and code bloat issues if not implemented correctly. However, there
still may be rare occasions when the use of a cursor is a better choice than a set-based solution.

An understanding of how and when (and when not) to use these techniques will allow you to
create flexible and intelligent Transact-SQL code.

Conditional Processing
Conditional processing allows you to return a value, based on the value of an expression, or group
of expressions. The next few recipes will demonstrate SQL Server 2005’s conditional processing
commands, including CASE and IF...ELSE (note that IF...ELSE also has inherent control-of-flow
functionality as well).

The CASE function is used to return a value based on the value of an expression. It is most often
used to translate codes into descriptive values or evaluate multiple conditions in order to return
a value. (For example, “If the row is from the year 2005 and less than or equal to Current Quarter,
return the Total Sales amount.”)

255

C H A P T E R 9

■ ■ ■

570Xch09.qxd 11/4/05 2:26 PM Page 255

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS256

The IF...ELSE construct evaluates a Boolean expression, and if TRUE, executes a Transact-SQL
statement or batch. The uses for this command are many, allowing you to conditionally return
result sets, update data, or execute stored procedures based on one or more search conditions.

The next three recipes will demonstrate conditional processing in action.

Using CASE to Evaluate a Single Input Expression
The CASE function is used to return a value based on the value of an expression. It can also be used
to return a value based on the result of one or more Boolean expressions. The syntax for former flavor
of CASE is as follows:

CASE input_expression
WHEN when_expression THEN result_expression
[...n]
[
ELSE else_result_expression
]

END

The arguments of this command are described in Table 9-1.

Table 9-1. Input Expression CASE Arguments

Argument Description

input_expression The input value to be evaluated in the CASE statement.

when_expression The expression to compare to the input_expression. For example if the
input_expression is the Gender column , then the when_expression could
be ‘F’ or ‘M’ or NULL. If there is a match between the input_expression
and the when_expression, then the result_expression is returned.

result_expression The value to be returned if the input_expression is equal to the
when_expression.

This example demonstrates how to use CASE to evaluate one or more conditions, returning
a result based on those conditions that evaluate to TRUE:

-- Determine Conference Rooms Based on Department
SELECT DepartmentID,

Name,
GroupName,
CASE GroupName

WHEN 'Research and Development' THEN 'Room A'
WHEN 'Sales and Marketing' THEN 'Room B'
WHEN 'Manufacturing' THEN 'Room C'
ELSE 'Room D'

END ConferenceRoom
FROM HumanResources.Department

This returns the following (abridged) results:

DepartmentID Name GroupName ConferenceRoom
1 Engineering Research and Development Room A
2 Tool Design Research and Development Room A
3 Sales Sales and Marketing Room B
4 Marketing Sales and Marketing Room B
5 Purchasing Inventory Management Room D

570Xch09.qxd 11/4/05 2:26 PM Page 256

How It Works
In this recipe’s example, CASE was used to assign a conference room based on the GroupName value.
The CASE statement followed the Name column in the SELECT clause:

SELECT DepartmentID,
Name,
GroupName,
CASE GroupName

The column to evaluate, GroupName, followed the CASE keyword. Next, a set of WHEN expressions
was evaluated. Each department was assigned a different room, based on the value of GroupName:

WHEN 'Research and Development' THEN 'Room A'
WHEN 'Sales and Marketing' THEN 'Room B'
WHEN 'Manufacturing' THEN 'Room C'

The optional ELSE clause is used as a catch-all, assigning a default result expression if none of
the WHEN expressions evaluated to TRUE:

ELSE 'Room D'

The END keyword is used to mark the end of the CASE statement, and in this recipe, is followed
by the aliased column name:

END ConferenceRoom

Using CASE to Evaluate Boolean Expressions
CASE offers an alternative syntax which doesn’t use an initial input expression. Instead, one or more
Boolean expressions is evaluated, returning a result expression when TRUE. The syntax is as follows:

CASE
WHEN Boolean_expression THEN result_expression
[...n]
[
ELSE else_result_expression
]

END

The additional argument in this syntax, compared to the previous recipe, is the boolean_expression,
which is the expression being evaluated. Instead of an input expression, each WHEN evaluates a Boolean
expression, and if TRUE, returns a result expression. This flavor of CASE allows for additional expres-
sions above and beyond just evaluating the value of one input expression.

If none of the expressions evaluates to TRUE, the result_expression of the ELSE clause is returned,
or a NULL value is returned if no ELSE clause was specified. If a row match is made against more than
one Boolean expression, the first Boolean expression to evaluate to TRUE determines the result expres-
sion. In this example, the department name is evaluated in addition to other expressions, such as
the department identifier and the room name starting with the letter T:

SELECT DepartmentID,
Name,
CASE

WHEN Name = 'Research and Development'
THEN 'Room A'

WHEN (Name = 'Sales and Marketing' OR
DepartmentID = 10)

THEN 'Room B'
WHEN Name LIKE 'T%'

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS 257

570Xch09.qxd 11/4/05 2:26 PM Page 257

THEN 'Room C'
ELSE 'Room D'

END ConferenceRoom
FROM HumanResources.Department

This returns the following (abridged) results:

DepartmentID Name ConferenceRoom
12 Document Control Room D
1 Engineering Room D
16 Executive Room D
14 Facilities and Maintenance Room D
10 Finance Room B
9 Human Resources Room D
...
6 Research and Development Room A
3 Sales Room D
15 Shipping and Receiving Room D
17 TestDept Room C
2 Tool Design Room C

How It Works
In this example, three Boolean expressions were used. If the department name was Research and
Development, Room A would be returned:

WHEN Name = 'Research and Development'
THEN 'Room A'

The second Boolean expression stated that if the department name was Sales and Marketing OR
the DepartmentID was equal to 10, then Room B would be returned:

WHEN (Name = 'Sales and Marketing' OR
DepartmentID = 10)

THEN 'Room B'

The third Boolean expression looks for any department name that starts with the letter T, caus-
ing Room C to be returned if there is a match:

WHEN Name LIKE 'T%'
THEN 'Room C'

Using IF...ELSE
IF...ELSE evaluates a Boolean expression, and if TRUE, executes a Transact-SQL statement or batch.
The syntax is as follows:

IF Boolean_expression
{ sql_statement | statement_block }

[ELSE
{ sql_statement | statement_block }]

The ELSE clause is invoked if the Boolean expression evaluates to FALSE, executing the Transact-
SQL statement or batch that follows the ELSE.

This example demonstrates executing a query conditionally based on the value of a local vari-
able:

DECLARE @QuerySelector int
SET @QuerySelector = 3

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS258

570Xch09.qxd 11/4/05 2:26 PM Page 258

IF @QuerySelector = 1
BEGIN

SELECT TOP 3
ProductID, Name, Color

FROM Production.Product
WHERE Color = 'Silver'
ORDER BY Name

END
ELSE
BEGIN

SELECT TOP 3
ProductID, Name, Color

FROM Production.Product
WHERE Color = 'Black'
ORDER BY Name

END

This returns:

ProductID Name Color
322 Chainring Black
863 Full-Finger Gloves, L Black
862 Full-Finger Gloves, M Black

How It Works
In this recipe, an integer local variable was created called @QuerySelector, which was set to the
value of 3:

DECLARE @QuerySelector int
SET @QuerySelector = 3

The IF statement began by evaluating if @QuerySelector was equal to 1:

IF @QuerySelector = 1

If the evaluation determined that @QuerySelector was indeed 1, the next block of code (starting
with the BEGIN statement) would be executed:

BEGIN
SELECT TOP 3

ProductID, Name, Color
FROM Production.Product
WHERE Color = 'Silver'
ORDER BY Name

END

BEGIN is optional for single statements following IF, but for multiple statements that must be
executed as a group, BEGIN and END must be used. As a best practice, it is easier to use BEGIN...END
for single statements too, so that you don’t forget to do so if/when the code is changed at a later time.

The optional ELSE clause is used as a catch-all, executing a search on black colored products if
the previous IF condition evaluated to FALSE:

ELSE
BEGIN

SELECT TOP 3
ProductID, Name, Color

FROM Production.Product

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS 259

570Xch09.qxd 11/4/05 2:26 PM Page 259

WHERE Color = 'Black'
ORDER BY Name

END

Control-of-Flow
In the next few recipes, I’ll demonstrate how to use the following SQL Server 2005 control-of-flow
functions and commands.

• RETURN. This function is used to unconditionally exit the existing scope and return control to
the calling scope. RETURN can also be used to communicate integer values back to the caller.
This technique is often used to communicate business logic errors back to the calling proce-
dure, or to confirm that everything in the batch/query/scope executed without error.

• WHILE. You can use this to repeatedly execute the same batch of Transact-SQL code while
a Boolean condition evaluates to TRUE. WHILE is often used as an alternative to cursors (also
reviewed in this chapter), as you can use it to loop through a result set one row at a time, per-
forming actions for each row until the result set is empty. For example, you could populate
a temporary table with a list of the names of indexes that have a fragmentation level greater
than 50%. A WHILE statement can be invoked to keep looping for as long as there are rows in
this table. For each iteration, you would grab the TOP 1 index row and perform an index rebuild
on the first index name grabbed from the table. After that, you could delete that row from the
table, and then keep looping through the indexes until the table is empty, ending the WHILE loop.

• GOTO. This function can be used to jump to a label in your Transact-SQL batch. It is often
used to jump to a special error handler when an error occurs, or to skip over code if a certain
business condition is or isn't met. GOTO has a reputation, which is duly earned, for creating
spaghetti code. This is because you have to jump between code blocks in order to fully
understand what the batch or procedure is actually doing. Although use of GOTO should be
minimal, it is still supported, and thus presented in a recipe here.

• WAITFOR. You can use this function to defer processing of consecutive Transact-SQL commands
that follow it—for either a fixed period of time or until a specific time. This is useful in situa-
tions where activities are synchronous. For example, if your code cannot finish until an external
task has completed in a set number of seconds/minutes/hours, or if you cannot perform an
action until a specific time (non-business hours, for example).

Using RETURN
RETURN is used to exit the current Transact-SQL batch, query, or stored procedure immediately, and
doesn’t execute any code in the batch/query/procedure scope that follows after it. RETURN exits only
the code executing in the current scope; if you have called stored procedure B from stored procedure
A, and stored procedure B issues a RETURN, stored procedure B stops immediately, but stored proce-
dure A continues as though B had completed successfully.

This example demonstrates how to use RETURN to unconditionally stop a query:

IF NOT EXISTS
(SELECT ProductID FROM Production.Product WHERE Color = 'Pink')
BEGIN

RETURN
END

-- Won't execute
SELECT ProductID

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS260

570Xch09.qxd 11/4/05 2:26 PM Page 260

FROM Production.Product
WHERE Color = 'Pink'

This returns:

Command(s) completed successfully.

RETURN also allows for an optional integer expression:

RETURN [integer_expression]

This integer value can be used in a stored procedure to communicate issues to the calling
application. For example:

-- Create a Stored Procedure that raises an error
CREATE PROCEDURE #usp_TempProc
AS
SELECT 1/0
RETURN @@ERROR
GO

Next, the stored procedure is executing, capturing the RETURN code in a local variable:

DECLARE @ErrorCode int

EXEC @ErrorCode = #usp_TempProc
PRINT @ErrorCode

This returns:

Msg 8134, Level 16, State 1, Procedure
#usp_TempProc__
_______________________________00000B72, Line 4
Divide by zero error encountered.
8134

How It Works
In this recipe, an IF condition checked for the existence of a pink-colored product:

IF NOT EXISTS
(SELECT ProductID FROM Production.Product WHERE Color = 'Pink')

If it evaluated to TRUE (no pink products exist), the RETURN statement is executed:

BEGIN
RETURN

END

-- Won't execute
SELECT ProductID
FROM Production.Product
WHERE Color = 'Pink'

Since there are no pink products, RETURN is called, and the SELECT query following the IF
statement is never executed.

The second example demonstrated creating a temporary stored procedure containing
Transact-SQL that creates a divide-by-zero error. RETURN was used to capture the @@ERRORCODE value
of 8134, which was passed back to the caller and printed in the @ErrorCode local variable. If an integer

alue is sent by default.

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS 261

570Xch09.qxd 11/4/05 2:26 PM Page 261

Using WHILE
In this recipe, I demonstrate the WHILE command, which allows you to repeat a specific operation or
batch of operations while a condition remains TRUE.

The syntax for WHILE is as follows:

WHILE Boolean_expression
{ sql_statement | statement_block }
[BREAK]
{ sql_statement | statement_block }
[CONTINUE]
{ sql_statement | statement_block }

WHILE will keep the Transact-SQL statement or batch processing while the Boolean expression
remains TRUE. The BREAK keyword allows you to exit from the innermost WHILE loop, and the CONTINUE
keyword causes the loop to restart.

In this example, the system stored procedure sp_spaceused is used to return the table space
usage for each table in the @AWTables table variable:

-- Declare variables
DECLARE @AWTables TABLE (SchemaTable varchar(100))
DECLARE @TableName varchar(100)

-- Insert table names into the table variable
INSERT @AWTables
(SchemaTable)
SELECT TABLE_SCHEMA + '.' + TABLE_NAME
FROM INFORMATION_SCHEMA.tables
WHERE TABLE_TYPE = 'BASE TABLE'
ORDER BY TABLE_SCHEMA + '.' + TABLE_NAME

-- Report on each table using sp_spaceused
WHILE (SELECT COUNT(*) FROM @AWTables)>0
BEGIN

SELECT TOP 1 @TableName = SchemaTable
FROM @AWTables
ORDER BY SchemaTable

EXEC sp_spaceused @TableName

DELETE @AWTables
WHERE SchemaTable = @TableName

END

This returns multiple result sets (one for each table). Three result sets are shown here:

name rows reserved data index_size unused

Shift 3 48 KB 8 KB 40 KB 0 KB

name rows reserved data index_size unused

Department 20 32 KB 8 KB 24 KB 0 KB

name rows reserved data index_size unused

EmployeeAddress 290 48 KB 16 KB 32 KB 0 KB

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS262

570Xch09.qxd 11/4/05 2:26 PM Page 262

As you saw in the earlier WHILE syntax, you can also use the keywords BREAK and CONTINUE in
your code. BREAK is used to exit the WHILE loop, whereas CONTINUE is used to resume a WHILE loop. For
example:

WHILE (1=1)
BEGIN

PRINT 'Endless While, because 1 always equals 1'
IF 1=1
BEGIN

PRINT 'But we didn''t let the endless loop happen'
BREAK

END
ELSE
BEGIN

CONTINUE
END

END

This returns:

Endless While, because 1 always equals 1
But we didn't let the endless loop happen

How It Works
In this recipe, WHILE is used to loop through each table in the AdventureWorks database, reporting
information using the sp_spaceused system stored procedure.

This recipe began by declaring two variables:

DECLARE @AWTables TABLE (SchemaTable varchar(100))
DECLARE @TableName varchar(100)

The table variable @AWTables was used to hold all the table names, and the @TableName variable
to hold a single table name’s value.

The table variable was populated with all the table names in the AdventureWorks database
(populating a schema.table_name value):

INSERT @AWTables
(SchemaTable)
SELECT TABLE_SCHEMA + '.' + TABLE_NAME
FROM INFORMATION_SCHEMA.tables
WHERE TABLE_TYPE = 'BASE TABLE'
ORDER BY TABLE_SCHEMA + '.' + TABLE_NAME

The WHILE loop was then started, looping as long as there were rows in the @AWTables table variable:

WHILE (SELECT COUNT(*) FROM @AWTables)>0
BEGIN

Within the WHILE, the @TableName local variable was populated with the TOP 1 table name from
the @AWTables table variable:

SELECT TOP 1 @TableName = SchemaTable
FROM @AWTables
ORDER BY SchemaTable

Using the @TableName variable, EXEC sp_spaceused was executed:

EXEC sp_spaceused @TableName

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS 263

570Xch09.qxd 11/4/05 2:26 PM Page 263

Lastly, the row for the reported table was deleted from the table variable:

DELETE @AWTables
WHERE SchemaTable = @TableName

END

WHILE will continue to execute sp_spaceused until all rows are deleted from the @AWTables table
variable.

In the second example of the recipe, BREAK was used to exit a loop if a certain condition is met
(or threshold tripped). Use BREAK as an extra precaution against endless loops.

Using GOTO
This recipe demonstrates GOTO, which is used to jump to a label in your Transact-SQL batch, passing
over the code that follows it. The syntax is:

GOTO label
label definition: code

In this example we check to see if a department name is already in use by an existing department.
If so, the INSERT is bypassed using GOTO. If not, the INSERT is performed:

DECLARE @Name nvarchar(50)
DECLARE @GroupName nvarchar(50)

SET @Name = 'Engineering'
SET @GroupName = 'Research and Development'

IF EXISTS (SELECT Name
FROM HumanResources.Department
WHERE Name = @Name)

BEGIN
GOTO SkipInsert

END

INSERT HumanResources.Department
(Name, GroupName)
VALUES(@Name , @GroupName)

SkipInsert:
PRINT @Name + ' already exists in HumanResources.Department'

This returns:

Engineering already exists in HumanResources.Department

How It Works
In this recipe’s example, two local variables were declared and set to values in preparation for being
inserted into the HumanResources.Department table:

DECLARE @Name nvarchar(50)
DECLARE @GroupName nvarchar(50)

SET @Name = 'Engineering'
SET @GroupName = 'Research and Development'

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS264

570Xch09.qxd 11/4/05 2:26 PM Page 264

Next, an IF statement was used to check for the existence of any row with the same department
name as the local variable. If such a row exists the GOTO command is invoked. GOTO references the
label name that you want to skip to, in this case called SkipInsert:

IF EXISTS (SELECT Name
FROM HumanResources.Department
WHERE Name = @Name)

BEGIN
GOTO SkipInsert

END

An INSERT follows the IF statement, however in our example it is skipped over because the
department ‘Engineering’ does already exist in the HumanResources.Department table:

INSERT HumanResources.Department
(Name, GroupName)
VALUES(@Name , @GroupName)

The label to be skipped to is then defined, suffixed with a colon. The label defines a printed
message to be returned:

SkipInsert:
PRINT @Name + ' already exists in HumanResources.Department'

As a best practice, when given a choice between using GOTO and other control-of-flow methods,
you should choose something other than GOTO. GOTO can cause readability issues and spaghetti code,
as you’ll have to jump around the batch or stored procedure in order to understand the original
intention of the query author.

Using WAITFOR
In this recipe, I demonstrate the WAITFOR command, which delays the execution of Transact-SQL
code for a specified length of time.

The syntax for WAITFOR is as follows:

WAITFOR
{

DELAY 'time_to_pass'
| TIME 'time_to_execute'
| (receive_statement) [, TIMEOUT timeout]

}

The time_to_pass parameter for WAITFOR DELAY is the number of seconds, minutes, and hours
to wait before executing the command. The WAITFOR TIME time_to_execute parameter is used to
designate an actual time (hour, minute, second) to execute the batch. The receive_statement and
TIMEOUT options are used in conjunction with Service Broker (see Chapter 20).

In this first example, a ten-second delay is created by WAITFOR before a SELECT query is executed:

WAITFOR DELAY '00:00:10'
BEGIN

SELECT TransactionID, Quantity
FROM Production.TransactionHistory

END

In this second example, a query is not executed until a specific time, in this case 7:01PM:

WAITFOR TIME '19:01:00'
BEGIN

SELECT COUNT(*)
FROM Production.TransactionHistory

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS 265

570Xch09.qxd 11/4/05 2:26 PM Page 265

How It Works
In this recipe, two different versions of WAITFOR were used to delay processing of a Transact-SQL
batch.

The first query waited ten seconds before executing the batch:

WAITFOR DELAY '00:00:10'

Waiting for a certain amount of time is useful when you know another operation must execute
asynchronously while your current batch process must wait. For example if you have kicked off an
asynchronous SQL Server Agent job using the sp_start_job system stored procedure, control is
returned immediately to the batch after the job starts to execute. If you know that the job you just
kicked off takes at least five minutes to run, and your consecutive tasks are dependent on the com-
pletion of the job, WAITFOR can be used to delay processing until the job is complete.

The second query waited until the next instance of the specified time:

WAITFOR TIME '19:01:00'

WAITFOR TIME is useful for when certain operations must occur at specific time periods in the
day. For example, say you have a stored procedure which performs data warehouse aggregations
from transaction processing tables. The aggregations may take a couple of hours to complete, but
you don’t want to load the finished data from the staging to the production tables until after busi-
ness hours. Using WAITFOR TIME in the procedure, you can stop the final load of the tables until
non-business hours.

Cursors
SQL Server’s performance advantage resides in its set-based processing capabilities. Nonetheless,
novice query authors with a programming background are often more comfortable using cursors
than the set-based alternatives for retrieving or updating rows. Unfortunately, cursors have several
strikes against them. Many a time they have been known to eat up a SQL Server instances’ memory,
lock resources, and create excessive amounts of code. These problems occur when the developer
overlooks lower-cost set-based alternatives. Transact-SQL is a set-based language, meaning that
it excels at manipulating and retrieving sets of rows, rather than performing single row-by-row
processing.

Nevertheless, your application or business requirements may require the single, row-by-row
processing that Transact-SQL cursors can provide. In general you should only consider using cursors
after exhausting other methods for doing row level processing, such as WHILE loops, sub queries,
temporary tables, or table variables, to name a few.

The general lifecycle of a Transact-SQL cursor is as follows:

• A cursor is defined via a SQL statement that returns a valid result set.

• The cursor is then populated (opened).

• Once opened, rows can be fetched from the cursor, one at a time or in a block. The rows can
also be fetched moving forward or backwards, depending on the original cursor definition.

• Depending on the cursor type, the data can be modified while scrolling through the rows, or
read and used with other operations.

• Finally, after the cursor has been used, it should then be explicitly closed and de-allocated
from memory.

The DECLARE CURSOR command is used to create a cursor, and has many options that impact the
flexibility and locking behavior of the cursor. The syntax is as follows:

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS266

570Xch09.qxd 11/4/05 2:26 PM Page 266

DECLARE cursor_name CURSOR
[LOCAL | GLOBAL]
[FORWARD_ONLY | SCROLL]
[STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
[TYPE_WARNING]
FOR select_statement[FOR UPDATE [OF column_name [,...n]]]

There are several options that can impact whether or not the cursor data can be updated, and
whether or not you can move backwards and forwards within the rows populated within the cursor.
Table 9-2 briefly describes the available options:

Table 9-2. Cursor Options

Option Description

LOCAL or GLOBAL If LOCAL is selected, the cursor is only available within the scope of the
SQL batch, trigger, or stored procedure. If GLOBAL is selected, the cursor
is available to the connection itself (for example, a connection that
executes a stored procedure that creates a cursor can use the cursor
that was created in the stored procedure execution).

FORWARD_ONLY or SCROLL The FORWARD_ONLY option only allows you to move forward from the
first row of the cursor and onward. SCROLL, on the other hand, allows you
to move backwards and forwards through the cursor result set using
all fetch options (FIRST, LAST, NEXT, PRIOR, ABSOLUTE, and RELATIVE). If
performance is a consideration, stick with FORWARD_ONLY—as this cursor
type incurs less overhead than the SCROLL.

STATIC or KEYSET or When STATIC is specified, a snapshot of the cursor data is held in the
DYNAMIC or FAST_FORWARD tempdb database, and any changes made at the original data source

aren't reflected in the cursor data. KEYSET allows you to see changes to
rows made outside of the cursor, although you can’t see inserts that
would have met the cursor’s SELECT query, or deletes after the cursor has
been opened. DYNAMIC allows you to see updates, inserts, and deletes in
the underlying data source while the cursor is open. FAST_FORWARD
defines two behaviors: settings the cursor to read only and forward only
status (this is usually the best performing cursor option, but the least
flexible). When faced with a performance decision, and your desired
functionality is not complicated, use this option.

READ_ONLY or The READ_ONLY option means that updates cannot be made through the
SCROLL_LOCKS or cursor. If performance and concurrency is a consideration, use this
OPTIMISTIC option. SCROLL_LOCKS places locks on rows so that updates or deletes

are guaranteed to be made after the cursor is closed. The OPTIMISTIC
option places no locks on updated or deleted rows, and will only
maintain modifications if an update has not occurred outside of the
cursor since the last data read.

TYPE_WARNINGS When TYPE_WARNINGS is specified, a warning will be sent to the client
if the cursor is implicitly converted from one type to a different type.

The select_statement argument is the query used to define the data within the cursor. Avoid
using a query that has more columns and rows than will be used, because cursors, while open, are
kept in memory. The UPDATE [OF column_name [,...n]] is used to specify those columns that are
allowed to be updated by the cursor.

Once a cursor is declared using DECLARE CURSOR, the next step is to open it up and populate it
using the OPEN command. The syntax is as follows:

OPEN { [GLOBAL] cursor_name }

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS 267

570Xch09.qxd 11/4/05 2:26 PM Page 267

A cursor can be opened locally (the default) or globally. Once opened, you can begin using the
FETCH command to navigate through rows in the cursor. The syntax for FETCH NEXT is as follows:

FETCH [[NEXT | PRIOR | FIRST | LAST
| ABSOLUTE { n | @nvar }
| RELATIVE { n | @nvar }]

FROM]
{ { [GLOBAL] cursor_name }
[INTO @variable_name [,...n]]

FETCH provides several options for navigating through rows in the cursor, by populating the
results into local variables for each column in the cursor definition (this is demonstrated in the next
recipe).

The @@FETCH_STATUS function is used after a FETCH operation to determine the FETCH status,
returning 0 if successful, -1 for unsuccessful, or -2 for missing.

Once you are finished with the opened cursor, execute the CLOSE command to release the result
set from memory. The syntax is as follows:

CLOSE { [GLOBAL] cursor_name }

At this point you can still reopen the cursor if you want to. If you are finished however, you
should remove internal system references to the cursor by using the DEALLOCATE command. This
frees up any resources used by the cursor. For example if scroll locks are held on the cursor refer-
enced in the table, these locks are then released after a DEALLOCATE. The syntax is as follows:

DEALLOCATE { [GLOBAL] cursor_name }

This next recipe will demonstrate each of these commands in action.

Creating and Using Transact-SQL Cursors
Although this book recommends the minimal use of cursors, using cursors for ad hoc, periodic
database administration information-gathering, as I demonstrate in this next example, is usually
perfectly justified.

This recipe demonstrates a cursor that loops through each session ID (SPID, formerly called
“server process ID”) currently active on the SQL Server instance, and executes DBCC INPUTBUFFER to
see the SQL statements each connection is currently executing (if it is executing anything at that
moment):

-- Don't show rowcounts in the results
SET NOCOUNT ON

DECLARE @spID smallint

-- Declare the cursor
DECLARE spID_cursor CURSOR
FORWARD_ONLY READ_ONLY
FOR SELECT spID

FROM sys.sysprocesses
WHERE status IN ('runnable', 'sleeping')

-- Open the cursor
OPEN spID_cursor

-- Retrieve one row at a time from the cursor
FETCH NEXT
FROM spID_cursor

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS268

570Xch09.qxd 11/4/05 2:26 PM Page 268

-- Keep retrieving rows while the cursor has them
WHILE @@FETCH_STATUS = 0
BEGIN
-- See what each spID is doing
PRINT 'SpID #: ' + STR(@spID)
EXEC ('DBCC INPUTBUFFER (' + @spID + ')')

-- Grab the next row
FETCH NEXT
FROM spID_cursor
INTO @spID

END

-- Close the cursor
CLOSE spID_cursor

-- Deallocate the cursor
DEALLOCATE spID_cursor

This returns the current Transact-SQL activity for each process on the SQL Server instance.

How It Works
The recipe started off by setting SET NOCOUNT ON, which suppresses the SQL Server row count messages
in order to provide cleaner output:

-- Don't show rowcounts in the results
SET NOCOUNT ON

Next, a local variable was defined to hold the individual value of the server process ID to be
fetched from the cursor:

DECLARE @spID smallint

The cursor was then defined using DECLARE CURSOR. The cursor contained the SPID column
from the sys.sysprocesses system view:

-- Declare the cursor
DECLARE spID_cursor CURSOR
FORWARD_ONLY READ_ONLY
FOR SELECT spID

FROM sys.sysprocesses
WHERE status IN ('runnable', 'sleeping')

After the cursor was defined, it was then opened (populated):

OPEN spID_cursor

Once opened, the first row value was retrieved into the @SPID local variable using FETCH NEXT:

FETCH NEXT
FROM spID_cursor
INTO @spID

FETCH NEXT was used to retrieve the first row. After the first fetch, a WHILE condition was defined
that told SQL Server to continue the loop of statements until the cursor’s fetch status was no longer
successful (meaning no more rows could be retrieved).

WHILE @@FETCH_STATUS = 0

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS 269

570Xch09.qxd 11/4/05 2:26 PM Page 269

@@FETCH_STATUS was used to return the status of the last cursor FETCH statement last issued
against the open cursor, returning 0 if the last FETCH was successful, -1 for unsuccessful, or -2 for
missing:

Within the WHILE statement, the @SPID variable is printed, and used with EXEC to create
a dynamic query.

-- See what each spID is doing
PRINT 'SpID #: ' + STR(@spID)
EXEC ('DBCC INPUTBUFFER (' + @spID + ')')

The dynamic query executes DBCC INPUTBUFFER for each individual SPID, returning any SQL
Statement that the SPID currently has in the buffer.

After this, another FETCH NEXT was run to populate the next @SPID value:

-- Grab the next row
FETCH NEXT
FROM spID_cursor
INTO @spID

END

After all SPIDs are retrieved, the WHILE loop exits (because @@FETCH_STATUS will return -1). The
cursor was then closed using the CLOSE command:

-- Close the cursor
CLOSE spID_cursor

At this point, the cursor can still be opened with the OPEN command, however to completely
remove the cursor from memory, DEALLOCATE was used:

-- Deallocate the cursor
DEALLOCATE spID_cursor

Although useful, cursors should be handled with care as they can consume excessive resources,
and often don’t perform as well as set-based equivalents. Be sure to explore all set-based alternatives
before considering cursors in your Transact-SQL development.

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS270

570Xch09.qxd 11/4/05 2:26 PM Page 270

Stored Procedures

A stored procedure groups one or more Transact-SQL statements into a logical unit, stored as an
object in a SQL Server database. After the stored procedure is created, its definition is stored in the
sys.sql_module system catalog view.

Unlike user-defined functions or views, when a stored procedure is executed for the first time
(since the SQL Server instance was last started), SQL Server determines the most optimal query
access plan and stores it in the plan memory cache. SQL Server can then reuse the plan on subse-
quent executions of this stored procedure. Plan reuse allows stored procedures to provide fast and
reliable performance compared to non-compiled ad hoc query equivalents.

■Note In SQL Server 2005, it is also possible to create a stored procedure that utilizes a .NET CLR assembly.
This is discussed in Chapter 13. Also, although the creation of extended stored procedures is still supported in
SQL Server 2005, it is now deprecated and will be removed from future versions.

This chapter contains recipes for creating and manipulating stored procedures. We’ll discuss
some of the new features introduced in SQL Server 2005, as well as some best practices.

Stored Procedure Basics
Over the years I have developed a strong bias towards the use of stored procedures whenever
possible. There are many good reasons to use stored procedures, and in my experience, very few
bad ones. Usually, reasons against using stored procedures come from application developers who
are more comfortable using ad hoc SQL within the application tier, and may not be trained in the
use of stored procedures. In companies with a separate application and database administration
staff, stored procedures also imply a loss of control over the Transact-SQL code from the application
developer to the database administration staff. Assuming your database administration team is
competent and willing to assist with a move to stored procedures in a timely fashion, the benefits of
using them should far outweigh any loss of control.

There are many benefits of using stored procedures:

271

C H A P T E R 1 0

■ ■ ■

570Xch10.qxd 11/4/05 2:27 PM Page 271

CHAPTER 10 ■ STORED PROCEDURES272

• Stored procedures help centralize your Transact-SQL code in the data tier. Websites or appli-
cations that embed ad hoc SQL are notoriously difficult to modify in a production environment.
When ad hoc SQL is embedded in an application, you may spend too much time trying to find
and debug the embedded SQL. Once you’ve found the bug, chances are you’ll need to recom-
pile the page or program executable, causing unnecessary application outages or application
distribution nightmares. If you centralize your Transact-SQL code in stored procedures, you’ll
have only one place to look for SQL code or SQL batches. If you document the code properly,
you’ll also be able to capture the areas that need fixing.

• Stored procedures can help reduce network traffic for larger ad hoc queries. Programming
your application call to execute a stored procedure, rather then push across a 500 line SQL
call, can have a positive impact on your network and application performance, particularly if
the call is repeated thousands of times a minute.

• Stored procedures encourage code reusability. For example, if your web application uses
a drop-down menu containing a list of cities, and this drop-down is used in multiple web
pages, you can call the stored procedure from each web page rather then embed the same
SQL in multiple places.

• Stored procedures allow you to obscure the method of data retrieval. If you change the under-
lying tables from which the source data is pulled, stored procedures (similar to views) can
obscure this change from the application. This allows you to make changes without forcing
a code change at the application tier. You can swap in new tables for the old, and so long as
the same columns and data types are sent back to the application, the application is none
the wiser. Unlike views, stored procedures can take advantage of control-of-flow techniques,
temporary tables, table variables, and much more.

• Stored procedures have a stabilizing influence on query response time. If you’ve worked
extensively with ad hoc queries, you may have noticed that sometimes the amount of time it
takes to return results from a query can vary wildly. This may be due to external factors, such
as concurrent activity against the table (locking) or resource issues (memory, CPU). On the
other hand, an ad hoc query may be performing erratically because SQL Server periodically
chooses less efficient execution plans. With stored procedures, you gain more reliable query-
plan caching, and hence reuse. Notice that I use the word reliable here, rather than quicker
or better. Ad hoc queries can sometimes perform better than their stored procedure counter-
parts, but it all depends on how you have tested, tuned, and then implemented the code within.

If none of these previous reasons convinced you that stored procedures are largely beneficial,
let’s review the security benefits. Direct table access (or worse, sysadmin access) to the SQL Server
instance and its database poses a security risk. Inline ad hoc code is more vulnerable to SQL injection
attacks. A SQL injection occurs when harmful Transact-SQL is inserted into an existing application’s
Transact-SQL code prior to being sent to the SQL Server instance. Aside from SQL injection attacks,
if someone gets a hold of the inline code, they’ll be able to glean information about the underlying
schema of your database, and direct their hacking attempts accordingly. Keeping all SQL within
stored procedures keeps only the stored procedure reference in the application—instead of each
individual column and table name. Another security benefit to stored procedures is that you can
grant database users and/or database roles access to them specifically instead of having to grant
direct access to tables. The stored procedure can act as a control layer, allowing you to choose which
columns and rows can and cannot be modified by the stored procedure (and also by the caller).

Creating a Basic Stored Procedure
Stored procedures can be used for many different activities including simple SELECTs, INSERTs,
UPDATEs, DELETEs, and much more. Many of the features or statements reviewed in the chapters of

570Xch10.qxd 11/4/05 2:27 PM Page 272

this book can be used within the body of a stored procedure. Transact-SQL activities can be mixed
within a single procedure, or you can create stored procedures in a modular fashion, creating multi-
ple stored procedures for each task or set of tasks.

The basic syntax for non-parameterized stored procedures is as follows:

CREATE PROCEDURE [schema_name.] procedure_name
AS { <sql_statement> [...n] }

The first arguments of the command are the schema and new procedure name. The sql_statement
argument is the Transact-SQL body of your stored procedure. This argument contains one or more
tasks that you wish to accomplish.

This example demonstrates how to create a basic stored procedure that queries data from the
AdventureWorks database:

CREATE PROCEDURE dbo.usp_SEL_ShoppingCartDisplay
AS

SELECT sc.ShoppingCartID,
sc.ShoppingCartItemID,
sc.Quantity,
sc.ProductID,
p.Name ProductName,
p.ListPrice

FROM Sales.ShoppingCartItem sc
INNER JOIN Production.Product p ON

sc.ProductID = p.ProductID

GO

Next, the new stored procedure is executed using the EXEC command:

EXEC dbo.usp_SEL_ShoppingCartDisplay

This returns the following results:

ShoppingCartID ShoppingCartItemID Quantity ProductID ProductName ListPrice
14951 2 3 862 Full-Finger Gloves, M 37.99
20621 4 4 881 Short-Sleeve Classic Jersey, S 53.99
20621 5 7 874 Racing Socks, M 8.99

How It Works
In this recipe, I demonstrated creating a stored procedure that queried the contents of two tables,
returning a result set. This stored procedure works like a view, only it will now have a cached query
plan when executed for the first time, which will also make its runtime consistent in consecutive
executions.

The example started off by creating a stored procedure called usp_SEL_ShoppingCartDisplay:

CREATE PROCEDURE dbo.usp_SEL_ShoppingCartDisplay
AS

The Transact-SQL query definition then followed the AS keyword:

SELECT sc.ShoppingCartID,
sc.ShoppingCartItemID,
sc.Quantity,
sc.ProductID,
p.Name ProductName,
p.ListPrice

CHAPTER 10 ■ STORED PROCEDURES 273

570Xch10.qxd 11/4/05 2:27 PM Page 273

FROM Sales.ShoppingCartItem sc
INNER JOIN Production.Product p ON

sc.ProductID = p.ProductID

GO

The GO keyword was used to mark the end of the stored procedure.
After the procedure in this recipe was created, it was then executed using the EXEC command:

EXEC dbo.usp_SEL_ShoppingCartDisplay

As a side note, during the stored procedure creation process SQL Server checks that the SQL
syntax is correct, but it doesn’t check for the existence of referenced tables. This means that you can
reference a table name incorrectly, and the name will not cause an error until runtime. This is called
deferred name resolution and it allows you to create or reference the objects in the database that
don’t exist yet. This also means that you can drop, alter, or modify the objects referenced in the
stored procedure without invalidating it.

Creating a Parameterized Stored Procedure
In the previous recipe, I demonstrated a non-parameterized stored procedure, meaning that no
external parameters were passed to it. The ability to pass parameters to them is part of why stored
procedures are one of the most important database objects in SQL Server. Using parameters, you
can pass information into the body of the procedure in order to return customized search informa-
tion, or use parameters to influence or execute INSERT, UPDATE, or DELETE statements against tables.
A procedure can have up to 2100 parameters (although it’s unlikely you’ll want to use nearly that
many).

The syntax for creating a stored procedure is as follows:

CREATE PROCEDURE [schema_name.] procedure_name
[{ @parameter [type_schema_name.] data_type }

[= default] [[OUTPUT]
] [,...n]

AS { <sql_statement> [...n] }

A parameter is prefixed by the @ sign, followed by the data type and optional default value.
Parameters come in two flavors: input and output. Where input parameters are used to pass infor-
mation into the stored procedure for processing, OUTPUT parameters are used to return information
back to the stored procedure caller.

In this example, a new stored procedure is created that can accept three parameters. Based on
the values of these parameters, either an existing row in a table will be updated, or a new row will be
inserted:

CREATE PROCEDURE usp_UPD_ShoppingCartItem
(@ShoppingCartID nvarchar(50),
@Quantity int = 1, -- defaulted to quantity of 1
@ProductID int)
AS
-- If the same ShoppingCartID and ProductID is sent
-- in the parameters, update the new quantity

IF EXISTS(SELECT *
FROM Sales.ShoppingCartItem
WHERE ShoppingCartID = @ShoppingCartID AND
ProductID = @ProductID)

BEGIN

CHAPTER 10 ■ STORED PROCEDURES274

570Xch10.qxd 11/4/05 2:27 PM Page 274

UPDATE Sales.ShoppingCartItem
SET Quantity = @Quantity
WHERE ShoppingCartID = @ShoppingCartID AND
ProductID = @ProductID

END
ELSE
BEGIN

-- Otherwise insert a new row
INSERT Sales.ShoppingCartItem
(ShoppingCartID, ProductID, Quantity)
VALUES (@ShoppingCartID, @ProductID, @Quantity)

END

GO

Next, the new stored procedure is called, passing three values for each expected parameter:

EXEC usp_UPD_ShoppingCartItem '1255', 2, 316

This returns:

(1 row(s) affected)

How It Works
This recipe demonstrated the creation of a stored procedure that could accept parameters. In the
example, three parameters were defined for the procedure:

CREATE PROCEDURE usp_UPD_ShoppingCartItem
(@ShoppingCartID nvarchar(50),
@Quantity int = 1, -- defaulted to quantity of 1
@ProductID int)
AS

The first parameter and third parameter are required parameters, as neither designated a default
value. The second parameter was optional, however, because it defined a default @Quantity value of 1.

The body of the stored procedure followed the AS keyword, starting with the first block of code,
which checks for the existence of rows in an IF statement:

IF EXISTS(SELECT *
FROM Sales.ShoppingCartItem
WHERE ShoppingCartID = @ShoppingCartID AND
ProductID = @ProductID)

BEGIN

If the row already existed for that specific ProductID and ShoppingCartID, its quantity would be
updated based on the new @Quantity value:

UPDATE Sales.ShoppingCartItem
SET Quantity = @Quantity
WHERE ShoppingCartID = @ShoppingCartID AND
ProductID = @ProductID

END

Otherwise, if a row didn’t already exist, a new INSERT would be performed:

ELSE
BEGIN

-- Otherwise insert a new row

CHAPTER 10 ■ STORED PROCEDURES 275

570Xch10.qxd 11/4/05 2:27 PM Page 275

INSERT Sales.ShoppingCartItem
(ShoppingCartID, ProductID, Quantity)
VALUES (@ShoppingCartID, @ProductID, @Quantity)

END

GO

After the procedure was created, it was then executed along with the required parameter values:

EXEC usp_UPD_ShoppingCartItem '1255', 2, 316

In this case, since the specific ShoppingCartID and ProductID combination didn’t exist in the
table yet, a new row was inserted into Sales.ShoppingCartItem.

Using OUTPUT Parameters
In the previous recipe, you saw that there was syntax for including OUTPUT parameters in your stored
procedure definition. OUTPUT parameters allow you to pass information back to the caller of the
stored procedure, whether it’s another stored procedure making the call or an ad hoc call made by
an application.

In this example, I create a stored procedure that returns the list of departments for a specific
group. In addition to returning the list of departments, an OUTPUT parameter is defined to store the
number of departments returned for the specific group:

CREATE PROCEDURE dbo.usp_SEL_Department
@GroupName nvarchar(50),
@DeptCount int OUTPUT

AS

SELECT Name
FROM HumanResources.Department
WHERE GroupName = @GroupName
ORDER BY Name

SELECT @DeptCount = @@ROWCOUNT

GO

Next, the new stored procedure is called. A local variable is defined to hold the OUTPUT parameter
value:

DECLARE @DeptCount int

EXEC dbo.usp_SEL_Department 'Executive General and Administration',
@DeptCount OUTPUT

PRINT @DeptCount

This returns the following result set:

Name
Executive
Facilities and Maintenance
Finance
Human Resources
Information Services

CHAPTER 10 ■ STORED PROCEDURES276

570Xch10.qxd 11/4/05 2:27 PM Page 276

In addition to the results, the result row count is also returned via the PRINT command:

5

How It Works
In this example, the stored procedure was defined with a parameter called @DeptCount, followed by
the data type and OUTPUT keyword:

@DeptCount int OUTPUT

The parameter was then assigned to the row count value, based on the previous SELECT statement
that was executed before it.

SELECT @DeptCount = @@ROWCOUNT

To use the OUTPUT value in Transact-SQL code, a local variable was declared and used within the
EXEC statement:

DECLARE @DeptCount int

Notice that the OUTPUT keyword followed the second parameter, in order to designate that it was
receiving and not sending an actual value:

EXEC dbo.usp_SEL_Department 'Executive General and Administration', @DeptCount OUTPUT

You can use OUTPUT parameters as an alternative or additional method for returning informa-
tion back to the caller of the stored procedure. Capturing the OUTPUT results allows you to then pass
the variable’s value into another stored procedure or process. If you’re using OUTPUT just to commu-
nicate information back to the calling application, it’s usually just as easy to create a second result
set containing the information you need. This is because .NET applications, for example, can easily
consume the multiple result sets that are returned from a stored procedure. The technique of using
OUTPUT parameters versus using an additional result set to return information is really just a matter
of preference. However, OUTPUT parameters are limited to returning a specific single value of the
specified data type, while using an additional result set will allow you to return multiple rows and
columns from the stored procedure.

Modifying a Stored Procedure
The ALTER PROCEDURE command is used to modify the definition of a stored procedure, allowing
you to change everything but the original stored procedure name. The syntax is almost identical to
CREATE PROCEDURE.

In this recipe, I’ll demonstrate modifying the existing stored procedure created in the previous
recipe, in order to return the number of departments returned by the query as a separate result set,
instead of using an OUTPUT parameter:

ALTER PROCEDURE dbo.usp_SEL_Department
@GroupName nvarchar(50)

AS

SELECT Name
FROM HumanResources.Department
WHERE GroupName = @GroupName
ORDER BY Name

SELECT @@ROWCOUNT DepartmentCount

CHAPTER 10 ■ STORED PROCEDURES 277

570Xch10.qxd 11/4/05 2:27 PM Page 277

Next, the modified stored procedure is executed:

EXEC dbo.usp_SEL_Department 'Research and Development'

This returns two result sets:

Name
Engineering
Research and Development
Tool Design

And:

DepartmentCount
3

How It Works
In this recipe, ALTER PROCEDURE was used to modify the definition of an existing stored procedure—both
removing a parameter and adding a second result set. Using this command, you can change every-
thing but the procedure name itself.

Dropping Stored Procedures
You can drop a stored procedure from the database using the DROP PROCEDURE command.

The syntax for dropping a stored procedure is:

DROP PROCEDURE { [schema_name.] procedure } [,...n]

This command takes one argument; the name of the procedure or procedures to drop. For
example:

DROP PROCEDURE dbo.usp_SEL_EmployeePayHistory

How It Works
Once a stored procedure is dropped, its definition information is removed from the database’s
system tables. Any cached query execution plans are also removed for that stored procedure. Code
references to the stored procedure by other stored procedures or triggers will fail upon execution
once the stored procedure has been dropped.

Executing Stored Procedures Automatically at SQL Server
Startup
You can designate a stored procedure to be executed whenever the SQL Server service is started. You
may wish to do this to perform any cleanup tasks your SQL Server instance requires (for example,
documenting when the service started, or clearing out work tables).

This automatic execution of a stored procedure is achieved using the sp_procoption system
stored procedure. The command looks like it takes several different options, but in SQL Server 2005,
it really only performs a single task, which is setting a stored procedure to execute automatically when
the SQL Server service restarts.

CHAPTER 10 ■ STORED PROCEDURES278

570Xch10.qxd 11/4/05 2:27 PM Page 278

In this example, a stored procedure is set to execute automatically whenever SQL Server is started.
First, the database context is set to the master database (which is the only place that auto-executable
stored procedures can be placed):

USE MASTER
GO

Next, for the example, a startup logging table is created:

CREATE TABLE dbo.SQLStartupLog
(SQLStartupLogID int IDENTITY(1,1) NOT NULL PRIMARY KEY,
StartupDateTime datetime NOT NULL)
GO

Now, a new stored procedure is created to insert a value into the new table (so you can see
whenever SQL Server was restarted using the table):

CREATE PROCEDURE dbo.usp_INS_TrackSQLStartups
AS

INSERT dbo.SQLStartupLog
(StartupDateTime)
VALUES (GETDATE())

GO

Next, the sp_procoption stored procedure is used to set this new procedure to execute when
the SQL Server service restarts:

EXEC sp_procoption @ProcName = 'usp_INS_TrackSQLStartups',
@OptionName = 'startup',
@OptionValue = 'true'

Once the service restarts, a new row is inserted into the table. To disable the stored procedure
again, the following command would need to be executed:

EXEC sp_procoption @ProcName = 'usp_INS_TrackSQLStartups',
@OptionName = 'startup',

@OptionValue = ‘off’

How It Works
In this recipe, a new table was created in the master database that tracks SQL Server start-ups.
A stored procedure is also created in the master database to insert a row into the table with the cur-
rent date and time of execution.

■Caution I’m not espousing the creation of objects in the system databases. It isn’t generally a good idea.
Although if you must use auto-execution functionality as discussed in this recipe, you have no choice but to do it
(for example, if your IT department requires a log of SQL Server service start times for tracking purposes).

Next, sp_procoption was called to set the startup value of the stored procedure:

EXEC sp_procoption @ProcName = 'usp_INS_TrackSQLStartups',
@OptionName = 'startup',
@OptionValue = 'true'

After sp_procoption was used, whenever the SQL Server service is restarted, a new row will be
inserted into the dbo.SQLStartupLog table.

CHAPTER 10 ■ STORED PROCEDURES 279

570Xch10.qxd 11/4/05 2:27 PM Page 279

The stored procedure must be created in the master database; otherwise you’ll see the following
error message when trying to use sp_procoption:

Msg 15398, Level 11, State 1, Procedure sp_procoption, Line 73
Only objects in the master database owned by dbo can have the startup setting changed.

Reporting Stored Procedure Metadata
You can use the new SQL Server 2005 sys.sql_modules catalog view to explore stored procedure
metadata (and other object types as well), as I demonstrate in this example:

SELECT definition,
execute_as_principal_id,
is_recompiled,
uses_ansi_nulls,
uses_quoted_identifier

FROM sys.sql_modules m
INNER JOIN sys.objects o ON

m.object_id = o.object_id
WHERE o.type = 'P'

How It Works
The sys.sql_modules view is used to view the definition and settings of stored procedures, triggers,
views, and other SQL-defined objects. In this recipe, sys.sql_modules is joined to sys.objects so
that only sys.objects rows of type P (stored procedures) will be returned.

The query returns the stored procedure definition (if not encrypted), the EXECUTE AS security
context ID, whether or not the stored procedure has WITH RECOMPILE set, and a 1 if the ANSI NULL or
QUOTED IDENTIFIER options were ON when it was created. Encryption, EXECUTE AS, and WITH RECOMPILE
will all be discussed in this chapter.

Documenting Stored Procedures
This next recipe is more of a best practice, rather than a review of a command or function. It is
important to comment your stored procedure code well, so that future readers will understand the
business rules and intents behind your Transact-SQL code. Although some code may seem “self-
evident” at the time of authoring, the original logic may not seem so clear a few months after it was
written.

For brevity, the stored procedure examples in this chapter have not included extensive com-
ments or headers. However, in your production database, you should at the very least define headers
for each stored procedure created in a production database.

The following is an example of a stored procedure header:

CREATE PROCEDURE dbo.usp_IMP_DWP_FactOrder
AS

-- Purpose: Populates the data warehouse, Called by Job
--
-- Maintenance Log
--
-- Update By Update Date Description
-- ----------- --------- ----------------------------
-- Joe Sack 8/15/2005 Created

CHAPTER 10 ■ STORED PROCEDURES280

570Xch10.qxd 11/4/05 2:27 PM Page 280

-- Joe Sack 8/16/2005 A new column was added to
--the base table, so it was added here as well.
... Transact-SQL code here

How It Works
This example demonstrated how to include header information within the body of a new stored
procedure. It tracks the purpose, the application where it will be called, and a maintenance log.

No doubt you’ll see other headers out in the field, with much more information. I’m a firm
believer in not demanding more than is realistic though. Too many extraneous fields to update
translates into too many fields to maintain. For example, if you include the stored procedure name
in the header, in addition to the actual CREATE PROCEDURE, you’ll soon start seeing code where the
header name doesn’t match the stored procedure name. Why not just document the information
that isn’t already included in the stored procedure definition?

Stored Procedure Security
I mentioned at the beginning of the chapter that stored procedures have inherent security benefits,
and I’ll go over that again now.

Inline ad hoc code is more susceptible to SQL injection attacks, allowing the hacker to see the
embedded SQL calls, and search for words like Social Security Number or Credit Card, for example.
Embedding your SQL code in a stored procedure allows you to obscure the schema from any exter-
nal influences.

Also, using stored procedures instead of direct table access provides greater security for the
base tables. You can control how modifications are made, and the data that is retrieved (both at
the column and row level). Instead of granting table access, you can grant EXECUTE permissions to
the user in order to execute the stored procedure instead. This is also the only call that travels to the
database server, so any snooping elements won't see your SELECT statement.

■Note For information on how to GRANT permissions, see Chapter 18.

In addition to these inherent benefits (all you have to do is use stored procedures in order to
benefit from them), there are also a couple of features you should be aware of. The next recipe shows
you how to encrypt your stored procedure so that the query definition can’t be viewed.

After that recipe, we’ll review how to define a custom security context for your stored procedure.
In SQL Server 2000, security access always defaulted to the caller of the stored procedure. This was
sufficient under certain circumstances, such as when the procedure was performing an INSERT,
UPDATE, DELETE, or SELECT operation and if the ownership chain was unbroken (as discussed in the
recipe). However, the recipe demonstrates different situations where caller-based security isn’t enough
and how the new EXECUTE AS can be used to solve any security context issues.

Encrypting a Stored Procedure
Just like a view, stored procedure Transact-SQL definitions can have their contents encrypted in the
database, removing the ability to read the procedure’s definition. Software producers who use SQL
Server in their back-end, often encrypt stored procedures in order to prevent tampering or reverse-
engineering from clients or competitors. If you use encryption, be sure to save the original definition,
as it can’t be decoded later(legally and reliably, anyhow). It should also be encrypted only prior to
a push to production.

CHAPTER 10 ■ STORED PROCEDURES 281

570Xch10.qxd 11/4/05 2:27 PM Page 281

In order to encrypt the stored procedure, WITH ENCRYPTION is designated after the name of the
new stored procedure, as this next example demonstrates:

CREATE PROCEDURE usp_SEL_EmployeePayHistory
WITH ENCRYPTION
AS

SELECT EmployeeID, RateChangeDate, Rate, PayFrequency, ModifiedDate
FROM HumanResources.EmployeePayHistory

GO

Once you’ve created WITH ENCRYPTION, you’ll be unable to view the procedure’s text definition:

-- View the procedure's text
EXEC sp_helptext usp_SEL_EmployeePayHistory

This returns:

The text for object 'usp_SEL_EmployeePayHistory' is encrypted.

How It Works
Encryption can be defined using either CREATE PROCEDURE or ALTER PROCEDURE, but be sure to save
your source code, as the existing encrypted text cannot be decrypted easily.

Using EXECUTE AS to Specify the Procedure’s Security Context
In SQL Server 2005, the WITH EXECUTE AS clause allows you to specify the security context that
a stored procedure executes under, overriding the default security of the stored procedure caller. In
this case, security context refers to the permissions of the user executing the stored procedure.

■Note This recipe discusses several security features and concepts that I also cover in Chapters 17 and 18.

In SQL Server 2000, a stored procedure was always executed using the permissions of the caller.
In SQL Server 2005, however, you now have the option to execute a stored procedure under the secu-
rity context of the caller (the 2000 default), the person who authored or last altered the procedure,
a specific login (if you have IMPERSONATE permissions for that person’s login), or the owner of the
stored procedure.

First, let me present you with a quick aside about caller permissions and ownership chaining.
An ownership chain occurs when an object, such a stored procedure or view, is created and used to
perform an INSERT, UPDATE, DELETE, or SELECT against another database object. If the schema of the
stored procedure object is the same as the schema of the object referenced within, SQL Server only
checks that the stored procedure caller has EXECUTE permissions to the stored procedure. Again, this
ownership chaining only applies to the INSERT, UPDATE, DELETE, or SELECT commands. This is why
stored procedures are excellent for securing the database—as you can grant a user access to execute
a stored procedure without giving them access to the underlying tables.

An issue arises, however, when you are looking to execute commands that are not INSERT, UPDATE,
DELETE, or SELECT. In those situations, even if a caller has EXECUTE permissions to a stored procedure
that, for example, truncates a table using the TRUNCATE TABLE command, he or she must still have
permissions to use the TRUNCATE TABLE command in the first place. For example, the following stored
procedure is created, which deletes all data from a table:

CHAPTER 10 ■ STORED PROCEDURES282

570Xch10.qxd 11/4/05 2:27 PM Page 282

CREATE PROCEDURE dbo.usp_DEL_ALLEmployeeSalary
AS

-- Deletes all rows prior to the data feed
DELETE dbo.EmployeeSalary

GO

Next, EXECUTE permission on this new stored procedure is granted to your employee Boris:

GRANT EXEC ON usp_DEL_ALLEmployeeSalary to Boris

Now, if Boris attempts to execute this procedure, ownership chaining has got him covered:

EXECUTE dbo.usp_DEL_ALLEmployeeSalary

Boris has no other permissions in the database except to the new stored procedure, but it still
works:

(25 row(s) affected)

But now the procedure is changed to use the TRUNCATE TABLE command instead of DELETE:

ALTER PROCEDURE dbo.usp_DEL_ALLEmployeeSalary
AS

-- Deletes all rows prior to the data feed
TRUNCATE TABLE dbo.EmployeeSalary

GO

Now, if Boris attempts to execute this procedure again, SQL Server will check Boris’s ability to
use the TRUNCATE TABLE command, and will return the following error (since he only has permissions
to execute the procedure):

Msg 1088, Level 16, State 7, Procedure usp_DEL_ALLEmployeeSalary, Line 5
Cannot find the object "EmployeeSalary" because it does not exist or you do not have
permissions.

Enter the EXECUTE AS option for stored procedures. Using EXECUTE AS, you can designate that
any caller of the stored procedure run under your security context. For example, suppose the previous
stored procedure was written as:

CREATE PROCEDURE dbo.usp_DEL_ALLEmployeeSalary
WITH EXECUTE AS OWNER
AS

-- Deletes all rows prior to the data feed
TRUNCATE TABLE dbo.EmployeeSalary

GO

With the added WITH EXECUTE AS OWNER, Boris only needs EXECUTE permissions on the stored
procedure, and can execute the procedure under the stored procedure owner’s security context.

The same “gotcha” goes for dynamic SQL (see Chapter 28 for a review of dynamic SQL). SQL
Server will ensure that the caller has both EXECUTE and the appropriate permissions in order to per-
form the task the dynamic SQL is attempting to perform, even if that dynamic SQL is performing an

CHAPTER 10 ■ STORED PROCEDURES 283

570Xch10.qxd 11/4/05 2:27 PM Page 283

For example the following procedure contains dynamic SQL, allowing you to select the row
count from any table based on the schema and table name designated in the @SchemaAndTable input
parameter:

CREATE PROCEDURE dbo.usp_SEL_CountRowsFromAnyTable
@SchemaAndTable nvarchar(255)
AS

EXEC ('SELECT COUNT(*) FROM ' + @SchemaAndTable)

GO

If you have the permissions to EXECUTE this procedure, and have access to the designated table,
SQL Server will allow you to return the row count:

EXEC dbo.usp_SEL_CountRowsFromAnyTable 'HumanResources.Department'

This returns:

17

However granting the EXECUTE permission isn’t enough. Because this is dynamic SQL, if the user
doesn’t have SELECT permission to the underlying table, SQL Server will check both EXECUTE permis-
sions on the procedure and SELECT permissions on the table. If the user Boris didn’t have SELECT
permissions, he’d see the following error:

Msg 229, Level 14, State 5, Line 1
SELECT permission denied on object 'Department', database 'AdventureWorks', schema
'HumanResources'.

Again, this is a situation which can be remedied using EXECUTE AS (if you are comfortable with
Boris having these permissions, of course). This time, an explicit user name will be designated as
the security context for the procedure:

ALTER PROCEDURE dbo.usp_SEL_CountRowsFromAnyTable
@SchemaAndTable nvarchar(255)

WITH EXECUTE AS 'SteveP'
AS

EXEC ('SELECT COUNT(*) FROM ' + @SchemaAndTable)

GO

Assuming SteveP had the proper permissions to any tables passed as dynamic SQL in the proce-
dure, now if Boris executes the procedure, he will see results returned as though Boris were SteveP.
SQL Server will not check Boris’s permissions, but will use SteveP’s security context instead.

How It Works
In this recipe, EXECUTE AS was demonstrated within a stored procedure, allowing you to define the
security context under which a stored procedure is executed, regardless of the caller.

The options for EXECUTE AS in a stored procedure are as follows:

EXECUTE AS { CALLER | SELF | OWNER | 'user_name' }

CHAPTER 10 ■ STORED PROCEDURES284

570Xch10.qxd 11/4/05 2:27 PM Page 284

The default behavior for EXECUTE AS is the CALLER option, which means that the permissions of
the executing user are used (and if the user doesn’t have proper access, that execution will fail). This
was the default behavior of stored procedures in SQL Server 2000 as well. If the SELF option is used,
the execution context of the stored procedure will be that of the user that created or last altered the
stored procedure. When the OWNER option is designated, the owner of the stored procedure’s schema
is used. The user_name option is an explicit reference to a database user whose security context the
stored procedure will be executed under.

Recompilation and Caching
Stored procedures can provide performance benefits due to the cached query execution plan,
allowing SQL Server to reuse an existing plan instead of generating a new one. Stored procedures
also have a stabilizing effect on query response time compared to the sometimes varying response
times of ad hoc queries.

■Note For more information on assessing query performance, see Chapter 28.

With that said, stored procedures are not the magic bullet for query performance. You still need
to account for the performance of individual statements within the body of your stored procedure
and to make sure that the tables are indexed properly and that the database is designed efficiently.
Several of the features discussed in other chapters of this book can be utilized within the body of
a stored procedure, but you must use them with the same consideration as you would had they been
used outside of a stored procedure.

In the next two recipes, I’ll discuss situations where you may not want a query execution plan to
be cached, the first covering the RECOMPILE option and the second the DBCC FREEPROCCACHE command.

RECOMPILE(ing) a Stored Procedure Each Time It Is Executed
A recompilation occurs when stored procedure’s plan is recreated either automatically or explicitly.
Recompilations occur automatically during stored procedure execution when underlying table or
other object changes occur to objects that are referenced within a stored procedure. They can also
occur with changes to indexes used by the plan or after a large number of updates to table keys
referenced by the stored procedure. The goal of an automatic recompilation is to make sure SQL
Server is tuning towards the current schema and data, and not an older picture of how the data and
schema used to be when the plan was last cached.

SQL Server 2005 has added extra efficiency in recompilation by allowing statement level recom-
piles within the stored procedure, instead of recompiling the entire stored procedure, as was the
method in previous versions. Since recompiles cause extra overhead to generate new plans, state-
ment level recompiles help decrease this overhead by only correcting what needs to be corrected.

Although recompilations are costly and should be avoided most of the time, there may some-
times be reasons why you would want to force a recompilation. For example, your procedure may
produce wildly different query results based on the application calling it—so much so that the retained
execution plan causes performance issues during the majority of procedure calls.

For example, if one parameter value for “City” returns a match of one million rows, while another
value for “City” returns a single row, SQL Server may not necessarily cache the correct execution plan.
It may end up caching a plan that is optimized for the single row instead of the million rows, caus-
ing a long query execution time. If you’re looking to use stored procedures for benefits other than
caching, you can use the WITH RECOMPILE command.

CHAPTER 10 ■ STORED PROCEDURES 285

570Xch10.qxd 11/4/05 2:27 PM Page 285

In this example, I demonstrate how to force a stored procedure to recompile each time it is
executed:

CREATE PROCEDURE usp_SEL_BackupMBsPerSecond
(@BackupStartDate datetime,
@BackupFinishDate datetime)
WITH RECOMPILE -- Plan will never be saved
AS

-- Procedure measure db backup throughput
SELECT (SUM(backup_size)/1024)/1024 as 'MB',

DATEDIFF (ss , MIN(backup_start_date),
MAX(backup_finish_date)) as 'seconds',
((SUM(backup_size)/1024)/1024)/

DATEDIFF (ss , MIN(backup_start_date) ,
MAX(backup_finish_date)) as 'MB per second'

FROM msdb.dbo.backupset
WHERE backup_start_date >= @BackupStartDate AND
backup_finish_date < @BackupFinishDate AND
type = 'd'
GO

Now whenever this procedure is called, a new execution plan will be formulated by SQL Server.

How It Works
This procedure used WITH RECOMPILE to ensure that a query plan is not cached for the procedure
during creation or execution.

■Note SQL Server 2005 introduces automatic statement-level recompilation within the stored procedure. This
means that only the statement within the stored procedure that requires a recompilation (recompilation reason due
to several factors) will be recompiled, instead of the entire stored procedure.

You will no doubt only have need to use WITH RECOMPILE under rare circumstances, as generally
the cached plan chosen by SQL Server will suffice. Use this option if you still wish to take advantage
of a stored procedure’s other benefits (such as security and modularization), but don’t want SQL
Server to store an inefficient plan based on wildly varying result sets.

Flushing the Procedure Cache
In this recipe, I demonstrate how to remove all plans from the procedure cache. This technique is
often used in order to test procedure performance in a “cold” cache, reproducing the cache as though
SQL Server had just been restarted. This is an option for you on a development SQL Server instance,
if you want to make sure existing cached query plans don’t have an impact on your stored procedure
performance testing. Don’t use this command in a production environment, as you could be knock-
ing out several cached query plans that are perfectly fine.

In this example, a count of cached query plans is executed prior to executing DBCC FREEPROCCACHE:

SELECT COUNT(*) 'CachedPlansBefore'
FROM sys.dm_exec_cached_plans

CHAPTER 10 ■ STORED PROCEDURES286

570Xch10.qxd 11/4/05 2:27 PM Page 286

This returns:

CachedPlansBefore
42

Next, the procedure cache for the entire SQL Server instance is cleared:

DBCC FREEPROCCACHE

Next, the first query is executed again to see the number of cached plans:

CachedPlansAfter

0

How It Works
DBCC FREEPROCCACHE was used in this recipe to clear out the procedure cache. If you try this yourself,
the count of cached plans will vary based on the activity on your SQL Server instance. This includes
any background processes or jobs that may be running before or after the clearing of the cache. The
dynamic management view sys.dm_exec_cached_plans was used to demonstrate the impact of this
DBCC command, showing an original count of 42 plans versus 0 afterwards.

CHAPTER 10 ■ STORED PROCEDURES 287

570Xch10.qxd 11/4/05 2:27 PM Page 287

570Xch10.qxd 11/4/05 2:27 PM Page 288

User-Defined Functions and Types

In this chapter, I’ll present recipes for user-defined functions and types. User-defined functions
allow you to encapsulate both logic and subroutines into a single function that can then be used
within your Transact-SQL queries and programmatic objects. User-defined types allow you to create
an alias type based on an underlying system data type, enforcing a specific data type, length, and
nullability.

■Note This chapter covers how to create both user-defined functions and types using Transact-SQL. However,
Chapter 13 briefly discusses how to create these objects using the new Common Language Runtime (CLR)
functionality.

UDF Basics
Transact-SQL user-defined functions fall into three categories; scalar, inline table-valued, and
multi-statement table-valued.

A scalar user-defined function is used to return a single value based on zero or more parame-
ters. For example, you could create a scalar UDF that accepts a CountryID as a parameter, and
returns the CountryNM.

An inline table-valued UDF returns a table data type based on a single SELECT statement that is
used to define the returned rows and columns. Unlike a stored procedure, an inline UDF can be ref-
erenced in the FROM clause of a query, as well as be joined to other tables. Unlike a view, an inline
UDF can accept parameters.

A multi-statement table-valued UDF also returns a result set and is referenced in the FROM
clause. Unlike inline table-valued UDFs, they aren’t constrained to use a single SELECT statement
within the function definition and instead allow multiple Transact-SQL statements in the body of
the UDF definition in order to define a single, final result set to be returned.

Like stored procedures, UDFs can perform well because their query execution plans are cached
for reuse. UDFs can also be used in places where a stored procedure can’t, like in the FROM and SELECT
clause of a query. UDFs also encourage code reusability. For example, if you create a scalar UDF that
returns the CountryNM based on a CountryID, and the same function is needed across several different
stored procedures, rather than repeat the 20 lines of code needed to perform the lookup, you can call
the UDF function instead.

In the next few recipes, I’ll demonstrate how to create, drop, modify, and view metadata for each
of these UDF types.

289

C H A P T E R 1 1

■ ■ ■

570Xch11.qxd 11/4/05 2:29 PM Page 289

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES290

Creating Scalar User-Defined Functions
A scalar user-defined function accepts zero or more parameters, and returns a single value. Scalar
UDFs are often used for converting or translating a current value to a new value, or performing
other sophisticated lookups based on specific parameters. Scalar functions can be used within
search, column, and join expressions.

The simplified syntax for a scalar UDF is as follows:

CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS]

[type_schema_name.] scalar_parameter_data_type
[= default] } [,...n]

])
RETURNS scalar_return_data_type
[AS]
BEGIN

function_body

RETURN scalar_expression
END

■Note The full syntax for CREATE FUNCTION can be found in SQL Server 2005 Books Online.

Table 11-1 gives a brief description of each argument’s intended use.

Table 11-1. Scalar UDF Arguments

Argument Description

[schema_name.] function_name The optional schema name and required function name of
the new scalar UDF.

@parameter_name This is the name of the parameter to pass to the UDF, and
it must be prefixed with an @ sign.

[type_schema_name.] This is the @parameter_name's data type and the optional
scalar_parameter_data_type owning schema (used if you are using a user-defined type

as a parameter).

[,...n] Although not an actual argument, this syntax element
indicates that one or more parameters can be defined (up
to 1024).

function_body This function body contains one or more of the Transact-
SQL statements that are used to produce and evaluate
a scalar value.

scalar_expression This is the actual value that will be returned by the scalar
function (notice that it is defined after the function body).

This example creates a scalar UDF which accepts a varchar(max) data type parameter. It returns
a bit value (1 or 0) based on whether the passed parameter contains suspicious values (as defined
by the function). So if the input parameter contains a call to a command such as DELETE or SHUTDOWN,
the flag is set to 1:

-- Create a function to check for any suspicious behaviors
-- from the application
CREATE FUNCTION dbo.udf_CheckForSQLInjection

(@TSQLString varchar(max))

570Xch11.qxd 11/4/05 2:29 PM Page 290

RETURNS BIT
AS

BEGIN

DECLARE @IsSuspect bit

-- UDF assumes string will be left padded with a single space
SET @TSQLString = ' ' + @TSQLString

IF (PATINDEX('% xp_%' , @TSQLString) <> 0 OR
PATINDEX('% sp_%' , @TSQLString) <> 0 OR
PATINDEX('% DROP %' , @TSQLString) <> 0 OR
PATINDEX('% GO %' , @TSQLString) <> 0 OR
PATINDEX('% INSERT %' , @TSQLString) <> 0 OR
PATINDEX('% UPDATE %' , @TSQLString) <> 0 OR
PATINDEX('% DBCC %' , @TSQLString) <> 0 OR
PATINDEX('% SHUTDOWN %' , @TSQLString)<> 0 OR
PATINDEX('% ALTER %' , @TSQLString)<> 0 OR
PATINDEX('% CREATE %' , @TSQLString) <> 0OR
PATINDEX('%;%' , @TSQLString)<> 0 OR
PATINDEX('% EXECUTE %' , @TSQLString)<> 0 OR
PATINDEX('% BREAK %' , @TSQLString)<> 0 OR
PATINDEX('% BEGIN %' , @TSQLString)<> 0 OR
PATINDEX('% CHECKPOINT %' , @TSQLString)<> 0 OR
PATINDEX('% BREAK %' , @TSQLString)<> 0 OR
PATINDEX('% COMMIT %' , @TSQLString)<> 0 OR
PATINDEX('% TRANSACTION %' , @TSQLString)<> 0 OR
PATINDEX('% CURSOR %' , @TSQLString)<> 0 OR
PATINDEX('% GRANT %' , @TSQLString)<> 0 OR
PATINDEX('% DENY %' , @TSQLString)<> 0 OR
PATINDEX('% ESCAPE %' , @TSQLString)<> 0 OR
PATINDEX('% WHILE %' , @TSQLString)<> 0 OR
PATINDEX('% OPENDATASOURCE %' , @TSQLString)<> 0 OR
PATINDEX('% OPENQUERY %' , @TSQLString)<> 0 OR
PATINDEX('% OPENROWSET %' , @TSQLString)<> 0 OR
PATINDEX('% EXEC %' , @TSQLString)<> 0)

BEGIN
SELECT @IsSuspect = 1

END
ELSE
BEGIN

SELECT @IsSuspect = 0
END

RETURN (@IsSuspect)
END

GO

Next, you should test the function by evaluating three different string input values. The first
contains a SELECT statement:

SELECT dbo.udf_CheckForSQLInjection
('SELECT * FROM HumanResources.Department')

This returns:

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 291

570Xch11.qxd 11/4/05 2:29 PM Page 291

0

The next string contains the SHUTDOWN command:

SELECT dbo.udf_CheckForSQLInjection
(';SHUTDOWN')

This returns:

1

The last string tested contains the DROP command:

SELECT dbo.udf_CheckForSQLInjection
('DROP HumanResources.Department')

This returns:

1

How It Works
This recipe demonstrated a scalar UDF, which accepts zero or more parameters, and returns a sin-
gle value. Some of the areas where you can use a scalar function in your Transact-SQL code include:

• A column expression in a SELECT or GROUP BY clause

• A search condition for a JOIN in a FROM clause

• A search condition of a WHERE or HAVING clause

The recipe began by defining the UDF name and parameter:

CREATE FUNCTION dbo.udf_CheckForSQLInjection
(@TSQLString varchar(max))

The @TSQLString parameter held the varchar(max) string to be evaluated.
In the next line of code, the scalar_return_data_type was defined as bit. This means that the

single value returned by the function will be the bit data type:

RETURNS BIT
AS

The BEGIN marked the start of the function_body, where the logic to return the bit value was
formulated:

BEGIN

A local variable was created to hold the bit value, and was set to a zero default. Ultimately, this
is the parameter that will be passed as the function’s output:

DECLARE @IsSuspect bit

Next, the string passed to the UDF has a space concatenated to it:

-- UDF assumes string will be left padded with a single space
SET @TSQLString = ' ' + @TSQLString

The @TSQLString was padded with an extra space in order to make the search of suspicious
words or patterns easier to do. For example, if the suspicious word is at the beginning of the

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES292

570Xch11.qxd 11/4/05 2:29 PM Page 292

@TSQLString, and we were searching for the word DROP, you would have to use PATINDEX to search for
both '%DROP %' and '% DROP %'. Of course, searching '%DROP %' could give you false positives, such
as the word “gumdrop,” so you should prevent this confusion by padding the beginning of the string
with a space.

In the IF statement, @TSQLString is evaluated using PATINDEX. For each evaluation, if a match is
found, the condition will evaluate to TRUE:

IF (PATINDEX('% xp_%' , @TSQLString) <> 0 OR
PATINDEX('% sp_%' , @TSQLString) <> 0 OR
PATINDEX('% DROP %' , @TSQLString) <> 0 OR
PATINDEX('% GO %' , @TSQLString) <> 0 OR
PATINDEX('% BREAK %' , @TSQLString)<> 0 OR

...

If any of the conditions evaluate to TRUE, the @IsSuspect bit flag will be set to 1:

BEGIN
SELECT @IsSuspect = 1

END
ELSE
BEGIN

SELECT @IsSuspect = 0
END

The RETURN keyword is used to pass the scalar value of the @IsSuspect variable back to the caller:

RETURN (@IsSuspect)

The END keyword is then used to close the UDF, and GO is used to end the batch:

END

GO

The new scalar UDF was then used to check three different string values. The first string
SELECT * FROM HumanResources.Department comes up clean, but the second strings ;SHUTDOWN and
DROP HumanResources.Department both return a bit value of “1” because they match the suspicious
word searches in the function’s IF clause.

Creating Inline User-Defined Functions
An inline UDF returns a table data type. In the UDF definition, you do not explicitly define the returned
table, but use a single SELECT statement for defining the returned rows and columns instead. An inline
UDF uses one or more parameters and returns data using a single SELECT statement. Inline UDFs are
very similar to views, in that they are referenced in the FROM clause. However unlike views, UDFs can
accept parameters that can then be used in the function’s SELECT statement.

The basic syntax is as follows:

CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS]

[type_schema_name.] scalar_parameter_data_type [= default]
} [,...n]

]
)

RETURNS TABLE
[AS]
RETURN [(] select_stmt [)]

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 293

570Xch11.qxd 11/4/05 2:29 PM Page 293

■Note The full syntax for CREATE FUNCTION can be found in SQL Server 2005 Books Online.

Table 11-2 details the arguments of this command.

Table 11-2. Inline UDF Arguments

Argument Description

[schema_name.] function_name The optional schema name and required function name of
the new inline UDF.

@parameter_name This is the name of the parameter to pass to the UDF. It
must be prefixed with an @ sign.

[type_schema_name.] This is the @parameter_name data type and the optional
scalar_parameter_data_type owning schema (used if you are using a user-defined type).

[,...n] Although not an actual argument, this syntax element
indicates that one or more parameters can be defined (up to
1024).

select_stmt This is the single SELECT statement that will be returned by
the inline UDF.

This example demonstrates creating an inline table UDF that accepts an @EmployeeID integer
parameter and returns the associated employee addresses:

CREATE FUNCTION dbo.udf_ReturnEmployeeAddress
(@EmployeeID int)

RETURNS TABLE
AS

RETURN (
SELECT AddressLine1, City, StateProvinceID, PostalCode
FROM Person.Address a
INNER JOIN HumanResources.EmployeeAddress e ON

a.AddressID = e.AddressID
WHERE e.EmployeeID = @EmployeeID)

GO

Next, the new function is tested in a query, referenced in the FROM clause for the EmployeeID 2:

SELECT AddressLine1, City, PostalCode
FROM dbo.udf_ReturnEmployeeAddress(2)

This returns:

AddressLine1 City PostalCode
-------------------------- -------- ---------------
7883 Missing Canyon Court Everett 98201

(1 row(s) affected)

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES294

570Xch11.qxd 11/4/05 2:29 PM Page 294

How It Works
In this recipe, I created an inline table UDF to retrieve employee address data based on the @EmployeeID
value passed. The UDF started off just like a scalar UDF, only the RETURNS command uses a TABLE data
type (which is what distinguishes it from a scalar UDF):

CREATE FUNCTION dbo.udf_ReturnEmployeeAddress
(@EmployeeID int)

RETURNS TABLE
AS

After the AS keyword, the RETURN statement is issued with a single SELECT statement in parentheses:

RETURN (
SELECT AddressLine1, City, StateProvinceID, PostalCode
FROM Person.Address a
INNER JOIN HumanResources.EmployeeAddress e ON

a.AddressID = e.AddressID
WHERE e.EmployeeID = @EmployeeID)

GO

After it has been created, the new inline UDF is then used in the FROM clause of a SELECT query.
The @EmployeeID value of 2 is passed into the function in parentheses:

SELECT AddressLine1, City, PostalCode
FROM dbo.udf_ReturnEmployeeAddress(2)

This function then returns a result set, just like when you are querying a view or a table. Also,
just like a view or stored procedure, the query you create to define this function must be tuned as
you would a regular SELECT statement. Using an inline UDF offers no inherent performance benefits
over using a view or stored procedure.

Creating Multi-Statement User-Defined Functions
Multi-statement table UDFs are referenced in the FROM clause just like inline UDFs, but unlike inline
UDFs, they are not constrained to use a single SELECT statement within the function definition. Instead,
multi-statement UDFs can use multiple Transact-SQL statements in the body of the UDF definition
in order to define that a single, final result set be returned.

The basic syntax of a multi-statement table UDF is as follows:

CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS]

[type_schema_name.] scalar_parameter_data_type [= default]
} [,...n]

]
)

RETURNS @return_variable TABLE < table_type_definition >
[AS]
BEGIN

function_body

RETURN
END

Table 11-3 describes the arguments of this command.

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 295

570Xch11.qxd 11/4/05 2:29 PM Page 295

Table 11-3. Multistatement UDF Arguments

Argument Description

[schema_name.] function_name The optional schema name and required function name of
the new inline UDF.

@parameter_name This is the name of the parameter to pass to the UDF. It
must be prefixed with an @ sign.

[type_schema_name.] This is the data type of the @parameter_name and the
scalar_parameter_data_type optional owning schema (used if you are using a user

defined type).

[,...n] Although not an actual argument, this syntax element
indicates that one or more parameters can be defined (up
to 1024).

@return_variable This is the user-defined name of the table variable that will
hold the results to be returned by the UDF.

< table_type_definition > This argument contains one or more column definitions for
the table variable. Each column definition contains the
name and data type, and can optionally define a PRIMARY
KEY, UNIQUE, NULL, or CHECK constraint.

function_body The function body contains one or more Transact-SQL
statements that are used to populate and modify the table
variable that will be returned by the UDF.

Notice the RETURNS keyword, which defines a table variable definition. Also notice the RETURN
keyword at the end of the function, which doesn’t have any parameter or query after it; as it is assumed
that the defined table variable will be returned.

In this example a multi-statement UDF will be created that accepts two parameters: one to
hold a string, and the other to define how that string will be delimited. The string is then broken
apart into a result set based on the defined delimiter:

-- Creates a UDF that returns a string array as a table result set
CREATE FUNCTION dbo.udf_ParseArray

(@StringArray varchar(max),
@Delimiter char(1))

RETURNS @StringArrayTable TABLE (Val varchar(50))
AS
BEGIN

DECLARE @Delimiter_position int

IF RIGHT(@StringArray,1) != @Delimiter
SET @StringArray = @StringArray + @Delimiter

WHILE CHARINDEX(@Delimiter, @StringArray) <> 0
BEGIN
SELECT @Delimiter_position =

CHARINDEX(@Delimiter, @StringArray)

INSERT @StringArrayTable
VALUES (left(@StringArray, @Delimiter_position - 1))

SELECT @StringArray = STUFF(@StringArray, 1,
@Delimiter_position, '')

END

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES296

570Xch11.qxd 11/4/05 2:29 PM Page 296

RETURN
END

GO

Now it will be used to break apart a comma-delimited array of values:

SELECT Val
FROM dbo.udf_ParseArray('A,B,C,D,E,F,G', ',')

This returns the following results:

Val
--
A
B
C
D
E
F
G

(7 row(s) affected)

How It Works
The multi-statement table UDF in this recipe was created using two parameters, the first to hold
a string, and the second to define the character that delimits the string:

CREATE FUNCTION dbo.udf_ParseArray
(@StringArray varchar(max),
@Delimiter char(1))

Next, a table variable is defined after the RETURNS token. The @StringArrayTable was used to
hold the values of the string array after being shredded into the individual values:

RETURNS @StringArrayTable TABLE (Val varchar(50))

The function body started after AS and BEGIN:

AS
BEGIN

A local variable was created to hold the delimiter position in the string:

DECLARE @Delimiter_position int

If the last character of the string array wasn’t the delimiter value, then the delimiter value was
concatenated to the end of the string array:

IF RIGHT(@StringArray,1) != @Delimiter
SET @StringArray = @StringArray + @Delimiter

A WHILE loop was created, looping until there are no remaining delimiters in the string array:

WHILE CHARINDEX(@Delimiter, @StringArray) <> 0
BEGIN

Within the loop, the position of the delimiter was identified using CHARINDEX:

SELECT @Delimiter_position =
CHARINDEX(@Delimiter, @StringArray)

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 297

570Xch11.qxd 11/4/05 2:29 PM Page 297

The LEFT function was used with the delimiter position to extract the individual-delimited
string part into the table variable:

INSERT @StringArrayTable
VALUES (left(@StringArray, @Delimiter_position - 1))

The inserted chunk was then removed from the string array using the STUFF function:

SELECT @StringArray = STUFF(@StringArray, 1, @Delimiter_position, '')

STUFF is used to delete a chunk of characters and insert another character string in its place.
This first parameter of the STUFF function is the character expression, which in this example is the
string array. The second parameter is the starting position of the deleted and inserted text, and in
this case we are removing text from the string starting at the first position and stopping at the first
delimiter. The third parameter is the length of the characters to be deleted, which for this example is
the delimiter-position variable value. The last argument is the string to be inserted, which in this case
was a blank string represented by two single quotes. The net effect is that the first comma-separated
entry was replaced by an empty string—the same result as if the first entry had been deleted.

This process of inserting values continued until there were no longer delimiters in the string
array. After this, the WHILE loop ends and RETURN was called to return the table variable result set.

END
RETURN
END
GO

The new UDF was then referenced in the FROM clause. The first parameter of the UDF was
a comma-delimited list of letters. The second parameter was the delimiting parameter (a comma):

-- Now use it to break apart a comma delimited array
SELECT Val
FROM dbo.udf_ParseArray('A,B,C,D,E,F,G', ',')

The list was then broken into a result set, with each individual letter as its own row. As you can
see, multi-statement table UDFs allow for much more sophisticated programmability than an inline
table value, which can only use a single SELECT statement.

Modifying User-Defined Functions
A function can be modified by using the ALTER FUNCTION command, as I demonstrate in this next
recipe:

ALTER FUNCTION dbo.udf_ParseArray
(@StringArray varchar(max),

@Delimiter char(1) ,
@MinRowSelect int,
@MaxRowSelect int)
RETURNS @StringArrayTable TABLE (RowNum int IDENTITY(1,1), Val
varchar(50))
AS
BEGIN

DECLARE @Delimiter_position int

IF RIGHT(@StringArray,1) != @Delimiter
SET @StringArray = @StringArray + @Delimiter

WHILE CHARINDEX(@Delimiter, @StringArray) <> 0
BEGIN

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES298

570Xch11.qxd 11/4/05 2:29 PM Page 298

SELECT @Delimiter_position =
CHARINDEX(@Delimiter, @StringArray)

INSERT @StringArrayTable
VALUES (left(@StringArray, @Delimiter_position - 1))

SELECT @StringArray = stuff(@StringArray, 1,
@Delimiter_position, '')

END

DELETE @StringArrayTable
WHERE RowNum < @MinRowSelect OR
RowNum > @MaxRowSelect

RETURN
END

GO

-- Now use it to break apart a comma delimited array
SELECT RowNum, Val
FROM udf_ParseArray('A,B,C,D,E,F,G', ',', 3, 5)

This returns:

RowNum Val
----------- --
3 C
4 D
5 E

(3 row(s) affected)

How It Works
ALTER FUNCTION allows you to modify an existing UDF by using almost the identical syntax of CREATE
FUNCTION (with some limitations, however):

• You can’t change the name of the function using ALTER FUNCTION. What you’re doing is
replacing the code of an existing function—therefore the function needs to exist first.

• You can’t convert a scalar UDF to a table UDF (either inline or multi-statement), nor can you
convert a table UDF to a scalar UDF.

In this recipe, the udf_ParseArray from the previous recipe was modified to add two new parameters,
@MinRowSelect and @MaxRowSelect:

ALTER FUNCTION dbo.udf_ParseArray
(@StringArray varchar(max),
@Delimiter char(1) ,
@MinRowSelect int,
@MaxRowSelect int)

The @StringArrayTable table variable also had a new column added to it called RowNum, which was
given the IDENTITY property (meaning that it will increment an integer value for each row in the
result set):

RETURNS @StringArrayTable TABLE (RowNum int IDENTITY(1,1), Val varchar(50))

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 299

570Xch11.qxd 11/4/05 2:29 PM Page 299

The other modification came after the WHILE loop was finished. Any RowNum values below the minimum
or maximum values were deleted from the @StringArrayTable table array:

DELETE @StringArrayTable
WHERE RowNum < @MinRowSelect OR

RowNum > @MaxRowSelect

After altering the function, the function was called using the two new parameters to define the row
range to view (in this case rows 3 through 5):

SELECT RowNum, Val
FROM udf_ParseArray('A,B,C,D,E,F,G', ',', 3, 5)

This returned the third, fourth, and fifth characters from the string array passed to the UDF.

Viewing UDF Metadata
In this recipe, I demonstrate how to view a list of UDFs in the current database:

SELECT name, type_desc, definition
FROM sys.sql_modules s
INNER JOIN sys.objects o

ON s.object_id = o.object_id
WHERE TYPE IN ('IF', -- Inline Table UDF

'TF', -- Multistatement Table UDF
'FN') -- Scalar UDF

How It Works
The sys.sql_modules and sys.objects system views are used to return the UDF name, type description,
and SQL definition in a query result set:

FROM sys.sql_modules s
INNER JOIN sys.objects o

ON s.object_id = o.object_id

Because sys.sql_modules contains rows for other object types, sys.objects must also be
qualified to only return UDF rows:

WHERE TYPE IN ('IF', -- Inline Table UDF
'TF', -- Multistatement Table UDF
'FN') -- Scalar UDF

Dropping User-Defined Functions
In this recipe, I demonstrate how to drop a user-defined function. The syntax, like other DROP
commands, is very straight-forward:

DROP FUNCTION { [schema_name.] function_name } [,...n]

Table 11-4 details the arguments of this command.

Table 11-4. DROP FUNCTION Arguments

Argument Description

[schema_name.] function_name The optional schema name and required function name of
the user-defined function.

[,...n] Although not an actual argument, this syntax element
indicates that one or more user-defined functions can be

single statement.

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES300

570Xch11.qxd 11/4/05 2:29 PM Page 300

This recipe demonstrates how to drop the dbo.udf_ParseArray function created in earlier recipes:

DROP FUNCTION dbo.udf_ParseArray

How It Works
Although there are three different types of user-defined functions (scalar, inline, and multi-statement),
you need only drop them using the single DROP FUNCTION command.

You can also drop more than one UDF in a single statement, for example:

DROP FUNCTION dbo.udf_ParseArray, dbo.udf_ReturnEmployeeAddress,
dbo.udf_CheckForSQLInjection

Benefiting From UDFs
User-defined functions are useful for both the performance enhancements they provide because of
their cached execution plans and for their ability to encapsulate reusable code. Scalar functions in
particular help make code more readable, and allow you to apply look-up rules consistently rather
than repeating the same code multiple times throughout different stored procedures or views.
Table-valued functions are also useful for allowing you to apply parameters to results, for example,
using a parameter to define row-level security for a data set (demonstrated later on).

■Caution When designing user-defined functions, consider the multiplier effect. For example, if you create
a scalar user-defined function that performs a look-up against a million-row table in order to return a single value,
and a single look-up with proper indexing takes 30 seconds, chances are you are going to see a significant per-
formance hit if you use this UDF to return values based on each row of another large table. If scalar user-defined
functions reference other tables, make sure that the query you use to access the table information performs well,
and doesn’t return a result set that is too large.

The next few recipes will demonstrate some of the more common and beneficial ways in which
user-defined functions are used in the field.

Using Scalar UDFs to Maintain Reusable Code
Scalar UDFs allow you to reduce code bloat by encapsulating logic within a single function, rather
than repeating the logic multiple times wherever it happens to be needed.

For example, the following scalar, user-defined function is used to determine the kind of personal
computer that an employee will receive. There are several lines of code that evaluate different param-
eters, including the title of the employee, who that employee’s manager is, and the employee’s hire
date. Rather then include this logic in multiple areas across your database, you can encapsulate the
logic in a single function:

CREATE FUNCTION dbo.udf_GET_AssignedEquipment
(@Title nvarchar(50), @HireDate datetime, @ManagerID int)
RETURNS nvarchar(50)
AS
BEGIN

DECLARE @EquipmentType nvarchar(50)

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 301

570Xch11.qxd 11/4/05 2:29 PM Page 301

IF @Title LIKE 'Chief%' OR
@Title LIKE 'Vice%' OR
@Title = 'Database Administrator'

BEGIN
SET @EquipmentType = 'PC Build A'

END

IF @EquipmentType IS NULL AND @ManagerID IN (3,6,7,12)
BEGIN
SET @EquipmentType = 'PC Build B'

END

IF @EquipmentType IS NULL AND @HireDate < '1/1/2002'
BEGIN
SET @EquipmentType = 'PC Build C'

END

IF @EquipmentType IS NULL
BEGIN
SET @EquipmentType = 'PC Build D'

END

RETURN @EquipmentType
END

GO

Once you’ve created it, you can use this scalar function in many areas of your Transact-SQL
code without having to re-code the logic within. For example, the new scalar function is used in the
SELECT, GROUP BY, and ORDER BY clauses of a query:

SELECT dbo.udf_GET_AssignedEquipment(Title, HireDate,ManagerID)

PC_Build,
COUNT(*) Employee_Count

FROM HumanResources.Employee
GROUP BY dbo.udf_GET_AssignedEquipment(Title, HireDate,ManagerID)
ORDER BY dbo.udf_GET_AssignedEquipment(Title, HireDate,ManagerID)

This returns:

PC_Build Employee_Count
PC Build A 7
PC Build B 22
PC Build C 254
PC Build D 7

This second query uses the scalar function in both the SELECT and WHERE clause too:

SELECT Title,
EmployeeID,
dbo.udf_GET_AssignedEquipment(Title, HireDate,ManagerID) PC_Build

FROM HumanResources.Employee
WHERE dbo.udf_GET_AssignedEquipment(Title, HireDate,ManagerID) IN
('PC Build A', 'PC Build B')

This returns the following (abridged) results:

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES302

570Xch11.qxd 11/4/05 2:29 PM Page 302

Title EmployeeID PC_Build
Chief Executive Officer 09 PC Build A
Database Administrator 117 PC Build A
Marketing Specialist 119 PC Build B
Production Technician WC60122 PC Build B

How It Works
Scalar, user-defined functions can help you encapsulate business logic so that it isn’t repeated
across your code, providing a centralized location for you to make a single modification to a single
function when necessary. This also provides consistency, so that you and other database developers
are consistently using and writing the same logic in the same way. One other benefit is code read-
ability, particularly with large queries that perform multiple look-ups or evaluations.

Using Scalar UDFs to Cross Reference Natural Key Values
Recall from Chapter 1 that a surrogate key is an artificial primary key, as opposed to a natural key
which represents a unique descriptor of data (for example, Social Security Number is an example of
a natural key, but an IDENTITY property column is a surrogate key). IDENTITY values are often used as
surrogate primary keys, but are also referenced as foreign keys.

In my own OLTP and star schema database design, I assign each table a surrogate key by
default, unless there is a significant reason not to do so. Doing this helps you abstract your own
unique key from any external legacy natural keys. If you are using, for example, an EmployeeNumber
that comes from the HR system as your primary key instead, you could run into trouble later on if
that HR system decides to change its data type (forcing you to change the primary key, any foreign
key references, and composite primary keys). Surrogate keys help protect you from changes like this
because they are under your control, and so they make good primary keys. You can keep your natu-
ral keys’ unique constraints without worrying about external changes impacting your primary or
foreign keys.

When importing data from legacy systems into production tables, you’ll often still need to refer-
ence the natural key in order to determine which rows get inserted, updated, or deleted. This isn’t very
tricky if you’re just dealing with a single column (for example EmployeeID, CreditCardNumber, SSN, UPC).
However, if the natural key is made up of multiple columns, the cross-referencing to the production
tables may not be quite so easy.

The following demonstrates a scalar, user-defined function that can be used to simplify natural
key lookups, by checking for their existence prior to performing an action. To set up the example, I’ll
execute a few objects and commands will be executed.

First, a new table is created with its own surrogate keys, and the three columns which make up
the composite natural key (these three columns form the unique value that we receive from the
legacy system):

CREATE TABLE dbo.DimProductSalesperson
(DimProductSalespersonID int IDENTITY(1,1) NOT NULL PRIMARY KEY,
ProductCD char(10) NOT NULL,
CompanyNBR int NOT NULL,
SalespersonNBR int NOT NULL
)

Next, a staging table is created that holds rows from the external legacy data file. For example
this table could be populated from an external text file that is dumped out of the legacy system.
This table doesn’t have a primary key, as it is just used to hold data prior to being moved to the
dbo.DimProductSalesperson table:

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 303

570Xch11.qxd 11/4/05 2:29 PM Page 303

CREATE TABLE dbo.Staging_PRODSLSP
(ProductCD char(10) NOT NULL,
CompanyNBR int NOT NULL,
SalespersonNBR int NOT NULL
)

Next, two rows are inserted into this staging table:

INSERT dbo.Staging_PRODSLSP
(ProductCD, CompanyNBR, SalespersonNBR)
VALUES ('2391A23904', 1, 24)

INSERT dbo.Staging_PRODSLSP
(ProductCD, CompanyNBR, SalespersonNBR)
VALUES ('X129483203', 1, 34)

Now, these two rows can be inserted using the following query that doesn’t use a scalar UDF:

INSERT dbo.DimProductSalesperson
(ProductCD, CompanyNBR, SalespersonNBR)
SELECT s.ProductCD, s.CompanyNBR, s.SalespersonNBR
FROM dbo.Staging_PRODSLSP s
LEFT OUTER JOIN dbo.DimProductSalesperson d ON

s.ProductCD = d.ProductCD AND
s.CompanyNBR = d.CompanyNBR AND
s.SalespersonNBR = d.SalespersonNBR

WHERE d.DimProductSalespersonID IS NULL

Because each column forms the natural key, we must LEFT join each column from the inserted
table against the staging table, and then check to see if the row does not already exist in the destina-
tion table using IS NULL.

An alternative to this, allowing you to reduce the code in each INSERT/UPDATE/DELETE, is to cre-
ate a scalar UDF like the following:

CREATE FUNCTION dbo.udf_GET_Check_NK_DimProductSalesperson
(@ProductCD char(10), @CompanyNBR int, @SalespersonNBR int)
RETURNS bit
AS
BEGIN

DECLARE @Exists bit

IF EXISTS (SELECT DimProductSalespersonID
FROM dbo.DimProductSalesperson
WHERE @ProductCD = @ProductCD AND

@CompanyNBR = @CompanyNBR AND
@SalespersonNBR = @SalespersonNBR)

BEGIN
SET @Exists = 1

END
ELSE
BEGIN

SET @Exists = 0
END

RETURN @Exists
END

GO

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES304

570Xch11.qxd 11/4/05 2:29 PM Page 304

The UDF certainly looks like more code up front, but you’ll obtain the benefit later during the
data import process. For example, now you can rewrite the INSERT operation demonstrated earlier,
as follows:

INSERT dbo.DimProductSalesperson
(ProductCD, CompanyNBR, SalespersonNBR)
SELECT ProductCD, CompanyNBR, SalespersonNBR
FROM dbo.Staging_PRODSLSP
WHERE dbo.udf_GET_Check_NK_DimProductSalesperson
(ProductCD, CompanyNBR, SalespersonNBR) = 0

How It Works
In this recipe, I demonstrated how to create a scalar UDF that returned a bit value based on three
parameters. If the three values already existed for a row in the production table, a 1 was returned,
otherwise a 0 was returned. Using this function simplifies the INSERT/UPDATE/DELETE code that you
must write in situations where a natural key spans multiple columns.

Walking through the UDF code, the first lines define the UDF name and parameters. Each of
these parameters is for the composite natural key in the staging and production table:

CREATE FUNCTION dbo.udf_GET_Check_NK_DimProductSalesperson
(@ProductCD char(10), @CompanyNBR int, @SalespersonNBR int)

Next, a bit data type was defined to be returned by the function:

RETURNS bit
AS
BEGIN

A local variable is created to hold the bit value:

DECLARE @Exists bit

An IF is used to check for the existence of a row matching all three parameters for the natural
composite key. If there is a match, the local variable is set to 1. If not, it is set to 0:

IF EXISTS (SELECT DimProductSalespersonID
FROM dbo.DimProductSalesperson
WHERE @ProductCD = @ProductCD AND

@CompanyNBR = @CompanyNBR AND
@SalespersonNBR = @SalespersonNBR)

BEGIN
SET @Exists = 1

END
ELSE
BEGIN

SET @Exists = 0
END

The local variable is then passed back to the caller:

RETURN @Exists
END

GO

The function was then used in the WHERE clause, extracting from the staging table those rows
that returned a 0 from the scalar UDF, and therefore do not exist in the DimProductSalesperson table:

WHERE dbo.udf_GET_Check_NK_DimProductSalesperson
(ProductCD, CompanyNBR, SalespersonNBR) = 0

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 305

570Xch11.qxd 11/4/05 2:29 PM Page 305

Replacing Views with Multi-Statement UDFs
Multi-statement UDFs allow you to return data in the same way you would from a view, only with
the ability to manipulate data like a stored procedure.

In this example, a multi-statement UDF is created to apply row-based security based on the
caller of the function. Only rows for the specified salesperson will be returned. In addition to this,
the second parameter is a bit flag that controls whether rows from the SalesPersonQuotaHistory
table will be returned in the results:

CREATE FUNCTION dbo.udf_SEL_SalesQuota
(@SalesPersonID int,
@ShowHistory bit)

RETURNS @SalesQuota TABLE
(SalesPersonID int,
QuotaDate datetime,
SalesQuota money)

AS
BEGIN

INSERT @SalesQuota
(SalesPersonID, QuotaDate, SalesQuota)
SELECT SalesPersonID, ModifiedDate, SalesQuota
FROM Sales.SalesPerson
WHERE SalespersonID = @SalesPersonID

IF @ShowHistory = 1
BEGIN

INSERT @SalesQuota
(SalesPersonID, QuotaDate, SalesQuota)
SELECT SalesPersonID, QuotaDate, SalesQuota
FROM Sales.SalesPersonQuotaHistory
WHERE SalespersonID = @SalesPersonID

END

RETURN
END

GO

After the UDF is created, the following query is executed to show sales quota data for a specific
salesperson from the SalesPerson table:

SELECT SalesPersonID, QuotaDate, SalesQuota
FROM dbo.udf_SEL_SalesQuota (275,0)

This returns:

SalesPersonID QuotaDate SalesQuota
275 2001-06-24 00:00:00.000 300000.00

Next, the second parameter is switched from a 0 to a 1, in order to display additional rows for
SalespersonID 275 from the SalesPersonQuotaHistory table:

SELECT SalesPersonID, QuotaDate, SalesQuota
FROM dbo.udf_SEL_SalesQuota (275,1)

This returns the following (abridged) results:

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES306

570Xch11.qxd 11/4/05 2:29 PM Page 306

SalesPersonID QuotaDate SalesQuota
275 2001-06-24 00:00:00.000 300000.00
275 2001-07-01 00:00:00.000 367000.00
275 2001-10-01 00:00:00.000 556000.00
275 2002-01-01 00:00:00.000 502000.00
275 2002-04-01 00:00:00.000 550000.00
...

How It Works
This recipe demonstrated a multi-statement table-valued UDF to return sales quota data based on
the SalespersonID value that was passed. It also included a second bit flag that controlled whether
or not history was also returned.

Walking through the function, you’ll notice that the first few lines define the input parameters
(something that a view doesn’t allow):

CREATE FUNCTION dbo.udf_SEL_SalesQuota
(@SalesPersonID int,
@ShowHistory bit)

After this, the table columns that are to be returned by the function are defined:

RETURNS @SalesQuota TABLE
(SalesPersonID int,
QuotaDate datetime,
SalesQuota money)

The function body includes two separate batch statements, the first being an INSERT into the
table variable of rows for the specific salesperson:

AS
BEGIN

INSERT @SalesQuota
(SalesPersonID, QuotaDate, SalesQuota)
SELECT SalesPersonID, ModifiedDate, SalesQuota
FROM Sales.SalesPerson
WHERE SalespersonID = @SalesPersonID

Next, an IF statement (another construct not allowed in views) evaluates the bit parameter. If
equal to 1, quota history will also be inserted into the table variable:

IF @ShowHistory = 1
BEGIN

INSERT @SalesQuota
(SalesPersonID, QuotaDate, SalesQuota)
SELECT SalesPersonID, QuotaDate, SalesQuota
FROM Sales.SalesPersonQuotaHistory
WHERE SalespersonID = @SalesPersonID

END

Lastly, the RETURN keyword signals the end of the function (and unlike a scalar function, no
local variable is designated after it):

RETURN
END

GO

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 307

570Xch11.qxd 11/4/05 2:29 PM Page 307

Although the UDF has Transact-SQL not allowed in a view, it is still able to be referenced in the
FROM clause:

SELECT SalesPersonID, QuotaDate, SalesQuota
FROM dbo.udf_SEL_SalesQuota (275,0)

The results could be returned in a view using a UNION statement, but with that you wouldn’t be
able to have the control-logic to either show or not show history in a single view.

In this recipe, I demonstrated a method to create your own parameter-based result sets. This
can be used to implement row-based security. Row-level security is not built into the SQL Server
2005 security model. You can use functions to return only the rows that are allowed to be viewed by
designating input parameters that are used to filter the data.

UDT Basics
User-defined types (UDTs) are useful for defining a consistent data type that is named after a known
business attribute, such as “PIN,” “PhoneNBR,” or “EmailAddress.” Once a user-defined type is
created in the database, it can be used within columns, parameters, and variable definitions,
providing a consistent underlying data type. The next two recipes will show you how to create and
drop user-defined types. Note that unlike some other database objects, there isn’t a way to modify
an existing type using an ALTER command.

Creating and Using User-Defined Types
In previous versions of SQL Server, the system-stored procedure sp_addtype was used to create
a user-defined type. This system-stored procedure has been deprecated in SQL Server 2005, and the
new CREATE TYPE command should be used instead to create new user-defined types.

This recipe demonstrates how to create a user-defined type (also called an alias data type),
which is a data type given a user-specified name, data type, length, and nullability. You can use all
base data types except the new xml data type.

The basic syntax for creating a user-defined type is as follows:

CREATE TYPE [schema_name.] type_name
{

FROM base_type
[(precision [,scale])]
[NULL | NOT NULL] }

Table 11-5 details the arguments of these commands.

Table 11-5. CREATE TYPE Arguments

Argument Description

[schema_name.] type_name The optional schema name and required type name of the new
user-defined type.

base_type The base data type used to define the new user-defined type.
You are allowed to use all base system data types except the new
xml data type.

(precision [,scale]) If using a numeric base type, precision is the maximum number
of digits that can be stored both left and right of the decimal point.
Scale is the maximum number of digits to be stored right of the
decimal point.

NULL | NOT NULL Defines whether or not your new user-defined type allows
NULL values.

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES308

570Xch11.qxd 11/4/05 2:29 PM Page 308

■Note This chapter covers how to create user-defined types using Transact-SQL. Chapter 13 briefly discusses
how to create these using the new Common Language Runtime (CLR) functionality.

In this example, a new type is created based on a 14 character string:

-- In this example, we assume the company's Account number will
-- be used in multiple tables, and that it will always have a fixed
-- 14 character length and will never allow NULL values

CREATE TYPE dbo.AccountNBR
FROM char(14) NOT NULL
GO

Next, the new type is used in the column definition of two tables:

-- The new data type is now used in two different tables

CREATE TABLE dbo.InventoryAccount
(InventoryAccountID int NOT NULL,
InventoryID int NOT NULL,
InventoryAccountNBR AccountNBR)

GO

CREATE TABLE dbo.CustomerAccount
(CustomerAccountID int NOT NULL,
CustomerID int NOT NULL,
CustomerAccountNBR AccountNBR)

GO

This type can also be used in the definition of a local variable or input parameter. For example,
the following stored procedure uses the new data type to define the input parameter for a stored
procedure:

CREATE PROCEDURE dbo.usp_SEL_CustomerAccount
@CustomerAccountNBR AccountNBR

AS

SELECT CustomerAccountID, CustomerID, CustomerAccountNBR
FROM dbo.CustomerAccount
WHERE CustomerAccountNBR = CustomerAccountNBR
GO

Next, a local variable is created using the new data type, and is passed to the stored procedure:

DECLARE @CustomerAccountNBR AccountNBR
SET @CustomerAccountNBR = '1294839482'

EXEC dbo.usp_SEL_CustomerAccount @CustomerAccountNBR

To view the underlying base type of the user-defined type, you can use the sp_help system
stored procedure:

EXEC sp_help 'dbo.AccountNBR'

This returns (only a few columns are displayed for presentation purposes):

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 309

570Xch11.qxd 11/4/05 2:29 PM Page 309

Type_name Storage_type Length Nullable
-------------- ------------ ------ --------
AccountNbr char 14 no

How It Works
In this recipe, a new user-defined type called dbo.AccountNBR was created with a char(14) data type
and NOT NULL. Once the user-defined type was created, it was than used in the column definition of
two different tables:

CREATE TABLE dbo.InventoryAccount
(InventoryAccountID int NOT NULL,
InventoryID int NOT NULL,
InventoryAccountNBR AccountNBR)

Because NOT NULL was already inherent in the data type, it wasn’t necessary to explicitly define it in
the column definition.

After creating the tables, a stored procedure was created that used the new data type in the
input parameter definition. The procedure was then called using a local variable that also used the
new type.

Although Transact-SQL types may be an excellent convenience for some developers, creating
your application’s data dictionary and abiding by the data types may suit the same purpose. For
example if an AccountNBR is always 14 characters, as a DBA/Developer, you can communicate and
check to make sure that new objects are using a consistent name and data type. One big “con” for
using user-defined data types is their ability to be changed without cascading effects, as you’ll see in
the last recipe of this chapter.

Identifying Columns and Parameters That Use User-Defined
Types
Before showing you how to remove a user-defined data type, you’ll need to know how to identify all
database objects that depend on that type. As you’ll see later on, removing a UDT doesn’t automati-
cally cascade changes to the dependent table.

This example shows you how to identify which database objects are using the specified user-
defined type. This first query in the recipe displays all columns that use the AccountNBR user-defined
type:

SELECT OBJECT_NAME(c.object_id) Table_Name, c.name Column_Name
FROM sys.columns c
INNER JOIN sys.types t ON

c.user_type_id = t.user_type_id
WHERE t.name = 'AccountNBR'

This returns:

Table_Name Column_Name
---------------- -----------------------
InventoryAccount InventoryAccountNBR
CustomerAccount CustomerAccountNBR

(2 row(s) affected)

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES310

570Xch11.qxd 11/4/05 2:29 PM Page 310

This next query shows any procedures or functions that have parameters defined using the
AccountNBR user-defined type:

-- Now see what parameters reference the AccountNBR data type
SELECT OBJECT_NAME(p.object_id) Table_Name, p.name Parameter_Name
FROM sys.parameters p
INNER JOIN sys.types t ON

p.user_type_id = t.user_type_id
WHERE t.name = 'AccountNBR'

This returns:

Table_Name Parameter_Name
usp_SEL_CustomerAccount @CustomerAccountNBR

How It Works
In order to report which table columns use the user-defined type, the system catalog views
sys.columns and sys.types are used:

FROM sys.columns c
INNER JOIN sys.types t ON

c.user_type_id = t.user_type_id

The sys.columns view contains a row for each column defined for a table-valued function, table,
and view in the database. The sys.types view contains a row for each user and system data type.

To identify which function or procedure parameters reference the user-defined type, the system
catalog views sys.parameters and sys.types are used:

FROM sys.parameters p
INNER JOIN sys.types t ON

p.user_type_id = t.user_type_id

The sys.parameters view contains a row for each database object that can accept a parameter,
including stored procedures, for example.

Identifying which objects reference a user-defined type is necessary if you plan on dropping
the user-defined type, as the next recipe demonstrates.

Dropping User-Defined Types
In this recipe, I demonstrate how to remove a user-defined type (also called an alias data type) from
the database. As with most DROP commands, the syntax for removing a user-defined type is very
straightforward:

DROP TYPE [schema_name.] type_name

The DROP TYPE command uses the schema and type name, as this recipe will demonstrate. First
however, any references to the user-defined type need to be removed beforehand. In this example,
the AccountNBR type is changed to the base equivalent for two tables and a stored procedure:

ALTER TABLE dbo.InventoryAccount
ALTER COLUMN InventoryAccountNBR char(14)
GO

ALTER TABLE dbo.CustomerAccount
ALTER COLUMN CustomerAccountNBR char(14)
GO

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 311

570Xch11.qxd 11/4/05 2:29 PM Page 311

ALTER PROCEDURE dbo.usp_SEL_CustomerAccount
@CustomerAccountNBR char(14)

AS

SELECT CustomerAccountID, CustomerID, CustomerAccountNBR
FROM dbo.CustomerAccount
WHERE CustomerAccountNBR = CustomerAccountNBR
GO

With the referencing objects now converted, it is okay to go ahead and drop the type:

DROP TYPE dbo.AccountNBR

How It Works
In order to remove a type, you must first change or remove any references to the type in a database
table. If you are going to change the definition of a UDT, you need to remove all references to that
UDT everywhere in all database objects that use that UDT. That means changing tables, views, stored
procedures, etc. first before dropping the type. This can be very cumbersome if your database objects
depend very heavily on them. Also, if any schema-bound stored procedures, functions, or triggers
use the data type as parameters or variables, these references must be changed/removed. In this
recipe, ALTER TABLE... ALTER COLUMN was used to change the data type to the system data type:

ALTER TABLE dbo.InventoryAccount
ALTER COLUMN InventoryAccountNBR char(14)

A stored procedure parameter was also modified using ALTER PROCEDURE:

ALTER PROCEDURE usp_SEL_CustomerAccount
(@CustomerAccountNBR char(14))
...

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES312

570Xch11.qxd 11/4/05 2:29 PM Page 312

Triggers

In this chapter, I’ll present recipes for creating and using Data Definition Language (DDL) and Data
Manipulation Language (DML) triggers. DML triggers contain Transact-SQL code that is used to
respond to an INSERT, UPDATE, or DELETE operation against a table or view. DDL triggers respond to server
or database events instead of data modifications. For example, you can create a DDL trigger that
writes to an audit table whenever a database user issues the CREATE TABLE or DROP TABLE command.

Triggers, when used properly, can provide a convenient automatic response to specific
actions. They are appropriate for situations where you must create a business-level response to
an action. Triggers should not be used in place of constraints (for example primary key or unique
constraints) because constraints will perform better and are better-suited to these operations. You
should also be cognizant of the Transact-SQL used to define the trigger, being careful to ensure that
the code is properly optimized. If a trigger takes several seconds to execute for each UPDATE, overall
performance can suffer.

In my experience, triggers always seem to be the forgotten database object when it comes to
troubleshooting performance issues. I’ll hear complaints about a poorly performing data modification
and spend time trying to optimize it, only to find out that it was a poorly tuned trigger that caused
the performance issue. It’s one of the major reasons that I use DML triggers sparingly—and when
I do use them, I take extra care to make sure they are fast and bug-free. Nonetheless, application
requirements may dictate that a DML trigger be used. Not to mention that SQL Server 2005 DDL
triggers open up a whole new range of functionality not available in previous versions, providing
features that can’t easily be replaced by other database object types.

In this chapter I’ll review the following topics:

• How to create an AFTER DML trigger

• How to create an INSTEAD OF DML trigger

• How to create a DDL trigger

• How to modify or drop an existing trigger

• How to enable or disable triggers

• How to limit trigger nesting, set the firing order, and control recursion

• How to view trigger metadata

First, however, we’ll start off with a background discussion of DML triggers.

■Note This chapter covers how to create triggers using Transact-SQL. However, Chapter 13 covers how to create
triggers using the new Common Language Runtime (CLR) functionality.

313

C H A P T E R 1 2

■ ■ ■

570Xch12.qxd 11/4/05 2:34 PM Page 313

CHAPTER 12 ■ TRIGGERS314

DML Triggers
DML Triggers respond to user INSERT, UPDATE, or DELETE operations against a table or a view. When
a data modification event occurs, the trigger performs a set of actions defined within the trigger.
Similar to stored procedures, triggers are defined in Transact-SQL and allow a full range of activities
to be performed.

A DML trigger can be defined specifically as FOR UPDATE, FOR INSERT, FOR DELETE, or any combi-
nation of the three. UPDATE triggers respond to modifications against one or more columns within
the table, INSERT triggers respond to new data being added to the database, and DELETE triggers
respond to data being deleted from the database. There are two types of DML triggers: AFTER and
INSTEAD OF.

AFTER triggers are only allowed for tables, and they execute after the data modification has been
completed against the table. INSTEAD OF triggers execute instead of the original data modification and
can be created for both tables and views.

DML triggers allow you to perform actions in response to data modifications in a table. For
example, you can create a trigger that populates an audit table based on the operation performed,
or perhaps use the trigger to decrement the value of a quantity. Although this is a powerful feature,
there are a few things to keep in mind before your use of triggers proliferates:

• Triggers can often become a hidden and hence forgotten problem. When troubleshooting
performance or logical issues, DBAs can forget that triggers are executing in the background.
Make sure that triggers are “visible” in your data documentation.

• If you can ensure that all your data modifications flow through a stored procedure, I would
strongly recommend you perform all activities within the stored procedure, rather than use
a trigger. For example, if you need to update a quantity in a related table, after inserting a sales
record, why not put this logic in the stored procedure instead? The advantages are managea-
bility (one place to look) and supportability (one place to troubleshoot), when the procedure
needs modifications or performs unexpected actions.

• Always keep performance in mind, and this means writing triggers that execute quickly. Long-
running triggers can significantly slow down data modification operations. Take particular
care in putting triggers into databases with frequent data modifications.

• Non-logged updates do not cause a DML trigger to fire (for example WRITETEXT, TRUNCATE TABLE,
and bulk insert operations).

• Constraints usually run faster than a DML trigger, so if your business requirements can be
fulfilled by a constraint, use constraints instead. AFTER triggers run after the data modifica-
tion has already occurred, so they cannot be used to prevent a constraint violation.

• Don’t allow result sets from a SELECT statement to be returned within your trigger. Most
applications can’t consume these in an elegant fashion, and embedded queries can hurt the
trigger’s performance.

As long as you keep these general guidelines in mind, and use them properly, triggers are an
excellent means of enforcing business rules in your database.

Creating an AFTER DML Trigger
An AFTER DML Trigger executes after an INSERT, UPDATE, and/or DELETE modification has been com-
pleted successfully against a table. The specific syntax for an AFTER DML Trigger is as follows:

CREATE TRIGGER [schema_name .]trigger_name
ON table
[WITH <dml_trigger_option> [...,n]]

570Xch12.qxd 11/4/05 2:34 PM Page 314

AFTER
{ [INSERT] [,] [UPDATE] [,] [DELETE] }
[NOT FOR REPLICATION]
AS { sql_statement [...n]}

Table 12-1 details the arguments of this command.

Table 12-1. CREATE TRIGGER Arguments

Argument Description

[schema_name .]trigger_name The optional schema owner and required user-defined name
of the new trigger.

table The table name that the trigger applies to.

<dml_trigger_option> [...,n] Allows you to specify the ENCRYPTION and/or EXECUTE AS
clause. ENCRYPTION will encrypt the Transact-SQL definition of
the trigger, making it unviewable within the system tables.
EXECUTE AS allows you to define the security context that the
trigger will be executed under.

[INSERT] [,] [UPDATE] This defines which DML event or events the trigger will react
[,] [DELETE] to, including INSERT, UPDATE, and DELETE. A single trigger can

react to one or more of these actions against the table.

NOT FOR REPLICATION Designates that the trigger should not be executed when
a replication modification is performed against the table.

sql_statement [...n] A trigger allows one or more Transact-SQL statements, which
can be used to carry out actions such as performing validations
against the DML changes or performing other table DML
actions.

Before proceeding to the recipe, it is important to note that SQL Server creates two “virtual”
tables that are available specifically for triggers, called the deleted and inserted tables. These two
tables capture the before and after pictures of the modified rows. Table 12-2 shows the tables that
each DML operation impacts.

Table 12-2. Inserted and Deleted Virtual Tables

DML Operation Inserted Table Holds... Deleted Table Holds...

INSERT Inserted rows

UPDATE New rows (rows with updates) Old rows (pre-update)

DELETE Deleted rows

The inserted and deleted tables can be used within your trigger to access the data both before
and after the data modifications that caused the trigger to fire. These tables will store data for both
single and multi-row updates. Be sure to program your triggers with both types of updates (single
and multi-row) in mind. For example, a DELETE operation can impact either a single row or fifty
rows— so make sure that the trigger is programmed to handle this accordingly.

In this recipe, I demonstrate using a trigger to track row inserts or deletes from the
Production.ProductInventory table:

-- Track all Inserts, Updates, and Deletes
CREATE TABLE Production.ProductInventoryAudit

(ProductID int NOT NULL ,

CHAPTER 12 ■ TRIGGERS 315

570Xch12.qxd 11/4/05 2:34 PM Page 315

LocationID smallint NOT NULL ,
Shelf nvarchar(10) NOT NULL ,
Bin tinyint NOT NULL ,
Quantity smallint NOT NULL ,
rowguid uniqueidentifier NOT NULL ,
ModifiedDate datetime NOT NULL ,
InsOrUPD char(1) NOT NULL)

GO

-- Create trigger to populate Production.ProductInventoryAudit table
CREATE TRIGGER Production.trg_uid_ProductInventoryAudit
ON Production.ProductInventory
AFTER INSERT, DELETE
AS

SET NOCOUNT ON

-- Inserted rows
INSERT Production.ProductInventoryAudit
(ProductID, LocationID, Shelf, Bin, Quantity,
rowguid, ModifiedDate, InsOrUPD)
SELECT DISTINCT i.ProductID, i.LocationID, i.Shelf, i.Bin, i.Quantity,
i.rowguid, GETDATE(), 'I'
FROM inserted i

-- Deleted rows

INSERT Production.ProductInventoryAudit
(ProductID, LocationID, Shelf, Bin, Quantity,
rowguid, ModifiedDate, InsOrUPD)
SELECT d.ProductID, d.LocationID, d.Shelf, d.Bin, d.Quantity,
d.rowguid, GETDATE(), 'D'
FROM deleted d

GO

-- Insert a new row
INSERT Production.ProductInventory
(ProductID, LocationID, Shelf, Bin, Quantity)
VALUES (316, 6, 'A', 4, 22)

-- Delete a row

DELETE Production.ProductInventory
WHERE ProductID = 316 AND

LocationID = 6

-- Check the audit table
SELECT ProductID, LocationID, InsOrUpd
FROM Production.ProductInventoryAudit

This returns:

CHAPTER 12 ■ TRIGGERS316

570Xch12.qxd 11/4/05 2:34 PM Page 316

(1 row(s) affected)

(1 row(s) affected)

ProductID LocationID InsOrUpd
----------- ---------- --------
316 6 I
316 6 D

(2 row(s) affected)

How It Works
This recipe started off by having you create a new table for holding inserted or deleted rows from
the Production.ProductInventory table. The new table’s schema matches the original table, only
this time a new column was added called InsOrUPD to indicate whether the row was an INSERT or
UPDATE operation:

CREATE TABLE Production.ProductInventoryAudit
(ProductID int NOT NULL ,
LocationID smallint NOT NULL ,
Shelf nvarchar(10) NOT NULL ,
Bin tinyint NOT NULL ,
Quantity smallint NOT NULL ,
rowguid uniqueidentifier NOT NULL ,
ModifiedDate datetime NOT NULL ,
InsOrUPD char(1) NOT NULL)

GO

Next, an AFTER DML trigger is created using CREATE TRIGGER. The owning schema and new
trigger name is designated in the first line of the statement:

CREATE TRIGGER Production.trg_uid_ProductInventoryAudit

The table (which when updated will cause the trigger to fire) is designated in the ON clause:

ON Production.ProductInventory

Two types of DML activity will be monitored: inserts and deletes:

AFTER INSERT, DELETE

The body of the trigger begins after the AS keyword:

AS

The SET NOCOUNT is set ON in order to suppress the “rows affected” messages from being returned
back to the calling application whenever the trigger is fired:

SET NOCOUNT ON

The first statement inserts a new row into the new audit table for rows that exist in the virtual
inserted table:

INSERT Production.ProductInventoryAudit
(ProductID, LocationID, Shelf, Bin, Quantity,
rowguid, ModifiedDate, InsOrUPD)
SELECT DISTINCT i.ProductID, i.LocationID, i.Shelf, i.Bin, i.Quantity,
i.rowguid, GETDATE(), 'I'

CHAPTER 12 ■ TRIGGERS 317

570Xch12.qxd 11/4/05 2:34 PM Page 317

The second statement inserts a new row into the new audit table for rows that exist in the virtual
deleted table, but not the inserted table:

INSERT Production.ProductInventoryAudit
(ProductID, LocationID, Shelf, Bin, Quantity,
rowguid, ModifiedDate, InsOrUPD)
SELECT d.ProductID, d.LocationID, d.Shelf, d.Bin, d.Quantity,
d.rowguid, GETDATE(), 'D'
FROM deleted d

GO

After creating the trigger, in order to test it, a new row was inserted into the
Production.ProductInventory table and then deleted right afterwards:

-- Insert a new row
INSERT Production.ProductInventory
(ProductID, LocationID, Shelf, Bin, Quantity)
VALUES (316, 6, 'A', 4, 22)

-- Delete a row

DELETE Production.ProductInventory
WHERE ProductID = 316 AND

LocationID = 6

As you can see, a query was executed against the audit table, and there were two rows tracking
the insert and delete activities against the Production.ProductInventory table:

SELECT ProductID, LocationID, InsOrUpd
FROM Production.ProductInventoryAudit

Creating an INSTEAD OF DML Trigger
INSTEAD OF DML triggers execute instead of the original data modification that fired the trigger and
are allowed for both tables and views. INSTEAD OF triggers are often used to handle data modifications
to views that do not allow for data modifications (see Chapter 7 for a review of what rules a view
must follow in order to be updateable).

DML triggers use the following syntax:

CREATE TRIGGER [schema_name .]trigger_name
ON { table | view }
[WITH <dml_trigger_option> [...,n]]
INSTEAD OF
{ [INSERT] [,] [UPDATE] [,] [DELETE] }
[NOT FOR REPLICATION]
AS { sql_statement [...n] }

Table 12-3 details the arguments of this command.

CHAPTER 12 ■ TRIGGERS318

570Xch12.qxd 11/4/05 2:34 PM Page 318

Table 12-3. INSTEAD OF Trigger Arguments

Argument Description

[schema_name .]trigger_name The optional schema owner and required user-defined name
of the new trigger.

table | view The name of the table or view that the trigger applies to.

<dml_trigger_option> [...,n] Allows you to specify the ENCRYPTION and/or EXECUTE AS clause.
ENCRYPTION will encrypt the Transact-SQL definition of the
trigger. EXECUTE AS allows you to define the security context
under which the trigger will be executed.

[INSERT] [,] [UPDATE] This defines which DML event or events the trigger will react
[,] [DELETE] to, including INSERT, UPDATE, and DELETE. A single trigger can

react to one or more of these actions against the table.

NOT FOR REPLICATION Designates that the trigger should not be executed when
a replication modification is performed against the table.

sql_statement [...n] A trigger allows one or more Transact-SQL statements which
can be used to carry out actions such as performing validations
against the DML changes or performing other table DML
actions.

In this recipe, you’ll create a new table that will hold “pending approval” rows for the
HumanResources.Department table. These are new departments that require manager approval
before being added to the actual table. A view will be created to display all “approved” and
“pending approval” departments from the two tables, and an INSTEAD OF trigger will be created
on the view for inserts, causing inserts to be routed to the new approval table, instead of the actual
HumanResources.Department table:

-- Create Department "Approval" table

CREATE TABLE HumanResources.DepartmentApproval
(Name nvarchar(50) NOT NULL UNIQUE,
GroupName nvarchar(50) NOT NULL,
ModifiedDate datetime NOT NULL DEFAULT GETDATE())

GO

-- Create view to see both approved and pending approval departments

CREATE VIEW HumanResources.vw_Department
AS

SELECT Name, GroupName, ModifiedDate, 'Approved' Status
FROM HumanResources.Department
UNION
SELECT Name, GroupName, ModifiedDate, 'Pending Approval' Status
FROM HumanResources.DepartmentApproval

GO

-- Create an INSTEAD OF trigger on the new view

CREATE TRIGGER HumanResources.trg_vw_Department
ON HumanResources.vw_Department
INSTEAD OF

CHAPTER 12 ■ TRIGGERS 319

570Xch12.qxd 11/4/05 2:34 PM Page 319

INSERT
AS

SET NOCOUNT ON
INSERT HumanResources.DepartmentApproval
(Name, GroupName)
SELECT i.Name, i.GroupName
FROM inserted i
WHERE i.Name NOT IN (SELECT Name FROM HumanResources.DepartmentApproval)

GO

-- Insert into the new view, even though view is a UNION
-- of two different tables

INSERT HumanResources.vw_Department
(Name, GroupName)
VALUES ('Print Production', 'Manufacturing')

-- Check the view's contents

SELECT Status, Name
FROM HumanResources.vw_Department
WHERE GroupName = 'Manufacturing'

This returns the following result set:

Status Name
---------------- --
Approved Production
Approved Production Control
Pending Approval Print Production

How It Works
The recipe began by creating a separate table to hold “pending approval” department rows:

CREATE TABLE HumanResources.DepartmentApproval
(Name nvarchar(50) NOT NULL UNIQUE,
GroupName nvarchar(50) NOT NULL,
ModifiedDate datetime NOT NULL DEFAULT GETDATE())

Next, a view was created to display both “approved” and “pending approval” departments:

CREATE VIEW HumanResources.vw_Department
AS

SELECT Name, GroupName, ModifiedDate, 'Approved' Status
FROM HumanResources.Department
UNION
SELECT Name, GroupName, ModifiedDate, 'Pending Approval' Status
FROM HumanResources.DepartmentApproval

GO

CHAPTER 12 ■ TRIGGERS320

570Xch12.qxd 11/4/05 2:34 PM Page 320

The UNION in the CREATE VIEW prevents this view from being updateable, as any inserts
against it will be ambiguous. INSTEAD OF triggers allow you to enable data modifications against
non-updateable views.

A trigger was created to react to INSERTs, routing them to the approval table so long as the
department name was unique:

CREATE TRIGGER HumanResources.trg_vw_Department
ON HumanResources.vw_Department
INSTEAD OF
INSERT
AS

SET NOCOUNT ON
INSERT HumanResources.DepartmentApproval
(Name, GroupName)
SELECT i.Name, i.GroupName
FROM inserted i
WHERE i.Name NOT IN (SELECT Name FROM HumanResources.DepartmentApproval)

A new INSERT was tested against the view, to see if it would be inserted in the approval table:

INSERT HumanResources.vw_Department
(Name, GroupName)
VALUES ('Print Production', 'Manufacturing')

The view was then queried, showing that the row was inserted, and displayed a “pending
approval status.”

Using DML Triggers and Transactions
In this recipe, I’ll demonstrate the use of DML triggers and their interactions with transactions—
both within the trigger and within the initiating event that caused the trigger to fire. For these examples,
we’ll be working with the objects created in the “Creating an AFTER DML Trigger” recipe.

When a trigger is fired, SQL Server always creates a transaction around it, allowing any changes
made by the firing trigger, or the caller, to roll back to the previous state. For example, the trg_uid_
ProductInventoryAudit trigger has been rewritten to fail if certain Shelf or Quantity values are
encountered. If they are, ROLLBACK is used to cancel the trigger and undo any changes:

CREATE TRIGGER Production.trg_uid_ProductInventoryAudit
ON Production.ProductInventory
AFTER INSERT, DELETE
AS

SET NOCOUNT ON

IF EXISTS
(SELECT Shelf
FROM inserted
WHERE Shelf = 'A')
BEGIN

PRINT 'Shelf ''A'' is closed for new inventory.'
ROLLBACK

END

-- Inserted rows
INSERT Production.ProductInventoryAudit
(ProductID, LocationID, Shelf, Bin, Quantity,

CHAPTER 12 ■ TRIGGERS 321

570Xch12.qxd 11/4/05 2:34 PM Page 321

rowguid, ModifiedDate, InsOrUPD)
SELECT DISTINCT i.ProductID, i.LocationID, i.Shelf, i.Bin, i.Quantity,
i.rowguid, GETDATE(), 'I'
FROM inserted i

-- Deleted rows

INSERT Production.ProductInventoryAudit
(ProductID, LocationID, Shelf, Bin, Quantity,
rowguid, ModifiedDate, InsOrUPD)
SELECT d.ProductID, d.LocationID, d.Shelf, d.Bin, d.Quantity,
d.rowguid, GETDATE(), 'D'
FROM deleted d

IF EXISTS
(SELECT Quantity
FROM deleted
WHERE Quantity > 0)
BEGIN

PRINT 'You cannot remove positive quantity rows!'
ROLLBACK

END

GO

Now an attempt is made to insert a row using Shelf “A”:

INSERT Production.ProductInventory
(ProductID, LocationID, Shelf, Bin, Quantity)
VALUES (316, 6, 'A', 4, 22)

Because this is not allowed based on the trigger logic, the trigger neither inserts a row into the
audit table, nor allows the calling INSERT:

Shelf 'A' is closed for new inventory.
Msg 3609, Level 16, State 1, Line 2
The transaction ended in the trigger. The batch has been aborted.

In the previous example, the INSERT that caused the trigger to fire didn’t use an explicit transac-
tion. This next example demonstrates two deletions, one that is allowed (according to the rules of
the trigger) and another that is not allowed. Both inserts are embedded within an explicit transaction:

BEGIN TRANSACTION

-- Deleting a row with a zero quantity
DELETE Production.ProductInventory
WHERE ProductID = 853 AND

LocationID = 7

-- Deleting a row with a non-zero quantity
DELETE Production.ProductInventory
WHERE ProductID = 999 AND

LocationID = 60

COMMIT TRANSACTION

This returns the following output:

CHAPTER 12 ■ TRIGGERS322

570Xch12.qxd 11/4/05 2:34 PM Page 322

(1 row(s) affected)
You cannot remove positive quantity rows!
Msg 3609, Level 16, State 1, Line 9
The transaction ended in the trigger. The batch has been aborted.

Because the trigger issued a rollback, the outer transaction is also invalidated (meaning that it
doesn’t remain open). Also, even though the first row was a valid deletion, because they were in the
same calling transaction, neither row was deleted:

SELECT ProductID, LocationID
FROM Production.ProductInventory
WHERE (ProductID = 853 AND

LocationID = 7) OR
(ProductID = 999 AND

LocationID = 60)

This returns:

ProductID LocationID
853 7
999 60

How It Works
This recipe demonstrated the interaction between triggers and transactions. In a nutshell, if your
trigger issues a ROLLBACK command, any data modifications performed by the trigger or the rest of
the statements in the transaction are undone. The Transact-SQL query or batch that invoked the
trigger in the first place will also be cancelled and rolled back. If the invoking caller was embedded
in an explicit transaction, the entire calling transaction is cancelled and rolled back. If you use explicit
transactions within a trigger, SQL Server will treat it like a nested transaction. As I mentioned in
Chapter 3, a ROLLBACK rolls back all transactions, no matter how may levels deep they may be nested.

Controlling DML Triggers Based on Modified Columns
When a trigger is fired, you can determine which columns have been modified by using the UPDATE
function.

UPDATE, not to be confused with the DML command, returns a TRUE value if an INSERT or DML
UPDATE has occurred against a column. For example, the following DML UPDATE trigger checks to see
if a specific column has been modified, and if so, returns an error and rolls back the modification:

CREATE TRIGGER HumanResources.trg_U_Department
ON HumanResources.Department
AFTER UPDATE
AS

IF UPDATE(GroupName)
BEGIN

PRINT 'Updates to GroupName require DBA involvement.'
ROLLBACK

END
GO

An attempt is made to update a GroupName value in this next query:

UPDATE HumanResources.Department
SET GroupName = 'Research and Development'

CHAPTER 12 ■ TRIGGERS 323

570Xch12.qxd 11/4/05 2:34 PM Page 323

This returns the warning message and error telling us that the batch has been aborted (no
updates made):

Updates to GroupName require DBA involvement.
Msg 3609, Level 16, State 1, Line 1
The transaction ended in the trigger. The batch has been aborted.

How It Works
When your trigger logic is aimed at more granular, column-based changes, use the UPDATE function
and conditional processing to ensure that code is only executed against specific columns. Embedding
the logic in conditional processing can help reduce the overhead each time the trigger fires—at least
for columns that may be unrelated to the purpose of the trigger.

Viewing DML Trigger Metadata
This next recipe demonstrates how to view information about the triggers in the current database.

The first example queries the sys.triggers catalog view, returning the name of the view or table,
the associated trigger name, whether the trigger is INSTEAD OF, and whether the trigger is disabled:

-- Show the DML triggers in the current database
SELECT OBJECT_NAME(parent_id) Table_or_ViewNM,
name TriggerNM, is_instead_of_trigger, is_disabled
FROM sys.triggers
WHERE parent_class_desc = 'OBJECT_OR_COLUMN'
ORDER BY OBJECT_NAME(parent_id), name

This returns the following (abridged) results:

Table_or_ViewNM TriggerNM is_instead_of_trigger is_disabled
Document uDocument 0 0
Employee dEmployee 1 0
Employee uEmployee 0 0
EmployeeAddress uEmployeeAddress 0 0
EmployeeDepartmentHistory uEmployeeDepartmentHistory 0 0

To display a specific trigger’s Transact-SQL definition, you can query the sys.sql_modules system
catalog view:

-- Displays the trigger SQL definition
--(if the trigger is not encrypted)
SELECT o.name, m.definition
FROM sys.sql_modules m
INNER JOIN sys.objects o ON

m.object_id = o.object_id
WHERE o.type = 'TR'

How It Works
The first query in this recipe queried the sys.triggers catalog view to show all the DML triggers in
the current database. There are DDL triggers in the sys.triggers catalog view too, so to prevent
them from being displayed in the results, the parent_class_desc was qualified to OBJECT_OR_COLUMN.
This is because DDL triggers, as you’ll see in the next section, are scoped at the database or SQL
Server instance level—and not at the schema scope.

CHAPTER 12 ■ TRIGGERS324

570Xch12.qxd 11/4/05 2:34 PM Page 324

The second query showed the actual Transact-SQL trigger name and definition of each trigger
in the database. If the trigger was encrypted (similar to an encrypted view or stored procedure, for
example), the trigger definition will display a NULL value in this query.

DDL Triggers
Introduced in SQL Server 2005, DDL triggers respond to server or database events, rather than table
data modifications. For example, you can create a DDL trigger that writes to an audit table whenever
a database user issues the CREATE TABLE or DROP TABLE command. Or, at the server level, you can
create a DDL trigger that responds to the creation of a new login (for example, preventing a certain
login from being created).

Database DDL triggers are stored as objects within the database they were created in, whereas
Server DDL triggers, which track changes at the server level, are stored in the master database.

The syntax for a DDL Trigger is as follows:

CREATE TRIGGER trigger_name
ON { ALL SERVER | DATABASE }
[WITH <ddl_trigger_option> [...,n]]
FOR { event_type | event_group } [,...n]
AS { sql_statement [...n]}

Table 12-4 details the arguments of this command:

Table 12-4. CREATE TRIGGER (DDL) Arguments

Argument Description

trigger_name The user-defined name of the new DDL trigger
(notice that a DDL trigger does not have an owning
schema, since it isn’t related to an actual database
table or view).

ALL SERVER | DATABASE Designates whether the DDL trigger will respond
to server-scoped (ALL SERVER) or DATABASE-scoped
events.

<ddl_trigger_option> [...,n] Allows you to specify the ENCRYPTION and/or EXECUTE AS
clause. ENCRYPTION will encrypt the Transact-SQL
definition of the trigger. EXECUTE AS allows you to
define the security context under which the trigger
will be executed.

{ event_type | event_group } [,...n] An event_type indicates a single DDL server or
database event which can be reacted to by the
trigger. For example CREATE_TABLE, ALTER_TABLE,
DROP_INDEX, and more.

An event_group is a logical grouping of event_type
events. A single DDL trigger can be created to react
against one or more event types or groups. For example
the DDL_PARTITION_FUNCTION_EVENTS group reacts to
the following individual events:
CREATE_PARTITION_FUNCTION, ALTER_PARTITION_FUNCTION,
and DROP_PARTITION_FUNCTION.

You can find a complete list of trigger event types in
the SQL Server 2005 Books Online topic “DDL Events
for Use with DDL Triggers” and a complete list of trigger
event groups in the SQL Server 2005 Books Online topic
“Event Groups for Use with DDL Triggers.”

(Continued)

CHAPTER 12 ■ TRIGGERS 325

570Xch12.qxd 11/4/05 2:34 PM Page 325

Table 12-4. Continued

Argument Description

sql_statement [...n] One or more Transact-SQL statements which can be
used to carry out actions in response to the DDL
database or server event.

Creating a DDL Trigger That Audits Database-Level Events
This recipe demonstrates creating an audit table that can contain information on any attempts at
the creation, alteration, or dropping of indexes in the AdventureWorks database.

First, the audit table is created:

CREATE TABLE dbo.ChangeAttempt
(EventData xml NOT NULL,
AttemptDate datetime NOT NULL DEFAULT GETDATE(),
DBUser char(50) NOT NULL)

GO

Next, a database DDL trigger is created to track index operations, inserting the event data to
the newly created table:

CREATE TRIGGER db_trg_RestrictINDEXChanges
ON DATABASE
FOR CREATE_INDEX, ALTER_INDEX, DROP_INDEX
AS

SET NOCOUNT ON

INSERT dbo.ChangeAttempt
(EventData, DBUser)
VALUES (EVENTDATA(), USER)

GO

Now we’ll attempt an actual index creation in the database:

CREATE NONCLUSTERED INDEX ni_ChangeAttempt_DBUser ON
dbo.ChangeAttempt(DBUser)

GO

Next, we’ll query the ChangeAttempt audit table to see if the new index creation event was
captured by the trigger:

SELECT EventData
FROM dbo.ChangeAttempt

This returns the actual event information, stored in XML format (see Chapter 14, for more
information on XML in SQL Server 2005):

CHAPTER 12 ■ TRIGGERS326

570Xch12.qxd 11/4/05 2:34 PM Page 326

<EVENT_INSTANCE>
<EventType>CREATE_INDEX</EventType>
<PostTime>2005-08-26T20:11:58.317</PostTime>
<SPID>52</SPID>
<ServerName>JOEPROD</ServerName>
<LoginName>JOEPROD\Owner</LoginName>
<UserName>dbo</UserName>
<DatabaseName>AdventureWorks</DatabaseName>
<SchemaName>dbo</SchemaName>
<ObjectName>ni_ChangeAttempt_DBUser</ObjectName>
<ObjectType>INDEX</ObjectType>
<TargetObjectName>ChangeAttempt</TargetObjectName>
<TargetObjectType>TABLE</TargetObjectType>
<TSQLCommand>
<SetOptions ANSI_NULLS="ON" ANSI_NULL_DEFAULT="ON" ANSI_PADDING="ON"

QUOTED_IDENTIFIER="ON" ENCRYPTED="FALSE" />
<CommandText>CREATE NONCLUSTERED INDEX ni_ChangeAttempt_DBUser ON
dbo.ChangeAttempt(DBUser)

</CommandText>
</TSQLCommand>

</EVENT_INSTANCE>

How It Works
The recipe began with you creating a table that could contain audit information on index modifica-
tion and login creation attempts. The EventData column uses SQL Server 2005’s new xml data type,
which was populated by the new EVENTDATA function (described later on in this recipe):

CREATE TABLE dbo.ChangeAttempt
(EventData xml NOT NULL,
AttemptDate datetime NOT NULL DEFAULT GETDATE(),
DBUser char(50) NOT NULL)

GO

The first trigger created in the recipe applied to the current database. The new DDL trigger
responded to CREATE INDEX, ALTER INDEX, or DROP INDEX commands:

CREATE TRIGGER db_trg_RestrictINDEXChanges
ON DATABASE
FOR CREATE_INDEX, ALTER_INDEX, DROP_INDEX
AS

The SET NOCOUNT command was used in the trigger to suppress the number of row-affected
messages from SQL Server (otherwise every time you make an index modification, you’ll see a “1
row affected” message:

SET NOCOUNT ON

An INSERT was then made to the new audit table, populating it with the event data and user:

INSERT dbo.ChangeAttempt
(EventData, DBUser)
VALUES (EVENTDATA(), USER)

GO

The EVENTDATA function returns server and data event information in an XML format, and is
also used for SQL Server 2005’s SQL Service Broker functionality.

CHAPTER 12 ■ TRIGGERS 327

570Xch12.qxd 11/4/05 2:34 PM Page 327

■Note See Chapter 20 for more information on event notification.

The XML data captured by the EVENTDATA function included useful information such as the
event, the login name that attempted the CREATE INDEX, the target object name, and the time that it
occurred.

Creating a DDL Trigger That Audits Server-Level Events
In this recipe, I demonstrate using a server-level DDL trigger to restrict users from creating new
logins on the SQL Server instance.

We’ll start by creating the DDL trigger:

USE master
GO
-- Disallow new Logins on the SQL instance
CREATE TRIGGER srv_trg_RestrictNewLogins
ON ALL SERVER
FOR CREATE_LOGIN
AS
PRINT 'No login creations without DBA involvement.'

ROLLBACK
GO

Next, an attempt is made to add a new SQL login:

CREATE LOGIN JoeS WITH PASSWORD = 'A235921'
GO

This returns:

No login creations without DBA involvement.
Msg 3609, Level 16, State 2, Line 1
The transaction ended in the trigger. The batch has been aborted.

How It Works
This recipe demonstrated using a server-level DDL trigger to restrict a SQL login from being created.
The FOR statement of the trigger was set to the CREATE LOGIN event:

CREATE TRIGGER srv_trg_RestrictNewLogins
ON ALL SERVER
FOR CREATE_LOGIN
AS

The body of the trigger used a PRINT statement to warn the end-user that their attempt was not
allowed:

PRINT 'No login creations without DBA involvement.'

This was followed by a ROLLBACK, which cancels the CREATE LOGIN attempt from the trigger:

ROLLBACK
GO

CHAPTER 12 ■ TRIGGERS328

570Xch12.qxd 11/4/05 2:34 PM Page 328

Viewing DDL Trigger Metadata
In this recipe, I demonstrate the retrieval of DDL trigger metadata.

The first example queries the sys.triggers catalog view, returning the associated database-scoped
trigger name and trigger enabled/disabled status:

USE AdventureWorks
GO

-- Show the DML triggers in the current database
SELECT name TriggerNM, is_disabled
FROM sys.triggers
WHERE parent_class_desc = 'DATABASE'
ORDER BY OBJECT_NAME(parent_id), name

This returns the following (abridged) results:

TriggerNM is_disabled
db_trg_RestrictINDEXChanges 0
ddlDatabaseTriggerLog 1

This next example queries the sys.server_triggers and sys.server_trigger_events system
catalog views to retrieve a list of server-scoped DDL triggers. This returns the name of the DDL trig-
ger, the type of trigger (Transact-SQL or CLR), the disabled state of the trigger, and the events the
trigger is fired off of (you’ll see one row for each event a trigger is based on):

SELECT name, s.type_desc SQL_or_CLR,
is_disabled, e.type_desc FiringEvents
FROM sys.server_triggers s
INNER JOIN sys.server_trigger_events e ON

s.object_id = e.object_id

This returns data based on the previous sever-level trigger created earlier:

name SQL_or_CLR is_disabled FiringEvents
srv_trg_RestrictNewLogins SQL_TRIGGER 0 CREATE_LOGIN

To display database-scoped DDL trigger Transact-SQL definitions, you can query the
sys.sql_modules system catalog view:

SELECT t.name, m.Definition
FROM sys.triggers AS t
INNER JOIN sys.sql_modules m ON
t.object_id = m.object_id
WHERE t.parent_class_desc = 'DATABASE'

To display server-scoped DDL triggers, we query the sys.server_sql_modules and
sys.server_triggers system catalog views:

SELECT t.name, m.definition
FROM sys.server_sql_modules m
INNER JOIN sys.server_triggers t ON

m.object_id = t.object_id

CHAPTER 12 ■ TRIGGERS 329

570Xch12.qxd 11/4/05 2:34 PM Page 329

How It Works
The first query in this recipe returns a list of database-scoped triggers using the sys.triggers system cat-
alog view. In order to only display DDL database-scoped triggers, I had to qualify the parent_class_desc
value to DATABASE. The second query was written to return a list of server-scoped triggers and their
associated triggering events. In that situation, the sys.server_triggers and sys.server_trigger_events
system catalogs were queried.

The third query was used to return the Transact-SQL definitions of database-scoped triggers by
qualifying sys.triggers to sys.sql_modules. To return server-scoped trigger Transact-SQL definitions,
the sys.server_sql_modules and sys.server_triggers system catalog views were queried.

Managing Triggers
The next set of recipes demonstrate how to modify, drop, enable, disable, and control trigger options.
Some of the commands I’ll be demonstrating include: ALTER TRIGGER to modify a trigger’s definition,
DROP TRIGGER to remove it from the database, ALTER DATABASE to set trigger recursion options,
sp_configure to control trigger nesting, and sp_settriggerorder to set the firing order of a trigger.

Modifying a Trigger
You can modify an existing DDL or DML trigger by using the ALTER TRIGGER command. ALTER TRIGGER
takes the same arguments as the associated DML or DDL CREATE TRIGGER syntax does.

In this example, I modify a trigger created in the previous recipe. Instead of restricting users
from creating new logins, the login event will be allowed, followed by a warning and an INSERT into
an auditing table:

ALTER TRIGGER srv_trg_RestrictNewLogins
ON ALL SERVER
FOR CREATE_LOGIN
AS

SET NOCOUNT ON

PRINT 'Your login creation is being monitored.'

INSERT AdventureWorks.dbo.ChangeAttempt
(EventData, DBUser)
VALUES (EVENTDATA(), USER)

GO

How It Works
ALTER TRIGGER allows you to modify existing DDL or DML triggers. The arguments for ALTER TRIGGER
are the same as for CREATE TRIGGER. You can’t use it to change the actual trigger name, however, so in
this example, the trigger name is no longer applicable to the actual actions the DDL trigger will take
(in this case just monitoring, no longer restricting new logins).

Enabling and Disabling Table Triggers
Sometimes triggers must be disabled if they are causing problems that you need to troubleshoot, or
if you need to import or recover data that shouldn’t fire the trigger. In this recipe, I demonstrate how

CHAPTER 12 ■ TRIGGERS330

570Xch12.qxd 11/4/05 2:34 PM Page 330

to disable a trigger from firing using the new SQL Server 2005 DISABLE TRIGGER command, as well as
how to re-enable a trigger using ENABLE TRIGGER.

The syntax for DISABLE TRIGGER is as follows:

DISABLE TRIGGER [schema .] trigger_name
ON { object_name | DATABASE | SERVER }

The syntax for enabling a trigger is as follows:

ENABLE TRIGGER [schema_name .] trigger_name
ON { object_name | DATABASE | SERVER }

Table 12-5 details the arguments of this command.

Table 12-5. ENABLE and DISABLE Trigger Arguments

Argument Description

[schema_name .]trigger_name The optional schema owner and required user-defined
name of the trigger you want to disable.

object_name | DATABASE | SERVER object_name is the table or view that the trigger was bound
to (if it’s a DML trigger). Use DATABASE if the trigger was
a DDL database-scoped trigger and SERVER if the trigger
was a DDL server-scoped trigger.

This example starts off by creating a trigger (which is enabled by default) that prints a message
back to a connection that is performing an INSERT against the HumanResources.Department table:

CREATE TRIGGER HumanResources.trg_Department
ON HumanResources.Department
AFTER INSERT
AS

PRINT 'The trg_Department trigger was fired'

GO

The trigger is then disabled using the DISABLE TRIGGER command:

DISABLE TRIGGER HumanResources.trg_Department
ON HumanResources.Department

Because the trigger was disabled, no printed message will be returned when the following
INSERT is executed:

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Construction', 'Building Services')

GO

This returns:

(1 row(s) affected)

Next, the trigger is enabled using the ENABLE TRIGGER command:

ENABLE TRIGGER HumanResources.trg_Department
ON HumanResources.Department

CHAPTER 12 ■ TRIGGERS 331

570Xch12.qxd 11/4/05 2:34 PM Page 331

Now when another INSERT is attempted, the trigger will fire, returning a message back to the
connection:

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Cleaning', 'Building Services')

This returns:

The trg_Department trigger was fired

(1 row(s) affected)

How It Works
This recipe started by creating a new trigger that printed a statement whenever a new row was
inserted into the HumanResources.Department table.

After creating the trigger, the DISABLE TRIGGER command was used to keep it from firing (although
the trigger’s definition still stays in the database):

DISABLE TRIGGER HumanResources.trg_Department
ON HumanResources.Department

An insert was then performed that did not fire the trigger. The ENABLE TRIGGER command was
then executed, and then another insert was attempted, this time firing off the trigger.

Limiting Trigger Nesting
Trigger nesting occurs when a trigger is fired, which performs an action (for example, inserting into
a different table), which in turn fires another trigger, which then initiates the firing of other triggers.
An infinite loop firing of triggers is prevented by SQL Server 2005’s maximum level of nesting, which
is 32 levels deep.

You can also modify the SQL Server instance to not allow trigger nesting at all. Disabling the
'nested triggers' option prevents any AFTER trigger from causing the firing of another trigger.

This example demonstrates how to disable or enable this behavior:

USE master
GO

-- Disable nesting
EXEC sp_configure 'nested triggers', 0
RECONFIGURE WITH OVERRIDE
GO

-- Enable nesting
EXEC sp_configure 'nested triggers', 1
RECONFIGURE WITH OVERRIDE
GO

This returns:

Configuration option 'nested triggers' changed from 1 to 0. Run the RECONFIGURE statement
to install.
Configuration option 'nested triggers' changed from 0 to 1. Run the RECONFIGURE statement
to install.

CHAPTER 12 ■ TRIGGERS332

570Xch12.qxd 11/4/05 2:34 PM Page 332

How It Works
This recipe used the sp_configure system stored procedure to change the nested trigger behavior at
the server level. To disable nesting altogether, sp_configure was executed for the “nested trigger”
server option, followed by the parameter 0, which disables nesting:

EXEC sp_configure 'nested triggers', 0
RECONFIGURE WITH OVERRIDE
GO

Because server options contain both a current configuration versus an actual runtime configu-
ration value, the RECONFIGURE WITH OVERRIDE command was used to update the runtime value so
that it takes effect right away.

In order to enable nesting again, this server option is set back to “1” in the second batch of the
recipe.

■Note For more information on configuring server options, see Chapter 21.

Controlling Trigger Recursion
Trigger nesting is considered to be recursive if the action performed when a trigger fires causes the
same table trigger to fire again. Recursion can also occur when a trigger’s fire impacts a different table,
which also has a trigger that impacts the original table, thus causing the trigger to fire again.

You can control whether recursion is allowed by configuring the RECURSIVE_TRIGGERS database
option. If you allow recursion, your AFTER triggers will still be impacted by the 32-level nesting limit,
preventing an infinite looping situation.

This example demonstrates enabling and disabling this option:

-- Allows recursion
ALTER DATABASE AdventureWorks
SET RECURSIVE_TRIGGERS ON

-- View the db setting
SELECT is_recursive_triggers_on
FROM sys.databases
WHERE name = 'AdventureWorks'

-- Prevents recursion
ALTER DATABASE AdventureWorks
SET RECURSIVE_TRIGGERS OFF

-- View the db setting
SELECT is_recursive_triggers_on
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns:

is_recursive_triggers_on

1

is_recursive_triggers_on

0

CHAPTER 12 ■ TRIGGERS 333

570Xch12.qxd 11/4/05 2:34 PM Page 333

How It Works
ALTER DATABASE was used to configure database-level options, including whether or not triggers
were allowed to fire recursively within the database. The option was enabled by setting
RECURSIVE_TRIGGERS ON:

ALTER DATABASE AdventureWorks
SET RECURSIVE_TRIGGERS ON

The option was then queried by using the sys.databases system catalog view, which showed
the current database option in the is_recursive_triggers_on field (1 for on, 0 for off):

SELECT is_recursive_triggers_on
FROM sys.databases
WHERE name = 'AdventureWorks'

The recipe then disabled trigger recursion by setting the option OFF, and then confirming it
again in a sys.databases query.

■Note For more information on ALTER DATABASE and database options, see Chapter 22.

Setting Trigger Firing Order
In general you should try to encapsulate triggers that react to the same events within a single trigger.
This improves manageability and supportability of the triggers, because you’ll have an easier time
finding the code you are looking for, and be able to troubleshoot accordingly. You’ll also avoid the issue
of trying to figure out which trigger ran first. Instead, you can define multiple triggers on the same
table, referencing the same DML types (for example multiple INSERT triggers). DDL triggers can also
be set on the same database or server scope events or event groups.

If you find that you must have separate triggers referencing the same database objects (perhaps
you’ve added triggers so as not to overlap a third party’s code), and if the order in which they are
fired is important to you, you should configure it using the sp_settriggerorder system stored
procedure.

The syntax for sp_settriggerorder is as follows:

sp_settriggerorder [@triggername =] '[triggerschema.] triggername'
, [@order =] 'value'
, [@stmttype =] 'statement_type'
[, [@namespace =] { 'DATABASE' | 'SERVER' }]

Table 12-6 details the arguments of this command.

Table 12-6. sp_settriggerorder Arguments

Argument Description

'[triggerschema.] triggername' The optional schema owner and required user-
defined name of the trigger to be ordered.

[@order =] 'value' This can be either “First,” “None,” or “Last.” Any
triggers in between these will be fired in an
random order after the first and last firings.

[@stmttype =] 'statement_type' Designates the type of trigger to be ordered, for
example INSERT, UPDATE, DELETE, CREATE_INDEX,
ALTER_INDEX...

[@namespace =] { 'DATABASE' | 'SERVER' } Designates if this is a DDL trigger, and if so,
whether it is database- or server-scoped.

CHAPTER 12 ■ TRIGGERS334

570Xch12.qxd 11/4/05 2:34 PM Page 334

This recipe will create a test table and add three DML INSERT triggers to it. The sp_settriggerorder
will then be used to define the firing order:

CREATE TABLE dbo.TestTriggerOrder
(TestID int NOT NULL)

GO

CREATE TRIGGER dbo.trg_i_TestTriggerOrder
ON dbo.TestTriggerOrder
AFTER INSERT
AS
PRINT 'I will be fired first.'
GO

CREATE TRIGGER dbo.trg_i_TestTriggerOrder2
ON dbo.TestTriggerOrder
AFTER INSERT
AS
PRINT 'I will be fired last.'
GO

CREATE TRIGGER dbo.trg_i_TestTriggerOrder3
ON dbo.TestTriggerOrder
AFTER INSERT
AS
PRINT 'I won't be first or last.'
GO

EXEC sp_settriggerorder 'trg_i_TestTriggerOrder', 'First', 'INSERT'
EXEC sp_settriggerorder 'trg_i_TestTriggerOrder2', 'Last', 'INSERT'

INSERT dbo.TestTriggerOrder
(TestID)
VALUES (1)

This returns:

I will be fired first.
I won't be first or last.
I will be fired last.

How It Works
This recipe started off by creating a single column test table. Three DML INSERT triggers were then
added to it. Using sp_settriggerorder, the first and last triggers to fire were defined:

EXEC sp_settriggerorder 'trg_i_TestTriggerOrder', 'First', 'INSERT'
EXEC sp_settriggerorder 'trg_i_TestTriggerOrder2', 'Last', 'INSERT'

An INSERT was then performed against the table, and the trigger messages were returned in the
expected order.

To reiterate this point, if you can, use a single trigger on a table when possible (when of the
same type). If you must create multiple triggers of the same type, and your trigger contains ROLLBACK
functionality if an error occurs, be sure to set the trigger that has the most likely chance of failing as
the first trigger to execute. This way only the first-fired trigger need execute, preventing the other
triggers from having to fire and roll back transactions unnecessarily.

CHAPTER 12 ■ TRIGGERS 335

570Xch12.qxd 11/4/05 2:34 PM Page 335

Dropping a Trigger
The syntax for dropping a trigger differs by trigger type (DML or DDL).

The syntax for dropping a DML trigger is as follows:

DROP TRIGGER schema_name.trigger_name [,...n]

Table 12-7 details the argument of this command.

Table 12-7. DROP TRIGGER Argument (DML)

Argument Description

schema_name.trigger_name The owning schema name of the trigger and the DML trigger name
to be removed from the database.

The syntax for dropping a DDL trigger is as follows:

DROP TRIGGER trigger_name [,...n]
ON { DATABASE | ALL SERVER }

Table 12-8 details the arguments of this command.

Table 12-8. DROP TRIGGER Arguments (DDL)

Argument Description

trigger_name The DDL trigger name to be removed from the database (for
a database-level DDL trigger) or SQL Server instance (for a server-
scoped trigger).

DATABASE | ALL SERVER Defines whether you are removing a DATABASE-scoped DDL trigger or
a server-scoped trigger (ALL SERVER).

In the case of both DDL and DML syntax statements, the [,...n] syntax block indicates that
more than one trigger can be dropped at the same time.

This example demonstrates dropping a DML and a DDL trigger:

-- Drop a DML trigger
DROP TRIGGER dbo.trg_i_TestTriggerOrder

-- Drop multiple DML triggers
DROP TRIGGER dbo.trg_i_TestTriggerOrder2, dbo.trg_i_TestTriggerOrder3

-- Drop a DDL trigger
DROP TRIGGER db_trg_RestrictINDEXChanges
ON DATABASE

How It Works
In this recipe, DML and DDL triggers were explicitly dropped using the DROP TRIGGER command.
You will also drop all DML triggers when you drop the table or view that they are bound to. You can
also remove multiple triggers in the same DROP command if each of the triggers were created using
the same ON clause.

CHAPTER 12 ■ TRIGGERS336

570Xch12.qxd 11/4/05 2:34 PM Page 336

CLR Integration

In this chapter, you’ll dip your foot into what is most definitely another book-sized topic. Although
this book focuses on the Transact-SQL language, there are significant areas of overlap between
Common Language Runtime (CLR) and Transact-SQL, which I’ll discuss in this chapter, along with
a few recipes to get you started.

In many people’s eyes, the inclusion of the CLR within the database is the biggest advancement
in SQL Server 2005. As a result of the inclusion, developers no longer have to use Transact-SQL to
write procedural database objects such as stored procedures, functions, and triggers. They can now
create these objects using any of the .NET languages (VB.NET, C#, C++ and so on) and compile
them into .NET assemblies. These assemblies are deployed inside the database and run by the CLR,
which in turn is hosted inside the SQL Server memory space.

T-SQL, the traditional programming language for the SQL Server database, is a powerful language
for data-intensive operations, but is limited in its computational complexity. For these complex
operations in the database, the developer traditionally had to resort to the notoriously difficult
extended procedures written in C++, or create hideously long and awkward stored procedure code.

In theory, CLR integration offers the “best of both worlds.” Your code can be hosted in the secure
environment of the database, delegating memory management, garbage collection, and thread sup-
port to the robust database engine, while exploiting .NET’s computational power, advanced data
type support, and rich array of built-in classes.

Although this book is focused on Transact-SQL functionality, I’ll still be introducing the basic
methods for creating assemblies, importing them into the database, and then associating them to
database objects. I’ll start off by describing the basic end-to-end steps, and then going into the vari-
ations that exist for the different CLR database object types. Discussions and recipes in this chapter
include:

• A discussion of both when and when not to use assemblies in SQL Server 2005

• Available SQL Server 2005 CLR database objects, and how to create them

• A recipe-by-recipe walkthrough on creating a CLR stored procedure

• Creating a CLR scalar user-defined function

• Creating a CLR trigger

• Viewing, modifying, and removing assemblies from the database

First, however, I’ll begin the chapter with a brief overview of the Common Language
Runtime (CLR).

337

C H A P T E R 1 3

■ ■ ■

570Xch13.qxd 11/4/05 2:35 PM Page 337

CHAPTER 13 ■ CLR INTEGRATION338

CLR Overview
Before getting too far into the discussion of SQL Server integration, I need to cover some of the basics
for those of you who are new to the .NET framework. First of all, the .NET framework is a program-
matic platform that is used to build Microsoft Windows applications and services. This framework
can be used to create Windows forms, web services, and ASP.NET applications (to name a few). The
major parts of the framework include the CLR, the framework classes and libraries (containing
reusable functionality and programming models for your applications to use), and ASP.NET (which
allows the creation of web-based applications).

■Note Programming in .NET requires the actual Microsoft .NET Framework. This is why Microsoft Windows .NET
Framework 2.0 is a software prerequisite to installing SQL Server 2005.

The Common Language Runtime (CLR) is the environment where .NET programs are actually
executed and managed. The CLR is used to execute the .NET programs, manage memory, and
maintain program metadata. As noted in the introduction, in SQL Server 2005, the CLR is hosted
within the SQL Server 2005 process. This means that reserved space within the SQL Server process
handles memory management, security, and execution context.

When you write managed .NET code (code that is executed and managed within the CLR),
assemblies are the packaged DLL or executable file that is used to deploy the functionality. You can
then associate this assembly with various database objects, such as triggers, procedures, user-defined
functions and so on. Using CLR-based database objects opens up a wide range of functionality,
allowing you to perform complex calculations, access data from external sources, integrate with
other business applications, and solve problems that cannot be addressed using Transact-SQL.

You can write your assemblies in the .NET language with which you are most comfortable—the
two most common being Visual Basic.NET and C# (“c-sharp”). One reason why you can choose
your preferred .NET language is because the code is compiled into an intermediate language (IL)
form first. It’s the IL form that is read and executed by the CLR. Code written in C# or VB.NET (short
for Visual Basic.NET) that performs the same tasks usually ends up with intermediate language
instructions that look almost identical to one another.

Aside from the programming language, you also have your choice in how you actually develop
your code. One obvious choice is Visual Studio 2005, which includes templates that can ease the
creation of SQL Server database CLR objects. You don’t have to use Visual Studio 2005, however, as
there are other, free open source .NET development environments that you can download off the
web. You can also hand-code your .NET applications in Windows Notepad. Although not ideal for
development projects, this method requires no additional software, and is the method I’ll use in this
chapter. I’m using this low tech method in order to keep the focus on CLR integration with Transact-
SQL and not get too deeply into the many features and considerations of Visual Studio.

When (and When Not) to Use Assemblies
The announcement of the CLR and .NET framework integration with SQL Server 2005 caused a great
deal of conflicting emotions among seasoned users. At one extreme, people had the vision of an all
.NET database environment usurping Transact-SQL entirely. At the other were the anxious, hardcore
database administrators and developers, some without a .NET programming background, many of
whom vowed early on to keep this feature locked away indefinitely.

The first and most obvious thing to note is that .NET-based database objects are not a replace-
ment for T-SQL-created database objects. Transact-SQL is still very much alive. There are major

570Xch13.qxd 11/4/05 2:35 PM Page 338

units of functionality that would be impossible to implement without Transact-SQL, and several
.NET constructs and programming models that end up using Transact-SQL under the covers anyway.

There are two main reasons to consider using CLR database objects:

• You have “data-specific” logic that was previously impossible to implement in the database,
using existing functionality and T-SQL. Therefore you have created extended stored procedures
or modules in the middle tier or client layers.

• You have forced T-SQL to perform a highly complex task, resulting in complex and inelegant/
inefficient Transact-SQL code.

In some ways, the replacement of extended stored procedures with .NET CLR counterparts is
the most clear-cut case for using assemblies. In previous versions of SQL Server, if you needed to
add functionality to SQL Server that didn’t already exist, or needed to access external resources,
a common option was to use extended stored procedures. Database users called extended stored
procedures and optionally passed parameters to them, just as with regular stored procedures. Extended
stored procedures could be written in the programming language (such as C++), resulting in a DLL
file. The sp_addextendedproc system stored procedure was used to create a new procedure and bind
it to the DLL file (which had to exist on the SQL Server instance). The DLL file was not imported into
the SQL Server database, so it needed to exist on the SQL Server instance machine. Because a DLL
was loaded and used within SQL Server without any special management or protection, there was
an increased risk of memory leaks or performance issues, depending on how the DLL code was writ-
ten. If the DLL misbehaved, SQL Server could crash.

CLR integration addresses several of the inherent issues of extended stored procedures. When
using managed code, memory leaks are not possible and security is fully integrated with the SQL Server
environment. In short, assemblies are safer to use than extended stored procedures. So if you have:

• A database application that must perform very complex calculations that cannot be performed
(or are very difficult to perform) using Transact-SQL

• A database application that needs access to functionality that exists in the .NET framework,
but not in Transact-SQL

• A database application that needs access to external data sources (web services, files, system
settings), that you cannot access using Transact-SQL

Then you may well want to consider assemblies as a potential solution. If you have implanted
such functionality in extended stored procedures in your system, then these should be the first
assembly migration candidates.

If you have complex business logic that exists in other tiers of the system (whether client or
middle tier), then you need to assess and test on a case-by-case basis whether it would be wise to
move that functionality into an assembly in the database. Database applications, integration with
other applications, and ad-hoc reporting against the same database are all common components of
today’s applications. If there are business rules/logic central to the data itself, then it may well make
sense to encapsulate this logic within the database so that each different data consumer does not
have to duplicate these rules.

One thing is for sure, though: CLR database objects should not be used to replace functionality
that already exists in Transact-SQL. Set-based processing using SELECT/INSERT/UPDATE/DELETE will
always be the preferred method for data-intensive retrieval and modification. If an action can be
performed efficiently within the database using Transact-SQL, you should use Transact-SQL over
CLR methods.

CHAPTER 13 ■ CLR INTEGRATION 339

570Xch13.qxd 11/4/05 2:35 PM Page 339

CLR Objects Overview
In order to use CLR support, you must create and compile an assembly into a DLL, and then import
the new assembly (using CREATE ASSEMBLY) into a SQL Server database. Once integrated in the database,
it is backed up along with your tables, data, and other database objects—since it is a database object
just like any other. Once an assembly is added, you can then associate it to different database
objects, including user-defined functions, stored procedures, triggers, user-defined types, and
aggregate functions:

• User-defined functions. These create scalar or table-valued functions that can access .NET
framework calculation classes and access external resources. Later on in the chapter you’ll
see an example of using regular expressions functionality within a scalar function (some-
thing you could not do using Transact-SQL).

• Stored procedures. This is probably the SQL Server 2005 database object with the most creative
potential. You can use CLR-stored procedures to replace extended stored procedures, utilize
.NET framework classes, and perform calculation-heavy or external resource activities that
aren’t possible using Transact-SQL.

• Triggers. These allow you to create .NET programmatic responses to data manipulation language
(INSERT/UPDATE/DELETE) or data definition language (CREATE, ALTER, DROP).

• User-defined types. These allow you to create new complex data types (unlike Transact-SQL
user-defined types which are based on predefined data types). CLR user-defined types include
methods and properties along the lines of a .NET object/class. This may be one of the more
controversial additions to SQL Server 2005, because the multiple properties for a single type
can fly in the face of basic relation database design principals. CLR user-defined types do
allow you to implement data verification and string formatting, which isn’t possible for
Transact-SQL user-defined types.

• User-defined aggregate functions. Unlike the other CLR object, you can’t create aggregate
functions using Transact-SQL, so this is the first you’ll have heard of this functionality in this
book. User-defined aggregate functions can be used to create your own complex statistical
analysis aggregates not available in SQL Server 2005, or to collect multiple string values into
a single business-defined result.

The rest of this chapter will focus on creating CLR stored procedures, user-defined functions,
and triggers, as these are the most directly analogous to their T-SQL counterparts (in terms of the
way that they are accessed and executed) and therefore are the most relevant for this book.

Creating CLR Database Objects
The recipes in this section walk through the creation of three CLR-based objects, namely a CLR
stored procedure, a CLR UDF, and a CLR trigger. In the case of the CLR stored procedure, I’ll actually
present a series of four sub-recipes that describe each of the following steps:

1. Use the system stored procedure sp_configure to enable CLR functionality for the SQL Server
instance. Set the database where you will be using CLR database objects to TRUSTWORTHY if
you plan on using CLR database objects with EXTERNAL_ACCESS or UNSAFE permissions.

2. Create the Assembly code using your .NET language of choice, and your tool of choice. For
example, you can use C# or VB.NET to create the assembly. Using Visual Studio 2005 makes
the process of creating CLR assemblies easier, however you can use something as simple as
Notepad and the vsc.exe compiler.

CHAPTER 13 ■ CLR INTEGRATION340

570Xch13.qxd 11/4/05 2:35 PM Page 340

3. Compile the code into a DLL file.

4. Use the CREATE ASSEMBLY Transact-SQL command to load the new assembly into the data-
base. Choose the safety level based on the functionality of the assembly. Try to build code
that is covered by either SAFE or EXTERNAL_ACCESS safety levels. These levels offer more stabil-
ity for the SQL Server instance, and help avoid the potential issues that unsafe code may incur.

After that, I’ll demonstrate how to create a CLR scalar user-defined function, following the simi-
lar steps (in a single recipe), but with a new assembly and a few twists on the code. Finally, I’ll take
a look at a CLR trigger.

Enabling CLR Support in SQL Server 2005
When SQL Server 2005 is installed, CLR functionality is disabled by default. To enable the use of
CLR database objects, the system stored procedure sp_configure must be used to configure the
'clr enabled' option (see Chapter 21 for a full review of this system stored procedure):

EXEC sp_configure 'clr enabled', 1
RECONFIGURE WITH OVERRIDE
GO

This returns:

Configuration option 'clr enabled' changed from 0 to 1.
Run the RECONFIGURE statement to install.

If you plan on using CLR database objects that require EXTERNAL_ACCESS or UNSAFE security permis-
sions (we review the meanings of these in more detail later on), you must enable the TRUSTWORTHY
database option to ON. For example:

ALTER DATABASE BookStore
SET TRUSTWORTHY ON

How It Works
This example demonstrated enabling CLR functionality for the SQL Server instance. After executing
the command, CLR functionality is enabled immediately without having to restart the SQL Server
instance. We then enabled the TRUSTWORTHY option for the BookStore database, in order to allow
EXTERNAL_ACCESS and UNSAFE security permissions later on (although we’ll only be demonstrating
a CLR database object that requires external access, and not demoing anything that is unsafe!)

In the next recipe, we’ll demonstrate creating an assembly using VB.NET.

Writing an Assembly for a CLR Stored Procedure
In this recipe, I’ll demonstrate creating the code for an assembly. Specifically, VB.NET code is used
to read data from an external text file and then output the text file data in a result set.

Before getting to the actual code, I first need to discuss a few new concepts regarding assemblies
themselves.

So far I’ve discussed CLR assemblies as though they are used on a one-for-one basis with data-
base objects. Assemblies, however, can contain code for use by one or more CLR database objects.
For example, the code I’ll be using in this recipe is intended for a single stored procedure. You can,
however, put several subroutines or types within a single assembly, for use in different CLR database
objects. As a best practice, try to group related functionality within a single assembly. This is impor-
tant (if not necessary) if your various functions or methods have dependencies on one another.

CHAPTER 13 ■ CLR INTEGRATION 341

570Xch13.qxd 11/4/05 2:35 PM Page 341

Take a situation where you have a set of functionalities that will all cross-reference with an external
mapping application. For example, your assembly could contain code that can be used by a
CLR stored procedure to return driving directions, a CLR user-defined function to return map-
ping coordinates based on address input information, and a new user-defined CLR type that
contains the varying address details.

Another important concept to understand is assembly security. When you use managed code, you
must consider how much access to specific resources that your code requires. Later on in the chapter
you’ll see that when an assembly is added to SQL Server 2005, you’ll need to indicate the level of
permissions that the assembly requires. You’ll have three choices, SAFE, EXTERNAL_ACCESS, and UNSAFE,
which I’ll describe in more detail later on in the chapter.

This assembly example demonstrates creating a class and function using VB.NET, which then
takes a file and path name as an input value, opens the file for reading, and, finally, returns the
results back to the SQL Server connection context that made the call. I’ll discuss the elements of this
script in the “How It Works” section:

Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.IO

Public Class ReadFiles

Public Shared Sub Main(ByVal sFile As SqlString)

Dim sReader As StreamReader = New StreamReader(sFile)
Dim sLine As String
Dim sPipe As SqlPipe = SqlContext.Pipe

Do
sLine = sReader.ReadLine()

If Not sLine Is Nothing Then
sPipe.Send(sLine)

End If
Loop Until sLine Is Nothing

sReader.Close()

End Sub
End Class

How It Works
This current recipe’s example contains a class and function that will be associated specifically to
a CLR stored procedure. CLR database objects require specific namespaces to exist within the
assembly so that SQL Server can reference built-in CLR assemblies in your assembly code. For
example, the code included the following namespaces:

Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server

You can also include other namespaces, depending on the required functionality of the assembly.
For example, the System.IO namespace contains the functions needed to read and write from file
system files:

CHAPTER 13 ■ CLR INTEGRATION342

570Xch13.qxd 11/4/05 2:35 PM Page 342

Imports System.IO

The example continued declaring a public class called ReadFiles:

Public Class ReadFiles

Next, a public, shared subroutine included a single parameter string value (in this case expect-
ing the name and path of the file to be read):

Public Shared Sub Main(ByVal sFile As SqlString)

Notice that the sFile input parameter was defined as the SqlString type. As you work with CLR
assemblies, you’ll need to understand the SQL Server data types that associate to specific SQL
CLR .NET data types. Table 13-1 lists some of the available data types and their CLR versus SQL
Server 2005 translations (notice that with some types you can pick and choose, due to overlap):

Table 13-1. Converting SQL Server to CLR Data Types

CLR Data Type(s) SQL Server Data Type(s)

SqlBytes varbinary, binary

SqlBinary varbinary, binary

SqlChars (ideal for data access and retrieval) nvarchar, nchar

SqlString (ideal for string operation) nvarchar, nchar

SqlGuid uniqueidentifier

SqlBoolean bit

SqlByte tinyint

SqlInt16 smallint

SqlInt32 int

SqlInt64 bigint

SqlMoney smallmoney, money

SqlDecimal decimal, numeric

SqlSingle real

SqlDouble float

SqlDateTime smalldatetime, datetime

SqlXml xml

Continuing the walk-through of the example, you’ll note that a StreamReader object was
declared and set to the passed file name and path. The StreamReader class is used to read text data
from a file. Because it is not a Transact-SQL function, you would not normally be able to reference
this function in your code. CLR assemblies allow you to use these .NET commands from your SQL
Server database:

Dim sReader As StreamReader = New StreamReader(sFile)

A string variable is created to hold a single line of data from the file:

Dim sLine As String

Next, I use two classes, SqlPipe and SqlContext:

CHAPTER 13 ■ CLR INTEGRATION 343

570Xch13.qxd 11/4/05 2:35 PM Page 343

Dim sPipe As SqlPipe = SqlContext.Pipe

The SqlPipe object is used to send zero or more rows back to the connected caller’s connec-
tion. So, if I execute a CLR stored procedure that I expect will return a list of results (similar to a
SELECT query), the Send method of the SqlPipe object is used. This SqlContext class maintains and
accesses the SQL Server caller’s context, meaning if I execute a stored procedure, SqlContext knows
that it is my action and that the results belong to my client. A SqlPipe is spawned based on the
SqlContext of a user’s connection using the Pipe method of SqlContext.

Next, a Do loop (similar to a Transact-SQL WHILE) is created to read through each line of the file
until there are no longer any rows:

Do

The sLine variable is set to the first line of the file using the ReadLine method of the
StreamReader object:

sLine = sReader.ReadLine()

If something exists in the line from the file, the values of that line are sent back to the SQL
Server connection using the Send method of the SqlPipe object:

If Not sLine Is Nothing Then
sPipe.Send(sLine)

End If

Once the file is complete, however, the Do loop is finished and the connection to the file is closed:

Loop Until sLine Is Nothing

sReader.Close()

Finishing off the assembly, I ended the sub, and then the class definition.

End Sub
End Class

Now that you have written the assembly in VB.NET, you can move to the next step, which is
compiling the assembly code into a DLL file which can then be imported into SQL Server. In prepa-
ration for this exercise, create a file directory called C:\Apress\Recipes\CLR\ and then save this file
as ReadFiles.vb.

Compiling an Assembly into a DLL File
Use vbc.exe to compile the assembly file without the use of Visual Studio 2005. The vbc.exe com-
piler can be found on the SQL Server instance machine under the latest version of
C:\WINDOWS\MICROSOFT.NET\framework\ directory.

In this example, the following command creates the DLL assembly file based on the ReadFiles.vb
code by executing the vbc executable at the command prompt:

vbc /t:library /out:C:\Apress\Recipes\CLR\ReadFiles.DLL /r:"C:\Program
➥ Files\Microsoft SQL Server\MSSQL.1\MSSQL\Binn\sqlaccess.dll"
➥ C:\Apress\Recipes\CLR\ReadFiles.vb"

How It Works
Executing the vbc.exe executable in this recipe creates a DLL file under C:\Apress\Recipes\CLR
directory which can then be used to create an assembly in SQL Server 2005. I’ll review how to do
that next.

CHAPTER 13 ■ CLR INTEGRATION344

570Xch13.qxd 11/4/05 2:35 PM Page 344

Loading the Assembly Into SQL Server
To load the new assembly into a SQL Server 2005 database, use the CREATE ASSEMBLY command.

The basic syntax, as used in this example, is as follows:

CREATE ASSEMBLY assembly_name
[AUTHORIZATION owner_name]
FROM { '[\\computer_name\]share_name\[path\]manifest_file_name'
| '[local_path\]manifest_file_name'|

{ varbinary_literal | varbinary_expression }}
[WITH PERMISSION_SET = { SAFE | EXTERNAL_ACCESS | UNSAFE }]

Table 13-2 describes this command’s arguments:

Table 13-2. CREATE ASSEMBLY Arguments

Argument Description

assembly_name The name of the new database assembly.

owner_name The user or role owner of the assembly.

'[\\computer_name\]share_name\ The path and file name of the assembly to be
[path\]manifest_file_name' loaded.
| '[local_path\]manifest_file_name'

varbinary_literal | varbinary_expression Instead of an actual file, the binary values that
make up the assembly can be passed to the
command.

SAFE | EXTERNAL_ACCESS | UNSAFE This references the safety permission level for
the assembly, per the discussion earlier in this
section.

The safety permission levels for the assembly require special consideration. SAFE permissions
allow you to run code that only requires access to the local SQL Server instance. Using this default
mode, your assembly won’t be able to access the network, external files (even files on the same
machine as the SQL Server instance), the registry, or environment variables. EXTERNAL_ACCESS per-
missions permit access to the network, external files, the registry, environment variables, and web
services. Both the SAFE and EXTERNAL_ACCESS modes have a specific level of internal safety. These
internal measures include the protection of the memory space of other applications, as well as
a restriction from any action that could hurt the SQL Server instance.

UNSAFE permissions are most similar to the extended stored procedures discussed earlier in the
chapter. This level of permission doesn’t put any restrictions on how the assembly accesses resources,
allowing for the potential of memory space violations or performing actions that could hurt the sta-
bility of the SQL Server instance. As you may suspect, this is the permission level you should avoid
unless necessary, and only under conditions where you can ensure the assembly is thoroughly tested
and free of negative side-effects.

Continuing with this section’s example of creating a CLR stored procedure, a new assembly is
created based on the ReadFiles.DLL, using the EXTERNAL_ACCESS option, since the assembly needs to
read from the file system:

CREATE ASSEMBLY ReadFiles FROM 'C:\Apress\Recipes\CLR\ReadFiles.DLL'
WITH PERMISSION_SET = EXTERNAL_ACCESS
GO

CHAPTER 13 ■ CLR INTEGRATION 345

570Xch13.qxd 11/4/05 2:35 PM Page 345

How It Works
When creating a new assembly, the actual assembly contents are loaded into the database. This
means that database backups will also backup the assemblies contained within. In our example,
a new assembly called ReadFiles was created based on the assembly DLL file. The permission was
set to EXTERNAL_ACCESS because the assembly is used to read data from a file and return it back as
a result set to the SQL Server 2005 caller.

Importing an assembly into SQL Server 2005 isn’t enough to start using its functionality. You
must then associate that assembly to a CLR database object. The next recipe demonstrates how to
do this.

Creating the CLR Stored Procedure
CLR database objects are created similarly to their regular Transact-SQL equivalents, only the pro-
cedural definition references an assembly instead. The following commands each have the CLR
option of EXTERNAL NAME:

• CREATE PROCEDURE

• CREATE FUNCTION

• CREATE TRIGGER

• CREATE TYPE

As a side note, the CREATE AGGREGATE command, which creates a user-defined SQL Server
aggregate function, can’t be written in Transact-SQL and is only used in conjunction with a .NET
assembly.

The specific extension syntax for creating a CLR-based stored procedure, user-defined function,
or trigger is as follows:

EXTERNAL NAME assembly_name.class_name.method_name

For creating a new CLR data type or aggregate, only the assembly and class name are referenced:

EXTERNAL NAME assembly_name [.class_name]

This example demonstrates creating a new CLR stored procedure using the EXTERNAL NAME
extension of the CREATE PROCEDURE command to map to your new assembly, created in the previous
recipe:

CREATE PROCEDURE dbo.usp_FileReader
(@FileName nvarchar(1024))
AS EXTERNAL NAME ReadFiles.ReadFiles.Main
GO

ReadFiles appears twice because it is the CLR assembly name and the class within the VB.NET
code block.

Once created, the CLR stored procedure is executed like a normal Transact-SQL defined stored
procedure. Continuing this example, the contents of a SQL Server error log file are returned in the
results of the stored procedure (looking at an error log that is not currently being used by the SQL
Server instance):

EXEC dbo.usp_FileReader
N'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\LOG\ERRORLOG.1'

CHAPTER 13 ■ CLR INTEGRATION346

570Xch13.qxd 11/4/05 2:35 PM Page 346

This returns the contents of the ERRORLOG file as a result set (abridged here):

2005-07-02 07:50:11.10 Server Microsoft SQL Server 2005 - 9.00.1187.07 (Intel X86)
May 24 2005 18:22:46
Copyright (c) 1988-2005 Microsoft Corporation
Beta Edition on Windows NT 5.1 (Build 2600: Service Pack 2)

2005-07-02 07:50:11.10 Server (c) 2005 Microsoft Corporation.
2005-07-02 07:50:11.10 Server All rights reserved.
2005-07-02 07:50:11.16 Server Server process ID is 704.
...

Once created, database CLR objects can be altered or dropped using the normal ALTER or DROP
commands for the database object type.

How It Works
This recipe demonstrated how to create a CLR stored procedure. The parameters required for the
stored procedure depend on the parameters expected by the .NET assembly methods. In this case,
the Main method of the ReadFiles assembly expected a string parameter for the file and path name
to be read, so a @FileName nvarchar data type parameter is used in the stored procedure reference.
In the EXTERNAL NAME clause, the ReadFiles assembly was referenced, followed by the ReadFiles
class, and Main method.

Using the .NET framework, the procedure was able to access external resources and iterate
through the contents of a file. With CLR integration, the functional scope of SQL Server now extends
out to the capabilities of the .NET framework.

Creating a CLR Scalar User-Defined Function
You can create two different types of CLR user-defined functions: scalar and table-valued. It is most
likely that the former will be more beneficial for performance in CLR than the latter. This is because
table-valued functions are used to query database data, and they should therefore never be replaced
by CLR equivalents. If your solution requires a table result set from an external file or resource, CLR
UDFs may fit your needs well, particularly if you need to reference the external data in the FROM
clause of your query (something that a CLR stored procedure would not allow).

Using CLR for scalar UDF functions that don’t focus on data retrieval from SQL Server may
often perform quite well over a Transact-SQL equivalent. As explained in the introduction at the
beginning of the chapter, you’ll benefit most from CLR when using it to execute high-complexity
computational operations. CLR scalar UDFs are also useful for operations that simply aren’t possi-
ble using Transact-SQL (for example, accessing external data or using .NET library functionality that
doesn’t exist in Transact-SQL).

In this example, an assembly is created that contains a class and method intended for use with
a CLR user-defined scalar function. I’m going to take advantage of the System.Text.RegularExpressions
.NET framework namespace. This contains a class called Regex, which will allow us to break apart
a single string into an array of values based on a specific delimiter. Regular expression functionality,
which is often used for pattern matching, isn’t built into SQL Server 2005, but now, with CLR inte-
gration, you can safely and efficiently use the regular expression libraries written for VB.NET.

The goal of this example is to create a scalar UDF that takes three parameters. The first parameter
is a delimited string of values. The second parameter is the delimiter character used to separate the
string. The third parameter is the value from the array that I would like to select. I’ll walk through
the code in more detail in the “How It Works” section, but in the meantime, this example compiles
the following code using vbc.exe:

CHAPTER 13 ■ CLR INTEGRATION 347

570Xch13.qxd 11/4/05 2:35 PM Page 347

Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.Text.RegularExpressions

Public Class SQLArrayBuilder

Public Shared Function ChooseValueFromArray(ArrayString as String, ArrayDelimiter as
➥ String, ArrayItemSelection as SqlInt16) as SqlString

Dim NewArrayString as String() = Regex.Split(ArrayString, ArrayDelimiter)

Dim NewArrayItemSelection as SqlInt16=ArrayItemSelection-1

Dim ReturnString as SQLString = NewArrayString(NewArrayItemSelection)

Return ReturnString

End Function

End Class

After compiling this assembly, it can then be imported into the database. Because nothing in
the assembly accesses external resources, I can use a SAFE permission level:

CREATE ASSEMBLY SQLArrayBuilder FROM 'C:\Apress\Recipes\CLR\SQLArrayBuilder.DLL'
WITH PERMISSION_SET = SAFE
GO

Next, the new assembly is associated to a scalar user-defined function. Notice that the syntax is
the same as if it were a Transact-SQL command, except that after AS, the EXTERNAL NAME keywords
are used to designate the assembly, class, and function:

CREATE FUNCTION dbo.CountSalesOrderHeader
(@ArrayString nvarchar(4000), @ArrayDelimiter nchar(1), @ArrayItemSelection smallint)
RETURNS nvarchar(4000)
AS
EXTERNAL NAME SQLArrayBuilder.SQLArrayBuilder.ChooseValueFromArray
GO

Now to test the function, the first parameter will include three comma-separated values. The
second parameter designates a comma as the delimiter, and the third value indicates the value you
would like to choose from the array:

SELECT dbo.CountSalesOrderHeader
('Brian,Steve,Boris', ',', 3) Choice

This returns:

Choice
Boris

This time the second value is selected from the array:

SELECT dbo.CountSalesOrderHeader
('Brian,Steve,Boris', ',', 2) Choice

CHAPTER 13 ■ CLR INTEGRATION348

570Xch13.qxd 11/4/05 2:35 PM Page 348

This returns:

Choice
Steve

How It Works
This recipe shares the same general setup steps as the CLR stored procedure example. Once again,
an assembly was created and then compiled. Next, the assembly was added to the database using
CREATE ASSEMBLY. A new user-defined function was then created, using the expected three input
parameters, and the appropriate output parameter data type. The UDF also included a reference to
the assembly, class, and function name.

Walking through the code, you’ll see that I included the core namespaces also seen in the
stored procedure example:

Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server

The reference to the regular expressions namespace was also included, so that you could use
the functionality of the Regex object, which is a collection of library classes created and shipped
with .NET:

Imports System.Text.RegularExpressions

Our class name was then declared, which will be the reference that is used during the creation
of the CLR function:

Public Class SQLArrayBuilder

The function was declared, including the three input parameters in parentheses, followed by
the expected return data type (SqlString) of the function:

Public Shared Function ChooseValueFromArray(ArrayString as String, ArrayDelimiter as
➥ String, ArrayItemSelection as SqlInt16) as SqlString

Next, a new string array variable was declared and populated with the array generated from the
Regex.Split method, which is used to split an array of strings at the positions defined by a regular
expression match (in this case, our delimiter):

Dim NewArrayString as String() =
Regex.Split(ArrayString, ArrayDelimiter)

VB.NET arrays are zero-based—meaning the first value in the array is indexed at “0,” followed
by “1,” “2,” and so on. Because the SQL Server caller of the scalar UDF will want to pass an array
selection value based on a one-based value, I take the input array item selection and subtract “1”
from it, so as to select the appropriate value from the array:

Dim NewArrayItemSelection as SqlInt16=ArrayItemSelection-1

After the array is populated, a new string variable is created to hold the selected value:

Dim ReturnString as SQLString = NewArrayString(NewArrayItemSelection)

This value is the passed back using the Return command, followed by the end of the function
and class definition:

CHAPTER 13 ■ CLR INTEGRATION 349

570Xch13.qxd 11/4/05 2:35 PM Page 349

Return ReturnString

End Function

End Class

After that, the assembly was compiled, and then imported into the database using CREATE
ASSEMBLY. The function was then created using CREATE FUNCTION referencing the assembly, class, and
function:

SQLArrayBuilder.SQLArrayBuilder.ChooseValueFromArray

The function was then tested, parsing out a comma-delimited string and returning the desired
scalar value.

■Caution The examples in this chapter are written in order to introduce the core concepts and functionality of
CLR integration with SQL Server 2005. Although this function works properly when the appropriate values are
passed to the function, it does not contain error trapping code to handle unexpected values. Using SAFE and
EXTERNAL_ACCESS pads you from damage, although bad input values may cause rather unfriendly error messages
returned to the end user. In your production .NET code, be sure to add error handling.

Creating a CLR Trigger
In this next recipe, I’ll demonstrate creating a CLR trigger, which is used to generate an external
“control file” that can in turn be used to notify an outside hypothetical application that a process is
finished.

In this example scenario, I have a table called dbo.DataWarehouseLoadHistory. This table contains
a row inserted whenever the daily data warehouse load finishes. When a row is inserted, the trigger
will output a control file to an external directory, notifying the legacy system (and I’m assuming this
is a system that cannot access SQL Server 2005 programmatically).

First, the new table is created in a user-defined database:

CREATE TABLE dbo.DataWarehouseLoadHistory
(DataWarehouseLoadHistoryID int

NOT NULL IDENTITY(1,1) PRIMARY KEY ,
LoadDT datetime NOT NULL)

Next, the following assembly code is compiled using vbc.exe:

Imports System
Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports System.Data.SqlClient
Imports Microsoft.SqlServer.Server
Imports System.IO

Public Class DW_Trigger

Public Shared Sub ExportFile()

Dim DWTrigger As SqlTriggerContext
DWTrigger = SqlContext.TriggerContext

CHAPTER 13 ■ CLR INTEGRATION350

570Xch13.qxd 11/4/05 2:35 PM Page 350

If (DWTrigger.TriggerAction = _
TriggerAction.Insert) Then

Dim DWsw As StreamWriter = New _
StreamWriter("C:\DataWarehouseLoadTrigger.txt")

DWsw.WriteLine(Now())
DWsw.Close()

End If

End Sub

End Class

After compiling the assembly into a DLL, it is then imported into SQL Server using CREATE
ASSEMBLY:

CREATE ASSEMBLY DataWarehouseLoadNotification
FROM 'C:\Apress\Recipes\CLR\Trigger\
➥ DataWarehouseLoadNotification.dll'
WITH PERMISSION_SET = EXTERNAL_ACCESS
GO

Next, a trigger is created that is mapped to the assembly subroutine:

CREATE TRIGGER dbo.trg_i_DWNotify
ON dbo.DataWarehouseLoadHistory AFTER INSERT
AS
EXTERNAL NAME
DataWarehouseLoadNotification.[DataWarehouseLoadNotification.DW_Trigger].ExportFile

A new row is then inserted into the DataWarehouseLoadHistory table:

INSERT dbo.DataWarehouseLoadHistory
(LoadDT)
VALUES(GETDATE())

This INSERT causes the CLR trigger to fire and then create a notification file under the C:\ drive
of the SQL Server instance machine (of course in a production scenario, I’d be putting this file some
place else for the legacy system to pick up). The file contains the current date and time that the trigger
was fired:

9/5/2005 1:29:03 PM

How It Works
This recipe demonstrated creating a CLR trigger that created a text file in response to an INSERT into
a table. Of course, this CLR database object would not have been a good idea to create for a table that
receives numerous new rows each day (continually overlaying a file non-stop)! But in this scenario,
I’m assuming that the data is only updated periodically, and that the external legacy application is
monitoring any changes in the file.

The steps to creating this CLR trigger were similar to creating a user-defined function and stored
procedure: a new assembly was compiled, added to SQL Server, and then associated to a database
object using CREATE TRIGGER.

Something to point out, however, is the SqlTriggerContext class, which was used to define the
context information for the trigger within SQL Server:

CHAPTER 13 ■ CLR INTEGRATION 351

570Xch13.qxd 11/4/05 2:35 PM Page 351

Dim DWTrigger As SqlTriggerContext
DWTrigger = SqlContext.TriggerContext

Once the object was created, it was then used to find out the actions that cause the trigger to
fire or determine which columns were modified. In this example, the SqlTriggerContext object was
used to determine if the trigger firing event was an INSERT, and if so, the external file would be written:

If (DWTrigger.TriggerAction = _
TriggerAction.Insert) Then

...

Administering Assemblies
The next three recipes will demonstrate how to administer database assemblies. I’ll demonstrate
how to view assembly metadata, modify an assembly’s permissions, and remove an assembly from
the database.

Viewing Assembly Metadata
To view all assemblies in the current database, you can query the sys.assemblies system catalog
view. For example:

SELECT name, permission_set_desc
FROM sys.assemblies

This returns:

name permission_set_desc
ReadFiles EXTERNAL_ACCESS

How It Works
The system catalog view sys.assemblies can be used to view the name of the assemblies and the
security profile assigned to it.

Modifying an Assembly’s Permissions
You can use the ALTER ASSEMBLY command (which uses many of the same options as CREATE ASSEMBLY)
to modify specific configurations of an existing assembly permissions.

In this example, the permissions of an assembly are set from EXTERNAL_ACCESS to SAFE:

ALTER ASSEMBLY ReadFiles
WITH PERMISSION_SET = SAFE

After executing this command, an attempt is made to execute the stored procedure associated
to this assembly:

EXEC dbo.usp_FileReader
N'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\LOG\ERRORLOG'

CHAPTER 13 ■ CLR INTEGRATION352

570Xch13.qxd 11/4/05 2:35 PM Page 352

This returns the following (abridged) error:

Msg 6522, Level 16, State 1, Procedure usp_FileReader, Line 0
A .NET Framework error occurred during execution of user defined routine or aggregate
'usp_FileReader':
System.Security.SecurityException: Request for the permission of type
'System.Security.Permissions.FileIOPermission, mscorlib, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089' failed.

How It Works
Although SQL Server 2005 allowed us to change the permission level of the assembly, external oper-
ations (reading from a file) attempted by the assembly were no longer allowed. This means that
when you write your assembly, you must think about what level of permissions it will need, and
then set it upon creation. If you think it is SAFE, but it actually needs access to external resources,
you can use ALTER ASSEMBLY to change the permissions.

Removing an Assembly from the Database
To remove an assembly from the database, use the DROP ASSEMBLY command. The abridged syntax is
as follows:

DROP ASSEMBLY assembly_name [,...n]

The first argument is the name or comma delimited list of assembly names to be dropped from
the database. For example:

DROP ASSEMBLY ReadFiles

How It Works
This example demonstrated dropping an assembly. Any existing CLR object references (stored
procedure, for example) must be dropped prior to removing the assembly from the database. If you
don’t drop referencing objects first, you’ll see an error message like:

Msg 6590, Level 16, State 1, Line 1
DROP ASSEMBLY failed because 'ReadFiles' is referenced by object 'usp_FileReader'.

CHAPTER 13 ■ CLR INTEGRATION 353

570Xch13.qxd 11/4/05 2:35 PM Page 353

570Xch13.qxd 11/4/05 2:35 PM Page 354

XML

In this chapter, I’ll present recipes discussing and demonstrating the various integration points
between XML and SQL Server 2005. Before taking a look at what’s new (and there’s quite a bit that
is), we should take a quick look back at the XML integration that existed in SQL Server 2000.

SQL Server 2000 included two built-in XML commands:

• OPENXML, which allowed you to use Transact-SQL extensions and system-stored procedures
to load an XML document into the SQL Server memory space. The source XML document
was stored in a char, nchar, varchar, nvarchar, text, or ntext data type column. Once the
document was in memory, a relational rowset view could be made of the XML document.

• FOR XML, which allowed you to use Transact-SQL to output relational data into an XML
hierarchical format.

Shortly after SQL Server 2000 was released, Microsoft also began offering free downloads of
SQLXML (XML for SQL Server), which further extended interoperability between XML and SQL
Server 2000. Some of the SQLXML 3.0 features included a high-speed, bulk-load utility used to
import XML data into SQL Server- and SQLXML-managed classes which consisted of .NET objects
that allowed programmers to use XML technologies in order to query SQL Server. SQLXML also
included Internet Information Services (IIS) integration, allowing for queries against SQL Server
using predefined query templates, and direct URL SQL queries, which return XML data back to the
client. SQLXML also included Updategrams and Diffgrams. Updategrams allowed you to modify data
in SQL Server by using special XML tags in an XML message. Diffgrams were similar to Updategrams,
but could be generated automatically from an ADO.NET Dataset object.

Another free download that could be used either independently or in conjunction with SQL
Server 2000 was Microsoft XML Core Services (MSXML), which included an XML parser and an array
of other XML technologies.

Microsoft wanted to make XML more integrated with SQL Server 2000; however the only way to
do this post-ship date was to offer free add-on downloads. Also, XML data was not actually stored in
its native form in SQL Server 2000.

In SQL Server 2005, XML integration has taken a front seat, with several new features now built-in.
This chapter will cover these new features, including:

• Storing XML in SQL Server 2005 using the new xml data type.

• Applying constraints to the stored XML documents by using the new XML Schema Collection
database object.

• Modifying and retrieving data from the xml data type using XQuery and Microsoft-based
Transact-SQL extensions.

355

C H A P T E R 1 4

■ ■ ■

570Xch14.qxd 11/4/05 2:36 PM Page 355

CHAPTER 14 ■ XML356

• Improving query performance against the xml data type data by creating XML indexes.

• Covering OPENXML and FOR XML, which are still in use (with enhancements in SQL Server
2005).

Before diving into the specific enhancements and additions, in the next section I’ll give a brief
overview of XML and its related technologies (and there are many).

■Note The web service integration included in SQLXML can now be handled using SQL Server-hosted HTTP
endpoints, which are reviewed in Chapter 15.

XML and Related Technologies
XML stands for Extensible Markup Language and is used to create self-describing documents. XML
documents are transferred across the Internet, rendered via web pages, stored in files, and converted
to various file types. XML has been a widely adopted interface standard because of its easy-to-
understand, straightforward, text-based format. Because XML is easy to read, it is also easy to build
programs around it for use in exchanging or storing data. The format is flexible, allowing you to separate
the data from the presentation, as well as keep the data format platform-independent. For example,
in HTML, you’ll see tags that describe the page presentation intermingled with the data itself. In XML,
tags describe the data, and not the presentation of that data to a web browser.

XML, similar to HTML, makes use of tags. Unlike HTML, however, you define your own tags,
which are then used to describe the data instead of using pre-defined tags. Tags in HTML embed
formatting, whereas XML tags describe the data itself. For example, in HTML, the following block
means that the string Welcome is presented in bold characters:

Welcome

In XML, the tag doesn’t have a predefined meaning.
You’ll also hear XML tags referred to as elements (which is the term I’ll be using for the rest of

the chapter). Data is contained within elements and these elements assist with describing the data
held within. For example, the following open and close elements are used to self-describe the data
in between them:

<FirstName>David</FirstName>

In XML documents, you’ll also see the use of attributes. Attributes are normally used to further
describe elements, or provide additional information about elements. There are no fixed rules on
when to use attributes and elements for communicating information, but if an item needs to occur
multiple times, it must be an element, because each attribute can only occur once for a single ele-
ment.

Also, it is important to note that XML is not a programming language (and neither is HTML for
that matter). XML is a data format that presents data in a hierarchy, and not in a relational format.
To show how these two approaches are different, let’s look at an example. The following query
returns the result set in a relational format:

SELECT BookNM, ChapterNBR, ChapterNM
FROM dbo.RecipeChapter

570Xch14.qxd 11/4/05 2:36 PM Page 356

The results of this query are:

BookNM ChapterNBR ChapterNM
------------------------------ ----------- ---------------------------
SQL Server 2005 T-SQL Recipes 5 Indexes
SQL Server 2005 T-SQL Recipes 6 Full-text search
SQL Server 2005 T-SQL Recipes 7 Views
SQL Server 2005 T-SQL Recipes 8 SQL Server Functions
SQL Server 2005 T-SQL Recipes 9 Conditional processing...

Contrast this with the same results presented in a hierarchical XML document:

<Book name="SQL Server 2005 T-SQL Recipes">
<Chapters>
<Chapter chnbr="5" chname="Indexes"/>
<Chapter chnbr="6" chname="Full-text search"/>
<Chapter chnbr="7" chname="Views"/>
<Chapter chnbr="8" chname="SQL Server Functions"/>
<Chapter chnbr="9" chname="Conditional processing..."/>

</Chapters>
</Book>

This XML fragment is presented as a hierarchy. At the top of the hierarchy is the <Book> element,
which contains an attribute called name, which in turn describes the name of a specific book (“SQL
Server 2005 T-SQL Recipes”). Nesting just one level in is the <Chapters> element. In the inner-most
level of the hierarchy are the individual <Chapter> elements, each with self-describing attributes.

■Tip I’ve only briefly covered a couple of the components that make up an XML document. There are other syn-
tax rules that are required in order to make an XML document “well formed.” One of the best, free, online tutorials
on the subject can be found at the W3 Schools website, http://www.w3schools.com/xml/default.asp.

There are numerous technologies associated with XML, producing a plethora of “X” prefixed
acronyms. A detailed review of each of these technologies is outside the scope of this book; however
there are a few you should be aware of that are applicable to features reviewed in this chapter:

• XML Schema Definition Language. XML Schema Definition Language is written in XML and
is used to describe the valid format of a particular XML document. SQL Server 2005 intro-
duces the use of XML Schema Collections, which can be used to similarly constrain data
stored in native xml data type columns.

• XML Path Language (XPath). XPath is used to locate specific content and elements within an
XML document. XPath is the precursor to XQuery, which is not integrated into SQL Server 2005.

• XML Query Language (XQUERY): XML Query Language (XQuery) is based on XPath, and like
XPath, is also used to query XML data. SQL Server 2005 integrates a subset of this language
in order to allow querying of the native xml data type. This will be demonstrated later in the
chapter.

The next section discusses and demonstrates how to use the new SQL Server xml native data type.

CHAPTER 14 ■ XML 357

570Xch14.qxd 11/4/05 2:36 PM Page 357

Working with Native XML
In SQL Server 2000, if you wanted to store XML data within the database, you had to store it in
a character or binary format. This wasn’t too troublesome if you just used SQL Server for XML docu-
ment storage, but attempts to query or modify the stored document within SQL Server were not so
straightforward. The new SQL Server 2005 native xml data type helps address this issue.

Relational database designers may be concerned about this new data type, and rightly so. The
normalized database provides performance and data integrity benefits that put into question why
we would need to store XML documents in the first place. Having an xml data type allows you to have
your relational data stored alongside your hierarchical data. Microsoft isn’t suggesting that you run
your high-speed applications based on XML documents. Rather, you may find XML document stor-
age is useful when data must be “somewhat” structured. For example, let’s say your company’s website
offers an online contract. This contract is available over the web for your customer to fill out, and
then submit. The submitted data is stored in an xml data type. You might choose this because your
legal department changes the entries on the contract frequently, adding new fields and removing
others. These contracts are only filled out a few times a day, so performance and throughput isn’t an
issue.

Another good reason to use native xml data type is for “state” storage. For example, if your .NET
applications use XML configuration files, you can store them in a SQL Server 2005 database in order
to maintain a history of changes, and as a backup/recovery option.

These next few recipes will demonstrate xml data type columns in action.

Creating XML Data Type Columns
Native xml data types can be used as a data type for columns in a table, local variables, or parameters.
Data stored in the xml data type can contain an XML document or XML fragments. An XML fragment
is an XML instance without a single top-level element for the contents to nest in. Creating an XML
data type column is as easy as just using it in the table definition. For example, the ChapterDESC
column uses an XML data type in the following table:

CREATE TABLE dbo.Book
(BookID int IDENTITY(1,1) PRIMARY KEY,
ISBNNBR char(10) NOT NULL,
BookNM varchar(250) NOT NULL,
AuthorID int NOT NULL,
ChapterDESC XML NULL)

In this second example, a local variable called @Book is given an XML data type and is set to an
XML value (in the next recipe I’ll demonstrate how that value can be used):

DECLARE @Book XML

SET @Book =
CAST('<Book name="SQL Server 2000 Fast Answers">
<Chapters>
<Chapter id="1"> Installation, Upgrades... </Chapter>
<Chapter id="2"> Configuring SQL Server </Chapter>
<Chapter id="3"> Creating and Configuring Databases </Chapter>
<Chapter id="4"> SQL Server Agent and SQL Logs </Chapter>
</Chapters>
</Book>' as XML)

In the third example, an xml data type input parameter is used for a stored procedure:

CHAPTER 14 ■ XML358

570Xch14.qxd 11/4/05 2:36 PM Page 358

CREATE PROCEDURE dbo.usp_INS_Book
@ISBNNBR char(10),
@BookNM varchar(250),
@AuthorID int,
@ChapterDESC xml

AS

INSERT dbo.Book
(ISBNNBR, BookNM, AuthorID, ChapterDESC)
VALUES (@ISBNNBR, @BookNM, @AuthorID, @ChapterDESC)

GO

How It Works
This recipe demonstrated how to use the xml data type in the column definition of a table, a local
variable, and the input parameter for a stored procedure. The syntax is not different from what
you’d use with other SQL Server 2005 data types. The next recipe demonstrates how to INSERT XML
data into a table using Transact-SQL.

Inserting XML Data into a Column
In this recipe, I’ll demonstrate inserting an XML document into the table created in the previous
recipe. The INSERT command is used, and the XML document is embedded in single quotes (as
a string would be), but is also CAST explicitly into the xml data type:

INSERT dbo.Book
(ISBNNBR, BookNM, AuthorID, ChapterDESC)
VALUES ('570X000000',

'SQL Server 2005 T-SQL Recipes',
55,

CAST('<Book name="SQL Server 2005 T-SQL Recipes">
<Chapters>
<Chapter id="1"> SELECT </Chapter>
<Chapter id="2"> INSERT,UPDATE,DELETE </Chapter>
<Chapter id="3"> Transactions, Locking, Blocking, and Deadlocking </Chapter>
<Chapter id="4"> Tables </Chapter>
<Chapter id="5"> Indexes </Chapter>
<Chapter id="6"> Full-text search </Chapter>
</Chapters>
</Book>' as XML))

In this second example, a local variable called @Book is given an xml data type and is set to an
XML value. That value is then used in a table INSERT:

DECLARE @Book XML

SET @Book =
CAST('<Book name="SQL Server 2000 Fast Answers">
<Chapters>
<Chapter id="1"> Installation, Upgrades... </Chapter>
<Chapter id="2"> Configuring SQL Server </Chapter>
<Chapter id="3"> Creating and Configuring Databases </Chapter>
<Chapter id="4"> SQL Server Agent and SQL Logs </Chapter>
</Chapters>
</Book>' as XML)

CHAPTER 14 ■ XML 359

570Xch14.qxd 11/4/05 2:36 PM Page 359

INSERT dbo.Book
(ISBNNBR, BookNM, AuthorID, ChapterDESC)
VALUES ('1590591615',

'SQL Server 2000 Fast Answers',
55,
@Book)

How It Works
In both the INSERT examples, the XML data for the ChapterDESC column was converted explicitly to
xml using the CAST function and was checked by SQL Server to ensure that it was “well formed” (well
formed, in this case, means that it follows the general rules of an XML document). For example, if
the document fragment had been missing the closing </Book> element, the following error would
have been raised:

Msg 9400, Level 16, State 1, Line 1
XML parsing: line 9, character 12, unexpected end of input

The XML column defined in the example, however, was untyped. When an XML column is
untyped, it means that the contents inserted into the column are not validated against an XML
schema. An XML schema is used to define the allowed elements and attributes for an XML docu-
ment, and is discussed in the next recipe.

Validating XML Data Using Schemas
As I mentioned at the beginning of the chapter, an XML Schema (also referred to as XML Schema
Definition, or XSD) defines the elements, attributes, data types, and allowed values for an XML doc-
ument. Using CREATE XML SCHEMA COLLECTION, you can add XML Schema definitions to SQL Server
2005 and use them in constraining XML data type columns, local variables, or parameters.

■Tip For a review of XML Schema fundamentals, visit the World Wide Web Consortium W3C standards site at
http://www.w3.org/TR/XMLschema-0/.

The CREATE XML SCHEMA COLLECTION command is used to add new XML schemas, and uses the
following syntax:

CREATE XML SCHEMA COLLECTION [<relational_schema>.]sql_identifier
AS Expression

The command takes two arguments, the first being the unique name of the new XML Schema,
while the second is the body of the XML Schema or Schemas.

To add additional XML Schemas to an existing collection, you can use the ALTER XML SCHEMA
COLLECTION. The syntax is as follows:

ALTER XML SCHEMA COLLECTION [relational_schema.]sql_identifier
ADD 'Schema Component'

To remove the entire XML Schema collection from the database, use the DROP XML SCHEMA com-
mand. The syntax is as follows:

CHAPTER 14 ■ XML360

570Xch14.qxd 11/4/05 2:36 PM Page 360

DROP XML SCHEMA COLLECTION [relational_schema.]sql_identifier

The only argument for dropping an existing XML Schema collection is the name of the collection.
In this example, a new XML Schema collection is created called BookStoreCollection, which

contains a single XML Schema defined within:

CREATE XML SCHEMA COLLECTION BookStoreCollection
AS
N'<xsd:schema targetNamespace="http://JOEPROD/BookStore"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:sqltypes="http://schemas.microsoft.com/sqlserver
/2004/sqltypes" elementFormDefault="qualified">
<xsd:import namespace=
"http://schemas.microsoft.com/sqlserver/2004/sqltypes" />
<xsd:element name="Book">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="BookName" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="sqltypes:varchar">
<xsd:maxLength value="50" />

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="ChapterID" type="sqltypes:int"
minOccurs="0" />

<xsd:element name="ChapterNM" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="sqltypes:varchar">
<xsd:maxLength value="50" />

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>'

Once created, you can verify an XML Schema’s existence using the system catalog views
sys.XML_schema_collections and sys.XML_schema_namespaces. This first query shows all schema
collections defined in the database:

SELECT name
FROM sys.XML_schema_collections
ORDER BY create_date

This second query shows namespaces found in a specific XML Schema collection (namespaces
uniquely identify the scope of elements and attributes, helping uniquely identify these components):

SELECT n.name
FROM sys.XML_schema_namespaces n
INNER JOIN sys.XML_schema_collections c ON

c.XML_collection_id = n.XML_collection_id
WHERE c.name = 'BookStoreCollection'

CHAPTER 14 ■ XML 361

570Xch14.qxd 11/4/05 2:36 PM Page 361

This returns:

name

http://JOEPROD.com/BookStore

Once a schema collection is available, you can bind it to an XML column in a table by referenc-
ing it in parentheses after the data type definition. For example, the ChapterDESC column is bound
to the BookStoreCollection XML Schema collection:

CREATE TABLE dbo.BookInfoExport
(BookID int IDENTITY(1,1) PRIMARY KEY,
ISBNNBR char(10) NOT NULL,
BookNM varchar(250) NOT NULL,
AuthorID int NOT NULL,
ChapterDESC XML (BookStoreCollection) NULL)

This XML column will now only allow typed xml values (XML documents that conform to the
defined XML Schema collection). Attempting to assign XML values that do not conform with the
XSD specified for the column will raise an error (for example if expected elements or attributes are
missing). Using the keyword DOCUMENT or CONTENT with the schema collection reference lets you
determine whether the allowed XML will allow only a full XML document (DOCUMENT) or XML fragments
(CONTENT) instead.

For example, the following local variable requires a full XML document that conforms to the
XML Schema collection:

DECLARE @Book XML (DOCUMENT BookStoreCollection)

How It Works
This recipe provided a quick tour through the XML Schema functionality built into SQL Server 2005.
Using an XML Schema collection, you can validate and constrain the content of XML data within
the xml data type. Untyped XML data will still be validated for general XML structure, but by using
XML Schema collections you can apply more sophisticated validation and constraints.

Retrieving XML Data
The xml data type column can be queried using XQuery methods. XQuery is a query language that is
used to search XML documents. These XQuery methods described in Table 14-1 are integrated into
SQL Server 2005 and can be used in regular Transact-SQL queries.

Table 14-1. XQuery Methods

Method Description

exist Returns “1” for an XQuery expression when it evaluates to TRUE, otherwise it
returns “0” for FALSE.

nodes Shreds XML data to relational data, identifying nodes-to-row mapping.

query Returns XML results based on an XQuery expression.

value Returns a scalar SQL data type value based on an XQuery expression.

CHAPTER 14 ■ XML362

570Xch14.qxd 11/4/05 2:36 PM Page 362

■Tip For an in depth review of XQuery fundamentals, visit the World Wide Web Consortium W3C standards site at
http://www.w3.org/TR/xquery/.

To demonstrate each of these methods, a new table is created with an XML data type column
and three rows are inserted:

CREATE TABLE dbo.BookInvoice
(BookInvoiceID int IDENTITY(1,1) PRIMARY KEY,
BookInvoiceXML XML NOT NULL)
GO

INSERT dbo.BookInvoice
(BookInvoiceXML)
VALUES ('<BookInvoice invoicenumber="1" customerid="22" orderdate="7/1/2005">
<OrderItems>
<Item id="22" qty="1" name="SQL Fun in the Sun"/>
<Item id="24" qty="1" name="T-SQL Crossword Puzzles"/>
</OrderItems>
</BookInvoice>')

INSERT dbo.BookInvoice
(BookInvoiceXML)
VALUES ('<BookInvoice invoicenumber="1" customerid="40" orderdate="7/11/2005">
<OrderItems>
<Item id="11" qty="1" name="MCDBA Cliff Notes"/>
</OrderItems>
</BookInvoice>')

INSERT dbo.BookInvoice
(BookInvoiceXML)
VALUES ('<BookInvoice invoicenumber="1" customerid="9" orderdate="7/22/2005">
<OrderItems>
<Item id="11" qty="1" name="MCDBA Cliff Notes"/>
<Item id="24" qty="1" name="T-SQL Crossword Puzzles"/>
</OrderItems>
</BookInvoice>')

In the first example, the exists method is used to find all rows from the table for purchases of
the item with an ID of “11”:

SELECT BookInvoiceID
FROM dbo.BookInvoice
WHERE BookInvoiceXML.exist
('/BookInvoice/OrderItems/Item[@id=11]') = 1

This returns:

BookInvoiceID
2
3

This next example demonstrates the nodes method, which shreds a document into a relational
rowset. A local variable is used to populate a single XML document from the BookInvoice table,
which is then referenced using the nodes method:

CHAPTER 14 ■ XML 363

570Xch14.qxd 11/4/05 2:36 PM Page 363

DECLARE @BookInvoiceXML XML

SELECT @BookInvoiceXML = BookInvoiceXML
FROM dbo.BookInvoice
WHERE BookInvoiceID = 2

SELECT BookID.value('@id','integer') BookID
FROM @BookInvoiceXML.nodes('/BookInvoice/OrderItems/Item')
AS BookTable(BookID)

The last query returns the item ID values in the virtual BookTable table:

BookID

11

The next example demonstrates the query method, which is used to return the two item elements
for a specific XML document:

DECLARE @BookInvoiceXML XML

SELECT @BookInvoiceXML = BookInvoiceXML
FROM dbo.BookInvoice
WHERE BookInvoiceID = 2

SELECT @BookInvoiceXML.query('/BookInvoice/OrderItems/Item')

This returns:

<Item id="11" qty="1" name="MCDBA Cliff Notes" />

The last example of this recipe demonstrates the value method, which is used to find the distinct
book names from the first and second items within the BookInvoiceXML XML column:

SELECT DISTINCT
BookInvoiceXML.value
('(/BookInvoice/OrderItems/Item/@name)[1]', 'varchar(30)') as BookTitles
FROM dbo.BookInvoice
UNION
SELECT DISTINCT
BookInvoiceXML.value
('(/BookInvoice/OrderItems/Item/@name)[2]', 'varchar(30)')
FROM dbo.BookInvoice

Two result sets were combined together using UNION, as two levels of the
/BookInvoice/OrderItems/Item node were explored in two separate queries (the NULL value is from
the stored XML fragment that only had a single item):

BookTitles
NULL
MCDBA Cliff Notes
SQL Fun in the Sun
T-SQL Crossword Puzzles

CHAPTER 14 ■ XML364

570Xch14.qxd 11/4/05 2:36 PM Page 364

How It Works
XQuery methods enable you to query and modify data within an XML data type. Most of the examples
in this recipe used a similar format of XMLColumn.MethodName.

For example the exist method was used on the BookInvoiceXML XML column to show items
with an ID of 11. The XQuery expression followed the method name in parentheses:

BookInvoiceXML.exist ('/BookInvoice/OrderItems/Item[@id=11]') = 1

The query method used a simple XQuery expression in order to return item elements in the
results:

@BookInvoiceXML.query('/BookInvoice/OrderItems/Item')

The value method included the XQuery expression that returns a scalar value for each row,
defined by the data type in the second parameter:

BookInvoiceXML.value
('(/BookInvoice/OrderItems/Item/@name)[2]', 'varchar(30)')

The nodes function example included an XQuery expression to define the results to return in
a shredded format, followed by the name of the new result table and column name in parentheses:

@BookInvoiceXML.nodes('/BookInvoice/OrderItems/Item')
AS BookTable(BookID)

Modifying XML Data
The xml data type column can be modified using the new modify method in conjunction with UPDATE,
allowing you to insert, update, or delete an XML node in the xml data type column.

This example demonstrates the modify method by inserting a new item into an existing XML
document (specifically, a new item into the /BookInvoice/OrderItems node):

UPDATE dbo.BookInvoice
SET BookInvoiceXML.modify
('insert <Item id="920" qty="1" name="SQL Server 2005 T-SQL Recipes"/>
into (/BookInvoice/OrderItems)[1]')
WHERE BookInvoiceID = 2

Checking the BookInvoice XML document for this row confirms that the new item was added:

<BookInvoice invoicenumber="1" customerid="40" orderdate="7/11/2005">
<OrderItems>
<Item id="11" qty="1" name="MCDBA Cliff Notes" />
<Item id="920" qty="1" name="SQL Server 2005 T-SQL Recipes" />

</OrderItems>
</BookInvoice>

How It Works
The modify function also used the XMLColumn.MethodName format, and used an XQuery insert expres-
sion in parentheses to insert a new item element into an existing document:

BookInvoice.modify
('insert <Item id="920" qty="1" name="SQL Server 2005 T-SQL Recipes"/>
into (/BookInvoice/OrderItems)[1]')

CHAPTER 14 ■ XML 365

570Xch14.qxd 11/4/05 2:36 PM Page 365

The insert command is used to add a new item element is an extension to the XQuery language
and is called XML DML. Other XML DML commands include the replace statement, used to update
XML data, and the delete statement, used to remove a node from an XML document or fragment.

Using XML Indexes
You can improve performance of queries against XML data type columns by using XML indexes. To
create an XML index, the table must first already have a clustered index defined on the primary key
of the table.

XML columns can only have one primary XML index defined, and then up to three secondary
indexes (of different types described below). The CREATE INDEX command is used to define XML
indexes. The syntax is as follows:

CREATE [PRIMARY] XML INDEX index_name
ON <object> (XML_column_name)

[USING XML INDEX XML_index_name
[FOR { VALUE | PATH | PROPERTY }]
[WITH (PAD_INDEX = { ON | OFF }
| FILLFACTOR = fillfactor
| SORT_IN_TEMPDB = { ON | OFF }
| STATISTICS_NORECOMPUTE = { ON | OFF }
| DROP_EXISTING = { ON | OFF }
| ALLOW_ROW_LOCKS = { ON | OFF }
| ALLOW_PAGE_LOCKS = { ON | OFF }
| MAXDOP = max_degree_of_parallelism
)]

Creating an index for an XML column uses several of the same arguments as a regular table
index (see Chapter 5 for more information). The XML-specific arguments of this command are
described in Table 14-2.

Table 14-2. CREATE XML INDEX Arguments

Argument Description

object The name of the table the index is being added to.

XML_column_name The name of the XML data type column.

XML_index_name The unique name of the XML index.

VALUE | PATH | PROPERTY These are arguments for secondary indexes only and relate to
XQuery optimization. A VALUE secondary index is used for indexing
based on imprecise paths. A PATH secondary index is used for
indexing via a path and value. A PROPERTY secondary index is used
for indexing based on a querying node values based on a path.

In this first example, a primary XML index is created on an XML data type column:

CREATE PRIMARY XML INDEX idx_XML_Primary_Book_ChapterDESC
ON dbo.Book(ChapterDESC)

GO

Next, a secondary VALUE index is created on the same xml column, but with a different name.
The USING clause is added for secondary indexes, specifying in the FOR clause that the xml data type
column be given a VALUE index in addition to the existing primary index:

CREATE XML INDEX idx_XML_Value_Book_ChapterDESC
ON dbo.Book(ChapterDESC)

CHAPTER 14 ■ XML366

570Xch14.qxd 11/4/05 2:36 PM Page 366

USING XML INDEX idx_XML_Primary_Book_ChapterDESC
FOR VALUE
GO

You can use the sys.XML_indexes system catalog view to view the XML indexes used in a data-
base. In this query, all XML indexes are listed for a specific table:

SELECT name, secondary_type_desc
FROM sys.XML_indexes
WHERE object_id = OBJECT_ID('dbo.Book')

This query returns the name of the XML indexes, and if the index is a secondary index, the
type:

name secondary_type_desc
------------------------- --
idx_XML_Primary_Book_Chap NULL
idx_XML_Value_Book_Chapte VALUE

Once created, XML indexes can be modified or removed just like regular indexes using the
ALTER INDEX and DROP INDEX commands.

How It Works
Because XML documents can store up to 2GB for a single column and row, query performance can
suffer when you are trying to query the data stored in the XML column. Make use of XML indexes if
you plan on frequently querying XML data type data. Indexing xml data types internally persists the
tabular form of the XML data, allowing for more efficient querying of hierarchical data.

XML indexes may look a little odd at first because you are adding secondary indexes to the same
xml data type column. Adding the different types of secondary indexes helps benefit performance,
based on the different types of XQuery queries you plan to execute. All in all you can have up to four
indexes on a single xml data type column: one primary and three secondary. A primary XML index
must be created prior to being able to create secondary indexes. A secondary PATH index is used to
enhance performance for queries that specify a path and value from the xml column using XQuery.
A secondary PROPERTY index is used to enhance performance of queries that retrieve specific node
values by specifying a path using XQuery. The secondary VALUE index is used to enhance performance
of queries that retrieve data using an imprecise path.

Converting Between XML Documents and
Relational Data
In the next recipe, I’ll demonstrate how to convert relational data sets into a hierarchical XML format
using FOR XML. After that, in the final recipe of the chapter I’ll demonstrate how to use OPENXML to
convert an XML format into a relational data set.

CHAPTER 14 ■ XML 367

570Xch14.qxd 11/4/05 2:36 PM Page 367

Using FOR XML
Introduced in SQL Server 2000, FOR XML extends a SELECT statement by returning the relational query
results in an XML format. FOR XML operates in four different modes: RAW, AUTO, EXPLICIT, and PATH.

In RAW mode, a single row element is generated for each row in the result set, with each column
in the result converted to an attribute within the element.

The syntax for using RAW mode is as follows:

FOR XML { RAW [('ElementName')] }
[[, BINARY BASE64] [, TYPE]
[, ROOT [('RootName')]]
[, { XMLDATA | XMLSCHEMA
[('TargetNameSpaceURI')]}]
[, ELEMENTS [XSINIL | ABSENT]]

The arguments of this command are described in Table 14-3.

Table 14-3. FOR XML Arguments

Argument Description

('ElementName') Using ElementName, you can either explicitly define
the element name instead of using the generic “row”
name.

BINARY BASE64 When this option is selected, binary data is returned
using Base64-encoded format.

TYPE When TYPE is designated, the query returns results in
the XML data type.

ROOT [('RootName')] Specifies the top-level element for the XML results.

XMLDATA When XMLDATA is used, XML-Data Reduced (XDR)
schema is returned.

XMLSCHEMA [('TargetNameSpaceURI')] When XMLSCHEMA is used, XSD in-line schema is
returned with the data results. You can also designate
an optional target namespace URI (Uniform
Resource Identifier).

ELEMENTS When ELEMENTS is used, columns are returned as
sub-elements.

XSINIL In conjunction with ELEMENTS, empty elements are
returned for NULL values.

ABSENT Specifies that in conjunction with ELEMENTS, elements
are not created for NULL values (this behavior is the
default).

In this example, FOR XML RAW is used to return the results of the HumanResources.Shift table in
an XML format. The TYPE option is used to return the results in the XML data type, and ROOT is used
to define a top-level element where the results will be nested:

SELECT ShiftID, Name
FROM HumanResources.Shift
FOR XML RAW('Shift'), ROOT('Shifts'), TYPE

CHAPTER 14 ■ XML368

570Xch14.qxd 11/4/05 2:36 PM Page 368

This returns:

<Shifts>
<Shift ShiftID="1" Name="Day" />
<Shift ShiftID="2" Name="Evening" />
<Shift ShiftID="3" Name="Night" />

</Shifts>

The FOR XML AUTO mode creates XML elements in the results of a SELECT statement, and also
automatically nests the data, based on the columns in the SELECT clause. AUTO shares the same options
as RAW.

In this example, Employee, Shift, and Department information is queried from AdventureWorks—
with XML AUTO automatically arranging the hierarchy of the results:

SELECT TOP 3 EmployeeID,
Shift.Name,
Department.Name

FROM HumanResources.EmployeeDepartmentHistory Employee
INNER JOIN HumanResources.Shift Shift ON

Employee.ShiftID = Shift.ShiftID
INNER JOIN HumanResources.Department Department ON

Employee.DepartmentID = Department.DepartmentID
ORDER BY EmployeeID
FOR XML AUTO, TYPE

This returns:

<Employee EmployeeID="1">
<Shift Name="Day">

<Department Name="Production" />
</Shift>

</Employee>
<Employee EmployeeID="2">

<Shift Name="Day">
<Department Name="Marketing" />

</Shift>
</Employee>
<Employee EmployeeID="3">

<Shift Name="Day">
<Department Name="Engineering" />

</Shift>
</Employee>

Notice that the third INNER JOIN caused the values from the Department table to be children of
the Shift table’s values. The Shift element was then included as a child of the Employee element.
Rearranging the order of the columns in the SELECT clause, however, impacts how the hierarchy is
returned. For example:

SELECT TOP 3
Shift.Name,
Department.Name,
EmployeeID

FROM HumanResources.EmployeeDepartmentHistory Employee
INNER JOIN HumanResources.Shift Shift ON

Employee.ShiftID = Shift.ShiftID

CHAPTER 14 ■ XML 369

570Xch14.qxd 11/4/05 2:36 PM Page 369

INNER JOIN HumanResources.Department Department ON
Employee.DepartmentID = Department.DepartmentID

ORDER BY Shift.Name, Department.Name, EmployeeID
FOR XML AUTO, TYPE

This time the top of the hierarchy is the Shift, with the child element of Department, and
Employees children of the Department elements:

<Shift Name="Day">
<Department Name="Document Control">

<Employee EmployeeID="90" />
<Employee EmployeeID="127" />
<Employee EmployeeID="161" />

</Department>
</Shift>

The FOR XML EXPLICIT mode allows you more control over the XML results, letting you define
whether columns are assigned to elements or attributes. The syntax for this is as follows:

EXPLICIT
[, BINARY BASE64] [, TYPE] [, ROOT [('RootName')]
[, XMLDATA]]

The EXPLICIT parameters have the same use and meaning as for RAW and AUTO, however EXPLICIT
also makes use of directives which are used to define the resulting elements and attributes. For
example, the following query displays the VendorID and CreditRating columns as attributes, and the
VendorName column as an element. The column is defined after the column alias using an element
name, tag number, attribute, and directive:

SELECT TOP 3
1 AS Tag,
NULL AS Parent,
VendorID AS [Vendor!1!VendorID],
Name AS [Vendor!1!VendorName!ELEMENT],
CreditRating AS [Vendor!1!CreditRating]

FROM Purchasing.Vendor
ORDER BY CreditRating
FOR XML EXPLICIT, TYPE

This returns:

<Vendor VendorID="4" CreditRating="1">
<VendorName>Comfort Road Bicycles</VendorName>

</Vendor>
<Vendor VendorID="3" CreditRating="1">

<VendorName>Premier Sport, Inc.</VendorName>
</Vendor>
<Vendor VendorID="2" CreditRating="1">

<VendorName>Electronic Bike Repair & Supplies</VendorName>
</Vendor>

The Tag column is required in EXPLICIT mode in order to produce the XML document output,
and it returns an integer data type value for each element in the rowset. The Parent column alias is
also required, providing the hierarchical information about any parent elements (in the previous
query, there was no parent, so the value was NULL).

CHAPTER 14 ■ XML370

570Xch14.qxd 11/4/05 2:36 PM Page 370

The TYPE directive in the FOR XML clause of the previous query was used to return the results as
a true SQL Server 2005 native xml data type, allowing you to store the results in XML or query it using
XQuery.

Next, the FOR XML PATH option defines column names and aliases as XPath expressions. As
I mentioned at the beginning of this chapter, XPath is a language used for searching data within an
XML document.

■Tip For information on XPath, visit the World Wide Web Consortium W3C standards site at
http://www.w3.org/TR/xpath.

The syntax for using FOR XML PATH is as follows:

PATH [('ElementName')]
[[, BINARY BASE64] [, TYPE] [, ROOT [('RootName')]]
[, ELEMENTS [XSINIL | ABSENT]] }

FOR XML PATH uses some of the same arguments and keywords as other FOR XML variations.
Where it differs, however, is in the SELECT clause, where XPath syntax is used to define elements, sub
elements, attributes, and data values.

For example:

SELECT Name as "@Territory",
CountryRegionCode as "@Region",
SalesYTD

FROM Sales.SalesTerritory
WHERE SalesYTD > 6000000
ORDER BY SalesYTD DESC
FOR XML PATH('TerritorySales'), ROOT('CompanySales'), TYPE

This returns:

<CompanySales>
<TerritorySales Territory="Southwest" Region="US">

<SalesYTD>8351296.7411</SalesYTD>
</TerritorySales>
<TerritorySales Territory="Canada" Region="CA">

<SalesYTD>6917270.8842</SalesYTD>
</TerritorySales>

</CompanySales>

This query returned results with a root element of CompanySales and a sub element of
TerritorySales. The TerritorySales element was then attributed based on the territory and region
code (both prefaced with ampersands (@)in the SELECT clause). The SalesYTD, which was unmarked
with XPath directives, became a sub-element to TerritorySales.

How It Works
The FOR XML command is included at the end of a SELECT query in order to return data in an XML
format. The AUTO and RAW modes allow for a quick and semi-automated formatting of the results,
whereas EXPLICIT and PATH provide more control over the hierarchy of data and the assignment of
elements versus attributes. FOR XML PATH, on the other hand, is an easier alternative to EXPLICIT
mode for those developers who are more familiar with the XPath language.

CHAPTER 14 ■ XML 371

570Xch14.qxd 11/4/05 2:36 PM Page 371

The FOR XML options I demonstrated in this recipe were the most common variations you will
see when trying to create XML from a result set. Generating XML document fragments using FOR XML
eases the process of having to create the hierarchy using other manual methods in Transact-SQL.
Keep in mind that you always have the option of falling back on programmatic XML document
creation too (using .NET, for example).

Using OPENXML
Whereas FOR XML converts relational query results to an XML format, OPENXML converts XML format to
a relational form. To perform this conversion, the sp_XML_preparedocument system stored procedure
is used to create an internal pointer to the XML document, which is then used with OPENXML in order
to return the rowset data.

The syntax for the OPENXML command is as follows:

OPENXML(idoc ,rowpattern, flags)
[WITH (SchemaDeclaration | TableName)]

The arguments for this command are described in Table 14-4.

Table 14-4. OPENXML Arguments

Argument Description

idoc The internal representation of the XML document as
represented by the sp_XML_preparedocument system stored
procedure.

rowpattern The XPath pattern used to return nodes from the XML
document.

flags When the flag 0 is used, results default to attribute-centric
mappings.

When flag 1 is used, attribute-centric mapping is applied first,
and then element-centric mapping for columns that are not
processed.

Flag 2 uses element-centric mapping.

Flag 8 specifies that consumed data should not be copied to
the overflow property.

SchemaDeclaration | TableName SchemaDeclaration defines the output of the column name
(rowset name), column type (valid data type), column pattern
(optional XPath pattern), and optional meta data properties
(about the XML nodes). If Tablename is used instead, a table
must already exist for holding the rowset data.

In this example, an XML document is stored in a local variable and is then passed to a stored
procedure which uses OPENXML in order to convert it into a relational rowset. First, the stored proce-
dure is created:

CREATE PROCEDURE dbo.usp_SEL_BookXML_Convert_To_Relational
@XMLDoc xml

AS

DECLARE @docpointer int

CHAPTER 14 ■ XML372

570Xch14.qxd 11/4/05 2:36 PM Page 372

EXEC sp_XML_preparedocument @docpointer OUTPUT, @XMLdoc

SELECT Chapter, ChapterNM
FROM OPENXML (@docpointer, '/Book/Chapters/Chapter',0)

WITH (Chapter int '@id',
ChapterNM varchar(50) '@name')

GO

Next, a local xml data type variable is populated and sent to the new stored procedure:

DECLARE @XMLdoc XML
SET @XMLdoc =
'<Book name="SQL Server 2000 Fast Answers">

<Chapters>
<Chapter id="1" name="Installation, Upgrades"/>
<Chapter id="2" name="Configuring SQL Server"/>
<Chapter id="3" name="Creating and Configuring Databases"/>
<Chapter id="4" name="SQL Server Agent and SQL Logs"/>

</Chapters>
</Book>'

EXEC dbo.usp_SEL_BookXML_Convert_To_Relational @XMLdoc

This returns:

Chapter ChapterNM
----------- --
1 Installation, Upgrades
2 Configuring SQL Server
3 Creating and Configuring Databases
4 SQL Server Agent and SQL Logs

How It Works
The example started off by creating a stored procedure that would be used to convert an XML docu-
ment fragment into a relational data set. The procedure had a single input parameter defined of an
xml data type:

CREATE PROCEDURE dbo.usp_SEL_BookXML_Convert_To_Relational
@XMLDoc xml

AS

A local variable was declared for use as an output parameter in the sp_XML_preparedocument
system stored procedure to hold the value of the internal document pointer:

DECLARE @docpointer int

Next, the system stored procedure is called with the OUTPUT parameter and the second
argument being the input xml data type parameter:

EXEC sp_XML_preparedocument @docpointer OUTPUT, @XMLdoc

Next, a SELECT statement referenced the OPENXML function in the FROM clause, with the name of
the two columns to be returned in the results:

SELECT Chapter, ChapterNM
FROM OPENXML

CHAPTER 14 ■ XML 373

570Xch14.qxd 11/4/05 2:36 PM Page 373

The first argument in the OPENXML command was the internal pointer variable. The second
argument was the XPATH expression of the node to be used in the XML document. The third argu-
ment was the flag, which designated an attribute-centric mapping:

(@docpointer, '/Book/Chapters/Chapter',0)

The WITH clause defined the actual result output. Two columns were defined, one for the Chapter
and the other for the ChapterNM. The @id designated the id attribute to be mapped to the Chapter column
and the @name attribute mapped to the ChapterNM column:

WITH (Chapter int '@id',
ChapterNM varchar(50) '@name')

After creating the stored procedure, a local variable was then populated with an XML fragment,
and then passed to the stored procedure, returning two columns and four rows.

CHAPTER 14 ■ XML374

570Xch14.qxd 11/4/05 2:36 PM Page 374

Web Services

SQL Server 2005 introduces integrated native HTTP and SOAP (Simple Object Access Protocol)
support within the database engine. Web services, in a nutshell, are applications made accessible
via the Internet or intranet. Web services provide interfaces through HTTP and SOAP, allowing an
easy and common interface across varying technologies

For example, an ASP.NET or Java web application can both use a common web service to perform
activities such as retrieving data from a database, submitting an order, or other data-exchange tasks.
HTTP is a very common network protocol. SOAP is a language-independent XML-based protocol
used for communication between web services. SOAP is a message format which can be communi-
cated over HTTP.

For example, leading web site search companies make their search functionality available to
developers as a set of web services that can be accessed using SOAP. Developers can build calls to
the web services in their own applications, submitting search requests to the web services and
receiving results back from them in the form of structured data sets.

Using Transact-SQL, you can now create and manage your own custom database-oriented web
services in SQL Server. SQL Server 2005’s native HTTP support allows a developer to provide access
to your database over the internet. Using a web service, you can invoke Transact-SQL statements,
stored procedures, and user-defined functions. Native HTTP support in SQL Server 2005 doesn’t
require the installation of other web applications, such as Internet Information Services (IIS) on the
SQL Server machine. SQL Server processes HTTP itself, and communicates its available web services
to potential callers using a specific set of XML messages called WSDL (Web Services Description
Language).

In this chapter, I’ll take you through the creation of a SQL Server 2005 web service using an
HTTP endpoint, and then I’ll show you how to create a simple .NET Web application to consume
the data from it.

■Note Endpoints are also used in creating Database Mirroring sessions and Service Broker processing. For more
information on this, see Chapters 20 and 25.

Web Service Technologies
Before launching into the specific steps needed to establish a SQL Server 2005 hosted web service,
I’ll elaborate a little more about exactly what a web service is and the technologies that are commonly
used in conjunction with it.

375

C H A P T E R 1 5

■ ■ ■

570Xch15.qxd 11/4/05 2:42 PM Page 375

CHAPTER 15 ■ WEB SERVICES376

Web services allow for the creation of distributed applications. Specifically, web services can be
built to expose data and perform programmatic actions—all triggered in response to calls from
a remote application. This calling application can be another web site, desktop application, or Windows
service (to name a few). The application can exist on non-Windows operating systems and be built
using non-Microsoft programming languages. The only requirement is that the caller of the web service
be able to communicate using HTTP, XML, and SOAP. Given the broad exposure to both these protocols
and formats, your web service can have a much wider audience than it would, had your web service
application been written for proprietary software instead. The main benefit for distributed applica-
tions is that these applications can access and utilize a significant amount of functionality without
having to house, store, maintain, or synchronize large amounts of data and code on a single applica-
tion server. Instead, the application code can develop lightweight interfaces to consume and serve
one or more web services to the end-user or process.

When we get into the realm of web and XML technologies, the large number of acronyms can be
intimidating to the uninitiated SQL Server professional. Table 15-1 reviews some of the major tech-
nologies used in conjunction with XML and web services. Some of these terms were also referenced
in Chapter 14.

Table 15-1. Web and XML Technologies

Term Description

XML XML stands for Extensible Markup Language, and is used to create self-describing
documents. XML documents are transferred across the Internet, rendered via web
pages, stored in files, and converted to various file types.

HTTP Something that most people are quite familiar with, but is included here nonetheless,
HTTP stands for Hypertext Transfer Protocol and is the main protocol used for the
World Wide Web to transfer HTML documents.

SOAP SOAP stands for Simple Object Access Protocol, and is a message protocol used for
communicating with web services. The message is actually an XML document that
contains a specific body and header. Messages are sent from the sending application
to the web service using HTTP.

WSDL WSDL stands for Web Services Description Language, and is used to describe web
services provided by a specific machine. A .NET application, for example, can use
a WSDL document to determine the web services that are available and the
functionality that they expose.

Clear Port This refers to unencrypted transmission of information over the Internet. When
setting up your web service endpoint, you’ll have the choice of using a clear port
(no encryption) or SSL (described next). Clear port communication uses the “http”
URL prefix.

SSL SSL stands for Secure Sockets Layer, and is used to transmit private information
over the Internet. SSL configuration on your server requires the procurement of an
SSL certificate, which is installed on the server and then used to encrypt the data.
SSL requires the use of the “https” URL prefix.

Endpoint An endpoint in SQL Server 2005 is a service that listens in on either a clear or SSL
port external request. Specifically, this chapter discusses using endpoints with the
SOAP payload (message) over the HTTP protocol (communication and transport
method). An endpoint listens in on a specific port (either a clear or SSL), and
responds according to the web service functionality and the client request.

In the next section, I’ll go into more detail on how to create and manage HTTP endpoints.

570Xch15.qxd 11/4/05 2:42 PM Page 376

CHAPTER 15 ■ WEB SERVICES 377

HTTP Endpoints
In order to use SQL Server 2005’s web service functionality, you need to first create an HTTP endpoint.
An HTTP endpoint is a service that listens for requests on the SQL Server 2005 machine. Internet
Information Services (IIS) and other web application server products are often used to host web
services. In SQL Server 2005, however, IIS doesn’t need to be installed on the SQL Server 2005 machine
because an HTTP endpoint registers with the Windows 2003 operating system’s HTTP listener process
(called Http.sys). The CREATE ENDPOINT command reserves the listener port and defines the methods
that will be exposed in the web service.

The syntax for creating an HTTP endpoint can be broken down into two parts (and when first
encountering the full syntax of this command, probably should be broken down for clarity’s sake).
The first part of the CREATE ENDPOINT syntax defines the HTTP settings:

CREATE ENDPOINT endPointName [AUTHORIZATION login]
STATE = { STARTED | STOPPED | DISABLED }
AS HTTP (
PATH = 'url'
, AUTHENTICATION =({ BASIC | DIGEST | INTEGRATED |
NTLM | KERBEROS } [,...n])

, PORTS = ({ CLEAR | SSL} [,... n])
[SITE = {'*' | '+' | 'webSite' },]
[, CLEAR_PORT = clearPort]
[, SSL_PORT = SSLPort]
[, AUTH_REALM = { 'realm' | NONE }]
[, DEFAULT_LOGON_DOMAIN = { 'domain' | NONE }]
[, COMPRESSION = { ENABLED | DISABLED }]
)

)

The starting state of the endpoint is defined right after the definition of the endpoint name and
login. The actual web site and path configurations are then configured after the AS HTTP keywords.
The arguments of the first part of this command are described in Table 15-2.

Table 15-2. CREATE ENDPOINT Arguments

Argument Description

endPointName The name of the new endpoint.

login The Windows or SQL Server login that owns the endpoint,
defaulting to the caller of this command.

STATE = The endpoint’s state, once it is created, with STOPPED as
{ STARTED | STOPPED | DISABLED } the default, which means that the endpoint is listening to

requests, but returns errors to clients. STARTED means the
endpoint is started and listening for connections, and
DISABLED means the server is neither listening to the endpoint
nor responding to requests.

PATH = 'url' The URL path that the application client sends HTTP SOAP
requests to.

AUTHENTICATION = This option defines how endpoint users connect to SQL
({ Server.
BASIC | DIGEST | INTEGRATED |
NTLM | KERBEROS } [,...n])

PORTS = This option specifies the listening port. CLEAR is used for
({ CLEAR | SSL} [,... n]) HTTP requests. SSL assumes a secure, https:// request.

(Continued)

570Xch15.qxd 11/4/05 2:42 PM Page 377

CHAPTER 15 ■ WEB SERVICES378

Table 15-2. Continued

Argument Description

SITE = This option defines the name of the host computer. The
{'*' | '+' | 'webSite' }, * (asterisk) directs the command to use the default host

computer name(s). The + (plus sign) directs the endpoint
to listen for all possible host names. webSite is the specific
host name to listen for.

CLEAR_PORT = clearPort The clear port number, which by default is port 80.

SSL_PORT = SSLPort The SSL port number, which by default is port 443.

AUTH_REALM = Used in conjunction with DIGEST authentication, this
{ 'realm' | NONE } returns a hint to the client.

DEFAULT_LOGON_DOMAIN = Used in conjunction with BASIC authentication, specifying
{ 'domain' | NONE } the default login domain.

COMPRESSION = When enabled, SQL Server responds to gzip requests,
{ ENABLED | DISABLED } returning compressed responses.

The second part of the CREATE ENDPOINT command syntax for creating an HTTP endpoint
follows after the FOR SOAP keywords:

FOR SOAP(
[{ WEBMETHOD ['namespace' .] 'method_alias'
(NAME = 'database.owner.name'
[, SCHEMA = { NONE | STANDARD | DEFAULT }]
[, FORMAT = { ALL_RESULTS | ROWSETS_ONLY }]

)
} [,...n]]
[BATCHES = { ENABLED | DISABLED }]
[, WSDL = { NONE | DEFAULT | 'sp_name' }]
[, SESSIONS = { ENABLED | DISABLED }]
[, LOGIN_TYPE = { MIXED | WINDOWS }]
[, SESSION_TIMEOUT = timeoutInterval | NEVER]
[, DATABASE = { 'database_name' | DEFAULT }
[, NAMESPACE = { 'namespace' | DEFAULT }]
[, SCHEMA = { NONE | STANDARD }]
[, CHARACTER_SET = { SQL | XML }]
[, HEADER_LIMIT = int]

The arguments of this command are described in Table 15-3.

Table 15-3. FOR SOAP Arguments

Argument Description

WEBMETHOD ['namespace' .] 'method_alias' This is the unique method name to be exposed in
the HTTP SOAP request. You can define multiple
methods for a single endpoint.

(NAME = 'database.owner.name' The three-part name of the stored procedure or
user-defined function for the method.

SCHEMA = { NONE | STANDARD | DEFAULT } When STANDARD is specified, XSD schema is not
returned with the SOAP results. When NONE is
specified, the web method is omitted from the
schema. When DEFAULT is designated, the SCHEMA
option setting defaults to the SCHEMA argument
(see later on in this table).

570Xch15.qxd 11/4/05 2:42 PM Page 378

CHAPTER 15 ■ WEB SERVICES 379

Argument Description

FORMAT = { ALL_RESULTS | ROWSETS_ONLY } When ALL_RESULTS is designated, the result set,
row count, and any error messages or warnings
are returned in the SOAP response to an application
call. When ROWSETS_ONLY is designated, only the
result set is returned.

BATCHES = { ENABLED | DISABLED } When ENABLED, SQL Server allows ad hoc Transact-
SQL sqlbatch methods (this option is DISABLED
by default).

WSDL = { NONE | DEFAULT | 'sp_name' } Disabled by default, this option determines
whether aWSDL document is created automatically
for an endpoint. If NONE, a document is not created.
If DEFAULT, a system-stored procedure creates the
WSDL automatically. Otherwise, you can designate
a specific stored procedure name.

SESSIONS = { ENABLED | DISABLED } When ENABLED, SOAP request/response message
pairs can be grouped as a part of a single SOAP
session (this option is DISABLED by default).

LOGIN_TYPE = { MIXED | WINDOWS } Specifies the SQL Server authentication mode
(WINDOWS is the default).

SESSION_TIMEOUT = timeoutInterval | NEVER The number of seconds before the SOAP session
expires after a period of request inactivity.

DATABASE = { 'database_name' | DEFAULT } The database context of the method. DEFAULT
uses the login’s default database.

NAMESPACE = { 'namespace' | DEFAULT } The namespace of the endpoint, with
http://tempuri.org as the default.

SCHEMA = { NONE | STANDARD } If STANDARD, an XSD schema is returned with the
results of the method. Otherwise NONE means the
XSD schema is not returned.

CHARACTER_SET = { SQL | XML } This option defines how invalid characters are
handled in XML. The SQL option escapes invalid
XML characters from parsing. For example “<”
becomes “<”.

HEADER_LIMIT = int Defines the maximum byte size of the SOAP
header, with a default value of 8192 bytes.

Creating an HTTP Endpoint
In this recipe, I’ll create a stored procedure that will be used as a method in a web service. The fol-
lowing stored procedure returns special offer discount information for products:

CREATE PROCEDURE dbo.usp_SEL_SpecialOffer
AS

SELECT p.Name,
o.Description,
o.StartDate,
o.EndDate,
o.MinQty,
o.MaxQty

FROM Sales.SpecialOffer o
INNER JOIN Sales.SpecialOfferProduct op ON

o.SpecialOfferID = op.SpecialOfferID

570Xch15.qxd 11/4/05 2:42 PM Page 379

CHAPTER 15 ■ WEB SERVICES380

INNER JOIN Production.Product p ON
op.ProductID = p.ProductID

WHERE Description NOT IN ('No Discount')
ORDER BY p.Name

GO

Next, an HTTP endpoint will be created that uses the usp_SEL_SpecialOffer stored procedure
as a web method:

CREATE ENDPOINT AW_SpecialOffers
STATE = STARTED

AS HTTP
(

PATH = '/ProductOffers',
AUTHENTICATION = (INTEGRATED),
PORTS = (CLEAR),
SITE = 'JOEPROD'

)
FOR SOAP
(

WEBMETHOD 'ProductSpecialOffer'
(NAME='AdventureWorks.dbo.usp_SEL_SpecialOffer'),

WSDL = DEFAULT,
DATABASE = 'AdventureWorks',
NAMESPACE = DEFAULT

)

Once the HTTP endpoint is created, it can then be accessed using an external programmatic
client. At the end of this chapter, I’ll demonstrate how to do this using a simple VB.NET application.
In the meantime, once the endpoint is created, you can view information about its current status by
querying the sys.endpoints system catalog view:

SELECT endpoint_id, protocol_desc, type_desc, state_desc
FROM sys.endpoints
WHERE name = 'AW_SpecialOffers'

This returns:

endpoint_id protocol_desc type_desc state_desc
----------- -------------- ----------- ---------------------
65538 HTTP SOAP STARTED

The sys.http_endpoints system catalog view can be queried for information on the HTTP set-
tings (for settings configured in the AS HTTP section of the CREATE ENDPOINT command), such as the
path, port, and security settings:

SELECT site, url_path, clear_port, is_integrated_auth_enabled
FROM sys.http_endpoints
WHERE name = 'AW_SpecialOffers'

This returns:

site url_path clear_port is_integrated_auth_enabled
------------ ----------------- --------- ----------------------------
localhost /ProductOffers 80 1

570Xch15.qxd 11/4/05 2:42 PM Page 380

CHAPTER 15 ■ WEB SERVICES 381

The sys.soap_endpoints system catalog view can be queried for the SOAP configurations of an
endpoint (settings chosen in the FOR SOAP in the CREATE ENDPOINT command), for example the default
namespace, session timeout, and character set validation type:

SELECT default_namespace, session_timeout, is_xml_charset_enforced
FROM sys.soap_endpoints
WHERE name = 'AW_SpecialOffers'

This returns:

default_namespace session_timeout is_xml_charset_enforced
----------------------- ---------------- -----------------------------
http://tempuri.org 60 1

The sys.endpoint_webmethods system catalog view can be queried to see what web methods are
available from the specific endpoint, including the method name, database object associated to it,
and result format (this query joins sys.endpoints and sys.endpoint_webmethods on the endpoint_id):

SELECT method_alias, object_name
FROM sys.endpoint_webmethods w
INNER JOIN sys.endpoints e ON

w.endpoint_id = e.endpoint_id
WHERE e.name = 'AW_SpecialOffers'

This returns:

method_alias object_name
---------------------- ---
ProductSpecialOffer [AdventureWorks].[dbo].[usp_SEL_SpecialOffer]

How It Works
In this example, a stored procedure was created to return product “special offer” information. An
endpoint was then created using CREATE ENDPOINT. This endpoint can then be used as a web service,
providing data to external client applications (other web sites, .NET desktop applications, Java
applications).

The first line of code designated the name of the new endpoint, followed by the initial status of
the endpoint (in this case STARTED):

CREATE ENDPOINT AW_SpecialOffers
STATE = STARTED

The next code section defined the HTTP settings, including the path, method of authentication,
server port to use, and name of the web site:

AS HTTP
(

PATH = '/ProductOffers',
AUTHENTICATION = (INTEGRATED),
PORTS = (CLEAR),
SITE = 'JOEPROD'

)

The SOAP information (also referred to as the payload information) was defined in the FOR SOAP
section of the code. This included the name of the method, the stored procedure to be executed, and
the default database connection:

570Xch15.qxd 11/4/05 2:42 PM Page 381

CHAPTER 15 ■ WEB SERVICES382

FOR SOAP
(

WEBMETHOD 'ProductSpecialOffer'
(NAME='AdventureWorks.dbo.usp_SEL_SpecialOffer'),

WSDL = DEFAULT,
DATABASE = 'AdventureWorks',
NAMESPACE = DEFAULT

)

Once the endpoint was created and was in STARTED mode, it could be accessed by a web service
client application once security is defined for it (managing HTTP endpoint security is reviewed in
the next recipe). A simple .NET client used to consume this information will be demonstrated at the
end of the chapter.

Endpoint information was then queried in this example using sys.endpoints to view general
endpoint information, sys.http_endpoints to view the HTTP settings, sys.soap_endpoints to view
the SOAP configurations, and sys.endpoint_webmethods to view the methods defined for the specific
endpoint.

Managing HTTP Endpoint Security
In order to permit users to access the endpoint, security access must be granted both to the endpoint
itself and to any database objects exposed as methods within it. Securing the endpoint involves the
following steps:

• Creating the SQL Server login(s), whether Windows or SQL, which need to have access to the
endpoint. Grant the login(s) access.

• Mapping the login(s) to a user in the appropriate database (where the method database
objects are invoked).

• Granting the user execution permissions to the stored procedure and/or user-defined function
exposed as a method in the endpoint.

■Note This recipe touches on several security commands which are covered in more detail in Chapters 17 and 18.
These chapters will demonstrate the commands used within the example, including CREATE LOGIN, CREATE USER,
and GRANT.

In the first part of this example, a Windows login is created in SQL Server:

USE master
GO

CREATE LOGIN [JOEPROD\TestUser]
FROM WINDOWS
WITH DEFAULT_DATABASE=AdventureWorks
GO

Next, that login is mapped to a new database user in the AdventureWorks database:

USE AdventureWorks
GO
CREATE USER TestUser
FOR LOGIN [JOEPROD\TestUser]
GO

570Xch15.qxd 11/4/05 2:42 PM Page 382

CHAPTER 15 ■ WEB SERVICES 383

The database user TestUser is then granted execute permissions on the stored procedure used
in the web method definition of the HTTP endpoint:

USE AdventureWorks
GO
GRANT EXECUTE ON dbo.usp_SEL_SpecialOffer
TO TestUser
GO

Lastly, the login [JOEPROD\TestUser] is granted access to connect to the HTTP endpoint:

USE master
GO
GRANT CONNECT ON ENDPOINT:: AW_SpecialOffers
TO [JOEPROD\TestUser]

How It Works
This example used several commands that haven’t been reviewed yet, but will be reviewed in
Chapters 17 and 18. The key concepts to take away from this recipe are that in order to connect to
an endpoint you need a SQL Server login (Windows or SQL), and that login needs CONNECT permissions
on the endpoint. The login also needs to be mapped to a database user in the database containing the
method objects (stored procedure or user-defined functions). That database user must be granted
EXECUTE permissions on the objects used as web methods in the HTPP endpoint. For sysadmin
level connections, these steps may not be necessary, however for regular application access by
low-level permissions users, these security steps apply.

Modifying an HTTP Endpoint
Using ALTER ENDPOINT you can modify the settings and web methods of an existing endpoint. ALTER
ENDPOINT uses the same options that are available in CREATE ENDPOINT, and includes a few extra sub-
commands used for specific web method changes.

The general syntax for modifying endpoint configurations is as follows:

ALTER ENDPOINT endPointName
<endpoint_options>

AS HTTP
(<HTTP options>)

FOR SOAP
([ADD WEBMETHOD | ALTER WEBMETHOD | DROP WEBMETHOD]
['namespace' .] 'method_alias' (<web method options>)
)

The arguments for this command are described in Table 15-4.

Table 15-4. ALTER ENDPOINT Arguments

Argument Description

endPointName The name of the endpoint you want to modify.

endpoint options The endpoint options you want to modify (see CREATE
ENDPOINT). You should only reference options that will be
updated—remaining options not referenced in the command
will be left unchanged.

http options HTTP options to modify (see the AS HTTP clause in
CREATE ENDPOINT).

(Continued)

570Xch15.qxd 11/4/05 2:42 PM Page 383

CHAPTER 15 ■ WEB SERVICES384

Table 15-4. Continued

Argument Description

ADD WEBMETHOD | ALTER WEBMETHOD | Specify ADD WEBMETHOD to add a new web method to the
DROP WEBMETHOD endpoint, ALTER WEBMETHOD to modify web method options, or

DROP WEBMETHOD to remove a web method from the endpoint.

['namespace' .] 'method_alias' The name of the web method you want to add, alter, or drop.

web method options Web method options for the new or modified web method.

In this first example, the AW_SpecialOffers endpoint’s web site is changed from “JOEPROD” to
a new value:

-- HTTP change
ALTER ENDPOINT AW_SpecialOffers
AS HTTP
(SITE = 'TESTSRV')

In this second example, a new web method is added to an existing endpoint, referencing a stored
procedure in the AdventureWorks database. This allows you to add new functionality for use by appli-
cations that utilize the web service:

-- Add a new web method
ALTER ENDPOINT AW_SpecialOffers
FOR SOAP
(ADD WEBMETHOD 'TransactionHistory'
(name='AdventureWorks.dbo.usp_SEL_Production_TransactionHistory'))

In this third example, an endpoint is disabled (meaning that the server will neither listen to the
endpoint nor respond to requests):

-- Endpoint change
ALTER ENDPOINT AW_SpecialOffers
STATE = DISABLED

How It Works
ALTER ENDPOINT allows you to modify an existing endpoint and uses the same options that were config-
urable in CREATE ENDPOINT, letting you modify HTTP and SOAP settings, add web methods, modify
existing web methods, or drop web methods.

In the first example, changing the HTTP web site of an endpoint involved using the AS HTTP
keyword, followed by the new site name in parentheses:

ALTER ENDPOINT AW_SpecialOffers
AS HTTP
(SITE = 'TESTSRV')

The second recipe demonstrated adding a new web method to an existing endpoint. For this,
the keywords FOR SOAP followed the ALTER ENDPOINT and endpoint name. The ADD METHOD command
was put in parentheses, followed by the name of the new web method:

ALTER ENDPOINT AW_SpecialOffers
FOR SOAP
(ADD WEBMETHOD 'TransactionHistory'

Continued in parentheses after the web method name was the name of the database object
that will be invoked by the new web method (in this case a stored procedure in the AdventureWorks
database):

570Xch15.qxd 11/4/05 2:42 PM Page 384

CHAPTER 15 ■ WEB SERVICES 385

The third example demonstrated disabling an endpoint. Notice that no other keywords or
parentheses were needed—only the name of the endpoint, and the state assignment:

ALTER ENDPOINT AW_SpecialOffers
STATE = DISABLED

Removing an HTTP Endpoint
In this recipe, I demonstrate dropping an HTTP endpoint from the server. To do this, use the
DROP ENDPOINT command.

The syntax is as follows:

DROP ENDPOINT endPointName

The only argument for this command is the endpoint name to be dropped.
In this example, the endpoint is dropped from the SQL Server instance:

DROP ENDPOINT AW_SpecialOffers

How It Works
In this recipe’s example, the endpoint was dropped using the DROP ENDPOINT command:

DROP ENDPOINT AW_SpecialOffers

This command can be used to drop endpoints of all types, including those used for database
mirroring (see Chapter 25) and SQL Server Broker functionality (see Chapter 20).

Reserving Namespaces
After creating an endpoint, the namespace is only reserved by the endpoint while the SQL Server
2005 service is running. When the service is not running, there is a chance that this namespace can
be taken by other non-SQL Server processes on the same machine (however, as a best practice, SQL
Server 2005 should be on its own machine).

In order to reserve an HTTP namespace so that it cannot be used by a non-SQL Server process
(even when the SQL Server service is not running) you can use the sp_reserve_http_namespace system
stored procedure.

The syntax for this stored procedure is as follows:

sp_reserve_http_namespace N'<scheme>://<hostpart>:<port>/<RelativeURI>'

The arguments of this command are described in Table 15-5.

Table 15-5. sp_reserve_http_namespace Parameters

Argument Description

<scheme>:// The scheme is either HTTP or HTTPS (secure SSL site).

hostpart The host name or wildcard characters. * (asterisk) designates the default host
computer name(s). + (plus sign) directs the listening operation to listen for all
possible host names.

port The TCP port number.

RelativeURI The path that the application client uses to send HTTP SOAP requests.

570Xch15.qxd 11/4/05 2:42 PM Page 385

CHAPTER 15 ■ WEB SERVICES386

To remove a namespace reservation, use the sp_delete_http_namespace_reservation system
stored procedure. The syntax is as follows:

sp_delete_http_namespace_reservation N<scheme>://<hostpart>:<port>/<RelativeURI>'

The system stored procedure takes the same parameter information as sp_reserve_http_
namespace.

This first example demonstrates reserving a namespace:

EXEC sp_reserve_http_namespace N'http://JOEPROD:80/MyNewEndpoint'

This returns:

Command(s) completed successfully.

This second example demonstrates removing the reserved namespace:

EXEC sp_delete_http_namespace_reservation N'http://JOEPROD:80/MyNewEndpoint'

This returns:

The reservation for the HTTP namespace (http://JOEPROD:80/MyNewEndpoint) has been
deleted. If there are any endpoints associated with this namespace, they will continue to
receive and process requests until the server is restarted.

How It Works
This recipe reviewed how to reserve a namespace for SQL Server, even when the SQL Server
instance isn’t running. Removing a reservation was also reviewed. Both system stored procedures
use a syntax of the procedure name, followed by the namespace information to reserve. This tech-
nique is useful if the SQL Server instance is being shared with other applications such, as IIS.

■Tip As a best practice, however, the SQL Server instance should be completely “dedicated,” meaning that no
other major applications are running on the operating system. This is because SQL Server can require significant
resources (such as memory), and other applications may force SQL Server to compete for resources.

570Xch15.qxd 11/4/05 2:42 PM Page 386

CHAPTER 15 ■ WEB SERVICES 387

Figure 15-1. Add Web Reference dialog box

Creating a .NET Client That Uses a Web Service
The bulk of this chapter has been spent setting the stage for this final recipe. Web services are use-
less without an audience, and in this recipe I’ll demonstrate a simple VB.NET client, which will be
used to consume data from the HTTP endpoint we created in the “Create an HTTP Endpoint” recipe.

■Note Unlike in the CLR chapter of this book, we’re going to use Visual Studio 2005 to create this .NET client.
This recipe assumes you have some background using Visual Studio 2005, as well as a .NET programming language.

This example demonstrates creating a .NET client application to consume the data of our web
service. Specifically, a Windows form will be created with a button and a data grid view. When the button
is clicked, the data grid view will show the results of the AdventureWorks.dbo.usp_SEL_SpecialOffer
stored procedure exposed by the web service, using the following steps:

1. In Visual Studio 2005, a new Visual Basic Windows Application is created. It is named
“MyFirstWebServiceClient” under the C:\Apress\Recipes\WebService folder.

2. A web reference must be created in order for this application to utilize the web service. To
do so, the Add Web Reference dialog box is opened from the Project menu. In the URL text
box, the URL of the WSDL definition describing the web service is http://localhost/
ProductOffers?wsdl (where localhost is the name of the SQL Server 2005 machine). The Go
button is pressed in order to return the details of the AW_SpecialOffers web service. Figure 15-1
shows the single method defined in the earlier recipe based on the stored procedure:

570Xch15.qxd 11/4/05 2:42 PM Page 387

CHAPTER 15 ■ WEB SERVICES388

3. In the Add Web Reference dialog box, the Add Reference button is clicked to add a reference
to the project. Figure 15-2 shows that the new Web Reference appears in the Solution Explorer.
It is called localhost and will be used in the VB.NET code later on.

Figure 15-2. Solution Explorer after adding a new Web Reference

4. Next, a Button and a DataGridView are added to the form. The Button is renamed
btnShowOffers with a caption of “Show Special Offers!” The DataGridView is renamed to
dgvOfferResults, arranged per Figure 15-3:

570Xch15.qxd 11/4/05 2:42 PM Page 388

CHAPTER 15 ■ WEB SERVICES 389

5. Next, the button is double-clicked in order to program the VB.NET Click response. The
following code is placed within the subroutine and header information (I’ll describe this in
more detail in the “How It Works” section):

Imports System.Data

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnShowOffers.Click

Dim MyWebReference As localhost.AW_SpecialOffers = _
New localhost.AW_SpecialOffers

MyWebReference.Credentials = _
System.Net.CredentialCache.DefaultCredentials

Dim MyDataSet As DataSet = New DataSet
Dim MyObject As Object() = _
MyWebReference.ProductSpecialOffer()

For Each NewObj As Object In MyObject
If TypeOf NewObj Is DataSet Then

MyDataSet = CType(NewObj, DataSet)
End If

Next

Figure 15-3. New Form with DataGridView and button

570Xch15.qxd 11/4/05 2:42 PM Page 389

CHAPTER 15 ■ WEB SERVICES390

dgvOfferResults.DataSource = MyDataSet.Tables(0)

End Sub
End Class

6. Next, the application is ready to be tested. From the Debug menu, Start Debugging is selected.
This brings up the active form. The button is clicked, which then returns the result set from
the web service into the data grid view as shown in Figure 15-4:

How It Works
In this recipe’s example I demonstrated creating a .NET Windows form application that was used to
retrieve special product offer information from the AdventureWorks database. The example started
off by creating a new Windows Visual Basic project, and then adding a reference to the WSDL page
in order to add a reference to the web service (recall earlier that I described WSDL as containing
a registry of web services on a specified machine, along with any methods and functionality).

After adding a reference, I added a button and a data grid view to the form. Since the data grid
view was to be populated based on the click of a button, I double-clicked it in order to enter the
code window.

Walking through the code, the first line imported a reference to the System.Data namespace:

Imports System.Data

Figure 15-4. The DataGridView populated with web service data

570Xch15.qxd 11/4/05 2:42 PM Page 390

CHAPTER 15 ■ WEB SERVICES 391

This namespace contains classes for ADO.NET, which is used in the management of data from
various data sources. Specifically, this example used the DataSet and DataTable ADO.NET objects.
DataSet is used to hold one or more DataTable objects. A DataTable object contains data from a single
data source.

Next, the form class is declared, followed by the declaration of the button-click subroutine:

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnShowOffers.Click

We now declare a web reference variable which points to the web reference added earlier in the
example:

Dim MyWebReference As localhost.AW_SpecialOffers = _
New localhost.AW_SpecialOffers

After that, the security credentials under which the application will connect to the web service
are defined. In this case, we are using the Windows account of the user executing the Windows
application:

MyWebReference.Credentials = _
System.Net.CredentialCache.DefaultCredentials

Next, a new DataSet object is declared followed by an object declaration which references the web
service method (which is hooked in our endpoint to the AdventureWorks.dbo.usp_SEL_SpecialOffer
stored procedure):

Dim MyDataSet As DataSet = New DataSet
Dim MyObject As Object() = _
MyWebReference.ProductSpecialOffer()

For each object in the web service’s method, if the value is a DataSet, it is converted into the
DataSet object declared previously:

For Each NewObj As Object In MyObject
If TypeOf NewObj Is DataSet Then

MyDataSet = CType(NewObj, DataSet)
End If

Next

Lastly, the data source of the data grid view is set to the first populated table of the declared
MyDataSet DataSet object (thus populating the stored procedure results to the data grid view):

dgvOfferResults.DataSource = MyDataSet.Tables(0)

End Sub
End Class

570Xch15.qxd 11/4/05 2:42 PM Page 391

570Xch15.qxd 11/4/05 2:42 PM Page 392

Error Handling

In this chapter, I’ll present recipes for creating, raising, and handling SQL Server errors using
Transact-SQL. The most notable feature in the error handling arena, TRY...CATCH, was added in SQL
Server 2005. The TRY...CATCH command allows you to implement more sophisticated error handling
than what was available in previous versions of SQL Server. In the last recipe of this chapter, error
trapping methods will be compared with the new TRY...CATCH method.

System-Defined and User-Defined Error Messages
This first batch of recipes is concerned with the viewing and raising of system and user-defined
error messages. The sys.messages table contains one row for each user-defined and built-in error
message on the SQL Server instance. Built-in error messages are those that are raised in response to
standard SQL Server errors. User-defined error messages are often used in third party applications
that define a set of error messages for use within an application. User-defined error messages allow for
parameterization, meaning that you can create custom messages that allow for customizable messages
based on parameters (as you’ll see demonstrated later on in the chapter when I discuss RAISERROR).

Viewing System Error Information
You can use the sys.messages system catalog view to see all system and user-defined error messages
in the SQL Server instance, as this example demonstrates:

SELECT message_id, severity, is_event_logged, text
FROM sys.messages
ORDER BY severity DESC, text

This returns the following results (the output has been truncated and formatted for clarity):

message_id severity is_event_logged text
832 24 1A page that should have been constant has

changed (expected checksum: %08x, actual
checksum: %08x, database %d, file '%ls', page
%S_PGID). This usually indicates a memory
failure or other hardware or OS corruption.

1459 24 1 An error occurred while accessing the database
mirroring metadata. Drop mirroring (ALTER
DATABASE database_name SET PARTNER OFF) and
reconfigure it.

17405 24 1 An image corruption/hotpatch detected while
reporting exceptional situation. This may be
a sign of a hardware problem. Check
SQLDUMPER_ERRORLOG.log for details.

393

C H A P T E R 1 6

■ ■ ■

570Xch16.qxd 11/4/05 2:44 PM Page 393

CHAPTER 16 ■ ERROR HANDLING394

How It Works
In this recipe, a simple SELECT query returned the following information about both SQL Server
built-in error messages, and the custom error messages defined for this particular instance of SQL
Server:

• message_id. This is the error message identifier

• severity. This is the severity level

• is_event_logged. This is used if the error writes to the Windows event log

• text. This is the text of the message.

The severity level ranges from 1 to 25, with the following implied categorizations:

• Severity levels 0 through 10 denote informational messages.

• Severity levels 11 through 16 are database engine errors that can be corrected by the user
(database objects that are missing when the query is executed, incompatible locking hints,
transaction deadlocks, denied permissions, and syntax errors). For example, a PRIMARY KEY
violation will return a level 14 severity level error. A divide-by-zero error returns a severity
16 level error.

• Severity levels 17 through 19 are for errors needing sysadmin attention (for instance if SQL
Server has run out of memory resources, or if database engine limits have been reached).

• Severity levels 20 through 25 are fatal errors and system issues (hardware or software damage
which impacts the database, integrity problems, and media failures).

The text column in sys.messages contains the actual error message to be presented to the user
from the database engine. Notice that the first message in the recipe’s results had percentage signs
and other symbols combined within it:

A page that should have been constant has changed (expected checksum: %08x, actual
checksum: %08x, database %d, file '%ls', page %S_PGID). This usually indicates a memory
failure or other hardware or OS corruption.

The % sign is a substitution parameter which allows the database engine to customize error
message output based on the current database context and error event. The values concatenated to
the % sign indicate the data type and length of the substitution parameter.

Creating a User-Defined Error Message
In this recipe, I demonstrate how to create a new user-defined error message using the sp_addmessage
system stored procedure. You may wish to create user-defined, custom messages for your application
to use, ensuring consistency across your application-specific error handling routines. Creating a new
error message adds it to the sys.messages system catalog view and allows you to invoke it with the
RAISERROR command (reviewed in the next recipe).

The syntax for this system stored procedure is as follows:

sp_addmessage [@msgnum =] msg_id ,
[@severity =] severity ,
[@msgtext =] 'msg'
[, [@lang =] 'language']
[, [@with_log =] 'with_log']
[, [@replace =] 'replace']

570Xch16.qxd 11/4/05 2:44 PM Page 394

The parameters are briefly described in Table 16-1.

Table 16-1. sp_addmessage Arguments

Parameter Description

msg_id This is the user supplied error id which can be between 50,001 and 2,147,483,647.
The message id is not the unique key or primary key of this table; rather, the unique
composite key is the combination of the message id and the language id.

severity Defines the severity level of your message (1 through 25).

msg The actual error message, which uses a data type of nvarchar(255).

language The language in which the error message is written.

with_log Whether or not the message will be written to the Windows application log when the
error is invoked.

replace When specified, the existing user-defined error (based on message ID and language)
is overwritten with the new parameters passed to the system stored procedure.

In this recipe, a new error message will be created to warn the user that their group can’t update
a specific table (which you might use if you were building your own application-based security
system in a database, for example):

-- Creating the new message
USE master
GO
EXEC sp_addmessage

100001,
14,

N'The current table %s is not updateable by your group!'
GO

-- Using the new message (RAISERROR reviewed in the next recipe)
RAISERROR (100001, 14, 1, N'HumanResources.Employee')

This returns:

Msg 100001, Level 14, State 1, Line 3
The current table HumanResources.Employee is not updateable by your group!

How It Works
In this recipe, a new message was created using sp_addmessage:

EXEC sp_addmessage
100001,
14,

N'The current table %s is not updateable by your group!'

The first parameter, 100001, was the new message ID. You can use an integer value between
50,001 and 2,147,483,647. The second parameter value of 14 indicated the severity level, and the
third parameter was the actual error message.

A substitution parameter value was included within the body of the message, %s, where the s tells
us that the parameter is a string value. You can also designate a parameter as a signed integer (d or i),
unsigned octal (o), unsigned integer (u), or unsigned hexadecimal (x or X).

CHAPTER 16 ■ ERROR HANDLING 395

570Xch16.qxd 11/4/05 2:44 PM Page 395

The other optional parameters such as language, with_log, and replace were not used.
The last command in this recipe, RAISERROR, was used to raise an instance of the newly created

error:

RAISERROR (100001, 14, 1, N'HumanResources.Employee')

RAISERROR is often used to return errors related to application or business logic, for example the
returning of errors based on conditions that are syntactically correct, yet violate some condition or
requirement of the application or business.

In this example, the first parameter was the new error message ID, the second parameter was the
severity level, the third parameter was the state (a number you can use to identify which part of your
code throws the error), and the fourth is the Unicode substitution parameter that passes to the error
message. The argument can take substitution parameters for the int, tinyint, smallint, varchar, char,
nchar, nvarchar, varbinary, and binary data types. The new error message was then returned to the
SQL user with the value “HumanResources.Employee” plugged into the substitution parameter value.

Dropping a User-Defined Error Message
In this recipe, I demonstrate how to remove a user-defined error message from the sys.messages
table. The syntax is as follows:

sp_dropmessage [@msgnum =] message_number
[, [@lang =] 'language']

The parameters are briefly described in Table 16-2.

Table 16-2. sp_dropmessage Arguments

Parameter Description

message_number This is the message number of the user-defined error message.

language This is the language of the message to drop. If you designate ALL and
a message exists with the same message number but in different languages,
all messages for that number will be dropped.

This recipe drops the user-defined error message created in the previous recipe:

EXEC sp_dropmessage 100001

How It Works
This recipe dropped the user-defined error message created in the previous recipe by using the
system stored procedure sp_dropmessage. This system stored procedure can only be used to drop
user-added messages, which have a message ID greater than 49,999.

Using RAISERROR
The RAISERROR command allows you to invoke either a user-defined error message from the
sys.messages system catalog view or an error message produced from a string or string variable.
The syntax of RAISERROR is:

RAISERROR ({ msg_id | msg_str | @local_variable }
{ ,severity ,state }
[,argument [,...n]])
[WITH option [,...n]]

CHAPTER 16 ■ ERROR HANDLING396

570Xch16.qxd 11/4/05 2:44 PM Page 396

The parameters are briefly described in Table 16-3.

Table 16-3. RAISERROR Arguments

Parameter Description

msg_id | msg_str | @local_variable When using RAISERROR, you can choose one of three
options for this parameter. The msg_id option is a user-
defined error message number from the sys.messages
table. The msg_str is a user-defined message with up to
2,047 characters. The @local_variable is a string variable
used to pass this message string.

severity Defines the severity level of your message (1 through 25).

state A user-defined number between 1 and 127 that can be
used for identifying the location of the failing code (if
your code is divided into multiple sections, for example).

argument [,...n] This is one or more substitution parameters to be used
within the error message.

WITH option [,...n] Three options are allowed in the WITH clause including
LOG, NOWAIT, and SETERROR. LOG writes to the SQL Server
error and Windows application log. NOWAIT sends the
messages immediately to the client. SETERROR sets the
@@ERROR and ERROR_NUMBER values to the error message id
(or 50,000 if not using an error from sys.messages).

Invoking an Error Message Using RAISERROR
In this recipe, I create a stored procedure to INSERT a new row into the HumanResources.Department
table. When an attempt is made to insert a new department into the HumanResources.Department table,
the group name will be evaluated first to see if it is the “Research and Development.” If it isn’t, the
insert will not occur, and an error using RAISERROR will be invoked:

CREATE PROCEDURE usp_INS_Department
@DepartmentName nvarchar(50),
@GroupName nvarchar(50)

AS
IF @GroupName = 'Research and Development'
BEGIN

INSERT HumanResources.Department
(Name, GroupName)
VALUES (@DepartmentName, @GroupName)

END
ELSE
BEGIN
RAISERROR('%s group is being audited
for the next %i days.
No new departments for this group can be added
during this time.',

16,
1,
@GroupName,
23)

END

GO

CHAPTER 16 ■ ERROR HANDLING 397

570Xch16.qxd 11/4/05 2:44 PM Page 397

Next, the new procedure is executed:

EXEC dbo.usp_INS_Department 'Mainframe Accountant', 'Accounting'

This returns:

Msg 50000, Level 16, State 1, Line 16
Mainframe Accountant dept is being audited for the next 23 days. No new departments can
be added during this time.

An alternative to creating the error message within the stored procedure is to create it as a user-
defined message (as discussed earlier in the chapter). For example:

EXEC sp_addmessage
100002,
14,

N'%s group is being audited for the next %i
days. No new departments for this group can be added
during this time.'
GO

Then, by rewriting the previous RAISERROR example, you can reference the user-defined error
message number instead:

...
ELSE
BEGIN

RAISERROR(100002,
16,
1,
@GroupName,
23)

END

How It Works
This recipe used RAISERROR to return an error if a specific IF condition was not met. RAISERROR is
often used to send errors to the calling application from Transact-SQL batches, stored procedures,
and triggers—especially for data or logical conditions that wouldn’t normally cause a syntactic error
to be raised.

Within the body of the stored procedure, the value of the group name was evaluated. If it had
been equal to “Research and Development,” the insert would have happened:

IF @GroupName = 'Research and Development'
BEGIN

INSERT HumanResources.Department
(Name, GroupName)
VALUES (@DepartmentName, @GroupName)

END

Because the group was not equal to Research and Development, the ELSE clause initiates the
RAISERROR command instead:

CHAPTER 16 ■ ERROR HANDLING398

570Xch16.qxd 11/4/05 2:44 PM Page 398

ELSE
BEGIN

RAISERROR('%s group is being audited for the next %i
days. No new departments for this group can be added
during this time.',

16,
1,
@GroupName,
23)

END

The first parameter of the RAISERROR command was the error message text, which used two
substitution parameters: one for the group name, and the second for the number of days the group
will be audited. The second parameter, 16, was the severity level. The third parameter, 1, was the
state. The last two parameters, @GroupName and 23, were the substitution parameters to be plugged
into the error message when it was invoked.

This recipe also demonstrated adding a user-defined message and then invoking it with
RAISERROR, instead of creating the text on-the-fly. This technique is useful for error messages
that must be used in multiple areas of your database, and it prevents you from having to re-
type the message in each referencing procedure or script. It also ensures the consistency of
the error message.

Using TRY...CATCH
Prior to SQL Server 2005, catching errors within a multi-batch procedure, trigger, or ad hoc script
involved additional, repetitive code for capturing the potential error value after each executing
statement.

Now in SQL Server 2005, the TRY...CATCH command can be used to capture execution errors
within your Transact-SQL code. TRY...CATCH can catch any execution error with a severity level
greater than 10 (so long as the raised error doesn’t forcefully terminate the Transact-SQL user session).
TRY...CATCH can also handle severity level errors (greater than 10) invoked using RAISERROR.

The syntax for TRY...CATCH is as follows:

BEGIN TRY
{ sql_statement | statement_block }

END TRY
BEGIN CATCH

{ sql_statement | statement_block }
END CATCH

The arguments, used in both the TRY and CATCH sections are sql_statement and statement_block.
In a nutshell, statements within the TRY block are those you wish to execute. If errors are raised within
the TRY block, then the CATCH block of code is executed. The CATCH block is then used to handle the
error. Handling just means that you wish to take some action in response to the error: whether it’s
to report the error’s information, log information in an error table, or roll back an open transaction.

The benefit of TRY...CATCH is in the ability to nest error handling inside code blocks, allowing
you to handle errors more gracefully and with less code than non-TRY...CATCH methods. TRY...CATCH
also allows you to use new SQL Server 2005 error logging and transaction state functions which
capture granular error information about an error event. Table 16-4 details the use of each.

CHAPTER 16 ■ ERROR HANDLING 399

570Xch16.qxd 11/4/05 2:44 PM Page 399

Table 16-4. Error and Transaction State Functions

Function Description

ERROR_LINE The error line number in the SQL statement or block where the error was
raised.

ERROR_MESSAGE The error message raised in the SQL statement or block.

ERROR_NUMBER The error number raised in the SQL statement or block.

ERROR_PROCEDURE Name of the trigger or stored procedure where the error was raised
(assuming TRY...CATCH was used in a procedure or trigger).

ERROR_SEVERITY The severity level of the error raised in the SQL statement or block.

ERROR_STATE The state of the error raised in the SQL statement or block.

XACT_STATE In the CATCH block, XACT_STATE reports on the state of open transactions
from the TRY block. If “0” is returned, there are no open transactions from
the TRY block. If “1” is returned, it means that no errors were raised in the
TRY block. If “-1” is returned, an error occurred in the TRY block, and the
transaction must be rolled back. XACT_STATE can also be used outside of
a TRY...CATCH command.

If an error is encountered in a TRY batch, SQL Server will exit at the point of the error and move
to the CATCH block, without processing any of the other statements in the TRY batch (the exception to
the rule is if you’re using nested TRY...CATCH blocks, which I’ll demonstrate later on in the chapter).

TRY...CATCH can be used within a trigger or stored procedure, or used to encapsulate the actual
execution of a stored procedure (capturing any errors that “bubble up” from the procedure execution
and then handling them accordingly).

Warnings and most informational attention messages (severity level less than 10 or lower), are
not caught by TRY...CATCH, and neither are syntax and object name resolution errors. Nonetheless,
this new construct is now an ideal choice for capturing many other common error messages that in
previous versions required bloated and inelegant Transact-SQL code.

In general, you’ll want to make sure that every block of non-anonymous Transact-SQL code
that modifies data in some way or participates in a transaction has an error handler. I’m not part of
the group that believes in going overboard with error handling, however. I’ve seen some coders put
error handling around each and every SELECT statement they write. I personally think this is overkill,
as any issues that would cause a SELECT statement to “break” will require manual intervention of
some sort. Also, with the progresses in .NET error handling, putting wrappers around your SELECT
queries often redundantly handle errors that may already be handled in the application tier.

In the next two recipes, I demonstrate two different scripts: one that uses a pre-2005 method of
trapping error messages, and one which demonstrates the new TRY...CATCH syntax method for doing
the same thing. After those recipes, I’ll demonstrate how to apply TRY...CATCH to a stored procedure
and then how to use nested TRY...CATCH calls.

Old Style Error Handling
Pre-SQL Server 2005, error handling generally involved checking the T-SQL @@ERROR function after
every statement was executed. You would then use GOTO statements to point to a centralized error-
handling block where, if an error had occurred, the process would be terminated and the transaction
rolled back.

This is demonstrated by the following code:

-- Pre SQL Server 2005, capturing errors if they occur

DECLARE @ErrorNBR int

CHAPTER 16 ■ ERROR HANDLING400

570Xch16.qxd 11/4/05 2:44 PM Page 400

BEGIN TRAN

INSERT Production.Location
(Name, CostRate, Availability)
VALUES
('Tool Verification', 0.00, 0.00)

SELECT @ErrorNBR = @@ERROR
IF @ErrorNBR <> 0
GOTO UndoTran

INSERT Production.Location
(Name, CostRate, Availability)
VALUES
('Frame Forming', 0.00, 0.00)

SELECT @ErrorNBR = @@ERROR
IF @ErrorNBR <> 0
GOTO UndoTran

COMMIT TRAN

UndoTran:
IF @ErrorNBR <> 0
BEGIN
PRINT CAST(@ErrorNBR as varchar(6)) +
' occurred after an attempt to insert into Production.Location'
ROLLBACK TRAN
END

This returns:

(1 row(s) affected)
Msg 2601, Level 14, State 1, Line 17
Cannot insert duplicate key row in object 'Production.Location' with unique index
'AK_Location_Name'.
The statement has been terminated.
2601 occurred after an attempt to insert into Production.Location

How It Works
The first example in this recipe demonstrated an error trapping method used pre-SQL Server 2005.
The first line of code created an integer variable to hold the value of @@ERRORNBR after each statement
was executed. @@ERRORNBR’s value changes after each statement’s execution, so a local variable will
allow you to retain the original value of the error number:

DECLARE @ErrorNBR int

Next, a transaction was begun:

BEGIN TRAN

Two inserts were attempted against the Production.Location table. The first inserted a value
that doesn’t already exist in the table, and therefore succeeds:

INSERT Production.Location
(Name, CostRate, Availability)
VALUES

CHAPTER 16 ■ ERROR HANDLING 401

570Xch16.qxd 11/4/05 2:44 PM Page 401

Immediately after this insert, the value of @@ERROR is captured and stored in @ErrorNBR:

SELECT @ErrorNBR = @@ERROR

Since the insert succeeded, the value is “0.” Had the insert failed, the value would have been
equal to the appropriate error message ID as found in sys.messages.

Next, an IF statement evaluates the local variable value, and since it is “0,” it does not invoke
the IF condition:

IF @ErrorNBR <> 0
GOTO UndoTran

Another insert is then attempted, this time using a location name that already exists in the
table. This insert fails this time, due to a unique constraint on the location name:

INSERT Production.Location
(Name, CostRate, Availability)
VALUES
('Frame Forming', 0.00, 0.00)

The error trapping logic from the first insert is repeated for the second insert, and when executed,
the GOTO section was invoked since the value of @ErrorNBR is no longer equal to 0:

SELECT @ErrorNBR = @@ERROR
IF @ErrorNBR <> 0
GOTO UndoTran

Because the GOTO command is invoked, the COMMIT TRAN was skipped:

COMMIT TRAN

The UndoTran label code prints the error number and a message and rolls back the transaction:

UndoTran:
IF @ErrorNBR <> 0
BEGIN
PRINT CAST(@ErrorNBR as varchar(6)) + ' occurred after an
attempt to insert into Production.Location'
ROLLBACK TRAN
END

It’s clear from this example that this method requires repetitive code to trap possible errors for
each and every statement. For larger procedures or batch scripts, this can significantly increase the
amount of Transact-SQL code required in order to achieve statement-level error trapping.

Error Handling with TRY...CATCH
In this recipe, I’ll demonstrate the same error handling functionality, this time using TRY...CATCH:

BEGIN TRY

BEGIN TRAN

INSERT Production.Location
(Name, CostRate, Availability)
VALUES
('Tool Verification', 0.00, 0.00)

INSERT Production.Location
(Name, CostRate, Availability)
VALUES

CHAPTER 16 ■ ERROR HANDLING402

570Xch16.qxd 11/4/05 2:44 PM Page 402

COMMIT TRANSACTION

END TRY
BEGIN CATCH

SELECT ERROR_NUMBER() ErrorNBR, ERROR_SEVERITY() Severity,
ERROR_LINE () ErrorLine, ERROR_MESSAGE() Msg

ROLLBACK TRANSACTION

END CATCH

This returns the following results:

ErrorNBR Severity ErrorLine Msg
2601 14 5 Cannot insert duplicate key row in object 'Production.Location'
with unique index 'AK_Location_Name'.

How It Works
This recipe duplicates the previous recipe’s results, only this time using TRY...CATCH. The batch started
with the BEGIN TRY command, and the starting of a new transaction:

BEGIN TRY

BEGIN TRAN

Next, the two inserts used in the previous example were attempted again, this time without
individual error trapping blocks following each statement:

INSERT Production.Location
(Name, CostRate, Availability)
VALUES
('Tool Verification', 0.00, 0.00)

INSERT Production.Location
(Name, CostRate, Availability)
VALUES
('Frame Forming', 0.00, 0.00)

The TRY batch, which included the statements I wished to error-check, is completed with the
END TRY keywords:

END TRY

The BEGIN CATCH marked the beginning of the error handling code block:

BEGIN CATCH

Using some of the error functions described at the beginning of this recipe, information on the
first error that occurred within the TRY block is reported:

SELECT ERROR_NUMBER() ErrorNBR, ERROR_SEVERITY() Severity,
ERROR_LINE () ErrorLine, ERROR_MESSAGE() Msg

Next, the open transaction declared earlier in the batch is then rolled back:

ROLLBACK TRANSACTION

The END CATCH command was used to mark the ending of the error handling CATCH block.

CHAPTER 16 ■ ERROR HANDLING 403

570Xch16.qxd 11/4/05 2:44 PM Page 403

Applying TRY...CATCH Error Handling Without Recoding
a Stored Procedure
You don’t have recode each of your database’s stored procedures in order to start benefiting from
the new TRY...CATCH construct. Instead, you can use TRY...CATCH to capture and handle errors from
outside a procedure’s code.

To demonstrate, a stored procedure is created that will return an error when executed:

CREATE PROCEDURE usp_SEL_DivideByZero
AS

SELECT 1/0

GO

The stored procedure included no error handling whatsoever, but this doesn’t pose a problem
if I use TRY...CATCH as follows:

BEGIN TRY
EXEC dbo.usp_SEL_DivideByZero

END TRY
BEGIN CATCH

SELECT ERROR_NUMBER() ErrorNBR, ERROR_SEVERITY() Severity,
ERROR_LINE () ErrorLine, ERROR_MESSAGE() Msg

PRINT 'This stored procedure did not execute properly.'
END CATCH

This returns:

ErrorNBR Severity ErrorLine Msg

8134 16 4 Divide by zero error encountered.

(1 row(s) affected)

This stored procedure did not execute properly.

How It Works
Although the stored procedure created in this exercise didn’t include error handling, I was still able
to add a programmatic response to errors by using TRY...CATCH to execute the stored procedure.
The procedure was called from within the TRY block, and the error information and message caught
and handled by the CATCH block.

BEGIN TRY
EXEC dbo.usp_SEL_DivideByZero

END TRY
BEGIN CATCH

SELECT ERROR_NUMBER() ErrorNBR, ERROR_SEVERITY() Severity,
ERROR_LINE () ErrorLine, ERROR_MESSAGE() Msg

PRINT 'This stored procedure did not execute properly.'
END CATCH

Nesting TRY...CATCH Calls
TRY...CATCH statements can be nested, which means you can use the TRY...CATCH statements within
other TRY...CATCH blocks. This allows you to handle errors that may happen, even in your error handling.

CHAPTER 16 ■ ERROR HANDLING404

570Xch16.qxd 11/4/05 2:44 PM Page 404

In this example, a new stored procedure is created to handle INSERTs into the HumanResources.
Department table. This procedure includes two levels of error handling. If an error occurs when
attempting the first INSERT, a second attempt is made with a different department name:

CREATE PROCEDURE dbo.usp_INS_Department
@Name nvarchar(50),
@GroupName nvarchar(50)

AS

BEGIN TRY

INSERT HumanResources.Department (Name, GroupName)
VALUES (@Name, @GroupName)

END TRY
BEGIN CATCH

BEGIN TRY

PRINT 'The first department attempt failed.'

INSERT HumanResources.Department (Name, GroupName)
VALUES ('Misc', @GroupName)

END TRY
BEGIN CATCH

PRINT 'A Misc department for that group already exists.'
END CATCH

END CATCH

GO

Executing the code for the existing department “Engineering” causes the first INSERT to fail, but
the second INSERT of the “misc” department for the “Research and Development” department succeeds:

EXEC dbo.usp_INS_Department 'Engineering', 'Research and Development'

This returns:

(0 row(s) affected)
The first department attempt failed.
(1 row(s) affected)

If this same exact department and group INSERT is attempted again, both INSERTs will fail,
causing the second nested CATCH to return a printed error too:

EXEC dbo.usp_INS_Department 'Engineering', 'Research and Development'

This returns:

(0 row(s) affected)
The first department attempt failed.

(0 row(s) affected)
A Misc department for that group already exists.

CHAPTER 16 ■ ERROR HANDLING 405

570Xch16.qxd 11/4/05 2:44 PM Page 405

How It Works
This recipe demonstrated nesting a TRY...CATCH within another TRY...CATCH. This allows you to add
error handling around your error handling, in cases where you anticipate that this is necessary.

Walking through the code, the first few lines of the stored procedure defined the input parame-
ters for use with inserting into the HumanResources.Department table:

CREATE PROCEDURE dbo.usp_INS_Department
@Name nvarchar(50),
@GroupName nvarchar(50)

AS

Next, the first level TRY block is begun with an attempt to INSERT the new row into the table:

BEGIN TRY

INSERT HumanResources.Department (Name, GroupName)
VALUES (@Name, @GroupName)

END TRY

If this fails, the CATCH block contains another TRY block:

BEGIN CATCH

BEGIN TRY

A statement is printed, and then another attempt is made to INSERT into the table, this time using
a generic name of “Misc” instead of the original department name sent by the input parameter:

PRINT 'The first department attempt failed.'

INSERT HumanResources.Department (Name, GroupName)
VALUES ('Misc', @GroupName)

END TRY

If this fails, the nested CATCH will print a second message telling the user that the “Misc” depart-
ment for the specified group already exists:

BEGIN CATCH
PRINT 'A Misc department for that group already exists.'

END CATCH

END CATCH

GO

The stored procedure was then tested, using a department that already existed in the table.
Because there is a UNIQUE constraint on the department name, the first INSERT failed, and control
was passed to the CATCH block. The TRY block within the CATCH then successfully inserted into the
table using the “Misc” department name.

On a second execution of the stored procedure, both INSERTs failed, but were handled by
returning a PRINT statement warning you about it.

CHAPTER 16 ■ ERROR HANDLING406

570Xch16.qxd 11/4/05 2:44 PM Page 406

Principals

Beginning with SQL Server 2005, Microsoft uses a new set of terminology to describe SQL Server
security functionality, which separates the architecture into:

• Principals. These are objects (for example a user login, a role, or an application) that may be
granted permission to access particular database objects.

• Securables. These are objects (a table or view, for example) to which access can be controlled

• Permissions. These are individual rights, granted (or denied) to a principal, to access a securable
object

Principals are the topic of this chapter, and securable and permissions are discussed in the next
chapter.

Principals fall into three different scopes:

• Windows principals are principals based on Windows domain user accounts, domain groups,
local user accounts, and local groups. Once added to SQL Server and given permissions
to access objects, these types of principals gain access to SQL Server based on Windows
authentication.

• SQL Server principals are SQL Server-level logins and fixed server roles. SQL logins are created
within SQL Server and have a login name and password independent of any Windows entity.
Server roles are groupings of SQL Server instance-level permissions that other principals can
become members of, inheriting that server role’s permissions.

• Database principals are database users, database roles (fixed and user-defined), and application
roles—all of which I’ll cover in this chapter.

I’ll start this chapter off with a discussion of Windows principals.

Windows Principals
Windows principals allow access to a SQL Server instance using Windows authentication. SQL Server
allows us to create Windows logins based on Windows user accounts or groups, which can belong
either to the local machine or to a domain. A Windows login can be associated with a domain user,
local user, or Windows group. When adding a Windows login to SQL Server, the name of the user or
group is bound to the Windows account. Windows logins added to SQL Server don’t require separate
password logins; in that case, Windows handles the login authentication process.

When users log on to SQL Server using Windows authentication, their current user account must
either be identified as a login to the SQL Server instance, or they must belong to a Windows user group
that exists as a login.

407

C H A P T E R 1 7

■ ■ ■

570Xch17.qxd 11/4/05 2:46 PM Page 407

CHAPTER 17 ■ PRINCIPALS408

Windows logins apply only at the server operating system level: you can’t grant permissions on
Windows logins to specific database objects. To grant permissions based on Windows logins, you
need to create a database user and associate it with the login. We’ll see how to do this when we look
at database principals.

When installing SQL Server, you are asked to decide between Windows-only and mixed authen-
tication modes. Whichever authentication method you choose, you can always change your mind
later. Microsoft Windows authentication allows for tighter security than SQL Server logins (described
later), because security is integrated with the Windows operating system, local machine, and domain,
and because no passwords are ever transmitted over the network. When using mixed authentication
mode, you can create your own database logins and passwords within SQL Server, as we will discuss
later.

In SQL Server 2000, the system stored procedure sp_grantlogin was used to add a Windows
group or user login. In SQL Server 2005, the new CREATE LOGIN command is used instead.

The syntax for creating a database login from a Windows group or user login is as follows:

CREATE LOGIN login_name
FROM WINDOWS
[WITH DEFAULT_DATABASE = database

| DEFAULT_LANGUAGE = language
]

| CERTIFICATE certname
| ASYMMETRIC KEY asym_key_name

The arguments of this command are described in Table 17-1.

Table 17-1. CREATE LOGIN Arguments

Argument Description

login_name The name of the Windows user or group.

DEFAULT_DATABASE = database This option specifies the default database context of the
Windows login, with the master system database being the
default.

DEFAULT_LANGUAGE = language This option specifies the default language of the Windows
login, with the server default language being the login
default if this option isn’t specified.

CERTIFICATE certname This option allows you to bind a certificate to a Windows
login. See Chapter 19 for more information on certificates,
and Chapter 20 for an example of doing so.

ASYMMETRIC KEY asym_key_name This option binds a key to a Windows login. See Chapter 19
for more information on keys.

Creating a Windows Login
In this recipe, I assume that you already have certain Windows accounts and groups on the local
machine or in your domain. This example creates a Windows login on the SQL Server instance,
which is internally mapped to a Windows user:

CREATE LOGIN [JOEPROD\Danny]
FROM WINDOWS
WITH DEFAULT_DATABASE = AdventureWorks,
DEFAULT_LANGUAGE = English

570Xch17.qxd 11/4/05 2:46 PM Page 408

In the second example, a new Windows login is created, based on a Windows group. This is
identical to the previous example, except that you are mapping to a Windows group instead of
a Windows user:

CREATE LOGIN [JOEPROD\DBAs]
FROM WINDOWS
WITH DEFAULT_DATABASE= AdventureWorks

How It Works
This recipe demonstrated adding access for a Windows user and Windows group to the SQL Server
instance. In the first example, the CREATE LOGIN designated the Windows user in square brackets:

CREATE LOGIN [JOEPROD\Danny]

On the next line, the WINDOWS keyword was used to designate that this is a new login associated
to a Windows account:

FROM WINDOWS

Next, the default database and languages were designated in the WITH clause:

WITH DEFAULT_DATABASE = AdventureWorks,
DEFAULT_LANGUAGE = English

In the second example, I demonstrated how to add a Windows group to SQL Server, which
again requires square brackets in the CREATE LOGIN command:

CREATE LOGIN [JOEPROD\DBAs]

The FROM WINDOWS clause designated that this was a Windows group, followed by the default
database:

FROM WINDOWS
WITH DEFAULT_DATABASE= AdventureWorks

When a Windows group is associated to a SQL Server login, it enables any member of the
Windows group to inherit the access and permissions of the Windows login. So, for example, the
BUILTIN\Administrators local Windows group is installed by default with a SQL Server instance
with sysadmin server role permissions. Therefore, any members of this group will also have access
to the SQL Server instance without explicitly having to add each Windows account to the SQL Server
instance separately.

Viewing Windows Logins
You can view Windows logins and groups by querying the sys.server_principals system catalog
view. This example shows the name of each Windows login and group with access to SQL Server,
along with the security-identifier (sid). Each principal in the system catalog view has a sid, which
helps uniquely identify it on the SQL Server instance:

SELECT name, sid
FROM sys.server_principals
WHERE type_desc IN ('WINDOWS_LOGIN', 'WINDOWS_GROUP')
ORDER BY type_desc

This returns the following results:

CHAPTER 17 ■ PRINCIPALS 409

570Xch17.qxd 11/4/05 2:46 PM Page 409

name sid
BUILTIN\Administrators 0x01020000000000052000000020020000
JOEPROD\DBAs 0x010500000000000515000000527A777BF094B3850FF83D06FF030000
NT AUTHORITY\SYSTEM 0x010100000000000512000000
JOEPROD\Owner 0x010500000000000515000000527A777BF094B3850FF83D06EB030000
JOEPROD\TestUser 0x010500000000000515000000527A777BF094B3850FF83D0600040000
JOEPROD\Danny 0x010500000000000515000000527A777BF094B3850FF83D0608040000

How It Works
In this recipe, I demonstrated how to query Windows logins on the SQL Server instance using the
sys.server_principals system catalog view. This view actually allows you to see other principal
types too, which will be reviewed later in the chapter.

Altering a Windows Login
SQL Server 2000 required several different stored procedures in order to modify the attributes of
a SQL or Windows login. For example, sp_defaultdb was used to change the login’s default database
and sp_defaultlanguage was used to change the login’s default language. Now, in SQL Sever 2005,
you can perform several login changes just by using the ALTER LOGIN command. Another benefit of
this change is that we can now use the standard Transact-SQL CREATE, ALTER, and DROP to modify the
login instead of resorting to system stored procedures.

Once a Windows login is added to SQL Server, it can be modified using the ALTER LOGIN com-
mand (this command has several more options which are applicable to SQL Logins, as you’ll see
reviewed later in the chapter). Using this command, you can perform tasks such as:

• Changing the default database of the login

• Changing the default language of the login

• Enabling or disabling a login from being used

The syntax is as follows:

ALTER LOGIN login_name
{
ENABLE | DISABLE
|

WITH
| DEFAULT_DATABASE = database
| DEFAULT_LANGUAGE = language }

The arguments of this command are described in Table 17-2.

Table 17-2. ALTER LOGIN Arguments

Argument Description

login_name The name of the Windows or SQL login.

ENABLE | DISABLE Enables or disables a login from being used in SQL Server
(disabling is an alternative to dropping a login).

DEFAULT_DATABASE = database This option specifies the default database context of the SQL
login, with the master system database being the default.

DEFAULT_LANGUAGE = language This option specifies the default language of the login, with
the server default language being the login default if this
option isn’t specified.

CHAPTER 17 ■ PRINCIPALS410

570Xch17.qxd 11/4/05 2:46 PM Page 410

In the first example, a Windows login (associated with a Windows user) is disabled from use in
SQL Server. This prevents the login from accessing SQL Server, and if connected, ceases any further
activity on the SQL Server instance:

ALTER LOGIN [JOEPROD\Danny]
DISABLE

This next example demonstrates enabling this account again:

ALTER LOGIN [JOEPROD\Danny]
ENABLE

In this example, the default database is changed for a Windows group:

ALTER LOGIN [JOEPROD\DBAs]
WITH DEFAULT_DATABASE = master

How It Works
In the first example, a Windows login was disabled using ALTER LOGIN and the login name:

ALTER LOGIN [JOEPROD\Danny]

Following this was the DISABLE keyword, which removes this account’s access to the SQL Server
instance (it removes the account’s access, but still keeps the login in the SQL Server instance for the
later option of re-enabling access):

DISABLE

The second example demonstrated re-enabling access to the login by using the ENABLE keyword.
The third example changed the default database for a Windows group. The syntax for referencing

Windows logins and groups is the same—both principal types are designated within square brackets:

ALTER LOGIN [JOEPROD\DBAs]

The second line then designated the new default database context for the Windows group:

WITH DEFAULT_DATABASE = master

Dropping a Windows Login
In this recipe, I’ll demonstrate dropping a login from the SQL Server instance entirely by using the
DROP LOGIN command. This removes the login’s permission to access the SQL Server instance. If the
login is currently connected to the SQL Server instance when the login is dropped, any actions
attempted by the connected login will no longer be allowed.

The syntax is as follows:

DROP LOGIN login_name

The only parameter is the login name—which can be a Windows or SQL login (demonstrated
later in the chapter), as this recipe demonstrates:

-- Windows Group login
DROP LOGIN [JOEPROD\DBAs]

-- Windows user login
DROP LOGIN [JOEPROD\Danny]

CHAPTER 17 ■ PRINCIPALS 411

570Xch17.qxd 11/4/05 2:46 PM Page 411

How It Works
This recipe demonstrated the simple DROP LOGIN command, which removes a login from SQL Server.
If a login owns any securables (see the next chapter for more information on securables), the DROP
attempt will fail. For example if the JOEPROD\Danny login had been a database owner, an error like
the following would have been raised:

Msg 15174, Level 16, State 1, Line 3
Login 'JOEPROD\Danny' owns one or more database(s). Change the owner of the database(s)
before dropping the login.

Denying SQL Server Access to a Windows User or Group
In SQL Server 2000, the system stored procedure sp_denylogin was used to deny a Windows user or
group access to SQL Server. This included domain users, domain groups, local users, and local groups.
In SQL Server 2005, you can use the DENY CONNECT SQL command. For example:

USE [master]
GO
DENY CONNECT SQL TO [JOEPROD\TestUser]
GO

To allow access again, you can use GRANT:

USE [master]
GO
GRANT CONNECT SQL TO [JOEPROD\TestUser]
GO

How It Works
This section is a sneak preview of Chapter 18, where GRANT and DENY will be explained in more detail.
In a nutshell, the GRANT command grants permissions to securables, and DENY denies permissions to
them. Use DENY CONNECT to restrict the Windows User or Group login from accessing a SQL Server
instance the next time a login attempt is made. In both GRANT CONNECT and DENY CONNECT, it is assumed
that the Windows user or group already has a login in SQL Server. Keep in mind that there are limi-
tations to which logins you can deny permissions to. For example, if you try to DENY CONNECT to your
own login with the following code:

DENY CONNECT SQL TO [JOEPROD\Owner]

It returns the following warning:

Cannot grant, deny, or revoke permissions to sa, dbo, information_schema,
sys, or yourself.

SQL Server Principals
Windows authentication relies on the underlying operating system to perform authentication (deter-
mining who a particular user is), and means that SQL Server performs the necessary authorization
(determining what actions an authenticated user is entitled to perform). When working with SQL
Server principals and SQL Server authentication, SQL Server itself performs both authentication
and authorization.

CHAPTER 17 ■ PRINCIPALS412

570Xch17.qxd 11/4/05 2:46 PM Page 412

As noted earlier, when using mixed authentication mode, you can create your own login and
passwords within SQL Server. These SQL logins only exist in SQL Server and do not have an outside
Windows user/group mapping. With SQL logins, the passwords are stored within SQL Server. These
user credentials are stored in SQL Server and are used to authenticate the user in question and to
determine his or her appropriate access rights.

Because the security method involves explicit passwords, it is inherently less secure than using
Windows Authentication alone. However, SQL Server logins are still commonly used with third-party
and non-Windows operating system applications. SQL Server 2005 has improved the password pro-
tection capabilities by enabling Windows-like password functionality, such as forced password changes,
expiration dates, and other password policies (e.g. password complexity), with Windows 2003 Server
and higher.

As with Windows logins, SQL Server logins apply only at the server level; you can’t grant per-
missions on these to specific database objects. Unless you are granted membership to a fixed-server
role such as sysadmin, you must create database users associated to the login before you can begin
working with database objects.

As in previous versions of SQL Server, SQL Server 2005 supports principals based on both
individual logins and server roles, which multiple individual users can be assigned to.

In SQL Server 2000, the system stored procedure sp_addlogin was used to create a new SQL
Server login but, again, this has now been replaced by use of the CREATE LOGIN command:

CREATE LOGIN login_name
[WITH PASSWORD = ' password ' [HASHED] [MUST_CHANGE],

SID = sid],
DEFAULT_DATABASE = database,
DEFAULT_LANGUAGE = language,
CHECK_EXPIRATION = { ON | OFF},
CHECK_POLICY = { ON | OFF},
CREDENTIAL = credential_name]h

The arguments of this command are described in Table 17-3.

Table 17-3. CREATE LOGIN Arguments

Argument Description

login_name This is the login name.

' password ' [HASHED] [MUST_CHANGE] This is the login’s password. Specifying the HASHED
option means that the provided password is already
hashed (made into an unreadable and secured format).
If MUST_CHANGE is specified, the user is prompted to
change the password the first time the user logs in.

SID = sid This explicitly specifies the sid which will be used in
the system tables of the SQL Server instance. This
can be based on a login from a different SQL Server
instance (if you’re migrating logins). If this isn’t
specified, SQL Server generates its own sid in the
system tables.

DEFAULT_DATABASE = database This option specifies the default database context
of the SQL login, with the master system database
being the default.

DEFAULT_LANGUAGE = language This option specifies the default language of the login,
with the server default language being the login default
if this option isn’t specified.

(Continued)

CHAPTER 17 ■ PRINCIPALS 413

570Xch17.qxd 11/4/05 2:46 PM Page 413

Table 17-3. Continued

Argument Description

CHECK_EXPIRATION = { ON | OFF}, When set to ON (the default), the SQL login will be
subject to a password expiration policy. A password
expiration policy effects how long a password will
remain valid before it must be changed. This
functionality requires Windows 2003 Server or
higher versions.

CHECK_POLICY = { ON | OFF}, When set to ON (the default), Windows password
policies are applied to the SQL login (for example,
policies regarding the password’s length, complexity,
and inclusion of non-alphanumeric characters).This
functionality requires Windows 2003 Server or higher
versions.

CREDENTIAL = credential_name Allows a server credential to be mapped to the SQL
login. See Chapter 18, “Securables and Permissions”
for more information on credentials.

Creating a SQL Server Login
This example first demonstrates how to create a SQL Server login with a password and a default
database designated:

CREATE LOGIN Veronica
WITH PASSWORD = 'InfernoII',
DEFAULT_DATABASE = AdventureWorks

Assuming you are using Windows 2003 Server or higher, as well as mixed authentication, the
recipe goes on to create a SQL login with a password that must be changed the first time the user
logs in. This login also is created with the CHECK_POLICY option ON, requiring it to comply with
Windows password policies:

CREATE LOGIN Trishelle
WITH PASSWORD = 'ChangeMe' MUST_CHANGE ,

CHECK_EXPIRATION = ON,
CHECK_POLICY = ON

How It Works
The first example in this recipe demonstrated creating a SQL login named Veronica. The login name
was designated after CREATE LOGIN:

CREATE LOGIN Veronica

The second line designated the login’s password:

WITH PASSWORD = 'InfernoII',

The last line of code designated the default database that the login’s context would first enter
after logging into SQL Server:

DEFAULT_DATABASE = AdventureWorks

The second SQL login example demonstrated how to force a password to be changed on the
first login by designating the MUST CHANGE token after the password:

CREATE LOGIN Trishelle

CHAPTER 17 ■ PRINCIPALS414

570Xch17.qxd 11/4/05 2:46 PM Page 414

This password policy integration requires Windows 2003 Server, as did the password expiration
and password policy options also designated for this login:

CHECK_EXPIRATION = ON,
CHECK_POLICY = ON

Viewing SQL Server Logins
Again, you can view SQL Server logins (and other principals) by querying the
sys.server_principals system catalog view:

SELECT name, sid
FROM sys.server_principals
WHERE type_desc IN ('SQL_LOGIN')
ORDER BY name

This returns the following results:

name sid
Boris 0xC2692B07894DFD45913C5595C87936B9
BrianG 0x4EC3966D4E33844F89680AFD87D2D5BD
JoeSa 0xB64D3C39533CC648B581884EC143F2D4
Prageeta 0x00CACEF1F0E0CE429B7C808B11A624E7
sa 0x01
SteveP 0xAAA2CD258750C641BBE9584627CAA11F
Veronica 0xE08E462A75D8C047A4561D4E9292296D

How It Works
This recipe’s query returned the name and sid of each SQL login on the SQL Server instance.

Altering a SQL Server Login
Once a login is added to SQL Server it can be modified using the ALTER LOGIN command. Using this
command, you can perform several tasks:

• Change the login’s password.

• Change the default database or language.

• Change the name of the existing login without disrupting the login’s currently assigned
permissions.

• Change the password policy settings (enabling or disabling them).

• Map or remove mapping from a SQL login credential.

• Enable or disable a login from being used.

• Unlock a locked login.

The syntax is as follows:

ALTER LOGIN login_name
{
ENABLE | DISABLE
|

WITH PASSWORD = ' password '
[OLD_PASSWORD = ' oldpassword '
| [MUST_CHANGE | UNLOCK]]

CHAPTER 17 ■ PRINCIPALS 415

570Xch17.qxd 11/4/05 2:46 PM Page 415

| DEFAULT_DATABASE = database
| DEFAULT_LANGUAGE = language
| NAME = login_name
| CHECK_POLICY = { ON | OFF }
| CHECK_EXPIRATION = { ON | OFF }
| CREDENTIAL = credential_name
| NO CREDENTIAL
}

The arguments of this command are described in Table 17-4.

Table 17-4. ALTER LOGIN Arguments

Argument Description

login_name The name of the SQL login.

ENABLE | DISABLE Enables or disables a login from being used in SQL
Server (disabling is an alternative to dropping a login).

PASSWORD = ' password ' The PASSWORD argument specifies the new password
[OLD_PASSWORD = 'oldpassword ' | name and the OLD_PASSWORD is the current password which
[MUST_CHANGE | UNLOCK]] is being changed (although when logged in as the sysadmin

fixed server role, the OLD_PASSWORD is not required). If
MUST_CHANGE is specified, the user is prompted to change
the password the first time the password is used. UNLOCK
unlocks a locked login (a login can become locked due
to too many unsuccessful login attempts, or exceeding
expiration limits).

DEFAULT_DATABASE = database This option specifies the default database context of the
SQL login, with the master system database being the
default.

DEFAULT_LANGUAGE = language This option specifies the default language of the login,
with the server default language being the login default
if this option isn’t specified.

NAME = login_name Specifies the new login name.

CHECK_POLICY = { ON | OFF } When set to ON (the default), the SQL login will be subject
to a password expiration policy (this functionality
requires Windows 2003 Server or higher versions).

CHECK_EXPIRATION = { ON | OFF } When set to ON (the default), Windows password policies
are applied to the SQL login (this functionality requires
Windows 2003 Server or higher versions).

CREDENTIAL = credential_name Allows a server credential to be mapped to the SQL login.
See Chapter 18 for more information on credentials.

NO CREDENTIAL This option removes a credential mapping from the SQL
login.

In the first example of this recipe, a SQL login’s password is changed from “InfernoII” to
“InfernoIII”:

ALTER LOGIN Veronica
WITH PASSWORD = 'InfernoIII'
OLD_PASSWORD = 'InfernoII'

The OLD_PASSWORD is the current password which is being changed, however sysadmin fixed
server role members don’t have to know the old password in order to change it.

This second example demonstrates changing the default database of the Veronica SQL login:

CHAPTER 17 ■ PRINCIPALS416

570Xch17.qxd 11/4/05 2:46 PM Page 416

ALTER LOGIN Veronica
WITH DEFAULT DATABASE = [AdventureWorks]

This third example in this recipe demonstrates changing both the name and password of
a SQL login:

ALTER LOGIN Veronica
WITH NAME = Angela,
PASSWORD = 'BOS2004'

Changing the login name instead of just dropping and creating a new one offers one major
benefit—the permissions associated to the original login are not disrupted when the login is renamed.
In this case, the Veronica login is renamed to Angela, but the permissions remain the same.

How It Works
In the first example of this recipe, ALTER LOGIN was used to change a password designating the old
password and the new password. If you have sysadmin fixed server role permissions, you only need
to designate the new password. The second example demonstrated how to change the default data-
base of a SQL login. The last example demonstrated how to change a login’s name from “Veronica”
to “Angela,” as well as change the login’s password.

Dropping a SQL Login
This recipe demonstrates dropping a SQL login from a SQL Server instance by using the DROP LOGIN
command.

The syntax is as follows:

DROP LOGIN login_name

The only parameter is the login name—which can be a Windows or SQL login, as this recipe
demonstrates:

-- SQL Login
DROP LOGIN Angela

How It Works
This recipe demonstrated the simple DROP LOGIN command, which removes a login from SQL Server.
The process is simple, however if a login owns any securables (see the next chapter for information
on securables), the DROP attempt will fail. For example, if the Angela login had been a database owner,
an error like the following would have been raised:

Msg 15174, Level 16, State 1, Line 3
Login 'Angela' owns one or more database(s). Change the owner of the database(s) before
dropping the login.

Managing Server Role Members
Fixed server roles are pre-defined SQL groups that have specific SQL Server-scoped (as opposed to
database- or schema-scoped) permissions assigned to them. You cannot create new fixed server roles,
you can only add or remove membership to that role from other SQL or Windows logins.

The sysadmin fixed server role is the role with the highest level of permissions in a SQL Server
instance. Although server roles are permissions-based, they have members (SQL or Windows logins/
groups) and are categorized by Microsoft as principals.

To add a login to a fixed server role, use the sp_addsrvrolemember system stored procedure.

CHAPTER 17 ■ PRINCIPALS 417

570Xch17.qxd 11/4/05 2:46 PM Page 417

The syntax is as follows:

sp_addsrvrolemember [@loginame=] 'login',
[@rolename =] 'role'

The first parameter of the system stored procedure is the login name to add to the fixed server
role. The second parameter is the fixed server role you are adding the login to.

In this example, the login Veronica is created and then added to the sysadmin fixed server role:

CREATE LOGIN Veronica
WITH PASSWORD = 'PalmTree1'
GO

EXEC master..sp_addsrvrolemember
'Veronica',
'sysadmin'
GO

To remove a login from a fixed server role, the system stored procedure sp_dropsrvrolemember
is used. The syntax is almost identical to sp_addsrvrolemember:

sp_dropsrvrolemember [@loginame=] 'login' ,
[@rolename=] 'role'

This example removes the Veronica login from the sysadmin fixed role membership:

EXEC master..sp_dropsrvrolemember
'Veronica',
'sysadmin'
GO

How It Works
Once a login is added to a fixed server role, that login receives the permissions associated with the
fixed server role. The sp_addsrvrolemember system stored procedure was used to add a new login to
a fixed role membership, and sp_dropsrvrolemember was used to remove a login from a fixed role
membership.

Adding SQL or Windows logins to a fixed server role should never be done lightly. Fixed server
roles contain far-reaching permissions—so as a rule of thumb, seek to grant only those permissions
that are absolutely necessary for the job at hand. For example, don't give sysadmin membership to
someone who just needs SELECT permission on a table.

■Note In the next chapter you’ll learn more about the granularity of permissions, and how in SQL Server 2005 it
is easier to assign “least permissions” instead of having to add logins to fixed server roles.

Reporting Fixed Server Role Information
Fixed server roles define a grouping of SQL Server-scoped permissions (such as backing up a database
or creating new logins). Like SQL or Windows logins, fixed server roles have a security-identifier
(sid) and can be viewed in the sys.server_principals system catalog view. Unlike SQL or Windows
logins, fixed server roles can have members (SQL and Windows logins) defined within them which
inherit the permissions of the fixed server role.

To view fixed server roles, query the sys.server_principals system catalog view:

SELECT name
FROM sys.server_principals

CHAPTER 17 ■ PRINCIPALS418

570Xch17.qxd 11/4/05 2:46 PM Page 418

This returns:

name
--
public
sysadmin
securityadmin
serveradmin
setupadmin
processadmin
diskadmin
dbcreator
bulkadmin

(9 row(s) affected)

You can also view a list of fixed server roles by executing the sp_helpserverrole system stored
procedure:

EXEC sp_helpsrvrole

This returns:

ServerRole Description
----------------------------------- ----------------------------------
sysadmin System Administrators
securityadmin Security Administrators
serveradmin Server Administrators
setupadmin Setup Administrators
processadmin Process Administrators
diskadmin Disk Administrators
dbcreator Database Creators
bulkadmin Bulk Insert Administrators

(8 row(s) affected)

Table 17-5 details the permissions granted to each fixed server role.

Table 17-5. Server Role Permissions

Server Role Granted Permissions

sysadmin GRANT option (can GRANT permissions to others), CONTROL SERVER

setupadmin ALTER ANY LINKED SERVER

serveradmin ALTER SETTINGS, SHUTDOWN, CREATE ENDPOINT, ALTER SERVER STATE, ALTER ANY
ENDPOINT, ALTER RESOURCES

securityadmin ALTER ANY LOGIN

processadmin ALTER SERVER STATE, ALTER ANY CONNECTION

diskadmin ALTER RESOURCES

dbcreator CREATE DATABASE

bulkadmin ADMINISTER BULK OPERATIONS

CHAPTER 17 ■ PRINCIPALS 419

570Xch17.qxd 11/4/05 2:46 PM Page 419

To see the members of a fixed server role, you can execute the sp_helpsrvrolemember system
stored procedure:

EXEC sp_helpsrvrolemember 'sysadmin'

This returns the following results:

ServerRole MemberName MemberSid
sysadmin sa 0x01
sysadmin BUILTIN\Administrators 0x01020000000000052000000020020000
sysadmin NT AUTHORITY\SYSTEM 0x010100000000000512000000
sysadmin Veronica 0xEC5C372109E10344BC6CE7B04514EC8D
sysadmin JOEPROD\Owner 0x010500000000000515000000527A777BF094B3
sysadmin sa 0x01

How It Works
You can query the system catalog view sys.server_principals in order to view fixed server roles, or
you can use the sp_helpsrvrole system stored procedure to view descriptions for each of the roles.
To view members of a role (other principals), use the sp_helpsrvrolemember system stored procedure.

The next recipe will show you how to add or remove other principals to a fixed server role.

Database Principals
Database principals are the objects that represent users to which we can assign permissions to
access databases or particular objects within a database. Whereas logins operate at the server level
and allow us to perform actions such as connecting to a SQL Server, database principals operate at
the database level, and allow us to select or manipulate data, to perform DDL statements on objects
within the database, or to manage users’ permissions at the database level.

SQL Server 2005 recognizes four different types of database principals:

• Database users. Database user principals are the database-level security context under which
requests within the database are executed, and are associated with either SQL Server or
Windows logins.

• Database roles. Database roles come in two flavors, fixed and user-defined. Fixed database
roles are found in each database of a SQL Server instance, and have database scoped permis-
sions assigned to them (such as SELECT permission on all tables or the ability to CREATE tables).
User defined database roles are those that you can create yourself, allowing you to manage
permissions to securables more easily than if you had to individually grant similar permis-
sions to multiple database users.

• Application roles. Application roles are groupings of permissions that don’t allow members.
Instead, you can “log in” as the application role. When you use an application role, it overrides
all of the other permissions your login would otherwise have, giving you only those permis-
sions granted to the application role.

In this section, I’ll review how to create, modify, report on, and drop database users. We’ll also
cover how to work with database roles (fixed and user-defined) and application roles.

Creating Database Users
Once a login is created, it can then be mapped to a database user. A login can be mapped to multi-

.

CHAPTER 17 ■ PRINCIPALS420

570Xch17.qxd 11/4/05 2:46 PM Page 420

In SQL Server 2000, users were granted access with the sp_grantdbaccess system stored procedure.
In SQL Server 2005, the CREATE USER command is used instead.

The syntax is as follows:

CREATE USER user_name
[FOR

{ LOGIN login_name
| CERTIFICATE cert_name
| ASYMMETRIC KEY asym_key_name
}

]
[WITH DEFAULT_SCHEMA = schema_name]

The arguments of this command are described in Table 17-6.

Table 17-6. CREATE USER Arguments

Argument Description

user_name The name of the user in the database.

login_name The name of the SQL or Windows login that is mapping to the database user.

cert_name When designated, this specifies a certificate that is bound to the database user.
See Chapter 19 for more information on certificates.

asym_key_name When designated, this specifies an asymmetric key that is bound to the database
user. See Chapter 19 for more information on keys.

schema_name The default schema that the user will belong to, which will determine what
schema is checked first when the user references database objects. If this option
is unspecified, the dbo schema will be used. This schema name can also be
designated for a schema not yet created in the database.

In this first example of the recipe, a new user called Veronica is created in the TestDB database:

USE TestDB
GO
CREATE USER Veronica

In the second example, a Windows login is mapped to a database user called Joe with a default
schema specified:

USE AdventureWorks
GO
CREATE USER Joe
FOR LOGIN [JOEPROD\TestUser]
WITH DEFAULT_SCHEMA = HumanResources

How It Works
In the first example of the recipe, a user named Veronica was created in the TestDB database. If you
don’t designate the FOR LOGIN clause of CREATE USER, it is assumed that the user maps to a login with
the same name (in this case, a login named Veronica). Notice that the default schema was not desig-
nated, which means Veronica’s default schema will be dbo.

In the second example, a new user named Joe was created in the AdventureWorks database,
mapped to a Windows login named [JOEPROD\TestUser] (notice the square brackets). The default
schema was also set for the Joe login to HumanResources. For any unqualified object references in
queries performed by Joe, SQL Server will first search for objects in the HumanResources schema.

CHAPTER 17 ■ PRINCIPALS 421

570Xch17.qxd 11/4/05 2:46 PM Page 421

Reporting Database User Information
You can report database user (and role) information for the current database connection by using
the sp_helpuser system stored procedure.

The syntax is as follows:

sp_helpuser [[@name_in_db=] ' security_account ']

The single, optional parameter is the name of the database user for which you wish to return
information. For example:

EXEC sp_helpuser 'Veronica'

This returns the following results:

UserName GroupName LoginName DefDBName DefSchemaName UserID SID

Veronica public Veronica NewDB dbo 8 0xEC5C372109E10344BC6CE7B04514EC8D

How It Works
The sp_helpuser system stored procedure returns the database users defined in the current database.
From the results, you can determine important information such as the user name, login name,
default database and schema, and the user’s security-identifier (sid). If a specific user isn’t designated,
sp_helpuser returns information on all users in the current database you are connected to.

Modifying a Database User
In SQL Server 2005 you can rename a database user or change the user’s default schema by using
the ALTER USER command.

The syntax is as follows:

ALTER USER user_name
WITH NAME = new_user_name
| DEFAULT_SCHEMA = schema_name

The arguments of this command are described in Table 17-7.

Table 17-7. ALTER USER Arguments

Argument Description

User_name The name of the user in the database.

New_user_name The new name of the database user.

schema_name The new default schema of the database user.

In this first example of this recipe, the default schema of the Joe database user is changed:

USE AdventureWorks
GO

ALTER USER Joe
WITH DEFAULT_SCHEMA = Production

CHAPTER 17 ■ PRINCIPALS422

570Xch17.qxd 11/4/05 2:46 PM Page 422

In the second example of this recipe, a database user name is changed:

USE TestDB
GO

ALTER USER Veronica
WITH NAME = VSanders

How It Works
The ALTER USER command allows you to perform one of two changes: renaming a database user or
changing a database user’s default schema. The first example changed the default schema of the
Joe login to the Production schema. The second example renamed the database user Veronica to
VSanders.

Removing a Database User from the Database
In SQL Server 2000, the sp_dropuser system stored procedure was used to drop a user from a database.
In SQL Server 2005, the DROP USER command is used instead.

The syntax is as follows:

DROP USER user_name

The user_name is the name of the database user, as this example demonstrates:

USE TestDB
GO

DROP USER VSanders

How It Works
The DROP USER command removes a user from the database, but does not impact the Windows or
SQL login that is associated to it. Like DROP LOGIN, you can’t drop a user that is the owner of database
objects. For example, if the database user Joe is the schema owner for a schema called Test, you’ll
get an error like the following:

Msg 15138, Level 16, State 1, Line 2
The database principal owns a schema in the database, and cannot be dropped.

Fixing Orphaned Database Users
When you migrate a database to a new server (by using BACKUP/RESTORE, for example) the relationship
between logins and database users can break. A login has a security-identifier (sid) which uniquely
identifies it on the SQL Server instance. This sid is stored for the login’s associated database user in
each database that the login has access to. Creating another login on a different SQL Server instance
with the same name will not recreate the same sid.

The following query demonstrates this link by joining the sys.database_principals system cat-
alog view to the sys.server_principals catalog view on the sid column:

SELECT s.name LoginName, d.name DbName, d.sid
FROM sys.database_principals d
INNER JOIN sys.server_principals s ON
d.sid = s.sid
WHERE s.name = 'Veronica'

CHAPTER 17 ■ PRINCIPALS 423

570Xch17.qxd 11/4/05 2:46 PM Page 423

This returns:

LoginName DbUserName sid
-------------- --------------- ----------------------------------
Veronica Veronica 0xEC5C372109E10344BC6CE7B04514EC8D

(1 row(s) affected)

If you RESTORE a database from a different SQL Server instance onto a new SQL Server instance—
and the database users don’t have associated logins on the new SQL Server instance—the database
users can become “orphaned.” If there are logins with the same name on the new SQL Server instance
that match the name of the database users, the database users still may be orphaned in the database
if the login sid doesn’t match the restored database user sid.

To fix this for SQL logins, you can use the sp_change_users_login system stored procedure,
which uses the following syntax:

sp_change_users_login [@Action =] 'action'
[, [@UserNamePattern =] 'user']
[, [@LoginName =] 'login']

[, [@Password =] 'password']

The parameters of the command are described in Table 17-8.

Table 17-8. sp_change_users_login Parameters

Parameter Description

Action If selecting auto_fix, database users and logins will automatically be linked if they
have the same name.
The report option lists orphaned users in the current database.
The update_one option explicitly links a user in the current database to an existing
SQL Server login.

User The database user name.

Login The SQL Server login name.

Password This is the password that the new SQL Server login will use if there is no matching
login name on the SQL Server instance. This system stored procedure will link
those names that match, and create new SQL logins for those orphaned database
users that don’t match.

In this example, a database called TestDB was restored to a new SQL Server instance. TestDB has
a user named Danny. There isn’t a login named Danny on the new SQL Server instance, so the database
user is orphaned. To detect this, sp_change_users_login with the report action is used:

EXEC sp_change_users_login 'Report'

This returns:

UserName UserSID
------------- -----------------------------------
Danny 0x87424DA9CF8EF548AE58E19BD04A798D

Next, the sp_change_users_login is executed with the auto_fix action to fix the orphaned
database user:

CHAPTER 17 ■ PRINCIPALS424

570Xch17.qxd 11/4/05 2:46 PM Page 424

EXEC sp_change_users_login 'Auto_Fix', 'Danny', NULL, 'newDannypassword!#@'

This returns:

Barring a conflict, the row for user 'Danny' will be fixed by updating its link to a new
login.
The number of orphaned users fixed by updating users was 0.
The number of orphaned users fixed by adding new logins and then updating users was 1.

How It Works
This recipe demonstrated how to use sp_change_users_login to fix orphaned database users. The
first query executed the procedure with the Report option in order to show any orphaned users:

EXEC sp_change_users_login 'Report'

After that, the stored procedure used the Auto_Fix option to link a specific database user (Danny):

EXEC sp_change_users_login 'Auto_Fix', 'Danny', NULL, 'newDannypassword!#@'

A password was provided in the fourth parameter so that if an existing login named Danny isn’t
found, it will be created and will use the provided password. The results of that operation tell us that
no existing logins were found (“the number of orphaned users fixed by updating users was 0”).
Instead, a new login was created (“the number of orphaned users fixed by adding new logins and
then updating users was 1”).

Reporting Fixed Database Roles Information
Fixed database roles are found in each database of a SQL Server instance, and have database scoped
permissions assigned to them (such as SELECT permission on all tables or the ability to CREATE tables).
Like fixed server roles, fixed database roles have members (database users) which inherit the permis-
sions of the role.

A list of fixed database roles can be viewed by executing the sp_helpdbfixedrole system stored
procedure:

EXEC sp_helpdbfixedrole

This returns the following results:

DBFixedRole Description
db_owner DB Owners
db_accessadmin DB Access Administrators
db_securityadmin DB Security Administrators
db_ddladmin DB DDL Administrators
db_backupoperator DB Backup Operator
db_datareader DB Data Reader
db_datawriter DB Data Writer
db_denydatareader DB Deny Data Reader
db_denydatawriter DB Deny Data Writer

Table 17-9 details the permissions granted to each fixed database roles:

CHAPTER 17 ■ PRINCIPALS 425

570Xch17.qxd 11/4/05 2:46 PM Page 425

Table 17-9. Fixed Database Role Permissions

Server Role Granted Permissions

db_owner Granted CONTROL (with GRANT option)

db_accessadmin Granted CONNECT (with GRANT option), CREATE SCHEMA

db_securityadmin Granted ALTER ANY APPLICATION ROLE, ALTER ANY ROLE, CREATE SCHEMA,
granted VIEW DEFINITION

db_ddladmin Granted ALTER ANY (ASSEMBLY, CERTIFICATE, CONTRACT, EVENT NOTIFICATION,
DATASPACE, FULLTEXT CATALOG, MESSAGE TYPE, REMOTE SERVICE BINDING,
ROUTE, SCHEMA, SERVICE, SYMMETRIC KEY, TRIGGER, XML SCHEMA COLLECTION),
CHECKPOINT, CREATE (AGGREGATE, ASSEMBLY, CONTRACT, DEFAULT, FUNCTION,
MESSAGE TYPE, PROCEDURE, QUEUE, REMOTE SERVICE BINDING, ROUTE, RULE,
SCHEMA, SERVICE, SYMMETRIC KEY, SYNONYM, TABLE, TYPE, VIEW, XML SCHEMA
COLLECTION), REFERENCES

db_backupoperator Granted BACKUP DATABASE, BACKUP LOG, CHECKPOINT

db_datareader Granted SELECT

db_datawriter Granted DELETE, INSERT, UPDATE

db_denydatareader Denied SELECT

db_denydatawriter Denied INSERT, UPDATE, DELETE

To see the database members of a fixed database role (or any user-defined or application role),
you can execute the sp_helprolemember system stored procedure:

EXEC sp_helprolemember

This returns the following results (the member sid refers to the sid of the login mapped to the
database user):

DbRole MemberName MemberSid
db_backupoperator Joe 0x010500000000000515000000527A777BF094B3850F
db_datawriter Joe 0x010500000000000515000000527A777BF094B3850FF83D0
db_owner dbo 0x010500000000000515000000527A777BF094B3850FF8

How It Works
Fixed database roles are found in each database on a SQL Server instance. A fixed database role
groups important database permissions together. These permissions can’t be modified or removed.

In this recipe, we used sp_helpdbfixedrole to list the available fixed database roles:

EXEC sp_helpdbfixedrole

After that, the sp_helprolemember system stored procedure was used to list the members of
each fixed database role (database users), showing the role name, database user name, and login sid:

EXEC sp_helprolemember

As with fixed server roles, it’s best not to grant membership to them without assurance that all
permissions are absolutely necessary for the database user. Do not, for example, grant a user db_owner
membership when only SELECT permissions on a table are needed.

The next recipe shows you how to add or remove database users to a fixed database role.

CHAPTER 17 ■ PRINCIPALS426

570Xch17.qxd 11/4/05 2:46 PM Page 426

Managing Fixed Database Role Membership
To associate a database user or role with a database role (user defined or application role), use the
sp_addrolemember system stored procedure.

The syntax is as follows:

sp_addrolemember [@rolename =] 'role',
[@membername =] 'security_account'

The first parameter of the system stored procedure takes the role name, and the second param-
eter the name of the database user.

To remove the association between a database user and role, use the sp_droprolemember system
stored procedure:

sp_droprolemember [@rolename=] 'role' ,
[@membername=] 'security_account'

Like sp_addrolemember, the first parameter of the system stored procedure takes the role name,
and the second parameter takes the name of the database user.

This first example demonstrates adding the database user Veronica to the fixed db_datawriter
and db_datareader roles:

USE AdventureWorks
GO
EXEC sp_addrolemember 'db_datawriter', 'Veronica'
EXEC sp_addrolemember 'db_datareader', 'Veronica'

This second example demonstrates how to remove the database user Veronica from the
db_datawriter role:

USE AdventureWorks
GO
EXEC sp_droprolemember 'db_datawriter', 'Veronica'

How It Works
This recipe began by discussing sp_addrolemember, which allows you to add a database user to an
existing database role. The database user Veronica was added to db_datawriter and db_datareader,
which gives her cumulative permissions to SELECT, INSERT, UPDATE, or DELETE from any table or view
in the AdventureWorks database:

EXEC sp_addrolemember 'db_datawriter', 'Veronica'
EXEC sp_addrolemember 'db_datareader', 'Veronica'

The first parameter of the stored procedure was the database role, and the second parameter
was the name of the database user (or role) that the database role is associated to.

After that, the sp_droprolemember was used to remove Veronica’s membership from the
db_datawriter role:

EXEC sp_droprolemember 'db_datawriter', 'Veronica'

Managing User-Defined Database Roles
User defined database roles allow you to manage permissions to securables more easily than if you
had to individually grant the same permissions to multiple database users over and over again.
Instead, you can create a database role, grant it permissions to securables, and then add one or more
database users as members to that database role. When permission changes are needed, you only
have to modify the permissions of the single database role and the members of the role will then
automatically inherit those permission changes.

CHAPTER 17 ■ PRINCIPALS 427

570Xch17.qxd 11/4/05 2:46 PM Page 427

In SQL Server 2000, the sp_addrole system-stored procedure was used to create a new data-
base role. In SQL Server 2005, the CREATE ROLE command is used instead.

The syntax is as follows:

CREATE ROLE role_name [AUTHORIZATION owner_name]

The command takes the name of the new role, and an optional role owner name. The owner name
is the name of the user or database role that owns the new database role (and thus can manage it).

You can list all database roles (fixed, user-defined, and application) by executing the sp_helprole
system stored procedure:

EXEC sp_helprole

This returns the following abridged results (the IsAppRole column shows as a “1” if the role is
an application role, and “0” if not):

RoleName RoleId IsAppRole
public 0 0
HR_ReportSpecialist 7 0
db_owner 16384 0
...

Once a database role is created in a database, you can grant or deny it permissions as you
would a regular database user (see the next chapter for more on permissions). I’ll also demonstrate
granting permissions to a database role in a moment.

If you wish to change the name of the database role, without also disrupting the role’s current
permissions and membership, you can use the ALTER ROLE command, which has the following syntax:

ALTER ROLE role_name WITH NAME = new_name

The command takes the name of the original role as the first argument, and the new role name
in the second argument.

To drop a role, use the DROP ROLE command. The syntax is as follows:

DROP ROLE role_name

If a role owns any securables, you’ll need to transfer ownership to a new owner before you can
drop the role.

In this example, a new role is created in the AdventureWorks database:

USE AdventureWorks
GO
CREATE ROLE HR_ReportSpecialist AUTHORIZATION db_owner

After being created, this new role doesn’t have any database permissions yet. In this query, the
HR_ReportSpecialist database role is granted permission to SELECT from the HumanResources.Employee
table:

GRANT SELECT ON HumanResources.Employee TO HR_ReportSpecialist

If you want the login Veronica to have permissions to read from the HumanResources.Employee
table, along with any other permissions this role may be granted in the future, you must execute
sp_droprolemember:

EXEC sp_addrolemember 'HR_ReportSpecialist',
'Veronica'

GO

CHAPTER 17 ■ PRINCIPALS428

570Xch17.qxd 11/4/05 2:46 PM Page 428

If, later on, we decide that the name of the role doesn’t match its purpose, we can change its
name using ALTER ROLE:

ALTER ROLE HR_ReportSpecialist WITH NAME = HumanResources_RS

Even though the role name was changed, Veronica remains a member of the role.
This last example demonstrates dropping a database role:

DROP ROLE HumanResources_RS

This returns an error message, because the role must be emptied of members before it can be
dropped:

Msg 15144, Level 16, State 1, Line 1
The role has members. It must be empty before it can be dropped.

So, the single member of this role is then dropped, prior to dropping the role:

EXEC sp_droprolemember 'HumanResources_RS',
'Veronica'

GO

DROP ROLE HumanResources_RS

How It Works
The CREATE ROLE command creates a new database role in a database. Once created, you can apply
permissions to the role as you would a regular database user. Roles allow you to administer permis-
sions at a group level—allowing individual role members to inherit permissions in a consistent
manner instead of applying permissions to individual users, which may or may not be identical.

This recipe demonstrated several commands related to managing user-defined database roles.
The sp_helprole system stored procedure was used to list all database roles in the current database.
CREATE ROLE was used to create a new user-defined role owned by the db_owner fixed database role:

CREATE ROLE HR_ReportSpecialist AUTHORIZATION db_owner

We then granted permissions to the new role to SELECT from a table:

GRANT SELECT ON HumanResources.Employee TO HR_ReportSpecialist

The Veronica user was then added as a member of the new role:

EXEC sp_addrolemember 'HR_ReportSpecialist',
'Veronica'

The name of the role was changed using ALTER ROLE (still leaving membership and permissions
intact):

ALTER ROLE HR_ReportSpecialist WITH NAME = HumanResources_RS

The Veronica user was then dropped from the role (so that we could drop the user-defined role):

EXEC sp_droprolemember 'HumanResources_RS',
'Veronica'

Once emptied of members, the user-defined database role was then dropped:

DROP ROLE HumanResources_RS

CHAPTER 17 ■ PRINCIPALS 429

570Xch17.qxd 11/4/05 2:46 PM Page 429

Managing Application Roles
An application role is a hybrid between a login and a database role. You can assign permissions to
application roles in the same way that you can assign permissions to user-defined roles. Application
roles differ from database and server roles, however, in that application roles do not allow members.
Instead, an application role is activated using a password enabled system stored procedure. When
you use an application role, it overrides all of the other permissions your login would otherwise have.

Because an application role has no members, it requires a password for the permissions to be
enabled. In addition to this, once a session’s context is set to use an application role, any existing
user or login permissions are nullified. Only the application role’s permissions apply.

To create an application role, use the CREATE APPLICATION ROLE, which has the following syntax:

CREATE APPLICATION ROLE application_role_name
WITH PASSWORD = ' password ' [, DEFAULT_SCHEMA = schema_name]

The arguments of this command are described in Table 17-10.

Table 17-10. CREATE APPLICATON ROLE Arguments

Argument Description

application_role_name The name of the application role.

password The password to enable access to the application role’s permissions.

schema_name The default database schema of the application role that defines which
schema is checked for unqualified object names in a query.

In this example, a new application role name, DataWareHouseApp, is created and granted permis-
sions to a view in the AdventureWorks database:

CREATE APPLICATION ROLE DataWareHouseApp
WITH PASSWORD = 'mywarehouse123!',
DEFAULT_SCHEMA = dbo

An application role by itself is useless without first granting it permissions to do something.
So, in this example, the application role is given SELECT permissions on a specific database view:

-- Now grant this application role permissions
GRANT SELECT ON Sales.vSalesPersonSalesByFiscalYears
TO DataWareHouseApp

The system stored procedure sp_setapprole is used to enable the permissions of the application
role for the current user session.

The syntax is as follows:

sp_setapprole [@rolename=] 'role', [@password=]
{Encrypt N'password'} | 'password' [,[@encrypt =] 'encrypt_style']

The parameters of this stored procedure are described in Table 17-11.

Table 17-11. sp_setapprole Parameters

Parameter Description

role The application role name.

password The application role password designated in CREATE ROLE.

encrypt_style When designated, you can choose “none” for no encryption of the
password, or “odbc” when the password is encrypted using the ODBC
encryption functionality.

CHAPTER 17 ■ PRINCIPALS430

570Xch17.qxd 11/4/05 2:46 PM Page 430

In this next example, I activate an application role and query two tables:

EXEC sp_setapprole 'DataWareHouseApp', -- App role name
'mywarehouse123!' -- Password

-- Works
SELECT COUNT(*)
FROM Sales.vSalesPersonSalesByFiscalYears

-- Doesn't work
SELECT COUNT(*)
FROM HumanResources.vJobCandidate

This returns:

14

(1 row(s) affected)

Msg 229, Level 14, State 5, Line 7
SELECT permission denied on object 'vJobCandidate', database 'AdventureWorks', schema
'HumanResources'.

Even though the original connection login was for a login with sysadmin permissions, using
sp_setapprole to enter the application permissions means that only that role’s permissions apply. So, in
this case, the application role had SELECT permission for the Sales.vSalesPersonSalesByFiscalYears
view, but not the HumanResources.vJobCandidate view queried in the example.

To revert back to the original login’s permissions, you must close out the connection and open
a new connection.

You can modify the name, password, or default database of an application role using the
ALTER APPLICATION ROLE command.

The syntax is as follows:

ALTER APPLICATION ROLE application_role_name
WITH NAME = new_application_role_name

| PASSWORD = ' password '
| DEFAULT_SCHEMA = schema_name

The arguments of the command are described in Table 17-12.

Table 17-12. ALTER APPLICATION ROLE Arguments

Parameter Description

new_application_role_name The new application role name.

password The new application role password.

schema_name The new default schema.

In this example, the application role name and password are changed:

ALTER APPLICATION ROLE DataWareHouseApp
WITH NAME = DW_App, PASSWORD = 'newsecret!123'

To remove an application role from the database, use DROP APPLICATION ROLE, which has the
following syntax:

CHAPTER 17 ■ PRINCIPALS 431

570Xch17.qxd 11/4/05 2:46 PM Page 431

This command takes only one argument, the name of the application role to be dropped. For
example:

DROP APPLICATION ROLE DW_App

How It Works
This recipe demonstrated how to:

• Create a new application role using CREATE APPLICATION ROLE.

• Activate the role permissions using sp_setapprole.

• Modify an application role using ALTER APPLICATION ROLE.

• Remove an application role from a database using DROP APPLICATION ROLE.

Application roles are a convenient solution for application developers who wish to grant users
access only through an application. Perceptive end-users often figure out that their SQL login can
also be used to connect to SQL Server with other applications such as Microsoft Access or SQL Server
Management Studio. To prevent this, you can change the login account to have minimal permissions
for the databases, and then use an application role for the required permissions. This way, the user can
only access the data through the application, which is then programmed to use the application role.

CHAPTER 17 ■ PRINCIPALS432

570Xch17.qxd 11/4/05 2:46 PM Page 432

Securables and Permissions

In the previous chapter, I discussed principals, which are security accounts that can access SQL
Server. In this chapter, I’ll discuss and demonstrate securables and permissions. Securables are
resources that SQL Server controls access to through permissions. Securables in SQL Server 2005
fall into three nested hierarchical scopes. The top level of the hierarchy is the server scope, which
contains logins, databases, and endpoints. The database scope, which is contained within the server
scope, controls securables such as database users, roles, certificates, and schemas. The third and
innermost scope is the schema scope, which controls securables such as the schema itself, and
objects within the schema such as tables, views, functions, and procedures.

Permissions enable a principal to perform actions on securables. SQL Server 2005 has expanded
the permission model, providing finer-grained control of specific SQL Server resources. Across all
securable scopes, the primary commands used to control a principal’s access to a securable are
GRANT, DENY, and REVOKE. These commands are applied in similar ways, depending on the scope of
the securable that you are targeting. GRANT is used to enable access to securables. DENY explicitly
restricts access, trumping other permissions that would normally allow a principal access to a secur-
able. REVOKE removes a specific permission on a securable altogether, whether it was a GRANT or DENY
permission.

In this chapter, I’ll discuss how permissions are granted to principals at all three securable
scopes. In addition to permissions, this chapter also presents the following related securable and
permissions recipes:

• How to manage schemas using CREATE, ALTER, and DROP SCHEMA.

• How to report allocated permissions for a specific principal by using the fn_my_permissions
function.

• How to determine a connection’s permissions to a securable using the new system function
Has_perms_by_name, as well as using EXECUTE AS to define your connection’s security context
to a different login or user to see their permissions too.

• How to change a securable’s ownership using ALTER AUTHORIZATION.

• How to provide Windows external resource permissions to a SQL login using CREATE CREDENTIAL
and ALTER LOGIN.

This chapter starts off with a general discussion of SQL Server 2005 permissions.

433

C H A P T E R 1 8

■ ■ ■

570Xch18.qxd 11/4/05 2:47 PM Page 433

CHAPTER 18 ■ SECURABLES AND PERMISSIONS434

Permissions Overview
Microsoft has greatly expanded the number of permissions that can be managed in SQL Server 2005.
These permissions apply to SQL Server objects within the three securable scopes (server, database,
and schema).

SQL Server 2005 uses a set of common permission names that are applied to different securables
(and at different scopes), and imply different levels of authorization against a securable. Table 18-1
shows those permissions that are used for multiple securables (however this isn’t the exhaustive list).

Table 18-1. Major Permissions

Permission Description

ALTER Enables the grantee the use of ALTER, CREATE, or DROP commands for the
securable. For example, using ALTER TABLE requires ALTER permissions on
that specific table.

AUTHENTICATE Enables the grantee to be trusted across database or SQL Server scopes.

CONNECT Enables a grantee the permission to connect to a SQL Server resources
(such as an endpoint, or the SQL Server instance).

CONTROL Enables all available permissions on the specific securable to the grantee, as
well as any nested or implied permissions within (so if you CONTROL
a schema, for example, you also control any tables, views, or other database
objects within that schema).

CREATE Enables the grantee to create a securable (which can be at the server,
database, or schema scope).

IMPERSONATE Enables the grantee to impersonate another principal (login or user). For
example, using the EXECUTE AS command for a login requires IMPERSONATE
permissions. I demonstrated using EXECUTE AS in Chapter 10’s recipe, “Using
EXECUTE AS to Specify the Procedure’s Security Context.” In this chapter, I’ll
also go over how to use EXECUTE AS to set your security context outside of
a module.

TAKE OWNERSHIP Enables the grantee to take ownership of a granted securable.

VIEW Enables the grantee to see system metadata regarding a specific securable.

To report available permissions in SQL Server 2005, as well as view that specific permission’s
place in the permission hierarchy, use the sys.fn_builtin_permissions system catalog table func-
tion.

The syntax is as follows:

Sys.fn_builtin_permissions
([DEFAULT | NULL | empty_string |
APPLICATION ROLE | ASSEMBLY | ASYMMETRIC KEY |
CERTIFICATE | CONTRACT | DATABASE |
ENDPOINT | FULLTEXT CATALOG| LOGIN |
MESSAGE TYPE | OBJECT | REMOTE SERVICE BINDING |
ROLE | ROUTE | SCHEMA | SERVER | SERVICE |
SYMMETRIC KEY | TYPE | USER | XML SCHEMA COLLECTION)

The arguments of this command are described in Table 18-2.

570Xch18.qxd 11/4/05 2:47 PM Page 434

Table 18-2. fn_builtin_permissions Arguments

Argument Description

DEFAULT | NULL | empty_string Designating any of these first three arguments results in
all permissions being listed in the result set.

APPLICATION ROLE | ASSEMBLY | Specify any one of these securable types in order to
ASYMMETRIC KEY | CERTIFICATE | return permissions for that type.
CONTRACT | DATABASE | ENDPOINT |
FULLTEXT CATALOG| LOGIN |
MESSAGE TYPE | OBJECT |
REMOTE SERVICE BINDING |ROLE |
ROUTE | SCHEMA | SERVER |
SERVICE | SYMMETRIC KEY |
TYPE | USER | XML SCHEMA COLLECTION

In addition to the permission name, you can determine the nested hierarchy of permissions by
looking at the covering_permission_name (a permission within the same class that is the superset of
the more granular permission), parent_class_desc (the parent class of the permission—if any), and
parent_covering_permission_name (the parent covering permission—if any) columns in the result
set, which you’ll see demonstrated in the next recipe.

Reporting SQL Server 2005 Assignable Permissions
In this recipe, I show you how to view the available permissions within SQL Server 2005 and explain
their place within the permissions hierarchy. In the first example, all permissions will be returned,
regardless of securable scope:

SELECT class_desc, permission_name, covering_permission_name,
parent_class_desc, parent_covering_permission_name
FROM sys.fn_builtin_permissions(DEFAULT)
ORDER BY class_desc, permission_name

This returns the following (abridged) result set:

CHAPTER 18 ■ SECURABLES AND PERMISSIONS 435

class_desc permission_name covering_permission_name parent_class_desc parent_covering_permission_name

APPLICATION ROLE ALTER CONTROL DATABASE ALTER ANY APPLICATION ROLE

APPLICATION ROLE CONTROL DATABASE CONTROL

APPLICATION ROLE VIEW DEFINITION CONTROL DATABASE VIEW DEFINITION

...

OBJECT ALTER CONTROL SCHEMA ALTER

OBJECT CONTROL SCHEMA CONTROL

OBJECT DELETE CONTROL SCHEMA DELETE

OBJECT EXECUTE CONTROL SCHEMA EXECUTE

...

SERVER ADMINISTER BULK ➥ CONTROL SERVER

OPERATIONS

SERVER ALTER ANY CONNECTION CONTROL SERVER

SERVER ALTER ANY CREDENTIAL CONTROL SERVER

SERVER ALTER ANY DATABASE CONTROL SERVER

This next example only shows permissions for the schema securable scope:

SELECT permission_name, covering_permission_name, parent_class_desc
FROM sys.fn_builtin_permissions('schema')
ORDER BY permission_name

570Xch18.qxd 11/4/05 2:47 PM Page 435

This returns the following abridged result set:

permission_name covering_permission_name parent_class_desc
ALTER CONTROL DATABASE
CONTROL DATABASE
DELETE CONTROL DATABASE
EXECUTE CONTROL DATABASE
...

How It Works
The sys.fn_builtin_permissions system catalog function allows you to view available permissions
in SQL Server 2005.

The first example in this recipe, sys.fn_builtin_permissions, was used to display all permissions
by using the DEFAULT option. The first line of code referenced the column names to be returned from
the function:

SELECT class_desc, permission_name, covering_permission_name,
parent_class_desc, parent_covering_permission_name

The second line referenced the function in the FROM clause, using the DEFAULT option to display
all permissions:

FROM sys.fn_builtin_permissions(DEFAULT)

The last line of code allowed us to order by the permission’s class and name:

ORDER BY class_desc, permission_name

The results displayed the securable class description, permission name, and covering permission
name (the covering permission name is the name of a permission class that is higher in the nested
permission hierarchy). For example, for the APPLICATION ROLE class, you saw that the CONTROL permis-
sion was a child of the DATABASE class and ALTER ANY APPLICATION permission, but was not subject to
any covering permission in the APPLICATION ROLE class (because CONTROL enables all available
permissions on the specific securable to the grantee, as well as any nested or implied permissions
within):

CHAPTER 18 ■ SECURABLES AND PERMISSIONS436

class_desc permission_name covering_permission_name parent_class_desc parent_covering_permission_name

...

APPLICATION ROLE CONTROL DATABASE CONTROL

...

For the OBJECT class, we saw that the ALTER permission was a child of the SCHEMA parent class
and ALTER permission. Within the OBJECT class the ALTER permissions was also a child of the covering
CONTROL permission (as seen in the covering_permission_name column):

class_desc permission_name covering_permission_name parent_class_desc parent_covering_permission_name

...

OBJECT ALTER CONTROL SCHEMA ALTER

...

570Xch18.qxd 11/4/05 2:47 PM Page 436

For the SERVER class and ALTER ANY DATABASE permission, the covering permission for the SERVER
class was CONTROL SERVER. Notice that the SERVER class does not have a parent class and permission:

class_desc permission_name covering_permission_name parent_class_desc parent_covering_permission_name

...

SERVER ALTER ANY DATABASE CONTROL SERVER

...

The second example in this recipe returned permissions for just the schema-securable class.
The first line of code included just three of the columns this time:

SELECT permission_name, covering_permission_name, parent_class_desc

The second line included the word ‘schema’ in order to show permissions for the schema-
securable class:

FROM sys.fn_builtin_permissions('schema')

The results were then ordered by the permission name:

ORDER BY permission_name

Permissions that control database objects contained within a schema (such as views, tables,
etc.) were returned. For example, you saw that the DELETE permission is found within the schema
scope, and is covered by the CONTROL permission. Its parent class is the DATABASE securable:

permission_name covering_permission_name parent_class_desc
...
DELETE CONTROL DATABASE
...

Server-Scoped Securables and Permissions
Server-scoped securables are objects that are unique within a SQL Server instance, including endpoints,
logins, and databases. Permissions on server-scoped securables can be granted only to server-level
principals (SQL Server logins or Windows logins), and not to database-level principals such as users
or database roles.

At the top of the permissions hierarchy, server permissions allow a grantee to perform activities
such as creating databases, logins, or linked servers. Server permissions also give you the ability to
shut down the SQL Server instance (using SHUTDOWN) or use SQL Profiler (using the ALTER TRACE per-
mission). When allocating permissions on a securable to a principal, the person doing the allocating
is the grantor, and the principal receiving the permission is the grantee.

The syntax for granting server permissions is as follows:

GRANT
ADMINISTER BULK OPERATIONS | ALTER ANY CONNECTION|
ALTER ANY CREDENTIAL | ALTER ANY DATABASE |
ALTER ANY ENDPOINT | ALTER ANY EVENT NOTIFICATION |
ALTER ANY LINKED SERVER | ALTER ANY LOGIN |
ALTER RESOURCES | ALTER SERVER STATE |
ALTER SETTINGS | ALTER TRACE |
AUTHENTICATE SERVER | CONNECT SQL |
CONTROL SERVER | CREATE ANY DATABASE |
CREATE DDL EVENT NOTIFICATION | CREATE ENDPOINT |
CREATE TRACE EVENT NOTIFICATION | EXTERNAL ACCESS |

CHAPTER 18 ■ SECURABLES AND PERMISSIONS 437

570Xch18.qxd 11/4/05 2:47 PM Page 437

SHUTDOWN | VIEW ANY DATABASE |
VIEW ANY DEFINITION | VIEW SERVER STATE
[,...n]
TO SQL_Server_login [,...n]
[WITH GRANT OPTION]
[AS SQL_Server_login]

The arguments of this command are described in Table 18-3.

Table 18-3. GRANT Arguments

Argument Description

ADMINISTER BULK OPERATIONS | You can grant one or more server permissions in a single
ALTER ANY CONNECTION... [,...n] GRANT statement.

TO SQL_Server_login [,...n] This is the grantee, also known as the principal (SQL Server
login or logins), who you are granting permissions to.

WITH GRANT OPTION When designating this option, the grantee will then have
permission to grant the permission(s) to other grantees.

AS SQL_Server_login This optional clause specifies where the grantor derives its
right to grant the permission to the grantee.

To explicitly deny permissions on a securable to a server-level principal, use the DENY com-
mand.

The syntax is as follows:

DENY { server_permission [,...n] }
TO < server_principal > [,...n]

[CASCADE]
[AS SQL_Server_login]

The arguments of this command are described in Table 18-4.

Table 18-4. DENY Arguments

Argument Description

server_permission [,...n] One or more server-scoped permissions to deny.

< server_principal > [,...n] One or more logins (Windows or SQL) that you can deny
permissions to.

CASCADE When this option is designated, if the grantee principal
granted any of these permissions to others, those grantees
will also have their permissions denied.

AS SQL_Server_login This optional clause specifies where the grantor derives its
right to deny the permission to the grantee.

To revoke permissions on a securable to a principal, use the REVOKE command. Revoking
a permission means you’ll neither be granting nor denying that permission—revoke removes the
specified permission(s) that had previously been either granted or denied permission.

The syntax is as follows:

REVOKE [GRANT OPTION FOR] { server_permission [,...n] }
FROM < server_principal > [,...n]
[CASCADE]
[AS SQL_Server_login]

CHAPTER 18 ■ SECURABLES AND PERMISSIONS438

570Xch18.qxd 11/4/05 2:47 PM Page 438

The arguments of this command are described in Table 18-5.

Table 18-5. REVOKE Arguments

Argument Description

GRANT OPTION FOR When specified, the right for the grantee to grant the
permission to other grantees is revoked.

server_permission [,...n] One or more server-scoped permissions to revoke.

< server_principal > [,...n] One or more logins (Windows or SQL) to revoke permissions
from.

CASCADE When this option is designated, if the grantee principal granted
any of these permissions to others, those grantees will also
have their permissions revoked.

AS SQL_Server_login This optional clause specifies where the grantor derives its
right to revoke the permission to the grantee.

Managing Server Permissions
In this first example of this recipe, the SQL login Veronica is granted the ability to use the SQL Profiler
tool to monitor SQL Server activity. This permission is given with the WITH GRANT OPTION, so Veronica
can also GRANT the permission to others. Keep in mind that permissions at the server scope can only
be granted when the current database is master, so we start off the batch by switching database
context:

USE master
GO

GRANT ALTER TRACE TO Veronica
WITH GRANT OPTION

In this second example, the Windows login [JOEPROD\TestUser] is granted the permissions to
create and view databases on the SQL Server instance:

USE master
GO

GRANT CREATE ANY DATABASE, VIEW ANY DATABASE TO [JOEPROD\TestUser]

In this next example, the right to execute the SHUTDOWN command is denied the Windows login
[JOEPROD\TestUser]:

DENY SHUTDOWN TO [JOEPROD\TestUser]

In the last example, the permission to use SQL Profiler is revoked from Veronica, including any
other grantees she may have given this permission to as well:

USE master
GO
REVOKE ALTER TRACE FROM Veronica CASCADE

How It Works
Permissions on server-scoped securables are granted using GRANT, denied with DENY, and removed
with REVOKE. Using these commands, one or more permissions can be assigned in the same command,
as well as allocated to one or more logins (Windows or SQL).

CHAPTER 18 ■ SECURABLES AND PERMISSIONS 439

570Xch18.qxd 11/4/05 2:47 PM Page 439

This recipe dealt with assigning permissions at the server scope, although you’ll see in future
recipes that the syntax for assigning database and schema permissions are very similar.

Database-Scoped Securables and Permissions
Database-level securables are unique to a specific database, and include the following SQL Server
2005 objects:

• Roles, both user-defined and application varieties

• Assemblies

• Cryptography objects, including asymmetric and symmetric keys, certificates, and symmetric
keys

• Service Broker objects, including contracts, message types, routes, services, and remote
service bindings

• Fulltext catalogs

• Database users

• Schemas

You can grant permissions on these securables to database principals (database users, roles).
The abridged syntax for granting database permissions is as follows:

GRANT { database_permission [,...n] }
TO
Database_user | Database_role | Application_role [,...n]
[WITH GRANT OPTION]

[AS { Database_user | Database_role | Application_role }]

The arguments of this command are described in Table 18-6.

Table 18-6. GRANT Arguments

Argument Description

database_permission One or more database permissions to be granted to
the principal(s).

Database_user | Database_role | One or more database principals that will be the
Application_role [,...n] grantees of the new permissions.

WITH GRANT OPTION When designating this option, the grantee has
permissions to grant the permission(s) to other
grantees.

AS { Database_user | Database_role | This optional clause specifies where the grantor
Application_role } derives its right to grant the permission to the grantee.

For example, if your current database user context
does not have permission to GRANT a specific permission,
but you have an IMPERSONATE permission on a database
user that does, you can designate that user in the AS
clause.

To deny database-scoped permissions to a grantee, the DENY command is used.
The syntax is as follows:

CHAPTER 18 ■ SECURABLES AND PERMISSIONS440

570Xch18.qxd 11/4/05 2:47 PM Page 440

DENY { database_permission [,...n] }
TO < database_principal > [,...n] [CASCADE]

[AS { Windows_group | database_role | application_role }]

The arguments of this command are described in Table 18-7.

Table 18-7. DENY Arguments

Argument Description

database_permission [,...n] One or more database-scoped permissions to deny.

< database_principal > [,...n] One or more database principals to deny permissions for.

CASCADE When this option is designated, if the grantee principal
granted any of these permissions to others, those
grantees will also have their permissions denied.

AS { Windows_group | database_role | This optional clause specifies where the grantor derives
application_role } its right to deny the permission to the grantee.

To revoke database-scoped permissions to the grantee, the REVOKE command is used.
The syntax is as follows:

REVOKE { database_permission [,...n] }
FROM < database_principal > [,...n]
[CASCADE]
[AS { Windows_group | database_role | application_role }]

The arguments of this command are described in this Table 18-8.

Table 18-8. REVOKE Arguments

Argument Description

database_permission [,...n] One or more database-scoped permissions to revoke.

< database_principal > [,...n] One or more database principals to revoke permissions
from.

CASCADE When this option is designated, if the grantee principal
granted any of these permissions to others, those
grantees will also have their permissions revoked.

AS { Windows_group | database_role | This optional clause specifies where the grantor derives
application_role } its right to revoke the permission to the grantee.

Managing Database Permissions
This first example demonstrates granting database permissions to the Veronica database user in the
TestDB database:

USE TestDB
GO
GRANT ALTER ANY ASSEMBLY, ALTER ANY CERTIFICATE
TO VERONICA

This second example demonstrates denying permissions to the Danny database user:

USE TestDB
GO
DENY ALTER ANY DATABASE DDL TRIGGER TO Danny
GO

CHAPTER 18 ■ SECURABLES AND PERMISSIONS 441

570Xch18.qxd 11/4/05 2:47 PM Page 441

The last example demonstrates revoking database permissions to connect to the TestDB database
from the Joe user:

USE TestDB
GO
REVOKE CONNECT FROM Joe
GO

How It Works
This recipe demonstrated how to grant, revoke, or deny database-scoped permissions to database
principals. As you may have noticed, the syntax for granting database-scoped permissions is almost
identical to server-scoped permissions. Schema-scoped permissions are also managed with the same
commands, but with slight variations.

Before reviewing how to manage schema permissions, in this next recipe I’ll demonstrate how
to manage schemas in general.

Schema-Scoped Securables and Permissions
Schema-scoped securables are contained within the database securable scope and include user-
defined data types, XML schema collections, and objects. The object securable also has other securable
object types within it, but I’ll review this later in the chapter.

In SQL Server 2000, the first part of the two-part object name was the object owner. Now with
SQL Server 2005, users are separated from direct ownership of a database object (such as tables,
views, and stored procedures). This separation is achieved by the use of schemas, which are basically
containers for database objects. Instead of having a direct object owner, the object is contained
within a schema, and that schema is then owned by a user.

For example, in SQL Server 2000, if you have an object called Customers, which is owned by the
Jane user, this would result in the object Jane.Customers. If Jane left the company, you would not be
able to drop her login and associated database users until you gave the ownership of her objects to
someone else. Changing the ownership also changed the fully qualified name of the object, for exam-
ple Joe.Customers instead of Jane.Customers. Of course this also forces you to rewrite any code that
referenced the original name. Now in SQL Server 2005, with users owning a schema instead of the
objects within a schema, you can change the owner of the schema and then drop Jane’s login
without having to modify the object owner itself or any of the code that referenced it.

Schemas offer a few other benefits. In the Jane.Customers example, only Jane “owned” the
Customers table. In SQL Server 2005, one or more users can own a schema or use it as their default
schema for creating objects. What’s more, you can apply security at the schema level. This means
any objects within the schema can be managed as a unit, instead of at the individual object level.

Every database comes with a dbo schema, which is where your objects go if you don’t specify
a default schema. But if you wish to create your own schemas, you can use the CREATE SCHEMA command.

The syntax is as follows:

CREATE SCHEMA
schema_name [AUTHORIZATION owner_name]
{ table_definition | view_definition | grant_statement

revoke_statement | deny_statement }

The arguments of this command are described in Table 18-9.

CHAPTER 18 ■ SECURABLES AND PERMISSIONS442

570Xch18.qxd 11/4/05 2:47 PM Page 442

Table 18-9. CREATE SCHEMA Arguments

Argument Description

schema_name | The name of the schema and the schema owner. The
schema_name AUTHORIZATION owner_name schema owner is a database principal which can own

one or more schemas in the database.

table_definition | view_definition | The CREATE SCHEMA command lets you create tables,
grant_statement revoke_statement | views, and permissions within the schema as part of
deny_statement a single schema creation transaction.

To remove an existing schema, use the DROP SCHEMA command.
The syntax is as follows:

DROP SCHEMA schema_name

The command only takes a single argument: the name of the schema to drop from the database.
Also, you can’t drop a schema that contains objects, so the objects must either be dropped or trans-
ferred to a new schema.

■Note See the topic “Change an Object's Schema” in Chapter 24 for a review of using ALTER SCHEMA to transfer
schema ownership of an object.

Like with server- and database-scoped permissions, permissions for schemas are managed using
the GRANT, DENY, and REVOKE commands.

The specific syntax for granting permissions on a schema is as follows:

GRANT { schema_permission [,...n] } ON SCHEMA :: schema_name
TO < database_principal > [,...n]
[WITH GRANT OPTION]
[AS { Windows_group | database_role | application_role }]

The arguments of this command are described in Table 18-10.

Table 18-10. GRANT Arguments

Argument Description

schema_permission [,...n] One or more schema permissions to be granted to the
grantee.

schema_name The name of the schema the grantee is receiving
permissions to.

database_principal The database principal permissions recipient.

WITH GRANT OPTION When designating this option, the grantee has
permissions to grant the schema permission(s) to
other grantees.

AS { Windows_group | database_role | This optional clause specifies where the grantor
application_role } derives its right to grant the schema-scoped

permission to the grantee.

To deny schema-scoped permissions to a grantee, the DENY command is used.
The syntax is as follows:

CHAPTER 18 ■ SECURABLES AND PERMISSIONS 443

570Xch18.qxd 11/4/05 2:47 PM Page 443

DENY { schema_permission [,...n] } ON SCHEMA :: schema_name
TO < database_principal > [,...n]
[CASCADE]
[AS { Windows_group | database_role | application_role }]

The arguments of this command are described in Table 18-11.

Table 18-11. DENY Arguments

Argument Description

schema_permission [,...n] One or more schema-scoped permissions to deny.

schema_name The name of the schema where permissions will be
denied.

< database_principal > [,...n] One or more database principals to deny permissions for.

CASCADE When this option is designated, if the grantee principal
granted any of these permissions to others, those
grantees will also have their permissions denied.

AS { Windows_group | database_role | This optional clause specifies where the grantor derives
application_role } its right to deny the permission to the grantee.

To revoke schema-scoped permissions to the grantee, the REVOKE command is used.
The syntax is as follows:

REVOKE [GRANT OPTION FOR] { schema_permission [,...n] }
ON SCHEMA :: schema_name
{ TO | FROM } < database_principal > [,...n]
[CASCADE]
[AS { Windows_group | database_role | application_role }]

The arguments of this command are described in Table 18-12.

Table 18-12. REVOKE Arguments

Argument Description

schema_permission [,...n] One or more schema-scoped permissions to revoke.

schema_name The name of the schema of which the permissions will be
revoked.

< database_principal > [,...n] One or more database principals to revoke permissions for.

CASCADE When this option is designated, if the grantee principal
granted any of these permissions to others, those
grantees will also have their permissions revoked.

AS { Windows_group | database_role | This optional clause specifies where the grantor derives
application_role } its right to revoke the permission to the grantee.

Managing Schemas
In this recipe, I’ll create a new schema in the TestDB database called Publishers:

USE TestDB
GO
CREATE SCHEMA Publishers AUTHORIZATION db_owner

CHAPTER 18 ■ SECURABLES AND PERMISSIONS444

570Xch18.qxd 11/4/05 2:47 PM Page 444

We now have a schema called Publishers, which can be used to contain other database objects.
It can be used to hold all objects related to publication functionality, for example, or used to hold
objects for database users associated to publication activities.

To start using the new schema, use the schema.object_name two-part naming format, just as
you did in SQL Server 2000, only this time the first part of the two-part name is the schema name:

CREATE TABLE Publishers.ISBN
(ISBN char(13) NOT NULL PRIMARY KEY,
CreateDT datetime NOT NULL DEFAULT GETDATE())

This next example demonstrates making the Publishers schema a database user’s default schema.
For this example, a new SQL login in the master database:

USE master
GO
CREATE LOGIN Veronica
WITH PASSWORD=N'test123',

DEFAULT_DATABASE=TestDB,
CHECK_EXPIRATION=OFF,
CHECK_POLICY=OFF

GO

Next, a new database user is mapped to the login in the TestDB database:

USE TestDB
GO
CREATE USER Veronica
FOR LOGIN Veronica
GO

Now the default schema of the existing database user will be changed to the Publishers schema.
Any objects this database user creates by default will belong to this schema (unless the database user
explicitly uses a different schema in the object creation statement):

USE TestDB
GO
ALTER USER Veronica
WITH DEFAULT_SCHEMA=Publishers
GO

Chapter 24 reviews how to transfer the ownership of an object from one schema to another using
ALTER SCHEMA. You’ll need to use this in situations where you wish to drop a schema. For example, if
we tried to drop the Publishers schema right now, with the Publishers.ISBN table still in it, we would
get an error warning us that there are objects referencing that schema. This example demonstrates
using ALTER SCHEMA to transfer the table to the dbo schema prior to dropping the Publishers schema
from the database:

ALTER SCHEMA dbo TRANSFER Publishers.ISBN
GO

DROP SCHEMA Publishers

How It Works
Schemas act as a container for database objects. Unlike when a database user owns objects directly,
a database user now can own a schema (or, in other words, have permissions to use the objects
within it).

CHAPTER 18 ■ SECURABLES AND PERMISSIONS 445

570Xch18.qxd 11/4/05 2:47 PM Page 445

In this recipe, CREATE SCHEMA was used to create a new schema called Publishers. A new table
was created in the new schema called Publishers.ISBN. After that, a new login and database user
was created for the TestDB database. ALTER USER was used to make that new schema the default
schema for the new user.

Since a schema cannot be dropped until all objects are dropped or transferred from it, ALTER
SCHEMA was used to transfer Publishers.ISBN into the dbo schema. DROP SCHEMA was used to remove
the Publishers schema from the database.

Managing Schema Permissions
In this next set of examples, I’ll show you how to manage schema permissions. Before showing you
this though, I would like to quickly point out how you can identify which schemas exist for a partic-
ular database. To view the schemas for a database, you can query the sys.schemas system catalog
view. This example demonstrates listing the schemas that exist within the AdventureWorks database:

USE AdventureWorks
GO
SELECT s.name SchemaName, d.name SchemaOwnerName
FROM sys.schemas s
INNER JOIN sys.database_principals d ON

s.principal_id= d.principal_id
ORDER BY s.name

This returns a list of built-in database schemas (the fixed database roles, dbo, guest, sys, and
INFORMATION_SCHEMA) along with user-defined schemas (Person, Production, Purchasing, Sales,
HumanResources):

SchemaName SchemaOwnerName
db_accessadmin db_accessadmin
db_backupoperator db_backupoperator
db_datareader db_datareader
db_datawriter db_datawriter
db_ddladmin db_ddladmin
db_denydatareader db_denydatareader
db_denydatawriter db_denydatawriter
db_owner db_owner
db_securityadmin db_securityadmin
dbo dbo
guest guest
HumanResources dbo
INFORMATION_SCHEMA INFORMATION_SCHEMA
Person dbo
Production dbo
Purchasing dbo
Sales dbo
sys sys

Within the AdventureWorks database, I’ll now demonstrate assigning permissions on schemas
to database principals. In this example, the database user Angela is granted TAKE OWNERSHIP permis-
sions to the Person schema, which enables the grantee to take ownership of a granted securable:

GRANT TAKE OWNERSHIP
ON SCHEMA ::Person
TO Angela

CHAPTER 18 ■ SECURABLES AND PERMISSIONS446

570Xch18.qxd 11/4/05 2:47 PM Page 446

In the next example, the database user Veronica is granted multiple permissions in the same
statement, including the ability to ALTER a schema, EXECUTE stored procedures within the schema, or
SELECT from tables or views in the schema. Using the WITH GRANT OPTION, Veronica can also grant other
database principals these permissions too:

GRANT ALTER, EXECUTE, SELECT
ON SCHEMA ::Production
TO Veronica
WITH GRANT OPTION

In this next example, the database user Veronica is denied the ability to INSERT, UPDATE, or DELETE
data from any tables within the Production schema:

DENY INSERT, UPDATE, DELETE
ON SCHEMA ::Production
TO Veronica

In the last example of this recipe, Veronica’s right to ALTER the Production schema or SELECT
from objects within the production schema is revoked along with the permissions she may have
granted to others (using CASCADE):

REVOKE ALTER, SELECT
ON SCHEMA ::Production
TO Veronica
CASCADE

How It Works
Granting, denying, or revoking permissions occurs with the same commands that are used with
database- and server-level scoped permissions. One difference, however, is the reference to ON
SCHEMA, where a specific schema name is the target of granted, denied, or revoked permissions.
Notice, also, that the name of the schema was prefixed with two colons (called a “scope qualifier”).
A scope qualifier is used to scope permissions to a specific object type.

Object Permissions
Objects are nested within the schema scope and include objects such as tables, views, stored proce-
dures, functions, aggregates, constraints, queues, statistics, and synonyms. Defining permissions at
the schema scope (such as SELECT or EXECUTE) can allow you to define permissions for a grantee on
all objects within a schema. You can also define permissions at the object level. Object permissions
are nested within schema permissions, schema permissions within database-scoped permissions,
and database-scoped permissions within server-level permissions.

Like server-level, database-scoped, and schema-scoped permissions, you can use GRANT, DENY,
and REVOKE to define permissions on specific database objects.

The syntax for granting object permissions is as follows:

GRANT
{ ALL [PRIVILEGES] |
object_permission [,...n] }

{ [(column [,...n])] ON { table | view | table_function }
| ON { table | view | table_function } [(column [,...n])]
| ON { stored_procedure | extended_procedure }
| ON { scalar_function | aggregate_function }
| ON service_queue
| ON synonym

}

CHAPTER 18 ■ SECURABLES AND PERMISSIONS 447

570Xch18.qxd 11/4/05 2:47 PM Page 447

TO < database_principal > [,...n]
[WITH GRANT OPTION]
[AS { Windows_group | database_role | application_role }]

The arguments of this command are described in Table 18-13.

Table 18-13. GRANT Arguments

Argument Description

ALL [PRIVILEGES] The ALL keyword is used to grant all permissions
applicable to the selected object. The permissions
actually granted depend on the object. For example,
if you choose to grant ALL for a table, you’ll be
granting INSERT, UPDATE, DELETE, SELECT, and
REFERENCES permissions on the table.

object_permission [,...n] One or more object permissions to be granted to the
grantee.

[(column [,...n])] ON { table | Syntax used to grant permissions on a specific column
view | table_function } or columns on a table, view, or table function.

stored_procedure | extended_procedure Permission granted on a specific stored procedure or
extended stored procedure.

scalar_function | aggregate_function Permission granted on a specific scalar or aggregate
function.

service_queue Permission granted on a Service Broker service queue.

synonym Permission granted on a synonym.

database_principal The database principal permissions recipient.

WITH GRANT OPTION When designating this option, the grantee has
permissions to grant the permission(s) to other
grantees.

AS { Windows_group | database_role | This optional clause specifies where the grantor derives
application_role } its right to grant the permission to the grantee.

To deny object permissions to a grantee, the DENY command is used.
The syntax is as follows:

DENY [GRANT OPTION FOR]
{ ALL [PRIVILEGES] |

object_permission [,...n] }
{ [(column [,...n])] ON { table | view | table_function }

| ON { table | view | table_function } [(column [,...n])]
| ON { stored_procedure | extended_procedure }
| ON { scalar_function | aggregate_function }

| ON service_queue
| ON synonym

}
TO < database_principal > [,...n] [CASCADE]

[AS { Windows_group | database_role | application_role }]

The arguments of this command are described in Table 18-14.

CHAPTER 18 ■ SECURABLES AND PERMISSIONS448

570Xch18.qxd 11/4/05 2:47 PM Page 448

Table 18-14. DENY Arguments

Argument Description

GRANT OPTION FOR When this option is used, the right to grant the
permission to other database principals is denied.

ALL [PRIVILEGES] Denies all permissions based on the object selected.
For example if denying ALL permissions to a view,
you’ll be denying INSERT, UPDATE, DELETE, SELECT, and
REFERENCES permissions in one operation.

object_permission [,...n] One or more object permissions to be denied to the
grantee.

[(column [,...n])] ON { table | Syntax used to deny permissions on a specific column
view | table_function } or columns on a table, view, or table function.

stored_procedure | extended_procedure Permission denied on a specific stored procedure or
extended stored procedure.

scalar_function | aggregate_function Permission denied on a specific scalar or aggregate
function.

service_queue Permission denied on a Service Broker service queue.

synonym Permission denied on a synonym.

< database_principal > [,...n] One or more database principals to deny permissions for.

CASCADE When this option is designated, if the grantee principal
granted any of these permissions to others, those
grantees will also have their permissions denied.

AS { Windows_group | database_role | This optional clause specifies where the grantor
application_role } derives its right to deny the permission to the grantee.

To revoke object permissions to the grantee, the REVOKE command is used.
The syntax is as follows:

REVOKE [GRANT OPTION FOR]
{ ALL [PRIVILEGES] |
object_permission [,...n] }

{ [(column [,...n])] ON { table | view | table_function }
| ON { table | view | table_function } [(column [,...n])]
| ON { stored_procedure | extended_procedure }
| ON { scalar_function | aggregate_function }

| ON service_queue
| ON synonym

}
{ TO | FROM } < database_principal > [,...n]
[CASCADE]
[AS { Windows_group | database_role | application_role }]

The arguments of this command are described in Table 18-15.

CHAPTER 18 ■ SECURABLES AND PERMISSIONS 449

570Xch18.qxd 11/4/05 2:47 PM Page 449

Table 18-15. REVOKE Arguments

Argument Description

GRANT OPTION FOR When this option is used, the right to grant the
permission to other database principals is revoked.

ALL [PRIVILEGES] Revokes all permissions based on the specified
securable (based on the permissions that are available
for that object type).

object_permission [,...n] One or more object permissions to be revoked from
the grantee.

[(column [,...n])] ON { table | Syntax used to revoke permissions on a specific column
view | table_function } or columns on a table, view, or table function.

stored_procedure | extended_procedure Permission revoked on a specific stored procedure or
extended stored procedure.

scalar_function | aggregate_function Permission revoked on a specific scalar or aggregate
function.

service_queue Permission revoked on a Service Broker service queue.

synonym Permission revoked on a synonym.

< database_principal > [,...n] One or more database principals to revoke permissions
from.

CASCADE When this option is designated, if the grantee principal
granted any of these permissions to others, those
grantees will also have their permissions revoked.

AS { Windows_group | database_role | This optional clause specifies where the grantor derives
application_role } its right to revoke the permission to the grantee.

Managing Object Permissions
In this recipe, I grant the database user Joe the permission to SELECT, INSERT, DELETE, and UPDATE
data in the HumanResources.Department table:

GRANT DELETE, INSERT, SELECT, UPDATE
ON HumanResources.Department
TO Joe

Here, the database role called ReportViewers is granted the ability to execute a procedure, as
well as view metadata regarding that specific object in the system catalog views:

GRANT EXECUTE, VIEW DEFINITION
ON dbo.uspGetManagerEmployees
TO ReportViewers

In this next example, ALTER permission is denied to the database user Joe for the HumanResources.
Department table:

DENY ALTER ON HumanResources.Department TO Joe

In this last example, INSERT, UPDATE, and DELETE permissions are revoked from Joe on the
HumanResources.Department table:

REVOKE INSERT, UPDATE, DELETE
ON HumanResources.Department
TO Joe

CHAPTER 18 ■ SECURABLES AND PERMISSIONS450

570Xch18.qxd 11/4/05 2:47 PM Page 450

How It Works
This recipe demonstrated granting object permissions to specific database securables. Object
permissions are granted by designating the specific object name and the permissions that are appli-
cable to the object. For example, EXECUTE permissions can be granted to a stored procedure, but not
SELECT.

■Note For a complete list of permissions by object type, see the SQL Server Books Online topic “Permissions,”
and sub-topic “Permissions Applicable to Specific Securables.”

Permissions can be superseded by other types of permissions. For example, if the database
user Veronica has been granted SELECT permissions on the HumanResources.Department table, but
has been denied permissions on the HumanResources schema itself, she will receive the following
error message when she attempts to SELECT from that table, as the DENY overrides any GRANT SELECT
permissions:

Msg 229, Level 14, State 5, Line 2
SELECT permission denied on object 'Department', database 'AdventureWorks', schema
'HumanResources'.

Managing Permissions Across Securable Scopes
Now that I’ve reviewed the various securable scopes and the methods by which permissions can be
granted to principals, in the next set of recipes I’ll show you how to report and manage the permissions
a principal has on securables across the different scopes.

Determining a Current Connection’s Permissions to a Securable
With SQL Server 2005’s nested hierarchy of securable permissions (server, database, and schema),
permissions can be inherited by higher level scopes. Figuring out what permissions your current
login/database connection has to a securable can become tricky, especially when you add server or
database roles to the equation.

Understanding what permissions your database connection has added to a securable can be
determined by using the Has_perms_by_name function. This system scalar function returns a “1” if the
current user has granted permissions to the securable and “0” if not.

The syntax for this function is as follows:

Has_perms_by_name (
securable ,
securable_class ,
permission
[, sub-securable]
[, sub-securable_class]
)

The arguments for this function are described in Table 18-16.

CHAPTER 18 ■ SECURABLES AND PERMISSIONS 451

570Xch18.qxd 11/4/05 2:47 PM Page 451

Table 18-16. Has_perms_by_name Arguments

Parameter Description

securable The name of the securable that you want to verify permissions for.

securable_class The name of the securable class that you want to check. Class names
(for example DATABASE or SCHEMA) can be retrieved from the class_desc
column in the sys.fn_builtin_permissions function (see the beginning
of this chapter).

permission The name of the permission to check.

sub-securable The name of the securable sub-entity.

sub-securable_class The name of the securable sub-entity class.

This example demonstrates how to check if the current connected user has permissions to
ALTER the AdventureWorks database:

SELECT Has_perms_by_name ('AdventureWorks', 'DATABASE', 'ALTER')

This returns “0,” which means the current connection does not have permission to ALTER the
AdventureWorks database:

0

(1 row(s) affected)

The following query tests the current connection to see if the Person.Address table can be
updated or selected from:

SELECT CASE Has_perms_by_name ('Person.Address', 'OBJECT', 'UPDATE')
WHEN 1 THEN 'Yes'
ELSE 'No'

END UpdateTable,
CASE Has_perms_by_name ('Person.Address', 'OBJECT', 'SELECT')
WHEN 1 THEN 'Yes'
ELSE 'No'

END SelectFromTable

This returns:

UpdateTable SelectFromTable
----------- ---------------
Yes No

(1 row(s) affected)

How It Works
The Has_perms_by_name system function evaluates whether or not the current connection has
granted permissions to access a specific securable (granted permissions either explicitly, or inher-
ently through a higher-scoped securable). In both examples in this recipe, the first parameter used
was the securable name (the database name or table name). The second parameter was the secur-
able class, for example OBJECT or DATABASE. The third parameter used was the actual permission to
be validated, for example ALTER, UPDATE, or SELECT (depending on which permissions are applicable

CHAPTER 18 ■ SECURABLES AND PERMISSIONS452

570Xch18.qxd 11/4/05 2:47 PM Page 452

Reporting the Permissions For a Principal by Securable Scope
In this recipe, I’ll demonstrate using the fn_my_permissions function to return the assigned permis-
sions for the currently connected principal. The syntax for this function is as follows:

fn_my_permissions (securable , 'securable_class')

The arguments for this command are described in Table 18-17.

Table 18-17. fn_my_permissions Arguments

Argument Description

securable The name of the securable to verify. Use NULL if you are checking
permissions at the server or database scope.

securable_class The securable class that you are listing permissions for.

This first example demonstrates checking the server-scoped permissions for the current
connection:

SELECT permission_name
FROM fn_my_permissions(NULL, N'SERVER')
ORDER BY permission_name

This returns the following results (this query example was executed under the context of
sysadmin, so in this case every available server-scoped permission is returned):

ADMINISTER BULK OPERATIONS
ALTER ANY CONNECTION
ALTER ANY CREDENTIAL
ALTER ANY DATABASE
ALTER ANY ENDPOINT
ALTER ANY EVENT NOTIFICATION
ALTER ANY LINKED SERVER
ALTER ANY LOGIN
ALTER RESOURCES
ALTER SERVER STATE
ALTER SETTINGS
ALTER TRACE
AUTHENTICATE SERVER
CONNECT SQL
CONTROL SERVER
CREATE ANY DATABASE
CREATE DDL EVENT NOTIFICATION
CREATE ENDPOINT
CREATE TRACE EVENT NOTIFICATION
EXTERNAL ACCESS ASSEMBLY
SHUTDOWN
UNSAFE ASSEMBLY
VIEW ANY DATABASE
VIEW ANY DEFINITION
VIEW SERVER STATE

If you have IMPERSONATE permissions on the login or database user, you can also check the per-
missions of another principal other than your own by using the EXECUTE AS command. In Chapter 10
I demonstrated how to use EXECUTE AS to specify a stored procedure’s security context. You can also

CHAPTER 18 ■ SECURABLES AND PERMISSIONS 453

570Xch18.qxd 11/4/05 2:47 PM Page 453

use EXECUTE AS in a stand-alone fashion, using it to switch the security context of the current database
session. You can then switch back to your original security context by issuing the REVERT command.

The abridged syntax for EXECUTE AS is as follows (the advanced cookie and CALLER options of
this command are not discussed here—but can be referenced in SQL Server 2005 Books Online under
the “EXECUTE AS” topic):

EXECUTE AS { LOGIN | USER } = 'name'
[WITH { NO REVERT }]

The arguments of this command are described in Table 18-18.

Table 18-18. EXECUTE AS Abridged Syntax Arguments

Argument Description

{ LOGIN | USER } = 'name' Select LOGIN to impersonate a SQL or Windows login or USER to
impersonate a database user. The name value is the actual login or
user name.

NO REVERT If NO REVERT is designated, you cannot use the REVERT command to
switch back to your original security context.

To demonstrate EXECUTE AS’s power, the previous query is re-executed, this time by using the
security context of the Veronica login:

EXECUTE AS LOGIN = N'Veronica'
GO

SELECT permission_name
FROM fn_my_permissions(NULL, N'SERVER')
ORDER BY permission_name
GO

REVERT
GO

This returns a much smaller list of server permissions, as you are no longer executing the call
under a login with sysadmin permissions:

CONNECT SQL
VIEW ANY DATABASE

This next example demonstrates returning database-scoped permissions for the Veronica
database user:

EXECUTE AS USER = N'Veronica'
GO

SELECT permission_name
FROM fn_my_permissions(N'AdventureWorks', N'DATABASE')
ORDER BY permission_name
GO

REVERT
GO

This returns:

CHAPTER 18 ■ SECURABLES AND PERMISSIONS454

570Xch18.qxd 11/4/05 2:47 PM Page 454

CONNECT
CREATE TABLE
CREATE VIEW

In this next example, permissions are checked for the current connection on the Production.
Culture table, this time showing any sub-entities of the table (meaning any explicit permissions on
table columns):

SELECT subentity_name, permission_name
FROM fn_my_permissions(N'Production.Culture', N'OBJECT')
ORDER BY permission_name, subentity_name

This returns the following results (when the subentity_name is populated, this is a column
reference):

subentity_name permission_name
ALTER
CONTROL
DELETE
EXECUTE
INSERT
RECEIVE
REFERENCES

CultureID REFERENCES
ModifiedDate REFERENCES
Name REFERENCES

SELECT
CultureID SELECT
ModifiedDate SELECT
Name SELECT

TAKE OWNERSHIP
UPDATE

CultureID UPDATE
ModifiedDate UPDATE
Name UPDATE

VIEW DEFINITION

How It Works
This recipe demonstrated how to return permissions for the current connection using the
fn_my_permissions function. The first example used a NULL in the first parameter and SERVER in the
second parameter in order to return the server-scoped permissions of the current connection:

...
FROM fn_my_permissions(NULL, N'SERVER')

We then used EXECUTE AS to execute the same query, this time under the Veronica login’s context,
which returned server-scoped permissions for her login:

EXECUTE AS LOGIN = N'Veronica'
GO
...

REVERT
GO

CHAPTER 18 ■ SECURABLES AND PERMISSIONS 455

570Xch18.qxd 11/4/05 2:47 PM Page 455

The next example showed database-scoped permissions by designating the database name in
the first parameter, and DATABASE in the second parameter:

FROM fn_my_permissions(N'AdventureWorks', N'DATABASE')

The last example checked the current connection’s permissions to a specific table:

...
FROM fn_my_permissions(N'Production.Culture', N'OBJECT')

This returned information at the table level and column level. For example the ALTER and
CONTROL permissions applied to the table level, while those rows with a populated entity_name (for
example CultureID and ModifiedDate) refer to permissions at the table’s column level.

Changing Securable Ownership
As described earlier, in SQL Server 2005, objects are contained within schemas and schemas are then
owned by a database user or role. Changing a schema’s owner no longer means having to rename
the objects held within that schema. Aside from schemas, however, other securables on a SQL Server
instance still do have direct ownership by either a server or database level principal.

For example, schemas have database principal owners (such as database user) and endpoints
have server level owners, such as a SQL login.

Assuming that the login performing the operation has the appropriate TAKE OWNERSHIP permis-
sion, you can use the ALTER AUTHORIZATION command to change the owner of a securable.

The syntax for ALTER AUTHORIZATION is as follows:

ALTER AUTHORIZATION
ON [{Object | Type | XML Schema Collection | Fulltext Catalog | Schema
| Assembly | Role | Message Type | Contract | Service | Remote
| Binding | Route | Symmetric Key | Endpoint | Certificate}

::] entity_name
TO { SCHEMA OWNER | principal_name }

The arguments for this command are described in Table 18-19.

Table 18-19. ALTER AUTHORIZATION Arguments

Argument Description

Object | Type | XML Schema Collection | This designates the type of securable being given
Fulltext Catalog | Schema | Assembly | a new owner.
Role | Message Type | Contract |
Service | Remote | Binding | Route |
Symmetric Key | Endpoint | Certificate

entity_name The name of the securable.

SCHEMA OWNER | principal_name The name of the new schema owner, or the name of
the database or server principal taking ownership
of the securable.

In this example, the owner of the HumanResources schema is changed to the database user Veronica:

ALTER AUTHORIZATION ON Schema::HumanResources
TO Veronica

In this second example, the owner of an endpoint (for more on endpoints, see Chapter 15) is
changed to a SQL login. Before doing so, the existing owner of the endpoint is verified using the
sys.endpoints and sys.server_principals system catalog views:

CHAPTER 18 ■ SECURABLES AND PERMISSIONS456

570Xch18.qxd 11/4/05 2:47 PM Page 456

SELECT p.name OwnerName
FROM sys.endpoints e
INNER JOIN sys.server_principals p ON

e.principal_id = p.principal_id
WHERE e.name = 'ProductWebsite'

This returns:

OwnerName

JOEPROD\Owner

(1 row(s) affected)

Next, the owner is changed to a different SQL login:

ALTER AUTHORIZATION ON Endpoint::ProductWebSite
TO Veronica

Re-executing the query against sys.server_principals and sys.endpoints, the new owner is
displayed:

OwnerName

Veronica

(1 row(s) affected)

How It Works
This recipe demonstrated how to change object ownership. You may wish to change ownership
when a login or database user needs to be removed. If that login or database user owns securables,
you can use ALTER AUTHORIZATION to change that securables owner prior to dropping the SQL login
or database user.

In this recipe, ALTER AUTHORIZATION was used to change the owner of a schema to a different
database user, and the owner of an endpoint to a different SQL login (associated to a Windows
account). In both cases, the securable name was prefixed by the “::” scope qualifier, which desig-
nates the type of object you are changing ownership of.

Allowing SQL Logins to Access Non-SQL Server Resources
In this chapter, I’ve discussed permissions and securables within a SQL Server instance, however
sometimes a SQL login (not associated to a Windows user or group) may need permissions outside
of the SQL Server instance. A Windows principal (a Windows user or group) has implied permissions
outside of the SQL Server instance, but a SQL login does not, because a SQL login and password is
created inside SQL Server. New in SQL Server 2005, you can now bind a SQL login to a Windows cre-
dential, giving the SQL login the implied Windows permissions of that credential. This SQL login can
then use more advanced SQL Server functionality, where outside resource access may be required.
This credential can be bound to more than one SQL login (although one SQL login can only be bound
to a single credential).

To create a credential, use the CREATE CREDENTIAL command.
The syntax is as follows:

CREATE CREDENTIAL credential_name WITH IDENTITY = ' identity_name '

CHAPTER 18 ■ SECURABLES AND PERMISSIONS 457

570Xch18.qxd 11/4/05 2:47 PM Page 457

The arguments for this command are described in Table 18-20.

Table 18-20. CREATE CREDENTIAL Arguments

Argument Description

credential_name The name of the new credential.

identity_name The external account name (a Windows user, for example).

secret The credential's password.

In this example, a new credential is created that is mapped to the JOEPROD\OwnerWindows user
account:

USE master
GO

CREATE CREDENTIAL AccountingGroup
WITH IDENTITY = N'JOEPROD\AccountUser1',
SECRET = N'mypassword!'

Once created, the credential can be bound to existing or new SQL logins using the CREDENTIAL
keyword in CREATE LOGIN and ALTER LOGIN:

USE master
GO
ALTER LOGIN Veronica
WITH CREDENTIAL = AccountingGroup
GO

How It Works
A credential allows SQL authentication logins to be bound to Windows external permissions. This
builds on the limited proxy account functionality that was available in SQL Server 2000. Unlike SQL
Server 2000 proxy functionality, SQL Server 2005 credential abilities allow SQL logins to access external
resources using more than one account (you can create multiple credentials, but in 2000, only one
proxy).

In this recipe, a new credential was created called AccountingGroup. It was mapped to the
Windows user JOEPROD\Owner, and given a password in the SECRET argument of the command.
After creating the credential, it was then bound to the SQL login Veronica by using ALTER LOGIN
and WITH CREDENTIAL. The Veronica login can only have a single credential bound to it; however, the
AccountingGroup credential can be bound to more than one login. Now the Veronica login, using
credentials, has outside-SQL Server permissions equivalent to the JOEPROD\AccountUser1Windows
account.

CHAPTER 18 ■ SECURABLES AND PERMISSIONS458

570Xch18.qxd 11/4/05 2:47 PM Page 458

Encryption

In previous versions of SQL Server, if you wanted to encrypt sensitive data such as financial informa-
tion, salary, or personal identification numbers, you were forced to rely on outside application programs
and algorithms. In a most welcome addition to the SQL Server 2005 functionality set, Microsoft intro-
duces built-in data encryption support using a combination of certificates, keys, and system functions.

Similar to a digital certificate that is issued by certificate authority, a SQL Server 2005 certificate
contains a pair of keys: a public key as well as a private key, which is used to encrypt and decrypt data.
SQL Server 2005 also has the ability to create asymmetric and symmetric key objects. An asymmetric
key object is similar to a certificate, in that a public key is used to encrypt data and the private key is
used to decrypt data. Both asymmetric keys and certificates provide powerful encryption strength,
but with more performance overhead due to the complexity of the encryption/decryption process.
A lower overhead solution, which is more appropriate for the encryption of large amounts of data,
is a symmetric key, which is a single key that is used to both encrypt and decrypt the same data.

SQL Server 2005 allows you to layer these encryption capabilities into an encryption hierarchy.
When SQL Server 2005 is installed, a server-level certificate called the Service Master Key is created
in the master database and is bound to the SQL Server service account login by default. The Service
Master Key is used to encrypt all other database certificates and keys created within the SQL Server
instance. Additionally, you can also create a Database Master Key in a user database, which you can
use to encrypt database certificates and keys.

I’ll start the chapter slowly by first discussing and then demonstrating how to encrypt data
without the use of certificates and keys.

Encryption by Passphrase
For a quick-and-dirty encryption of data that doesn’t involve certificates or keys, you can simply
encrypt/decrypt data based on a password supplied by the user. A passphrase is simply a password
that allows spaces in it. This passphrase is not stored in the database, which can be advantageous
because it means that internal passwords cannot be "cracked" using stored system data. Because
the password can include spaces, you can create a long, easy-to-remember sentence that can be used
to encrypt and decrypt sensitive data.

In the next recipe I’ll demonstrate how to encrypt and decrypt data using passphrase functions.

Using a Function to Encrypt by Passphrase
To encrypt data with a user-supplied passphrase, you can call the EncryptByPassPhrase function.

The syntax is as follows:

459

C H A P T E R 1 9

■ ■ ■

570Xch19.qxd 11/4/05 2:48 PM Page 459

CHAPTER 19 ■ ENCRYPTION460

EncryptByPassPhrase(
{ ' passphrase ' | @passphrase }
, { ' cleartext ' | @cleartext }
[, { add_authenticator | @add_authenticator }
, { authenticator | @authenticator }])

The arguments of this command are described in Table 19-1.

Table 19-1. EncryptByPassPhrase Arguments

Argument Description

' passphrase ' | @passphrase The passphrase that is used to encrypt the data.

' cleartext ' | @cleartext The text to be encrypted.

add_authenticator | @add_authenticator A Boolean value (1 or 0) determining whether an
authenticator will be used with the encrypted
value.

authenticator | @authenticator The data used for the authenticator.

To decrypt the encrypted value, the DecryptByPassPhrase function is used, which includes the
same arguments as EncryptByPassPhrase except that it takes encrypted text instead of clear text:

DecryptByPassPhrase(
{ ' passphrase ' | @passphrase }
, { ' ciphertext ' | @ciphertext }
[, { add_authenticator | @add_authenticator }
, { authenticator | @authenticator }])

In this recipe, the “my secure secret text” string is encrypted using a passphrase:

-- Table used to store the encrypted data
-- for the purposes of this recipe
CREATE TABLE #SecretInfo
(Secret varbinary(8000) NOT NULL)
GO

INSERT #SecretInfo
(Secret)
SELECT EncryptByPassPhrase(

'My Password Used To Encrypt This String in 2005.',
'This is the text I need to secure.')

SELECT Secret
FROM #SecretInfo

This returns:

0x0100000031AF7E0656FB1C3253AE708B4DB5F3F1EDEA48C832E5BE493E01655D8E7783D6C21E
2B94817636EAD39328D940B8BD4F9718081E6EB837BE

Taking the returned varbinary value from the #SecretInfo table, the text is decrypted using the
same passphrase:

SELECT CAST(DecryptByPassPhrase(
'My Password Used To Encrypt This String in 2005.',
Secret) as varchar(50))
FROM #SecretInfo

570Xch19.qxd 11/4/05 2:48 PM Page 460

This returns:

This is the text I need to secure.

How It Works
In this recipe, a temporary table was used to hold the encrypted output of the EncryptByPassPhrase
function. The column was defined with a varbinary(8000) data type (8000 is the maximum size
allowed to be encrypted by this function):

CREATE TABLE #SecretInfo
(Secret varbinary(8000) NOT NULL)
GO

Next, a new row was inserted into the temporary table, using INSERT...SELECT:

INSERT #SecretInfo
(Secret)

The SELECT references the EncryptByPassPhrase function. The first parameter was the actual
password (in this case an entire sentence) that was used to encrypt the string. The second parameter
was the string to be encrypted:

SELECT EncryptByPassPhrase('My Password Used To Encrypt This String in 2005.',
'This is the text I need to secure.')

The next step queried the varbinary(8000) value that was inserted, returning an unintelligble
value:

SELECT Secret
FROM #SecretInfo

The data was then decrypted using the DecryptByPassPhrase function, which took the password
as the first parameter (the one originally used to encrypt the data in the first place), and a reference
to the encrypted data in the Secret column of the #SecretInfo temporary table:

SELECT CAST(DecryptByPassPhrase(
'My Password Used To Encrypt This String in 2005.',
Secret) as varchar(50))
FROM #SecretInfo

Passphrase encryption functions allow you to encrypt data without fear of even sysadmin server
role members reading the data (sysadmin server role members, as you’ll see in this chapter, have
inherent permissions to read other forms of encrypted data).

The encrypted data will be protected from database backup theft or even the infiltration of the
database while on the SQL Server instance, assuming that you haven’t stored the password in a table
or used the password in any of your modules (stored procedures, triggers, and so on).

Master Keys
Encryption in SQL Server 2005 is handled in a hierarchical manner. SQL Server 2005 includes two
key types that are used to encrypt SQL Server 2005 data. The Service Master Key is at the top of the
hierarchy and is automatically created when SQL Server is installed. The Service Master Key is also
used to encrypt Database Master Keys below it. Database Master Keys are then used to encrypt cer-
tificates, and both asymmetric and symmetric keys. This layering of keys and certificates provides
stronger encryption. In this section, I’ll discuss these two different types of keys: the Service Master
Key and Database Master Key.

CHAPTER 19 ■ ENCRYPTION 461

570Xch19.qxd 11/4/05 2:48 PM Page 461

As stated before, the Service Master Key is at the top of the encryption hierarchy in SQL Server
2005 and is responsible for encrypting system data, linked server logins, and Database Master Keys.
is the Service Master Key is automatically generated the first time it is used by SQL Server to encrypt
a credential, Database Master Key, or linked server password, and it’s generated using the Windows
credentials of the SQL Server service account. If you have to change the SQL Server service account,
Microsoft recommends that you use SQL Server Configuration Manager, because this tool will per-
form the appropriate decryptions and encryptions required to generate a new Service Master Key,
while keeping the encryption hierarchy intact.

The Database Master Key is an additional layer of SQL Server 2005 security in the encryption
hierarchy, which allows you to encrypt database certificates and asymmetric keys. Each database
can contain only a single database master key, which, when created, is encrypted by the Service
Master Key.

When you’re creating an asymmetric key (reviewed later in the chapter), you can decide whether
or not to include a password for encrypting the private key of the asymmetric key pair. If a password
is not included, however, the database master key is then used to encrypt the private key instead.
This is a good example of using the Database Master Key to encrypt other objects.

In this next group of recipes, I’ll demonstrate how to manage these two different key types.

Backing Up and Restoring a Service Master Key
Because of the Service Master Key’s critical role in SQL Server, it is very important for you to back
up this key to a safe location in the event that it is damaged or modified. This is performed by using
the BACKUP SERVICE MASTER KEY command.

The syntax is as follows:

BACKUP SERVICE MASTER KEY TO FILE = 'path_to_file'
ENCRYPTION BY PASSWORD = 'Password'

This command takes two arguments; the first argument is the name of the path and filename
where the key backup will be exported. The second argument is the password used to encrypt the
file containing the key backup. After backing up a Service Master Key, the backup file should then
be backed up to tape or copied off the server to a safe location.

In the event that a Service Master Key must be recovered from backup on the SQL Server
instance, the RESTORE SERVICE MASTER KEY command is used.

The syntax is as follows:

RESTORE SERVICE MASTER KEY FROM FILE = 'path_to_file'
DECRYPTION BY PASSWORD = 'password' [FORCE]

This command takes the name of the backup file and the encryption password. The FORCE
argument is used to force a replacement of the existing Service Master Key even in the event of data
loss (so it should only be used under dire circumstances and if you can afford to lose the encrypted
data that cannot be encrypted).

This recipe demonstrates backing up and then restoring the Service Master Key.
In the first example, BACKUP SERVICE MASTER KEY is used to back up to a file on the

C:\Apress\Recipes directory:

BACKUP SERVICE MASTER KEY
TO FILE = 'C:\Apress\Recipes\SMK.bak'
ENCRYPTION BY PASSWORD = 'MakeItAGoodOne!1AB'

The following code demonstrates recovering the Service Master Key from a backup file:

RESTORE SERVICE MASTER KEY
FROM FILE = 'C:\Apress\Recipes\SMK.bak'
DECRYPTION BY PASSWORD = 'MakeItAGoodOne!1AB'

CHAPTER 19 ■ ENCRYPTION462

570Xch19.qxd 11/4/05 2:48 PM Page 462

How It Works
In the first example, the Service Master Key was backed up to a file. The second line of code designated
the filename to back up the file to:

BACKUP SERVICE MASTER KEY
TO FILE = 'C:\Apress\Recipes\SMK.bak'

The third line of code designated the password used to protect the file (and is required in order
to initiate a restore):

ENCRYPTION BY PASSWORD = 'MakeItAGoodOne!1AB'

In the second example, a Service Master Key restore was initiated. The second line of code
designated the filename to restore the Service Master Key from:

RESTORE SERVICE MASTER KEY
FROM FILE = 'C:\Apress\Recipes\SMK.bak'

The third line of code designated the password which was used to protect and generate the
Service Master Key backup:

DECRYPTION BY PASSWORD = 'MakeItAGoodOne!1AB'

If you are testing this example out yourself, you’ll see that if you perform a backup and restore
without any actual change in the Service Master Key, you’ll see the following message during a RESTORE
operation:

The old and new master keys are identical. No data re-encryption is required.

Creating, Regenerating, and Dropping a Database Master Key
The database master key, when explicitly created, adds an extra layer of security by automatically
encrypting new certificates or asymmetric keys in the database, serving to further protect encrypted
data.

To create a database master key, the CREATE MASTER KEY command is used. The syntax is as follows:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password'

Like the Service Master Key, the database master key doesn’t have an explicit name, and uses
a single argument, the database master key’s password.

The database master key can be regenerated by using the ALTER MASTER KEY command. The
syntax for regenerating the database master key is as follows:

ALTER MASTER KEY
[FORCE] REGENERATE WITH ENCRYPTION BY PASSWORD = 'password'

This command only takes a single argument, the password of the regenerated key. Regenerating
the key decrypts all objects encrypted by the key and re-encrypts them using the newly regenerated
key. If there is an error during the decryption (for data that cannot be decrypted for various reasons),
the FORCE option forces the regeneration process, but, and this is important, with the danger of
rendering some encrypted data inaccessible.

To remove the database master key entirely, the DROP MASTER KEY command is used (no additional
arguments needed).

For example:

USE BookStore
GO
DROP MASTER KEY

CHAPTER 19 ■ ENCRYPTION 463

570Xch19.qxd 11/4/05 2:48 PM Page 463

The database master key can’t be dropped, however, if it was used to encrypt other database
objects.

In this first example, a Database Master Key is created for the BookStore database:

USE BookStore
GO
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'keepitsecretkeepitsafe!'

This recipe demonstrates regenerating the Database Master Key with a new password:

Use BookStore
GO
ALTER MASTER KEY
REGENERATE WITH ENCRYPTION BY PASSWORD = 'uglypassword1C3ED8CF'

How It Works
This example demonstrated creating a Database Master Key for the BookStore database. The only
user-provided information was the password used to encrypt the Database Master Key:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'keepitsecretkeepitsafe!'

The second example also only required a single user-provided argument; the password used to
regenerate the new Database Master Key:

ALTER MASTER KEY
REGENERATE WITH ENCRYPTION BY PASSWORD = 'uglypassword1C3ED8CF'

The Database Master Key was then dropped using the following command:

DROP MASTER KEY

Backing Up and Restoring a Database Master Key
Like a Service Master Key , the Database Master Key can also be backed up to disk using the BACKUP
MASTER KEY command. The syntax is as follows:

BACKUP MASTER KEY TO FILE = 'path_to_file'
ENCRYPTION BY PASSWORD = 'Password'

The command takes two arguments, the first being the path and filename (that the Database
Master Key is backed up to), and the second being the password used to protect the backup file.

To restore a Database Master Key from the file backup, the RESTORE MASTER KEY command is
used. The syntax is as follows:

RESTORE MASTER KEY FROM FILE = 'path_to_file'
DECRYPTION BY PASSWORD = 'password'
ENCRYPTION BY PASSWORD = 'password'
[FORCE]

This command takes the filename and path, the password used to decrypt the backup file, and
the new password to encrypt the new Database Master Key. The FORCE option forces the Database
Master Key restore even if all dependent encrypted data in the database cannot be re-encrypted
using the new key. This means dependent encrypted data would be unavailable because it cannot
be decrypted—so use this option with caution and as a last resort!

In this first example, the Database Master Key is backed up to file:

BACKUP MASTER KEY TO FILE = 'C:\Apress\Recipes\BookStore_Master_Key.BAK'
ENCRYPTION BY PASSWORD = '4D280837'

CHAPTER 19 ■ ENCRYPTION464

570Xch19.qxd 11/4/05 2:48 PM Page 464

In the following code, the Database Master Key is restored from file:

RESTORE MASTER KEY FROM FILE = 'C:\Apress\Recipes\BookStore_Master_Key.BAK'
DECRYPTION BY PASSWORD = '4D280837'
ENCRYPTION BY PASSWORD = '641076B0'

How It Works
As you’ll see in upcoming recipes, the Database Master Key is used to encrypt other subordinate
encryption objects. Therefore, it’s a good idea for you to back up the Database Master Key immedi-
ately after it is first created.

In this recipe, a Database Master Key was backed up to file, which was designated in the first
argument of the BACKUP MASTER KEY command:

BACKUP MASTER KEY TO FILE = 'C:\Apress\Recipes\BookStore_Master_Key.BAK'

The second line of code designated the password used to encrypt the backup file:

ENCRYPTION BY PASSWORD = '4D280837'

The second example demonstrated restoring the Database Master Key from file. The first line
of code designated the name of the backup file:

RESTORE MASTER KEY FROM FILE = 'C:\Apress\Recipes\BookStore_Master_Key.BAK'

The second line designated the password used to originally encrypt the backup file:

DECRYPTION BY PASSWORD = '4D280837'

The third line of code designated the password used to encrypt the Database Master Key once
it is restored:

ENCRYPTION BY PASSWORD = '641076B0'

If you tested this example out on your own SQL Server instance, and your Database Master Key
hadn’t changed between the backup and restore, you would see the following message:

The old and new master keys are identical. No data re-encryption is required.

Removing Service Master Key Encryption from the Database
Master Key
When a Database Master Key is created, it is encrypted using two methods by default: the Service
Master Key and the password used in the CREATE MASTER KEY command. If you don’t wish to have
the Database Master Key encrypted by the Service Master Key (so that SQL Server logins with sysadmin
permissions can’t access the encrypted data without knowing the Database Master Key password),
you can drop it using a variation of the ALTER MASTER KEY command.

The syntax is as follows:

ALTER MASTER KEY
ADD ENCRYPTION BY SERVICE MASTER KEY |
DROP ENCRYPTION BY SERVICE MASTER KEY

Since the Service Master Key allows for automatic decryption of the Database Master Key by
users with appropriate permissions (sysadmin, for example), once you drop encryption by the Service
Master Key you must use a new command to access the Database Master Key if you wish to modify
it. This command is OPEN MASTER KEY, which has the following syntax:

CHAPTER 19 ■ ENCRYPTION 465

570Xch19.qxd 11/4/05 2:48 PM Page 465

The CLOSE MASTER KEY command is used once the example is finished using the Database Master
Key (with no additional arguments).

In this example, encryption by the Service Master Key is dropped for the BookStore database:

ALTER MASTER KEY DROP ENCRYPTION BY SERVICE MASTER KEY

To re-enable encryption by the Service Master Key, we must first open access to the Database
Master Key, Service Master Key encryption is re-added to the Database Master Key, and then the
Database Master Key is closed again:

OPEN MASTER KEY DECRYPTION BY PASSWORD = '641076B0'

ALTER MASTER KEY ADD ENCRYPTION BY SERVICE MASTER KEY

CLOSE MASTER KEY

Once the Service Master Key is used to encrypt the Database Master Key, the Database Master
Key no longer needs to be explicitly opened or closed.

How It Works
This recipe demonstrated removing encryption of the Database Master Key by the Service Master
Key using the ALTER MASTER KEY command:

ALTER MASTER KEY DROP ENCRYPTION BY SERVICE MASTER KEY

Once this is done, any modification of the Database Master Key requires password access using
OPEN MASTER KEY. This was used in order to reapply encryption by the Service Master Key:

OPEN MASTER KEY DECRYPTION BY PASSWORD = '641076B0'

The ALTER MASTER KEY was used then to add Service Master Key encryption back again:

ALTER MASTER KEY ADD ENCRYPTION BY SERVICE MASTER KEY

After finishing the ALTER MASTER KEY operation, the Database Master Key was closed:

CLOSE MASTER KEY

Asymmetric Key Encryption
An asymmetric key contains a database-side internal public and private key, which can be used to
encrypt and decrypt data in the SQL Server 2005 database. Asymmetric keys can be imported from
an external file or assembly, and can also be generated within the SQL Server 2005 database.

Unlike a certificate (which is discussed later in the chapter), asymmetric keys cannot be backed
up to a file. This means that if an asymmetric key is created within SQL Server 2005, there isn’t an
easy mechanism for reusing that same key in other user databases.

Asymmetric keys are a highly secure option for data encryption, but they also require more
SQL Server resources when in use. In the next set of recipes, I’ll demonstrate how to create, manage,
and use asymmetric key encryption.

Creating an Asymmetric Key
In this recipe, I’ll demonstrate creating an asymmetric key, which will then be used for encrypting
and decrypting data. The syntax for creating an asymmetric key is as follows:

CHAPTER 19 ■ ENCRYPTION466

570Xch19.qxd 11/4/05 2:48 PM Page 466

CREATE ASYMMETRIC KEY Asym_Key_Name
[AUTHORIZATION database_principal_name]
{ FROM {FILE = ' path_to_strong_name_file |
EXECUTABLE FILE = ' path_to_executable_file ' |
ASSEMBLY Assembly_Name} |

WITH ALGORITHM = { RSA_512 | RSA_1024 | RSA_2048 } }
ENCRYPTION BY PASSWORD = ' password '

The arguments of this command are described in Table 19-2.

Table 19-2. CREATE ASYMMETRIC KEY Arguments

Argument Description

Asym_Key_Name The name of the asymmetric key.

database_principal_name The owner of the asymmetric key.

path_to_strong_name_file The existing file and path of the strong-name file containing the
key pair.

path_to_executable_file The existing executable key pair file.

Assembly_Name The existing assembly filename and path containing the public key.

RSA_512 | Used for generating a new key, this option selects the security
RSA_1024 | type. Each designates the number of bits long the private key will
RSA_2048 be (512, 1024, 2048 bits).

Password The password used to encrypt the private key. When not used, the
private key is automatically encrypted by the Database Master Key.

In this example, a new asymmetric key is created in the BookStore database:

USE BookStore
GO

CREATE ASYMMETRIC KEY asymBookSellerKey
WITH ALGORITHM = RSA_512
ENCRYPTION BY PASSWORD = 'EEB0B4DD'

How It Works
This example demonstrated creating an asymmetric key in the BookStore database. The first line of
code designated the name of the new key:

CREATE ASYMMETRIC KEY asymBookSellerKey

The second line of code designated the encryption security type:

WITH ALGORITHM = RSA_512

The third line of code designated the password used to encrypt the asymmetric key:

ENCRYPTION BY PASSWORD = 'EEB0B4DD'

Viewing Asymmetric Keys in the Current Database
You can view all asymmetric keys in the current database by querying the sys.asymmetric_keys
system catalog view. For example:

SELECT name, algorithm_desc, pvt_key_encryption_type_desc

CHAPTER 19 ■ ENCRYPTION 467

570Xch19.qxd 11/4/05 2:48 PM Page 467

This returns:

name algorithm_desc pvt_key_encryption_type_desc
----------------- --------------- ----------------------------
asymBookSellerKey RSA_512 ENCRYPTED_BY_PASSWORD

How It Works
The sys.asymmetric_keys system catalog view was used to see asymmetric keys in the current data-
base. The first line of code designated the name, security type, and method by which the private key
was encrypted:

SELECT name, algorithm_desc, pvt_key_encryption_type_desc

The second line designated the system catalog view in the FROM clause:

FROM sys.asymmetric_keys

Modifying the Asymmetric Key’s Private Key Password
You can also modify the password of the private key by using the ALTER ASYMMETRIC KEY command
with the ENCRYPTION BY PASSWORD and DECRYPTION BY PASSWORD options.

This example demonstrates giving the asymmetric key a new password:

ALTER ASYMMETRIC KEY asymBookSellerKey
WITH PRIVATE KEY
(ENCRYPTION BY PASSWORD = 'newpasswordE4D352F280E0',
DECRYPTION BY PASSWORD = 'EEB0B4DD')

How It Works
In this recipe, we used ALTER ASYMMETRIC KEY to change the private key password. The first line of
code designated the asymmetric key name:

ALTER ASYMMETRIC KEY asymBookSellerKey

The new password was designated in the ENCRYPTION BY PASSWORD argument:

WITH PRIVATE KEY
(ENCRYPTION BY PASSWORD = 'newpasswordE4D352F280E0',

The old private key password was designated in the DECRYPTION BY PASSWORD argument:

DECRYPTION BY PASSWORD = 'EEB0B4DD')

Encrypting and Decrypting Data Using an Asymmetric Key
Using an asymmetric key to encrypt data is a very secure method of maintaining the secrecy of the
data, because both a public and private key pair are required. Encryption by asymmetric key is a more
costly operation when used in conjunction with large data sets, though, compared to the faster option
of encrypting symmetric keys, which use a single key to encrypt and decrypt data.

Once an asymmetric key is added to the database, it can be used to encrypt and decrypt data.
To encrypt data, the EncryptByAsmKey function is used.

The syntax is as follows:

EncryptByAsymKey (Asym_Key_ID , { 'cleartext' | @cleartext })

CHAPTER 19 ■ ENCRYPTION468

570Xch19.qxd 11/4/05 2:48 PM Page 468

The arguments of this command are described in Table 19-3.

Table 19-3. EncryptByAsymKey Arguments

Argument Description

Asym_Key_ID The ID of the asymmetric key to be used to encrypt the data.
The AsymKey_ID function can be used to return the ID of the
asymmetric key.

' cleartext ' | @cleartext The unencrypted text to be encrypted (from a string or a local
variable).

As with encrypting data via a certificate, the EncryptByAsymKey function returns varbinary
encrypted data.

To decrypt data encrypted by a specific asymmetric key, the DecryptByAsymKey function is used.
The syntax is as follows:

DecryptByAsymKey (Asym_Key_ID ,
{ ' ciphertext ' | @ciphertext }
[, ' Asym_Key_Password '])

The arguments of this command are described in Table 19-4.

Table 19-4. DecryptByAsymKey Arguments

Argument Description

Asym_Key_ID The ID of the asymmetric key to be used to decrypt the
data. The Asym_Key_ID system function can be used to
return the ID of the asymmetric key.

' ciphertext ' | @ciphertext The encrypted text to be decrypted.

' Asym_Key_Password ' The password of the asymmetric key’s private key (password
used when the asymmetric key was created).

In this example, a table containing bank routing information for specific booksellers is created:

CREATE TABLE dbo.BookSellerBankRouting
(BookSellerID int NOT NULL PRIMARY KEY,
BankRoutingNBR varbinary(300) NOT NULL)
GO

Next, a new row is inserted into the table using the EncryptByAsumKey, on the yet-to-be-
encrypted bank routing number:

INSERT dbo.BookSellerBankRouting
(BookSellerID, BankRoutingNBR)
VALUES (22,
EncryptByAsymKey(AsymKey_ID('asymBookSellerKey'),

'137492837583249ABR'))

Querying the value of BankRoutingNBR for the newly inserted row returns cipher text:

SELECT CAST(BankRoutingNBR as varchar(100)) BankRoutingNBR
FROM dbo.BookSellerBankRouting
WHERE BookSellerID = 22

This returns:

CHAPTER 19 ■ ENCRYPTION 469

570Xch19.qxd 11/4/05 2:48 PM Page 469

BankRoutingNBR
--
m(Ì_'dc`Ó«·”ÆöÖï2ö]Œ¡ìåß0'a8___.§6øovP¤îÎwñ@lÈ__µq–@'cda_?Lÿ<_3p'85íàj_{

Next, the DecryptByAsymKey function is used to decrypt the BankRoutingNBR column value. CAST
is also used to convert the varbinary data into varchar data:

SELECT CAST(DecryptByAsymKey
(AsymKey_ID('asymBookSellerKey'),

BankRoutingNBR,
N'newpasswordE4D352F280E0') as varchar(100)) BankRoutingNBR

FROM dbo.BookSellerBankRouting
WHERE BookSellerID = 22

This returns:

BankRoutingNBR
--
137492837583249ABR

How It Works
This recipe started off by creating a table to store encrypted bank routing numbers. The BankRoutingNBR
column was given a varbinary data type in order to stored the encrypted data. An INSERT was then
performed on the table. The two columns to be inserted into were designated:

INSERT dbo.BookSellerBankRouting
(BookSellerID, BankRoutingNBR)

The BookSellerID was set to a value of 22:

VALUES (22,

The BankRoutingNBR was populated using the EncryptByAsymKey function:

EncryptByAsymKey(

This function took a first parameter of the asymmetric key’s system ID, using the AsymKey_ID
function to convert the

AsymKey_ID('asymBookSellerKey'),

The second parameter contained the bank routing number to be encrypted:

'137492837583249ABR'))

The data was then stored in the table in encrypted cipher text. To decrypt the data, the
DescryptByAsymKey function was used. The CAST function was wrapped around it in order to convert
the varbinary value into varchar:

SELECT CAST(

The first parameter of the DecryptByAsymKey function was the asymmetric key’s system ID,
again using the AsymKey_ID to convert the asymmetric key name into the ID:

DecryptByAsymKey
(AsymKey_ID('asymBookSellerKey'),

CHAPTER 19 ■ ENCRYPTION470

570Xch19.qxd 11/4/05 2:48 PM Page 470

The second parameter was the BankRoutingNBR column from the dbo.BookSellerBankRouting
table:

BankRoutingNBR,

The third parameter was the password of the asymmetric key’s private key:

N'newpasswordE4D352F280E0')

The data type was then converted to varchar(100) :

as varchar(100)) BankRoutingNBR
FROM dbo.BookSellerBankRouting
WHERE BookSellerID = 22

Dropping an Asymmetric Key
To drop an asymmetric key, use the DROP ASYMMETRIC KEY command. This command takes just one
argument—the name of the asymmetric key.

For example:

DROP ASYMMETRIC KEY asymBookSellerKey

How It Works
This example demonstrated the simple method of dropping an asymmetric key. Keep in mind that
an asymmetric key can’t be dropped if it was used to encrypt other keys or is mapped to a login.

Symmetric Key Encryption
Certificates (reviewed later in the chapter) and asymmetric keys encrypt data using a database-side
internal public key and decrypt data using a database-side internal private key. Symmetric keys are
simpler. They contain a key that is used for both encryption and decryption. Consequently, symmetric
keys encrypt data faster, and are more suitable for use against large data sets. Although a trade-off
in terms of encryption complexity, symmetric keys are still considered to be a good option for encrypt-
ing secret data within the database.

In the next set of recipes, I’ll demonstrate how to create, manage, and use symmetric key
encryption.

Creating a Symmetric Key
A symmetric key is a less resource-intensive method of encrypting large amounts of data. Unlike
certificates or asymmetric keys, a symmetric key both encrypts and decrypts the data with a single
internal key. The distinguishing feature of symmetric keys is that the key must be opened for use
within a database session, prior to the encrypting or decrypting of data.

To create a symmetric key, the CREATE SYMMETRIC KEY command is used. The syntax is as follows:

CREATE SYMMETRIC KEY key_name
[AUTHORIZATION owner_name]

WITH KEY_SOURCE = ' pass_phrase ' |
ALGORITHM =

{DES | TRIPLE_DES | RC2 | RC4 | DESX | AES_128 | AES_192 | AES_256} |
IDENTITY_VALUE = ' identity_phrase '
ENCRYPTION BY
CERTIFICATE Certificate_Name |

CHAPTER 19 ■ ENCRYPTION 471

570Xch19.qxd 11/4/05 2:48 PM Page 471

PASSWORD = ' password ' |
SYMMETRIC KEY Symmetric_Key_Name |
ASYMMETRIC KEY Asym_Key_Name

The arguments of this command are described in Table 19-5.

Table 19-5. CREATE SYMMETRIC KEY Arguments

Argument Description

key_name The name of the new symmetric key. If prefixed with a # sign,
a temporary key can be created for the current session and user.

owner_name The database user that owns the key.

pass_phrase A passphrase used to derive the symmetric key.

DES | The encryption algorithm used to create the key.
TRIPLE_DES |
RC2 |
RC4 |
DESX |
AES_128 |
AES_192 |
AES_256

IDENTITY_VALUE = This character-based phrase is used to generate a GUID that tags
' identity_phrase ' data with a temporary key (when a temporary key is used).

ENCRYPTION BY The symmetric key can be encrypted by using an existing
CERTIFICATE certificate.
Certificate_Name

PASSWORD = ' password ' The symmetric key can be encrypted by using a password.

SYMMETRIC KEY The symmetric key can be encrypted by using another symmetric
Symmetric_Key_Name key.

ASYMMETRIC KEY The symmetric key can be encrypted by using an asymmetric key.
Asym_Key_Name

In this recipe, a new symmetric key is created that is encrypted by an existing database asym-
metric key:

CREATE SYMMETRIC KEY sym_BookStore
WITH ALGORITHM = TRIPLE_DES
ENCRYPTION BY ASYMMETRIC KEY asymBookSellerKey

How It Works
In this recipe I demonstrated the creation of a symmetric key, which will then be used to encrypt
data. It must be encrypted using a certificate, password, asymmetric key, or another symmetric key.
In this case, we used an asymmetric key to encrypt it.

The first line of code designated the symmetric key name:

CREATE SYMMETRIC KEY sym_BookStore

The second line of code designated the encryption algorithm used to create the encrypting key:

WITH ALGORITHM = TRIPLE_DES

The last line of code defined the asymmetric key in the current database that would be used to
encrypt the symmetric key:

CHAPTER 19 ■ ENCRYPTION472

570Xch19.qxd 11/4/05 2:48 PM Page 472

Viewing Symmetric Keys in the Current Database
You can see the symmetric keys in the current database by querying the sys.symmetric_keys system
catalog view:

SELECT name, algorithm_desc
FROM sys.symmetric_keys

This returns:

name algorithm_desc
------------------------------------ ---------------------------------
##MS_DatabaseMasterKey## TRIPLE_DES
sym_BookStore TRIPLE_DES

How It Works
The sys.symmetric_keys system catalog view was used to return the name and encryption algorithm
of symmetric keys in the current database. Notice that this query against sys.symmetric_keys also
returned a row for the Database Master Key.

Changing How a Symmetric Key Is Encrypted
In this recipe, I’ll demonstrate how to change the way a symmetric key is encrypted using ALTER
SYMMETRIC KEY. Before doing this, however, I must first open it using the OPEN SYMMETRIC KEY
command.

The syntax for OPEN SYMMETRIC KEY is as follows:

OPEN SYMMETRIC KEY Key_name DECRYPTION BY < decryption_mechanism >

The decryption mechanism for opening the key depends on how the key was originally
encrypted:

< decryption_mechanism >::=
CERTIFICATE certificate_name

[WITH PASSWORD = ' password '] |
ASYMMETRIC KEY asym_key_name

[WITH PASSWORD = ' password ']|
SYMMETRIC KEY decrypting_Key_name
| PASSWORD = ' decryption_password '

For example, the following symmetric key is opened using the private key password of an
encryption key:

OPEN SYMMETRIC KEY sym_BookStore
DECRYPTION BY ASYMMETRIC KEY asymBookSellerKey
WITH PASSWORD = 'newpasswordE4D352F280E0'

Once opened for use, the key can be changed to use encryption by a password instead (adding
the password encryption first, then removing the asymmetric key encryption):

ALTER SYMMETRIC KEY sym_BookStore
ADD ENCRYPTION BY PASSWORD = 'hushhush!123'

ALTER SYMMETRIC KEY sym_BookStore
DROP ENCRYPTION BY ASYMMETRIC KEY asymBookSellerKey

CHAPTER 19 ■ ENCRYPTION 473

570Xch19.qxd 11/4/05 2:48 PM Page 473

Once finished with the operations, the CLOSE SYMMETRIC KEY command closes the key for use in
the database session:

CLOSE SYMMETRIC KEY sym_BookStore

How It Works
This example demonstrated ways to change how a symmetric key is encrypted, in this case from
using a asymmetric key to using a password instead.

First, OPEN SYMMETRIC KEY was used to open the key up for modification. The first line of code
designated the symmetric key name:

OPEN SYMMETRIC KEY sym_BookStore

The second line of code designated the name of the asymmetric key used to encrypt the
symmetric key:

DECRYPTION BY ASYMMETRIC KEY asymBookSellerKey

The third line of code designated the private key password of the asymmetric key:

WITH PASSWORD = 'newpasswordE4D352F280E0'

Once opened for use, the key was changed to use encryption by a password. The first line of
code designated the symmetric key to modify:

ALTER SYMMETRIC KEY sym_BookStore

The second line of code designated that the symmetric key would be encrypted by a password:

ADD ENCRYPTION BY PASSWORD = 'hushhush!123'

After that, ALTER SYMMETRIC KEY was called again to drop the asymmetric key encryption. The
first line of code designated the symmetric key to be modified:

ALTER SYMMETRIC KEY sym_BookStore

The second line of code designated the asymmetric key encryption to be dropped:

DROP ENCRYPTION BY ASYMMETRIC KEY asymBookSellerKey

Once we finished, the CLOSE SYMMETRIC KEY command was used to close the key for use in the
database session:

CLOSE SYMMETRIC KEY sym_BookStore

Using Symmetric Key Encryption and Decryption
To encrypt data using a symmetric key, the symmetric key must first be opened, and then the
EncryptByKey function used.

The syntax for this function is as follows:

EncryptByKey(key_GUID , { ' cleartext ' | @cleartext }
[, { add_authenticator | @add_authenticator }
, { authenticator | @authenticator }])

The arguments of this command are described in Table 19-6.

CHAPTER 19 ■ ENCRYPTION474

570Xch19.qxd 11/4/05 2:48 PM Page 474

Table 19-6. EncryptByKey Arguments

Argument Description

key_GUID The symmetric key global unique identifier (GUID),
which can be derived by using the Key_GUID system
function.

' cleartext ' | @cleartext The text to be encrypted.

add_authenticator | @add_authenticator A Boolean value (1 or 0) determining whether an
authenticator will be used with the encrypted value.
The data being encrypted can be further encrypted
by using an additional binding value—for example
the table’s primary key. If the authenticator is modified
(or tampered with) the encrypted data will not be able
to be decrypted.

authenticator | @authenticator Data column used for the authenticator. For example,
you can bind the encrypted data along with the
primary key of the table.

In this example, a new table is created to hold password hints for customers. The answer to the
password hint is to be encrypted in the table:

CREATE TABLE dbo.PasswordHint
(CustomerID int NOT NULL PRIMARY KEY,
PasswordHintQuestion varchar(300) NOT NULL,
PasswordHintAnswer varbinary(200) NOT NULL)
GO

In this example, a new row is inserted into the dbo.PasswordHint table that encrypts the
PasswordHintAnswer column using a symmetric key:

OPEN SYMMETRIC KEY sym_BookStore
DECRYPTION BY PASSWORD = 'hushhush!123'

INSERT dbo.PasswordHint
(CustomerID, PasswordHintQuestion, PasswordHintAnswer)
VALUES
(23, 'What is the name of the hospital you were born in?',
EncryptByKey(Key_GUID('sym_BookStore '), 'Mount Marie'))

CLOSE SYMMETRIC KEY sym_BookStore

To decrypt data that was encrypted by a symmetric key, the DecryptByKey command is used.
Notice that unlike the EncryptByKey command, DecryptByKey doesn’t use the symmetric key GUID,
so the correct symmetric key session must be opened in order to decrypt the data:

OPEN SYMMETRIC KEY sym_BookStore
DECRYPTION BY PASSWORD = 'hushhush!123'

SELECT CAST(DecryptByKey(PasswordHintAnswer) as varchar(200)) PasswordHintAnswer
FROM dbo.PasswordHint
WHERE CustomerID = 23

CLOSE SYMMETRIC KEY sym_BookStore

This returns:

CHAPTER 19 ■ ENCRYPTION 475

570Xch19.qxd 11/4/05 2:48 PM Page 475

PasswordHintAnswer
--
Mount Marie

If you attempted to query the value with the previous query without first opening the symmet-
ric key that was used to encrypt the data, a NULL value would have been returned instead:

PasswordHintAnswer
--
NULL

As was shown in the EncryptByKey syntax shown earlier, you can also include an extra authenti-
cator column value to be used in the encryption of the text data. This additional information helps
further obscure the cipher text from any meaningful value that could potentially be derived from
the cipher text and other non-encrypted columns in the table.

In this example, the primary key value of the dbo.PasswordHint table is used in the encryption
of the data. First, a new table is created and an un-encrypted row added to it:

CREATE TABLE dbo.BookSellerLogins
(LoginID int NOT NULL PRIMARY KEY,
Password varbinary(256) NOT NULL)
GO

INSERT dbo.BookSellerLogins
(LoginID, Password)
VALUES(22, CAST('myeasypassword' as varbinary))

Next, the symmetric key is opened, and the values of the password column are encrypted in an
UPDATE statement, using the symmetric key and the LoginID of the row:

OPEN SYMMETRIC KEY sym_BookStore
DECRYPTION BY PASSWORD = 'hushhush!123'

UPDATE dbo.BookSellerLogins
SET Password =

EncryptByKey(Key_GUID('sym_BookStore'),
Password,
1,
CAST(LoginID as varbinary))

CLOSE SYMMETRIC KEY sym_BookStore

To decrypt the value of this updated row, the DecryptByKey must also include the authenticator
column in the function call:

OPEN SYMMETRIC KEY sym_BookStore
DECRYPTION BY PASSWORD = 'hushhush!123'

SELECT LoginID,
CAST(DecryptByKey(Password, 1,
CAST(LoginID as varbinary)) as varchar(30)) Password
FROM dbo.BookSellerLogins

CLOSE SYMMETRIC KEY sym_BookStore

CHAPTER 19 ■ ENCRYPTION476

570Xch19.qxd 11/4/05 2:48 PM Page 476

This returns:

LoginID Password
----------- ------------------------------
22 myeasypassword

How It Works
In this recipe, I demonstrated how to encrypt data using EncryptByKey and decrypt it using
DecryptByKey. Before using the function, the symmetric key first had to be opened. The first line of
OPEN SYMMETRIC KEY referenced the symmetric key name:

OPEN SYMMETRIC KEY sym_BookStore

The second line included the password used to access the symmetric key for use:

DECRYPTION BY PASSWORD = 'hushhush!123'

A new row was then inserted, with an encrypted value using EncryptByKey. The first argument
used the Key_GUID function to return the system ID of the symmetric key to be used. The second
argument was the text to be encrypted by the symmetric key:

...
EncryptByKey(Key_GUID('sym_BookStore '), 'Mount Marie'))

The key was then closed after finishing the encryption, referencing the symmetric key for the
argument:

CLOSE SYMMETRIC KEY sym_BookStore

To decrypt the data, the symmetric key was reopened:

OPEN SYMMETRIC KEY sym_BookStore
DECRYPTION BY PASSWORD = 'hushhush!123'

The DecryptByKey function was used, taking just the table column where the encrypted data
was stored as an argument:

SELECT CAST(DecryptByKey(PasswordHintAnswer) as varchar(200)) PasswordHintAnswer
FROM dbo.PasswordHint
WHERE CustomerID = 23

After returning the decrypted data, the symmetric key was then closed:

CLOSE SYMMETRIC KEY sym_BookStore

Encrypting data using an authenticator was also demonstrated. In the example, the third
parameter was a flag indicating that an authenticator value would be used (1 for “True”), followed
by the column authenticator (LoginID):

EncryptByKey(Key_GUID('sym_BookStore'),
Password,
1,
CAST(LoginID as varbinary)

The LoginID was converted to varbinary prior to being included in the encrypted data. Using
an authenticator further secures the encrypted data. However if the accompanying authenticator
LoginID value was changed for the specific row, the encrypted data can no longer be decrypted with
the modified LoginID value.

CHAPTER 19 ■ ENCRYPTION 477

570Xch19.qxd 11/4/05 2:48 PM Page 477

In the example, the symmetric key was opened, and the DecryptByKey function was used,
including the encrypted column in the first argument, authenticator flag in the second argument,
and the authenticator column in the third argument (CAST as a varbinary data type):

SELECT LoginID,
CAST(DecryptByKey(Password, 1,
CAST(LoginID as varbinary)) as varchar(30)) Password
FROM dbo.BookSellerLogins

After returning the decrypted data, the symmetric key was then closed.

Dropping a Symmetric Key
You can remove a symmetric key from the database by using the DROP SYMMETRIC KEY command,
which takes the name of the symmetric key as its single argument.

For example:

DROP SYMMETRIC KEY sym_BookStore

How It Works
In this recipe, I demonstrated dropping a symmetric key from the database. It took a single argument—
the name of the symmetric key. Keep in mind that if the key was open, the DROP command would fail
with an error.

Certificate Encryption
Certificates can be used to encrypt and decrypt data within the database. A certificate contains
a key pair, information about the owner of the certificate, and the valid start and end expiration
dates for the certificate in question. A certificate contains both a public and a private key. As you’ll
see in later recipes, the public key of the certificate is used to encrypt data, and the private key is
used to decrypt data. SQL Server can generate its own certificates, or, if you like, you can load one
from an external file or assembly. Certificates are more portable than asymmetric keys, because
they can be backed up and then loaded from files, whereas asymmetric keys cannot. This means that
the same certificate can easily be reused in multiple user databases. Once a certificate is created,
certificate encryption and decryption functions can then be used against database data.

Both certificates and asymmetric key database objects provide a very secure method for encrypt-
ing data. This strong method of encryption comes with a performance cost, however. Encrypting very
large data sets with a certificate or asymmetric key may incur too much overhead for your environment.
A lower overhead option (but a less secure one as well) is using a symmetric key, which was reviewed
earlier.

In the next set of recipes I’ll demonstrate how to create, manage, and use certificate-based
encryption.

Creating a Database Certificate
To create a new database certificate, the CREATE CERTIFICATE command is used. The abridged syntax
for creating a new certificate in the database is as follows:

CREATE CERTIFICATE certificate_name [AUTHORIZATION user_name]
[ENCRYPTION BY PASSWORD = ' password ']
WITH SUBJECT = ' certificate_subject_name '
START_DATE = ' mm/dd/yyyy ' | EXPIRY_DATE = ' mm/dd/yyyy '

CHAPTER 19 ■ ENCRYPTION478

570Xch19.qxd 11/4/05 2:48 PM Page 478

The arguments of this command are described in Table 19-7.

Table 19-7. CREATE CERTIFICATE Arguments

Argument Description

certificate_name The name of the new database certificate.

user_name The database user who owns the certificate.

Password The password used to encrypt the certificate.

certificate_subject_name The certificate metadata description.

START_DATE = ' mm/dd/yyyy ' The start date of the certificate, defaulting to the current date.
System functions don’t actually check these dates, so it will be
up to your Transact-SQL code to validate the certificate period.

EXPIRY_DATE = ' mm/dd/yyyy ' The expiration date of the certificate, defaulting to one year
after the start date.

In this example, a new certificate is created in the BookStore database:

USE BookStore
GO

CREATE CERTIFICATE cert_BookStore
ENCRYPTION BY PASSWORD = 'AA5FA6AC'
WITH SUBJECT = 'BookStore Database Encryption Certificate',
START_DATE = '7/15/2005', EXPIRY_DATE = '8/15/2006'

How It Works
In this recipe I created a new certificate that will be used to encrypt and decrypt data. The first line
of code included the name of the new certificate:

CREATE CERTIFICATE cert_BookStore

The second line included the password used to encrypt the certificate:

ENCRYPTION BY PASSWORD = 'AA5FA6AC'

The third line designated the subject of the certificate, followed by the start and expiration date
for the certificate:

WITH SUBJECT = 'BookStore Database Encryption Certificate',
START_DATE = '7/15/2005', EXPIRY_DATE = '8/15/2006'

Viewing Certificates in the Database
Once the certificate is created in the database, you can view it by querying the sys.certificates
system catalog view:

SELECT name, pvt_key_encryption_type_desc, issuer_name
FROM sys.certificates

This returns:

name pvt_key_encryption_type_desc issuer_name
--------------- ---------------------------- ----------------------
cert_BookStore ENCRYPTED_BY_PASSWORD BookStore Database...

CHAPTER 19 ■ ENCRYPTION 479

570Xch19.qxd 11/4/05 2:48 PM Page 479

How It Works
Query the sys.certificates system catalog view to see certificates in the current database. The
name column returned the name of the certificate. The pvt_key_encryption_type_desc column in the
result set describes how the private key of the certificate was encrypted. The issuer_name returned
the certificate subject.

Backing Up and Restoring a Certificate
Once a certificate is created it can also be backed up to file for safe keeping or for use in restoring in
other databases using the BACKUP CERTIFICATE command.

The syntax is as follows:

BACKUP CERTIFICATE certname TO FILE = 'path_to_file'
[WITH PRIVATE KEY

(FILE = 'path_to_private_key_file' ,
ENCRYPTION BY PASSWORD = 'encryption_password'

[, DECRYPTION BY PASSWORD = 'decryption_password'])]

The arguments of this command are described in Table 19-8.

Table 19-8. BACKUP CERTIFICATE Arguments

Argument Description

path_to_file The filename and path that the certificate backup is written to.

path_to_private_key_file Specifies a path and filename to the private key file.

encryption_password The private key password used when the certificate was created.

decryption_password The private key password used to decrypt the key prior to backup.

This example demonstrates backing up the certificate:

BACKUP CERTIFICATE cert_BookStore
TO FILE = 'C:\Apress\Recipes\Certificates\certBookStore.BAK'
WITH PRIVATE KEY (FILE = 'C:\Apress\Recipes\Certificates\certBookStorePK.BAK' ,
ENCRYPTION BY PASSWORD = '3439F6A',
DECRYPTION BY PASSWORD = 'AA5FA6AC')

This backup creates two files, one for the certificate containing the public key (used to encrypt
data), and another containing the password-protected private key (used to decrypt data).

Once backed up, you can use the certificate in other databases, or drop the existing certificate
using the DROP CERTIFICATE command (which uses the certificate name as its argument) and restore
it from backup, as this example demonstrates:

DROP CERTIFICATE cert_BookStore
GO

CREATE CERTIFICATE cert_BookStore
FROM FILE = 'C:\Apress\Recipes\Certificates\certBookStore.BAK'
WITH PRIVATE KEY (FILE = 'C:\Apress\Recipes\Certificates\certBookStorePK.BAK',

DECRYPTION BY PASSWORD = '3439F6A',
ENCRYPTION BY PASSWORD = 'AA5FA6AC')

CHAPTER 19 ■ ENCRYPTION480

570Xch19.qxd 11/4/05 2:48 PM Page 480

How It Works
This recipe demonstrated backing up a certificate to external files using BACKUP CERTIFICATE, dropping
it using DROP CERTIFICATE, and then recreating it from file using CREATE CERTIFICATE.

Walking through the code, the first line of the backup referenced the certificate name:

BACKUP CERTIFICATE cert_BookStore

The TO FILE clause included the filename where the public key of the certificate would be
backed up to:

TO FILE = 'C:\Apress\Recipes\Certificates\certBookStore.BAK'

The WITH PRIVATE KEY clause designated the file where the private key backup would be output
to, along with the encryption (the private key password used when the certificate was created) and
decryption (the private key password used to decrypt the key prior to back up) passwords:

WITH PRIVATE KEY (FILE = 'C:\Apress\Recipes\Certificates\certBookStorePK.BAK' ,
ENCRYPTION BY PASSWORD = '3439F6A',
DECRYPTION BY PASSWORD = 'AA5FA6AC')

After removing the existing certificate using DROP CERTIFICATE, the certificate was then recreated
from the backup files. The first line of CREATE CERTIFICATE referenced the certificate name:

CREATE CERTIFICATE cert_BookStore

The FROM FILE clause designated the location of the public key backup file:

FROM FILE =
'C:\Apress\Recipes\Certificates\certBookStore.BAK'

The WITH PRIVATE KEY clause designated the location of the private key file, followed by the
decryption and encryption passwords:

WITH PRIVATE KEY (FILE = 'C:\Apress\Recipes\Certificates\certBookStorePK.BAK',
DECRYPTION BY PASSWORD = '3439F6A',
ENCRYPTION BY PASSWORD = 'AA5FA6AC')

Managing a Certificate’s Private Key
You can add or remove the private key of a certificate by using the ALTER CERTIFICATE command.
This command allows you to remove the private key (defaulting to encryption by the Database
Master Key), add the private key, or change the private key password.

The following example drops the private key from the certificate:

ALTER CERTIFICATE cert_BookStore
REMOVE PRIVATE KEY

As with CREATE CERTIFICATE, you can also re-add a private key from a backup file to an existing
certificate using ALTER CERTIFICATE:

ALTER CERTIFICATE cert_BookStore
WITH PRIVATE KEY
(FILE = 'C:\Apress\Recipes\Certificates\certBookStorePK.BAK',

DECRYPTION BY PASSWORD = '3439F6A',
ENCRYPTION BY PASSWORD = 'AA5FA6AC')

ALTER CERTIFICATE can also be used to change the password of an existing private key:

ALTER CERTIFICATE cert_BookStore
WITH PRIVATE KEY (DECRYPTION BY PASSWORD = 'AA5FA6AC',
ENCRYPTION BY PASSWORD = 'mynewpassword!!!Efsj')

CHAPTER 19 ■ ENCRYPTION 481

570Xch19.qxd 11/4/05 2:48 PM Page 481

The DECRYPTION BY PASSWORD was the old private key password, and the ENCRYPTION BY PASSWORD
the new private key password.

How It Works
This recipe demonstrated how to modify the way that a certificate is encrypted. The private key was
removed from the certificate using ALTER CERTIFICATE and REMOVE PRIVATE KEY:

ALTER CERTIFICATE cert_BookStore
REMOVE PRIVATE KEY

To add it back again, we also used ALTER CERTIFICATE. The first line referenced the certificate
name:

ALTER CERTIFICATE cert_BookStore

The WITH PRIVATE KEY clause designated the location of the private key file, along with the
decryption and encryption passwords:

WITH PRIVATE KEY
(FILE = 'C:\Apress\Recipes\Certificates\certBookStorePK.BAK',

DECRYPTION BY PASSWORD = '3439F6A',
ENCRYPTION BY PASSWORD = 'AA5FA6AC')

Finally, I modified the certificate’s private key password. The first line referenced the certificate
name:

ALTER CERTIFICATE cert_BookStore

The WITH PRIVATE KEY clause designated the decryption password, and the new encryption
password:

WITH PRIVATE KEY (DECRYPTION BY PASSWORD = 'AA5FA6AC',
ENCRYPTION BY PASSWORD = 'mynewpassword!!!Efsj')

Using Certificate Encryption and Decryption
Once you have a certificate in the database, you can use the EncryptByCert system function to
encrypt data using the certificate’s public key. Encryption allows you to protect sensitive table data.
Without the associated private key, the data will be unreadable.

The syntax for EncryptByCert is as follows:

EncryptByCert (certificate_ID , { ' cleartext ' | @cleartext })

The arguments of this command are described in Table 19-9.

Table 19-9. EncryptByCert Arguments

Argument Description

certificate_ID The certificateID of the certificate used to encrypt the data.

' cleartext ' | @cleartext The unencrypted text to be encrypted.

In order to retrieve the certificate ID of a specific database certificate, you can use the Cert_ID
function, which takes the certificate name as its single argument:

Cert_ID (' cert_name ')

CHAPTER 19 ■ ENCRYPTION482

570Xch19.qxd 11/4/05 2:48 PM Page 482

To decrypt data that has been encrypted by a certificate, use the DecryptByCert function. This
function uses the internal private key of the certificate to decrypt the data (the private key requires
the private key password defined when the certificate was created):

DecryptByCert (
certificate_ID ,
{ ' ciphertext ' | @ciphertext }
[, { ' cert_password ' | @cert_password }]
)

The arguments of this command are described in Table 19-10.

Table 19-10. DecryptByCert Arguments

Argument Description

certificate_ID The certificate ID of the certificate used to decrypt the data.

' ciphertext ' | @ciphertext The encrypted text to be decrypted.

' cert_password ' | @cert_password The private key password of the certificate used to decrypt
the data.

In this example, an INSERT is made into the PasswordHintAnswer table that is encrypted by the
public key of the certificate:

INSERT dbo.PasswordHint
(CustomerID, PasswordHintQuestion, PasswordHintAnswer)
VALUES
(1, 'What is the name of the hospital you were born in?',

EncryptByCert(Cert_ID('cert_BookStore'), 'Hickman Hospital'))

The next query shows the newly inserted row:

SELECT CAST(PasswordHintAnswer as varchar(200)) PasswordHintAnswer
FROM dbo.PasswordHint
WHERE CustomerID = 1

This returns unintelligible cipher text instead of the original text value:

PasswordHintAnswer
--
o‹_*_1/2bYy-X–_Î`'5BuÄ*n«ßR_.´jõÑ†£sÙ_“ùüÔ_ÄÆ7(c)�±w__Àa_3U_'c9_›¨
‰@KsïÃ_â>J`¶ºp__:_Ä&ˆää_+c_4$£‚_}Zj6;Ç›

This next example demonstrates querying the PasswordHintAnswer column; this time using the
private key of the certificate to view the decrypted results:

SELECT CAST(DecryptByCert(Cert_ID('cert_BookStore'),
PasswordHintAnswer, N'mynewpassword!!!Efsj') as varchar(200)) PasswordHintAnswer
FROM dbo.PasswordHint
WHERE CustomerID = 1

This returns:

PasswordHintAnswer

Hickman Hospital

CHAPTER 19 ■ ENCRYPTION 483

570Xch19.qxd 11/4/05 2:48 PM Page 483

How It Works
In this recipe’s example, a table was created with a varbinary data type column that was used to
hold encrypted information. This data type was chosen because the EncryptByCert function returns
varbinary, encrypted data. The first parameter of the EncryptByCert function took the certificate ID,
followed by the text to be encrypted:

EncryptByCert(Cert_ID('cert_BookStore'), 'Hickman Hospital')

This text to be encrypted can be of the nvarchar, varchar, char, or nchar data types. The data is
actually stored, however, in varbinary. If you attempt to convert the varbinary data to the original
text data type, without the DecryptByCert function and the appropriate certificate and password, only
encrypted garble is returned.

The encrypted string was then decrypted using the private key of the same certificate. The
function’s first parameter was the certificate ID, followed by the encrypted text in the second parame-
ter. The third parameter was the private key password used when the certificate was created:

DecryptByCert(Cert_ID('cert_BookStore'), PasswordHintAnswer,
N'mynewpassword!!!Efsj') PasswordHintAnswer

The results of the function were also CAST back into the varchar data type, in order to display
the original text.

CHAPTER 19 ■ ENCRYPTION484

570Xch19.qxd 11/4/05 2:48 PM Page 484

Service Broker

Microsoft introduces the new Service Broker functionality to SQL Server 2005, allowing you to
build asynchronous, database-driven messaging applications. Asynchronous in this context means
that a task, such as placing an order, can be initiated and then completed over time without forming
a bottleneck with other tasks. In contrast, synchronous processing means that one unit of work is
dependent on another unit of work before it can proceed. For example, an order process is synchro-
nous if it submits an order request to a destination service, but cannot proceed with other tasks until
that submitted order request is accepted by the receiving service. Using the Service Broker, applica-
tion tasks can keep moving forward while messages are handled in their own required timeframe.
The Service Broker allows one database to send a message to another without waiting for a response,
so the sending database will continue to function, even if the remote database cannot process the
message immediately. The Service Broker is reviewed in this book because it can be managed entirely
by using SQL Server 2005 Transact-SQL objects and commands.

The Service Broker provides message-queuing for SQL Server. It provides a means for you to
send an asynchronous, transactional message from within a database to a queue, where it will be
picked up and processed by another service, possibly running on another database or server. Again,
with asynchronous programs, a message is sent, and the application can proceed with other related
tasks without waiting for confirmation that the original message was received or processed. Once
the specific task is finished, the conversation between the two Service Broker services is explicitly
ended by both sides.

Service Broker includes several out-of-the-box features that address complex factors you may
often encounter when trying to build your own asynchronous messaging system. For example, Service
Broker messages are guaranteed to be received in the proper order, or in the order in which they
were initially sent. These messages are also only received once (the broker guarantees that there will
be no duplicate reads) and can be sent as part of the same conversation, correlated to the same
instance of a task. Another benefit of Service Broker is the guaranteed delivery of messages. If the
target database (the recipient of the first message) isn’t available when the first message transmis-
sion is attempted, the message will be queued on the initiator database (the sender of the first message)
and an attempt will be made to send the message when the receiving database becomes available.
These messages are also recoverable in the event of a database failure, as the Service Broker is built
within a SQL Server 2005 database, and can be backed up along with the rest of the database.

This chapter will provide a high-level overview of the new Service Broker objects and commands
by setting up the BookStore/BookDistribution Service Broker application, using a stored procedure
to automatically process messages in a Service Broker queue, and enabling Service Broker applica-
tions to communicate remotely across SQL Server instances. I’ll finish the chapter with a review and
demonstration of the new event notification functionality. Event notifications work with Service
Broker to allow you to track database and SQL Server instance events (similar to SQL Trace)—only
the event notifications are asynchronous and have a minimal impact on overall SQL Server instance
performance.

485

C H A P T E R 2 0

■ ■ ■

570Xch20.qxd 11/4/05 2:50 PM Page 485

CHAPTER 20 ■ SERVICE BROKER486

Example Scenario: Online Bookstore
In a hypothetical online bookstore, an order is placed by a customer for a book. The purchase is
made to the BookStore database, which uses built-in Service Broker functionality to send a message
to the BookDistribution database. The BookDistribution database is used by a separate application
that handles warehouse stocking and distribution delivery. These two separate databases can exist
on the same or different SQL Server 2005 instances.

Continuing with the hypothetical example, the BookStore database starts a conversation with
the other database by submitting a book order message. This book order is sent to a queue on the
BookDistribution database, where the receiving service program can either pick up the message
right away, or defer processing for a later time. The original transaction on the BookStore database is
not held up because the communication is being conducted asynchronously. For example, the appli-
cation can proceed with other tasks, such as sending an order confirmation to the customer or
updating other dependent tables used within the hypothetical application. When the BookDistribution
database is ready to process the order, the Service Broker allows it to pluck the message from the
queue, extract the message information, and process it accordingly. The BookDistribution program
can then send a message back to the BookStore database confirming that the order was received,
and then take its own actions to get the book sent to the customer.

Creating a Basic Service Broker Application
In this next set of recipes, I’ll demonstrate setting up an application which places a book order on
the BookStore database. This book order is sent asynchronously to the BookDistribution database
on the same SQL Server instance. Once the BookDistribution database gets a chance to process it,
BookDistribution will send an order confirmation response. The task is then finished, and the con-
versation between Service Broker services is ended.

The following is a general list of steps used to put together a Service Broker application when
both databases reside on the same SQL Server instance:

1. Define the asynchronous tasks that you want your application to perform. Service Broker is
ideal for applications that perform loosely coupled actions, such as triggering messages and
responses that can span over several minutes, hours, or days, while still letting other appli-
cation tasks move ahead with other actions.

2. Determine whether the Service Broker initiator and target services will be created on the
same SQL Server instance, or span two SQL Server instances. Multi-instance communica-
tion requires extra steps to establish authentication via certificates or NT security, and to
create endpoints, routes, and dialog security. This is demonstrated later in the chapter.

3. If not already enabled, set the ENABLE_BROKER and TRUSTWORTHY database options for the par-
ticipating databases using ALTER DATABASE.

4. Create a Database Master Key for each participating database (see Chapter 19 for more on
the Database Master Key).

5. Create the message types that you wish to be sent between services. Message types define
the type of data contained within a message that is sent from a Service Broker endpoint
(initiator service or target service). These should be added on both databases participating
in the Service Broker application.

6. Create a contract to define the kinds of message types that can be sent by the initiator and
the message types that can be sent by the target. Contracts define which message types can
be sent or received at a task level. This contract should be added to both participating
databases.

570Xch20.qxd 11/4/05 2:50 PM Page 486

7. Create a queue on both participating databases to hold messages. A queue stores messages.
You can query a queue with the SELECT statement or use the RECEIVE command to retrieve
one or more messages from the queue. Each queue can also be defined with an activation
stored procedure or application which will automatically handle messages when they are
received in the queue.

8. Create a service on both participating databases that binds the specific contract to a specific
queue. A service defines the endpoint, which is used to bind a message queue to one or more
contracts.

Once these steps are followed, you are ready to create new dialog conversations (a dialog con-
versation is the act of exchanging messages between services) and send/receive messages between
the Service Broker services. The first recipe in this section will demonstrate how to enable SQL Server
databases for Service Broker activity.

■Tip As you’ll see in this chapter, several Service Broker commands require that if the statement isn’t the first
statement in the batch, the preceding statement must be terminated with a semicolon statement terminator.

Enabling Databases for Service Broker Activity
The demonstration starts in the master database, where ALTER DATABASE is used to ensure that both
the ENABLE_BROKER and TRUSTWORTHY database setting are enabled for both participating databases:

USE master

ALTER DATABASE BookStore SET ENABLE_BROKER
GO
ALTER DATABASE BookStore SET TRUSTWORTHY ON
GO

ALTER DATABASE BookDistribution SET ENABLE_BROKER
GO
ALTER DATABASE BookDistribution SET TRUSTWORTHY ON
GO

How It Works
This recipe used ALTER DATABASE to enable Service Broker activity for the database. To disable Ser-
vice Broker you can use the DISABLE_BROKER database option.

Creating the Database Master Key for Encryption
Service Broker uses dialog security when conversations span databases. In order for this security to
take effect, each participating database must have a Database Master Key.

In the BookStore database, a Database Master Key is created, in order to allow for encrypted
messages between the two local databases:

USE BookStore
GO

CHAPTER 20 ■ SERVICE BROKER 487

570Xch20.qxd 11/4/05 2:50 PM Page 487

CREATE MASTER KEY
ENCRYPTION BY PASSWORD = 'D4C86597'
GO

Now the same is done for the BookDistribution database:

USE BookDistribution
GO

CREATE MASTER KEY
ENCRYPTION BY PASSWORD = '50255686DDC5'
GO

How It Works
See Chapter 19 for details on how to create Database Master Keys for a database. In this case, I created
one for each database participating in the Service Broker application.

Managing Message Types
Message types define the type of data contained within a message sent from a Service Broker end-
point (initiator or target). Think of a message type as the message template (but not the actual
message), defining the name, owner, and type of message content.

The CREATE MESSAGE TYPE command is used to create a new message type. Its syntax is as
follows:

CREATE MESSAGE TYPE message_type_name
[AUTHORIZATION owner_name]
[VALIDATION =
{ NONE | EMPTY |
WELL_FORMED_XML |
VALID_XML WITH SCHEMA COLLECTION schema_collection_name }]

The arguments of this command are described in Table 20-1.

Table 20-1. CREATE MESSAGE TYPE Arguments

Argument Description

message_type_name The name of the message type.

owner_name The database owner of the message type.

NONE |EMPTY |WELL FORMED XML | These settings define the message validation. When NONE,
VALID XML WITH SCHEMA COLLECTION no validation is performed. When EMPTY, the message
schema_collection_name body has to be NULL. When WELL FORMED XML is chosen,

the body has to contain well formed XML. When VALID
XML WITH SCHEMA COLLECTION is chosen, the message
body must conform to a specific XML schema.

Continuing with the online bookstore example, the first Service Broker objects created are the
two message types that will be exchanged between the databases. The first is a message type that is
used to send the book order:

Use BookStore
GO

CHAPTER 20 ■ SERVICE BROKER488

570Xch20.qxd 11/4/05 2:50 PM Page 488

CREATE MESSAGE TYPE [//SackConsulting/SendBookOrder]
VALIDATION = WELL_FORMED_XML
GO

The second message type will be sent by the target database to confirm that it has received the
book order. Both message types will use a well-formed XML message body, which means that valid
XML must be supplied as message content, but no schema-based validation will be performed on
the message content:

CREATE MESSAGE TYPE [//SackConsulting/BookOrderReceived]
VALIDATION = WELL_FORMED_XML
GO

Now the context is switched to the BookDistribution database and the same message types
and contract that were created in the BookStore database are also created in the BookDistribution
database. Without creating the same message types, the receiving database would not be able to
accept the incoming message. Communication structures are a two-way street, with each side hav-
ing to understand the messages to be exchanged in the dialog conversation:

USE BookDistribution
GO

CREATE MESSAGE TYPE [//SackConsulting/SendBookOrder]
VALIDATION = WELL_FORMED_XML
GO

CREATE MESSAGE TYPE [//SackConsulting/BookOrderReceived]
VALIDATION = WELL_FORMED_XML
GO

How It Works
In this recipe, two different recipe types were created in both databases that will participate in the
online bookstore example. In the first line of code in the CREATE MESSAGE TYPE, the name was des-
ignated in square brackets. This is the name of the message type that will be used to send a book
order message:

CREATE MESSAGE TYPE [//SackConsulting/SendBookOrder]

The message validation type was designated as well-formed XML:

VALIDATION = WELL_FORMED_XML
GO

Another message was created using the same validation type, this time with a different mes-
sage type name. This is the message type that will be used to respond to book order messages:

CREATE MESSAGE TYPE [//SackConsulting/BookOrderReceived]
VALIDATION = WELL_FORMED_XML
GO

Notice that I don't actually define the contents of the message. The actual message is an
instance of the message type, and will be demonstrated later on in the chapter.

CHAPTER 20 ■ SERVICE BROKER 489

570Xch20.qxd 11/4/05 2:50 PM Page 489

Creating Contracts
Contracts define which message types can be sent or received at a task level. An example of a task
could be “place a book order to the distribution center.” Each task in your application should define
a separate contract, based on the type of messages exchanged between the initiator of the conversation
and the target. Contracts also define the intended direction of the message types (initiator to target,
target to initiator).

To create a new contract, use the CREATE CONTRACT command. The abridged syntax is as follows:

CREATE CONTRACT contract_name
[AUTHORIZATION owner_name]

({ message_type_name SENT BY
{ INITIATOR | TARGET | ANY }
} [,...n])

The arguments of this command are described in Table 20-2.

Table 20-2. CREATE CONTRACT Arguments

Argument Description

contract_name The name of the new contract.

owner_name The database owner of the contract.

message_type_name The name of the message type included in the contract.

INITIATOR | TARGET | ANY The SENT BY options define which directions a message type can be
sent. When INITIATOR, only the service that starts the conversation can
send the specific message type. When TARGET, only the target of the
conversation can send the specific message type. ANY allows the
message to be sent by both the initiator and target.

[,...n] More than one message type can be defined within the contract
definition.

Continuing with the online bookstore example, a contract is created on the BookStore data-
base that defines which messages can be sent by the initiator (BookStore database) or the target
(BookDistribution database):

Use BookStore
GO
CREATE CONTRACT

[//SackConsulting/BookOrderContract]
([//SackConsulting/SendBookOrder]

SENT BY INITIATOR,
[//SackConsulting/BookOrderReceived]

SENT BY TARGET
)

GO

Now context is switched to the BookDistribution database and a contract is also created:

USE BookDistribution
GO

CHAPTER 20 ■ SERVICE BROKER490

570Xch20.qxd 11/4/05 2:50 PM Page 490

CREATE CONTRACT
[//SackConsulting/BookOrderContract]
([//SackConsulting/SendBookOrder]

SENT BY INITIATOR,
[//SackConsulting/BookOrderReceived]

SENT BY TARGET
)

GO

How It Works
This recipe demonstrated creating a new contract in both the BookStore and BookDistribution
databases. In order for the conversation to be successful, the contract definition must be identical
for both the initiator and the target. The first argument of the CREATE CONTRACT command included
the contract name:

CREATE CONTRACT
[//SackConsulting/BookOrderContract]

In parentheses, the allowed message types created in the previous recipe are designated, along
with a definition of which role can use a message type:

([//SackConsulting/SendBookOrder]
SENT BY INITIATOR,

[//SackConsulting/BookOrderReceived]
SENT BY TARGET

)
GO

The BookStore database is where the [//SackConsulting/SendBookOrder] message will be sent
from (the INITIATOR) and the BookDistribution database is from where the
[//SackConsulting/BookOrderReceived] will be sent (the TARGET).

Creating Queues
A queue stores messages. You can query a queue with a SELECT statement or use the RECEIVE com-
mand to retrieve one or more messages from the queue.

Upon creation, a queue can be bound to a stored procedure which will handle messages when
they arrive (see the recipe, “Creating a Stored Procedure to Process Messages,” found later in the chap-
ter). Retrieval programs can also be external to SQL Server (such as .NET-based
programs)—however stored procedures provide an easy-to-implement solution.

To create a new queue, the CREATE QUEUE command is used. The syntax is as follows:

CREATE QUEUE [database_name. [schema_name] .queue_name
[WITH
[STATUS = { ON | OFF } [,]]
[RETENTION = { ON | OFF } [,]]
[ACTIVATION (

[STATUS = { ON|OFF } ,]
PROCEDURE_NAME = [database_name. [schema_name] ➥

.stored_procedure_name,
MAX_QUEUE_READERS = max_readers ,
EXECUTE AS { SELF 'user_name' OWNER })]

] [ON { filegroup [DEFAULT] }]

CHAPTER 20 ■ SERVICE BROKER 491

570Xch20.qxd 11/4/05 2:50 PM Page 491

The arguments of this command are described in Table 20-3.

Table 20-3. CREATE QUEUE Arguments

Argument Description

[database_name. The name of the new queue, which can be defined
[schema_name] .queue_name using the fully qualified database name, schema

name, and queue name.

STATUS = { ON | OFF } When STATUS is ON, the queue is available for use.
When OFF, messages can’t be added or removed from
the queue.

RETENTION = { ON | OFF } When RETENTION is ON, received or sent messages for
the queue are kept until the conversation is done
(allowing a prolonged view of in-progress messages
in the conversation). When OFF (which is the default),
messages are not retained after being either sent or
received (and retrieved). Retained messages are
available for reporting within the queue, but without
risk of duplicate sending or receiving.

(ACTIVATION) STATUS = { ON|OFF } When ON, the designated stored procedure will be
activated to receive messages (up to the number
designated in the max_readers argument). When OFF,
the stored procedure isn’t activated for the queue.

[database_name. The name of the stored procedure that will process
[schema_name] .stored_procedure_name messages for the queue. This can be fully qualified,

using the database name, schema, and stored
procedure name.

MAX_QUEUE_READERS = max_readers Multiple instances of the queue reader stored
procedure can be activated at the same time, from 0
to 32767 instances.

EXECUTE AS { SELF 'user_name' OWNER } EXECUTE AS defines what database user account the
stored procedure runs under. When SELF, it runs under
the context of the current user. Otherwise a specific
user name can be designated.

ON { filegroup [DEFAULT] } Like a table, a queue can be placed on a specific
filegroup. If not explicitly designated, the queue is
placed on the DEFAULT filegroup.

Continuing with the online bookstore application example, a queue is created in the BookStore
database to hold incoming messages from the BookDistribution database. It is created with a status
of enabled:

Use BookStore
GO

CREATE QUEUE BookStoreQueue
WITH STATUS=ON
GO

The CREATE QUEUE command also has activation options which allow you to bind a program to
it for automatically processing messages. This will be demonstrated later on in the chapter. But in
the meantime, message exchanges from queues will be handled manually in this example.

Next, a new queue is added to the BookDistribution database for messages that will be
received from the BookStore database:

CHAPTER 20 ■ SERVICE BROKER492

570Xch20.qxd 11/4/05 2:50 PM Page 492

USE BookDistribution
GO

CREATE QUEUE BookDistributionQueue
WITH STATUS=ON
GO

How It Works
In this example, a queue was created in both databases. The first queue created in BookStore was
called BookStoreQueue:

CREATE QUEUE BookStoreQueue

The second line of code designated that the queue is created in an enabled state:

WITH STATUS=ON

The second queue was created in the BookDistribution database and used a different name,
BookDistributionQueue. It too was created in an enabled state.

Creating Services
A service defines the endpoint, which is then used to bind a message queue to one or more contracts.
Services make use of queues and contracts to define a task or set of tasks.

A service is both the initiator and the receiver of messages, enforcing the rules of the contract
and routing the messages to the proper queue.

To create a new service, the CREATE SERVICE command is used. The abridged syntax is as follows:

CREATE SERVICE service_name
[AUTHORIZATION owner_name]
ON QUEUE [schema_name.]queue_name
[(contract_name [,...n])]

The arguments of this command are described in Table 20-4.

Table 20-4. CREATE SERVICE Arguments

Argument Description

service_name The name of the new service.

owner_name The owning database user or role of the service.

[schema_name.]queue_name The name of the queue that receives messages.

contract_name [,...n] The name of the contract(s) that can send messages to the new
service. If none is designated, the new service can only initiate
(and not receive) messages. If only an initiator, any contract can
be used to send messages.

Continuing with the online bookstore example, a service is created in the BookStore database
to bind the queue to a specific contract:

Use BookStore
GO

CREATE SERVICE [//SackConsulting/BookOrderService]
ON QUEUE dbo.BookStoreQueue
([//SackConsulting/BookOrderContract])

CHAPTER 20 ■ SERVICE BROKER 493

570Xch20.qxd 11/4/05 2:50 PM Page 493

Now context is switched to the BookDistribution database and a service is created to bind the
queue to the contract:

USE BookDistribution
GO

CREATE SERVICE [//SackConsulting/BookDistributionService]
ON QUEUE dbo.BookDistributionQueue
([//SackConsulting/BookOrderContract])

GO

How It Works
In this recipe, I created a service in both the BookStore and BookDistribution databases. The
CREATE SERVICE command was used to bind a specific queue to a contract.

The first argument used in CREATE SERVICE for the BookStore service was the service name:

CREATE SERVICE [//SackConsulting/BookOrderService]

The second line of code designated the queue for which the contract will be bound (will accept
messages from):

ON QUEUE dbo.BookStoreQueue

The third argument was the name of the contract bound to the queue and exposed by the service:

([//SackConsulting/BookOrderContract])

In the BookDistribution database, a service was created with a different service name and
queue name, but was bound to the same contract as the service in the BookStore database:

CREATE SERVICE [//SackConsulting/BookDistributionService]
ON QUEUE dbo.BookDistributionQueue
([//SackConsulting/BookOrderContract])

GO

Now that the messages, queues, contracts, and services have been created, you are ready to
start communication between the two databases using Service Broker commands.

Initiating a Dialog
A dialog conversation is the act of exchanging messages between services. A new conversation is
created using the BEGIN DIALOG CONVERSATION. Each new conversation generates a unique conversation
handle of the uniqueidentifier data type.

The syntax is as follows:

BEGIN DIALOG [CONVERSATION] @dialog_handle
FROM SERVICE initiator_service_name
TO SERVICE 'target_service_name'

[, { 'service_broker_guid' | 'CURRENT DATABASE' }]
[ON CONTRACT contract_name]
[WITH
[{ RELATED_CONVERSATION = related_conversation_handle

| RELATED_CONVERSATION_GROUP = related_conversation_group_id }]
[[,] LIFETIME = dialog_lifetime]
[[,] ENCRYPTION = { ON | OFF }]]

CHAPTER 20 ■ SERVICE BROKER494

570Xch20.qxd 11/4/05 2:50 PM Page 494

The arguments of this command are described in Table 20-5.

Table 20-5. BEGIN DIALOG Arguments

Argument Description

@dialog_handle The uniqueidentifier data type local variable that is used
to hold the new dialog handle.

initiator_service_name The service that initiates the conversation.

'target_service_name' The target service that the initiating service will exchange
messages with.

'service_broker_guid' | The service_broker_guid as retrieved for the target service
'CURRENT DATABASE' database from sys.databases. If CURRENT DATABASE is desig-

nated, the service_broker_guid is used from the current
database.

contract_name The name of the contract that the conversation is based on.

related_conversation_handle The uniqueidentifier value of the existing conversation
group that the dialog belongs to.

related_conversation_group_id The uniqueidentifier value of the existing conversation
group that the new dialog is added to.

dialog_lifetime The number of seconds that the dialog is kept open.

ENCRYPTION = { ON | OFF } When set to ON, encryption is used for messages sent outside
of the initiator SQL Server instance.

The END CONVERSATION command finishes one side of the conversation. Messages can no longer
be sent or received for the service that ends the conversation. Both services (initiator and target) must
end the conversation in order for it to be completed.

The SEND command is used to send a message on a specific open conversation. In this command,
the message type and message contents are also defined.

Continuing with the online bookstore example, and with the required objects established, you
are now ready to initiate a dialog between the two Service Broker services.

On the BookStore database, the following commands are executed in a batch:

Use BookStore
GO

DECLARE @Conv_Handler uniqueidentifier
DECLARE @OrderMsg xml;

BEGIN DIALOG CONVERSATION @Conv_Handler
FROM SERVICE [//SackConsulting/BookOrderService]
TO SERVICE '//SackConsulting/BookDistributionService'
ON CONTRACT [//SackConsulting/BookOrderContract];

SET @OrderMsg =
'<order id="3439" customer="22" orderdate="7/15/2005">
<LineItem ItemNumber="1" ISBN="1-59059-592-0" Quantity="1" />
</order>';

SEND ON CONVERSATION @Conv_Handler
MESSAGE TYPE [//SackConsulting/SendBookOrder]
(@OrderMsg);

CHAPTER 20 ■ SERVICE BROKER 495

570Xch20.qxd 11/4/05 2:50 PM Page 495

How It Works
In the previous batch of statements, two local variables were used to hold the dialog conversation
handle and the order message XML document:

DECLARE @Conv_Handler uniqueidentifier
DECLARE @OrderMsg xml;

The BEGIN DIALOG CONVERSATION command was used to create a conversation between the two
services, based on the established contract. The first argument passed was the @Conv_Handler local
variable:

BEGIN DIALOG CONVERSATION @conv_handler

The initiator used to begin the dialog was designated in the second line and the target service
in the third:

FROM SERVICE [//SackConsulting/BookOrderService]
TO SERVICE '//SackConsulting/BookDistributionService'

The contract name was then designated:

ON CONTRACT [//SackConsulting/BookOrderContract];

The @OrderMsg local variable was set to an XML document containing order and line item infor-
mation:

SET @OrderMsg =
'<order id="3439" customer="22" orderdate="7/15/2005">
<LineItem ItemNumber="1" ISBN="1-59059-592-0" Quantity="1" />
</order>';

The SEND ON CONVERSATION command used the conversation handler local variable to send
a message using the specified (and allowed) message type and the actual XML message content.
The first argument in the command was the @Conv_Handler value populated from the BEGIN DIALOG
CONVERSATION command:

SEND ON CONVERSATION @Conv_Handler

The second argument was the message type to be used, followed by the XML message in the
local variable:

MESSAGE TYPE [//SackConsulting/SendBookOrder]
(@OrderMsg);

This message was then sent to the queue in the BookDistribution database.

Querying the Queue for Incoming Messages
Continuing with the online bookstore example, on the BookDistribution database, the queue is
queried to view incoming messages using SELECT:

USE BookDistribution
GO

SELECT message_type_name, CAST(message_body as xml) message,
queuing_order, conversation_handle, conversation_group_id
FROM dbo.BookDistributionQueue

CHAPTER 20 ■ SERVICE BROKER496

570Xch20.qxd 11/4/05 2:50 PM Page 496

How It Works
In this recipe, I demonstrated that you can SELECT from a queue the same way you would from
a table. The data returned showed the message type, message contents, queuing order, and the
uniqueidentifier values that designate the conversation’s handle and group.

Receiving and Responding to a Message
The RECEIVE statement is used to read rows (messages) from the queue. Unlike a SELECT statement,
RECEIVE can be used to remove the rows that have been read. The results of the RECEIVE can be pop-
ulated into regular tables or used in local variables to perform other actions or send other Service
Broker messages.

If the message is an xml data type message, Transact-SQL XQuery methods can be used to query
the message contents by acting on the data according to your application needs (for example, by
extracting the Order ID or quantity of the product ordered).

Continuing with the online bookstore example in the BookDistribution database, a new table
is created to hold information about received book orders:

USE BookDistribution
GO

CREATE TABLE dbo.BookOrderReceived
(BookOrderReceivedID int IDENTITY (1,1) NOT NULL,
conversation_handle uniqueidentifier NOT NULL,
conversation_group_id uniqueidentifier NOT NULL,
message_body xml NOT NULL)

GO

To process the received message in the BookDistribution database, the RECEIVE command is
used. This batch of statements (which are executed together) performs several actions:

-- Declare the local variables needed to hold the incoming message data
DECLARE @Conv_Handler uniqueidentifier
DECLARE @Conv_Group uniqueidentifier
DECLARE @OrderMsg xml
DECLARE @TextResponseMsg varchar(8000)
DECLARE @ResponseMsg xml
DECLARE @OrderID int;

-- Take the message from the queue, retrieving its values into the local variables
RECEIVE TOP(1) @OrderMsg = message_body,

@Conv_Handler = conversation_handle,
@Conv_Group = conversation_group_id

FROM dbo.BookDistributionQueue;

CHAPTER 20 ■ SERVICE BROKER 497

This returns the following result set:

message_type_name message queuing_order conversation_handle conversation_group_id

//SackConsulting/SendBookOrder <order id="3439" customer="22" 0 A34967B2-D62B- A24967B2-D62B-

orderdate="7/15/2005"><LineItem DA11-AB5D- DA11-AB5D-

ItemNumber="1" ISBN="1-59059- 000FB522BF5A 000FB522BF5A

592-0" Quantity="1" /></order>

570Xch20.qxd 11/4/05 2:50 PM Page 497

-- Insert the local variable values into the new table
INSERT dbo.BookOrderReceived
(conversation_handle, conversation_group_id, message_body)
VALUES
(@Conv_Handler,@Conv_Group, @OrderMsg)

-- Use XQuery against the received message to extract
-- the order id, for use in the response message

SELECT @OrderID = @OrderMsg.value('(/order/@id)[1]', 'int')

SELECT @TextResponseMsg =
'<orderreceived id= "' +
CAST(@OrderID as varchar(10)) +
'"/>';

SELECT @ResponseMsg = CAST(@TextResponseMsg as xml);

-- Send the response message back to the initiator, using
-- the existing conversation handle
SEND ON CONVERSATION @Conv_Handler
MESSAGE TYPE [//SackConsulting/BookOrderReceived]
(@ResponseMsg);

How It Works
This recipe started off by creating a table to store the contents of the incoming Service Broker
message. After that, six local variables were created to hold the incoming message data:

DECLARE @Conv_Handler uniqueidentifier
DECLARE @Conv_Group uniqueidentifier
DECLARE @OrderMsg xml
DECLARE @TextResponseMsg varchar(8000)
DECLARE @ResponseMsg xml
DECLARE @OrderID int;

The RECEIVE command was then used to return the message from the queue. The TOP clause in
the first line designated the maximum number of messages to be returned, which in this case was 1:

RECEIVE TOP(1)

The next few lines populated the local variables with data from the message, similar to the way
that you would perform a variable population using SELECT:

@OrderMsg = message_body,
@Conv_Handler = conversation_handle,

@Conv_Group = conversation_group_id

The last line of the RECEIVE command was the FROM clause referencing the queue where the
message is found:

FROM dbo.BookDistributionQueue;

After that, an INSERT was performed, inserting a row containing values from the message body
into a new table:

INSERT dbo.BookOrderReceived
(conversation_handle, conversation_group_id, message_body)
VALUES

CHAPTER 20 ■ SERVICE BROKER498

570Xch20.qxd 11/4/05 2:50 PM Page 498

An XQuery value method was used to retrieve the Order ID from the stored xml data type data:

SELECT @OrderID = @OrderMsg.value
('(/order/@id)[1]', 'int')

The value taken from the XQuery was then used to populate a local variable, embedding the
value in an <orderreceived> XML element:

SELECT @TextResponseMsg =
'<orderreceived id= "' +
CAST(@OrderID as varchar(10)) +
'"/>';

This variable was then converted to an xml data type in preparation for sending a response to
the BookStore database:

SELECT @ResponseMsg = CAST(@TextResponseMsg as xml);

Using the existing conversation uniqueidentifier handle in the first line, a message is sent
using SEND ON CONVERSATION. The second line includes the message type to send, and the local vari-
able in parenthesis the actual payload of the message:

SEND ON CONVERSATION @Conv_Handler
MESSAGE TYPE [//SackConsulting/BookOrderReceived]
(@ResponseMsg);

Ending a Conversation
A conversation involves both the sending and receiving of messages. This communication can
continue for however many iterations are required by your application. Once a side is finished (ini-
tiator or target), you can notify the other side that you are done with the conversation by using the
END CONVERSATION command.

In the previous recipe, an order confirmation was sent to BookStore based on an order message
BookStore had sent. Continuing with the online bookstore example, a new table is created to store
order confirmation information from the target service:

USE BookStore
GO

-- Create an order confirmation table
CREATE TABLE dbo.BookOrderConfirmation

(BookOrderConfirmationID int IDENTITY (1,1) NOT NULL,
conversation_handle uniqueidentifier NOT NULL,
DateReceived datetime NOT NULL DEFAULT GETDATE(),
message_body xml NOT NULL)

In the BookStore database, RECEIVE TOP is used to receive the response message and store it in
the new table. Since the conversation for this particular BookOrder is complete once a response is
received (when a dialog conversation should end depends on your own real-world task requirements),
the END CONVERSATION command is used to notify the target database that it is done with its side of
the conversation:

DECLARE @Conv_Handler uniqueidentifier
DECLARE @Conv_Group uniqueidentifier
DECLARE @OrderMsg xml
DECLARE @TextResponseMsg varchar(8000);

RECEIVE TOP(1) @Conv_Handler = conversation_handle,
@OrderMsg = message_body

CHAPTER 20 ■ SERVICE BROKER 499

570Xch20.qxd 11/4/05 2:50 PM Page 499

INSERT dbo.BookOrderConfirmation
(conversation_handle, message_body)
VALUES (@Conv_Handler,@OrderMsg);

END CONVERSATION @Conv_Handler;
GO

On the BookDistribution database, the queue is checked again for new messages. When a conver-
sation dialog is ended, an empty message with a message type name of http://schemas.microsoft.com/
SQL/ServiceBroker/EndDialog is sent. This next batch of statements receives this message, and ends
the conversation on its side if the message type is a dialog-ending message type:

USE BookDistribution
GO

DECLARE @Conv_Handler uniqueidentifier
DECLARE @Conv_Group uniqueidentifier
DECLARE @OrderMsg xml
DECLARE @message_type_name nvarchar(256);

RECEIVE TOP(1) @Conv_Handler = conversation_handle,
@OrderMsg = message_body,
@message_type_name = message_type_name

FROM dbo.BookDistributionQueue

-- Both sides (initiator and target) must end the conversation

IF
@message_type_name = 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog'
BEGIN

END CONVERSATION @Conv_Handler;
END

The status of conversations is checked by querying the sys.conversation_endpoints view:

SELECT state_desc, conversation_handle
FROM sys.conversation_endpoints

This returns:

state_desc conversation_handle
------------ ------------------------------------
CLOSED 237A7DD6-86FB-D911-AAF4-000FB522BF5A

How It Works
In this recipe, I demonstrated how to end an open conversation dialog. I began by creating a table
to hold order confirmations in the BookStore database received by the BookDistribution database.
After that, RECEIVE TOP(1) was used to grab the latest message from BookDistribution from the
BookStoreQueue. The contents of the message were then inserted into the BookOrderConfirmation
table. The conversation was then ended using END CONVERSATION and the uniqueidentifier value for
the specific conversation:

END CONVERSATION @Conv_Handler;

Ending a conversation automatically sends a message type of http://schemas.microsoft.com/
SQL/ServiceBroker/EndDialog to the target database. Back on the BookDistribution database, the
queue was checked again for new messages. RECEIVE TOP(1) was used to retrieve the latest response

CHAPTER 20 ■ SERVICE BROKER500

570Xch20.qxd 11/4/05 2:50 PM Page 500

from the BookStore database. An IF statement was used to verify if the message received was an
END DIALOG request:

IF
@message_type_name =
'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog'

If it was, the conversation was also ended on the target database (BookDistribution):

BEGIN
END CONVERSATION @Conv_Handler;

END

The status of conversations was then checked by querying the sys.conversation_endpoints
view, which confirmed that the conversation was indeed CLOSED.

This entire section of recipes demonstrated a simple message exchange application used to
send a book order message to a book distribution handling database. A book order was sent from
the initiator, a response was sent back, and the conversation was ended using END CONVERSATION on
both databases. Of course, a real world scenario will involve more tasks, which may in turn translate
to additional message types, contracts, services, and queues. Ideal tasks for Service Broker are those
that can benefit from the asynchronous capabilities that prevent application hold-ups and bottlenecks.

Creating a Stored Procedure to Process Messages
In the previous block of recipes, ad hoc Transact-SQL batches were used to process incoming messages
from the queue. You can, however, create service programs using stored procedures or external
applications to automatically activate and process messages in the queue. Using the CREATE QUEUE
and ALTER QUEUE options, you can also designate the number of simultaneous and identical service
programs which can be activated to process incoming messages on the same queue.

Creating the Bookstore Stored Procedure
Using the previous recipe’s existing objects for setting up the stored procedure application, this example
creates a stored procedure used to process incoming messages on the dbo.BookDistributionQueue.
This procedure uses several of the RECEIVE and SEND commands used in the previous recipe, only
tailored to a stored procedure implementation:

USE BookDistribution
GO

CREATE PROCEDURE dbo.usp_SB_ReceiveOrders
AS

DECLARE @Conv_Handler uniqueidentifier
DECLARE @Conv_Group uniqueidentifier
DECLARE @OrderMsg xml
DECLARE @TextResponseMsg varchar(8000)
DECLARE @ResponseMsg xml
DECLARE @Message_Type_Name nvarchar(256);
DECLARE @OrderID int;

-- XACT_ABORT automatically rolls back the transaction when a run-time error occurs
SET XACT_ABORT ON

BEGIN TRAN;

CHAPTER 20 ■ SERVICE BROKER 501

570Xch20.qxd 11/4/05 2:50 PM Page 501

RECEIVE TOP(1) @OrderMsg = message_body,
@Conv_Handler = conversation_handle,
@Conv_Group = conversation_group_id,
@Message_Type_Name = message_type_name

FROM dbo.BookDistributionQueue;

IF @Message_Type_Name = '//SackConsulting/SendBookOrder'
BEGIN

INSERT dbo.BookOrderReceived
(conversation_handle, conversation_group_id, message_body)
VALUES
(@Conv_Handler,@Conv_Group, @OrderMsg)

SELECT @OrderID = @OrderMsg.value('(/order/@id)[1]', 'int')

SELECT @TextResponseMsg =
'<orderreceived id= "' +
CAST(@OrderID as varchar(10)) +
'"/>';

SELECT @ResponseMsg = CAST(@TextResponseMsg as xml);

SEND ON CONVERSATION @Conv_Handler
MESSAGE TYPE [//SackConsulting/BookOrderReceived]
(@ResponseMsg);

END

IF @Message_Type_Name = 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog'
BEGIN

END CONVERSATION @Conv_Handler;
END

COMMIT TRAN

GO

The procedure contains logic for processing the //SackConsulting/SendBookOrder and http://
schemas.microsoft.com/SQL/ServiceBroker/EndDialog message types. If the latter is sent, the specific
conversation for the specific conversation handle is ended. If a book order message type is received,
its information is inserted into a table, and an order confirmation is returned.

You can modify an existing queue by using the ALTER QUEUE command. This command uses the
same options as CREATE QUEUE, which allows you to change the status and retention of the queue,
the stored procedure to be activated, the maximum number of queue reader stored procedure instances,
and the security contact of the procedure. The syntax is as follows:

ALTER QUEUE [database_name. [schema_name] .queue_name
WITH

[STATUS = { ON | OFF } [,]]
[RETENTION = { ON | OFF } [,]]
[ACTIVATION (

{ [STATUS = { ON | OFF } [,]]
[PROCEDURE_NAME =

[database_name. [schema_name] .stored_procedure_name,[,]]
[MAX_QUEUE_READERS = max_readers [,]]
[EXECUTE AS { SELF | 'user_name' | OWNER }]

| DROP }
)]

CHAPTER 20 ■ SERVICE BROKER502

570Xch20.qxd 11/4/05 2:50 PM Page 502

ALTER QUEUE includes one additional parameter, DROP, which is used to drop all stored procedure
activation settings for the queue.

To bind our stored procedure to an existing queue, the ALTER QUEUE command is used:

ALTER QUEUE dbo.BookDistributionQueue
WITH ACTIVATION (STATUS = ON,

PROCEDURE_NAME = dbo.usp_SB_ReceiveOrders,
MAX_QUEUE_READERS = 2,
EXECUTE AS SELF)

The procedure name was designated, followed by the maximum number of simultaneous
implementations of the same stored procedure that can independently process distinct messages
from the queue.

To test the new service program on the BookStore database, a new conversation is started and
a new order placed:

Use BookStore
GO

DECLARE @Conv_Handler uniqueidentifier
DECLARE @OrderMsg xml;

BEGIN DIALOG CONVERSATION @conv_handler
FROM SERVICE [//SackConsulting/BookOrderService]
TO SERVICE '//SackConsulting/BookDistributionService'
ON CONTRACT [//SackConsulting/BookOrderContract];

SET @OrderMsg =
'<order id="3490" customer="29" orderdate="7/22/2005">
<LineItem ItemNumber="1" ISBN="1-59059-592-0" Quantity="2" />
</order>';

SEND ON CONVERSATION @Conv_Handler
MESSAGE TYPE [//SackConsulting/SendBookOrder]
(@OrderMsg);

If the stored procedure on the target queue did its job and activated upon receipt of the new
message, there should already be an order confirmation returned back into the dbo.BookStoreQueue:

SELECT conversation_handle, CAST(message_body as xml) message
FROM dbo.BookStoreQueue

This returns the following results:

conversation_handle message
20E768EB-8EFB-D911-AAF4-000FB522BF5A <orderreceived id="3490" />

How It Works
In this recipe, a stored procedure was created to handle messages in the queue. That stored procedure
was bound to the queue using ALTER QUEUE. The first argument of this command was the name of
the queue to be modified:

ALTER QUEUE dbo.BookDistributionQueue

The WITH ACTIVATION clause first designated that the status of the new application (the stored
procedure) program is available to receive new messages:

CHAPTER 20 ■ SERVICE BROKER 503

570Xch20.qxd 11/4/05 2:50 PM Page 503

Next, the name of the stored procedure bound to the queue is designated:

PROCEDURE_NAME = dbo.usp_SB_ReceiveOrders,

The MAX QUEUE READERS option is used to designate a maximum of two stored procedure appli-
cations executing simultaneously:

MAX_QUEUE_READERS = 2,

The EXECUTE AS argument was designated as SELF, meaning that the stored procedure will exe-
cute with the same permissions as the principal who executed the ALTER QUEUE command:

EXECUTE AS SELF)

When the queue STATUS = ON and a new message arrives in the queue, the stored procedure is
executed to handle the incoming message(s). You can use internal stored procedures or external
applications to handle incoming messages to a queue. The benefit of using stored procedures,
however, is that they provide an out-of-the-box solution for handling messages and automatically
performing any required responses and associated business tasks.

Remote-Server Service Broker Implementations
To demonstrate the basics of setting up a Service Broker program, the examples in this chapter have
involved two databases on the same SQL Server instance. In most cases, however, you’ll be setting
up Service Broker to work with databases that exist on two or more SQL Server instances. The core
components from this chapter remain the same, but to achieve cross-server communication, a few
extra steps are required. Cross-server communication can be achieved either through using Windows
authentication, or certificate-based authentication (which is what you’ll see demonstrated here in
this chapter). These steps will be demonstrated in this next batch of recipes.

The following is a general list of tasks that I’ll go through in this section to enable Service Broker
communication across SQL Server instances:

1. Enable transport security. Transport security in Service Broker refers to the network connec-
tions between two SQL Server instances, enabling or restricting encrypted communication
between them. This is set up in the master system databases of both SQL Server instances,
and as you’ll see, involves creating endpoints, certificates, logins, and users.

2. Enable dialog security. Dialog security for Service Broker provides authentication, authoriza-
tion, and encryption for dialog conversations. On the actual databases used for the Service
Broker implementation, certificates are created and their public keys exchanged between
SQL Server instances. Users are created that are not associated to a login, but are instead
given authorization to the certificate created from the public key of the other SQL Server
instance.

3. Create routes. A route is used by Service Broker to determine where a service is located, be it
local or remote.

4. Create remote service bindings. A remote service binding is used to map the security creden-
tials used to open a conversation with a remote Service Broker service.

In this cross-server scenario, the online bookstore Service Broker program will use the BookStore
database on the JOEPROD SQL Server instance, and the BookDistribution database on the JOEPROD\
NODE2 SQL Server instance. Objects from the previous set of recipes will be used to demonstrate this
functionality. Starting from scratch (if you happen to be following along), the example database is
dropped and recreated with the BookStore database on JOEPROD and BookDistribution on JOEPROD\
NODE2. The following objects and settings are then created and configured on the BookStore database
of the JOEPROD instance:

CHAPTER 20 ■ SERVICE BROKER504

570Xch20.qxd 11/4/05 2:50 PM Page 504

USE master
GO

-- Enable Service Broker for the database

ALTER DATABASE BookStore SET ENABLE_BROKER
GO

ALTER DATABASE BookStore SET TRUSTWORTHY ON
GO

USE BookStore
GO

-- Create the messages

CREATE MESSAGE TYPE [//SackConsulting/SendBookOrder]
VALIDATION = WELL_FORMED_XML
GO

CREATE MESSAGE TYPE [//SackConsulting/BookOrderReceived]
VALIDATION = WELL_FORMED_XML
GO

-- Create the contract

CREATE CONTRACT
[//SackConsulting/BookOrderContract]
([//SackConsulting/SendBookOrder]

SENT BY INITIATOR,
[//SackConsulting/BookOrderReceived]

SENT BY TARGET
)

GO

-- Create the queue

CREATE QUEUE BookStoreQueue
WITH STATUS=ON
GO

-- Create the service

CREATE SERVICE [//SackConsulting/BookOrderService]
ON QUEUE dbo.BookStoreQueue
([//SackConsulting/BookOrderContract])

GO

On the BookDistribution database of the JOEPROD\NODE2 instance, the following objects are set
up:

USE master
GO

-- Enable Service Broker for the database

ALTER DATABASE BookDistribution SET ENABLE_BROKER

CHAPTER 20 ■ SERVICE BROKER 505

570Xch20.qxd 11/4/05 2:50 PM Page 505

ALTER DATABASE BookDistribution SET TRUSTWORTHY ON
GO

USE BookDistribution
GO

-- Create the messages

CREATE MESSAGE TYPE [//SackConsulting/SendBookOrder]
VALIDATION = WELL_FORMED_XML
GO

CREATE MESSAGE TYPE [//SackConsulting/BookOrderReceived]
VALIDATION = WELL_FORMED_XML
GO

-- Create the contract

CREATE CONTRACT
[//SackConsulting/BookOrderContract]
([//SackConsulting/SendBookOrder]

SENT BY INITIATOR,
[//SackConsulting/BookOrderReceived]

SENT BY TARGET
)

GO

-- Create the queue

CREATE QUEUE BookDistributionQueue
WITH STATUS=ON
GO

-- Create the service

CREATE SERVICE [//SackConsulting/BookDistributionService]
ON QUEUE dbo.BookDistributionQueue
([//SackConsulting/BookOrderContract])

GO

Enabling Transport Security
Transport security in Service Broker refers to the network connections between two SQL Server
instances, and the enabling or restricting of encrypted communication between them. Transport
security is at the SQL Server instance level, and therefore this recipe demonstrates creating objects
in the master database of both SQL Server instances. You can choose from two forms of transport
security: Windows authentication or certificate-based security.

This recipe includes several steps that involve working with objects that should be familiar to
you from the previous chapters. Each of these steps requires activities on both SQL Server instances
(this example includes JOEPROD and JOEPROD\NODE2). For this recipe, you’ll only use the master system
database, not the actual user databases for this recipe, because transport security applies to the SQL
Server instance itself.

CHAPTER 20 ■ SERVICE BROKER506

570Xch20.qxd 11/4/05 2:50 PM Page 506

I begin this recipe by creating a Database Master Key in the master system database of each of
the SQL Server instances. This is created in order to encrypt the certificate used for certificate-based
transport security:

-- Executed on JOEPROD
USE master
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '1294934A!'

-- Executed on JOEPROD\NODE2
USE master
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '1294934B!'

Next, a new certificate is created in the master system database of each of the SQL Server
instances:

-- Executed on JOEPROD
CREATE CERTIFICATE JOEPRODMasterCert

WITH SUBJECT = 'JOEPROD Transport Security SB',
EXPIRY_DATE = '10/1/2010'

GO

-- Executed on JOEPROD\NODE2
CREATE CERTIFICATE Node2MasterCert

WITH SUBJECT = 'Node 2 Transport Security SB',
EXPIRY_DATE = '10/1/2010'

GO

Next, each of these certificates is backed up to a file. The public key backup files will then be
copied over for use in creating a certificate in the master database of the other SQL Server instance
(this happens later in the recipe):

-- Executed on JOEPROD
BACKUP CERTIFICATE JOEPRODMasterCert
TO FILE = 'C:\Temp\JOEPRODMasterCert.cer'
GO

-- Executed on JOEPROD\NODE2
BACKUP CERTIFICATE Node2MasterCert
TO FILE = 'C:\Temp\Node2MasterCert.cer'
GO

On each SQL Server instance, a Service Broker endpoint is created, which both uses certificate
based authentication and requires encrypted communication.

-- Executed on JOEPROD

CREATE ENDPOINT SB_JOEPROD_Endpoint
STATE = STARTED
AS TCP
(LISTENER_PORT = 4020)
FOR SERVICE_BROKER
(AUTHENTICATION = CERTIFICATE JOEPRODMasterCert,
ENCRYPTION = REQUIRED)

GO

CHAPTER 20 ■ SERVICE BROKER 507

570Xch20.qxd 11/4/05 2:50 PM Page 507

-- Executed on JOEPROD\NODE2

CREATE ENDPOINT SB_NODE2_Endpoint
STATE = STARTED
AS TCP
(LISTENER_PORT = 4021)
FOR SERVICE_BROKER
(AUTHENTICATION = CERTIFICATE Node2MasterCert,
ENCRYPTION = REQUIRED)

GO

On each SQL Server instance, a new login and user are created in the master system database
that will be used for remote connections from the other SQL Server instance:

-- Executed on JOEPROD
CREATE LOGIN SBLogin

WITH PASSWORD = 'Used4TransSec'
GO

CREATE USER SBUser
FOR LOGIN SBLogin

GO

-- Executed on JOEPROD\NODE2

CREATE LOGIN SBLogin
WITH PASSWORD = 'Used4TransSec'

GO

CREATE USER SBUser
FOR LOGIN SBLogin

GO

Next, each SQL Server instance's login is granted CONNECT permissions to the associated end-
point:

-- Executed on JOEPROD

GRANT CONNECT ON Endpoint::SB_JOEPROD_Endpoint TO SBLogin
GO

-- Executed on JOEPROD\NODE2

GRANT CONNECT ON Endpoint::SB_NODE2_Endpoint TO SBLogin
GO

On each SQL Server instance, a new certificate is created based on the certificate backup cre-
ated in the other SQL Server instance. The newly created login and user created in the previous step
is given authorization permissions over this certificate:

-- Executed on JOEPROD

CREATE CERTIFICATE Node2MasterCert
AUTHORIZATION SBUser
FROM FILE = 'C:\Temp\Node2MasterCert.cer'
GO

-- Executed on JOEPROD\NODE2

CHAPTER 20 ■ SERVICE BROKER508

570Xch20.qxd 11/4/05 2:50 PM Page 508

CREATE CERTIFICATE JOEPRODMasterCert
AUTHORIZATION SBUser
FROM FILE = 'C:\Temp\JOEPRODMasterCert.cer'
GO

How It Works
In this recipe, I walked through the various steps required to establish transport security through
certificates. The recipe started off by creating a Database Master Key which would be used to
encrypt the certificates (as a requirement for Service Broker endpoints—if using certificate-based
security, the certificate can’t be password encrypted).

A certificate was created on each SQL Server instance and was then backed up and copied to
the other SQL Server instance. This exchange of public keys will be used later on in this section. In
the meantime, Service Broker endpoints were created on each SQL Server instance, and were con-
figured to allow access from other servers based on certificate security.

After that, a login and user were created on both SQL Server instances. The login was granted
CONNECT permissions to the endpoint. This is not enough to enable connectivity though, because that
user must also have access to the public key of the certificate used on the other SQL Server instance.
This permission was granted in order to exchange the keys with the other server. The new certificates
were then bound to the newly created user on each instance. Because the user has permissions to
the certificate of the other SQL Server instance, and because the endpoint is based on that certificate,
the SQL Server instances will have encrypted transport security access to one another.

This is only half the requirement for allowing cross-server communication with Service Broker.
The next step is dialog security at the user database level, which I demonstrate in the next recipe.

Enabling Dialog Security
Whereas transport security handles communication at the SQL Server instance level, dialog security
for Service Broker provides authentication, authorization, and encryption for dialog conversations.
Like the previous recipe, setting up dialog security involves several small steps, many of which involve
commands which have been covered in previous chapters of this book.

These recipes will take place in the BookStore database on the JOEPROD SQL Server instance
and in the BookDistribution database on the NODE2 SQL Server instance. A certificate is created on
each SQL Server instance (which requires a Database Master Key in each database, which you cre-
ated at the beginning of this section). Later on, the certificates will be exchanged across SQL Server
instances similarly to the previous transport security recipe:

-- Executed on JOEPROD
CREATE CERTIFICATE BookStoreCert

WITH SUBJECT = 'BookStore SB cert',
EXPIRY_DATE = '10/1/2010'

GO

-- Executed on NODE2
CREATE CERTIFICATE BookDistributionCert

WITH SUBJECT = 'BookDistributionCert SB cert',
EXPIRY_DATE = '10/1/2010'

GO

Next, the certificates from each of the databases are backed up to file:

-- Executed on JOEPROD
BACKUP CERTIFICATE BookStoreCert
TO FILE = 'C:\Temp\BookStoreCert.cer'
GO

CHAPTER 20 ■ SERVICE BROKER 509

570Xch20.qxd 11/4/05 2:50 PM Page 509

-- Executed on NODE2
BACKUP CERTIFICATE BookDistributionCert
TO FILE = 'C:\Temp\BookDistributionCert.cer'
GO

After that, a user will be created in each database. Neither user will be associated to a login.
Instead, later on, that user will be mapped to the public certificate of the other SQL Server instance:

-- Executed on JOEPROD
CREATE USER BookDistributionUser
WITHOUT LOGIN
GO

-- Executed on NODE2
CREATE USER BookStoreUser
WITHOUT LOGIN
GO

Next, a new certificate is created in each database based on the other database’s certificate
public key. The newly created user in each database is given authorization to this certificate:

-- Executed on JOEPROD
CREATE CERTIFICATE BookDistributionCert
AUTHORIZATION BookDistributionUser
FROM FILE = 'C:\Temp\BookDistributionCert.cer'
GO

-- Executed on NODE2
CREATE CERTIFICATE BookStoreCert
AUTHORIZATION BookStoreUser
FROM FILE = 'C:\Temp\BookStoreCert.cer'
GO

Lastly, the users for both databases need permissions to SEND rights on the associated Service
Broker services and RECEIVE rights on the associated queues:

-- Executed on JOEPROD
GRANT SEND ON
SERVICE::[//SackConsulting/BookOrderService] TO BookDistributionUser
GO

-- Executed on NODE2
GRANT SEND ON
SERVICE::[//SackConsulting/BookDistributionService]
TO BookStoreUser

How It Works
In this recipe, I demonstrated setting up dialog security, which handles authentication, authorization,
and encryption between the two user-defined databases in a Service Broker application.

The first step included creating a Database Master Key in each database which was then used
to implicitly encrypt the certificates created in the BookStore and BookDistribution databases. After
creating the certificates, a backup was made of each one, and the associated file was then copied to
the other server.

After that, a new user was created in each database without an associated login. A new certificate
was then created in each database based on the other database’s certificate. The certificate creation
included an AUTHORIZATION clause which designated the new user in each database.

CHAPTER 20 ■ SERVICE BROKER510

570Xch20.qxd 11/4/05 2:50 PM Page 510

Lastly, the two users were each granted permissions to SEND messages to their associated Service
Broker services.

This leaves us with only a couple more steps before the Service Broker application can begin
communicating across SQL Server instances.

Creating Routes and Remote Service Bindings
Once the transport and dialog security objects are taken care of, the next step in this distributed
online bookstore example is to set up routes and remote service bindings.

A route is used by Service Broker to determine where a service is located, be it local or remote.
A route is created using the CREATE ROUTE command. The syntax is as follows:

CREATE ROUTE route_name
[AUTHORIZATION owner_name]
WITH

[SERVICE_NAME = 'service_name',]
[BROKER_INSTANCE = 'broker_instance_identifier' ,]
[LIFETIME = route_lifetime ,]
ADDRESS = 'next_hop_address'
[, MIRROR_ADDRESS = 'next_hop_mirror_address']

The arguments for this command are described in Table 20-6.

Table 20-6. CREATE ROUTE Arguments

Argument Description

route_name The new route name.

AUTHORIZATION owner_name The database principal owner of the route.

SERVICE_NAME = 'service_name' The name of the remote service to be routed to.

BROKER_INSTANCE = The service_broker_guid (from sys.databases) of the database
'broker_instance_identifier' hosting the target service.

LIFETIME = route_lifetime This option allows you to designates for how many seconds
a route is considered by SQL Server before it expires.

ADDRESS = 'next_hop_address' The DNS, NetBios, or TCP/IP address of SQL Server instance
housing the service. Also includes the port number of the
Service Broker endpoint using a syntax of TCP://{ dns_name |
netbios_name | ip_address } : port_number.

MIRROR_ADDRESS = If using database mirroring, this option allows you to specify
'next_hop_mirror_address' the address for the mirrored database using the syntax of TCP://

{ dns_name | netbios_name | ip_address } : port_number.

In this recipe’s example, a route is created on JOEPROD that points to the NODE2 Service Broker
endpoint (listening on port 4021), and referencing the BookDistribution database’s //SackConsulting/
BookDistributionService service:

-- Executed on JOEPROD
USE BookStore
GO

CREATE ROUTE Route_BookDistribution
WITH SERVICE_NAME = '//SackConsulting/BookDistributionService',
ADDRESS = 'TCP://192.168.0.101:4021'
GO

CHAPTER 20 ■ SERVICE BROKER 511

570Xch20.qxd 11/4/05 2:50 PM Page 511

On NODE2, a route is created that points to the JOEPROD Service Broker endpoint (listening on
port 4020), and referencing the BookStore database’s //SackConsulting/BookStoreService service:

-- Executed on NODE2
USE BookDistribution
GO

CREATE ROUTE Route_BookStore
WITH SERVICE_NAME = '//SackConsulting/BookOrderService',
ADDRESS = 'TCP://192.168.0.101:4020'
GO

A remote service binding is used to map the security credentials used to open a conversation
with a remote Service Broker service. Specifically, you use a remote service binding with the user
that you created in the previous recipe (the one mapped to a certificate). A remote service binding is
created using the CREATE REMOTE SERVICE BINDING command. The syntax is as follows:

CREATE REMOTE SERVICE BINDING binding_name
[AUTHORIZATION owner_name]
TO SERVICE 'service_name'
WITH USER = user_name [, ANONYMOUS = { ON | OFF }]

The arguments for this command are described in Table 20-7.

Table 20-7. CREATE REMOTE SERVICE BINDING Arguments

Argument Description

binding_name The name of the new remote service binding.

AUTHORIZATION owner_name The database principal owner of the binding.

service_name The name of the remote service to bind to.

USER = user_name Designates the database user that is mapped to the remote service’s
certificate.

ANONYMOUS = { ON | OFF } When this option is ON, anonymous authentication under the
context of the public fixed database role is used to connect to the
remote database.

In this example on JOEPROD, a binding is made on BookStore to the //SackConsulting/
BookDistributionService service, using the BookStore user that was mapped to the BookDistribution
database’s public certificate:

USE BookStore
GO

CREATE REMOTE SERVICE BINDING BookDistributionBinding
TO SERVICE '//SackConsulting/BookDistributionService'
WITH USER = BookDistributionUser

GO

On NODE2, a similar binding is made in the BookDistribution database, only this time pointing
to the //SackConsulting/BookOrderService service:

USE BookDistribution
GO

CREATE REMOTE SERVICE BINDING BookStoreBinding
TO SERVICE '//SackConsulting/BookOrderService'

CHAPTER 20 ■ SERVICE BROKER512

570Xch20.qxd 11/4/05 2:50 PM Page 512

WITH USER = BookStoreUser
GO

With the routes and bindings set up, you are now ready to test sending a remote message from
the JOEPROD server’s BookStore database to the NODE2 server’s BookDistribution database:

Use BookStore
GO

DECLARE @Conv_Handler uniqueidentifier
DECLARE @OrderMsg xml;

BEGIN DIALOG CONVERSATION @Conv_Handler
FROM SERVICE [//SackConsulting/BookOrderService]
TO SERVICE '//SackConsulting/BookDistributionService'
ON CONTRACT [//SackConsulting/BookOrderContract];

SET @OrderMsg =
'<order id="3439" customer="22" orderdate="9/25/2005">
<LineItem ItemNumber="22" ISBN="1-59059-592-0" Quantity="10" />
</order>';

SEND ON CONVERSATION @Conv_Handler
MESSAGE TYPE [//SackConsulting/SendBookOrder]
(@OrderMsg);

Moving over to the NODE2 server and the BookDistribution database, the queue is checked for
the incoming message:

USE BookDistribution
GO

SELECT message_type_name, CAST(message_body as xml) message,
queuing_order, conversation_handle, conversation_group_id
FROM dbo.BookDistributionQueue

This returns the following result set:

CHAPTER 20 ■ SERVICE BROKER 513

message_type_name message queuing_order conversation_handle conversation_group_id

//SackConsulting/SendBookOrder <order id="3439" customer="22" 0 01D3472E-E02D- 00D3472E-E02D-

orderdate="9/25/2005"><LineItem DA11-AB61- DA11-AB61-

ItemNumber="22" ISBN="1- 000FB522BF5A 000FB522BF5A

59059-592-0" Quantity="10"

/></order>

How It Works
This recipe started off by creating routes on both SQL Server instances. Each route included the
service name of the other SQL Server instance, the address for which to connect to it, and the port
number of the Service Broker endpoint.

After that, a remote service binding was created on both SQL Server instances that was used to
map the local database user (the one associated to the public key certificate of the other SQL Server
instance) to the remote service.

Once this was completed, a message was sent from the BookStore database which then arrived
at the remote NODE2 server’s BookDistribution database.

570Xch20.qxd 11/4/05 2:50 PM Page 513

Event Notifications
Event notification is a tie-in to the new SQL Server 2005 Service Broker functionality, allowing you
to asynchronously capture SQL events on a SQL Server instance, routing the event information into
a specified queue. With a minimal of system overhead, you can track events that occur on the SQL
Server instance such as user logins, stored procedure recompiles, permission changes, object manip-
ulation (for example CREATE/ALTER/DROP events on databases, assemblies, roles, or tables).

Unlike creating your own Service Broker applications, with event notification you need only
create the queue and Service Broker components, because the initiator components are handled for
you. The initiator components (message type and contract) that are used to capture and send the
event notifications are already built in to SQL Server.

The next recipe will demonstrate this functionality in action.

Capturing Login Commands
In this recipe, I demonstrate how to capture any CREATE LOGIN, ALTER LOGIN, or DROP LOGIN commands
that are executed on the SQL Server instance using event notifications. The command for creating
an event notification is as follows:

CREATE EVENT NOTIFICATION event_notification_name
ON { SERVER | DATABASE | QUEUE queue_name }
[WITH FAN_IN]
FOR { event_type | event_group } [,...n]
TO SERVICE 'broker_service' , { 'broker_instance_specifier' | 'current database' }

The arguments of this command are described in Table 20-8.

Table 20-8. CREATE EVENT NOTIFICATION Arguments

Argument Description

event_notification_name The name of the new event notification.

SERVER | DATABASE | QUEUE queue_name These three arguments define the event notification
scope, causing notifications to fire when an event
occurs for the specific SQL Server instance (SERVER),
current database (DATABASE), or specific queue
(QUEUE queue_name).

WITH FAN_IN Configures SQL Server to only send one message per
event for event notifications that are created on the
same event with the same principal and the same
service and broker_instance_specifier.

{ event_type | event_group } [,...n] The event_type is a Transact-SQL DDL, Service
Broker, or SQL Trace event type to be monitored.
The event_group is a predefined group of event
types—and when designated, any member of the
group will cause an event notification to be fired. An
example of an event group is DDL_LOGIN_EVENTS,
which contains the CREATE LOGIN, ALTER LOGIN, and
DROP LOGIN events.

'broker_service' , The broker_service argument is the name of
{ 'broker_instance_specifier' | the broker service receiving event notification
'current database' } data. The broker_instance_specifier is the

service_broker_guid (from sys.databases) of the
destination database, with 'current database' used
to specify the current database guid.

CHAPTER 20 ■ SERVICE BROKER514

570Xch20.qxd 11/4/05 2:50 PM Page 514

The example starts off in a database called EventTracking, where a new queue is created to
hold the event information:

USE EventTracking
GO

CREATE QUEUE SQLEventQueue
WITH STATUS=ON;
GO

Next, a new service is created on the queue, associated to the built-in event notification contract:

CREATE SERVICE [//JOEPROD/TrackLoginModificationService]
ON QUEUE SQLEventQueue
([http://schemas.microsoft.com/SQL/Notifications/PostEventNotification]);
GO

Next, a query is executed against the sys.databases system catalog view in order to retrieve the
EventTracking database service_broker_guid (which will be used in the CREATE EVENT NOTIFICATION
command):

select service_broker_guid
from sys.databases
WHERE name = 'EventTracking'

This returns:

service_broker_guid

C72069CD-ACBA-4EA8-80BB-5CC6FF3A40AA

Next, an event notification is created using the SERVER scope to track any login creation, modifi-
cation, or drop from the SQL Server instance:

CREATE EVENT NOTIFICATION EN_LoginEvents
ON SERVER
FOR CREATE_LOGIN, ALTER_LOGIN, DROP_LOGIN
TO SERVICE '//JOEPROD/TrackLoginModificationService',
'C72069CD-ACBA-4EA8-80BB-5CC6FF3A40AA';

Testing the new event notification, a new login is created:

CREATE LOGIN Trishelle WITH PASSWORD = 'AR!3i2ou4'
GO

Next, you can query the queue using SELECT or RECEIVE (RECEIVE, unlike SELECT will also
remove the event message from the queue):

SELECT CAST(message_body as xml) EventInfo
FROM dbo.SQLEventQueue

This returns XML-based information about the login event, including the added login name
and the login that added it:

CHAPTER 20 ■ SERVICE BROKER 515

570Xch20.qxd 11/4/05 2:50 PM Page 515

<EVENT_INSTANCE>
<EventType>CREATE_LOGIN</EventType>
<PostTime>2005-07-23T15:11:14.703</PostTime>
<SPID>53</SPID>
<ServerName>JOEPROD</ServerName>
<LoginName>JOEPROD\Owner</LoginName>
<ObjectName>Trishelle</ObjectName>
<ObjectType>LOGIN</ObjectType>
<DefaultLanguage>us_english</DefaultLanguage>
<DefaultDatabase>master</DefaultDatabase>
<LoginType>SQL Login</LoginType>
<SID>5HDVhho4xkmFGVKTCcb3Bw==</SID>

</EVENT_INSTANCE>

How It Works
In this recipe, event notification was set up by performing the following steps:

1. Creating a new queue in an existing database.

2. Creating a new service that is bound to the new queue and the built-in event notification
contract.

3. Using CREATE EVENT NOTIFICATION to track one or more events or event groups.

Event notification functionality provides a low-overhead method of tracking activities at the
SQL Server instance, database, or Service Broker application level. As you saw in the example, very
little coding was necessary in order to begin tracking events. This new functionality will be particularly
useful for IT security or business-level auditing requirements. For example, when capturing the
login creation event, the user that created it was also captured, along with the type of login (SQL login),
default database, language, and security identifier of the new login.

CHAPTER 20 ■ SERVICE BROKER516

570Xch20.qxd 11/4/05 2:50 PM Page 516

Configuring and Viewing SQL Server
Options

Although SQL Server 2005 automatically maintains and adjusts many settings and configurations
behind-the-scenes, there are still several options that the database administrator can configure. In
SQL Server 2005, Microsoft added several new configurable options, and removed some of the older
options. In an effort to improve total SQL Server instance availability, many options that once wouldn’t
have taken effect without requiring the database administrator to restart the SQL Server service, now
take effect immediately (although there are still some options that require a service restart).

In this brief chapter, I’ll show you recipes for viewing and configuring SQL Server settings using
Transact-SQL.

■Note For a review of the SERVERPROPERTY, @@SERVERNAME, and other SQL Server instance-level functions, see
Chapter 8.

Viewing SQL Server Configurations
SQL Server configurations control an array of behaviors, from the way memory is managed to the
default fill factor of your indexes. Although the valid configuration values vary, based on the option
you are modifying, you can use the sp_configure system-stored procedure to view or make changes:

The syntax for sp_configure is as follows:

sp_configure [[@configname =] 'option_name'
[, [@configvalue =] 'value']]

The parameters are briefly described in Table 21-1.

Table 21-1. sp_configure Parameters

Parameter Description

[@configname =] 'option_name' The name of the SQL Server option to be configured.

[@configvalue =] 'value'] The desired new value to be set for the SQL Server option.

517

C H A P T E R 2 1

■ ■ ■

570Xch21FINALQ6.qxd 11/7/05 10:13 AM Page 517

CHAPTER 21 ■ CONFIGURING AND VIEWING SQL SERVER OPTIONS518

In SQL Server 2000, sp_configure was used to return the SQL Server instance configuration
settings. Beginning in SQL Server 2005, you can also query configuration settings using the new
sys.configurations system catalog view. The sys.configurations view can be queried like any
normal view, and it returns each configuration name, the value in use by the SQL Server instance, the
configuration setting’s description, whether the configuration requires a SQL Server instance restart,
and whether the configuration is an advanced option.

This recipe demonstrates three methods for viewing SQL Server configurations. The first
method shows basic options (those which Microsoft has deemed to be mostly harmless to configure).
The second method displays “advanced” options, or those which require extra consideration by an
experienced database administrator before modification. The third and last method shows how to
query the sys.configurations system catalog view:

-- Display basic options
EXEC sp_configure
GO

This returns basic configurations and their current values (not all rows are displayed):

Name Minimum Maximum config_value run_value
allow updates 0 1 0 0
CLR enabled
0 1 0 0
cross db ownership chaining 0 1 0 0
...

The next query shows advanced options (in addition to the basic options):

-- Display advanced options
EXEC sp_configure 'show advanced option', 1
RECONFIGURE
GO

EXEC sp_configure
GO

This returns both basic and advanced options (not all rows displayed):

Name Minimum Maximum config_value run_value
Ad Hoc Distributed Queries 0 1 0 0
affinity I/O mask -2147483648 2147483647 0 0
affinity mask -2147483648 2147483647 0 0
Agent XPs 0 1 0 0
allow updates 0 1 0 0
awe enabled 0 1 0 0
...

Finally, the sys.configurations view is queried to show SQL Server configurations, ordered by
configuration name:

SELECT name, value, minimum, maximum, value_in_use, is_dynamic, is_advanced
FROM sys.configurations
ORDER BY name

This returns all options, in addition to other useful information such as whether the option is
advanced and whether it’s dynamic. If the option has an is_dynamic value of “1,” the configuration

570Xch21FINALQ6.qxd 11/7/05 10:13 AM Page 518

Name Value Minimum Maximum value_in_use is_dynamic
is_advanced
Ad Hoc Distributed Queries 0 0 1 0 1 1
affinity I/O mask 0 -2147483648 2147483647 0 0 1
affinity mask 0 -2147483648 2147483647 0 1 1
Agent XPs 0 0 1 0 1 1
allow updates 0 0 1 0 1 0
awe enabled 0 0 1 0 0 1

How It Works
In the first part of the recipe, basic options are returned using the system stored procedure
sp_configure. Examples of basic options include the clr enabled and nested triggers configura-
tions. The clr enabled option shows you whether or not CLR-based objects are allowed in the SQL
Server instance. The nested triggers configuration determines whether or not triggers can be fired
that fire other triggers. These are basic settings that all SQL Server users can see by default.

The second part of the recipe demonstrated how to view all server options, including
advanced options. To do this, an actual SQL Server configuration change was necessary. The "show
advanced option" setting was configured from 0 (false) to 1 (true):

EXEC sp_configure 'show advanced option', 1
RECONFIGURE
GO

After executing sp_configure, the RECONFIGURE command was used. For those SQL Server
options that don’t require reboots, the RECONFIGURE command forces an update to the currently
configured value. If an invalid or not recommended value is used, RECONFIGURE will reject it. Using
RECONFIGURE WITH OVERRIDE will override this validation, in most cases. Take, for example, the
recovery interval option, which designates the maximum database recovery time (in minutes).
Setting the value of this option above 60 minutes using RECONFIGURE would raise a warning indicat-
ing that the value is not recommended. The warning, however, doesn’t stop you from making the
change. Using RECONFIGURE WITH OVERRIDE would force this option’s value to be changed.

After changing the ’show advanced option’ value to 1, all options were returned by sp_configure:

EXEC sp_configure
GO

Last in the recipe, the sys.configurations system catalog view was queried to return all SQL
Server options. It returned additional information for each setting, including whether the setting
was dynamic and if it was an advanced option.

Changing SQL Server Configurations
SQL Server does a remarkable job of maintaining itself out-of-the-box, and for most small or medium-
sized implementations, the default settings will suffice. When you must change a default configuration
value, you need to do so with care, making sure that you understand exactly what it is you are chang-
ing. For example, the locks configuration, which determines the maximum number of available
locks SQL Server can issue, should be left to SQL Server to manage, allowing SQL Server to allocate,
de-allocate, and escalate lock types as it sees fit.

■Note This book doesn’t discuss each of the available server options. For a complete list, see SQL Server 2005
Books Online’s topic “Setting Server Configuration Options.”

CHAPTER 21 ■ CONFIGURING AND VIEWING SQL SERVER OPTIONS 519

570Xch21FINALQ6.qxd 11/7/05 10:13 AM Page 519

In this recipe, I’ll demonstrate using sp_configure to disable query parallelism, as well as to set
a cap on the maximum amount of memory (in MBs) that the SQL Server instance is permitted to use.

The max degree of parallelism option sets the limit on the number of processors used in
a parallel plan execution. The default value for this option is to use all available processors (with the
option equal to 0):

SELECT name, value_in_use
FROM sys.configurations
WHERE name IN ('max degree of parallelism')

This returns:

name value_in_use
max degree of parallelism 0

In this example, the maximum degree of parallelism is set to a single CPU:

EXEC sp_configure 'max degree of parallelism', 1
RECONFIGURE
GO

This returns:

Configuration option 'max degree of parallelism' changed from 0 to 1.
Run the RECONFIGURE statement to install.

Now the value is checked again:

SELECT name, value_in_use
FROM sys.configurations
WHERE name IN ('max degree of parallelism')

This returns:

name value_in_use
max degree of parallelism 1

The max server memory option designates the maximum amount of memory SQL Server is
allowed to use, measured in megabytes. The default value for this setting is no set maximum, as this
query will show:

SELECT name, value_in_use
FROM sys.configurations
WHERE name IN ('max server memory (MB)')

This returns the default memory value (which is very large):

name value_in_use
max server memory (MB) 2147483647

In this example, a cap of 250MB is put on the SQL Server instance:

EXEC sp_configure 'max server memory', 250
RECONFIGURE
GO

CHAPTER 21 ■ CONFIGURING AND VIEWING SQL SERVER OPTIONS520

570Xch21FINALQ6.qxd 11/7/05 10:13 AM Page 520

This returns:

Configuration option 'max server memory (MB)' changed from 2147483647 to 250.
Run the RECONFIGURE statement to install.

The new value is then verified:

SELECT name, value_in_use
FROM sys.configurations
WHERE name IN ('max degree of parallelism', 'max server memory (MB)')

This returns:

name value_in_use
max server memory (MB) 250

How It Works
In this recipe, I demonstrated setting the max degree of parallelism to “1,” which means that only
a single processor will be used on a single query (disabling SQL Server’s ability to use multiple CPUs
for executing a single query). This recipe also demonstrated limiting the maximum server memory
to 250 megabytes. As long as other options have not been configured to constrain SQL Server any
further, SQL Server will still dynamically manage memory, but only up to the limit specified using
sp_configure. Neither change in setting required a restart of the SQL Server instance, so the RECONFIGURE
command was enough to set the value during execution time.

CHAPTER 21 ■ CONFIGURING AND VIEWING SQL SERVER OPTIONS 521

570Xch21FINALQ6.qxd 11/7/05 10:13 AM Page 521

570Xch21FINALQ6.qxd 11/7/05 10:13 AM Page 522

Creating and Configuring Databases

In this chapter, you’ll see an assortment of recipes that revolve around creating and configuring
a SQL Server database. Some of the things you’ll learn to do with Transact-SQL include:

• Creating a new database.

• Adding or removing files or filegroups from a database.

• Viewing and modifying database settings (including several new settings introduced in SQL
Server 2005).

• Increasing or decreasing a database or database file size.

• Removing a database from the SQL Server instance.

• Detaching and reattaching a database from a SQL Server instance.

I’ll also review the various “state” settings, such as configuring the database to be read-only, or
putting the database into single-user mode.

■Note SQL Server 2005’s new database mirroring functionality is reviewed in Chapter 25 and database snapshots
in Chapter 26.

Creating, Altering, and Dropping Databases
In this first set of recipes, I cover how to create, modify, and drop databases in a SQL Server
instance. Specifically, I’ll be showing you how to:

• Create a database based on the default configuration of the model system database.

• View information about a database’s configuration.

• Create a database using explicit file options (instead of depending on the model system
database).

• Create a database that uses a user-defined filegroup.

• Change the name of an existing database.

• Drop a database from the SQL Server instance.

• Detach a database from the SQL Server instance so that only the underlying data and log
files remain. Reattach the database using those same files.

523

C H A P T E R 2 2

■ ■ ■

570Xch22.qxd 11/4/05 2:52 PM Page 523

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES524

The primary commands you’ll be using to create and modify databases are CREATE DATABASE and
ALTER DATABASE. Similar to my discussion in Chapter 1 about the SELECT statement, in this chapter,
each recipe will slice off the relevant components used to perform the specified task, instead of pre-
senting the syntax in one large block.

Creating a Database with a Default Configuration
This recipe demonstrates how to create a database in its simplest form, by using the default config-
uration based on the model system database. The model database is a system database installed with
SQL Server and defines the template for all other databases created on the SQL Server instance. If
you create a database without specifying any options other than the database name, the options
will be based on the model system database.

The syntax for creating a database based on model is as follows:

CREATE DATABASE database_name

The CREATE DATABASE command, in its simplest form, can take just a single argument: the new
database name.

This recipe creates a new database called BookStore:

USE master
GO

CREATE DATABASE BookStore
GO

How It Works
In this recipe, a new database called BookStore was created, without any other options but the data-
base name. By omitting details such as file locations, size, and file growth options, the new database
is created based on the model system database. The database will include any user-defined objects
that you’ve placed in the model database and will use a file-naming convention based on the new
database name.

Although this is a quick way to create a new database, it doesn’t give you much control over
several of the options that I’ll describe throughout this chapter.

Viewing Database Information
This recipe demonstrates how to view database properties and file information using the system-
stored procedure sp_helpdb:

EXEC sp_helpdb 'BookStore'
GO

This returns the following two result sets (albeit a bit packed due to the constraints of the
printed page):

name db_size owner dbid created status compatibility_level

BookStore 1.68 MB JOEPROD\Owner 8 Sep 30 2005 Status=ONLINE, 90

Updateability=READ_WRITE,

UserAccess=MULTI_USER, Recovery=FULL,

Version=611, Collation=SQL_Latin1_General_CP1_CI_AS,

SQLSortOrder=52, IsAutoCreateStatistics,

IsAutoUpdateStatistics, IsFullTextEnabled

570Xch22.qxd 11/4/05 2:52 PM Page 524

How It Works
The system-stored procedure sp_helpdb was used to view the properties of a database. This system-
stored procedure takes a single optional parameter, which in this case is the database name:

EXEC sp_helpdb 'BookStore'

Had the database name been omitted from this stored procedure, information for all the data-
bases on the SQL Server instance would have been returned instead.

This system-stored procedure returns information such as:

• The database name and owner.

• The date that the database was created.

• The various database settings and options, such as its default collation or whether or not it
configured to automatically update statistics (database options are described later in the
chapter).

• A list of individual files that make up the database, along with their size, file group, and
growth options.

The output also includes the database’s compatibility level. For example, a SQL Server 2005
database by default will have a compatibility level of “90.” SQL Server 2000 compatibility would be
a level of “80,” SQL Server 7.0 “70,” and SQL Server 6.5 “65.” Compatibility level allows you to keep
databases in SQL Server 2005 that remain compatible with prior versions of SQL Server. This also
means that you cannot use Transact-SQL extensions introduced in SQL Server 2005 with a SQL
Server 2000-compatible database. You can set this level using the sp_dbcmptlevel system-stored
procedure.

Creating a Database Using File Options
Using the default options from the model system database to create a new database is fine if you’re
simply looking to create a quick-and-dirty test database, but in a production environment you’ll
usually want to put more thought into the location, size, and growth options of the database data
and log files. This recipe will demonstrate the use of specifying explicit file options when creating
a new database.

The abridged syntax for CREATE DATABASE, as presented in this recipe, is as follows:

CREATE DATABASE database_name
[ON

[<filespec> [,...n]]]
[[LOG ON { <filespec> [,...n] }]]

The arguments of this syntax are briefly described in Table 22-1.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 525

name fileid filename filegroup size maxsize growth usage

BookStore 1 C:\Program Files\Microsoft SQL PRIMARY 1216 KB Unlimited 1024 KB data only

Server\MSSQL.1\MSSQL\DATA\BookStore.mdf

BookStore_log 2 C:\Program Files\Microsoft SQL NULL 504 KB 2147483648 KB 10% log only

Server\MSSQL.1\MSSQL\DATA\BookStore_log.LDF

570Xch22.qxd 11/4/05 2:52 PM Page 525

Table 22-1. CREATE DATABASE File Arguments

Argument Description

database_name The name of the database.

[ON [<filespec> [,...n]]] Designates one or more explicitly defined data files for
the database.

[LOG ON { <filespec> [,...n] }] Designates one or more explicitly defined transaction
log files for the database.

The syntax for the filespec argument, used both in creating a data file and a log file, is as fol-
lows:

[PRIMARY]
(

[NAME = logical_file_name ,]
FILENAME = 'os_file_name'

[, SIZE = size [KB | MB | GB | TB]]
[, MAXSIZE = { max_size [KB | MB | GB | TB] | UNLIMITED }]
[, FILEGROWTH = growth_increment [KB | MB | %]]

) [,...n]

The filespec arguments are described in Table 22-2.

Table 22-2. Filespec Arguments

Argument Description

PRIMARY This optional keyword designates the data file in the filespec
as the primary data file (entry point of the database which
contains pointers to other files and is typically named with
an .mdf file extension). Only one primary file can exist for
a database, and if it is not explicitly designated, the first
data file listed in CREATE DATABASE is used as the primary file.

logical_file_name The logical name of the database file.

os_file_name The physical path and file name of the database file.

size [KB | MB | GB | TB] The initial size of the file, based on the sizing attribute of
choice (kilobytes, megabytes, gigabytes, terabytes).

MAXSIZE = { max_size [KB | MB | The maximum allowable size of the file. If UNLIMITED is
GB | TB] | UNLIMITED } chosen, the file can grow to the available space of the

physical drive.

FILEGROWTH = growth_increment The amount that the file size increases when space is
[KB | MB | %] required. You can either designate the number of kilobytes

or megabytes, or the percentage of existing file size to grow.
If you select 0, file growth will not occur.

[,...n] Indicates that you can have one or more files defined (up to
32767 files per database).

In this recipe, I’ll create a new database called BookStoreArchive using all the aforementioned
CREATE DATABASE options:

USE master
GO

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES526

570Xch22.qxd 11/4/05 2:52 PM Page 526

CREATE DATABASE BookStoreArchive
ON PRIMARY
(NAME = 'BookStoreArchive',

FILENAME = 'F:\MSSQL\DATA\BookStoreArchive.mdf' ,
SIZE = 2MB ,
MAXSIZE = UNLIMITED,
FILEGROWTH = 10MB),

(NAME = 'BookStoreArchive2',
FILENAME = 'G:\MSSQL\DATA\BookStoreArchive2.ndf' ,
SIZE = 1MB ,
MAXSIZE = 30,
FILEGROWTH = 5%)

LOG ON
(NAME = 'BookStoreArchive_log',

FILENAME = 'H:\MSSQL\TLOG\BookStoreArchive_log.LDF' ,
SIZE = 504KB ,
MAXSIZE = 100MB ,
FILEGROWTH = 10%)

GO

How It Works
In this recipe, a new database called BookStoreArchive was created. The PRIMARY keyword was used
to designate the first file as the primary data file:

CREATE DATABASE BookStoreArchive
ON PRIMARY

The first file definition follows in parentheses. The logical file name is called BookStoreArchive:

(NAME = 'BookStoreArchive',

The physical filename is designated on the F: drive. In production scenarios, you’ll likely be
putting your data files on different drive letters (which could support a RAID 5 or RAID 10 array):

FILENAME = 'F:\MSSQL\DATA\BookStoreArchive.mdf' ,

Next, the initial data file size is set to two megabytes:

SIZE = 2MB ,

The maximum size of the file is set to unlimited, meaning that it can keep growing as long as
there is free space on the C: drive:

MAXSIZE = UNLIMITED,

The growth increment is set to 10 megabyte chunks. Whenever more space is needed on the
file, the file size will expand in 10 megabyte increments:

FILEGROWTH = 10MB),

The previous file definition ended with a comma, followed by a second data file definition:

(NAME = 'BookStoreArchive2',
FILENAME = 'G:\MSSQL\DATA\BookStoreArchive2.ndf' ,

The second data file is given a different logical name and physical filename. The physical file-
name ends in an .ndf file extension. Although that specific file extension isn’t required, it does make
it easier to identify the file type if you use .mdf for the primary file, and .ndf for all secondary data
files. Adding multiple files that are spread out over different drive letters can, assuming each drive

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 527

570Xch22.qxd 11/4/05 2:52 PM Page 527

letter is RAID enabled and on a separate channel or controller, allow you to spread out I/O activity
and potentially improve performance for larger, high traffic databases.

The size of the second file is set to one megabyte, with a cap on the maximum size of 30 megabytes.
File growth was set to increment in 5% chunks, instead of in megabytes as the first data file was
defined:

SIZE = 1MB ,
MAXSIZE = 30,
FILEGROWTH = 5%)

After the two data files were defined, the LOG ON keywords marked the beginning of the transac-
tion log file definition:

LOG ON
(NAME = 'BookStoreArchive_log',

The physical file name used an .ldf file extension, which is the standard for transaction log files:

FILENAME = 'H:\MSSQL\TLOG\BookStoreArchive_log.LDF' ,

The initial size was set to 504 kilobytes with a maximum transaction log size of 100 megabytes,
with a 10% file growth rate.

SIZE = 504KB ,
MAXSIZE = 100MB ,
FILEGROWTH = 10%)

Once the CREATE DATABASE command is executed, the associated files are automatically created
on the server, and the database is then available for use.

Later on in the chapter, there will be recipes showing you how to modify existing file properties,
as well as how to add new data or transaction files to the database.

Creating a Database with a User-Defined Filegroup
A database must have, at a minimum, one data file and one transaction log file. These files belong to
a single database and therefore are not shared with other databases. By default, when a database is
created, the data files belong to the primary filegroup. A filegroup is a named grouping of files for
administrative and placement reasons. The primary filegroup contains the primary data file, as well
as other data files that have not been explicitly assigned to a different filegroup. Data files (but not
transaction log files) belong to filegroups.

In addition to the primary filegroup (which all SQL Server databases have), you can create sec-
ondary user-defined filegroups for placing your files. User-defined filegroups are often used in very
large databases (VLDB), allowing you to partition the database across several arrays and manage
backups at the filegroup level instead of the entire database.

■Note You can place tables or indexes on specific filegroups. See Chapter 4 for a review of filegroups and
tables, and Chapter 5 for a review of filegroups and indexes.

In this recipe, I demonstrate how to create a database with files on a user-defined filegroup.
The syntax for doing so is as follows:

CREATE DATABASE database_name
[ON

FILEGROUP filegroup_name [DEFAULT]
<filespec> [,...n]

]

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES528

570Xch22.qxd 11/4/05 2:52 PM Page 528

[
[LOG ON { <filespec> [,...n] }]]

The syntax arguments are detailed in Table 22-3.

Table 22-3. CREATE DATABASE Arguments

Argument Description

database_name The name of the database.

FILEGROUP filegroup_name [DEFAULT] Designates the logical name of the filegroup. If followed
by the DEFAULT keyword, this filegroup will be the default
filegroup of the database (meaning all objects will by
default be created there).

<filespec> [,...n] Designates one or more explicitly defined data files for
the database.

[LOG ON { <filespec> [,...n] }] Designates one or more explicitly defined transaction log
files for the database.

This recipe creates a new database called BookStoreInternational, which uses two filegroups.
One is the required primary filegroup and the other, the new user-defined FG2 filegroup, is created
in the CREATE DATABASE command:

USE master
GO

CREATE DATABASE BookStoreInternational
ON PRIMARY
(NAME = 'BookStoreInternational',

FILENAME = 'C:\Program Files\Microsoft SQL
➥ Server\MSSQL.1\MSSQL\DATA\BookStoreInternational.mdf' ,

SIZE = 2MB ,
MAXSIZE = UNLIMITED,
FILEGROWTH = 5MB),

FILEGROUP FG2 DEFAULT
(NAME = 'BookStoreInternational2',

FILENAME = 'C:\Program Files\Microsoft SQL
➥ Server\MSSQL.1\MSSQL\DATA\BookStoreInternational2.mdf' ,

SIZE = 1MB ,
MAXSIZE = UNLIMITED,
FILEGROWTH = 1MB)

LOG ON
(NAME = 'BookStoreInternational_log',

FILENAME = 'C:\Program Files\Microsoft SQL
➥ Server\MSSQL.1\MSSQL\DATA\BookStoreInternational_log.LDF' ,

SIZE = 504KB ,
MAXSIZE = 100MB ,
FILEGROWTH = 10%)

GO

How It Works
In this recipe, a new database was created with two data files and one transaction log file. The first
data file was created on the PRIMARY filegroup:

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 529

570Xch22.qxd 11/4/05 2:52 PM Page 529

CREATE DATABASE BookStoreInternational
ON PRIMARY
(NAME = 'BookStoreInternational',

FILENAME = 'C:\Program Files\Microsoft SQL
➥ Server\MSSQL.1\MSSQL\DATA\BookStoreInternational.mdf' ,

SIZE = 2MB ,
MAXSIZE = UNLIMITED,
FILEGROWTH = 5MB),

The second database data file was created in a new user-defined filegroup called FG2, using the
FILEGROUP keyword. This filegroup was marked as the default filegroup, so that any new database
objects created in the database will be created in this filegroup:

FILEGROUP FG2 DEFAULT
(NAME = 'BookStoreInternational2',

FILENAME = 'C:\Program Files\Microsoft SQL
➥ Server\MSSQL.1\MSSQL\DATA\BookStoreInternational2.mdf' ,

SIZE = 1MB ,
MAXSIZE = UNLIMITED,
FILEGROWTH = 1MB)

Since transaction logs are not placed in filegroups, the LOG ON keywords were used with the
standard filespec definition:

LOG ON
(NAME = 'BookStoreInternational_log',

FILENAME = 'C:\Program Files\Microsoft SQL
➥ Server\MSSQL.1\MSSQL\DATA\BookStoreInternational_log.LDF' ,

SIZE = 504KB ,
MAXSIZE = 100MB ,
FILEGROWTH = 10%)

GO

In this recipe, a single file was placed in the FG2 filegroup, though you can put multiple files in
a single filegroup. With multiple files in a filegroup, SQL Server will fill each in a proportional man-
ner, instead of filling up a single file before moving on to the next.

Setting Database User Access
SQL Server 2005 provides three database user access modes that affect which users (and how
many) can access a database: SINGLE_USER, RESTRICTED_USER, and MULTI_USER. The SINGLE_USER and
RESTRICTED_USER options are methods used to “shut the door” on other users performing activities
in the database. This is often useful if you need to perform database configuration changes that do
not allow other users to be in the database at the same time. These options are also used when you
need to undo a data change, or force users out prior to a cutover to a new system or application
upgrade. The upcoming table describes each option in more detail.

The syntax for modifying user access is as follows:

ALTER DATABASE database_name
SET { SINGLE_USER | RESTRICTED_USER | MULTI_USER }
[WITH { ROLLBACK AFTER integer [SECONDS]
| ROLLBACK IMMEDIATE
| NO_WAIT

}]

The arguments of this syntax are described in Table 22-4.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES530

570Xch22.qxd 11/4/05 2:52 PM Page 530

Table 22-4. ALTER DATABASE Arguments

Argument Description

database_name The name of the existing database to modify user
access for.

SINGLE_USER | RESTRICTED_USER | When SINGLE_USER is selected, only one user is allowed
MULTI_USER to access the database at a time. When this option is

selected, unless the termination options are used (see
the next row for a description of termination options),
the modification is blocked until all other users
disconnect from the database. With RESTRICTED_USER
selected, only members of the sysadmin, dbcreator, or
db_owner roles can access the database. With MULTI_USER,
all users with permissions to the database are allowed
access.

ROLLBACK AFTER integer [SECONDS] | These termination options allow you to roll back
ROLLBACK IMMEDIATE | NO_WAIT incomplete transactions for the database during the

ALTER DATABASE statement. If you don’t use a termination
option, your ALTER may have to wait for however long
the locking connection needs to complete its task.
Termination options can actually be used with any SET
clause; however they are most often used when changing
a database to SINGLE_USER or RESTRICTED_USER modes.
ROLLBACK AFTER integer [SECONDS] specifies that open
database transactions be rolled back after a specified
number of seconds. ROLLBACK IMMEDIATE rolls back open
transactions immediately. NO_WAIT, when specified,
causes the statement to fail if it cannot complete
immediately (using this option requires that there are
no open transactions in the database in order to
succeed).

This recipe demonstrates taking the AdventureWorks into a SINGLE_USER mode, rolling back any
open transactions, and then putting the database back into MULTI_USER mode:

SELECT user_access_desc
FROM sys.databases
WHERE name = 'AdventureWorks'

ALTER DATABASE AdventureWorks
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE

SELECT user_access_desc
FROM sys.databases
WHERE name = 'AdventureWorks'

ALTER DATABASE AdventureWorks
SET MULTI_USER

SELECT user_access_desc
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns:

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 531

570Xch22.qxd 11/4/05 2:52 PM Page 531

user_access_desc
--
MULTI_USER

(1 row(s) affected)

user_access_desc
--
SINGLE_USER

(1 row(s) affected)

user_access_desc
--
MULTI_USER

(1 row(s) affected)

How It Works
In this recipe, the system catalog view sys.databases was queried to check the current user access
mode. The database was then changed to SINGLE_USER mode, and included a termination of all
open transactions in other database user sessions:

ALTER DATABASE AdventureWorks
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE

The user access mode was then checked again via sys.databases, and the database was
changed back to MULTI_USER:

ALTER DATABASE AdventureWorks
SET MULTI_USER

After that, the access mode was checked again via sys.databases:

SELECT user_access_desc
FROM sys.databases
WHERE name = 'AdventureWorks'

It is important to note that canceling open transactions in this manner may cause issues in
your application, depending on how your application handles incomplete processes. When possi-
ble, try to change user access during periods of inactivity or when no transactions are active. You
need to set the database to SINGLE_USER for certain operations, such as for the READ_ONLY and READ_WRITE
options. Another reason to close all current user connections may be, for example, to put in an
emergency object fix without having to deal with blocking or errors from the calling application.

Renaming a Database
In this recipe, I demonstrate how to change the name of an existing database using ALTER DATABASE.

The syntax is as follows:

ALTER DATABASE database_name
MODIFY NAME = new_database_name

The two arguments for this command include the original database name and the new database
name.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES532

570Xch22.qxd 11/4/05 2:52 PM Page 532

This recipe demonstrates changing the name of the BookWarehouse database to the BookMart
database. ALTER DATABASE...SET SINGLE USER is also executed in order to clear out any other con-
current connections to the database:

USE master
GO

ALTER DATABASE BookWarehouse
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE
GO

ALTER DATABASE BookWarehouse
MODIFY NAME = BookMart
GO

ALTER DATABASE BookMart
SET MULTI_USER
GO

This returns (results may vary depending on activity in the database during the termination of
connections):

Nonqualified transactions are being rolled back. Estimated rollback completion: 100%.
The database name 'BookMart' has been set.

How It Works
In this recipe, a database was renamed from BookWarehouse to BookMart. Before doing so, the query
session’s context was changed to the master database (because you can’t change the name of the
database using a connection to the database itself):

USE master
GO

The database was placed into single user mode and all active transactions against the database
were rolled back (except for transactions existing within the current session):

ALTER DATABASE BookWarehouse
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE
GO

The database name was then changed using ALTER DATABASE and MODIFY NAME:

ALTER DATABASE BookWarehouse
MODIFY NAME = BookMart
GO

Even though the database was put in single user mode under its original name, it will remain in
single user mode until it is explicitly set back to MULTI_USER access:

ALTER DATABASE BookMart
SET MULTI_USER
GO

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 533

570Xch22.qxd 11/4/05 2:52 PM Page 533

Dropping a Database
You can remove a user database from SQL Server using the DROP DATABASE command. DROP DATABASE
removes references to the database from SQL Server system tables. If the underlying files are online,
it also removes the physical files from the SQL Server machine.

The syntax is as follows:

DROP DATABASE database_name

In this recipe, the BookStoreArchive_Ukrainian database is dropped:

USE master
GO

ALTER DATABASE BookStoreArchive_Ukrainian
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE
GO

DROP DATABASE BookStoreArchive_Ukrainian
GO

How It Works
In this recipe, I started off by switching the current query session to the master database, because
you cannot drop a database while you are also connected to it. The recipe also set the database into
single user mode and forced any open transactions to be rolled back immediately. Finally, within
the same query session, the database was dropped using the DROP DATABASE command.

Detaching a Database
When you drop a database, it is removed from the SQL Server instance along with its physical files.
If you wish to remove a database from a SQL Server instance, but still retain the physical files (for
archiving or to migrate the database to another SQL Server instance), you can detach the database
instead. You can also move a database from one SQL Server instance to another, by detaching it
from one instance and adding it to the other.

In order to detach a database, you use the system-stored procedure sp_detach_db, which uses
the following syntax:

sp_detach_db [@dbname=] 'dbname'
[, [@skipchecks=] 'skipchecks']
[, [@KeepFulltextIndexFile=] 'KeepFulltextIndexFile']

The parameters for the procedure are described in Table 22-5.

Table 22-5. sp_detach_db Parameters

Parameter Description

dbname The name of the database to detach.

skipchecks This option allows a true or false value. When this option is true,
statistics are not updated prior to detaching the database. By default
statistics are updated.

KeepFulltextIndexFile This option allows a true or false value. When this option is true, full-text
index files associated with the detached database are not dropped. If
this option is not designated or is false, full-text files associated with the
database are dropped.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES534

570Xch22.qxd 11/4/05 2:52 PM Page 534

In this recipe, I will create, and then detach, a database using sp_detach_db:

-- Create a default example database to detach
USE master
GO

CREATE DATABASE TestDetach
GO

-- Kick out any users currently in the database

ALTER DATABASE TestDetach
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE

-- Detach the database

EXEC sp_detach_db 'TestDetach',
'false', -- don't skip checks
'false' -- drop any full-text indexes

This returns:

Nonqualified transactions are being rolled back. Estimated rollback completion: 100%.
Updating [sys].[queue_messages_1977058079]

[queue_clustered_index], update is not necessary...
[queue_secondary_index], update is not necessary...
0 index(es)/statistic(s) have been updated, 2 did not require update.

Updating [sys].[queue_messages_2009058193]
[queue_clustered_index], update is not necessary...
[queue_secondary_index], update is not necessary...
0 index(es)/statistic(s) have been updated, 2 did not require update.

Updating [sys].[queue_messages_2041058307]
[queue_clustered_index], update is not necessary...
[queue_secondary_index], update is not necessary...
0 index(es)/statistic(s) have been updated, 2 did not require update.

Statistics for all tables have been updated.

How It Works
In this recipe, a new database called TestDetach was created. After that, I used ALTER DATABASE to set
the TestDetach database into single user mode, while also kicking out any open database connections
using the ROLLBACK IMMEDIATE option.

The system-stored procedure sp_detach_db was then used to detach the database—but not
before updating statistics (designating false in the second parameter) and also dropping any full-
text index files (designating false in the third parameter). The database has, for all intents and
purposes, been dropped. However the data files still exist on the SQL Server instance’s server, and can
be recreated on the current or other SQL Server instance if you choose to do so.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 535

570Xch22.qxd 11/4/05 2:52 PM Page 535

Attaching a Database
The previous recipe demonstrated how to detach a database. In this next recipe, I’ll demonstrate
how to attach a database. Using the detach/attach method is a clean way to migrate a database
from one SQL Server instance to another, assuming that a copy of the database needn’t remain on
both SQL Server instances.

■Caution Detaching and attaching a database from one server to the other doesn’t also move the SQL Server
logins associated to users in the database. You must move logins to the new SQL Server instance as a separate
operation.

In previous versions of SQL Server, the system-stored procedure sp_attach_db was used to
attach a database to a SQL Server instance. Now in SQL Server 2005, the CREATE DATABASE FOR ATTACH
command is used instead.

The syntax is as follows:

CREATE DATABASE database_name
ON <filespec> [,...n]
FOR { ATTACH

| ATTACH_REBUILD_LOG }

The arguments for this command are described in Table 22-6.

Table 22-6. CREATE DATABASE...FOR ATTACH

Parameter Description

database_name The name of the database to attach.

<filespec> [,...n] The name of the primary data file and any other database files. If
the file locations of the originally detached database match the
existing file location, you only need to include the primary data
file reference. If file locations have changed, however, you should
designate the location of each database file.

ATTACH | ATTACH_REBUILD_LOG The ATTACH designates that the database is created using all
original files that were used in the detached database. When
ATTACH_REBUILD_LOG is designated, and if the transaction log file
or files are unavailable, SQL Server will rebuild the transaction
log file or files.

In this recipe, the TestDetach database detached in the previous recipe will now be reattached
to the SQL Server instance using the same files and file paths. The database, however, will be re-attached
with a new name of TestAttach:

CREATE DATABASE TestAttach
ON (FILENAME = 'C:\Program Files\Microsoft SQL

➥ Server\MSSQL.1\MSSQL\DATA\TestDetach.mdf')
FOR ATTACH

How It Works
In this recipe, a database was reattached by using CREATE DATABASE FOR ATTACH. The command ref-
erenced the primary data file name, which contains references to the location of the other files (in
this case, the transaction log file).

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES536

570Xch22.qxd 11/4/05 2:52 PM Page 536

If you detach a database, and then relocate the secondary data files and/or transaction log
files, you will also need to explicitly reference the new location of each file in the
CREATE DATABASE...FOR ATTACH command. The new path of the files is designated in the filespec.
If the transaction log or logs had been unavailable, you could have used the ATTACH_REBUILD_LOG
instead of ATTACH to rebuild the transaction log file.

Configuring Database Options
This next set of recipes covers how to configure database options which impact the behavior of activi-
ties performed within the database. Specifically, I’ll be showing you how to:

• View database options currently configured for the database.

• Configure ANSI SQL options.

• Configure automatic options. Automatic database options impact the behavior of the SQL
Server database engine, enabling or disabling automatic maintenance or meta-data updates.

• Configure external access options, including DB_CHAINING and TRUSTWORTHY.

• Create or modify a database to use a specific collation.

• Configure cursor options.

• Enable date correlation optimization. In this new SQL Server 2005 functionality, two
tables that are related by a datetime foreign key reference can benefit from enabling the
DATE_CORRELATION_OPTIMIZATION option.

• Modify database parameterization behavior. Introduced in SQL Server 2005, the
PARAMETERIZATION option is used with ALTER DATABASE and controls whether all or some
queries against the database are parameterized.

• Enable row versioning. SQL Server 2005 introduces two new database options that allow for
statement-level and transaction-level read consistency: ALLOW_SNAPSHOT_ISOLATION and
READ_COMMITTED_SNAPSHOT.

• Configure database recovery models. SQL Server 2005 uses three different recovery models
that define whether or not transaction log backups can be made, and if so, what database
activities will write to the transaction log.

• Configure page verification. SQL Server 2005 has three modes for handling and detecting
incomplete I/O transactions caused by disk errors: CHECKSUM, TORN_PAGE_DETECTION, and NONE.

I’ll begin by reviewing how to see the current database options for a database using the
sys.databases system catalog view.

Viewing Database Options
This recipe demonstrates how to view database options using the sys.databases system catalog
view for the AdventureWorks database:

SELECT name, is_read_only, is_auto_close_on, is_auto_shrink_on
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns:

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 537

570Xch22.qxd 11/4/05 2:52 PM Page 537

name is_read_only is_auto_close_on is_auto_shrink_on
------------------- ------------ ---------------- -----------------
AdventureWorks 0 0 0

(1 row(s) affected)

How It Works
In this recipe, a query was used to view three database options: is_read_only, is_auto_close_on,
and is_auto_shrink_on. The sys.databases system catalog view can be used to view many other
database options for both user and system databases. Other columns of interest exposed by this
view (related to recipes shown in this book) include:

collation_name compatibility_level create_date
database_id is_ansi_null_default_on is_ansi_nulls_on
is_ansi_padding_on is_ansi_warnings_on is_arithabort_on
is_auto_create_stats_on is_auto_update_stats_async_on is_auto_update_stats_on
is_broker_enabled is_concat_null_yields_null_on
is_cursor_close_on_commit_on
is_date_correlation_on is_db_chaining_on is_fulltext_enabled
is_master_key_encrypted_by_server is_numeric_roundabort_on
is_parameterization_forced
is_quoted_identifier_on is_read_committed_snapshot_on
is_recursive_triggers_on
is_trustworthy_on recovery_model_desc service_broker_guid
snapshot_isolation_state snapshot_isolation_state_desc state_desc
user_access_desc

Configuring ANSI SQL Options
This recipe demonstrates how to set ANSI (American National Standards Institute) SQL compliance
defaults for a database. These settings impact a number of behaviors which are detailed in Table 22-7.

Table 22-7. ANSI SQL Options

Option Description

ANSI_NULL_DEFAULT When set to ON, columns not explicitly defined with a NULL or NOT NULL
in a CREATE or ALTER table statement will default to allow NULL values.
The default is OFF, which means a column will be defined as NOT NULL if
not explicitly defined.

ANSI_NULLS When enabled, a comparison to a null value returns UNKNOWN. The default
for this setting is OFF, meaning that comparisons to a null value will
evaluate to TRUE when both values are NULL.

ANSI_PADDING This option pads strings to the same length prior to inserting into
a varchar or nvarchar data type column. The default setting is OFF,
meaning that strings will not be padded.

ANSI_WARNINGS This setting impacts a few different behaviors. When ON, any null
values used in an aggregate function will raise a warning message. Also,
divide-by-zero and arithmetic overflow errors will roll back the statement
and return an error message. When this setting is OFF (the default), null
values in an aggregate function return no warning and divide-by-zero
and arithmetic overflow errors will return a NULL value instead of rolling
back the statement.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES538

570Xch22.qxd 11/4/05 2:52 PM Page 538

Option Description

ARITHABORT When ON, a query with an overflow or division by zero will terminate the
query and return an error. If this occurs within a transaction, then that
transaction gets rolled back. When this option is OFF (the default),
a warning is raised, but the statement continues to process.

CONCAT_NULL_YIELDS_NULL When set to ON, concatenating a null value with a string produces a NULL
value. When OFF (the default), a null value is the equivalent of an empty
character string.

NUMERIC_ROUNDABORT When set to ON, an error is produced when a loss of precision occurs in an
expression. When OFF (the default), no error message is raised, but the
result is rounded to the precision of the destination column or variable.

QUOTED_IDENTIFIER When set to ON, identifiers can be delimited by double quotation marks,
and literals with single quotation marks. When OFF (the default), only
literals can be delimited with single or double quotation marks.

RECURSIVE_TRIGGERS When this option is ON, triggers can fire recursively (trigger 1 fires
trigger 2, which fires trigger 1 again). When OFF (the default), trigger
recursion is not allowed.

The syntax for setting these options is as follows:

ALTER DATABASE database_name
SET ANSI_NULL_DEFAULT { ON | OFF }
| ANSI_NULLS { ON | OFF }
| ANSI_PADDING { ON | OFF }
| ANSI_WARNINGS { ON | OFF }
| ARITHABORT { ON | OFF }
| CONCAT_NULL_YIELDS_NULL { ON | OFF }
| NUMERIC_ROUNDABORT { ON | OFF }
| QUOTED_IDENTIFIER { ON | OFF }
| RECURSIVE_TRIGGERS { ON | OFF }

This statement takes two arguments: the database name you want to modify, and the name of
the ANSI SQL setting you wish to enable or disable.

■Note The default options for any newly created databases will depend on the values in the model database at
the time the new database is created. However out-of-the-box, SQL Server defaults are those that were underlined
in the syntax.

In this recipe, ALTER DATABASE is used to set the ANSI_NULLS option to OFF. This means that that
comparisons to a null value in a query will evaluate to TRUE when both values are NULL:

SELECT is_ansi_nulls_on
FROM sys.databases
WHERE name = 'AdventureWorks'

ALTER DATABASE AdventureWorks
SET ANSI_NULLS OFF

SELECT is_ansi_nulls_on
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns:

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 539

570Xch22.qxd 11/4/05 2:52 PM Page 539

is_ansi_nulls_on

1

(1 row(s) affected)

is_ansi_nulls_on

0

(1 row(s) affected)

How It Works
This recipe demonstrated using ALTER DATABASE to change an ANSI SQL setting. The recipe started
by querying the sys.databases system catalog view to see the current setting of the database. After
that, the ANSI_NULLS setting was turned off, using ALTER DATABASE and SET ANSI_NULLS OFF, and then
the sys.databases system catalog view was queried again to confirm the change.

It is important to note that database ANSI options can still be overridden by SET statement
connection-level settings. For example, even though the AdventureWorks database has the ANSI_NULLS
setting OFF, using SET ANSI_NULLS ON in a query batch will override the database setting behavior for
the query session.

Some of the options reviewed here are required to be turned ON before manipulating indexes
on computed columns or indexed views. Those options include ARITHABORT, QUOTED_IDENTIFIER,
CONCAT_NULL_YIELDS_NULL, ANSI_NULLS, ANSI_WARNINGS, and ANSI_PADDING. The NUMERIC_ROUNDABORT,
however, must be OFF.

Configuring Automatic Options
Automatic database options impact the behavior of the SQL Server database engine, enabling or
disabling automatic maintenance or metadata updates. Table 22-8 describes each of the automatic
options.

Table 22-8. Automatic Options

Option Description

AUTO_CLOSE When AUTO_CLOSE is enabled, the database is closed and shut
down when the last user connection to the database exits and
all processes are completed.

AUTO_CREATE_STATISTICS When enabled, SQL Server automatically generates statistical
information regarding the distribution of values in a column.
This information assists the query processor with generating
an acceptable query execution plan (the internal plan for
returning the result set requested by the query).

AUTO_SHRINK When enabled, SQL Server shrinks data and log files
automatically. Shrinking will only occur when more than 25
percent of the file has unused space. The database is then
shrunk to either 25 percent free, or the original data or log file
size. For example, if you defined your primary data file to be
100MB, a shrink operation would be unable to decrease the file
size smaller than 100MB.

AUTO_UPDATE_STATISTICS When enabled, this option automatically updates statistics
already created for your tables.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES540

570Xch22.qxd 11/4/05 2:52 PM Page 540

Option Description

AUTO_UPDATE_STATISTICS_ASYNC An option that was introduced in SQL Server 2005. When ON,
if a query initiates an automatic update of old statistics, the
query will not wait for the statistics to be updated before
compiling. When OFF (the default), a query that initiates statistics
updates will wait until the update is finished before compiling
a query plan.

The syntax for configuring automatic database options is as follows:

ALTER DATABASE database_name
SET AUTO_CLOSE { ON | OFF }
| AUTO_CREATE_STATISTICS { ON | OFF }
| AUTO_SHRINK { ON | OFF }
| AUTO_UPDATE_STATISTICS { ON | OFF }
| AUTO_UPDATE_STATISTICS_ASYNC { ON | OFF }

The first argument is the database name you want to modify. The second argument is the name
of the option you wish to either enable (ON) or disable (OFF). This recipe will demonstrate enabling
the AUTO_UPDATE_STATISTICS_ASYNC automatic database option for the AdventureWorks database:

SELECT is_auto_update_stats_async_on
FROM sys.databases
WHERE name = 'AdventureWorks'

ALTER DATABASE AdventureWorks
SET AUTO_UPDATE_STATISTICS_ASYNC ON

SELECT is_auto_update_stats_async_on
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns:

is_auto_update_stats_async_on

0

(1 row(s) affected)

is_auto_update_stats_async_on

1

(1 row(s) affected)

How It Works
This recipe demonstrated using ALTER DATABASE to change the AUTO_UPDATE_STATS_ASYNC automatic
database setting. The recipe started by querying the sys.databases system catalog view to see the
current setting of the database. After that, the AUTO_UPDATE_STATS_ASYNC setting was turned ON using
ALTER DATABASE, and then the sys.databases system catalog view was queried again to confirm the
change.

Some automatic settings can have a negative impact on performance when set to ON—includ-
ing AUTO_CLOSE and AUTO_SHRINK. For AUTO_CLOSE, the overhead of opening the database after cleanly

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 541

570Xch22.qxd 11/4/05 2:52 PM Page 541

shutting down can cause performance issues in a high traffic database that has moments where no
user is currently logged in (the overhead of starting up and shutting down a database repeatedly).
For AUTO_SHRINK, SQL Server may initiate a database shrink operation during an inopportune moment,
slowing down query performance of regular end-users. Also, database size may expand and con-
tract repeatedly when this option is on. When it’s possible, let the free space in the database remain,
so that SQL Server isn’t continually expanding and contracting the same files.

Other options should not be set OFF without a very good reason, including AUTO_CREATE_STATISTICS
and AUTO_UPDATE_STATISTICS. Statistics help SQL Server compile the best query optimization plan,
and the overhead of creating and maintaining statistics automatically is usually not significant
compared to the benefits they provide to query performance.

Creating or Modifying a Database to Allow External Access
The CREATE DATABASE command provides two external access database options: DB_CHAINING and
TRUSTWORTHY. Both of these options are OFF by default. The DB_CHAINING option, when enabled, allows
the new database to participate in a cross-database ownership chain. In its simplest form, an own-
ership chain occurs when one object (such as a view or stored procedure) references another object.
If the owner of the schema that contains these objects is the same as the referenced object, permis-
sions on the referenced object are not checked. Cross-database chaining means that one object
references another object in a different database. Ownership chaining can result in inappropriate or
unintended data access—for example if a dbo-owned schema in a view references a different database’s
dbo-owned data table, security will not be checked if the DB_CHAINING option is enabled.

New in SQL Server 2005, the TRUSTWORTHY option is used to specify whether or not SQL Server will
“trust” any modules or assemblies within a given database. When this option is OFF, SQL Server
will protect against certain malicious EXTERNAL_ACCESS or UNSAFE activities within that database’s
assemblies, or from malicious code executed under the context of high-privileged users.

The syntax for creating a database with external access options enabled or disabled is as follows:

CREATE DATABASE database_name
[ON

[<filespec> [,...n]]
[, <filegroup> [,...n]]

]
[[LOG ON { <filespec> [,...n] }]

[WITH { DB_CHAINING { ON | OFF }
|TRUSTWORTHY { ON | OFF }]]

Both options appear in the WITH clause following the transaction log LOG ON option. They can be
enabled in the same statement, and both are OFF by default.

You can also set these options for an existing database using ALTER DATABASE:

ALTER DATABASE database_name
{
SET DB_CHAINING { ON | OFF }
| TRUSTWORTHY { ON | OFF }
}

This recipe demonstrates how to create a database with the database chaining option enabled,
and then modify the new database to also allow external database access within database objects:

USE master
GO
-- Create a database with the model database defaults
CREATE DATABASE BookData
WITH DB_CHAINING ON
GO

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES542

570Xch22.qxd 11/4/05 2:52 PM Page 542

USE master
GO
-- Now modify the new database to also have the
-- TRUSTWORTHY option ON
ALTER DATABASE BookData
SET TRUSTWORTHY ON
GO

How It Works
In this recipe, database ownership chaining was enabled within the CREATE DATABASE statement. The
BookData database was created using default options (filename, size, growth) based on the model system
database. After that, the WITH clause was used to enable database ownership chaining:

WITH DB_CHAINING ON

After that, the ALTER DATABASE command was used to enable the TRUSTWORTHY setting. Instead of
the WITH keyword, the SET keyword was used, followed by the external access option name and the
ON keyword:

ALTER DATABASE BookData
SET TRUSTWORTHY ON
GO

Creating or Changing a Database to Use a Non-Server
Default Collation
In this recipe, I demonstrate how to create or modify a database to use a specific collation. SQL
Server collations determine how data is sorted, compared, presented, and stored. The database col-
lation can be different from the server-level collation defined when the SQL Server instance was
installed, for those times that that you may wish to store data with a differing code page or sort
order from the SQL Server instance default.

The syntax for designating the collation using CREATE DATABASE is as follows:

CREATE DATABASE database_name
[ON

[<filespec> [,...n]]
[, <filegroup> [,...n]]]

[[LOG ON { <filespec> [,...n] }]
[COLLATE collation_name]]

The COLLATE command is used after the transaction log definition to explicitly define the default
database collation.

To change the default collation for an existing database, the syntax for ALTER DATABASE is as follows:

ALTER DATABASE database_name
{COLLATE collation_name}

This recipe demonstrates creating a new database with a default Ukrainian collation, with case
and accent insensitivity settings. After creating the database, the database will then be altered to use
a case and accent sensitive collation instead:

CREATE DATABASE BookStoreArchive_Ukrainian
ON PRIMARY
(NAME = 'BookStoreArchive_UKR',

FILENAME = 'C:\Program Files\Microsoft SQL

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 543

570Xch22.qxd 11/4/05 2:52 PM Page 543

➥ Server\MSSQL.1\MSSQL\DATA\BookStoreArchive_UKR.mdf' ,
SIZE = 2MB ,
MAXSIZE = UNLIMITED,
FILEGROWTH = 10MB)

LOG ON
(NAME = 'BookStoreArchive_UKR_log',

FILENAME = 'C:\Program Files\Microsoft SQL
➥ Server\MSSQL.1\MSSQL\DATA\BookStoreArchive_UKR_log.LDF' ,

SIZE = 504KB ,
MAXSIZE = 100MB ,
FILEGROWTH = 10%)

COLLATE Ukrainian_CI_AI
GO

ALTER DATABASE BookStoreArchive_Ukrainian
COLLATE Ukrainian_CS_AS
GO

How It Works
Both the CREATE DATABASE and ALTER DATABASE examples used the COLLATE statement, followed by
the collation name, to designate the default collation of the database:

COLLATE Ukrainian_CI_AI

Once the database default collation is set, new tables containing character data type columns
(varchar, nvarchar, char, nchar, text, ntext) will use the database default collation as the column
collation.

■Caution Creating a user-defined database with a default collation different from the SQL Server instance
default (system database), can cause collation conflicts (cross-collation data cannot be converted or joined in
a query). For example, the tempdb system database uses the same collation as the model database, which may
cause temporary table data operations to fail in conjunction with a different collation. Always test cross-collation
operations thoroughly.

Configuring Cursor Options
In Chapter 9 I discussed how to create and use Transact-SQL cursors. SQL Server 2005 has two
database options that control the behavior of Transact-SQL cursors, as you can see in Table 22-9.

Table 22-9. Cursor Options

Option Description

CURSOR_CLOSE_ON_COMMIT When enabled, Transact-SQL cursors automatically
close once a transaction is committed.

CURSOR_DEFAULT { LOCAL | GLOBAL } If CURSOR_DEFAULT LOCAL is enabled, cursors created
without explicitly setting scope as GLOBAL will default to
local access. If CURSOR_DEFAULT GLOBAL is enabled, cursors
created without explicitly setting scope as LOCAL will
default to GLOBAL access.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES544

570Xch22.qxd 11/4/05 2:52 PM Page 544

The syntax for configuring cursor options is as follows:

ALTER DATABASE database_name
SET CURSOR_CLOSE_ON_COMMIT { ON | OFF }
| CURSOR_DEFAULT { LOCAL | GLOBAL }

The statement takes two arguments, the database name you want to modify, and the option
that you want to configure on and off.

This recipe will demonstrate enabling the CURSOR_CLOSE_ON_COMMIT for the AdventureWorks
database:

SELECT is_cursor_close_on_commit_on
FROM sys.databases
WHERE name = 'AdventureWorks'

ALTER DATABASE AdventureWorks
SET CURSOR_CLOSE_ON_COMMIT ON

SELECT is_cursor_close_on_commit_on
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns:

is_cursor_close_on_commit_on

0

(1 row(s) affected)

is_cursor_close_on_commit_on

1

(1 row(s) affected)

How It Works
This recipe demonstrated using ALTER DATABASE to change the CURSOR_CLOSE_ON_COMMIT automatic
database setting. The recipe started by querying the sys.databases system catalog view to see the
current setting of the database. After that, the CURSOR_CLOSE_ON_COMMIT setting was turned ON using
ALTER DATABASE, and then the sys.databases system catalog view was queried again to confirm the
change.

Enabling Date Correlation Optimization
SQL Server 2005 introduces a new option that allows you to enhance query performance between
foreign-key related datetime data type columns. Two tables that are related by a datetime foreign
key reference can benefit from enabling the DATE_CORRELATION_OPTIMIZATION option. When enabled,
SQL Server 2005 collects additional statistics, which in turn help improve the performance of queries
that use a join between the two datetime data type columns (foreign key and primary key pair).

The syntax for enabling this option is as follows:

ALTER DATABASE database_name
SET DATE_CORRELATION_OPTIMIZATION { ON | OFF }

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 545

570Xch22.qxd 11/4/05 2:52 PM Page 545

The command takes two arguments: the database name you want to modify, and whether to
set the DATE_CORRELATION_OPTIMIZATION ON or OFF. This option is defaulted to OFF, as having it ON
adds extra overhead for those tables that meet the criteria for date correlation optimization.

This option, when ON, can benefit queries that join two table datetime values, which are related
by a foreign key reference. SQL Server will then maintain additional correlation statistics, which may
allow, depending on your query, SQL Server to generate more efficient, less I/O intensive query plans.

In order to take advantage of this database setting and for the statistics to be created automati-
cally, at least one of the datetime columns (primary key or foreign key) has to be the first key column
in a clustered index or the partitioning column in a partitioned table.

Be aware that there is extra overhead in updating the statistics, so you should monitor perfor-
mance for databases that have heavy updates to the primary-key and foreign-key datetime-related
tables, as the benefits of the query optimization may not outweigh the overhead of the statistics
updates.

In this recipe, the AdventureWorks will have this option turned ON:

SELECT is_date_correlation_on
FROM sys.databases
WHERE name = 'AdventureWorks'

ALTER DATABASE AdventureWorks
SET DATE_CORRELATION_OPTIMIZATION ON

SELECT is_date_correlation_on
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns:

is_date_correlation_on

0

(1 row(s) affected)

is_date_correlation_on

1

(1 row(s) affected)

How It Works
In this recipe, the sys.databases system catalog view was used to check the state of date correlation of
the AdventureWorks database. After that, ALTER DATABASE and SET DATE_CORRELATION_OPTIMIZATION ON
was issued. The sys.databases system catalog view was checked again, confirming the new setting.

Modifying Database Parameterization Behavior
Introduced in SQL Server 2005, the PARAMETERIZATION option is used with ALTER DATABASE and controls
whether all or just some queries against the database are parameterized.

Parameterization occurs when a query is submitted to SQL Server. SQL Server looks at literal
values in a SELECT, INSERT, UPDATE, and DELETE statement and seeks to parameterize them (make
a placeholder) so that query execution plans can be reused when similar queries are executed,
instead of a new plan being made for each query. Execution plans are created for the parameterized

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES546

570Xch22.qxd 11/4/05 2:52 PM Page 546

query at the statement level, so that each statement in a batch of statements can be individually
parameterized.

The syntax for enabling this option is as follows:

ALTER DATABASE database_name
SET PARAMETERIZATION { SIMPLE | FORCED }

The command takes two arguments: the database name, and the parameterization option. You
have two choices with parameterization, SIMPLE (the default) or FORCED. With SIMPLE parameterization
(the default value), SQL statements are parameterized for a smaller population of queries (at SQL
Server’s discretion). Setting parameterization to FORCED increases the population of queries that
become parameterized, which can benefit query performance as more query execution plans are
created and potentially reused.

This recipe demonstrates how to enable this option using ALTER DATABASE, check the value in
sys.databases, and then show the results of parameterization using the sys.dm_exec_cached_plans
system catalog view and the sys.dm_exec_cached_plans dynamic management function. First, the
AdventureWorks database is checked to see if the parameterization option is set to forced:

SELECT is_parameterization_forced
FROM sys.databases
WHERE name = 'AdventureWorks'

The results of this query confirm that this option is not enabled:

is_parameterization_forced

0

Next , the parameterization option is changed to FORCED using ALTER DATABASE:

ALTER DATABASE AdventureWorks
SET PARAMETERIZATION FORCED

The change is then confirmed by querying sys.databases:

SELECT is_parameterization_forced
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns:

is_parameterization_forced

1

Next, the DBCC FREEPROCCACHE command is used to clear out the procedure cache; in order to
demonstrate the use of the FORCED option:

-- CAUTION! Don't run this on a production SQL Server instance.
-- This clears out the procedure cache and will cause all
-- new queries to recompile.
DBCC FREEPROCCACHE

The following query is then executed:

USE AdventureWorks
GO

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 547

570Xch22.qxd 11/4/05 2:52 PM Page 547

SELECT ManagerID
FROM HumanResources.Employee
WHERE EmployeeID BETWEEN 1 AND 2

This returns the following results:

ManagerID

16
6

Now the sys.dm_exec_cached_plans system catalog view is queried. This view returns information
about the query execution plans cached in the SQL Server instance. The view column plan_handle
contains an identifier that references the query plan in memory. To view this plan in memory, the
query uses the sys.dm_exec_query_plan dynamic management function, which takes the plan_handle
as a parameter and returns the execution plan in XML format. This query searches for any reference
to EmployeeID from the previous query, for prepared, cached plans:

SELECT query_plan
FROM sys.dm_exec_cached_plans p
CROSS APPLY sys.dm_exec_query_plan(p.plan_handle)
WHERE CAST(query_plan as varchar(max))

LIKE '%EmployeeID%' AND
objtype = 'Prepared'

This returns the following abridged results (I’m showing a small fragment of the XML format-
ted plan):

<StmtSimple StatementText="(@0 int,@1 int)select ManagerID from
HumanResources . Employee where EmployeeID between @0 and @1"
StatementId="1" StatementCompId="1" StatementType="SELECT"
StatementSubTreeCost="0.0032842" StatementEstRows="2"
StatementOptmLevel="TRIVIAL">

This example of parameterization could have also occurred in the SIMPLE parameterization
setting, only the FORCED setting increases the chances that the parameterization will occur.

To set the database option back to SIMPLE, ALTER DATABASE is used again:

ALTER DATABASE AdventureWorks
SET PARAMETERIZATION SIMPLE
GO

How It Works
This recipe demonstrated how to change a database to use forced parameterization and then back
again to simple parameterization. I began the recipe by checking the parameterization state of the
AdventureWorks database using the sys.databases system catalog view. After that, ALTER DATABASE
and SET PARAMETERIZATION FORCED was used. The sys.databases system catalog view was checked
again to confirm that the option was changed.

After that, DBCC FREEPROCCACHE was used to clear out the procedure cache.

■Caution Only use DBCC FREEPROCCACHE on a test, non-production SQL instance, as it removes all plans from
the procedure cache, which can negatively impact performance.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES548

570Xch22.qxd 11/4/05 2:52 PM Page 548

Next, a query was executed against the HumanResources.Employee table, using a WHERE clause
that qualified EmployeeIDs between 1 and 2:

SELECT ManagerID
FROM HumanResources.Employee
WHERE EmployeeID BETWEEN 1 AND 2

A query was then executed using the sys.dm_exec_cached_plans system catalog view and the
sys.dm_exec_query_plan dynamic management function:

SELECT query_plan
FROM sys.dm_exec_cached_plans p
CROSS APPLY sys.dm_exec_query_plan(p.plan_handle)
WHERE CAST(query_plan as varchar(max))

LIKE '%EmployeeID%' AND
objtype = 'Prepared'

The results showed an XML formatted SQL plan (your results may vary) with parameter place
holders for use in the WHERE clause:

where EmployeeID between @0 and @1"

Enabling Read Consistency for a Transaction
SQL Server 2005 introduces two new database options that allow for statement-level and transaction-
level read consistency: ALLOW_SNAPSHOT_ISOLATION and READ_COMMITTED_SNAPSHOT (which will be
demonstrated after this recipe).

■Note Both of the database options are discussed in the same recipe, because they both impact read consistency.
They do not, however, need to be used together. They are independent options. Use ALLOW_SNAPSHOT_ISOLA-
TION if you want transaction-level read consistency and READ_COMMITTED_SNAPSHOT if you are looking for
statement-level read consistency.

The ALLOW_SNAPSHOT_ISOLATION database option enables a snapshot of data at the transaction
level. When ALLOW_SNAPSHOT_ISOLATION is enabled, you can use the snapshot transaction isolation
level to read a transactional consistent version of the data as it existed at the beginning of a transac-
tion. Using this option, data reads don’t block data modifications. If data was changed while reading
the snapshot data, and an attempt was made within the snapshot transaction to change the data,
the change attempt will not be allowed and will end with a warning from SQL Server’s update con-
flict detection support. Once this database setting is enabled, snapshot isolation is initiated when
SET TRANSACTION ISOLATION LEVEL with SNAPSHOT isolation is specified before the start of the trans-
action.

■Note For an example of ALLOW_SNAPSHOT_ISOLATION in action, see Chapter 3’s recipe “Using SET TRANSAC-
TION ISOLATION LEVEL.”

The READ_COMMITTED_SNAPSHOT setting enables row versioning at the individual statement level.
Row versioning retains the original copy of a row in tempdb whenever the row is modified, storing
the latest version of the row in the current database. For databases with a large amount of transac-
tional activity, you’ll want to make sure tempdb has enough space in order to hold row versions.
The READ_COMMITTED_SNAPSHOT setting enables row versioning at the individual statement level for

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 549

570Xch22.qxd 11/4/05 2:52 PM Page 549

the query session. When enabling READ_COMMITTED_SNAPSHOT, locks are not held on the data. Row ver-
sioning is used to return the statement’s data as it existed at the beginning of the statement
execution. Data being read during the statement execution still allows updates by others, and unlike
snapshot isolation, there is no mandatory update conflict detection to warn you that the data has
been modified during the read. Once this database option is enabled, row versioning is then initi-
ated when executing a query in the default read-committed isolation level or when SET TRANSACTION
ISOLATION LEVEL with READ COMMITTED is used before the statement executes.

The main benefit of using these options is the reduction in locks for read operations. If your
application requires real-time data values, these two options are not the best choice. However if
snapshots of data are acceptable to your application, setting these options may be appropriate.

The syntax for enabling these options is as follows:

ALTER DATABASE database_name
SET ALLOW_SNAPSHOT_ISOLATION {ON | OFF }
| READ_COMMITTED_SNAPSHOT {ON | OFF }

The command takes two arguments: the database name, and the snapshot option of enabling
or disabling. This recipe will demonstrate enabling both row versioning options for the AdventureWorks
database. First, the current database settings are validated by querying sys.databases:

SELECT snapshot_isolation_state_desc,
is_read_committed_snapshot_on

FROM sys.databases
WHERE name = 'AdventureWorks'

This returns:

snapshot_isolation_state_desc is_read_committed_snapshot_on
----------------------------------- ------------------------------------
OFF 0

Next, ALTER DATABASE is used to enable both options (although both options needn’t be chosen,
because you can choose to enable one type of read consistency option and not another):

ALTER DATABASE AdventureWorks
SET ALLOW_SNAPSHOT_ISOLATION ON

ALTER DATABASE AdventureWorks
SET READ_COMMITTED_SNAPSHOT ON

Next, the database settings are validated again, post-change:

SELECT snapshot_isolation_state_desc,
is_read_committed_snapshot_on

FROM sys.databases
WHERE name = 'AdventureWorks'

This returns:

snapshot_isolation_state_desc is_read_committed_snapshot_on
----------------------------- -----------------------------
ON 1

How It Works
This recipe started off by checking the current state of row versioning in the AdventureWorks database
by querying sys.databases. After that, two separate ALTER DATABASE commands were executed to

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES550

570Xch22.qxd 11/4/05 2:52 PM Page 550

enable snapshot isolation and read-committed isolation levels in the database. The system catalog
view sys.databases was queried again to confirm the changes. Keep in mind that both options do
not need to be enabled—you can pick and choose whether or not you want both statement and
transaction-level read consistency, both, or neither.

Configuring Database Recovery Models
A full database backup is a full copy of your database. Transaction log backups, on the other hand,
only back up the transaction log from the latest full backup or latest transaction log backup. When
the backup completes, SQL Server truncates the inactive portion of the log. Aside from allowing
a restore from the point that the transaction log backup completed, transaction log backups also
allow point-in-time and transaction mark recovery. Point-in-time recovery allows you to restore the
database as of a specific time period, for example, restoring a database prior to a database modifi-
cation or failure. Transaction mark recovery recovers to the first instance of a “marked” transaction
and includes the updates made within this transaction.

■Note For more information on transaction log backups, see Chapter 29.

SQL Server 2005 uses three different recovery models that define whether or not transaction
log backups can be made, and if so, what database activities will write to the transaction log. The
three recovery models are FULL, BULK_LOGGED, and SIMPLE:

• When using SIMPLE recovery, the transaction log is automatically truncated after a database
backup, removing the ability to perform transaction log backups. In this recovery mode, the
risk of data loss is dependent on your full or differential backup schedule—and you will not
be able to perform the point-in-time recovery that a transaction log backup offers.

• The BULK_LOGGED recovery model allows you to perform full, differential, and transaction log
backups; however there is minimal logging to the transaction log for bulk operations. The
benefit of this recovery mode is reduced log space usage during bulk operations, however
the trade off is that transaction log backups can only be used to recover from the end of the
transaction log backup (no point-in-time recover or marked transactions allowed).

• The FULL recover model fully logs all transaction activity, bulk operations included. In this
safest model, all restore options are available, including point-in-time transaction log restores,
differential backups, and full database backups.

The syntax for changing the database recovery mode is as follows:

ALTER DATABASE database_name
SET RECOVERY { FULL | BULK_LOGGED | SIMPLE }

In this recipe, the AdventureWorks database will be set to the FULL recovery model:

SELECT recovery_model_desc
FROM sys.databases
WHERE name = 'AdventureWorks'
GO

ALTER DATABASE AdventureWorks
SET RECOVERY FULL
GO

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 551

570Xch22.qxd 11/4/05 2:52 PM Page 551

SELECT recovery_model_desc
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns:

recovery_model_desc
--
SIMPLE

(1 row(s) affected)

recovery_model_desc
--
FULL

(1 row(s) affected)

How It Works
The initial recovery model when a database is created depends on the recovery mode of the model
database. After creating a database, you can always modify the recovery model using ALTER DATABASE
and SET RECOVERY.

In this recipe, the sys.databases system catalog view was used to check on the recovery model
of the AdventureWorks database. Once it was confirmed that it was currently using a SIMPLE model,
ALTER DATABASE and SET RECOVERY were used to change the database to FULL mode.

■Tip After changing a database’s recovery model, it is a good practice to perform a full backup of your database.

Configuring Page Verification
Disk errors can occur when a data page write to the physical disk is interrupted due to a power fail-
ure or other physical issue. SQL Server 2005 has three modes for handling and detecting incomplete
I/O transactions caused by disk errors: CHECKSUM, TORN_PAGE_DETECTION, and NONE.

• The CHECKSUM option (the model database default) writes a checksum value to the data page
header based on the contents of the entire data page. If a page is corrupted or partially writ-
ten, SQL Server will detect a difference between the header and the actual page contents.

• The TORN_PAGE_DETECTION option (the main option used in previous versions of SQL Server)
detects data page issues by reversing a bit for each 512-byte sector of the data page. When
a bit is in the incorrect state when read by SQL Server, a “torn” page is identified.

• When NONE is selected, neither CHECKSUM nor TORN_PAGE_DETECTION handling is used in allocating
new data pages nor identified by SQL Server during a read.

Unless you have a good reason for doing so (such as a requirement for unfettered query per-
formance for a benchmark test, for example), keeping the default option of CHECKSUM is a good idea.
Although CHECKSUM has more overhead than TORN_PAGE_DETECTION, it is also more comprehensive in
its ability to identify data page errors. The syntax for setting the page verification mode is as follows:

ALTER DATABASE database_name
SET PAGE_VERIFY { CHECKSUM | TORN_PAGE_DETECTION | NONE }

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES552

570Xch22.qxd 11/4/05 2:52 PM Page 552

In this recipe, the AdventureWorks database is modified to not perform page verification:

SELECT page_verify_option_desc
FROM sys.databases
WHERE name = 'AdventureWorks'
GO

ALTER DATABASE AdventureWorks
SET PAGE_VERIFY NONE
GO

SELECT page_verify_option_desc
FROM sys.databases
WHERE name = 'AdventureWorks'
GO

This returns:

page_verify_option_desc
--
CHECKSUM

(1 row(s) affected)

page_verify_option_desc
--
NONE

(1 row(s) affected)

Now it will be added back:

ALTER DATABASE AdventureWorks
SET PAGE_VERIFY CHECKSUM
GO

SELECT page_verify_option_desc
FROM sys.databases
WHERE name = 'AdventureWorks'
GO

This returns:

page_verify_option_desc
--
CHECKSUM

How It Works
This recipe started off by validating the current page verification state in the AdventureWorks database
by querying the sys.databases system catalog view. After that, ALTER DATABASE and SET PAGE_VERIFY
were executed to disable page verification. The sys.databases system catalog view was queried again,
validating the change.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 553

570Xch22.qxd 11/4/05 2:52 PM Page 553

Controlling Database Access and Ownership
In these next two recipes, I’ll cover how to control the access and ownership of user databases. First
off, I’ll show you how to change a database’s accessibility using three different states: online, offline,
or emergency. The next recipe after that demonstrates how to change the owner of the database
using the sp_changedbowner system-stored procedure.

Changing a Database State to Online, Offline, or Emergency
A database can be in one of three states: online, offline, or emergency.

The online state is the default, meaning that the database is open and available to be used. When
in offline status, the database is “closed” and cannot be modified or queried by any user. You may
wish to take a database offline in situations where you need to move the data files to a new physical
location, and then use ALTER DATABASE to modify the metadata for that file’s new location (demon-
strated later in the chapter). Unlike detaching the database, the database is still kept in the metadata
of the SQL Server instance, and can then be taken back online later on.

Lastly, if the database is corrupted, setting a database to an emergency state allows read-only
access to the database for sysadmin server role logins, allowing you to query any database objects
that are still accessible (depending on the nature of the problem).

The syntax for configuring the database state is as follows:

ALTER DATABASE database_name
SET { ONLINE | OFFLINE | EMERGENCY }

This recipe demonstrates how to bring the database offline, attempt a read, and then bring it
online again. Keep in mind that if active connections are in the AdventureWorks database, your com-
mand will have to wait for them to disconnect unless you force them out (using techniques discussed
in the previous “Setting Database User Access” recipe):

USE master
GO

ALTER DATABASE AdventureWorks
SET OFFLINE
GO

-- Attempt a read against a table
SELECT COUNT(*)
FROM AdventureWorks.HumanResources.Department
GO

This returns:

Msg 942, Level 14, State 4, Line 3
Database 'AdventureWorks' cannot be opened because it is offline.

Now to bring the database back online again:

ALTER DATABASE AdventureWorks
SET ONLINE
GO

How It Works
In this recipe, the AdventureWorks database was taken offline by using ALTER DATABASE and the

, a query against a table in the database

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES554

570Xch22.qxd 11/4/05 2:52 PM Page 554

was attempted, causing an error to be raised. The database was then brought back online using
ALTER DATABASE and the SET ONLINE option.

Changing a Database Owner
In this recipe, I demonstrate how to change the owner of an existing database using the
sp_changedbowner system-stored procedure.

The syntax for this system-stored procedure is as follows:

sp_changedbowner [@loginame =] 'login'
[, [@map=] remap_alias_flag]

The parameters for the procedure are described briefly in Table 22-10.

Table 22-10. sp_changedbowner Parameters

Parameter Description

'login' The new SQL Server login that will own the database. This login cannot
already be mapped to an existing database user (without dropping this
user first).

remap_alias_flag The optional flag references alias functionality which was used in previous
versions of SQL Server and allowed you to map users to a database. Alias
functionality is going to be removed in a future version of SQL Server, so
don’t use it.

This recipe creates a new login and then makes the new login the database owner of the Book-
Warehouse database:

CREATE LOGIN NewBossInTown WITH PASSWORD = 'HereGoesTheNeighborhood10'
GO

USE BookData
GO

EXEC sp_changedbowner 'NewBossInTown'
GO

SELECT p.name
FROM sys.databases d
INNER JOIN sys.server_principals p ON

d.owner_sid = p.sid
WHERE d.name = 'BookData'

This returns:

name
--
NewBossInTown

How It Works
An owner is mapped from an existing SQL Server login to the dbo user in the database. Once this
happens, the new owner has permissions to perform all database-specific operations (for example,
creating tables, granting object permissions, deleting data, and so on).

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 555

570Xch22.qxd 11/4/05 2:52 PM Page 555

In this recipe, a new login was created and the database context was switched to the BookWarehouse
database. The sp_changedbowner system-stored procedure was used to set the new login as the owner:

EXEC sp_changedbowner 'NewBossInTown'

The new owner was then mapped to the dbo database user. Once set, the sys.databases and
sys.server_principals system catalog views were queried in order to confirm that the owner was
actually changed.

Managing Database Files and Filegroups
This next set of recipes covers how to manage database files and filegroups. Specifically, I’ll be
showing you how to:

• Add a data or log file to an existing database.

• Remove a data or log file from a database.

• Relocate a data or transaction log file on the operating system.

• Change a file’s logical name.

• Increase a database file size and modify growth options.

• Add a filegroup to an existing database.

• Set the default filegroup for a database.

• Remove a filegroup from a database.

• Make a database or filegroup read-only.

This next recipe demonstrates how to use ALTER DATABASE to add a data or log file to an existing
database.

Adding a Data File or Log File to an Existing Database
Once a database is created, assuming that you have available disk space, you can add additional data
or transaction logs to it as needed. This allows you to expand to new drives if the current physical
drive/array is close to filled up, or if you are looking to improve performance by spreading I/O across
multiple drives. It usually only makes sense to add additional data and log files to a database if you
plan on putting these files on a separate drive/array. Putting multiple files on the same drive/array
doesn’t improve performance, and may only benefit you if you plan on performing separate file or
filegroup backups for a very large database (VLDB).

Adding files doesn’t require you to bring the database offline. The syntax for ALTER DATABASE in
order to add a data or transaction log file is as follows:

ALTER DATABASE database_name
{ADD FILE <filespec> [,...n]

[TO FILEGROUP { filegroup_name | DEFAULT }]
| ADD LOG FILE <filespec> [,...n] }

The syntax arguments are described in Table 22-11.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES556

570Xch22.qxd 11/4/05 2:52 PM Page 556

Table 22-11. ALTER DATABASE...ADD FILE

Argument Description

database_name The name of the existing database.

<filespec> [,...n] Designates one or more explicitly defined data files to
add to the database.

filegroup_name | DEFAULT Designates the logical name of the filegroup. If followed
by the DEFAULT keyword, this filegroup will be the
default filegroup of the database (meaning all objects
will by default be created there).

[LOG ON { <filespec> [,...n] }] Designates one or more explicitly defined transaction
log files for the database.

In this recipe, a new data and transaction log file will be added to the BookData database:

ALTER DATABASE BookData
ADD FILE
(NAME = 'BookData2',

FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\BD2.NDF' ,
SIZE = 1MB ,
MAXSIZE = 10MB,
FILEGROWTH = 1MB)

TO FILEGROUP [PRIMARY]
GO

ALTER DATABASE BookData
ADD LOG FILE
(NAME = 'BookData2Log',

FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\BD2.LDF' ,
SIZE = 1MB ,
MAXSIZE = 5MB,
FILEGROWTH = 1MB)

GO

How It Works
In this recipe, a new data and transaction log file were added to the BookData database. To add the
data file, ALTER DATABASE was used with the ADD FILE command, followed by the file specification:

ALTER DATABASE BookData
ADD FILE
...

The filegroup where the new file was added was specified using the TO FILEGROUP clause, followed
by the filegroup name in brackets:

TO FILEGROUP [PRIMARY]
GO

In the second query in the recipe, a new transaction log file was added using ALTER DATABASE and
the ADD LOG FILE command:

ALTER DATABASE BookData
ADD LOG FILE
...

Neither file addition required the database to be offline.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 557

570Xch22.qxd 11/4/05 2:52 PM Page 557

Removing a Data or Log File from a Database
This recipe demonstrates how to remove a data or transaction log file from an existing database.
You may wish to do this if you need to relocate files from one drive/array to a different drive/array
by creating a file on one drive and then dropping the old one.

The syntax for removing a file (data or transaction log) is as follows:

ALTER DATABASE database_name
REMOVE FILE logical_file_name

The syntax arguments are described in Table 22-12.

Table 22-12. ALTER DATABASE...REMOVE FILE

Argument Description

database_name The name of the existing database.

logical_file_name The logical file name of the file to be removed from the database.

This recipe will first check for the logical file names for the BookData database, then empty the
contents of the file (which moves the data to the remaining data files), and, finally, will drop the file
from the database:

USE BookData
GO

SELECT name
FROM sys.database_files

DBCC SHRINKFILE(BookData2, EMPTYFILE)

ALTER DATABASE BookData
REMOVE FILE BookData2

This returns:

name

BookData
BookData2
BookData_log
BookData2Log

(3 row(s) affected)

The file 'BookData2' has been removed.

How It Works
The recipe started by switching to the BookData database so that the query against
sys.database_files would return all logical file names from the current connection’s database.

You can’t remove the primary data or primary transaction log file from the database, nor can
you remove a file that contains data or active transactions logging within it. DBCC SHRINKFILE was
used to remove existing data from the file to be dropped. This was done by using the EMPTYFILE
parameter (see later on in the chapter for a review of this command).

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES558

570Xch22.qxd 11/4/05 2:52 PM Page 558

After that, ALTER DATABASE was used with the REMOVE FILE command to remove the file from the
database. Removing the file from the database also removes the underlying file from the file system.

Relocating a Data or Transaction Log File
Sometimes you may find it necessary to relocate a database file for an existing database. Your rea-
sons for doing this may vary—you might need to do this because a physical drive is running out of
space, or to improve performance (placing files on separate RAID arrays).

This recipe demonstrates how to move a database file’s location using the ALTER DATABASE
command. In SQL Server 2000, you had to detach the database, move the file, and then attach the
database again from the new location. Another option was to back up the database and restore it to
the new location. In SQL Server 2005, you don’t have to detach the database in order to move the
file, although you do need to take the database offline.

The syntax for changing the file’s location is as follows:

ALTER DATABASE database_name
MODIFY FILE
{NAME = logical_file_name , FILENAME = 'new_physical_file_name_and_path')

The arguments of this syntax described in Table 22-13.

Table 22-13. ALTER DATABASE...MODIFY FILE

Argument Description

database_name The name of the existing database.

logical_file_name The logical file name of the physical file to be relocated.

new_physical_file_name_and_path The new file path and location.

In this recipe, a new database called BookWarehouse will be created using the default settings.
After that, the database will be taken offline and then copied to the new location on the server. Once
moved, the file will be relocated using ALTER DATABASE:

USE master
GO

-- Create a default database for this example
CREATE DATABASE BookWarehouse
GO

ALTER DATABASE BookWarehouse
SET OFFLINE
GO

Now move the file “C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\Book-
Warehouse.mdf” to the C:\MSSQL\Data directory. After that, execute the following:

ALTER DATABASE BookWarehouse
MODIFY FILE
(NAME = 'BookWarehouse', FILENAME = 'C:\MSSQL\Data\BookWarehouse.mdf')
GO

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 559

570Xch22.qxd 11/4/05 2:52 PM Page 559

This returns:

The file "BookWarehouse" has been modified in the system catalog. The new path will be
used the next time the database is started.

Finally, the database must then be brought back online:

ALTER DATABASE BookWarehouse
SET ONLINE
GO

How It Works
The recipe started by creating a new database with default options. The database was then taken
offline. Once offline, the data file was copied to the new location.

Once the file was moved, SQL Server was informed of the change by using the ALTER DATABASE
and the MODIFY FILE statement:

ALTER DATABASE BookWarehouse
MODIFY FILE
(NAME = 'BookWarehouse', FILENAME = 'C:\MSSQL\Data\BookWarehouse.mdf')
GO

After that, the database was brought back online by using ALTER DATABASE and SET ONLINE.

Changing a File’s Logical Name
You can change a database file’s logical name without having to bring the database offline. The logi-
cal name of a database doesn’t affect the functionality of the database itself, allowing you to change
the name for consistency and naming convention purposes. For example, if you restore a database
from backup using a new database name, you may wish for the logical name to match the new
database name.

The syntax for changing a logical file name is as follows:

ALTER DATABASE database_name
{NAME = logical_file_name

[, NEWNAME = new_logical_name] }

The arguments of this syntax are briefly described in Table 22-14.

Table 22-14. ALTER DATABASE...NEWNAME

Argument Description

database_name The name of the existing database.

logical_file_name The logical file name to be renamed.

new_logical_name The new logical file name.

This recipe changes the logical data file name of the BookWarehouse data file in the BookWarehouse
database:

ALTER DATABASE BookWarehouse
MODIFY FILE
(NAME = 'BookWarehouse', NEWNAME = 'BookWarehouse_DataFile1')
GO

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES560

570Xch22.qxd 11/4/05 2:52 PM Page 560

This returns:

The file name 'BookWarehouse_DataFile1' has been set.

How It Works
This recipe modified the BookWarehouse logical file name to BookWarehouse_DataFile1 by using
ALTER DATABASE with the MODIFY FILE command. The command used the original NAME value and
the NEWNAME value in order to make the change.

Increasing a Database’s File Size and Modifying Its Growth
Options
The previous recipe demonstrated how to change the logical filename using ALTER DATABASE and
MODIFY FILE. With the MODIFY FILE command you can also change the file sizing settings.

The syntax is as follows:

ALTER DATABASE database_name
MODIFY FILE
(

NAME = logical_file_name

[, SIZE = size [KB | MB | GB | TB]]
[, MAXSIZE = { max_size [KB | MB | GB | TB] |
UNLIMITED }]
[, FILEGROWTH = growth_increment [KB | MB | %]]
)

The arguments of this syntax are briefly described in Table 22-15.

Table 22-15. ALTER DATABASE...MODIFY FILE

Argument Description

database_name The name of the existing database.

logical_file_name The logical file name to change size or growth options for.

size [KB | MB | GB | TB] The new size (must be larger than the existing size) of the
file based on the sizing attribute of choice (kilobytes,
megabytes, gigabytes, terabytes).

{ max_size [KB | MB | GB | TB] | The new maximum allowable size of the file based on the
UNLIMITED }] chosen sizing attributes. If UNLIMITED is chosen, the file

can grow to the available space of the physical drive.

growth_increment [KB | MB | %]] The new amount that the file size increases when space is
required. You can either designate the number of kilobytes
or megabytes, or the percentage of existing file size to grow.
If you select 0, file growth will not occur.

In this recipe, a file is increased to 6MB in size and given a maximum allowable size of 10MB:

ALTER DATABASE BookWarehouse
MODIFY FILE
(NAME='BookWarehouse_DataFile1', SIZE=6MB, MAXSIZE=10MB)

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 561

570Xch22.qxd 11/4/05 2:52 PM Page 561

How It Works
This recipe used ALTER DATABASE and MODIFY FILE to change a specific file’s existing size as well as its
maximum allowable size. The NAME option was referenced to specify which file was to be modified.
The other two options, SIZE and MAXSIZE, were used to configure the new file size and maximum file
size values.

Adding a Filegroup to an Existing Database
This recipe demonstrates how to add a filegroup to an existing database using ALTER DATABASE.
Once the filegroup is created, you can then add a file or files to it.

The syntax is as follows:

ALTER DATABASE database_name
ADD FILEGROUP filegroup_name

The arguments of this syntax are described in Table 22-16.

Table 22-16. ALTER DATABASE...ADD FILEGROUP

Argument Description

database_name The name of the existing database.

filegroup_name The name of the new filegroup.

This recipe adds a new filegroup to the BookWarehouse database:

ALTER DATABASE BookWarehouse
ADD FILEGROUP FG2
GO

ALTER DATABASE BookWarehouse
ADD FILE
(NAME = 'BW2',

FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\BW2.NDF' ,
SIZE = 1MB ,
MAXSIZE = 50MB,
FILEGROWTH = 5MB)

TO FILEGROUP [FG2]
GO

How It Works
This recipe used ALTER DATABASE and ADD FILEGROUP to add a new filegroup called FG2 to an existing
database. A new file was then added to the filegroup using ALTER DATABASE, ADD FILE, and the TO
FILEGROUP command.

Setting the Default Filegroup
This recipe demonstrates how to change a filegroup into the default filegroup, meaning that the
filegroup will contain all newly created database objects by default (unless database objects are
explicitly put in a different filegroup during their creation).

The syntax for setting a filegroup to the database default is as follows:

ALTER DATABASE database_name
MODIFY FILEGROUP filegroup_name
DEFAULT

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES562

570Xch22.qxd 11/4/05 2:52 PM Page 562

This recipe sets the FG2 filegroup in the BookWarehouse database to the default filegroup:

ALTER DATABASE BookWarehouse
MODIFY FILEGROUP FG2 DEFAULT

This returns:

The filegroup property 'DEFAULT' has been set.

How It Works
This recipe used ALTER DATABASE and MODIFY FILEGROUP to change an existing filegroup to the
default filegroup. The DEFAULT keyword was used after the name of the new default filegroup.

Removing a Filegroup
This recipe demonstrates how to remove a user-defined filegroup. You can remove an empty filegroup
using the following syntax:

ALTER DATABASE database_name
REMOVE FILEGROUP filegroup_name

The arguments of this syntax are briefly described in Table 22-17.

Table 22-17. ALTER DATABASE...REMOVE FILEGROUP

Argument Description

database_name The name of the database to drop the user-defined filegroup from.

filegroup_name The name of the user-defined filegroup to drop.

In this recipe, I’ll add a new filegroup called FG3 to the BookWarehouse database. A new file will
then be created within the filegroup. After that, the file will be removed, and then the user-defined
filegroup will be removed:

ALTER DATABASE BookWarehouse
ADD FILEGROUP FG3
GO

ALTER DATABASE BookWarehouse
ADD FILE
(NAME = 'BW3',

FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\BW3.NDF' ,
SIZE = 1MB ,
MAXSIZE = 10MB,
FILEGROWTH = 5MB)

TO FILEGROUP [FG3]
GO

-- Now, the file in the filegroup is removed
ALTER DATABASE BookWarehouse
REMOVE FILE BW3
GO

-- Then the filegroup
ALTER DATABASE BookWarehouse
REMOVE FILEGROUP FG3

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 563

570Xch22.qxd 11/4/05 2:52 PM Page 563

This returns:

The file 'BW3' has been removed.
The filegroup 'FG3' has been removed.

How It Works
A user-defined filegroup can be removed once it is empty. In this recipe, ALTER DATABASE and
REMOVE FILE were used to first empty the FG3 user-defined filegroup of files. Once empty of files,
ALTER DATABASE and REMOVE FILEGROUP were used to remove the filegroup from the database.

Making a Database or Filegroup Read-Only
You can use ALTER DATABASE to set the database or specific user-defined filegroup to read-only access.
Making a database or filegroup read-only prevents data modifications from taking place, and is
often used for static reporting databases. Using read-only options can improve query performance,
because SQL Server no longer needs to lock objects queried within the database due to the fact that
data and object modification in the database or user-defined filegroup is not allowed (although this
isn’t a replacement for setting up appropriate security permissions for data and object modifications).

The syntax for changing a database’s updateability is as follows:

ALTER DATABASE database_name
SET { READ_ONLY | READ_WRITE }

The arguments for this statement only require the database name, and the updateability option
to be set.

The syntax for changing a filegroup’s updateability is as follows:

ALTER DATABASE database_name
MODIFY FILEGROUP filegroup_name
{ READ_ONLY | READ_WRITE }

All that is needed in this syntax block is the database name, filegroup, and updateability option.
This recipe demonstrates setting the entire BookWarehouse to read-only mode, and then setting

it back to read-write mode (where modifications can then be made again). After this, the recipe
demonstrates setting the updateability of a specific filegroup:

-- Make the database read only
ALTER DATABASE BookWarehouse
SET READ_ONLY
GO

-- Allow updates again
ALTER DATABASE BookWarehouse
SET READ_WRITE
GO

-- Add a new filegroup
ALTER DATABASE BookWarehouse
ADD FILEGROUP FG4
GO

-- Add a file to the filegroup
ALTER DATABASE BookWarehouse
ADD FILE

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES564

570Xch22.qxd 11/4/05 2:52 PM Page 564

(NAME = 'BW4',
FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\BW4.NDF' ,
SIZE = 1MB ,
MAXSIZE = 50MB,
FILEGROWTH = 5MB)

TO FILEGROUP [FG4]
GO

-- Make a specific filegroup read-only
ALTER DATABASE BookWarehouse
MODIFY FILEGROUP FG4 READ_ONLY
GO

-- Allow updates again
ALTER DATABASE BookWarehouse
MODIFY FILEGROUP FG4 READ_WRITE
GO

How It Works
This recipe demonstrated changing the updateability of both a database and a specific filegroup. To
modify the database, ALTER DATABASE and SET READ_ONLY were used. SET READ_WRITE was used to allow
updates again. The last two queries in the recipe updated a specific filegroup, using ALTER DATABASE
and MODIFY FILEGROUP to change updateability.

Viewing and Managing Database Space Usage
The last set of recipes in this chapter covers how to manage and view database disk storage usage.
You’ll learn how to shrink an entire database, or just the individual files within, depending on your
needs. This next recipe demonstrates how to view space usage with the sp_spaceused system-stored
procedure.

Viewing Database Space Usage
This recipe demonstrates how to display database data disk space usage using the sp_spaceused
system-stored procedure. To view transaction log usage, I’ll also demonstrate the DBCC SQLPERF
command.

The syntax for sp_spaceused is as follows:

sp_spaceused [[@objname =] 'objname']
[,[@updateusage =] 'updateusage']

The parameters of this procedure are briefly described in Table 22-18.

Table 22-18. sp_spaceused Parameters

Parameter Description

'objname' The optional object name (table, for example) to view space usage. If not
designated, the entire database’s space usage information is returned.

'updateusage' This parameter is used with a specific object, and accepts either true or false.
If true, DBCC UPDATEUSAGE is used to update space usage information in the
system tables.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 565

570Xch22.qxd 11/4/05 2:52 PM Page 565

The syntax for DBCC SQLPERF is as follows:

DBCC SQLPERF (LOGSPACE)
[WITH NO_INFOMSGS]

This DBCC command’s arguments are briefly described in Table 22-19.

Table 22-19. DBCC SQLPERF Arguments

Parameter Description

LOGSPACE This is the only documented parameter allowed, and when designated, returns
transaction log space information for the entire SQL Server instance.

WITH NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses informational
messages from the DBCC output.

In this recipe, database and transaction log space will be viewed for the AdventureWorks database:

USE AdventureWorks
GO

EXEC sp_spaceused

This returns:

database_name database_size unallocated space reserved data index_size unused
AdventureWorks 192.63 MB 26.09 MB 168480 KB 84416 KB 77584 KB 6480 KB

Next, transaction log information is displayed for the entire SQL Server instance:

DBCC SQLPERF (LOGSPACE)

This returns:

Database Name Log Size (MB) Log Space Used (%) Status
---------------------- ------------- ------------------ -----------
master 0.4921875 69.02437 0
tempdb 0.4921875 62.50349 0
model 0.4921875 69.04762 0
msdb 0.7421875 53.15789 0
AdventureWorksDW 1.992188 20.58824 0
AdventureWorks 1.992188 33.33333 0

(6 row(s) affected)

DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

How It Works
In this recipe, space usage for the AdventureWorks database was returned using the system-stored
procedure sp_spaceused and the DBCC SQLPERF command.

In the results of sp_spaceused, the database_size column showed the current size of the data-
base (including both the data and log files). The unallocated space column showed unused space
in the database and the reserved column the amount of space used by database objects. The data
column showed the amount of space used by the object data, and index_size the amount of space

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES566

570Xch22.qxd 11/4/05 2:52 PM Page 566

The output of DBCC SQLPERF returned data for all databases on the SQL Server instance, showing
the log size in megabytes and the percentage of the log file currently being used with active or inactive
log information.

Shrinking the Database or a Database File
In this recipe, I demonstrate how to shrink an entire database using DBCC SHRINKDATABASE or a specific
database file using DBCC SHRINKFILE. When following this recipe, keep in mind that shrinking data-
bases and database files is a relatively expensive operation, and should only be performed when
necessary.

Database files, when auto-growth is enabled, can expand due to index rebuilds or data modifi-
cation activity. You may have extra space in the database due to data modifications and index rebuilds.
If you don’t need to free up the unused space, you should allow the database to keep it reserved.
However, if you do need the unused space and want to free it up, use DBCC SHRINKDATABASE or DBCC
SHRINKFILE.

The DBCC SHRINKDATABASE command is use to shrink data and log files in a database.

■Note This command will shrink individual data files (MDF, NDF) on an individual basis, but will shrink the
transaction log file or files (LDF) as if the multiple transaction log files were one continuous file.

The syntax is as follows:

DBCC SHRINKDATABASE
('database_name' | database_id | 0

[,target_percent]
[, { NOTRUNCATE | TRUNCATEONLY }]

)

[WITH NO_INFOMSGS]

The arguments for this command are described in Table 22-20.

Table 22-20. DBCC SHRINKDATABASE Arguments

Argument Description

'database_name' | database_id | 0 You can designate a specific database name to shrink the
system database id, or if 0 is specified, the current
database your query session is connected to.

target_percent The target percentage designates the free space remaining
in the database file after the shrinking event.

NOTRUNCATE | TRUNCATEONLY NOTRUNCATE performs the data movements needed to
create free space, but retains the freed space in the file
without releasing it to the operating system. If NOTRUNCATE
is not designated, the free file space is released to the
operating system. TRUNCATEONLY frees up space without
relocating data within the files. If not designated, data
pages are reallocated within the files to free up space,
which can lead to extensive I/O.

WITH NO_INFOMSGS Prevents informational messages from being returned
from the DBCC command.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 567

570Xch22.qxd 11/4/05 2:52 PM Page 567

The DBCC SHRINKFILE command is use to shrink a specific database file in a database. The syntax
is as follows:

DBCC SHRINKFILE
(

{ ' file_name ' | file_id }
{ [, EMPTYFILE]
| [[, target_size] [, { NOTRUNCATE | TRUNCATEONLY }]]
}

)

[WITH NO_INFOMSGS]

The arguments for this command are described in Table 22-21.

Table 22-21. DBCC SHRINKFILE Arguments

Argument Description

' file_name ' | file_id The specific logical file name or file id to shrink.

EMPTYFILE Moves all data off the file so that it can be dropped using ALTER
DATABASE and REMOVE FILE.

target_size The free space to be left in the database file (in megabytes). Leaving
this blank instructs SQL Server to free up space to the default file size.

NOTRUNCATE | TRUNCATEONLY NOTRUNCATE relocates allocated pages from within the file to the front
of the file, but does not free the space to the operating system. Target
size is ignored when used with NOTRUNCATE. TRUNCATEONLY causes
unused space in the file to be released to the operating system, but
only does so with free space found at the end of the file. No pages
are rearranged or relocated. Target size is also ignored with the
TRUNCATEONLY option. Use this option if you must free up space on
the database file with minimal impact on database performance
(rearranging pages on an actively utilized production database can
cause performance issues, such as slow query response time).

WITH NO_INFOMSGS Prevents informational messages from being returned from the
DBCC command.

In this recipe, the AdventureWorks will have its files expanded by allocating additional space
using ALTER DATABASE...MODIFY FILE, and then shrunk using the two DBCC file and database shrinking
commands. In the first example, the AdventureWorks data and transaction log file are both expanded
to larger sizes, and then shrunk using a single DBCC operation:

ALTER DATABASE AdventureWorks
MODIFY FILE (NAME = AdventureWorks_Data , SIZE= 250MB)
GO

ALTER DATABASE AdventureWorks
MODIFY FILE (NAME = AdventureWorks_Log , SIZE= 500MB)
GO

The sp_spaceused system-stored procedure is then used to return the space usage for the
AdventureWorks database:

USE AdventureWorks
GO

EXEC sp_spaceused
GO

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES568

570Xch22.qxd 11/4/05 2:52 PM Page 568

This returns:

database_name database_size unallocated space
AdventureWorks 750.00 MB 85.45 MB

reserved data index_size unused
168496 KB 83896 KB 78024 KB 6576 KB

Next, the size is reduced using DBCC SHRINKDATABASE:

DBCC SHRINKDATABASE ('AdventureWorks', 10)

This returns:

DbId FileId CurrentSize MinimumSize UsedPages EstimatedPages
------ ----------- ----------- ----------- ----------- --------------
6 1 23416 15360 21064 21064
6 2 8224 256 8224 256

In the second example of this recipe, only the transaction log file is expanded, and then shrunk
using DBCC SHRINKFILE:

ALTER DATABASE AdventureWorks
MODIFY FILE (NAME = AdventureWorks_Log , SIZE= 150MB)
GO

The sp_spaceused system-stored procedure is then used to return the space usage for the
AdventureWorks database:

USE AdventureWorks
GO

EXEC sp_spaceused
GO

This returns:

database_name database_size unallocated space
AdventureWorks 332.31 MB 17.77 MB

reserved data index_size unused
168496 KB 83896 KB 78024 KB 6576 KB

Next, the size is reduced using DBCC SHRINKDATABASE:

DBCC SHRINKFILE ('AdventureWorks_Log', 100)

This returns:

DbId FileId CurrentSize MinimumSize UsedPages EstimatedPages
6 2 13696 256 13696 256

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 569

570Xch22.qxd 11/4/05 2:52 PM Page 569

How It Works
DBCC SHRINKDATABASE shrinks the data and log files in your database. The behavior of this DBCC
command is deceptively simple; but there are many details you should be aware of:

• DBCC SHRINKDATABASE shrinks each data file on a per-file basis, but treats the transaction log
or logs as a single entity.

• The database can never shrink smaller than the model database.

• You cannot shrink a database past the target percentage specified.

• You cannot shrink a file past the original file creation size, or size used in an ALTER DATABASE
statement.

In this recipe, the AdventureWorks data and log files were both increased to a larger size. After
that, the DBCC SHRINKDATABASE command was used to reduce it down to a target free space size of 10%:

DBCC SHRINKDATABASE ('AdventureWorks', 10)

After execution, the command returned a result set showing the current size (in 8KB pages),
minimum size (in 8KB pages), currently used 8KB pages, and estimated 8KB pages that SQL Server
could shrink the file down to.

DbId FileId CurrentSize MinimumSize UsedPages EstimatedPages
------ ----------- ----------- ----------- ----------- --------------
6 1 23416 15360 21064 21064
6 2 8224 256 8224 256

In the second part of the recipe, DBCC SHRINKFILE was demonstrated. DBCC SHRINKFILE is very
similar to DBCC SHRINKDATABASE, only it allows you to shrink the size of individual data and log files
instead of all files in the database. In this recipe, the AdventureWorks transaction log file was expanded,
and then shrunk down to a specific size (in megabytes):

DBCC SHRINKFILE ('AdventureWorks_Log', 100)

This command shrinks the physical file by removing inactive virtual log files. Virtual log files
(VLFs), which range in size from a minimum 256 kilobytes and larger, are the unit of truncation for
a transaction log and are created as records are written to the transaction log.

Within the transaction log is the “active” logical portion of the log. This is the area of the trans-
action log containing active transactions. This active portion does not usually match the physical
bounds of the file, but will instead “round robin” from VLF to VLF. Once a VLF no longer contains
active transactions, it can be truncated through a BACKUP LOG operation or automated system trun-
cation. This truncation doesn’t reduce the size of the transaction log file; it only makes the VLFs
available for new log records.

DBCC SHRINKFILE or DBCC SHRINKDATABASE will make its best effort to remove inactive VLFs from
the end of the physical file. SQL Server will also attempt to add “dummy” rows to push the active
logical log towards the beginning of the physical file—so sometimes issuing a BACKUP LOG after the
first execution of the DBCC SHRINKFILE command, and then issuing the DBCC SHRINKFILE command
again, will allow you to free up the originally requested space.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES570

570Xch22.qxd 11/4/05 2:52 PM Page 570

Database Integrity and Optimization

In the previous chapter, I showed you how to create, configure, modify and drop a database. In this
chapter I’ll show you how to maintain your database using the Transact-SQL language, including
ways to use SQL Server 2005’s new ALTER INDEX command for rebuilding or defragmenting indexes,
and DBCC commands for helping identify database integrity problems.

In previous versions of SQL Server, DBCC commands such as DBCC CHECKDB were resource-intensive,
and could adversely affect performance if executed on a busy SQL Server instance. In SQL Server 2005,
Microsoft has enhanced several of the DBCC commands to use internal database snapshots of target
data instead of using table or database locks. Several of the commands are also more thorough in
their checking routines than in previous versions of SQL Server.

■Caution Several of the DBCC commands reviewed in this chapter have REPAIR options. With SQL Server 2005,
Microsoft now recommends that you solve data integrity issues by restoring the database from the last good
backup rather then resorting to a REPAIR option. If restoring from backup is not an option, the REPAIR option
should be used only as a last resort. Depending on the REPAIR option selected, data loss can occur, and the prob-
lem may still not be resolved.

This chapter contains recipes that you can run periodically to check for database integrity
issues. Running periodic checks (daily, weekly, and so on) will allow you to identify internal errors
that can occur in various areas of the database.

As data is modified in your databases, the tables and indexes can become fragmented. The
more fragmented a clustered or nonclustered index becomes, the more potential pages are required
to be returned by the database engine in order to fulfill the same query request. The last two recipes
in this chapter will address how to rebuild or defragment these indexes on a periodic basis, using
Transact-SQL.

Database Checking
Database integrity errors are rare, but do occur. The next two recipes will review the commands
used to validate and check for issues within a database. You’ll learn how to check page usage and
allocation in the database by using DBCC CHECKALLOC. You’ll also learn how to check the integrity of
database objects using DBCC CHECKDB.

Before getting into the recipes, however, I think that a quick discussion of disk space allocation
structures is in order. When I talk about page allocation and integrity of database objects, it is impor-
tant to understand what exactly is being verified. At a high level, I’m talking about verification of SQL
Server’s central unit of storage, the 8KB page. SQL Server reads and writes data at the page level.
Pages are stored in blocks called extents, which consist of eight contiguous 8KB pages. Internally,

571

C H A P T E R 2 3

■ ■ ■

570Xch23.qxd 11/4/05 2:52 PM Page 571

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION572

a page includes header information which tracks the free space and usage of that page. There are
different page types used to store varying types of data. These page types include data pages (storing
data types such as char, int, datetime), index data pages, and large data type data pages (for example
varchar(max), xml, varbinary(max)). There are also varying page types used to track system metadata,
including information for where pages and extents are allocated, where free space is available, which
extents contain table or index data, the extents last modified by bulk operations, and more.

Checking Consistency of the Disk Space Allocation Structures
with DBCC CHECKALLOC
DBCC CHECKALLOC checks page usage and allocation in the database, and will report on any errors
that are found (this command is automatically included in the execution of DBCC CHECKDB too).

The syntax is as follows:

DBCC CHECKALLOC
(

['database_name' | database_id | 0]
[, NOINDEX

|
{ REPAIR_ALLOW_DATA_LOSS
| REPAIR_FAST
| REPAIR_REBUILD
}]

)

[WITH { [ALL_ERRORMSGS]
[, NO_INFOMSGS]
[, TABLOCK]
[, ESTIMATEONLY]

}
]

The arguments of this command are described in Table 23-1.

Table 23-1. DBCC CHECKALLOC Arguments

Argument Description

'database_name' | database_id | 0 The database name or database ID that you want to check
for errors. When 0 is selected, the current database is used.

NOINDEX When used, nonclustered indexes are not included in the
checks.

REPAIR_ALLOW_DATA_LOSS | See the beginning of the chapter regarding a warning on
REPAIR_FAST | REPAIR_REBUILD using repair options. REPAIR_ALLOW_DATA_LOSS attempts

a repair of the table or indexed view, with the risk of losing
data in the process. REPAIR_FAST and REPAIR_REBUILD are
maintained for backward-compatibility only.

ALL_ERRORMSGS When ALL_ERRORMSGS is chosen, every error found will be
displayed. If this option isn’t designated, a maximum of 200
error messages can be displayed.

NO_INFOMSGS NO_INFOMSGS represses all informational messages from the
DBCC output.

TABLOCK When selected, an exclusive table lock is placed on the
table instead of using an internal database snapshot, thus
potentially decreasing query concurrency in the database.

ESTIMATEONLY Provides the estimated space needed by the tempdb database

570Xch23.qxd 11/4/05 2:52 PM Page 572

In this brief recipe, data page usage and allocation will be checked for errors in the AdventureWorks
database:

DBCC CHECKALLOC ('AdventureWorks')

This returns the following results (abridged). It includes information about pages used, and
extents for each index. The key piece of information is in the final line, where you can see the reporting
of the number of allocation errors and consistency errors encountered:

DBCC results for 'AdventureWorks'.
...

Table Person.Address Object ID 53575229.
Index ID 1, partition ID 72057594042974208, alloc unit ID 72057594048086016 (type
...
Index ID 4, partition ID 72057594047627264, alloc unit ID 72057594053066752 (type
In-row data). 29 pages used in 4 dedicated extents.
Total number of extents is 76.

...

Object ID 2130106629, index ID 1, partition ID 72057594046840832, alloc unit ID
72057594052214784 (type In-row data), data extents 13, pages 103, mixed extent pages
2.
...
CHECKALLOC found 0 allocation errors and 0 consistency errors in database
'AdventureWorks'.
DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

How It Works
In this brief recipe, the DBCC CHECKALLOC command was used to verify the allocation of all database
pages and internal structures in the AdventureWorks database. Informational data was returned,
including the internal page information, number of extents, and pages. At the end of the command,
any allocation or consistency errors were reported (in this case, none were found).

When DBCC CHECKALLOC is executed, an internal database snapshot is created to maintain trans-
actional consistency during the operation. If for some reason a database snapshot can’t be created,
or if TABLOCK is specified, an exclusive database lock is acquired during the execution of the command
(thus potentially hurting database query concurrency). Unless you have a good reason not to, you
should allow SQL Server 2005 to issue an internal database snapshot, so that concurrency in your
database is not impacted.

Checking Allocation and Structural Integrity of All Database
Objects with DBCC CHECKDB
The DBCC CHECKDB command checks the integrity of objects in a database. Running DBCC CHECKDB
periodically against your databases is a good maintenance practice. Weekly execution is usually
sufficient; however, the optimal frequency all depends on the activity and size of the database in
question. If possible, DBCC CHECKDB should be executed during periods of light database activity.
Doing it this way will allow DBCC CHECKDB to finish faster, and keep other processes from being
slowed down by its overhead.

Like the other commands I’ve described in this chapter, an internal database snapshot is created
to maintain transactional consistency during the operation when this command is executed. If for

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 573

570Xch23.qxd 11/4/05 2:52 PM Page 573

some reason a database snapshot cannot be created (or the TABLOCK option was specified), shared
table locks are held for table checks, and exclusive database locks for the allocation checks.

As part of its execution, DBCC CHECKDB executes other DBCC commands that are discussed elsewhere
in this chapter, including DBCC CHECKTABLE, DBCC CHECKALLOC, and DBCC CHECKCATALOG. In addition to
this, the integrity of SQL Server 2005 Service Broker data is validated as well.

The syntax for DBCC CHECKDB is as follows:

DBCC CHECKDB
(

'database_name' | database_id | 0
[, NOINDEX
| { REPAIR_ALLOW_DATA_LOSS
| REPAIR_FAST
| REPAIR_REBUILD
}]

)

[WITH {
[ALL_ERRORMSGS]
[, [NO_INFOMSGS]]
[, [TABLOCK]]
[, [ESTIMATEONLY]]
[, [PHYSICAL_ONLY]]
[, [DATA_PURITY]]

}
]

The arguments of this command, which will look familiar based on previous commands
reviewed in this chapter, are described in Table 23-2.

Table 23-2. DBCC CHECKDB Arguments

Argument Description

'database_name' | database_id | 0 The database name or database ID that you want to
check for errors. When 0 is selected, the current database
is used.

NOINDEX Nonclustered indexes are not included in the integrity
checks when this option is selected.

REPAIR_ALLOW_DATA_LOSS | See the beginning of the chapter regarding a warning on
REPAIR_FAST | REPAIR_REBUILD using repair options. REPAIR_ALLOW_DATA_LOSS attempts

a repair of the table or indexed view, with the risk of losing
data in the process. REPAIR_FAST is maintained for backward
compatibility only and REPAIR_REBUILD performs fixes
without risk of data loss.

ALL_ERRORMSGS When ALL_ERRORMSGS is chosen, every error found will be
displayed (instead of just the default 200 error message
limit).

NO_INFOMSGS NO_INFOMSGS represses all informational messages from
the DBCC output.

TABLOCK When selected, an exclusive database lock is used instead
of an internal database snapshot. Using this option
decreases concurrency with other queries being executed
against objects in the database.

ESTIMATEONLY Provides the estimated space needed by the tempdb
database to execute the command.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION574

570Xch23.qxd 11/4/05 2:52 PM Page 574

Argument Description

PHYSICAL_ONLY Limits the integrity checks to physical issues only, skipping
logical checks.

DATA_PURITY For use on upgraded databases (from previous versions of
SQL Server), this instructs DBCC CHECKDB to detect column
values that do not conform to the data type (for example
if an integer value has a bigint-sized value stored in it).
Once all bad values in the upgraded database are cleaned
up, SQL Server 2005 maintains the column-value integrity
moving forward.

Despite all of these syntax options, the common form of executing this command is also most
likely the simplest. This brief recipe executes DBCC CHECKDB against the AdventureWorks database. For
thorough integrity and data checking of your database, the default is often suitable:

DBCC CHECKDB('AdventureWorks')

This returns the following informational results detailing the database objects evaluated within
the database, including the number of rows, pages, and—most importantly at the end—number
of allocation or consistency errors found:

DBCC results for 'AdventureWorks'.
Service Broker Msg 9675, State 1: Message Types analyzed: 14.
Service Broker Msg 9676, State 1: Service Contracts analyzed: 6.
...
DBCC results for 'sys.sysrowsetcolumns'.
There are 1301 rows in 9 pages for object "sys.sysrowsetcolumns".
DBCC results for 'sys.sysrowsets'.
...
There are 6 rows in 1 pages for object "Person.AddressType".
DBCC results for 'Production.ProductSubcategory'.
There are 37 rows in 1 pages for object "Production.ProductSubcategory".
DBCC results for 'AWBuildVersion'.
There are 1 rows in 1 pages for object "AWBuildVersion".
DBCC results for 'Production.TransactionHistoryArchive'.
There are 89253 rows in 620 pages for object "Production.TransactionHistoryArchive".
...
CHECKDB found 0 allocation errors and 0 consistency errors in database 'AdventureWorks'.
DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

How It Works
In this recipe a thorough integrity check was performed against the AdventureWorks database using
DBCC CHECKDB, including the name of the database within parentheses:

DBCC CHECKDB('AdventureWorks')

This command returned several lines of information, including the final information about the
number of allocation or consistency errors.

As I warned in the beginning of this chapter, you should be aware that if DBCC encounters errors,
Microsoft now recommends that you solve data integrity issues by restoring the database from the
last good backup rather then resorting to REPAIR options. If restoring from backup is not an option,
the REPAIR options should be used only as a last resort. Depending on the REPAIR options selected,

esolved.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 575

570Xch23.qxd 11/4/05 2:52 PM Page 575

Tables and Constraints
The next set of recipes demonstrates DBCC commands used to validate integrity at the constraint
and table level. Specifically, I’ll be demonstrating how to use:

• DBCC CHECKFILEGROUP, which is very similar to DBCC CHECKDB, but limits integrity and allocation
checking to objects within a specified filegroup.

• DBCC CHECKTABLE, which is used to identify any integrity issues for a specific table or indexed
view.

• DBCC CHECKCONSTRAINTS, which alerts you to any CHECK or constraint violations found in
a specific table or constraint.

Lastly, I’ll review how to check for consistency in and between system tables using the
DBCC CHECKCATALOG command.

Checking Allocation and Structural Integrity of All Tables in
a Filegroup Using DBCC CHECKFILEGROUP
The DBCC CHECKFILEGROUP command is very similar to DBCC CHECKDB, only it limits its integrity and
allocation checking to objects within a single filegroup. For very large databases (VLDB) performing
a DBCC CHECKDB operation may be time-prohibitive. If you use user defined filegroups in your database,
you can use DBCC CHECKFILEGROUP to perform your weekly (or periodic) checks instead—spreading
out filegroup checks across different days.

When this command is executed, an internal database snapshot is created to maintain transac-
tional consistency during the operation. If, for some reason, a database snapshot can’t be created
(or the TABLOCK option was specified), shared table locks are created by the command for table checks,
as well as an exclusive database lock for the allocation checks.

Again, if errors are found by DBCC CHECKDB, with SQL Server 2005, Microsoft now recommends
that you solve any discovered issues by restoring from the last good database backup. Unlike other
DBCC commands in this chapter, DBCC CHECKFILEGROUP doesn’t have repair options (although repair
options are no longer recommended by Microsoft anyhow).

The syntax is as follows:

DBCC CHECKFILEGROUP
(

[{ 'filegroup' | filegroup_id | 0 }]
[, NOINDEX]
)

[WITH
{

[ALL_ERRORMSGS | NO_INFOMSGS]
[, [TABLOCK]]
[, [ESTIMATEONLY]]

}
]

The arguments of this command are described in Table 23-3.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION576

570Xch23.qxd 11/4/05 2:52 PM Page 576

Table 23-3. DBCC CHECKFILEGROUP Arguments

Argument Description

'filegroup' | filegroup_id | 0 The filegroup name or filegroup ID that you want to check. If
0 is designated, the primary filegroup is used.

NOINDEX When designated, nonclustered indexes are not included in
the integrity checks.

ALL_ERRORMSGS When ALL_ERRORMSGS is chosen, all errors are displayed in the
output, instead of the default 200 message limit.

NO_INFOMSGS NO_INFOMSGS represses all informational messages from the
DBCC output.

TABLOCK When selected, an exclusive database lock is used instead of
using an internal database snapshot (using this option
decreases concurrency with other database queries, but
speeds up the DBCC command execution).

ESTIMATEONLY Provides the estimated space needed by the tempdb database
to execute the command.

In this recipe, the primary filegroup integrity will be checked in the AdventureWorks database:

USE AdventureWorks
GO
DBCC CHECKFILEGROUP('PRIMARY')

This returns the following abridged results:

DBCC results for 'AdventureWorks'.
DBCC results for 'sys.sysrowsetcolumns'.
There are 1301 rows in 9 pages for object "sys.sysrowsetcolumns".
DBCC results for 'sys.sysrowsets'.
There are 248 rows in 2 pages for object "sys.sysrowsets".
DBCC results for 'sysallocunits'.
...
There are 10 rows in 1 pages for object "Sales.SalesReason".
DBCC results for 'Sales.Individual'.
There are 18484 rows in 3082 pages for object "Sales.Individual".
DBCC results for 'Sales.SalesTaxRate'.
...
CHECKFILEGROUP found 0 allocation errors and 0 consistency errors in database
'AdventureWorks'.
DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

How It Works
In this recipe, allocation and structural integrity were checked for all objects in the PRIMARY filegroup
in the AdventureWorks database. The result output showed row and page counts for filegroup objects
and a sum total of the number of allocation and consistency errors found (reported at the end). Like
the other DBCC commands, the second to last line is most critical for knowing if there are any issues:

CHECKFILEGROUP found 0 allocation errors and 0 consistency errors
in database 'AdventureWorks'.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 577

570Xch23.qxd 11/4/05 2:52 PM Page 577

Checking Data Integrity for Tables and Indexed Views Using
DBCC CHECKTABLE
Although stability has increased with each version of SQL Server, data integrity issues can still occur.
In order to identify issues in a specific table or indexed view, you can use the DBCC CHECKTABLE
command. (If you want to run it for all tables and indexed views in the database, use DBCC
CHECKDB instead, which performs DBCC CHECKTABLE for each table in your database).

In SQL Server 2005, when DBCC CHECKTABLE is executed, an internal database snapshot is created
to maintain transactional consistency during the operation. If for some reason a database snapshot
can’t be created, a shared table lock is applied to the target table or indexed view instead (thus poten-
tially hurting database query concurrency against the target objects).

The syntax is as follows:

DBCC CHECKTABLE
(

'table_name' | 'view_name'
[, NOINDEX
| index_id
| { REPAIR_ALLOW_DATA_LOSS
| REPAIR_FAST
| REPAIR_REBUILD }
]

)

[WITH
{ [ALL_ERRORMSGS | NO_INFOMSGS]
[, [TABLOCK]]
[, [ESTIMATEONLY]]
[, [PHYSICAL_ONLY]]

}
]

The arguments of this command are described in Table 23-4.

Table 23-4. DBCC CHECKTABLE Arguments

Argument Description

'table_name' | 'view_name' The table or indexed view you want to check.

NOINDEX This keyword instructs the command not to check
nonclustered indexes.

index_id The specific ID of the index to be checked (if you are
checking a specific index).

REPAIR_ALLOW_DATA_LOSS | See the warning on using REPAIR options at the beginning
REPAIR_FAST | REPAIR_REBUILD of the chapter. REPAIR_ALLOW_DATA_LOSS attempts a repair of

the table or indexed view, with the risk of losing data in the
process. REPAIR_FAST is no longer used, and is kept for
backward compatibility only. REPAIR_REBUILD does repairs
and index rebuilds without any risk of data loss.

ALL_ERRORMSGS | NO_INFOMSGS When ALL_ERRORMSGS is chosen, every error found during
the command execution will be displayed. NO_INFOMSGS
represses all informational messages from the DBCC output.
If neither option is designated, up to 200 error messages
could be displayed.

TABLOCK When selected, a shared table lock is placed on the table
instead of using an internal database snapshot. Using this
option decreases concurrency with other database queries

.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION578

570Xch23.qxd 11/4/05 2:52 PM Page 578

Argument Description

ESTIMATEONLY Provides the estimated space needed by the tempdb
database to execute the command (but doesn’t actually
execute the integrity checking).

PHYSICAL_ONLY Limits the integrity checks to physical issues only, skipping
logical checks.

This recipe provides a few examples of using the command. In the first example, the integrity
of the Production.Product table will be checked in the AdventureWorks database:

DBCC CHECKTABLE ('Production.Product')
WITH ALL_ERRORMSGS

This returns (results vary based on your environment):

DBCC results for 'Production.Product'.
There are 504 rows in 13 pages for object "Production.Product".
DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

In the next example in the recipe, we return an estimate of tempdb space required for a check
on the Sales.SalesOrderDetail table. This allows you to know ahead of time if a specific CHECKTABLE
operation requires more space than you have available:

DBCC CHECKTABLE ('Sales.SalesOrderDetail')
WITH ESTIMATEONLY

This returns (these results may differ from yours, since they are based in part on your local
environment):

Estimated TEMPDB space needed for CHECKTABLES (KB)
--
1121

(1 row(s) affected)

DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

This last example executes DBCC CHECKTABLE for a specific index, checking for physical errors only
(no logical). First, however, the index ID needs to be determined:

SELECT index_id
FROM sys.indexes
WHERE object_id = OBJECT_ID('Sales.SalesOrderDetail')
AND name = 'IX_SalesOrderDetail_ProductID'

This returns:

index_id

3

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 579

570Xch23.qxd 11/4/05 2:52 PM Page 579

Next, the index_id will be used in the command:

DBCC CHECKTABLE ('Sales.SalesOrderDetail', 3)
WITH PHYSICAL_ONLY

This returns:

DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

How It Works
In this recipe, the first example demonstrated how to check the integrity of a single table, showing
all error messages if they exist (instead of the 200 message maximum default). The name of the
table to check was included as the first argument:

DBCC CHECKTABLE ('Production.Product')

The second argument, ALL_ERRORMSGS, designated that any and all error messages found would
be returned:

WITH ALL_ERRORMSGSx

DBCC CHECKTABLE checks for errors regarding data page linkages, pointers, verification that rows
in a partition are actually in the correct partition, and more.

In the second example, a tempdb size requirement estimate was returned for the
Sales.SalesOrderDetail table by designating the WITH ESTIMATEONLY argument:

DBCC CHECKTABLE ('Sales.SalesOrderDetail')
WITH ESTIMATEONLY

In the last example, the index ID of the IX_SalesOrderDetail_ProductID index on the
Sales.SalesOrderDetail table was retrieved from the sys.indexes system catalog view. After
retrieving the index ID, it was used in the DBCC CHECKTABLE command along with the PHYSICAL_ONLY
argument, which was used to skip logical integrity checks against that index.

Checking Table Integrity with DBCC CHECKCONSTRAINTS
DBCC CHECKCONSTRAINTS alerts you to any CHECK or foreign key constraint violations found in a specific
table or constraint. This command allows you to return the violating data so that you can correct the
constraint violation accordingly (although this command does not catch constraints that have been
disabled using NOCHECK).

The syntax is as follows:

DBCC CHECKCONSTRAINTS
[('table_name' | table_id | 'constraint_name' |
constraint_id)]
[WITH
{ ALL_CONSTRAINTS | ALL_ERRORMSGS } [, NO_INFOMSGS]]

The arguments of this command are described in Table 23-5.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION580

570Xch23.qxd 11/4/05 2:52 PM Page 580

Table 23-5. DBCC CHECKCONSTRAINTS Arguments

Argument Description

'table_name' | table_id | The table name, table ID, constraint name, or constraint
'constraint_name' | constraint_id ID that you want to validate. If a specific object isn’t

designated, all the objects in the database will be evaluated.

ALL_CONSTRAINTS | ALL_ERRORMSGS When ALL_CONSTRAINTS is selected, all constraints (enabled
or disabled) are checked. When ALL_ERRORMSGS is selected,
all rows that violate constraints are returned in the result
set (instead of the default maximum of 200 rows).

NO_INFOMSGS NO_INFOMSGS represses all informational messages from the
DBCC output.

In this recipe, I demonstrate how to check the constraints of a table after a CHECK constraint has
been violated:

ALTER TABLE Production.WorkOrder NOCHECK CONSTRAINT CK_WorkOrder_EndDate
GO

-- Set an EndDate to earlier than a StartDate
UPDATE Production.WorkOrder
SET EndDate = '1/1/2001'
WHERE WorkOrderID = 1
GO

ALTER TABLE Production.WorkOrder CHECK CONSTRAINT CK_WorkOrder_EndDate
GO

DBCC CHECKCONSTRAINTS ('Production.WorkOrder')

This returns the following results:

Table Constraint Where
[Production].[WorkOrder] [CK_WorkOrder_EndDate] [StartDate] = '2001-07-04
00:00:00.000' AND [EndDate] = '2001-01-01 00:00:00.000'

How It Works
In this recipe, the check constraint called CK_WorkOrder on the Production.WorkOrder table was
disabled, using the ALTER TABLE...NOCHECK CONSTRAINT command:

ALTER TABLE Production.WorkOrder NOCHECK CONSTRAINT CK_WorkOrder_EndDate
GO

This disabled constraint restricted values in the EndDate column from being less than the date
in the StartDate column.

After disabling the constraint, a row was updated to violate this check constraint’s rule:

UPDATE Production.WorkOrder
SET EndDate = '1/1/2001'
WHERE WorkOrderID = 1
GO

The constraint was then re-enabled:

ALTER TABLE Production.WorkOrder
CHECK CONSTRAINT CK_WorkOrder_EndDate

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 581

570Xch23.qxd 11/4/05 2:53 PM Page 581

The DBCC CHECKCONSTRAINTS command was then executed against the table:

DBCC CHECKCONSTRAINTS('Production.WorkOrder')

The command returned the table name, constraint violated, and the reason why the constraint
was violated:

Table Constraint Where
[Production].[WorkOrder] [CK_WorkOrder_EndDate] [StartDate] = '2001-07-04
00:00:00.000' AND [EndDate] = '2001-01-01 00:00:00.000'

Unlike several other database integrity DBCC commands, DBCC CHECKCONSTRAINTS is not run
within DBCC CHECKDB, so you must execute it as a stand-alone process if you need to identify data
constraint violations in the database.

Checking System Table Consistency with DBCC CHECKCATALOG
DBCC CHECKCATALOG checks for consistency in and between system tables (this is another command
that is automatically included in the execution of DBCC CHECKDB).

The syntax is as follows:

DBCC CHECKCATALOG
[('database_name' | database_id | 0)]

[WITH NO_INFOMSGS]

The arguments of this command are described in Table 23-6.

Table 23-6. DBCC CHECKCATALOG Arguments

Argument Description

'database_name' | database_id | 0 The database name or database ID to be checked for
errors. When 0 is selected, the current database is used.

NO_INFOMSGS NO_INFOMSGS represses all informational messages from
the DBCC output.

In this brief recipe, system table consistency checks are performed for the entire AdventureWorks
database:

DBCC CHECKCATALOG ('AdventureWorks')

This returns (assuming no errors found):

DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

How It Works
In this recipe, the system catalog data was checked in the AdventureWorks database. Had errors
been identified, they would have been returned in the command output. If errors are found, DBCC
CHECKCATALOG doesn’t have repair options, and a restore from the last good database backup may
be your only repair option.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION582

570Xch23.qxd 11/4/05 2:53 PM Page 582

Like the other commands I’ve described in this chapter, when DBCC CHECKCATALOG is executed,
an internal database snapshot is created to maintain transactional consistency during the operation.
If for some reason a database snapshot cannot be created, an exclusive database lock is acquired
during the execution of the command (thus potentially hurting database query concurrency).

Index Maintenance
Fragmentation is the natural byproduct of data modifications to a table. When data is updated in
the database, the logical order of indexes (based on the index key) gets out of sync with the actual
physical order of the data pages. As data pages become further and further out of order, more I/O
operations are required in order to return results requested by a query. Rebuilding or reorganizing
an index allows you to defragment the index by synchronizing the logical index order and reorder-
ing the physical data pages to match the logical index order. In the next two recipes, I’ll demonstrate
two methods you can use to defragment your indexes.

■Tip See Chapter 28 to learn how to display index fragmentation.

Rebuilding Indexes
If you’ve used previous versions of SQL Server, you may be searching this chapter for the
DBCC DBREINDEX or DBCC INDEXDEFRAG commands, which were used to rebuild indexes and defrag-
ment indexes, respectively. DBCC DBREINDEX has been deprecated in place of the ALTER INDEX REBUILD
command. DBCC INDEXDEFRAG, used to defragment an index while allowing access to the data, has
been deprecated in place of ALTER INDEX REOGRANIZE (covered in the next recipe).

Rebuilding an index serves many purposes, the most popular being the removal of fragmentation
that occurs as data modifications are made to a table over time. As fragmentation increases, queries
can slow. Rebuilding an index removes fragmentation of the index rows and frees up physical disk
space.

Large indexes that are quite fragmented can reduce query speed. The frequency of how often
you rebuild your indexes depends on your database size, how much data modification occurs, and
how much activity occurs against your tables.

The syntax for ALTER INDEX in order to rebuild an index is as follows:

ALTER INDEX { index_name | ALL }
ON <object>
{ REBUILD
[[WITH (<rebuild_index_option> [,...n])]
| [PARTITION = partition_number

[WITH (<single_partition_rebuild_index_option>
[,...n])

]
]

]
}

The arguments of this command are described in Table 23-7.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 583

570Xch23.qxd 11/4/05 2:53 PM Page 583

Table 23-7. ALTER INDEX...REBUILD Arguments

Argument Description

index_name | ALL The name of the index to rebuild. If ALL is chosen, all
indexes for the specified table or view will be rebuilt.

<object> The name of the table or view that the index is built on.

<rebuild_index_option> One or more index options can be applied during
[,...n] a rebuild, including:

FILLFACTOR = fillfactor: The FILLFACTOR
percentage of an index refers to how full the leaf
level of the index pages should be when the index
is first created.

PAD_INDEX = { ON | OFF }: When designated,
used only in conjunction with FILLFACTOR,
specifies a percentage of free space to be left
open on the intermediate level pages of an index.

SORT_IN_TEMPDB = { ON | OFF }: Stores intermediate
index results in the tempdb system database.

IGNORE_DUP_KEY = { ON | OFF }: When enabled,
duplicate key values inserted into a unique index
raise a warning, and only unique rows are inserted.
When OFF, any non-unique value causes the
entire transaction to fail.

STATISTICS_NORECOMPUTE = { ON | OFF }: When
enabled, automatic statistics updates no longer
occur on the index.

ONLINE = { ON | OFF }: If enabling this option
and using SQL Server 2005 Enterprise Edition,
the index will be available for queries and data
modification during the rebuild process. When
this option is OFF, the data in the index being
rebuilt will be unavailable.

ALLOW_ROW_LOCKS = { ON | OFF }: Specifies if row
locks are allowed when using the index.

ALLOW_PAGE_LOCKS = { ON | OFF }: Specifies if
page locks are allowed when using the index.

MAXDOP = max_degree_of_parallelism: This option
overrides the “max degree of parallelism” server
option, and is only available in SQL Server 2005
Enterprise Edition. When specifying a “1,”
processor parallelism won’t be used during the
index rebuild. If greater than “1” is specified, the
number of processors used cannot exceed that
number. If “0” is specified, SQL Server can use one
or more processors (depending on your hardware).

partition_number If using a partitioned index, the partition_number
designates that only one partition of the index is
rebuilt.

<single_partition_rebuild_index_option> If designating a partition rebuild, you are limited to
[,...n] using the following index options in the WITH clause:

SORT_IN_TEMPDB and MAXDOP (both described in the
rebuild_index_option description.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION584

570Xch23.qxd 11/4/05 2:53 PM Page 584

This recipe demonstrates ALTER INDEX REBUILD, which drops and recreates an existing index.
It demonstrates a few variations for rebuilding an index in the AdventureWorks database:

-- Rebuild a specific index

ALTER INDEX PK_ShipMethod_ShipMethodID
ON Purchasing.ShipMethod REBUILD

-- Rebuild all indexes on a specific table

ALTER INDEX ALL
ON Purchasing.PurchaseOrderHeader REBUILD

-- Rebuild an index, while keeping it available
-- for queries (requires Enterprise Edition)

ALTER INDEX PK_ProductReview_ProductReviewID
ON Production.ProductReview REBUILD
WITH (ONLINE = ON)

-- Rebuild an index, using a new fill factor and
-- sorting in tempdb

ALTER INDEX PK_TransactionHistory_TransactionID
ON Production.TransactionHistory REBUILD
WITH (FILLFACTOR = 75,
SORT_IN_TEMPDB = ON)

How It Works
In this recipe, the first ALTER INDEX was used to rebuild the primary key index on the Purchasing.
ShipMethod table (rebuilding a clustered index does not cause the rebuild of any nonclustered
indexes for the table):

ALTER INDEX PK_ShipMethod_ShipMethodID
ON Purchasing.ShipMethod REBUILD

In the second example, the ALL keyword was used, which means that any indexes, whether
nonclustered or clustered (remember, only one clustered index exists on a table) will be rebuilt:

ALTER INDEX ALL
ON Purchasing.PurchaseOrderHeader REBUILD

The third example in the recipe rebuilt an index online, which means that user queries can
continue to access the data of the PK_ProductReview_ProductReviewID index while it’s being rebuilt.
In SQL Server 2000, the data included in an index being rebuilt using DBCC DBREINDEX was not avail-
able at certain stages due to locking:

WITH (ONLINE = ON)

The ONLINE option requires SQL Server 2005 Enterprise Edition, and can’t be used with XML
indexes, disabled indexes, or partitioned indexes. Also, indexes using large object data types or indexes
made on temporary tables can’t take advantage of this option.

In the last example, two index options were modified for an index—the fill factor and a directive
to sort the temporary index results in tempdb:

WITH (FILLFACTOR = 75,
SORT_IN_TEMPDB = ON)

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 585

570Xch23.qxd 11/4/05 2:53 PM Page 585

Defragmenting Indexes
In SQL Server 2005, DBCC INDEXDEFRAGwas deprecated in place of the ALTER INDEX REORGANIZE command.
ALTER INDEX REORGANIZE reduces fragmentation in the leaf level of an index, causing the physical order
of the database pages to match the logical order. During the process, the indexes are also compacted
based on the fill factor, resulting in freed space and a smaller index. ALTER TABLE REORGANIZE is
automatically an online operation, meaning that you can continue to query the target data during
the reorganization process.

The syntax is as follows:

ALTER INDEX { index_name | ALL }
ON <object>
{ REORGANIZE

[PARTITION = partition_number]
[WITH (LOB_COMPACTION = { ON | OFF })]

}

The arguments of this command are described in Table 23-8.

Table 23-8. ALTER INDEX...REORGANIZE Arguments

Argument Description

index_name | ALL The name of the index that you want to rebuild. If ALL is
chosen, all indexes for the table or view will be rebuilt.

<object> The name of the table or view that you want to build the index on.

partition_number If using a partitioned index, the partition_number designates
that partition to reorganize.

LOB_COMPACTION = { ON | OFF } When enabled, large object data types (varchar(max),
navarchar(max), varbinary(max), xml, text, ntext, and image
data) are compacted.

This recipe demonstrates how to defragment a single index, as well as all indexes on a single table:

-- Reorganize a specific index
ALTER INDEX PK_TransactionHistory_TransactionID
ON Production.TransactionHistory
REORGANIZE

-- Reorganize all indexes for a table
-- Compact large object data types
ALTER INDEX ALL
ON HumanResources.JobCandidate
REORGANIZE
WITH (LOB_COMPACTION=ON)

How It Works
In the first example of this recipe, the primary key index of the Production.TransactionHistory
table was reorganized (defragmented). The syntax was very similar to rebuilding an index, only
instead of REBUILD, the REORGANIZE keyword was used.

In the second example, all indexes (using the ALL keyword) were defragmented for the
HumanResources.Jobcandidate column. Using the WITH clause, large object data type columns
were also compacted.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION586

570Xch23.qxd 11/4/05 2:53 PM Page 586

Use ALTER INDEX REORGANIZE if you cannot afford to take the index offline during an index rebuild
(and if you cannot use the ONLINE option in ALTER INDEX REBUILD because you aren’t running SQL
Server 2005 Enterprise Edition). Reorganization is always an online operation, meaning that an
ALTER INDEX REORGANIZE operation doesn’t block database traffic for significant periods of time,
although it may be a slower process than a REBUILD.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 587

570Xch23.qxd 11/4/05 2:53 PM Page 587

570Xch23.qxd 11/4/05 2:53 PM Page 588

Maintaining Database Objects and
Object Dependencies

This chapter contains a few recipes that you can use to maintain database objects and view object
dependencies. You’ll see recipes used to:

• Change the name of user-created database objects.

• Change an object’s schema.

• Display information about object dependencies.

These recipes got their own chapter because they can be applied to more than one database
object type.

Database Object Maintenance
In these next two recipes I’ll show you how to change the name of an existing user-created database
object using the sp_rename system-stored procedure and how to transfer an existing object from its
existing schema to a different schema using ALTER SCHEMA.

Changing the Name of a User-Created Database Object
This recipe demonstrates how to rename objects using the sp_rename system-stored procedure.
Using this procedure, you can rename table columns, indexes, tables, constraints, and other data-
base objects.

The syntax for sp_rename is as follows:

sp_rename [@objname =] 'object_name' , [@newname =] 'new_name'
[, [@objtype =] 'object_type']

The arguments of this system-stored procedure are described in Table 24-1.

589

C H A P T E R 2 4

■ ■ ■

570Xch24.qxd 11/4/05 2:54 PM Page 589

CHAPTER 24 ■ MAINTAINING DATABASE OBJECTS AND OBJECT DEPENDENCIES590

Table 24-1. sp_rename Parameters

Argument Description

object_name The name of the object to be renamed.

new_name The new name of the object.

object_type The type of object to rename: column, database, index, object (for renaming
a database, you can also use ALTER DATABASE MODIFY NAME, as detailed in
Chapter 22’s recipe, “Renaming a Database”).

This recipe demonstrates how to rename a table, column, and index:

USE AdventureWorks
GO

-- Add example objects

CREATE TABLE HumanResources.InsuranceProvider
(InsuranceProviderID int NOT NULL,
InsuranceProviderNM varchar(50) NOT NULL
)
GO

CREATE INDEX ni_InsuranceProvider_InsuranceProviderID
ON HumanResources.InsuranceProvider (InsuranceProviderID)

-- Rename the table
EXEC sp_rename 'HumanResources.InsuranceProvider',

'Provider',
'Object'

-- Rename a column
EXEC sp_rename 'HumanResources.Provider.InsuranceProviderID',

'ProviderID',
'Column'

-- Rename the primary key constraint
EXEC sp_rename 'HumanResources.Provider.ni_InsuranceProvider_InsuranceProviderID',

'ni_Provider_ProviderID',
'Index'

This returns the following message for each sp_rename execution:

Caution: Changing any part of an object name could break scripts and stored procedures.

How It Works
This recipe began with you creating a new table called HumanResources.InsuranceProvider with
an index on the new table called InsuranceProviderID. After that, the system-stored procedure
sp_rename was used to rename the table:

EXEC sp_rename 'HumanResources.InsuranceProvider',
'Provider',
'Object'

570Xch24.qxd 11/4/05 2:54 PM Page 590

Notice that the first parameter uses the fully qualified object name (schema.table_name), whereas
the second parameter just uses the new table_name. The third parameter used the object type of “object.”

Next, sp_rename was used to change the column name:

EXEC sp_rename 'HumanResources.Provider.InsuranceProviderID',
'ProviderID',
'Column'

The first parameter used the schema.table_name.column_name to be renamed and the second
parameter the new name of the column. The third parameter used the object type of “column.”

In the last part of the recipe, the index was renamed:

EXEC sp_rename 'HumanResources.Provider.ni_InsuranceProvider_InsuranceProviderID',
'ni_Provider_ProviderID',
'Index'

The first parameter used the schema.table_name.index_name parameter. The second parameter
used the name of the new index. The third used the object type of “index.”

This recipe returned a warning about “changing any part of an object name could break scripts
and stored procedures.” In a real life scenario, before you rename an object, you’ll also want to ALTER
any view, stored procedure, function, or other programmatic object which contains a reference to
the original object name. To find out which objects reference an object, see this chapter’s recipe,
“Displaying Information on Database Object Dependencies.”

Changing an Object’s Schema
In SQL Server 2000, before the concept of schemas, an object’s owner was changed using the
sp_changeobjectowner system-stored procedure. Now in SQL Server 2005, users (owners) and
schemas are separate, and to change an object’s schema you use the ALTER SCHEMA command
instead.

The syntax is as follows:

ALTER SCHEMA schema_name TRANSFER object_name

The command takes two arguments: the first being the schema name you want to transfer the
object to, and the second the object name that you want to transfer.

This recipe demonstrates transferring a table from the Sales to the HumanResources schema:

Use AdventureWorks
GO

CREATE TABLE Sales.TerminationReason
(TerminationReasonID int NOT NULL PRIMARY KEY,
TerminationReasonDESC varchar(100) NOT NULL)
GO

ALTER SCHEMA HumanResources TRANSFER Sales.TerminationReason
GO

How It Works
In this recipe a new table was created in the Sales schema. With SQL Server 2005, an object is no
longer owned by a specific user, but is instead contained within a schema. After creating the table, it
was then transferred to the HumanResources schema using the ALTER SCHEMA TRANSFER command.

CHAPTER 24 ■ MAINTAINING DATABASE OBJECTS AND OBJECT DEPENDENCIES 591

570Xch24.qxd 11/4/05 2:54 PM Page 591

■Caution Permissions granted to the original schema.object will be dropped after the transfer (for example
SELECT permissions for USER1). If these permissions need to be maintained in the new schema, be sure to script
them out prior to using ALTER SCHEMA. See Chapter 18 for instructions on how to see what permissions are cur-
rently allocated to a securable.

Object Dependencies
The next two recipes will demonstrate how to display database object dependencies using the sp_depends
system-stored procedure, and how to view the definition of a module using the OBJECT_DEFINITION
function.

Displaying Information on Database Object Dependencies
This recipe demonstrates how to view the database object dependencies of a specific database object
using the sp_depends system-stored procedure. A dependency in this context is a database object that
depends upon another database object in order to function properly. Dependencies can be formed
when a module (such as views, stored procedures, user-defined functions, or triggers) references
another module or table. You’ll most likely want to report object dependencies prior to removing
a database object or changing its name, so that you can change the referencing objects accordingly.

The syntax for sp_depends is as follows:

sp_depends [@objname =] '<object>'

The object parameter designates the object to report dependencies for. If the object is a table,
for example, the output of the procedure will show all objects that reference that table (in a view,
stored procedure, user-defined function, trigger, etc.). If the object is modular code, such as a user-
defined function, for example, the output would show all database objects that are referenced within
the Transact-SQL definition of the function.

This first example in the recipe demonstrates using sp_depends to view dependencies of a user-
defined function in the AdventureWorks database:

EXEC sp_depends 'dbo.ufnGetContactInformation'

This returns:

name type updated selected column
Sales.StoreContact user table no yes ContactID
Sales.StoreContact user table no yes ContactTypeID
Person.Contact user table no yes ContactID
Person.Contact user table no yes FirstName
Person.Contact user table no yes LastName
Purchasing.VendorContact user table no yes ContactID
Purchasing.VendorContact user table no yes ContactTypeID
Person.ContactType user table no yes ContactTypeID
Person.ContactType user table no yes Name
HumanResources.Employee user table no yes ContactID
HumanResources.Employee user table no yes Title
Sales.Individual user table no yes ContactID

This second example demonstrates viewing all objects that depend on a specific table (the
reverse of the previous example):

CHAPTER 24 ■ MAINTAINING DATABASE OBJECTS AND OBJECT DEPENDENCIES592

570Xch24.qxd 11/4/05 2:54 PM Page 592

EXEC sp_depends 'Purchasing.VendorContact'
This returns:

name type
dbo.ufnGetContactInformation table function
Purchasing.uVendorContact trigger
Purchasing.vVendor view

How It Works
The sp_depends stored procedure returns two different results sets: a result set of the objects that the
procedure argument database object depends on, and a result set of the objects that depend on the
procedure argument database object.

The first example in this recipe used the sp_depends system-stored procedure to show all
object dependencies for a user-defined function. The result set returned the name and column of
each object that the user-defined function was dependent on, as well as the object type. The selected
column indicates if the object/column is referenced in a SELECT statement. The updated column in
the result set indicates if the object/column is modified.

The second example in this recipe showed all programmatic objects dependent on the
Purchasing.VendorContact table, which included a table function, trigger, and view.

Viewing an Object’s Definition
Once you’ve identified an object that is dependent on a module that you need to modify, you can
have a look at its definition using the OBJECT_DEFINITION function. This function can be used to
return the Transact-SQL definition of user-defined and system-based constraints, defaults, stored
procedures, functions, rules, schema-scoped DML and DDL triggers, and views.

The syntax is as follows:

OBJECT_DEFINITION (object_id)

The only argument for this command is the object ID, which is the unique object identifier (each
object identifier uniquely identifies a database object within a database).

In this example, the Transact-SQL definition is returned for an AdventureWorks database’s user-
defined function and the OBJECT_ID function is used within the OBJECT_DEFINITION function to get
that user-defined function’s identifier:

USE AdventureWorks
GO

SELECT OBJECT_DEFINITION
(OBJECT_ID('dbo.ufnGetAccountingEndDate'))
GO

This returns the Transact-SQL definition:

CREATE FUNCTION [dbo].[ufnGetAccountingEndDate]()
RETURNS [datetime]
AS
BEGIN
RETURN DATEADD(millisecond, -2, CONVERT(datetime, '2004-07-01', 101));
END;

CHAPTER 24 ■ MAINTAINING DATABASE OBJECTS AND OBJECT DEPENDENCIES 593

570Xch24.qxd 11/4/05 2:54 PM Page 593

If you’re curious about how Microsoft programs its own system objects, you can also use
OBJECT_DEFINTION to peek at their Transact-SQL. In this example, the system-stored procedure code
for the sp_depends stored procedure is revealed:

USE AdventureWorks
GO

SELECT OBJECT_DEFINITION(OBJECT_ID('sys.sp_depends'))
GO

This returns the following abridged results:

create procedure sys.sp_depends
--- 1996/08/09 16:51 @objname nvarchar(776)
...
select @dbname = parsename(@objname,3)

if @dbname is not null and @dbname <> db_name()
begin raiserror(15250,-1,-1)
return (1)
end
...

How It Works
In this recipe I demonstrated using OBJECT_DEFINITION to return the Transact-SQL code for a user-
defined function and for a system-stored procedure. In both cases, the OBJECT_ID function was nested
within the function in order to pass the object identifier ID as an argument:

OBJECT_DEFINITION
(OBJECT_ID('dbo.ufnGetAccountingEndDate'))

The object name was fully qualified, using the schema.object_name format.
Both examples returned the Transact-SQL code definition for the database objects. Had those

objects been encrypted, you would have gotten a NULL result set instead.

CHAPTER 24 ■ MAINTAINING DATABASE OBJECTS AND OBJECT DEPENDENCIES594

570Xch24.qxd 11/4/05 2:54 PM Page 594

Database Mirroring

Introduced in SQL Server 2005, database mirroring provides high availability at the user database
level. High availability in this case refers to the SQL Server databases being available to end-users to
query with little or no unplanned downtime. Database mirroring allows database redundancy, by
synchronizing a primary (principal) database on one server with a second copy of a database on
a second server. This second copy can be used as a hot standby, allowing for fast failover in the event
you need to take your primary copy off-line for any reason. Unlike failover clustering, database mir-
roring doesn’t require expensive hardware such as shared disk arrays or SAN. At a minimum, all you
need are two SQL Server 2005 instances on the same network.

■Caution Unlike failover clustering, database mirroring operates at the user database level. You cannot mirror
system databases (master, msdb, tempdb).

In this chapter, I’ll review how to set up, configure, monitor, and remove database mirroring. At
the time this chapter was written, Microsoft decided to hold off on full support of database mirror-
ing functionality, and are instead planning to make it fully supportable at a later date. This doesn’t,
however, keep you from testing it out. To enable your SQL Server instances for use in database mir-
roring, you must enable trace flag 1400.

To enable this flag so that it is enabled when your SQL Server instances start, follow these steps
for each SQL Server instance participating in database mirroring:

1. In the SQL Server Configuration Manager, with SQL Server Services selected in the left pane,
go to the right pane, right-click the SQL Server instance you wish to configure, and select
Properties.

2. Click the Advanced Tab.

3. Scroll down to the Startup Parameters configuration. Append the following (prefixed by
a semicolon) to the end of the Startup Parameters value:

;-T1400

4. Restart the SQL Server service in order for the change to take effect. Repeat for each partici-
pating SQL Server instance.

Before I get into the specifics of database mirroring in the next section, I’ll first talk about data-
base mirroring in the context of other SQL Server high availability options.

595

C H A P T E R 2 5

■ ■ ■

570Xch25.qxd 11/4/05 2:57 PM Page 595

CHAPTER 25 ■ DATABASE MIRRORING596

Database Mirroring in Context
Although database mirroring was introduced in SQL Server 2005, SQL Server 2000 included other meth-
ods for enabling high availability. These 2000 technologies have been carried over into SQL Server 2005
as well, and in most cases, with enhancements. Some of the high availability technologies include:

• Failover clustering. Available in previous versions of SQL Server, failover clustering allows
you to maintain high-availability at the SQL Server instance level, using two or more nodes
that are connected to shared disks. When you install a SQL Server instance on a failover clus-
ter, the user and system database files are installed on the shared disk, and the regular binary
install files are written to all nodes (servers) participating in the cluster. One physical node
“controls” the SQL Server instance at a time, and if something happens to that node that
makes it unavailable, a second node in the cluster can take over the duties of serving that
SQL Server instance. Depending on the settings of the SQL Server instance, a failover from
one server to another can take just a few seconds.

• Log shipping. Also available in previous versions, log shipping is the most similar to database
mirroring functionality. Log shipping enables high availability at the database level, and
involves keeping a primary online database on one SQL Server instance and a continuously
recovering database on a second SQL Server instance. As transaction log backups are per-
formed on the primary database, the transaction log backups are copied to the second SQL
Server instance and continuously applied to the database copy. In the event of a failure , either
on the primary database or on the server where it resides, the second database copy can be
brought online by applying the last of the transferred transaction log backups.

• Replication. Also available in previous versions, replication allows you to move data and
object definitions (tables, views, and more) to a second database copy on one or more SQL
Server instances. Depending on the type of replication you’ve chosen, you can push data
changes on a specific schedule, migrate data as changes are made, or synchronize data changes
across multiple data sources. Replication provides high availability in a lesser form, focusing
on specific objects and data, but not allowing you to automate the transfer of all database
object types. This means that you cannot depend on it to produce an identical copy of your
database (something that database mirroring can do).

There are several ways in which database mirroring differentiates it from these high availability
options:

• Database mirroring doesn’t require shared disks or special hardware required by failover
clustering. Failover clustering protects the entire SQL Server instance, but database mirroring
only allows high availability at the user database scope. System databases cannot be mirrored.

• Unlike log shipping, setup of a database mirror can be performed entirely with Transact-SQL.
Log shipping requires manual configurations and is considered to be a warm standby solution.
Database mirroring is integrated into the database engine and allows for a hot database standby,
allowing failover within seconds.

■Note A “hot” standby server is one that receives frequent updates from a production server and is immediately
available for use in the event of a failure on the production server. A “warm” standby server is one that receives
updates, but may require adjustments or a few minutes of transition before taking over in the event of a failure on
the production server.

• Replication allows you to push or pull specific database objects, but doesn’t allow you to pull
all database objects. Database mirroring, however, creates an exact copy of the database.

570Xch25.qxd 11/4/05 2:57 PM Page 596

CHAPTER 25 ■ DATABASE MIRRORING 597

Figure 25-1. Database Mirroring Basic Architecture

In the next section I’ll discuss the database mirroring architecture.

Database Mirroring Architecture
Database mirroring involves a principal server role, a mirroring server role, and an optional witness
server (shown in Figure 25-1). The database on the principal server is actively used, and as transac-
tions are applied to the principal server’s database, they are also submitted to the mirror server’s
database. The mirror server database is left in a recovering state, where it receives changes made on
the principal copy, but it cannot be used while the principal mirror database is still available.

If an issue occurs on the principal server database, which then makes it unavailable, the mirror
server can take on the role of the primary database. When the other database (the original principal)
comes back online, the former primary database takes on the mirrored server database role, receiv-
ing transactions from the principal server.

Failover from principal to mirror databases can be initiated manually or automatically, depend-
ing on the database mirroring mode (which is described in detail later in this chapter). If automatic
failover is required, a third server must join the mirroring session as a witness server. The witness
server monitors the principal and mirror servers. In a database mirroring session that consists of
these three servers (principal, mirror, and witness), two of the three connected servers can make
the decision (called a quorum) as to whether or not an automatic failover should occur.

Database mirroring sessions can run in a synchronous or asynchronous mode. When in
synchronous mode, transactions written to the principal server database must also be written to
the mirror server database before any containing transaction can be committed. This option guar-
antees data redundancy, but has a trade-off of potential performance degradation.

570Xch25.qxd 11/4/05 2:57 PM Page 597

Asynchronous mode allows transactions to commit on the principal database mirroring ses-
sion before actually writing the transaction to the mirror server database. This option allows for
faster transaction completion on the principal database, but also poses the risk of lost transactions
if a failure occurs on the principal server before updates can be reflected on the mirror database.

With regards to application and client connectivity to the principal database, SQL Server 2005
maintains metadata that allows .NET application redirection in the event of a failover. Specifically,
you can use the SQL Native Client in your .NET code to connect to the mirrored database and the
code can be configured such as to be aware of the locations of the mirrored databases. With the SQL
Native Client, you can designate both the principal and mirroring SQL Server instances in the con-
nection string, allowing the application connection to be transparently redirected to the newly
active principal when the primary database is unavailable.

Setting Up Database Mirroring
In this chapter, I’ll demonstrate one scenario across several smaller recipes, much like I did in the
Service Broker chapter. In this scenario, I’ll be setting up a database mirroring session on the BookStore
database. One SQL Server instance will house the principal database, another will house the mirrored
database, and another will act as the witness (no database needed).

The following is a general list of steps used to enable database mirroring:

1. Create endpoints. You should create mirroring endpoints, which will allow the SQL Server
instances (principal, mirror, and witness) to communicate with each other. You have your
choice regarding which authentication method is used, and I’ll discuss that issue in the
upcoming recipe.

2. Create the database mirror copy. Before doing this, though, you need to make sure the prin-
cipal database is in FULL recovery mode, because transaction log backups are applied to
the mirror database from the principal database, in order to propagate principal database
modifications. To make the mirror database copy, a full database backup is made to the
principal database and is then restored to the mirror SQL Server instance WITH NORECOVERY
(this option also leaves the database in a state to receive additional transaction log
restores). After the full database backup is made on the principal, a transaction log backup
must also be made, and then restored on the database mirror copy.

3. Initialize the database mirroring session. These last steps involve designating the role of
each database using ALTER DATABASE. This command tells SQL Server which SQL Server
endpoints connect to the partners and which connect to the witness. Partner databases
have the principal and/or mirror database, and can also change roles if the principal data-
base becomes unavailable.

The first recipe in this scenario will show you how to create mirroring endpoints that can be
used to define which SQL Server instances participate in which actions within the database mirror-
ing session.

Creating Mirroring Endpoints
In order to establish a mirroring session, the participant servers must be able to communicate with
one another on their own dedicated TCP port. These endpoint ports will be dedicated to listening
for mirroring messages and operations.

In getting ready to set up a new database mirroring session, the mirroring server is the first to
have an endpoint created, followed then by the primary server, and then the optional witness server
(designated if you wish to have automatic failover). Although no special hardware is needed, SQL
Server 2005 must be used for the principal, mirror, and witness SQL Server instances.

CHAPTER 25 ■ DATABASE MIRRORING598

570Xch25.qxd 11/4/05 2:57 PM Page 598

CHAPTER 25 ■ DATABASE MIRRORING 599

The CREATE ENDPOINT command is used to create the mirroring endpoints. Recall from the previ-
ous chapters in this book that CREATE ENDPOINT is also used to create HTTP endpoints and to enable
Service Broker cross-server communication. The syntax is as follows:

CREATE ENDPOINT endPointName [AUTHORIZATION login]
STATE = { STARTED | STOPPED | DISABLED }
AS TCP (LISTENER_PORT = listenerPort)
FOR DATABASE_MIRRORING (

[AUTHENTICATION = {
WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]

| CERTIFICATE certificate_name
}]
[[,] ENCRYPTION = { DISABLED |SUPPORTED | REQUIRED }

[ALGORITHM { RC4 | AES | AES RC4 | RC4 AES }]
]
[,] ROLE = { WITNESS | PARTNER | ALL }

)

The arguments of this command are described in Table 25-1.

Table 25-1. CREATE ENDPOINT...FOR DATABASE MIRRORING Arguments

Argument Description

endPointName The name of the new server endpoint.

login The owning SQL Server or Windows login of the endpoint.
When not designated, the default owner is the creator of the
new endpoint.

STATE = { STARTED | This argument defines what state the endpoint is created in.
STOPPED | DISABLED } STARTED means the endpoint will immediately be active. DISABLED

means that the endpoint will not listen or respond to requests.
STOPPED means that the endpoint listens to requests, but returns
errors back to the caller.

listenerPort The free TCP port on which the mirroring session will listen for
incoming communications.

WINDOWS [{ NTLM | KERBEROS | This option designates the authentication method of
NEGOTIATE }] | connection to the endpoint, using either NTLM, KERBEROS, or
CERTIFICATE certificate_name NEGOTIATE (which allows Windows negotiation protocol to

choose from NTLM or Kerberos). If not designated, NEGOTIATE is
the default authentication option. The CERTIFICATE option
allows a certificate to be used for authentication, requiring the
calling endpoint.

ENCRYPTION = { DISABLED| This option applies encryption to a mirroring process. When
SUPPORTED | REQUIRED } DISABLED is selected, data sent between mirroring sessions isn’t

encrypted. When SUPPORTED is selected, if both communicating
endpoints support encryption, encryption is used (otherwise
it is not). REQUIRED designates that communicating endpoints
must support encryption.

ALGORITHM { RC4 | AES | This option designates the encryption algorithm used in
AES RC4 | RC4 AES } encrypted data transmission.

WITNESS | PARTNER | ALL These options designate the database mirroring server role.
When PARTNER is designated, the created endpoint can be used
for either primary or mirrored session communications. If
WITNESS is selected, the endpoint is used for the witness role in
a mirroring session. The ALL session allows the endpoint to be
used for the primary, mirroring, and witness mirroring session

570Xch25.qxd 11/4/05 2:57 PM Page 599

Before starting with the recipe, we need to first discuss authentication options that are required
in order for the three SQL Server instances to communicate with one another. First of all, as long as
each of the SQL Server instances is running under the same domain service account, and if you use
the WINDOWS option to create your endpoint, your SQL Server instances will automatically have access
to one another for the database mirroring session. If, however, these SQL Server instances are not
running under the same domain user account, you’ll need to create the Windows login of the remote
SQL Server instance on each participating SQL Server instance. For example, let’s say the SQL Server
instance that is housing the principal database has a startup service account [JOEPROD\SQLAdmin].
Assume also that the SQL Server instance that is going to house the mirror database copy uses a startup
service account of [JOEPROD\Node2Admin]. In order to allow the mirror SQL Server access to the prin-
cipal SQL Server, the [JOEPROD\Node2Admin] must be added to the principal database. For example:

USE master
GO
CREATE LOGIN [JOEPROD\Node2Admin]
FROM WINDOWS
GO

The same thing must be done on the mirror SQL Server instance, in order to allow access to the
principal and witness SQL Server instances. If these new accounts are also in the Windows adminis-
trator groups on the other SQL Server servers, those logins will automatically have access to connect
to the database mirroring endpoint. If they are not members of this group, however, you must also
explicitly grant the remote login access to the endpoint. For example:

GRANT CONNECT ON ENDPOINT::JOEPROD_Mirror
TO [JOEPROD\Node2Admin]
GO

In this chapter’s scenario, I’ll be using three SQL Server instances that run under the same
Windows service account. In the first part of this example, a new endpoint is created on the SQL
Server instance that will hold the mirrored copy of the database:

-- Create an Endpoint on the Mirror SQL Server Instance

CREATE ENDPOINT JOEPROD_Mirror
STATE = STARTED
AS TCP (LISTENER_PORT = 5022)
FOR DATABASE_MIRRORING (

AUTHENTICATION = WINDOWS NEGOTIATE,
ENCRYPTION = SUPPORTED,
ROLE=PARTNER)

GO

This next step is to create a new endpoint on the SQL Server instance that will hold the princi-
pal database:

-- Create an Endpoint on the Primary SQL Server Instance

CREATE ENDPOINT JOEPROD_Mirror
STATE = STARTED
AS TCP (LISTENER_PORT = 5022)
FOR DATABASE_MIRRORING (

AUTHENTICATION = WINDOWS NEGOTIATE,
ENCRYPTION = SUPPORTED,
ROLE=PARTNER)

GO

In the third step, a new endpoint is created on the SQL Server instance that will act as the
witness in the mirrored database session:

CHAPTER 25 ■ DATABASE MIRRORING600

570Xch25.qxd 11/4/05 2:57 PM Page 600

CHAPTER 25 ■ DATABASE MIRRORING 601

-- Create an Endpoint on the Witness SQL Server Instance

CREATE ENDPOINT JOEPROD_Witness
STATE = STARTED
AS TCP (LISTENER_PORT = 5022)
FOR DATABASE_MIRRORING (

AUTHENTICATION = WINDOWS NEGOTIATE,
ENCRYPTION = SUPPORTED,
ROLE=WITNESS)

GO

After creating the endpoints, you can verify the endpoint settings by querying the
sys.database_mirroring_endpoints system catalog view.

On the SQL Server instance that will eventually house the database mirror copy, the following
query confirms the name of the endpoint, the state (meaning, whether it is started), and its mirror-
ing role:

SELECT name, state_desc, role_desc
FROM sys.database_mirroring_endpoints

This returns:

name state_desc role_desc
JOEPROD_Mirror STARTED PARTNER

This query is then executed on the SQL Server instance that will house the principal database:

SELECT name, state_desc, role_desc
FROM sys.database_mirroring_endpoints

This returns:

name state_desc role_desc
JOEPROD_Mirror STARTED PARTNER

Next, the SQL Server instance that will assume the witness role is queried:

SELECT name, state_desc, role_desc
FROM sys.database_mirroring_endpoints

This returns:

name state_desc role_desc
JOEPROD_Witness STARTED WITNESS

How It Works
Before you can set up a database mirroring session, you must add endpoints to the participating
SQL Server instances. These endpoints use the TCP/IP protocol to listen in on a designated port.

In this recipe, an endpoint called JOEPROD_Mirror was first created on the mirroring SQL Server
instance:

CREATE ENDPOINT JOEPROD_Mirror

The initial state was set to STARTED, meaning that the endpoint was created in a state that can
be used right away. The listening port was set to 5022:

570Xch25.qxd 11/4/05 2:57 PM Page 601

The TCP listening port was set to 5022. This is the port that the endpoint will listen on for data-
base mirroring communication:

AS TCP (LISTENER_PORT = 5022)

The port number choice was arbitrary; just make sure the port is available. If your SQL Server
instances communicate over a firewall, the designated mirroring ports must be opened for those
machines in order to allow communication.

For the authentication, WINDOWS NEGOTIATE was chosen, which means that Windows authentica-
tion will be used to communicate between the participating SQL Server instances:

FOR DATABASE_MIRRORING (
AUTHENTICATION = WINDOWS NEGOTIATE,

For encryption, SUPPORTED was designated, meaning that if both communicating sessions sup-
port encryption, encryption will be used in the data transmission:

ENCRYPTION = SUPPORTED,

The ROLE for the mirrored server was PARTNER, which means that the endpoint can be used for
principal database or the mirror:

ROLE=PARTNER)

In exactly the same fashion, CREATE ENDPOINT was then executed on the principal SQL Server
instance (again, using PARTNER) and then executed on the witness SQL Server instance with a role of
WITNESS.

Finally, I queried the system catalog view, sys.database_mirroring_endpoints, which contains
information on any database mirroring endpoints that may exist on each SQL Server instance. (In
this scenario, there was one endpoint per SQL Server instance.)

Backing Up and Restoring Principal Databases
Once the endpoints are created, the next step in creating a database mirroring session is to create
a database backup of the principal database and then restore it to the mirrored SQL Server instance.
After restoring a full database backup, a transaction log backup should be made and then applied to
the database mirror copy.

■Note This chapter demonstrates BACKUP and RECOVERY techniques. These commands are reviewed in more
detail in Chapter 29.

Prior to backing up the database, and in order to use database mirroring, the database needs to
use the FULL recovery model. In this example, I demonstrate making this change on the principal
database SQL Server instance:

-- This is executing on the principal database SQL Server instance
USE master
GO

-- Make sure the database is using FULL recovery

ALTER DATABASE BookStore
SET RECOVERY FULL
GO

CHAPTER 25 ■ DATABASE MIRRORING602

570Xch25.qxd 11/4/05 2:57 PM Page 602

CHAPTER 25 ■ DATABASE MIRRORING 603

Next, a full database backup is performed:

-- Backing up the BookStore DATABASE

BACKUP DATABASE BookStore
TO DISK =
'C:\Apress\Recipes\Mirror\principalbackup_BookStore.bak'
WITH INIT

Once the database backup is complete on the primary SQL Server instance, the .bak file is then
manually copied to the mirroring SQL Server instance, where it will be restored using NORECOVERY.
NORECOVERY mode leaves the database in a state where additional transaction logs can be applied to it:

RESTORE DATABASE BookStore
FROM DISK = 'C:\Apress\Recipes\principalbackup_BookStore.bak'
WITH MOVE 'BookStore' TO 'C:\Apress\Recipes\Mirror\BookStore.mdf',

MOVE 'BookStore_log' TO 'C:\Apress\Recipes\Mirror\BookStore_log.ldf',
NORECOVERY

GO

Keep in mind that the database that you restore must use the same name as the principal database
in order for database mirroring to work.

If any transaction log backups occur after you perform a full backup on the principal SQL Server
instance and before you perform the restore on the mirrored server, you must also apply those trans-
action log backups (using RESTORE) to the mirrored server database. Before enabling mirroring, you
also must perform one more transaction log backup on the principal database and then restore it to
the mirrored copy.

This example demonstrates backing up the transaction log of the principal database:

BACKUP LOG BookStore
TO DISK =
'C:\Apress\Recipes\Mirror\BookStore_tlog.trn'
WITH INIT

Once the transaction log backup is complete on the primary SQL Server instance, the .trn file is
then manually copied to the mirroring SQL Server instance, where it is restored using NORECOVERY:

RESTORE LOG BookStore
FROM DISK = 'C:\Apress\Recipes\Mirror\BookStore_tlog.trn'
WITH FILE = 1, NORECOVERY

■Tip Restoring a user database doesn’t bring along the necessary SQL or Windows logins to the server contain-
ing the mirrored database. Any SQL or Windows logins mapped to database users in the principal database should
also be created on the mirrored SQL Server instance. These logins should be ready in the event of a failover, when
the mirror database must take over the role as the principal. If the logins are not on the mirror database SQL Server
instance, the database users within the mirrored database will be orphaned. See Chapter 17 for more information
on logins and database users.

How It Works
In this recipe, the principal database was first modified to a FULL recovery mode so that it could
participate in a database mirroring session:

ALTER DATABASE BookStore
SET RECOVERY FULL

570Xch25.qxd 11/4/05 2:57 PM Page 603

After that, a full database backup was made of the BookStore database. The INIT option was
used to entirely overlay the database file with just the most recent full backup (in case an older
backup already existed on the specified file):

BACKUP DATABASE BookStore
TO DISK =
'C:\Apress\Recipes\Mirror\principalbackup_BookStore.bak'
WITH INIT

The backup file was then manually copied to the second SQL Server instance, which would
house the mirrored copy of the database. A new database was then restored using the MOVE and
NORECOVERY option. You should use the MOVE option when you want to relocate where the database
files are restored, versus how they were stored when the original backup was created:

RESTORE DATABASE BookStore
FROM DISK = 'C:\Apress\Recipes\principalbackup_BookStore.bak'
WITH MOVE 'BookStore' TO 'C:\Apress\Recipes\Mirror\BookStore.mdf',

MOVE 'BookStore_log' TO 'C:\Apress\Recipes\Mirror\BookStore_log.ldf',
NORECOVERY

GO

After that, back on the principal database server, a transaction log backup is created:

BACKUP LOG BookStore
TO DISK =
'C:\Apress\Recipes\Mirror\BookStore_tlog.trn'
WITH INIT

The transaction log backup file was then manually copied to the second SQL Server instance
prior to restoring it on the mirrored copy of the database (again using the NORECOVERY option):

RESTORE LOG BookStore
FROM DISK = 'C:\Apress\Recipes\Mirror\BookStore_tlog.trn'
WITH FILE = 1, NORECOVERY

Now you have a second copy of the database in a NORECOVERY state, and you are ready to proceed
to the next step in this example scenario, which involves creating the database mirroring session.

Creating a Database Mirroring Session
Once the database is restored and in recovering mode on the mirror server, the mirroring session
can then be started using the ALTER DATABASE command. This is achieved in two steps (three, if you
are using a witness SQL Server instance, which in this scenario, you are). First, ALTER DATABASE will
be executed on the mirror SQL Server instance to set it as a partner with the principal server endpoint.
After that, ALTER DATABASE will be executed on the principal SQL Server instance to set the mirroring
partner and witness endpoint locations.

The specified syntax for using ALTER DATABASE to enable database mirroring is as follows:

ALTER DATABASE database_name
[PARTNER { = 'partner_server'
| FAILOVER
| FORCE_SERVICE_ALLOW_DATA_LOSS
| OFF
| RESUME
| SAFETY { FULL | OFF }
| SUSPEND
| REDO_QUEUE (integer { KB | MB | GB } | UNLIMITED)
| TIMEOUT integer

} |

CHAPTER 25 ■ DATABASE MIRRORING604

570Xch25.qxd 11/4/05 2:57 PM Page 604

CHAPTER 25 ■ DATABASE MIRRORING 605

WITNESS { = 'witness_server'
| OFF
}]

The arguments of this command are described in Table 25-2. Keep in mind that several of these
options touch on the functionality demonstrated later on in the chapter:

Table 25-2. ALTER DATABASE Arguments

Argument Description

database_name The name of the database participating in the mirror
session (the name must be the same on both the principal
and mirror servers).

partner_server The name of the partner server, which expects the
following format:
TCP://fully_qualified_domain_name:port.

FAILOVER The FAILOVER option manually fails over the principal
database to the mirror database. This option requires that
the SAFETY option is FULL.

FORCE_SERVICE_ALLOW_DATA_LOSS FORCE_SERVICE_ALLOW_DATA_LOSS forces the failover to the
mirrored database without fully synchronizing the latest
transactions (thus potentially losing data). This operation
requires that the principal server database is unavailable,
the SAFETY option is OFF, and no witness is designated.

OFF The OFF option stops the database mirroring session.

RESUME Starts back up a suspended database mirroring session.

SAFETY { FULL | OFF } The SAFETY setting has two values, FULL or OFF. When FULL,
the database mirroring session works in synchronous
mode, requiring transactions on the principal database to
be written to the mirror database before the transaction is
allowed to commit. When SAFETY is OFF, the mirroring
session is asynchronous, meaning that transactions at the
principal don’t wait to be applied at the mirror before
committing (which introduces the potential for data loss).

SUSPEND The SUSPEND mode suspends the database mirroring session.

REDO_QUEUE (integer { KB | MB | The REDO_QUEUE affects the size of the queue that holds log
GB } | UNLIMITED) records that have been committed to disk, but have not yet

rolled forward on the mirrored database. The default size is
UNLIMITED, however you can adjust the sizes by kilobytes,
megabytes, or gigabytes. This option applies to synchronous
mode. Reducing the size of this queue helps reduce the
amount of time it takes to failover to the mirror, but can
also slow down updates on the principal database, as it
may need to wait for the mirror server to catch up.

TIMEOUT integer The TIMEOUT option designates how long a server instance
will wait to receive a PING message back (the heartbeat
method between the partner servers) from the other
partner before deeming that connection to be unavailable
(thus causing a failover). The minimum wait time is five
seconds, with a default value of ten seconds.

witness_server This is the name of the witness server, which expects the
following format: TCP://fully_qualified_domain_name:port.

OFF OFF removes the witness from the database mirroring session.

570Xch25.qxd 11/4/05 2:57 PM Page 605

Continuing with the example scenario, on the mirrored SQL Server instance, the following
command is executed to begin the mirroring process by referencing the principal SQL Server
instance and TCP port number (where the endpoint listens):

-- Set on the mirrored SQL Server instance
-- Default SAFETY is FULL - synchronous mode
ALTER DATABASE BookStore

SET PARTNER = 'TCP://NODE2.JOEPROD.COM:5022'
GO

Next, ALTER DATABASE is executed on the principal SQL Server instance, designating the mirror
server’s name and TCP port number:

-- Enable the mirroring session on the principal SQL Server instance
-- Default SAFETY is FULL - synchronous mode
ALTER DATABASE BookStore

SET PARTNER = 'TCP://NODE1.JOEPROD.COM:5022'
GO

After setting up both the mirror and principal, you can then optionally add a witness server,
which is configured on the principal SQL Server instance, as this example demonstrates:

-- Enable the witness on the principal SQL Server instance
-- Default SAFETY is FULL - synchronous mode
ALTER DATABASE BookStore

SET WITNESS = 'TCP://NODE3.JOEPROD.COM:5022'
GO

Mirroring is now configured in this example with the optional witness server. Any data modifi-
cations or schema changes made on the principal database will be logged to the mirror database.
The mirror database will not be available for activity, unless it becomes the principal database either
by an automatic or manual failover (discussed and demonstrated later in the chapter).

How It Works
In this example, the ALTER DATABASE command was used to start a database mirroring session. You
started off on the mirrored SQL Server instance. ALTER DATABASE was executed using SET PARTNER:

ALTER DATABASE BookStore
SET PARTNER = 'TCP://NODE2.JOEPROD.COM:5022'

GO

The PARTNER of this command pointed to the principal database SQL Server server name, and
the listening endpoint port of that SQL Server instance. Recall earlier that the endpoint was config-
ured to listen on port 5022 in a partner (not witness) capacity.

Next, on the principal database SQL Server instance, the ALTER DATABASE command was used
to set the database mirroring partner, this time pointing to the mirrored database node and listen-
ing to the TCP port:

ALTER DATABASE BookStore
SET PARTNER = 'TCP://NODE1.JOEPROD.COM:5022'

GO

The SQL Server instance containing the principal database is also where you need to config-
ure the witness for the database mirroring session. Recall from the earlier recipe that you created
a database mirroring endpoint on the witness SQL Server instance. When you use ALTER DATABASE
and SET WITNESS, the name of the witness machine and listening TCP port are designated (from the
principal database SQL Server instance):

CHAPTER 25 ■ DATABASE MIRRORING606

570Xch25.qxd 11/4/05 2:57 PM Page 606

CHAPTER 25 ■ DATABASE MIRRORING 607

ALTER DATABASE BookStore
SET WITNESS = 'TCP://NODE3.JOEPROD.COM:5022'

GO

The database mirroring session has now been configured. Any database objects that have been
added or modifications that have been made in the BookStore database will be transferred to the
mirror copy. If the principal database becomes unavailable, a failover can occur, changing the mir-
rored database’s role to the principal role. Before you get into these tasks, however, I’ll quickly recap
what was accomplished in these last few recipes.

Setup Summary
The general steps for setting up database mirroring spanned the last three recipes, so here is a step-by-
step review of how it was done:

• First, on the mirror SQL Server instance, an endpoint was created using CREATE ENDPOINT
and designating the role of PARTNER, using the TCP port of 5022.

• On the principal SQL Server instance, an endpoint was created using a role of PARTNER and
using a listener port of 5022 (because these are separate servers, you can use the same TCP
port on each, so long as the port is available for use).

• Next, on the witness SQL Server instance, an endpoint was created with a role of WITNESS,
using a listener port of 5022.

• Back on the principal SQL Server instance, the BookStore database (the database to be mir-
rored) was set to FULL recovery mode using ALTER DATABASE (if it was already using FULL, this
step wouldn’t have been necessary).

• Still, on the principal SQL Server instance, a full database backup was performed on the
BookStore database.

• On the mirror SQL Server instance, the database was then restored using the NORECOVERY
option, leaving it in a state to receive transactions from the mirroring process. Had additional
transaction log backups been made on the principal database after the last full backup, those
transaction log backups would need to be applied to the mirrored, restored copy too.

• On the principal SQL Server instance, a transaction log backup was performed on the
BookStore database.

• On the mirror SQL Server instance, the transaction log backup was then restored using the
NORECOVERY option, leaving it in a state to receive transactions from the mirroring process.

• Still on the mirror SQL Server instance, the ALTER DATABASE...SET PARTNER command was
executed, pointing to the fully qualified principal server name and TCP port that the principal
SQL Server instance endpoint listens on.

• On the principal SQL Server instance, ALTER DATABASE...SET PARTNER was executed pointing
to the fully qualified name of the mirrored server and TCP port that the mirror SQL Server
instance endpoint listens on.

• Lastly, still from the principal, ALTER DATABASE...SET WITNESS was executed, pointing to the
fully qualified name of the witness server and TCP port that the witness SQL Server instance
endpoint listens on.

After all of this, the database mirror session begins. Modifications to the principal database will
be logged to the awaiting mirror database. The witness server will be keeping an eye on the connection
between the principal and mirror databases, making sure that if there are any problems, the appro-

570Xch25.qxd 11/4/05 2:57 PM Page 607

priate actions are taken (such as automatic failovers). Before I discuss failovers, however, in the next
section I’ll discuss the various operating modes of a mirroring session, and how they can be both
modified and controlled.

Operating Database Mirroring
Database mirroring sessions operate in three modes; high availability (used in the previous example),
high protection, or high performance.

High availability mode means that transactions committed on the principal database require
the availability of both the principal and mirror databases before the transaction can commit. This
mode also requires a witness server, which allows automatic failover to occur. The owner of the
principal database is determined by a quorum, which is the presence of at least two servers that can
communicate with each another. If the witness loses contact with the mirror, but keeps contact with
the principal, the principal database will remain in its role. If the witness loses contact with the
principal, however, but can still see the mirror, in high availability mode the mirror assumes the role
of principal. If the witness becomes unavailable for whatever reason, the principal and mirror form
the quorum, and remain in their present roles. In short—it takes two to make a quorum, and a quo-
rum decides which partner controls the principal database.

High protection mode, just like high availability mode, means that transactions committed on
the principal database require the availability of both the principal and mirror databases before the
transaction can commit. Unlike high availability mode, however, there isn’t a witness server in the
mix. This means that while a manual failover can occur, an automatic failover can’t. High protection
mode still forms a quorum (of just the two partner servers) with the mirror database, however if the
mirror database becomes unavailable, SQL Server will make the database unavailable (meaning,
take it out of service). This is because high protection mode requires the mirror in order to commit
transactions.

Both of the aforementioned modes suggest data protection and availability as the primary empha-
sis. With this functionality, however, comes performance overhead. If your mirrored database has
significant update activity, each transaction on the principal database must wait for an acceptance
from the mirrored copy before a commit can happen.

Enter high performance mode, which allows asynchronous updates on the principal database
(no waiting for the mirror before committing the transaction), and no witness server. This mode
emphasizes transaction speed, but not data availability (because of the lack of manual or automatic
failover) and minimal data recoverability (asynchronous modifications allow for the potential of lost
transactions on the mirror database).

In this next recipe, I’ll demonstrate how to use ALTER DATABASE to configure the high availabil-
ity, high protection, and high performance modes.

Changing Operating Modes
Both high availability and high protection modes use the FULL safety mode (which is the default
mode when you start a mirroring session). You can, however, turn this setting off by using
ALTER DATABASE...SET SAFETY. This command takes two options: OFF or FULL.

In this first example, the safety of a specific mirrored session is turned OFF for a database (putting
it in high performance mode) by executing the command on the principal SQL Server instance:

ALTER DATABASE BookStore SET SAFETY OFF

This second example demonstrates turning safety back on again, and changing from high
performance to high availability mode:

ALTER DATABASE BookStore SET SAFETY FULL

CHAPTER 25 ■ DATABASE MIRRORING608

570Xch25.qxd 11/4/05 2:57 PM Page 608

CHAPTER 25 ■ DATABASE MIRRORING 609

High protection mode was not demonstrated here, as it also has FULL safety mode enabled,
only without the use of a witness in the database mirroring session.

How It Works
In this example, the mirroring session safety was turned off and then on again by referencing the
database name, followed by the new safety mode (either OFF or FULL). With the presence of a witness
and the safety on FULL, your database mirroring session will operate in high availability mode. If you
aren’t using a witness, but safety is still FULL, the database mirroring session is operating in high
protection mode. With safety OFF, the database is in asynchronous, high performance mode. See
Table 25-3 for a summary of these different modes.

Table 25-3. Database Mirroring Operating Modes

Mode Safety Configuration Witness?

High Availability FULL Yes

High Protection FULL No

High Performance OFF No

■Tip As a best practice, use synchronous, high availability mode with mission critical databases. Only use
asynchronous, high performance mode for databases where you can easily recover the lost data through other
mechanisms or sources. Of the synchronous choices, use a witness server whenever possible (high availability) in
order to take advantage of automatic failover.

Performing Failovers
A failover involves switching the roles of the principal and mirror database, with the mirror copy
becoming the principal and the principal becoming the mirror. Existing database connections are
broken during the failover, and the connecting application must then connect to the new principal
database (and with the new 2005 .NET functionality, the connection string can be database-mirror
aware).

You can manually set databases participating in a mirroring session to failover in synchronous
high performance or high availability modes using the ALTER DATABASE...SET PARTNER FAILOVER
command.

In this example, a failover is initiated from the principal server (which becomes the mirror
server after the operation):

USE master
GO
ALTER DATABASE BookStore SET PARTNER FAILOVER

How long the actual failover operation takes depends on the time it takes to roll forward the
logged transactions on the mirrored copy.

If the database session is running in asynchronous, high performance mode, you cannot initiate
a manual failover. Instead, if the principal becomes unavailable, you can either wait for the database
to become available again, or you can force the service on the mirror copy. To force the service, use
the ALTER DATABASE...SET PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS command. After forcing the
service, the mirrored database will roll forward logged transactions (and in asynchronous mode, the
principal could have lost some of the transactions in transit prior to the outage). The mirrored data-
base then takes over as the principal.

570Xch25.qxd 11/4/05 2:57 PM Page 609

■Caution Force service on a mirrored database only if absolutely necessary as data can be lost from the
unavailable principal database.

In this example, the mirrored database in a database session using asynchronous, high per-
formance mode is forced into service (requires that the actual principal database be unavailable to
the mirroring session):

ALTER DATABASE ReportCentralDB SET PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS

How It Works
These examples demonstrated failover options, which depend on the database mirroring session
mode. You may decide to perform a manual failover, for example, in order to perform maintenance
activities on the principal database server.

For asynchronous, high performance mode, however, if the principal database becomes unavail-
able, you’ll only want to force service on the mirror session when absolutely necessary, as data can
be lost from any unsent transactions on the unavailable principal database.

Pausing or Resuming a Mirroring Session
If your mirrored principal database is undergoing a significant amount of updates, which are then
being bottlenecked by the synchronous updates to the mirror, you can temporarily pause the mirror-
ing session using ALTER DATABASE...SET PARTNER SUSPEND. This option keeps the principal database
available, and preserves changes in the log, which will then be sent to the mirroring database once
it’s resumed. The database mirroring session should only be paused for a short period of time, as
the transaction log will continue to grow, causing it to fill up if the transaction log file size is fixed or
expand until the drive is full (if the transaction log is not fixed).

In this example, the BookStore database mirroring session is paused from the principal server:

ALTER DATABASE BookStore SET PARTNER SUSPEND

The state is then confirmed by querying the sys.database_mirroring system catalog view on
the principal server:

SELECT mirroring_state_desc
FROM sys.database_mirroring
WHERE database_id = DB_ID('BookStore')

This returns:

mirroring_state_desc
SUSPENDED

This next example demonstrates resuming the database mirroring session, causing the mirror
database to synchronize with the pending log transactions:

ALTER DATABASE BookStore SET PARTNER RESUME

CHAPTER 25 ■ DATABASE MIRRORING610

570Xch25.qxd 11/4/05 2:57 PM Page 610

CHAPTER 25 ■ DATABASE MIRRORING 611

How It Works
You can pause or resume a database mirroring session without removing it entirely. Use the techniques
demonstrated in this recipe to allow the removal of performance bottlenecks that may appear on
high activity databases. Be mindful, however, of the transaction log size, and don’t keep the mirror-
ing session disabled longer than is strictly necessary.

Stopping Mirroring Sessions and Removing Endpoints
The previous example demonstrated briefly pausing and resuming a mirroring session, however if
you wish to remove it altogether, you can use the ALTER DATABASE...SET PARTNER OFF command.

In this example, the BookStore database mirror is stopped and removed (mirroring meta-data
is removed):

ALTER DATABASE BookStore SET PARTNER OFF

You can remove the mirroring endpoints on each SQL Server instance using the DROP ENDPOINT
command, for example:

-- Executed on the witness server
DROP ENDPOINT JOEPROD_Witness

-- Executed on the mirror server
DROP ENDPOINT JOEPROD_Mirror

-- Executed on the principal server
DROP ENDPOINT JOEPROD_Mirror

How It Works
Use ALTER DATABASE...SET PARTNER OFF to stop and remove the database mirroring session. Con-
nections will be broken in the principal database, but are allowed back in again for regular activity
after the mirroring session is removed. The mirrored copy is left in a restoring state, where you can
either recover or drop it. If you wish to reinstate mirroring, you have to follow the steps of setting up
the principal, mirror, and witness from scratch.

If you remove mirroring, it’s best to also remove the endpoints using DROP ENDPOINT, so that
you don’t forget that they are there holding on to the TCP port (which you may decide to use for
other things).

Monitoring and Configuring Options
The last batch of recipes in this chapter will show you how to:

• Monitor the status of the database mirror using the sys.database_mirroring system catalog
view.

• Reduce the time it takes for a failover to occur using the ALTER DATABASE...PARTNER REDO_QUEUE
command.

• Configure the connection timeout period using the ALTER DATABASE...SET PARTNER TIMEOUT
command.

You’ll begin with learning how to monitor a database mirroring session’s current status.

570Xch25.qxd 11/4/05 2:57 PM Page 611

Monitoring Mirror Status
You can confirm the status of your mirroring session by querying the sys.database_mirroring system
catalog view.

For example, this view is executed on the principal and shows the state of the mirror, the role of
the current database, the safety level (described in the next recipe), and the state of the witness
connection to the principal:

SELECT mirroring_state_desc, mirroring_role_desc, mirroring_safety_level_desc,
mirroring_witness_state_desc
FROM sys.database_mirroring
WHERE database_id = DB_ID('BookStore')

This returns:

mirroring_state_desc mirroring_role_desc mirroring_safety level_desc
mirroring_witness_state_desc
SYNCHRONIZED PRINCIPAL FULL CONNECTED

How It Works
The SYNCHRONIZED state, when seen for the default FULL safety mode, means that the principal and
mirrored database contain the same data. Other states you can see in this view include:

• SYNCHRONIZING, which means that the principal is sending log records that the mirror is still
in the process of applying.

• SUSPENDED, which means that either the mirrored copy of the database is unavailable, errors
have occurred, or the database has been manually put in this state. In a SUSPENDED state, the
principal database runs without sending log records to the mirror.

• PENDING_FAILOVER, which is seen when a manual failover request has been made, but not yet
executed.

• DISCONNECTED, which means that the partner has lost communication with the partner and
witness.

Reducing Failover Time
Log transactions during periods of high activity on the principal database are continuously sent to
the mirror copy, in spite of how far behind the mirror copy may be in applying the changes. Databases
use a redo queue, containing the pending changes to roll forward on the mirror copy. By default, the
redo queue has unlimited size (limited to the disk space, of course), and the larger the redo queue
is, the longer the failover can take. Consequently, a smaller redo queue can reduce the amount of
time a failover can take. Although limiting the size of the queue allows the database mirror copy to
catch up with changes, it can also slow down updates that occur on the principal database copy,
because the principal database cannot push more changes to the queue than its current size allows.
So you must balance failover speed to overall update speed on the principal.

For synchronous database mirroring sessions, you can limit the size of the redo queue by using
the ALTER DATABASE...PARTNER REDO_QUEUE command.

The syntax is as follows:

REDO_QUEUE (integer { KB | MB | GB } | UNLIMITED)

This command uses an integer value, followed by the increment (kilobytes, megabytes, gigabytes,
or the default, unlimited). This example sets the redo queue to 50MB in size (executed on the prin-

CHAPTER 25 ■ DATABASE MIRRORING612

570Xch25.qxd 11/4/05 2:57 PM Page 612

CHAPTER 25 ■ DATABASE MIRRORING 613

ALTER DATABASE BookStore SET PARTNER REDO_QUEUE 50MB

The sys.database_mirroring system catalog view is then queried to validate the change:

SELECT mirroring_redo_queue
FROM sys.database_mirroring
WHERE database_id = DB_ID('BookStore')

This returns:

mirroring_redo_queue

50

How It Works
In this recipe, the ALTER DATABASE command was used to set the REDO_QUEUE to 50MB:

ALTER DATABASE BookStore SET PARTNER REDO_QUEUE 50MB

By limiting the redo queue size, the pending transactions are forced to write to the mirror copy
sooner. The actual size depends on the size of your database and the amount of data modification
activity. Remember that the tradeoff to a faster failover may also result in slower updates on the
principal database. The default behavior is for changes to be sent from the principal to the mirror
without restriction, even if the database mirror falls behind in applying the log changes to disk.
Restricting the queue size allows the database mirror to “catch up,” resulting in a faster failover if
the principal database goes down, but may have a negative impact on overall principal database
performance.

Configuring the Connection Timeout Period
Database mirroring uses a default connection timeout period of ten seconds. If a connection cannot
be made after ten seconds, a failure occurs, and depending on the role of the database (principal,
mirror, or witness) or the mirroring session mode (synchronous, asynchronous), a failover or mir-
roring shut-down can occur.

If your network latency causes premature failures in the database mirroring session, you can
configure the connection time-out period using the ALTER DATABASE...SET PARTNER TIMEOUT com-
mand. This command configures the timeout period in seconds (with a minimum of five seconds
allowed).

In this example, the connection time-out period is increased to 15 seconds on the principal
server:

ALTER DATABASE BookStore SET PARTNER TIMEOUT 15

You can confirm the new setting by querying the sys.database_mirroring system catalog view:

SELECT mirroring_connection_timeout
FROM sys.database_mirroring
WHERE database_id = DB_ID('BookStore')

This returns:

mirroring_connection_timeout

15

570Xch25.qxd 11/4/05 2:57 PM Page 613

CHAPTER 25 ■ DATABASE MIRRORING614

How It Works
In this recipe, the connection timeout period was modified using the ALTER DATABASE...
SET PARTNER TIMEOUT command:

ALTER DATABASE BookStore SET PARTNER TIMEOUT 15

When a mirroring session is active, PING communication messages are sent between the partic-
ipating servers. When a server instance has to wait longer than the configured timeout, a failure
occurs. The reaction to the failure depends on the role of the server, how quorum is defined (which
two servers still see one another), and the database mirroring mode (high availability, high protection,
or high performance).

570Xch25.qxd 11/4/05 2:57 PM Page 614

Database Snapshots

With the release of SQL Server 2005 Enterprise Edition came the ability to create database snap-
shots, which are read-only, static copies of a database, representative of a specific point in time. You
can connect to these snapshots just as you would any other database, allowing you to use them for
reporting, testing, training or data recovery purposes. Before you conduct large or potentially haz-
ardous database updates, you can use database snapshots as a just-in-case precaution when you
may need to undo your work.

In this chapter, I demonstrate how to create, query, and drop database snapshots, as well as
how to use database snapshots for data recovery purposes.

Snapshots Basics
Database snapshots can be created from user databases, providing a read-only view of the data, from
the specific point in time when the snapshot was generated. Multiple snapshots can be created for
a single database, allowing you, for example, to create a snapshot of a database at the end of each day
or week, or at month’s end.

Database snapshots are also space efficient, because they use sparse files. A sparse file is a file
that contains no user data when first created. Snapshots reserve a minimum amount of space, in
order to maintain the original snapshot’s data. When first created, a database snapshot does not
produce an extra copy of all data in the source database, but as database changes occur over time in
the source, a copy of the pre-changed data is placed in the sparse file. The snapshot will then contain
the contents of the database as it appeared the moment the snapshot was created.

Queries against the snapshot will return data from either the snapshot, the database, or both.
Unchanged source database data will still be retrieved from the source database. But, if the data has
been changed on the source database since the snapshot database was created, it will be retrieved
from the snapshot.

As the percentage of changed data in the database source approaches 100%, the database snap-
shot will approach the size of the original database at the time the snapshot was originally created.
Keep in mind that if the same data is modified on the source database multiple times, no additional
updates are made to the database snapshot. Once a data page is updated on the source, the pre-changed
data page is only moved once to the snapshot database.

There are a few limitations to keep in mind when deciding whether to use snapshots. For example,
snapshots can’t be created for the system databases. And, database snapshots can’t be backed up,
restored over, attached, or detached like regular databases. Also, snapshots do add performance
overhead to the source database. This is because you’ll see increased I/O activity for each modifica-
tion that causes a data page to be moved to the snapshot file. If you have multiple snapshots on the
same source database, the I/O activity will increase for each snapshot that requires page updates.

615

C H A P T E R 2 6

■ ■ ■

570Xch26.qxd 11/4/05 2:58 PM Page 615

CHAPTER 26 ■ DATABASE SNAPSHOTS616

Limitations aside, database snapshots offer an excellent means of preserving point-in-time
data, separating out reporting queries from the source database, and allowing quick data recovery.
The next set of recipes will demonstrate database snapshots in action.

Creating and Querying Database Snapshots
You create a database snapshot using the CREATE DATABASE command.

The syntax for this command is as follows:

CREATE DATABASE database_snapshot_name
ON

(
NAME = logical_file_name,
FILENAME = 'os_file_name'
) [,...n]

AS SNAPSHOT OF source_database_name

The arguments for this command are described in Table 26-1.

Table 26-1. CREATE DATABASE...AS SNAPSHOT Arguments

Argument Description

database_snapshot_name The name of the database snapshot that you want to
create.

(NAME = logical_file_name,FILENAME = logical_file_name is the logical filename of the source
'os_file_name') [,...n] database data files. os_file_name is the physical

filename to be created for the snapshot file. For each
source database data file, there must be a snapshot
file defined.

source_database_name The source database that the snapshot is based on.

In this recipe’s example, a snapshot is generated for the AdventureWorks database:

CREATE DATABASE AdventureWorks_Snapshot_Oct_08_2005
ON
(NAME = AdventureWorks_Data,

FILENAME =
'C:\Apress\Recipes\AdventureWorks_Snapshot_Oct_08_2005.mdf
')
AS SNAPSHOT OF AdventureWorks

GO

Next, an update is made in the source data of the AdventureWorks database, in order to demon-
strate the database snapshot’s functionality:

USE AdventureWorks
GO

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Accounting Temps', 'AR')
GO

A new row was inserted into the source database. The HumanResources.Department table in the
AdventureWorks source database and the database snapshot AdventureWorks_Snapshot_Oct_08_2005

570Xch26.qxd 11/4/05 2:58 PM Page 616

SELECT Name
FROM AdventureWorks.HumanResources.Department
WHERE GroupName = 'AR'

This returns:

Name
Accounting Temps

Now the snapshot is queried:

SELECT Name
FROM
AdventureWorks_Snapshot_Oct_08_2005.HumanResources.➥
Department
WHERE GroupName = 'AR'

No data is returned from the snapshot, as the snapshot contains data prior to the change:

Name

(0 row(s) affected)

How It Works
In this recipe, a database snapshot was created using the CREATE DATABASE command:

CREATE DATABASE AdventureWorks_Snapshot_June_26_2005

The ON clause included the logical name of the data file from the AdventureWorks database, fol-
lowed by the physical path and filename of the new database snapshot data file (since the snapshot
is read-only, no transaction log file is needed):

ON
(NAME = AdventureWorks_Data,

FILENAME = 'C:\Apress\Recipes\AdventureWorks_Snapshot_June_26_2005.mdf')

The AS clause designated which database the snapshot would be based on:

AS SNAPSHOT OF AdventureWorks

Once the snapshot was created, an insert was performed on the AdventureWorks database. Behind
the scenes, SQL Server copied the pre-change data pages to the database snapshot file. Queries
against the snapshot that require data that has changed in the source database since the snapshot
was created will be read from the snapshot database. This copy-on-write functionality allows the
size of the snapshot file to remain relatively small, meaning that only the data affected by any
changes would need to be stored in the snapshot data file.

Removing a Database Snapshot
To remove a database snapshot, use the DROP DATABASE command.

The syntax is as follows:

DROP DATABASE database_snapshot_name

This command uses just one argument: the name of the database snapshot.

CHAPTER 26 ■ DATABASE SNAPSHOTS 617

570Xch26.qxd 11/4/05 2:58 PM Page 617

In this next example, I demonstrate dropping the database snapshot created in the previous
recipe:

DROP DATABASE AdventureWorks_Snapshot_Oct_08_2005

How It Works
The snapshot was removed in this recipe using DROP DATABASE. This removed the snapshot from the
SQL Server instance, along with the removal of the underlying physical snapshot file.

Recovering Data with a Database Snapshot
Consider this not so uncommon scenario: you get a call from a database end-user telling you that
he has accidentally updated a column’s value for all rows in a table. The database he modified is very
large, and restoring the data from backup will first require that you retrieve the backup file from
tape. Once retrieved, you’ll have to restore the database under a separate database name, and then
INSERT...SELECT out the missing data into the production database. In addition to the pain of doing
all of this, you may also find that you don’t have the required disk space to store both the backup file
and additional restored copy of the database.

Now imagine that you had created periodic snapshots of your database after significant data
update events. Depending on the volatility of the data in your source database, database snapshots
may only consume a fraction of the space required for a full database restore. With a snapshot, you
can restore/update the data affected by the previous example by updating the source database with
data from the snapshot database.

Or, if you can afford to do so, you can overlay the existing source database, recovering data
as of the last snapshot using the RESTORE...FROM DATABASE_SNAPSHOT command. Using
RESTORE...FROM DATABASE_SNAPSHOT, SQL Server will copy over the existing source database with the
database snapshot. The RESTORE...FROM DATABASE_SNAPSHOT command is only used in conjunction
with snapshots.

■Note For other uses of the RESTORE command, see Chapter 29.

The syntax for reverting from a database snapshot is as follows:

RESTORE DATABASE <database_name>
FROM DATABASE_SNAPSHOT = <database_snapshot_name>

This command takes two arguments: the name of the source database that you want to restore
over, and the name of the database snapshot that you want to revert from.

Using RESTORE...FROM DATABASE_SNAPSHOT, you’ll lose any data modifications made to the source
database since the last snapshot, only recovering your data as of the point in time when the snap-
shot was created. But, with only having to update information that was modified since the snapshot
was created, RESTORE...FROM DATABASE_SNAPSHOT operations can take significantly less time than
regular database restores. You are achieving similar results to those in a regular database restore, in
that your database state is reverted to the contents as they were when the snapshot was created.

■Caution Only revert to a snapshot if you can afford to lose all the changes you made in the source database
since the last snapshot! This method is most useful for “scratch” databases, such as the ones used for training or
testing. Also, although database snapshots are a convenient means of recovering data, database snapshots
should not be considered a replacement for a good data recovery plan.

CHAPTER 26 ■ DATABASE SNAPSHOTS618

570Xch26.qxd 11/4/05 2:58 PM Page 618

If you plan on using database snapshots to recover data in your SQL Server instance, note that
other database snapshots (snapshots you are not recovering from) must be deleted prior to the
RESTORE...FROM DATABASE_SNAPSHOT operation. Otherwise you will receive an error message similar
to this:

Msg 3137, Level 16, State 4, Line 2
Database cannot be reverted. Either the primary or the snapshot names are improperly
specified, all other snapshots have not been dropped, or there are missing files.
Msg 3013, Level 16, State 1, Line 2
RESTORE DATABASE is terminating abnormally.

In addition to database snapshots, any full-text catalogs in the database must be removed prior
to a database snapshot RESTORE...FROM DATABASE_SNAPSHOT operation, and your source database can’t
contain read-only or offline filegroups.

■Note Since a restore from a snapshot file breaks the transaction log backup sequence (see Chapter 29), it is
a good idea to perform a full database backup after performing the RESTORE operation.

In this recipe, a new database snapshot is created on the AdventureWorks database:

CREATE DATABASE AdventureWorks_Snapshot_Oct_09_2005
ON
(NAME = AdventureWorks_Data,

FILENAME = 'C:\Apress\Recipes\AdventureWorks_Snapshot_Oct_09_2005.mdf')
AS SNAPSHOT OF AdventureWorks
GO

Next, the CustomerType column of the Sales.Customer table is accidentally updated to be 'S'
for all rows (as no WHERE clause was used):

UPDATE Sales.Customer
SET CustomerType = 'S'

A query is executed to validate what happened in the AdventureWorks database:

SELECT CustomerType, COUNT(*) RowCnt
FROM Sales.Customer
GROUP BY CustomerType

This returns the following results, confirming that all rows now have a single CustomerType
value of 'S':

CustomerType RowCnt
------------ -----------
S 19185

Next, the AdventureWorks database is reverted back to the state it was in as of the database
snapshot. No sessions can be connected to the source database during the RESTORE, so this example
changes the database context to the master database. The AdventureWorks database is offline during
the operation:

USE master
GO

CHAPTER 26 ■ DATABASE SNAPSHOTS 619

570Xch26.qxd 11/4/05 2:58 PM Page 619

RESTORE DATABASE AdventureWorks
FROM DATABASE_SNAPSHOT = 'AdventureWorks_Snapshot_Oct_09_2005'

The validation query is executed again to see if the data in the CustomerType column was corrected
by the database snapshot revert:

USE AdventureWorks
GO

SELECT CustomerType, COUNT(*) RowCnt
FROM Sales.Customer
GROUP BY CustomerType

This returns confirmation that the CustomerType values have been recovered:

CustomerType RowCnt
------------ -----------
S 701
I 18484

How It Works
The RESTORE...FROM DATABASE_SNAPSHOT command allows you to undo any changes you made to the
source database after the date and time of the creation of the designated database snapshot. This
operation can also take less time to perform than a regular restore operation (for more on this topic,
see Chapter 29).

In this recipe, the data in a column was unintentionally updated. A database snapshot was
then used to revert to the data as of the point when the database snapshot was created. During the
RESTORE...FROM DATABASE_SNAPSHOT operation, the database was offline and unavailable for use.
After the operation completed, any changes made to AdventureWorks since the database snapshot
were lost.

CHAPTER 26 ■ DATABASE SNAPSHOTS620

570Xch26.qxd 11/4/05 2:58 PM Page 620

Linked Servers and
Distributed Queries

Linked servers provide SQL Server with access to data from remote data sources. Using linked
servers, you can issue queries, perform data modifications, and execute remote procedure calls.
Remote data sources can be homogeneous (meaning that a source is another SQL Server instance)
or heterogeneous (from other relational database products and data sources such as DB2, Access,
Oracle, Excel, and text files). A query that joins or retrieves data across multiple platforms is a cross-
platform query. Using a cross platform query, you can access legacy database systems without the
cost of merging or migrating existing data sources.

The remote data sources are connected to via an OLE DB provider. OLE DB, created by Microsoft,
is a set of COM (component object model) interfaces used to provide consistent access to varying
data sources. To establish access from a SQL Server 2005 instance to another data source requires
that you choose the correct OLE DB provider. How the OLE DB provider was designed determines
what kind of distributed query operations can be implemented through a distributed query (whether
SELECT, INSERT, UPDATE, or DELETE stored-procedure execution).

So in a nutshell, a linked server is a means of establishing a connection to a remote data source.
Depending on the OLE DB driver used to set up the linked server, you can execute distributed
queries to retrieve data or perform operations on the remote data source.

Distributed queries can also be run without having to define linked servers, for example by
using the Transact-SQL function OPENROWSET. In addition to querying a remote data source without
a linked server, OPENROWSET has been enhanced in SQL Server 2005 to allow BULK reads of ASCII,
Unicode, and binary files. Using OPENROWSET and BULK, you can read tabular data from a text file, or
use it to import an ASCII, Unicode, or binary type file into a single large data type column and sin-
gle row (such as varchar(max), nvarchar(max), or varbinary(max)).

Also new in SQL Server 2005, Microsoft has introduced the SYNONYM object, which allows you to
reference an object that has a long name with a shorter name. This can be useful for long identifiers
in general, but particularly for distributed queries that reference a four-part linked server name, using
a shorter name for the data source instead.

This chapter contains recipes for creating linked servers, executing distributed queries, reading
from a text file using OPENROWSET and BULK, and using the new SYNONYM object.

621

C H A P T E R 2 7

■ ■ ■

570Xch27.qxd 11/4/05 2:59 PM Page 621

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES622

Linked Server Basics
This next set of recipes will demonstrate how to use linked servers. Specifically, I’ll be demonstrat-
ing how to

• Create a linked server connection to another SQL Server 2005 instance.

• Configure the properties of a linked server.

• View information about configured linked servers on the SQL Server instance.

• Drop a linked server.

I’ll start off by discussing how to use the system stored procedure sp_addlinkedserver to create
a new linked server.

Creating a Linked Server to Another SQL Server Instance
Linked servers allow you to query external data sources from within a SQL Server instance. The
external data source can either be a different SQL Server instance, or non-SQL Server data source
such as Oracle, MS Access, DB2, or MS Excel.

To create the linked server, use the system stored procedure sp_addlinkedserver. The syntax is
as follows:

sp_addlinkedserver
[@server=] 'server' [,
[@srvproduct=] 'product_name']
[, [@provider=] 'provider_name']
[, [@datasrc=] 'data_source']
[, [@location=] 'location']
[, [@provstr=] 'provider_string']
[, [@catalog=] 'catalog']

The parameters of this system stored procedure are described in Table 27-1.

Table 27-1. sp_addlinkedserver Arguments

Argument Description

Server Local name used for the linked server. Instance names are also allowed, for
example MYSERVER\SQL1.

product_name Product name of the OLE DB data source. For SQL Server instances, the
product_name is 'SQL Server'.

provider_name This is the unique programmatic identifier for the OLE DB provider. When
not specified, the provider name is the SQL Server data source. The explicit
provider_name for SQL Server is SQLNCLI (for Microsoft SQL Native Client OLE
DB Provider). MSDAORA is used for Oracle, OraOLEDB.Oracle for Oracle versions
8 and higher, Microsoft.Jet.OLEDB.4.0 for MS Access and MS Excel, DB2OLEDB
for IBM DB2, and MSDASQL for an ODBC data source.

data_source This is the data source as interpreted by the specified OLE DB provider.
For SQL Server, this is the network name of the SQL Server (servername or
servername\instancename). For Oracle, this is the SQL*Net alias. For MS Access
and MS Excel, this is the full path and name of the file. For an ODBC data
source, this is the system DSN name.

Location The location as interpreted by the specified OLE DB provider.

570Xch27.qxd 11/4/05 2:59 PM Page 622

Argument Description

provider_string The connection string specific to the OLE DB provider. For an ODBC
connection, this is the ODBC connection string. For MS Excel, this is Excel
5.0.

Catalog The catalog definition varies based on the OLE DB provider implementation.
For SQL Server, this is the optional database name. For DB2, this catalog is the
name of the database.

In a network environment with multiple SQL Server instances, linked servers provide a con-
venient method for sharing SQL Server data without having to physically push or pull the data and
replicate the schema.

■Tip In this chapter, I cover examples of communication between SQL Server instances. For heterogeneous data
sources such as DB2, Access, and Oracle, parameters will vary substantially. For an extensive table of required
sp_addlinkedserver options, see the SQL Server Books Online topic “sp_addlinkedserver (Transact-SQL).”

The configurations used to connect to heterogeneous data sources vary, based on the OLE DB
provider. If you’re just connecting to a different SQL Server instance, however, Microsoft makes it
easy for you. In this recipe, I demonstrate creating a linked server connection to another SQL Server
instance:

EXEC sp_addlinkedserver @server= 'JOEPROD',
@srvproduct= 'SQL Server'

You can also create linked servers to connect to SQL Server named instances, for example:

EXEC sp_addlinkedserver @server= 'JOEPROD\NODE2',
@srvproduct= 'SQL Server'

How It Works
Adding a linked server to an external data source allows you to perform distributed queries (distrib-
uted queries are reviewed later in this chapter). When adding a SQL Server linked server to a SQL
Server instance, whether it’s a default or named instance, Microsoft makes it easy for you by requiring
just the server and product_name values.

What about the security method for connecting to the SQL Server instance? When creating
a new linked server, the current user’s login security credentials (SQL or Windows) will be used to
connect to the linked server. You can also create explicit remote login mapping for the linked server,
which you’ll see discussed later on in the chapter.

Configuring Linked Server Properties
There are a number of different settings you can use to configure a linked server after it has been
created. These settings are described in Table 27-2.

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES 623

570Xch27.qxd 11/4/05 2:59 PM Page 623

Table 27-2. Linked Server Properties

Setting Description

collation compatible Enable this setting if you are certain that the SQL Server instance has
the same collation as the remote SQL Server instance. Doing so can
improve performance, as SQL Server will no longer have to perform
comparisons of character columns between the data sources, as the
same collation is assumed.

collation name If use remote collation is enabled and the linked server is for a non-SQL
Server data source, collation name specifies the name of the remote
server collation. The collation name must be one supported by SQL
Server.

Connect timeout Designates the number of seconds a connection attempt will be made
to the linked server before a timeout occurs. If the value is “0”, the
sp_configure server value of remote query timeout is used as a default.

data access If enabled, distributed query access is allowed.

lazy schema validation If set to true, schema is not checked on remote tables at the beginning
of the query. Although this reduces overhead for the remote query, if
the schema has changed and you are not schema-checking, the query
may raise an error if the referenced objects used by the query no longer
correspond with the query command.

query timeout Determines the number of seconds it takes for a waiting query to time
out. If this value is 0, then the sp_configure value configured for the
query wait option will be used instead.

rpc Enables remote procedure calls from the server.

rpc out Enables remote procedure calls to the server.

use remote collation Determines if remote server collation is used (true) instead of the local
server collation (false).

To change linked server properties, use the sp_serveroption system stored procedure. The syntax is
as follows:

sp_serveroption [@server =] 'server'
,[@optname =] 'option_name'

,[@optvalue =] 'option_value'

The arguments of this system stored procedure are described in Table 27-3.

Table 27-3. sp_serveroption Arguments

Argument Description

server The name of the linked server to configure properties for.

option_name The option to configure.

option_value The new value of the option.

In this recipe, the query timeout setting for the JOEPROD\NODE2 linked server will be changed to
60 seconds:

EXEC sp_serveroption
@server = 'JOEPROD\NODE2' ,
@optname = 'query timeout',
@optvalue = 60

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES624

570Xch27.qxd 11/4/05 2:59 PM Page 624

How It Works
In this recipe, the linked server JOEPROD\NODE2 was modified to a query timeout limit of 60 seconds.
The first parameter, called server, designated the linked server name. The second parameter,
option_name, designated the option to configure, and the third parameter, option_value, configured
the new value.

Viewing Linked Server Information
You can use the sys.servers system catalog view to view linked servers defined on a SQL Server
instance. For example:

SELECT name, query_timeout, lazy_schema_validation
FROM sys.servers
WHERE is_linked = 1

This returns:

name query_timeout lazy_schema_validation
JOEPROD\NODE2 60 0

How It Works
The system catalog view sys.servers can be used to retrieve information about linked servers defined
on your SQL Server instance. Other options you can view from sys.servers include: product,
provider, data_source, location, provider_string, catalog, is_linked, is_remote_login_enabled,
is_rpc_out_enabled, is_data_access_enabled, is_collation_compatible, use_remote_collation,
and collation_name. The is_linked column was qualified in the query to return only linked servers
(excluding the local SQL Server instance settings).

Dropping a Linked Server
The sp_dropserver system stored procedure is used to drop a linked server. The syntax for
sp_dropserver is as follows:

sp_dropserver [@server=] 'server'
[, [@droplogins=] { 'droplogins' | NULL}]

The parameters of this system stored procedure are described in Table 27-4.

Table 27-4. sp_dropserver Arguments

Argument Description

server The name of the linked server to remove from the SQL Server instance.

droplogins If droplogins is specified, login mappings (described later in this chapter) are
removed prior to dropping the linked server.

This recipe demonstrates dropping a linked server:

EXEC sp_dropserver
@server= 'JOEPROD',

@droplogins= 'droplogins'

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES 625

570Xch27.qxd 11/4/05 2:59 PM Page 625

How It Works
This recipe demonstrated removing a linked server from your SQL Server instance using the system
stored procedure sp_dropserver. The droplogins option was designated in the second parameter to
drop any existing login mappings (I’ll review linked server logins in the next block of recipes) prior
to removing the linked server. If you try to drop a linked server before removing logins, you’ll get the
following message:

There are still remote logins for the server.

Linked Server Logins
In the next three recipes, I’ll demonstrate how to work with linked server login mappings. Specifically,
I’ll cover how to

• Create a linked server login mapping.

• View linked server login mappings configured on the SQL server instance.

• Drop a linked server login mapping.

I’ll start off by discussing how to use the system stored procedure sp_addlinkedsrvlogin to
create a login mapping.

Adding a Linked Server Login Mapping
When executing a distributed query against a linked server, SQL Server maps your local login and
credentials to the linked server. Based on the security on the remote data source, your credentials
are either accepted or rejected. When sp_addlinkedserver is executed and a linked server is created,
the default behavior is to use your local login credentials (either SQL or Windows) to access data on
the linked server. Even if you don’t have the proper permissions to connect to a linked server, security
on the linked server is not checked until you attempt a distributed query. Since security configura-
tions, logins, and database users vary by SQL Server instance, you may need to set up a different
mapping from your local login to a different remote login.

The login mapping information is stored on the SQL Server instance where the linked server is
defined. To create a login mapping, you use the sp_addlinkedsrvlogin system stored procedure.

The syntax is as follows:

sp_addlinkedsrvlogin [@rmtsrvname =] 'rmtsrvname'
[, [@useself =] 'useself']
[, [@locallogin =] 'locallogin']
[, [@rmtuser =] 'rmtuser']
[, [@rmtpassword =] 'rmtpassword']

The parameters of this system stored procedure are described in Table 27-5.

Table 27-5. sp_addlinkedsrvlogin Arguments

Argument Description

rmtsrvname The local linked server that you want to add the login mapping to.

Useself When the value true is used, the local SQL or Windows login is used to connect to
the remote server name. If false, the locallogin, rmtuser, and rmtpassword
parameters of the sp_addlinkedsrvlogin stored procedure will apply to the new
mapping.

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES626

570Xch27.qxd 11/4/05 2:59 PM Page 626

Argument Description

locallogin This is the name of the SQL Server login or Windows user to map to a remote
login. If this parameter is left NULL, the mapping applies to all local logins on the
SQL Server instance.

rmtuser The name of the user/login used to connect to the linked server.

rmtpassword The password of the login/user used to connect to the linked server.

In this recipe, a login mapping is created for all local users—mapping to a login named “test”
on the JOEPROD\NODE2 linked server:

EXEC sp_addlinkedsrvlogin
@rmtsrvname = 'JOEPROD\NODE2',
@useself = false ,
@locallogin = NULL, -- Applies to all local logins
@rmtuser = 'test',
@rmtpassword = 'test1!'

How It Works
In this recipe, a login mapping was explicitly created using the sp_addlinkedsrvlogin system stored
procedure. The first parameter @rmtsrvname contained the name of the linked server you are connect-
ing to. The second parameter, @useself, was a false value, so that the defined login and password in
@rmtuser and @rmtpassword on the remote server will be used. The @locallogin was set to NULL,
meaning that the test login will be used to map from any login on the local SQL Server connection.
Now when a query is executed against the TESTSRV linked server, those queries will run under the
test remote user.

Viewing Linked Logins
To see explicit local login mappings to remote logins, you can query the sys.server_principals,
sys.linked_logins, and sys.servers system catalog views, as this query demonstrates:

SELECT s.name LinkedServerName, ll.remote_name, p.name LocalLoginName
FROM sys.linked_logins ll
INNER JOIN sys.servers s ON

s.server_id = ll.server_id
LEFT OUTER JOIN sys.server_principals p ON

p.principal_id = ll.local_principal_id
WHERE s.is_linked = 1

This returns:

LinkedServerName remote_name LocalLoginName
JOEPROD\NODE2 test NULL

How It Works
This recipe retrieved explicit login mappings to remote logins by querying the sys.linked_logins,
sys.servers, and sys.server_principals system catalog views. The query returned the name of the
linked server, the remote login on the remote data source, and the local login that was mapped to it.
In this case, the results returned the remote login name of test and NULL for the local login name
(meaning that all local connections will map to the remote test login).

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES 627

570Xch27.qxd 11/4/05 2:59 PM Page 627

Dropping a Linked Server Login Mapping
Use the sp_droplinkedsrvlogin system stored procedure to drop a linked server login mapping. The
syntax for sp_droplinkedsrvlogin is as follows:

sp_droplinkedsrvlogin [@rmtsrvname=] 'rmtsrvname' ,
[@locallogin=] 'locallogin'

The parameters of this system-stored procedure are described in Table 27-6.

Table 27-6. sp_droplinkedsrvlogin Arguments

Argument Description

rmtsrvname The linked server name of the login mapping.

locallogin This is the name of the SQL Server login or Windows user mapping to
drop from the linked server.

This recipe demonstrates dropping the login mapping created in an earlier recipe:

EXEC sp_droplinkedsrvlogin
@rmtsrvname= 'JOEPROD\NODE2' ,
@locallogin= NULL

How It Works
In this recipe, the default login mapping for all local users was removed by sending the linked server
name in the first parameter, and a NULL value in the second @locallogin parameter.

Executing Distributed Queries
So far in this chapter, I’ve demonstrated how to create and configure linked servers. In this next set
of recipes, you’ll learn how to execute distributed queries against the linked server remote data
source. You aren’t limited to using a linked server to connect to a remote data source, however, and
the next few recipes will also demonstrate how to access external data using commands such as
OPENQUERY and OPENROWSET. You’ll also lean how to create and use an alias to a linked server name.

Executing Distributed Queries Against a Linked Server
Distributed queries are queries that reference one or more linked servers, performing either read or
modification operations against remote tables, views, or stored procedures. The types of queries
(SELECT, INSERT, UPDATE, DELETE, EXEC) that are supported against linked servers depend on the level
of support for transactions present in the OLE DB providers. You can run a distributed query refer-
encing a linked server by using either a four-part name of the remote object in the FROM clause, or
using the OPENQUERY Transact-SQL command (OPENQUERY is reviewed later in the chapter).

The basic syntax for referencing a linked server using a four-part name is as follows:

linked_server_name.catalog.schema.object_name

The parts of the four-part name are described in Table 27-7.

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES628

570Xch27.qxd 11/4/05 2:59 PM Page 628

Table 27-7. Linked Server Four-Part Name

Part Description

linked_server_name The linked server name.

catalog The catalog (database) name.

schema The schema container of the data source object.

object_name The database object (for example the view, table, data source, or stored
procedure).

This distributed query selects the performance counter value from the
sys.dm_os_performance_counters dynamic management view on the linked server:

SELECT object_name, counter_name, instance_name,
cntr_value, cntr_type
FROM JOEPROD.master.sys.dm_os_performance_counters
WHERE counter_name = 'Active Transactions' AND
instance_name = '_Total'

This returns:

object_name counter_name instance_name cntr_value cntr_type
SQLServer:Databases Active Transactions Total 0 65792

This next query demonstrates executing a system-stored procedure on the linked server (for
a SQL Server named instance). The linked server is a named instance, so the full name is put in
square brackets:

EXEC [JOEPROD\NODE2].master.dbo.sp_monitor

This returns various statistics and result sets about the remote SQL Server instance:

last_run current_run seconds
2005-09-02 22:47:26.770 2005-10-09 10:52:27.007 3153901

cpu_busy io_busy idle
53(53)-0% 22(21)-0% 10433(10192)-0%

packets_received packets_sent packet_errors
182(154) 377(349) 0(0)

total_read total_write total_errors connections
693(693) 201(201) 0(0) 8091(8079)

How It Works
As you can see, executing a distributed query simply involves referencing the database object using
the four-part name. If you need to reference a linked server that is a SQL Server named instance, use
square brackets around the linked server name.

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES 629

570Xch27.qxd 11/4/05 2:59 PM Page 629

Creating and Using an Alias to Reference Four-Part Linked
Server Names
Introduced in SQL Server 2005, you can create an alias for a database object (including stored pro-
cedures, functions, tables, and views). This alias can then be referenced in your code, allowing you
to shorten a long name, or obscure changes to the underlying object source (switching from
a development to production linked server name, for example).

This functionality is performed using CREATE SYNONYM, which uses the following syntax:

CREATE SYNONYM [schema_name.] synonym_name
FOR < object >

The arguments for this command are detailed in Table 27-8.

Table 27-8. CREATE SYNONYM

Argument Description

[schema_name.] synonym_name The optional schema name and required synonym name.

object The object that will be aliased. This can be of the format
server_name.database_name.schema_name.object_name,
database_name.schema_name.object_name, or
schema_name.object_name.

Also, to drop a synonym, use the DROP SYNONYM command. The syntax is as follows:

DROP SYNONYM [schema.] synonym_name

The command takes the optional schema of the synonym and the required synonym name.
In this recipe, a synonym is created on a linked server:

CREATE SYNONYM dbo.PerfInfo
FOR JOEPROD.master.sys.dm_os_performance_counters

Next, the linked server synonym is referenced in the FROM clause of the query using the new
synonym name:

SELECT cntr_value
FROM dbo.PerfInfo
WHERE counter_name = 'Active Transactions' AND
instance_name = '_Total'

After that, the synonym is dropped from the database:

DROP SYNONYM dbo.PerfInfo

Lastly, a new synonym is created with the same name as before, but this time pointing to
a different SQL Server instance:

CREATE SYNONYM dbo.PerfInfo
FOR [JOEPROD\NODE2].master.sys.dm_os_performance_counters

How It Works
In this recipe, a synonym called PerfInfo was created to represent a four-part linked server table
name. Synonyms can reduce keystrokes by allowing you to use a shorter name to represent a linked
server four-part name. The PerfInfo synonym was then used in the FROM clause in order to query
the underlying linked server table. After that, the synonym was dropped (although in real life you

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES630

570Xch27.qxd 11/4/05 2:59 PM Page 630

would have kept the synonym around for future use). Lastly, a new synonym was created with the
previous name, referencing a new data source. This means the original query against dbo.PerfInfo
will now access a different SQL Server instance. Synonyms can give you the ability to change under-
lying data sources without changing the referencing synonym name.

Executing Distributed Queries Using OPENQUERY
SQL Server provides a different method for executing distributed queries other than using the four-
part naming method.

OPENQUERY is a function that issues a pass-through query against an existing linked server and is
referenced in the FROM clause of a query just like a table. The syntax is as follows:

OPENQUERY (linked_server ,'query')

The parameters for this command are described in Table 27-9.

Table 27-9. OPENQUERY Arguments

Argument Description

linked_server_name The linked server name that you want to query.

Catalog The actual query to issue against the linked server connection.

The OPENQUERY command queries a linked server by sending it as a pass-through query instead
of referencing the four-part name. A pass-through query executes entirely on the remote server and
then returns the results back to the calling query.

Why use one over the other? Some OLE DB providers that you can use to create a linked server
may have varying abilities to be referenced using the four-part name in the FROM clause. OPENQUERY
is an alternative method for retrieving distributed data, and may work correctly where a four-part
name query does not.

This recipe demonstrates querying a linked server with the same query as the previous recipe,
only this time the actual query in the second parameter of the OPENQUERY command uses the three-
part, not four-part, name in the FROM clause:

SELECT cntr_value
FROM OPENQUERY ([JOEPROD] ,
'SELECT object_name, counter_name, instance_name, cntr_value, cntr_type
FROM JOEPROD.master.sys.dm_os_performance_counters
WHERE counter_name = ''Active Transactions'' AND
instance_name = ''_Total''')

How It Works
In this recipe, the first parameter of the OPENQUERY command was the name of the linked server. The
second parameter was the query itself. Notice that the WHERE clause contains double-ticked values,
which serve as delimited single ticks.

Executing Ad Hoc Queries Using OPENROWSET
Like OPENQUERY, the OPENROWSET command is referenced in the FROM clause and acts like a table in
a SELECT statement. Unlike OPENQUERY however, OPENROWSET creates an ad hoc connection to the data
source. It does not use an existing linked server connection to query the remote data source. This is
a good function to use if you don’t wish to retain a linked server for a remote data source on the SQL

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES 631

570Xch27.qxd 11/4/05 2:59 PM Page 631

The syntax for OPENROWSET is as follows:

OPENROWSET
({ 'provider_name' ,
{ 'datasource' ; 'user_id' ; 'password' | 'provider_string' }
, { [catalog.] [schema.] object | 'query' }

The parameters for this command are described in Table 27-10.

Table 27-10. OPENROWSET Arguments

Argument Description

provider_name The unique programmatic identifier
for the OLE DB provider.

datasource ; user_id ; password | provider_string This is the connection string expected
by the OLE DB provider. Either you
designate the datasource, user_id, and
password, or you can designate the
provider string.

catalog.schema.object| query The object name to return results for
or the query to execute.

■Note The ability to use OPENROWSET to query remote data sources is off by default in SQL Server 2005. To
enable use of OPENROWSET you must enable it using SQL Server 2005 Surface Area Configuration. Under the “Ad
Hoc Remote Query” section, check the “Enable OPENROWSET and OPENDATASOURCE support checkbox.”

In this recipe, a query is issued against a SQL Server 2005 named instance:

SELECT *
FROM OPENROWSET
('SQLNCLI','TESTSRV\NODE2';'test';'test1!',
'SELECT * FROM AdventureWorks.HumanResources.Department
WHERE GroupName = ''Research and Development''')

This returns:

DepartmentID Name GroupName ModifiedDate
1 Engineering Research and Development 1998-06-01

00:00:00.000
2 Tool Design Research and Development 1998-06-01

00:00:00.000
6 Research and Development Research and Development 1998-06-01

00:00:00.000
18 Misc Research and Development 2005-09-20

19:20:25.570

How It Works
In this recipe, I used OPENROWSET to query a remote data source without having to define a linked
server. The first parameter of the command designated SQLNCLI, which is the provider name for the
Microsoft SQL Native Client OLE DB Provider. The second parameter included three semicolon
delimited values—the SQL Server 2005 instance name, login, and password. The last parameter for
the command included a query against the AdventureWorks database on the remote SQL Server
instance.

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES632

570Xch27.qxd 11/4/05 2:59 PM Page 632

OPENROWSET can be used in the FROM clause of a SELECT and can also be used as the target table of
an INSERT, UPDATE, or DELETE operation—depending on the update support of the OLE DB Provider.

Reading Data from a File Using OPENROWSET BULK Options
Introduced in SQL Server 2005, you can now query data from an ASCII, Unicode, or binary file using
the new BULK options in the OPENROWSET command. With this functionality, you can query a file and
also use the result set in a data modification statement—all without having to first physically import
the data from the file into a SQL Server table.

The syntax for the BULK options in OPENROWSET is as follows:

OPENROWSET
({ BULK 'data_file' ,

{ FORMATFILE = 'format_file_path' [<bulk_options>]
| SINGLE_BLOB | SINGLE_CLOB | SINGLE_NCLOB }

})

The parameters for this command are described in Table 27-11.

Table 27-11. OPENROWSET...BULK Arguments

Argument Description

data_file The name and path of the file to read.

format_file_path The name and path of the format file—which lays
out the column definitions in the data file. In SQL
Server 2005, you have a choice of two format file
layouts—XML or non-XML.

bulk_options These options define how the data is read, as well
as which rows are retrieved. See the next table for
details.

SINGLE_BLOB | SINGLE_CLOB | SINGLE_NCLOB When designated, the format file parameter is
ignored. Instead, the data file is imported as a single
row, single column value. For example if you wish
to import a document or image file into a large data
type column, you would designate one of these flags.
Designate the SINGLE_BLOB object for importing into
a varbinary(max) data type, SINGLE_CLOB for ASCII
data into a varchar(max) data type, and SINGLE_NCLOB
for importing into a nvarchar(max) Unicode data
type.

The BULK options syntax is as follows:

<bulk_options> ::=
[, CODEPAGE = { 'ACP' | 'OEM' | 'RAW' | 'code_page' }]
[, ERRORFILE = 'file_name']
[, FIRSTROW = first_row]
[, LASTROW = last_row]
[, MAXERRORS = maximum_errors]
[, ROWS_PER_BATCH = rows_per_batch]

These options are described in Table 27-12.

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES 633

570Xch27.qxd 11/4/05 2:59 PM Page 633

Table 27-12. BULK Options

Option Description

'ACP' | 'OEM' | 'RAW' | 'code_page' This defines the chosen source data code page of
character data to be converted to the destination SQL
Server code page. OEM is the default. ACP is the ISO 1252
code page, RAW implies no conversion, and code_page is
a specific encoded code page number.

file_name The error file name used to hold any reject rows from
the BULK process.

first_row The first row in the result set to load (default is 1). If the
first row includes column names, you can designate
a first_row of “2” to skip the first column.

last_row The last row in the result set to load (default is 0, the last
row of the result set).

maximum_errors The maximum number of errors in the load process
before the load fails (default is 10).

rows_per_batch This value indicates the number of rows to import per
batch; however OPENROWSET should always import the
data as a single batch. Specifying a number here may
help the query processor allocate appropriate resources.
However, in most cases this option can be ignored or set
to 0.

In this recipe, I’ll demonstrate two examples of reading from an external text file.
The first example demonstrates using a SELECT statement to read data from a text file. The text

file has the following comma delimited data in a text file called ContactType.txt:

21,Sales Phone Rep,2005-06-01 00:00:00
20,Sales Phone Manager,2005-06-01 00:00:00

The columns in this file will be defined using a format file called ContactTypeFormat.Fmt which
contains the following format file definition (SQL Server 2005 allows both XML formatted and regular
text format files):

9.0
3
1 SQLCHAR 0 2 "," 1 ContactTypeID ""
2 SQLCHAR 0 20 "," 2 Name SQL_Latin1_General_CP1_CI_AS
3 SQLCHAR 0 19 "\r\n" 3 ModifiedDate ""

This query reads from the ContactType.txt file in a SELECT query:

SELECT ContactTypeID, Name, ModifiedDate
FROM OPENROWSET(BULK 'C:\Apress\Recipes\ContactType.txt',

FORMATFILE = 'C:\Apress\Recipes\ContactTypeFormat.Fmt',
FIRSTROW = 1,
MAXERRORS = 5,
ERRORFILE = 'C:\Apress\Recipes\ImportErrors.txt')
AS ContactType

This returns:

ContactTypeID Name ModifiedDate
21 Sales Phone Rep 2005-06-01 00:00:00
20 Sales Phone Manager 2005-06-01 00:00:00

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES634

570Xch27.qxd 11/4/05 2:59 PM Page 634

The second example in this recipe will import the ContactType.txt file into a single column and
single row (instead of breaking it out into a tabular result set as was done in the previous query).
First, a table is created to hold the imported document:

-- Create a table to hold import documents
CREATE TABLE dbo.ImportRepository

(ImportHistoryID int IDENTITY(1,1) NOT NULL PRIMARY KEY,
ImportFile varchar(max) NOT NULL)

GO

Next, the value is imported into a new row using OPENROWSET...BULK:

INSERT dbo.ImportRepository
(ImportFile)
SELECT BulkColumn
FROM OPENROWSET(BULK 'C:\Apress\Recipes\ContactType.txt',

SINGLE_CLOB) as ContactTypeFile

Now to confirm the contents:

SELECT ImportFile
FROM dbo.ImportRepository

This returns:

ImportFile
21,Sales Phone Rep,2005-06-01 00:00:00 20,Sales Phone Manager,2005-06-01 00:00:00

How It Works
In the first example in this recipe, a data file was queried using the OPENROWSET BULK option. The
SELECT clause included the columns from the data file, as defined by the format file:

SELECT ContactTypeID, Name, ModifiedDate

The OPENROWSET command was then included in the FROM clause. The BULK option was the first
parameter in the command, followed by the data and data format file:

FROM OPENROWSET(BULK 'C:\Apress\Recipes\ContactType.txt',
FORMATFILE = 'C:\Apress\Recipes\ContactTypeFormat.Fmt',

Three options were also included, designating the first row of the data file to be imported:

FIRSTROW = 1,

The number of allowable errors for the import before failure was also designated, along with an
error file to contain the rejected rows:

MAXERRORS = 5,
ERRORFILE = 'C:\Apress\Recipes\ImportErrors.txt')

After the closed parenthesis, a table name alias was required in order to be used in the SELECT
query:

AS ContactType

The second example used OPENROWSET to insert the entire contents of a single file into a single
column and single row. After creating a table to store the results, an INSERT SELECT was used:

INSERT dbo.ImportRepository
(ImportFile)

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES 635

570Xch27.qxd 11/4/05 2:59 PM Page 635

The SELECT referenced the BulkColumn system column name, which is returned from OPENROWSET
when using any of the SINGLE_* options:

SELECT BulkColumn

The OPENROWSET is held in the FROM clause of the SELECT statement, followed by the name of the
file and the SINGLE_CLOB option (which imports the data as ASCII text):

FROM OPENROWSET(BULK 'C:\Apress\Recipes\ContactType.txt',
SINGLE_CLOB) as ContactTypeFile

This is a much easier method of importing files (ASCII, Unicode, or Binary) using Transact-SQL
than was available in previous versions of SQL Server. A query is executed against the table, and the
results of the raw file format are displayed in a single column/row (with delimiting commas intact).

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES636

570Xch27.qxd 11/4/05 2:59 PM Page 636

Performance Tuning

When you’re talking about database queries, performance is a subjective term. While one end-user
could be happy with a query that takes ten seconds to execute, another user might not be happy
unless all queries run under one second. While performance requirements are certainly diverse, so
are the methods used to improve performance. A few key factors that impact SQL Server query per-
formance include:

• Database design. Probably one of the most important factors influencing both query perfor-
mance and data integrity, design decisions impact both read and modification performance.
Standard designs include OLTP-normalized databases, which focus on data integrity, removal
of redundancy, and the establishment of relationships between multiple entities. This is
a design most appropriate for quick transaction processing. You’ll usually see more tables in
a normalized OLTP design, which means more table joins in your queries. Data warehouse
designs, on the other hand, often use a more denormalized Star or Snowflake design. These
designs use a central fact table, which is joined to two or more description dimension tables.
For Snowflake designs, the dimension tables can also have related tables associated to it. The
focus of this design is on query speed and not on fast updates to transactions.

• Physical hardware. I once spent a day trying to get a three second query down to one sec-
ond. No matter which indexes I tried to add, or query modifications I made, I couldn’t get its
duration lowered. This was because there were simply too many rows required in the result
set. The limiting factor was the I/O. A few months later, I migrated the database to the higher-
powered production server. Lo and behold, the query executed consistently in less than
one second. This underscores the fact that CPU, memory, and RAID subsystems can have
a significant impact (both positive and negative) on query performance. As a matter of fact,
memory is one of the most critical resources for the SQL Server, allowing it to cache data and
execution plans for faster data retrieval and query execution. If you’re prioritizing where your
server dollars go, don’t be stingy with the memory.

• Network throughput. The time it takes to obtain query results can be impacted by a slow or
unstable network connection. This doesn’t mean that you should blame the poor network
engineers whenever a query executes slowly—but do keep this potential cause on your list of
areas to investigate.

• Index fragmentation. As data modifications are made over time, your indexes will become
fragmented. As fragmentation increases, data will become spread out over more data pages.
The more data pages your query needs to retrieve, the slower the query.

637

C H A P T E R 2 8

■ ■ ■

570Xch28.qxd 11/4/05 3:00 PM Page 637

CHAPTER 28 ■ PERFORMANCE TUNING638

• Appropriate indexing. In addition to watching for fragmentation, you need to make sure only
useful indexes are kept on your tables. Your table indexes should be based on your high priority
or frequently executed queries. If a query is executing thousands of times a day and is com-
pleting in two seconds, but could be running in less than one second with the proper index,
adding this index could reduce the I/O pressure on your SQL Server instance significantly.
You should create indexes as needed, and remove indexes that aren’t being used (this chap-
ter shows you how to do this). Each index on your table adds overhead to data modification
operations, and can even slow down SELECT queries if SQL Server decides to use the less effi-
cient index. When you’re initially designing your database, it is better for you to keep the
indexes at a minimum (having at least a clustered index and nonclustered indexes for your
foreign keys). Instead, wait to add additional indexes until after you have a better idea about
the queries that will be executed against the database.

• Up-to-date statistics. As I discussed in Chapter 22, the AUTO_CREATE_STATISTICS database
option enables SQL Server to automatically generate statistical information regarding the
distribution of values in a column. If you disable this behavior, statistics can get out of date.
Since SQL Server depends on statistics to decide how to execute the query, SQL Server may
choose a less than optimal plan if it is basing its execution decisions on stale statistics.

In this chapter, I’ll demonstrate the commands and techniques you can use to help troubleshoot
and evaluate your query performance. You’ll also learn how to address fragmented indexes and out-of-
date statistics, and evaluate the usage of indexes in the database. I’ll introduce you to a few graphical
interface tools such as SQL Server Profiler, graphical execution plans, and the Database Engine Tun-
ing Advisor. This chapter will also review a few miscellaneous performance topics, including how to
use sp_executesql as an alternative to dynamic SQL, how to apply query hints to a query without
changing the query itself, and how to force a query to use a specific query execution plan.

Query Performance Tips
Before I start the discussion of the commands and tools you can use to evaluate query performance,
I’d first like to briefly review a few basic query performance tuning guidelines. Query performance
is a vast topic, and in many of the chapters I’ve tried to include small tips along with the various
content areas (such as stored procedures, views, and triggers). Since this is a chapter that discusses
query performance independently of specific objects, the following list details a few query-performance
best practices to be aware of when constructing SQL Server 2005 queries (note that indexing tips are
reviewed later in the chapter) :

• In your SELECT query, only return the columns that you need. Don’t underestimate the impact
of narrow result sets. Fewer columns in your query translate to less I/O and network bandwidth.

• Along with fewer columns, you should also be thinking about fewer rows. Use a WHERE clause
to help reduce the rows returned by your query. Don’t let the application return twenty thou-
sand rows when you only need to display the first ten.

• Keep the FROM clause under control. Each table you JOIN to in a single query can add additional
overhead. I can’t give you an exact number to watch out for, as it depends on your database’s
design, size, and columns used to join a query. However, over the years, I’ve seen enormous
queries that are functionally correct, but take much too long to execute. Although it is con-
venient to use a single query to perform a complex operation, don’t underestimate the power
of smaller queries. If I have a very large query in a stored procedure that is taking too long to
execute, I’ll usually try breaking that query down into smaller intermediate result sets. This
usually results in a significantly faster generation of the final desired result set.

570Xch28.qxd 11/4/05 3:00 PM Page 638

CHAPTER 28 ■ PERFORMANCE TUNING 639

• Use ORDER BY only if you need ordered results. Sorting operations of larger result sets can
incur additional overhead. If it isn’t necessary for your query, remove it.

• Beware of testing in a vacuum. When developing your database on a test SQL Server instance,
it is very important that you populate the tables with a representative data set. This means
that you should populate the table with the estimated number of rows you would actually
see in production, as well as a representative set of values. Don’t use dummy data in your
development database and then expect the query to execute with similar performance in
production. SQL Server performance is highly dependent on indexes and statistics, and SQL
Server will make decisions based on the actual values contained within a table. If your test
data isn’t representative of “real life” data, you’ll be in for a surprise when queries in produc-
tion don’t perform as you saw them perform on the test database.

• I pushed this point hard in Chapter 10, and I think it is worth repeating here. Stored procedures
can often yield excellent performance gains over regular ad hoc query calls. Stored proce-
dures also promote query execution stability (reusing existing query execution plans). If you
have a query that executes with unpredictable durations, consider encapsulating the query
in a stored procedure.

When reading about SQL Server performance tuning (like you are now), be careful about the
words “never” and “always.” Instead, get comfortable with the answer “it depends.” When it comes
to query-tuning, results may vary. There are certainly many good and bad practices to be aware of,
but performance tuning is both art and science. Keep your options open and feel free to experiment
(in a test environment, of course). Ask questions and don’t accept conventional wisdom at face value.

Capturing and Evaluating Query Performance
In this next set of recipes, I’ll demonstrate how to capture and evaluate query performance. This
book has focused almost entirely on SQL Server 2005’s flavor of Transact-SQL, and hasn’t touched
on the various graphical interface tools much. I’ll be breaking with this tradition in this chapter to
briefly show you how to use SQL Profiler to capture query activity. Also, I’ll demonstrate how to
graphically display the actual or estimated execution plan of a query so that you can understand
the decisions that SQL Server is making in order to generate the query result set. I’ll also demon-
strate several other Transact-SQL commands, which can be used to return detailed information
about the query execution plan.

Capturing High Duration Queries Using SQL Server Profiler
There are usually two branches of query performance tuning: proactive and reactive. Proactive
query tuning usually occurs during development. You design the database, populate it with data,
and then start building queries. You build the queries based on application and end-user require-
ments. For those queries that don’t perform well, you can tune them before deploying out in the
stored procedure or to the application developer.

Reactive performance involves capturing poor performance after the code has already been
deployed to production. Data changes over time, and so does the effectiveness of indexes and the
queries that use them. Queries that once performed well may execute longer than they did origi-
nally. You may hear complaints from end-users, or you might actually seek out poorly performing
queries yourself.

One of the most valuable graphical interface tools in the SQL Server 2005 toolset is SQL Server
Profiler. With SQL Server Profiler, you can monitor query activity as it occurs against your SQL

570Xch28.qxd 11/4/05 3:00 PM Page 639

CHAPTER 28 ■ PERFORMANCE TUNING640

Figure 28-1. The Connect to Server dialog box

Server instance. There are many potential uses for this tool, but this recipe specifically demonstrates
how to use SQL Server Profiler to capture high duration queries.

In this recipe, SQL Server Profiler is launched and configured to capture high duration queries.
Then, a query is executed in SQL Server Management Studio that will be captured in SQL Server
Profiler:

1. The recipe begins by going to Start, Programs➤Microsoft SQL Server 2005➤Performance
Tools➤SQL Server Profiler.

2. Once in SQL Server Profiler, go to File➤New Trace. This brings up the Connect to Server
dialog box (see Figure 28-1). It is here that you select the name of the SQL Server instance to
connect to, and the authentication method (either Windows or SQL). When you’re finished
designating these values, click the Connect button.

3. This brings up the Trace Properties dialog box (see Figure 28-2). In the Trace name field,
type in Queries with a Duration > 5 seconds. SQL Server Profiler comes with a set of various
trace templates. These templates contain pre-defined event selections, which allow you to
get started with monitoring specific types of SQL Server instance activity. In this recipe, the
TSQL_Duration template is selected from the Use the template field:

570Xch28.qxd 11/4/05 3:00 PM Page 640

CHAPTER 28 ■ PERFORMANCE TUNING 641

Figure 28-2. The Trace Properties dialog box

4. Next, click the Events Selection tab in the Trace Properties dialog box (see Figure 28-3). It is
here that the traced events from the pre-canned TSQL_Duration template are loaded. Cur-
rently two different events will be monitored, RPC:Completed and SQL:BatchCompleted. This
means that SQL Server Profiler will return a row for every remote procedure call or Transact-
SQL statement that has completed on the SQL Server instance. This window also shows the
columns which will be returned in the trace data, in this case including the Duration (duration
of the completed query), TextData (capturing the actual Transact-SQL), SPID (the server
process id of the caller), and BinaryData (returns different data depending on the event).

570Xch28.qxd 11/4/05 3:00 PM Page 641

5. To see some other events and columns that can be added to the trace, click the Show all
events and Show all columns checkboxes (see Figure 28-4). This adds several Event categories
which can be expanded or contracted to show the events classes within. Available columns
that are associated to the individual events can be checked or unchecked accordingly:

CHAPTER 28 ■ PERFORMANCE TUNING642

Figure 28-3. Events Selection

570Xch28.qxd 11/4/05 3:00 PM Page 642

CHAPTER 28 ■ PERFORMANCE TUNING 643

6. Next, you’ll want to configure this trace to only show events where the duration of the query
is longer than five seconds. To do this, click the Column Filters button in the Events Selection
window. This brings up the Edit Filter dialog box (see Figure 28-5). To filter query duration,
click the Duration column in the left list box. In the right list box, expand the Greater than or
equal filter and type in 5001 (this is a time measurement in milliseconds). To finish, select OK.

Figure 28-4. Expanded events and columns

Figure 28-5. Edit Filter dialog box

570Xch28.qxd 11/4/05 3:00 PM Page 643

7. To kick off the trace, click Run in the Trace Properties dialog box.

8. In SQL Server Management Studio, within a Query Editor, the following query is executed:

SELECT CustomerID, ContactID, Demographics, ModifiedDate
FROM Sales.Individual

9. Switching back to the SQL Server Profiler, you can see that the query was indeed captured in
the trace (see Figure 28-6). In order to stop the trace, go to the File menu and select Stop
Trace. By highlighting the SQL:BatchCompleted row, you can see the full SELECT statement in
the lower pane. The duration shows that the query took 7.8 seconds, and originated from
server process ID 52.

CHAPTER 28 ■ PERFORMANCE TUNING644

How It Works
In this recipe, I demonstrated using SQL Server Profiler to identify a long running query. I filtered
the list based on the query’s duration in this example, but you can also add additional filters
based on your needs. For example, you can add an additional filter to only include activity for the
AdventureWorks database. Or, you could add filters to only include queries that reference a specific
database object or column name. Once you’ve captured the activity you are looking for, you can
save the trace output to a file or table. You can also launch the Database Engine Tuning Advisor to
evaluate the trace data for potential index improvements. I’ll cover the Database Engine Tuning
Advisor later on in the chapter.

Capturing Executing Queries Using sys.dm_exec_requests
In addition to capturing queries in SQL Server Profiler, you can also capture the SQL for currently
executing queries by querying the sys.dm_exec_requests dynamic management view, as this recipe
demonstrates:

SELECT r.session_id, r.status, r.start_time, r.command, s.text
FROM sys.dm_exec_requests r
CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) s
WHERE r.status = 'running'

This captures any queries that are currently being executed—even the current query used to
capture those queries:

Figure 28-6. SQL Server Profiler results

570Xch28.qxd 11/4/05 3:00 PM Page 644

CHAPTER 28 ■ PERFORMANCE TUNING 645

session_id status start_time command text
55 running 2005-10-16 13:53:52.670 SELECT SELECT r.session_id,

r.status, r.start_time,
r.command, s.text FROM
sys.dm_exec_requests r
CROSS APPLY
sys.dm_exec_sql_text(r.sql_
handle) s WHERE r.status =
'running'

How It Works
The sys.dm_exec_requests dynamic management view returns information about all requests
executing on a SQL Server instance.

The first line of the query selects the session ID, status of the query, start time, command type
(for example SELECT, INSERT, UPDATE, DELETE), and actual SQL text:

SELECT r.session_id, r.status, r.start_time, r.command, s.text

In the FROM clause, the sys.dm_exec_requests dynamic management view is cross-applied against
the sys.dm_exec_sql_text dynamic management function. This function takes the sql_handle from
the sys.dm_exec_requests dynamic management view and returns the associated SQL text:

FROM sys.dm_exec_requests r
CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) s

The WHERE clause then designates that currently running processes be returned:

WHERE r.status = 'running'

Viewing a Query’s Graphical Execution Plan
Knowing how SQL Server executes a query can help you determine how best to fix a poorly performing
query. Common operations that you can identify by viewing a query’s execution plan (graphical or
command based) include:

• Identifying whether the query is performing scans (looking at all the pages in a heap or index)
or seeks (only accessing selected rows).

• Identifying missing statistics or other warnings.

• Performing costly sort or calculation activities.

In this recipe, I’ll demonstrate how to view the estimated and actual execution plans for a query.
I’ll start by using the previous recipe’s long duration query in SQL Server Management Studio, using
the AdventureWorks database context (see Figure 28-7):

SELECT CustomerID, ContactID, Demographics, ModifiedDate
FROM Sales.Individual

570Xch28.qxd 11/4/05 3:00 PM Page 645

CHAPTER 28 ■ PERFORMANCE TUNING646

Next, I’m going to display the estimated query execution plan. This returns what operations
SQL Server thinks it will perform without actually executing the query. To do this in SQL Server
Management Studio, select Query and Display Estimated Execution Plan. This returns the query
plan in the lower pane beneath the query (see Figure 28-8). The execution plan is represented by
a tree that contains one or more operators.

The icons in Figure 28-8 represent each operator that SQL Server performs in order to produce
the result set. An operator is an action SQL Server takes to execute a query. There are two types of
operators: logical and physical. Logical operators describe an operation in conceptual terms, while
physical operators are used to perform the actual implementation of the logical operator. For exam-
ple, a logical operator may be INNER JOIN, but the physical method to perform an INNER JOIN is
a Hash Match (one of the physical methods for joining two result sets).

■Note For a complete list of all available operators and their descriptions, see the SQL Server 2005 Books Online
topic “Graphical Execution Plan Icons (SQL Server Management Studio).”

One of the operations returned in this example’s execution plan is the Clustered Index Scan.
This tells us that the entire clustered index was read in order to return the result set, which makes
sense because the query doesn’t use a WHERE clause to filter the result set.

The execution plan includes two different Cost % areas. The first Cost % can be found in the
header of each query, where you see “Query 1: Query cost (relative to the batch).” This tells you what
percentage of the query’s duration was due to the specific query in the batch of queries. You’ll also
see percentage of cost underneath each of the icons in the execution plan results. In this example,
the Clustered Index Scan accounted for 100% of the query’s cost.

Figure 28-7. SQL Server Management Studio

Figure 28-8. Estimated Execution Plan graphical output

570Xch28.qxd 11/4/05 3:00 PM Page 646

CHAPTER 28 ■ PERFORMANCE TUNING 647

In addition to the estimated plan, you can also display the actual execution plan. This means
the query itself is executed, returns results, and returns the execution plan as a separate tab. For
example, to do this, select Query and Include Actual Execution Plan.

This time you’ll change the query to include a defined range of customers, ordering the results
by the ContactID:

SELECT CustomerID, ContactID, Demographics, ModifiedDate
FROM Sales.Individual
WHERE CustomerID BETWEEN 11000 AND 11020
ORDER BY ContactID

You then execute the query as normal in order to return the results, and the actual execution
plan. After executing the query, three tabs are spawned: one for the results, one for any messages,
and one containing the execution plan. Click the Execution plan tab to see the results (see Figure 28-9).

This time you’ll see three operations in the execution plan output. With the graphical execution
plan output, you read the icons from right-to-left, and top-to-bottom. You’ll see that with the addition
of the WHERE clause’s CustomerID search condition in the query, the data retrieval operation changed
from a Clustered Index Scan to a Clustered Index Seek operation. A scan retrieves all rows from a heap
or index. A seek operation is more selective, retrieving specific rows from an index. Also, notice that
the cost of this operation was 32%. The remaining cost percentage of the query was due to the Sort
operator (at 68% cost), which appeared in the execution plan results because of the addition of our
query’s ORDER BY clause.

If you have multiple queries in a batch, for example when executing a stored procedure, you
can use the graphical output to pinpoint which batch of the group has the highest cost %. For exam-
ple, in this scenario you are going to execute the sp_help stored procedure with the Include Actual
Execution Plan still enabled:

EXEC sp_help

This returns two result sets (abridged):

Name Owner Object_type
vAdditionalContactInfo dbo view
vEmployee dbo view
vEmployeeDepartment dbo view
vEmployeeDepartmentHistory dbo view
...

User_type Storage_type Length Prec Scale Nullable Default_name Rule_name Collation
AccountNumber nvarchar 30 15 NULL yes none none SQL_Latin1

General_CP1
_CI_AS

...

Figure 28-9. Actual execution plan graphical output

570Xch28.qxd 11/4/05 3:00 PM Page 647

CHAPTER 28 ■ PERFORMANCE TUNING648

Because there are two queries, you’ll also see two actual execution plans (See Figure 28-10).

The results of this stored procedure show two different execution plan panes within the stored
procedure, with each pane showing the various operations used to generate the result sets. You can
see in the header of the first query that the query cost is 93% (see Figure 28-11) versus the second
query’s 7% cost (see Figure 28-12)—as a percentage of the whole stored procedure execution:

Figure 28-10. Actual execution plan of sp_help

Figure 28-11. Cost relative to Batch Query 1

Figure 28-12. Cost relative to Batch Query 2

So, if your job was to troubleshoot the performance of a stored procedure, your first step would
be to identify the batch in the procedure with the highest cost. After identifying the highest cost batch,
you should then focus in on the highest cost operations within that batch. For example, within the
sp_help system-stored procedure, Query 1 consumed 93% of the total cost. Looking within Query
1’s operators, you can then look for the higher percentage operations. For example in Figure 28-13,
you can see that the Hash Match Inner Join operator has a cost of 36%, while the two Clustered
Index Scan operations take 16% for one operation and 26% for another.

570Xch28.qxd 11/4/05 3:00 PM Page 648

CHAPTER 28 ■ PERFORMANCE TUNING 649

To get more information about an individual operation, you can hover your mouse pointer
over it. This returns a ToolTip window which shows information about the specific operation, includ-
ing a description of what each operator actually does, the number of rows impacted, and more (see
Figure 28-14).

Other visual indicators you can look out for include thick arrows. Arrows become thicker based
on the number of rows being passed from operator to operator. Hovering over the arrow gives you
ToolTip information for the number of rows being passed to the next operation. Figure 28-15 shows
the ToolTip for a Hash Match operator:

Figure 28-13. Cost relative to Batch Query 2

Figure 28-14. A ToolTip

570Xch28.qxd 11/4/05 3:00 PM Page 649

CHAPTER 28 ■ PERFORMANCE TUNING650

The color of the operator icon also has meaning. If the operator is red, this indicates a warning
of some kind—for example, it could be telling you that the statistics on the table are missing. Yellow
icons are used to represent cursor operations. Green icons represent language elements such as
IF and WHILE. Blue icons are used for the remainder of the physical and logical operations.

Concluding this recipe, to stop the Query Editor from returning the Actual Execution Plan each
time a query is executed, go to the Query menu and deselect Include Actual Execution Plan.

How It Works
In this recipe, I walked through how to view the estimated and actual query execution plans in
a graphical format. This is by far the easiest way to visually understand what operations are taking
place within your query. If a query is taking too long to execute, you can check the output for the
higher cost query batches and within that query batch, the higher cost operators. Once you find
a high percentage operator, you can hover your mouse pointer over it to see the ToolTip.

You don’t, however, have to use the graphical tools in order to view a query’s execution plan.
SQL Server 2005 includes Transact-SQL commands which can also provide this information in
result set form, as you’ll see in the next recipe.

Viewing Estimated Query Execution Plans Using Transact-SQL
Commands
In SQL Server 2005, there are three commands that can be used to view detailed information about
a query execution plan for a SQL statement or batch: SET SHOWPLAN_ALL, SET SHOWPLAN_TEXT, and SET
SHOWPLAN_XML. The output of these commands helps you understand how SQL Server plans to process
and execute your query, identifying information such as table join types used and the indexes accessed.
For example, using the output from these commands, you can see whether SQL Server is using a spe-
cific index in a query, and if so, whether it is retrieving the data using an index seek (nonclustered
index is used to retrieve selected rows for the operation) or index scan (all index rows are retrieved
for the operation).

When enabled, the SET SHOWPLAN_ALL, SET SHOWPLAN_TEXT, and SET SHOWPLAN_XML commands
provide you with the plan information without executing the query, allowing you to adjust the query
or indexes on the referenced tables before actually executing it.

Each of these commands returns information in a different way. SET SHOWPLAN_ALL returns the
estimated query plan in a tabular format, with multiple columns and rows. The output includes
information such as the estimated IO or CPU of each operation, estimated rows involved in the
operation, operation cost (relative to itself and variations of the query), and the physical and logical
operators used.

■Note Logical operators describe the conceptual operation SQL Server must perform in the query execution.
Physical operators are the actual implementation of that logical operation. For example a logical operation in
a query, INNER JOIN, could be translated into the physical operation of a Nested Loop in the actual query execution.

The SET SHOWPLAN_TEXT command returns the data in a single column, with multiple rows for
each operation.

Introduced in SQL Server 2005, you can also return a query execution plan in XML format using
the SET SHOWPLAN_XML command.

The syntax for each of these commands is very similar:

SET SHOWPLAN_ALL { ON | OFF }
SET SHOWPLAN_TEXT { ON | OFF}

570Xch28.qxd 11/4/05 3:00 PM Page 650

CHAPTER 28 ■ PERFORMANCE TUNING 651

Each command is enabled when set to ON, and disabled when set to OFF.
This recipe’s example demonstrates returning the estimated query execution plan of a query in

the AdventureWorks database using SET SHOWPLAN_TEXT and then SET SHOWPLAN_XML (SET SHOWPLAN_ALL
is not demonstrated in this book because it returns seventeen columns and multiple rows which are
not easily presented in print):

SET SHOWPLAN_TEXT ON
GO

SELECT p.Name, p.ProductNumber, r.ReviewerName
FROM Production.Product p
INNER JOIN Production.ProductReview r ON

p.ProductID = r.ProductID
WHERE r.Rating > 2
GO

SET SHOWPLAN_TEXT OFF
GO

This returns the following estimated query execution plan output:

StmtText
--

SELECT p.Name, p.ProductNumber, r.ReviewerName
FROM Production.Product p
INNER JOIN Production.ProductReview r ON

p.ProductID = r.ProductID
WHERE r.Rating > 2

(1 row(s) affected)

StmtText

|--Nested Loops(Inner Join, OUTER REFERENCES:([r].[ProductID]))

|--Clustered Index
Scan(OBJECT:([AdventureWorks].[Production].[ProductReview].[PK_ProductReview_Product
ReviewID] AS [r]), WHERE:([AdventureWorks].[Production].[ProductReview].[Rating] as
[r].[Rating]>(2)))

|--Clustered Index
Seek(OBJECT:([AdventureWorks].[Production].[Product].[PK_Product_ProductID] AS [p]),
SEEK:([p].[ProductID]=[AdventureWorks].[Production].[ProductReview].[ProductID] as
[r].[ProductID]) ORDERED FORWARD)

(3 row(s) affected)

The next example returns estimated query plan results in XML format:

SET SHOWPLAN_XML ON
GO

SELECT p.Name, p.ProductNumber, r.ReviewerName
FROM Production.Product p
INNER JOIN Production.ProductReview r ON

p.ProductID = r.ProductID
WHERE r.Rating > 2
GO

570Xch28.qxd 11/4/05 3:00 PM Page 651

CHAPTER 28 ■ PERFORMANCE TUNING652

SET SHOWPLAN_XML OFF
GO

This returns the following (this is an abridged snippet, because the actual output is more than
a page long):

<ShowPlanXML xmlns="http://schemas.microsoft.com/sqlserver/2004/07/showplan"
Version="0.5" Build="9.00.1187.07">
<BatchSequence>
<Batch>
<Statements>

...
<RelOp NodeId="0" PhysicalOp="Nested Loops" LogicalOp="Inner Join" EstimateRows="3"
EstimateIO="0" EstimateCPU="1.254e-005" AvgRowSize="105"
EstimatedTotalSubtreeCost="0.00996111" Parallel="0" EstimateRebinds="0"
EstimateRewinds="0">

<OutputList>
<ColumnReference Database="[AdventureWorks]" Schema="[Production]"

Table="[Product]" Alias="[p]" Column="Name" />
<ColumnReference Database="[AdventureWorks]" Schema="[Production]"

Table="[Product]" Alias="[p]" Column="ProductNumber" />
<ColumnReference Database="[AdventureWorks]" Schema="[Production]"

Table="[ProductReview]" Alias="[r]" Column="ReviewerName" />
</OutputList>

...

How It Works
You can use SHOWPLAN_ALL, SHOWPLAN_TEXT, or SHOWPLAN_XML to tune your Transact-SQL queries and
batches. These commands show you the estimated execution plan without actually executing the
query. You can use the information returned in the command output to take action towards
improving the query performance (for example, adding indexes to columns being using in search or
join conditions). Looking at the output, you can determine whether SQL Server is using the expected
indexes, and if so, whether SQL Server is using an index seek, index scan, or table scan operation.

In this recipe, the SET SHOWPLAN for both TEXT and XML was set to ON, and then followed by GO:

SET SHOWPLAN_TEXT ON
GO

A query referencing the Production.Product and Production.ProductReview was then evaluated.
The two tables were joined using an INNER join on the ProductID column, and only those products
with a product rating of 2 or higher would be returned:

SELECT p.Name, p.ProductNumber, r.ReviewerName
FROM Production.Product p
INNER JOIN Production.ProductReview r ON

p.ProductID = r.ProductID
WHERE r.Rating > 2

The SHOWPLAN was set OFF at the end of the query, so as not to keep executing SHOWPLAN for
subsequent queries for that connection.

Looking at snippets from the output, you can see that a nested loop join (physical operation)
was used to perform the INNER JOIN (logical operation):

|--Nested Loops(Inner Join, OUTER REFERENCES:([r].[ProductID]))

570Xch28.qxd 11/4/05 3:00 PM Page 652

CHAPTER 28 ■ PERFORMANCE TUNING 653

You can also see from this output that a clustered index scan was performed using the
PK_ProductReview_ProductReviewID primary key clustered index to retrieve data from the
ProductReview table:

|--Clustered Index Scan
(OBJECT:([AdventureWorks].[Production].[ProductReview].[PK_ProductReview_ProductReviewID]
AS [r]),

A clustered index seek, however, was used to retrieve data from the Product table:

|--Clustered Index
Seek(OBJECT:([AdventureWorks].[Production].[Product].[PK_Product_ProductID] AS [p]),

The SET SHOWPLAN_XML command returned the estimated query plan in an XML document format,
displaying similar data as SHOWPLAN_TEXT. The XML data is formatted using attributes and elements.

For example, the attributes of the RelOp element shows a physical operation of Nested Loops
and a logical operation of Inner Join—along with other statistics such as estimated rows impacted
by the operation:

<RelOp NodeId="0" PhysicalOp="Nested Loops" LogicalOp="Inner Join" EstimateRows="3"
EstimateIO="0" EstimateCPU="1.254e-005" AvgRowSize="105"
EstimatedTotalSubtreeCost="0.00996111" Parallel="0" EstimateRebinds="0"
EstimateRewinds="0">

The XML document follows a specific schema definition format which defines the returned
XML elements, attributes, and data types. This schema can be viewed at the following URL:
http://schemas.microsoft.com/sqlserver/2004/07/showplan/showplanxml.xsd.

Forcing SQL Server 2005 to Use a Query Plan
SQL Server 2005 introduces the new USE PLAN command, which allows you to force the query opti-
mizer to use an existing, specific query plan for a SELECT query. You can use this functionality to
override SQL Server’s choice, in those rare circumstances when SQL Server chooses a less efficient
query plan over one that is more efficient. Like plan guides (covered later), this option should only
be used by an experienced SQL Server professional, as SQL Server’s query optimizer usually makes
good decisions when deciding whether or not to reuse or create new query execution plans.

The syntax for USE PLAN is as follows:

USE PLAN N'xml_plan'

The xml_plan parameter is the XML data type representation of the stored query execution plan.
The specific XML query plan can be derived using several methods, including: SET SHOWPLAN_XML,
SET STATISTICS XML, the sys.dm_exec_query_plan dynamic management view, and via SQL Server
Profiler’s Showplan XML events.

In this example, SET STATISTICS XML is used to extract the XML formatted query plan for use in
the USE PLAN command:

SET STATISTICS XML ON

SELECT TOP 10 Rate
FROM HumanResources.EmployeePayHistory
ORDER BY Rate DESC

570Xch28.qxd 11/4/05 3:00 PM Page 653

CHAPTER 28 ■ PERFORMANCE TUNING654

The XMLDocument results returned from SET STATISTICS XML are then copied to the next query.
Note that all the single quotes (') in the XML document, have to be escaped with an additional sin-
gle quote (except for the quotes used for USE PLAN):

SELECT TOP 10 Rate
FROM HumanResources.EmployeePayHistory
ORDER BY Rate DESC
OPTION (USE PLAN
'<ShowPlanXML xmlns="http://schemas.microsoft.com/sqlserver/2004/07/showplan"
Version="1.0" Build="9.00.1314.06">
<BatchSequence>
<Batch>
<Statements>
<StmtSimple StatementText="SELECT TOP 10 Rate
FROM

HumanResources.EmployeePayHistory
ORDER BY Rate DESC
"
StatementId="1" StatementCompId="2" StatementType="SELECT"
StatementSubTreeCost="0.019825" StatementEstRows="10" StatementOptmLevel="TRIVIAL">

<StatementSetOptions QUOTED_IDENTIFIER="false" ARITHABORT="true"
CONCAT_NULL_YIELDS_NULL="false" ANSI_NULLS="false" ANSI_PADDING="false"
ANSI_WARNINGS="false" NUMERIC_ROUNDABORT="false" />

<QueryPlan DegreeOfParallelism="0" MemoryGrant="64" CachedPlanSize="8">
<RelOp NodeId="0" PhysicalOp="Sort" LogicalOp="TopN Sort"

EstimateRows="10" EstimateIO="0.0112613" EstimateCPU="0.00419345" AvgRowSize="15"
EstimatedTotalSubtreeCost="0.019825" Parallel="0" EstimateRebinds="0"
EstimateRewinds="0">

<OutputList>
<ColumnReference Database="[AdventureWorks]"

Schema="[HumanResources]" Table="[EmployeePayHistory]" Column="Rate" />
</OutputList>
<MemoryFractions Input="0" Output="1" />
<RunTimeInformation>
<RunTimeCountersPerThread Thread="0" ActualRows="10"

ActualRebinds="1" ActualRewinds="0" ActualEndOfScans="1" ActualExecutions="1" />
</RunTimeInformation>
<TopSort Distinct="0" Rows="10">
<OrderBy>
<OrderByColumn Ascending="0">
<ColumnReference Database="[AdventureWorks]"

Schema="[HumanResources]" Table="[EmployeePayHistory]" Column="Rate" />
</OrderByColumn>

</OrderBy>
<RelOp NodeId="1" PhysicalOp="Clustered Index Scan"

LogicalOp="Clustered Index Scan" EstimateRows="316" EstimateIO="0.00386574"
EstimateCPU="0.0005046" AvgRowSize="15" EstimatedTotalSubtreeCost="0.00437034"
Parallel="0" EstimateRebinds="0" EstimateRewinds="0">

<OutputList>
<ColumnReference Database="[AdventureWorks]"

Schema="[HumanResources]" Table="[EmployeePayHistory]" Column="Rate" />
</OutputList>
<RunTimeInformation>
<RunTimeCountersPerThread Thread="0" ActualRows="316"

ActualEndOfScans="1" ActualExecutions="1" />
</RunTimeInformation>
<IndexScan Ordered="0" ForcedIndex="0" NoExpandHint="0">
<DefinedValues>
<DefinedValue>
<ColumnReference Database="[AdventureWorks]"

570Xch28.qxd 11/4/05 3:00 PM Page 654

CHAPTER 28 ■ PERFORMANCE TUNING 655

</DefinedValue>
</DefinedValues>
<Object Database="[AdventureWorks]" Schema="[HumanResources]"

Table="[EmployeePayHistory]"
Index="[PK_EmployeePayHistory_EmployeeID_RateChangeDate]" />

</IndexScan>
</RelOp>

</TopSort>
</RelOp>

</QueryPlan>
</StmtSimple>

</Statements>
</Batch>

</BatchSequence>
</ShowPlanXML>'

How It Works
USE PLAN allows you to capture the XML format of a query’s execution plan and then force the query
to use it on subsequent executions. In this recipe, I used SET STATISTICS XML ON to capture the
query’s XML execution plan definition. That definition was then copied into the OPTION clause. The
USE PLAN hint requires a Unicode format, so the XML document text was prefixed with an N'.

Both USE PLAN and plan guides should be used only as a last resort—after you have thoroughly
explored other possibilities such as query design, indexing, database design, index fragmentation,
and out-of-date statistics. USE PLAN may have short term effectiveness, but as data changes, so too
will the needs of the query execution plan. In the end, the odds are that, over time, SQL Server will
be better able to dynamically decide on the correct SQL plan than you. Nevertheless, Microsoft
provided this option for those advanced troubleshooting cases when SQL Server doesn’t choose
a query execution plan that’s good enough.

Viewing Execution Runtime Information
SQL Server 2005 provides four commands that are used to return query and batch execution
statistics and information: SET STATISTICS IO, SET STATISTICS TIME, SET STATISTICS PROFILE, and
SET STATISTICS XML.

Unlike the SHOWPLAN commands, STATISTICS commands return information for queries that have
actually executed in SQL Server. The SET STATISTICS IO command is used to return disk activity
(hence I/O) generated by the executed statement. The SET STATISTICS TIME command returns the
number of milliseconds taken to parse, compile, and execute each statement executed in the batch.
SET STATISTICS PROFILE and SET STATISTICS XML are the equivalents of SET SHOWPLAN_ALL and SET
SHOWPLAN_XML, only the actual (not estimated) execution plan information is returned along with the
actual results of the query.

The syntax of each of these commands is similar, with ON enabling the statistics, and OFF
disabling them:

SET STATISTICS IO { ON | OFF }

SET STATISTICS TIME { ON | OFF }

SET STATISTICS PROFILE { ON | OFF }

SET STATISTICS XML { ON | OFF }

In the first example, STATISTICS IO is enabled prior to executing a query that totals the amount
due by territory from the Sales.SalesOrderHeader and Sales.SalesTerritory tables:

570Xch28.qxd 11/4/05 3:00 PM Page 655

CHAPTER 28 ■ PERFORMANCE TUNING656

SET STATISTICS IO ON
GO

SELECT t.name TerritoryNM,
SUM(TotalDue) TotalDue

FROM Sales.SalesOrderHeader h
INNER JOIN Sales.SalesTerritory t ON

h.TerritoryID = t.TerritoryID
WHERE OrderDate BETWEEN '1/1/2003' AND '12/31/2003'
GROUP BY t.name
ORDER BY t.name

SET STATISTICS IO OFF
GO

This returns the following (abridged) results:

TerritoryNM TotalDue
Australia 4547123.2777
Canada 8186021.9178
...
Southwest 11523237.5187
United Kingdom 4365879.4375

Table 'Worktable'. Scan count 1, logical reads 39, physical reads 0, read-ahead reads 0,
lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.
Table 'SalesOrderHeader'. Scan count 1, logical reads 703, physical reads 3, read-
ahead reads 699, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.
Table 'SalesTerritory'. Scan count 1, logical reads 2, physical reads 0, read-ahead
reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Substituting SET STATISTICS TIME with SET STATISTICS IO would have returned the following
(abridged) results for that same query:

TerritoryNM TotalDue
Australia 4547123.2777
...
Southeast 3261402.9982
Southwest 11523237.5187
United Kingdom 4365879.4375

SQL Server parse and compile time:
CPU time = 50 ms, elapsed time = 117 ms.

(10 row(s) affected)

SQL Server Execution Times:
CPU time = 40 ms, elapsed time = 87 ms.

How It Works
The SET STATISTICS commands return information about the actual execution of a query or batch

mation about logical, physical, and large

570Xch28.qxd 11/4/05 3:00 PM Page 656

CHAPTER 28 ■ PERFORMANCE TUNING 657

object read events for tables referenced in the query. For a query that is having performance issues
(based on your business requirements and definition of “issues”), you can use SET STATISTICS IO to
see where the I/O hot spots are occurring. For example, in this recipe’s result set, you can see that
the SalesOrderHeader had the highest number of logical reads:

...
Table 'SalesOrderHeader'. Scan count 1, logical reads 703, physical reads 3, read-
ahead reads 699, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.
...

Pay attention to high physical (reads from disk) or logical read values (reads from the data cache)—
even if physical is zero and logical is a high value. Also look for worktables (which were also seen in
this recipe):

Table 'Worktable'. Scan count 1, logical reads 39, physical reads 0, read-ahead
reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Worktables are usually seen in conjunction with GROUP BY, ORDER BY, hash joins, and UNION
operations in the query. Worktables are created in tempdb for the duration of the query, and are
removed automatically when SQL Server has finished the operation.

In the second example in this recipe, SET STATISTICS TIME was used to show the parse and
compile time of the query (shown before the actual query results), and then the actual execution
time (displayed after the query results):

SQL Server parse and compile time:
CPU time = 50 ms, elapsed time = 117 ms.

(10 row(s) affected)

SQL Server Execution Times:
CPU time = 40 ms, elapsed time = 87 ms.

This command is useful for measuring the amount of time a query takes to execute from
end-to-end, allowing you to see if precompiling is taking longer than you realized, or if the slowdown
occurs during the actual query execution.

The two other STATISTICS commands, SET STATISTICS PROFILE and SET STATISTICS XML, return
information similar to SET SHOWPLAN_ALL and SET SHOWPLAN_XML, only the results are based on the
actual, rather than the estimated execution plan.

Viewing Performance Statistics for Cached Query Plans
In this recipe, I demonstrate using SQL Server 2005 dynamic management views and functions to
view performance statistics for cached query plans.

In this example, a simple query that returns all rows from the Sales.Individual table is executed
against the AdventureWorks database. Prior to executing it, you’ll clear the procedure cache so that
you can identify the query more easily in this demonstration (remember that you should only clear
out the procedure cache on test SQL Server instances):

DBCC FREEPROCCACHE
GO

SELECT CustomerID, ContactID, Demographics, ModifiedDate

570Xch28.qxd 11/4/05 3:00 PM Page 657

CHAPTER 28 ■ PERFORMANCE TUNING658

Now, I’ll query the sys.dm_exec_query_stats dynamic management view, which contains statistical
information regarding queries cached on the SQL Server instance. This view contains a sql_handle,
which I’ll use as an input to the sys.dm_exec_sql_text dynamic management function. This function
is used to return the text of a Transact-SQL statement:

SELECT t.text,
st.total_logical_reads,
st.total_physical_reads,
st.total_elapsed_time/1000000 Total_Time_Secs,
st.total_logical_writes

FROM sys.dm_exec_query_stats st
CROSS APPLY sys.dm_exec_sql_text(st.sql_handle) t

This returns:

text total logical_reads total_physical_reads Total_Time_Secs total_
logical_
writes

SELECT 3092 3 7 0
CustomerID,
ContactID,
Demographics,
ModifiedDate
FROM
Sales.Individual

How It Works
This recipe demonstrated clearing the procedure cache, then executing a query that took a few sec-
onds to finish executing. After that, the sys.sm_exec_query_stats dynamic management view was
queried to return statistics about the cached execution plan.

The SELECT clause retrieved information on the Transact-SQL text of the query, number of logical
and physical reads, total time elapsed in seconds, and logical writes (if any):

SELECT t.text,
st.total_logical_reads,
st.total_physical_reads,
st.total_elapsed_time/1000000 Total_Time_Secs,
st.total_logical_writes

The total elapsed time column was in microseconds, so it was divided by 1000000 in order to
return the number of full seconds.

In the FROM clause, the sys.dm_exec_query_stats dynamic management view was cross applied
against the sys.dm_exec_sql_text dynamic management function in order to retrieve the SQL text
of the cached query:

FROM sys.dm_exec_query_stats st
CROSS APPLY sys.dm_exec_sql_text(st.sql_handle) t

This information is useful for identifying read- and/or write-intensive queries, helping you
determine which queries should be optimized. Keep in mind that this recipe’s query can only retrieve
information on queries still in the cache.

This query returned the totals, but the sys.dm_exec_query_stats also includes columns that track
the min, max, and last measurements for reads and writes. Also note that the sys.dm_exec_query_stats
has other useful columns that can measure CPU time (total_worker_time, last_worker_time,
min_worker_time, and max_worker_time) and .NET CLR object execution time (total_clr_time,
last_clr_time, min_clr_time, max_clr_time).

570Xch28.qxd 11/4/05 3:00 PM Page 658

CHAPTER 28 ■ PERFORMANCE TUNING 659

Statistics
As I discussed in Chapter 22, the AUTO_CREATE_STATISTICS database option enables SQL Server to
automatically generate statistical information regarding the distribution of values in a column. The
AUTO_UPDATE_STATISTICS database option automatically updates existing statistics on your table or
indexed view. Unless you have a very good reason for doing so, these options should never be disabled
in your database, as they are critical for good query performance.

Statistics are critical for efficient query processing and performance, allowing SQL Server to
choose the correct physical operations when generating an execution plan. Table and indexed view
statistics, which can be created manually or generated automatically by SQL Server, collect infor-
mation that is used by SQL Server to generate efficient query execution plans.

The next few recipes will demonstrate how to work directly with statistics. When reading these
recipes, remember to let SQL Server manage the automatic creation and update of statistics in your
databases whenever possible. Save most of these commands for special troubleshooting circum-
stances or when you’ve made significant data changes (for example, executing sp_updatestats right
after a large data load).

Manually Creating Statistics
SQL Server will usually generate the statistics it needs based on query activity. However, if you still
wish to explicitly create statistics on a column or columns, you can use the CREATE STATISTICS
command.

The syntax is as follows:

CREATE STATISTICS statistics_name
ON { table | view } (column [,...n])

[WITH
[[FULLSCAN
| SAMPLE number { PERCENT | ROWS }
| STATS_STREAM = stats_stream] [,]]

[NORECOMPUTE]
]

The arguments of this command are described in Table 28-1.

Table 28-1. CREATE STATISTICS Arguments

Argument Description

statistics_name The name of the new statistics.

table | view The table or indexed view which the statistics are based off of.

column [,...n] One or more columns used for generating statistics.

FULLSCAN| SAMPLE number FULLSCAN, when specified, reads all rows when generating the
{ PERCENT | ROWS } statistics. SAMPLE reads either a defined number of rows or

a defined percentage of rows.

STATS_STREAM = stats_stream Reserved for Microsoft’s internal use.

NORECOMPUTE This option designates that once the statistics are created, they
should not be updated —even when data changes occur
afterwards. This option should rarely, if ever, be used. Fresh
statistics allow SQL Server to generate good query plans.

In this example, new statistics are created on the Sales.Customer CustomerType column:

570Xch28.qxd 11/4/05 3:00 PM Page 659

CHAPTER 28 ■ PERFORMANCE TUNING660

CREATE STATISTICS Stats_Customer_CustomerType
ON Sales.Customer (CustomerType)
WITH FULLSCAN

How It Works
This recipe demonstrated manually creating statistics on the Sales.Customer table. The first line of
code designated the statistics name:

CREATE STATISTICS Stats_Customer_CustomerType

The second line of code designated the table to create statistics on, followed by the column
name used to generate the statistics:

ON Sales.Customer (CustomerType)

The last line of code designated that all rows in the table would be read in order to generate the
statistics:

WITH FULLSCAN

Updating Statistics
After you create statistics, if you wish to manually update statistics, you can use the UPDATE STATISTICS
command.

The syntax is as follows:

UPDATE STATISTICS table | view
[

{
{ index | statistics_name }

| ({ index |statistics_name } [,...n])
}

]
[WITH

[
[FULLSCAN]
| SAMPLE number { PERCENT | ROWS }]
| RESAMPLE

]
[[,] [ALL | COLUMNS | INDEX]
[[,] NORECOMPUTE]

]

The arguments of this command are described in Table 28-2.

Table 28-2. UPDATE STATISTICS Arguments

Argument Description

table | view The table name or indexed view for which to update statistics.

{ index | statistics_name}| The name of the index or named statistics to update.
({index| statistics_name}
[,...n]) }

FULLSCAN| SAMPLE number FULLSCAN, when specified, reads all rows when generating the
{ PERCENT | ROWS } |RESAMPLE statistics. SAMPLE reads either a defined number of rows or

a percentage. RESAMPLE updates statistics based on the original

570Xch28.qxd 11/4/05 3:00 PM Page 660

CHAPTER 28 ■ PERFORMANCE TUNING 661

Argument Description

[ALL | COLUMNS | INDEX] When ALL is designated, all existing statistics are updated. When
COLUMN is designated, only column statistics are updated. When
INDEX is designated, only index statistics are updated.

NORECOMPUTE This option designates that once the statistics are created, they
should not be updated—even when data changes occur. Again,
this option should rarely, if ever, be used. Fresh statistics allow
SQL Server to generate good query plans.

This example updates the statistics created in the previous recipe, populating statistics based
on the latest data:

UPDATE STATISTICS Sales.Customer
Stats_Customer_CustomerType
WITH FULLSCAN

How It Works
This example updated the statistics created in the previous recipe, refreshing them with the latest
data. The first line of code designated the table name containing the statistics to be updated:

UPDATE STATISTICS Sales.Customer

The second line designated the name of the statistics to be updated:

Stats_Customer_CustomerType

The last line of code designated that all rows in the table would be read in order to update the
statistics:

WITH FULLSCAN

Generating and Updating Statistics Across All Tables
You can also automatically generate statistics across all tables in a database for those columns that
don’t already have statistics associated to them, by using the system-stored procedure sp_createstats.

The syntax is as follows:

sp_createstats [[@indexonly =] 'indexonly']
[, [@fullscan =] 'fullscan']

[, [@norecompute =] 'norecompute']

The arguments of this command are described in Table 28-3.

Table 28-3. sp_createstats Arguments

Argument Description

indexonly When indexonly is designated, only columns used in indexes will be considered
for statistics creation.

fullscan When fullscan is designated, all rows will be evaluated for the generated statistics.
If not designated, the default behavior is to extract statistics via sampling.

norecompute The norecompute option designates that once the statistics are created, they should
not be updated—even when data changes occur. Like with CREATE STATISTICS and
UPDATE STATISTICS, this option should rarely, if ever, be used. Fresh statistics allow
SQL Server to generate good query plans.

570Xch28.qxd 11/4/05 3:00 PM Page 661

CHAPTER 28 ■ PERFORMANCE TUNING662

If you wish to update all statistics in the current database, you can use the system-stored pro-
cedure sp_updatestats. Improved in SQL Server 2005, this stored procedure only updates statistics
when necessary (when data changes have occurred). Statistics on unchanged data will not be updated.

This example demonstrates creating new statistics on columns in the database that don’t already
have statistics created for them:

EXEC sp_createstats
GO

This returns the following (abridged) result set:

Table 'AdventureWorks.Production.ProductProductPhoto': Creating statistics for the
following columns:

Primary
ModifiedDate

Table 'AdventureWorks.Sales.StoreContact': Creating statistics for the following columns:
ModifiedDate

Table 'AdventureWorks.Person.Address': Creating statistics for the following columns:
AddressLine2
City
PostalCode
ModifiedDate

...

This next example automatically updates all statistics in the current database:

EXEC sp_updatestats
GO

This returns the following (abridged) results. Notice the informational message of 'update is
not necessary'. The results you see may differ based on the state of your table statistics:

Updating [Production].[ProductProductPhoto]
[PK_ProductProductPhoto_ProductID_ProductPhotoID], update is not necessary...
[AK_ProductProductPhoto_ProductID_ProductPhotoID], update is not necessary...
[_WA_Sys_00000002_01142BA1], update is not necessary...
[Primary], update is not necessary...
[ModifiedDate], update is not necessary...
0 index(es)/statistic(s) have been updated, 5 did not require update.

...

Viewing Statistics Information
If you suspect that the statistics on a specific table are not being updated appropriately, or contain
out-of-date information, you can use the DBCC SHOW STATISTICS command to view detailed statis-
tics information in order to verify.

The syntax is as follows:

DBCC SHOW_STATISTICS ('table_name' | 'view_name' , target)
[WITH [NO_INFOMSGS]
< STAT_HEADER | DENSITY_VECTOR | HISTOGRAM > [, n]]

The arguments of this command are described in Table 28-4.

570Xch28.qxd 11/4/05 3:00 PM Page 662

CHAPTER 28 ■ PERFORMANCE TUNING 663

Table 28-4. DBCC SHOW_STATISTICS Arguments

Argument Description

'table_name' | 'view_name' The table or indexed view to evaluate.

target The name of the index or named statistics to evaluate.

NO_INFOMSGS When designated, NO_INFOMSGS suppresses informational
messages.

STAT_HEADER |DENSITY_VECTOR | Specifying STAT_HEADER, DENSITY_VECTOR, or HISTOGRAM
HISTOGRAM [, n] designates which result sets will be returned by the command

(you can display one or more). Not designating any of these
means that all three result sets will be returned.

This example demonstrates how to view the statistics information on the Sales.Customer
Stats_Customer_CustomerType statistics:

DBCC SHOW_STATISTICS ('Sales.Customer' , Stats_Customer_CustomerType)

This returns the following result sets:

Name Updated Rows Rows Sampled Steps Density Average String
key length Index

Stats_Customer_ Oct 15 2005 19185 19185 2 0 2 YES
CustomerType 2:32PM

All density Average Length Columns
0.5 2 CustomerType

RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS
I 0 18484 0 1
S 0 701 0 1

How It Works
In the results of this recipe’s example, the All density column indicates the selectivity of a column:

All density Average Length Columns
0.5 2 CustomerType

Selectivity refers to the percentage of rows that will be returned given a specific column’s value.
A low All density value implies a high selectivity. Columns with high selectivity often make for use-
ful indexes (useful to the query optimization process).

In the third result set returned by SHOW_STATISTICS, CustomerType had only two values, I and S
(which you can see in the RANGE_HI_KEY in the third result set):

RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS
I 0 18484 0 1
S 0 701 0 1

With such a high density of similar values, and low selectivity (one value is likely to return
many rows), you can make an educated assumption that an index on this particular column is

query execution plan.

570Xch28.qxd 11/4/05 3:00 PM Page 663

CHAPTER 28 ■ PERFORMANCE TUNING664

Removing Statistics
To remove statistics, use the DROP STATISTICS command.

The syntax is as follows:

DROP STATISTICS table.statistics_name | view.statistics_name [,...n]

This command allows you to drop one or more statistics, prefixed with the table or indexed
view name.

In this example, the Sales.Customer Stats_Customer_CustomerType statistics are dropped from
the database:

DROP STATISTICS Sales.Customer.Stats_Customer_CustomerType

How It Works
This recipe dropped user-created statistics using DROP STATISTICS. The statistics were dropped
using the three part name of schema.table.statistics_name.

Index Tuning
This next batch of recipes demonstrates techniques for managing indexes. Specifically, I’ll be covering
how to:

• Identify index fragmentation, so you can figure out which indexes should be rebuilt or
reorganized.

• Display index usage, so you can determine which indexes aren’t being used by SQL Server.

• Use the Database Tuning Advisor tool to analyze a workload file containing a query and
make index suggestions.

Before getting into the recipes, I’d like to take a moment to discuss some general indexing best
practices. When considering these best practices, always remember that like query tuning, there are
few hard and fast “always” or “never” rules. Index usage by SQL Server depends on a number of fac-
tors, including, but not limited to, the query construction, referenced tables in the query, referenced
columns, number of rows in the table, and uniqueness of the index column(s) data. Some basic
guidelines to keep in mind when building your index strategy:

• Add indexes based on your high priority and high frequency queries. Determine ahead of
time what acceptable query execution durations might be, based on your business require-
ments.

• Don’t add multiple indexes at the same time. Instead, add an index and test the query to see
that the new index is used. If it is not used, remove it. If it is used, test to make sure there are
no negative side effects to other queries. Remember that each additional index adds extra
overhead to data modifications to the base table.

• Unless you have a very good reason not to do so, always add a clustered index to each table.
A table without a clustered index is a heap, meaning that the data is stored in no particular
order. Clustered indexes are ordered according to the clustered key and its data pages re-ordered
during an index rebuild or reorganization. Heaps, however, are not rebuilt during an index
rebuild or reorganization process, and therefore can grow out of control, taking up many
more data pages than necessary.

• Monitor query performance over time. As your data changes, so too will the performance
and effectiveness of your indexes.

570Xch28.qxd 11/4/05 3:00 PM Page 664

CHAPTER 28 ■ PERFORMANCE TUNING 665

• Fragmented indexes can slow down query performance since more I/O operations are
required in order to return results for a query. Keep index fragmentation to a minimum by
rebuilding and/or reorganizing your indexes on a scheduled or as-needed basis.

• Select clustered index keys that are rarely modified, highly unique, and narrow in data type
width. Width is particularly important because each nonclustered index also contains within
it the clustered index key. Clustered indexes are useful when applied to columns used in
range queries. This includes queries that use the operators BETWEEN, >, >=, <, and <=. Clustered
index keys also help reduce execution time for queries that return large result sets or depend
heavily on ORDER BY and GROUP BY clauses. With all these factors in mind, remember that you
can only have a single clustered index for your table, so choose carefully.

• Nonclustered indexes are ideal for small or one-row result sets. Again, columns should be
chosen based on their use in a query, specifically in the JOIN or WHERE clause. Nonclustered
indexes should be made on columns containing highly unique data. As discussed in Chapter 5,
don’t forget to consider using covering queries and the new SQL Server 2005 INCLUDE func-
tionality for non-key columns.

• Use a 100% fill factor for those indexes that are located within read-only filegroups or data-
bases. This reduces I/O and can improve query performance because less data pages are
required to fulfill a query’s result set.

• Try to anticipate which indexes will be needed based on the queries you perform—but also
don’t be afraid to make frequent use of the Database Engine Tuning Advisor tool. Using the
Database Engine Tuning Advisor, SQL Server can evaluate your query or batch of queries and
determine what indexes could be added (or removed) in order to help the query run faster.
I’ll demonstrate this later on.

The next recipe will now demonstrate how to display index fragmentation.

Displaying Index Fragmentation
In SQL Server 2000, the DBCC SHOWCONTIG command was used to display index fragmentation.
Fragmentation is the natural byproduct of data modifications to a table. When data is updated in
the database, the logical order of indexes (based on the index key) gets out of sync with the actual
physical order of the data pages. As data pages become further and further out of order, more I/O
operations are required in order to return results requested by a query. Rebuilding or reorganizing
an index allows you to defragment the index by synchronizing the logical index order, re-ordering
the physical data pages to match the logical index order.

■Note See Chapter 5 for a review of index management and Chapter 23 for a review of index defragmentation
and reorganization.

Now in SQL Server 2005, DBCC SHOWCONTIG has been deprecated in place of the new dynamic
management function, sys.dm_db_index_physical_stats. The sys.dm_db_index_physical_stats
dynamic management function returns information that allows you to determine an index’s level of
fragmentation.

The syntax for sys.dm_db_index_physical_stats is as follows:

sys.dm_db_index_physical_stats (
{ database_id | NULL }
, { object_id | NULL }
, { index_id | NULL | 0 }

570Xch28.qxd 11/4/05 3:00 PM Page 665

CHAPTER 28 ■ PERFORMANCE TUNING666

, { mode | NULL | DEFAULT }
)

The arguments of this command are described in Table 28-5.

Table 28-5. sys.dm_db_index_physical_stats Arguments

Argument Description

database_id | NULL The database ID of the indexes to evaluate. If NULL, all databases
for the SQL Server instance are returned.

object_id | NULL The object ID of the table and views (indexed views) to evaluate. If
NULL, all tables are returned.

index_id | NULL | 0 The specific index ID of the index to evaluate. If NULL, all indexes
are returned for the table(s).

partition_number | NULL The specific partition number of the partition to evaluate. If NULL,
all partitions are returned based on the defined
database/table/indexes selected.

LIMITED | SAMPLED | These modes impact how the fragmentation data is collected. The
DETAILED | NULL | DEFAULT LIMITED mode scans all pages for a heap and the pages above the

leaf-level. SAMPLED collects data based on a 1% sampling of pages in
the heap or index. The DETAILED mode scans all pages (heap or
index). DETAILED is the slowest, but most accurate option.
Designating NULL or DEFAULT is the equivalent of the LIMITED mode.

In this example, the sys.dm_db_index_physical_stats dynamic management view is queried for
all objects in the AdventureWorks database with an average fragmentation percent greater than 30:

USE AdventureWorks
GO

SELECT OBJECT_NAME(object_id) ObjectName,
index_id,
index_type_desc,
avg_fragmentation_in_percent

FROM sys.dm_db_index_physical_stats
(DB_ID('AdventureWorks'),NULL, NULL, NULL, 'LIMITED')
WHERE avg_fragmentation_in_percent > 30
ORDER BY OBJECT_NAME(object_id)

This returns the following (abridged) results:

ObjectName index_id index_type_desc avg_fragmentation_in_percent
BillOfMaterials 2 NONCLUSTERED INDEX 33.3333333333333
CountryRegion 1 CLUSTERED INDEX 50
DatabaseLog 0 HEAP 54.1666666666667
Employee 1 CLUSTERED INDEX 57.1428571428571
Employee 2 NONCLUSTERED INDEX 66.6666666666667
...

This second example returns fragmentation for a specific database, table, and index:

SELECT OBJECT_NAME(f.object_id) ObjectName,
i.name IndexName,
f.index_type_desc,
f.avg_fragmentation_in_percent

570Xch28.qxd 11/4/05 3:00 PM Page 666

CHAPTER 28 ■ PERFORMANCE TUNING 667

(DB_ID('AdventureWorks'),
OBJECT_ID('Production.ProductDescription'),
2,
NULL,
'LIMITED') f

INNER JOIN sys.indexes i ON
i.object_id = f.object_id AND
i.index_id = f.index_id

This returns:

ObjectName IndexName index_type_desc avg_fragmentation
in_percent

ProductDescription AK_ProductDescription_rowguid NONCLUSTERED INDEX 66.6666666666667

How It Works
The first example started off by changing the database context to the AdventureWorks database:

USE AdventureWorks
GO

Since the OBJECT_NAME function is database-context sensitive, changing the database context
ensures that you are viewing the proper object name.

Next, the SELECT clause displays the object name, index ID, description, and average fragmen-
tation percent:

SELECT OBJECT_NAME(object_id) ObjectName,
index_id, index_type_desc,
avg_fragmentation_in_percent

The index_type_desc column tells you if the index is a heap, clustered index, nonclustered
index, primary XML index, or secondary XML index.

Next, the FROM clause referenced the sys.dm_db_index_physical_stats catalog function. The
parameters were put in parentheses, and include the database name and NULL for all other parame-
ters except the scan mode:

FROM sys.dm_db_index_physical_stats
(DB_ID('AdventureWorks'),NULL, NULL, NULL, 'LIMITED')

Since sys.dm_db_index_physical_stats is referenced like a table (unlike 2000’s DBCC
SHOWCONTIG), the WHERE clause is used to qualify that only rows with a fragmentation percentage of
31% or greater be returned in the results:

WHERE avg_fragmentation_in_percent > 30

The query returned several rows for objects in the AdventureWorks database with a fragmentation
greater than 30%. The avg_fragmentation_in_percent column shows logical fragmentation of nonclus-
tered or clustered indexes, returning the percentage of disordered pages at the leaf level of the index.
For heaps, avg_fragmentation_in_percent shows extent level fragmentation. Regarding extents,
recall that SQL Server reads and writes data at the page level. Pages are stored in blocks called extents,
which consist of eight contiguous 8KB pages. Using the avg_fragmentation_in_percent, you can
determine if the specific indexes need to be rebuilt or reorganized using ALTER INDEX.

In the second example, fragmentation was displayed for a specific database, table, and index.
The SELECT clause included a reference to the index name (instead of index number):

SELECT OBJECT_NAME(f.object_id) ObjectName,
i.name IndexName,

570Xch28.qxd 11/4/05 3:00 PM Page 667

CHAPTER 28 ■ PERFORMANCE TUNING668

f.index_type_desc,
f.avg_fragmentation_in_percent

The FROM clause included the specific table name, which was converted to an ID using the
OBJECT_ID function. The third parameter included the index number of the index to be evaluated for
fragmentation:

FROM sys.dm_db_index_physical_stats
(DB_ID('AdventureWorks'),
OBJECT_ID('Production.ProductDescription'),
2,
NULL,
'LIMITED') f

The sys.indexes system catalog view was joined to the sys.dm_db_index_physical_stats func-
tion based on the object_id and index_id.

INNER JOIN sys.indexes i ON
i.object_id = f.object_id AND
i.index_id = f.index_id

The query returned the fragmentation results just for that specific index.

Displaying Index Usage
Similar to query performance tuning, creating useful indexes in your database is often part art and
part science. Indexes can slow down data modifications while at the same time speeding up SELECT
queries. You must balance the cost/benefit of index overhead with read activity versus data modifi-
cation activity. Every additional index added to a table may improve query performance at the expense
of data modification speed. On top of this, index effectiveness changes as the data changes, so an
index that was useful a few weeks ago may no longer be useful today. One great difficulty in SQL
Server 2000 was figuring out which indexes were not being used—either never or rarely used at all.
This is important because adding indexes slows down updates. If you’re going to have indexes on
a table, they should be put to good use on high priority queries. If an index is unused by SQL Server,
it’s just dead weight.

Now in SQL Server 2005, you can see whether or not an index is being used by querying the
sys.dm_db_index_usage_stats dynamic management view. This view returns statistics on the num-
ber of index seeks, scans, updates, or lookups since the SQL Server instance was last restarted. It also
returns the last dates the index was referenced.

In this example, the sys.dm_db_index_usage_stats dynamic management view is
queried to see if the indexes on the Sales.Customer table are being used. Prior to referencing
sys.dm_db_index_usage_stats, two queries will be executed against the Sales.Customer table,
one returning all rows and columns and the second returning the AccountNumber column for
a specific TerritoryID:

SELECT *
FROM Sales.Customer

SELECT AccountNumber
FROM Sales.Customer
WHERE TerritoryID = 4

After executing the queries, the sys.dm_db_index_usage_stats dynamic management view is
queried:

570Xch28.qxd 11/4/05 3:00 PM Page 668

CHAPTER 28 ■ PERFORMANCE TUNING 669

SELECT i.name IndexName, user_seeks, user_scans,
last_user_seek, last_user_scan
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON

s.object_id = i.object_id AND
s.index_id = i.index_id

WHERE database_id = DB_ID('AdventureWorks') AND
s.object_id = OBJECT_ID('Sales.Customer')

This returns:

IndexName user_seeks user_scans last_user_seek last_user_scan
IX_Customer_TerritoryID 1 0 2005-10-15 17:13:35.487 NULL
PK_Customer_CustomerID 0 1 NULL 2005-10-15

17:13:34.237

How It Works
The sys.dm_db_index_usage_stats dynamic management view allows you to see what indexes are
being used in your SQL Server instance. The statistics are valid since the last SQL Server restart.

In this recipe, two queries were executed against the Sales.Customer table. After executing the
queries, the sys.dm_db_index_usage_stats dynamic management view was queried.

The SELECT clause displayed the name of the index, the number of user seeks and user scans,
and the dates of the last user seeks and user scans:

SELECT i.name IndexName, user_seeks, user_scans,
last_user_seek, last_user_scan

The FROM clause joined the sys.dm_db_index_usage_stats dynamic management view to the
sys.indexes system catalog view (so the index name could be displayed in the results) on the
object_id and index_id:

FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON

s.object_id = i.object_id AND
s.index_id = i.index_id

The WHERE clause qualified that only indexes for the AdventureWorks database be displayed, and
of those indexes, only those for the Sales.Customer table. The DB_ID function was used to get the
database system ID, and the OBJECT_ID function was used to get the table’s object ID:

WHERE database_id = DB_ID('AdventureWorks') AND
s.object_id = OBJECT_ID('Sales.Customer')

The query returned two rows, showing that the PK_Customer_CustomerID clustered index of the
Sales.Customer table had indeed been scanned recently (most likely by the first SELECT * query)
and the IX_Customer_TerritoryID nonclustered index had been used in the second query (which
qualified TerritoryID = 4).

Indexes assist with query performance, but also add disk space and data modification overhead.
Using the sys.dm_db_index_usage_stats dynamic management view, you can monitor if indexes are
actually being used, and if not, replace them with more effective indexes.

Using the Database Engine Tuning Advisor
If a performance issue is stumping you, or you’d like to check your current indexing strategy for
possible improvements, use the Database Engine Tuning Advisor tool.

This recipe will demonstrate how to use the Database Engine Tuning Advisor to create recom-
database:

570Xch28.qxd 11/4/05 3:00 PM Page 669

CHAPTER 28 ■ PERFORMANCE TUNING670

Figure 28-16. Execution plan for the Products by Location query

SELECT Production.Product.Name,
Production.Product.ProductNumber,
Production.ProductModel.Name AS ModelName,
Production.ProductInventory.LocationID,
Production.ProductInventory.Shelf,
Production.ProductInventory.Bin,
Production.ProductCostHistory.StartDate,
Production.ProductCostHistory.EndDate,
Production.ProductCostHistory.StandardCost

FROM Production.Product
INNER JOIN Production.ProductCostHistory ON

Production.Product.ProductID = Production.ProductCostHistory.ProductID
INNER JOIN Production.ProductInventory ON

Production.Product.ProductID = Production.ProductInventory.ProductID
INNER JOIN Production.ProductModel ON

Production.Product.ProductModelID = Production.ProductModel.ProductModelID
WHERE Production.ProductInventory.LocationID IN (60)
ORDER BY Production.Product.Name

For this recipe, the query is saved as a file to C:\Apress\ProductsByLocation.sql where it will be
evaluated later on.

First, however, Figure 28-16 shows the graphical execution plan of this query. For larger result
sets, one common goal for index tuning is to reduce the number of scans in favor of seeks. As you
can see from this query’s execution plan, some tables use index scan operations while only one
table (the ProductCostHistory table) uses an index seek.

You’ll use the Database Engine Tuning Advisor to evaluate the query and make recommen-
dations to improve its performance. The Database Engine Tuning Advisor is launched by going to
Start➤Programs➤Microsoft SQL Server 2005➤Performance Tools➤ Database Engine Tuning Advisor.

You’ll be prompted for the Server name and authentication method in the Connect to Server
dialog box (see Figure 28-17). After selecting these options, click the Connect button.

570Xch28.qxd 11/4/05 3:00 PM Page 670

CHAPTER 28 ■ PERFORMANCE TUNING 671

Figure 28-17. Connect to Server dialog box

The main screen now appears, showing the connected SQL Server instance in the left Session
Monitor window, and the General configuration tab in the right window (see Figure 28-18). In the
General tab, you can select the file containing the SQL you wish to tune by selecting the File option
under the Workload section, in this case C:\Apress\ProductsByLocation.sql. You also select the
database where the tuning recommendations should be focused by selecting the checkbox next to
the AdventureWorks database.

uning Advisor

570Xch28.qxd 11/4/05 3:00 PM Page 671

CHAPTER 28 ■ PERFORMANCE TUNING672

Figure 28-19. Tuning Options tab

Figure 28-20. Progress tab

Clicking the Tuning Options tab shows more options used to evaluate the workload (see
Figure 28-19). Using options on this screen, you can set the maximum amount of time the tool can
take to evaluate a workload. You can also specify which physical design structures can be recom-
mended (in this example, you’ll be keeping the default of indexes), whether or not partitioning
strategy recommendations are given, and whether or not all existing objects (indexes, indexed
views) should be kept in the database.

To begin analysis, go to the Actions menu and select Start Analysis. This opens up a new
Progress screen (see Figure 28-20).

Once finished, two more tabs appear: the Recommendations tab and the Reports tab. The Rec-
ommendations tab contains a list of recommendations generated to improve the performance of
the query. Notice at the top of the screen in Figure 28-21 that the estimated improvement of the
query is 22%. The Database Engine Tuning Advisor has recommended the creation of three new
indexes which are listed in the Index Recommendations section. It is here that you can see which
tables the indexes are to be added to, which columns will be indexed, and the index size in KB.

570Xch28.qxd 11/4/05 3:00 PM Page 672

CHAPTER 28 ■ PERFORMANCE TUNING 673

Figure 28-21. Recommendations tab

Figure 28-22. Report tab

The Reports tab (see Figure 28-22) displays a summary of the tuning statistics in the upper
window, and in the lower screen, the ability to view other tuning reports (Figure 28-22 shows results
of the index usage report, for example).

Back on the Recommendations tab, you have the choice to either disregard the recommenda-
tions, apply the recommendations immediately, or save them off to a .sql file. In this recipe, you’ll
apply the recommendations immediately by going to the Actions menu and selecting Apply Recom-
mendations.

This brings up the Apply Recommendations dialog box (see Figure 28-23). It is here that you
can apply the index changes right away, or schedule them for a later time. Select Apply now and
click the OK button.

570Xch28.qxd 11/4/05 3:00 PM Page 673

CHAPTER 28 ■ PERFORMANCE TUNING674

Figure 28-23. Apply Recommendations dialog box

Figure 28-24. Applying Recommendations status dialog box

Figure 28-25. Post Recommendation execution plan

This launches the Applying Recommendations status dialog (see Figure 28-24). When the
process is finished, click the Close button.

At this point, you can re-test the original recipe query and view any impact on the execution
plan. In this case, as you can see in Figure 28-25, two tables (instead of just the original one) are now
using Index Seek operations.

Testing the query duration, you can decide if the time saved by creating the index is worth the
additional disk and database modification overhead of keeping the newly recommended indexes.

570Xch28.qxd 11/4/05 3:00 PM Page 674

CHAPTER 28 ■ PERFORMANCE TUNING 675

How It Works
This recipe gave a brief introduction on how to use the Database Engine Tuning Advisor to make
index recommendations based on a Transact-SQL query. You can use this tool to evaluate and make
recommendations based on a query workload.

As a best practice, always be sure to evaluate the benefit of faster query time versus the disk
space and data modification overhead. You should also check the impact of any new indexes on the
duration of existing queries.

Also, be sure to tune your database only during slow periods on your SQL Server instance. This
is because the Database Engine Tuning Advisor can consume significant CPU and memory
resources while analyzing a workload. To reduce unnecessary overhead of the tool, be sure to
remove objects types that you don’t want recommendation on from the Tuning Options tab.

Miscellaneous Techniques
The next two recipes detail a few techniques which don’t cleanly fall under any of the previous sec-
tions in this chapter. These recipes will demonstrate how to use an alternative to dynamic SQL and
stored procedures using the sp_executesql system-stored procedure. The last recipe in the chapter
will show you how to apply query hints to an existing query without having to actually modify the
application’s SQL code using plan guides.

Using an Alternative to Dynamic SQL
Using the EXECUTE command, you can execute the contents of a character string within a batch, pro-
cedure, or function. You can also abbreviate EXECUTE to EXEC.

For example, the following statement performs a SELECT from the Sales.Currency table:

EXEC ('SELECT CurrencyCode FROM Sales.Currency')

Although this technique allows you to dynamically formulate strings which can then be exe-
cuted, this technique comes with some major hazards.

The first and most important hazard is the risk of SQL injection. SQL injection occurs when
harmful code is inserted into an existing SQL string prior to being executed on the SQL Server
instance. Allowing user input into variables that are concatenated to a SQL string and then executed
can cause all sorts of damage to your database (not to mention the potential privacy issues). The
malicious code if executed under a context with sufficient permissions can drop tables, read sensi-
tive data, or even shut down the SQL Server process.

The second issue with character string execution techniques is in their performance. Although
performance of dynamically generated SQL may sometimes be fast, the query performance can also
be unreliable. Unlike stored procedures, dynamically generated and regular ad hoc SQL batches and
statements will cause SQL Server to generate a new execution plan each time they are run.

If stored procedures are not an option for your application, an alternative, the sp_executesql
system-stored procedure, addresses the dynamic SQL performance issue by allowing you to create
and use a reusable query execution plan where the only items that change are the query parameters.
Parameters are also type-safe, meaning that you cannot use them to hold unintended data types.
This is a worthy solution, when given a choice between ad hoc statements and stored procedures.

■Caution sp_executesql addresses some performance issues, but does not entirely address the SQL injection
issue. Beware of allowing user-passed parameters that are concatenated into a SQL string! Stick with the parame-
ter functionality described next.

570Xch28.qxd 11/4/05 3:00 PM Page 675

CHAPTER 28 ■ PERFORMANCE TUNING676

The syntax for sp_executesql is as follows:

sp_executesql [@stmt =] stmt
[
{, [@params=] N'@parameter_name data_type [[OUTPUT][,...n]' }
{, [@param1 =] 'value1' [,...n] }
]

The arguments of this command are described in Table 28-6.

Table 28-6. sp_executesql Arguments

Argument Description

stmt The string to be executed.

@parameter_name data_type [[OUTPUT][,...n] One or more parameters that are embedded in
the string statement. OUTPUT is used similarly
to a stored procedure OUTPUT parameter.

'value1' [,...n] The actual values passed to the parameters.

In this example, the Production.TransactionHistoryArchive table is queried based on a spe-
cific ProductID, TransactionType, and minimum Quantity values:

EXECUTE sp_executesql
N'SELECT TransactionID, ProductID,

TransactionType, Quantity
FROM Production.TransactionHistoryArchive
WHERE ProductID = @ProductID AND

TransactionType = @TransactionType AND
Quantity > @Quantity',
N'@ProductID int,
@TransactionType char(1),
@Quantity int',

@ProductID =813,
@TransactionType = 'S',

@Quantity = 5

This returns the following results:

TransactionID ProductID TransactionType Quantity
28345 813 S 7
31177 813 S 9
35796 813 S 6
36112 813 S 7
40765 813 S 6
47843 813 S 7
69114 813 S 6
73432 813 S 6

How It Works
The sp_executesql allows you to execute a dynamically generated Unicode string. This system pro-
cedure allows parameters, which in turn allow SQL Server to re-use the query execution plan
generated by its execution.

570Xch28.qxd 11/4/05 3:00 PM Page 676

CHAPTER 28 ■ PERFORMANCE TUNING 677

Notice in the recipe that the first parameter was preceded with the N' Unicode prefix, as
sp_executesql requires a Unicode statement string. The first parameter also included the SELECT
query itself, including the parameters embedded in the WHERE clause:

EXECUTE sp_executesql
N'SELECT TransactionID, ProductID,
TransactionType, Quantity
FROM Production.TransactionHistoryArchive
WHERE ProductID = @ProductID AND

TransactionType = @TransactionType AND
Quantity > @Quantity',

The second parameter further defined the data types of each parameter that was embedded in
the first parameter’s SQL statement. Each parameter is separated by a comma:

N'@ProductID int,
@TransactionType char(1),
@Quantity int',

The last parameter assigned each embedded parameter a value, which was put into the query
dynamically during execution.

@ProductID =813,
@TransactionType = 'S',
@Quantity = 5

The query returned eight rows based on the three parameters provided. If the query is executed
again, only with different parameter values, it is likely that the original query execution plan will be
used by SQL Server (instead of creating a new execution plan).

Applying Hints Without Modifying Application SQL
As was discussed at the beginning of the chapter, troubleshooting poor query performance involves
reviewing many areas such as database design, indexing, and query construction. You can make
modifications to your code, but what if the problem is with code that you cannot change? If you are
encountering issues with a database and/or queries that are not your own to change (in shrink-
wrapped software, for example)—then your options become more limited. Usually in the case of
third party software, you are restricted to adding new indexes or archiving off data from large tables.
Making changes to the vendor’s actual database objects or queries is usually off limits.

SQL Server 2005 provides a new solution to this common issue using plan guides. Plan guides
allow you to apply hints to a query without having to change the actual query text sent from the
application. Plan guides can be applied to specific queries embedded within database objects
(stored procedures, functions, triggers) or specific, stand-alone SQL statements.

A plan guide is created using the sp_create_plan_guide system-stored procedure:

sp_create_plan_guide [@name =] N'plan_guide_name'
, [@stmt =] N'statement_text'
, [@type =] N' { OBJECT | SQL | TEMPLATE }'
, [@module_or_batch =]

{
N'[schema_name.]object_name'
| N'batch_text'
| NULL

}
, [@params =] { N'@parameter_name data_type [,...n]' | NULL }
, [@hints =] { N'OPTION (query_hint [,...n])' | NULL }

The arguments of this command are described in Table 28-7.

570Xch28.qxd 11/4/05 3:00 PM Page 677

CHAPTER 28 ■ PERFORMANCE TUNING678

Table 28-7. sp_create_plan_guide Arguments

Argument Description

plan_guide_name The name of the new plan guide.

statement_text The SQL text identified for optimization.OBJECT | SQL |
TEMPLATE When OBJECT is selected, the plan guide will apply to the

statement text found within a specific stored procedure,
function, or DML trigger. When SQL is selected, the plan guide
will apply to statement text found in a stand-alone statement
or batch. The TEMPLATE option is used to either enable or
disable parameterization for a SQL statement. Recall from
Chapter 22, in the topic “Modify Database Parameterization
Behavior” that the PARAMETERIZATION option, when set to
FORCED, increases the chance that a query will become param-
eterized, allowing it to form a reusable query execution plan.
SIMPLE parameterization, however, affects a smaller amount
of queries (at SQL Server’s discretion). The TEMPLATE option is
used to override either a database’s SIMPLE or FORCED parame-
terization option. If a database is using SIMPLE parameterization,
you can force a specific query statement to be parameterized.
If a database is using FORCED parameterization, you can force
a specific query statement to not be parameterized.

N'[schema_name.]object_name' | Specifies either the name of the object the SQL text will be in,
N'batch_text' | NULL the batch text, or NULL, when TEMPLATE is selected.

N'@parameter_name data_type The name of the parameters to be used for either SQL or
[,...n]' | NULL TEMPLATE type plan guides.

N'OPTION (query_hint The query hint or hints to be applied to the statement.
[,...n])' | NULL

To remove or disable a plan guide, use the sp_control_plan_guide system-stored procedure:

sp_control_plan_guide
[@operation =]
N'[DROP
| DROP ALL
| DISABLE
| DISABLE ALL
| ENABLE
| ENABLE ALL]',

[@name =] N'plan_guide_name']

The arguments of this command are described in Table 28-8.

Table 28-8. sp_control_plan_guide Arguments

Argument Description

DROP The DROP operation removes the plan guide from the database.

DROP ALL DROP ALL drops all plan guides from the database.

DISABLE DISABLE disables the plan guide, but doesn’t remove it from the
database.

DISABLE ALL DISABLE ALL disables all plan guides in the database.

ENABLE | ENABLE ALL ENABLE enables a disabled plan guide, and ENABLE ALL does so for all
disabled plan guides in the database.

plan_guide_name The name of the plan guide to perform the operation on.

570Xch28.qxd 11/4/05 3:00 PM Page 678

CHAPTER 28 ■ PERFORMANCE TUNING 679

Figure 28-26. Query execution plan prior to applying a Plan Guide

In this recipe’s example, a plan guide is used to change the table join type method for a stand-
alone query. In this scenario, your third-party software package is sending a query which is causing
a LOOP join. In this scenario, you want the query to use a MERGE join instead.

■Caution SQL Server should usually be left to make its own decisions regarding how a query is processed. Only
under special circumstances, and administered by an experienced SQL Server professional, should plan guides be
created in your SQL Server environment.

In this example, the following query is executed using sp_executesql:

EXEC sp_executeSQL N'SELECT v.AccountNumber, p.PostalCode
FROM Purchasing.Vendor v INNER JOIN Purchasing.VendorAddress a
ON v.VendorID = a.VendorID
INNER JOIN Person.Address p ON a.AddressID = p.AddressID'

Looking at this query’s execution plan in Figure 28-26 shows that the Vendor and VendorAddress
table are joined together using a Nested Loop operator.

If, for example, you wanted SQL Server to use a different join method, but without having to
change the actual query sent by the application, you can apply this change by creating a plan guide.

The following plan guide is created to apply a join hint onto the query being sent from the
application:

EXEC sp_create_plan_guide
@name = N'Vendor_Query_Loop_to_Merge',
@stmt = N'SELECT v.AccountNumber, p.PostalCode FROM Purchasing.Vendor v INNER

JOIN Purchasing.VendorAddress a ON v.VendorID = a.VendorID INNER JOIN Person.Address
p ON a.AddressID = p.AddressID',
@type = N'SQL',
@module_or_batch = NULL,
@params = NULL,
@hints = N'OPTION (MERGE JOIN)'

After creating the plan guide, the query is executed using sp_executesql:

EXEC sp_executeSQL N'SELECT v.AccountNumber, p.PostalCode

570Xch28.qxd 11/4/05 3:00 PM Page 679

CHAPTER 28 ■ PERFORMANCE TUNING680

Figure 28-27. Query execution plan after applying a Plan Guide

ON v.VendorID = a.VendorID
INNER JOIN Person.Address p ON a.AddressID = p.AddressID'

Looking at the graphical execution plan in Figure 28-27, you’ll now see that the Nested Loop
joins have changed into Merge join operators instead—all without changing the actual query being
sent from the application to SQL Server.

If it is decided that this Merge join is no longer more effective than a Nested loop join, you can
drop the plan guide using the sp_control_plan_guide system-stored procedure:

EXEC sp_control_plan_guide N'DROP', N'Vendor_Query_Loop_to_Merge'

How It Works
Plan guides allow you to add query hints to a query being sent from an application without having
to change the application itself. In this example, a particular SQL Statement was performing Nested
Loop joins. Without changing the actual query itself, SQL Server “sees” the plan guide and matches
the incoming query to the query in the plan guide. When matched, the hints in the plan guide are
applied to the incoming query.

The sp_create_plan_guide allows you to create plans for stand-alone SQL statements, SQL
statements within objects (procedures, functions, DML triggers), and for SQL statements that are
either being parameterized or not, due to the database’s PARAMETERIZATION setting.

In this recipe, the first parameter sent to sp_create_plan_guide was the name of the new plan
guide:

EXEC sp_create_plan_guide
@name = N'Vendor_Query_Loop_to_Merge',

The second parameter was the SQL statement to apply the plan guide to (white space characters,
comments, and semicolons will be ignored):

@stmt = N'SELECT v.AccountNumber, p.PostalCode FROM Purchasing.Vendor v INNER JOIN
Purchasing.VendorAddress a ON v.VendorID = a.VendorID INNER JOIN Person.Address p ON
a.AddressID = p.AddressID',

The third parameter was the type of plan guide, which in this case was stand-alone SQL:

@type = N'SQL',

570Xch28.qxd 11/4/05 3:00 PM Page 680

CHAPTER 28 ■ PERFORMANCE TUNING 681

For the fourth parameter, since it was not for a stored procedure, function, or trigger, the
@module_or_batch parameter was NULL:

@module_or_batch = NULL,

The @params parameter was also sent NULL since this was not a TEMPLATE plan guide:

@params = NULL,

The last parameter contained the actual hint to apply to the incoming query—in this case forcing
all joins in the query to use a MERGE operation:

@hints = N'OPTION (MERGE JOIN)'

Finally, the sp_control_plan_guide system-stored procedure was used to drop the plan guide
from the database, designating the operation of DROP in the first parameter, and the plan guide name
in the second parameter.

570Xch28.qxd 11/4/05 3:00 PM Page 681

570Xch28.qxd 11/4/05 3:00 PM Page 682

Backup and Recovery

One of the most critical responsibilities of a SQL Server professional is to protect data. Like many
features in SQL Server 2005, you can perform database backups and restores without using any
Transact-SQL code at all (with SQL Server Management Studio). However, during an emergency,
you cannot always count on graphical user interfaces to help you restore data.

This chapter contains various recipes for backing up your database, be it a full, file, filegroup,
transaction log, or differential backup (all of these backups will be described in more detail). You’ll
also learn methods for using these backup types to recover (restore) your database.

■Note There are BACKUP and RESTORE features in SQL Server 2000 that have been deprecated in SQL Server
2005. These include BACKUP LOG WITH NO_LOG, BACKUP LOG WITH TRUNCATE_ONLY, BACKUP / RESTORE WITH
MEDIAPASSWORD, and BACKUP / RESTORE WITH PASSWORD.

Creating a Backup and Recovery Plan
Before getting too far into the details of how to perform backups and restores for your SQL Server
databases, I’d first like to discuss how to generate a database recovery plan. In general, you should
think about answering the following questions:

• Which of your databases are important? If a database is important, and is not used just for
throwaway work, it should be backed up.

• How much data can you lose? Can you lose a day’s worth of data? An hour’s worth? A minute’s?
The less data you can afford to lose, the more often you should be backing up your databases.

• Do you have an off-site storage facility? Disasters happen. Equipment gets wet or catches on
fire. If the data is important to you, you need to be moving it to a separate, offsite location via
tape or over the network.

• How much downtime can your business handle? How much time would it currently take you
to get everything up and running after a loss of all your databases? If your databases are
large, and your downtime allowance very small, you may need to consider duplication of
your existing databases (database mirroring, log shipping, replication).

Recovery plans are based on the value your company places on the SQL Server instance and its
databases. The business value placed on an individual instance can range from “crash-and-burn” to
mission critical, or “can’t lose a single bit of data.” It almost goes without saying that business-critical

683

C H A P T E R 2 9

■ ■ ■

570Xch29.qxd 11/4/05 3:02 PM Page 683

CHAPTER 29 ■ BACKUP AND RECOVERY684

databases must be backed up. If you cannot afford to lose or reproduce the data within a database,
you should be backing it up. This chapter will review how to use Transact-SQL to perform backups,
and will discuss the various types of backups that can be performed.

Another consideration with backups is the backup frequency. How much data can you afford to
lose? Can you lose a day’s worth of work? A few minutes? None? If you can afford to lose 24 hours-worth
of data, then, depending on the database size, a full database backup scheduled to run once a day may
be acceptable. If you cannot lose more than 30 minutes worth of modifications, you should consider
executing transaction log backups every 30 minutes as well. If you cannot afford to lose any data at all,
then you should investigate such solutions as log shipping, database mirroring, RAID mirroring, or
vendor solutions offered with storage area networks (SAN) and split-mirror software. The implication
being, of course, that the closer you want to get to a guarantee for no data loss, the more money you
must potentially spend.

Along with backups, you should also be thinking about archiving the files generated from
the backup to another server on the network or to tape. If your SQL Server instance machine is
destroyed, you definitely need backups from an off-server and offsite source.

The last major point to consider is the maximum allowable downtime for the SQL Server
instance and databases. Aside from the data that is lost, how much time can you afford to spend
before everything is up and running again? How much money does your business lose for each hour
of database downtime? If the number is high, you need to invest in redundancy to offset this outage.
If a database restore operation for a single database takes eight hours, you may need to reevaluate
whether restoring from backup is appropriate or cost-effective. In this situation, you may choose to
use replication, log shipping, database mirroring, or other third-party solutions that involve making
copies of the data available across two or more SQL Server instances. Failover clustering can also
help you with your SQL Server instance’s availability by eliminating several single points of failure
(except for shared disks). If your hardware goes bad, do you have replacement parts on site? Or, do
you need to run to the nearest store to buy them? For high-availability requirements, you need to
think about any single points of failure, and address them with redundant parts and processes.

As a DBA, you should consider and act upon all the questions raised in this section in order to
create a SQL Server backup and recovery plan. At a lower level, you should also know the details of
who to contact in the event of a disaster. The following is a list of items that you should document
along with your backup and recovery strategy:

• You will need to know the primary contact or contacts for each application connecting to
a database. Who handles the communication with end users? If a database is corrupted, who
makes the decision to restore from a backup (and potentially lose some recent data updates)
rather than work with Microsoft to potentially save the corrupted data?

• If you have a standby server, who on your IT staff needs to be involved to get the standby
server up and running? Who installs the OS, moves files, swaps DSN names, and so on? Do
you have a list of these people and their pager/email/contact info?

• Do you have a support plan with your hardware and software vendors? Do you have a central
document listing license keys, service codes, and phone numbers?

• Do you have spare parts or an available spare part server?

• If your entire site is down, do you have an alternative site? Do you have a documented
process for moving to this alternate site?

If you lose an entire server, and must rebuild it from scratch, you should have even more infor-
mation available to you. Your company should have the following information documented (and
available for reference):

570Xch29.qxd 11/4/05 3:02 PM Page 684

• Who on your team needs to be involved in a server rebuild? Can they be available at two in
the morning? Will they be available when you need them?

• Where do you keep your SQL Server backup files? What types of backups were you perform-
ing and how often were they run?

• Were there any other applications installed or configured on the SQL Server server? (Remem-
ber, aside from performance improvements, making your SQL Server machine a dedicated
server reduces the complexity of reinstalling third-party or home-grown applications.)

• What operating system version were you running on? Do you have the CDs needed to rein-
stall the OS? Reinstall SQL Server? Do you have all necessary license keys?

• Did you document the steps used to install SQL Server 2005? What collation did you choose?
Did you install all available components (Integration Services, Analysis Services, for exam-
ple) or just the database engine?

The more databases and applications you have running on the SQL Server instance, the more
documentation you’ll need to keep, in order to be prepared for the worst. The important thing is to
prioritize accordingly, first forming plans for your organization’s most critical databases and then
enlisting the help of business partners to help keep your backup and recovery plan both updated
and useful.

Backups
In this next set of recipes, I’ll show you different methods for backing up SQL Server 2005 databases.
Specifically, I’ll be showing you how to perform full, transaction log, and differential backups.

A full backup makes a full copy of your database. While the database backup is executed, the
database remains available for database activity (since this is an online activity). Of all the database
backup options, full database backups are the most time-consuming. The full backup includes all
changes and log file entries as of the point in time when the backup operation completes. Once cre-
ated, a full database backup allows you to restore your entire database. A full backup is the core of
your data recovery plan, and it’s a prerequisite for taking advantage of transaction log or differential
backups (as you’ll see later). When creating a backup, you have the option of creating a file on a disk
drive or writing directly to tape. In general, SQL Server backups execute and complete more quickly
when written directly to disk. Once the backup has been created, you can then copy it to tape.

A SQL Server 2005 database requires a transaction log file. A transaction log tracks transac-
tions that have committed, or those that are still open and not yet committed. This file contains
a record of ongoing transactions and modifications in the database. Transaction log backups back
up the transaction log’s activity that has occurred since the last full or transaction log backup.
When the backup completes, SQL Server truncates the inactive portion of the log (the part not
containing open transaction activity). Transaction log backups have low resource overhead and
can be run frequently (every 15 minutes, for example).

Transaction log backups can only be performed on databases using a FULL or BULK_LOGGED recov-
ery model. Recall from Chapter 22 that the three database recovery models are FULL, BULK_LOGGED, and
SIMPLE:

• When using SIMPLE recovery, the transaction log is automatically truncated by SQL Server,
removing the ability to perform transaction log backups. In this recovery mode, the risk of
data loss is dependent on your full or differential backup schedule, and you will not be able
to perform point-in-time recovery that a transaction log backup offers.

CHAPTER 29 ■ BACKUP AND RECOVERY 685

570Xch29.qxd 11/4/05 3:02 PM Page 685

• The BULK_LOGGED recovery model allows you to perform full, differential, and transaction log
backups—however, there is minimal logging to the transaction log for bulk operations. The
benefit of this recovery mode is reduced log space usage during bulk operations, however
the trade-off is that transaction log backups can only be used to recover to the time the last
transaction log backup was completed (no point-in-time recover or marked transactions
allowed).

• The FULL recovery model fully logs all transaction activity, bulk operations included. In this
safest model, all restore options are available, including point-in-time transaction log restores,
differential backups, and full database backups.

Aside from allowing a restore from the point that the transaction log backup completed, transac-
tion log backups also allow for point-in-time and transaction mark recovery. Point-in-time recovery is
useful for restoring a database prior to a database modification or failure. Transaction marking allows
you to recover to the first instance of a marked transaction (using BEGIN TRAN...WITH MARK) and
includes the updates made within this transaction.

The size of the transaction log backup file depends on the level of database activity and
whether or not you are using a FULL or BULK_LOGGED recovery model. Again, the SIMPLE recovery
model does not allow transaction log backups.

■Caution Although RESTORE is covered in a later recipe in this chapter, it is important to first understand how
the sequence and frequency of transaction log backups impacts your database recoverability plan.

To recover from transaction logs backups, you must first restore from the full backup, and then
apply the transaction log backups. Transaction logs are cumulative, meaning each backup is part of
a sequential line of transaction log backups, and must be restored sequentially in the same order.
You cannot, for example, restore a full database backup and then restore the third transaction log
backup, skipping the first two transaction log backups.

A database also should not be recovered (meaning, brought online and made available for use),
until you are finished applying all the transaction logs that you wish to apply in order chronologi-
cally by backup date and time. Recovery is handled by the RECOVERY and NORECOVERY clauses of the
RESTORE command, reviewed later in the chapter.

You must understand the backups that have been made, what is contained in them, and when
they were performed before you can restore them. Later on in the chapter I’ll demonstrate the vari-
ous commands that you can use to view this information. The following list details a typical backup
sequence:

Time Backup Type
8AM Full database backup
10AM Transaction log backup
1PM Transaction log backup

If you wanted to recover the database as of 1pm, you would need to restore the 8am full backup
first, the 10AM transaction log backup next, and finally the 1pm transaction log backup. If using differ-
ential backups, you must restore the full backup first, the differential backup next, and then transaction
log backups created after the differential backup.

Differential backups copy all the data and log pages that have changed since the last full backup.
Since the database is online when it’s being backed up, the differential backup includes changes and
log file entries from the point the backup began to when the backup completes. The files generated by
differential backups are usually smaller than full database backups, and are created more quickly too.

CHAPTER 29 ■ BACKUP AND RECOVERY686

570Xch29.qxd 11/4/05 3:02 PM Page 686

Differential backups, unlike transaction log backups, are self-contained and only require the
latest full backup from which to restore. Transaction log backups, however, are sequential files that
don’t include data from previous transaction log backups. For example, if you run a full backup at
8am, a differential backup at 10am, and an additional differential backup at 1pm, the 1pm differen-
tial backup will still include all changes since the 8am full backup:

Time Backup Type
8AM Full database backup
10AM Differential backup (captures changes from 8am – 10am)
1PM Differential backup (captures changes from 8am – 1pm)

Differential backups can still work side-by-side with transaction log backups, although transac-
tion log backups can’t be restored until any full and differential backups have been restored first.

The first recipe in this set of backup recipes will demonstrate how to perform a full backup in
its simplest form.

Performing a Basic Full Backup
To perform a full backup, you use the BACKUP DATABASE command. The simplified syntax for perform-
ing a full backup to disk is as follows:

BACKUP DATABASE { database_name | @database_name_var }
TO DISK = { 'physical_backup_device_name' | @physical_backup_device_name_var }
[,...n]

The arguments of this command are described in Table 29-1.

Table 29-1. BACKUP DATABASE Arguments

Argument Description

database_name | @database_name_var The database name to be backed up (either
designated as a string or local variable).

'physical_backup_device_name' | The physical path and filename, or a local
@physical_backup_device_name_var variable containing the physical path and

filename.

[,...n] You can designate up to 64 backup device names
for a single BACKUP DATABASE command.

The BACKUP command also includes several options, many of which are demonstrated in this
chapter (this syntax block omits command arguments that are deprecated in SQL Server 2005):

[WITH
[BLOCKSIZE = { blocksize | @blocksize_variable }]
[[,] { CHECKSUM | NO_CHECKSUM }]
[[,] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }]
[[,] DESCRIPTION = { 'text' | @text_variable }]
[[,] EXPIREDATE = { date | @date_var }
| RETAINDAYS = { days | @days_var }]
[[,] { FORMAT | NOFORMAT }]
[[,] { INIT | NOINIT }]
[[,] { NOSKIP | SKIP }]
[[,] MEDIADESCRIPTION = { 'text' | @text_variable }]
[[,] MEDIANAME = { media_name | @media_name_variable }]

CHAPTER 29 ■ BACKUP AND RECOVERY 687

570Xch29.qxd 11/4/05 3:02 PM Page 687

[[,] NAME = { backup_set_name | @backup_set_name_var }]
[[,] { NOREWIND | REWIND }]
[[,] { NOUNLOAD | UNLOAD }]
[[,] STATS [= percentage]]
[[,] COPY_ONLY]

]

These options are described in Table 29-2.

Table 29-2. Backup Options

Argument Description

BLOCKSIZE Sets the block size in bytes (it is almost never necessary to configure
this option).

CHECKSUM | NO_CHECKSUM Using CHECKSUM adds page-write backup file validity-checking.
NO_CHECKSUM skips this validation (which is the default behavior).

STOP_ON_ERROR | STOP_ON_ERROR stops the backup if a CHECKSUM error is found.
CONTINUE_AFTER_ERROR CONTINUE_AFTER_ERROR keeps backing up even after a validation error.

DESCRIPTION Free-form text describing the backup set, helping identify the
contents of the backup device.

EXPIREDATE |RETAINDAYS EXPIREDATE indicates the date that the backup set expires and can be
overwritten. RETAINDAYS specifies the days before the backup media
set can be overwritten.

FORMAT | NOFORMAT FORMAT generates a media header for all volumes used for the backup.
Existing headers are overwritten. This renders a backup set unusable if
a stripe (stripes will be demonstrated later) exists on the device.
NOFORMAT indicates that a media header should not be written on all
volumes.

INIT | NOINIT INIT overwrites existing backup sets, but preserves the media header.
Backup sets are not overwritten if they have not expired yet, or the
name set in the BACKUP statement doesn’t match the name on the
backup media. NOINIT appends the backup set to the disk or tape
device. NOINIT is the default option.

NOSKIP | SKIP NOSKIP checks the date and name, and is an extra safeguard to ensure
the backup is not overwritten improperly. SKIP does not check
expiration and name verification.

MEDIADESCRIPTION Free-form text description of media set, helping identify the contents
of the media.

MEDIANAME Name of entire backup media set, limited to 128 characters.

NAME Name of backup set.

NOREWIND | REWIND NOREWIND prevents applications from using the tape until SQL Server
issues a BACKUP or RESTORE command. Sometimes not supported by
the tape device. REWIND makes SQL Server rewind the tape and release
control.

NOUNLOAD | UNLOAD UNLOAD specifies that the tape is automatically rewound and unloaded
after the backup. NOUNLOAD means that the tape is not unloaded from
the tape drive after backup, and can be used by other backup
operations.

STATS Returns feedback to the client on the backup progress. Default is
10 percent update increments.

COPY_ONLY A new option in SQL Server 2005, allowing you to create a database
backup without breaking a backup sequence (chain of full database
backup and transaction log backups, for example).

CHAPTER 29 ■ BACKUP AND RECOVERY688

570Xch29.qxd 11/4/05 3:02 PM Page 688

In this recipe, I’ll perform a simple, full database backup of the TestDB database to a disk device
(file). Used for demonstrating BACKUP DATABASE, I’ll first create a new scratch database which is also
populated with a few objects from the AdventureWorks database:

USE master
GO

CREATE DATABASE TestDB
GO

USE TestDB
GO

SELECT *
INTO dbo.SalesOrderDetail
FROM AdventureWorks.Sales.SalesOrderDetail
GO

SELECT *
INTO dbo.SalesOrderHeader
FROM AdventureWorks.Sales.SalesOrderHeader
GO

Now, the new database will be backed up:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Oct_14_2005_1617.BAK'

This returns:

Processed 2456 pages for database 'TestDB', file 'TestDB' on file 1.
Processed 5 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP DATABASE successfully processed 2461 pages in 4.210 seconds (4.788 MB/sec).

How It Works
In this simple recipe, a full database backup was created for the TestDB database. The first line of
code designated the name of the database to be backed up:

BACKUP DATABASE TestDB

The second line of code designated the file to backup the database to:

TO DISK = 'C:\Apress\Recipes\TestDB_Oct_14_2005_1617.BAK'

A backup file was created with a *.bak file extension. The name of the backup showed the date
and military time. Although including a timestamp in the filename helps you identify the time the
backup was created, it isn’t a requirement. After executing, information was returned regarding the
number of data pages processed, and the amount of time the backup process took.

Naming and Describing Your Backups and Media
In the age of government regulation of information and retention laws, your company policies may
require that you keep database backups for longer periods of time. With longer retention periods,
backup set metadata becomes more important. Naming your database backup file with the database
name and time stamp is usually sufficient, however SQL Server includes other options you can take
advantage of as well for describing and naming your backups. These options include:

CHAPTER 29 ■ BACKUP AND RECOVERY 689

570Xch29.qxd 11/4/05 3:02 PM Page 689

[WITH
[[,] DESCRIPTION = { 'text' | @text_variable }]
[[,] MEDIADESCRIPTION = { 'text' | @text_variable }]
[[,] MEDIANAME = { media_name | @media_name_variable }]
[[,] NAME = { backup_set_name | @backup_set_name_var }]

]

These options are described in Table 29-3.

Table 29-3. Backup Media Options

Argument Description

DESCRIPTION Free-form text describing the backup set, helping identify the contents of the
backup device.

MEDIADESCRIPTION Free-form text description of media set, helping identify the contents of the
media.

MEDIANAME Name of entire backup media set, limit to 128 characters.

NAME Name of backup set.

Two terms related to SQL Server backups are used in the previous table: backup set and media
set. A backup set is simply the result of a database backup operation. The backup set can span one
or more backup devices (disk or tape). The media set is the collection of one or more backup devices
that the backup set is written to.

This example demonstrates designating a description and name for both the backup and
media sets:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB.bak'
WITH DESCRIPTION = 'My second recipe backup, TestDB',

NAME = 'TestDB Backup October 14th',
MEDIADESCRIPTION = 'Backups for October 2005, Week 2',
MEDIANAME = 'TestDB_October_2005_Week2'

This returns:

Processed 144 pages for database 'TestDB', file 'TestDB' on file 1.
Processed 1 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP DATABASE successfully processed 145 pages in 0.461 seconds (2.576 MB/sec).

How It Works
This recipe has demonstrated how to add more descriptive information with your database backup.
The additional options were added to the BACKUP DATABASE command using the WITH clause. The
DESCRIPTION described the backup set:

WITH DESCRIPTION = 'My second recipe backup, TestDB',

The NAME identified the backup set name:

NAME = 'TestDB Backup June 4th',

The MEDIADESCRIPTION designated the description of the media set:

MEDIADESCRIPTION = 'Backups for June 2005, Week 1',

CHAPTER 29 ■ BACKUP AND RECOVERY690

570Xch29.qxd 11/4/05 3:02 PM Page 690

MEDIANAME designated the name of the entire backup media set:

MEDIANAME = 'TestDB_June_2005_Week1'

This information can be retrieved using RESTORE commands (such as RESTORE HEADERONLY),
which will be covered later on in the chapter.

Configuring Backup Retention
In the first recipe of this chapter, if the backup file (device) hadn’t already existed before the backup,
it would be created during execution of the BACKUP command. If the file did already exist, the default
behavior of the backup process would be to append the backup to the existing backup file (retaining
any other backups on the file).

There are several BACKUP options that impact the backup set retention:

[WITH
[[,] EXPIREDATE = { date | @date_var }
| RETAINDAYS = { days | @days_var }]
[[,] { FORMAT | NOFORMAT }]
[[,] { INIT | NOINIT }]
[[,] { NOSKIP | SKIP }]

]

These options are described in Table 29-4.

Table 29-4. Backup Retention Options

Argument Description

EXPIREDATE | RETAINDAYS EXPIREDATE indicates when the date the backup set expires and can
be overwritten. RETAINDAYS specifies the days before the backup
media set can be overwritten.

FORMAT | NOFORMAT FORMAT generates a media header to all volumes used for the backup.
Existing headers are overwritten. This renders a backup set unusable
if a stripe (stripes are demonstrated later) exists on the device.
NOFORMAT indicates that a media header should not be written on all
volumes.

INIT | NOINIT INIT overwrites existing backup sets, but preserves the media header.
Backup sets are not overwritten if they have not expired yet, or the
name set in the BACKUP statement doesn’t match the name on the
backup media. NOINIT appends the backup set to the disk or tape
device. NOINIT is the default option.

NOSKIP | SKIP SKIP does not check expiration and name verification. NOSKIP checks
the date and name, and is an extra safeguard to ensure the backup is
not overwritten improperly.

This recipe demonstrates performing a full database backup while setting a backup set retention
period of 30 days, after which it can be overwritten:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Oct.bak'
WITH RETAINDAYS = 30

Now an attempt will be made to overwrite existing backups on the TestDB_June.bak file:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Oct.bak'

CHAPTER 29 ■ BACKUP AND RECOVERY 691

570Xch29.qxd 11/4/05 3:02 PM Page 691

This returns:

Msg 4030, Level 16, State 1, Line 1
The medium on device 'C:\Apress\Recipes\TestDB_June.bak' expires on Nov 13 2005 ➥
5:34:05:000PM and cannot be overwritten.

Msg 3013, Level 16, State 1, Line 1
BACKUP DATABASE is terminating abnormally.

How It Works
In this recipe, a new database backup was created with a backup set retention of 30 days. After the
backup was created, another backup was executed, this time using the INIT switch (which over-
writes existing backup sets). This attempt failed with an error warning that the backup set hasn’t
expired yet, and therefore cannot be overwritten.

Striping Backup Sets
Striping backups involves using more than one device (disk or tape) for a single backup set opera-
tion. In fact, when performing a database backup, you can use up to 64 devices (disk or backup) in
your backup operation. This is particularly useful for very large databases, because you can enhance
backup performance by striping the backup files across separate drives/arrays. Striping the backup
files means each file is written to proportionately, and simultaneously. Striped backups use parallel
write operations, and can significantly speed up backup operations.

This recipe demonstrates striping a backup across three disk devices:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Stripe1.bak',

DISK = 'D:\Apress\Recipes\TestDB_Stripe2.bak',
DISK = 'E:\Apress\Recipes\TestDB_Stripe3.bak'

This backup creates three files which are each used to store one third of the backup information
needed to restore the database.

If you try to use any one of the devices independently for a backup, you’ll get an error message,
as this next example demonstrates:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Stripe1.bak'

This returns:

Msg 3132, Level 16, State 1, Line 1
The media set has 3 media families but only 1 are provided. All members must be provided.
Msg 3013, Level 16, State 1, Line 1
BACKUP DATABASE is terminating abnormally.

How It Works
In this recipe, a backup was created using three devices, which are also called media families. The three
media families are used as a single media set, which can contain one or more backup sets. After creat-
ing the media set made up of three media families, the second part of the recipe attempted a backup
using one of the existing media families. An error occurred because until that file or files(s) are format-
ted (using WITH FORMAT), they must be used together and not separately in a backup operation.

CHAPTER 29 ■ BACKUP AND RECOVERY692

570Xch29.qxd 11/4/05 3:02 PM Page 692

Using a Named Backup Device
You can define a logical name for a tape or disk device that can be used in your BACKUP or RESTORE
command. Defining a device adds it to the sys.backup_devices catalog view and saves you from
having to type in a disk’s path and file or tape name.

To add a new backup device definition, use the sp_addumpdevice system-stored procedure:

sp_addumpdevice [@devtype =] 'device_type'
, [@logicalname =] 'logical_name'
, [@physicalname =] 'physical_name'

[, { [@cntrltype =] controller_type |
[@devstatus =] 'device_status' }

]

The arguments of this command are described in Table 29-5.

Table 29-5. sp_addumpdevice Arguments

Argument Description

device_type Used to specify the device type: disk or tape.

logical_name Name of the backup device that will be used in the BACKUP and RESTORE syntax.

physical_name Operating system file name, universal naming convention name (UNC), or
tape path.

controller_type Not a required field: used to designate 2 for disk, 5 for tape.

device_status This option determines whether ANSI tape labels are read (noskip), or ignored
(skip), prior to usage. noskip is the default for type tape. Either this option or
controller_type can be specified, but not both.

To view the definition of a backup device, use the sp_helpdevice system-stored procedure,
which only takes the logical_name as a parameter:

sp_helpdevice [[@devname =] 'name']

To delete a backup device, use sp_dropdevice:

sp_dropdevice [@logicalname =] 'device'
[, [@delfile =] 'delfile']

The first parameter is the name of the backup device, and when DELFILE is designated in the
second parameter, the actual backup device file is deleted.

In the first part of the example, a backup device is created called TestDBBackup, which is
mapped to the C:\Apress\Recipes\TestDB_Device.bak file:

USE master
EXEC sp_addumpdevice 'disk', 'TestDBBackup', 'C:\Apress\Recipes\TestDB_Device.bak'

This returns:

Command(s) completed successfully.

Next, information regarding the device is queried using sp_helpdevice:

EXEC sp_helpdevice 'TestDBBackup'

CHAPTER 29 ■ BACKUP AND RECOVERY 693

570Xch29.qxd 11/4/05 3:02 PM Page 693

This returns:

CHAPTER 29 ■ BACKUP AND RECOVERY694

device_name physical_name description status cntrltype size
TestDBBackup C:\Apress\Recipes\TestDB_Device.bak disk, backup device 16, 2, 0

Next, a backup is performed against the device:

BACKUP DATABASE TestDB
TO TestDBBackup

This returns:

Processed 160 pages for database 'TestDB', file 'TestDB' on file 1.
Processed 8 pages for database 'TestDB', file 'TestDB2' on file 1.
Processed 8 pages for database 'TestDB', file 'TestDB3' on file 1.
Processed 8 pages for database 'TestDB', file 'TestDB4' on file 1.
Processed 1 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP DATABASE successfully processed 185 pages in 0.602 seconds (2.517 MB/sec).

Lastly, the device is dropped using sp_dropdevice (since the second DELFILE option is not des-
ignated, the physical backup file will remain on the operating system):

EXEC sp_dropdevice 'TestDBBackup'

This returns:

Device dropped.

How It Works
In this recipe, I demonstrated how to create a named backup device, allowing you to skip the key-
strokes you would need to designate a full disk or tape name in your BACKUP or RESTORE commands.

The first example in the recipe created a device using sp_addumpdevice. The first parameter of
the stored procedure took the device type disk. The second parameter was the logical name of the
device, and the third parameter was the actual physical file path and name. The second query in
the recipe demonstrated returning information about the device using sp_helpdevice. The status
field relates to the description of the device, and the cntrltype column designates the device type
(2 for disk device, 5 for tape). The third query in the recipe demonstrated using the device in a backup,
which involved simply designating the device name instead of using the DISK or TAPE options: In
the last query of the recipe, the device was dropped using sp_dropdevice.

Mirroring Backup Sets
Introduced in SQL Server 2005, you can now mirror a database, log, file, or filegroup backup. Mirror-
ing creates backup redundancy by creating two, three, or four copies of a media set. This
redundancy can come in handy if one of the media sets is corrupted or invalid, because you can use
any of the other valid mirrored media sets instead.

The syntax is as follows:

BACKUP DATABASE { database_name | @database_name_var }
TO < backup_device > [,...n]
[[MIRROR TO < backup_device > [,...n]] [...next-mirror]]

570Xch29.qxd 11/4/05 3:02 PM Page 694

The MIRROR TO command is used in conjunction with a list of one or more backup devices, and up
to three mirrors. In this example, a backup is mirrored to three different copies. Unlike the previous
striping example, only one of these generated backup files will actually be needed for a database restore
operation. Although, if one of the files is invalid, there are three other copies to attempt a restore from
instead:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Original.bak'
MIRROR TO DISK = 'D:\Apress\Recipes\TestDB_Mirror_1.bak'
MIRROR TO DISK = 'E:\Apress\Recipes\TestDB_Mirror_2.bak'
MIRROR TO DISK = 'F:\Apress\Recipes\TestDB_Mirror_3.bak'
WITH FORMAT

This returns:

Processed 2456 pages for database 'TestDB', file 'TestDB' on file 1.
Processed 1 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP DATABASE successfully processed 2457 pages in 11.460 seconds (1.756 MB/sec).

This second example demonstrates mirroring a striped backup:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Stripe_1_Original.bak',
DISK = 'D:\Apress\Recipes\TestDB_Stripe_2_Original.bak'
MIRROR TO DISK = 'E:\Apress\Recipes\TestDB_Stripe_1_Mirror_1.bak',
DISK = 'F:\Apress\Recipes\TestDB_Stripe_2_Mirror_1.bak'
WITH FORMAT

This returns:

Processed 2456 pages for database 'TestDB', file 'TestDB' on file 1.
Processed 1 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP DATABASE successfully processed 2457 pages in 7.883 seconds (2.553 MB/sec).

How It Works
In the first example of this recipe, a backup was executed with three mirrors, which resulted in four
backup files for the TestDB database. The first line of code designated the database to back up:

BACKUP DATABASE TestDB

The second line designated the location of the main (non-mirrored) backup file:

TO DISK = 'C:\Apress\Recipes\TestDB_Original.bak'

The next three lines designated the three mirrored copies of the backup:

MIRROR TO DISK = 'D:\Apress\Recipes\TestDB_Mirror_1.bak'
MIRROR TO DISK = 'E:\Apress\Recipes\TestDB_Mirror_2.bak'
MIRROR TO DISK = 'F:\Apress\Recipes\TestDB_Mirror_3.bak'
WITH FORMAT

Note that WITH FORMAT is required the first time a mirrored backup set is created. The original
backup was placed on the C drive, and then each mirrored copy placed on its own drive (D, E, F).
Any one .bak file in this example can then be used to restore the TestDB database, thus providing
redundancy in the event of a backup file corruption.

CHAPTER 29 ■ BACKUP AND RECOVERY 695

570Xch29.qxd 11/4/05 3:02 PM Page 695

The second example in the recipe demonstrated mirroring a striped backup (two media fami-
lies in a media set). This time TO DISK included the two files used to stripe the original backup:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Stripe_1_Original.bak',
DISK = 'D:\Apress\Recipes\TestDB_Stripe_2_Original.bak'

The MIRROR TO DISK also designates two files that will be the mirror copy of the original striped
backup:

MIRROR TO DISK = 'E:\Apress\Recipes\TestDB_Stripe_1_Mirror_1.bak',
DISK = 'F:\Apress\Recipes\TestDB_Stripe_2_Mirror_1.bak'
WITH FORMAT

Notice that MIRROR TO DISK was only designated once, followed by the two devices to mirror to.

Performing a Transaction Log Backup
The BACKUP LOG command is used to perform a transaction log backup. The following is the basic
syntax for performing a transaction log backup:

BACKUP LOG { database_name | @database_name_var }
{

TO <backup_device> [,...n]
[[MIRROR TO <backup_device> [,...n]] [...next-mirror]]

[WITH
[BLOCKSIZE = { blocksize | @blocksize_variable }]
[[,] { CHECKSUM | NO_CHECKSUM }]
[[,] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }]
[[,] DESCRIPTION = { 'text' | @text_variable }]
[[,] EXPIREDATE = { date | @date_var }
| RETAINDAYS = { days | @days_var }]
[[,] { FORMAT | NOFORMAT }]
[[,] { INIT | NOINIT }]
[[,] { NOSKIP | SKIP }]
[[,] MEDIADESCRIPTION = { 'text' | @text_variable }]
[[,] MEDIANAME = { media_name | @media_name_variable }]
[[,] NAME = { backup_set_name | @backup_set_name_var }]
[[,] NO_TRUNCATE]
[[,] { NORECOVERY | STANDBY = undo_file_name }]
[[,] { NOREWIND | REWIND }]
[[,] { NOUNLOAD | UNLOAD }]
[[,] RESTART]
[[,] STATS [= percentage]]
[[,] COPY_ONLY]
]

}

As you can see from the syntax, BACKUP LOG shares many of the same options and functionality
as the BACKUP DATABASE command. Options not yet covered in this chapter or specific only to trans-
action log backups are described in Table 29-6.

CHAPTER 29 ■ BACKUP AND RECOVERY696

570Xch29.qxd 11/4/05 3:02 PM Page 696

Table 29-6. BACKUP LOG Options

Argument Description

NO_TRUNCATE If the database is damaged, NO_TRUNCATE allows you to back up the
transaction log without truncating the inactive portion (the inactive
portion contains committed transaction entries). This is often used for
emergency transaction log backups, capturing activity prior to
a RESTORE operation. Don’t run this on a long-term basis, because your
log file size will keep expanding.

NORECOVERY | STANDBY = NORECOVERY backs up the tail of the transaction log and then leaves the
undo_file_name database in a RESTORING state (which is a state from which additional

RESTORE commands can be issued). STANDBY also backs up the tail of
the transaction log but instead of leaving it in a RESTORING state, puts it
into a read-only STANDBY state instead (used for log shipping). This
option requires a file to be designated to hold changes that will be
rolled back if log restores are applied.

In the first query of this recipe, a transaction log backup will be executed on the TestDB database:

BACKUP LOG TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Oct_14_2005_1819.trn'

This returns:

Processed 13 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP LOG successfully processed 13 pages in 0.448 seconds (0.230 MB/sec).

The second example in this recipe demonstrates making a transaction log backup on the tail of
the transaction log. This assumes that there has been a database corruption issue—taking a backup
of the “tail” means that you are backing up the latest transactions in the database without truncating
the inactive portion of the transaction log:

BACKUP LOG TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Oct_14_2005_1820_Emergency.trn'
WITH NO_TRUNCATE

How It Works
In this recipe, I demonstrated two examples of transaction log backups Note that BACKUP LOG can’t
be performed unless the database has had a full database backup in the past. Also, in both exam-
ples, the database had to be using either a FULL or BULK_LOGGED recovery model.

The first example was a standard transaction log backup to disk. The first line of code designated
the name of the database to backup:

BACKUP LOG TestDB

The second line of code designated the device to back up to:

TO DISK = 'C:\Apress\Recipes\TestDB_Oct_14_2005_1819.trn'

After the backup was completed, a file is generated and the inactive portion of the transaction
log is truncated automatically. In the second query, the WITH NO_TRUNCATE option was designated,
allowing you to back up the active portion of the transaction log without truncating the inactive
portion of the transaction log.

CHAPTER 29 ■ BACKUP AND RECOVERY 697

570Xch29.qxd 11/4/05 3:02 PM Page 697

Later on in the chapter, you’ll learn how to restore data from a transaction log file, including
how to use point-in-time recovery.

Using COPY ONLY Backup Sets
Introduced in SQL Server 2005, database and transaction log backups can now use the COPY_ONLY
option to create backups that don’t impact the backup sequence. As you’ll see in future recipes in this
chapter, both differential and transaction log backups depend on a full backup being performed first.
Whenever other full database backups are created, the sequence restarts again. This means that pre-
vious differential or log backups cannot use the later generated full database backups. Only those
differential or transaction log backups that are created after the full database backup can be used.

When you use the COPY_ONLY option, however, a full backup does not disrupt the sequence
of backups. This is useful for creating ad hoc backups prior to major database changes, where
you don’t want to disrupt the standard backup schedule, but might like to have a “just-in-case”
full backup available to RESTORE from. This example demonstrates how to use COPY_ONLY with
a full database backup:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Copy.bak'
WITH COPY_ONLY

When you’re using COPY_ONLY with transaction log backups, the transaction log is not truncated
after the backup is created (leaving an unbroken chain of transaction log backups). This example
demonstrates how to use COPY_ONLY with a transaction log backup:

BACKUP LOG TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Copy.trn'
WITH COPY_ONLY

How It Works
This recipe demonstrated using COPY_ONLY to create both full and transaction log backups. The syntax
was similar to previous recipes, with the difference being that COPY_ONLY was included in the WITH
clause. Full database backups using this option will not break the sequence of restores required for
previous transaction log or differential backups. Transaction log backups using the COPY_ONLY option
will also not break the chronological order of the other transaction log backups.

Performing a Differential Backup
In this next recipe, I demonstrate how to create a differential backup. Recall from earlier in the chap-
ter that differential backups are used to back up all data and log pages that have changed since the
last full backup. This differs from transaction log backups which only capture changes made since
the last transaction log and/or full database backup.

Differential backups are performed using BACKUP DATABASE and use the same syntax and func-
tionality as regular full database backups—only the DIFFERENTIAL keyword is included. This recipe
demonstrates creating a differential backup on the TestDB database:

BACKUP DATABASE TestDB
TO DISK = N'C:\apress\Recipes\TestDB.diff'
WITH DIFFERENTIAL, NOINIT, STATS = 25

CHAPTER 29 ■ BACKUP AND RECOVERY698

570Xch29.qxd 11/4/05 3:02 PM Page 698

This returns:

58 percent processed.
78 percent processed.
Processed 40 pages for database 'TestDB', file 'TestDB' on file 1.
100 percent processed.
Processed 1 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP DATABASE WITH DIFFERENTIAL successfully processed 41 pages in 0.339 seconds (0.989 MB/sec).

How It Works
In this recipe, a differential backup was created on the TestDB database. The command usage was sim-
ilar to previous recipes, only this time the DIFFERENTIAL keyword was included in the WITH clause. Two
other options (both available when using different backup types) were used: NOINIT, which appends
the backup set to an existing disk or tape device, and STATS, which returns feedback to the client on
backup progress.

Differential backups can only be executed after a full database backup, so for a new database,
a differential backup can’t be the initial backup method.

Backing Up Individual Files or Filegroups
For very large databases, if the time required for a full backup exceeds your backup time win-
dow, another option is to back up specific filegroups or files at varying schedules. This option
allows recovery in the event of lost files or filegroups. In order to perform file or filegroup back-
ups for read-write enabled databases, the database must be using either the full or bulk-logged
recovery models, as transaction log backups must be applied after restoring a file or filegroup
backup.

Backing up a file or filegroup uses virtually the same syntax as a full database backup, except
you use the FILEGROUP or FILE keywords and you can specify more than one filegroup or file by sepa-
rating each by a comma.

To demonstrate backing up a filegroup, you’ll create a new database that uses a secondary file-
group called FG2:

CREATE DATABASE VLTestDB
ON PRIMARY
(NAME = N'VLTestDB',
FILENAME =
N'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\VLTestDB.mdf' ,
SIZE = 2048KB ,
FILEGROWTH = 1024KB),
FILEGROUP FG2
(NAME = N'VLTestDB2',
FILENAME =
N'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\VLTestDB2.ndf' ,
SIZE = 2048KB ,
FILEGROWTH = 1024KB),
(NAME = N'VLTestDB3',
FILENAME =
N'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\VLTestDB3.ndf' ,
SIZE = 2048KB ,

CHAPTER 29 ■ BACKUP AND RECOVERY 699

570Xch29.qxd 11/4/05 3:02 PM Page 699

FILEGROWTH = 1024KB)
LOG ON
(NAME = N'VLTestDB_log',
FILENAME =
N'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\VLTestDB_log.ldf' ,
SIZE = 1024KB ,
FILEGROWTH = 10%)
GO

This first example creates a single filegroup backup:

BACKUP DATABASE VLTestDB
FILEGROUP = 'FG2'
TO DISK = 'C:\apress\Recipes\VLTestDB_FG2.bak'

This returns the following results:

Processed 8 pages for database 'VLTestDB', file 'VLTestDB2' on file 1.
Processed 8 pages for database 'VLTestDB', file 'VLTestDB3' on file 1.
Processed 2 pages for database 'VLTestDB', file 'VLTestDB_log' on file 1.
BACKUP DATABASE...FILE=<name> successfully processed 18 pages in 0.296 seconds
(0.482 MB/sec).

This second example demonstrates backing up two specific files for this database. To get a list
of file names first, execute sp_helpfile:

USE VLTestDB
GO

EXEC sp_helpfile

This returns the following (abridged) results:

CHAPTER 29 ■ BACKUP AND RECOVERY700

name fileid filename
VLTestDB 1 C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\VLTestDB.mdf
VLTestDB_log 2 C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\VLTestDB_log.ldf
VLTestDB2 3 C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\VLTestDB2.ndf
VLTestDB3 4 C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\VLTestDB3.ndf

Using the logical file name from the sp_helpfile results, this example demonstrates backing
up the TestDB3 file in the TestDB database:

BACKUP DATABASE VLTestDB
FILE = 'VLTestDB2',
FILE = 'VLTestDB3'
TO DISK = 'C:\apress\Recipes\VLTestDB_DB2_DB3.bak'

This returns:

Processed 8 pages for database 'VLTestDB', file 'VLTestDB2' on file 1.
Processed 8 pages for database 'VLTestDB', file 'VLTestDB3' on file 1.
Processed 1 pages for database 'VLTestDB', file 'VLTestDB_log' on file 1.
BACKUP DATABASE...FILE=<name> successfully processed
17 pages in 0.278 seconds (0.499 MB/sec).

570Xch29.qxd 11/4/05 3:02 PM Page 700

How It Works
This recipe started out by demonstrating backing up a specific filegroup. The syntax is almost iden-
tical to a regular full database backup, only the FILEGROUP is specified:

...
FILEGROUP = 'FG2'
...

The second example demonstrated backing up two specific files using the FILE option, in this case
backing up two database files:

...
FILE = 'VLTestDB2',
FILE = 'VLTestDB3'
...

Restoring from a filegroup or file backup will be demonstrated later in the chapter.

Performing a Partial Backup
Also new in SQL Server 2005, a partial backup automatically creates a backup of the primary file-
group and any read-write filegroups in the database. If you back up a database with a read-only
filegroup, the partial backup will only back up the primary filegroup. This option is ideal for those
very large databases with read-only filegroups that needn’t be backed up as frequently as the
writable filegroups.

The syntax for performing a partial backup is almost the same as a full backup, except that with
a partial you need to designate the READ_WRITE_FILEGROUPS option. If there are read-only files or file-
groups you also want to back up, you can explicitly designate them too.

In this first example, only the READ_WRITE_FILEGROUPS option is used (in this example, the file-
group FG3 is read-only):

BACKUP DATABASE TestDB
READ_WRITE_FILEGROUPS
TO DISK = 'C:\apress\Recipes\TestDB_Partial.bak'

This returns:

Processed 160 pages for database 'TestDB', file 'TestDB' on file 1.
Processed 8 pages for database 'TestDB', file 'TestDB2' on file 1.
Processed 8 pages for database 'TestDB', file 'TestDB3' on file 1.
Processed 1 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP DATABASE...FILE=<name> successfully processed 177 pages in 0.638 seconds (2.272 MB/sec).

In the second example, a read-only filegroup is explicitly included in the partial database
backup. To prep for this example, the VLTestDB’s FG2 filegroup will be set to READONLY:

USE master
GO
ALTER DATABASE VLTestDB
MODIFY FILEGROUP FG2 READONLY
GO

This returns:

The filegroup property 'READONLY' has been set.

CHAPTER 29 ■ BACKUP AND RECOVERY 701

570Xch29.qxd 11/4/05 3:02 PM Page 701

Now, the read-only filegroup is explicitly included in the partial database backup:

BACKUP DATABASE VLTestDB
FILEGROUP = 'FG2',
READ_WRITE_FILEGROUPS
TO DISK = 'C:\apress\Recipes\TestDB_Partial_include_FG3.bak'

This returns:

Processed 160 pages for database 'VLTestDB', file 'VLTestDB' on file 1.
Processed 8 pages for database 'VLTestDB', file 'VLTestDB2' on file 1.
Processed 8 pages for database 'VLTestDB', file 'VLTestDB3' on file 1.
Processed 2 pages for database 'VLTestDB', file 'VLTestDB_log' on file 1.
BACKUP DATABASE...FILE=<name> successfully processed 178 pages in
0.550 seconds (2.638 MB/sec).

How It Works
A read-only filegroup contains files that cannot be written to. Since read-only data doesn’t change, it
only needs to be backed up periodically (as in when it’s changed to read-write for updates). For very
large databases, unnecessary backups of read-only filegroups can eat up time and disk space. The new
partial database backup option allows you to back up just the primary filegroup and any writable file-
groups and files, without having to explicitly list each filegroup. If you wish to include a read-only
filegroup in the backup, you can still do so.

In the first example of this recipe, the READ_WRITE_FILEGROUPS option was used without designat-
ing any files. The primary data file and writable files were all backed up, leaving out the read-only
TestDB4 file from the FG3 filegroup. In the second example for this recipe, the filegroup was included
in the backup by designating the FILEGROUP option.

In both cases a database restore from a partial backup also assumes that you have a filegroup/
file backup for the skipped over files. A restore from a partial backup is demonstrated later on in this
chapter.

Viewing Backup Metadata
Once a backup is created, you can view the contents of the media set by using various RESTORE func-
tions, including RESTORE FILELISTONLY, RESTORE HEADERONLY, RESTORE VERIFYONLY, and RESTORE
LABELONLY:

• RESTORE LABELONLY is used to return information about backup media on a specific backup
device.

• RESTORE HEADERONLY returns a row for each backup set created on a specific device.

• RESTORE FILELISTONLY goes a level deeper by showing the database file names (logical, physi-
cal) and other information of the backed up database.

• RESTORE VERIFYONLY pre-validates the backup device to report if a RESTORE operation would
succeed without errors.

The syntax is very similar across all four commands. I’ve combined the four commands into
a single syntax block, but note that not all arguments apply to all commands (for example the MOVE
argument is used only in RESTORE VERIFYONLY):

RESTORE { HEADERONLY | FILELISTONLY | LABELONLY | VERIFYONLY }
FROM <backup_device>

CHAPTER 29 ■ BACKUP AND RECOVERY702

570Xch29.qxd 11/4/05 3:02 PM Page 702

[WITH
[{ CHECKSUM | NO_CHECKSUM }]
[[,] { CONTINUE_AFTER_ERROR | STOP_ON_ERROR }]
[[,] FILE = file_number]
[[,] LOADHISTORY]
[[,] MEDIANAME = { media_name | @media_name_variable }]
[[,] MOVE 'logical_file_name' TO 'operating_system_file_name'] [,...n]
[[,] REWIND | NOREWIND]

[[,] STATS [= percentage]]
[[,] { UNLOAD | NOUNLOAD }]

]

The arguments of this command are described in Table 29-7.

Table 29-7. RESTORE Arguments for Backup Metadata

Argument Description

backup_device The backup device (disk or tape) you want to examine.

CHECKSUM | NO_CHECKSUM Using CHECKSUM adds page-write backup file validity-checking.
NO_CHECKSUM skips this validation (and is the default behavior).

CONTINUE_AFTER_ERROR | CONTINUE_AFTER_ERROR continues the operation even after
STOP_ON_ERROR encountering a validation error. STOP_ON_ERROR stops the

operation if a CHECKSUM error is found.

file_number Used for FILELISTONLY, VERIFYONLY, and HEADERONLY (not
LABELONLY); this number specifies the backup set to view, with
“1” being the first backup set written to the media, “2” the
second, and so forth.

LOADHISTORY Used in the VERIFYONLY command, when designated,
information regarding the backup set and restore operation is
saved to the msdb system database history tables.

media_name | The name of the media set to validate.
@media_name_variable

MOVE 'logical_file_name' TO Applies to VERIFYONLY. MOVE allows you to verify that a restore of
'operating_system_file_name' the database to a different filename and/or path from where it

was originally backed up on will succeed.

REWIND REWIND makes SQL Server rewind the tape and release control.

STATS Applies to VERIFYONLY. Returns feedback to the client on the
command execution progress. Default is 10% update
increments.

UNLOAD | NOUNLOAD UNLOAD specifies that the tape is automatically rewound and
unloaded after the validation. NOUNLOAD means that the tape is
not unloaded from the tape drive after validation, and can be
used by other backup operations.

In most cases, you’ll use these RESTORE commands to identify the contents of the device prior to
writing your actual RESTORE DATABASE operation.

In this first example in the recipe, the media set information is returned for the TestDB.bak device:

RESTORE LABELONLY
FROM DISK = 'C:\apress\Recipes\TestDB.bak'

CHAPTER 29 ■ BACKUP AND RECOVERY 703

570Xch29.qxd 11/4/05 3:02 PM Page 703

This returns the following (abridged) results:

MediaName MediaDate
TestDB_October_2005_Week2 2005-10-14 16:23:30.000

In this second query, the same device is evaluated to see what backup sets exist on it:

RESTORE HEADERONLY
FROM DISK = 'C:\apress\Recipes\TestDB.bak'

This returns the following (abridged) results:

Position DatabaseName DatabaseCreation DateBackupTypeDescription
1 TestDB 2005-2005-10-14 16:15:03.000 Database

In the third example of this recipe, the individual files backed up in the backup sets of a device
are validated:

RESTORE FILELISTONLY
FROM DISK = 'C:\apress\Recipes\TestDB.bak'

This returns the following (abridged) results:

LogicalName PhysicalName Type
TestDB C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\TestDB.mdf D
TestDB_log C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\TestDB_log.LDF L

In the last example of this recipe, the backup device’s RESTORE validity is checked:

RESTORE VERIFYONLY
FROM DISK = 'C:\Apress\Recipes\TestDB.bak'
WITH FILE = 1,
LOADHISTORY

This returns:

The backup set on file 1 is valid.

How It Works
The four commands, RESTORE FILELISTONLY, RESTORE HEADERONLY, RESTORE VERIFYONLY, and RESTORE
LABELONLY, are each useful for gathering the information that you’ll need prior to performing a RESTORE
operation.

In the first example in this recipe, RESTORE LABELONLY was used to return information on the media
set of a specific backup device.

The second example used RESTORE HEADERONLY to see what backup sets actually existed on the
device, so that when you restore you can specify the backup set file number to restore from (also
making sure you are restoring from the correct date and backup type).

The third example in the recipe used RESTORE FILELISTONLY to return the actual database files
that were backed up in the device’s backup sets. This is particularly useful information if you want
to restore a database to a different server, because the drive and folder structures could be different
on the new server versus the old. In later recipes in this chapter, you’ll learn how to move the loca-
tion of database files during a restore.

CHAPTER 29 ■ BACKUP AND RECOVERY704

570Xch29.qxd 11/4/05 3:02 PM Page 704

The last example checked the backup device to make sure it was valid for the RESTORE DATABASE
operation. The backup set was designated using FILE = 1. Also, history regarding the backup set was
saved to the msdb system database using the LOADHISTORY option.

Restoring a Database
The first part of this chapter was dedicated to reviewing how to back up a database, including
how to perform a full, transaction log, differential, file, and filegroup backup. The second half of
this chapter will discuss how to restore a database from a backup file. A restore operation copies all
data, log, and index pages from the backup media set to the destination database. The destination
database can be an existing database (which will be overlaid) or a new database (where new files
will be created based on the backup). After the restore operation, a “redo” phase ensues, rolling for-
ward committed transactions that were happening at the end of the database backup. After that, the
“undo” phase rolls back uncommitted transactions (in SQL Server 2005, the database becomes
available to users once the “undo” phase begins).

This next set of recipes will demonstrate database restores in action.

Restoring a Database from a Full Backup
In this recipe, I demonstrate how to use the RESTORE command to restore a database from a full
database backup. Unlike a BACKUP operation, a RESTORE is not always an online operation—for a full
database restore, user connections must be disconnected from the database prior to restoring over
the database. Other restore types (such as filegroup, file, or the new “page” option) can allow online
activity in the database in other areas aside, from the elements being restored. For example, if file-
group “FG2” is getting restored, “FG3” can still be accessed during the operation.

■Note Online restores are a SQL Server 2005 Enterprise Edition feature.

In general, you may need to restore a database after data loss due to user error, file corruption,
needing a second copy of a database, or if you are moving a database to a new SQL Server instance.

The following is syntax for the RESTORE command:

RESTORE DATABASE { database_name | @database_name_var }
[FROM <backup_device> [,...n]]
[WITH

[{ CHECKSUM | NO_CHECKSUM }]
[[,] { CONTINUE_AFTER_ERROR | STOP_ON_ERROR }]
[[,] FILE = { file_number | @file_number }]
[[,] KEEP_REPLICATION]
[[,] MEDIANAME = { media_name | @media_name_variable }]
[[,] MOVE 'logical_file_name' TO 'operating_system_file_name'] [,...n]
[[,] { RECOVERY | NORECOVERY | STANDBY =

{standby_file_name | @standby_file_name_var }
}]
[[,] REPLACE]
[[,] RESTART]
[[,] RESTRICTED_USER]
[[,] { REWIND | NOREWIND }]
[[,] STATS [= percentage]]

CHAPTER 29 ■ BACKUP AND RECOVERY 705

570Xch29.qxd 11/4/05 3:02 PM Page 705

[[,] { STOPAT = { date_time | @date_time_var }
| STOPATMARK = { 'mark_name' | 'lsn:lsn_number' }

[AFTER datetime]
| STOPBEFOREMARK = { 'mark_name' | 'lsn:lsn_number' }

[AFTER datetime]
}]
[[,] { UNLOAD | NOUNLOAD }]

]

The arguments of this command are described in Table 29-8.

Table 29-8. RESTORE Arguments

Argument Description

database_name |
@database_name_var Database name or character variable that you want to restore

the database as (can be a new database name or overlay of an
existing database).

backup_device Name of backup device (named backup device, tape, or disk).

CHECKSUM | NO_CHECKSUM Using CHECKSUM adds page write backup file validity checking.
NO_CHECKSUM skips this validation (and is the default behavior).

CONTINUE_AFTER_ERROR | CONTINUE_AFTER_ERROR keeps restoring even after a validation
STOP_ON_ERROR error. STOP_ON_ERROR stops the restore if a CHECKSUM error is

found.

file_number | File number from the backup set that you want to restore
@file_number from.

KEEP_REPLICATION Prevents replication settings from being removed on restore
(used in conjunction with log shipping).

media_name | If given, must match media name on backup volume.
@media_name_variable Otherwise the check is not performed.

MOVE 'logical_file_name' TO MOVE allows you to restore the database to a different filename
' operating_system_file_name' and/or path.

{ RECOVERY | NORECOVERY | NORECOVERY keeps the database in a restored state that allows
STANDBY = {standby_file_name | more differential or transaction log backups to be applied.
@standby_file_name_var } RECOVERY designates that no further differential or transaction

logs need to be applied. The default option is RECOVERY, which
begins both the redo and undo phases. The STANDBY state is
used in conjunction with log shipping, designating a database
as the warm standby for a primary server. The database will
receive and apply transaction logs—until the time that the
database must be brought online due to a failure at the
primary database.

REPLACE Overlays an existing database with the name designated in
RESTORE DATABASE database_name.

RESTART If a RESTORE stops prematurely, RESTART allows you to
continue with the operation. Recommended for long RESTORE
operations (for example, a several-hour operation).

RESTRICTED_USER Only db_owner, dbcreator, and sysadmin may have access to
the newly restored database.

REWIND | NOREWIND NOREWIND indicates that after the restore, the tape is not
rewound. REWIND rewinds the tape at the end of the restore.

STATS [= percentage] Returns progress percentage of RESTORE operation.

CHAPTER 29 ■ BACKUP AND RECOVERY706

570Xch29.qxd 11/4/05 3:02 PM Page 706

Argument Description

STOPAT = { date_time | STOPAT Allows you to recover to a specific point in time from
@date_time_var } the transaction log backup.

STOPATMARK = { 'mark_name' | STOPATMARK recovers to the first instance of a marked
'lsn:lsn_number' }[AFTER transaction and includes the updates made within this

datetime] transaction. Designating STOPATMARK = 'mark_name' AFTER
datetime recovers to the first instance of the marked
transaction on or after the specified datetime.

STOPBEFOREMARK = { 'mark_name' STOPBEFOREMARK restores the database up to the first instance
| 'lsn:lsn_number' }[AFTER of the marked transaction, excluding any activity within this
datetime] transaction. STOPBEFOREMARK AFTER datetime will restore the

database up to the first instance of the marked transaction,
on or after the specified datetime, excluding this transaction.

UNLOAD | NOUNLOAD NOUNLOAD does not eject the tape after the restore. UNLOAD
ejects the tape at the end of the restore.

The first example in this recipe is a simple RESTORE from the latest backup set on the device (in
this example, two backup sets exist on the device for the TestDB database, and you want the second
one). For the demonstration, I’ll start by creating two full backups on a single device:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Oct_15_2005.BAK'
GO

-- Time passes, we make another backup to the same device

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Oct_15_2005.BAK'
GO

Now the database is restored using the second backup from the device (notice that the REPLACE
argument is used to tell SQL Server to overlay the existing TestDB database):

USE master
GO

RESTORE DATABASE TestDB
FROM DISK = 'C:\Apress\Recipes\TestDB_Oct_15_2005.bak'
WITH FILE = 2, REPLACE

This returns the following output:

Processed 2456 pages for database 'TestDB', file 'TestDB' on file 2.
Processed 1 pages for database 'TestDB', file 'TestDB_log' on file 2.
RESTORE DATABASE successfully processed 2457 pages in 5.578 seconds (3.607 MB/sec).

In this second example, a new database is created by restoring from the TestDB backup, creating
a new database called TrainingDB1.Notice that the MOVE argument is used to designate the location of
the new database files:

RESTORE DATABASE TrainingDB1
FROM DISK = 'C:\Apress\Recipes\TestDB_Oct_15_2005.BAK'
WITH FILE = 2,
MOVE 'TestDB' TO 'C:\apress\Recipes\TrainingDB1.mdf',
MOVE 'TestDB_log' TO 'C:\apress\Recipes\TrainingDB1_log.LDF'

CHAPTER 29 ■ BACKUP AND RECOVERY 707

570Xch29.qxd 11/4/05 3:02 PM Page 707

This returns:

Processed 2456 pages for database 'TrainingDB1', file 'TestDB' on file 2.
Processed 1 pages for database 'TrainingDB1', file 'TestDB_log' on file 2.
RESTORE DATABASE successfully processed 2457 pages in 4.799 seconds (4.193 MB/sec).

In the last example for this recipe, the TestDB database is restored from a striped backup set
(based on the striped set created earlier in the chapter):

USE master
GO

RESTORE DATABASE TestDB
FROM DISK = 'C:\apress\Recipes\TestDB_Stripe1.bak',
DISK = 'C:\apress\Recipes\TestDB_Stripe2.bak',
DISK = 'C:\apress\Recipes\TestDB_Stripe3.bak'
WITH FILE = 1, REPLACE

This returns:

Processed 152 pages for database 'TestDB', file 'TestDB' on file 1.
Processed 1 pages for database 'TestDB', file 'TestDB_log' on file 1.
RESTORE DATABASE successfully processed 153 pages in 0.657 seconds (1.907 MB/sec).

How It Works
In the first example, the query began by setting the database to the master database. This is because
a full RESTORE is not an online operation, and requires that there be no active connections to the data-
base that is being restored in order to run.

The RESTORE is for the TestDB database and overlays the current database with the data as it
existed at the end of the second backup set on the TestDB_Oct_15_2005.bak backup device. The first
line of the command details the database to RESTORE over:

RESTORE DATABASE TestDB

The second line of this example designates the location of the backup device:

FROM DISK = 'C:\Apress\Recipes\TestDB_Oct_15_2005.bak'

The last line of this example designates which backup set from the backup device should be
used to RESTORE from (recall from earlier in this chapter that you can use RESTORE HEADERONLY to
see what backup sets exist on a backup device):

WITH FILE = 2, REPLACE

Any data that was updated since the last backup will be lost, so it is assumed in this example
that data loss is acceptable, and that data as of the last backup is desired.

In the second example, a new database was created based on a RESTORE from another database.
The example is similar to the previous query, only this time the MOVE command is used to designate
where the new database files should be located (and the new database name is used as well):

MOVE 'TestDB' TO 'C:\apress\Recipes\TrainingDB1.mdf',
MOVE 'TestDB_log' TO 'C:\apress\Recipes\TrainingDB1_log.LDF'

RESTORE FILELISTONLY (demonstrated earlier) can be used to retrieve the logical name and
physical path of the backed up database.

CHAPTER 29 ■ BACKUP AND RECOVERY708

570Xch29.qxd 11/4/05 3:02 PM Page 708

■Tip Using the RESTORE...MOVE command is often used in conjunction with database migrations to different
SQL Server instances that use different drive letters and directories.

In the last example of the recipe, the TestDB was restored from a striped backup set. FROM DISK
was repeated for each disk device in the set:

RESTORE DATABASE TestDB
FROM DISK = 'C:\apress\Recipes\TestDB_Stripe1.bak',
DISK = 'C:\apress\Recipes\TestDB_Stripe2.bak',
DISK = 'C:\apress\Recipes\TestDB_Stripe3.bak'
WITH FILE = 1, REPLACE

In each of these examples, the database was restored to a recovered state, meaning that it was
online and available for users to query after the redo phase (and during/after the undo phase). In
the next few recipes, you’ll see that the database is often not recovered until a differential or trans-
action log backup can be restored.

Restoring a Database from a Transaction Log Backup
Transaction log restores require an initial full database restore, and if you’re applying multiple
transaction logs, they must be applied in chronological order (based on when the transaction log
backups were generated). Applying transaction logs out of order, or with gaps between backups,
isn’t allowed. The syntax for restoring transaction logs is RESTORE LOG instead of RESTORE DATABASE,
however the syntax and options are the same.

To set up this demonstration, a new database is created called TrainingDB:

USE master
GO

CREATE DATABASE TrainingDB
GO

-- Add a table and some data to it
USE TrainingDB
GO

SELECT *
INTO dbo.SalesOrderDetail
FROM AdventureWorks.Sales.SalesOrderDetail
GO

This database will be given a full backup and two consecutive transaction log backups:

BACKUP DATABASE TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB.bak'
GO

BACKUP LOG TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2005_8AM.trn'
GO

-- Two hours pass, another transaction log backup is made

CHAPTER 29 ■ BACKUP AND RECOVERY 709

570Xch29.qxd 11/4/05 3:02 PM Page 709

BACKUP LOG TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2005_10AM.trn'
GO

The previous RESTORE examples have assumed that there were no existing connections in the
database to be restored over. However, in this example I demonstrate how to kick out any connec-
tions to the database prior to performing the RESTORE:

USE master
GO

-- Kicking out all other connections
ALTER DATABASE TrainingDB
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE

Next, a database backup and two transaction log backups are restored from backup:

RESTORE DATABASE TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB.bak'
WITH NORECOVERY, REPLACE

RESTORE LOG TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2005_8AM.trn'
WITH NORECOVERY, REPLACE

RESTORE LOG TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2005_10AM.trn'
WITH RECOVERY, REPLACE

This returns:

Processed 1656 pages for database 'TrainingDB', file 'TrainingDB' on file 1.
Processed 2 pages for database 'TrainingDB', file 'TrainingDB_log' on file 1.
RESTORE DATABASE successfully processed 1658 pages in 4.164 seconds (3.260 MB/sec).
Processed 0 pages for database 'TrainingDB', file 'TrainingDB' on file 1.
Processed 2 pages for database 'TrainingDB', file 'TrainingDB_log' on file 1.
RESTORE LOG successfully processed 2 pages in 0.066 seconds (0.186 MB/sec).
RESTORE LOG successfully processed 0 pages in 0.072 seconds (0.000 MB/sec).

In this second example, I’ll use STOPAT to restore the database and transaction log as of a spe-
cific point in time. To demonstrate, first a full backup will be taken of the TrainingDB database:

BACKUP DATABASE TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2005.bak'

Next, rows will be deleted out of the table, and the current time after the change will be queried:

USE TrainingDB
GO

DELETE dbo.SalesOrderDetail
WHERE ProductID = 776
GO

SELECT GETDATE()
GO

CHAPTER 29 ■ BACKUP AND RECOVERY710

570Xch29.qxd 11/4/05 3:02 PM Page 710

This returns:

(228 row(s) affected)

(1 row(s) affected)
2005-10-14 20:18:57.583

Next, a transaction log backup is performed:

BACKUP LOG TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2005_2022.trn'

This returns:

Processed 18 pages for database 'TrainingDB', file 'TrainingDB_log' on file 1.
BACKUP LOG successfully processed 18 pages in 0.163 seconds (0.876 MB/sec).

Next, the database is restored from backup, leaving it in NORECOVERY so that the transaction log
backup can also be restored:

USE master
GO

RESTORE DATABASE TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2005.bak'
WITH FILE = 1, NORECOVERY,
STOPAT = '2005-10-14 20:18:56.583'
GO

Next, the transaction log is restored, also designating the time of one second prior to the data
deletion (which was made at 2005-10-14 20:18:57.583):

RESTORE LOG TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2005_2022.trn'
WITH RECOVERY,
STOPAT = '2005-10-14 20:18:56.583'
GO

Next, the following query confirms that you have restored just prior to the data deletion that
occurred at 2005-10-14 20:18:57.583:

USE TrainingDB
GO

SELECT COUNT(*)
FROM dbo.SalesOrderDetail
WHERE ProductID = 776
GO

This returns:

228

CHAPTER 29 ■ BACKUP AND RECOVERY 711

570Xch29.qxd 11/4/05 3:02 PM Page 711

How It Works
In the first example for this recipe, the TrainingDB database was restored from a full database
backup and left in NORECOVERY mode. Being in NORECOVERY mode allows other transaction log or
differential backups to be applied. In this example, two transaction log backups are applied in
chronological order, with the second using the RECOVERY option to bring the database online.

The second example in the recipe demonstrated restoring a database as of a specific point in
time. Point-in-time recovery is useful for restoring a database prior to a database modification or
failure. The syntax was similar to the first example, only the STOPAT was used for both the RESTORE
DATABASE and RESTORE LOG. Including the STOPAT for each RESTORE statement makes sure that the
restore doesn’t recover past the designated date.

Restoring a Database from a Differential Backup
The syntax for differential database restores is identical to full database restores, only full database
restores must be performed prior to applying differential backups. When restoring the full database
backup, the database must be left in NORECOVERY mode. Also, any transaction logs you wish to restore
must be done after the differential backup is applied, as this example demonstrates.

First however, I’ll set up the example by performing a full, differential, and transaction log
backup on the TrainingDB database:

USE master
GO

BACKUP DATABASE TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB_DiffExample.bak'

-- Time passes

BACKUP DATABASE TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB_DiffExample.diff'
WITH DIFFERENTIAL

-- More time passes

BACKUP LOG TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB_DiffExample_tlog.trn'

Now, I’ll demonstrate performing a RESTORE, bringing the database back to the completion of
the last transaction log backup:

USE master
GO

-- Full database restore
RESTORE DATABASE TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB_DiffExample.bak'
WITH NORECOVERY, REPLACE

-- Differential
RESTORE DATABASE TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB_DiffExample.diff'
WITH NORECOVERY

-- Transaction log
RESTORE LOG TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB_DiffExample_tlog.trn'

CHAPTER 29 ■ BACKUP AND RECOVERY712

570Xch29.qxd 11/4/05 3:02 PM Page 712

This returns:

Processed 152 pages for database 'TrainingDB', file 'TrainingDB' on file 1.
Processed 2 pages for database 'TrainingDB', file 'TrainingDB_log' on file 1.
RESTORE DATABASE successfully processed 154 pages in 0.443 seconds (2.831 MB/sec).
Processed 40 pages for database 'TrainingDB', file 'TrainingDB' on file 1.
Processed 1 pages for database 'TrainingDB', file 'TrainingDB_log' on file 1.
RESTORE DATABASE successfully processed 41 pages in 0.069 seconds (4.860 MB/sec).
RESTORE LOG successfully processed 0 pages in 0.070 seconds (0.000 MB/sec).

How It Works
Differential backups capture database changes that have occurred since the last full database backup.
Differential restores use the same syntax as full database restores, only they must always follow a full
database restore (with NORECOVERY) first. In this recipe, the database was initially restored from a full
database backup, then followed by a restore from a differential backup, and then lastly a restore from
a transaction log backup. The differential RESTORE command was formed similarly to previous RESTORE
examples, only it referenced the differential backup file. On the last restore, the RECOVERY option was
designated to make the database available for use.

Restoring a File or Filegroup
Restoring a file or filegroup uses virtually the same syntax as a full database restore, except you
also use the FILEGROUP or FILE keywords. To perform a restore of a specific read-write file or file-
group, your database must use either a full or bulk-logged recovery model. This is required
because transaction log backups must be applied after restoring a file or filegroup backup. In
SQL Server 2005, if your database is using a simple recovery model, only read-only files or read-
only filegroups can have file/filegroup backups and restores.

To set up this recipe’s example, a filegroup backup is taken for the VLTestDB database:

USE master
GO

BACKUP DATABASE VLTestDB
FILEGROUP = 'FG2'
TO DISK = 'C:\Apress\Recipes\VLTestDB_FG2.bak'
WITH NAME = N'VLTestDB-Full Filegroup Backup',
SKIP, STATS = 20
GO

Time passes, and then a transaction log backup is taken for the database:

BACKUP LOG VLTestDB
TO DISK = 'C:\Apress\Recipes\VLTestDB_FG_Example.trn'

Next, the database filegroup FG2 is restored from backup, followed by the restore of a transac-
tion log backup:

USE master
GO

RESTORE DATABASE VLTestDB
FILEGROUP = 'FG2'
FROM DISK = 'C:\Apress\Recipes\VLTestDB_FG2.bak'
WITH FILE = 1, NORECOVERY, REPLACE

CHAPTER 29 ■ BACKUP AND RECOVERY 713

570Xch29.qxd 11/4/05 3:02 PM Page 713

RESTORE LOG VLTestDB
FROM DISK = 'C:\Apress\Recipes\VLTestDB_FG_Example.trn'
WITH FILE = 1, RECOVERY

This returns:

CHAPTER 29 ■ BACKUP AND RECOVERY714

Processed 8 pages for database 'VLTestDB', file 'VLTestDB2' on file 1.
Processed 8 pages for database 'VLTestDB', file 'VLTestDB3' on file 1.
RESTORE DATABASE ... FILE=<name> successfully processed 16 pages in 0.119 seconds (1.101 MB/sec).
Processed 0 pages for database 'VLTestDB', file 'VLTestDB2' on file 1.
Processed 0 pages for database 'VLTestDB', file 'VLTestDB3' on file 1.
RESTORE LOG successfully processed 0 pages in 0.062 seconds (0.000 MB/sec).

How It Works
Filegroup or file backups are most often used in very large databases, where full database backups
may take too long to execute. With filegroup or file backups comes greater administrative complex-
ity, because you’ll have to potentially recover from disaster using multiple backup sets (one per
filegroup, for example).

In this recipe, the VLTestDB database filegroup named FG2 was restored from a backup device and
left in NORECOVERY mode so that a transaction log restore could be applied. The RECOVERY keyword was
used in the transaction log restore operation in order to bring the filegroup back online. In SQL Server
2005 Enterprise Edition, filegroups other than the primary filegroup can be taken off-line for restores
while leaving the other active filegroups available for use (this is called an ONLINE restore).

Performing a Piecemeal (PARTIAL) Restore
The PARTIAL command can be used with the RESTORE DATABASE command to restore secondary file-
groups in a piecemeal fashion. This variation of RESTORE brings the primary filegroup online, letting
you then restore other filegroups as needed later on. If you’re using a database with a full or bulk-
logged recovery model, you can use this command with read-write filegroups. If the database is
using a simple recovery model, you can only use PARTIAL in conjunction with read-only secondary
filegroups.

In this example, the VLTestDB is restored from a full database backup using the PARTIAL key-
word, and designating that only the PRIMARY filegroup be brought online (and with filegroups FG2
and FG3 staying offline and unrestored).

First, to set up this example the primary and FG2 filegroups in the VLTestDB are backed up:

USE master
GO

BACKUP DATABASE VLTestDB
FILEGROUP = 'PRIMARY'
TO DISK = 'C:\Apress\Recipes\VLTestDB_Primary_PieceExmp.bak'
GO

BACKUP DATABASE VLTestDB
FILEGROUP = 'FG2'
TO DISK = 'C:\Apress\Recipes\VLTestDB_FG2_PieceExmp.bak'
GO

570Xch29.qxd 11/4/05 3:02 PM Page 714

After that, a transaction log backup is performed:

BACKUP LOG VLTestDB
TO DISK = 'C:\Apress\Recipes\VLTestDB_PieceExmp.trn'
GO

Next, a piecemeal RESTORE is performed, recovering just the PRIMARY filegroup:

RESTORE DATABASE VLTestDB
FILEGROUP = 'PRIMARY'
FROM DISK = 'C:\Apress\Recipes\VLTestDB_Primary_PieceExmp.bak'
WITH PARTIAL, NORECOVERY, REPLACE

RESTORE LOG VLTestDB
FROM DISK = 'C:\Apress\Recipes\VLTestDB_PieceExmp.trn'
WITH RECOVERY

The other filegroup, FG2, now contains unavailable files. You can view the file status by query-
ing sys.database_files from the VLTestDB database:

USE VLTestDB
GO

SELECT name,
state_desc

FROM sys.database_files

This returns:

name state_desc
VLTestDB ONLINE
VLTestDB_log ONLINE
VLTestDB2 RECOVERY_PENDING
VLTestDB3 RECOVERY_PENDING

How It Works
In this recipe, the VLTestDB was restored from a full backup, restoring just the PRIMARY filegroup. The
WITH clause included the PARTIAL keyword and NORECOVERY, so that transaction log backups can be
restored. After the transaction log restore, any objects in the PRIMARY filegroup will be available and
objects in the secondary filegroups are unavailable until you restore them at a later time.

For very large databases, using the PARTIAL keyword during a RESTORE operation allows you to
prioritize and load filegroups that have a higher priority, making them available sooner.

Restoring a Page
SQL Server 2005 has introduced the ability to restore specific data pages in a FULL or BULK_LOGGED
recovery model database. In the rare event that a small number of data pages become corrupted in
a database, it may be more efficient to restore individual data pages than the entire file, filegroup, or
database.

The syntax for restoring specific pages is similar to restoring a filegroup or database, only you use
the PAGE keyword coupled with the page ID. Bad pages can be identified in the msdb.dbo.suspect_pages
system table, in the SQL error log, or returned in the output of a DBCC command.

CHAPTER 29 ■ BACKUP AND RECOVERY 715

570Xch29.qxd 11/4/05 3:02 PM Page 715

To set up this example, a full database backup is created for the TestDB database:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_PageExample.bak'
GO

Next, a restore is performed using the PAGE argument:

RESTORE DATABASE TestDB
PAGE='1:8'
FROM DISK = 'C:\Apress\Recipes\TestDB_PageExample.bak'
WITH NORECOVERY, REPLACE
GO

This returns:

Processed 1 pages for database 'TestDB', file 'TestDB' on file 1.
RESTORE DATABASE ... FILE=<name> successfully processed 1 pages
in 1.107 seconds (0.007 MB/sec).

At this point, any differential or transaction log backups taken after the last full backup should
also be restored. Since there were none in this example, no further backups are restored. Next, and
this is something that departs from previous examples, a new transaction log backup must be cre-
ated that captures the restored page:

BACKUP LOG TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_PageExample_tlog.trn'
GO

This returns:

Processed 2 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP LOG successfully processed 2 pages in 0.840 seconds (0.014 MB/sec).

To finish the page restore process, the latest transaction log taken after the RESTORE...PAGE
must be executed with RECOVERY:

RESTORE LOG TestDB
FROM DISK = 'C:\Apress\Recipes\TestDB_PageExample_tlog.trn'
WITH RECOVERY

How It Works
In this recipe, a single data page was restored from a full database backup using the PAGE option in the
RESTORE DATABASE command. Like restoring from a FILE or FILEGROUP, the first RESTORE leaves the data-
base in a NORECOVERY state, allowing additional transaction log backups to be applied prior to recovery.
You can restore up to 1000 individual pages using this technique.

CHAPTER 29 ■ BACKUP AND RECOVERY716

570Xch29.qxd 11/4/05 3:02 PM Page 716

■Numbers
8KB pages, 571

■Symbols
@ prefix, 274
@@ prefix, 241
@@CONNECTIONS function, 246
@@CPU_BUSY function, 246
@@DATEFIRST function, 242
@@ERROR function, 400–402
@@IDENTITY function, 251
@@IDLE function, 246
@@IO_BUSY function, 246
@@LANGID function, 242
@@LANGUAGE function, 242
@@LOCK_TIMEOUT function, 242
@@NESTLEVEL function, 243
@@PACKET_ERRORS function, 246
@@PACK_RECEIVED function, 246
@@PACK_SENT function, 246
@@ROWCOUNT function, 245
@@SERVERNAME function, 244
@@SPID function, 244
@@TIMETICKS function, 246
@@TOTAL_ERRORS function, 247
@@TOTAL_READ function, 247
@@TOTAL_WRITE function, 247
@@TRANCOUNT function, 85, 244
; semicolon, 56
[] wildcard, 10
[^] wildcard, 10
!< operator, 7
!> operator, 7
!= operator, 7
sign, prefixing local temporary tables, 138
sign, prefixing global temporary tables, 138
% wildcard, 10
< operator, 7
<> operator, 7
<= operator, 7
> operator, 7
+ operator, 22
= operator, 7

_ wildcard, 10

■A
ABS function, 213
ACID test (Atomicity, Consistency, Isolation (or

Independence), and Durability), 83
compliance ensured via locking and

transactions, 84
ACOS function, 213
ad hoc queries, executing via OPENROWSET

command, 631
ADD FILE command, 556
ADD FILEGROUP command, 562
ADD LOG FILE command, 557
ADO.NET, 391
AdventureWorks database, 1
AFTER DML triggers, 314
AFTER triggers, 314
aggregate functions, 209–213

DISTINCT keyword for unique values, 19
alias data types. See user-defined types
aliases, 630

column, 16, 20
table, 27, 29

ALL operator, 7
allocated unit lock resource, 91
ALLOW_SNAPSHOT_ISOLATION database

option, 98, 549–551
ALTER APPLICATION ROLE command, 431
ALTER ASSEMBLY command, 352
ALTER ASYMMETRIC KEY command, 468
ALTER CERTIFICATE command, 481
ALTER COLUMN command, 113
ALTER DATABASE command, 170, 330, 334

ANSI SQL options and, 539
changing recovery mode and, 551
cursor options and, 545
database mirroring and, 598, 604
database state and, 554
enabling databases and, 487
external access and, 542
files/filegroups and, 556–565
operating modes, configuring, 608
page verification and, 553
parameterization and, 546
read-consistency options and, 550
shrinking databases/database files and, 568
user access and, 530–532

Index

717

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 717

ALTER DATABASE...PARTNER REDO_QUEUE
command, 611

ALTER DATABASE...SET PARTNER FAILOVER
command, 609

ALTER DATABASE...SET PARTNER
FORCE_SERVICE_ALLOW_DATA_LOSS
command, 609

ALTER DATABASE...SET PARTNER OFF
command, 611

ALTER DATABASE...SET PARTNER SUSPEND
command, 610

ALTER DATABASE...SET PARTNER TIMEOUT
command, 611, 613

ALTER ENDPOINT command, 383
ALTER FULLTEXT CATALOG command, 177
ALTER FULLTEXT INDEX command, 178
ALTER FUNCTION command, 298
ALTER INDEX command, 158, 163, 367
ALTER INDEX REBUILD command, 583
ALTER INDEX REORGANIZE command, 583,

586
ALTER LOGIN command

capturing, 514
SQL Server logins and, 415
Windows logins and, 410

ALTER MASTER KEY command, 463, 465
ALTER OWNERSHIP command, 456
ALTER PARTITION FUNCTION command, 146
ALTER PARTITION SCHEME command, 146
ALTER PROCEDURE command, 277
ALTER QUEUE command, 501
ALTER ROLE command, 428
ALTER SCHEMA command, 445, 591
ALTER SCHEMA TRANSFER command, 591
ALTER SYMMETRIC KEY command, 473
ALTER TABLE command, 112–116

constraints and
adding to tables, 131, 133, 136
dropping, 137
primary key constraints, 121

foreign keys and, 122
moving partitions between tables, 149
table column collation and, 118

ALTER TRACE permission, 437
ALTER TRIGGER command, 330
ALTER USER command, 422
ALTER VIEW command, 196

view encryption and, 198
ALTER XML SCHEMA COLLECTION command,

360
ANSI (American National Standards Institute),

538
ANSI SQL options, 538–540
ANY operator, 7
application lock resource, 91
application roles, 420, 430–432
APPLY clause, 33–36
APP_NAME function, 249
arrows, thickening, 649
artificial keys, 126, 129

ASCII files, importing, 633–636
ASCII function, 216
ASIN function, 213
assemblies, 338

administering, 352
compiling into DLL files, 344
loading into SQL Server, 345
security and, 342
when to use/not to use, 338

asymmetric key encryption, 466–471
asymmetric keys, 459
asynchronous processing, 485
ATAN function, 213
ATN2 function, 213
atomicity, 83
Atomicity, Consistency, Isolation (or

Independence), and Durability (ACID
test), 83

compliance ensured via locking and
transactions, 84

attributes, in XML, 356
authentication, mixed, 408, 413
authorization, 412
autocommit transactions, 84
automatic database options, 540–542
AUTO_CREATE_STATISTICS database option,

540, 542, 638, 659
AUTO_UPDATE_STATISTICS database option,

540, 542, 659
AVG aggregate function, 209

■B
B-tree structures, 155
BACKUP CERTIFICATE command, 480
BACKUP command, 687, 691
BACKUP DATABASE command, 687, 698
backup device definitions, 693
BACKUP LOG command, 696
BACKUP MASTER KEY command, 464
backup sets, 690, 692

retention options for, 691
striping, 692

backup/restore features deprecated with SQL
Server 2005, 683

backups, 683–705
differential, 686, 698–705
full, 685, 687–698
naming/describing, 689
partial, 701
plan for, 683–685
sequence of, 686, 698
striping, 692
of transaction logs, 685, 696–698

*.bak files, 689
BEGIN CATCH command, 403
BEGIN DIALOG CONVERSATION command,

494
BEGIN DISTRIBUTED TRANSACTION

command, 85

■INDEX718

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 718

BEGIN TRANSACTION command, 85
BEGIN TRY command, 403
BETWEEN operator, 7

in date range searches, 8
binary files, importing, 633–636
blocking, 99–102
BookStore/BookDistribution application,

485–516
Boolean expressions, 257–260
built-in error messages, 393–396
built-in functions. See functions
BULK option, 75, 621, 633–636
bulk update locks, 90
BULK_LOGGED recovery model, 551, 686

■C
cached query plans, viewing performance

statistics for, 657
caller permissions, 282
Cartesian products, 26, 29
cascading changes feature, 124
case sensitivity/insensitivity, collations and, 543
CASE statement, 255–258
CAST function, 234–236
catalogs, full-text, 173–182
CEILING function, 213
certificate encryption, 478–484
change tracking, disabling for full-text indexes,

179
CHAR function, 216
character data types, 111
character values, converting to/from ASCII, 216
characters, string functions for, 215–226
CHARINDEX function, 217, 220
CHECK constraint, 203, 206, 129–135
CHECKSUM option, 552
CHECK_POLICY option, 414
chunking data, 81
Clear Port, 376
CLOSE MASTER KEY command, 466
CLOSE SYMMETRIC KEY command, 474
CLR (Common Language Runtime), 337
CLR data type to SQL Server data type

translations, 343
CLR database objects, creating, 340–52
CLR integration, 337–353

error handling cautions and, 350
CLR objects, 340
CLR scalar user-defined functions, creating,

347–350
CLR stored procedures

creating, 346
writing assemblies for, 341

CLR triggers, creating, 350–352
clustered indexes, 156, 665
COALESCE function, 226, 228
code pages, collations for, 116
COLLATE command, 117, 543
collations, 116, 543

column aliases, 16, 20
column constraints, 119
columns, 112–116

computed, 114
constraints and, 129–137
data types and, 110
dropping, 115
grouping, 15–18
identity of, checking, 127
mapping to partitions, 141
renaming, 20, 589–591
rows, converting to via UNPIVOT, 40
SELECT statement and, 18–24
selecting for rows, 2
uniqueidentifier, 65
user-defined types and, identifying, 310
values, converting into, 38
xml data types for, 358
XML data, inserting into, 359

comma delimited lists, creating via SELECT
statement, 22

Comment Table Expressions (CTEs) 30, 53–59
COMMIT TRANSACTION command, 85
Common Language Runtime (CLR), 337
comparisons, 8
compatibility levels, for databases, 525
composite indexes, 157, 160
composite primary keys, 119
COMPUTE BY clause (deprecated with SQL

Server 2005), 46
computed columns, 114
{CONCAT | HASH | MERGE} UNION hint, 49
concurrency, 90, 93

improving for indexes, 166
indexing locking and, 168

conditional processing, 255–260
CONNECT permissions, 508
connection timeout, for database mirroring,

613
@@CONNECTIONS function, 246
consistency, 83
constraints, 119, 129–137

dropping from tables, 137
enabling/disabling, 134
forms of, 129
renaming, 589–591
validating integrity of, 576–583
vs. triggers, 313

CONTAINS predicate, 7, 183
for inflectional matches, 185
for term proximity, 186
for wildcard searches, 185

CONTAINSTABLE command, 188
contracts, for message types, 490
control-of-flow, 255,260–266
conversations

between databases, 486
dialog, 494
ending, 499

■INDEX 719

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 719

CONVERT function, 234–236
COPY_ONLY option, 698
correlated subqueries, 25
COS function, 213
COT function, 213
COUNT aggregate function, 209
COUNT_BIG aggregate function, 209
COUNT_BIG function, 202
covering queries, 166
covering_permission_name, 435
@@CPU_BUSY function, 246
CREATE APPLICATION ROLE command, 430
CREATE ASSEMBLY command, 341

loading assemblies into SQL Server and, 345
CREATE ASYMMETRIC KEY command, 466
CREATE CERTIFICATE command, 478
CREATE CONTRACT command, 490
CREATE CREDENTIAL command, 457
CREATE DATABASE command, 524

collations and, 543
database snapshots and, 616
external access and, 542

CREATE DATABASE FOR ATTACH command,
536

CREATE ENDPOINT command, 377, 599
CREATE EVENT NOTIFICATION command, 514
CREATE FULLTEXT CATALOG command, 174
CREATE FULLTEXT INDEX command, 175
CREATE FUNCTION command, 222, 290
CREATE INDEX command, 158, 366
CREATE INDEX...DROP_EXISTING command,

163
CREATE LOGIN command, 382, 408

capturing, 514
SQL Server logins and, 413
Windows logins and, 408

CREATE MASTER KEY command, 463
CREATE MESSAGE TYPE command, 488
CREATE PARTITION FUNCTION command,

141
CREATE PARTITION SCHEME command, 141
CREATE PROCEDURE command, 277
CREATE QUEUE command, 491, 501
CREATE REMOTE SERVICE BINDING

command, 512
CREATE ROLE command, 428
CREATE ROUTE command, 511
CREATE SCHEMA command, 442
CREATE SERVICE command, 493
CREATE STATISTICS command, 659
CREATE SYMMETRIC KEY command, 471
CREATE SYNONYM command, 630
CREATE TABLE command, 109

vs. INTO clause, 23
CREATE TRIGGER command, 315
CREATE TYPE command, 308
CREATE USER command, 382, 421
CREATE VIEW command, 192

view encryption and, 198

CREATE XML SCHEMA COLLECTION
command, 360

credentials, CREATE CREDENTIAL command
and, 457

CROSS APPLY clause, 33
cross-database chaining, 542
CROSS JOINs, 26, 29
cross-platform queries, 621
cross-server communication, 504–513
cross-tab queries via PIVOT operator, 38
CTEs (Comment Table Expressions), 30, 53–59
CUBE clause, 45
CURRENT_TIMESTAMP function, 229
cursor options, configuring, 544
cursors, 255, 266–270

temporary tables as alternative to, 137

■D
data

grouping, 15–18
recovering with database snapshots, 618
relocating, 559
removing from database, 558
summarizing, 45–47

Data Definition Language (DDL), 313
data integrity, constraints and, 129, 134
Data Manipulation Language (DML), 313
data modifications, 61–82

chunking, 81
data pages, 572

restoring, 715
data recovery, INTERSECT/EXCEPT operands

and, 42
data sources

advanced techniques for, 36–44
querying multiple, 26–32

data types
columns and, 110
converting, 234–236
deprecated with SQL Server 2005, 71
large value, 71

database certificates, 478–484
database design, query performance and, 637
Database Engine Tuning Advisor, 664, 669–675
database files

logical name of, changing, 560
managing, 556–565
shrinking, 567–570
size of, changing, 561

database integrity, 571–587
Database Master Keys, 459, 461, 463–466

backing up/restoring, 464
creating, 487
removing Service Master Key encryption

from, 465
database mirroring, 595–614, 694

architecture of, 597
enabling (steps), 598
monitoring/configuring options for, 611–614

■INDEX720

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 720

sessions of
creating, 604
modes and, 608
pausing/resuming/stopping, 610

setting up (steps summarized), 607
database objects

aliases and, 630
checking allocation/structural integrity of,

573–575
definition of, viewing, 593
dependencies, viewing, 592–594
maintenance for, 589–592
user-created, renaming, 589–591
user-defined types and, identifying, 310

database options
configuring, 537–553
viewing, 537

database owner, changing, 555
database principals, 407, 420–432
database redundancy, database mirroring and,

595
database roles, 420

fixed, 425–427, 425–429
user-defined, 427–429

database scope, 433
database-scoped securables, 440–442
database state, 554–556
Database Tuning Advisor, 161
database user access modes, 530
database users, 420–425

creating, 420
dropping, 423
fixing orphaned, 423–425

DATABASEPROPERTYEX system function, 117,
248

databases
access/ownership, controlling, 554–556
AdventureWorks, 1
assemblies, removing from, 353
attaching, 536–537
automatic options for, 540–542
backing up/restoring, 683–716
BookStore/BookDistribution, 485
collations and, 543
compatibility level and, 525
creating/configuring, 523–570
detaching, 534
dropping, 534
enabling for Service Broker, 487
external access and, 542
files/filegroups, managing for, 556–565
maintaining, 571–587
partner, 598
principal. See principal databases, database

mirroring and
read-only, setting to, 564
renaming, 532
shrinking, 567–570
snapshots of, 615–620

space usage, viewing/managing, 565–570
viewing information about, 524–525

DATALENGTH function, 215, 220
DataSet objects, 391
DataTable objects, 391
date conversions, 235
date functions, 229–234
DATEADD function, 230
DATEDIFF function, 229, 231
@@DATEFIRST function, 242
DATENAME function, 229, 232
DATEPART function, 229, 233
datetime data type, 111, 141, 229, 235

data correlation optimization and, 545
DATE_CORRELATION_OPTIMIZATION option,

545
DAY function, 234
DB lock resource, 91
DBCC CHECKALLOC command, 572–573
DBCC CHECKCATALOG command, 582–583
DBCC CHECKCONSTRAINTS command, 580–582
DBCC CHECKDB command, 571, 573–575
DBCC CHECKFILEGROUP command, 576–577
DBCC CHECKIDENT command, 127
DBCC CHECKTABLE command, 578–580
DBCC commands, 571–583

indexes and, 583, 585
DBCC FREEPROCCACHE command, 286, 547
DBCC INPUTBUFFER command, 99, 268
DBCC OPENTRAN command, 88
DBCC SHOWCONTIG command (deprecated

with SQL Server 2005), 665
DBCC SHOW_STATISTICS command, 662
DBCC SHRINKDATABASE command, 567–570
DBCC SHRINKFILE command, 567–570
DBCC SQLPERF command, 565
DBCC TRACEOFF command, 103
DBCC TRACEON command, 103, 106
DBCC TRACESTATUS command, 103, 105
dbo schemas, 442
DB_ID function, 248
DB_NAME function, 248
DDL (Data Definition Language), 313
DDL triggers, 325–330

database-level events and, auditing, 326–328
server-level events and, auditing, 328
viewing metadata and, 329

deadlocking, 103–106
DEALLOCATE statement, 268
DECLARE CURSOR statement, 266
DecryptByAsmKey function, 469
DecryptByCert system function, 483
DecryptByKey function, 475
DecryptByPassPhrase function, 460
DEFAULT constraints, 129, 135–136
default values, inserting rows via, 63
DEGREES function, 213
DELETE statement, 75–78

using OUTPUT clause with, 78

■INDEX 721

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 721

DENSE_RANK function, 237, 240
DENY command, 412

database-scoped securables and, 440
object permissions and, 448
schema-scoped securables and, 443
securables and, 433
server-scoped securables and, 438

DENY CONNECT SQL command, 412
derived queries, 53
derived tables, 30
dialog conversations, 494
dialog security, 504, 509–511
DIFFERENCE function, 215, 218
differential backups, 686, 698–705

restoring, 712–713
DIFFERENTIAL keyword, 698
diffgrams, 355
dirty reads, 93
DISABLE TRIGGER command, 331
disabling

change tracking, for full-text indexes, 179
constraints, 134
indexes, 163
triggers, 331

disk errors, 552
disk space allocation structures, checking

consistency of, 572–573
disk storage usage, viewing/managing,

565–570
displaying. See viewing
DISTINCT keyword, 19
distinct rows, 42
distributed partitioned views, 191, 203
distributed queries, 621–636

executing, 628–636
DLL files, compiling assemblies into, 344
DML (Data Manipulation Language), 313
DML triggers, 314–325

controlling based on modified columns, 323
transactions and, 321
viewing metadata and, 324

DROP APPLICATION ROLE command, 431
DROP ASYMMETRIC KEY command, 471
DROP CERTIFICATE command, 480
DROP command, 116, 503
DROP DATABASE command, 534

database snapshots and, 618
DROP ENDPOINT command, 385, 611
DROP FULLTEXT CATALOG command, 180
DROP FULLTEXT INDEX ON command, 181
DROP INDEX command, 163, 367
DROP LOGIN command

capturing, 514
SQL Server logins and, 417
Windows logins and, 411

DROP MASTER KEY command, 463
DROP PROCEDURE command, 278
DROP ROLE command, 428
DROP SCHEMA command, 443

DROP STATISTICS command, 664
DROP SYMMETRIC KEY command, 478
DROP SYNONYM command, 630
DROP TABLE command, 138
DROP TRIGGER command, 336
DROP TYPE command, 311
DROP USER command, 423
DROP VIEW command, 197
DROP XML SCHEMA COLLECTION command,

360
dropping

application roles, 431
asymmetric keys, 471
backup devices, 693
database certificates, 480
Database Master Keys, 463
database roles, 428
database users, 423
databases, 534
endpoints, 611
error messages, 396
indexes, 163, 367
linked server login mappings, 628
linked servers, 625
plan guides, 678
schema-scoped securables, 443
SQL Server logins, 417
statistics, 664
symmetric keys, 478
synonyms, 630
triggers, 336
user-defined functions, 300
Windows logins, 411
XML Schema collections, 361

duplicate rows, 32
duplicate values, removing, 19
durability, 83
dynamic management view, 99

■E
elements, in XML, 356
emergency state, 554
ENABLE TRIGGER command, 331
ENABLE_BROKER option, 487
EncryptByAsmKey function, 468
EncryptByCert system function, 482
EncryptByKey function, 474
EncryptByPassPhrase function, 459
encryption, 459–484

stored procedures and, 281
views and, 198

END CONVERSATION command, 495, 499
endpoints, 376

creating for database mirroring, 598–602
removing, 611
services defining, 493

entity integrity, 119
@@ERROR function, 400–402
error handling, 393–406

■INDEX722

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 722

error messages
dropping, 396
invoking with RAISERROR command, 397
viewing, 393

error trapping, 393, 400–402
ESCAPE operator, 7

wildcards and, 11
event notifications, 485, 514–516
EXCEPT operand, 42
exclusive locks, 90
EXECUTE AS statement, 282–285, 453
EXECUTE command, 675
execution runtime information, viewing,

655–657
EXISTS operator, 7
EXP function, 213
EXPAND VIEWS hint, 50
explicit transactions, 83–87
expressions, 7–11
extended stored procedures, 339
Extensible Markup Language. See entries at

XML
extent lock resource, 91
extents, 667
EXTERNAL_ACCESS permission, 342, 345, 350

■F
failover clustering, 595
failover time, reducing, 612
failovers, 606, 608

performing, 609
FALSE result, 7
FAST integer hint, 49
FASTFIRSTROW hint, 52
FILE keyword, 699, 713
file lock resource, 91
FILEGROUP keyword, 699, 713
filegroups, 141–145, 148, 528

adding to databases, 562
backing up, 699–701
default, setting, 562
indexes, creating on, 169
managing, 556–565
placing tables on, 141, 151
read-only, 564, 701
removing, 563

files, backing up, 699–701
FILLFACTOR option, 166
fixed server roles, 417–420
FLOOR function, 213
fn_my_permissions function, 453
FOR XML command, 355, 368–372
FORCE ORDER hint, 49
foreign key constraints, 119, 129

TRUNCATE TABLE command and, 78
foreign keys, 121–126
FORMSOF command, 186
four-part linked server names, 628, 630
FREETEXT predicate, 7, 183, 187

FREETEXTTABLE ranking function, 187
FROM command, 187

best practices for, 638
distributed queries and, 628, 631
predicates and, 182
rows, updating via, 70
views and, 191

full backups, 685, 687–698
COPY_ONLY option and, 698
restoring, 705–709

FULL OUTER JOINs, 26
FULL recovery model, 551, 686

database mirroring and, 598, 602
FULL safety mode, 608
full table scan, 155
full-text catalogs, 173–182
Full-Text Engine Filter Daemon (MSFTEFD),

173
Full-Text Engine for SQL Server (MSFTESQL),

173
full-text indexes, 173–182
full-text search, 173–189

advanced, 185–187
basic, 182–184
FROM and WHERE clauses for updating

rows, 70
ranked, 187–189

FULLTEXTCATALOGPROPERTY system
function, 182

functions, 209–253
aggregate, 209–213
CLR scalar UDFs, creating, 347–350
date, 229–234
mathematical, 213
ranking, 237–241
statistical, 246
string, 215
system, 241–251
user-defined, 289–308, 340
user-defined aggregate, 340

■G
GETDATE function, 230, 236
global temporary tables, 138
GOTO command, 255, 260, 264
GRANT command, 382, 412

database-scoped securables and, 440
object permissions and, 447
schema-scoped securables and, 443
securables and, 433
server-scoped securables and, 437

grantee, permissions and, 437
grantor, permissions and, 437
Greenwich Mean Time, 230
GROUP BY ALL clause, 17
GROUP BY clause, 15

used with WITH ROLLUP, 46
grouping data, 15–18
GROUPING function, using with WITH CUBE, 46

■INDEX 723

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 723

■H
hardware, query performance and, 637
Has_perms_by_name system function, 451
HASH joins, 47
{HASH | ORDER} GROUP hint, 49
HAVING command, 17

predicates and, 182
heaps, 155
high availability mode, 595, 608
high duration queries, capturing, 640–644
high performance mode, 608
high protection mode, 608
hints, 47–53, 677, 681
HOPT lock resource, 91
horizontal partitioning, 141, 203
HOST_ID function, 249
HOST_NAME function, 249
hot database standby, 596
HTML, vs. XML, 356
HTTP, web services and, 376
HTTP endpoints, 377–386

removing, 385
security access and, 382

HTTP namespaces, reserving, 385

■I
IDENTITY column property, 126, 127,

251–253
inserting values into explicitly, 64

@@IDENTITY function, 251
IDENTITY values, checking, 127
IDENT_CURRENT function, 251
IDENT_INCR function, 252
IDENT_SEED function, 252
@@IDLE function, 246
IF...ELSE statement, 255, 258
IGNORE_CONSTRAINTS hint, 52
IGNORE_TRIGGERS hint, 52
IIS (Internet Information Services), 375, 377
image data types (deprecated with SQL Server

2005), 71
image files, inserting/updating via

OPENROWSET and BULK, 73
implicit transactions, 84
IN operator, 7
INCLUDE command, 157, 166
index columns, sort direction for, 161
index data pages, 572
index defragmentation, 586
index fragmentation, 665–668

best practices for, 665
INDEX (index_val [,... n]) hint, 52
index keys, 155, 157, 161
index pages

fill factor percentage and, 167
page splits and, 167

index usage, displaying, 664, 668–669
indexed views, 191, 197, 199–203

indexes, 155–171
access to, allowing during creation, 166
best practices for, 664
clustered, 156, 665
creating, 158–161
defragmenting, 586
disabling, 163
dropping, 163
full-text, 173–182
maintenance for, 583–587
multiple-column, creating, 160
nonclustered, 156, 665
performance tuning for, 164–166, 169,

664–675
primary key and, 119
query performance and, 157, 637
recreating after dropping, 164
renaming, 589–591
very large, managing, 169–171

inflectional matches, 173, 185
INFORMATION_SCHEMA.columns system, 22
inline user-defined functions, 289, 293
INNER JOINs, 26
INSERT statement, 61–69

OUTPUT clause, using with, 78
INSERT...EXEC statement, 67
INSERT...SELECT statement, 66
INSTEAD OF DML triggers, 318
INSTEAD OF triggers, 198, 314
integers, FAST integer hint for, 49
intent locks, 90
intermediate indexes, tempdb system database

and, 165
intermediate leaf level, 156
intermediate level pages, 167
international data storage, collations and, 116
Internet Information Services (IIS), 375, 377
INTERSECT operand, 42
INTO clause, 23
@@IO_BUSY function, 246
IS NOT NULL operator, 7
IS NULL operator, 7, 9
ISDATE function, 236
ISNULL function, 226
ISNUMERIC function, 236
isolation, 83, 93, 94–99

■J
join hints, 47
JOIN keyword, 26
joins, 25–30, 47

best practices for, 638

■K
KEEP PLAN hint, 50
KEEPDEFAULTS hint, 52
KEEPFIXED PLAN hint, 50
KEEPIDENTITY hint, 52

■INDEX724

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 724

key columns, 157
key lock resource, 91
key-range locks, 90
keys, 118–129

multiple, 157
surrogate, 126, 129, 303

KILL command, 100

■L
@@LANGID function, 242
@@LANGUAGE function, 242
large data type data pages, 572
large value data types, 71
leaf level, 156, 167
LEFT function, 215, 219
LEFT OUTER JOINs, 26, 28
LEN function, 215, 220
LIKE operator, 8

vs. full-text search, 173, 183
wildcards, using with, 10

linked servers, 621–636
login mappings for, 626–628

lists, comma-delimited , 22
local partitioned views, 203
local temporary tables, 138
local variables, xml data types for, 358
lock mode, 90
@@LOCK_TIMEOUT function, 242
locking, 90–94

indexes and, 168
viewing lock activity and, 91

locks, 519
LOG function, 213
log shipping, 596
LOG10 function, 213
logical names, for backup devices, 693
logical operators, 646, 650
login commands, capturing, 514–516
logins

SQL Server, 413–417
Windows, 407–412

lookup tables, temporary tables and, 137
lookups, multiple, 138
LOOP joins, 47
{LOOP | MERGE | HASH} JOIN hint, 49
lost updates, 93
LOWER function, 215, 221, 223
LTRIM function, 215, 224

■M
master database, 487, 506
Master Keys, 459, 461–466
matching rows, 42

checking for via subqueries, 25
mathematical functions, 213
MAX aggregate function, 209, 211
MAXDOP index option, 165
MAXDOP integer hint, 50

MAXDOP number_of_processors hint, 50
MAXRECURSION number hint, 50, 58
media families, 692
media sets, 690, 692

viewing contents of, 702–705
MERGE joins, 47
MERGE RANGE functionality, 147
message-queuing, Service Broker for, 485–516
message types, 488
messages

processing via stored procedures, 501–504
receiving/responding to, 497
sending, 494

metadata lock resource, 91
Microsoft

.NET framework, 338
Full-Text Engine Filter Daemon (MSFTEFD),

173
Full-Text Engine for SQL Server (MSFTESQL),

173
SQL Native Client OLE DB Provider, 622, 632
XML Core Services (MSXML), 355

MIN aggregate function, 209, 211
MIRROR TO command, 695
mirroring backup sets, 694
mirroring databases. See database mirroring
model system database, 524
MODIFY FILE command, 559, 561
MODIFY FILEGROUP command, 562, 564
modifying data, 61–82

chunking, 81
MONTH function, 233
msdb.dbo.suspect_pages system table, 715
MSFTEFD (Full-Text Engine Filter Daemon),

173
MSFTESQL (Full-Text Engine for SQL Server),

173
MSXML (XML Core Services), 355
multi-statement user-defined functions, 289,

295
used to replace views, 306–308

MULTI_USER mode, 530
multilingual data storage, collations and, 116
multiple keys, 157
multiple-column indexes, 160

■N
names, displaying in single column, 22
namespaces, reserving, 385
NCHAR function, 215
nesting TRY...CATCH calls, 404
@@NESTLEVEL function, 243
.NET assemblies, 337
.NET clients, using Web services, 387
.NET CLR assemblies, 271
.NET framework, 338
network throughput, query performance and,

637

■INDEX 725

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 725

NEWID system function, 251, 253
NOCHECK option, 133
NOEXPAND keyword, 202
NOLOCK hint, 52
nonclustered indexes, 156

best practices for, 665
non-key columns and, 166
partitioning applied to, 170

non-key columns
nonclustered indexes and, 166
enforcing uniqueness for, 159

non-recursive CTEs, 53
nonrepeatable reads, 93
non-unique indexes, 157
NONE option, 552
NORECOVERY option, database mirroring and,

603
NOT BETWEEN operator, 8
NOT IN operator, 8
NOT LIKE operator, 8
ntext data types (deprecated with SQL Server

2005), 71
NTILE function, 237, 241
NULL values, 226–229

checking for, 9
NULL | NOT NULL option, 109
nullability, 109
NULLIF function, 226, 228
numeric data types, 111
nvarchar(max) data types, 71

■O
OBJECT_DEFINITION function, 592
OBJECT_ID function, 249, 593
object lock resource, 91
OBJECT_NAME function, 249
object owners, 2
object permissions, 447–451
objects

changing schemas for, 591
reporting information about, 116

offline state, 554
OLE DB providers, 621, 628

Microsoft SQL Native Client and, 622, 632
ON DELETE command, 124
ON SCHEMA command, 447
ON UPDATE command, 124
ONLINE option, 166
online restores, 705
online state, 554
OPEN SYMMETRIC KEY command, 473
OPENQUERY command, 628, 631
OPENROWSET command, 73, 621, 631–636

enabling, 632
OPENXML command, 355, 367, 372–374
operators, 7–11, 646
OPTIMIZE FOR (@variable_name =

literal_constant) [,...n] hint, 50

ORDER BY clause, 11–13
best practices for, 639

OUTER APPLY clause, 35
OUTER JOINs, 26, 28
OUTPUT clause, 78
OUTPUT parameters, 274, 276–277
overlapping rows, 44
ownership chaining, 282

■P
@@PACKET_ERRORS function, 246
@@PACK_RECEIVED function, 246
@@PACK_SENT function, 246
PAD_INDEX option, 166
PAGE keyword, 715
page lock resource, 91
page locks, 168
page splits, 167
page verification, configuring, 552
parallelism, index build performance and,

165
parameterization, 393, 546
PARAMETERIZATION { SIMPLE | FORCED }

hint, 50
parameterized stored procedures, 274
parameters, 274

user-defined types and, identifying, 310
xml data types for, 358

parent_class_desc, 435
parent_covering_permission_name, 435
partial backups, 701
PARTIAL command, 714
partial restores, 714
partition functions, dropping, 151
partition schemes, 142, 151
partitioned views, 203–207
partitioning

indexes, 170
tables, 141, 142–151

partitions, 155
mapping columns to, 141
removing, 148

partner databases, 598
passphrases, encryption and, 459–461
passwords, encryption and, 459–461
PATH indexes, 367
PATINDEX function, 215, 217, 220
performance

cursors and, 266
filegroups and, 141
optimizing, 637–681
stored procedures and, 285
temporary tables/table variables and,

138
triggers and, 313
user-defined functions and, 301
views and, 192
XML indexes and, 366

■INDEX726

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 726

performance tuning, 637–681
best practices for, 638
for indexes, 164–166, 169, 664–675
proactive/reactive, 639

permissions
for assemblies, modifying, 352
on database-scoped securables, 440–442
managing across securable scopes, 451–458
object, 447–451
principals and, 407
on schema-scoped securables, 442–447
on server-scoped securables, 437–440
viewing available, 435

permissions, 433–458
PERSISTED keyword, 114
phantom reads, 93
physical operators, 646
PI function, 213
PIVOT operator, 38
plan guides, 677–681

cautions for, 655, 679
point-in-time recovery, 551
POWER function, 213
predicates, 182–184
price points, DISTINCT keyword for, 20
primary databases. See principal databases,

database mirroring and
primary filegroup, 528
primary key constraints, 121

vs. UNIQUE constraints, 130
primary keys, 118–121, 159
principal databases, database mirroring and,

595, 598–614
backing up/restoring, 602–604

principals, 407–432
private keys

changing password and, 468
database certificates and, 481

procedure cache, flushing, 286
processes, controlling number of used in

parallelism, 165
PROPERTY indexes, 367
proximity of terms, 173, 186

■Q
query concurrency, index locking and, 168
query execution plans, 271, 285–287

viewing, 645–655
query hints, 47, 49
query optimization, 637–681

best practices for, 638
hints and, 47–53
indexed views and, 202
indexes and, 157
proactive/reactive performance tuning and,

639
query parallelism, disabling, 520
query performance, key factors influencing, 637

querying
BULK option and, 633–636
distributed queries and, 621–636
selectively with WHERE clause, 3–7, 17

queues, 486
creating, 491
querying for incoming messages, 496

quorum, of connected servers, 597, 608
QUOTENAME function, 215

■R
RADIANS function, 213
RAISERROR command, 393, 396–399

TRY...CATCH command and, 399
RAND function, 213
range queries, clustered indexes and, 156
RANK function, 237
ranking functions, 237–241
READ COMMITTED isolation level, 93
READ_COMMITTED_SNAPSHOT database

option, 549–551
read-consistency, 549–551
READ UNCOMMITTED isolation level, 93
READ_WRITE_FILEGROUPS option, 701
READPAST hint, 52
RECEIVE command

messages and, 497
queues and, 491

RECEIVE TOP command, 499
RECOMPILE command, 285–286
RECOMPILE hint, 50
recompiling stored procedures, 285
RECONFIGURE WITH OVERRIDE command,

333, 519
recovery plan, for databases, 683–685
recursive CTEs, 53, 56
recursive foreign key references, 123
redo queues, 612
relational data sets, converting to XML format,

367–374
remote data sources, 621
REMOTE joins, 47
remote service bindings, 504, 511
REMOVE FILE command, 558, 564
REMOVE FILEGROUP command, 563
REMOVE PRIVATE KEY command, 482
REPAIR options, DBCC commands and, 571,

575
REPEATABLE READ COMMITTED isolation

level, 93
REPLACE function, 215, 220
REPLICATE function, 215, 224
replication, 596
resources for further reading

XQuery, 363
operators, 646
permissions, 451
XML Schema definitions, 360

■INDEX 727

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 727

XML syntax, 357
XPath, 371

RESTORE command, 686, 705, 712
PARTIAL command and, 714

restore features deprecated with SQL Server
2005, 683

RESTORE FILELISTONLY command, 702
RESTORE...FROM DATABASE_SNAPSHOT

command, 618
RESTORE HEADERONLY command, 702
RESTORE LABELONLY command, 702
RESTORE LOG command, 709
RESTORE MASTER KEY command, 464
RESTORE VERIFYONLY command, 702
restoring databases, 705–716

from differential backups, 712
from full backups, 705–709
partial restores and, 714
from transaction log backups, 709–712

RESTRICTED_USER mode, 530
result sets

combining via UNION operator, 31
ordering, 11–15

results, 7
RETURN command, 255, 260
RETURNS keyword, 296
REVERSE function, 215, 225
REVERT command, 454
REVOKE command

database-scoped securables and, 441
object permissions and, 449
schema-scoped securables and, 444
securables and, 433
server-scoped securables and, 438

RID lock resource, 91
RIGHT function, 215, 219
RIGHT OUTER JOINs, 26
ROBUST PLAN hint, 50
ROLLBACK command, triggers and, 323
ROLLBACK TRANSACTION command, 85
ROLLUP clause, 46
root nodes, 156
ROUND function, 213
routes, Service Broker and, 504, 511
row-based security, 308
row locks, 168
ROW_NUMBER function, 237
@@ROWCOUNT function, 245
ROWGUIDCOL property, 126, 129, 251
rows, 32

converted from columns via UNPIVOT, 40
count of, 210
cursors and, 266–270
deleting, 76–78, 81
distinct, 42
extracting sampling of via TABLESAMPLE, 37
grouping, 15–18
inserting into tables, 62–69
limiting percentage of, 14

matching, 25, 42
overlapping, 44
ranking functions and, 237–241
returning based on list of values, 10
selecting columns for, 2
table-valued functions, invoking for, 33–36
updating, 69–75

RPC:Completed event, monitoring, 641
RTRIM function, 215, 224

■S
SAFE permission, 342, 345, 350
SAVE TRANSACTION command, 85
scalar user-defined functions, 289

advantages of, 301
cross-referencing natural key values and,

303–305
reusable code and, 301

scanning table data, 155
schema modification locks, 90
schema.object_name, 445
schema scope, 433
schema-scoped securables, 442–447

dropping, 443
schema stability locks, 90
SCHEMABINDING option, 200
schemas, 2

changing for objects, 591
validating XML data via, 360–362

SCOPE_IDENTITY function, 251
scope qualifier, 447
scripts, creating via SELECT statement, 21
searches. See also full-text search

flexible using ISNULL, 226
search conditions and, 5

securables, 407, 433–458
database-scoped, 440–442
managing permissions across, 451–458
schema-scoped, 442–447
server-scoped, 437–440

Secure Sockets Layer (SSL), 376
security

dialog, 504, 509–511
EXECUTE AS statement and, 282–285
HTTP endpoints and, 382
principals and, 407–432
row-based, 308
stored procedures and, 272, 281
terminology with SQL Server 2005, 407
transport, 504, 506–509

security commands, 382
security-identifiers (sids), 423
SELECT statement, 1–59

best practices for, 638
indexed views and, 199
temporary tables and, 137
temporary tables as alternative to, 138
views and, 191, 193

selectivity, indexes and, 160

■INDEX728

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 728

self-joins, 29
semicolon (;), 56
SEND ON CONVERSATION command, 495, 499
SERIALIZABLE isolation level, 93
server process ID (SPID), 268
server roles, fixed, 417–420

managing members and, 417
server scope, 433
server-scoped securables, 437–440
server session id, renamed from server process

id, 89, 268
@@SERVERNAME function, 244
SERVERPROPERTY system function, 117, 248
servers, linked, 621–636
Service Broker, 485–516

cross-server communication and, 504–513
steps in creating applications (list), 486

Service Master Key, 459, 461
backing up/restoring, 462

services, creating, 493
session ID, 89, 268
SESSIONPROPERTY function, 250
SET DEADLOCK_PRIORITY command, 106
SET LOCK_TIMEOUT command, 99, 102, 242
SET NOCOUNT command, 327
SET OFFLINE command, 554
SET ONLINE command, 555
SET PAGE_VERIFY command, 553
SET RECOVERY command, 552
SET SHOWPLAN_ALL command, 650
SET SHOWPLAN_TEXT command, 650
SET SHOWPLAN_XML command, 650, 653
SET STATISTICS IO command, 200, 202, 655
SET STATISTICS PROFILE command, 655
SET STATISTICS TIME command, 655
SET STATISTICS XML command, 653, 655
SET TRANSACTION ISOLATION LEVEL

command, 94–99
severity levels, for error messages, 394, 399
shared locks, 90
SHOWPLAN commands, 650–653
shrinking databases/database files, 567–570
SHUTDOWN command, 437
sids (security-identifiers), 423
SIGN function, 213
Simple Object Access Protocol (SOAP), web

services and, 376
SIMPLE recovery model, 551, 685
SIN function, 213
SINGLE_USER mode, 530
smalldatetime data type, 110, 229, 235
SNAPSHOT COMMITTED isolation level, 94
snapshots, of databases, 615–620
SOAP (Simple Object Access Protocol), web

services and, 376
SOME operator, 8
sort direction for index columns, 161
sort order, collations for, 116
SORT_IN_TEMPDB command, 165

SOUNDEX function, 215, 218
SPACE function, 215, 224
sparse files, 615

SPID (server process ID), 268
@@SPID function, 244
sp_addextendedproc system-stored procedure,

339
sp_addlinkedserver stored procedure, 622, 626
sp_addlinkedsrvlogin stored procedure, 626
sp_addlogin stored procedure, 413
sp_addmessage system-stored procedure, 394
sp_addrole system-stored procedure, 428
sp_addrolemember system-stored procedure,

427
sp_addsrvrolemember system-stored

procedure, 417
sp_addtype stored procedure (deprecated with

SQL Server 2005), 308
sp_addumpdevice system-stored procedure,

693
sp_attach_db special procedure, 536
sp_changedbowner system-stored procedure,

554
sp_changeobjectowner system-stored

procedure, 591
sp_change_users_login system-stored

procedure, 424
sp_configure stored procedure, 333, 340, 517,

520
sp_control_plan_guide system-stored

procedure, 678
sp_createstats stored procedure, 661–662
sp_create_plan_guide system-stored procedure,

677
sp_defaultdb stored procedure, 410
sp_defaultlanguage stores procedure, 410
sp_delete_http_namespace_reservation

system-stored procedure, 386
sp_denylogin stored procedure, 412
sp_depends system-stored procedure, 592
sp_detach_db special procedure, 534
sp_dropdevice system-stored procedure, 693
sp_droplinkedsrvlogin system-stored

procedure, 628
sp_droprolemember system-stored procedure,

427
sp_dropserver system-stored procedure, 625
sp_dropsrvrolemember stored procedure, 418
sp_dropuser system-stored procedure, 423
sp_executesql system-stored procedure, 638,

675, 679
caution for, 675

sp_grantdbaccess system-stored procedure, 421
sp_grantlogin stored procedure, 408
sp_help stored procedure, 116
sp_helpdb stored procedure, 524
sp_helpdbfixedrole system-stored procedure,

425
sp_helpdevice system-stored procedure, 693

■INDEX 729

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 729

sp_helprole system-stored procedure, 428
sp_helprolemember system-stored procedure,

426
sp_helpserverrole system-stored procedure,

419, 420
sp_helpuser system-stored procedure, 422
sp_procoption system-stored procedure, 278
sp_rename system-stored procedure, 589
sp_reserve_http_namespace system-stored

procedure, 385
sp_serveroption system-stored procedure, 624
sp_setapprole stored procedure, 430
sp_settriggerorder system-stored procedure,

334
sp_spaceused system-stored procedure, 565,

568
sp_updatestats system-stored procedure, 659,

662
sp_who system-stored procedure, 99
SQL:BatchCompleted event, monitoring, 641
SQL collations, 116
SQL injection, 675
SQL injection attacks, 272
SQL logins, accessing non-SQL server resources

and, 457
SQL Native Client (Microsoft) OLE DB Provider,

622, 632
SQL Server 2000, XML integration and, 355, 368
SQL Server 2003, data modifications and, 61
SQL Server 2005

built-in functions and, 209–253
cascading changes and, 124
CLR integration and, 337
CLR support, enabling in, 341
HTTP support in, 375
join types and, 26
loading assemblies into, 345
lock resources of, 91
new features with

APPLY clause, 33
automatic statement-level recompilation,

286
built-in data encryption, 459
BULK option, 621, 633–636
COPY_ONLY option, 698
CTEs, 30, 53
data page restores, 715
for data sources, 36–44
database mirroring, 595, 694
database snapshots, 615
DATE_CORRELATION_OPTIMIZATION

option, 545
DDL triggers, 325
DISABLE TRIGGER command, 331
dynamic management view, 99
full-text catalog backups, 173
index options, 157, 166–169
OUTPUT clause, 78
PARAMETERIZATION option, 546

partial backups, 701
plan guides, 677–681
ranking functions, 237–241
read-consistency options, 549–551
RECOMPILE hint, 50
security terminology, 407
Service Broker, 485–516
SET SHOWPLAN_XML command, 650
SQL logins, binding to Windows

credentials, 457
synonyms/aliases, 621, 630
statement-level stored procedure

recompilation, 51
table partitioning, 141
Transact-SQL commands, 173
TRY...CATCH command, 393, 399, 402–406
USE PLAN command, 653–655
xml data type, 358–367

options for, configuring/viewing, 517
permissions, securables and, 434
server process id renamed to server session

id, 89, 268
system functions and, 241
XML integration and, 355–374

SQL Server data type to CLR data type
translations, 343

SQL Server instances, shutting down, 437
SQL Server logins, 382, 413–417

dropping, 417
SQL Server principals, 407, 412–420
SQL Server Profiler, 639–644
SQLXML (XML for SQL Server), 355
SQRT function, 213
SQUARE function, 213

SSL (Secure Sockets Layer,), 376
statistical aggregate functions, 212
statistical functions, 246
statistics, 659–664

query performance and, 638
STATISTICS commands, 655–664
STDEV function, 209, 212
STDEVP function, 209, 212
stored procedures, 271–287, 340

best practices for, 639
documenting, 280
dropping, 278
executing automatically, 278
extended, 339
for full-text search (deprecated with SQL

Server 2005), 173
HTTP endpoints and, 379–382
inserting table data via, 67
for processing messages, 501–504
TRY...CATCH command and, 400, 404

STR function, 215
string concatenation, 22
string execution, 675
string functions, 215–226
striping backups, 692

■INDEX730

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 730

STUFF function, 215, 221, 298
subqueries, 25
SUBSTRING function, 215, 225
SUM aggregate function, 209, 212
summarizing data, 45–47
surrogate keys, 126–129, 303
symmetric key encryption, 471–478
symmetric keys, 459
SYNONYM object, 621
synonyms, 630
sys.asymmetric_keys system catalog view, 467
sys.backup_devices catalog view, 693
sys.certificates system catalog view, 479
sys.configurations system catalog view, 518
sys.databases system catalog view, 537, 547, 552
sys.database_mirroring system catalog view,

610, 612
sys.database_mirroring_endpoints system

catalog view, 601
sys.dm_db_index_physical_stats dynamic

management function, 665
sys.dm_db_index_usage_stats dynamic

management view, 668
sys.dm_exec_cached_plans system catalog

view, 547
sys.dm_exec_query_plan dynamic

management function, 548
sys.dm_exec_query_plan dynamic

management view, 653
sys.dm_exec_query_stats dynamic

management view, 658
sys.dm_exec_requests dynamic management

view, 644
sys.dm_exec_sql_text dynamic management

function, 658
sys.dm_os_performance_counters dynamic

management view, 629
sys.dm_os_waiting_tasks dynamic

management view, 99
sys.endpoints system catalog view, 380
sys.fn_builtin_permissions system catalog

function, 436
sys.linked_logins catalog view, 627
sys.messages system catalog view, 393
sys.messages table, 393

removing error messages from, 396
sys.schemas system catalog view, 446
sys.servers system catalog view, 625, 627
sys.server_principals system catalog view, 409,

415, 418, 627
sys.soap_endpoints system catalog view, 381
sys.sql_modules catalog view, 271, 280
sys.sql_modules system catalog view, 194
sys.symmetric_keys system catalog view, 473
sys.triggers catalog view, 324
sys.XML_schema_collections catalog view, 361
sys.XML_schema_namespaces catalog view,

361
sysadmin fixed server role, 417

sysadmin server role members, 461
system catalog views, 181
System.Data namespace, 390
system-defined error messages, 393–396
system functions, 241–251
SYSTEM_USER function, 250

■T
T-SQL programming language, 337
table aliases, 27

self-joins and, 29
table constraints, 119
table hints, 47, 51
table lock resource, 91
table-valued functions, invoking for outer-

query rows, 33–36
table-valued user-defined functions, 289

advantages of, 301
table variables, 78–81, 137–140

performance issues and, 138
RETURNS keyword and, 296

tables, 109
creating, 112
derived, 30
dropping, 116
filegroups, placing on, 141, 151
new, creating from query results via INTO

clause, 23
partitioning, 141, 142–151
querying multiple, 26–32
renaming, 589–591
reporting information about, 116
self-joining, 29
statistics, generating/updating across,

661–662
temporary, 30, 137–140
truncating, 77
validating integrity of, 576–583
very large, managing, 141

TABLESAMPLE clause, 37
TAKE OWNERSHIP permission, 456
TAN function, 213
tempdb database, 137, 165
temporary tables, 137–140

performance issues and, 138
vs. derived tables, 30

term proximity, 173, 186
testing, best practices for, 639
text data types (deprecated with SQL Server

2005), 71
thick arrows, 649
time, 229, 235. See also date functions; date

conversions
@@TIMETICKS function, 246
tokens, 173
tools. See utilities
TOP keyword, 13

chunking data modifications via, 81
TORN_PAGE_DETECTION option, 552

■INDEX 731

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 731

@@TOTAL_ERRORS function, 247
@@TOTAL_READ function, 247
@@TOTAL_WRITE function, 247
trace flag 1400, enabling, 595
trace templates, 640
traceflags, 103–106
@@TRANCOUNT function, 85, 244
Transact-SQL commands

new with SQL Server 2005, 173
setting default transaction locking behavior

for, 94–99
Transact-SQL cursors, temporary tables as

alternative to, 137
Transact-SQL predicates, 182–184
Transact-SQL scripts, 21
transaction log backups, 596, 598, 602–604, 685,

696
COPY_ONLY option and, 698
recovery models for, 551
restoring, 709–712

transaction log files
relocating, 559
removing from database, 558

transaction mark recovery, 551
transactions, 83

concurrent, interactions between, 93
displaying oldest active, 88–90
DML triggers and, 321
recommendations for handling in Transact-

SQL code, 87
types of, 84

transport security, 504, 506–509
trigger recursion, 333
triggers, 198, 313–336, 340

CLR, creating, 350–352
dropping, 336
enabling/disabling, 330
firing order and, 334
managing, 330–336
TRY...CATCH command and, 400

troubleshooting
blocks, 99–102
deadlocks, 103
foreign keys, 124

TRUE result, 7
TRUNCATE TABLE command, 77, 282
TRUSTWORTHY option, 487
TRY...CATCH command, 393, 399, 402–406

benefits of, 399
nesting calls and, 404
stored procedures and, 404

■U
UDFs. See user-defined functions
undo phase, 705
Unicode files, importing, 633–636
UNICODE function, 215
UNION ALL statement, 191, 203, 206
UNION operator, result sets and, 31

UNION statement, 308
UNIQUE constraints, 129–132
unique indexes, 157
uniqueidentifier column, 65
uniqueidentifier data type, 126, 251–253

dialog conversations and, 494
Universal Time Coordinate (UTC), 230
UNKNOWN result, 7
UNPIVOT command, 40
UNSAFE permission, 342, 345
untyped XML columns, 360
update locks, 90
UPDATE statement 69–75

using OUTPUT clause with, 78
UPDATE STATISTICS command, 660
updategrams, 355
updates, lost, 93
UPDLOCK hint, 52
UPPER function, 215, 221, 223
USE clause, 2
USE PLAN 'xml_plan' hint, 50
USE PLAN command, 653–655

cautions for, 655
user access modes, 530
USER function, 250
user-defined aggregate functions, 340
user-defined database roles, 420, 427–429
user-defined error messages, 393–396
user-defined functions (UDFs), 289–308, 340

benefits of, 301–308
cautions for, 301
dropping, 300
modifying, 298
viewing list of, 300

user-defined types, 289, 308–312, 340
dropping, 311

UTC (Universal Time Coordinate), 230
utilities

Database Engine Tuning Advisor, 664,
669–675

SQL Server Profiler, 639–644

■V
VALUE indexes, 367
values

converting into columns, 38
duplicate, removing, 19
inserting explicitly into IDENTITY column,

64
NULL, checking for, 9
returning rows based on list of, 10

VAR function, 209, 212
varbinary(max) data types, 71
varchar(max) data types, 71
VARP function, 209, 212
VB.NET, creating assemblies in, 341
vbc.exe compiler, 344
very large databases (VLDBs), filegroups and,

141, 151

■INDEX732

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 732

view definitions
querying, 194
refreshing, 196

viewing
asymmetric keys, 467
backup devices, 693
cached query plans, statistics for, 657
database certificates, 479
database information, 524–525
database object definitions, 593
database object dependencies, 592–594
database options, 537
database space usage, 565–567
execution runtime information, 655–657
fixed database role members, 426
fixed database roles, 425
fixed server role members, 420
fixed server roles, 418
index usage, 664, 668–669
indexes, 161
linked logins, 627
linked servers, 625
media sets, contents of, 702–705
permissions, available, 435
query execution plans, 645–655
SQL Server configurations, 517–519
SQL Server logins, 415
statistics information, 662
symmetric keys, 473
Windows logins, 409

views, 53, 191–207
dropping, 197
encrypting, 198
replacing with multi-statement UDFs,

306–308
returning information about, 194
system catalog, 181

virtual log files (VLFs), 570
Visual Studio 2005, 387
VLDBs (very large databases), filegroups and,

141, 151
VLFs (virtual log files), 570

■W
WAITFOR command, 255, 260, 265
web services, 375

.NET client using, 387
technologies used with, 375

Web Services Description Language (WSDL),
375

weighted value, returning search results by, 188

WHERE command, 3–7, 187
best practices for, 638
keeping unambiguous, 6
predicates and, 182
rows, updating via, 70

WHILE command, 255, 260, 262
WHILE loop, temporary tables and, 137
wildcard searches, 173, 185
wildcards, with LIKE, 10
Windows authentication, Windows principals

and, 407–412
Windows collations, 116
Windows credentials, 457
Windows logins, 407–412

creating, 408
dropping, 411

Windows-only authentication, 408
Windows principals, 407–412
WITH CUBE clause, 45
WITH NORECOVERY option, database

mirroring and, 598
WITH ROLLUP clause, 46
witness server, 597
word meaning, returning search results by, 187
worktables, 657
WSDL (Web Services Description Language),

375

■X
XLOCK hint, 52
XML (Extensible Markup Language), 356

converting relational data sets into, 367–374
web services and, 376

XML Core Services (MSXML), 355
XML data, retrieving/modifying, 362–366
xml data type, 308
XML DML, 366
XML for SQL Server (SQLXML), 355
XML indexes, 366
XML integration, 355–374
XML Path Language (XPath), 357
XML Query Language (XQuery), 357
XML Schema collections, 360–362
XML Schema Definition Language, 357
XPath (XML Path Language), 357
XQuery (XML Query Language), 357
XQuery methods, 362–365

■Y
YEAR function, 229, 233

■INDEX 733

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 733

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 734

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 735

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 736

570XchIDXFINALQ6.qxd 11/4/05 3:31 PM Page 737

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

BOB_Forums7x925 8/18/03 Page ______

	SQL Server 2005 T-SQL Recipes: A Problem-Solution Approach
	Table of Content
	Chapter 1 SELECT
	Chapter 2 INSERT, UPDATE, DELETE.
	Chapter 3 Transactions, Locking, Blocking, and Deadlocking
	Chapter 4 Tables
	Chapter 5 Indexes
	Chapter 6 Full-Text Search
	Chapter 7 Views
	Chapter 8 SQL Server Functions
	Chapter 9 Conditional Processing, Control-Of-Flow, and Cursors.
	Chapter 10 Stored Procedures
	Chapter 11 User-Defined Functions and Types
	Chapter 12 Triggers
	Chapter 13 CLR Integration
	Chapter 14 XML
	Chapter 15 Web Services.
	Chapter 16 Error Handling
	Chapter 17 Principals
	Chapter 18 Securables and Permissions
	Chapter 19 Encryption
	Chapter 20 Service Broker
	Chapter 21 Configuring and Viewing SQL Server Options
	Chapter 22 Creating and Configuring Databases
	Chapter 23 Database Integrity and Optimization.
	Chapter 24 Maintaining Database Objects and Object Dependencies.
	Chapter 25 Database Mirroring
	Chapter 26 Database Snapshots
	Chapter 27 Linked Servers and Distributed Queries
	Chapter 28 Performance Tuning
	Chapter 29 Backup and Recovery
	Index

